
Chapter 4 

MODELS IN EPIDEMICS 

4.1 Generalities 

One of the important areas of real-life applications of stochastic processes is in 
epidemiology, more specifically, in analyzing the spread of epidemics. Roughly 
speaking, the situation that we want to look at is as follows. There is a group 
of individuals, all mixing homogeneously together. Due to some reason, one or 
more of them contracted an infectious disease. They are the individuals initially 
infected. After a certain period of time, called the latent period, the infected 
become infectious. This means that they are now capable of passing on the 
infection to other individuals in the population to be called susceptibles. This 
leads to new infections. Thus, some of the susceptibles move to the infected 
group and this continues. Simultaneously, as time passes there is also what 
is called removal of infectious from circulation. Such removals in reality may 
take place by way of death or by way of detection and quarantine. Of course, 
removal may not always mean that the concerned individuals are actually taken 
out of the population. For example, an infectious person may have been cured 
and has become immune. Thus, as far as the epidemic is concerned, they are 
as good as removed. 

In the next few sections, we shall model such phenomena mathematically. In 
the light of the different models, we would like to investigate how the epidemic 
progresses in terms of the changes in the number of infected and susceptibles. 
A quantity of vital interest is the total size of the epidemic, to be explained 
later. The rate at which the infection spreads is called the rate of infection, 
whereas the rate at which the infectious individuals get removed is called the 
rate of removal. If the infection rate is too small compared to the removal rate, 
then one intuitively feels that the epidemic should not build up. An important 
class of theorems in epidemiology known as the Threshold Theorems are aimed 
at justifying this mathematically. One distinctive feature of this chapter is that 
unlike the previous chapters where the models were discrete in time, here we 
have an evolution taking place in continuous time. As a result, in Sections 4.2 
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and 4.3, we will use continuous time Markov chains. 

Needless to say that the description given above conforms to the real world 
meaning of epidemics. However the same picture obtains if we wish to study 
the spread of a disease across the cells of a single individual. 

4.2 Simple Epidemic 

For the sake of simplicity, we first consider the case when there is no latent 
period and also there are no removals. The first assumption means that an 
individual becomes infectious as soon as he receives the infection. In the ab
sence of removals , an infectious individual remains in circulation forever. In 
this case, it is intuitively clear that infection would continue to spread until all 
are infected. 

4.2.1 Deterministic Model 

We start with a deterministic model first. We consider a population of n + 1 
individuals in which initially, that is, at time t = 0, there are n susceptibles and 
1 infectious. We denote by x(t) and y(t), the numberof susceptibles and the 
number of infected individuals respectively at time t. Of course, it is clear that 
for every t, x(t) + y(t) = n + 1. Also x(O) = nand y(O) = 1. In view of the fact 
that y(t) = n+l-x(t), it suffices to describe x(t). The central step in modelling 
the process x(t) involves deciding on the mechanism governing the evolution of 
x(t). More precisely, suppose that at some time instant, say t, we have x(t) = a. 
This means that at time t there are a susceptibles and n + 1 - a infected in the 
population. The question is how x( t) should change in a small time interval, say 
t:.t. This, of course, means how many new infections take place during the time 
period (t, t+t:.t). This is where we bring in our modelling assumptions. First of 
all, the number of new infections should be proportional to the duration of the 
interval, namely, t:.t. Indeed, one does feel that the number of new infections 
in a given time interval should be large or small depending on whether the 
interval is large or small. Secondly, the number of new infections should be 
proportional to the possible number of contacts between the infected and the 
susceptibles. Since at time t we have a susceptibles and n + 1 - a infected 
the possible number of contacts (that is, pairings) between these two groups 
is a(n + 1 - a). Our modelling assumption, therefore, reduces to speculating 
that x(t + t:.t) - x(t) rv -,Bx(t)[n + 1 - x(t)]t:.t. Here,B is a positive constant, 
frequently referred to as the infection rate. Dividing by t:.t and taking the limit 
as t:.t -+ 0 the above amounts to 

x'(t) = -,Bx(t)[n + 1- x(t)]. (1) 

This is our precise mathematical assumption regarding the evolution of x(t) . 
An initiated reader would, of course, raise objections at this point. The fact 
is that x(t) denotes the number of susceptibles at time t and is hence integer 
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valued. Let alone being differentiable, x(t) cannot even be continuous unless it 
is a constant function of t. Here is one way to make sense out of Equation (1). 
Assume that the population size (n + 1) is large and consider the proportion 
x(t) = x(t)j(n + 1) of susceptibles rather than x(t) itself. In that case x(t) can 
be regarded as taking values in the continuum [0,1] (at least approximately). 
Our modelling assumptions can now be summarized in a genuine differential 
equation for x(t), obtained as follows. As seen earlier, for small 6.t, 

x (t + 6.t) - x (t) (3 () ( 1 ( )) ---'--~-'---":""";" '" - x t n + - x t 
6.t ' 

that is, 

x(t + 6.~~ - x(t) '" -(3(n + l)x(t)(l _ x(t), 

which on taking limit as 6.t -l- 0 yields 

x'(t) = -(3(n + l)x(t)[l - x(t)]. 

Of course, all this is just a matter of mathematical precision and should be 
viewed as a way of rationalizing Equation (1). In any case you should remember 
that Equation (1) itself reflects only an approximation for the actual state of 
affairs. 

Returning now to Equation (1), it can be written as 

x'(t) + x'(t) = -(3(n + 1). 
x(t) n+1-x(t) 

By integrating and using the initial condition x(O) = n, one obtains 

It follows that 

n(n + 1) 
x(t) = n + e!3(n+l)t . 

(n + l)e!3(n+l)t 

y(t) = n + e!3(n+l)t 

The rate at which the infections accrue is given by 

w(t) y' (t) = -x' (t) 

(3x(t)[n + 1- x(t)] 

2 e!3(n+l)t 
(3n(n + 1) . 

[n + e!3(n+l)t]2 

This is of considerable interest in epidemiology and the graph of w(t) is called 
the epidemic curve. The above epidemic curve starts at w(O) = (3n, increases 
until it reaches a peak at time to = log nj[(3(n + 1)] and then gradually dies 
down. The time point to is usually of some interest. In our model, the number 
of susceptibles and the number of infected become almost equal at time to. 
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The fact that lim x(t) = 0 is only natural because in this model the entire 
t--+oo 

population is clearly going to be infected eventually. This completes our dis-
cussion of the deterministic model. After all, the main purpose of this model 
is to motivate a more realistic model, namely, a stochastic one. 

4.2.2 Simple Stochastic Epidemic 

In the stochastic model we do not say that in the small time-interval t to 
t + 6.t, a certain number of new infections is sure to take place. Instead, we 
introduce a chance mechanism for the number of new infections. As before, 
let us imagine a population of size n + 1 with n susceptibles and 1 infected 
initially. Let X t and yt denote the number of susceptibles and the number 
of infected, respectively, at time t. Here X t and yt are going to be random 
variables. Of course X t + yt = n + 1, for all t ; Xo = nand Yo = 1. Now we 
come to the main assumption. Given that at time t, X t = a and yt = n + 1- a, 
we assume that during the time interval t to t + 6.t, the probability of exactly 
one new infection is (3a(n + 1 - a)6.t + o(6.t) and that of no new infection is 
1- (3a(n + 1- a)6.t + o(6.t). This of course implies that the probability of two 
or more new infections during the period t to t + 6.t is o(6.t). Thus (Xt)t>o 
is a continuous time pure death chain starting at Xo = n (see the concludi~g 
paragraph of Section 0.9.1). The death rates are given by 

ILi = (3i(n + 1 - i), i = 0,1, ... , n. 

Denoting, Pr(t) = P[Xt = r], the usual Kolmogorov equations are 

p~(t) = -(3r(n + 1 - r)Pr(t) + (3(r + 1)(n - r)Pr+l(t) for 0 :S r < n, 

and p~(t) = -(3nPn(t). (2) 

Of course Pn(O) = 1 where as Pr(O) = 0 for 0 :S r < n. 

As we shall see later, it is possible to solve the above equations successively 
for Pn, Pn-l, ... ,Po· But the formulae are too complicated to give an insight 
into the phenomenon. Of course, since (Xt)t>o is a pure death chain with death 
rates ILi given in (1), the general theory tells us that the first new infection takes 
place after a random time distributed as EXP(ILn) , the next infection occurs 
after a further random time with distribution EXP(ILn-d, and so on. Finally, 
the process comes to a halt when all are infected. This happens in a finite 
time with probability one. Denoting by T the total duration, it is clear that 
T is the sum of n independent exponential random variables with parameters 
ILn, ... , ILl· One can find the exact distribution of T. However, we shall be 
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content with noting that 

E(T) 
1 n 1 

:e ~ i(n + 1 - i) 

1 n [1 1] 
(3(n + 1) ~ i + n + 1 - i 

2 n 1 

(3(n + 1) L i' ,=1 

But, 
n 1 n 11iH n li+l 1 
L~ L~ dx > L -dx log(n + 1) 
i=1 Z 

Z . . X 
i=1 ' i=1 ' 

and, 

n 1 n 1 li n li 1 
L~ 1 + ~ i i-I dx < 1 + ~ i-I; dx = 1 + logn . 
i=1 z 

Thus, 
~log(n+1) < E(T) < ~l+logn. 
(3 n+1 - - (3 n+1 

That is, E(T) = O(logn/n). Incidentally, this also shows that E(T) ..j.. 0 as 
n -+ 00. This seems to contradict one's first intuition that large populations 
should take longer to reach complete infection. However, one should not forget 
that larger population implies increased death rate also. 

Returning to the Kolmogorov Equations (2), we now indicate how one can 
go about solving them and also what the nature of the expressions for Pr(t) is. 
Firstly, it is immediate that 

This can also be directly seen from the fact that Pn(t) is the probability that 
up to and including time t, no new infection has taken place and that the time 
till the first new infection is exponentially distributed with parameter (3n. 
Next, the Equations (2) can be rewritten as 

p~(t) + J-lrPr(t) = J-lrHPr+l(t) for 0 S r < n. 

Multiplying both sides by ei-'rt one obtains 

Solving this one obtains the recurrence relation 

(3) 
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Thus explicit expressions for the Pr(t), 0 ::::; r < n can be obtained. Since the 
actual formulae are quite complicated and do not seem to reveal much, we shall 
be content with giving the following partial result. 

Proposition 4.1: For each r > ~, Pr(t) is a linear combination of the func

tions e-Mit , r::::; i ::::; n. 

Proof: Clearly the assertion is true for r = n. Let n > r > ~ and Pr+! (t) = 
L~r+l Cr+l,ie-Mit. We shall show that Pr(t) = L~=r Cr,ie-Mit. This will 
complete the proof. Using (3) and our hypothesis concerning Pr+! (t), 

t n 

Pr(t) = e-Mrt 1 L fJr+lCr+l,i e(Mr-Mi)S ds. 
o i=r+l 

Observe that fJi = fJr if and only if i = r or i = n + 1 - r. It follows that if 
r > n/2, then fJi i- fJr for every i > r. As a consequence, 

n 
'" C _e- Mit L...J 1",1, , 

where 

and for i > r, 

i=r 

n 

Cr,r = - L 
i=r+l 

fJr+lCr+1,i 
fJr - fJi 

• 
Remark: The condition that r > n/2 was crucially used in the above proof. 
For r ::::; n/2, Pr(t) is not a linear combination of the above type. Extra compli
cations crop up due to the fact that for any r ::::; n/2 there is indeed an i > r, 
namely i = n + 1 - r, such that fJi = fJr. This gives rise to terms involving 
te-Mrt also, thus making explicit expression for Pr(t) more complicated. 

4.3 General Epidemic 

We now consider a slight generalization of the earlier' model in that, we allow 
removals. Of course, there is still no latent period. Thus a person infected 
becomes infectious instantly and remains so until he is removed from the pop
ulation. This phenomenon is referred to as General Epidemic. As in the case 
of simple epidemic, here also we first consider a deterministic model and then 
a stochastic one. 
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4.3.1 Deterministic Model 

This deterministic model was proposed in 1927 by W. O. Kermack and A.G. 
McKendrick. Here is the model. We have a population of n individuals and ini
tially a certain number of them are infected; the rest are naturally susceptibles. 
As time passes, new infections take place and also some infected individuals are 
removed. Thus at any point of time, the population consists of three groups of 
individuals - susceptibles, infected and removed. Let x(t), y(t) and z(t) denote 
the number of individuals in these three groups respectively at time t. Clearly 
x(t) + y(t) + z(t) = n, for all t. We assume that x(O) = Xo > O,y(O) = Yo > 0 
and z(O) = o. We assume that the number of new infections in time inter
val (t, t + /}.t) depends only on the number of susceptibles and the number of 
infected at time t, but not on the number of individuals removed till time t. 
This stands to reason because new infections arise out of contacts between the 
susceptibles and the infected. 

As in the simple epidemic model, we postulate that the actual number of 
new infections during (t, t + /}.t) is (3x(t)y(t)/}.t. The rationale behind this 
postulate has already been explained in Section 4.2.1. Regarding removals, we 
assume that the number of individuals removed during (t, t + /}.t) depends only 
on the number of infected at time t and neither on the number of susceptibles 
at time t nor on the number of individuals removed till time t. This last 
assumption may be a little unrealistic in some situations. For example, one can 
very well have a situation where the health authorities have limited resources 
and try to put a check on the new removals. However, for the sake of simplicity, 
we rule out such a possibility. Following the same idea as in the case of new 
infections, we postulate that the number of individuals removed during (t, t + 
/}.t) is '"Yy(t)/}.t where '"Y is again a positive constant like (3. The constant (3 is 
still called the infection rate, while '"Y is called the removal rate. The quantity 
p = '"Y I (3 will play an important role in our analysis and is usually referred to 
as the relative removal rate. 

Our postulates above lead to the following differential equations: 

X' (t) 
y' (t) 
Zl (t) 

-(3x(t)y(t), 
(3x(t)y(t) - '"Yy(t) , 
'"Yy(t) , 

with the initial conditions x(O) = Xo, y(O) = Yo, z(O) = O. 

(4) 

The Equations (4) are known as the Kermack-McKendrick Equations, or, 
simply as KK Equations. The Equations (4) reveal that the functions x(t), y(t) 
and z(t) have derivatives upto any order. For example, the differentiability of 
x(t) and y(t) implies the differentiability of x' in view of the first equation in 
( 4). 

The first equation of (4) implies that x'(t) :S 0 for all t, so that x(t) is a 
non-increasing function. Similarly, from the third equation, it follows that z(t) 
is a non-decreasing function. We shall now solve for x in terms of z. Using the 
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third equation of (4) in the first, we get 

1 
x'(t) = -- z'(t)x(t). 

p 

Let to = sup{t : x(t) > O}. From the continuity of x(t) and the fact that 
x(O) = Xo > 0, we conclude that to > O. It could however be infinite. We shall 
now proceed to argue that to is indeed infinite. First note that, by monotonicity 
of x, we have x(t) > 0 for all t < to. Therefore on the interval (0, to) 

x'(t) _ -~z'(t) 
x(t) - P , that is, ~ log x(t) = -~z'(t). 

dt p 

This yields the simple solution 

x(t) = xoe-z(t)/p for t E (0, to) . 

If to were finite then the continuity of x and z would imply that 

x(to) = xoe-z(to)/p > xoe-n / p > O. 

But by definition of to, we must have x(to) = 0, if to is finite. This contradiction 
shows that to is indeed infinite. Thus we have 

x(t) = xoe-z(t)/p for all t 2: o. (5) 

First observe that, x and z being monotone, both the limits Xoo = lim x(t) 
t-+oo 

and Zoo = lim z(t) exist. Moreover, from (5), we get that Xoo = xoe- zoo / p. 
t-+oo 

Clearly, Zoo :S n, so that, Xexo 2: xoe-n / p > O. Since x(t) + y(t) + z(t) = n for 
each t, it follows that Yoo = lim y( t) also exists. 

t-+oo 
We shall now show that Yexo = O. These have the following epidemiological 

interpretation. After a sufficiently long time has elapsed and a stable state is 
reached no infected individual remains in circulation and the population still 
retains a positive number of un infected people. This, of course, is a consequence 
of the dynamics embodied in Equations (4). Reality may not always follow 
Equations (4). Turning to the second Equation in (4) let us rewrite it as 

y'(t) =;3y(t) [x(t) -plo 

If x(t) 2: p for all t, then y(t) would be non-decreasing throughout. In particular 
y(t) 2: Yo > 0 for all t, so that, z'(t) 2: "fYo for all t. But this would mean that 
z(t) 2: "fyot for all t, contradicting the fact that z(t) is bounded by n. Thus 
there exists a finite time point tl 2: 0, such that on [h,oo), x(t) :S p. As a 
consequence, y is non-increasing on rh, 00) and, in particular, y(t) 2: yoo. From 
the third Equation in (4), it follows that if t > t1 , then z(t) 2: Z(tl) +"fYoo (t-td. 
Now z(t) :S n for all t would force Yoo to be zero. 

Recalling the definition of tl in the above paragraph, it is clear that tl = 0 
or h > 0 according as Xo :S p or Xo > p. We now bring to the fore the fact that 
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these two cases are indeed different in terms of their epidemiological manifes
tations. Let us first discuss the case Xo :S p. In this case, as observed above, 
y(t) is a non-increasing function throughout. This means that the number of 
infected in circulation keeps on decreasing as time passes. In epidemiological 
terms, one says that the epidemic never really builds up. This should not how
ever be construed as saying that there are no new infections. This only means 
that the removal rate is sufficiently high compared to the infection rate, so as 
to keep the number of infected individuals in circulation going down. 

The more interesting case is when Xo > p. In this case, as observed above, 
y(t) increases upto a positive time instant tl and then decreases. That is, 
initially the epidemic does build up and reaches a peak at time instant tl, after 
which it gradually subsides. In this case, it is interesting to get an idea of the 
size of the epidemic. A good measure of the size could be (xo - x oo ), which is 
precisely the total number of individuals who got infected during the course of 
the epidemic. Of course, we know that 

Using the fact that Yoo = 0, so that Zoo = n - Xoo , we obtain 

or equivalently, 
n - Xoo = n - Xo e-(n-x=)/p . 

Denoting n - Xoo by u and setting g(u) = n - xoe-u / p, we get 

u=g(u). (6) 

Given n, Xo and p, the above is an equation in u, whose solution would give us 
n - Xoo or equivalently Xoo. Let us first point out that the equation (6) has a 
unique positive solution. Indeed, setting h(u) = g(u) - u, we observe that 

h'(u) = g'(u) - 1 = Xo e-u / p - 1. 
P 

Xo 
Let Uo = plog -. Since Xo > p, we have Uo > 0. Further, it is easy to 

p 
see that h'(u) > ° on [O,uo) and h'(u) < ° on (uo, (0). Consequently, his 
strictly increasing on [0, uo) and is strictly decreasing on (uo, (0). Noting that 
h(O) = n - Xo = Yo > 0 and lim h(u) = -00, it can be easily concluded 

u-too 
that h(u) = ° has a unique positive solution or equivalently that (6) has a 
unique positive solution. However, computing the exact value of the solution is 
difficult, perhaps impossible. There is no standard method of solving equations 
of the form u = g(u), where 9 is an exponential function. So the next best 
thing is to replace 9 by an approximating polynomial and solve the resulting 
equation to get an approximate solution. The classical finite Taylor expansion 
of 9 would be an ideal choice for such an approximation. Following Kermack 
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and McKendrick, we use the second order Taylor polynomial. More precisely, 
we replace g(u) = n - xoe-(u/p) by 

n - Xo [1 - ~ + ~] = (n - xo) + Xo ~ - Xo ~ , 
P 2p2 P 2p2 

so that Equation (6) takes the form 

or equivalently, 

u Xo 2 
U = (n - xo) + xo- - -u . 

P 2p2 

Xo 2 ( xo) -u + 1 - - u - yo = O. 
2p2 P 

(7) 

In view of Xo > p, this quadratic equation is easily seen to have only one 
positive solution. 
However, if we also assume that yo is small enough and can be neglected from 
(7), we get a simple formula for this unique positive solution, namely, 

* 2p ( ) u = - Xo - P . 
Xo 

We can utilize this simple form of u* to get a quantitative idea of the spread 
of the epidemic. Noting that u* was obtained as an approximation for n - X(X) 
and that n = Xo + yo we have 

2p 
n--(xo-p) 

Xo 

xo-2(xo-p)..E...+ yO 
Xo 

> xo-2(xo-p) [sincexo>p, 
p-(xo-p), 

that is, approximately, p - X(X) :S Xo - p. 

(8) 

Yo > 0] 

Thus, we are lead to the following conclusion. If the initial number of 
susceptibles exceeds p, then the epidemic certainly builds up. However, after 
the epidemic has died out, the final number of susceptibles can go only as 
far below p as the initial number was above p. Noting that Xo - X(X) gives 
the total number of new infections during the course of the epidemic, the 
above observation really says that this number is approximately no more than 
2(xo - p). We summarize our observations in the following theorem: 

Theorem 4.2: 
(a) We always have, 

lim y(t) = 0 and lim x(t) ;::: Xo e-(n/p) > o. 
t-t(X) t-t(X) 

(b) If Xo :S p, then y(t) continuously decreases in t. Thus, as long as Xo :S p, 
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the epidemic does not build up. 
(c) If Xo > p, then y(t) initially increases with t, reaches a peak and then 
gradually decreases. Thus the epidemic does build up. If it is further assumed 
that Yo is negligible, then 2(xo - p) is an approximate upper bound for the 
number of people infected in the course of the epidemic. 

Thus, p acts as a threshold value for the initial number of susceptibles in 
order for the epidemic to build up or not. For this reason, parts (b) and (c) 
of Theorem 4.2 are referred to as the Kermack-McKendrick Threshold Theo
rem. Going back to (8), it is clear that if Yo is negligibly small and Xo is only 

. Xo 
margmally above the threshold value p, so that - rv 1, then one can safely say 

p 
that x= rv p - (xo - p). Very often the existing literature states this approx-
imate equality as part of the threshold theorem rather than the approximate 
inequality we stated in part (c). This is alright as long as the assumptions 

Yo rv 0, Xo rv 1 are kept in mind. 
p 

We now turn to the assumption that Yo is small. This amounts to saying 
that initially there is only a trace of the infection in the population. This is not 
altogether unjustified - and in fact quite natural - for the following reason. 
In the study of continuous time epidemic model, it is only natural to take the 
time origin as the time point when the infection first surfaced in the population. 
Granted that, the assumption of Yo being small is only logical because most 
infections start by traces. 

Before ending the section, we would like to take up a curious point. One of 
the key steps in getting an approximate solution of the equation u = g( u) was 
to replace g( u) by an appropriate Taylor polynomial. In deriving the Threshold 
Theorem, the second order polynomial was used. The natural question is: why 
not start with the first order polynomial? Here is an argument. Using the first 
order polynomial would lead to the equation u = Yo + Xo u. In case Yo rv 0 as 

p 

we have been assuming throughout, this equation almost reduces to u = Xo u. 
P 

This is of course no good. If Xo f 1, this equation admits no solution other 
p 

than zero, whereas if Xo rv 1, we end up with too many solutions! Going in 
p 

the other direction, it may be worthwhile to try and see what one obtains by 
approximating g(u) by a third order polynomial. 

4.3.2 General Stochastic Epidemic 

We start with a population consisting initially of a susceptibles and b infected 
persons. For any time instant t, X t will denote the number of susceptibles at 
time t, yt the number of infected in circulation at time t and Zt the number 
of persons removed till time t. We shall assume now that the spread of the 
epidemic is governed by a chance mechanism, so that Xt, yt and Zt are random 
variables. Our object of study is the evolution of the process (Xt , yt, Ztk20. 
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The initial conditions, as stated already, are Xo = a, Yo = band Zo = O. It is 
clear that, for all t, X t + yt + Zt = a + b. Thus, studying the two-dimensional 
process (Xt, ytk::o suffices. We now describe the chance mechanism. The idea 
is the same as in the case of simple stochastic epidemic. Given X t = x and 
yt = y, we assume that during a small time interval (t, t + .6.t), there will be 
one new infection with probability (Jxy.6.t + o(.6.t) and no new infection with 
probability 1 - (Jxy.6.t + o(.6.t). This, of course, means that the probability of 
two or more new infections during (t, t+.6.t) is o(.6.t). Regarding removals, our 
assumption is that during the same time interval, there will be one removal with 
probability ,y.6.t + o(.6.t) and no removals with probability 1 -,y.6.t + o(.6.t). 
Further, the two events, namely, that of infection and that of a removal during 
such small time intervals, are assumed to be independent. This description 
clearly entails that (Xt, yt)t:2:o is a bivariate continuous time Markov chain 
with state space 

S = {(r, s) : r, s non-negative integers, r ::; a, r + s ::; a + b} . 

It is also clear, by considering the embedded discrete chain, that this is an 
absorbing chain with the states {(r, 0) : 0 ::; r ::; a} being the absorbing states 
and all others transient. In particular, Yoo = Hm yt = 0 with probability 1, 

t-too 
and Xoo = lim X t exists. In line with the deterministic case, the random 

t-too 
variable (Xo - Xoo) would denote the size of the epidemic. For (r, s) E S, let 

Pr,s(t) = P(Xt = rand yt = s). 

It is convenient to have Pr,s defined for (r, s) tt S also, by simply adopting the 
convention that, for (r, s) tt s, Pr,s(t) = 0 for all t. We then have 

Pr,s(t + .6.t) Pr+l,s-l(t)(J(r + l)(s -l).6.t[l-,(s -l).6.t] 

+Pr,s+l(t)r(S + l).6.t[l- (Jr(s + l).6.t] 

+Pr,s(t)[l - (Jrs.6.t][l -,s.6.t] 

+Pr+l,s(t) [(J(r + l)s.6.t][,s.6.t] + o(.6.t). 

This gives us the Kolmogorov equations 

In particular, 

dP~~(t) = -b((Ja + ,)Pa,b(t). 

Using the initial condition Pa,b(O) = 1, we get 

Pa,b(t) = e-b(/3a+,y)t. 

For r = a, s = b - 1, the Equation (9) becomes 
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or equivalently, 

Using the initial condition Pa,b-l (0) = 0, the solution can easily be seen to be 

Thus the Kolmogorov equations (9) can be successively solved, using the initial 
condition Pr,s(O) = 0 for (r, s) =I- (a, b), to get Pr,s(t) for all r, s. However, 
explicit formulae turn out to be extremely complicated and fail to give any 
insight into the state of affairs. Nevertheless, several people had attempted 
to get Pr,s(t) explicitly by different methods. We briefly illustrate two such 
attempts here. For further details the reader may consult the book of Bailey. 

The first one, due to Siskind, converts the system of differential equations 
(9) to a single partial differential equation. The idea is to look at the joint 
p.g.f. of (Xt, Yt) defined as 

r,s 

The equations (9) lead to the following partial differential equation for F: 

of 2 02 F of 
- = (J(v - uv)-- + ')'(1- v)-, 
dt OUOV OV 

with the initial condition 
F(O, u, v) = uavb . 

Siskind solved this explicitly and derived formulae for the functions Pr,s(t). 

The second one, due to Gani, looks at the Laplace transforms of the func
tions Pr,s(t). Recall that for any bounded continuous function p(t) on [0,00), 
its Laplace Transform is the function q(A) on (0,00), defined by 

Recall further that q determines p uniquely. The idea of Gani in considering 
the Laplace transforms qr,s(A) of Pr,s(t) was to convert the system of equations 
(9) into a system of recurrence relations for the functions qr,s given by, 

(A + (Jrs + ')'S)qr,s = (J(r + 1)(s - l)qr+l,s-l + ')'(s + l)qr,s+l, (10) 

for (r, s) =I- (a, b), with the initial condition 

(A + (Jab + ')'b)qa,b == 1. 
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These recurrence relations may not be difficult to solve. But in order to get 
back to the functions Pr,s, one still faces the problem of inverting the Laplace 
transforms qr,s, which is a difficult one. However, there is one probabilistic 
question that can be answered without having to go for inversion. For example, 
what is the probability that the total size of the epidemic, not including the 
initial number of infected, is k for a given 0 < k < a? In other words, we are 
interested in the quantity Pk = lim Pa-k o(t). Under suitable conditions, it is 

t-+oo ' 
easy to verify that, if q()..) is the Laplace transform of p(t), then 

lim p(t) = lim )..q()..) . 
t-+oo >--+0 

Thus, P k = lim ).. qa-k o ()..). Using the recurrence relations (10), one can reduce 
>--+0 ' 

this to 
Pk = 'Y lim qa-k 1 ()..) . 

>--+0 ' 

Thus, knowledge of qa-k,l would give us Pk for each k. 

4.3.3 A Closer Analysis: Threshold Theorems 

We now turn to what are regarded as two fundamental theorems in Markov 
models for epidemics - the so called "Threshold Theorems". Two quantities 
that are of interest in understanding the extent of the epidemic are its duration 
and size. To make the definitions of these quantities precise, let us turn to the 
Markov process (Xt, Ytk::o and observe the following salient features. Recall 
that the process has a finite state space given by 

S = {(r, s) : r, s non-negative integers; r ~ a; r + s ~ a + b}. 

As mentioned earlier, the states {(r, 0) : r ~ a} are precisely the absorbing 
states for the process. Also, the set of states {(O, s) : s ~ a + b} forms a closed 
set and once the process hits this set, it then evolves like a death chain in the 
second coordinate, getting ultimately absorbed at (0,0). Let us denote by F 
the union of the above two sets of states. Clearly, with probability one, the 
chain hits the set F in a finite amount of time. Once the set F is entered, 
no new infections are possible and therefore the epidemic can be thought of as 
having ended for all practical purposes. It is natural therefore, to regard the 
time T needed to enter F as the duration of the epidemic. One would like to 
draw conclusions about the distribution, and in particular, the expected value 
of T. To the best of our knowledge, the existing literature does not contain 
any non-trivial information on this. On the contrary, much emphasis has been 
given to what may be called the size of the epidemic. From the definition of 
T, it is clear that X (T) gives the eventual number of susceptibles left in the 
population. In other words, X(T) = lim X(t). The size of the epidemic is 

t-+oo 
clearly given by the random variable 

w = X (0) - lim X (t) = a - X (T) . 
t-+oo 
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One would like to obtain the distribution of the random variable W. Following 
the general theory of finite state Markov processes, the process (Xt, yt) evolves 
as follows. Given that at time instant t the process is in a non-absorbing 
state, it waits there for an exponential time and then makes a jump. From a 
non-absorbing state (1',8), jumps are possible to the states (1' - 1,8 + 1) and 
(1',8 -1) with probabilities Pr = (31'8/ ((31'8 + ry8) = 1'/ (1' + p) and qr = p/ (1' + p) 
respectively. Here, p is as defined in the deterministic case, namely, p = ry / (3. 
A moment's reflection shows that while T is the sum of all these waiting times 
starting from the beginning till the chain hits F, the random variable W has 
nothing to do with the waiting times. In order to get the distribution of W, it 
is therefore sufficient to keep track of only the states visited by the chain at its 
successive jumps. In other words, the distribution of W depends on (Xt, yt) 
only through the embedded Markov chain, as discussed in Section 0.9.1. Let 
us note that the embedded chain here can be described as follows. 

Let TO == 0 and (Tn, n 2: 1) be the successive jump times of the process 
(Xt, yt). For n 2: 0, let Un = XTn and Vn = Yrn · Then (Un' Vn)n20 is the 
embedded chain with state space S. The transition probabilities are as follows. 
From a state (1',8) with 8 f:. 0, transition can take place to (1' - 1,8 + 1) with 
probability Pr = 1'/(1' + p) and to (1',8 - 1) with probability qr = p/(r + p). 
The states (1',0) are absorbing. Now note that, lim Un = lim X t , so that, 

n t-+= 
W = a - lim Un. This is precisely what we meant, when we said earlier that 

n 
W depends only on the embedded chain. This was observed by Foster [1955] 
and was beautifully exploited by him and later, by Rajarshi [1981] to get the 
exact distribution of the random variable W. 

We start with some notation. For a non-negative integer w let Aw denote 
the set of all sequences a = (ao, al, ... , a w ) of length w + 1, where the ai are 
non-negative integers satisfying 
i) a w > 1 , 
ii) for j < w, ao + al + ... + aj < b + j , 
iii) ao + al + ... + a w = b + w . 

Theorem 4.3 (Foster): For 0 :::; w :::; a, 

w-l w 

P(W = w) = IT Pa-I L IT q~~j' 
1=0 ;EAw j=O 

Proof: We can view the state space S of the chain (Un, Vn)n>O as the set 
of lattice points (1',8) - that is, points with integer coordinates - in the 
xy plane. The evolution of the chain can then be regarded as the motion of a 
particle through these lattice points. From a point (1',8) with 8> 0 the particle 
moves either one step vertically downwards to (1',8- 1) or one step diagonally 
northwest (that is, up and left) to (1' -1,8 + 1). The probabilities of these two 
types of transitions are qr and Pr respectively. Once the particle hits the x-axis 
it halts. On the other hand once it hits the y-axis, then only the vertically 
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downward transitions are allowed until it reaches the origin. Viewed this way, 
the event (W = w) means that the particle starting from ( a, b) hits the x-axis 
precisely at the point (a - w, 0). 
Observe that for this to happen, the particle has to make exactly w many 
northwest transitions, with the first coordinate reducing by 1 after each such 
transition, until it finally becomes a - w. Note that, each of these transitions 
would result in an increase in the second coordinate by 1, so that the particle 
has to make b + w many vertically downward transitions in order to reach the 
x-axis. Starting from (a, b), denote by ao, the number of downward transitions 
before the first diagonal transition. In general, for 1 ::; j < w, let aj be the 
number of downward transitions between the j-th and (j + l)th diagonal steps. 
Finally a w is the number of downward transitions after the w-th diagonal step. 
Clearly aj, for 0 ::; j ::; w, are non-negative integers. Moreover, their sum is 
b + w. The fact that the particle does not hit x-axis before making the w-th 
diagonal transition implies that, for each j < w, ao + a1 + ... + aj < b + j. 
In particular, ao + a1 + ... + a w -1 < b + w - 1, implying that a w > 1. 
Thus the sequence et = (ao, a1, ... ,aw) E Aw. Conversely, any et E Aw is 
a possible choice for the number of vertical motions in between the successive 
diagonal ones, so that the required event (W = w) occurs. For any et E Aw , the 

w-1 w 
probability of making the transitions as prescribed by et is n Pa-I n q~~j" 

1=0 j=O 

Here the fact that the transition probabilities from any state (r, s) depend only 
on the first coordinate r is important. The proof is now complete. • 

For an estimate of the above probability later, we need the following lemma, 
as in Rajarshi [1981]. 

b (b + 2W) Lemma 4.4: The number of elements in the set Aw is b + 2w b + w . 

Proof: From Chapter 0.8.1, __ b_ (bb+ 2W) is precisely the number of paths 
b+2w +w 

of a random walk starting at (0,0) and ending at (b + 2w, b), which lie strictly 
above the horizontal axis. The proof will be completed by establishing a one
one correspondence between such paths and elements of Aw. Here is the corre
spondence. Consider such a path of random walk. First of all, the path would 
have w many downward steps and b + w many upward steps. Let ao be the 
number of upward steps after the w-th, that is, the final downward transition. 
Let a1 be the number of upward steps between the (w -1)th and w-th down
ward motions. In general, aj will denote the number of upward steps between 
the (w - j)th and (w - j + l)th downward motions. Finally, a w is the number 
of upward steps before the first downward transition. This defines a sequence 
a = (ao, a1, ... , a w ) of non-negative integers of length w + 1. We now show 
that a E Aw. Since ao + a1 + ... + a w gives the total number of upward 
movements, it is clear that this sum is b + w. Now let 0 ::; j < w. To show that 
ao + a1 + ... + aj < b + j, it suffices to prove that aj+1 + ... + a w > w - j. 
From the definition of the aj, it should be clear that aj+1 + ... + a w is pre-
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cisely the total number of upward motions before the (w - j)th downward 
motion. Since the path lies strictly above the horizontal axis we must have 
etj+! + ... + etw > W - j . In particular, j = w - 1 gives etw > 1. In fact , this is 
also directly obvious because etw is the number of upward steps before the first 
downward step. Conversely, given a E Aw , consider the path which makes etw 

many upward transitions starting from (0,0), then makes a downward transi
tion followed by etw-l many upward transitions, and so on. It is easy to see 
that this gives a path of the required type for the random walk. • 

The above two results lead to the following simple estimate of the distri
bution of W, for large values of a. For stating this we need the following 
notation. For two functions h(a) and g(a), we will write h(a) '" g(a) as a -+ 00 

to mean that lim [h(a)/g(a)] = 1. It is easy to see that , hl(a) '" gl(a) and 
a-+oo 

h2(a) '" g2(a) as a -+ 00 imply that h1(a) + h2(a) '" gl(a) + g2(a) as a -+ 00. 

Lemma 4.5: For each w 2:: 0, 

P(W = w) '" _b_ (2W + b) w b+w 
2w + b w + b Pa qa 

Proof: For each l = 0,1, ... , w - 1, 

as a -+ 00. 

Pa-l 

Pa 

a-l a+p 
-----;--. -- -+ 1 as a -+ 00 . 
a-l+p a 

For each j = 0, 1, ... , w, 

qa-j _ p a + p -+ 1 
qa a - j + p' P 

asa-+oo. 

It follows that for a fixed wand an a E Aw we have, 

w-l w 

IT IT <>j w b+w 
Pa-l qa-j '" Pa qa . 

1=0 j=O 

By summing over a E Aw and using Theorem 4.3 , we get 

P(W = w) I Aw I p~q~+w as a -+ 00, 

whence the assertion follows by using Lemma 4.4. • 

We now present two theorems due to Williams (1971) and Whittle (1955), 
known as the Threshold Theorems for the General Stochastic Epidemic. The 
common theme of both the theorems is to identify p as a threshold quantity 
to determine whether the epidemic builds up or not. The following lemma 
will play a crucial role in the proofs of the threshold theorems. This is due to 
Williams. However, his proof is non-probabilistic and uses certain power series 
expansion. We give a probabilistic proof that uses transience of random walk. 
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Lemma 4.6: For 0 ::::; p < 1 and q = 1 - p, 

~ _b (2W + b) w b+w = min { (E) b I} 
L..t 2w + b w + b q P q , 
w=o 

Proof: It suffices to show that if p ;::: q, then 

~ _b _ (2W + b) w b+w = 1. 
~2w+b w+b q p 

First recall that 2w b+ b C: : bb) is precisely the number of paths of a random 

walk starting at the origin and reaching the state b in (2w + b) many steps 
without hitting the x-axis. But by reversing the motion, this would be the 
same as the number of paths starting at state b and reaching the origin for 
the first time in (2w + b) many steps, or equivalently (by shifting the x-axis), 
starting at the origin and reaching state -b for the first time in (2w + b) many 
steps. Thus if we consider a random walk with probability q (p respectively) 
of upward (downward respectively) transitions, then the summand is just the 
probability that such a random walk starting from the origin reaches -b for 
the first time in (2w + b) many steps. Since for different w, the above events 
are disjoint, summing over w gives us the probability that such a random walk 
starting from the origin ever reaches -b. By Exercise 2(vi) of Section 0.8.1, this 
probability is one whenever q ::::; p (Do not forget that here q is the probability 
of upward transition). • 

Let us now present the two threshold theorems mentioned above in the 
way that we understand them. Both the threshold theorems are statements 
concerning the extent of the epidemic for large values of the initial number of 
susceptibles a. To be precise they both talk about the limiting probabilities as 
a -t 00. Since we are varying a, it makes sense to allow P also to possibly vary 
with a. This dependence is going to be made explicit by using the notation 
Pa. In what follows we consider limits of certain probabilites as the pair (a, Pa) 
varies in such a way that a -t 00 and Pa/a converges to a limit, say, b. Since 
a is varying, the probabilities associated to the corresponding epidemic model 
will also vary. We will make it explicit by writing Pa for such probabilities. 
Note that we are keeping b, the initial number of infected individuals, fixed. 

Theorem 4.7 (Williams' Threshold Theorem): If (a,Pa) vary in such a 
a 

way that a -t 00 and - -t b, then 
Pa 

lim Hm Pa (W ::::; M) 
M-HX) a-+oo 

Proof: By Theorem 4.5, for each w, 

. b (2W + b) ( 1 ) w ( b ) b+w hmPW-w--- ----
a-+oo a ( - ) - 2w + b w + b 1 + b 1 + b ' 
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so that for any M, 

}~~ Pa (W ::; M) = t, 2w b+ b C:: : :) C! 8) w C! 8) b+w 

Lemma 4.6 now completes the proof. • 
The quantity lim Pa (W ::; M) can be interpreted as the probability of 

a--+oo 
having an epidemic of size at most M, for large values of a. Taking now the 
limit of that probability as M -+ 00 could therefore have the interpretation of 
being the probability of a finite epidemic for large values of a. Thus, Theorem 
4.7 says that, if 8 ;:: 1 then the epidemic is surely of finite size, while for 
8 < 1 the probability of a finite epidemic is 8b , which is strictly smaller than 
one. Indeed, this is how the Threshold Theorem is stated in the literature. 
There is one little subtlety, namely, instead of stating the result in terms of 
8 = lim(Pa/a), the standard practice is to simply say that for large values of a, 

a 

the probability of a finite epidemic equals one if Pa ;:: a, while it equals (Pa/a)b 
if Pa < a. This is what Theorem 4.7 may be argued to say, provided the 
inequalities and equalities are all interpreted properly. For example, Pa < a 
should be interpreted as lim (Pa / a) < 1 (or more generally, for the present 

a 
purpose, limsup(Pa/a) < 1). 

a 

We shall now proceed to Whittle's Threshold Theorem. This deals with 
the probability, for large values of a, of the epidemic not exceeding a certain 
proportion of the initial number of susceptibles a. More specifically, for fixed 
x, 0 < x < 1, we consider the probability Pa(W ::; xa). Whittle's Threshold 
Theorem attempts to get two-sided bounds for these probabilities, at least for 
large values of a. 

Getting an asymptotic lower bound is not difficult. Let us assume as before 
that the parameters (a, Pa) vary in such a way that a -+ 00 and (Pa/a) -+ 8. 
Denoting 7r~ = Pa (W ::; xa), we show that 

(11) 

To see this, fix any n and observe that for large a, we have xa > n , so that 

n 

7r~ > 2:: Pa(W = w). 
w=o 

Using Lemma 4.5, 

n b (2W + b) ( 1 ) w ( 8 ) b+w 
}~ 7r~ > ; 2w + b w + b 1 + 8 1 + 8 

The above inequality being true for all n, Lemma 4.6 yields the inequality (11). 
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Inequality (11) constitutes only one half of Whittle's Threshold Theorem 
and is often stated as 

P(W ~ xa) > min { (~) b ,I} for large values of a. 

This is true as long as it is properly interpreted as discussed after the statement 
of Theorem 4.7 above. 

The other half of Whittle's Theorem, which seeks an upper bound, is based 
on the use of a comparison technique which is interesting in its own right and 
is described below. 

Our epidemic process (Xt, yt) is a Markov process starting from (a, b) and 
having transition mechanism determined by the parameters Pr. Consider now 
another chain evolving in the same manner, but with a different transition 
mechanism determined by parameters p~. To avoid complication, we use the 
same notation (Xt, yt) for this new process also. The difference in transition 
mechanism is indicated by using P' for probabilities of the new chain. If Pr 2: p~ 
for every r, then it is natural (why?) to expect that the random variable Xr 
is stochastically larger under P' than under P, that is, 

P'(Xr 2: k) > P(Xr 2: k) for each k. (12) 

We shall show that this indeed is the case. But, for the present, we assume 
this and proceed to complete the remaining half of Whittle's theorem. 
Recall that the parameters for our epidemic process are defined as 

r 
Pr 

r + Pa 

Let us define P~ for 0 ~ r ~ a, as 

Pr 

(1 - x)a 
(1 - x)a + Pa 

for 0 < r < a. 

for r < (l-x)a 

for r 2: (1- x)a. 

Clearly, for every r, Pr 2: P~, so that by (12) 

P(Xr 2: (1 - x)a) < P'(Xr 2: (1 - x)a). 

In view of the fact that W = a - Xn the above inequality is the same as 

P(W ~ xa) < P'(W ~ xa). 

Invoking the arguments of Theorem 4.3 and using Lemma 4.4, the right hand 
side can easily be seen to equal 

xa b (2W+b)( (l-x)a )W( Pa )b+W 
~2W+b w+b (l-x)a+Pa (l-x)a+Pa ' 
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which by Lemma 4.6 is clearly bounded above by min { ((1 ~ax )a) b, 1 }. We 

conclude that 

We have thus proved 

Theorem 4.8 (Whittle's Threshold Theorem): For any x, 0 < x < 1, 
and for large values of a, 

Although we have stated the result in the way it is usually done, the reader 
should note that, the right hand side inequality is actually valid for all a, 
whereas the left hand side is valid only in the limit, that is, in the sense 
discussed earlier. It may be noted that a comparison technique, similar to 
the one used above, can be used also to get a lower bound valid for all a. 
Indeed, one can show (left as an exercise) that 

P(W::::: xa) > xa b (2W + b) ( a ) W ( Pa ) b+w 
~ 2w + b w + b a + Pa a + Pa 

for all a and all x, 0 < x < 1. It is tempting to claim that the right hand side 

of the above inequality is approximately min { (P:) b ,I} , for large a, in view 

of Lemma 4.6. One may then erraneously claim that min { (P:) b ,I} is an 

actual lower bound for P(W ::::: xa) for all large a. In fact, the standard liter
ature seems to make that claim. We wish we could justify this, thus avoiding 
interpretation through limits. 

We now get back to our claim (12). Since comparison technique is an 
important and useful technique in the context of Markov chains, we will prove 
a slightly more general result. First, let us introduce some notation. 

For any pair of integers a 21, b 2 1, and any a-tuple B = (B1 , ... , Ba), with 
o ::::: Br ::::: 1 for all r, let Po denote the probability law of the Markov chain 
starting from (a, b) having state space 

s = {(r, s) : r, s non-negative integers; r::::: a; r + s ::::: a + b} 

and evolving in the following manner. State (r, s) is absorbing unless both r 
and s are strictly positive. From a non-absorbing state (r, s), the chain moves 
to (r - 1, s + 1) with probability Br and moves to (r, s - 1) with probability 
1 - Br. We will denote this process by (U:;;,b, V~,b). It is left as an exercise for 
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the reader to verify that we have a Markov chain on a finite state space for 
which every non-absorbing state is transient and hence it is an absorbing chain. 
Let T be the time till absorption. Thus Pe (T < (0) = 1. Our objective would 
be to get a stochastic comparison of the random variable U;,b, to be denoted 
by za,b, for various a-tuples B. The relevance of this in our context stems from 
the fact that, with Br = r/(r + p) for 1 ::; r ::; a, the chain (Un, Vn) is just the 
embedded chain associated with our epidemic process (Xl, yt) stopped at time 
T. In particular the random variable Xr and za,b are identical. We want to 
prove 

Theorem 4.9: If Band B' are two a-tuples with B~ ~ Br for all r, then za,b is 
stochastically larger under Pe than under Pe', that is, for all k, 

Pe(Za,b ~ k) > Pe' (za,b ~ k). 

To prove the theorem, we need a series of lemmas. 

Lemma 4.10: Let Wl, ... ,Wn and Vi, ... ,Vn be non-negative numbers such 
that for 1 ::; j ::; n, L Wi ::; L Vi· Then, for any sequence of numbers 

i5.j i5.j 
Cl ~ C2 ~ •.. ~ Cn ~ 0, one has L CiWi ::; L CiVi· 

i5.n i5.n 

Proof: Note that the hypothesis implies that for each j 
inequality 

(Cj - cj+d L Wi ::; (Cj - cj+d LVi 
i5.j i5.j 

1, ... ,n - 1, the 

holds. Putting cn+l = 0, the same inequality is seen to hold for j = n also. 
Adding these n inequalities yields the desired result. • 

Lemma 4.11: For any B, the probability Pe(Za,b ::; k) is non-decreasing in b. 

Proof: We shall show that Pe (za,bH ::; k) ~ Pe (za,b ::; k). Suppose that s ::; k 
and 0: is a path from (a, b) hitting the x-axis for the first time at (s,O). Let 0:* 

be the path obtained by adding one to the second co-ordinate of all points of 
the path 0:. Clearly 0:* is a path from (a, b + 1) and hitting the horizontal line 
y = 1 for the first time at the point (s,l). Let 'fJ be the hitting time of the line 
y = 1. The correspondence 0: +---+ 0:* and the fact that the two paths 0:,0:* 

have the same probabilities (because the transition probabilities from any state 
depend only on the first coordinate of the state and we have not disturbed the 
first coordinates of points in 0: to get 0:*) can be put together to deduce that 
Pe(U;,b ::; k) = Pe(U~,Hl ::; k). However from the dynamics of the process it 

is clear that the event (U~,bH ::; k) implies (U;,Hl ::; k). It now follows that 

Pe (U;,H 1 ::; k) ~ Pe (U;,b ::; k), as was to be shown. • 

Lemma 4.12: Let Band B' be two a-tuples such that B~ ~ Ba, while B~ = Br, 
for all r < a. Then za,b is stochastically larger under Pe than under Pe'. 

Proof: Let k ::; a - 1. We prove 

Pe(Za,b ::; k) < pw(za,b::; k). 
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Let TJ be the hitting time of the vertical line x = a-I. Note that the event 
(za,b :S k) implies that TJ < 00. Indeed, TJ :S b and hence 

b 

L po(za,b :S k ITJ = i)Po(TJ = i). 
i=1 

Using the Markov property, the conditional probability Pe(za,b :S k ITJ = i) is 
the same as the probability Pe(za-1,b-i+2 :S k), so that 

Analogously, 

po(za,b :S k) = L po(za-1,b-i+2 :S k)Pe(TJ = i). 
i 

Since (J~ = (Jr, for r :S a-I, it is clear that for every i, 

po(za-1,b-i+2 :S k) = Pe' (za-1,b-i+2 :S k) = Ci, say. 

Lemma 4.11 gives that Ci is non-increasing in i. Putting Wi = Pe(TJ = i) 
and Vi = Pe' (TJ = i) for i :S b, we complete the proof simply by showing 
that the hypothesis of Lemma 4.10 holds. Observe that Wi = (1 - (Ja)i-1(Ja 
and Vi = (1 - (J~)i-1(J~, so that for any j, LVj Wi = 1 - (1 - (Ja)J+1 and 
Li:::::j Vi = 1 - (1 - (J~)J+1. From the hypothesis-that (J~ ~ (Ja, it follows that 
Li:::::j Wi :S Li:::::j Vi holds for all j. • 

Lemma 4.13: Let 1 :S m :S a. Suppose (J and (J' are such that (J'm ~ (Jm while 
(J~ = (Jr for all r I: m. Then za,b is stochastically larger under Pe than under 
PO'. 

Proof: In view of Lemma 4.12, we need only consider m < a. Observe that for 
k ~ m, the hitting time TJ of the vertical line x = k has the same distribution 
under both Po and PO'. In view of 

Po (TJ :S b - a + k - 1) 

and similar equality under Pe', it follows that 

Re' (za,b :S k) C 11 k > lor a m. 

We now consider k :S m-I and show 

Let us now denote TJ to be the hitting time of the vertical line x = m - 1. By 
the same argument as used in Lemma 4.12, one sees that 

b+2(a-m) 
L Pe(zm-1,b-i+2a-2m+2:s k)Pe(TJ = i) 
i=1 
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and 

b+2(a-m) 
L POI(zm-1,b-i+2a-2m+2::; k)Pol(17 = i). 
i=l 

Let Wi = PO(17 = i) and Vi = POI(17 = i) for i ::; b + 2(a - m). As in the 
proof of Lemma 4.12, we get the desired result once we show that for every 
j, L Wi ::; L Vi, that is, Po (17 ::; j) ::; Pr)' (17 ::; j). This can perhaps be seen 

i50j i50j 
directly but here is a trite method. 
Let ij be the hitting time of the vertical line x = m. Noting that ij has the 
same distribution under Po and POI, it suffices to show that for every l ::; j -1, 
Po (17 ::; j I ij = l) ::; PO' (17 ::; j I ij = l). Using the Markov property, one sees that 
Po(17 ::; j lij = l) = 1- (1- em)j-l, while PO'(17::; j lij = l) = 1- (1- e'm)j-l, 
from which the required inequalities follow. The proof is now complete. • 

Proof of Theorem 4.9: Define a + 1 many a-tuples, eo, el, ... ,ea by 

for i::::: a - m + 1 
for i::; a - m . 

Note that for any 0 ::; m ::; a-I, we have e:-_m ::; e:_+;; and e~ = e~+1 for 
all r -:j:. a-m. It follows from Lemma 4.13 that 

Po= (za,b ::; k) < PO=+l (za,b ::; k) 

for all k and all m with 0 < m < a - 1. Noticing that eO = e and ea = e' the 
proof is complete. • 

4.4 Spread in Households: Chain Binomial 
Models 

The models discussed so far study the spread of an epidemic in a community 
at large. In this section, we take up the question of how an infectious disease 
spreads in a particular household. We shall discuss two stochastic models to 
describe this phenomenon - one is due to M. Greenwood and the other due 
to J. Reed and W.H. Frost. 

Suppose that in a household, some individuals got infected by a contagious 
disease. This puts the other members of the household at the risk of catching 
the disease. Of course, in reality there is a fixed period of incubation and it 
is only after that period, that the infected individuals become infectious. The 
disease now spreads through contacts between the infected and uninfected in
dividuals. However, not every such contact is likely to result in a new infection. 
Thus, there is a chance factor arising out of both the possibility of contact as 
well as a contact resulting in an infection. Specification of this chance factor is 
what would constitute a stochastic model. Before going into the details of the 
models, we describe the common setup. 
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We assume that there are K individuals in a household and initially So of 
them are infected. We denote by ro the initial number of un infected individuals, 
that is, ro = K -So. We assume that the incubation period is one time unit. To 
simplify matters, we also assume that the infected individuals remain infectious 
only for an instant of time at the end of the incubation period. This is indeed 
a simplifying assumption. However, in reality the period of infectiousness may 
often be very small, for example, they may perhaps be quarantined or even be 
cured and become immune. Let SI denote the number of new infections at time 
1. The number of uninfected in circulation now is rl = ro - SI. In general, let 
Sn be the number of persons who got infected at time nand rn = rn-l - Sn 

be the resulting number of uninfected in circulation. It is to be noted that, 
at time n, the persons who can pass on the infection are precisely those who 
became newly infected at time n - 1. Also, at any point of time the persons 
who are susceptible are only those who have not been infected so far. Clearly, 
as soon as Sn = 0, there will be no more new infections and the epidemic will 
come to a halt. Of course r n+l = ° would also guarantee this (perhaps not in 
a desirable way). 

4.4.1 Greenwood Model 

According to the model proposed by M. Greenwood, the probability of a sus
ceptible coming in contact with the group of infectious persons and getting 
himself infected is assumed to be a constant p, ° < p < 1. Moreover the fates 
of different susceptibles are assumed to be stochastically independent. Clearly, 
these assumptions lead to a binomial distribution for the number of new infec
tions at time n. More precisely, if at time (n-1), there are Sn-l newly-infected 
persons (with Sn-l > 0) and if r n -l denotes the number of susceptibles, then 
the probability of Sn new infections at time n is 

for Sn = 0,1, ... . rn-l . 

In case Sn-l = 0, then Sn = ° and hence rn = rn-I. Note that in case 
Sn-l > 0, its actual value has no relevance in the distribution of the number of 
new infections at time n. This is one of the important features of this model. 

Denote by Sn and Rn, the number of new infections and the number of 
susceptibles respectively at time n. Thus Sn and Rn are random variables. 
Also (Rn, Sn)n?O is a Markov chain. The state space of this process is 

{( i, j) : i 2 0, j 2 0, i + j :S K} . 

This is an absorbing chain and the absorbing states are precisely the states 
{(i,O) : i:S K}. The transition probabilities are given by 

P(i,j) (i' ,j') (;,)p1'(l_ P)i' forO:S1':Siandi'=i-1' if j>O 

6(i,j)( i' ,j') if j = 0. 
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Note that, for j > 0, P(i,j),(il,jl) does not depend on j. This enables us to 
replace the original bivariate chain by an appropriately stopped univariate 
chain as follows. 

Consider the Markov chain (Xn)n2:0 with state space {O, 1, ... ,K}, initial 
state Xo = 1"0, and transition probabilities 

P(X -' I X -') - (i) i-)(l )j n+1 - J n - Z - j P - P for j = 0,1, ... ,i. 

Let T be the stopping time defined by 

T = min{n: Xn = Xn-d, 

that is, T is the first time the chain did not move from its previous state. Let 
(Yn) be the process (Xn) stopped at T, that is, 

Yn Xn if n < T 
X T if n > T. 

It is to be noted that (Yn)n2:0 is no longer a Markov chain, as we are going 
to see. A moment's reflection shows that the process (Yn)n2:0 is precisely 
(Rn)n2:o of the Greenwood Model; just recall that Sn = ° is same as saying 
that Rn = Rn-I. And of course, (Rn)n2:o itself is not a Markov chain. In 
the new formulation, the random variable T is clearly seen to represent the 
duration of the epidemic. The rest of this section is devoted to finding the 
distribution of T. 

More generally, let (Xn)n2:0 be a Markov chain with state space {O, 1, ... ,K} 
and an arbitrary transition matrix P = ((pij)). We only assume that the di
agonal entries of P are positive. For this Markov chain, we want to find the 
distribution of the stopping time T defined as 

T = min{n: Xn = Xn-d. 

The analysis that follows is due to J. Gani and M. Jerwood. Let Q denote the 
diagonal matrix with diagonal entries same as those of P and let R = P - Q. 
Clearly, R has all its off-diagonal elements same as those of P, while all its 
diagonal entries are zero. Using this notation it is now easy to see that 

P(T = n, Xn = j I Xo = i) = R':j-Ipjj for each j , (13) 

so that 
(14) 

where e is the column vector with all entries one and e~ is the row vector with 
i-th entry one and all other entries zero. Recall that R is a matrix with non
negative entries and having each row sum strictly less than one. Elementary 
matrix theory shows that (I - R) is invertible and (I - R)-I = 2:~=0 Rn. 
The facts that Q = P - R and Pe = e can now be used to deduce that 
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L~=l e~Rn-1Qe = 1. In view of (14), we have thus proved that T is finite 
with probability one. We now go on to find the p.g.f. of T. Throughout, we 
assume that we are starting from a fixed initial state i and denote by gi(B), the 
corresponding p.g.f. of T. Thus 

00 

gi(B) = L Bne~Rn-1Qe = e~(I - BR)-l(BQ)e. 
n=l 

In view of its similarity with the p.g.f. of the standard geometric distribution, 
the distribution of T has been called a Markov Geometric Distribution by Gani 
and Jerwood. The moments of T - in particular its expectation and variance 
- can now be easily obtained by successive differentiation of the p.g.f. For 
example, it turns out that 

E(TIXo = i) = e~(I - R)-le. 

Turning back to (13), it can also be written as 

P(T = nand XT = j IXo = i) = R'/j-lpjj. 

Thus we actually have the joint distribution of (T, X T ). One can use this to find 
the marginal distribution of XT, in particular the expected value and variance 
of XT. 

Let us now return to the Greenwood Model. This is a special case where, 

1 0 0 0 
p q 0 

P= p2 2pq q2 

pK (I[)pK-l q (~)pK-2q2 qK 

Note that in this case RK is the zero matrix, implying that T :s K with 
probability one. This is understandable, because the longest possible duration 
of the epidemic happens when one new person gets infected each day. However 
this does not make explicit computations all that easy (compare R2 and R3!). 

4.4.2 Reed-Frost Model 

The model proposed by J. Reed and W.H. Frost differs from the earlier one 
in that here the probability of one particular susceptible coming in contact 
with one particular infectious person and getting infected is denoted by p. Of 
course the usual assumption of independence of interaction between different 
individuals is retained. It follows that, with the same notations rn, Sn as in the 
Greenwood Model, the probability of anyone of the rn-l susceptibles getting 
infected at time n is 1 - (1 - p)Sn-l, so that the probability of Sn many new 
infections at time n is given by 

(r~:l) [1 - (1 - prn-1]Sn (1 - prn-1(Tn-l-Sn) for Sn = 0,1, ... , rn-l . 
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Note that in case Sn-l = 0, the above formula automatically implies that 
Sn = O. For detailed analysis of the Reed-Frost Model, interested reader can 
consult Von Bahr & Martin Lof (1980) and F. Ball (1983). 

4.5 Spatial Spread: N eyman-Scott Model 

In the earlier models, the geographic location of the epidemic was fixed and the 
temporal spread was under study. In this section, we describe a model proposed 
by J. Neyman and E. L. Scott for the spread of epidemic over a geographical 
area. 

The geographical area under consideration is called the habitat, denoted 
by H. Mathematically, H could be any subset of the Euclidean plane R2, 
preferably open. However, to simplify matters, we take our habitat to be all 
of R2. As before, the incubation period is assumed to be one time unit and 
the period of infectiousness is contracted to a single point. It is reasonable to 
assume that an infectious person at a particular location in the habitat infects 
only susceptibles at that location. However, it is equally reasonable that an 
infectious person at a crowded location is likely to infect more people than at 
a desolate location. This dependence of infectivity on the location should be 
captured in the model. Another feature of the proposed model is that it tries 
to capture the mobility factor also. In other words, it takes into account the 
fact that an individual infected at a particular location may move to another 
location by the time he becomes infectious. Indeed, that is how the infection 
spreads over the habitat. Mathematically, this will involve introducing two 
parameters, one for the spread of infection and the other for the mobility of 
the infected individual. This is done as follows. 

For every u E H, we have a probability distribution "tu on non-negative 
integers, representing the distribution of the number of individuals infected by 
one infectious person at the location u. We denote the p.g.f. of "tu by g(. I u). 
We emphasize the dependence of "tu on u as mentioned earlier. To take care 
of the mobility factor we have, for every u E H, a probability density function 
fuO on H. This has the following interpretation. A person infected at u at 
time k moves to a region S cHat time (k + 1) with probability Is fu(x) dx. 
Our model assumes that different individuals act independently. That is, first 
of all, the number of individuals infected by different infectious persons are 
independent random variables, no matter where the infectious persons are lo
cated. Secondly, given any set of infected individuals at time k, no matter 
where they are located, the places where they move to at time k + 1 are inde
pendent random variables. The dependence of fuO on the location u has an 
easy explanation. A person infected at home is not very likely to move away 
from home by the time he becomes infectious; whereas, if one catches infection 
when he is on board a train, he is quite likely to move far away. 

We shall now see how to describe mathematically the temporal spread of 
the epidemic over the entire habitat. To fix ideas, we start with one infectious 
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person at time 0 at location u. This infectious person will infect a certain 
number, say Xl' , of individuals at location u. From what has been said earlier, 
Xl' is a random variable with distribution IU and p.g.f. g(. 1 u). By the time 
these persons become infectious, they would have moved to various locations 
- each person, independently of the others, choosing a random location given 
by the probability density fuO. Each of them would now infect people in their 
respective new locations, who would in turn move to different locations by the 
time they become infectious, and so on. This is how the infection would spread 
over the habitat with time. Let X;: denote the number of infectious people in 
the entire habitat at time n. The dependence on u comes from the fact that we 
started initially with one infected person at the location u. We want to study 
the distribution of X;: for n 2 1. Let us denote the p.g.f. of X;: by Gn (·1 u). 
Thus dearly 

(15) 

To get the p.g.f. of Xlf, we argue as follows. Consider the i-th person infected 
by the initial infectious and let Yi denote the number of individuals infected 
by him at time 1. It should be dear that Yi has p.g.f. given by 

H1(tlu) = f g(tlx)fu(x)dx. (16) 

This is because, given that the i-th individual has moved to location x at time 
1, the conditional p.g.f. of the number of individuals infected by him is g(·lx), 
so that the unconditional p.g.f. would indeed be H1 as given. It should be 
noted here that to make sense of the integral in (16), some assumptions on gas 
a function of x are needed. [For example, assuming that 9 varies continuously 
with x would do. A reader familiar with the Lebesgue Integration Theory would 
quickly see that measurability of 9 in the x variable is all that is needed.] 

xf 
Since the Yi are i.i.d. and Xlf = L: Yi, it follows that 

;=1 

Proceeding in an analogous manner we can deduce that, for every n 2 1, 

Hn(·lu) = f Gn(· Ix)fu(x) dx, 

Gn+1 (·1 u) = g(Hn(·1 u) 1 u). 

(17) 

(18) 

Note that even if we are interested only in Gn(·1 u) for the specified initial 
location u, we have to compute Gn(·lx) for all x in order to get Hn(-lu) , which 
is required for the subsequent Gn+l(·lu). Having started with one infectious 
individual at time 0 at location u, we have obtained the p.g.f. of the number of 
infectious individuals in the habitat at time n to be Gn(·lu). Along the way, 
we came across another sequence of functions which are also p.g.f.s, namely the 
Hn(-lu). The reader would naturally wonder as to which stochastic process they 
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correspond to. Well, instead of starting with one infectious person, suppose 
we had started with one infected person at time 0 at location u. Let us now 
consider the number of infected individuals - say Z~, for n 2: 1 - in the entire 
habitat at successive time points. It is then clear that Z~ has p.g.f. Hn(·lu). 
Neyman and Scott describe X;t (Z~ respectively) as the n-th generation of an 
epidemic started by an infectious (infected, respectively) at location u at time 
O. Let us denote the expected values of X;t and Z~ by a~ and ,B~ respectively. 
Using Equations (15)-(18) one gets 

af = m(u), 

,Bf = J m(x)fu(x) dx, 

a~+l = m(u),B~, 

,B~+1 = J a~+1fu(x) dx, 

(19) 

(20) 

(21) 

(22) 

where m(u) denotes the mean of the distribution "tu. It is worth noting that, 
in order for the above formulae to be true, it is not necessary to assume that 
m(x) is finite for each x. 

We next discuss the problem of extinction of the epidemic from the habitat. 
We say that the epidemic, originating at u, is heading for an extinction, if 
X;t converges to zero in probability. Since the X;t are integer valued, this is 
equivalent to saying that P[X;t = 0] --+ 1 as n -+ 00. Here is a first positive 
result in this direction. 

Theorem 4.14: If sup m(x) < 1, then for every u, the epidemic originating 
x 

at u heads for extinction. 

Proof: Denote sup m(x) by c. Then clearly for any u, af :S c by (19) and 
x 

,Bf :S c by (20). Using induction and the relations (21) and (22), one easily 
obtains that, for every u in H and every n 2: 1, a~ :S cn and ,B~ :S cn . In 
particular if c < 1, then a~ -+ O. That is, E(X;t) -+ 0 as n -+ 00. Note that 

00 00 

E(X~) = L kP(X~ = k) 2: L P(X~ = k) = 1 - P(X~ = 0). 
k=l k=l 

It follows that P(X;t = 0) -+ 1 as n -+ 00. • 
We admit that the hypothesis that sup m(x) < 1 in the above Theorem 

x 
4.14 is a strong one. However, it should be noted that, first of all, nothing 
is assumed about the mobility distributions. Secondly, the conclusion of the 
theorem is also very strong in the sense that the convergence is uniform over 
u, that is, sup P(X~ > 0) -+ O. The next theorem on extinction has a slightly 

u 
weaker hypothesis. 

Theorem 4.15: If sup,Bf < 1, then for every u, such that m(u) < 00, an 
x 
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epidemic originating at u heads for extinction. 

Proof: Denote sup f3f by c. It is easy to see by induction that, for every n 2: 1, 
x 

a~ ::; m(u)cn - 1 . Therefore, if c < 1 and m(u) < 00, then a~ ~ O. The proof 
is now completed as earlier. • 

The reader may note that under the hypothesis of Theorem 4.14, one surely 
has sup f3'f < 1 and, of course, for every u, m( u) < 1. After the above two 

x 
theorems, which assert that under certain conditions the epidemic heads for 
extinction, we now go to a result describing when an epidemic does not. 

Theorem 4.16: If H1(0 I u) = 0 for every u, then for every u such that 
"tu ( {O}) < 1, an epidemic originating at u does not head for extinction. 

Proof: We first show that Hn(O I u) = 0, for every u and every n. Indeed, 
G2 (0 I u) = g(O I u), by Equation(18) and the hypothesis. But this, in turn, 
implies that H2 (0 I u) = 0 for all u, by Equation (17) and the hypothesis. 
Induction will now do the job. In particular, for every u and every n, one has 
P(X;: = 0) = Gn(Olu) = g(Olu) = "tu({O}), independent of n. It follows that 
if "tu ( {O}) < 1, then X;: does not converge to zero in probability. • 

We shall discuss one more problem related to this model. Can it so happen 
that an epidemic originating at some locations will head for extinction, whereas 
an epidemic originating at others will not? We show that this cannot happen 
unless there are deserts or unless the mobility is curtailed. A desert means a lo
cation where an infectious person can not infect anybody else. More precisely, 
we say that a point u E H is a desert, if the distribution "tu is concentrated on 
the singleton {O}. Also we say that there is full mobility in the habitat if for 
every u, the density fu(-) is strictly positive everywhere. This means that an 
infected person from any location can move to any other location with positive 
probability by the time he becomes infectious. We are now ready to state the 
main result. 

Theorem 4.17: Assume that there are no deserts and that there is full mobil
ity. Then, an epidemic originating at u will head for extinction, either for all 
u E H or for no u EH. 

For the proof, we need a little lemma on integrals. We simply state it with
out proof, just because the proof needs Lebesgue integration theory, something 
that we are not assuming from the reader. However, those who are familiar 
with this theory will quickly agree that the result is indeed elementary. For 
those who are not, here is a motivation: suppose {an} is a non-negative se
quence and you are told that for some strictly positive sequence {Pn}, the series 
L anPn = O. It trivially follows that an must equal zero for all n. Analogously, 
suppose that a(x) is a non-negative function of a real variable and you are told 
that the integral J a(x)p(x) dx = 0 for some strictly positive function p. Now 
of course we cannot say that a(x) must equal zero for all x. However what the 
lemma asserts is that a(x) is almost zero. 

Lemma 4.18: Let a(x) be a non-negative function on the real line such that 
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for some strictly positive function p(x), J a(x)p(x) dx = o. Then for every 
function q(x), J a(x)q(x) dx = O. 

Proof of Theorem 4.17: We start by showing that Gn(O I u) increases with 
n, for every u. This does not require any of the hypotheses of the theo
rem. We prove by induction. First note that GI (0 I u) = g(O I u) and 
HI (0 I u) = J g(O I x)fu(x) dx 2: 0, so that 

G2 (0Iu) = g(HI(Olu) lu) > g(Olu) = GI(Olu). 

The inequality is a consequence of the fact that g(·1 u) is a p.g.f. and hence 
non-decreasing. Assuming now that Gn(O Ix) 2: Gn- I (0 I x) for all x, Equations 
(17) and (18) can be used to show that Gn+1(Olx) 2: Gn(Olx). 
As a consequence, for every x, limGn(Olx) exists, to be denoted by Goo(Olx). 

n 
From Equation (17), it follows that for every x, Hn(Olx) is also non-decreasing 
with n and hence has a limit, say Hoo(Olx). Further, the Equation (17) and 
the Monotone Convergence Theorem [see Exercise 4, Section 0.4] give 

(23) 

Again Equation (18) and the continuity of gu gives 

(24) 

To prove the theorem now, suppose that for some Uo EH, an epidemic starting 
at Uo heads for extinction, that is Goo(O I uo) = 1. We show that, under the 
hypotheses of the theorem, Goo(O I u) = 1 for all u, that is, an epidemic 
starting at any u heads for extinction. First observe that the hypothesis that 
there are no deserts, implies in particular, that IUO ({O}) < 1. This, in turn, 
implies that g(·1 uo) is strictly increasing and, hence g(t I uo) = 1 if and only 
if t = 1. Therefore, Equation (24) implies that Hoo(O I uo) = 1. In view of 
Equation (23), this means that III - Goo(O I x)]fuo(x) dx = O. Now invoke 
Lemma 4.18, with a(x) = 1- Goo(Olx) and p(x) = fuo(x), to deduce that for 
any u, III - Goo(O I x)lfu(x) dx = 0, that is, Hoo(O I u) = 1. This implies, by 
Equation (24), that Goo(Olu) = 1, as was to be proved. • 

So far, we have been considering the spread of the epidemic over the entire 
habitat. However, in practice one may be more interested in the spread of the 
epidemic over certain pockets ofthe habitat. More precisely, let RI, R2 , •.. , Rk 
be k disjoint sub-regions of the habitat. For any u E H, let X;::i' for 1 ~ i ~ k, 
denote the number of infectious persons in the region Ri at time n, for an 
epidemic starting at u. Note that we do not demand that U:=I Ri = H; 
also, we allow for the possibility that u (j. U:=I Ri. We may be interested in 

the distribution of the vector process X;:: = (X;::I' ... ' X;::k) , in particular its 
asymptotic properties. The methods of this section enable us to discuss these 
issues as well. We discuss some of them in the exercises. 
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4.6 Exercises 

1. Consider the simple deterministic epidemic. Sometimes the following 
function is interpreted as the frequency function of the time of occurrence 
of a new infection. 

w(t) 1 dx 2 e!3(n+1)t 
-----;;- = --:;; dt = (J(n + 1) [n + e!3(n+1)tj2 . 

Show that this is indeed the probability density of a non-negative random 
variable with mean log (n + 1) / (In. 

2. Consider the simple stochastic epidemic with (J = 1. Let qr be the Laplace 
transform of PT> that is , 

Show that 

(r+1)(n-r) 
qr= A+r(n+1-r)qr+1 for 0:::; r < n, 

qn = l/(A + n) . 

Hence deduce that 

n!(n-r)! n 1 
qr = r! IT A+j(n-j+1)' 

J=r 

3. Consider the simple stochastic epidemic. Let F(x, t) be the generating 
function of Pr(t) for 0 :::; r :::; n, that is, 

n 

F(x, t) = LPr(t)Xr . 
r=O 

Show that F(x,O) = xn and 

8F (8F 82F) -=(J(l-x) n--x-
8t 8x 8x2 

4. In the Chain-Binomial models, let P(so, S1, ... , sn) denote the probability 
P(So = So, S1 = S1,···, Sn = sn). 
Show that in the Greenwood model 
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and in the Reed-Frost model 
n 

ro! L8jTJ+1 n-1 
P(S S S ) q 0 IT (1 - q8 i )8i +1 • 0, 1,···, n = " , , 

Sl· S2···· Sn·rn+1· o 

5. Let P(n, j, a) be the probability that a household of size n will have a total 
of j cases when there are a initial cases. Show that for the Greenwood 
model 

P(n,j, a) = I: (n ~ a)pkqn-a-k P(n - a,j - a, k). 
k=l 

Show that for the Reed-Frost model, P(n, a, a) = qa(n-a), and 

P(n,j, a) = I: (n ~ a) (1 - qa)kqa(n-a-k) P(n - a,j - a, k). 
k=l 

Hence deduce that in the Reed-Frost model, 

P(n,j,a) = (~-a)qj(n-j)p(j,j,a). 
J-a 

6. The idea is to describe, following R. Bartoszynski, a branching process 
model of epidemics. Here is the set-up. 
(i) Every infected individual passes through a period of illness of X + Y 
days, that is, a period of incubation of X days followed by a period of in-

00 00 

fectiousness ofY days. (X, Y) has joint p.g.f. F(s, t) = L L Pm,n smtn. 
m=On=l 

It is to be noted that Y is at least one. (ii) During the illness period of 
X + Y days, a person may be detected and automatically isolated. The 
probability of getting detected on a day is (1 - et) during the incubation 
period and (1 - (3) during the infectious period. Here 0 < et, (3 ~ 1. (iii) 
During the Y days of infectiousness an undetected individual makes a 
certain number of contacts with the susceptibles. The number of con
tacts for different days are i.i.d with p.g.f. R( t) = L~o rk tk. (iv) Each 
contact of a susceptible with an infectious, independent of other contacts, 
leads to infection with probability "( where 0 < "( ~ 1. (v) The events 
described above are independent for different individuals. 
The interpretations of (i)-(v) are as follows. F describes the nature ofthe 
disease; R describes the social and environmental conditions like mobility 
etc.; et and (3 describe the efficiency of the health services in detecting the 
cases; "( measures the individual resistance via immunization programs 
of the health services. 

00 00 

(a) Put qm,n = L Pm,k, Q(s, t) = L qm,nsmtn . 
k=n+1 m,n=O 

Show that L:=o qm,osm = F(s, 1) . 

Show that for Isl ~ 1 and It I < I, Q(s, t) = F(s, 1i = ~(s, t) . 
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(b) Put Wn = the probability that an infected individual remains unde
tected and infectious for exactly n days. Show that 

00 

Wn = L Pm,nam(3n + (1- (3)qm,nam(3n for n 2: 1, 
m=O 

00 

Wo = 1- LWn = 1- (3F(a, 1). 
I 

(c) Show that the p.g.f. of the number of persons infected by a single 
individual during one day of his infectiousness (when undetected) is 
given by R(1 - "( + "(t). 

(d) Let D(s) = gtF(s,t)lt=1 = LLnPm,nSm. 
Show that F(a, 1) is the probability that an infective remains un
detected during the whole incubation period. 
Show that D (a) / F (a, 1) is the expected length of infectious period 
for those who remain undetected during the incubation period. 

(e) Let G(t) be the p.g.f. of the number of individuals infected by a 
single infective. Show that 

00 

G(t) L wnRn(1 - "( + "(t) 
n=O 
1 - F(a, 1) + F(a, (3R(1 - "( + "(t)) 

+(1 _ (3) F(a, 1) - F(a, (3R(1 - "( + "(t)) . 
1 - (3R(1 - "( + "(t) 

If R'(I) = "( with 0 < "( < 00, then show that G'(I) = "(rD(a) in 
case (3 = 1, and, = "(rl~j3[F(a, 1) - F(a, (3)], in case (3 < 1. 

1 1- x 
(f) For 0 < x :s 1, put hI (x) = F(a, x) and h2(X) = F(a, 1) - - --. 

"(r x 
Show that h~ > 0, h~ > 0, h~ 2: 0 and h~ < O. 
Show that x = 1 is a root of hI = h2' and, if h~ (1) :s h~(I), then 
this is the only root. 
Show that if h~ (1) > h~(I) then there is one more root x < 1 of the 
equation hI = h2. 

(g) Consider the n-th generation of infected individuals as follows. Zo = 
1 and for n 2: 1, Zn = the number of persons infected by the Zn-I 
persons of the (n - 1)-th generation. Show that (Zn) is a branch
ing process with progeny generating function G(t) as given above. 
Define (3*(a,"() as the smallest positive root of 

"( r x [F(a, x) - F(a, 1)] + 1 - x = O. 

Show that 

P(limZn = 0) = 1 iff (3::; (3*(a,"(). 
n 
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[There are generalizations to the case when there are N zones and 
there is mobility for people from one zone to another.] 

7. The idea is to describe a simple mathematical model for muscle move
ments. This is due to S. W. Greenhouse. 

Phenomenon: A muscle fibril consists of alternating thick and thin fil
aments. During shortening and stretching they slide along each other. 
While this happens, certain chemical interactions occur at the molecular 
level. There are sites on the thin filament. Concentrate on one site now. 
The site may be occupied by a molecule or may be vacant. There are 
positions on the thick filament which are alternately 'release' and 'load' 
positions. A release position can pick up a molecule and a load posi
tion can give a molecule. Suppose that 1,3,5, ... are release positions and 
2,4,6, ... are load positions. Imagine a site now at 0 and sliding along the 
positions. Wish to know whether a site is filled or vacant at time n, and 
time is counted in units of positions crossed by the site. Note that if the 
site is filled and arrives at a load position, then nothing happens and it 
passes on to the next position. Similarly, if the site is vacant and arrives 
at a release position then nothing happens and it passes on to the next 
position. 

In real life, positions on the thick filament are only release positions and 
moreover, a site may pickup a molecule at any point between two release 
positions. Further, during muscular contractions, the thin filament - and 
hence, the sites - move with varying velocity. The slower the speed, the 
greater the interaction and the parameters a and f3 given below change 
with n. This is a simplified treatment. 

Mathematically, Xo, Xl, ... is a sequence ofrandom variables each taking 
values 0 (vacant site) and 1 (filled site). Xo is the initial position and 
Xn its state after n interactions. The two matrices A and B given below 
represent the probabilities of transition from X 2r to X 2r+l and from 
X 2r+1 to X 2r+2 respectively. 

A_(1 0 ) 
- a I-a 

Here 0 < a < 1 and 0 < fJ < 1. 
For i = 0,1 and n 2: 1, let P~ = P(Xn = 11 Xo = i) . 
Show that for even integers n, 

° _ fJ 1 - [(1 - a)(1 - fJ)]n/2 
Pn - 1-(I-a)(I-fJ)' 

P~ = [(1- a)(1 _ fJW/2 + fJ 1 - [(1 - a)(1 - fJ)]n/2, 
1- (1- a)(I- fJ) 

and for odd integers n, 

° _ 1- [(1 - a)(1 - fJ)](n-I)/2 
Pn - fJ (1 - a) 1- (1 - a)(1 - fJ) , 
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P; = (1-a)[(1-a)(1-,8)](n-l)!2+,8 (1-a) 1- [(1- a)(1- ,8)](n-l)!2 
1- (1- a)(1 -,8) 

8. The idea is to discuss a model for Leukemia proposed by I. A. Chow. 
Phenomenon: The disease starts with anaemia and thrombocytopenia. 
This is followed by the appearance of immature leukemic cells which 
replace the normal mature leukocutes. As the disease advances the 
number of immature granulocytes increases while the number of normal 
cells (called polymorphonuclear granulocytes, abbreviated as PMNG) de
creases. This is attributed to the fact that the abnormal immature cells 
have a long intravascular life and capacity for mitotic subdivision com
pared with normal cells. The incapability of the abnormal immature cells 
in phagocytosis makes the patient very susceptible to infection or haem
morhage leading to death. 
Notation: Let A > 0 and f-L > 0 be two numbers. m = maximum number 
of PMNG one can have. X(t)= Number of PMNG at time t. X(O)= 
initial number of PMNG at time 0 , say = no. 
Modelling Assumptions: The probability that PMNG will decrease by 1 
during (t, t + .6.t) given that there are n at time t is nf-L.6.t + o(.6.t). 
The probability that PMNG will increase by one during (t, t + .6.t) given 
that there are n at time t is (m - n)A.6.t + o(.6.t). 
The probability that PMNG will not undergo any change during (t, H.6.t) 
given that there are n at time t is 1 - [nf-L + (m - n)A].6.t + o(.6.t). 
Define Pn(t) = P(Xt = n I Xo = no) for 0 :::; n :::; m, and = 0 for other 
values of n. Set G(t, s) = 2::=oPn(t)sn , the p.g.f. of Xt. 

(a) Show that 

dPn(t) 
~ = ..\(m+n-l)Pn-l + f-L(n+l)Pn+l - [nIL +(m-n)..\]Pn. 

(b) Show that 

a a 
at G(t, s) = (1 - s) (f-L + ..\s) as G(t, s) (1 - s) A m G(t, s). 

G(O,s) sno. 

(c) Show that 

G(t,s) 

(d) Show that X t is the sum of two independent random variables, say, 
Xl and Xl, where 

xl '" B(no, a) with 
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xl '" B(m - no, fJ) 
1 - e-(A+Jt)t 

with fJ = A --0-,--
/\+p, 

This can be interpreted as follows. The PMNG at time t is made up 
of two kinds. First, there are those of the initial no which are still 
surviving. Second, there are those that are liberated at some time 
T < t and are still surviving at time t. 

(e) Show that 

(f) Show that 

(g) Show that 

no p, - A e-(A+Jt)t [1 _ e-(A+Jt)t] 
p,+A 

1 - e-(A+Jt)t p, + Ae-(HJt)t 
+m A --:---- '---:-----

A+p, A+p, 

Po(oo) = lim Po(t) = (~) m 
t-400 /\ + P, 

(h) Assume that the volume of blood, say v units, is large and also the 
PMNG at time t is large. What is usually observed is yt, the density 
of PMNG, that is, the number of PMNG in unit volume of blood, 
at time t. Theoretically speaking, any of the X t cells has a chance 
l/v of appearing in the unit volume taken for the PMNG count. So 
it is believed that, given X t = n, yt is Poisson with parameter n/v. 
In other words, 

P(yt = n' I X t = n) 
(n/v)n l e-(n/v) 

n'! 
for n' 2: o. 

Show that the conditional p.g.f. of yt given X t = n is e-n(l-s)/v. 

(i) If H(t, s) is the unconditional p.g.f. of yt, then show that 

H(t,s) = H1(t,s) . H2 (t,s), 

where 

1 - + e-(l-s)/v [
A + p,e-(HJt)t A + p,e-(HJt)t ] no 

A+p, A+p, 

H2(t, s) = 1- A + A e-(l-s)/v [ 
1 - e-(HJt)t 1 _ e-(A+Jt)t ] m-no 

A+p, A+p, 

Conclude that Y, just like X, is the sum of two independent random 
variables. 
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(j) Show that 

E(yt) 

V(yt) 

(k) The parts (i) and (j) above are useful in estimating the parameters 
and making predictions. Chow considers these also. 
In practice (no/v) and (m/v) are not observable and they are re
placed by nb, the initial PMNG density, and m', upper limit of the 
observed PMNG density. 
If the patient is under treatment then the chances of a PMNG lib
eration from bone-marrow into the blood stream depends on the 
time instant t itself, apart from depending on the actual number at 
that time. In other words, ,\ is not a constant but a function of t. 
Similarly p also is a function of t. These are denoted by '\(t) and 
pet) respectively. 
From now on this is what is assumed and m, X o, X t , no, Pn and 
G(t, s) are as defined earlier. 

(1) Argue that G satisfies a similar equation as earlier except that the 
numbers ,\ and p are now functions of t. 

(m) Show that 

where 

G(t, s) 

1 - { 1 + fat '\(T) eR(r) dT} e-R(t) 

+ { 1 + fat '\(T) eR(r) dT } CR(t) s, 

G2(t, s) = I-fat '\(T) eR(r) dTe-R(t) + fat '\(T) eR(r) dTe-R(t) s 

and 



210 CHAPTER 4. MODELS IN EPIDEMICS 

(n) Show that 

and 

V(Xt ) = noe-R(t) [1 - e-R(t) {I + 2 J; A( T) eR(r) dT} ] 

+ m e-R(t) J; A( T) eR(r) dT [1 - e-R(t) J; A( T) eR(r) dT] 
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