
Chapter 0 

PROBABILITY TOOLS 
AND TECHNIQUES 

0.1 Probabilities and Conditional Probabilities 

The theory of probability is a mathematical theory to analyze experiments 
with multiple outcomes where one does not know a priori which outcome will 
actually occur. Such experiments are usually called random experiments. A 
natural and accepted way to model such phenomena is to associate a number 
called probability to each possible outcome. These numbers are supposed to 
reflect the chances of occurrence of the different outcomes. How these numbers 
are arrived at (more specifically, the numerical value of these probabilities) is 
not the major concern in developing a mathematical model. It must however 
be noted that in practical applications of probability models, these numerical 
values would matter in determining how close the model is to reality. Before we 
go to the axiomatic definition of probability, here are a few simple and familiar 
examples. 

Example 1: The simplest example of a random experiment is tossing a coin. 
Here there are two possible outcomes: either the coin lands Head up or Tail up. 
The two possibilities can conveniently be denoted by Hand T respectively. A 
mathematical model would then associate two numbers p and q which will de­
note the probabilities of Hand T respectively. At this point let us agree on the 
following convention. First, we want the chances to be non-negative numbers 
and second, we want the chances of all possible outcomes to add up to one. 
Instead of trying to justify this, let us note that this is consistent with one's 
intuition of 'chances'. In the absence of a priori knowledge, one is inclined to 
believe that p and q should be equal, which according to the above convention 
forces p = q = ~. 
The above model can be thought of as an abstraction of any dichotomous 
experiment, that is, an experiment with two possible outcomes. For exam­
ple, consider a machine manufacturing bolts where each bolt produced by the 
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machine has a chance of being defective. Here again we have two outcomes: 
defective and non-defective. We can still label them as Hand T. Of course, in 
this case P = q = ~ does not appear realistic because any reasonable machine 
is expected to produce a much larger proportion of non-defective items than 
defective items. 

Example 2: Consider a usual six-faced die with faces numbered 1 through 6. 
If it is rolled once, anyone of the six faces may show up. So there are six 
outcomes which could be denoted by the numbers 1 through 6. If nothing else 
is known, it seems intuitively clear that each of these outcomes should have 
probability 1/6. 

Example 3: Pick up a name at random from the telephone directory and con­
sider the first letter. It can be anyone of the 26 letters of the alphabet. At 
the same time, not all the letters are equally likely to appear. For example, 
one certainly does not expect the letter X to occur as frequently as B. Thus it 
would not be reasonable to attribute equal probabilities to all the outcomes. 

All the above examples show that a random experiment consists of two 
ingredients: first, the set of possible outcomes, to be called the sample space 
- denoted by D, and second, an assignment of probabilities to the various 
outcomes. Of course, in all the above examples, the set D is only a finite set, 
that is, D = {Wl, ... , wn }. In this case probability assignment means assign­
ing non-negative numbers Pl, ... ,Pn adding up to unity, where the number Pi 
denotes the probability of the outcome Wi. We write P({Wi}) = Pi. Often we 
will be interested not in individual outcomes but with a certain collection of 
outcomes. For example, in rolling of a die we may ask: what is the probability 
that an even-numbered face shows up? In the context of a name being selected 
from the telephone directory we may ask: what are the chances that the letter 
is a vowel? These are called events. In general an event is any subset of the 
sample space. The probability of an event A is defined by 

P(A) = I: P({w}) 
wEA 

where P( {w}) denotes the probability of the outcome w. 

Example 4: Suppose we roll a die twice. The sample space is 

D {(i,j);I:Si:S6;I:Sj:S6} 

We assign equal probabilities to all the 36 outcomes, that is, for any wED, 
P( {w}) = 1/36. If A is the event described by "first face is even", then A 
consists of {(i,j): i = 2,4,6; 1:S j:S 6} and P(A) = 1/2. If A is described by 
"sum of the two faces is 5" then A consists of {(I, 4), (2,3), (3,2), (4, I)} and 
P(A) = 1/9. 

As the above example shows, if, in general, we have a finite sample space 
with all outcomes equally likely, then for any event A, P(A) = IAI/IDI where, 
for any set B, IBI denotes the number of elements of the set B. In these 
situations, probability computations become a combinatorial exercise. 
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In any case, equally likely or not, one can easily verify that probabilities of 
events satisfy the following properties: 

1. 0:::: peA) :::: 1, P(D) = 1. 

2. peA U E) = peA) + P(E) whenever An B = 0. 
In particular, P(AC) = 1 - peA). 

So far we have restricted ourselves only to finite sample spaces but the 
same idea as described in the paragraph following Example 3 applies also to 
situations where D is count ably infinite. With D = {W1' W2, ... } and non­
negative numbers P1,P2, ... , adding to unity, one can define peA) = 2: Pi for 

wiEA 
A c D, as probability of the event A. One neecs only to notice that the sum 
appearing in the definition of peA) may now Le an infinite series. But with 
usual caution as necessary while dealing with infinite sums, one can show that 
the above properties hold and one has moreover, 

3. P(A1 U A2 U···) = peAr) + P(A2) +... if Ai n Aj = 0 for i i- j. 

We now give a formal definition of probability. 

Definition: Let D be a countable set. A probability on D is a function P defined 
on all subsets of D satisfying the following conditions. 

(0) P(0) = 0 and P(D) = 1 
(1) P(Ui Ai) = 2:i P(Ai) if Ai n Aj = 0 for i i- j. 

The next few exercises list some standard properties that are easy conse­
quences of the definition. 

Exercise 1: Let P be a probability on D. Then 
(a) 0:::: peA) :::: 1; P(AC) = 1 - peA); if AcE then peA) :::: P(B). 
(b) peA U E) = peA) + P(E) - peA n E). More generally, 

n 

P(U Ai) = 51 - 52 + 53 - ... 

where 5i denotes the sum of probabilities of i-fold intersections. 
(c) If An t A then P(An) t peA). If An -I- A then P(An) -I- peA). 

Exercise 2: For a sequence (En) of events, one defines 

lim sup En = n U E k · 
n 

(1) 

Show that lim sup En is the event that En occurs for infinitely many n (some-
n 

times described as the events En occurring infinitely often). Show that if 
2: PeEn) < 00, then P(lim sup En) = O. This is called (the first) Borel-Cantelli 

n 
Lemma. 
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Exercise 3: Suppose that p is a non-negative function on 0 such that L:w p(w) = 
1. Then P(A) = L:wEAP(W) defines a probability on O. 

From now on, by a random experiment, we mean a pair (0, P) where 0 is a 
non-empty countable set and P is a probability on O. The number P(A) repre­
sents the probability that the event A will occur when the random experiment 
is performed. Of course, if the experiment is really performed and we know 
the exact outcome, there is no need for probabilities. Probability of an event 
is really an assessment of the chance of occurrence of the event irrespective 
of whether the experiment is actually conducted and we know the outcome or 
not. However, sometimes we may have a situation where a random experiment 
is performed and some partial information is available to us about the outcome 
and we are to assess the chances of an event taking this additional informa­
tion into account. It is intuitively clear that we should modify probability 
assignments of events in the presence of this additional information. 

Consider the example of rolling a die twice with all outcomes being equally 
likely. The probability that the first face is 3 is already known to be 1/6. But 
suppose now we have the additional information that the sum of the two faces 
is 5. This information already tells us that the outcome must be among (1,4), 
(2,3), (3,2) and (4,1), so that the chance of first face being 3 is now 1/4. Such 
probabilities are called conditional probabilities. More precisely, if A is the 
event that the first face is 3 and B is the event that the sum of the two faces 
is 5, then the unconditional probability of A is 1/6 whereas the conditional 
probability of A given that B has occured is 1/4. This later probability is 
denoted P(A I B). Here is the general definition. 

Definition: Let (0, P) be a random experiment and let B c 0 be an event with 
P(B) > o. Then for any event A, the conditional probability of A given the event 
B is defined by 

P(AIB) = p(AnB) 
P(B) . 

In the equally likely case (as in the earlier example) this reduces to 

P(AIB) = IAnBI 
IBI . 

The following can be easily verified: 

Theorem 0.1: 

1. Fix B and let PB(A) = P(AIB), then PB is a probability on O. 

2. P(A n B I C) = P(A I B n C) P(B I C). More generally, 

n 

P(A1 n··· n An I An+d = IT P(Aj I Aj+l n··· n An+d· 
j=l 

(2) 
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3. If BI , ... ,Bn is a partition of n then for any event A 

M ore generally, 

P(AIC) = L p(AIBinC)p(BdC). 

4. If BI , ... ,Bn is a partition of n then for any event A 

Exercise 4: P(A I B) :::; P(A) if and only if P(B I A) :::; P(B). In particular, 
P(A I B) = P(A) if an only if P(B I A) = P(B). 

Let us return to the example ofrolling a die twice. Let, as earlier, A be the 
event that the first face is 3 and B be the event that the sum of the two faces is 
5. Then P(AIB) = 1/4> 1/6 = P(A). So here the additional information has 
the effect of increasing the chances of A. On the other hand if we consider the 
event C that the sum is 11, then clearly P(A I C) = 0, that is, the additional 
information reduces the chances of A (to indeed zero!). Does it always happen 
this way? That is, will additional information always change the chances one 
way or other? The answer is NO. For example if D is the event that the sum 
is 7, then P(A I D) = 1/6 = P(A). That is, the probability of A remains 
unchanged even if we are told that D has occured. This situation is described 
by saying that A is independent of D. Here is the precise definition. 

Definition: Two events A and B are said to be independent if P(A n B) = 
P(A)P(B). 

Of course when one of the two events, say, B has positive probability then A 
and B are independent is the same as saying P(A I B) = P(A). 

Exercise 5: If A, B are independent, then AC, B are independent; A, BC are 
independent ; A c, BC are independent. 

Definition: Events AI, A 2 , ••• , An are said to be independent if for any 1 :::; 
i l < i2 < ... < ik :::; n 

Exercise 6: Let AI, A2 , ... , An be independent. 
(i) If for each i, Bi denotes one of the events Ai or AI then BI , B 2 , ... , Bn are 
independent. 
(ii) If 1 :::; j < n, nl5,jBi is independent of ni>jBi . UI5,jBi is independent of 
ni>jBi . UI<jBi is independent of Ui>jBi . Here Bi are as in (i). 

The assertions in (ii) above are merely special cases of a more general phe­
nomenon: if 1 :::; j < nand C is an event "constructed" out of AI, ... ,Aj and 
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D is an event constructed out of A j +1 , ... ,An, then C and D are independent 
events. This is intuitively clear, but a formal proof requires more machinery 
than what is available at this level. 

Often random experiments can be thought of as composed of simpler ran­
dom experiments in the sense explained below. If you toss a coin twice you can 
describe the outcomes of the experiment by 0 = {H H, HT, T H, TT}. Notice 
that 0 = {H, T} x {H, T}, that is, 0 is the two-fold product of a single toss 
experiment. More generally, the sample space for 10 tosses of a coin (or a toss 
of 10 coins) can be thought of as the ten-fold product of {H, T}. But what is 
important is that not only the sample space can be thought of as a product, 
but the probabilities of the outcomes can also be thought of as products. Here 
is the general method. 

Let (Oi, Pi), for 1 :S i :S n, be random experiments. Put 

For w = (Wl, ... ,wn) EO, put P({w}) = PI ({wd) x ... x Pn({wn }). One can 
now define P(A) for any A c 0, thus getting a probability P on O. 

n 

Exercise 7: If A = Al X A2 X ... x An then P(A) = TI Pi(Ai). Conclude 
i=1 

that if Ai c 0 is the set of all points in 0 whose i-th coordinate is in Ai then 
AI , ... , An are independent. 

The exercise above really means that events that depend on different co­
ordinates are independent. This, of course, is a consequence of the way the 
probability P has been defined on O. It is clearly possible to construct other 
probabilities P on 0, such that P(Ai) = Pi (Ai ) for all i, but independence fails. 
One can easily see that 10 tosses of a coin with all outcomes equally likely is the 
same as the ten-fold product of single toss of coin with P(H) = P(T) = 1/2. 

If 0 1 = O2 = ... = On, then we write 0 = Or· If further PI = P2 = ... = 
Pn , then we write P = Pln. (Or,Pln) represents n independent repetitions of 
the experiment (OI,Pd. 

0.2 Random Variables and Distributions 

In the context of random experiments, the actual outcomes may often be quite 
abstract. For example, if you toss a coin 10 times, outcomes will be 10-tuples of 
H's and T's. Often one is interested not in the exact outcome per se but some 
numerical value associated with each outcome. For example, in case of 10 tosses 
of a coin, one may be interested in the number of times heads showed up or in 
the number of times a tail was immediately followed by a head. Such numerical 
values associated with outcomes are what are called random variables. This 
section is devoted to a study of random variables and their distributions. 
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0.2.1 Distribution of a Random Variable 

Definition: A random variable is a real-valued function defined on the sample 
space O. 

It is customary to denote random variables by X, Y, Z etc. For example, in 
10 tosses of a coin, let X denote the total number of heads and Y denote the 
number of times a tail is immediately followed by a head. Then for the outcome 
w = HTTHTTTHHH, X(w) = 5 and Yew) = 2, while for another outcome 
w' = THHTHTHHTH, X(w') = 6 and yew') = 4. 

Given a random variable, we can ask what the possible values of the random 
variable are and the chances (probabilities) of it taking each of those values. 
This is what is called the distribution of the random variable. Since our sample 
space is countable, any random variable can only take count ably many values. 

Definition: Let X be a random variable on (0, P). Then by the distribution of 
X is meant the set of possible values D = {Xl, X2, ... } of the random variable X 
and the probabilities {P(Xl)' P(X2)' ... } where p(Xi) = pew : X(w) = Xi). The 
right side is often abbreviated as P(X = Xi). 

Of course, p can be extended to a function on R by setting p(x) = P(X = x). 
However, for any X (j. D we have p(x) = O. This p is called the probability mass 
function (p.m.f.) of the random variable X. 

Once we know the probability mass function of a random variable X, we 
can compute for any A c R, the probability P(X E A) by the formula 

P(X E A) = l: p(x). 
xEA 

Example 1: Consider n independent tosses of a coin. Assume that in each 
toss the probability of heads is p. Define X to be the total number of heads 
obtained. Clearly X is a random variable which can take any integer value 
from 0 to n. One might wonder: how do we get a random variable even before 
describing the sample space. We concede that we were jumping steps. So 
here is our sample space: (O,P) = (Or, pr) where 0 1 = {H,T}; Pl(H) = P 
and PI (T) = 1 - p. The definition of the random variable X as a real-valued 
function on 0 should now be clear. It is also easy to verify that the probability 
mass function of X is given by 

p(X) (~)px(1_p)n-x forxE{O,l, ... ,n} 

p(x) 0 forx(j.{O,1,2, ... ,n} 

This random variable is called the Binomial random variable with parameters 
nand p, in short, a B(n,p) random variable. We write X rv B(n,p) for this. 
The distribution is called the Binomial distribution. 

Almost all the information about the random variable X is contained in 
its distribution (or its p.m.f.) ~ the underlying sample space or the precise 
definition of X as a function on the sample space is of no additional importance. 
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Therefore it is often customary to describe random variables simply by their 
distributions without any reference to any underlying sample space. 

Example 2: Fix a number p with 0 < p < 1. A random variable X is said 
to have G(p) distribution - geometric distribution with parameter p - if X 
takes value x with probability p(l - p)X for x E {O, 1, ... }. In other words, X 
has p.m.f. 

p(x) = p(l - PY for x E {O, I, ... } 

It is to be understood here and elsewhere that p(x) = 0 for all other x. Suppose 
you have a coin with chance of heads p. If the coin is tossed repeatedly until a 
head shows up, then the number of tails preceeding the head has this geometric 
distribution. 

Example 3: Here is a generalization of the above example. Again we have a 
coin for which the chance of a head in each toss is p. Fix an integer m 2: 1. Toss 
the coin until a total of m heads show up. (What is the sample space?) The 
random variable X is the total number of tails obtained. Clearly X takes values 
x = 0,1,2, ... as earlier. A simple combinatorial argument shows that P(X = 
x) = (x~,::,;:-I) (1 - p ypm. This random variable is called a negative binomial 
random variable with parameters (m,p) - in short, N B(m,p) random variable 
- and the distribution is called the negative binomial distribution (why?). 
Clearly when m = 1, we get the geometric random variable of Example 2. 

Example 4: Fix integers N, n < N and NI < N. A random variable X is said 
to be Hyp(N, NI; n) - hypergeometric with parameters N, NI and n - if it 
takes value x with probability 

Of course you have to interpret (~) = 0 unless b is an integer with 0 :::; b :::; a. 
This arises if you have a bunch of N items of which NI are good, the remaining 
are defective and you select a random sample of size n without replacement. 
The random variable in question is the number of good items in the sample. 

Example 5: Fix a number ,X. > O. A random variable X is said to be P('x'), 
written X ,...., P('x') - Poisson with parameter ,X. - if it takes value x with 
probability e-A,X.x/x ! for x = 0,1,2, .... This random variable arises as a 
limiting case of the number of heads when you toss a coin a large number of 
times and the chance of heads in each toss is very small. For details see Section 
0.3. 

Example 6: Roll a fair die twice and let X be the sum of the two numbers 
obtained. Then X takes values 

2, 3, ... , 7, 8, ... , 12 

with probabilities given respectively by 

1/36,2/36, ... ,6/36,5/36, ... ,1/36. 
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Suppose that a fair coin is tossed ten times and X is the number of heads. 
Clearly X can take anyone of the values 0,1,2, ... , 10 with different proba­
bilities, the actual value depending on the outcome of the ten tosses. But if 
we were to choose one "representative value" of X without knowing the actual 
outcome, what would be a good candidate? One possibility is to consider the 
most probable value, which in this case is 5. However a commonly used and 
mathematically more tractable quantity is what is known as the expected value. 
As the next definition shows, this is weighted average of the possible values. 

Definition: Let X be a random variable with set of values D and p.m.f. p(x) for 
x E D. If LXED Ixlp(x) < 00 (automatically true if D is finite), then X is said 
to have a finite expectation and the expected value of X is defined to be 

E(X) = L xp(x). (4) 
xED 

Thus, expected value of a random variable, when it exists, is the weighted 
average of its values, weighted by their probabilities. Expected value or expec­
tation is also called the mean value or the mean. 

If X is a random variable and 9 : R ----t R is a function then clearly g(X) is 
again a random variable. It is not difficult to check that g(X) has finite expec­
tation iff LXED Ig(x)lp(x) < 00 and in that case E(g(X)) = LXED g(x)p(x). 
This is a very useful formula because we can compute E(g(X)) straight from 
the p.m.f. of X rather than having to go to the p.m.f. of the random variable 
g(X). 

Definition: A random variable X with E(xm) finite is said to have a finite m-th 
moment, given by E(xm). For X with a finite second moment, the variance of 
X, denoted V(X), is defined by 

V(X) = E[(X - EX)2]. (5) 

The quantity V(X) measures the spread of the distribution of X. For example, 
V(X) = 0 iff the distribution of X is concentrated at one point (that is, X is 
a constant random variable). 

Indicator random variables as defined below form a very simple, yet useful, 
class of random variables. 

Definition: For any event A the Indicator random variable of the event is defined 
as 

IA(W) = { ~ 
Clearly the expectation of h is P(A). 

if x E A 
if x ~ A 

Exercise 1: If the m-th moment is finite, then so is the n-th, for any n < m. 

Exercise 2. For a random variable X on a probability space (0, P), E(X) ex­
istsiff LWErl IX(w)IP({w}) < 00 and in that caseE(X) = LWErl X(w)P({w}). 

Exercise 3. If P(X = c) = 1 for some real number c, then E(X) = c. 
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Exercise 4. If X is a random variable with finite expectation, then IE(X)I :S 
E(IXI). 

Exercise 5. If X and Y are two random variables defined on the same space 
and having finite expectations, then 

(a) X :S Y implies E(X) :S E(Y). 
(b) E(aX + bY) = aE(X) + bE(Y) for any two real numbers a and b. In 

particular, E(aX + b) = aE(X) + b. 

Exercise 6. If P(X ~ 0) = 1 and E(X) = 0, then P(X = 0) = 1. More 
generally, if P(X ~ Y) = 1 and E(X) = E(Y), then P(X = Y) = 1. 

Exercise 7. If Xn and X are non-negative random variables defined on the 
same space and Xn t X, then E(Xn) t E(X). In case X has infinite expecta­
tion, this should be read as E(Xn) too. This is known as Lebesgue's Monotone 
Convergenr;e Theorem. 

Exercise 8. Supose that Xn and X are random variables defined on the 
same space such that Xn -+ X. Suppose also that there is a random variable 
Y with finite expectation such that IXnl :S Y for all n, that is, all the ran­
dom variables Xn are dominated in modulus by the random variable Y. Then 
EIXn - XI -+ O. In particular E(Xn) -+ E(X). This is called Lebesgue's 
Dominated Convergence Theorem. 

Exercise 9. If X and Y are two random variables on the same space such that 
E(X . lA) ~ E(Y . lA) for every event A then P(X ~ Y) = 1. In particular, 
E(X lA) = E(Y lA) for every A if and only if P(X = Y) = 1. 

Exercise 10. V(X) = E(X2) - (EX)2. 

Exercise 11. V(X) = 0 iff P(X = c) = 1 for some constant c. 

Exercise 12. V(aX + b) = a2V(X). 

Exercise 13. V(IA) = P(A)[1 - P(A)]. 

Exercise 14. If X has finite variance and E(X) = M, then E(X - a)2 ~ V(X) 
for every real a. Thus E(X - a)2 is minimized when a = M. 

Exercise 15. For each of the random variables in Examples 1 through 6, find 
its expected value and variance. 

0.2.2 Joint Distributions 

Suppose that X and Y are two random variables defined on the same space. 
As mentioned earlier, probabilities of events concerning the random variable X 
(respectively, Y) can be computed from the distribution of X (respectively, of 
Y). However we may often be interested in probabilities of events that concern 
both X and Y. For example, 'what is P(X = V)?' or 'what is P(X + Y = 7)?' 
etc. For such probabilities individual distributions of X and Y alone would not 
suffice. We need to know what is called the joint distribution of X and Y. 

Definition: Let X and Y be two random variables defined on the same space. 
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Let Dx and Dy denote the set of possible values of the random variables X and 
Y respectively. The set of possible values of the pair (X, Y) are clearly contained 
in Dx x Dy. The joint distribution of (X, Y) is given by the joint probability 
mass function defined as p(x, y) = P(X = x, Y = y) for (x, y) E Dx x D y . 

Consider, for example, tossing a coin 15 times, with the chance of a head 
in each toss being p. Let X be the number of heads in the first ten tosses 
and Y be the number of heads in the last ten tosses. Clearly both X and Y 
are B(lO,p) random variables. Here Dx = Dy = {O, 1, ... , lO}. The joint 
distribution of (X, Y) would be given by the mass function p on Dx x D y . For 
example, p(lO, 10) = pI5. In general, 

p(m,n) = t ( 5 ) (5) ( 5 )pm+n-k(l_ p)I5+k-m-n 
m-k k n-k 

k=O 

with the usual convention that (~) = 0 unless b is integer with 0 ::::; b ::::; a. 

From the joint p.m.f. of (X, Y), the individual (marginal) p.m.f. of X and 
Y can be obtained as follows: 

PI (x) = P(X = x) = L p(x,y) for x E Dx 
yEDy 

P2(y) = P(Y = y) = L p(x,y) for yE Dy 
xEDx 

In an analogous way the joint distribution of n random variables (defined 
on the same space) is given by their joint p.m.f. 

Example 7: Consider an n faced die with PI, P2, ... , Pn denoting the probabil­
ities of different faces in a single throw. Roll the die r times and let Xi be the 
number of times face i shows up. The joint p.m.f. of (Xl, X 2 , ... ,Xn ) is given 
by 

r' p(x X X ) . pXlpX2 ... pXn 
1, 2,"" n = " , 1 2 n XI·X2···· xn· 

for XI,X2, ... ,xn non-negative integers adding to r. This distribution is called 
the multinomial distribution with parameters (riPl,P2,'" ,Pn) . 

Definition: For a pair of random variables X and Y defined on the same space, 
the covariance between X and Y is defined as 

Cov(X, Y) = E[(X - EX) (Y - EY)]. (6) 

Further, E(xmyn), for positive integers m and n, are called the various cross­
product moments of the pair (X, Y). 

Exercise 16. Cov(X, Y) = E(XY) - E(X)E(Y). 
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Exercise 17. COV(L,i aiXi, L,j bj Y:i) = L,i L,j aibj COV (Xi , Y:i). 
Exercise 18. Cov(X, X) = V(X). 

Exercise 19. Cov(X, a) = 0 for any constant random variable a. 

Exercise 20. Cov(X, Y) :S JV(X) JV(Y). 

Exercise 21. V(L,iXi) = L,i V(Xi ) +2L,i<jCOV(Xi ,Xj ). In particular, if 
COV(Xi,Xj) = 0 for all i =I- j, then V(L,iXi) = L,i V(Xi). 

0.2.3 Conditional Distributions and Conditional 
Expectations 

Let X be a random variable. For any event A with P(A) > 0, the conditional 
distribution of X given A simply means the conditional probabilities for X 
taking various values given the event A. Thus the conditional distribution is 
given by the (conditional) p.m.f. p(x I A) = P(X = x I A). It is, of course, 
immediate that this is indeed a probability mass function. The conditional 
expectation and conditional variance of X given A are just the expectation 
and variance of this conditional distribution. Clearly all the properties listed 
in Exercises 4,5,7,8 and 10 through 14 can be formulated and shown to hold 
with conditional expectation and conditional variance. 

Next, let X and Y be two random variables defined on the same space. For 
y with P(Y = y) > 0, we can talk about the conditional distribution of X given 
Y = y. This is given by the conditional mass function 

p(xly) = P(X = xlY = y) = p(x,y) . 
p2(y) 

(7) 

Here p is the joint p.m.f. of (X, Y) and P2 is the (marginal) p.m.f. of Y. It is 
clear that for each y with P2 (y) > 0, the function p(. I y) is a probability mass 
function - called the conditional p.m.f. of X given Y = y. 

If X has finite expectation, then the conditional expectation of X given 
Y = y is defined to be 

E(XIY = y) = Lxp(xly). (8) 

The assumption of finite expectation ensures the convergence of the right hand 
side of Equation (8). Thus, the conditional expectation of X given Y = y is just 
the expectation of X under the conditional distribution given Y = y. Clearly 
E(XIY = y) is a function of y, say cp(y). The random variable cp(Y) is denoted 
by E(X I Y). We do this because, in many contexts it is convenient to think 
of the conditional expectation itself as a random variable. One can similarly 
define the conditional distribution of Y given X = x and also E(Y I X). 

It may be noted that if Y is a constant random variable, say, Y =: c, then 
the conditional distribution as well as the conditional expectation of X given 
Y = c reduce to the unconditional distribution and unconditional expectation 
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of X. The following facts on conditional expectation are easy to verify, and 
left as exercises. 

Exercise 22. E(E(X IY)) = E(X). 

Exercise 23. If X has finite expectation and if 9 is a function such that Xg(Y) 
also has finite expectation, then show that E(X g(Y) I Y) = E(X I Y)g(Y). 

Exercise 24. E(X - g(y))2 2:: E(X - E(X I y))2 for any X and 9 such that 
X 2 and (g(y))2 have finite expectations. (Exercise 14 in 0.2.1 is easily seen to 
be a special case of the above.) 

Exercise 25. For any function 9 such that g(X) has finite expectation, 
E(g(X)IY = y) = L g(x)p(xly). 

Exercise 26.IE(X I Y)I ::::: E(IXII Y). 

The above notions of conditional distribution and conditional expectation 
naturally extend to the case of more then two random variables. To be pre­
cise, if Xl, X 2, ... , X n are random variables on the same space, one can, in a 
natural way, talk about the conditional joint distribution of k of these random 
variables given the others. For instance, the conditional joint distribution of 
(Xl' ... ' X k), given Xk+1 = Xk+l, ... , Xn = Xn is defined by 

( I . ) P(Xl = Xl, ... ,Xn = Xn) 
P Xl,···,Xk Xk+l,···,Xn = ( ) P X k+l = Xk+l, ... ,Xn = Xn 

provided, of course, P(Xk+l = Xk+l, ... , Xn = xn) > 0, and for each such 
(Xk+1' ... ,xn), the function p(. I Xk+l, .. . ,xn) is a p.m.f. - called the condi-
tional joint p.m.f. of (Xl,··· ,Xk), given X k+1 = Xk+1, ... ,Xn = Xn. 

If 9 is a k-variable function such that Y = 9 (Xl, ... , X k) has finite expecta­
tion, then the conditional expectation of Y given X k+l = Xk+l, ... , Xn = Xn, 
has a natural definition, namely 

E(Y IXk+1 = Xk+l, ... ,Xn = xn) 

L g(Xl' ... ,Xk)p(Xl, ... ,Xk IXk+l, ... ,xn). 

In particular, one can talk about the conditional expectation of Xl given 
X 2, ... , Xn or conditional expectation of Xf + xi given X 3 , X 5 , and so on. 

Exercise 27. E(E(X I Y, Z) I Y) = E(X I Y). More generally 

E(E(X IXl , ... , Xn) IXl , ... , X n- l ) = E(X IXl , ... , X n- l ). 

Here E(YI Xk+l, ... ,Xn) denotes the random variable </J(Xk+l, ... ,Xn) where 
</J is the (n - k)-variable function defined by 

</J(Xk+l, ... ,xn) = E(Y I Xk+l = Xk+l, ... ,Xn = xn) . 

If these things look a little abstract there is no cause for alarm. Sim­
ply try to understand the meaning of the conditional expectation of Xl given 
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X 2 , •.. , Xn or the conditional expectation of Xf + Xi given X3 and X 4 . Here 
is a useful exercise left to be proved by the reader. This is often referred to as 
the smoothing property of conditional expectation. 

E(E(g(X, Y) I Z, W) I Z) = E(g(X, Y) I Z) . 

Or more generally, if U = g(Xl' ... ,Xm) then 

Indeed, one may think of (9) as equivalent to Exercise 27 above. What this says 
is the following. In order to get the conditional expectation of a random variable 
given Yl , Y2 , ... , Yn - l , one may first calculate its conditional expectation given 
Yl , Y2 , ... , Yn and then take the conditional expectation of this random variable 
given Yl , Y2 , ... , Yn - l . Here is an application. 

Example 8: Toss a fair coin a Poisson number of times. Find the conditional 
expectation of the time of occurrence of the first Head, given the total number 
of Heads. More precisely, let N be a random variable having the Poisson 
distribution with parameter A. Suppose that a fair coin is tossed N times. Let 
X be the number of Heads obtained and T be the time of occurrence of the 
first Head. In case there are no Heads, T is defined to be one plus the number 
of tosses, that is to say, T = 1 + N in case X = O. Of course, if N = 0, then 
X = 0 automatically so that T = 1. We want E(T I X = x) for each x 2: O. 

The plan is the following. We first compute E(T I X, N) and then compute 
its conditional expectation given X. By the smoothing propertry this will be 
the same as E(T I X). 

For integers 0 ~ x ~ n, let f(n, x) = E(T I N = n, X = x). In case x = 0, 
by our convention made above, f(n, 0) = 1 + n clearly. For 1 ~ x ~ n, f(n, x) 
is simply the expected waiting time till the first head, given that n tosses of a 
fair coin has resulted in a total of x heads. For the sake of completeness, we 
set f(n, x) = 0 (or any other value, for that matter) for x > n 2: O. We now 
proceed to obtain a recurrence relation among the f(n, x). For 1 ~ x ~ n, we 
obtain, by conditioning on the outcome of the first toss, 

f(n,x) = 0: +,B, 

where 

0: = E(T I x heads in n tosses, first is heads) . P(first heads IN = n, X = x) , 

,B = E(Tlx heads in n tosses, first is tails)· P(first tails IN = n,X = x). 

A routine calulation now shows that 

(n-l) 
x-l X 

0: = (~) = ~ and 

(n-l) n-x 
,B = [1 + f(n -l,x)] (~) = -n- [1 + f(n -l,x)], 
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giving us the recurrence relation 

n-x 
f(n,x) = 1 + --f(n -1,x). 

n 

Since f(x, x) = 1, we get by induction on n, that for n 2': x, 

n+l 
f(n,x) = --. 

x+l 

15 

(Try to directly compute the conditional expectation E(T I N = n, X = x).) 
Thus E(TIX, N) = (N + 1)/(X + 1). To calculate the conditional expectation 
of this given X = x we calculate the conditional distribution of N given X = x. 
Clearly, P(N < x I X = x) = 0 and for n 2': x, 

-A/2 n-" 1 
P(N = niX = x) = e (A/2) (n _ x)! 

As a consequence for x 2': 1, 

x+~+1 A 
E(TIX=x)=E[(N+l)/(X+l) IX=x]= 2 =1+ ( ) 

x+l 2x+l 

Even though given X = 0, T equals 1 + Nand E(N) = A, it does not mean 
that E(TIX = 0) = 1 + A; indeed E(TIX = 0) = 1 + ~ (why?). 

0.2.4 Independence 

Definition: Random variables Xl, X 2 , ... , Xn are said to be independent if for 
anY Xl,X2,···,Xn , 

Thus independence requires that the joint p.m.f. is just the product of the 
marginal probability mass functions. Moreover (10) is clearly equivalent to 
saying that for sets B l , B 2 , ... , B n , the events {(Xi E Bi ), 1 ::::: i ::::: n} are inde­
pendent. Also, independence of Xl, X 2, ... ,Xn clearly implies independence 
of X j1 , Xj, , ... ,Xj= for any 1 ::::: )1 < 12 < ... < )m ::::: n. With some work, 
one can also show the following. Let 1 ::::: i l < i2 < ... < ik-l ::::: n and consider 
the random variables Yl , Y2,···, Yk defined as Yl = gl (Xl, X 2,· .. , XiJ ,Y2 = 
g2(Xi1 +l , ... ,Xi2 ),···, Yk = gk(Xik _1+l , ... ,Xn), for functions gl,g2,··· ,gk. 
Then independence of X l ,X2 , ••• ,Xn implies that of Yl , Y2, ... , Yk. Here are 
some more consequences of the definition of independence that the reader 
should work out. 

Exercise 28. If X l ,X2, ... ,Xn are independent, then the conditional joint 
distribution of any subset of them, given the others, is the same as the uncon­
ditional joint distribution. 

Exercise 29. A constant random variable is independent of any random vari­
able. Moreover, a random variable is independent of itself if and only if it is a 
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constant random variable. 

Exercise 30. If Xl, X 2, ... , X n are independent random variables with fi­
nite expectations, then the product rr7=1 Xi also has finite expectation and 
E(rr7=1 Xi) = rr~=l E(Xi). . 

Exercise 31. If X and Y are independent with finite expectations, then 
Cov(X, Y) = O. In particular, if X and Y have finite variances, then V(X + 
Y) = V(X) + V(Y). 

Exercise 32. Give an example of random variables X and Y such that 
Cov(X, Y) = 0, but X and Y are not independent. 

Exercise 33. Suppose that X and Y are independent random variables and 
suppose that g is a function such that Z = g(X, Y) has finite expectation, then 
E(Z I Y = y) = E(g(X, y)). More generally, if Xl, X 2, ... , Xn are independent 
random variables and g is a function such that Z = g(X1' X 2, ... ,Xn) has 
finite expectation, then 

Exercise 34. In fifteen tosses of a fair coin, let Xl be the number of heads in 
the first three tosses, X 2 be the number of tails in the next six tosses, and Xg 
be the number of heads minus the number of tails in the last six tosses. Show 
that Xl, X 2 , X g are independent. Find E(X1X2Xg). 

0.3 Generating Functions 

Let (akh>o be a sequence of numbers with 0 ::; ak ::; 1 for all k. Then clearly 
for any t Eo (-1,1) the series 2::%':0 ak t k converges absolutely. The function 
A(t) = 2::%':0 ak tk defined for t E (-1,1) is called the generating function of 
the sequence(akh~o. By the uniqueness of the Taylor expansion, the function 
A(t) determines the sequence (ak) completely. Indeed, the function A(t) is 
infinitely differentiable on (-1,1) and ak = A (k) (0) / k! where A (k) (0) is the k­
th derivative of the function A(t) at t = O. Moreover as t t 1, A(t) also increases 
and the limit lim A( t) is finite iff 2:: ak converges. In fact lim A( t) = 2:: ak. We 

ff1 ff1 
denote this limit by A(I). It should however be noted that in case 2:: ak does 
not converge, then A(t) increases to 00. In this latter case also, we say that 
the limit A(I) = limA(t) exists and equals infinity. It is known from calculus 

tt! 
that the derivative ofthe function A(t) also has a power series expansion in the 
interval (-1,1) given by A'(t) = 2::%':1 kaktk- 1 . In fact, one can similarly get 
power series expansions for higher order derivatives. Once again as t t 1, A'(t) 
has a finite limit iff 2:: kak converges and lim AI (t) = 2:: kak. This equality 

tt! k~l 
remains valid even if the right-hand side does not converge. We denote this 
limit by A'(I). In general we will always use the notation A(k)(I) for the limit 
limA(k) (t), finite or not. 
tt1 
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By the convolution of two sequences (akh>o and (bkh>o is meant the new 
sequence Ck = (a * bh defined by Ck = I:~=o ~lbk-l. It is ~asy to see that the 
generating function of the convolution of two sequences equals the product of 
the corresponding generating functions. That is, C(t) = A(t)B(t). 

A particularly interesting case arises when the sequence (akh?o is the prob­
ability mass function of a non-negative integer-valued random variable X. In 
that case, A(t) is denoted by 'Px (t) and is called the probability generating func­
tion (p.g.f.) or generating function (g.f.) of X. From our earlier discussion, it 
follows that the distribution of a non-negative integer valued random variable 
is completely determined by its p.g.f. Indeed, for such a random variable X, 
P(X = k) = 'Pt;) (O)/k!. Clearly 'Px(l) = 1. Also 

'P~(1) = lim'P~(t) = E(X), 
ttI 

(11) 

whether this expectation is finite or not. It is left as an exercise to show that, 
in case X has finite variance, 

VeX) = 'P~(1) + 'P~(1) - ['P~(1W (12) 

Exercise 1. (i) If X'" B(n,p), then show that its p.g.fis 'Px(t) = (l-p+pt)n. 
(ii) If X'" P(>"), then show that 'Px(t) = e-)..(l-t). (iii) If X'" NB(k,p), then 
show that 'Px(t) = pk(l_ qs)-k. 

Exercise 2. If X and Y are independent non-negative integer valued random 
variables, then show that 'Px+y(t) = 'Px(t)'Py(t). 

Exercise 3. Show that (i) the sum of independent B(n,p) and B(m,p) ran­
dom variables is B(n + m,p); (ii) the sum of two independent Poisson random 
variables is again Poisson; (iii) the sum of independent NB(k,p) and NB(I,p) 
random variables is again NB. 

Exercise 4. Let X I ,X2 , ... and N be non-negative integer-valued random 
variables. Suppose that, for every k 2: 1, the (k+1) random variables Xl, X 2 , ••. , X k 
and N are independent. Suppose further that the Xi have a common distribu­
tion with p.g.f. 'I/J(t). Define Z = I:i<N Xi, with the convention that if N = 0, 
then this sum is zero. Show that the p.g.f. of Z is 'PN('I/J(t)), where 'PN is the 
p.g.f. of N. In particular, show that if each Xi'" B(l,p) and N '" P(>"), then 
Z '" P(>..p). 

Exercise 5. Let 'P(s) be the p.g.f. of a random variable X. Let qk = P(X > k) 
1 - pes) 

for k 2: O. Then the function Q(s) = is the generating function of 
1-s 

the sequence (qk h?o. 

Suppose that Xn '" B(n,Pn), and denote nPn by >"n. Then the p.g.f. of Xn 
is 
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If we assume that >"n ---+ >.. then clearly 

CPn(t) ---+ cp(t) = eA(t-I) 

which is the p.g.f. of P(>..) random variable. From this it looks plausible that 
the distribution of Xn converges to a P(>..) distribution. That is, for k 2 0, 

P(Xn = k) ---+ e- A >..k /k! 

This is indeed true and is actually a consequence of the next theorem. 

Theorem: For each n 2 1, let CPn be the generating function of a sequence 
of numbers (an k h>o. In order that lim an k = ak exists for each k, it is 

, - n--+oo ' 

necessary and sufficient that lim CPn(s) = cp(s) exists for each s E (0,1). In 
n--+= 

that case, cP is actually the generating function of the sequence (ak h?o. 

Remark: It may be noted that even when the CPn are p.g.£. of a sequence of 
random variables, the limit function cP need not be a p.g.f. - that is, even if 
Lk an,k = 1 for each n, the sequence ak may not be a probability distribution 
(consider CPn (s) = sn). Of course L ak ::; 1 will always hold. 

Proof of Theorem: Let CPn(s) = Lk an,ksk. First assume that for each k, 
an,k ---+ ak as n ---+ 00. Clearly ° ::; ak ::; 1 for each k. Let cp(s) be the 
generating function of the sequence (ak). Fix s E (0,1) and 10 > ° be given. 
Choose ko large enough so that sko < ~E(1- s). Since limn an,k = ak for each 
k, we choose no so that for n 2 no, lan,k - akl ::; 2~o' Then 

ko-l 

ICPn(s) - cp(s) I ::; L lan,k - akl sk + L lan,k - akl sk . 
k=l k?ko 

By choice of ko, the second term is smaller than 10/2 and, for all n 2 no, the 
first term is smaller than 10/2. Thus ICPn(s) - cp(s)1 ::; 10 for all n 2 no, showing 
that CPn(s) ---+ cp(s) for each s E (0,1). 

Conversely, suppose that CPn (s) ---+ cp( s) for each s with ° < s < 1. Clearly ° ::; cp(s) ::; 1 and cp(s) is non-decreasing in s. In particular lifllcp(s) = ao (say) 
8+0 

exists. Further, 

lan,o - aol ::; lan,o - CPn(s)1 + ICPn(s) - cp(s)1 + Icp(s) - aol, (13) 

and 
= 

lan,o - CPn(s)1 = L an,k sk ::; 1 ~ s . 
1 

Therefore, given 10 > 0, we can choose s close enough to zero so that the first 
and third terms of the right side of (13) are each less than 10/3. Now choose n 
large enough so that the second term is smaller than 10/3. Thus we conclude 
that an,o ---+ ao. Now note that 

CPn(S) - an,o ---+ cp(s) - ao for ° < s < 1. 
s s 
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. h () 'Pn (s) - an 0 h f' f h It IS easy to see t at gn S = ' is t e generating unctIOn 0 t e 
s 

sequence (an ,k+lh20 so that by the same argument as above we can conclude 
that 

1. 'P(s)-ao 
lm = aI, say 
8.!-0 s 

exists and moreover lim an 1 exists and equals al. One can use induction to 
n ' 

show that for each k, lim an,k = ak (say) exists. 
n--+oo 

Referring now to the only if part of the theorem we conclude that 'Pn (s) 
must converge, for each s E (0,1), to the generating function of the sequence 
(ak), which therefore has to be the function 'P( s). This completes the proof of 
the theorem. • 

The concept of a generating function as discussed above extends naturally 
to higher dimensions. We will briefly outline the definition and basic facts. 
Also for the sake of simplicity we confine ourselves to the case of multivariate 
probability generating functions. 

Let Xl, X 2 , ... ,Xd be random variables, defined on the same space, each 
taking non-negative integer values. Let their joint probability mass function 
be p(kl' k2 , •.. , kd). The joint probability generating function (joint p.g.f.) of 
(XI ,X2 , •.. ,Xd) is the function 'P defined on [-1, l]d defined by 

'P(tl, ... ,td)=E(t~l ... t:d)= L p(kl, ... ,kd)t~l ... t~d. (14) 
kl, ... ,kd 

It is not difficult to see that the series above converges absolutely. The function 
'P can also be shown to have partial derivatives of all orders and 

_ 1 (kl, ... ,kd) 
p(kl, ... ,kd)- kl! ... kd!'P (0, ... ,0), (15) 

where 'P(k1, ... ,kd) denotes D~l ... D~d'P with the usual notation that for i = 
1, ... ,d and k 2 0, Df is the k-th order partial derivative with respect to the 
i-th variable. Thus for example, with d = 3, 

Equation (15) shows that, as in the case of one dimension, the joint distribu­
tion of (Xl, ... , X d) is completely determined by the joint p.g.f. 'P. Note that 
'P(I, ... ,1) = 1 by definition. One can also find all the moments, including 
cross-product moments of (Xl, X 2 , ... ,Xd) from 'P. For example, 

E(XrX2) = 'P(2,1,0, ... ,0) (1, ... ,1) + 'P(1,1,0, ... ,0) (1, ... ,1). 

Also for any i, 1 :S i :S d, 'P(it, ... , ti-l, 1, ti+l,"" td) is precisely the joint 
p.g.f. of the random variables (Xl, ... ,Xi-I,Xi+I, ... ,Xd). 
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In case Xl, X 2, ... ,Xd are independent with p.g.f.s 'PI, 'P2, ... , 'Pd respec­
tively, then the joint p.g.f. of (Xl"'" X d ) is easily seen to be 

(16) 

In fact the condition (16) is also sufficient for independence. More generally, 
one can factor 'P, the joint p.g.f of (Xl"'" Xd), as 

if and only if (Xl, ... ,Xi) is independent of (Xi+l, ... ,Xd). Moreover, the 
functions 0 and cp in the above factorization are the joint p.g.f.s of (Xl, ... ,Xi) 
and (Xi+l, ... , Xd) respectively except possibly for some multiplicative con­
stants. For example, the functions 30 and cp/3 would also give a factorization. 

The continuity theorem proved for one dimension has the following multi­
variate analogue. 

Theorem: For each n ;::: 1, let 'Pn be the joint p.g.f. of (Xl', ... , Xa:). In order 
that lim P(Xl' = kl , ... , Xa: = kd) exists for all d-tuples (kl , ... , kd) it is 

n-+= 
necesary and sufficient that for all (tl' ... ,td) E (0,1)d, the limit 

exists. In this case, 'P is actually the function 

'P(h, ... ,td)= I: a(kl, ... ,kd)t~l·.·t~d, 
kl,.·.,kd 

where 

Barring complications arising out of d-dimensional variables, the idea of proof 
is no different from the one dimensional case. We omit the proof. In general 
the limit function 'P = lim 'Pn need not be a joint p.g.f. 

Exercise 6. Show that the p.g.f. of the d-dimensional multinomial distribution 
with parameters n,PI,P2, ... ,Pd is (Pltl + ... + Pdtd)n. 

Exercise 7. If for each n ;::: 1, (Xn,l, ... , Xn,d) is multinomial with param­
eters (n,Pnl,'" ,Pnd) and if npni -t Ai for 1 ::::; i ::::; d - 1, then show that 
(Xn,l, ... ,Xn,d-l) has a limiting distribution as n -t 00 and find the limiting 
distri bution. 

0.4 Continuous Random Variables 

So far we have considered random variables with values in a finite or a count ably 
infinite set. But in many applications it is necessary to go beyond that. For 
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example, consider picking a point at random from the interval (0,1]. Here by 
picking a point at random we mean that any point "is as likely" to be picked 
as any other. The selected point X would then represent a random variable 
whose possible value can be any real number in (0,1]. How do we describe the 
distribution of such a random variable? First of all, since any point is as likely 
to be picked as any other point, P(X = x) should be the same for all x. Noting 
that there are infinitely many points x, one can easily argue that P(X = x) = ° 
for all x E [0,1]. Thus, if we wanted to define the probability mass function 
p of the random variable X, the only candidate would be p( x) = ° for all x. 
Certainly the distribution of the random variable X cannot be captured by 
such a function. 

So, instead of prescribing probabilities of events through probabilities of 
individual outcomes that constitute an event, one may hope to prescribe prob­
abilities of all events at one go. In other words, one may think of directly 
specifying P(X E A) for various subsets A C [0,1]. But clearly, that is a 
tall task! However, there is a general theory - known as measure theory -
which says that it is sufficient to specify P(X E A) only for intervals A C [0,1] 
which, in turn, uniquely determine P(X E A) for a large class of sets A, known 
as measurable sets. One may still wonder what if we want P(X E A) for a 
non-measurable set A. However, there is no real need to worry! The class of 
measurable sets is really huge - almost any set A one is likely to come across 
for the purpose of computing P(X E A) is going to be a measurable set. Hav­
ing said all these let us add that mere recognition and acceptance of this fact 
will do for the rest of this book. We do not make any explicit use of measure 
theory. 

Continuing with our example and again noting that the point is selected 
at random, one can easily deduce for any ° :::; a < b :::; 1, we must have 
P(a < X < b) = b - a. In fact, the above is just a consequence of the fact that 
P(X E 1) equals P(X E J) whenever I and J are intervals of same length. 

Of course, for any random variable X, prescribing the probabilities P(X E 
A) for intervals A and hence prescribing the distribution of X could also be 
done by simply specifying the function 

F(x) = P(X :::; x) (17) 

for all x E R. This function F is called the probability distribution function of 
the random variable X and has the following properties: 

(i) 0:::; F(x) :::; 1 for all x and F(x) :::; F(y) whenever x:::; y, 
(ii) lim F(x) = 0, lim F(x) = 1, and 

x---t-oo x---t+oo 

(iii) F is right-continuous, that is, limF(y) = F(x). 
ytx 

It may be noted that limF(y) = P(X < x), so that P(X = x) = F(x) -
ytx 

limF(y). From all these it should be clear that F(x) determines P(X E A) for 
ytx 
every interval A (and hence for all measurable sets A). 
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In the example of picking a point at random, the corresponding distribution 
function is 

F(x) = U if x::;O 
if O::;x::;1 
if x2::1 

A continuous random variable is one whose distribution function is contin­
uous. From the properties of F listed above, it follows that a random variable 
X is continuous if and only if P(X = x) = 0 for all x E R. It is in this 
sense that continuous random variables are diametrically opposite to discrete 
random variables. 

0.4.1 Probability Density Function 

One special class of continuous random variables are those for which the dis­
tribution function is given by 

x 

F(x) = J f(y) dy (18) 

-00 

where f is a non-negative fun cion with f~oo f(y) dy = 1. Such a function f is 
called a probability density function (p.d.f., in short). Probabilities involving 
X can be calculated from its density function by the formula P(X E A) = 
fA f(y) dy. Such probability distributions are called absolutely continuous dis­
tributions and the corresponding random variable is also called absolutely con­
tinuous. It may be noted that probability density function of a distribution (or, 
of a random variable) is not unique. (Changing the value of f at a finite num­
ber of points would not change the integrals appearing in (18) and therefore, 
would give the same F!) 

Unlike probability mass function, the probability density function does not 
represent any probability. However, it has the approximate interpretation 

P(X E (x, x + 8x)) '" f(x)8x. 

This should explain why f is called the density function as opposed to mass 
function of the discrete case. For a random variable X with density function 
f the expected value is defined by the formula 

00 

E(X) = J xf(x)dx, (19) 
-00 

provided the integral exists. We allow the integral to equal +00 or -00. But 
there is a caveat! Two infinities cannot be added unless they have the same 
sign. We define, more generally, 

00 

E(g(X)) = J g(x) f(x) dx, (20) 

-00 
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provided the integral exists. The expected value so defined can be shown 
to satisfy all the properties that were proved to be true for discrete random 
variables. As in the discrete case, the m-th moment of X is defined to be 
E(xm) and the variance is defined as V(X) = E(X2) - (EX)2. 

Exercise 1. Fix numbers a < b. Let f be the function which is l/(b - a) for 
points in the interval (a, b) and zero for points outside the interval. Show that 
this is a probability density function. Calculate the corresponding distribution 
function. This is called the Uniform distribution on (a, b), denoted U(a, b) and 
a random variable with this distribution is called a U(a, b) random variable. 
Find the expected value and variance of such a random variable. 

Exercise 2. Fix any number A > O. Consider the function f which is zero for 
negative numbers and is A exp( - AX) for non-negative numbers x. Show that 
this is a probability density function. Calculate the corresponding distribution 
function. This is called the Exponential distribution with parameter A, written 
EXp(A). For a EXp(A) random variable X, find (i) P(X > 10.25), (ii) P((X -
3)2 > 1). Also find E(X), V(X) and E(etX ) for t E R. 

Exercise 3. Fix any real number p and any strictly positive number (J'. Let 

1 1 ( )2 f(x) = --e-2~2 X-M 
(J'..j'iK 

for -00 < x < +00. This is a probability density function (not easy to show 
this fact). Corresponding distribution is called the Normal distribution with 
parameters p and (J'2, written N(p, (J'2). The distribution function cannot be 
calculated explicitly. Show that a N(p, (J'2) random variable X has mean p 
and variance (J'2. Also show that E(etX ) = exp [pt + ~(J'2t2l for t E R. 

In case p = 0, (J' = 1 in Exercise 3 above, the distribution is called Standard 
Normal Distribution. In this case, the distribution function is usually denoted 
by <I> (x) and the density function is denoted by cjJ( x). 

Exercise 4. Repeat Exercises 4-14 of Section 0.2.1, assuming that all the 
random variables are absolutely continuous. 

0.4.2 Joint Density Function 

For two continuous random variables X and Y defined on the same space, we 
may be interested in probabilities of events that concern both X and Y. For 
computing such probabilities, knowing the individual density functions of X 
and Y alone would not suffice. We need to know what is called the joint density 
function of X and Y. 

Definition: Let X and Y be two random variables defined on the same space. 
The pair (X, Y) is said to have a joint density function f(x, y) if f is a non-negative 
function such that for any x, y E R, 

P(X ::; x, Y ::; y) = J ] f(u, v) dudv. 

-00 -00 
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00 00 

Clearly such an f satisfies J J f (u, v) du dv = 1. Probabilities involving the 
-00 -00 

pair (X, Y) can be computed from the formula P( (X, Y) EA) = J J f(x, y)dx dy. 
A 

From the joint density of (X, Y) the individual (marginal) densities of X 
and Y can be recovered as follows: 

h(x) = J f(x,y)dy, h(y) = J f(x,y)dx. 

In an analogous way the joint density of n random variables (defined on the 
same space) is defined to be a non-negative function f of n variables such that 

Xn Xl 

P(Xl ::; Xl, ... ,Xn::; xn) = J ... J f(Ul, ... ,Un)dul···dun. 
-00 -00 

Here also the individual density of each Xi can be obtained from the joint 
density f by a formula analogous to the bivariate case. An important point to 
note in this connection is that the existence of a joint density for (Xl, ... , Xn) 
implies that each Xi has a density; however the converse is not true. For 
example, if X has U(O, 1) distribution and Y = X, then both X and Y have 
densities, but the pair (X, Y) does not have a joint density (why?). 

For (Xl' ... ' Xn) with joint density f, the expected value of any function 
of (Xl, ... , Xn) can be computed by the formula, 

provided, of course, that the integral exists. 

For a pair (X, Y) with joint density f, the covariance between X and Y is 
defined by the same formula (21) of Section 0.2.2 and all the properties listed 
in Exercises 16-21 there remain valid. 

0.4.3 Conditional Density 

For a pair (X, Y) with joint density f the conditional density of X given Y = y 
is defined to be 

h(xly) = ff~~) if h(y) > O. 

For y with h (y) = 0, one may define h (x I y) to equal any density function, 
for example, one may put h(xly) = h(x). Here hand h are the marginal 
densities as defined in the previous section. One can easily check that h (x I y) 
is a density (in x) for every y. The distribution given by this density is called 
the conditional distribution of X given Y = y. One can similarly define the 
conditional distribution of Y given X = x. It is also not difficult to extend this 
concept to the case of n random variables with a joint density. 
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For a random variable X with density f and for any event A with P(A) > 0, 
one can define the conditional density of X given A. However, there is no 
explicit formula for this density in general. One is only guaranteed of the 
existence of this density by a result known as Radon-Nikodym Theorem which is 
beyond the scope of this book. However, in the special case when A = {X E B} 
the conditional density of X given A is given by f(xIA) = f(x)/ P(A) if x E B 
and equals zero otherwise. 

As in Section 0.2.3, expectation and variance of the conditional distribution 
are known as conditional expectation and conditional variance respectively. As 
before, it is sometimes convenient to think of conditional expectation itself as 
a random variable, denoted by E(XIY), which has the same interpretation as 
in Section 0.2.3. Also, all the properties in Exercises 4,5,7,8, 10-14 and 22-26 
go through. 

0.4.4 Independence 

Definition: Random variables (Xl, ... , Xn) with a joint density f are said to be 
independent if for any XI,X2, ... ,xn . 

Thus the random variables are independent if the joint density factors into 
product of the marginal probability densities h, ... , fn. This can be shown 
to be equivalent to the condition that for sets B I , B 2 , .•• , Bn, the n events 
(Xi E B i ), 1 ::; i ::; n are independent. Also independence of X I, X 2, ... , X n 
clearly implies independence of X j1 , X h , ... , X j = for 1 ::; 11 < 12 < ... < 
jm ::; n. With some work one can also show the following. Consider k in­
dices 1 :::; i 1 < i2 < ... < i k- 1 :::; n and let Y1 ,Y2 , ... ,Yk be random vari­
ables defined as follows: YI = gl(XI, ... ,XiJ'Y2 = g2(Xil+I, ... ,Xi2)'···' 
Yk = gk(Xik_l+I, ... ,Xn), for functions gl,g2, ... ,gk. Then independence of 
XI,X2,.·.,Xn implies that ofYI ,Y2, ... ,Yk. 

It is left as an exercise to verify that properties 28-33 of Section 0.2.4 remain 
valid here also. 

0.5 Sequences of Random Variables 

Let Y be a random variable with finite mean /-1. Let YI , Y2 , ... be indepen­
dent observations on the variable Y, that is, for each n, the random variables 
YI , ... , Yn are independent each having the same distribution as Y. One says 
that YI , 1'2, ... is a sequence of independent and identically distributed, abbre­
viated as i.i.d., random variables. Let Xn denote the average of the first n ob­
servations, that is, Xn = (YI + ... + Yn)/n. This Xn is also called the observed 
mean or the sample mean, based on n observations. An important question is 
: what happens to these observed means as n, the sample size, becomes large? 
A classical result in probability (known as the law of large numbers) is that 
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the observed means converge to the common population mean fJ,. It should 
be noted that the observed means Xn are random variables. Thus, one has to 
know what is meant by the convergence of a sequence of random variables. In 
this section, we discuss some of the various concepts of convergence that are 
used in probability. 

In what follows, (Xn)n2':l will stand for a sequence of random variables 
defined on the same space. 

Definition: We say that Xn converges in probability to a random variable X, 

and write Xn ~ X, if for each E > 0, P(IXn - XI > E) -t 0 as n -t 00. 

That is, given any E > 0 however small, the chances that Xn deviates from X 
by more than E become smaller and smaller as n gets larger and larger. However 
this should not be misinterpreted as Xn remaining close to X eventually for 

almost all sample points. One can construct an example where Xn ~ X 
but Xn(w) f--+ X(w) for any sample point w! [see Exercise 5 below]. This 
motivates the next definition. 

Definition: We say that Xn converges with probability one to X, and write 
Xn ---+ X w.p.l, if for all sample points w, outside a set of zero probability, 
Xn(w) -t X(w) as n -t 00. 

Another mode of convergence that will be useful for us, is the following. 

Definition: Let p 2: 1 be a number. We say that Xn converges in p-th mean to 

X, written Xn ~ X, if EIXn -XIP -t 0 as n -t 00. This mode of convergence 
is also referred to as convergence in Lp. 

We shall now see the relationships between these three modes of conver­
gence. The last two modes of convergence are stronger than the first one. 
Indeed if Xn ~ X then for any E > 0, 

P(IXn - XI> E) = P(IXn - XIP > EP) = E (I{IXn-xIP>fP}) 

( IXn - XIP ) EIXn - XIP 
:::; E EP I{IXn-xIP>fP}:::; EP ---+ 0, 

by hypothesis. Note that here E is fixed and n becomes large. 

Hidden in the above argument is the fact that for any random variable Z 
and any E > 0 

(21) 

a useful inequality, known as Markov's inequality. This inequality can be easily 
proved using Exercise 5(a) of Section 0.2.l. 

Next suppose that Xn ---+ X w.p.l; that is, there is a set A of probability 
zero such that for w (j. A, Xn(w) -t X(w). Let E > O. Then for any n, 

{IXn(w) - X(w)1 > E} C U (IXk(w) - X(w)1 > E) 
k>n 
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and the set on the right side decreases as n increases and the limiting set is 
contained in A (because for any w in the limiting set Xn(w) f-+ X(w)). Since 
P(A) = 0 it follows that 

lim P(IXn(w) - X(w)1 > E) = O. 
n-+oo 

Convergence with probability 1 and conv8".·gence in Lp are, in general, not 
comparable. However, here is a useful result. 

If Xn -+ X w.p.1 and E(sup IXnIP) < 00, 
n 

Lp 
then Xn -+ X. 

Indeed one can replace Xn -+ X w.p.1 by the weaker hypothesis Xn ~ X. 
So we will assume only this. Denote the random variable sUPn IXnlP by Z. 

It is not difficult to see that Xn !t X yields that P(IXIP :S Z) = 1. [Show 
that for any 10 > 0, P(IXIP > Z + E) = 0]. Thus IXn - XIP :S 2P Z Note 
that the hypothesis says that Z has finite expectation. Therefore given S > 0, 
we can choose), > 0 so that E(ZI(z>>-.)) < 2-PS/3. We can also choose 
10 > 0 so that lOP < S /3. Now choose no such that for n 2: no we have, 
P(IXn - XI 2: E) :S S2-P /3),. Now for n 2: no, 

EIXn - XIP < E(IXn - XIP llxn-xl:<:;,) + E(IXn - XIP llxn-xl>,) 

< lOP + 2P E(ZlIXn -xI>,) 

< lOP + 2PE(ZIz9lIXn-XI>,) + 2PE(ZIz>>-.) 

< lOP + 2P)'P(IXn - XI > E) + 2P E(ZIz>>-.). 

Each term on the right side is at most c5 /3, completing the proof. 

The reader must have already realized that Lebesgue's Dominated Conver­
gence Theorem as given in Exercise 8, Section 0.2.1, is just a special case of 
the above. 

Exercise 1. If Xn ~ X, then show that X~9 ~ X19. More generally, 

if f is a continuous function, then f(Xn) ~ f(X). What if, convergence in 
probability is replaced by convergence in Lp or by convergence with probability 
one? 

Exercise 2. If Xn ~ X then Xn ~ X, for 1 :S r :S p. 

Exercise 3. If Xn ~ X and Yn ~ Y, then show that Xn + Yn ~ X + Y 

and XnYn ~ XY. What if ~ is replaced by ~? 

Exercise 4. Let Xn ~ X. Show that there is a subsequence (nk) such that 
X nk -+ X w.p.1. (Choose nk so that P(IXnk - XI> 2-k) < 2-k.) 

Exercise 5. Consider a U(O, 1) variable X. Consider the following sequence 
of random variables: Zl = l(x <1/2); Z2 = l(X>1/2); Z3 = l(X <1/4); Z4 = 
l(1/4<X<1/2); Z5 = l(1/2<X<3/4); Z6 = l(3/4<X<1); etc. It should be clear(?) 
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how the subsequent Zn are defined. Show that Zn does not converge with 
probability one, but converges in probability to zero. 

In conclusion, let us go back to the convergence of observed means to the 
population mean. Classical Laws of Large Numbers say that convergence here 
takes place with probability one. In other words, if Y1 , Y2 , ... are i.i.d with 
common finite mean f.1, then Xn = (Y1 + ... + Yn)/n --+ f.1 w.p.1. In fact, this 
result remains valid even without the assumption of finiteness of the mean, as 
long as the Yi are non-negative. The proof of this result is quite involved for 
presenting here. Instead, we show that convergence in probability holds. For 
this, let us further assume that V(Y) < 00. In this case, by Markov inequality 

In the above, we have used the fact that V (Y1 + .. -+ Yn ) = n V (Y) because ofthe 
i.i.d. hypothesis. It is possible to do away with the finite variance assumption, 
but the argument becomes a little more complicated. As a special case of the 

above, if Xn is B(n,p) then Xn/n ~ p. 

Exercise 6. If Xn ~ B(n,p) show that 2: E(Xn - np)4/n 4 < 00 and hence 
conclude, using Borel-Cantelli lemma that Xn/n --+ p w.p.1. 

Another important mode of convergence is convergence in distribution. 
Since we do not need it for our applications, we do not discuss it. However in 
Section 0.3, we had an illustration of this kind of convergence. To be specific, 
what was shown there is that if Xn ~ B(n,Pn) where nPn -+ oX as n -+ 00, then 
Xn converges 'in distribution' to a P(oX) random variable. A classical result in 
probability, involving the notion of convergence in distribution is what is known 
as Central Limit Theorem. Here is what it says. If Y1 , Y2 , ••• are i.i.d. random 
variables with mean f.1 and finite variance (/2, then Xn = (Y1 + Y2 + ... + Yn) / Vii 
converges in distribution to a N(f.1, (/2) random variable, that is, for any real 

a 

number a, P(Xn ~ a) --+ J f(u)du, where f is the density function given in 
-00 

Exercise 3 of Section 0.4.1. 

0.6 Characterstic Functions 

Definition: For any random variable X, the function cpx(t) = E(e itX ) defined 
for -00 < t < +00 is called the characterstic function of X. 

To make sense of this definition, one needs to extend the notion of expec­
tation to a complex-valued random variable. If Z = U + iV where U and V 
are real random variables with finite expectations, one defines E(Z) to be the 
complex number E(U) + iE(V). With this definition, it is easy to see that the 
property 
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holds, where a1, a2 are complex numbers and Z1, Z2 are complex random 
variables. The property IE(Z)I < E(IZI) also holds where, as usual, for a 
complex number z, Izl = v(Rez)2 + (Imz)2. Here is a quick proof of the 
above inequality. It is easy to see that E(Z) = aIE(Z)1 for some complex 
number a with lal = 1. Thus 

IE(Z)I = aE(Z) = E(aZ) = E(Re (aZ)) S E(laZI) = E(IZI) 

One can use this to show that the Lebesgue's Dominated Convergence Theorem 
(see Section 0.2) holds for complex random variables as well. 

Returning to characterstic functions it may be noted that 'Px is a complex­
valued function of a real variable t, given by the formula 

tpX(t) = E(cos(tX)) + i E(sin(tX)). (22) 

Clearly, the real random variables cos(tX) and sin(tX) are bounded and hence 
have finite expectations for all t. From (22) it follows that 

(1) tpx(O) = 1 and tpaX+b(t) = eitbtpx(at). 

(2) tpx (-t) = tpx (t) = tp-x (t). In particular, tp x (t) is a real-valued func­
tion if X has a symmetric distribution, that is, X and -X have the same 
distribution. 

Using IE(eitX)1 S E(leitXI) one also gets 

(3) Itpx(t)1 SI for all t. 

For any real t and h, 

Itpx(t + h) - tpx(t)1 S E(leitX (e ihX - 1)1) = E(leihX - 11) 

and by the Dominated Convergence Theorem the last expression goes to zero 
as h -+ o. Thus we have proved 

(4) tpx(t) is a continuous function - in fact, it is uniformly continuous. 

One of the important features of the characterstic function of a random variable 
X is that the distribution of X is completely determined by its characterstic 
function 'P x· In other words, two random variables with different distributions 
cannot have the same characterstic function. We give below the formula, known 
as the Inversion formula, that determines the distribution function F of a 
random variable X from its characterstic function tp x . 

(5) For any two continuity points a < b of F, 

T 

F(b) - F(a) . 1 J = hm-
T-HXJ 27r 

-ita -itb e -e 
it tpx(t)dt 

-T 
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(6) Moreover, if J Icpx(t)ldt < 00, then the random variable X has a 
bounded continuous density function given by 

00 

f(x) = ~ J e-itxcpx(t)dt 
27r 

-00 

The proof of (5) is somewhat involved and hence omitted here. Interested 

reader may consult Chung [2005]. Here is a sketch of a proof of (6). Using an 
analogue of the Dominated Convergence Theorem valid for general integrals, 
one can show that if Icp x I has finite integral then the inversion formula can be 
written as 

F(b) - F(a) 

Interchanging the order of integration now (which can again be justified in view 
of J Icpx(t)ldt < (0), one gets 

b 00 

F(b) - F(a) = J f(x)dx where f(x) = 2~ J e-itxcpx(t)dt. 
a -00 

Thus X has density f(x) which is bounded because 

If(x)1 :::; 2~ J Icpx(t)ldt < 00. 

Continuity of f follows from the Dominated Convergence Theorem alluded to 
above. 

One consequence of the one-one correspondence between characterstic functions 
and distributions is that the converse of (2) holds. In other words 

(7) cpx(t) is real-valued function if and only if X has a symmetric distribu­
tion, that is , X and - X have the same distribution. 

(8) Of course, for independent random variables X and Y, we have cpx+y = 
cpx . cpy. 

It is easy to see that if X rv B(n,p) then cpx(t) = (q + peit)n. Now if X and 
Y are independent random variables and X rv B(n,p) and Y rv B(m,p) then 
the characterstic function of X + Y turns out to be 
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from which we can immediately conclude that X + Y must have B(m + n,p) 
distribution. 

Similarly one can show that if X,...., N(O, 1), then !.px(t) = E(cos tX) = e-t2 / 2. 
From this one can deduce that if X ,...., N(p,,(72), then !.px(t) = e"t,..-~t2()"2 
Therefore, if X ,...., N(p,; (72) and Y ,...., N(V,72) are independent then by com­
puting !.px+y, one can conclude that X + Y is N(p, + V, (72 + 7 2 ). 

Characterstic functions can also be used to compute moments of the distri­
bution, when they exist. Here is how the method works. Using the power se­
ries expansion eitX = I::~=o (ii::r and taking expectations, one gets !.px(t) = 

E(I:: (it~r). Assume for the time being that the expectation and the infinite 
sum could be interchanged. That would give 

that is, !.p x (t) has a power series expansion in t in which, the coefficient of 
tn is ~~ E(xn). From the general theory of power series it would follow that 

E(xn) = !.pr;) (0) /in. It is possible to justify the above formal calculations 
(using simply Dominated Convergence Theorem and appropriate Mean Value 
Theorem) and here is the precise result. 

(9) If X has finite n-th moment then !.px has derivatives of orders upto and 
including n everywhere and, for every k:S n, E(Xk) = !.pt;) (O)/ik. 

A very important use of characterstic functions consists of proving con­
vergence in distribution. This is achieved through, what is known as, Levy's 
Continuity Theorem. The theorem asserts the equivalence of convergence in 
distribution and pointwise convergence of characterstic functions. Since we 
have not formally defined the notion of convergence in distribution, we would 
not go into the details of this result. The interested reader may consult Chung 
[2005]. 

Exercise 1. Calculate the characterstic functions of the following random 
variables: P()"), UfO, 1], [xp()..) and N(p" (72). 

Exercise 2. If X has the double exponential density 

1 
f(x) = 2 e- 1xl , -00 < x < 00, 

find the characterstic function of X. Use this and property (6) to find the 
characterstic function of Cauchy distribution given by the density 

1 1 
f(x)=;:I+x 2 ' 

-00 < x < 00. 

Exercise 3. Show that 'P x (to) = 1 for some to > 0 if and only if X is discrete 
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with values in the set {27rn/to : n = 0, ±1, ±2, ... }. More generally, show that 
I 'P x (to) I = 1 for some to > ° if and only if X is discrete with values in the set 
{(27rn + e)/to : n = 0, ±1, ±2, ... } for some real number e. 

Exercise 4. If 'P is a characterstic function, show that both 1'P12 and Re 'P are 
characterstic functions. 

Exercise 5. Let (Xn )n:2:l be a sequence ofi.i.d. random variables with common 
characterstic function 'P. Let N be a P(A) random variable independent of the 
sequence (Xn). Find the characterstic function ofY = Xl + .. ·+XN . If N = 0, 
we define Y to be zero. 

0.7 Martingales 

In this section we discuss a special class of sequences of random variables known 
as martingales. Martingales constitute a very important and widely useful class 
of processes. We do not intend to present here an extensive coverage of this 
topic. Instead we only list a few basic properties of martingales which will be 
needed for our purposes. A reader interested to learn more can see the book 
of Leo Breiman. 

Consider a sequence of independent tosses of a fair coin. Before each toss 
you are allowed a bet. If the toss results in heads then you win the amount 
you wagered; otherwise you loose the same amount. Note that you are allowed 
to change your wagers at each toss and moreover, your decision is allowed 
to be based on the outcomes of previous tosses. This can be mathematically 
formalized by means of a sequence El, E2, ... of random variables where En 

denotes your wager amount for the n-th toss. If we denote the outcomes of the 
tosses themselves by a sequence T/l, T/2, ... ,where each T/i can be + 1 or -1, then 
the actual amount you win at the n-th toss is T/nEn. Clearly T/n are i.i.d. random 
variables. The condition on the En is that El is a constant and, for n ~ 2, En 

is a random variable that is allowed to depend only on T/l, T/2, ... , T/n-l . As 
an additional technical condition, we shall also assume that each En has finite 
expected value. One of the interesting features of the game is that if the coin 
is fair, then the game is also fair in the following sense. Denote by X n , your 

n 
accumulated fortune upto and including the n-th toss, that is, Xn = 2:: EiT/i. 

i=l 
Define Xo = 0. One can easily deduce that, at any stage if you want to find 
the conditional expectation of your accumulated fortune after the next toss, 
given all the information upto and including the present time, it equals your 
present accumulated fortune. That is to say that if you play one more game, 
it would, on the average, make you neither better off nor worse off. The word 
'on an average' is important here, because in the actual play you would really 
either win or loose. The point is that you cannot be certain of either and the 
mean change in fortune, based on available information, is zero. This is the 
mathematical formulation of fairness in the game. This leads to the following 
formal definition. 
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All the random variables that we consider below are defined on the same 
space. Also they are all assumed to be discrete and to have finite expectations. 
Although the condition that they are discrete is not necessary in general, how­
ever it allows us to avoid some technicalities. 

Definition: A sequence (Xn)n2:0 of random variables is said to be a martingale 
if, for every n, 

E(Xn IXO,X1 , ... ,Xn-I) = X n- 1 . (23) 

In particular E(Xn) is same for all n. 

We will see plenty of examples of martingales in our applications in the 
subsequent chapters. However, here are some simple examples. 

Example 1: Let (1]i)i2:1 be a sequence of independent random variables with 
n 

zero means. Set, Xo = 0, and for n :::::: 1, Xn = 2: 1]i. Then (Xn)n>O is easily 
i=l -

seen to be a martingale. We could easily replace each Xn by Xn + Z where Z 
is a random variable with finite mean, independent of (1]i)i2:1 , and still have a 
martingale. 

Example 2: Let (1]i)i2:1 and Z be as above. Let (Ei)i2:1 be a sequence of 
bounded random variables with En depending only on {Z, 1]1, ... ,1]n-1} for 

n 
each n. Set Xn = Z + 2: Ei1]i, n :::::: O. Then (Xn)n>O is a martingale. The 

~1 -

condition that Ei are bounded is just to ensure that Ei1]i has finite expectation 
and can be relaxed by the latter. The example given at the beginning of this 
section with the 1]i representing the outcomes of succesive tosses of a coin is 
just a special case. 

Example 3: Let (1]i)i2:1 be as in Example 1, with the additional assumption 
n n 

that V(1]i) = aT < 00. Then Xo = 0 and Xn = (2: 1]i)2 - 2: aT, n:::::: 1, defines 
1 1 

a martingale. In particular, if each 1]i takes the values ±1 with probability 1/2 
n 

each, then (2: 1]i)2 - n is a martingale. 
1 

Example 4: Here is the famous Polya Urn Scheme. Start with an urn contain­
ing b black balls and r red balls. A ball is drawn at random, its colour noted 
and then the ball is replaced along with an additional ball of the same colour. 
This process is repeated. Note that, at each stage the total number of balls in 
the urn increases by one so that after n turns, the urn will have b + r + n balls. 
Denoting Xn to be the proportion of red balls in the urn after n turns, with, 
of course, Xo = r/(b + r), it is not difficult to check that we get a martingale. 

Example 5: Let (1]i)i>l be an i.i.d sequence, taking the values ±1 with proba­
bilities 1/2 each. De;-ote Sn = 2: 1]i. Then for any e E (0,1), the sequence 

l:Si:Sn 

(Xn)n2:o defined as Xo == 1 and for n :::::: 1, Xn = 2ne(n+Sn)/2(1 - e)(n-Sn)/2, 
defines a martingale. Indeed this is a special case of the next Example. 

Example 6: Let (1]i)i2:1 be a sequence of discrete random variables and for each 



34 CHAPTER O. PROBABILITY TOOLS AND TECHNIQUES 

n ~ 1, let Pn(U1, ... ,Un) be the (true) joint p.m.f. of (1]l, ... ,1]n). Suppose 
that Pn(U1, ... , un), n ~ 1, be a sequence of joint p.m.f.s satisfying 

(i) L: Pn+l(u1, ... ,un,un+d =Pn(U1, ... ,Un) and 
U n +l 

(ii) Pn( U1, ... , un) = 0 whenever Pn( U1, ... , un) = O. 

Then Xo = 1 and for n ~ 1, Xn = Pn(1]l, ... ,1]n)/Pn(1]l, ... ,1]n) can be seen to 
define a martingale (taking the ratio % to be 0). Complicated though this ex­
ample looks, here is the context in which it arises. The Pn can be thought of as 
the joint p.m.f.s under some proposed alternative distribution of the sequence 
(1]i)i>l. A statistician wants to test the validity of this alternative. Standard 
tools- of statistics often use the Xn (known as likelihood ratio in statistical 
parlance) to test such hypotheses. 

Most of the basic theory of martingales is due to J. L. Doob. We proceed to 
present some of the basic results on martingales, which we need in the sequel. 
The first result is about convergence with probability one for a martingale. 
One of the main tools for the proof of this result is an inequality known as 
Doob's upcrossing inequality. 

Let Xo, Xl, ... , Xn be a finite sequence of real numbers. For a < b, let Un ( a, b) 
denote the number of 'upcrossings' of the interval (a, b) by the sequence. For 
example, suppose n = 7 and Xo :::: a, a < Xl < b, X2 ~ b, X3 ~ b, a < X4 < 
b, X5 :::: a, X6 :::: a and X7 ~ b. Then there are exactly two upcrossings. More 
generally, un(a, b) = k if there exist exactly k pairs (and no more) of indices 
o :::: m1 < n1 < ... < mk < nk :::: n such that xmi :::: a and Xni ~ b for i = 
1, ... , k. Here is a convenient formula for counting the number of upcrossings. 
Define Vo == 1 and for 0 :::: i :::: n, Vi+l = 0 or Vi or 1 according as Xi :::: a or 

n 
a < Xi < b or Xi ~ b. It is then easy to see that un(a, b) = L: (VH1 - Vi)+. The 

i=l 
reader can easily verify the inequality (b - a) (Vi+l - Vi)+ :::: (Xi - a) (Vi+l - Vi) 

n 
for i = 1, ... , n. This immediately gives (b - a)un(a, b) :::: L: (Xi - a)(VH1 - Vi). 

i=l 
In the above, we have used the notation c+ to denote maxi c, O} - known as 
'the positive part' of a real number c. 

Suppose now X o, Xl' ... ' Xn are random variables and denote the corre­
sponding number of up crossings by Un(a, b), which is also a random variable 
now. Further the corresponding Vi are now denoted by Vi. For each i ~ 1, Vi 
is also a random variable and depends only on Xo, ... ,Xi-I. From the above 
inequality it follows that, if the Xi have finite means, then (b - a)E[Un(a, b)] :::: 
n n n 
L: E[(Xi - a) (Vi+1 - Vi)J = L: E[(Xi - a)Vi+1J - L: E[(Xi - a)ViJ. 
i=l i=l i=l 

Assume now that we have a martingale (Xik:::o and apply the above to the 
random variables Xo, ... , X n. For each i = 1, ... , n, we have 

E[(Xi - a)ViJ E[E{(Xi - a)Vi! Xo,···, Xi-dJ 
E[Vi E{(Xi - a) !Xo, ... ,Xi-dJ = E[(Xi- 1 - a)Vi]. 
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In the above we have used properties of conditional expectations stated in 
Exercises 22 and 23 of Section 0.2.3 and the martingale property. Using this 
we get 

n n 
(b - a)E[Un(a, b)] < 2::: E[(Xi - a)ViH] - 2::: E[(Xi- l - a)Vi] 

i=l i=l 

E[(Xn - a)Vn+l]- E[(Xo - a)Vl]. 

Since the second term in the final expression is easily seen to be non-negative 
and the first term is ::::: E(IXn - al) ::::: EIXnl + lal, we have proved 

Theorem (Dooh's Upcrossing Inequality): For any martingale (Xik~o 
and for any a < b, E[Un(a,b))::::: (EIXnl + lal)/(b - a), for all n. 

We are now ready to prove the convergence theorem known as Doob's Mar­
tingale Convergence Theorem. We need the following simple observation whose 
proof is left as an exercise. Given any sequence (xik~o of real numbers, the 
sequence converges if and only if for every pair of rational numbers a < b, 
u(a, b) ~ sup un(a, b) < 00. Here by the convergence of a sequence we mean 

n 
that it either converges to a real number or diverges to +00 or diverges to -00. 

Suppose now that (Xi)i>O is a martingale and let a < b be a pair of ra­
tional numbers. Consider the sequence of random variables (Un(a, b))n>l as 
defined earlier. Clearly this is a non-decreasing sequence of random variables 
taking non-negative integer values. Thus U(a, b) = lim Un(a, b) is well de-

n->eX) 

fined (possibly taking the value +00). Moreover by the Monotone Conver-
gence Theorem, E[U(a, b)] = lim E[Un(a, b)) ::::: (sup EIXnl + lal)/(b - a), 

n--+oo n 

where the last inequality uses the up crossing inequality. Therefore if the 
martingale (Xik~o is assumed to satisfy the condition sup EIXnl < 00, we 

n 

will get E[U(a, b)) < 00. This will of course imply P[U(a, b) = +00] = 0; 
equivalently, P[U(a, b) < 00) = 1. Since this is true for every pair of ra­
tional numbers a < b (and there are only count ably many such pairs), we 
have P[U(a, b) < 00 for every pair of rationals a < b] = 1. But this will im­
ply by the earlier observation that P{ Xi converges} = 1. Further, denoting 
Z = liminf lXii, an easy application of the Monotone Convergence Theorem 

2 

(and the definition of liminf) gives E(Z) ::::: liminf EIXil ::::: supEIXnl < 00. 
2 n 

This would imply that if Xi converges to X with probability 1, then X has 
finite mean. We have thus proved 

Theorem (Dooh's Martingale Convergence Theorem): If (Xn)n>O is 
a martingale with sup EIXnl < 00, then Xn converges with probability 1 to a 

n 

random variable X which has finite expectation. 

We are now going to prove that if moreover, sup EIXnl2 < 00 then the 
n 

convergence takes place also in L2, that is, E(X2) < 00 and E(Xn - X)2 -t 0 
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as n ---+ 00. An immediate consequence of this, which will be used by us, is the 
following: if (Xn)n20 is a martingale such that IXnl ::; c for all n, where c is 
a finite constant, then Xn converges to X with probability 1 as well as in L2 
(hence in L1) and, in particular, EX = EXo. 

For the proof, we first need the following basic result on the expectation of 
non-negative random variables. 

Lemma: For any non-negative random variable X with finite expectation, one 
00 

has E(X) = J P(X > A) dA. 
o 

Proof: In case X has a density, say f(x), then by an interchange of integrals, 

00 0000 00 x 00 

J P(X > A) dA = J J f(x)dx dA = J f(x) J dA dx = J xf(x)dx. 
o 0 >. 0 0 0 

which equals E(X) as stated. Next let us consider a discrete random variable 
X taking finitely many values say, Xl < ... < Xk with probabilities P1,··· ,Pk 

respectively. In this case, it is easy to see that 

00 

J P(X > A)dA = Xl + (X2 - xd(l - pd + (X3 - x2)(1 - P1 - P2)+ 
o 

... + (xn - xn-dPn, 

and the right hand side clearly simplifies to L: XiPi = E(X). 
If X is a non-negative discrete random variable taking an infinite number of 
values, say Xl, X2, ... , then we can define a sequence (Xn) of non-negative ran­
dom variables increasing to X with each Xn taking only finitely many values. 
To be precise, for each n, Xn is defined to be equal to X whenever X takes 
values from {Xl, . .. ,Xn }, and is defined to be zero otherwise. An application 
of the earlier case and Monotone Convergence Theorem completes the proof . 

• 
Suppose that P ~ 1 and E(IXIP) < 00. Then by the above Lemma applied 

to the non-negative random variable IXIP, we get 

00 00 

E(IXIP) = J P(IXIP > A)dA = J P(IXI > A1/ P)dA. 

o 0 

An easy change of variable now leads to 

Corollary: For any P ~ 1 and any random variable X with E(IXIP) < 00, 
00 

E(lXIP) = p J AP- 1 P(IXI > A)dA. 
o 

Now let (Xn)n>O be a martingale. For each n, let Mn = max IXil. Fix 
- "~n 

A > 0 and consider the event A = {Mn > A}. An upper bound for P(A) is 
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provided by what is known as Doob's Maximal Inequality given below. 

Lemma (Doob's Maximal Inequality): peA) :S E(lXnl· IA)/)... 

37 

Proof: Let Ao = {IXol > )..} and Ai = {IXol :S ).., ... , IXi-11 :S )..,IXil > )..}, 
for 1 :S i :S n. Then Ao, ... , An are disjoint and A = Ui Ai, so that, peA) = 
L P(Ai) :S * L E(IXiIIAJ. An easy consequence of the martingale property 
of (Xn) is that, for any i :S n, Xi = E(Xn IXo, . . . , Xi). This would therefore 
give 

peA) 
1 L E(IE(Xn 1 X o,···, Xi)IIAJ < -
).. 
1 L E(E(IXn I1 X O, • • • ,Xi)IAi) < 
).. 
1 L E(E(IXnIIAi 1 X o, · .. ,Xi)) = -
).. 
1 1 
- L E(IXnIIAJ = :x E(IXnIIA). ).. 

• 
Applying now the Corollary above with p = 2 and X = Mn followed by the 

Lemma, we get 

E(M~) < 2[ E(IXnII{Mn >'\}) d)" = 2E (IXnl[ I{Mn>,\} d)") 

2E(I X nI Mn) :S 2JE(X;:JJE(M~). 

This leads to E(M~) :S 4E(X';). If now (Xn) is an L2-bounded martingale, 
that is, sup E(X,;) < 00, then it follows that 

n 

whence by Dominated Convergence Theorem we get 

Theorem: If (Xn)n2:0 is an L 2 -bounded martingale, then it converges with 
probability one to a random variable X having finite second moment and more­
over, the convergence is also in L 2 , that is, lim E(Xn - X)2 = o. 

n 

0.8 Markov Chains 

Consider a system which evolves with time in a random way. For the sake of 
simplicity, let us consider the set of times to be discrete. Let us also assume that 
the set S of possible states of the system is countable. S will be called the state 
space of the system and the individual states (i.e. elements of S) will be denoted 
by i, j, k etc. Let Xn denote the (random) state of the system at time n, 
n = 0,1,2, .... We are assuming that each Xn is an S-valued random variable 
and the entire evolution of the system is described by the sequence (Xn)n2:o. In 
particular, Xo is the initial state of the system. Study of such systems in this 
generality, without any further assumptions, will not lead to any interesting 
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theory. Usually one imposes additional restrictions on the joint distribution 
of the sequence to get different kinds of "stochastic processes". One such 
condition, studied in the last section, is that E(XnIXo, Xl' ... ' Xn-d = X n- l 

for all n, which gave rise to what are called martingales. In this section, we 
study one other extremely important and useful condition that leads to a class 
of processes known as M arkov chains. 

0.8.1 Markov Chains: Transition Probabilities 

The property that is imposed can be briefly referred to as 'lack of memory', by 
which we mean that given the present state of the system the 'future' evolution 
does not depend on the 'past' history. In mathematical terms, this means that 
for any two non-negative integers n and m, the conditional distribution of 
X n+m given X o, Xl, ... ,Xn depends only on X n. It turns out that one needs 
only to assume this for m = 1. Thus we have the following definition. 

Definition: A sequence (Xn)n~O of random variables taking values in a countable 
set S is aclled a Markov chain on the state space S if, for any n 2: 0 and any 
io,il, ... ,in-l,i,j E S, 

P(Xn+1 = j IXo = io,.·· ,Xn- l = in-l,Xn = i) = P(Xn+1 = j IXn = i). 

Further, the chain is called time homogeneous, if the above conditional probabilities 
do not depend on n and hence are also equal to P(XI = j IXo = i). 

Markov chains appearing in most applications also happen to be time ho­
mogeneous. A rich theory exists for such chains. We shall restrict ourselves 
to only Markov chains which are time homogeneous. We will denote, for any 
i, j E S, the probability P(XI = j I Xo = i) by Pij. Writing the distribution 
of Xo as {JLi, i E S}, it is not difficult to see that all the finite dimensional 
joint distributions for (Xn)n~O are completely determined by the quantities 
JLi, i E Sand Pij, i,j E S. Specifically, for any n and any collection of states 
io,iI, ... ,in , 

{JLi, i E S} is called the initial distribution and {Pij, i, j E S} are called the 
transition probabilities or one-step transition probabilities, to be exact. From 
the definition it is clear that, 

(1) JLi 2: 0 for all i and L- JLi = 1, 
i 

(2) Pij 2: 0 for all i,j E Sand L-Pij = 1 for all i E S. 
j 

It is often convenient to represent the initial distribution by a row vector 
JL = (JLi; i E S) and the transition probabilities by the transition matrix P = 
((Pij) kjES. The property (2) above simply says that P has non-negative entries 
with each row sum equal to one. Such matrices are called stochastic matrices. 
Much of the theory of Markov chains rests on an analysis of its transition 
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matrix P and not so much on /1. The matrix pn, the n-th power (in the sense 
of matrix multiplication) of the matrix P, is called the n-step transition matrix 
simply because its (i, j)-th element p~;) gives the probability of transition from 
i to j in n steps, that is, 

p~;) = P(Xn+m = j I Xm = i) = P(Xn = j I Xo = i) . 

One can easily verify this for n = 2 and then use induction to complete the 
proof. 

One useful consequence, known as the Chapman-Kolmogorov equations, is 

(m+n) _ '"' (m) (n) 
Pij - ~ Pik Pkj . (24) 

k 

This can of course be verified directly from Markov property. For the sake 
of completeness we need to set prO) = I, the identity matrix which is also 
consistent with the notion of zero-step transition. 

A simple yet useful property of a Markov chain (Xn)n>O is that if f is any 
real function on the state space S satisfying LPijf(j) = Ri) for all i, then the 

j 

sequence U(Xn))n>O is a martingale, provided, of course, the sum L f(i)f.Li is 
convergent. Funct{;ns f satisfying Lj pijf(j) = f(i) for all i, are known as 
harmonic functions for the transition matrix P. 

Example 1: Let 6,6, ... be i.i.d. integer-valued random variables with com­
mon distribution P(6 = j) = aj. Let Xo be any integer valued random 

n 
variable independent of the ~ sequence. For n :2 1, let Xn = Xo + L 6. Then 

1=1 
(Xn) is a Markov chain with state space S = the set of integers and transition 
probabilities Pij = aj-i· The n-step transition probabilities are also not diffi­
cult to get. An elegant formula for these can be obtained using the following 
notation. For any two probability distributions a = (aj) and (3 = ((3j) on 
integers, let a * (3 denote the distribution defined by (a * (3)j = Li ai(3j-i. In 
particular, a*n is defined re cursively by am = a*(n-l) * a. With this nota­
tion, the n-step transition probabilities of the chain (Xn) above are given by 

(n) _ *n 
Pij - a(j_i)· 

It may be noted that here Pij as well as p~;) depend on i and j only through 
j - i. In fact, these are the only Markov chains with this property. In other 
words, if (Xn)n>O is a Markov chain whose transition probabilities Pij depend 
only on i - j, then the random variables ~n = Xn - X n- 1 , n :2 1, are i.i.d. 
The proof is easy. Such Markov chains are called random walks. A special 
case is when the random variables ~j take only two values + 1 and -1. This 
gives what is known as simple random walk. A further special case when 
P(~j = +1) = p(~j = -1) = 1/2, is called simple symmetric random walk. 
Feller's book (voU) gives an extensive and interesting account of such random 
walks. His analysis is based entirely on what is known as 'path counting' and 
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is therefore easily accessible. Interested reader should consult this book. We 
will include parts of this material at the end of this section. 

Example 2: Consider an urn with a total of D tokens - some numbered +1 
and some -1. The composition of the urn changes over time as follows. At 
each turn, a token is picked at random from the urn and its sign changed and 
put back in the urn. Denote by Xn the number of + 1 at time n. It is clear 
that Xn is a Markov chain with state space S = {O, 1, ... , D} and transition 
probabilities 

~ 

Pi,Hl = 1 - D = 1 - Pi,i-l . 

Thus, from a state i, transitions are possible only to states i-I or i + 1 in 
one step. Of course if i = 0 (respectively D) then the system moves surely to 
1 (respectively D - 1). It is not difficult to see that the two-step transition 
probabilities are given by: 

(2) _ i i + 1 
Pi,H2 - (1- D)(l- ---rJ)' 

(2) _ i i-I 
Pi,i-2 - D ---rJ' 

(2)_ i(i-1) (D-i)(D-i-1) 
Pii - 1 - D2 - D2 . 

Exercise 1. Suppose Xo is uniformly distributed on the state space S in 
the above example. Calculate the distributions of Xl, X 2 and also the joint 
distribution of (Xl ,X2 ). Do the same when Xo rv B(D, 1/2). 

Example 3 (0 - 1 chain): Consider a machine which can be in two states, 'on' 
and 'off'. Also if the machine is 'on' today, then the probability is a that it will 
be 'off' tomorrow. Similarly, (3 is the probability of transition from 'off' state 
to 'on' state in one day. Denote the 'on' and 'off' states by 0 and 1 respectively. 
Denoting by Xn the state of the machine on day n, (Xn)n~O is a Markov chain 
with state space S = {O, I} and transition matrix 

p = (POO POl) 
P10 Pl1 

We assume that a + (3 > 0 (what happens if a + (3 = O?). A trite calculation 
gives 

p~~) = p~~-l) a + p~~-1) (1 - (3) = a + p~~-l) (1 - a - (3) , 

from which one deduces 

(n) 
POl 

Similar calculation shows that 

(n) 
P10 
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If one further assumes that a + (3 < 2 (what happens if a + (3 = 2?), so 

h 1 (31 h (n) a d (n) (3 S· t at 1 - a - < 1, t en one gets POl -7 --(3- an PlO -7 --(3. mce 
a+ a+ 

(n) _ 1 (n) d d h (n) (3 S··l 1 (n) a 
Poo - - Pol we e uce t at Poo -7 --(3-. lml ar Y Pll -7 --(3. a+ a+ 

From all these, one can deduce that, if 0 < a + (3 < 2, then the Markov 
chain has the limiting distribution 'if = ('if 0, 'ifl) = C"!f3' "'~(3)' whatever be the 
initial distribution of the chain. This distribution represents what is called the 
'equilibrium' or 'steady-state' distribution of the chain. It is so called because 
'if also happens to be the only distribution on S with the property that if Xo 
has distribution 'if, then for every n, Xn has the same distribution 'if. This 
conclusion also follows from the equations describing p~j). 

This example leads one to the natural question. Is the above kind of phe­
nomenon true for all Markov chains? That is, does every Markov chain have 
a limiting distribution? Is the limiting distribution unique (i.e. independent 
of initial conditions)? Are these limiting distributions, if any, also steady-state 
distributions in the above sense? The cases a + (3 = 0 and a + (3 = 2 should 
convince the reader that the answers to the above questions cannot always be 
in the affirmative. 

To better understand the nature of problems and to identify some of the 
cases where we do have affirmative answer, we first need to discuss 'classifica­
tion' of the states. This will be done in the next section. But let us now make 
a little digression to discuss some interesting properties of simple random walk 
as described in Example 1. 

Simple Random Walk: Recall simple random walk as discussed in Ex­
ample 1. Here is an illustration of the path-counting argument and the final 
result will be used in Chapter 4. 

In the context of random walks, a path from (0,0) to (n, a) is a polygonal 
line with vertices (i, Si) for 0 :::; i :::; n, with So = 0, Sn = a and Si - Si-l = ±1 
for 1 :::; i :::; n. It is clear that a has to be an integer between -n and +n. 
Similarly one can talk about paths from (m, a) to (m + n, b), for integers m 
and n with n > O. Such paths are called paths of length n. It is clear that the 
total number of paths of length n starting from a given point is 2n. Also the 

number of paths from (0,0) to (n, a) is (nta). 
A fact, often called the reflection principle is that, for integers a, b > 0, 

the number of paths from (O,a) to (n,b) that touch or cross the X-axis is 
the same as the total number of paths from (0, -a) to (n, b) and hence equals 

( n+~tb ). This is done by establishing a one-one correspondence between the 

two sets of paths. From this one can easily deduce that for any integer a > 0, 
the number of paths from (0,0) to (n, a) that do not hit the X-axis equals 

( nta-~ 1) - (nni})· Incidentally, this formula also gives a solution to what 
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is known as the ballot problem. 

We now turn to an important property of simple, but not necessarily sym­
metric, random walk. In other words, we consider the Markov chain on the 
set of integers with transition probabilities Pi,i+l = P = 1 - Pi,i-l. For any 
integer a, let Ta = inf{n 2: 1 : Xn = a}, that is, Ta is the hitting time of a. 
Fix integers a < i < b. Let 

cp(i) =P(Ta <TdXo=i) for a<i<b 

and cp(a) = 1 and cp(b) = O. 

Exercise 2. 

(i) Show that for a < i < b, cp(i) = pcp(i + 1) + (1 - p)cp(i - 1) 

(ii) Denoting di = cp(i) - cp(i - 1), show that for a + 1 < i S; b, 

and hence that 

(
1 ) i-a-l 

di = ; P da+1 . 

(iii) Assume that P = 1/2 and show that cp(i) = 1 + (i - a)da+1 for a S; is; b, 
and hence deduce that cp(i) = (b - i)/(b - a). 

(iv) Assume that P -=I- 1/2 and denote (1- p)/p by a. Show that 

cp(i) = 1 + 1 ~ 2p da+l [ai-a - 1J 

for a S; i S; b and hence deduce that 

(v) If p > 1/2 then show that 

P(Ta < 00 IXo = i) ai-a < 1. 

(vi) If pS; 1/2 then show that 

P(Ta < 00 I Xo = i) 1 . 

0.8.2 Classification of States: Recurrence and Transience 

For any state i, let us define two random variables, possibly taking value +00, 

as follows: 

Ti = min(n 2: 1 : Xn = i), Ni = #(n 2: 1 : Xn = i) . 
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In the definition of Ti , if there is no n ~ 1 such that Xn = i we take Ti = +00. 
If there are infinitely many such n, then of course, Ni = +00. Ti represents 
the time of the first visit to i and Ni represents the total number of visits to 
i. In both of these, the time point 0 is not counted. It is clear that the events 
(Ti < (0) and (Ni ~ 1) are same. 

For i and j in S, let 

fi~n) = P(Tj = nlXo = i) = P(Xn = j;Xl i- j , 1::::: l < nlXo = i), (25) 

(Xl 

fij = L fi~n) = P(Tj < 00 1 Xo = i) . (26) 
n=l 

It is clear from the definitions that p~;) ~ fLn). In fact one has the following 
identity often known as the renewal equation : 

(n) 
Pij 

n 
'" f(;n) (n-m) 
~ 'J PJJ • 

m=l 
(27) 

To prove the equation, one has to simply write the event (Xn = j) as the 
n 

disjoint union of events U (Tj = m, Xn = j) and calculate the probabilities 
m=l 

of these events by applying the Markov property. 

All the states of the Markov chain are classified into two kinds as defined 
below. 

Definition: A state i is called recurrent if fii = 1 and is called transient other­
wise. A state i is called absorbing if Pii = 1. 

Thus a state i is recurrent if the chain starting from i is sure to return to i 
at some future (possibly random) time. Naturally, for a transient state i there 
is a positive probability of never returning to i. Clearly every absorbing state 
is recurrent. 

Since the two events (Ti < (0) and (Ni ~ 1) are identical, it follows that a 
state i is recurrent iff P(Ni ~ 11 Xo = i) = 1, that is, the chain starting from 
the recurrent state i is sure to make at least one visit to i. We will, in fact, 
show that starting from a recurrent state i, the chain actually makes infinitely 
many visits to i with probability one. Intuitively, this should be obvious from 
the Markov property. 1:0 do this rigorously and get some other results we need 
the following identity: 

For states i and j and any m ~ 1, 

P(Nj ~ mlXo = i) = lij' f;";-l. (28) 

For m = 1, this is just the definition of fij. Let us prove it for m = 2. Clearly, 

(Xl (Xl 

P(Nj ~ 21 X o = i) = L L P(An,n' IXo = i), 
n=l n'=l 
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where A - { Xn =Xn+n, =j; } 
n,n' - Xp =I- j for 1 :S P < n and for n + 1 :S P < n + n' . 

By using the properties of conditional probability and the Markov property, 
each summand reduces to the product 

P(Xn = j, Xp =I- j, 1 :S P < nlXo = i) . P(Xn' = j, Xp =I- j, 1 :S P < n'lXo = j), 

so that 
00 00 

P(Nj 2: 21 Xo = i) = 2::: 2::: fijn) fJ;') = fijhj . 
n=l n'=l 

The proof for a general m is similar. Do it for m = 3 to make sure that you 
understand. 

Notice that the events (Nj 2: m) are decreasing as m increases with limit 
being the event (Nj = (0). If j is a transient state then hj < 1, so that for 
every i, P(Nj = 00 1 Xo = i) = O. That is, a transient state can be visited 
at most a finite number of times, no matter where the chain starts. On the 
other hand, if j is recurrent, then P(Nj = 00 1 Xo = i) = 1;j. In particular 
P(Nj = 00 1 Xo = j) = 1, as stated earlier. 

It also follows that if j is a recurrent state, then E(Nj 1 Xo = i) = 0 or 00 

according as 1;j = 0 or 1;j > O. In particular, E(Nj 1 Xo = j) = 00 if j is 
recurrent. On the other hand, if j is transient then 

for m = 1,2, .... 

Since fjj < 1, we have E(Nj IXo = i) = 1;j/(l- Ijj). In particular, it follows 
that E(Nj 1 Xo = i) < 00. 

The above analysis leads to another characterization of transience and re­
currence, namely, a state j is recurrent if and only if the series LP}]) diverges. 

n 
To see this, one defines random variables (Yn, n 2: 1) as Yn = 1 if Xn = j and 

00 

Yn = 0 otherwise. Then N j = L Yn , so that, for any i, 
n=l 

00 

E(Nj 1 Xo = i) = 2::: E(Yn 1 Xo = i) = 2::: p~;) . 
n=l 

The above-stated characterization of recurrence follows now by taking i = j. 

Further, for a transient state j, the series LPl;) converges to 1 ~iJf' .. for 
JJ 

every state i. In particular, pi;) --+ 0 as n --+ 00. 

This last observation can be used to deduce that if the state space is finite 

then there has to be at least one recurrent state. This is clear since L pi;) = 1 
jES 

always for every n. Therefore if S is finite, lim L p~;) = 1 also. This makes 
n-+oo jES 

it impossible that pi;) --+ 0 for all j. 
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Given states i and j we say that i leads to j, in symbols i '-+ j, if !ij > O. 

This can be seen to be equivalent to requiring that !ijn) > 0 for some n 2: 1, 

which in turn is the same as requiring p~;) > 0 for some n 2: 1. It is a simple 
consequence of the Chapman-Kolmogorov equations that if i '-+ j and j '-+ k, 
then i '-+ k. 

An important result is that a recurrent state does not lead to a transient 
state. More specifically, if i is recurrent and i '-+ j then j is recurrent and 
hj = hi = 1. We only need to prove the result when i =I j. We first prove 

that hi = 1. Since i '-+ j, p~;) > 0 for some n 2: 1. Let m be the smallest 
such n. Then we can get states i 1 , i 2 , ... ,im - 1 , all different from i, such that 
Pii1Pil i2 ... Pi",-13 = a > O. Suppose, if possible, hi < 1, that is, P(Xn =I 

\:In I Xo = j) = f3 > O. But P(Xn =I i \:In I Xo = i) is at least as much as 

P(Xl = h, ... ,Xm- 1 = im-1,Xm = j and X m+n =I i \:In 2: 11Xo = i). 

By Markov property, it is easy to see that the right hand side equals af3 > 0, 
contradicting the recurrence of i. Thus we must have hi = 1. In particular, 
j '-+ i. Now the recurrence of j is derived as follows. Let m' 2: 1 be such that 

(m') 
Pji > O. Then 

00 

> '" p(m')p(n)p(m) 
~ JZ U ZJ 

n=l 

and the right hand side diverges because both P),;') and p~j) are strictly posi­
tive and i is recurrent. This implies divergence of the left hand side and hence 
recurrence of j. That !ij = 1 is obtained now by reversing the roles of i and j. 

Results of Exercise 2 in the previous section really tell us that for a simple 
random walk with P > 1/2, !ij < 1 for all i > j. Using the fact that i '-+ j for 
any two states i and j, we deduce that all states are transient in case P > 1/2. 
One can similarly show that the same is true if p < 1/2. It would be an 
interesting exercise to go back to the formula for di and examine what happens 
in case p = 1/2. The reader should be able to show that now !ij = 1 for all 
i =I j and deduce from this that all states are recurrent. 

0.8.3 Decomposition of the State Space: Irreducible 
Closed Classes 

The limiting and steady state behaviour of a Markov chain is intimately con­
nected with a partition of the state space. One way to get the decomposition 
is to define an equivalence relation between states. Given states i and j, we 
will say that they are communicating if either (i = j) or (i '-+ j and j '-+ i). It 
is easy to see that this is an equivalence relation so that the whole state space 
S is partitioned as a disjoint union of equivalence classes. These equivalence 
classes are called communicating classes. 
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From the earlier result it is clear that in a communicating class either all 
states are recurrent or all states are transient. A communicating class is called 
recurrent (respectively, transient) if all states in the class are recurrent (respec­
tively, transient). It is natural to ask how to interpret these equivalence classes 
in terms of the behaviour of the chain. Let us make a definition first. 

Definition: A set C C S is said to be closed or stochastically closed if Pij = 0 
for i E C and j tJ. C or equivalently, for i E C, L Pij = 1. 

jEC 

The condition in the definition above can easily be seen to be equivalent to 

L p~;) = 1 for all i E C and for all n 2 1. This really means that if the chain 
jEC 

starts from i E C, then with probability one it remains in C for ever. More 
precisely, 

P(Xn E C "in 2 1 I Xo E C) = 1. 

The state space S is trivially a closed set. A singleton set C = {i} is closed iff 
i is an absorbing state. It is also easy to see that any recurrent communicating 
class is closed and moreover it does not have a proper subset which is closed. 
It is therefore natural to ask "what are the minimal closed subsets of S?" 

A closed set C is called irreducible if i y j for every i and j in C. It 
is easy to see that a closed irreducible set C is minimal in the sense that no 
proper subset of C is closed. A closed communicating class is irreducible. In 
particular, any recurrent communicating class is closed and hence irreducible. 
One can not say the same thing about transient classes simply because they 
may not be closed. In fact, as already remarked, a finite transient class can 
never be closed. An infinite transient class mayor may not be closed. 

Exercise 3. Let the state space S be the set of all integers. The transition 
matrix is given by Pi,Hl = 3/4 and Pi,i-l = 1/4. (This is just the simple 
random walk with P = 3/4.) Show that the chain is transient, S is a transient 
class and S is closed. 

Exercise 4. Let the state space S be the set of all non-negative integers. The 
transition matrix is given by: Poo = 1 and, for i 2 1, Pi,iH = 3/4, Pi,i-l = 1/4. 
Then the set of strictly positive integers is a transient class, but not closed. 

In passing let us also note that there may not be any closed irreducible set. 
For example, let S = {O, 1, ... } and Pi,Hl = 1. One can easily see that sets of 
the form {k, k + 1, ... } c S are all closed and these are the only closed sets. 
Thus no closed set is irreducible. Of course, such a behaviour is impossible 
for a finite state space Markov chain. In fact, for a finite state space Markov 
chain, the structure is fairly simple. Since finite state space chains are all that 
we will be needing for our applications, from now on 

let us specialize to the case where the state space is finite. 

In this case, we have a unique decomposition of the state space S as follows. 
S = SR U ST, where SR is the set of recurrent states (necessarily non-empty) 
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k 
and ST those of transient states (possibly empty). Further SR = U Cl where 

1=1 
each Cl is an irreducible closed set. If the chain starts in Cl it remains there 
forever visiting each state an infinite number of times with probability one. 
Thus if ST = 0, we may, depending on the initial state of the chain, study the 
chain only on a reduced state space, namely, one of the Cl. 

In fact, even if ST "I 0, a chain starting in ST will, after a finite (random) 
number of steps, has to enter one of the Cl ~ and, of course, will remain 
there from then on. The long-term behaviour of the chain will therefore be 
still determined by the analysis of the chain on the restricted state space Cl. 
The only other things that are pertinent in this case are: How long does it 
take to enter one of the classes Cl and what are the probabilites of entering 
the different classes? We address these questions first. 

Let i E ST and 1 :::; l :::; k. Let 

ail P(Xn E Cl for some n I Xo = i) 

P(Xn E Cl for all large n I Xo = i) . 

k 

From what has been said above L: ail = 1. Let us also denote for i E ST and 
1=1 

for 1 :::; l :::; k, 

f3il = L Pij = P(X1 E CllXo = i). 
JEG, 

It is now easy to see from the Markov property that 

f3il + L Pijajl . (29) 
JEST 

In other words, for each l, the numbers (ail)iEsT satisfy the system of linear 
equations given by (29). In fact, one can show that it is the unique solution. It 
is convenient to write this system of equations in matrix form. Let Q denote 
the submatrix of P of order ST x ST defined as Q = (Pij )i,jEST' It is convenient 
to think of the rows cpd columns of Q indexed by states in ST. For fixed l, 
1 :::; l :::; k, let al and f31 be the column vectors of size ST with entries ail and 
f3il respectively for i E ST. Then al is the unique solution of the equation 

The uniqueness is a consequence of invertibility of the matrix (I - Q), which 
in turn follows from the fact that the series I + Q + Q2 + ... is convergent and 
is indeed the inverse of I - Q (finiteness of ST plays a role here). Here I is the 
identity matrix. As a consequence 
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The duration of time that a chain takes, before it enters SR, is 

We want to get a formula for the expected value of T starting from different 
transient states. For i EST, let 

mi = E(TIXo = i), 

and let in be the column vector of size ST with entries mi. Denoting e to be 
the column vector of size ST with all entries 1, it is ea;>y to see that in satisfies 
the equation 

m e + Qin, 

from which the unique solution for in emerges as 

From the above analysis, it is clear that the matrix (I - Q)-l plays a fun­
damental role and is appropriately called the fundamental matrix of the chain, 
denoted by N. The above method is often referred to as the fundamental matrix 
method. A particularly useful special case - which would also be singularly 
relevant for applications in Markov models in genetics - is what are known as 
absorbing chains. 

Definition: A Markov chain on a finite state space, for which all the recurrent 
states are absorbing, is called an absorbing chain. 

For an absorbing chain, each Cl obtained in the decomposition of SR, con­
sists of a single absorbing state. Entering the different Cl really means getting 
absorbed in one of the absorbing states. For each i EST, the numbers ail, for 
1 ::; 1 ::; k, are called the absorption probabilities starting from i. 

As seen earlier, we can only solve for ail simultaneously for all i E ST with 
1 held fixed. In other words each vector Ql is supposed to be solved separately 
for each l. However, in case there are only two absorbing states - that is k = 2 
- then solving for one 1 is enough (why?). 

In case of absorbing chains, it is notationally convenient to list the states so 
that the absorbing states come before the transient states. To avoid triviality, 
we assume that there is at least one transient state. With this ordering of 
states, the transition matrix P takes the form 

where Q is as before. The entries of N R are precisely the absorption probabil­
ities ail for i E ST and 1 ::; 1 ::; k. Entries of Ne are precisely the mean times 
till absorption. 
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Exercise 5. Consider a chain with four states and transition matrix 

p 

o 
( 

1 
o 1 

1/4 0 
1/4 1/4 

00) o 0 
1/2 1/4 
1/4 1/4 

49 

Calculate the fundamental matrix, the absorption probabilities and mean times 
till absorption. 

Exercise 6. For an absorbing chain, show that the vector of variances of 
the time till absorption starting from different transient states is given by 
11 = (2N - I)fii - fii2 where fii2 denotes the vector whose entries are the 
squares of the entries of fii. 

0.8.4 Ergodic Chains: Limiting Behaviour and 
Stationary Distributions 

We go back to a general finite state space Markov chain and recall the decom­
position of the state space 

S U ST 
k 

U Cl U ST 
1=1 

where ST and S R are the sets of transient and recurrent states respectively and 
Cl, 1 ::; l ::; k, are the closed irreducible subsets of SR. 

As noted already, the long-term behaviour of the chain is determined by 
the analysis of the chain on the restricted state spaces Ct. This is what we 
want to pursue now. Accordingly, let us assume that the whole state space S 
of the chain is one single closed irreducible class of recurrent states. Such a 
chain is called an irreducible recurrent chain, also sometimes referred to as an 
ergodic chain. For such a chain, we are going to show that there exists a unique 
7r = {7ri' i E S} with 7ri > 0 and L 7ri = 1 such that 7r P = 7r or equivalently, 
there is a unique probability 7r on S such that if Xo '" 7r then Xl '" 7r (in 
fact, Xn '" 7r for all n). It is this property that is described by saying that 
7r is an invariant distribution for the chain - also called a steady-state or an 
equilibrium or a stationary distribution. Formally, 

Definition: By an invariant distribution of a Markov chain is meant a probability 
distribution 7r on the state space S for which the equality 7r P = 7r holds. 

Exercise 7. If Xo '" 7r where 7r is an invariant distribution, show that the joint 
distribution of (Xn,Xn+l ) is same for all n. Generalize from pairs to triplets 
etc. 

A Markov chain may not have any invariant distribution. In case it has, 
it may have more than one invariant distributions. It is not difficult to show 
that symmetric simple random walk has no invariant distribution. On the 
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other extreme, the Markov chain on S = {O, I}, with Poo = Pll = 1, is an 
easy example of a chain with plenty of invariant distributions! Our following 
analysis will show, among other things, that a finite state space Markov chain 
will always have at least one invariant distribution. 

Indeed, we will show that for an ergodic chain with finitely many states 
there is one and only one invariant distribution. This invariant distribution 7r 

will also turn out to be the limiting distribution of the chain in the following 
sense: 

for all i,j E S, 
1 n 

lim _ ~ p(l) 
n n ~ "J 

1=1 

(30) 

It may be noted that the above limit does not depend on i. In other words, 
the effect of the initial distribution wears off in the long run. 

We first prove that the limits in the left-hand side of (30) exist and are 
free of i. We start with some notations. For any state i, Pi(A) will denote 
the conditional probability of the event A, given Xo = i. Thus Pi(A) can be 
thought of as the probability of the event A when the initial distribution is 
concentrated at i. Expectation wih respect to this probability will be denoted 
by E i . Let us, from now on, fix a state j. Let T1,T2 , •.. be the times of 
successive visits to the state j. Only times greater than or equal to one are 
considered for these visits. That is, 

T1 min{n 2: 1 : Xn = j}, 

and for r 2: 2, 
Tr min{n > Tr- 1 : Xn = j}. 

Since S is a closed irreducible recurrent class, Pi (Tr < 00 for all r) = 1. Set 
Zo = T1 and for r 2: 1, Zr = Tr+1 - Tr. We claim that the Markov property of 
(Xn) implies that for any i, the random variables Zl, Z2, ... are i.i.d. under Pi. 
Moreover, the common distribution is that of T1 under Pj (and hence does not 
depend on the initial state i). To see this, note first that Pi(Zl = h 1 Zo = lo) 
equals the conditional probability of (X1o+m -I- j,O < m < h; Xlo+lt = j), 
given (Xo = i; Xm -I- j,O < m < lo; X10 = j) which by Markov property at 
time lo equals 

P(Xm -I-j,O < m < h;Xl, =jlXo =j) =Pj (T1 =h). 

Next, Pi(Z2 = l21 Zo = lo, Zl = h) equals the conditional probability of the 
event A given the event B, where 

and 

A = {X1o+lt +m -I- j,O < m < l2,X1o+l,+12 = j}, 

B={ Xo = i,X1o = X 1o+lt = j,Xm -I- j,O < m < lo, 
X 1o+m -I- j, 0 < m < h }. 
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Once again, by the Markov property at time la + h, the above conditional 
probability equals 

One can use similar technique to show that for any r 2': 1, 

From this, our claim about the Pi distribution of the sequence (Zr )r2:1 can 
easily be proved. 

Now an application of the strong law of large numbers yields 

asr--+oo 

with Pi-probability one, for any i. It should be remarked that the strong law 
of large numbers used here does not need any apriori assumption on finiteness 
of the expectation E j (Tl). This is because the random variables Zi are all 
non-negative. (See the paragraph following Exercise 5 in Section 0.5.) By the 
definition of the sequence Zl, Z2, ... , we have 

Thus 
Tr+1 - Tl -+ K(Td 

r J 
as r --+ 00, 

with Pi-probability one. But then 

Tr - Tl Tr - Tl r - 1 () 
r = r _ 1 -r- -+ E j Tl as r --+ 00, 

with Pi-probability one. Since Pi(T1 < (0) = 1 and hence ~1 -+ 0 as r --+ 00, 

we have with Pi-probability one 

Tr+1 -- -+ K (Td as well as r J 

Tr - -+ K(Td as r --+ 00. r J 

For each n 2': 1, let us consider the random variable 

Nn #{1 ::::; I ::::; n : Xl = j} . 

Since we have an ergodic chain, N n --+ 00 as n --+ 00 with Pi-probability one, 
for any i, so that 

as n--+oo. 

But by definition of N n , one clearly has TNn ::::; n < TNn +1 so that 

< < 
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Thus we have, for every i, ~ -+ E j (T1 ) as n -+ 00 or, equivalently, 
N n 

as n -+ 00, 

with Pi-probability one. Since 0 ~ ~ ~ 1 for all n, we have by the dominated 
convergence theorem that 

as n -+ 00. 

It is easy to identify Ei(Nn ) as f, Pg) . This proves that lim ~ f, pi~) exists 
1=1 n---+oo 1=1 

for all i and j, and equals l/Ej (Td. Denote this quantity by 7rj. It is clear 
that 7rj 20 for each j. Of course, trj = 0 is not yet ruled out but will be ruled 
out soon. Also, since each pn is a stochastic matrix of finite order one gets 
L: 7rj = 1. Thus 7r = (7rj : j E S) is a probability on the state space. We next 
show that 7rP = 7r, or in other words, (7rP)j = 7rj for each j. Fix any arbitrary 
state k. 

(7r P)j '" _ ",. 1 ~ (l) _. 1 ~ '" (l) ~7riPij - ~h;n~ ~Pki Pij - h;n~ ~~PkiPij 
i i 1=1 1=1 i 

. 1 2:n (1+1) _ . 1 [2:n (I) (1) (n+l)]_ hm - Pk' - hm - Pk' - Pk' + Pk . - 7rj. nn J nn J J J 
1=1 1=1 

This shows that our 7r is indeed an invariant distribution. To show uniqueness, 
let 1T = (1Tj) be any invariant distribution. From 1Tpn = 1T, one easily gets that 
for each j, 

7rj. 

Letting n -+ 00, the left-hand side equals L:i 1Ti7rj = 7rj showing that 1T = 7r. 
It is only appropriate to draw the attention of the reader to an important fact 
lest it be overlooked. In our analysis above, we have repeatedly taken the 
liberty of interchanging sum and limits at our will. This was sponsored by the 
assumption of finiteness of the state space. The case of infinite state space 
could be a very different ball game. 

Thus we have proved that for an ergodic finite state Markov chain, there is 
a unique invariant distribution 7r which is also the limiting distribution in the 
sense of (30). Indeed our proof also shows that for each j, l/7rj is nothing but 
the expected time to return to j, given that the chain started at j. As noted 
already, this expected value could potentially be infinite for some j, leading to 
7rj = O. 

We now go a step further and show that for ergodic finite state Markov 
chains,7rj > 0 for all j which, in turn, would also imply that, starting from any 
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state j, the expected time to return is finite. Indeed, suppose that for some j, 
1fj = O. Fix any i :j:. j and an I ~ 1 such that p~y > O. Since 1f pi = 1f, we have 

1fj = I:k 1fkPil] ~ 1fiP~Y' so that 1fi = O. Thus 1fj = 0 for some j implies that 
1fi = 0 for all i which contradicts I: 7ri = 1. 

For an irreducible recurrent chain we already knew that starting from a 
state j, we are sure to return to j sometime or the other. What we have 
just shown is that if the state space is moreover finite then the expected time 
to return is also finite. This property is often referred to in the literature as 
positive recurrence. This is not true in general, that is, a recurrent state may 
fail to be positive recurrent, if the state space is infinite. Such recurrent states 
are called null recurrent. 

Another natural question that arises out of (30) is : why do we not consider 

simply the limn p~7) instead of the averages ~ I: p~~) as was done above? It is 

not difficult to see that limn p~7) may fail to exist, in general. In fact, a two 
state chain with transition matrix 

p (~~ ) 
will illustrate this. What is happening in this example is that, for any i and j, 
exactly one of p~j) and p~j+l) is positive for each n. In fact, for i = j, p~j) is 
positive (indeed, equals 1) if and only if n is even, while for i :j:. j, this happens 
if and only if n is odd. 

Usually, it is only such periodic behaviour of the chain, as illustrated in the 
example above, that prevents the existence of lim p~7). We are not going to 

n 
pursue the periodicity properties and their consequences here. However, for 
subsequent applications, we are going to describe now (without proofs) what 
happens if such periodic behaviour is ruled out. 

For a Markov chain, a state j is said to be aperiodic if {n ~ 1 : p;j) > O} 
has greatest common divisor 1. It is immediate that none of the two states in 
the above example are aperiodic - the g.c.d is 2 for both. It can be shown 
that in an irreducible Markov chain, either all states are aperiodic or none are 
and, in the first case, the chain is said to be aperiodic. Now we can state the 
main result without proof. 

Theorem: If an ergodic finite state chain is aperiodic, then for all states i and 

j, the limit lim p~7) exists and equals 7rj where 7r = (7rj, j E S) is the unique 
n~oo 

invariant distribution. 

In effect what it says is that for an aperiodic ergodic chain, 7r is the limiting 
distribution of the chain, irrespective of how it starts. 

Exercise 8. Consider a Markov chain with r states. Suppose that the tran­
sition matrix has the property that each column sum is one (remember that 
for a transition matrix each row sum is one). If the chain is irreducible then 
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show that the uniform distribution on the state space is the unique stationary 
distribution. What do you infer about the expected times to return in this 
case? What if it is not irreducible? 

Exercise 9. Let a be a probability vector with strictly positive entries and 
length 10. Consider a Markov chain with 10 states. Let the transition matrix 
have identical rows, each row being a. What is the stationary distribution? 
What chain are we talking about? What if the vector is not strictly positive? 

Exercise 10. Consider a chain with 4 states and the following transition 
matrix. 

( 

1/2 
1/3 
1/4 
o 

1/2 
1/3 
1/4 
o 

o 0) 1/3 0 
1/4 1/4 
1/2 1/2 

Denoting by T the time G:: 1) of the first visit to the state 2, calculate Ei(T) 
for each state i. Suppose that f.L is an initial distribution on the state space. 
Calculate Elt (T). 

0.8.5 Absorbing Chains: Limiting Behaviour, Rate of 
Convergence 

Recall that an absorbing chain is a finite state Markov chain consisting only 
of absorbing and transient states. Since the state space is finite, there is at 
least one absorbing state. To avoid trivialities, we assume that there is at least 
one transient state also. Specifically, let us assume that there are m states, 
{1, 2, ... ,m}, of which the first k are absorbing and the remaining transient. 
As already seen, the transition matrix has the structure 

where I is the identity matrix of order k and Rand Q are of orders (m - k) x k 
and (m - k) x (m - k) respectively. As already observed, the fundamental 
matrix N = (J - Q)-1 plays an important role. For example, the matrix N R 
equals (( O:ij )) where O:ij for k + 1 :S i :S m and 1 :S j :S k are the absorption 
probabilities. For an absorbing state j, it follows from the continuity property 
of probability that 

- 1· P (X - .) - 1· (n) O:ij - lm i n - J - lmPij . 
n--+oo n 

(31) 

Recall that, for k + 1 :S j :S m, limp~;) = 0 for all i. All of these can be stated 
n 

in matrix form as 

where A = NR = ((O:ij)). 
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We now want to show that the convergence in (31) happens geometrically 
fast and also calculate the exact rate of convergence. Interest in the rate of 
convergence lies in the fact that just like the expected time till absorption, this 
rate also gives another indication as to how fast the chain gets trapped in one 
of the absorbing states. 

To begin with, let us recall that a number A (possibly complex) is called an 
eigenvalue of P if there is a non-null vector u (with possibly complex entries) 
such that uP = AU. Such a non-null vector u is called a left eigenvector 
corresponding to the eigenvalue A. Recall also that the set of all vectors u with 
uP = AU is a vector space, called the left eigenspace associated to A. 

Let us now observe that a transition matrix P cannot have an eigenvalue A 
with IAI > 1. If possible, suppose IAI > 1 and u = (U1' U2, ... ,um ) is a non-null 
vector with UP = AU. Then clearly, upn = AnU for all n 2: 1. Let j be such 
that Uj -:j:. O. We then get a contradiction from the fact that 

~ (n) _ \n 
~ UiPij - /\ Uj, 

i 

where the left-hand-side remains bounded by L IUil for all n, while the right­
hand-side is unbounded. 

We next show that if P is the transition matrix of an absorbing chain with 
k absorbing states, then the dimension of the eigenspace associated to A = 1 is 
exactly k. Indeed, let u be any vector with UP = u which, of course, implies 

upn = u for all n. Then, for any j 2: k + 1, Uj = L uiPl;) -+ 0 as n -+ CXJ 

showing that Uk+l = ... = Um = O. Thus, the dimension of the eigenspace 
is at most k. On the other hand, for each i, 1 :::; i :::; k, the vector ui with 
i-th coordinate equal to 1 and other coordinates 0, can easily seen to be a left 
eigenvector corresponding to >.. = 1. So there are exactly k linearly independent 
left eigenvectors for A = 1. 

Finally, for P as above, we show that A = -1 cannot be an eigenvalue. 
Suppose that u satisfies UP = -u and hence upn = (-1) nu for all n. For 

j 2: k + 1, (-l)nuj = L uiPl;) again yields that Uj = O. For j :::; k, 

m k 

-Uj = L UiPij = L UiPij = Uj 
i=l i=l 

implying again that Uj = O. Thus any u satisfying uP = -u must be null. 

To continue with our discussion of the rate of convergence, let us assume 
that there are m real eigenvalues AI, ... , Am (not necessarily distinct) of P, 
with associated left eigenvectors u1 , ... ,um , which are linearly independent. 
As shown earlier, we can and do take Al = A2 = ... = Ak = 1 and ui , 1 :::; i :::; k, 
as defined above. If the remaining eigenvalues are listed in decreasing order of 
magnitude, we will clearly get 
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Denote by L the m x m matrix whose i-th row is ui . The above equations can 
be reformulated as 

LP DL 

where D = Diag (A1, ... , Am). Since the vectors ui are linearly independent, 
the matrix L is invertible and therefore 

p (32) 

Readers initiated to linear algebra would quickly recognize the above as the 
spectral representation of P. Our assumption therefore really amounts to P 
having a spectral representation. It follows from (32) that 

pn L-1 D n L, 

where clearly Dn = Diag (Ar, ... , A~). In particular, for any 1 ::; i, j ::; m, 

m 

p~;) 2: A~ (L -1 )ir Lrj . 

Since A1 = ... = Ak = 1, we have 

k 

r=l 

m 
Ip~;) - L (L -1 )irLrj I < L IAr lnl(L-1 )irLrjl 

r=l r=k+1 
m 

< IAk+1In L I(L-1)ir Lrjl· 
r=k+1 

Of course, IAk+ll < 1 implies that the left side goes to zero as n --+ 00 and the 
convergence is geometrically fast with rate not larger than IAk+11. Incidentally 
this argument also shows that 

k 

"""'(L -1) L - r (n) ~ ir rj - n~Pij 
r=l 

for all i and j. Of course, if i is a transient state (that is, i ;::: k + 1) and j 
is an absorbing state (that is, j ::; k), then this quantity is precisely aij, the 
probability of absorption in j starting from i. We leave it as an exercise to 

k 

verify that (i) if i is absorbing, then L (L -1 )irLrj equals bij and (ii) if j is 
r=l 

transient then this is zero. 

Exercise 11. In the above discussion of convergence rate for absorbing chain, 
we assumed spectral representation for the transition matrix. However, a tran­
sition matrix need not always admit a spectral representation (32). Show that 
the following transition matrices do not admit spectral representation. For 
chains with these transition matrices, find the rates of convergence. 

p = ( 2~3 
2/3 
2/3 

o 
o 
o 

1/3 

o 
1/3 
o 
o 

p = ( 1~2 
1/2 
2/3 

o 
o 
o 

1/3 

o 
1/2 
o 
o 
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0.9 Continuous Time Processes 

Discrete time stochastic processes are used to describe evolution of systems 
that change only at discrete instants of time. The relevant time set is the 
set of time points at which changes may take place, and, is usually taken as 
{O, 1,2, ... }. In the earlier two sections, we discussed some special types of 
such processes, namely, martingales and Markov chains. 

In this section, we discuss stochastic processes evolving over a continuum 
of time or in other words, continuous time stochastic processes. Even though 
the process evolves over a continuous time, distinction would be made as to 
the nature of the evolution. Let us consider two simple examples to make the 
distinction clear. 

Imagine a telephone exchange through which calls pass at random instants 
of time. If we consider the number of calls passing through upto time t, then 
we have a stochastic process (Xt ) over time set t E [0,(0). However, the state 
space of the process is {O, 1,2, ... }, which is a discrete set and the process 
evolves only through jumps. 

A different example would be the kinetic movement of a gas molecule where 
the position of the particle changes continuously with time and not through 
jumps. In other words, here the state space is also a continuum. 

In the first subsection, we will discuss a special class of processes of the first 
type, namely Markov chains in continuous time. Such processes will be used 
in connection with temporal spread of epidemics in Chapter 4. 

The second subsection would be devoted to a special class of processes 
of the second type ~ known as diffusion processes. It is worth noting here 
that a diffusion process may sometimes serve also as an approximation to a 
discrete time Markov chain and often allows us to get good approximations 
to quantities of interest, related to the original discrete chain. Indeed, it is 
mainly this application of diffusion processes which will be used in connection 
with Markov models in genetics in Chapter 3. 

The interval [0,(0) is usually taken as the time set for a continuous time 
process. Thus, we consider a family of random variables Xt, indexed by all real 
numbers t ~ 0, each taking values in a set S. This constitutes a continuous time 
process and, in analogy with discrete time processes, is denoted (Xtk::o. The 
set S is called the state space of the process. The notion of Markov property 
for stochastic processes has been already encountered in the discrete set-up. It 
simply means that at any point of time, given the present state of the process, 
the future evolution is (conditionally) independent of the history of the past. 
A simple formulation of this idea in the continuous time case is as follows. 

Definition: A process (Xtk~o with state space S is said to be a Markov process 
if, for any choice ° :::; 81 < 82 < ... < 8 n < 8 < t + 8 of time points, the 
conditional distribution of the random variable X t+s , given (XS1 "'" X Sn ' X s ), 
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depends only on X s , that is, for B c S, 

P(XHs E BIXS1 = Xl,··. ,XSn = xn,Xs = X) = P(XHs E BIXs = X). 

If, furthermore, these conditional distributions are the same for all 8, that is, the 
right side of the above equation depends only on t and not on 8, then the process 
(Xtk:::o is said to be time-homogeneous. 

In the above definition, the set B can be any subset of S in case S is a countable 
set. However, as discussed in Section 0.4, one has to be more selective, in case 
S is not countable. Of course, for almost any conceivable B, the above property 
has to hold. 

We will consider here only time-homogeneous Markov processes. Thus, for 
all t > 0 and 8 2 0, we have 

P(XHs E BIXs = x) = P(Xt E BIXo = x). 

Let us denote this by Pt(x, B). Clearly, for each t 2 0 and each point X in 
the state space S, Pt(x,·) is a probability distribution on S. This family of 
distributions, as t and x vary ~ called the family of transition probabilities ~ 
play the same role as that of the transition matrix and its powers for a Markov 
chain in capturing the evolutionary mechanism of the whole process (Xt)t::::o. 

Just like in the case of discrete Markov chains, the family of transition prob­
abilities Pt(x,·) here also satisfy the Chapman-Kolmogorov equations, which 
now reads as 

PHs(x,B) = J Ps(y,B)Pt(x,dy) for all t 2 0,8 2 o. 

The interpretation of the integral is not difficult. It is simply a notation for 
E(Ps(Xt , B) I Xo = x). We will return to this in the next two subsections and 
see that the equations take on simpler forms under special assumptions. 

0.9.1 Continuous Time Markov Chains 

In this section, we assume that the state space is countable, that is, each X t 

is a discrete random variable taking values in a countable set S. The time­
homogeneous Markov property reduces to 

P(XHs = j IXS1 = i l , ... , XSn = in,Xs = i) = Pij(t) = P(Xt = j IXo = i) 

for all 0 :::; 81 < 82 < ... < 8 n < 8 < t + 8 and i,j E S. It can be shown 
that the above equation actually implies that for any 8 > 0, the conditional 
distribution of (XHs)t::::o, given (Xu)u<s and Xs = i, is the same as that of 
(Xt)t::::o, given Xo = i. In particular, 

P(Xt+s = j IXu,u < 8;Xs = i) = Pij(t). 

If P(t) denotes the S x S matrix whose (i,j)-th entry is Pij(t), then each P(t) 
is clearly a stochastic matrix. Thus we have a family {P(t), t 2 O} of stochastic 
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matrices. Here P(O) is the identity matrix of size S. The Chapman-Kolmogorov 
equations are easily seen to correspond to the semigroup property 

P(t + s) = P(t) . P(s). 

As mentioned earlier, the family (P(t))t>o plays the same role as the sequence 
(pn)n~O of the n-step transition matrices in case of discrete Markov chains. 
The notable difference is that while the pn are all determined by the one­
step transition matrix P, it is not clear how to get one single matrix that will 
determine all the P(t) for t ~ O. We are now going to show how to do this. 

One may recall that if P : [0, (0) -t R is a continuous function with 
P(t + s) = P(t) . P(s) and P(O) = 1, then P'(O) exists and determines P(t) for 
all values of t. Indeed if P'(O) = Q, then P(t) = eQt for all t. In particular 
P' (t) = P (t) . Q = Q . P (t) for all t. Indeed this differential equation along 
with the initial condition P (0) = 1 also characterizes the function P (t) = eQt . 

Our present situation is quite similar to this except that, instead of real­
valued functions, we are dealing with an S x S matrix-valued function P(t). 
We want to show that under certain conditions, P(t) also satisfies the matrix 
differential equations 

P'(t) = Q. P(t) = P(t) . Q 

for some matrix Q = (qij). In other words, we have the following two systems 
of equations 

PL(t) = LqikPkj(t) i,j E S (33) 
k 

i,j E S (34) 
k 

Unlike in the real-valued case, the two systems are not identical. System (33) 
is always true and is known as Kolmogorov's Backward Equations. System 
(34) which is true under some additional regularity conditions, is known as 
Kolmogorov's Forward Equations, also known as Fokker-Planck equations. We 
proceed to give a derivation of the above equations, assuming that the state 
space is finite. Indeed, i~ is only in the proof of the forward equations that the 
finiteness of the state space will be used. Our derivation will also identify the 
matrix Q, frequently known as the Q-matrix of the chain. 

We first prove two basic lemmas which will give us a description of how the 
chain evolves with time. Let 

T = inf{t > 0 : X t -::f- Xo}. 

In other words, T is the first time the system leaves the initial state. 

Lemma 1: For any s, t ~ 0, 

P(T > t + si Xo = i) = P(T > t I Xo = i)P(T > si Xo = i) . 
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Proof: First assume that s > 0 and t > O. 

P(T > t + si Xo = i) P(T > t + s, T > si Xo = i) 
P(T > t + s, Xs = i, T > si Xo = i) 
P(T> s,Xs = ilXo = i) 
xP(T > t + slXo = i,T > s,Xs = i) 
P(T > si Xo = i) . P(T > t I Xo = i) , 

where the equality P(T > t + si Xo = i, T > s, Xs = i) = P(T > t I Xo = i) 
follows from the assumed Markov property. The case s = 0 and/or t = 0 
follows by taking limits. • 

A consequence of the above is that, for any i E S, there is a .Ai E [0,00] such 
that, P(T > t I Xo = i) = e-A;t for all t 2: O. In particular, P(T > 0 I Xo = i) 
is either one or zero (according as .Ai is finite or not). Also, the case .Ai = 0 
corresponds to P(T = 00 I Xo = i) = 1. Clearly, 0 < .Ai < 00 refers to an 
exponential distribution as encountered in Section 0.4. However, we agree here 
to use the term exponential distribution in a broad sense even when .Ai equals 
o or 00. 

Lemma 2: For any i, j with i -I- j and any s > 0, 

P(T> S,XT = jlXo = i) = P(T > slXo = i)P(XT = jlXo = i). 

Proof: This is clearly true if P(T > OIXo = i) = O. We assume therefore that 

P(T > 0 I Xo = i) = l. 

P(T > s,XT = j IXo = i) = P(T > S,XT = j,Xs = i IXo = i) 

= P(Xs = i, T > si Xo = i) X P(XT = j I Xo = i, Xs = i, T > s) 

= P(T > si Xo = i)P(XT = j I Xo = i, T > 0) 

= P(T > slXo = i)P(XT = jlXo = i). 

• The content of the two lemmas is the following. For every state i, there is a 
number .Ai E [0,00] and transition probabilities Pij for j -I- i. If the chain starts 
in the state i, it remains there for an exponentially distributed random time Tl 
with mean l/.Ai and then moves to state j with probability Pij, independently 
of T1 . Subsequently, the chain behaves as if started from state j. It may be 
pointed out that .Ai = 00 corresponds to P(T1 = 0 I Xo = i) = 1, meaning 
that the chain instantaneously jumps from the state i. Such states are called 
instantaneous states. It can be shown that this contingency is not possible in 
a finite state chain. In general, we assume that there are no such states. It 
may also be pointed out that .Ai = 0 corresponds to P(T1 = 00 I Xo = i) = 
1, meaning that the chain starting at i remains there forever. That is, i is 
absorbing. Thus only .Ai > 0 corresponds to the case when the waiting time in 
state i is a proper exponential random variable. In any case, from the above 
description it is clear that the evolution of the chain is completely captured 
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by the parameters (Ai,i E S) and the stochastic matrix ((Pij))i,jES with zero 
diagonal entries. 

From the above description, it should also be clear that if T1 , T2 , ... repre­
sent the successive (random) times of jumps of the chain then the sequence of 
random variables defined as 

Yo = X o, Yn = XTn for n 2:: 1 

would form a discrete time Markov chain with state space S. The one-step 
transition probabilities of the Markov chain are given by Pij, if Ai > O. For i 
such that Ai = 0, we have Pii = l. 

The chain (Yn)n;:::O is usually called the embedded chain. For many of the 
properties of the continuous time chain, like classification of states, asymptotic 
behaviour and existence of invariant distributions, it suffices to examine only 
the embedded chain. Of course, some important features that explicitly make 
use of the waiting times at various states would not be captured by the em­
bedded chain. For more on embedded chains, the reader may look at the book 
of Bhattacharya and Waymire. 

We now proceed towards proving Kolmogorov's backward equations (33). 
Let i E S be such that Ai > O. Then for any j E S and any t > 0, we have by 
conditioning on the time of the first jump from i, 

t 
L J Aie-AiSPikPkj(t - s)ds + e-Aitr5ij 
k=li 0 

t 
L e-Aitpik J AieAiUPkj(u)du + e-Aitr5ij. 
k=li 0 

Note that, in case j = i, the process starting from i may be in state j (= i) at 
time t by simply waiting at the initial state at least till time t. The term e-Aitr5ij 
occurs to take care of this contingency. Of course, for j of- i, this contingecy 
does not arise and therefore the term has no contribution. Here r5ij is the usual 
Kronecker delta, that is, r5ij equals 1 or 0 according as i = j or i of- j. The above 
equation shows that Pij(t) is continuous in t. In case the state space is finite, 
this is immediate because each summand is continuous in t. In general, one 
needs to use the Dominated Convergence Theorem. The continuity of Pij(t), 
in turn, gives differentiability also and indeed, the sum on the right side can be 
differentiated term by term. This requires the fundamental theorem of calculus 
as well as the Dominated Convergence Theorem. The upshot is 

-AiPij(t) + L AiPikPkj(t). 
k=li 

+ L e-AitpikAieAit Pkj (t) 
k=li 
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In other words, denoting 

(35) 

we get 

Plj(t) = L qikPkj(t) 
k 

Clearly the same equation also holds in case Ai = 0 because in that case 
Pij(t) = bij so that Pfj(t) = o. Thus we have proved the backward equations 
(33) with % for i,j E S defined by (35). 

We now proceed to derive the forward equations (34). Let us first observe 
that a consequence of the Equations (33) is that 

PL(O) = % for all i,j E S. 

Of course the derivative at zero is only the derivative from the right, that is, 

1. Pij (h) - bij lm ---''-'--'---::'" 
htO h 

(36) 

By the Chapman-Kolmogorovequations Pij (t + h) = 2:: Pik(t)Pkj (h) so that, 
k 

Pij(t + h) - Pij(t) _ ~ P. ( )Pkj(h) p..( )Pjj (h)-l 
h - ~ zk t h + ZJ t h 

k#-j 

Now letting h + 0 and using (36), one obtains the forward equations. It is in 
the last step - interchanging the limit and sum - that finiteness of the state 
space is used. It should be noted that because of the differentiability of Pij (t), 
the limit lim Pij(t+h)-Pij(t) equals pl.(t) for all t > O. 

h.j.O h ZJ 

The matrix Q = (( % )) is often called the infinitesimal matrix or rate ma­
trix or Q-matrix of the chain. This Q-matrix has the property that all the 
off-diagonal entries are non-negative and each row sum equals zero. Accord­
ingly the diagonal entries must be non-positive and are determined by the 
off-diagonal entries. The equation (35) shows that the Q-matrix is determined 
by the parameters (Ai,i E S) and (pij,i,j E S,i i- j). What is more im­
portant is that the Q-matrix, in turn, determines these parameters. Indeed 
Ai = -qii = 2::#i %, and, for any i,j with j i- i, Pij = -%/qii. Of course, if 
qii = 0, then clearly for each j, qij is also zero and the above ratio should be 
interpreted as zero. In a nutshell, the Q-matrix of a chain completely captures 
the evolution of the chain. The elements of the Q-matrix are often called the 
transition rates, not to be confused with transition probabilities. 

A simple but important class of continuous time Markov chains are what 
are known as Birth and Death chains. The state space is {O, 1, 2, ... }. The 
transition rates are given as follows: 

qi,j = 0 for all i, j with li - jl > 1; 
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qO,l = bo; 

It is clear that Ai = bi + di , so that the chain starting at i, waits there for an 
exponential time with mean l/(bi + di ), at the end of which it jumps to i-I 
or i + 1 with probabilities di/(bi + di ) and bd(bi + di) respectively. If we think 
of i as population size, then a jump to (i - 1) can be treated as death whereas 
a jump to (i + 1) can be regarded as birth. So the population evolves only 
through a death or a birth. Obviously from size 0, there can only be a birth. 
The parameters bi (respectively, di ) are called the birth rates (respectively, 
death rates). The Kolmogorov equations take on a simple form and are often 
not too difficult to solve. For example, the forward equations will now read 

If furthermore bi = 0 for all i, that is, there are no births, the underlying chain 
is called a pure death chain. Clearly, 0 would always be an absorbing state for 
such a chain. For some special forms of the birth and death rates, the reader 
may consult the book of Karlin. 

0.9.2 Diffusion Processes 

To simplify matters, we will assume that the state space of the process is a 
bounded interval I and, more importantly, that for each t and x, the distri­
bution Pt(x,') is absolutely continuous with density p(t, x, .). The probability 
density functions p( t, x, .) - known as the transition densities -are then easily 
seen to satisfy an equation similar to (24) of Section 0.8, namely, that for all 
t,s > 0, 

p(t+s,x,y) 1 p(t, x, z)p(s, z, y)dz. (37) 

These are the Chapman-Kolmogorov equations for transition densities in the 
continuous time case. 

Suppose now that we have a process (Xtk~o that satisfies, in addition to 
the above, the following properties: 

E(Xt+h - Xt!Xt = x) 

E(IXt+h - X t l2 1Xt = x) 

E(IXHh - Xtl k IXt = x) 

a(x)h + o(h), 

b(x)h + o(h), 

o(h), for k 2: 3. 

(38) 

(39) 

(40) 

Recall that a function g(h) is said to be of smaller order than h, written o(h), 
if g(h) / h --+ 0 as h --+ O. For subsequent use, let us also recall that g(h) is said 
to be at most of the order of h, written O(h), if g(h)/h remains bounded as 
h --+ O. In both places we are only considering the behaviour near zero. 

That the left sides of the equations (38) through (40) are independent of t 
is, of course, a consequence of the time-homogeneity property. Here a(·) and 
b(·) are two functions on the state space I and are known as the drift coefficient 



64 CHAPTER O. PROBABILITY TOOLS AND TECHNIQUES 

and diffusion coefficient respectively. The equations (38)-(40) can equivalently 
be expressed in terms of the transition densities as: 

~ (y -x)p(h,x,y)dy a(x)h + o(h), ( 41) 

~ Iy - xI2p(h,x,y)dy b(x)h + o(h), (42) 

~ Iy - xlkp(h,x,y)dy o(h), for k ~ 3. (43) 

Definition: By a diffusion process, we will simply mean a time homogeneous 
Markov process (Xt)t>o with transtion density p(t, x, y) that satisfies the properties 
(37) and (41)-(43). -

A substantial and mathematically deep theory of diffusion processes exists. 
See, for example, the book of Bhattacharya and Waymire. One of the major 
concerns of the theory is to show that, under suitable conditions on the func­
tions a(·) and b(·), a unique diffusion process with required properties exists 
which, moreover, has nice additional features like, for example, having 'contin­
uous paths'. Further, by imposing suitable conditions on a(·) and b(·), one can 
also ensure that the transition density of the resulting diffusion is sufficiently 
smooth in the state variables x and y. However, the mathematical depth of 
formal diffusion theory is inappropriate at this level, and also, high techni­
cal rigour is somewhat unnecessary for our present purposes. Accordingly, we 
choose not to get into the theory here. We will assume much of what we need 
and, instead, try to focus on how to apply it. In particular, we assume without 
question that a unique diffusion process with given drift and diffusion coeffi­
cients does exist and that its transtion density p(t,x,y) is twice continuously 
differentiable in both the state variables x and y. 

Before proceeding any further, let us also assume that the state space I 
of the diffusion process is the unit interval [0,1]. Now let 9 be any twice 
continuously differentiable function on [0,1] with g(O) = g(l) = g'(O) = g'(l) = 
0. Using (37) we have 

~ g(z)p(t+h,x,z)dz ~ ~ g(z)p(t,x,y)p(h,y,z)dydz. 

Using the Taylor expansion of 9 around y, namely, 

g(z) = g(y) + (z - y)g'(y) + ~(z - y)2g"(y) + O(lz _ y13) 

on the right side of (44), we get 

Jg(y)p(t,x,y)dy + Jg'(y)[f(z-y)p(h,y,z)dz]dy 
+ ~ J g" (y)p(t, x, y)[f(z - y)2p(h, y, z) dz] dy 
+ J p(t, x, y)[f O(lz - YI3)p(h, y, z) dz] dy. 

(44) 
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Making use of (41)-(43), equation (44) can now be rewritten as 

1 g(y)[P(t + h, x, y) - p(t, x, y)] dy 

= [I g'(y)p(t'X,y)a(Y)dY+~1 gll(y)p(t,x,Y)b(Y)dY] h+o(h). 

Dividing both sides by h and taking limits as h + 0, we obtain 

1 g(y):t[P(t,x,y)]dy 

= 1 g'(y)a(y)p(t, x,y) dy + ~ 1 g"(y)b(y)p(t,x, y) dy. 
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Applying integration by parts once on the first term of the right side and twice 
on the second term, and, using the assumed boundary conditions satisfied by 
g, we get 

1 g(y) :l(t, x, y) dy 

1 8 1 82 

= g(y){ - 8y (a(y)p(t, x, V)) + 2 8y2 (b(y)p(t, x, v))} dy. 

Since this equation is valid for all functions g satisfying the assumed conditions, 
we must have 

8 8 1 82 

8tP(t, x, y) = - 8y (a(y)p(t, x, V)) + 2 8y2 (b(y)p(t, x, v)) . (45) 

This partial differential equation (45) for the transition density function is 
known as the Kolmogorov's Forward Equation or the Fokker-Planck Equation 
and is of fundamental importance in diffusion theory and its applications. A 
similar equation, called the Kolmogorov's Backward Equation for the transition 
density, can be derived much more easily as follows. 

From (37), we have 

p(t+h,x,y) = 1 p(h,x,z)p(t,z,y)dy (46) 

Using the Taylor expansion of p(t, z, y) as a function of z around the point 
z = x, that is, the expansion 

( ) ( ) ( )8p(t,x,y) 1( )282p(t,x,y) 0(1 13) 
pt, z, Y = pt, x, Y + z - x 8x + 2 z - X 8x2 + z - x 

on the right side of (46), we get 

p(t + h, x, y) = p(t, x, y) + 8p(~:, y) j (z - x)p(h, x, z) dz 

182p(t,X,Y)j 2 j 3 +2 8x2 (z-x) p(h,x,z)dz+ O(lz-xl )p(h,x,z)dz. 
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Using properties (41)-(43) again, we obtain 

( ) ( ) { ( )op(t,X,y) 102p(t,X,y)} h (h) 
p t+h,x,y -p t,x,y = a x ox +"2 ox2 +0. 

Dividing both sides by h and taking limits as h + 0 leads finally to 

op(t,x,y) = ()op(t,X,y) ~b( )02p(t,X,y) 
at a x ox + 2 X ox2 (47) 

which is the so called backward equation and will be more useful in the sequel. 

We now proceed to show some examples as to how the equation (47) can 
be used to evaluate certain quantities of interest related to the underlying 
diffusion. Let us consider, for example, the function 

y 

F(t, x, y) = J p(t, x, z) dz, 
o 

O<x<l. 

Clearly F(t,x,y) = P(Xt ::; ylXo = x). It follows easily from (47) that the 
function F satisfies the differential equation 

of(t,x,y) = ()oF(t,x,y) ~b( )02F (t,X,y) 
at a x ox + 2 X ox2 . (48) 

This, of course, involves several interchanges of differentiation and integration. 
But, as mentioned earlier, we will not worry about such technical issues. We 
will simply put it on record that they can all be justified with some work. 

Suppose now that for the diffusion process under study, both the states 0 
and 1 are absorbing states. For i = 0,1, let Ai(t, x) denote the probability that 
the diffusion process starting at state x gets absorbed in state i at or before 
time t. It is clear then that 

Ao(t,x)=limF(t,x,y) and AI(t,x)=l-limF(t,x,y). 
yto ytl 

By passing to the limits in (65) as y + 0 or as y t 1 we obtain, 

oAi(t,x) = ()oAi(t,x) ~b( )02 Ai(t,x) 
A ax a + x 02 . t x 2 x 

(49) 

It should be noted that though both Ao(t,x) and AI(t,x) satisfy the same 
partial differential equation, the solutions would be different (as they should 
be) because they satisfy different boundary conditions, namely, Ao(t,O) = 1 
and Ao(t, 1) = 0 whereas Al (t, 0) = 0 and Al (t, 1) = l. 

Let us denote by Ai(X), for i = 0,1, the probability that the process starting 
at the state x ever gets absorbed in the state i. Clearly 

Ai(X) lim Ai ( t, x) . 
ttoo 
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. . A ( ) . 8 AJ t, x) By a standard result of calculus, smce hm i t, x eXIsts, 8 -+ 0 as 
ttoo t 

t -+ 00. It thus follows, by letting t -+ 00 in (49), that Ai(X) satisfies the 
differential equation 

( ) dAi(X) !b( )d2 Ai (x) = 0 
a x dx + 2 X dx2 . 

(50) 

It should again be noted that, although Ao (x) and Al (x) satisfy the same 
differential equation, the boundary conditions are different for the two. For 
Ao(x), for example, the boundary conditions are Ao(O) = 1 and Ao(l) = O. 
Using these, one can easily solve (50) explicitly to get 

I 

J 1jJ(y) dy 

Ao(x) x (51) 
1 

J 1jJ(y) dy 
o 

where 

1jJ(y) exp { -2 ! :~;~ dz } (52) 

Similarly, for AI(X), using the boundary conditions A1 (0) = 0 and Al(l) = 1, 
one gets 

x 

J 1jJ(y) dy 
o (53) 
1 

J 1jJ(y) dy 
o 

Of course, AI(X) = 1- Ao(x), as it should be. 

Having thus obtained simple formulae for the absorption probabilities, let 
us next turn to the time until absorption. Let T denote the random variable 
representing the time until absorption. Let us write 

A(t, x) 

where Ai(t, x) are as defined earlier. Then A(t, x) also satisfies the same partial 
differential equation (49). Notice, however, that A(t,x) is just the probability 
that T ::; t given Xo = x; in other words, A(t, x) is the probability distribution 
function (in t) of T, conditional on the initial state being x. Suppose now that 
for each x E (0,1), this conditional distribution is absolutely continuous with 
density function <p(t, x), t 2: O. Since A(t,x) satisfies the equation (49) we will 
then have 

<p(t, x) 
8A(t, x) 

8t 
( ) 8A(t,x) + !b( ) 82A(t,x) 

a x 8x 2 X 8x2 ' 
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so that 

On differentiating with respect to t (and, of course, assuming again that in­
tegration with respect to s and differentiation with respect to x in the above 
equation can be interchanged) one obtains that 

( ) o'P(t, x) ~ b( ) 02'P(t, x) 
a x ox + 2 X ox2 . (54) 

Suppose now that we are interested in the mean time till absorption, that is, 
III 

00 

T(x) E(TIXo=x) jt'P(t,X)dt. (55) 

o 
Let us assume that t'P(t,x) ---+ 0 as t ---+ 00. One then has 

00 00 00 

1 = j 'P(t, x) dt = [t'P(t, x)ll::~ - j t o'P~; x) dt = - j t o'P~; x) dt. 
o 0 0 

Now using (54) we have 

00 

1 _/ { ()o'P(t,x) ~b( )02'P(t,x)} d 
t a x ox + 2 X ox2 t . 

o 

Assuming once again that the t-integration and x-differentiation can be inter­
changed, one obtains T(x) to satisfy the ordinary differential equation 

a(x) dT(x) + ~ b(x) d2T(x) = -1. 
dx 2 dx2 

The obvious boundary conditions now are T(O) = T(l) = O. Using the standard 
method of integrating factors, one obtains the solution to be 

~ 

I 1jJ(Z) dz 1 

T(x) = -2 J 'ljJ(z) (J b(y)~(y) dY) dz + 2 01 I'ljJ(z) (J b(y)~(y) dY) dz, 
o 0 I 1jJ(z) dz 0 0 

o 
(56) 

or equivalently . 
x (x ) I 1jJ(z) dz 1 ( 1 ) 

T(x) -2 I b(y)~(y) I 'ljJ(z) dz dy + 2 01 I b(y)~(y) I 'ljJ(z) dz dy, 
o y I 1jJ(z) dz 0 Y 

o 
(57) 
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where'l/J is as defined in (52). After some algebra, this solution can equivalently 
be expressed in the form 

where 

t(x,y) 

T(x) 

1 

J t(x, y) dy, 

o 

j2AO(X) [b(Y),p(y) I ,,(z) dz l~: 

2Al(X) [b(Y)'l/J(y)['l/J(Z)dZ] 

(58) 

if O:;y:;x 

(59) 

where Ai(x) are as defined earlier. The above representation is not fortuitous. 
It can be shown, although we skip it here, that the function t(x, y) has the 

Y2 
following interpretation. For 0 :; Yl < Y2 :; 1, the integral J t(x,y) dy is 

YI 
the mean time that the diffusion process starting at x spends in the interval 
(Yl, Y2). In particular, if 9 is a well-behaved function on the state space, then 

1 

J g(y)t(x,y)dy. 

o 

For each fixed non-absorbing state x, the function t(x,·) is what is called the 
sojourn time density of the diffusion starting at the state x. 

We end this section here by simply mentioning that it is possible to derive 
T 

the higher moments of the absorption time - more generally, of J g(Xs) ds 
o 

- by proceeding in exactly the same way, except that the formulae become 
complicated. 
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