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PREFACE: 
WHAT IS ALL THIS ABOUT? 

This book grew out of lectures given by the authors - over various semesters 
spanning the last decade - at the Indian Statistical Institute, in a course with 
the same name for students at Masters' level in Statistics. The main aim of 
the book is to illustrate some applications of elementary theory of Stochastic 
Processes in various applied fields. We emphasize that this book is only an 
introduction to applications in certain fields and by no means an extensive 
account of all possible applications. There are many areas where theory of 
Stochastic Processes finds important applications that have been left out of 
the purview of this book. It is only hoped that this book will be able to cre­
ate the right initiation so that an interested reader may move on to learning 
applications in his/her field of interest. 

This book is intended for both undergraduate as well as graduate students 
in Statistics. This may be particularly useful for those who are interested in 
pursuing further studies in applications of Probability Theory. As a further 
justification, if one is needed, we would like to add the following. Several 
interesting and deep applications of elementary theory of Stochastic Processes 
in many different fields have been known for a long time. In fact, it is such 
applications that have driven much of the research of many eminent probabilists 
like W. Feller, A. N. Kolmogorov and B. V. Gnedenko, and more recently, 
S. Karlin, U. Grenande.r, P. Diaconis and M. Talagrand. Demands of such 
applications, in turn, have enriched the theory of Stochastic Processes. One 
case in point is the beautiful application of the theory of Finite Markov Chains 
in Genetics. 

Unfortunately, this applied aspect of Probability Theory, in general, and 
Theory of Stochastic Processes, in particular, seem to have been largely ig­
nored in the Statistics curriculum of Indian universities. This is evidenced 
by the lack of any specific course - at either the undergraduate or the mas­
ters' level - meant exclusively for such applications. This is despite the fact 
that the necessary theory of Stochastic Processes is covered in any standard 
masters' course in Statistics. Part of the reason could be the lack of easily 
available text books primarily devoted to such applications. We hope that the 
present book will help remove that void and provide an impetus for people to 
seriously think of having a course based on such beautiful applications. Even 
otherwise, this can be used as a supplementary book in any regular course 
on Stochastic Processes. Here is another way in which we believe the present 
book may be useful. Imagine a fresh Ph.D. student who wants to carry out 
research in Applied Stochastic Processes. Where does she start from? The 
current literature is filled with diverse applications at equally diverse levels -
Finite Markov Chains in Learning Models to Diffusion Processes in Population 
Genetics to Infinite-Dimensional Stochastic Calculus in Mathematical Finance 
to Large Deviation Methods in Spin Glass Theory - making it difficult to 
choose a starting point. Hopefully the present book will provide one. 

IX 



x PREFACE 

In terms of pre-requisites, the book does not demand much. Although an 
exposure to elementary Probability Theory would help, it is by no means es­
sential. Chapter 0 is meant to supply the necessary background in Probability. 
The only real pre-requisite is an exposure to undergraduate Linear Algebra and 
Calculus, and of course, the necessary motivation. 

We would like to highlight one interesting feature of the present book. 
A substantial amount of basic Martingale Theory and Theory of Diffusion 
Processes have been presented in this book and we have been able to do this 
without resorting to any measure- theoretic framework. We have not just 
'conveyed the idea without rigour' - in most cases, we have given completely 
rigorous proofs. 

Here is a brief summary of what the reader is in for. Chapter 0 gives a brief 
introduction to the necessary background in Probability. It almost starts from 
scratch and takes the reader through to Martingale Theory, Markov Chains, 
and a little of Diffusion Processes. Chapter 1 discusses the elementary theory 
of Discrete Time one-dimensional Branching Processes a la Galton-Watson. 
Much of the material covered here is available in the books of Harris, Feller 
and Karlin, as referred to at the end of the chapter. Chapter 2 is preparatory 
to Chapter 3. It contains the necessary introduction to Mathematical Genetics 
and the relevent Probability Models. An important topic here is the Hardy­
Wienberg Laws. Some of the basic concepts in Population Genetics like SeHing, 
Sibmating, Gene Identity are elaborately discussed in this chapter and some 
related mathematical analyses are presented. Chapter 3 contains one of the 
most important and interesting topics of this book. We mainly discuss various 
Markov Chain models in Population Genetics. Of course the classical Wright­
Fisher Model is the starting point. But many other models, not easily available 
in standard texts, are discussed at length. Towards the end, some nice Diffusion 
approximations to these Markov Chains are also discussed. Chapter 4 discusses 
Stochastic models in the spread of Epidemics. Some non-Stochastic models are 
discussed first to create motivation for their Stochastic counterparts. It is only 
in this chapter that we use some Continuous Time Markov Chain models. The 
most important topic in this chapter - at least in our opinion - consists of 
the Threshold Theorems. These theorems are believed to depict, in a nut shell, 
the temporal spread of Epidemics. At the end of each chapter, we have given a 
list of references as suggested supplementary readings. This is primarily aimed 
at readers who might take an active interest in pursuing further studies in 
these areas. Each of the chapters contain a fairly large number of exercises and 
except in Chapter 0, these exercises are given at the end of the chapters. In 
Chapter 0, the exercises are spread out over various sections. Sometimes the 
exercises are accompanied by enough hints, whenever deemed necessary. It is 
advisable for a serious reader to attempt the exercises as far as possible. Many 
of the exercises are taken from the various sources referred to throughout the 
book. For the sake of brevity we refrain from specific acknowledgements. The 
index at the end should be of help for a quick reference to important concepts 
and definitions. With a few exceptions, items are listed only according to their 
first appearance. 



PREFACE xi 

We usually cover chapters 1 through 4, in a one-semester M.Stat. course 
in our Institute. Most of Chapter 0 is not necessary in that course, because 
the students come with a fairly extensive exposure to basic Probability Theory 
and the theory of Markov Chains. It may be a little too tight to cover all this 
material in one semester, if one also has to do a substantial part from Chapter 
O. In such cases, one of the following two options may be tried: Chapter 0 plus 
chapters 2 through 4 or Chapter 0 plus chapters 1 through 3. There should be 
other meaningful ways of making a coherent one-semester course out of selected 
material from this book. 

We would like to acknowledge support from our various colleagues at the 
Institute. Special thanks are due to Professor T. Krishnan for giving the first 
impetus to undertake the work, supporting it throughout and also for his in­
numerable queries 'Finished?', usually with a meaningful smile towards the 
later stages, as he felt that the end of the project was nowhere in sight. This 
book, perhaps, would not have taken shape without him. We thank Professor 
K. K. Roy for using a preliminary draft of the book in his course. Professor 
Arup Bose patiently went through the first draft of the book and pointed out 
a number of typos and mistakes. We thank him for that. We got many valu­
able suggestions and pointers to typos from the anonymous referees. We have 
tried to incorporate many of the suggestions. We are indebted to the referees. 
Finally we thank Professors R. L. Karandikar and R. Bhatia for making it 
possible for the book to be published in the TRIM series. 

A. Goswami B. V. Rao 



Chapter 0 

PROBABILITY TOOLS 
AND TECHNIQUES 

0.1 Probabilities and Conditional Probabilities 

The theory of probability is a mathematical theory to analyze experiments 
with multiple outcomes where one does not know a priori which outcome will 
actually occur. Such experiments are usually called random experiments. A 
natural and accepted way to model such phenomena is to associate a number 
called probability to each possible outcome. These numbers are supposed to 
reflect the chances of occurrence of the different outcomes. How these numbers 
are arrived at (more specifically, the numerical value of these probabilities) is 
not the major concern in developing a mathematical model. It must however 
be noted that in practical applications of probability models, these numerical 
values would matter in determining how close the model is to reality. Before we 
go to the axiomatic definition of probability, here are a few simple and familiar 
examples. 

Example 1: The simplest example of a random experiment is tossing a coin. 
Here there are two possible outcomes: either the coin lands Head up or Tail up. 
The two possibilities can conveniently be denoted by Hand T respectively. A 
mathematical model would then associate two numbers p and q which will de­
note the probabilities of Hand T respectively. At this point let us agree on the 
following convention. First, we want the chances to be non-negative numbers 
and second, we want the chances of all possible outcomes to add up to one. 
Instead of trying to justify this, let us note that this is consistent with one's 
intuition of 'chances'. In the absence of a priori knowledge, one is inclined to 
believe that p and q should be equal, which according to the above convention 
forces p = q = ~. 
The above model can be thought of as an abstraction of any dichotomous 
experiment, that is, an experiment with two possible outcomes. For exam­
ple, consider a machine manufacturing bolts where each bolt produced by the 

1 
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machine has a chance of being defective. Here again we have two outcomes: 
defective and non-defective. We can still label them as Hand T. Of course, in 
this case P = q = ~ does not appear realistic because any reasonable machine 
is expected to produce a much larger proportion of non-defective items than 
defective items. 

Example 2: Consider a usual six-faced die with faces numbered 1 through 6. 
If it is rolled once, anyone of the six faces may show up. So there are six 
outcomes which could be denoted by the numbers 1 through 6. If nothing else 
is known, it seems intuitively clear that each of these outcomes should have 
probability 1/6. 

Example 3: Pick up a name at random from the telephone directory and con­
sider the first letter. It can be anyone of the 26 letters of the alphabet. At 
the same time, not all the letters are equally likely to appear. For example, 
one certainly does not expect the letter X to occur as frequently as B. Thus it 
would not be reasonable to attribute equal probabilities to all the outcomes. 

All the above examples show that a random experiment consists of two 
ingredients: first, the set of possible outcomes, to be called the sample space 
- denoted by D, and second, an assignment of probabilities to the various 
outcomes. Of course, in all the above examples, the set D is only a finite set, 
that is, D = {Wl, ... , wn }. In this case probability assignment means assign­
ing non-negative numbers Pl, ... ,Pn adding up to unity, where the number Pi 
denotes the probability of the outcome Wi. We write P({Wi}) = Pi. Often we 
will be interested not in individual outcomes but with a certain collection of 
outcomes. For example, in rolling of a die we may ask: what is the probability 
that an even-numbered face shows up? In the context of a name being selected 
from the telephone directory we may ask: what are the chances that the letter 
is a vowel? These are called events. In general an event is any subset of the 
sample space. The probability of an event A is defined by 

P(A) = I: P({w}) 
wEA 

where P( {w}) denotes the probability of the outcome w. 

Example 4: Suppose we roll a die twice. The sample space is 

D {(i,j);I:Si:S6;I:Sj:S6} 

We assign equal probabilities to all the 36 outcomes, that is, for any wED, 
P( {w}) = 1/36. If A is the event described by "first face is even", then A 
consists of {(i,j): i = 2,4,6; 1:S j:S 6} and P(A) = 1/2. If A is described by 
"sum of the two faces is 5" then A consists of {(I, 4), (2,3), (3,2), (4, I)} and 
P(A) = 1/9. 

As the above example shows, if, in general, we have a finite sample space 
with all outcomes equally likely, then for any event A, P(A) = IAI/IDI where, 
for any set B, IBI denotes the number of elements of the set B. In these 
situations, probability computations become a combinatorial exercise. 
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In any case, equally likely or not, one can easily verify that probabilities of 
events satisfy the following properties: 

1. 0:::: peA) :::: 1, P(D) = 1. 

2. peA U E) = peA) + P(E) whenever An B = 0. 
In particular, P(AC) = 1 - peA). 

So far we have restricted ourselves only to finite sample spaces but the 
same idea as described in the paragraph following Example 3 applies also to 
situations where D is count ably infinite. With D = {W1' W2, ... } and non­
negative numbers P1,P2, ... , adding to unity, one can define peA) = 2: Pi for 

wiEA 
A c D, as probability of the event A. One neecs only to notice that the sum 
appearing in the definition of peA) may now Le an infinite series. But with 
usual caution as necessary while dealing with infinite sums, one can show that 
the above properties hold and one has moreover, 

3. P(A1 U A2 U···) = peAr) + P(A2) +... if Ai n Aj = 0 for i i- j. 

We now give a formal definition of probability. 

Definition: Let D be a countable set. A probability on D is a function P defined 
on all subsets of D satisfying the following conditions. 

(0) P(0) = 0 and P(D) = 1 
(1) P(Ui Ai) = 2:i P(Ai) if Ai n Aj = 0 for i i- j. 

The next few exercises list some standard properties that are easy conse­
quences of the definition. 

Exercise 1: Let P be a probability on D. Then 
(a) 0:::: peA) :::: 1; P(AC) = 1 - peA); if AcE then peA) :::: P(B). 
(b) peA U E) = peA) + P(E) - peA n E). More generally, 

n 

P(U Ai) = 51 - 52 + 53 - ... 

where 5i denotes the sum of probabilities of i-fold intersections. 
(c) If An t A then P(An) t peA). If An -I- A then P(An) -I- peA). 

Exercise 2: For a sequence (En) of events, one defines 

lim sup En = n U E k · 
n 

(1) 

Show that lim sup En is the event that En occurs for infinitely many n (some-
n 

times described as the events En occurring infinitely often). Show that if 
2: PeEn) < 00, then P(lim sup En) = O. This is called (the first) Borel-Cantelli 

n 
Lemma. 
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Exercise 3: Suppose that p is a non-negative function on 0 such that L:w p(w) = 
1. Then P(A) = L:wEAP(W) defines a probability on O. 

From now on, by a random experiment, we mean a pair (0, P) where 0 is a 
non-empty countable set and P is a probability on O. The number P(A) repre­
sents the probability that the event A will occur when the random experiment 
is performed. Of course, if the experiment is really performed and we know 
the exact outcome, there is no need for probabilities. Probability of an event 
is really an assessment of the chance of occurrence of the event irrespective 
of whether the experiment is actually conducted and we know the outcome or 
not. However, sometimes we may have a situation where a random experiment 
is performed and some partial information is available to us about the outcome 
and we are to assess the chances of an event taking this additional informa­
tion into account. It is intuitively clear that we should modify probability 
assignments of events in the presence of this additional information. 

Consider the example of rolling a die twice with all outcomes being equally 
likely. The probability that the first face is 3 is already known to be 1/6. But 
suppose now we have the additional information that the sum of the two faces 
is 5. This information already tells us that the outcome must be among (1,4), 
(2,3), (3,2) and (4,1), so that the chance of first face being 3 is now 1/4. Such 
probabilities are called conditional probabilities. More precisely, if A is the 
event that the first face is 3 and B is the event that the sum of the two faces 
is 5, then the unconditional probability of A is 1/6 whereas the conditional 
probability of A given that B has occured is 1/4. This later probability is 
denoted P(A I B). Here is the general definition. 

Definition: Let (0, P) be a random experiment and let B c 0 be an event with 
P(B) > o. Then for any event A, the conditional probability of A given the event 
B is defined by 

P(AIB) = p(AnB) 
P(B) . 

In the equally likely case (as in the earlier example) this reduces to 

P(AIB) = IAnBI 
IBI . 

The following can be easily verified: 

Theorem 0.1: 

1. Fix B and let PB(A) = P(AIB), then PB is a probability on O. 

2. P(A n B I C) = P(A I B n C) P(B I C). More generally, 

n 

P(A1 n··· n An I An+d = IT P(Aj I Aj+l n··· n An+d· 
j=l 

(2) 
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3. If BI , ... ,Bn is a partition of n then for any event A 

M ore generally, 

P(AIC) = L p(AIBinC)p(BdC). 

4. If BI , ... ,Bn is a partition of n then for any event A 

Exercise 4: P(A I B) :::; P(A) if and only if P(B I A) :::; P(B). In particular, 
P(A I B) = P(A) if an only if P(B I A) = P(B). 

Let us return to the example ofrolling a die twice. Let, as earlier, A be the 
event that the first face is 3 and B be the event that the sum of the two faces is 
5. Then P(AIB) = 1/4> 1/6 = P(A). So here the additional information has 
the effect of increasing the chances of A. On the other hand if we consider the 
event C that the sum is 11, then clearly P(A I C) = 0, that is, the additional 
information reduces the chances of A (to indeed zero!). Does it always happen 
this way? That is, will additional information always change the chances one 
way or other? The answer is NO. For example if D is the event that the sum 
is 7, then P(A I D) = 1/6 = P(A). That is, the probability of A remains 
unchanged even if we are told that D has occured. This situation is described 
by saying that A is independent of D. Here is the precise definition. 

Definition: Two events A and B are said to be independent if P(A n B) = 
P(A)P(B). 

Of course when one of the two events, say, B has positive probability then A 
and B are independent is the same as saying P(A I B) = P(A). 

Exercise 5: If A, B are independent, then AC, B are independent; A, BC are 
independent ; A c, BC are independent. 

Definition: Events AI, A 2 , ••• , An are said to be independent if for any 1 :::; 
i l < i2 < ... < ik :::; n 

Exercise 6: Let AI, A2 , ... , An be independent. 
(i) If for each i, Bi denotes one of the events Ai or AI then BI , B 2 , ... , Bn are 
independent. 
(ii) If 1 :::; j < n, nl5,jBi is independent of ni>jBi . UI5,jBi is independent of 
ni>jBi . UI<jBi is independent of Ui>jBi . Here Bi are as in (i). 

The assertions in (ii) above are merely special cases of a more general phe­
nomenon: if 1 :::; j < nand C is an event "constructed" out of AI, ... ,Aj and 



6 CHAPTER O. PROBABILITY TOOLS AND TECHNIQUES 

D is an event constructed out of A j +1 , ... ,An, then C and D are independent 
events. This is intuitively clear, but a formal proof requires more machinery 
than what is available at this level. 

Often random experiments can be thought of as composed of simpler ran­
dom experiments in the sense explained below. If you toss a coin twice you can 
describe the outcomes of the experiment by 0 = {H H, HT, T H, TT}. Notice 
that 0 = {H, T} x {H, T}, that is, 0 is the two-fold product of a single toss 
experiment. More generally, the sample space for 10 tosses of a coin (or a toss 
of 10 coins) can be thought of as the ten-fold product of {H, T}. But what is 
important is that not only the sample space can be thought of as a product, 
but the probabilities of the outcomes can also be thought of as products. Here 
is the general method. 

Let (Oi, Pi), for 1 :S i :S n, be random experiments. Put 

For w = (Wl, ... ,wn) EO, put P({w}) = PI ({wd) x ... x Pn({wn }). One can 
now define P(A) for any A c 0, thus getting a probability P on O. 

n 

Exercise 7: If A = Al X A2 X ... x An then P(A) = TI Pi(Ai). Conclude 
i=1 

that if Ai c 0 is the set of all points in 0 whose i-th coordinate is in Ai then 
AI , ... , An are independent. 

The exercise above really means that events that depend on different co­
ordinates are independent. This, of course, is a consequence of the way the 
probability P has been defined on O. It is clearly possible to construct other 
probabilities P on 0, such that P(Ai) = Pi (Ai ) for all i, but independence fails. 
One can easily see that 10 tosses of a coin with all outcomes equally likely is the 
same as the ten-fold product of single toss of coin with P(H) = P(T) = 1/2. 

If 0 1 = O2 = ... = On, then we write 0 = Or· If further PI = P2 = ... = 
Pn , then we write P = Pln. (Or,Pln) represents n independent repetitions of 
the experiment (OI,Pd. 

0.2 Random Variables and Distributions 

In the context of random experiments, the actual outcomes may often be quite 
abstract. For example, if you toss a coin 10 times, outcomes will be 10-tuples of 
H's and T's. Often one is interested not in the exact outcome per se but some 
numerical value associated with each outcome. For example, in case of 10 tosses 
of a coin, one may be interested in the number of times heads showed up or in 
the number of times a tail was immediately followed by a head. Such numerical 
values associated with outcomes are what are called random variables. This 
section is devoted to a study of random variables and their distributions. 
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0.2.1 Distribution of a Random Variable 

Definition: A random variable is a real-valued function defined on the sample 
space O. 

It is customary to denote random variables by X, Y, Z etc. For example, in 
10 tosses of a coin, let X denote the total number of heads and Y denote the 
number of times a tail is immediately followed by a head. Then for the outcome 
w = HTTHTTTHHH, X(w) = 5 and Yew) = 2, while for another outcome 
w' = THHTHTHHTH, X(w') = 6 and yew') = 4. 

Given a random variable, we can ask what the possible values of the random 
variable are and the chances (probabilities) of it taking each of those values. 
This is what is called the distribution of the random variable. Since our sample 
space is countable, any random variable can only take count ably many values. 

Definition: Let X be a random variable on (0, P). Then by the distribution of 
X is meant the set of possible values D = {Xl, X2, ... } of the random variable X 
and the probabilities {P(Xl)' P(X2)' ... } where p(Xi) = pew : X(w) = Xi). The 
right side is often abbreviated as P(X = Xi). 

Of course, p can be extended to a function on R by setting p(x) = P(X = x). 
However, for any X (j. D we have p(x) = O. This p is called the probability mass 
function (p.m.f.) of the random variable X. 

Once we know the probability mass function of a random variable X, we 
can compute for any A c R, the probability P(X E A) by the formula 

P(X E A) = l: p(x). 
xEA 

Example 1: Consider n independent tosses of a coin. Assume that in each 
toss the probability of heads is p. Define X to be the total number of heads 
obtained. Clearly X is a random variable which can take any integer value 
from 0 to n. One might wonder: how do we get a random variable even before 
describing the sample space. We concede that we were jumping steps. So 
here is our sample space: (O,P) = (Or, pr) where 0 1 = {H,T}; Pl(H) = P 
and PI (T) = 1 - p. The definition of the random variable X as a real-valued 
function on 0 should now be clear. It is also easy to verify that the probability 
mass function of X is given by 

p(X) (~)px(1_p)n-x forxE{O,l, ... ,n} 

p(x) 0 forx(j.{O,1,2, ... ,n} 

This random variable is called the Binomial random variable with parameters 
nand p, in short, a B(n,p) random variable. We write X rv B(n,p) for this. 
The distribution is called the Binomial distribution. 

Almost all the information about the random variable X is contained in 
its distribution (or its p.m.f.) ~ the underlying sample space or the precise 
definition of X as a function on the sample space is of no additional importance. 
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Therefore it is often customary to describe random variables simply by their 
distributions without any reference to any underlying sample space. 

Example 2: Fix a number p with 0 < p < 1. A random variable X is said 
to have G(p) distribution - geometric distribution with parameter p - if X 
takes value x with probability p(l - p)X for x E {O, 1, ... }. In other words, X 
has p.m.f. 

p(x) = p(l - PY for x E {O, I, ... } 

It is to be understood here and elsewhere that p(x) = 0 for all other x. Suppose 
you have a coin with chance of heads p. If the coin is tossed repeatedly until a 
head shows up, then the number of tails preceeding the head has this geometric 
distribution. 

Example 3: Here is a generalization of the above example. Again we have a 
coin for which the chance of a head in each toss is p. Fix an integer m 2: 1. Toss 
the coin until a total of m heads show up. (What is the sample space?) The 
random variable X is the total number of tails obtained. Clearly X takes values 
x = 0,1,2, ... as earlier. A simple combinatorial argument shows that P(X = 
x) = (x~,::,;:-I) (1 - p ypm. This random variable is called a negative binomial 
random variable with parameters (m,p) - in short, N B(m,p) random variable 
- and the distribution is called the negative binomial distribution (why?). 
Clearly when m = 1, we get the geometric random variable of Example 2. 

Example 4: Fix integers N, n < N and NI < N. A random variable X is said 
to be Hyp(N, NI; n) - hypergeometric with parameters N, NI and n - if it 
takes value x with probability 

Of course you have to interpret (~) = 0 unless b is an integer with 0 :::; b :::; a. 
This arises if you have a bunch of N items of which NI are good, the remaining 
are defective and you select a random sample of size n without replacement. 
The random variable in question is the number of good items in the sample. 

Example 5: Fix a number ,X. > O. A random variable X is said to be P('x'), 
written X ,...., P('x') - Poisson with parameter ,X. - if it takes value x with 
probability e-A,X.x/x ! for x = 0,1,2, .... This random variable arises as a 
limiting case of the number of heads when you toss a coin a large number of 
times and the chance of heads in each toss is very small. For details see Section 
0.3. 

Example 6: Roll a fair die twice and let X be the sum of the two numbers 
obtained. Then X takes values 

2, 3, ... , 7, 8, ... , 12 

with probabilities given respectively by 

1/36,2/36, ... ,6/36,5/36, ... ,1/36. 
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Suppose that a fair coin is tossed ten times and X is the number of heads. 
Clearly X can take anyone of the values 0,1,2, ... , 10 with different proba­
bilities, the actual value depending on the outcome of the ten tosses. But if 
we were to choose one "representative value" of X without knowing the actual 
outcome, what would be a good candidate? One possibility is to consider the 
most probable value, which in this case is 5. However a commonly used and 
mathematically more tractable quantity is what is known as the expected value. 
As the next definition shows, this is weighted average of the possible values. 

Definition: Let X be a random variable with set of values D and p.m.f. p(x) for 
x E D. If LXED Ixlp(x) < 00 (automatically true if D is finite), then X is said 
to have a finite expectation and the expected value of X is defined to be 

E(X) = L xp(x). (4) 
xED 

Thus, expected value of a random variable, when it exists, is the weighted 
average of its values, weighted by their probabilities. Expected value or expec­
tation is also called the mean value or the mean. 

If X is a random variable and 9 : R ----t R is a function then clearly g(X) is 
again a random variable. It is not difficult to check that g(X) has finite expec­
tation iff LXED Ig(x)lp(x) < 00 and in that case E(g(X)) = LXED g(x)p(x). 
This is a very useful formula because we can compute E(g(X)) straight from 
the p.m.f. of X rather than having to go to the p.m.f. of the random variable 
g(X). 

Definition: A random variable X with E(xm) finite is said to have a finite m-th 
moment, given by E(xm). For X with a finite second moment, the variance of 
X, denoted V(X), is defined by 

V(X) = E[(X - EX)2]. (5) 

The quantity V(X) measures the spread of the distribution of X. For example, 
V(X) = 0 iff the distribution of X is concentrated at one point (that is, X is 
a constant random variable). 

Indicator random variables as defined below form a very simple, yet useful, 
class of random variables. 

Definition: For any event A the Indicator random variable of the event is defined 
as 

IA(W) = { ~ 
Clearly the expectation of h is P(A). 

if x E A 
if x ~ A 

Exercise 1: If the m-th moment is finite, then so is the n-th, for any n < m. 

Exercise 2. For a random variable X on a probability space (0, P), E(X) ex­
istsiff LWErl IX(w)IP({w}) < 00 and in that caseE(X) = LWErl X(w)P({w}). 

Exercise 3. If P(X = c) = 1 for some real number c, then E(X) = c. 
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Exercise 4. If X is a random variable with finite expectation, then IE(X)I :S 
E(IXI). 

Exercise 5. If X and Y are two random variables defined on the same space 
and having finite expectations, then 

(a) X :S Y implies E(X) :S E(Y). 
(b) E(aX + bY) = aE(X) + bE(Y) for any two real numbers a and b. In 

particular, E(aX + b) = aE(X) + b. 

Exercise 6. If P(X ~ 0) = 1 and E(X) = 0, then P(X = 0) = 1. More 
generally, if P(X ~ Y) = 1 and E(X) = E(Y), then P(X = Y) = 1. 

Exercise 7. If Xn and X are non-negative random variables defined on the 
same space and Xn t X, then E(Xn) t E(X). In case X has infinite expecta­
tion, this should be read as E(Xn) too. This is known as Lebesgue's Monotone 
Convergenr;e Theorem. 

Exercise 8. Supose that Xn and X are random variables defined on the 
same space such that Xn -+ X. Suppose also that there is a random variable 
Y with finite expectation such that IXnl :S Y for all n, that is, all the ran­
dom variables Xn are dominated in modulus by the random variable Y. Then 
EIXn - XI -+ O. In particular E(Xn) -+ E(X). This is called Lebesgue's 
Dominated Convergence Theorem. 

Exercise 9. If X and Y are two random variables on the same space such that 
E(X . lA) ~ E(Y . lA) for every event A then P(X ~ Y) = 1. In particular, 
E(X lA) = E(Y lA) for every A if and only if P(X = Y) = 1. 

Exercise 10. V(X) = E(X2) - (EX)2. 

Exercise 11. V(X) = 0 iff P(X = c) = 1 for some constant c. 

Exercise 12. V(aX + b) = a2V(X). 

Exercise 13. V(IA) = P(A)[1 - P(A)]. 

Exercise 14. If X has finite variance and E(X) = M, then E(X - a)2 ~ V(X) 
for every real a. Thus E(X - a)2 is minimized when a = M. 

Exercise 15. For each of the random variables in Examples 1 through 6, find 
its expected value and variance. 

0.2.2 Joint Distributions 

Suppose that X and Y are two random variables defined on the same space. 
As mentioned earlier, probabilities of events concerning the random variable X 
(respectively, Y) can be computed from the distribution of X (respectively, of 
Y). However we may often be interested in probabilities of events that concern 
both X and Y. For example, 'what is P(X = V)?' or 'what is P(X + Y = 7)?' 
etc. For such probabilities individual distributions of X and Y alone would not 
suffice. We need to know what is called the joint distribution of X and Y. 

Definition: Let X and Y be two random variables defined on the same space. 
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Let Dx and Dy denote the set of possible values of the random variables X and 
Y respectively. The set of possible values of the pair (X, Y) are clearly contained 
in Dx x Dy. The joint distribution of (X, Y) is given by the joint probability 
mass function defined as p(x, y) = P(X = x, Y = y) for (x, y) E Dx x D y . 

Consider, for example, tossing a coin 15 times, with the chance of a head 
in each toss being p. Let X be the number of heads in the first ten tosses 
and Y be the number of heads in the last ten tosses. Clearly both X and Y 
are B(lO,p) random variables. Here Dx = Dy = {O, 1, ... , lO}. The joint 
distribution of (X, Y) would be given by the mass function p on Dx x D y . For 
example, p(lO, 10) = pI5. In general, 

p(m,n) = t ( 5 ) (5) ( 5 )pm+n-k(l_ p)I5+k-m-n 
m-k k n-k 

k=O 

with the usual convention that (~) = 0 unless b is integer with 0 ::::; b ::::; a. 

From the joint p.m.f. of (X, Y), the individual (marginal) p.m.f. of X and 
Y can be obtained as follows: 

PI (x) = P(X = x) = L p(x,y) for x E Dx 
yEDy 

P2(y) = P(Y = y) = L p(x,y) for yE Dy 
xEDx 

In an analogous way the joint distribution of n random variables (defined 
on the same space) is given by their joint p.m.f. 

Example 7: Consider an n faced die with PI, P2, ... , Pn denoting the probabil­
ities of different faces in a single throw. Roll the die r times and let Xi be the 
number of times face i shows up. The joint p.m.f. of (Xl, X 2 , ... ,Xn ) is given 
by 

r' p(x X X ) . pXlpX2 ... pXn 
1, 2,"" n = " , 1 2 n XI·X2···· xn· 

for XI,X2, ... ,xn non-negative integers adding to r. This distribution is called 
the multinomial distribution with parameters (riPl,P2,'" ,Pn) . 

Definition: For a pair of random variables X and Y defined on the same space, 
the covariance between X and Y is defined as 

Cov(X, Y) = E[(X - EX) (Y - EY)]. (6) 

Further, E(xmyn), for positive integers m and n, are called the various cross­
product moments of the pair (X, Y). 

Exercise 16. Cov(X, Y) = E(XY) - E(X)E(Y). 
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Exercise 17. COV(L,i aiXi, L,j bj Y:i) = L,i L,j aibj COV (Xi , Y:i). 
Exercise 18. Cov(X, X) = V(X). 

Exercise 19. Cov(X, a) = 0 for any constant random variable a. 

Exercise 20. Cov(X, Y) :S JV(X) JV(Y). 

Exercise 21. V(L,iXi) = L,i V(Xi ) +2L,i<jCOV(Xi ,Xj ). In particular, if 
COV(Xi,Xj) = 0 for all i =I- j, then V(L,iXi) = L,i V(Xi). 

0.2.3 Conditional Distributions and Conditional 
Expectations 

Let X be a random variable. For any event A with P(A) > 0, the conditional 
distribution of X given A simply means the conditional probabilities for X 
taking various values given the event A. Thus the conditional distribution is 
given by the (conditional) p.m.f. p(x I A) = P(X = x I A). It is, of course, 
immediate that this is indeed a probability mass function. The conditional 
expectation and conditional variance of X given A are just the expectation 
and variance of this conditional distribution. Clearly all the properties listed 
in Exercises 4,5,7,8 and 10 through 14 can be formulated and shown to hold 
with conditional expectation and conditional variance. 

Next, let X and Y be two random variables defined on the same space. For 
y with P(Y = y) > 0, we can talk about the conditional distribution of X given 
Y = y. This is given by the conditional mass function 

p(xly) = P(X = xlY = y) = p(x,y) . 
p2(y) 

(7) 

Here p is the joint p.m.f. of (X, Y) and P2 is the (marginal) p.m.f. of Y. It is 
clear that for each y with P2 (y) > 0, the function p(. I y) is a probability mass 
function - called the conditional p.m.f. of X given Y = y. 

If X has finite expectation, then the conditional expectation of X given 
Y = y is defined to be 

E(XIY = y) = Lxp(xly). (8) 

The assumption of finite expectation ensures the convergence of the right hand 
side of Equation (8). Thus, the conditional expectation of X given Y = y is just 
the expectation of X under the conditional distribution given Y = y. Clearly 
E(XIY = y) is a function of y, say cp(y). The random variable cp(Y) is denoted 
by E(X I Y). We do this because, in many contexts it is convenient to think 
of the conditional expectation itself as a random variable. One can similarly 
define the conditional distribution of Y given X = x and also E(Y I X). 

It may be noted that if Y is a constant random variable, say, Y =: c, then 
the conditional distribution as well as the conditional expectation of X given 
Y = c reduce to the unconditional distribution and unconditional expectation 
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of X. The following facts on conditional expectation are easy to verify, and 
left as exercises. 

Exercise 22. E(E(X IY)) = E(X). 

Exercise 23. If X has finite expectation and if 9 is a function such that Xg(Y) 
also has finite expectation, then show that E(X g(Y) I Y) = E(X I Y)g(Y). 

Exercise 24. E(X - g(y))2 2:: E(X - E(X I y))2 for any X and 9 such that 
X 2 and (g(y))2 have finite expectations. (Exercise 14 in 0.2.1 is easily seen to 
be a special case of the above.) 

Exercise 25. For any function 9 such that g(X) has finite expectation, 
E(g(X)IY = y) = L g(x)p(xly). 

Exercise 26.IE(X I Y)I ::::: E(IXII Y). 

The above notions of conditional distribution and conditional expectation 
naturally extend to the case of more then two random variables. To be pre­
cise, if Xl, X 2, ... , X n are random variables on the same space, one can, in a 
natural way, talk about the conditional joint distribution of k of these random 
variables given the others. For instance, the conditional joint distribution of 
(Xl' ... ' X k), given Xk+1 = Xk+l, ... , Xn = Xn is defined by 

( I . ) P(Xl = Xl, ... ,Xn = Xn) 
P Xl,···,Xk Xk+l,···,Xn = ( ) P X k+l = Xk+l, ... ,Xn = Xn 

provided, of course, P(Xk+l = Xk+l, ... , Xn = xn) > 0, and for each such 
(Xk+1' ... ,xn), the function p(. I Xk+l, .. . ,xn) is a p.m.f. - called the condi-
tional joint p.m.f. of (Xl,··· ,Xk), given X k+1 = Xk+1, ... ,Xn = Xn. 

If 9 is a k-variable function such that Y = 9 (Xl, ... , X k) has finite expecta­
tion, then the conditional expectation of Y given X k+l = Xk+l, ... , Xn = Xn, 
has a natural definition, namely 

E(Y IXk+1 = Xk+l, ... ,Xn = xn) 

L g(Xl' ... ,Xk)p(Xl, ... ,Xk IXk+l, ... ,xn). 

In particular, one can talk about the conditional expectation of Xl given 
X 2, ... , Xn or conditional expectation of Xf + xi given X 3 , X 5 , and so on. 

Exercise 27. E(E(X I Y, Z) I Y) = E(X I Y). More generally 

E(E(X IXl , ... , Xn) IXl , ... , X n- l ) = E(X IXl , ... , X n- l ). 

Here E(YI Xk+l, ... ,Xn) denotes the random variable </J(Xk+l, ... ,Xn) where 
</J is the (n - k)-variable function defined by 

</J(Xk+l, ... ,xn) = E(Y I Xk+l = Xk+l, ... ,Xn = xn) . 

If these things look a little abstract there is no cause for alarm. Sim­
ply try to understand the meaning of the conditional expectation of Xl given 
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X 2 , •.. , Xn or the conditional expectation of Xf + Xi given X3 and X 4 . Here 
is a useful exercise left to be proved by the reader. This is often referred to as 
the smoothing property of conditional expectation. 

E(E(g(X, Y) I Z, W) I Z) = E(g(X, Y) I Z) . 

Or more generally, if U = g(Xl' ... ,Xm) then 

Indeed, one may think of (9) as equivalent to Exercise 27 above. What this says 
is the following. In order to get the conditional expectation of a random variable 
given Yl , Y2 , ... , Yn - l , one may first calculate its conditional expectation given 
Yl , Y2 , ... , Yn and then take the conditional expectation of this random variable 
given Yl , Y2 , ... , Yn - l . Here is an application. 

Example 8: Toss a fair coin a Poisson number of times. Find the conditional 
expectation of the time of occurrence of the first Head, given the total number 
of Heads. More precisely, let N be a random variable having the Poisson 
distribution with parameter A. Suppose that a fair coin is tossed N times. Let 
X be the number of Heads obtained and T be the time of occurrence of the 
first Head. In case there are no Heads, T is defined to be one plus the number 
of tosses, that is to say, T = 1 + N in case X = O. Of course, if N = 0, then 
X = 0 automatically so that T = 1. We want E(T I X = x) for each x 2: O. 

The plan is the following. We first compute E(T I X, N) and then compute 
its conditional expectation given X. By the smoothing propertry this will be 
the same as E(T I X). 

For integers 0 ~ x ~ n, let f(n, x) = E(T I N = n, X = x). In case x = 0, 
by our convention made above, f(n, 0) = 1 + n clearly. For 1 ~ x ~ n, f(n, x) 
is simply the expected waiting time till the first head, given that n tosses of a 
fair coin has resulted in a total of x heads. For the sake of completeness, we 
set f(n, x) = 0 (or any other value, for that matter) for x > n 2: O. We now 
proceed to obtain a recurrence relation among the f(n, x). For 1 ~ x ~ n, we 
obtain, by conditioning on the outcome of the first toss, 

f(n,x) = 0: +,B, 

where 

0: = E(T I x heads in n tosses, first is heads) . P(first heads IN = n, X = x) , 

,B = E(Tlx heads in n tosses, first is tails)· P(first tails IN = n,X = x). 

A routine calulation now shows that 

(n-l) 
x-l X 

0: = (~) = ~ and 

(n-l) n-x 
,B = [1 + f(n -l,x)] (~) = -n- [1 + f(n -l,x)], 
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giving us the recurrence relation 

n-x 
f(n,x) = 1 + --f(n -1,x). 

n 

Since f(x, x) = 1, we get by induction on n, that for n 2': x, 

n+l 
f(n,x) = --. 

x+l 

15 

(Try to directly compute the conditional expectation E(T I N = n, X = x).) 
Thus E(TIX, N) = (N + 1)/(X + 1). To calculate the conditional expectation 
of this given X = x we calculate the conditional distribution of N given X = x. 
Clearly, P(N < x I X = x) = 0 and for n 2': x, 

-A/2 n-" 1 
P(N = niX = x) = e (A/2) (n _ x)! 

As a consequence for x 2': 1, 

x+~+1 A 
E(TIX=x)=E[(N+l)/(X+l) IX=x]= 2 =1+ ( ) 

x+l 2x+l 

Even though given X = 0, T equals 1 + Nand E(N) = A, it does not mean 
that E(TIX = 0) = 1 + A; indeed E(TIX = 0) = 1 + ~ (why?). 

0.2.4 Independence 

Definition: Random variables Xl, X 2 , ... , Xn are said to be independent if for 
anY Xl,X2,···,Xn , 

Thus independence requires that the joint p.m.f. is just the product of the 
marginal probability mass functions. Moreover (10) is clearly equivalent to 
saying that for sets B l , B 2 , ... , B n , the events {(Xi E Bi ), 1 ::::: i ::::: n} are inde­
pendent. Also, independence of Xl, X 2, ... ,Xn clearly implies independence 
of X j1 , Xj, , ... ,Xj= for any 1 ::::: )1 < 12 < ... < )m ::::: n. With some work, 
one can also show the following. Let 1 ::::: i l < i2 < ... < ik-l ::::: n and consider 
the random variables Yl , Y2,···, Yk defined as Yl = gl (Xl, X 2,· .. , XiJ ,Y2 = 
g2(Xi1 +l , ... ,Xi2 ),···, Yk = gk(Xik _1+l , ... ,Xn), for functions gl,g2,··· ,gk. 
Then independence of X l ,X2 , ••• ,Xn implies that of Yl , Y2, ... , Yk. Here are 
some more consequences of the definition of independence that the reader 
should work out. 

Exercise 28. If X l ,X2, ... ,Xn are independent, then the conditional joint 
distribution of any subset of them, given the others, is the same as the uncon­
ditional joint distribution. 

Exercise 29. A constant random variable is independent of any random vari­
able. Moreover, a random variable is independent of itself if and only if it is a 
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constant random variable. 

Exercise 30. If Xl, X 2, ... , X n are independent random variables with fi­
nite expectations, then the product rr7=1 Xi also has finite expectation and 
E(rr7=1 Xi) = rr~=l E(Xi). . 

Exercise 31. If X and Y are independent with finite expectations, then 
Cov(X, Y) = O. In particular, if X and Y have finite variances, then V(X + 
Y) = V(X) + V(Y). 

Exercise 32. Give an example of random variables X and Y such that 
Cov(X, Y) = 0, but X and Y are not independent. 

Exercise 33. Suppose that X and Y are independent random variables and 
suppose that g is a function such that Z = g(X, Y) has finite expectation, then 
E(Z I Y = y) = E(g(X, y)). More generally, if Xl, X 2, ... , Xn are independent 
random variables and g is a function such that Z = g(X1' X 2, ... ,Xn) has 
finite expectation, then 

Exercise 34. In fifteen tosses of a fair coin, let Xl be the number of heads in 
the first three tosses, X 2 be the number of tails in the next six tosses, and Xg 
be the number of heads minus the number of tails in the last six tosses. Show 
that Xl, X 2 , X g are independent. Find E(X1X2Xg). 

0.3 Generating Functions 

Let (akh>o be a sequence of numbers with 0 ::; ak ::; 1 for all k. Then clearly 
for any t Eo (-1,1) the series 2::%':0 ak t k converges absolutely. The function 
A(t) = 2::%':0 ak tk defined for t E (-1,1) is called the generating function of 
the sequence(akh~o. By the uniqueness of the Taylor expansion, the function 
A(t) determines the sequence (ak) completely. Indeed, the function A(t) is 
infinitely differentiable on (-1,1) and ak = A (k) (0) / k! where A (k) (0) is the k­
th derivative of the function A(t) at t = O. Moreover as t t 1, A(t) also increases 
and the limit lim A( t) is finite iff 2:: ak converges. In fact lim A( t) = 2:: ak. We 

ff1 ff1 
denote this limit by A(I). It should however be noted that in case 2:: ak does 
not converge, then A(t) increases to 00. In this latter case also, we say that 
the limit A(I) = limA(t) exists and equals infinity. It is known from calculus 

tt! 
that the derivative ofthe function A(t) also has a power series expansion in the 
interval (-1,1) given by A'(t) = 2::%':1 kaktk- 1 . In fact, one can similarly get 
power series expansions for higher order derivatives. Once again as t t 1, A'(t) 
has a finite limit iff 2:: kak converges and lim AI (t) = 2:: kak. This equality 

tt! k~l 
remains valid even if the right-hand side does not converge. We denote this 
limit by A'(I). In general we will always use the notation A(k)(I) for the limit 
limA(k) (t), finite or not. 
tt1 
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By the convolution of two sequences (akh>o and (bkh>o is meant the new 
sequence Ck = (a * bh defined by Ck = I:~=o ~lbk-l. It is ~asy to see that the 
generating function of the convolution of two sequences equals the product of 
the corresponding generating functions. That is, C(t) = A(t)B(t). 

A particularly interesting case arises when the sequence (akh?o is the prob­
ability mass function of a non-negative integer-valued random variable X. In 
that case, A(t) is denoted by 'Px (t) and is called the probability generating func­
tion (p.g.f.) or generating function (g.f.) of X. From our earlier discussion, it 
follows that the distribution of a non-negative integer valued random variable 
is completely determined by its p.g.f. Indeed, for such a random variable X, 
P(X = k) = 'Pt;) (O)/k!. Clearly 'Px(l) = 1. Also 

'P~(1) = lim'P~(t) = E(X), 
ttI 

(11) 

whether this expectation is finite or not. It is left as an exercise to show that, 
in case X has finite variance, 

VeX) = 'P~(1) + 'P~(1) - ['P~(1W (12) 

Exercise 1. (i) If X'" B(n,p), then show that its p.g.fis 'Px(t) = (l-p+pt)n. 
(ii) If X'" P(>"), then show that 'Px(t) = e-)..(l-t). (iii) If X'" NB(k,p), then 
show that 'Px(t) = pk(l_ qs)-k. 

Exercise 2. If X and Y are independent non-negative integer valued random 
variables, then show that 'Px+y(t) = 'Px(t)'Py(t). 

Exercise 3. Show that (i) the sum of independent B(n,p) and B(m,p) ran­
dom variables is B(n + m,p); (ii) the sum of two independent Poisson random 
variables is again Poisson; (iii) the sum of independent NB(k,p) and NB(I,p) 
random variables is again NB. 

Exercise 4. Let X I ,X2 , ... and N be non-negative integer-valued random 
variables. Suppose that, for every k 2: 1, the (k+1) random variables Xl, X 2 , ••. , X k 
and N are independent. Suppose further that the Xi have a common distribu­
tion with p.g.f. 'I/J(t). Define Z = I:i<N Xi, with the convention that if N = 0, 
then this sum is zero. Show that the p.g.f. of Z is 'PN('I/J(t)), where 'PN is the 
p.g.f. of N. In particular, show that if each Xi'" B(l,p) and N '" P(>"), then 
Z '" P(>..p). 

Exercise 5. Let 'P(s) be the p.g.f. of a random variable X. Let qk = P(X > k) 
1 - pes) 

for k 2: O. Then the function Q(s) = is the generating function of 
1-s 

the sequence (qk h?o. 

Suppose that Xn '" B(n,Pn), and denote nPn by >"n. Then the p.g.f. of Xn 
is 
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If we assume that >"n ---+ >.. then clearly 

CPn(t) ---+ cp(t) = eA(t-I) 

which is the p.g.f. of P(>..) random variable. From this it looks plausible that 
the distribution of Xn converges to a P(>..) distribution. That is, for k 2 0, 

P(Xn = k) ---+ e- A >..k /k! 

This is indeed true and is actually a consequence of the next theorem. 

Theorem: For each n 2 1, let CPn be the generating function of a sequence 
of numbers (an k h>o. In order that lim an k = ak exists for each k, it is 

, - n--+oo ' 

necessary and sufficient that lim CPn(s) = cp(s) exists for each s E (0,1). In 
n--+= 

that case, cP is actually the generating function of the sequence (ak h?o. 

Remark: It may be noted that even when the CPn are p.g.£. of a sequence of 
random variables, the limit function cP need not be a p.g.f. - that is, even if 
Lk an,k = 1 for each n, the sequence ak may not be a probability distribution 
(consider CPn (s) = sn). Of course L ak ::; 1 will always hold. 

Proof of Theorem: Let CPn(s) = Lk an,ksk. First assume that for each k, 
an,k ---+ ak as n ---+ 00. Clearly ° ::; ak ::; 1 for each k. Let cp(s) be the 
generating function of the sequence (ak). Fix s E (0,1) and 10 > ° be given. 
Choose ko large enough so that sko < ~E(1- s). Since limn an,k = ak for each 
k, we choose no so that for n 2 no, lan,k - akl ::; 2~o' Then 

ko-l 

ICPn(s) - cp(s) I ::; L lan,k - akl sk + L lan,k - akl sk . 
k=l k?ko 

By choice of ko, the second term is smaller than 10/2 and, for all n 2 no, the 
first term is smaller than 10/2. Thus ICPn(s) - cp(s)1 ::; 10 for all n 2 no, showing 
that CPn(s) ---+ cp(s) for each s E (0,1). 

Conversely, suppose that CPn (s) ---+ cp( s) for each s with ° < s < 1. Clearly ° ::; cp(s) ::; 1 and cp(s) is non-decreasing in s. In particular lifllcp(s) = ao (say) 
8+0 

exists. Further, 

lan,o - aol ::; lan,o - CPn(s)1 + ICPn(s) - cp(s)1 + Icp(s) - aol, (13) 

and 
= 

lan,o - CPn(s)1 = L an,k sk ::; 1 ~ s . 
1 

Therefore, given 10 > 0, we can choose s close enough to zero so that the first 
and third terms of the right side of (13) are each less than 10/3. Now choose n 
large enough so that the second term is smaller than 10/3. Thus we conclude 
that an,o ---+ ao. Now note that 

CPn(S) - an,o ---+ cp(s) - ao for ° < s < 1. 
s s 
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. h () 'Pn (s) - an 0 h f' f h It IS easy to see t at gn S = ' is t e generating unctIOn 0 t e 
s 

sequence (an ,k+lh20 so that by the same argument as above we can conclude 
that 

1. 'P(s)-ao 
lm = aI, say 
8.!-0 s 

exists and moreover lim an 1 exists and equals al. One can use induction to 
n ' 

show that for each k, lim an,k = ak (say) exists. 
n--+oo 

Referring now to the only if part of the theorem we conclude that 'Pn (s) 
must converge, for each s E (0,1), to the generating function of the sequence 
(ak), which therefore has to be the function 'P( s). This completes the proof of 
the theorem. • 

The concept of a generating function as discussed above extends naturally 
to higher dimensions. We will briefly outline the definition and basic facts. 
Also for the sake of simplicity we confine ourselves to the case of multivariate 
probability generating functions. 

Let Xl, X 2 , ... ,Xd be random variables, defined on the same space, each 
taking non-negative integer values. Let their joint probability mass function 
be p(kl' k2 , •.. , kd). The joint probability generating function (joint p.g.f.) of 
(XI ,X2 , •.. ,Xd) is the function 'P defined on [-1, l]d defined by 

'P(tl, ... ,td)=E(t~l ... t:d)= L p(kl, ... ,kd)t~l ... t~d. (14) 
kl, ... ,kd 

It is not difficult to see that the series above converges absolutely. The function 
'P can also be shown to have partial derivatives of all orders and 

_ 1 (kl, ... ,kd) 
p(kl, ... ,kd)- kl! ... kd!'P (0, ... ,0), (15) 

where 'P(k1, ... ,kd) denotes D~l ... D~d'P with the usual notation that for i = 
1, ... ,d and k 2 0, Df is the k-th order partial derivative with respect to the 
i-th variable. Thus for example, with d = 3, 

Equation (15) shows that, as in the case of one dimension, the joint distribu­
tion of (Xl, ... , X d) is completely determined by the joint p.g.f. 'P. Note that 
'P(I, ... ,1) = 1 by definition. One can also find all the moments, including 
cross-product moments of (Xl, X 2 , ... ,Xd) from 'P. For example, 

E(XrX2) = 'P(2,1,0, ... ,0) (1, ... ,1) + 'P(1,1,0, ... ,0) (1, ... ,1). 

Also for any i, 1 :S i :S d, 'P(it, ... , ti-l, 1, ti+l,"" td) is precisely the joint 
p.g.f. of the random variables (Xl, ... ,Xi-I,Xi+I, ... ,Xd). 
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In case Xl, X 2, ... ,Xd are independent with p.g.f.s 'PI, 'P2, ... , 'Pd respec­
tively, then the joint p.g.f. of (Xl"'" X d ) is easily seen to be 

(16) 

In fact the condition (16) is also sufficient for independence. More generally, 
one can factor 'P, the joint p.g.f of (Xl"'" Xd), as 

if and only if (Xl, ... ,Xi) is independent of (Xi+l, ... ,Xd). Moreover, the 
functions 0 and cp in the above factorization are the joint p.g.f.s of (Xl, ... ,Xi) 
and (Xi+l, ... , Xd) respectively except possibly for some multiplicative con­
stants. For example, the functions 30 and cp/3 would also give a factorization. 

The continuity theorem proved for one dimension has the following multi­
variate analogue. 

Theorem: For each n ;::: 1, let 'Pn be the joint p.g.f. of (Xl', ... , Xa:). In order 
that lim P(Xl' = kl , ... , Xa: = kd) exists for all d-tuples (kl , ... , kd) it is 

n-+= 
necesary and sufficient that for all (tl' ... ,td) E (0,1)d, the limit 

exists. In this case, 'P is actually the function 

'P(h, ... ,td)= I: a(kl, ... ,kd)t~l·.·t~d, 
kl,.·.,kd 

where 

Barring complications arising out of d-dimensional variables, the idea of proof 
is no different from the one dimensional case. We omit the proof. In general 
the limit function 'P = lim 'Pn need not be a joint p.g.f. 

Exercise 6. Show that the p.g.f. of the d-dimensional multinomial distribution 
with parameters n,PI,P2, ... ,Pd is (Pltl + ... + Pdtd)n. 

Exercise 7. If for each n ;::: 1, (Xn,l, ... , Xn,d) is multinomial with param­
eters (n,Pnl,'" ,Pnd) and if npni -t Ai for 1 ::::; i ::::; d - 1, then show that 
(Xn,l, ... ,Xn,d-l) has a limiting distribution as n -t 00 and find the limiting 
distri bution. 

0.4 Continuous Random Variables 

So far we have considered random variables with values in a finite or a count ably 
infinite set. But in many applications it is necessary to go beyond that. For 
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example, consider picking a point at random from the interval (0,1]. Here by 
picking a point at random we mean that any point "is as likely" to be picked 
as any other. The selected point X would then represent a random variable 
whose possible value can be any real number in (0,1]. How do we describe the 
distribution of such a random variable? First of all, since any point is as likely 
to be picked as any other point, P(X = x) should be the same for all x. Noting 
that there are infinitely many points x, one can easily argue that P(X = x) = ° 
for all x E [0,1]. Thus, if we wanted to define the probability mass function 
p of the random variable X, the only candidate would be p( x) = ° for all x. 
Certainly the distribution of the random variable X cannot be captured by 
such a function. 

So, instead of prescribing probabilities of events through probabilities of 
individual outcomes that constitute an event, one may hope to prescribe prob­
abilities of all events at one go. In other words, one may think of directly 
specifying P(X E A) for various subsets A C [0,1]. But clearly, that is a 
tall task! However, there is a general theory - known as measure theory -
which says that it is sufficient to specify P(X E A) only for intervals A C [0,1] 
which, in turn, uniquely determine P(X E A) for a large class of sets A, known 
as measurable sets. One may still wonder what if we want P(X E A) for a 
non-measurable set A. However, there is no real need to worry! The class of 
measurable sets is really huge - almost any set A one is likely to come across 
for the purpose of computing P(X E A) is going to be a measurable set. Hav­
ing said all these let us add that mere recognition and acceptance of this fact 
will do for the rest of this book. We do not make any explicit use of measure 
theory. 

Continuing with our example and again noting that the point is selected 
at random, one can easily deduce for any ° :::; a < b :::; 1, we must have 
P(a < X < b) = b - a. In fact, the above is just a consequence of the fact that 
P(X E 1) equals P(X E J) whenever I and J are intervals of same length. 

Of course, for any random variable X, prescribing the probabilities P(X E 
A) for intervals A and hence prescribing the distribution of X could also be 
done by simply specifying the function 

F(x) = P(X :::; x) (17) 

for all x E R. This function F is called the probability distribution function of 
the random variable X and has the following properties: 

(i) 0:::; F(x) :::; 1 for all x and F(x) :::; F(y) whenever x:::; y, 
(ii) lim F(x) = 0, lim F(x) = 1, and 

x---t-oo x---t+oo 

(iii) F is right-continuous, that is, limF(y) = F(x). 
ytx 

It may be noted that limF(y) = P(X < x), so that P(X = x) = F(x) -
ytx 

limF(y). From all these it should be clear that F(x) determines P(X E A) for 
ytx 
every interval A (and hence for all measurable sets A). 
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In the example of picking a point at random, the corresponding distribution 
function is 

F(x) = U if x::;O 
if O::;x::;1 
if x2::1 

A continuous random variable is one whose distribution function is contin­
uous. From the properties of F listed above, it follows that a random variable 
X is continuous if and only if P(X = x) = 0 for all x E R. It is in this 
sense that continuous random variables are diametrically opposite to discrete 
random variables. 

0.4.1 Probability Density Function 

One special class of continuous random variables are those for which the dis­
tribution function is given by 

x 

F(x) = J f(y) dy (18) 

-00 

where f is a non-negative fun cion with f~oo f(y) dy = 1. Such a function f is 
called a probability density function (p.d.f., in short). Probabilities involving 
X can be calculated from its density function by the formula P(X E A) = 
fA f(y) dy. Such probability distributions are called absolutely continuous dis­
tributions and the corresponding random variable is also called absolutely con­
tinuous. It may be noted that probability density function of a distribution (or, 
of a random variable) is not unique. (Changing the value of f at a finite num­
ber of points would not change the integrals appearing in (18) and therefore, 
would give the same F!) 

Unlike probability mass function, the probability density function does not 
represent any probability. However, it has the approximate interpretation 

P(X E (x, x + 8x)) '" f(x)8x. 

This should explain why f is called the density function as opposed to mass 
function of the discrete case. For a random variable X with density function 
f the expected value is defined by the formula 

00 

E(X) = J xf(x)dx, (19) 
-00 

provided the integral exists. We allow the integral to equal +00 or -00. But 
there is a caveat! Two infinities cannot be added unless they have the same 
sign. We define, more generally, 

00 

E(g(X)) = J g(x) f(x) dx, (20) 

-00 
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provided the integral exists. The expected value so defined can be shown 
to satisfy all the properties that were proved to be true for discrete random 
variables. As in the discrete case, the m-th moment of X is defined to be 
E(xm) and the variance is defined as V(X) = E(X2) - (EX)2. 

Exercise 1. Fix numbers a < b. Let f be the function which is l/(b - a) for 
points in the interval (a, b) and zero for points outside the interval. Show that 
this is a probability density function. Calculate the corresponding distribution 
function. This is called the Uniform distribution on (a, b), denoted U(a, b) and 
a random variable with this distribution is called a U(a, b) random variable. 
Find the expected value and variance of such a random variable. 

Exercise 2. Fix any number A > O. Consider the function f which is zero for 
negative numbers and is A exp( - AX) for non-negative numbers x. Show that 
this is a probability density function. Calculate the corresponding distribution 
function. This is called the Exponential distribution with parameter A, written 
EXp(A). For a EXp(A) random variable X, find (i) P(X > 10.25), (ii) P((X -
3)2 > 1). Also find E(X), V(X) and E(etX ) for t E R. 

Exercise 3. Fix any real number p and any strictly positive number (J'. Let 

1 1 ( )2 f(x) = --e-2~2 X-M 
(J'..j'iK 

for -00 < x < +00. This is a probability density function (not easy to show 
this fact). Corresponding distribution is called the Normal distribution with 
parameters p and (J'2, written N(p, (J'2). The distribution function cannot be 
calculated explicitly. Show that a N(p, (J'2) random variable X has mean p 
and variance (J'2. Also show that E(etX ) = exp [pt + ~(J'2t2l for t E R. 

In case p = 0, (J' = 1 in Exercise 3 above, the distribution is called Standard 
Normal Distribution. In this case, the distribution function is usually denoted 
by <I> (x) and the density function is denoted by cjJ( x). 

Exercise 4. Repeat Exercises 4-14 of Section 0.2.1, assuming that all the 
random variables are absolutely continuous. 

0.4.2 Joint Density Function 

For two continuous random variables X and Y defined on the same space, we 
may be interested in probabilities of events that concern both X and Y. For 
computing such probabilities, knowing the individual density functions of X 
and Y alone would not suffice. We need to know what is called the joint density 
function of X and Y. 

Definition: Let X and Y be two random variables defined on the same space. 
The pair (X, Y) is said to have a joint density function f(x, y) if f is a non-negative 
function such that for any x, y E R, 

P(X ::; x, Y ::; y) = J ] f(u, v) dudv. 

-00 -00 
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00 00 

Clearly such an f satisfies J J f (u, v) du dv = 1. Probabilities involving the 
-00 -00 

pair (X, Y) can be computed from the formula P( (X, Y) EA) = J J f(x, y)dx dy. 
A 

From the joint density of (X, Y) the individual (marginal) densities of X 
and Y can be recovered as follows: 

h(x) = J f(x,y)dy, h(y) = J f(x,y)dx. 

In an analogous way the joint density of n random variables (defined on the 
same space) is defined to be a non-negative function f of n variables such that 

Xn Xl 

P(Xl ::; Xl, ... ,Xn::; xn) = J ... J f(Ul, ... ,Un)dul···dun. 
-00 -00 

Here also the individual density of each Xi can be obtained from the joint 
density f by a formula analogous to the bivariate case. An important point to 
note in this connection is that the existence of a joint density for (Xl, ... , Xn) 
implies that each Xi has a density; however the converse is not true. For 
example, if X has U(O, 1) distribution and Y = X, then both X and Y have 
densities, but the pair (X, Y) does not have a joint density (why?). 

For (Xl' ... ' Xn) with joint density f, the expected value of any function 
of (Xl, ... , Xn) can be computed by the formula, 

provided, of course, that the integral exists. 

For a pair (X, Y) with joint density f, the covariance between X and Y is 
defined by the same formula (21) of Section 0.2.2 and all the properties listed 
in Exercises 16-21 there remain valid. 

0.4.3 Conditional Density 

For a pair (X, Y) with joint density f the conditional density of X given Y = y 
is defined to be 

h(xly) = ff~~) if h(y) > O. 

For y with h (y) = 0, one may define h (x I y) to equal any density function, 
for example, one may put h(xly) = h(x). Here hand h are the marginal 
densities as defined in the previous section. One can easily check that h (x I y) 
is a density (in x) for every y. The distribution given by this density is called 
the conditional distribution of X given Y = y. One can similarly define the 
conditional distribution of Y given X = x. It is also not difficult to extend this 
concept to the case of n random variables with a joint density. 
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For a random variable X with density f and for any event A with P(A) > 0, 
one can define the conditional density of X given A. However, there is no 
explicit formula for this density in general. One is only guaranteed of the 
existence of this density by a result known as Radon-Nikodym Theorem which is 
beyond the scope of this book. However, in the special case when A = {X E B} 
the conditional density of X given A is given by f(xIA) = f(x)/ P(A) if x E B 
and equals zero otherwise. 

As in Section 0.2.3, expectation and variance of the conditional distribution 
are known as conditional expectation and conditional variance respectively. As 
before, it is sometimes convenient to think of conditional expectation itself as 
a random variable, denoted by E(XIY), which has the same interpretation as 
in Section 0.2.3. Also, all the properties in Exercises 4,5,7,8, 10-14 and 22-26 
go through. 

0.4.4 Independence 

Definition: Random variables (Xl, ... , Xn) with a joint density f are said to be 
independent if for any XI,X2, ... ,xn . 

Thus the random variables are independent if the joint density factors into 
product of the marginal probability densities h, ... , fn. This can be shown 
to be equivalent to the condition that for sets B I , B 2 , .•• , Bn, the n events 
(Xi E B i ), 1 ::; i ::; n are independent. Also independence of X I, X 2, ... , X n 
clearly implies independence of X j1 , X h , ... , X j = for 1 ::; 11 < 12 < ... < 
jm ::; n. With some work one can also show the following. Consider k in­
dices 1 :::; i 1 < i2 < ... < i k- 1 :::; n and let Y1 ,Y2 , ... ,Yk be random vari­
ables defined as follows: YI = gl(XI, ... ,XiJ'Y2 = g2(Xil+I, ... ,Xi2)'···' 
Yk = gk(Xik_l+I, ... ,Xn), for functions gl,g2, ... ,gk. Then independence of 
XI,X2,.·.,Xn implies that ofYI ,Y2, ... ,Yk. 

It is left as an exercise to verify that properties 28-33 of Section 0.2.4 remain 
valid here also. 

0.5 Sequences of Random Variables 

Let Y be a random variable with finite mean /-1. Let YI , Y2 , ... be indepen­
dent observations on the variable Y, that is, for each n, the random variables 
YI , ... , Yn are independent each having the same distribution as Y. One says 
that YI , 1'2, ... is a sequence of independent and identically distributed, abbre­
viated as i.i.d., random variables. Let Xn denote the average of the first n ob­
servations, that is, Xn = (YI + ... + Yn)/n. This Xn is also called the observed 
mean or the sample mean, based on n observations. An important question is 
: what happens to these observed means as n, the sample size, becomes large? 
A classical result in probability (known as the law of large numbers) is that 
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the observed means converge to the common population mean fJ,. It should 
be noted that the observed means Xn are random variables. Thus, one has to 
know what is meant by the convergence of a sequence of random variables. In 
this section, we discuss some of the various concepts of convergence that are 
used in probability. 

In what follows, (Xn)n2':l will stand for a sequence of random variables 
defined on the same space. 

Definition: We say that Xn converges in probability to a random variable X, 

and write Xn ~ X, if for each E > 0, P(IXn - XI > E) -t 0 as n -t 00. 

That is, given any E > 0 however small, the chances that Xn deviates from X 
by more than E become smaller and smaller as n gets larger and larger. However 
this should not be misinterpreted as Xn remaining close to X eventually for 

almost all sample points. One can construct an example where Xn ~ X 
but Xn(w) f--+ X(w) for any sample point w! [see Exercise 5 below]. This 
motivates the next definition. 

Definition: We say that Xn converges with probability one to X, and write 
Xn ---+ X w.p.l, if for all sample points w, outside a set of zero probability, 
Xn(w) -t X(w) as n -t 00. 

Another mode of convergence that will be useful for us, is the following. 

Definition: Let p 2: 1 be a number. We say that Xn converges in p-th mean to 

X, written Xn ~ X, if EIXn -XIP -t 0 as n -t 00. This mode of convergence 
is also referred to as convergence in Lp. 

We shall now see the relationships between these three modes of conver­
gence. The last two modes of convergence are stronger than the first one. 
Indeed if Xn ~ X then for any E > 0, 

P(IXn - XI> E) = P(IXn - XIP > EP) = E (I{IXn-xIP>fP}) 

( IXn - XIP ) EIXn - XIP 
:::; E EP I{IXn-xIP>fP}:::; EP ---+ 0, 

by hypothesis. Note that here E is fixed and n becomes large. 

Hidden in the above argument is the fact that for any random variable Z 
and any E > 0 

(21) 

a useful inequality, known as Markov's inequality. This inequality can be easily 
proved using Exercise 5(a) of Section 0.2.l. 

Next suppose that Xn ---+ X w.p.l; that is, there is a set A of probability 
zero such that for w (j. A, Xn(w) -t X(w). Let E > O. Then for any n, 

{IXn(w) - X(w)1 > E} C U (IXk(w) - X(w)1 > E) 
k>n 
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and the set on the right side decreases as n increases and the limiting set is 
contained in A (because for any w in the limiting set Xn(w) f-+ X(w)). Since 
P(A) = 0 it follows that 

lim P(IXn(w) - X(w)1 > E) = O. 
n-+oo 

Convergence with probability 1 and conv8".·gence in Lp are, in general, not 
comparable. However, here is a useful result. 

If Xn -+ X w.p.1 and E(sup IXnIP) < 00, 
n 

Lp 
then Xn -+ X. 

Indeed one can replace Xn -+ X w.p.1 by the weaker hypothesis Xn ~ X. 
So we will assume only this. Denote the random variable sUPn IXnlP by Z. 

It is not difficult to see that Xn !t X yields that P(IXIP :S Z) = 1. [Show 
that for any 10 > 0, P(IXIP > Z + E) = 0]. Thus IXn - XIP :S 2P Z Note 
that the hypothesis says that Z has finite expectation. Therefore given S > 0, 
we can choose), > 0 so that E(ZI(z>>-.)) < 2-PS/3. We can also choose 
10 > 0 so that lOP < S /3. Now choose no such that for n 2: no we have, 
P(IXn - XI 2: E) :S S2-P /3),. Now for n 2: no, 

EIXn - XIP < E(IXn - XIP llxn-xl:<:;,) + E(IXn - XIP llxn-xl>,) 

< lOP + 2P E(ZlIXn -xI>,) 

< lOP + 2PE(ZIz9lIXn-XI>,) + 2PE(ZIz>>-.) 

< lOP + 2P)'P(IXn - XI > E) + 2P E(ZIz>>-.). 

Each term on the right side is at most c5 /3, completing the proof. 

The reader must have already realized that Lebesgue's Dominated Conver­
gence Theorem as given in Exercise 8, Section 0.2.1, is just a special case of 
the above. 

Exercise 1. If Xn ~ X, then show that X~9 ~ X19. More generally, 

if f is a continuous function, then f(Xn) ~ f(X). What if, convergence in 
probability is replaced by convergence in Lp or by convergence with probability 
one? 

Exercise 2. If Xn ~ X then Xn ~ X, for 1 :S r :S p. 

Exercise 3. If Xn ~ X and Yn ~ Y, then show that Xn + Yn ~ X + Y 

and XnYn ~ XY. What if ~ is replaced by ~? 

Exercise 4. Let Xn ~ X. Show that there is a subsequence (nk) such that 
X nk -+ X w.p.1. (Choose nk so that P(IXnk - XI> 2-k) < 2-k.) 

Exercise 5. Consider a U(O, 1) variable X. Consider the following sequence 
of random variables: Zl = l(x <1/2); Z2 = l(X>1/2); Z3 = l(X <1/4); Z4 = 
l(1/4<X<1/2); Z5 = l(1/2<X<3/4); Z6 = l(3/4<X<1); etc. It should be clear(?) 
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how the subsequent Zn are defined. Show that Zn does not converge with 
probability one, but converges in probability to zero. 

In conclusion, let us go back to the convergence of observed means to the 
population mean. Classical Laws of Large Numbers say that convergence here 
takes place with probability one. In other words, if Y1 , Y2 , ... are i.i.d with 
common finite mean f.1, then Xn = (Y1 + ... + Yn)/n --+ f.1 w.p.1. In fact, this 
result remains valid even without the assumption of finiteness of the mean, as 
long as the Yi are non-negative. The proof of this result is quite involved for 
presenting here. Instead, we show that convergence in probability holds. For 
this, let us further assume that V(Y) < 00. In this case, by Markov inequality 

In the above, we have used the fact that V (Y1 + .. -+ Yn ) = n V (Y) because ofthe 
i.i.d. hypothesis. It is possible to do away with the finite variance assumption, 
but the argument becomes a little more complicated. As a special case of the 

above, if Xn is B(n,p) then Xn/n ~ p. 

Exercise 6. If Xn ~ B(n,p) show that 2: E(Xn - np)4/n 4 < 00 and hence 
conclude, using Borel-Cantelli lemma that Xn/n --+ p w.p.1. 

Another important mode of convergence is convergence in distribution. 
Since we do not need it for our applications, we do not discuss it. However in 
Section 0.3, we had an illustration of this kind of convergence. To be specific, 
what was shown there is that if Xn ~ B(n,Pn) where nPn -+ oX as n -+ 00, then 
Xn converges 'in distribution' to a P(oX) random variable. A classical result in 
probability, involving the notion of convergence in distribution is what is known 
as Central Limit Theorem. Here is what it says. If Y1 , Y2 , ••• are i.i.d. random 
variables with mean f.1 and finite variance (/2, then Xn = (Y1 + Y2 + ... + Yn) / Vii 
converges in distribution to a N(f.1, (/2) random variable, that is, for any real 

a 

number a, P(Xn ~ a) --+ J f(u)du, where f is the density function given in 
-00 

Exercise 3 of Section 0.4.1. 

0.6 Characterstic Functions 

Definition: For any random variable X, the function cpx(t) = E(e itX ) defined 
for -00 < t < +00 is called the characterstic function of X. 

To make sense of this definition, one needs to extend the notion of expec­
tation to a complex-valued random variable. If Z = U + iV where U and V 
are real random variables with finite expectations, one defines E(Z) to be the 
complex number E(U) + iE(V). With this definition, it is easy to see that the 
property 
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holds, where a1, a2 are complex numbers and Z1, Z2 are complex random 
variables. The property IE(Z)I < E(IZI) also holds where, as usual, for a 
complex number z, Izl = v(Rez)2 + (Imz)2. Here is a quick proof of the 
above inequality. It is easy to see that E(Z) = aIE(Z)1 for some complex 
number a with lal = 1. Thus 

IE(Z)I = aE(Z) = E(aZ) = E(Re (aZ)) S E(laZI) = E(IZI) 

One can use this to show that the Lebesgue's Dominated Convergence Theorem 
(see Section 0.2) holds for complex random variables as well. 

Returning to characterstic functions it may be noted that 'Px is a complex­
valued function of a real variable t, given by the formula 

tpX(t) = E(cos(tX)) + i E(sin(tX)). (22) 

Clearly, the real random variables cos(tX) and sin(tX) are bounded and hence 
have finite expectations for all t. From (22) it follows that 

(1) tpx(O) = 1 and tpaX+b(t) = eitbtpx(at). 

(2) tpx (-t) = tpx (t) = tp-x (t). In particular, tp x (t) is a real-valued func­
tion if X has a symmetric distribution, that is, X and -X have the same 
distribution. 

Using IE(eitX)1 S E(leitXI) one also gets 

(3) Itpx(t)1 SI for all t. 

For any real t and h, 

Itpx(t + h) - tpx(t)1 S E(leitX (e ihX - 1)1) = E(leihX - 11) 

and by the Dominated Convergence Theorem the last expression goes to zero 
as h -+ o. Thus we have proved 

(4) tpx(t) is a continuous function - in fact, it is uniformly continuous. 

One of the important features of the characterstic function of a random variable 
X is that the distribution of X is completely determined by its characterstic 
function 'P x· In other words, two random variables with different distributions 
cannot have the same characterstic function. We give below the formula, known 
as the Inversion formula, that determines the distribution function F of a 
random variable X from its characterstic function tp x . 

(5) For any two continuity points a < b of F, 

T 

F(b) - F(a) . 1 J = hm-
T-HXJ 27r 

-ita -itb e -e 
it tpx(t)dt 

-T 



30 CHAPTER O. PROBABILITY TOOLS AND TECHNIQUES 

(6) Moreover, if J Icpx(t)ldt < 00, then the random variable X has a 
bounded continuous density function given by 

00 

f(x) = ~ J e-itxcpx(t)dt 
27r 

-00 

The proof of (5) is somewhat involved and hence omitted here. Interested 

reader may consult Chung [2005]. Here is a sketch of a proof of (6). Using an 
analogue of the Dominated Convergence Theorem valid for general integrals, 
one can show that if Icp x I has finite integral then the inversion formula can be 
written as 

F(b) - F(a) 

Interchanging the order of integration now (which can again be justified in view 
of J Icpx(t)ldt < (0), one gets 

b 00 

F(b) - F(a) = J f(x)dx where f(x) = 2~ J e-itxcpx(t)dt. 
a -00 

Thus X has density f(x) which is bounded because 

If(x)1 :::; 2~ J Icpx(t)ldt < 00. 

Continuity of f follows from the Dominated Convergence Theorem alluded to 
above. 

One consequence of the one-one correspondence between characterstic functions 
and distributions is that the converse of (2) holds. In other words 

(7) cpx(t) is real-valued function if and only if X has a symmetric distribu­
tion, that is , X and - X have the same distribution. 

(8) Of course, for independent random variables X and Y, we have cpx+y = 
cpx . cpy. 

It is easy to see that if X rv B(n,p) then cpx(t) = (q + peit)n. Now if X and 
Y are independent random variables and X rv B(n,p) and Y rv B(m,p) then 
the characterstic function of X + Y turns out to be 
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from which we can immediately conclude that X + Y must have B(m + n,p) 
distribution. 

Similarly one can show that if X,...., N(O, 1), then !.px(t) = E(cos tX) = e-t2 / 2. 
From this one can deduce that if X ,...., N(p,,(72), then !.px(t) = e"t,..-~t2()"2 
Therefore, if X ,...., N(p,; (72) and Y ,...., N(V,72) are independent then by com­
puting !.px+y, one can conclude that X + Y is N(p, + V, (72 + 7 2 ). 

Characterstic functions can also be used to compute moments of the distri­
bution, when they exist. Here is how the method works. Using the power se­
ries expansion eitX = I::~=o (ii::r and taking expectations, one gets !.px(t) = 

E(I:: (it~r). Assume for the time being that the expectation and the infinite 
sum could be interchanged. That would give 

that is, !.p x (t) has a power series expansion in t in which, the coefficient of 
tn is ~~ E(xn). From the general theory of power series it would follow that 

E(xn) = !.pr;) (0) /in. It is possible to justify the above formal calculations 
(using simply Dominated Convergence Theorem and appropriate Mean Value 
Theorem) and here is the precise result. 

(9) If X has finite n-th moment then !.px has derivatives of orders upto and 
including n everywhere and, for every k:S n, E(Xk) = !.pt;) (O)/ik. 

A very important use of characterstic functions consists of proving con­
vergence in distribution. This is achieved through, what is known as, Levy's 
Continuity Theorem. The theorem asserts the equivalence of convergence in 
distribution and pointwise convergence of characterstic functions. Since we 
have not formally defined the notion of convergence in distribution, we would 
not go into the details of this result. The interested reader may consult Chung 
[2005]. 

Exercise 1. Calculate the characterstic functions of the following random 
variables: P()"), UfO, 1], [xp()..) and N(p" (72). 

Exercise 2. If X has the double exponential density 

1 
f(x) = 2 e- 1xl , -00 < x < 00, 

find the characterstic function of X. Use this and property (6) to find the 
characterstic function of Cauchy distribution given by the density 

1 1 
f(x)=;:I+x 2 ' 

-00 < x < 00. 

Exercise 3. Show that 'P x (to) = 1 for some to > 0 if and only if X is discrete 
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with values in the set {27rn/to : n = 0, ±1, ±2, ... }. More generally, show that 
I 'P x (to) I = 1 for some to > ° if and only if X is discrete with values in the set 
{(27rn + e)/to : n = 0, ±1, ±2, ... } for some real number e. 

Exercise 4. If 'P is a characterstic function, show that both 1'P12 and Re 'P are 
characterstic functions. 

Exercise 5. Let (Xn )n:2:l be a sequence ofi.i.d. random variables with common 
characterstic function 'P. Let N be a P(A) random variable independent of the 
sequence (Xn). Find the characterstic function ofY = Xl + .. ·+XN . If N = 0, 
we define Y to be zero. 

0.7 Martingales 

In this section we discuss a special class of sequences of random variables known 
as martingales. Martingales constitute a very important and widely useful class 
of processes. We do not intend to present here an extensive coverage of this 
topic. Instead we only list a few basic properties of martingales which will be 
needed for our purposes. A reader interested to learn more can see the book 
of Leo Breiman. 

Consider a sequence of independent tosses of a fair coin. Before each toss 
you are allowed a bet. If the toss results in heads then you win the amount 
you wagered; otherwise you loose the same amount. Note that you are allowed 
to change your wagers at each toss and moreover, your decision is allowed 
to be based on the outcomes of previous tosses. This can be mathematically 
formalized by means of a sequence El, E2, ... of random variables where En 

denotes your wager amount for the n-th toss. If we denote the outcomes of the 
tosses themselves by a sequence T/l, T/2, ... ,where each T/i can be + 1 or -1, then 
the actual amount you win at the n-th toss is T/nEn. Clearly T/n are i.i.d. random 
variables. The condition on the En is that El is a constant and, for n ~ 2, En 

is a random variable that is allowed to depend only on T/l, T/2, ... , T/n-l . As 
an additional technical condition, we shall also assume that each En has finite 
expected value. One of the interesting features of the game is that if the coin 
is fair, then the game is also fair in the following sense. Denote by X n , your 

n 
accumulated fortune upto and including the n-th toss, that is, Xn = 2:: EiT/i. 

i=l 
Define Xo = 0. One can easily deduce that, at any stage if you want to find 
the conditional expectation of your accumulated fortune after the next toss, 
given all the information upto and including the present time, it equals your 
present accumulated fortune. That is to say that if you play one more game, 
it would, on the average, make you neither better off nor worse off. The word 
'on an average' is important here, because in the actual play you would really 
either win or loose. The point is that you cannot be certain of either and the 
mean change in fortune, based on available information, is zero. This is the 
mathematical formulation of fairness in the game. This leads to the following 
formal definition. 
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All the random variables that we consider below are defined on the same 
space. Also they are all assumed to be discrete and to have finite expectations. 
Although the condition that they are discrete is not necessary in general, how­
ever it allows us to avoid some technicalities. 

Definition: A sequence (Xn)n2:0 of random variables is said to be a martingale 
if, for every n, 

E(Xn IXO,X1 , ... ,Xn-I) = X n- 1 . (23) 

In particular E(Xn) is same for all n. 

We will see plenty of examples of martingales in our applications in the 
subsequent chapters. However, here are some simple examples. 

Example 1: Let (1]i)i2:1 be a sequence of independent random variables with 
n 

zero means. Set, Xo = 0, and for n :::::: 1, Xn = 2: 1]i. Then (Xn)n>O is easily 
i=l -

seen to be a martingale. We could easily replace each Xn by Xn + Z where Z 
is a random variable with finite mean, independent of (1]i)i2:1 , and still have a 
martingale. 

Example 2: Let (1]i)i2:1 and Z be as above. Let (Ei)i2:1 be a sequence of 
bounded random variables with En depending only on {Z, 1]1, ... ,1]n-1} for 

n 
each n. Set Xn = Z + 2: Ei1]i, n :::::: O. Then (Xn)n>O is a martingale. The 

~1 -

condition that Ei are bounded is just to ensure that Ei1]i has finite expectation 
and can be relaxed by the latter. The example given at the beginning of this 
section with the 1]i representing the outcomes of succesive tosses of a coin is 
just a special case. 

Example 3: Let (1]i)i2:1 be as in Example 1, with the additional assumption 
n n 

that V(1]i) = aT < 00. Then Xo = 0 and Xn = (2: 1]i)2 - 2: aT, n:::::: 1, defines 
1 1 

a martingale. In particular, if each 1]i takes the values ±1 with probability 1/2 
n 

each, then (2: 1]i)2 - n is a martingale. 
1 

Example 4: Here is the famous Polya Urn Scheme. Start with an urn contain­
ing b black balls and r red balls. A ball is drawn at random, its colour noted 
and then the ball is replaced along with an additional ball of the same colour. 
This process is repeated. Note that, at each stage the total number of balls in 
the urn increases by one so that after n turns, the urn will have b + r + n balls. 
Denoting Xn to be the proportion of red balls in the urn after n turns, with, 
of course, Xo = r/(b + r), it is not difficult to check that we get a martingale. 

Example 5: Let (1]i)i>l be an i.i.d sequence, taking the values ±1 with proba­
bilities 1/2 each. De;-ote Sn = 2: 1]i. Then for any e E (0,1), the sequence 

l:Si:Sn 

(Xn)n2:o defined as Xo == 1 and for n :::::: 1, Xn = 2ne(n+Sn)/2(1 - e)(n-Sn)/2, 
defines a martingale. Indeed this is a special case of the next Example. 

Example 6: Let (1]i)i2:1 be a sequence of discrete random variables and for each 
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n ~ 1, let Pn(U1, ... ,Un) be the (true) joint p.m.f. of (1]l, ... ,1]n). Suppose 
that Pn(U1, ... , un), n ~ 1, be a sequence of joint p.m.f.s satisfying 

(i) L: Pn+l(u1, ... ,un,un+d =Pn(U1, ... ,Un) and 
U n +l 

(ii) Pn( U1, ... , un) = 0 whenever Pn( U1, ... , un) = O. 

Then Xo = 1 and for n ~ 1, Xn = Pn(1]l, ... ,1]n)/Pn(1]l, ... ,1]n) can be seen to 
define a martingale (taking the ratio % to be 0). Complicated though this ex­
ample looks, here is the context in which it arises. The Pn can be thought of as 
the joint p.m.f.s under some proposed alternative distribution of the sequence 
(1]i)i>l. A statistician wants to test the validity of this alternative. Standard 
tools- of statistics often use the Xn (known as likelihood ratio in statistical 
parlance) to test such hypotheses. 

Most of the basic theory of martingales is due to J. L. Doob. We proceed to 
present some of the basic results on martingales, which we need in the sequel. 
The first result is about convergence with probability one for a martingale. 
One of the main tools for the proof of this result is an inequality known as 
Doob's upcrossing inequality. 

Let Xo, Xl, ... , Xn be a finite sequence of real numbers. For a < b, let Un ( a, b) 
denote the number of 'upcrossings' of the interval (a, b) by the sequence. For 
example, suppose n = 7 and Xo :::: a, a < Xl < b, X2 ~ b, X3 ~ b, a < X4 < 
b, X5 :::: a, X6 :::: a and X7 ~ b. Then there are exactly two upcrossings. More 
generally, un(a, b) = k if there exist exactly k pairs (and no more) of indices 
o :::: m1 < n1 < ... < mk < nk :::: n such that xmi :::: a and Xni ~ b for i = 
1, ... , k. Here is a convenient formula for counting the number of upcrossings. 
Define Vo == 1 and for 0 :::: i :::: n, Vi+l = 0 or Vi or 1 according as Xi :::: a or 

n 
a < Xi < b or Xi ~ b. It is then easy to see that un(a, b) = L: (VH1 - Vi)+. The 

i=l 
reader can easily verify the inequality (b - a) (Vi+l - Vi)+ :::: (Xi - a) (Vi+l - Vi) 

n 
for i = 1, ... , n. This immediately gives (b - a)un(a, b) :::: L: (Xi - a)(VH1 - Vi). 

i=l 
In the above, we have used the notation c+ to denote maxi c, O} - known as 
'the positive part' of a real number c. 

Suppose now X o, Xl' ... ' Xn are random variables and denote the corre­
sponding number of up crossings by Un(a, b), which is also a random variable 
now. Further the corresponding Vi are now denoted by Vi. For each i ~ 1, Vi 
is also a random variable and depends only on Xo, ... ,Xi-I. From the above 
inequality it follows that, if the Xi have finite means, then (b - a)E[Un(a, b)] :::: 
n n n 
L: E[(Xi - a) (Vi+1 - Vi)J = L: E[(Xi - a)Vi+1J - L: E[(Xi - a)ViJ. 
i=l i=l i=l 

Assume now that we have a martingale (Xik:::o and apply the above to the 
random variables Xo, ... , X n. For each i = 1, ... , n, we have 

E[(Xi - a)ViJ E[E{(Xi - a)Vi! Xo,···, Xi-dJ 
E[Vi E{(Xi - a) !Xo, ... ,Xi-dJ = E[(Xi- 1 - a)Vi]. 
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In the above we have used properties of conditional expectations stated in 
Exercises 22 and 23 of Section 0.2.3 and the martingale property. Using this 
we get 

n n 
(b - a)E[Un(a, b)] < 2::: E[(Xi - a)ViH] - 2::: E[(Xi- l - a)Vi] 

i=l i=l 

E[(Xn - a)Vn+l]- E[(Xo - a)Vl]. 

Since the second term in the final expression is easily seen to be non-negative 
and the first term is ::::: E(IXn - al) ::::: EIXnl + lal, we have proved 

Theorem (Dooh's Upcrossing Inequality): For any martingale (Xik~o 
and for any a < b, E[Un(a,b))::::: (EIXnl + lal)/(b - a), for all n. 

We are now ready to prove the convergence theorem known as Doob's Mar­
tingale Convergence Theorem. We need the following simple observation whose 
proof is left as an exercise. Given any sequence (xik~o of real numbers, the 
sequence converges if and only if for every pair of rational numbers a < b, 
u(a, b) ~ sup un(a, b) < 00. Here by the convergence of a sequence we mean 

n 
that it either converges to a real number or diverges to +00 or diverges to -00. 

Suppose now that (Xi)i>O is a martingale and let a < b be a pair of ra­
tional numbers. Consider the sequence of random variables (Un(a, b))n>l as 
defined earlier. Clearly this is a non-decreasing sequence of random variables 
taking non-negative integer values. Thus U(a, b) = lim Un(a, b) is well de-

n->eX) 

fined (possibly taking the value +00). Moreover by the Monotone Conver-
gence Theorem, E[U(a, b)] = lim E[Un(a, b)) ::::: (sup EIXnl + lal)/(b - a), 

n--+oo n 

where the last inequality uses the up crossing inequality. Therefore if the 
martingale (Xik~o is assumed to satisfy the condition sup EIXnl < 00, we 

n 

will get E[U(a, b)) < 00. This will of course imply P[U(a, b) = +00] = 0; 
equivalently, P[U(a, b) < 00) = 1. Since this is true for every pair of ra­
tional numbers a < b (and there are only count ably many such pairs), we 
have P[U(a, b) < 00 for every pair of rationals a < b] = 1. But this will im­
ply by the earlier observation that P{ Xi converges} = 1. Further, denoting 
Z = liminf lXii, an easy application of the Monotone Convergence Theorem 

2 

(and the definition of liminf) gives E(Z) ::::: liminf EIXil ::::: supEIXnl < 00. 
2 n 

This would imply that if Xi converges to X with probability 1, then X has 
finite mean. We have thus proved 

Theorem (Dooh's Martingale Convergence Theorem): If (Xn)n>O is 
a martingale with sup EIXnl < 00, then Xn converges with probability 1 to a 

n 

random variable X which has finite expectation. 

We are now going to prove that if moreover, sup EIXnl2 < 00 then the 
n 

convergence takes place also in L2, that is, E(X2) < 00 and E(Xn - X)2 -t 0 
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as n ---+ 00. An immediate consequence of this, which will be used by us, is the 
following: if (Xn)n20 is a martingale such that IXnl ::; c for all n, where c is 
a finite constant, then Xn converges to X with probability 1 as well as in L2 
(hence in L1) and, in particular, EX = EXo. 

For the proof, we first need the following basic result on the expectation of 
non-negative random variables. 

Lemma: For any non-negative random variable X with finite expectation, one 
00 

has E(X) = J P(X > A) dA. 
o 

Proof: In case X has a density, say f(x), then by an interchange of integrals, 

00 0000 00 x 00 

J P(X > A) dA = J J f(x)dx dA = J f(x) J dA dx = J xf(x)dx. 
o 0 >. 0 0 0 

which equals E(X) as stated. Next let us consider a discrete random variable 
X taking finitely many values say, Xl < ... < Xk with probabilities P1,··· ,Pk 

respectively. In this case, it is easy to see that 

00 

J P(X > A)dA = Xl + (X2 - xd(l - pd + (X3 - x2)(1 - P1 - P2)+ 
o 

... + (xn - xn-dPn, 

and the right hand side clearly simplifies to L: XiPi = E(X). 
If X is a non-negative discrete random variable taking an infinite number of 
values, say Xl, X2, ... , then we can define a sequence (Xn) of non-negative ran­
dom variables increasing to X with each Xn taking only finitely many values. 
To be precise, for each n, Xn is defined to be equal to X whenever X takes 
values from {Xl, . .. ,Xn }, and is defined to be zero otherwise. An application 
of the earlier case and Monotone Convergence Theorem completes the proof . 

• 
Suppose that P ~ 1 and E(IXIP) < 00. Then by the above Lemma applied 

to the non-negative random variable IXIP, we get 

00 00 

E(IXIP) = J P(IXIP > A)dA = J P(IXI > A1/ P)dA. 

o 0 

An easy change of variable now leads to 

Corollary: For any P ~ 1 and any random variable X with E(IXIP) < 00, 
00 

E(lXIP) = p J AP- 1 P(IXI > A)dA. 
o 

Now let (Xn)n>O be a martingale. For each n, let Mn = max IXil. Fix 
- "~n 

A > 0 and consider the event A = {Mn > A}. An upper bound for P(A) is 
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provided by what is known as Doob's Maximal Inequality given below. 

Lemma (Doob's Maximal Inequality): peA) :S E(lXnl· IA)/)... 

37 

Proof: Let Ao = {IXol > )..} and Ai = {IXol :S ).., ... , IXi-11 :S )..,IXil > )..}, 
for 1 :S i :S n. Then Ao, ... , An are disjoint and A = Ui Ai, so that, peA) = 
L P(Ai) :S * L E(IXiIIAJ. An easy consequence of the martingale property 
of (Xn) is that, for any i :S n, Xi = E(Xn IXo, . . . , Xi). This would therefore 
give 

peA) 
1 L E(IE(Xn 1 X o,···, Xi)IIAJ < -
).. 
1 L E(E(IXn I1 X O, • • • ,Xi)IAi) < 
).. 
1 L E(E(IXnIIAi 1 X o, · .. ,Xi)) = -
).. 
1 1 
- L E(IXnIIAJ = :x E(IXnIIA). ).. 

• 
Applying now the Corollary above with p = 2 and X = Mn followed by the 

Lemma, we get 

E(M~) < 2[ E(IXnII{Mn >'\}) d)" = 2E (IXnl[ I{Mn>,\} d)") 

2E(I X nI Mn) :S 2JE(X;:JJE(M~). 

This leads to E(M~) :S 4E(X';). If now (Xn) is an L2-bounded martingale, 
that is, sup E(X,;) < 00, then it follows that 

n 

whence by Dominated Convergence Theorem we get 

Theorem: If (Xn)n2:0 is an L 2 -bounded martingale, then it converges with 
probability one to a random variable X having finite second moment and more­
over, the convergence is also in L 2 , that is, lim E(Xn - X)2 = o. 

n 

0.8 Markov Chains 

Consider a system which evolves with time in a random way. For the sake of 
simplicity, let us consider the set of times to be discrete. Let us also assume that 
the set S of possible states of the system is countable. S will be called the state 
space of the system and the individual states (i.e. elements of S) will be denoted 
by i, j, k etc. Let Xn denote the (random) state of the system at time n, 
n = 0,1,2, .... We are assuming that each Xn is an S-valued random variable 
and the entire evolution of the system is described by the sequence (Xn)n2:o. In 
particular, Xo is the initial state of the system. Study of such systems in this 
generality, without any further assumptions, will not lead to any interesting 
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theory. Usually one imposes additional restrictions on the joint distribution 
of the sequence to get different kinds of "stochastic processes". One such 
condition, studied in the last section, is that E(XnIXo, Xl' ... ' Xn-d = X n- l 

for all n, which gave rise to what are called martingales. In this section, we 
study one other extremely important and useful condition that leads to a class 
of processes known as M arkov chains. 

0.8.1 Markov Chains: Transition Probabilities 

The property that is imposed can be briefly referred to as 'lack of memory', by 
which we mean that given the present state of the system the 'future' evolution 
does not depend on the 'past' history. In mathematical terms, this means that 
for any two non-negative integers n and m, the conditional distribution of 
X n+m given X o, Xl, ... ,Xn depends only on X n. It turns out that one needs 
only to assume this for m = 1. Thus we have the following definition. 

Definition: A sequence (Xn)n~O of random variables taking values in a countable 
set S is aclled a Markov chain on the state space S if, for any n 2: 0 and any 
io,il, ... ,in-l,i,j E S, 

P(Xn+1 = j IXo = io,.·· ,Xn- l = in-l,Xn = i) = P(Xn+1 = j IXn = i). 

Further, the chain is called time homogeneous, if the above conditional probabilities 
do not depend on n and hence are also equal to P(XI = j IXo = i). 

Markov chains appearing in most applications also happen to be time ho­
mogeneous. A rich theory exists for such chains. We shall restrict ourselves 
to only Markov chains which are time homogeneous. We will denote, for any 
i, j E S, the probability P(XI = j I Xo = i) by Pij. Writing the distribution 
of Xo as {JLi, i E S}, it is not difficult to see that all the finite dimensional 
joint distributions for (Xn)n~O are completely determined by the quantities 
JLi, i E Sand Pij, i,j E S. Specifically, for any n and any collection of states 
io,iI, ... ,in , 

{JLi, i E S} is called the initial distribution and {Pij, i, j E S} are called the 
transition probabilities or one-step transition probabilities, to be exact. From 
the definition it is clear that, 

(1) JLi 2: 0 for all i and L- JLi = 1, 
i 

(2) Pij 2: 0 for all i,j E Sand L-Pij = 1 for all i E S. 
j 

It is often convenient to represent the initial distribution by a row vector 
JL = (JLi; i E S) and the transition probabilities by the transition matrix P = 
((Pij) kjES. The property (2) above simply says that P has non-negative entries 
with each row sum equal to one. Such matrices are called stochastic matrices. 
Much of the theory of Markov chains rests on an analysis of its transition 
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matrix P and not so much on /1. The matrix pn, the n-th power (in the sense 
of matrix multiplication) of the matrix P, is called the n-step transition matrix 
simply because its (i, j)-th element p~;) gives the probability of transition from 
i to j in n steps, that is, 

p~;) = P(Xn+m = j I Xm = i) = P(Xn = j I Xo = i) . 

One can easily verify this for n = 2 and then use induction to complete the 
proof. 

One useful consequence, known as the Chapman-Kolmogorov equations, is 

(m+n) _ '"' (m) (n) 
Pij - ~ Pik Pkj . (24) 

k 

This can of course be verified directly from Markov property. For the sake 
of completeness we need to set prO) = I, the identity matrix which is also 
consistent with the notion of zero-step transition. 

A simple yet useful property of a Markov chain (Xn)n>O is that if f is any 
real function on the state space S satisfying LPijf(j) = Ri) for all i, then the 

j 

sequence U(Xn))n>O is a martingale, provided, of course, the sum L f(i)f.Li is 
convergent. Funct{;ns f satisfying Lj pijf(j) = f(i) for all i, are known as 
harmonic functions for the transition matrix P. 

Example 1: Let 6,6, ... be i.i.d. integer-valued random variables with com­
mon distribution P(6 = j) = aj. Let Xo be any integer valued random 

n 
variable independent of the ~ sequence. For n :2 1, let Xn = Xo + L 6. Then 

1=1 
(Xn) is a Markov chain with state space S = the set of integers and transition 
probabilities Pij = aj-i· The n-step transition probabilities are also not diffi­
cult to get. An elegant formula for these can be obtained using the following 
notation. For any two probability distributions a = (aj) and (3 = ((3j) on 
integers, let a * (3 denote the distribution defined by (a * (3)j = Li ai(3j-i. In 
particular, a*n is defined re cursively by am = a*(n-l) * a. With this nota­
tion, the n-step transition probabilities of the chain (Xn) above are given by 

(n) _ *n 
Pij - a(j_i)· 

It may be noted that here Pij as well as p~;) depend on i and j only through 
j - i. In fact, these are the only Markov chains with this property. In other 
words, if (Xn)n>O is a Markov chain whose transition probabilities Pij depend 
only on i - j, then the random variables ~n = Xn - X n- 1 , n :2 1, are i.i.d. 
The proof is easy. Such Markov chains are called random walks. A special 
case is when the random variables ~j take only two values + 1 and -1. This 
gives what is known as simple random walk. A further special case when 
P(~j = +1) = p(~j = -1) = 1/2, is called simple symmetric random walk. 
Feller's book (voU) gives an extensive and interesting account of such random 
walks. His analysis is based entirely on what is known as 'path counting' and 
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is therefore easily accessible. Interested reader should consult this book. We 
will include parts of this material at the end of this section. 

Example 2: Consider an urn with a total of D tokens - some numbered +1 
and some -1. The composition of the urn changes over time as follows. At 
each turn, a token is picked at random from the urn and its sign changed and 
put back in the urn. Denote by Xn the number of + 1 at time n. It is clear 
that Xn is a Markov chain with state space S = {O, 1, ... , D} and transition 
probabilities 

~ 

Pi,Hl = 1 - D = 1 - Pi,i-l . 

Thus, from a state i, transitions are possible only to states i-I or i + 1 in 
one step. Of course if i = 0 (respectively D) then the system moves surely to 
1 (respectively D - 1). It is not difficult to see that the two-step transition 
probabilities are given by: 

(2) _ i i + 1 
Pi,H2 - (1- D)(l- ---rJ)' 

(2) _ i i-I 
Pi,i-2 - D ---rJ' 

(2)_ i(i-1) (D-i)(D-i-1) 
Pii - 1 - D2 - D2 . 

Exercise 1. Suppose Xo is uniformly distributed on the state space S in 
the above example. Calculate the distributions of Xl, X 2 and also the joint 
distribution of (Xl ,X2 ). Do the same when Xo rv B(D, 1/2). 

Example 3 (0 - 1 chain): Consider a machine which can be in two states, 'on' 
and 'off'. Also if the machine is 'on' today, then the probability is a that it will 
be 'off' tomorrow. Similarly, (3 is the probability of transition from 'off' state 
to 'on' state in one day. Denote the 'on' and 'off' states by 0 and 1 respectively. 
Denoting by Xn the state of the machine on day n, (Xn)n~O is a Markov chain 
with state space S = {O, I} and transition matrix 

p = (POO POl) 
P10 Pl1 

We assume that a + (3 > 0 (what happens if a + (3 = O?). A trite calculation 
gives 

p~~) = p~~-l) a + p~~-1) (1 - (3) = a + p~~-l) (1 - a - (3) , 

from which one deduces 

(n) 
POl 

Similar calculation shows that 

(n) 
P10 
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If one further assumes that a + (3 < 2 (what happens if a + (3 = 2?), so 

h 1 (31 h (n) a d (n) (3 S· t at 1 - a - < 1, t en one gets POl -7 --(3- an PlO -7 --(3. mce 
a+ a+ 

(n) _ 1 (n) d d h (n) (3 S··l 1 (n) a 
Poo - - Pol we e uce t at Poo -7 --(3-. lml ar Y Pll -7 --(3. a+ a+ 

From all these, one can deduce that, if 0 < a + (3 < 2, then the Markov 
chain has the limiting distribution 'if = ('if 0, 'ifl) = C"!f3' "'~(3)' whatever be the 
initial distribution of the chain. This distribution represents what is called the 
'equilibrium' or 'steady-state' distribution of the chain. It is so called because 
'if also happens to be the only distribution on S with the property that if Xo 
has distribution 'if, then for every n, Xn has the same distribution 'if. This 
conclusion also follows from the equations describing p~j). 

This example leads one to the natural question. Is the above kind of phe­
nomenon true for all Markov chains? That is, does every Markov chain have 
a limiting distribution? Is the limiting distribution unique (i.e. independent 
of initial conditions)? Are these limiting distributions, if any, also steady-state 
distributions in the above sense? The cases a + (3 = 0 and a + (3 = 2 should 
convince the reader that the answers to the above questions cannot always be 
in the affirmative. 

To better understand the nature of problems and to identify some of the 
cases where we do have affirmative answer, we first need to discuss 'classifica­
tion' of the states. This will be done in the next section. But let us now make 
a little digression to discuss some interesting properties of simple random walk 
as described in Example 1. 

Simple Random Walk: Recall simple random walk as discussed in Ex­
ample 1. Here is an illustration of the path-counting argument and the final 
result will be used in Chapter 4. 

In the context of random walks, a path from (0,0) to (n, a) is a polygonal 
line with vertices (i, Si) for 0 :::; i :::; n, with So = 0, Sn = a and Si - Si-l = ±1 
for 1 :::; i :::; n. It is clear that a has to be an integer between -n and +n. 
Similarly one can talk about paths from (m, a) to (m + n, b), for integers m 
and n with n > O. Such paths are called paths of length n. It is clear that the 
total number of paths of length n starting from a given point is 2n. Also the 

number of paths from (0,0) to (n, a) is (nta). 
A fact, often called the reflection principle is that, for integers a, b > 0, 

the number of paths from (O,a) to (n,b) that touch or cross the X-axis is 
the same as the total number of paths from (0, -a) to (n, b) and hence equals 

( n+~tb ). This is done by establishing a one-one correspondence between the 

two sets of paths. From this one can easily deduce that for any integer a > 0, 
the number of paths from (0,0) to (n, a) that do not hit the X-axis equals 

( nta-~ 1) - (nni})· Incidentally, this formula also gives a solution to what 
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is known as the ballot problem. 

We now turn to an important property of simple, but not necessarily sym­
metric, random walk. In other words, we consider the Markov chain on the 
set of integers with transition probabilities Pi,i+l = P = 1 - Pi,i-l. For any 
integer a, let Ta = inf{n 2: 1 : Xn = a}, that is, Ta is the hitting time of a. 
Fix integers a < i < b. Let 

cp(i) =P(Ta <TdXo=i) for a<i<b 

and cp(a) = 1 and cp(b) = O. 

Exercise 2. 

(i) Show that for a < i < b, cp(i) = pcp(i + 1) + (1 - p)cp(i - 1) 

(ii) Denoting di = cp(i) - cp(i - 1), show that for a + 1 < i S; b, 

and hence that 

(
1 ) i-a-l 

di = ; P da+1 . 

(iii) Assume that P = 1/2 and show that cp(i) = 1 + (i - a)da+1 for a S; is; b, 
and hence deduce that cp(i) = (b - i)/(b - a). 

(iv) Assume that P -=I- 1/2 and denote (1- p)/p by a. Show that 

cp(i) = 1 + 1 ~ 2p da+l [ai-a - 1J 

for a S; i S; b and hence deduce that 

(v) If p > 1/2 then show that 

P(Ta < 00 IXo = i) ai-a < 1. 

(vi) If pS; 1/2 then show that 

P(Ta < 00 I Xo = i) 1 . 

0.8.2 Classification of States: Recurrence and Transience 

For any state i, let us define two random variables, possibly taking value +00, 

as follows: 

Ti = min(n 2: 1 : Xn = i), Ni = #(n 2: 1 : Xn = i) . 
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In the definition of Ti , if there is no n ~ 1 such that Xn = i we take Ti = +00. 
If there are infinitely many such n, then of course, Ni = +00. Ti represents 
the time of the first visit to i and Ni represents the total number of visits to 
i. In both of these, the time point 0 is not counted. It is clear that the events 
(Ti < (0) and (Ni ~ 1) are same. 

For i and j in S, let 

fi~n) = P(Tj = nlXo = i) = P(Xn = j;Xl i- j , 1::::: l < nlXo = i), (25) 

(Xl 

fij = L fi~n) = P(Tj < 00 1 Xo = i) . (26) 
n=l 

It is clear from the definitions that p~;) ~ fLn). In fact one has the following 
identity often known as the renewal equation : 

(n) 
Pij 

n 
'" f(;n) (n-m) 
~ 'J PJJ • 

m=l 
(27) 

To prove the equation, one has to simply write the event (Xn = j) as the 
n 

disjoint union of events U (Tj = m, Xn = j) and calculate the probabilities 
m=l 

of these events by applying the Markov property. 

All the states of the Markov chain are classified into two kinds as defined 
below. 

Definition: A state i is called recurrent if fii = 1 and is called transient other­
wise. A state i is called absorbing if Pii = 1. 

Thus a state i is recurrent if the chain starting from i is sure to return to i 
at some future (possibly random) time. Naturally, for a transient state i there 
is a positive probability of never returning to i. Clearly every absorbing state 
is recurrent. 

Since the two events (Ti < (0) and (Ni ~ 1) are identical, it follows that a 
state i is recurrent iff P(Ni ~ 11 Xo = i) = 1, that is, the chain starting from 
the recurrent state i is sure to make at least one visit to i. We will, in fact, 
show that starting from a recurrent state i, the chain actually makes infinitely 
many visits to i with probability one. Intuitively, this should be obvious from 
the Markov property. 1:0 do this rigorously and get some other results we need 
the following identity: 

For states i and j and any m ~ 1, 

P(Nj ~ mlXo = i) = lij' f;";-l. (28) 

For m = 1, this is just the definition of fij. Let us prove it for m = 2. Clearly, 

(Xl (Xl 

P(Nj ~ 21 X o = i) = L L P(An,n' IXo = i), 
n=l n'=l 
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where A - { Xn =Xn+n, =j; } 
n,n' - Xp =I- j for 1 :S P < n and for n + 1 :S P < n + n' . 

By using the properties of conditional probability and the Markov property, 
each summand reduces to the product 

P(Xn = j, Xp =I- j, 1 :S P < nlXo = i) . P(Xn' = j, Xp =I- j, 1 :S P < n'lXo = j), 

so that 
00 00 

P(Nj 2: 21 Xo = i) = 2::: 2::: fijn) fJ;') = fijhj . 
n=l n'=l 

The proof for a general m is similar. Do it for m = 3 to make sure that you 
understand. 

Notice that the events (Nj 2: m) are decreasing as m increases with limit 
being the event (Nj = (0). If j is a transient state then hj < 1, so that for 
every i, P(Nj = 00 1 Xo = i) = O. That is, a transient state can be visited 
at most a finite number of times, no matter where the chain starts. On the 
other hand, if j is recurrent, then P(Nj = 00 1 Xo = i) = 1;j. In particular 
P(Nj = 00 1 Xo = j) = 1, as stated earlier. 

It also follows that if j is a recurrent state, then E(Nj 1 Xo = i) = 0 or 00 

according as 1;j = 0 or 1;j > O. In particular, E(Nj 1 Xo = j) = 00 if j is 
recurrent. On the other hand, if j is transient then 

for m = 1,2, .... 

Since fjj < 1, we have E(Nj IXo = i) = 1;j/(l- Ijj). In particular, it follows 
that E(Nj 1 Xo = i) < 00. 

The above analysis leads to another characterization of transience and re­
currence, namely, a state j is recurrent if and only if the series LP}]) diverges. 

n 
To see this, one defines random variables (Yn, n 2: 1) as Yn = 1 if Xn = j and 

00 

Yn = 0 otherwise. Then N j = L Yn , so that, for any i, 
n=l 

00 

E(Nj 1 Xo = i) = 2::: E(Yn 1 Xo = i) = 2::: p~;) . 
n=l 

The above-stated characterization of recurrence follows now by taking i = j. 

Further, for a transient state j, the series LPl;) converges to 1 ~iJf' .. for 
JJ 

every state i. In particular, pi;) --+ 0 as n --+ 00. 

This last observation can be used to deduce that if the state space is finite 

then there has to be at least one recurrent state. This is clear since L pi;) = 1 
jES 

always for every n. Therefore if S is finite, lim L p~;) = 1 also. This makes 
n-+oo jES 

it impossible that pi;) --+ 0 for all j. 
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Given states i and j we say that i leads to j, in symbols i '-+ j, if !ij > O. 

This can be seen to be equivalent to requiring that !ijn) > 0 for some n 2: 1, 

which in turn is the same as requiring p~;) > 0 for some n 2: 1. It is a simple 
consequence of the Chapman-Kolmogorov equations that if i '-+ j and j '-+ k, 
then i '-+ k. 

An important result is that a recurrent state does not lead to a transient 
state. More specifically, if i is recurrent and i '-+ j then j is recurrent and 
hj = hi = 1. We only need to prove the result when i =I j. We first prove 

that hi = 1. Since i '-+ j, p~;) > 0 for some n 2: 1. Let m be the smallest 
such n. Then we can get states i 1 , i 2 , ... ,im - 1 , all different from i, such that 
Pii1Pil i2 ... Pi",-13 = a > O. Suppose, if possible, hi < 1, that is, P(Xn =I 

\:In I Xo = j) = f3 > O. But P(Xn =I i \:In I Xo = i) is at least as much as 

P(Xl = h, ... ,Xm- 1 = im-1,Xm = j and X m+n =I i \:In 2: 11Xo = i). 

By Markov property, it is easy to see that the right hand side equals af3 > 0, 
contradicting the recurrence of i. Thus we must have hi = 1. In particular, 
j '-+ i. Now the recurrence of j is derived as follows. Let m' 2: 1 be such that 

(m') 
Pji > O. Then 

00 

> '" p(m')p(n)p(m) 
~ JZ U ZJ 

n=l 

and the right hand side diverges because both P),;') and p~j) are strictly posi­
tive and i is recurrent. This implies divergence of the left hand side and hence 
recurrence of j. That !ij = 1 is obtained now by reversing the roles of i and j. 

Results of Exercise 2 in the previous section really tell us that for a simple 
random walk with P > 1/2, !ij < 1 for all i > j. Using the fact that i '-+ j for 
any two states i and j, we deduce that all states are transient in case P > 1/2. 
One can similarly show that the same is true if p < 1/2. It would be an 
interesting exercise to go back to the formula for di and examine what happens 
in case p = 1/2. The reader should be able to show that now !ij = 1 for all 
i =I j and deduce from this that all states are recurrent. 

0.8.3 Decomposition of the State Space: Irreducible 
Closed Classes 

The limiting and steady state behaviour of a Markov chain is intimately con­
nected with a partition of the state space. One way to get the decomposition 
is to define an equivalence relation between states. Given states i and j, we 
will say that they are communicating if either (i = j) or (i '-+ j and j '-+ i). It 
is easy to see that this is an equivalence relation so that the whole state space 
S is partitioned as a disjoint union of equivalence classes. These equivalence 
classes are called communicating classes. 
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From the earlier result it is clear that in a communicating class either all 
states are recurrent or all states are transient. A communicating class is called 
recurrent (respectively, transient) if all states in the class are recurrent (respec­
tively, transient). It is natural to ask how to interpret these equivalence classes 
in terms of the behaviour of the chain. Let us make a definition first. 

Definition: A set C C S is said to be closed or stochastically closed if Pij = 0 
for i E C and j tJ. C or equivalently, for i E C, L Pij = 1. 

jEC 

The condition in the definition above can easily be seen to be equivalent to 

L p~;) = 1 for all i E C and for all n 2 1. This really means that if the chain 
jEC 

starts from i E C, then with probability one it remains in C for ever. More 
precisely, 

P(Xn E C "in 2 1 I Xo E C) = 1. 

The state space S is trivially a closed set. A singleton set C = {i} is closed iff 
i is an absorbing state. It is also easy to see that any recurrent communicating 
class is closed and moreover it does not have a proper subset which is closed. 
It is therefore natural to ask "what are the minimal closed subsets of S?" 

A closed set C is called irreducible if i y j for every i and j in C. It 
is easy to see that a closed irreducible set C is minimal in the sense that no 
proper subset of C is closed. A closed communicating class is irreducible. In 
particular, any recurrent communicating class is closed and hence irreducible. 
One can not say the same thing about transient classes simply because they 
may not be closed. In fact, as already remarked, a finite transient class can 
never be closed. An infinite transient class mayor may not be closed. 

Exercise 3. Let the state space S be the set of all integers. The transition 
matrix is given by Pi,Hl = 3/4 and Pi,i-l = 1/4. (This is just the simple 
random walk with P = 3/4.) Show that the chain is transient, S is a transient 
class and S is closed. 

Exercise 4. Let the state space S be the set of all non-negative integers. The 
transition matrix is given by: Poo = 1 and, for i 2 1, Pi,iH = 3/4, Pi,i-l = 1/4. 
Then the set of strictly positive integers is a transient class, but not closed. 

In passing let us also note that there may not be any closed irreducible set. 
For example, let S = {O, 1, ... } and Pi,Hl = 1. One can easily see that sets of 
the form {k, k + 1, ... } c S are all closed and these are the only closed sets. 
Thus no closed set is irreducible. Of course, such a behaviour is impossible 
for a finite state space Markov chain. In fact, for a finite state space Markov 
chain, the structure is fairly simple. Since finite state space chains are all that 
we will be needing for our applications, from now on 

let us specialize to the case where the state space is finite. 

In this case, we have a unique decomposition of the state space S as follows. 
S = SR U ST, where SR is the set of recurrent states (necessarily non-empty) 
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k 
and ST those of transient states (possibly empty). Further SR = U Cl where 

1=1 
each Cl is an irreducible closed set. If the chain starts in Cl it remains there 
forever visiting each state an infinite number of times with probability one. 
Thus if ST = 0, we may, depending on the initial state of the chain, study the 
chain only on a reduced state space, namely, one of the Cl. 

In fact, even if ST "I 0, a chain starting in ST will, after a finite (random) 
number of steps, has to enter one of the Cl ~ and, of course, will remain 
there from then on. The long-term behaviour of the chain will therefore be 
still determined by the analysis of the chain on the restricted state space Cl. 
The only other things that are pertinent in this case are: How long does it 
take to enter one of the classes Cl and what are the probabilites of entering 
the different classes? We address these questions first. 

Let i E ST and 1 :::; l :::; k. Let 

ail P(Xn E Cl for some n I Xo = i) 

P(Xn E Cl for all large n I Xo = i) . 

k 

From what has been said above L: ail = 1. Let us also denote for i E ST and 
1=1 

for 1 :::; l :::; k, 

f3il = L Pij = P(X1 E CllXo = i). 
JEG, 

It is now easy to see from the Markov property that 

f3il + L Pijajl . (29) 
JEST 

In other words, for each l, the numbers (ail)iEsT satisfy the system of linear 
equations given by (29). In fact, one can show that it is the unique solution. It 
is convenient to write this system of equations in matrix form. Let Q denote 
the submatrix of P of order ST x ST defined as Q = (Pij )i,jEST' It is convenient 
to think of the rows cpd columns of Q indexed by states in ST. For fixed l, 
1 :::; l :::; k, let al and f31 be the column vectors of size ST with entries ail and 
f3il respectively for i E ST. Then al is the unique solution of the equation 

The uniqueness is a consequence of invertibility of the matrix (I - Q), which 
in turn follows from the fact that the series I + Q + Q2 + ... is convergent and 
is indeed the inverse of I - Q (finiteness of ST plays a role here). Here I is the 
identity matrix. As a consequence 
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The duration of time that a chain takes, before it enters SR, is 

We want to get a formula for the expected value of T starting from different 
transient states. For i EST, let 

mi = E(TIXo = i), 

and let in be the column vector of size ST with entries mi. Denoting e to be 
the column vector of size ST with all entries 1, it is ea;>y to see that in satisfies 
the equation 

m e + Qin, 

from which the unique solution for in emerges as 

From the above analysis, it is clear that the matrix (I - Q)-l plays a fun­
damental role and is appropriately called the fundamental matrix of the chain, 
denoted by N. The above method is often referred to as the fundamental matrix 
method. A particularly useful special case - which would also be singularly 
relevant for applications in Markov models in genetics - is what are known as 
absorbing chains. 

Definition: A Markov chain on a finite state space, for which all the recurrent 
states are absorbing, is called an absorbing chain. 

For an absorbing chain, each Cl obtained in the decomposition of SR, con­
sists of a single absorbing state. Entering the different Cl really means getting 
absorbed in one of the absorbing states. For each i EST, the numbers ail, for 
1 ::; 1 ::; k, are called the absorption probabilities starting from i. 

As seen earlier, we can only solve for ail simultaneously for all i E ST with 
1 held fixed. In other words each vector Ql is supposed to be solved separately 
for each l. However, in case there are only two absorbing states - that is k = 2 
- then solving for one 1 is enough (why?). 

In case of absorbing chains, it is notationally convenient to list the states so 
that the absorbing states come before the transient states. To avoid triviality, 
we assume that there is at least one transient state. With this ordering of 
states, the transition matrix P takes the form 

where Q is as before. The entries of N R are precisely the absorption probabil­
ities ail for i E ST and 1 ::; 1 ::; k. Entries of Ne are precisely the mean times 
till absorption. 



o.s. MARKOV CHAINS 

Exercise 5. Consider a chain with four states and transition matrix 

p 

o 
( 

1 
o 1 

1/4 0 
1/4 1/4 

00) o 0 
1/2 1/4 
1/4 1/4 

49 

Calculate the fundamental matrix, the absorption probabilities and mean times 
till absorption. 

Exercise 6. For an absorbing chain, show that the vector of variances of 
the time till absorption starting from different transient states is given by 
11 = (2N - I)fii - fii2 where fii2 denotes the vector whose entries are the 
squares of the entries of fii. 

0.8.4 Ergodic Chains: Limiting Behaviour and 
Stationary Distributions 

We go back to a general finite state space Markov chain and recall the decom­
position of the state space 

S U ST 
k 

U Cl U ST 
1=1 

where ST and S R are the sets of transient and recurrent states respectively and 
Cl, 1 ::; l ::; k, are the closed irreducible subsets of SR. 

As noted already, the long-term behaviour of the chain is determined by 
the analysis of the chain on the restricted state spaces Ct. This is what we 
want to pursue now. Accordingly, let us assume that the whole state space S 
of the chain is one single closed irreducible class of recurrent states. Such a 
chain is called an irreducible recurrent chain, also sometimes referred to as an 
ergodic chain. For such a chain, we are going to show that there exists a unique 
7r = {7ri' i E S} with 7ri > 0 and L 7ri = 1 such that 7r P = 7r or equivalently, 
there is a unique probability 7r on S such that if Xo '" 7r then Xl '" 7r (in 
fact, Xn '" 7r for all n). It is this property that is described by saying that 
7r is an invariant distribution for the chain - also called a steady-state or an 
equilibrium or a stationary distribution. Formally, 

Definition: By an invariant distribution of a Markov chain is meant a probability 
distribution 7r on the state space S for which the equality 7r P = 7r holds. 

Exercise 7. If Xo '" 7r where 7r is an invariant distribution, show that the joint 
distribution of (Xn,Xn+l ) is same for all n. Generalize from pairs to triplets 
etc. 

A Markov chain may not have any invariant distribution. In case it has, 
it may have more than one invariant distributions. It is not difficult to show 
that symmetric simple random walk has no invariant distribution. On the 
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other extreme, the Markov chain on S = {O, I}, with Poo = Pll = 1, is an 
easy example of a chain with plenty of invariant distributions! Our following 
analysis will show, among other things, that a finite state space Markov chain 
will always have at least one invariant distribution. 

Indeed, we will show that for an ergodic chain with finitely many states 
there is one and only one invariant distribution. This invariant distribution 7r 

will also turn out to be the limiting distribution of the chain in the following 
sense: 

for all i,j E S, 
1 n 

lim _ ~ p(l) 
n n ~ "J 

1=1 

(30) 

It may be noted that the above limit does not depend on i. In other words, 
the effect of the initial distribution wears off in the long run. 

We first prove that the limits in the left-hand side of (30) exist and are 
free of i. We start with some notations. For any state i, Pi(A) will denote 
the conditional probability of the event A, given Xo = i. Thus Pi(A) can be 
thought of as the probability of the event A when the initial distribution is 
concentrated at i. Expectation wih respect to this probability will be denoted 
by E i . Let us, from now on, fix a state j. Let T1,T2 , •.. be the times of 
successive visits to the state j. Only times greater than or equal to one are 
considered for these visits. That is, 

T1 min{n 2: 1 : Xn = j}, 

and for r 2: 2, 
Tr min{n > Tr- 1 : Xn = j}. 

Since S is a closed irreducible recurrent class, Pi (Tr < 00 for all r) = 1. Set 
Zo = T1 and for r 2: 1, Zr = Tr+1 - Tr. We claim that the Markov property of 
(Xn) implies that for any i, the random variables Zl, Z2, ... are i.i.d. under Pi. 
Moreover, the common distribution is that of T1 under Pj (and hence does not 
depend on the initial state i). To see this, note first that Pi(Zl = h 1 Zo = lo) 
equals the conditional probability of (X1o+m -I- j,O < m < h; Xlo+lt = j), 
given (Xo = i; Xm -I- j,O < m < lo; X10 = j) which by Markov property at 
time lo equals 

P(Xm -I-j,O < m < h;Xl, =jlXo =j) =Pj (T1 =h). 

Next, Pi(Z2 = l21 Zo = lo, Zl = h) equals the conditional probability of the 
event A given the event B, where 

and 

A = {X1o+lt +m -I- j,O < m < l2,X1o+l,+12 = j}, 

B={ Xo = i,X1o = X 1o+lt = j,Xm -I- j,O < m < lo, 
X 1o+m -I- j, 0 < m < h }. 
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Once again, by the Markov property at time la + h, the above conditional 
probability equals 

One can use similar technique to show that for any r 2': 1, 

From this, our claim about the Pi distribution of the sequence (Zr )r2:1 can 
easily be proved. 

Now an application of the strong law of large numbers yields 

asr--+oo 

with Pi-probability one, for any i. It should be remarked that the strong law 
of large numbers used here does not need any apriori assumption on finiteness 
of the expectation E j (Tl). This is because the random variables Zi are all 
non-negative. (See the paragraph following Exercise 5 in Section 0.5.) By the 
definition of the sequence Zl, Z2, ... , we have 

Thus 
Tr+1 - Tl -+ K(Td 

r J 
as r --+ 00, 

with Pi-probability one. But then 

Tr - Tl Tr - Tl r - 1 () 
r = r _ 1 -r- -+ E j Tl as r --+ 00, 

with Pi-probability one. Since Pi(T1 < (0) = 1 and hence ~1 -+ 0 as r --+ 00, 

we have with Pi-probability one 

Tr+1 -- -+ K (Td as well as r J 

Tr - -+ K(Td as r --+ 00. r J 

For each n 2': 1, let us consider the random variable 

Nn #{1 ::::; I ::::; n : Xl = j} . 

Since we have an ergodic chain, N n --+ 00 as n --+ 00 with Pi-probability one, 
for any i, so that 

as n--+oo. 

But by definition of N n , one clearly has TNn ::::; n < TNn +1 so that 

< < 
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Thus we have, for every i, ~ -+ E j (T1 ) as n -+ 00 or, equivalently, 
N n 

as n -+ 00, 

with Pi-probability one. Since 0 ~ ~ ~ 1 for all n, we have by the dominated 
convergence theorem that 

as n -+ 00. 

It is easy to identify Ei(Nn ) as f, Pg) . This proves that lim ~ f, pi~) exists 
1=1 n---+oo 1=1 

for all i and j, and equals l/Ej (Td. Denote this quantity by 7rj. It is clear 
that 7rj 20 for each j. Of course, trj = 0 is not yet ruled out but will be ruled 
out soon. Also, since each pn is a stochastic matrix of finite order one gets 
L: 7rj = 1. Thus 7r = (7rj : j E S) is a probability on the state space. We next 
show that 7rP = 7r, or in other words, (7rP)j = 7rj for each j. Fix any arbitrary 
state k. 

(7r P)j '" _ ",. 1 ~ (l) _. 1 ~ '" (l) ~7riPij - ~h;n~ ~Pki Pij - h;n~ ~~PkiPij 
i i 1=1 1=1 i 

. 1 2:n (1+1) _ . 1 [2:n (I) (1) (n+l)]_ hm - Pk' - hm - Pk' - Pk' + Pk . - 7rj. nn J nn J J J 
1=1 1=1 

This shows that our 7r is indeed an invariant distribution. To show uniqueness, 
let 1T = (1Tj) be any invariant distribution. From 1Tpn = 1T, one easily gets that 
for each j, 

7rj. 

Letting n -+ 00, the left-hand side equals L:i 1Ti7rj = 7rj showing that 1T = 7r. 
It is only appropriate to draw the attention of the reader to an important fact 
lest it be overlooked. In our analysis above, we have repeatedly taken the 
liberty of interchanging sum and limits at our will. This was sponsored by the 
assumption of finiteness of the state space. The case of infinite state space 
could be a very different ball game. 

Thus we have proved that for an ergodic finite state Markov chain, there is 
a unique invariant distribution 7r which is also the limiting distribution in the 
sense of (30). Indeed our proof also shows that for each j, l/7rj is nothing but 
the expected time to return to j, given that the chain started at j. As noted 
already, this expected value could potentially be infinite for some j, leading to 
7rj = O. 

We now go a step further and show that for ergodic finite state Markov 
chains,7rj > 0 for all j which, in turn, would also imply that, starting from any 
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state j, the expected time to return is finite. Indeed, suppose that for some j, 
1fj = O. Fix any i :j:. j and an I ~ 1 such that p~y > O. Since 1f pi = 1f, we have 

1fj = I:k 1fkPil] ~ 1fiP~Y' so that 1fi = O. Thus 1fj = 0 for some j implies that 
1fi = 0 for all i which contradicts I: 7ri = 1. 

For an irreducible recurrent chain we already knew that starting from a 
state j, we are sure to return to j sometime or the other. What we have 
just shown is that if the state space is moreover finite then the expected time 
to return is also finite. This property is often referred to in the literature as 
positive recurrence. This is not true in general, that is, a recurrent state may 
fail to be positive recurrent, if the state space is infinite. Such recurrent states 
are called null recurrent. 

Another natural question that arises out of (30) is : why do we not consider 

simply the limn p~7) instead of the averages ~ I: p~~) as was done above? It is 

not difficult to see that limn p~7) may fail to exist, in general. In fact, a two 
state chain with transition matrix 

p (~~ ) 
will illustrate this. What is happening in this example is that, for any i and j, 
exactly one of p~j) and p~j+l) is positive for each n. In fact, for i = j, p~j) is 
positive (indeed, equals 1) if and only if n is even, while for i :j:. j, this happens 
if and only if n is odd. 

Usually, it is only such periodic behaviour of the chain, as illustrated in the 
example above, that prevents the existence of lim p~7). We are not going to 

n 
pursue the periodicity properties and their consequences here. However, for 
subsequent applications, we are going to describe now (without proofs) what 
happens if such periodic behaviour is ruled out. 

For a Markov chain, a state j is said to be aperiodic if {n ~ 1 : p;j) > O} 
has greatest common divisor 1. It is immediate that none of the two states in 
the above example are aperiodic - the g.c.d is 2 for both. It can be shown 
that in an irreducible Markov chain, either all states are aperiodic or none are 
and, in the first case, the chain is said to be aperiodic. Now we can state the 
main result without proof. 

Theorem: If an ergodic finite state chain is aperiodic, then for all states i and 

j, the limit lim p~7) exists and equals 7rj where 7r = (7rj, j E S) is the unique 
n~oo 

invariant distribution. 

In effect what it says is that for an aperiodic ergodic chain, 7r is the limiting 
distribution of the chain, irrespective of how it starts. 

Exercise 8. Consider a Markov chain with r states. Suppose that the tran­
sition matrix has the property that each column sum is one (remember that 
for a transition matrix each row sum is one). If the chain is irreducible then 
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show that the uniform distribution on the state space is the unique stationary 
distribution. What do you infer about the expected times to return in this 
case? What if it is not irreducible? 

Exercise 9. Let a be a probability vector with strictly positive entries and 
length 10. Consider a Markov chain with 10 states. Let the transition matrix 
have identical rows, each row being a. What is the stationary distribution? 
What chain are we talking about? What if the vector is not strictly positive? 

Exercise 10. Consider a chain with 4 states and the following transition 
matrix. 

( 

1/2 
1/3 
1/4 
o 

1/2 
1/3 
1/4 
o 

o 0) 1/3 0 
1/4 1/4 
1/2 1/2 

Denoting by T the time G:: 1) of the first visit to the state 2, calculate Ei(T) 
for each state i. Suppose that f.L is an initial distribution on the state space. 
Calculate Elt (T). 

0.8.5 Absorbing Chains: Limiting Behaviour, Rate of 
Convergence 

Recall that an absorbing chain is a finite state Markov chain consisting only 
of absorbing and transient states. Since the state space is finite, there is at 
least one absorbing state. To avoid trivialities, we assume that there is at least 
one transient state also. Specifically, let us assume that there are m states, 
{1, 2, ... ,m}, of which the first k are absorbing and the remaining transient. 
As already seen, the transition matrix has the structure 

where I is the identity matrix of order k and Rand Q are of orders (m - k) x k 
and (m - k) x (m - k) respectively. As already observed, the fundamental 
matrix N = (J - Q)-1 plays an important role. For example, the matrix N R 
equals (( O:ij )) where O:ij for k + 1 :S i :S m and 1 :S j :S k are the absorption 
probabilities. For an absorbing state j, it follows from the continuity property 
of probability that 

- 1· P (X - .) - 1· (n) O:ij - lm i n - J - lmPij . 
n--+oo n 

(31) 

Recall that, for k + 1 :S j :S m, limp~;) = 0 for all i. All of these can be stated 
n 

in matrix form as 

where A = NR = ((O:ij)). 
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We now want to show that the convergence in (31) happens geometrically 
fast and also calculate the exact rate of convergence. Interest in the rate of 
convergence lies in the fact that just like the expected time till absorption, this 
rate also gives another indication as to how fast the chain gets trapped in one 
of the absorbing states. 

To begin with, let us recall that a number A (possibly complex) is called an 
eigenvalue of P if there is a non-null vector u (with possibly complex entries) 
such that uP = AU. Such a non-null vector u is called a left eigenvector 
corresponding to the eigenvalue A. Recall also that the set of all vectors u with 
uP = AU is a vector space, called the left eigenspace associated to A. 

Let us now observe that a transition matrix P cannot have an eigenvalue A 
with IAI > 1. If possible, suppose IAI > 1 and u = (U1' U2, ... ,um ) is a non-null 
vector with UP = AU. Then clearly, upn = AnU for all n 2: 1. Let j be such 
that Uj -:j:. O. We then get a contradiction from the fact that 

~ (n) _ \n 
~ UiPij - /\ Uj, 

i 

where the left-hand-side remains bounded by L IUil for all n, while the right­
hand-side is unbounded. 

We next show that if P is the transition matrix of an absorbing chain with 
k absorbing states, then the dimension of the eigenspace associated to A = 1 is 
exactly k. Indeed, let u be any vector with UP = u which, of course, implies 

upn = u for all n. Then, for any j 2: k + 1, Uj = L uiPl;) -+ 0 as n -+ CXJ 

showing that Uk+l = ... = Um = O. Thus, the dimension of the eigenspace 
is at most k. On the other hand, for each i, 1 :::; i :::; k, the vector ui with 
i-th coordinate equal to 1 and other coordinates 0, can easily seen to be a left 
eigenvector corresponding to >.. = 1. So there are exactly k linearly independent 
left eigenvectors for A = 1. 

Finally, for P as above, we show that A = -1 cannot be an eigenvalue. 
Suppose that u satisfies UP = -u and hence upn = (-1) nu for all n. For 

j 2: k + 1, (-l)nuj = L uiPl;) again yields that Uj = O. For j :::; k, 

m k 

-Uj = L UiPij = L UiPij = Uj 
i=l i=l 

implying again that Uj = O. Thus any u satisfying uP = -u must be null. 

To continue with our discussion of the rate of convergence, let us assume 
that there are m real eigenvalues AI, ... , Am (not necessarily distinct) of P, 
with associated left eigenvectors u1 , ... ,um , which are linearly independent. 
As shown earlier, we can and do take Al = A2 = ... = Ak = 1 and ui , 1 :::; i :::; k, 
as defined above. If the remaining eigenvalues are listed in decreasing order of 
magnitude, we will clearly get 
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Denote by L the m x m matrix whose i-th row is ui . The above equations can 
be reformulated as 

LP DL 

where D = Diag (A1, ... , Am). Since the vectors ui are linearly independent, 
the matrix L is invertible and therefore 

p (32) 

Readers initiated to linear algebra would quickly recognize the above as the 
spectral representation of P. Our assumption therefore really amounts to P 
having a spectral representation. It follows from (32) that 

pn L-1 D n L, 

where clearly Dn = Diag (Ar, ... , A~). In particular, for any 1 ::; i, j ::; m, 

m 

p~;) 2: A~ (L -1 )ir Lrj . 

Since A1 = ... = Ak = 1, we have 

k 

r=l 

m 
Ip~;) - L (L -1 )irLrj I < L IAr lnl(L-1 )irLrjl 

r=l r=k+1 
m 

< IAk+1In L I(L-1)ir Lrjl· 
r=k+1 

Of course, IAk+ll < 1 implies that the left side goes to zero as n --+ 00 and the 
convergence is geometrically fast with rate not larger than IAk+11. Incidentally 
this argument also shows that 

k 

"""'(L -1) L - r (n) ~ ir rj - n~Pij 
r=l 

for all i and j. Of course, if i is a transient state (that is, i ;::: k + 1) and j 
is an absorbing state (that is, j ::; k), then this quantity is precisely aij, the 
probability of absorption in j starting from i. We leave it as an exercise to 

k 

verify that (i) if i is absorbing, then L (L -1 )irLrj equals bij and (ii) if j is 
r=l 

transient then this is zero. 

Exercise 11. In the above discussion of convergence rate for absorbing chain, 
we assumed spectral representation for the transition matrix. However, a tran­
sition matrix need not always admit a spectral representation (32). Show that 
the following transition matrices do not admit spectral representation. For 
chains with these transition matrices, find the rates of convergence. 

p = ( 2~3 
2/3 
2/3 

o 
o 
o 

1/3 

o 
1/3 
o 
o 

p = ( 1~2 
1/2 
2/3 

o 
o 
o 

1/3 

o 
1/2 
o 
o 
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0.9 Continuous Time Processes 

Discrete time stochastic processes are used to describe evolution of systems 
that change only at discrete instants of time. The relevant time set is the 
set of time points at which changes may take place, and, is usually taken as 
{O, 1,2, ... }. In the earlier two sections, we discussed some special types of 
such processes, namely, martingales and Markov chains. 

In this section, we discuss stochastic processes evolving over a continuum 
of time or in other words, continuous time stochastic processes. Even though 
the process evolves over a continuous time, distinction would be made as to 
the nature of the evolution. Let us consider two simple examples to make the 
distinction clear. 

Imagine a telephone exchange through which calls pass at random instants 
of time. If we consider the number of calls passing through upto time t, then 
we have a stochastic process (Xt ) over time set t E [0,(0). However, the state 
space of the process is {O, 1,2, ... }, which is a discrete set and the process 
evolves only through jumps. 

A different example would be the kinetic movement of a gas molecule where 
the position of the particle changes continuously with time and not through 
jumps. In other words, here the state space is also a continuum. 

In the first subsection, we will discuss a special class of processes of the first 
type, namely Markov chains in continuous time. Such processes will be used 
in connection with temporal spread of epidemics in Chapter 4. 

The second subsection would be devoted to a special class of processes 
of the second type ~ known as diffusion processes. It is worth noting here 
that a diffusion process may sometimes serve also as an approximation to a 
discrete time Markov chain and often allows us to get good approximations 
to quantities of interest, related to the original discrete chain. Indeed, it is 
mainly this application of diffusion processes which will be used in connection 
with Markov models in genetics in Chapter 3. 

The interval [0,(0) is usually taken as the time set for a continuous time 
process. Thus, we consider a family of random variables Xt, indexed by all real 
numbers t ~ 0, each taking values in a set S. This constitutes a continuous time 
process and, in analogy with discrete time processes, is denoted (Xtk::o. The 
set S is called the state space of the process. The notion of Markov property 
for stochastic processes has been already encountered in the discrete set-up. It 
simply means that at any point of time, given the present state of the process, 
the future evolution is (conditionally) independent of the history of the past. 
A simple formulation of this idea in the continuous time case is as follows. 

Definition: A process (Xtk~o with state space S is said to be a Markov process 
if, for any choice ° :::; 81 < 82 < ... < 8 n < 8 < t + 8 of time points, the 
conditional distribution of the random variable X t+s , given (XS1 "'" X Sn ' X s ), 
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depends only on X s , that is, for B c S, 

P(XHs E BIXS1 = Xl,··. ,XSn = xn,Xs = X) = P(XHs E BIXs = X). 

If, furthermore, these conditional distributions are the same for all 8, that is, the 
right side of the above equation depends only on t and not on 8, then the process 
(Xtk:::o is said to be time-homogeneous. 

In the above definition, the set B can be any subset of S in case S is a countable 
set. However, as discussed in Section 0.4, one has to be more selective, in case 
S is not countable. Of course, for almost any conceivable B, the above property 
has to hold. 

We will consider here only time-homogeneous Markov processes. Thus, for 
all t > 0 and 8 2 0, we have 

P(XHs E BIXs = x) = P(Xt E BIXo = x). 

Let us denote this by Pt(x, B). Clearly, for each t 2 0 and each point X in 
the state space S, Pt(x,·) is a probability distribution on S. This family of 
distributions, as t and x vary ~ called the family of transition probabilities ~ 
play the same role as that of the transition matrix and its powers for a Markov 
chain in capturing the evolutionary mechanism of the whole process (Xt)t::::o. 

Just like in the case of discrete Markov chains, the family of transition prob­
abilities Pt(x,·) here also satisfy the Chapman-Kolmogorov equations, which 
now reads as 

PHs(x,B) = J Ps(y,B)Pt(x,dy) for all t 2 0,8 2 o. 

The interpretation of the integral is not difficult. It is simply a notation for 
E(Ps(Xt , B) I Xo = x). We will return to this in the next two subsections and 
see that the equations take on simpler forms under special assumptions. 

0.9.1 Continuous Time Markov Chains 

In this section, we assume that the state space is countable, that is, each X t 

is a discrete random variable taking values in a countable set S. The time­
homogeneous Markov property reduces to 

P(XHs = j IXS1 = i l , ... , XSn = in,Xs = i) = Pij(t) = P(Xt = j IXo = i) 

for all 0 :::; 81 < 82 < ... < 8 n < 8 < t + 8 and i,j E S. It can be shown 
that the above equation actually implies that for any 8 > 0, the conditional 
distribution of (XHs)t::::o, given (Xu)u<s and Xs = i, is the same as that of 
(Xt)t::::o, given Xo = i. In particular, 

P(Xt+s = j IXu,u < 8;Xs = i) = Pij(t). 

If P(t) denotes the S x S matrix whose (i,j)-th entry is Pij(t), then each P(t) 
is clearly a stochastic matrix. Thus we have a family {P(t), t 2 O} of stochastic 
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matrices. Here P(O) is the identity matrix of size S. The Chapman-Kolmogorov 
equations are easily seen to correspond to the semigroup property 

P(t + s) = P(t) . P(s). 

As mentioned earlier, the family (P(t))t>o plays the same role as the sequence 
(pn)n~O of the n-step transition matrices in case of discrete Markov chains. 
The notable difference is that while the pn are all determined by the one­
step transition matrix P, it is not clear how to get one single matrix that will 
determine all the P(t) for t ~ O. We are now going to show how to do this. 

One may recall that if P : [0, (0) -t R is a continuous function with 
P(t + s) = P(t) . P(s) and P(O) = 1, then P'(O) exists and determines P(t) for 
all values of t. Indeed if P'(O) = Q, then P(t) = eQt for all t. In particular 
P' (t) = P (t) . Q = Q . P (t) for all t. Indeed this differential equation along 
with the initial condition P (0) = 1 also characterizes the function P (t) = eQt . 

Our present situation is quite similar to this except that, instead of real­
valued functions, we are dealing with an S x S matrix-valued function P(t). 
We want to show that under certain conditions, P(t) also satisfies the matrix 
differential equations 

P'(t) = Q. P(t) = P(t) . Q 

for some matrix Q = (qij). In other words, we have the following two systems 
of equations 

PL(t) = LqikPkj(t) i,j E S (33) 
k 

i,j E S (34) 
k 

Unlike in the real-valued case, the two systems are not identical. System (33) 
is always true and is known as Kolmogorov's Backward Equations. System 
(34) which is true under some additional regularity conditions, is known as 
Kolmogorov's Forward Equations, also known as Fokker-Planck equations. We 
proceed to give a derivation of the above equations, assuming that the state 
space is finite. Indeed, i~ is only in the proof of the forward equations that the 
finiteness of the state space will be used. Our derivation will also identify the 
matrix Q, frequently known as the Q-matrix of the chain. 

We first prove two basic lemmas which will give us a description of how the 
chain evolves with time. Let 

T = inf{t > 0 : X t -::f- Xo}. 

In other words, T is the first time the system leaves the initial state. 

Lemma 1: For any s, t ~ 0, 

P(T > t + si Xo = i) = P(T > t I Xo = i)P(T > si Xo = i) . 
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Proof: First assume that s > 0 and t > O. 

P(T > t + si Xo = i) P(T > t + s, T > si Xo = i) 
P(T > t + s, Xs = i, T > si Xo = i) 
P(T> s,Xs = ilXo = i) 
xP(T > t + slXo = i,T > s,Xs = i) 
P(T > si Xo = i) . P(T > t I Xo = i) , 

where the equality P(T > t + si Xo = i, T > s, Xs = i) = P(T > t I Xo = i) 
follows from the assumed Markov property. The case s = 0 and/or t = 0 
follows by taking limits. • 

A consequence of the above is that, for any i E S, there is a .Ai E [0,00] such 
that, P(T > t I Xo = i) = e-A;t for all t 2: O. In particular, P(T > 0 I Xo = i) 
is either one or zero (according as .Ai is finite or not). Also, the case .Ai = 0 
corresponds to P(T = 00 I Xo = i) = 1. Clearly, 0 < .Ai < 00 refers to an 
exponential distribution as encountered in Section 0.4. However, we agree here 
to use the term exponential distribution in a broad sense even when .Ai equals 
o or 00. 

Lemma 2: For any i, j with i -I- j and any s > 0, 

P(T> S,XT = jlXo = i) = P(T > slXo = i)P(XT = jlXo = i). 

Proof: This is clearly true if P(T > OIXo = i) = O. We assume therefore that 

P(T > 0 I Xo = i) = l. 

P(T > s,XT = j IXo = i) = P(T > S,XT = j,Xs = i IXo = i) 

= P(Xs = i, T > si Xo = i) X P(XT = j I Xo = i, Xs = i, T > s) 

= P(T > si Xo = i)P(XT = j I Xo = i, T > 0) 

= P(T > slXo = i)P(XT = jlXo = i). 

• The content of the two lemmas is the following. For every state i, there is a 
number .Ai E [0,00] and transition probabilities Pij for j -I- i. If the chain starts 
in the state i, it remains there for an exponentially distributed random time Tl 
with mean l/.Ai and then moves to state j with probability Pij, independently 
of T1 . Subsequently, the chain behaves as if started from state j. It may be 
pointed out that .Ai = 00 corresponds to P(T1 = 0 I Xo = i) = 1, meaning 
that the chain instantaneously jumps from the state i. Such states are called 
instantaneous states. It can be shown that this contingency is not possible in 
a finite state chain. In general, we assume that there are no such states. It 
may also be pointed out that .Ai = 0 corresponds to P(T1 = 00 I Xo = i) = 
1, meaning that the chain starting at i remains there forever. That is, i is 
absorbing. Thus only .Ai > 0 corresponds to the case when the waiting time in 
state i is a proper exponential random variable. In any case, from the above 
description it is clear that the evolution of the chain is completely captured 
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by the parameters (Ai,i E S) and the stochastic matrix ((Pij))i,jES with zero 
diagonal entries. 

From the above description, it should also be clear that if T1 , T2 , ... repre­
sent the successive (random) times of jumps of the chain then the sequence of 
random variables defined as 

Yo = X o, Yn = XTn for n 2:: 1 

would form a discrete time Markov chain with state space S. The one-step 
transition probabilities of the Markov chain are given by Pij, if Ai > O. For i 
such that Ai = 0, we have Pii = l. 

The chain (Yn)n;:::O is usually called the embedded chain. For many of the 
properties of the continuous time chain, like classification of states, asymptotic 
behaviour and existence of invariant distributions, it suffices to examine only 
the embedded chain. Of course, some important features that explicitly make 
use of the waiting times at various states would not be captured by the em­
bedded chain. For more on embedded chains, the reader may look at the book 
of Bhattacharya and Waymire. 

We now proceed towards proving Kolmogorov's backward equations (33). 
Let i E S be such that Ai > O. Then for any j E S and any t > 0, we have by 
conditioning on the time of the first jump from i, 

t 
L J Aie-AiSPikPkj(t - s)ds + e-Aitr5ij 
k=li 0 

t 
L e-Aitpik J AieAiUPkj(u)du + e-Aitr5ij. 
k=li 0 

Note that, in case j = i, the process starting from i may be in state j (= i) at 
time t by simply waiting at the initial state at least till time t. The term e-Aitr5ij 
occurs to take care of this contingency. Of course, for j of- i, this contingecy 
does not arise and therefore the term has no contribution. Here r5ij is the usual 
Kronecker delta, that is, r5ij equals 1 or 0 according as i = j or i of- j. The above 
equation shows that Pij(t) is continuous in t. In case the state space is finite, 
this is immediate because each summand is continuous in t. In general, one 
needs to use the Dominated Convergence Theorem. The continuity of Pij(t), 
in turn, gives differentiability also and indeed, the sum on the right side can be 
differentiated term by term. This requires the fundamental theorem of calculus 
as well as the Dominated Convergence Theorem. The upshot is 

-AiPij(t) + L AiPikPkj(t). 
k=li 

+ L e-AitpikAieAit Pkj (t) 
k=li 
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In other words, denoting 

(35) 

we get 

Plj(t) = L qikPkj(t) 
k 

Clearly the same equation also holds in case Ai = 0 because in that case 
Pij(t) = bij so that Pfj(t) = o. Thus we have proved the backward equations 
(33) with % for i,j E S defined by (35). 

We now proceed to derive the forward equations (34). Let us first observe 
that a consequence of the Equations (33) is that 

PL(O) = % for all i,j E S. 

Of course the derivative at zero is only the derivative from the right, that is, 

1. Pij (h) - bij lm ---''-'--'---::'" 
htO h 

(36) 

By the Chapman-Kolmogorovequations Pij (t + h) = 2:: Pik(t)Pkj (h) so that, 
k 

Pij(t + h) - Pij(t) _ ~ P. ( )Pkj(h) p..( )Pjj (h)-l 
h - ~ zk t h + ZJ t h 

k#-j 

Now letting h + 0 and using (36), one obtains the forward equations. It is in 
the last step - interchanging the limit and sum - that finiteness of the state 
space is used. It should be noted that because of the differentiability of Pij (t), 
the limit lim Pij(t+h)-Pij(t) equals pl.(t) for all t > O. 

h.j.O h ZJ 

The matrix Q = (( % )) is often called the infinitesimal matrix or rate ma­
trix or Q-matrix of the chain. This Q-matrix has the property that all the 
off-diagonal entries are non-negative and each row sum equals zero. Accord­
ingly the diagonal entries must be non-positive and are determined by the 
off-diagonal entries. The equation (35) shows that the Q-matrix is determined 
by the parameters (Ai,i E S) and (pij,i,j E S,i i- j). What is more im­
portant is that the Q-matrix, in turn, determines these parameters. Indeed 
Ai = -qii = 2::#i %, and, for any i,j with j i- i, Pij = -%/qii. Of course, if 
qii = 0, then clearly for each j, qij is also zero and the above ratio should be 
interpreted as zero. In a nutshell, the Q-matrix of a chain completely captures 
the evolution of the chain. The elements of the Q-matrix are often called the 
transition rates, not to be confused with transition probabilities. 

A simple but important class of continuous time Markov chains are what 
are known as Birth and Death chains. The state space is {O, 1, 2, ... }. The 
transition rates are given as follows: 

qi,j = 0 for all i, j with li - jl > 1; 
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qO,l = bo; 

It is clear that Ai = bi + di , so that the chain starting at i, waits there for an 
exponential time with mean l/(bi + di ), at the end of which it jumps to i-I 
or i + 1 with probabilities di/(bi + di ) and bd(bi + di) respectively. If we think 
of i as population size, then a jump to (i - 1) can be treated as death whereas 
a jump to (i + 1) can be regarded as birth. So the population evolves only 
through a death or a birth. Obviously from size 0, there can only be a birth. 
The parameters bi (respectively, di ) are called the birth rates (respectively, 
death rates). The Kolmogorov equations take on a simple form and are often 
not too difficult to solve. For example, the forward equations will now read 

If furthermore bi = 0 for all i, that is, there are no births, the underlying chain 
is called a pure death chain. Clearly, 0 would always be an absorbing state for 
such a chain. For some special forms of the birth and death rates, the reader 
may consult the book of Karlin. 

0.9.2 Diffusion Processes 

To simplify matters, we will assume that the state space of the process is a 
bounded interval I and, more importantly, that for each t and x, the distri­
bution Pt(x,') is absolutely continuous with density p(t, x, .). The probability 
density functions p( t, x, .) - known as the transition densities -are then easily 
seen to satisfy an equation similar to (24) of Section 0.8, namely, that for all 
t,s > 0, 

p(t+s,x,y) 1 p(t, x, z)p(s, z, y)dz. (37) 

These are the Chapman-Kolmogorov equations for transition densities in the 
continuous time case. 

Suppose now that we have a process (Xtk~o that satisfies, in addition to 
the above, the following properties: 

E(Xt+h - Xt!Xt = x) 

E(IXt+h - X t l2 1Xt = x) 

E(IXHh - Xtl k IXt = x) 

a(x)h + o(h), 

b(x)h + o(h), 

o(h), for k 2: 3. 

(38) 

(39) 

(40) 

Recall that a function g(h) is said to be of smaller order than h, written o(h), 
if g(h) / h --+ 0 as h --+ O. For subsequent use, let us also recall that g(h) is said 
to be at most of the order of h, written O(h), if g(h)/h remains bounded as 
h --+ O. In both places we are only considering the behaviour near zero. 

That the left sides of the equations (38) through (40) are independent of t 
is, of course, a consequence of the time-homogeneity property. Here a(·) and 
b(·) are two functions on the state space I and are known as the drift coefficient 
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and diffusion coefficient respectively. The equations (38)-(40) can equivalently 
be expressed in terms of the transition densities as: 

~ (y -x)p(h,x,y)dy a(x)h + o(h), ( 41) 

~ Iy - xI2p(h,x,y)dy b(x)h + o(h), (42) 

~ Iy - xlkp(h,x,y)dy o(h), for k ~ 3. (43) 

Definition: By a diffusion process, we will simply mean a time homogeneous 
Markov process (Xt)t>o with transtion density p(t, x, y) that satisfies the properties 
(37) and (41)-(43). -

A substantial and mathematically deep theory of diffusion processes exists. 
See, for example, the book of Bhattacharya and Waymire. One of the major 
concerns of the theory is to show that, under suitable conditions on the func­
tions a(·) and b(·), a unique diffusion process with required properties exists 
which, moreover, has nice additional features like, for example, having 'contin­
uous paths'. Further, by imposing suitable conditions on a(·) and b(·), one can 
also ensure that the transition density of the resulting diffusion is sufficiently 
smooth in the state variables x and y. However, the mathematical depth of 
formal diffusion theory is inappropriate at this level, and also, high techni­
cal rigour is somewhat unnecessary for our present purposes. Accordingly, we 
choose not to get into the theory here. We will assume much of what we need 
and, instead, try to focus on how to apply it. In particular, we assume without 
question that a unique diffusion process with given drift and diffusion coeffi­
cients does exist and that its transtion density p(t,x,y) is twice continuously 
differentiable in both the state variables x and y. 

Before proceeding any further, let us also assume that the state space I 
of the diffusion process is the unit interval [0,1]. Now let 9 be any twice 
continuously differentiable function on [0,1] with g(O) = g(l) = g'(O) = g'(l) = 
0. Using (37) we have 

~ g(z)p(t+h,x,z)dz ~ ~ g(z)p(t,x,y)p(h,y,z)dydz. 

Using the Taylor expansion of 9 around y, namely, 

g(z) = g(y) + (z - y)g'(y) + ~(z - y)2g"(y) + O(lz _ y13) 

on the right side of (44), we get 

Jg(y)p(t,x,y)dy + Jg'(y)[f(z-y)p(h,y,z)dz]dy 
+ ~ J g" (y)p(t, x, y)[f(z - y)2p(h, y, z) dz] dy 
+ J p(t, x, y)[f O(lz - YI3)p(h, y, z) dz] dy. 

(44) 
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Making use of (41)-(43), equation (44) can now be rewritten as 

1 g(y)[P(t + h, x, y) - p(t, x, y)] dy 

= [I g'(y)p(t'X,y)a(Y)dY+~1 gll(y)p(t,x,Y)b(Y)dY] h+o(h). 

Dividing both sides by h and taking limits as h + 0, we obtain 

1 g(y):t[P(t,x,y)]dy 

= 1 g'(y)a(y)p(t, x,y) dy + ~ 1 g"(y)b(y)p(t,x, y) dy. 

65 

Applying integration by parts once on the first term of the right side and twice 
on the second term, and, using the assumed boundary conditions satisfied by 
g, we get 

1 g(y) :l(t, x, y) dy 

1 8 1 82 

= g(y){ - 8y (a(y)p(t, x, V)) + 2 8y2 (b(y)p(t, x, v))} dy. 

Since this equation is valid for all functions g satisfying the assumed conditions, 
we must have 

8 8 1 82 

8tP(t, x, y) = - 8y (a(y)p(t, x, V)) + 2 8y2 (b(y)p(t, x, v)) . (45) 

This partial differential equation (45) for the transition density function is 
known as the Kolmogorov's Forward Equation or the Fokker-Planck Equation 
and is of fundamental importance in diffusion theory and its applications. A 
similar equation, called the Kolmogorov's Backward Equation for the transition 
density, can be derived much more easily as follows. 

From (37), we have 

p(t+h,x,y) = 1 p(h,x,z)p(t,z,y)dy (46) 

Using the Taylor expansion of p(t, z, y) as a function of z around the point 
z = x, that is, the expansion 

( ) ( ) ( )8p(t,x,y) 1( )282p(t,x,y) 0(1 13) 
pt, z, Y = pt, x, Y + z - x 8x + 2 z - X 8x2 + z - x 

on the right side of (46), we get 

p(t + h, x, y) = p(t, x, y) + 8p(~:, y) j (z - x)p(h, x, z) dz 

182p(t,X,Y)j 2 j 3 +2 8x2 (z-x) p(h,x,z)dz+ O(lz-xl )p(h,x,z)dz. 
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Using properties (41)-(43) again, we obtain 

( ) ( ) { ( )op(t,X,y) 102p(t,X,y)} h (h) 
p t+h,x,y -p t,x,y = a x ox +"2 ox2 +0. 

Dividing both sides by h and taking limits as h + 0 leads finally to 

op(t,x,y) = ()op(t,X,y) ~b( )02p(t,X,y) 
at a x ox + 2 X ox2 (47) 

which is the so called backward equation and will be more useful in the sequel. 

We now proceed to show some examples as to how the equation (47) can 
be used to evaluate certain quantities of interest related to the underlying 
diffusion. Let us consider, for example, the function 

y 

F(t, x, y) = J p(t, x, z) dz, 
o 

O<x<l. 

Clearly F(t,x,y) = P(Xt ::; ylXo = x). It follows easily from (47) that the 
function F satisfies the differential equation 

of(t,x,y) = ()oF(t,x,y) ~b( )02F (t,X,y) 
at a x ox + 2 X ox2 . (48) 

This, of course, involves several interchanges of differentiation and integration. 
But, as mentioned earlier, we will not worry about such technical issues. We 
will simply put it on record that they can all be justified with some work. 

Suppose now that for the diffusion process under study, both the states 0 
and 1 are absorbing states. For i = 0,1, let Ai(t, x) denote the probability that 
the diffusion process starting at state x gets absorbed in state i at or before 
time t. It is clear then that 

Ao(t,x)=limF(t,x,y) and AI(t,x)=l-limF(t,x,y). 
yto ytl 

By passing to the limits in (65) as y + 0 or as y t 1 we obtain, 

oAi(t,x) = ()oAi(t,x) ~b( )02 Ai(t,x) 
A ax a + x 02 . t x 2 x 

(49) 

It should be noted that though both Ao(t,x) and AI(t,x) satisfy the same 
partial differential equation, the solutions would be different (as they should 
be) because they satisfy different boundary conditions, namely, Ao(t,O) = 1 
and Ao(t, 1) = 0 whereas Al (t, 0) = 0 and Al (t, 1) = l. 

Let us denote by Ai(X), for i = 0,1, the probability that the process starting 
at the state x ever gets absorbed in the state i. Clearly 

Ai(X) lim Ai ( t, x) . 
ttoo 
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. . A ( ) . 8 AJ t, x) By a standard result of calculus, smce hm i t, x eXIsts, 8 -+ 0 as 
ttoo t 

t -+ 00. It thus follows, by letting t -+ 00 in (49), that Ai(X) satisfies the 
differential equation 

( ) dAi(X) !b( )d2 Ai (x) = 0 
a x dx + 2 X dx2 . 

(50) 

It should again be noted that, although Ao (x) and Al (x) satisfy the same 
differential equation, the boundary conditions are different for the two. For 
Ao(x), for example, the boundary conditions are Ao(O) = 1 and Ao(l) = O. 
Using these, one can easily solve (50) explicitly to get 

I 

J 1jJ(y) dy 

Ao(x) x (51) 
1 

J 1jJ(y) dy 
o 

where 

1jJ(y) exp { -2 ! :~;~ dz } (52) 

Similarly, for AI(X), using the boundary conditions A1 (0) = 0 and Al(l) = 1, 
one gets 

x 

J 1jJ(y) dy 
o (53) 
1 

J 1jJ(y) dy 
o 

Of course, AI(X) = 1- Ao(x), as it should be. 

Having thus obtained simple formulae for the absorption probabilities, let 
us next turn to the time until absorption. Let T denote the random variable 
representing the time until absorption. Let us write 

A(t, x) 

where Ai(t, x) are as defined earlier. Then A(t, x) also satisfies the same partial 
differential equation (49). Notice, however, that A(t,x) is just the probability 
that T ::; t given Xo = x; in other words, A(t, x) is the probability distribution 
function (in t) of T, conditional on the initial state being x. Suppose now that 
for each x E (0,1), this conditional distribution is absolutely continuous with 
density function <p(t, x), t 2: O. Since A(t,x) satisfies the equation (49) we will 
then have 

<p(t, x) 
8A(t, x) 

8t 
( ) 8A(t,x) + !b( ) 82A(t,x) 

a x 8x 2 X 8x2 ' 
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so that 

On differentiating with respect to t (and, of course, assuming again that in­
tegration with respect to s and differentiation with respect to x in the above 
equation can be interchanged) one obtains that 

( ) o'P(t, x) ~ b( ) 02'P(t, x) 
a x ox + 2 X ox2 . (54) 

Suppose now that we are interested in the mean time till absorption, that is, 
III 

00 

T(x) E(TIXo=x) jt'P(t,X)dt. (55) 

o 
Let us assume that t'P(t,x) ---+ 0 as t ---+ 00. One then has 

00 00 00 

1 = j 'P(t, x) dt = [t'P(t, x)ll::~ - j t o'P~; x) dt = - j t o'P~; x) dt. 
o 0 0 

Now using (54) we have 

00 

1 _/ { ()o'P(t,x) ~b( )02'P(t,x)} d 
t a x ox + 2 X ox2 t . 

o 

Assuming once again that the t-integration and x-differentiation can be inter­
changed, one obtains T(x) to satisfy the ordinary differential equation 

a(x) dT(x) + ~ b(x) d2T(x) = -1. 
dx 2 dx2 

The obvious boundary conditions now are T(O) = T(l) = O. Using the standard 
method of integrating factors, one obtains the solution to be 

~ 

I 1jJ(Z) dz 1 

T(x) = -2 J 'ljJ(z) (J b(y)~(y) dY) dz + 2 01 I'ljJ(z) (J b(y)~(y) dY) dz, 
o 0 I 1jJ(z) dz 0 0 

o 
(56) 

or equivalently . 
x (x ) I 1jJ(z) dz 1 ( 1 ) 

T(x) -2 I b(y)~(y) I 'ljJ(z) dz dy + 2 01 I b(y)~(y) I 'ljJ(z) dz dy, 
o y I 1jJ(z) dz 0 Y 

o 
(57) 
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where'l/J is as defined in (52). After some algebra, this solution can equivalently 
be expressed in the form 

where 

t(x,y) 

T(x) 

1 

J t(x, y) dy, 

o 

j2AO(X) [b(Y),p(y) I ,,(z) dz l~: 

2Al(X) [b(Y)'l/J(y)['l/J(Z)dZ] 

(58) 

if O:;y:;x 

(59) 

where Ai(x) are as defined earlier. The above representation is not fortuitous. 
It can be shown, although we skip it here, that the function t(x, y) has the 

Y2 
following interpretation. For 0 :; Yl < Y2 :; 1, the integral J t(x,y) dy is 

YI 
the mean time that the diffusion process starting at x spends in the interval 
(Yl, Y2). In particular, if 9 is a well-behaved function on the state space, then 

1 

J g(y)t(x,y)dy. 

o 

For each fixed non-absorbing state x, the function t(x,·) is what is called the 
sojourn time density of the diffusion starting at the state x. 

We end this section here by simply mentioning that it is possible to derive 
T 

the higher moments of the absorption time - more generally, of J g(Xs) ds 
o 

- by proceeding in exactly the same way, except that the formulae become 
complicated. 
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Chapter 1 

BRANCHING 
PROCESSES 

1.1 Introduction: Background and Definitions 

Historically, it was in 1874 that Sir Francis Galton and H.W.Watson, while 
investigating the problem of "the extinction of family names" in England, for­
mulated a simple but elegant mathematical model for the evolution of a family 
over successive generations. This was the first significant attempt to apply 
probability theory in order to study the effects of random fluctuations on the 
development of families or populations. It is this model that later came to be 
known as the Galton- Watson Branching Process and formed the basis of many 
subsequent extensions and generalizations. 

Let us imagine objects that give birth to objects of the same kind; they may 
be men or bacteria reproducing by the usual biological methods, or neutrons 
in a chain reaction, and so on. We start with an initial set of objects, to 
be called the zeroth generation. Each member of this generation produces a 
certain number of offsprings and the aggregate of all these offsprings constitute 
the first generation. Each member of the first generation, in turn, produces 
offsprings, giving rise to the second generation. This is how the process of 
evolution continues - from one generation to the next. One can visualise this 
as a "tree" where each generation "branches off" to the next generation. 

Formulating a stochastic model for this process of evolution simply means 
introducing a specific chance mechanism to govern the branchings that take 
place at different stages. Galton and Watson proposed the following model. 

Any member of a generation produces offsprings according to some fixed 
distribution p. Here p = (Po, PI, P2, ... ) is a probability distribution on the set 
of non-negative integers {a, 1,2, ... }. This distribution remains the same over 
generations. Further, different members produce offsprings independently of 
one another. 

71 
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I 

Figure 1.1: Successive Generations 

In other words, the number of offsprings produced by different members 
(belonging to different or the same generation) are independent non-negative 
integer-valued random variables with a common distribution j5. 

Denoting, for each n 2: 0, the total number of objects in the n-th generation 
by X n, we get a sequence (Xn)n~O of non-negative integer valued random 
variables. This discrete time stochastic process is what is called the Galton­
Watson Branching Process. One is interested in various probabilistic questions 
about this process, concerning both finite-time as well as asymptotic behaviour. 
For example, on one hand, one may be interested in the probability distribution 
of Xn for fixed n. In particular, one may ask what is E(Xn), the expected size 
of the n-th generation, or, what is V(Xn ), the variance. On the other hand, 
the singlemost important question about the process (Xn) is: what is the 
probability that Xn tends to ° as n tends to infinity. Since the Xn take only 
non-negative integer values, the above probability is same as the probability 
that the Xn become all zero after some stage. Thus, it is the probability of 
eventual extinction of the family. 

Before we begin a systematic analysis of the above and other questions, 
let us understand the probabilistic mechanism described above a little more 
clearly and convince ourselves that it completely determines the stochastic 
process (Xn)n~o without any ambiguity. First of all, the initial set of objects 
is assumed to be fixed, so that, X o is a degenerate random variable, say, X o = 
ko, a positive integer. (This assumption can be dispensed with and one can 
take X o to be a random variable with some distribution.) Each of these ko 
objects produce offsprings according to the distribution j5, independently of 
one another. Denoting by lio, the number of offsprings produced by the i-th 
individual of the initial population, ~o, ... , y koo are i.i.d. random variables with 
common distribution j5. The total number of objects in the first generation is 
then the random variable Xl = Y10 + ... + ykoo • If Xl = 0, which happens if 
and only if all the liD equal zero, evolution stops there and the family becomes 
extinct at the first generation; all the subsequent Xn are defined to be zero 
in this case. On the other hand, if Xl takes a positive value, say, Xl = kl' 
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then, conditional on this event the (distribution of the) random variable X 2 

equals (that of) the random variable Yl + ... + Yk~ where Yil, 1 ::; i ::; kl' 
are i.i.d. random variables with common distribution p and are independent 
of the random variables Yio. In other words, given Xl = kl > 0, the random 
variables Yil, 1 ::; i ::; kl' represent the number of offsprings produced by the 
kl individuals of the first generation, so that X 2 = Yl + ... + YI1 represents the 
size of the second generation. Once again, if X 2 = 0, all the subsequent Xn are 
defined to be zero and the family becomes extinct at the second generation. 
Otherwise, if X 2 = k2 > 0, say, then conditional on the values of Xl and 
X 2 , the random variable X3 is distributed simply as y l2 + ... + Y;2' where 
Yi2 , 1 ::; i ::; k2 are again i.i.d. random variables with common distribution 
p and are also independent of all the Yio as well as the Yil. In general, for 
any n 2 1, the distribution of X n+l , conditional on the evolution upto the 
n-th generation, is as follows. If Xn = 0, then X n+l is defined to be equal to 
zero, while if Xn = kn > 0, then Xn+l is distributed as y ln + ... + Yk~ where 
Yin , 1 ::; i ::; kn are i.i.d. random variables with common distribution p and 
are independent of all the Yij , ° ::; j ::; n - 1, 1 ::; i ::; kj . Thus, for every 
n 2 0, we do have the conditional distribution of Xn+l, given (Xo, ... ,Xn). 
Noting that X o == ko, this completely determines (at least in principle) the 
joint distribution of (XO,XI, ... ,Xn), for every n, and hence the probability 
distribution of the entire proces (Xn)n2:0. In practice, however, it may be quite 
complicated to write down these joint distributions. The reader may try her 
hand with (Xo, Xl, X 2), for example, to get a feel for the computations. 

In the above, we described the conditional distributions, at every stage, of 
the size of the next generation, given the entire history of the evolution upto 
the present generation. However, one could not have failed to notice that these 
conditional distributions depend only on the size of the present generation, and 
that the basic rule remains the same for all the different generations. So, here 
we are! Our branching process (Xn)n2:o is indeed a time-homogeneous Markov 
chain as discussed in Section 0.8. A formal proof of the following proposition 
(if still needed) is left to the reader. 

Proposition 1.1: The branching process (Xn)n2:0 is a time-homogeneous 
Markov chain with the set of non-negative integers as state space. The initial 
state is ko and the transition probability matrix P = ((Pij)) given by Poo = 1, 
and for i > 0, Pij = P(YI + ... + Yi = j), where YI ,.·., Yi are i.i.d. random 
variables with common distribution p. 

One could have, as well, started by defining the branching process as simply 
a Markov chain with transition probabilities as in Proposition 1.1. But our 
way of defining it seems to give a clear picture of the model. Moreover, even 
though our process turns out to be a Markov chain, the standard Markov chain 
techniques do not seem to be of much help in the study of this process. This 
is primarily because those techniques rest heavily on analyzing the structure 
of the transition matrix, while for the present process, entries of the transition 
matrix are almost impossible to write down explicitly. 
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1.2 Method of Probability Generating 
Functions 

An elegant analysis of branching processes is obtained through an ingeneous 
use of the good old probability generating functions. The definition and an 
account of the properties of probability generating functions (p.g.f.'s, in short) 
were given in Section 0.3. From the definition of the process (Xn)n2':o, as given 
in Section 1, it is clear that the entire distribution of the process is completely 
determined by two quantities - the initial size ko and the underlying proba­
bility distribution p for producing offsprings. Henceforth, we will often refer 
to p as the "progeny distribution" or the "offspring distribution". Let 4> denote 
the p.g.f. of the progeny distribution 

4>(S) = LPiSi, for O:S s:S 1 (1) 
i2':O 

The function 4> turns out to be of central importance in the analysis of the 
process (Xn), as we shall see. For this reason, the function 4> is referred to as 
the 'progeny generating function' of the process. 

We shall begin with a basic result. For each n 2: 1, let the joint p.g.f. of 
(Xo, Xl, ... , Xn) be denoted by g~ka). The dependence on ko is made explicit 
for reasons to be clear. However, we have chosen to suppress the dependence on 
p (equivalently, on 4» for the simple reason that throughout our entire analysis, 
the progeny distribution will be assumed to be some fixed p. 
Theorem 1.2: For any n 2: 1 and any (so, SI, ... , sn) with 0 :S Si :S 1, 

(ka) ( ) _ (ka) ( -+.( )) gn SO,Sl,···,Sn -gn-l so,···,Sn-2,Sn-l'l' sn . (2) 

Proof: By the definition of g~ka) and the properties of conditional expectation, 

= E(s;a sfl ... s:n) 

ka kl kn- l E ( X IX - k X - k ) So SI ... sn-l sn n 0 - 0,···, n-l - n-l 
kl, ... ,kn - 1 

. P(Xo = ko, ... X n- l = kn- l ). 

Since the conditional distribution of X n, given Xo = ko,·.·,Xn-l = kn- l , 
is the distribution of the sum of kn - l i.i.d. random variables with common 
distribution p (this is valid even if kn - l = 0), the above expression equals 

'"""' ka kl kn-l (-+.( ))kn-lp(X - k X - k ) ~ So SI ... sn-l 'I' Sn 0 - 0,···, n-l - n-l 

E ( Xa X n -2( -+.( ))Xn_l) = so· .. sn-2 Sn-l'l' Sn 

= g~k~l (so, ... , Sn-2, sn-l4>(Sn)) 

completing the proof of the theorem. • 
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To understand the implications of the above theorem, let us consider g~ko), 
the joint p.g.f. of (Xo, Xl, X 2). By the above theorem, one has g~ko) (so, SI, S2) 
= g~ko)(so , Sl</>(S2)). For g~ko), repeated application of the theorem would give 

g~ko)(SO,Sl,S2,S3) = g~ko)(SO,Sl,S2</>(S3)) = giko )(sO,Sl</>(S2</>(S3))). The next 
corollary seeks to generalize this. 

Corollary 1.3: For any n > 1, and for any so, ... , Sn with 0 ::; Si ::; 1, 

[Do not get intimidated by too many brackets and dots; if you have understood 
it for n = 2,3,4, you have understood it for general n.] 

The corollary above shows that the joint p.g.f. of (Xo , ... ,Xn) is known 
for any n, once we have an expression for the joint p.g.f. of (Xo, Xl), which is 
what comes next. 

Theorem 1.4: For any So, SI with 0 ::; So, SI ::; 1, 

(4) 

Proof: By definition, giko)(so,sd = E(S;OS~'). But Xo == ko and Xl is 

distributed as the sum of ko many i.Ld. random variables with common p.g.f. 
</>. Therefore, 

In particular, with ko = 1, we have gi1)(so, sd = so</>(sd, so that, for any 
ko ~ 1, 

(5) 

• 
Now appealing to Corollary 1.3 and Equation (5), it follows that, for every 

n ~ 1, 
(kO)( ) _ [ (1)( )]ko gn SO,Sl ,· ··,Sn - gn SO,Sl , ··· , Sn . (6) 

What (6) means is that if we consider ko independent branching processes 
(X;)n::::O, ... , (X~o)n::::O, each with initial size 1 and common progeny distri­

bution p, then the process (Xn)n::::O defined by Xn = I:~~1 X~, n ~ 0 is, in 
distribution, the same as the branching process (Xn)n::::O with initial size ko 
and progeny distribution p. In other words, a branching process with initial 
population size ko and progeny distribution p is just the "sum" of ko inde­
pendent branching processes, each with initial population size 1 and progeny 
distribution p. This should be intuitively clear. After all, if we fix attention on 
anyone of the ko individuals of the O-th generation and consider the succes­
sive generations originating from the offsprings of that individual only, we will 
clearly get a branching process with initial size 1 and progeny distribution p. 
So the overall scenario would be that of ko such branching processes evolving 
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simultaneously. Moreover, since the ko members of the O-th generation act 
independently, the corresponding branching processes would be independent. 
And, of course, the n-th generation of the whole family would simply be the 
aggregate of the n-th generation of the ko subfamilies. It all sounds very simple 
and logical, so much so as to make the dry mathematics done above appear 
uncalled for. Well, if you had known and believed it all along, you may still 
find the mathematical argument useful (at least in drawing a non-believer into 
your camp!). 

Anyway, the point we sought to make is that, in the study of branching 
processes, it is alright to limit ourselves to the case ko = 1. This is what we 
shall do from now on. Thus in what follows, 

(Xn) denotes a branching process with Xo == 1 and progeny distribution p. 

Having decided this, there is no need to hang on to the superscripts in the 
gn defined earlier. We will simply write gn (instead of g~l)) for the joint p.g.f. 
of (XO,Xl, ... ,Xn). Our earlier results, when specialized to this case, can be 
summarized as 

Theorem 1.5: For every n 2 1, 

and consequently, 

gl(SO,SlCP(S2CP(··· Sn-lCP(Sn)···))) 
SOCP(SlCP(S2··· Sn-1CP(Sn)·· .)) 

(7) 

(8) 

The recurrence relations (7) and (8) between the successive gn capture the 
essence of the evolution mechanism of a branching process. Let us denote, for 
every n 2 0, the p.g.f. of Xn by CPn. Since Xo == 1, one of course has CPo(s) = s. 
For any n 2 1, clearly CPn(s) = gn(I,I, ... ,I,s). Relations (7) and (8) now 
yield 

Theorem 1.6: For every n 2 1, 

(9) 

Thus the CPn, n 2 0 are simply the successive iterates of the function cP, 
that is, CPo(s) = s, CPl(S) = cp(s), CP2(S) = cp(cp(s)), and so on. It is, however not 
always possible to get simple explicit expressions for the successive iterates of a 
given p.g.f. cp. Examples of a situation where it is possible are given in Exercise 
9. Nevertheless, the relations (9) can be used very fruitfully to answer a number 
of important theoretical questions about the process, as we will presently see. 
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1.3 Moments of the Successive Generation Sizes 

To start with, let us ask how the expected population size changes from gener­
ation to generation. We will assume, henceforth, that the underlying progeny 
distribution p has a finite mean m, that is, L:k>O kPk = m < 00. This, of 
course, implies that 4>'(1) = m. -

Since Xo == 1, we have E(Xo) = 1. Also, Xl is clearly a random variable 
with distribution p, so E(XI ) = m. Thus, the first generation will have ex­
pected size m. Again, each of these m individuals produce offsprings according 
to the distribution p, so each is expected to produce m offsprings. The expected 
size of the second generation should, therefore, be m 2 • Proceeding in this way, 
in general, the expected size of the n-th generation should be mn. That this 
is indeed the case will now be proved using (9). Since 4> is assumed to have a 
finite derivative at 1, it is easy to show, by induction and by using (9), that 4>n, 
for each n, has a finite derivative at 1. Indeed, simple chain rule applied to (9) 
gives 4>~(1) = 4>~-1 (4)(1)).4>'(1) = 4>~-1 (1).4>'(1), since 4>(1) = 1. This means 
that each Xn has finite expectation, and, that for each n, E(Xn) = mE(Xn-d. 
Since E(Xd = m, it follows that for each n, 

(10) 

We will now employ similar methods to get a formula for the variance of 
X n, namely V(Xn). For this, we assume that the distribution p has a finite 
second moment and denote its variance by a 2 . This of course means that 4> 
has a second derivative which at the point 1 is given by 4>"(1) = a 2 + m2 - m. 
Using (9) again, it follows that each 4>n has a finite second derivative and one 
has 

4>~(8) = 4>~-1 (4)(8))[4>' (8)]2 + 4>~-1 (4)(8))4>'' (8). 

In particular, at 8 = 1, using 4>(1) = 1, 4>'(1) = m, 4>~-1 (1) 
4>"(1) = a 2 + m2 - m, one obtains 

m n - l and 

4>~(1) 4>~_1(1)m2+mn-l(a2+m2-m) 

Thus 

[4>~_2(1)m2 + m n- 2(a2 + m2 - m)]m2 + m n- l (a2 + m2 - m) 
4>~_2(1)m4 + (a2 + m2 - m)(mn + mn- l ) 

4>~(1)m2n-2 + (a2 + m2 _ m)(m2n- 3 + ... + mn + mn- l ) 
(a2 + m2 _ m)(m2n- 2 + ... + mn- l ) . 

4>~(1) + 4>~(1) - (4)~(1))2 
(a2 + m2 _ m)(m2n- 2 + ... + mn- l ) + mn _ m2n 
a2mn-l(mn-1 + ... + m + 1) + mn(m - l)(mn- 1 + ... + m + 1) 
+mn(l- mn) 
a2mn-l(mn-1 + ... + m + 1), 
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giving us 

We have thus proved 

na2 

a2 m n - 1 mn_l 
m-I 

if 

if 

m= 1 
(11) 

Theorem 1.7: If the progeny distribution j5 has a finite mean m, then, for 
all n ~ 1, E(Xn) = mn. Moreover if j5 has a finite second moment also, then 
V(Xn) = na2 or a2m n- 1 (mn - l)(m - 1)-1 according as m = 1 or m =J 1, 
where a2 is the variance of j5. 

Higher order moments can also be obtained in a similar fashion, provided 
we assume the existence of such moments for j5. 

1.4 Extinction Probability 

The singlemost important question, at least historically, about the branching 
process (Xn) is what was posed originally by F.Galton: to find the probability 
of extinction of the family. Extinction here means the event that at some gener­
ation no further offsprings are produced, so that none of the future generations 
ever come to exist. Analytically, it is the event 

A= U{Xn =Xn+1=···=O}. 
n2:1 

Since the Xn take only integer values, A also equals the event { lim Xn = O}. 
n-+oo 

We shall denote the probability of this event by q. This is what is called the 
extinction probability. Our question is: how to find q for a branching process 
with a given progeny distribution j5 (equivalently, for a given p.g.f. 1»? 

Observe that, by the definition of the process (Xn), the event {Xn = O} 
is the same as the event {Xn = X n+1 = ... = O}, so that q is simply the 
probability of the event that Xn = 0 for some n. Moreover, the events {Xn = O} 
are monotone increasing with n, so that P(Xn = 0) also increases with n. An 
alternative analytical way to argue this is as follows. Denote qn = P(Xn = 0). 
Clearly, qn = 1>n(O) for each n. Now, Xo == 1, so that qo = O. Next, ql = 
P(Xl = 0) = Po ~ 0 = qo· Again, q2 = 1>2(0) = 1>(1)(0)) = 1>(Po) ~ 1>(0) = ql, 
using the fact that 1>(s) = Lk>OPkSk is a non-decreasing function of s on 
[0,1]. In general, having proved- that qn ~ qn-l, one obtains similarly that 
qn+1 = 1>n+l (0) = 1>( 1>n (0)) = 1>(qn) ~ 1>( qn-d = 1>( 1>n-l (0)) = 1>n (0) = qn· 
Induction completes the proof. 

It is now clear from above that q = limn-+oo P(Xn = 0) = limn-+oo qn. In 
fact qn t q as n too. Moreover, for each n, qn = 1>(qn-d. Letting n ---+ 00 on 
both sides and using continuity of 1>, it follows that q must satisfy q = 1>(q). 
Since 0 ::; q ::; 1, in order to find q, one must solve the equation 

1>(s) = s for 0 ::; s ::; 1. (12) 
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Since 1>(1) = 1, 8 = 1 is always a solution of (12). Galton observed this 
and unfortunately, made the mistake of concluding that q is always equal to 
1. The point he missed is that the Equation (12) may have other solutions in 
the interval [0,1], and, all that one can say at this stage is that one of these 
solutions is q - but which one among these solutions is q, remains open. 

As a step towards further identification of q, we now show that q is the 
smallest solution of (12) in the interval [0,1]. In other words, if 7r is any solution 
of (12) in [0,1], then q ::; 7r. To prove this, it sufficies to show that qn ::; 7r for 
each n (since q = lim qn). We use induction and the fact that 1> is non-

n-+oo 
decreasing on [0,1]. First of all, qo = ° ::; 7r, and, ql = 1>(0) ::; 1>(7r) = 7r. To 
complete induction, assume that qn ::; 7r and we have qnH = 1>(qn) ::; 1>(7r) = 7r. 
Thus we have proved 

Theorem 1.8: For a branching process with 1> as the p.g.f. of the progeny 
distribution, the extinction probability q is the smallest solution of the equation 
1>(8) = 8 in [0,1]. 

Before proceeding any further, let us see some examples of simple applica­
tions of the above. Consider a society that follows the policy of "two children 
per family". We want to examine the chances of survival of a family name in 
such a society. To bring a branching process into the scene, we make the fol­
lowing assumptions: (1) Family names are carried only by the male offsprings. 
(We do not mean to preach patriarchy - this is, after all, a reality in most so­
cieties.) (2) Each couple gives birth to exactly two children. This may perhaps 
seem unrealistic. Our rationale is that we basically want our family names to 
survive and, therefore, given the stipulation of the society, each couple will try 
to produce two offsprings. Fertility and related issues are ignored. (3) The 
probabilities of an offspring being a male or a female are equal. (4) Sexes of 
different offsprings are determined independently. The assumptions (3) and (4) 
are the standard rules of genetics, as we shall see in the next chapter. 

If we start with one male member of a family and concentrate on his male 
offsprings, then their male offsprings and so on, we get a branching process 
with its progeny distribution given by Po 1/4, PI = 1/2, P2 = 1/4 and 

1 1 1 . 
P3 = P4 = ... = 0. This has p.g.f. 1>(s) = 4: + "2 s + 4: 8 2 . It IS easy to 

see that 8 = 1 is the only solution of (12) in [0,1], and, therefore q = 1 in 
this case. Thus, among the descendents of anyone particular male member 
of a family, it is with probability one that sooner or later there would not be 
anyone left to carry his family name. Since the same fate awaits the family 
name of every member of the society, each family name is sure to be wiped out 
eventually. (Have we proved that our family planning programme, if strictly 
followed, spells doom for our society?) 

If instead, the society followed a policy of "three children per family" , then 
1 3 3 1 

we would have 1>(8) = "8 + "8 s + "8 82 + "8 83 . One can check that now (12) 

has two roots in [0,1], namely, s = 1 and 8 = VS - 2. By Theorem 1.8, the 
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extinction probability equals v'5 - 2 (~ 0.234, approximately). Thus, there is 
a positive probability for a family name to survive. For example, if there are k 
male members in a family now, the reader should have no difficulty in deducing 
from (12) and the remark thereafter, that the probability of survival of that 
family name is approximately 1 - (0.234)k. 

It is clear from the above examples that in order to get q by appealing to 
Theorem 1.8, we have to somehow know what are all the solutions of equation 
(12) in [0,1). However, except in some very simple cases as above, it is almost 
always impossible to explicitly solve equation (12). This is a serious limitation 
of Theorem 1.8, from the point of view of applicability. It would be very nice 
if we could come up with a simpler criterion which would enable us at least to 
tell whether q equals 0 or 1 or whether q lies strictly in between (even though 
the exact value may not be known). This is what we take up next. 

We begin by eliminating a trivial (and, hence uninteresting) case, namely, 
when Po = O. In this case, any individual in any generation produces at least 
one offspring, so that the extinction is completely ruled out. Analytically 
speaking, Po = 0 implies that P(Xl 2': 1) = 1, and, also P(XnH 2': Xn) = 1, 
for all n. Therefore P(Xn = 0) = 0 for each n, and, hence q = O. In fact, since 
q satisfies (12) so that q = 0 if and only if 4>(0) = 0, that is, Po = O. In what 
follows, we assume, therefore that Po > O. 

Theorem 1.9: Assume Po > O. Then s = 0 is never a solution of (12) and 
s = 1 is always a solution. If m :s 1, then (12) has no solution in the open 
interval (0,1), while if m > 1, then there is one and exactly one such solution. 
Consequently, if m :S 1, then the extinction probability equals 1, while if m > 1, 
the extinction probability is strictly between 0 and 1. 

Proof: That s = 0 is not a solution of (12) if Po > 0 and that s = 1 is always a 
solution has been already seen. To prove the other assertions, we consider two 
cases separately. 
Case 1: Po + PI = 1. 
In this case, 4>(s) = PO+P18, so that its graph is a straight line L 1, say, as shown. 
Since 4>(0) = Po > 0 and 4>(1) = 1, the line Ll meets the line L : 'lj;(s) = s at 
exactly one point, namely, when 8 = 1. Thus, the only solution of the equation 
(12) in the interval [0,1) is 8 = 1. Note that, in this case, m = PI < 1, and, the 
extinction probability is 1 as asserted. 
Case 2: Po + PI < 1. 
We first show that, whatever be m, the equation (12) has at most one solution 
in the open interval (0,1). Note that 4> has derivatives of all orders in the open 
interval (0,1) and, in particular, 4>"(8) = Lk>2 k(k - 1)Pksk-2, for s E (0,1). 
Since this power series in s has all coefficients non-negative and at least one 
coefficient strictly positive, it follows that 4>" (8) > 0 for all 8 E (0, 1). Therefore, 
4>' (s) is strictly increasing on the open interval (0,1). Now, suppose, if possible, 
equation (12) has two distinct roots, say, a and /3, with a < /3, in the open 
interval (0,1). Then a, /3 and 1 are three distinct zeros ofthe function 4>(8) - s 
and a < /3 < 1. By the mean value theorem, there must exist points "y and 



1.4. EXTINCTION PROBABILITY 81 

(1,1) 

L1 

L 

~O--------------------~~lS 

Figure 1.2: L1 : 4'(s) = Po + PIS; L: 'ljJ(s) = s 

6 with Cl: < '"Y < fJ and fJ < 6 < 1, such that cjJ'('"'() = cjJ'(6) = 1. But this is 
impossible since cjJ'(s) is strictly increasing on the interval (0,1). 
We now complete the proof of the theorem by showing that if the function 
cjJ(s) - s has no zeros in the open interval (0,1), then m must be :S 1, whereas, 
if cjJ(s) - s has a zero in (0,1), then we must have m > 1. 

So, suppose first that the function cjJ( s) - s has no zeros in the open interval 
(0,1). It then follows that cjJ(s) - s > ° for all s E (0,1). This is because cjJ(O)­° = Po > 0. So, if for some So E (0,1), cjJ(so) - So :S 0, then the intermediate 
value theorem applied to the continuous function cjJ(s) - s would assert that 
cjJ(s) - s must have a zero inside the interval (0, so], thereby contradicting our 
hypothesis. Now, since cjJ(s) > s for all sE (0,1), we have (l-cjJ(s)) / (l-s) < 1 
for all s E (0,1). Taking limit as s t 1, we obtain cjJ'(l) :S 1, that is m :S 1. 
If, on the other hand, cjJ(s) - s has a zero, say at So, in the open interval (0,1), 
then, in view of the fact that s = 1 is always a zero of the function cjJ(s) - s, 
mean value theorem will assert the existence of a point SI in the open interval 
(so, 1), such that cjJ'(sd = 1. Since cjJ'(s) is strictly increasing on (0,1), we 
immediately have cjJ' (1) = lim cjJ' (s) > cjJ' (sd = 1, that is m > 1. • 

stl 

Remarks: 

1. Note that in the examples discussed above m equals 1 in the first case 
and equals ~ (> 1) in the second case. 

2. We know that q = lim P(Xn = 0) = lim cjJn(O), by definition. But, 
n--+oo n---+oo 

as a matter of fact, if Po > 0, then for every s E [0,1), cjJn(s) ---+ q as n ---+ 00. 

This can be seen as follows. First of all, since Equation (12) does not have 
a solution in [0, q) and since cjJ(O) > 0, it follows from the intermediate value 
theorem and the monotC!nicity of the function cjJ, that, for every s E [0, q], one 
has s :S cjJ( s) :S cjJ( q) = q. Using induction, one gets the string of inequalities 
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1 

~O---------------------------l 

Figure 1.3: m > 1 

1 

o 1 

Figure 1.4: m < 1 
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s ::; cp(s) ::; CP2(S) ::; CP3(S) ::; ... ::; cp(q) = q for every s E [0, q]. But, at the 
same time CPn(O) -7 q as n -7 00, and CPn(s) 2: CPn(O) for all s 2: o. All these 
would imply that, for each s E [0, q], CPn(s) t q as n t 00. In particular, when 
q = 1 (which happens if and only if m::; 1), we have CPn(s) t q = 1 as n t 00, 

for every s E [0,1]. When q < 1 (equivalently m > 1), the convexity of the 
function cP implies that, for every s E (q,l), 1 > s 2: cp(s) 2: cp(q) = q, and by 
induction, 1 > s 2: cp(s) 2: CP2 (s) 2: CP3 (s) 2: ... cp(q) = q. It follows that for 
every s E (q,l), lim CPn(s) exists. Clearly the limit satisfies Equation (12). 

n---+oo 
However, it is strictly less than one and hence must equal q. Thus CPn(s) .} q as 
n t 00, for each s E (q,l) also. 

So far we have focussed our attention entirely on the methods of finding the 
probability of extinction. Its complementary event is the event of "survival". 
By definition, this is simply the event that all the Xn are different from zero. 
It turns out, however, that in case this event occurs, the Xn actually have to 
grow indefinitely large. One has to, of course, set aside one trivial exceptional 
case, namely, when PI = 1, in which case P(Xn = 1 for all n) = 1. We will now 
show that , if PI < 1, then, with probability one, the sequence (Xn) either goes 
to zero or diverges to infinity as n -7 00; it is not possible for the successive 
generation sizes to remain positive and at the same time bounded. 

Theorem 1.10: Assume that PI < 1. Then for every k 2: 1, P(Xn = k) -70 

as n -7 00. Moreover, P(Xn -7 (0) = 1 - q = 1 - P(Xn -70). 

Proof: We are going to use standard Markov chain terminology and nota­
tions. We show that for the chain (Xn ), each of the states {1, 2, ... } is a 
transient state. For this, we simply have to show that fkk < 1 for each 
k E {1, 2, ... }, where, following the Markov chain theory of Section 0.8, fkk 
denotes the conditional probability P(Xn+j = k for some j 2: 11 Xn = k) . 
This probability, of course, does not depend on n because of time homogene­
ity. If Po = 0, then noting that Pik = 0 for any i > k, one gets fkk = 
P(Xn+1 = k 1 Xn = k) = p~ < 1. On the other hand, if Po > 0, that is, 
1 - p~ < 1, we get fkk ::; 1 - P(Xn+l = 01 Xn = k) < 1. Noting that 
Xo == 1, it now follows from the general theory that, for k E {1, 2, ... }, 
lim P(Xn = k) = lim P(Xn = k 1 Xo = 1) = 0, and also that , P(Xn = 

n--+(X) n--+oo 

k for infinitely many n) = P(Xn = k for infinitely many n 1 Xo = 1) = O. 
From this last assertion, one easily deduces that, for any positive integer L, 
however large, P(Xn E {1, 2, ... L} for infinitely many n) = O. This, of course, 
means that , with probability one, either Xn -7 0 or Xn -7 00 as n -7 00. The 
proof is complete. • 

1.5 Asymptotic Behaviour 

In the last section, we saw that, when m > 1, a family starting with one 
ancestor has a positive probability of surviving (Theorem 1.9), and moreover, 
if it does survive, then the generation sizes grow indefinitely large (Theorem 
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1.10). The so called Malthusian Law then expects the sizes to grow eventually 
at a geometric rate. We now show mathematically that this is indeed the case. 
One actually has Xn ,..., Wmn for large n, where W is a random variable which 
is zero only when Xn --+ O. 

Xn 
Theorem 1.11: Assume that m -I 0, and, let Wn = n' for n 2: o. 

m 
(a) The sequence (Wn) of random variables converges to a random variable W 
with probability one. If moreover, m > 1 and E(Xf) < 00, then the convergence 
takes place in L2 also, and E(W) = 1 and V(W) = V(Xl)(m2 - m)-l. 

(b) If Xl is non-degenerate with E(Xf) < 00, then the random variable W of 
(a) takes the value zero only when (Xn) converges to zero. 

Proof: From definition, the conditional distribution of X n+1, given Xo = Xo, 
Xl = Xl, ... , Xn = Xn, is just that of the sum of xn-many i.i.d. random 
variables with common mean m. It follows that 

E(Xn+lIXo = xo,Xl = Xl,··· ,Xn = Xn) = m· Xn , 

that is, 

Since the events (Xo = XO, Xl = Xl,· .. , Xn = xn) and (Wo = Xo, W l 
xl/m, ... , Wn = xn/mn) are identical, the above equality is same as 

( I Xl Xn) Xn E W n+l Wo =xo,Wl = -, ... ,Wn = - =-. m mn mn 

In the notation of Section 0.2.3, this amounts to 

Thus (Wn)n>O is a non-negative martingale. By Doob's martingale convergence 
theorem of Section 0.7, the sequence (Wn ) converges, with probability one, to 
a random variable W with E(W) < 00. In case m > 1 and E(Xf) < 00, we 
have from (ll), that 

so that 
supE(W~) = 1 + V(Xd(m2 - m)-l < 00. 

n 

This implies that (Wn ) converges to W in L2 also. Moreover, in this case, 
E(W) = lim E(Wn ) = 1 (since E(Wn ) = 1 for all n) and V(W) = lim V(Wn ) 

n--+oo n--+oo 

= lim V(Xd(l - m-n)(m2 - m)-l = V(Xl)(m2 - m)-l . 
n-+oo 

For part (b), observe first that Xn --+ 0 (equivalently, Xn = 0 for all large n) im-
plies that W = O. Thus, in case m ~ 1, one has P(W = 0) = P(Xn --+ 0) = 1. 
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We now show that in the case m > 1 also, P(W = 0) equals the extinction 
probability q. First of all, it is a consequence of (8) that 

E(S?l S:2 ... s~n) = rP(sIE(s:l ... s~n-l)). 

Observe that by the smoothing property of conditional expectation, as in Sec­
tion 0.2.3, the left-hand side of the above equation equals 

2::S~E(S:2 ... s~n IXI = k)pk' 
k20 

while, by the definition of the function rP, the right-hand side equals 

'" [s E(SXl ... sXn-l)]kp . 
~k20 I 2 n k 

Thus, we have 

2::S~E(S:2 .. ·s~n IXI = k)Pk = 2::[sIE(s:l. ··s~n-l)]kpk. 
k20 k20 

Therefore, for each k 2: 0, E(S:2 ... s~n I Xl = k) = (E(S:l ... s~n-l ))k, 
that is, the joint p.g.f. of the conditional distribution of (X2 , .. . ,Xn ) given 
Xl = k, equals the k-th power of the joint p.g.f. of the unconditional joint 
distribution of (Xl, ... ,Xn-d. This means that, given Xl = k, the random 
vector (X2, ... , Xn) is conditionally distributed as the sum of k independent 
random vectors, each distributed like the vector (Xl, ... ,Xn-d. One concludes 
that P(Wn -t OIXI = k) = [P(Wn -t oW. Since 

P(Wn -t 0) = LP(Wn -t OIXI = k)· Pk, 
k 

it follows that the probability q* = P(Wn -t 0) is a solution of the equation 
(12). But, since under the hypothesis, V(W) = V(Xd(m2 - m)-l > 0, q* can 
not be equal to 1. This forces q* to be equal to q. • 

X 
Thus, we see that ~ converges with probability one to a random variable mn 

W. Also, if the progeny distribution ji has a strictly positive finite variance, 
then W = 0 only when Xn -t O. Thus, in this last case, we indeed have 
Xn '" W . mn asymptotically as asserted earlier. In case m ::; 1 of course, the 
statement Xn '" W . mn holds irrespective of whether ji has finite variance or 
not. Thus the condition that EX? is finite, becomes important really in the 
case m > 1 only. Levinson (see Harris for details) has given an example with 
EX? = 00, where W == 0 even though m > 1 (and, hence P(Xn -t 0) < 1). 
Under the condition 0 < V(Xd < 00, we know that if m > 1, then on the 
set where Xn It 0 (which has positive probability), the random variable W 
takes strictly positive values. Our next result shows that W is actually non­
degenerate on this set. 
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Theorelll 1.12: Under the condition m > 1 and 0 < V(Xd < 00, the condi­
tional variance of W, given W > 0, is strictly positive. 

Proof: We want to show that E(W21 W > 0) - (E(W I W > 0))2 > O. Ob­
serve first that the function 'IjJ( s) = (1 - q) -1 {tP( s(l - q) + q) - q} is a p.g.f. 
with 'IjJ(0) = 0 and 'IjJ(r)(o) = (1 - q)r-1 tP(r)(q) for r 2: 1. It is also easy 
to verify that 'IjJ" (1) < 00 and that the variance of the underlying distribu­
tion, namely, 'IjJ"(1) + 'IjJ'(1) - ('IjJ'(1))2 is strictly positive, or equivalently, that 
(1 - q)tP"(l) - m 2 + m> O. Since P(W > 0) = 1 - q, the assertion is proved . 

• 
In view of Theorem 1.ll(a), the distribution of the random variable W 

would be of interest in order to study the distribution of Xn for large n. The 
next result gives one preliminary fact about the distribution of W. 

Theorelll 1.13: Under the conditions of Theorem 1.11, the characteristic 
function of W, namely, the function f(t) = E(eitW ), -00 < t < 00, satisfies 
the relation 

f(mt) = tP(f(t)). (13) 

Moreover, if m > 1, then this is the only characteristic function satisfying (13) 
corresponding to a distribution with mean 1. 

Perhaps, we have got a little explaining to do regarding the right side of (13). 
Usually when we talk of the p.g.f. of a distribution, we think of it as a function 
defined on the interval [0,1). But it should be clear that tP(z) makes perfect 
sense also for complex numbers z with Izl :S 1. The recurrence relation (9) 
remains intact even if we allow such complex variables for the function tP. 

Proof: In view of the remark made in the above paragraph, the relations (9) 
yield 

E(eitXn ) = tPn(eit ) = tP(tPn-1 (eit )) = tP(E(eitXn-l )), 

for all n 2: 1 and all t E (-00, 00 ). Denoting the characteristic function of W n 

by fn, it follows that 

But Wn converges to W with probability one, and hence, by the dominated 
convergence theorem, fn(t) converges to f(t) for each t. Since tP is continuous, 
the relation (13) follows. 
To prove the other part, let f and 9 be two characteristic functions satisfying 
f' (0) = g' (0) = i, and, 

f(mt) = tP(f(t)) and g(mt) = tP(g(t)), for all t E (-00, (0). 

From the first condition, one clearly has f(t) - g(t) = th(t) where h is a 
continuous function with h(O) = O. Now, 

Imt h(mt)1 = If(mt) - g(mt)1 = ItP(f(t)) - tP(g(t)) I :S mlf(t) - g(t)1 = mlth(t)l, 
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the inequality following from the fact that Iq'>'(z) I ~ m for all Izl ~ 1. Thus 
we have Ih(mt)1 ~ Ih(t)l , or, by induction, for any fixed t, Ih(t)1 ~ /h(t/mn)1 
for all n 2 1. By continuity of h, we get, for all t, Ih(t)1 ~ Ih(O)1 = O. Thus, 
f(t) = g(t) for all t. • 

Using Theorem 1.13, it is possible to derive a lot of information about the 
distribution of W. Among many other things one can show, for example, that 
the distribution of W is absolutely continuous except for a point mass at zero. 
For this and other things the book of Harris is the best source. 

1.6 The Total Progeny of a Branching Process 

The material in this section is also available in Feller, who attributes it to a 
paper of 1. J. Good and gives the exact reference. Here the objects of interest 
are the random variables Zn, defined for n 2 1, as 

(14) 

where (Xn) is a branching process as defined in the previous sections with 
Xo == 1. Zn denotes the total number of descendants upto and including the n­
th generation. Note that the original ancestor (forming the zeroth generation) 
is also included in Zn. Clearly, the Zn are non-decreasing with n. Letting 
n -+ 00, we get the size of the total progeny, Z = 1 + Xl + X 2 + "', which 
mayor may not be finite. Let Vn denote the p.g.f. of Zn. Since Zl = 1 + Xl 
and X I has p.g.f. q'>, we have VI (s) = sq'>( s). In general, by conditioning on X I 

and observing that, given Xl = k, the random variable Xl + X 2 + ... + Xn 
is (conditionally) distributed as the sum of k many i.i.d. copies of the random 
variable Zn-l, one obtains the recurrence relation 

(15) 

From (15), it is easy to see by induction that, for any s with ° < s < 1, the 
sequence {vn(s)} is monotone non-increasing and therefore, v(s) = lim vn(s) 

n--+oo 
exists. By the Theorem discussed in Section 0.3, we know that v(s) is the 
generating function of a sequence {Pk, k 2 I} of non-negative numbers with 
r. Pk ~ 1. Indeed, Pk = lim P(Zn = k) = P(Z = k) for k = 1,2,3, .... It 

n--+oo 
also follows from (15) that v(s) satisfies 

v(s) = sq'>(v(s)) for ° < s < 1, (16) 

so that, for fixed s E (0,1), the value of v(s) is a root of the equation (in t) 

t = sq'>(t) . (17) 

We now show that (17) has a unique root for every fixed s in (0,1) and, 
moreover, that this root v( s) is such that lim v( s) = q, where q is the extinction 

stl 
probability of the branching process (Xn). 
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Let us now dispose of the two extreme cases, namely, Po = 0 and Po = 1. 
When Po = 0, we know that if;(t) :::; t for all t E [0,1], so that sif;(t) :::; st < t 
for 0 < t :::; 1. Therefore, t = 0 is the only solution of (17). Thus v(s) = 0 for 
all s E (0,1) and v(1) = limv(s) = O. Of course, we know that if Po = 0, then 

stl 
q = O. When Po = 1, one has if;(t) == 1, so that t = s is the only solution of the 
equation (17). Thus v(s) = s for every s E (0,1) and therefore, limv(s) = 1 

stl 
which is , indeed, the extinction probability q in this case. 

Now, let us consider the case 0 < Po < 1. In this case, the function 
g(t) = sif;(t) is strictly increasing and convex (not necessarily strictly convex) 
with g(O) = spo > 0 and g(1) = s < 1. Thus the function f(t) = g(t) - t is a 
continuous function on [0, 1] with f(O) > 0 and f(1) < 0, so that there is at 
least one zero of f(t) in (0,1). Suppose, if possible, 0 < h < t2 < 1 are two 
zeros of f. Then for some to E (h, t2), we have f'(to) = 0, that is, g'(to) = 1, 
which, by convexity, implies that g'(t) 2 1 for t 2 to. By the Mean Value 
Theorem, g(1) - g(t2) = (1- t2)g'(O for some ~ E (t2' 1). But this, along with 
g'(O 2 1, will imply g(1) - 12 g(t2) - t2 = 0, a contradiction. 

Thus (17) has a unique solution in (0,1) for each s E (0, 1). Since f(q) = 
sif;(q) - q = (s - 1)q < 0, it also follows that the solution above lies in (0, q). 
In view of (16), this unique solution is v(s). In particular, for each s E (0,1), 
we have 0 < v(s) < q, so that v(1) = lim v(s) :::; q. But, on the other hand, 

stl 
by letting s t 1 in equation (16), we observe that v(1) = lim v(s) satisfies the 

stl 
relation v(1) = if;(v(1)). By Theorem 1.8, it follows that v(1) 2 q. Thus, we 
have v(1) = q. 

In particular, v(s) is a probability generating function if and only if the 
extinction probability equals 1. Our findings can thus be summarized as 

Theorem 1.14: Let Pk be the probability that the total progeny consists of k 
elements, that is, Pk = P(Z = k), for k = 1,2, .... Then 
(aj 2::k>l Pk equals the extinction probability q and 1 - q is the probability of 
an infinlte progeny. 
(bj The generating function v(s) = 2:: k>l Pksk, 0 < s < 1, is given by the 
unique positive root of (17) and v( s) :::; q.-

We next turn towards the expected total progeny. Of course, since the total 
progeny is given by Z = 1+Xl +X2 +··· and E(Xn) = m n, one could argue that 
E(Z) = 2::n>o mn which is finite if and only if m < 1 and, in that case, it equals 
(1 - m)-l. -This, however, requires the use of E(2::n>o Xn) = 2::n>O E(Xn) 
which needs monotone convergence theorem of SectionO.2.1. It is possible to 
bypass it using the generating function v(s) as follows. First of all, if m> 1, we 
know that q < 1, so that there is positive probability for the total progeny to 
be infinite and therefore, it can not have finite expectation. In case m :::; 1, the 
special case Pl = 1 is again trivial, because in that case Xn == 1 for all n 2 1, so 
that the total progeny is infinite with probability one and hence can not have 
finite expectation. So, we finally consider the case when m :::; 1 and Pl < 1. 
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Since q = 1 in this case, the total progeny is finite with probability one and v(s) 
is indeed its p.g.f. Now from (16), one gets v'(s) = cp(v(s))[l- scp'(v(S))]-l for 
0< s < 1. Letting s t 1, one obtains that v'(l) = limv'(s) is finite and equals 

stl 
(1 - m)-l if and only if m = cp' (1) = lim cp' (s) is strictly less than 1. Thus we 

stl 
have proved 

Theorem 1.15: The total progeny of a branching process has finite expectation 
if and only if the mean m of the progeny distribution is strictly smaller than 1 
and, in that case, the expected total progeny equals (1 - m)-l. 

1. 7 Some Examples and Diverse Applications 

In this section, we give some illustrations of how the theoretical model of 
branching process as described in the previous sections finds applications in 
a number of widely diverse situations. 

(a) Survival of Family Names: Special cases of this application have already 
been discussed in detail following Theorem 1.8. As argued there, for this ap­
plication, only male descendants count; they play the role of the objects and 
Pk is the probability for a newborn boy to become the progenitor of exactly k 
boys. Our scheme introduces two artificial simplifications. Fertility may not 
remain constant over generations and so the progeny distribution p changes, in 
reality, from generation to generation (see Section 1.8 (a)). Secondly, common 
inheritance and common environment are bound to produce similarities among 
brothers which is contrary to our assumption of stochastic independence. Our 
model can be refined to take care of these limitations, but the essential features 
remain unaffected. Our theory allows us to derive the probability of finding 
k carriers of the family name in the n-th generation, and, in particular, the 
probability of extinction of the family line. As noted before, survival of fam­
ily names seems to have been the first chain reaction studied by probabilistic 
methods. 

(b) Nuclear Chain Reactions: This application came into being in connec­
tion with the atomic bomb. The following description, as given in Feller, is 
supposed to be due to E. Schroedinger (1945). The objects here are neutrons, 
which are subject to chance hits by other particles. Once hit, a neutron cre­
ates k Hew neutrons. Denoting by Ct, the probability that a particle scores a 
hit sooner or later, we have a branching process with progeny distribution p 
given by Po = 1 - Ct, Pk = Ct and Pj = 0 for all j i- 0, k. At worst, the first 
particle remains inactive and the process never takes off. At best, there will be 
k particles of the first generation, k2 particles of the second generation, and so 
on. If Ct is near one, the number of particles is likely to increase very rapidly. 
Of course, this model is simplistic. From the point of view of physical reality, 
for a very large number of particles, the probability of fission can not remain 
constant, and also, stochastic independence is impossible. 

(c) Electron Multipliers: This is a variant of the above example and the 
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early treatments were given by Shockley and Pierce (1938) and Woodward 
(1948). For detailed reference, see the book of Harris. An electron multiplier is 
a device for amplifying a weak current of electrons. Each electron, as it strikes 
the first of a series of plates, gives rise to a random number of electrons, which 
strike the next plate and produce more electrons, and, so on. The number of 
electrons produced at successive plates have been treated as a Galton-Watson 
branching process. The complications due to random noise in the instrument 
can also incorporated in the model. 

(d) Genes and Mutations: This application can perhaps be better under­
stood after the reader has gone through Chapter 2 on general genetics. Every 
gene of a given organism has a chance to reappear in 1,2,3 ... direct descen­
dants and our scheme describes the process, neglecting, of course, variations 
within the population and with time. Following R. A. Fisher, consider a corn 
plant which is father to some 100 seeds and mother to an equal number. Sup­
pose that a spontaneous mutation in the plant had produced a single gene of a 
new kind, which plays the role of a O-th generation object. We want to study 
the chances of survival and spread of this mutant gene. Now, if the population 
size remains constant, an average of 2 among the 200 seeds will develop to a 
plant, that is, each seed has a chance of 1/100 to develop to a plant. Also, each 
seed has probability 1/2 of receiving a particular gene. Thus the probability of 
the mutant gene being represented in exactly k new plants is the same as that of 
k successes in 200 independent Bernoulli trials with success probability 1/200. 
it appears reasonable to assume the progeny distribution is is approximately a 
Poisson distribution with parameter l. 

(e) Waiting Lines: Interesting applications of branching proceses occur in 
queuing theory. The following is motivated by D. G. Kendall (see Feller for 
exact reference). Imagine a counter where customers arrive to get some kind 
of service. A customer arriving when the server is free, is attended to im­
mediately; otherwise, he joins the queue (waiting line). The server continues 
service without interruption as long as there are customers in the queue re­
quiring service. Let us assume for simplicity that customers can arrive only 
at integer time points and only one at a time. Suppose that the arrivals are 
regulated by Bernoulli trials, so that at any time point n, the probability that 
a customer arrives is p, while 1 - p is the probability that no arrival takes 
place. On the other hand, let us assume that the successive service times are 
independent integer-valued random variables with common distribution {,Bd 
and p.g.f. b(s) = Lk>l ,Bksk. 

Suppose that a customer arrives at time 0 and finds the server free. His 
service time starts immediately. If it has duration k, the counter becomes free 
at time k, provided that no new customers have arrived at times 1,2, ... , k. 
Otherwise, the service continues without interruption. By "busy period" is 
meant the duration of uninterrupted service commencing at time O. We show 
how the theory of branching processes may be used to analyze the duration of 
the busy period. 

The customer arriving at time 0 initiates the busy period and will be called 
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the ancestor. The first generation consists of the customers arriving prior to or 
at the time of termination of the ancestor's service time. If there are no such 
direct descendants, then the process stops. Otherwise, the direct descendants 
are served successively, and during their service times, their direct descendants, 
if any, join the queue. We thus have a branching process such that the proba­
bility q of extinction equals the probability of termination of the busy period 
and the total progeny consists of all the customers (including the ancestor) 
served during the busy period. Needless to say, only queues with q = 1 are 
desirable in practice. 

(f) Duration of the Busy Period: The preceeding example treats the num­
ber of customers during a busy period, but the actual duration of the busy 
period is of greater practical interest. This can be obtained by the elegant de­
vice, due to I. J. Good (see Feller for exact reference), of considering time units 
as elements of a branching process. We say that the time point n has no descen­
dants if no new service starts at time n, where as, if a new service starts at time 
nand ifthis service lasts r time units, then the time points n+ 1, n+2, ... ,n+r 
are counted as direct descendants of time point n. Suppose that at time 0, the 
server is free. A little reflection shows that the branching process originated 
by the time point 0 (the ancestor) either does not come off at all or else lasts 
exactly for the duration of the uninterrupted service time initiated by a new 
customer; thus, the total progeny equals 1 with probability 1 - p, while with 
probability p, it equals the duration of the busy period commencing at time O. 

1.8 Possible Generalizations and Extensions 

(a) Variable Generating Functions: In our branching process model, it was 
assumed that all the objects always produce offsprings according to the same 
distribution. In particular, the offspring distribution remained the same over 
generations. To bring our model closer to reality, in some situations, we may 
instead allow generational variations and suppose that an object in the n-th 
generation produces offsprings according to the progeny generating function 
Ij;(n) (s). In this case, the p.g.f. of Xn would be 

(18) 

The formulae (7) and (8) can be generalized in a similar way. The details can 
be found in the book of Harris. 

(b) Family Trees: In our branching process as described in the previous 
sections, the sole consideration was the total number of objects in the successive 
generations. It does not distinguish between the different family trees, as long 
as the numbers in the various generations are the same. Consider, for example, 
the three families shown in the figure. 
In all the three cases, Xl = 3 and X2 = 2. However, if we stipulate, regarding 
two dots linked to the same vertex, that the higher one corresponds to the 
older child, then (i), (ii) and (iii) represent three different family structures. It 
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Figure 1.5: (i) (ii) (iii) 

is possible to modify the definition of the branching process so as to keep track 
of the family trees. The book of Harris (pages 122-125) contains a detailed 
discussion. 

(c) Multi-type Galton-Watson Process: Certain applications - for exam­
ple, in cosmic ray cascade experiments, in reproduction of certain bacteria, 
etc. - require consideration of processes involving several type of objects. 
A Galton-Watson process with k types of objects, where k is a fixed posi­
tive integer, models a process of evolution where in each generation, objects 
of k different types may be present. Each object produces a certain number 
of offsprings of each type, thus giving rise to a k-dimensional random vector. 
Offspring distributions are therefore given by the joint p.g.f. of these random 
vectors. Denoting by <Pi (81,82, ... , 8k), i = 1, 2, ... , k the p.g.f. of the offspring 
distribution of an object of type i, one can now define a Galton-Watson pro­
cess (Xn)n?:O, where, for each n ::::: 0, Xn is the k-dimensional random vector 
representing the total number of objects of the k different types in the n-th gen­
eration. As before, it is again easy to see that (Xn)n?:O is a time-homogeneous 
Markov chain whose transition probabilities are completely determined by the 
functions <Pi. Once the initial confusion, if any, arising out of the simultane­
ous evolution of multiple types of objects disappears, the analysis can easily 
be seen to proceed in a manner analogous to the previous sections, and, one 
obtains generalizations of all the earlier results. Just to mention one, note 
that here, instead of a single mean m of the offspring distribution, we have 
a mean matrix M = ((mij)) of order k x k, where mij denotes the expected 
number of offspring of type j produced by an object of type i. From the usual 
theory of matrices, one knows that if M is positively regular - that is, if for 
some integer N, MN has all its entries strictly positive - then it has a strictly 
positive eigenvalue p, which is simple and greater in absolute value than any 
other eigenvalue. This eigenvalue p plays a role similar to that of m of previous 
sections, in determining extinction probabilities. The book of Harris (pages 34-
49) contains a good account of such multi-type branching processes. A deeper 
analysis can be found in the book of C. J. Mode. 
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(d) Continuous Time, Age-dependent Branching Process: There are vari­
ous possible formulations of branching processes in continuous time, some of 
which require rather involved analysis. We mention here the simplest one, 
namely, the age-dependent branching process. An object born at time 0 has 
a random life length L which has a distribution G. At the end of its life, it 
is replaced by a random number of similar objects of age 0, the probability 
being Pk that the number of new objects is k. The probabilities Pk, k ;:::: 0 are 
assumed not to depend either on the age of the object when it is replaced or 
on the number and ages of the other objects present. The process continues as 
long as a non-zero number of objects are present. Let X t denote the number of 
objects present at time t. This will give us a continuous time process (Xt)t>o. 
In general, the process (Xt ) is not markovian. However if the lifetime distribu­
tion G is exponential, then it does become a continuous time Markov process. 
It turns out that the p.g.f. <P of the distribution {pd again plays a crucial role 
in the analysis of this process. Denoting the p.g.f. of Xt by <Pt, one can, for 
instance deduce the following analogue of (9) 

<Pt(s) = s(l - G(t)) + r <p(<pt-u(s))dG(u). (19) 
i(o,t] 

For this and a detailed analysis of the process (Xtk:~o, we refer the reader to 
the book of Harris. 

1.9 Exercises 

1. Let (Xn )n2:0 be a branching process with Xo = 1. For an arbitrary but 
fixed positive integer k, define the sequence Yr = X rk , r = 0,1,2, .... 
Show that Yr is a branching process. If <P is the p.g.f. of Xl, then show 
that <Pk, the k-th iterate of <p, is the p.g.f. of Y1 . 

2. Let 1 (s) = 1 - p(1- s),6 where p, ,B are constants and 0 < p, ,B < 1. Show 
that 1 is a p.g.f. and its iterates are given by 

In(s) = 1 - pHf3+,62+.+,6n-l (1 _ s),6n. 

for n = 1,2,3, .... 

3. Suppose that 1 is a p.g.f. Suppose that h is a function such that g(s) = 
h-l(f(h(s))) is well defined and is a p.g.f. Show that the n-th iterate of 
9 is given by gn(s) = h-l(fn(h(s))). Verify that you can take I(s) = 

(s 1) and h( s) = sk. Here k is a positive integer and m > 1. 
m- m- s 
Show that 

S 

gn(s) = [mn _ (mn _ l)sk]l/k . 

4. Recall that Z is the size of the total progeny (including the ancestor) in a 
00 

branching process. Assuming only that EZ < 00, show that E(I:, Xi) = 
1 

EXl.EZ. Conclude that EXl < 1 and EZ = (1- EXd- l . 
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5. In a branching process assume that the progeny distribution satisfies 
Pi = 0 for i > 2. Assume also that P2 > O. Show that the probability of 
extinction equals min(po/p2' 1). 

6. At time 0, a blood culture starts with one red cell. At the end of one 
minute the red cell dies and is replaced by 2 red cells or 1 red and 1 white 
cell or 2 white cells with probabilities 1/4, 2/3 and 1/12 respectively. 
Each red cell lives for one minute and gives birth to offspring in the 
same way while each white cell lives for one minute and dies without 
reproducing. Assume that individual cells behave independently. What 
is the expected number of white cells that have appeared (and died) by 
the end of 10 minutes. Show that the probability that the entire culture 
dies eventually is 1/3. 

7. (a) A mature individual produces offspring according to the p.g.f. cjJ(s). 
Suppose that we have a population of k immature individuals each 
of which grows to maturity with probability P and then reproduces 
independently of other individuals. Show that the p.g.f. of the total 
number (immature) of individuals at the beginning of next genera­
tion is (1 - P + pcjJ ( s ) ) k . 

(b) Given that there are k mature individuals in the parent generation 
show that the p.g.f. of the mature individuals in the next generation 
is given by [cjJ(1 - P + ps)Jk. 

(c) Show that the two p.g.f. in (a) and (b) have the same mean but not 
necessarily the same variance. Can you explain the discrepancy in 
the variance? 

8. Consider a branching process with initial size Nand p.g.f. cjJ(s) = q + ps, 
where 0 < P < 1, q = 1 - p. If T is the first time when the population 
becomes extinct then show that 

9. Fix b > 0, c> 0, b + c < 1. Consider the branching process with Xo = 1 
and progeny distribution given by Pi = bCi- 1 for i = 1,2,3, ... ,Po = 
1- L::IPi. 

1-b-c 
(a) Show that Po = ---

1-c 

. 1 - (b + c) bs 
(b) Show that the p.g.f. IS cjJ( s) = + --. 

1-c I-cs 
b 

(c) Show that m = (1 _ C)2· 

1-b-c 
(d) Show that if So = c(1 _ c) , then cjJ(so) = so· 
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From now on assume that m i- 1. 

(e) Show that 

(f) Show that 

tP( s) - So S - So 
tP(s)-l m(s-l)· 

1- So 
(g) Show that P(Xn = 0) = 1 - mn __ _ 

mn -So 

(h) If T is the time of extinction, then show that 

P(T _ ) _ n-l (m - 1)(1 - so) £ 
- n - m So ( )( 1 ) or n = 1,2, .... mn - So m n- - So 

From now on assume that m = 1. 

(.) Sh h A, ( ) _ ne - [(n + l)e - l]s 
1 ow t at'l-'n s - --,--!:..::...----:--'--~-

1 + (n - l)e - nes 

(j) Show that P(Xn = 0) = (ne) 
1+n-1e 

e(l - e) 
(k) Show that P(T = n) = [ ( )][ ( ) ] 1+ n-1e 1+ n-2e 
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10. Suppose that a society adopts the following policy. Allow each couple to 
have two children. If both children are girls, then allow them to have a 
third child. Find the probability of survival of a given family name under 
the usual assumptions. 

11. A man founds a society for the upholding of moral standards. Each 
year with probability p, he admits one person of sufficient high moral 
standard as a member. The probability is 1 - p, that no new members 
are admitted in a year. At the same time, any existing member who is 
guilty of moral lapse must resign. The probability of this happening to a 
member in a year is.\. The founder himself is not considered a member of 
the society. Let tPn denote the p.g.f. of the (random) number of members 
of the society at the end of n-th year. Show that 

tPnH (s) = (ps + 1 - P)tPn((l - .\)s +.\) . 

Calculate tPl (0) and tP2 (0). 

12. Consider a queueing system as discussed in Example (e) of Section 7 
and the branching process defined there. Find the progeny generating 
function tP(s) for this process. Deduce that m = PJL where JL is the 
expected duration of service for a customer. Find conditions for (a) the 
busy period to terminate with probability one and (b) the expected total 
number of customers during a busy period to be finite. 
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13. Consider the same set-up as in the above exercise, but now consider the 
branching process as discussed in Example (f) of Section 7. Find the 
progeny generating function. Hence find the generating function of the 
duration of the busy period. 

1.10 References/Supplementary Readings 

[1] Cox, D. R and Miller, H. D [1965] : The Theory of Stochastic Processes, 
Methuen Co, London. 

[2] Feller, W. [1968] : An Introduction to Probability Theory and its Applica­
tions, vol. I, Third edition, John Wiley & Sons. 

[3] Harris, T. E [1963] : The Theory of Branching Processes, Springer-Verlag. 

[4] Karlin, S. [1966] : First Course in Stochastic Processes, Academic Press. 

[5] Karlin, S. and Taylor, H. M. [1975] : First Course in Stochastic Processes, 
Second edition, Academic Press. 

[6] Mode, C. J [1971] : Multitype Branching Processes: Theory and Applica­
tions, American Elsevier, New York. 

All the material discussed in this chapter can be found in [2] and [3]. In­
terested reader can consult the other references for additional material as well 
as applications. 



Chapter 2 

BASIC MATHEMATICAL 
GENETICS 

In this chapter, we start with a brief review of a few relevant facts from genet­
ics, which is done in Section 1. We shall only recall just enough genetics that 
is needed in order to form an idea of the phenomena to be modelled in the sub­
sequent sections. In Section 2, we proceed to the mathematical analysis of the 
variations in gene frequencies in a population. This includes, in particular, the 
Hardy- Wienberg Laws. Section 3 is devoted to a discussion of the phenomenon 
of inbreeding and the concept of gene identity. Malecot's models on random 
mating are taken up in the last section. 

2.1 Basic Genetics 

Interestingly, the first studies as to how traits or characterstics are passed on 
from parents to offsprings, were carried out by a saint in a monastery in Austria 
around the time 1860-1870; his name was Gregor Mendel. While experimenting 
with pea plants, he was intrigued by the following questions. How does a plant 
know whether it should be tall or dwarf, whether it should produce green seeds 
or yellow seeds, whether its seed coat should be grey or white? After a series 
of experiments, he arrived at the following conclusions. For each trait, there 
are what are called "determiners" - chemicals which make the plant exhibit 
that trait - and these determiners occur in pairs. During the formation of the 
reproductive cells, these pairs segregate or seperate out (Law of segregation), 
while during the fertilization process, one determiner from each parent join 
together, and it is this newly formed pair that is passed on to the offspring. 
This joining together do"es not take place according to any fixed preassigned 
plan; instead, one determiner from the father and one determiner from the 
mother join at random (Law of Random Assortment). Further the determiners 
for different characterstics are passed on independently (Law of Independent 
Assortment). This last speculation is, however, not entirely true. 

97 
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Before going into the pertinent features of the offspring formation that are 
relevant for the mathematical analysis, we take a glimpse into cell biology and 
cell division. Human cell can be thought of as a miniature factory, where the 
raw material (food supply) is in the cytoplasm and the executives (that give 
instructions) are in the "air-conditioned" room called the nucleus. The nucleus 
is separated from the cytoplasm by a nuclear membrane. The nucleus contains, 
among other things, certain thread-like substances called Chromosomes. The 
chromosomes consist of what is known as Chromatin ("chroma" means colour; 
when a particular dye is applied, these threads pickup red colour and become 
visible in a microscope). In normal human cell, there are 23 pairs of such chro­
mosomes in each cell nucleus, that is, 46 chromosomes arranged in pairs. Each 
pair is called a homologous pair. The chromosomes in each pair have the same 
physical appearance but not necessarily the same chemical composition. Dur­
ing the reproductive stage, a cell division called Meiosis takes place ("meioo" 
means reduction and "osis" means execessive growth, so that meiosis literally 
means reduction growth). This happens as follows. Firstly, the chromatin con­
tent doubles. This is called interphase I. Thus; 46 sister pairs of chromosomes 
appear. Then, in what is called interphase Il, some fibres also start appearing. 
Then two sister pairs get attached to each fibre; this is called metaphase I. 
Then in anaphase I, the fibres break, leaving one sister pair attached to one 
part of the fibre. This is followed by telephase I, when constrictions appear 
in the cell and the cell slowly breaks into two cells. Now each of the cells has 
23 sister pairs. Indeed, each has 23 of the original 46 chromosomes, but each 
in double dose. Then again metaphase Il occurs, when each sister pair gets 
attached to a fibre. Anaphase 11 comes next, when each fibre breaks, leaving 
one of the chromosomes of the sister pair attached to one part of the fibre. 
Finally, in telephase Il, each cell breaks into two, each having 23 chromosomes. 
Thus, starting from one original cell having 23 pairs of chromosomes, we finally 
have four cells, each having just 23 chromosomes. These are called Gametes. 

Figure 1 illustrates the process of formation of gametes, starting from one 
original cell containing two pairs of chromosomes, namely the (la, 1b) pair and 
the (2a,2b) pair. It should be pointed out that the assortment taking place 
during anaphase I and telephase I is really random. Thus, starting with the 
same cell, as in Figure 2.1, the two cells obtained after telephase I could have 
been different as shown in Figure 2.2. 

Though there are some structural differences between the male cell division 
and the female cell division at the reproductive stage, these differences do not 
concern our analysis. When a male gamete joins a female gamete, we get what 
is called a Zygote. Thus a zygote has 23 pairs of chromosomes. This zygote 
now divides and multiplies by the usual cell division process, called Mitosis, to 
form the offspring. 

After this brief digression into cell biology and cell division, we now go on 
to discuss the salient features of basic genetics that are going to be relevant for 
us. 
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Figure 2.1: Cell Division 

Figure 2.2: Chromosome Assortment 
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(1) The nucleus of a living cell contains a certain number of chromosomes. 
The number is the same for all individuals in a given species. In some species, 
they occur in pairs. Such species are called Diploid Species. But there are 
also species which are Haploids (chromosomes occuring singly), or Triploids 
(chromosomes occuring in triplets) and, more generally, Polyploids. We mostly 
consider diploid species. Among the different diploid species, the number of 
chromosome pairs vary widely. For example, human cells have 23 pairs, dogs 
have 39 pairs, fruitfly (Drasophila Melanogaster) has 4 pairs, pea plants have 
7 pairs and so on. 

(2) It is the chromosomes that govern the hereditary characterstics of the 
species. The quantity that governs a particular characterstic is called a 'Gene' 
and the position on a chromososme where the gene is located is called the Locus 
of the gene. For example, in Drasophila, which has 4 pairs of chromosomes, a 
part of the third chromosome is the locus for 'hairy body' gene. This means 
that if a particular chemical is present at this locus, the fly will have hairy 
body. Loci appear in pairs on homologous chromosomes (an exception will 
appear later). In Drasophila, for example, consider the third homologous pair. 
The same position on each of the chromosomes of this pair is the locus for the 
'hairy body' gene. The natural question that arises is that, if one chemical in 
one locus says 'yes hairy body' and the other one says 'no hairy body', then 
what happens? It depends on which is dominant. This is clarified next. 

(3) The various forms in which a gene can occur are called Alleles. The 
different combinations of alleles that can occur for a particular gene on the 
homologous pair of chromosomes are known as the different Genotypes. The 
different ways in which the genotypes manifest themselves physically are called 
the different Phenotypes. Thus genotypes refer to the actual combinations of 
allcles of a gene, while phenotypes reflect their outward expressions. Let us 
look at some examples. 

Example 1: For pea plants, consider the characterstic of height. The gene that 
determines this particular trait has two alleles. We denote them by T and t. 
The allele T dictates the plant to be 'tall', while the command of t is 'dwarf'. 
Now a plant can have anyone of the three combinations - TT or Tt or tt 
- on its homologous pair. We are not distinguishing Tt from tT here. These 
are the three genotypes. Physically, however, it is found that both the TT and 
Tt combinations result in tall plants, whereas only the tt combination gives 
dwarfs. Thus there are only two phenotypes, namely, 'tall' and 'dwarf'. It is 
as if, the command of the allele T dominates over that of the allele t. Quite 
naturally therefore, in this case, the allele T is said to be dominant and the 
allele t is called recessive. 

Example 2: The gene that determines the colour in snapdragon flowers has 
two alleles R (for 'red') and r (for 'no red'). As in Example 1, there are three 
genotypes, namely RR, Rr and rr. Plants which have RR produce red flowers, 
whereas plants that have rr produce white flowers. Plants of the genotype 
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Rr are found to produce pink flowers, intermediate to red and white. Thus, 
the three genotypes give rise to three different phenotypes also. So, here is a 
situation where out of the two alleles, no one seems to dominate over the other. 
In this case, we say that the alleles Rand rare codominant. 

Example 3: As a final example, we consider the Landsteiner blood group sys­
tem. The gene that determines the blood group has three alleles, called 0, A 
and B. So we have six different genotypes, namely, 00, aA, OB, AA, AB, 
BB. There are four phenotypes, namely, the LO group (genotype 00), the LA 

group (genotypes OA and AA), the LB group (genotypes OB and BB) and the 
LAB group (genotype AB). Here the alleles A and Bare codominant whereas 
the allele 0 is recessive with respect to both A and B. Thus, genotypes OA 
and OB manifest in the same phenotypes as AA and BB respectively (namely, 
LA and LB groups respectively), but the genotype AB manifests in a different 
(intermediate?) phenotype, namely, the LAB group. Of course, the phenotypic 
classification here is not as transparent as in the earlier examples. For example, 
pink is evidently intermediate to white and red, as in Example 2, but here what 
is LAB group? Here is a brief description of the basis of this classification. In 
immunology one encounters two terms, antigens and antibodies. Antibodies 
are protiens in blood plasma manufactured to fight antigens, while antigens 
are those chemicals whose presence forces the body to manufacture antibodies 
to fight against these antigens (is it circular?). There are two different kinds of 
antigens called A and B that mayor may not be present in blood. The basic 
rule is that, you will not manufacture antibodies to fight your own antigens. 
These four types of phenotypes described above correspond to blood having no 
antigens at all or having only antigen A or having only antigen B or having 
both A and B. 

(4) A normal human cell contains 23 pairs of chromosomes. The chro­
mosome pairs 1,2, ... ,22 are called autosomes (the chromosome pairs can be 
arranged and numbered). The 23rd pair is called the sex-chromosome pair. 
This pair consists of either two long ones or one long and one short. In par­
ticular, the two chromosomes in this pair may not even physically look alike. 
The long chromosome is called X and the short one is called Y. This pair 
determines the sex of a person in the following way: X X persons are females 
and XY persons are males. Thus, during reproduction, a mother always passes 
on an X chromosome to the offspring whereas the father may pass on either an 
X or a Y chromosome, thus determining the sex of the offspring. A gene that 
has its locus on one of the autosomes is called an autosomal gene. On the other 
hand, a gene that has its locus on the sex chromosome is called a sex-linked 
gene. More precisely, if a gene has its locus on the X chromosome, then it 
is called an X -linked gene, whereas genes having locus on the Y chromosome 
are called Y -linked genes. For example, the gene that determines the trait of 
colour blindness is an X-linked gene. This gene has two alleles, namely, C 
(normal vision) and c (colourblind). Thus males have two possible genotypes, 
namely, CY and cY, while females have three genotypes, namely, CC, Cc and 
cc. Between the two alleles C is found to be dominant and c recessive. Thus 
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CY, CC and Cc are the combinations that correspond to normal vision, while 
persons with genotypes cY and cc are colourblind. The gene that is responsible 
for what is known as Haemophilia (failure of blood-clotting mechanism), is also 
X-linked with two alleles, namely, H (normal) and h (haemophilic), of which 
H is dominant. On the other hand, traits like hairy ears, bald head, etc., are 
believed to be caused by Y-linked genes. 

(5) We must immediately point out that every rule has exceptions. For 
example, sometimes a man may have what is called' Trisomy 21' or 'Down's 
syndrome'; such a person has three chromosomes numbered 21, thus having 
a total of 47 chromosomes in all. Sometimes a female may have 'superfemale 
syndrome'; having three X chromosomes. Similarly a man may have 'Klinefel­
ter's syndrome', having XXY. Also, it is not always true that the minimum 
number of chromosomes is 46. For example, a female may have 'monosomy 
X' or 'Turner's syndrome'; this means having only one X chromosome, thus 
having 45 chromosomes in all. Sometimes, all the 46 chromosomes may be 
there, but some of them may be partly missing. Sometimes, for example, the 
long arm of the 22-nd pair may be missing; this situation leads to a kind of 
cancerous Leukemia. Of course, all these are some sort of aberrations and will 
be excluded from consideration in the sequel. 

(6) If parents pass on exact replica of what they have to the offspring, as 
enunciated earlier, then we will have an immediate contradiction to the evo­
lutionary theory of Charles Darwin. In reality, there are sometimes misprints 
in passing on the message coded in a gene to an offspring. This phenomenon 
is called Mutation. For example, consider an autosomal gene with two alleles 
A and a. Suppose the father is (of genotype) AA and mother is (of genotype) 
aa. Then, if we strictly adhere to the theory laid down earlier, every offspring 
must receive an allele A from the father, and an allele a from the mother and 
consequently will be (of the genotype) Aa always. In practice, however, it is 
quite likely that during the gamete or zygote formation stage, the allele A may 
be 'converted' (with a very small but non-zero chance) to a. Such a conversion 
will result in the offspring being aa. 

To understand the phenomenon of mutation a little better, let us consider 
the gene that controls the manufacture of haemoglobin. First of all, the chro­
mosome has, besides sugar, nitrogen, etc., a sequence of chemicals acting as 
symbols for a code of instructions. The chemicals are Adenine symbolized as 
A, Guanine as G, Uracil or Thiamine as U and Cytosine as C. There are twenty 
basic amino acids used in the manufacture of proteins and other compounds. It 
will be helpful to think of a chromosome as a piece of paper with instructions 
written on it. In reality, these instructions are in the form of a sequence of 
symbols. Each triplet of these symbols A, G, U, C codes an amino acid (or 
does not code anything at all). Also, more than one triplet may code the same 
amino acid; this is called the degeneracy of the genetic code. For example, CAA 
and CAG both code the amino acid Glutamine, while GUC, GUA and GUG all 
code the amino acid Valine. When it is time to manufacture haemoglobin, the 
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relevant gene sends a message (actually, replica of itself) into the protoplasm, 
where the message is read tripletwise and the corresponding amino acids are 
brought and arranged. The gene that controls the manufacture of haemoglobin 
has many alleles, of which S (normal) and s (sickle) are two. The only differ­
ence between them is that, at a particular location in the string of triplets, the 
allele S has the code for glutamine, whereas s has the code for valine. Thus, a 
change of just one triplet would result in a change of an allele S into s (or of s 
into S). All this discussion is just to impress upon the reader that a mutation 
of one allele into another may often be accomplished by just a change of one 
single triplet in a string of thousands. Such a misprint is, of course, not hard 
to conceive. For example, it is found that radiation, an overdose of harmful 
chemicals, etc., are capable of causing this. When we talk of radiation, we do 
not necessarily mean being directly exposed to it. There are indirect ways of 
being affected by radiation. This could, for instance, be caused by drinking 
the milk of a cow which ate grass that somehow got contaminated by radiation 
fallout. 

Thus, an allele A can mutate to an allele a and an allele a can mutate to 
A. In fact, mutation is the main source for genetic diversity. Sometimes, an 
allele mutates to something new giving rise to a slight variation. This leads to 
interesting theoretical possibilities as discussed in the next paragraph. If this 
new allele is 'good', the offspring and their progeny propogate this new allele 
in the population. If the new allele is deleterious, then it will disappear sooner 
or later from the population. Sometimes, this new allele may not only be good, 
but also advantageous for survival, in which case this new variation takes over. 
This is what is really behind the phenomenon of "survival of the fittest" in the 
context of evolutionary theory. 

(7) As mentioned in the last paragraph, it is quite possible for an allele of 
a gene to mutate into a form that is not existing at present in the population. 
This means that the possible number of alleles for a gene may potentially be 
infinite (very very large), but only finitely many (in fact, only a few) show up 
(because we have a finite population). We shall not discuss this possibility of 
infinitely many alleles, though it is an exciting idea. We refer the interested 
reader to the book of Kingman. 

This is all the basic genetics that will be needed to get the motivation and 
understand the mathematics that follows. If one is interested to know more 
on genetics, there are a number of good books, some of which are listed in the 
references at the end of this chapter. 

We conclude this section with a simple illustration of how the above ideas 
work. Suppose that a woman has normal vision, but we are told that her father 
was colourblind. From this, can we say what the genotype of the woman is? 
First of all, since she has normal vision, her genotype must be either CC or 
Cc. But the fact that her father was colourblind, tells us that his genotype 
must have been cY. He must have passed on X (and not Y) to the daughter 
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and so must have passed on c. So the woman must have genotype Cc. 

2.2 Random Mating: Hardy-Weinberg Laws 

We shall now proceed towards some mathematical analysis. They concern 
the variations in gene frequencies from generation to generation, and are of 
theoretical interest. 

2.2.1 Autosomal Genes 

Let us consider a bisexual diploid population (like humans) and an autosomal 
gene with two alleles A and a. Suppose that, initially in both males as well 
as females in the populaion, the relative frequencies of the various genotypes 
are AA : Aa : aa = u : 2v : w with u + 2v + w = 1. Such a population 
structure is sometimes denoted as u AA + 2v Aa + waa. The question that we 
ask is: what will be the relative frequencies of various genotypes (genotypic 
frequencies, in short) in the next generation? Obviously, the genotypes of the 
offsprings of a mating depend on the specific genotypes of the parents. Thus, 
the relative frequencies of various mating types (mating frequencies, in short) 
are necessary. Let us assume that the population is paired into couples to 
act as parents of the next generation. The mechanism of the pairing is called 
a mating system. Thus an important constituent of any mathematical model 
would be a stipulation of the proportions of different mating couples. One such 
simple stipulation is that, for every choice of genotypes a and fJ, the proportion 
of mating couples with 0: type males and fJ type females - to be symbolically 
denoted as o:M x fJF (0: x fJ, in short) - equals the proportion of 0: type 
males in the population multiplied by the proportion of fJ type females in the 
population. Such a mating system is called random mating. The idea is that, if 
one male and one female are selected at random from the population for mating, 
then the chance of getting 0: x fJ mating is given precisely by the product above. 
Since the two parents play symmetric role (autosomal gene!), there is no need 
to distinguish between the mating types o:M x fJF and (3M x o:F. The two 
together will be denoted by 0: X (3. Table 2.1 below lists the various mating 
types with their relative frequencies and the offspring genotype frequencies for 
each mating type. 

Table 2.1 

mating type mating frequency offspring genotypic frequency 

AAxAA u2 1AA 

aa x aa w2 1aa 

AA x Aa 4uv lAA + lAa 2 2 

aa x Aa 4vw lAa + laa 2 2 

AA x aa 2uw 1Aa 

Aa x Aa 4v2 lAA + lAa + laa 4 2 4 
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By the rule of total probability, the genotypic frequencies in the offspring 
population are (u + v)2 AA + 2(u +v)(v +w)Aa + (v + w)2aa. Denoting (u + v) 
by p and (v + w) by q, these genotypic frequencies may be written as p2 AA + 
2pq Aa + q2aa. Now, if the same process is repeated to this population (to be 
called the first generation), then the second generation will consist of]52 AA + 
2j)ifAa + rraa where is = p2 + pq and ij = pq + q2. But, of course, since 
p + q = 1, we have is = p and if = q. Thus, from the first generation onwards, 
all the subsequent generations will have composition p2 AA + 2pq Aa + q2aa. 
In other words, the genotypic frequencies achieve stability right from the first 
generation, irrespective of what the composition of the initial population was. 

Of course, in what we did above, random mating was the basic assumption. 
But, there were some other implicit assumptions too, which we now describe. 

Firstly, the possibility of mutation was ruled out. For a given parental 
type, we simply followed the Mendelian rule to derive the offspring genotypic 
frequencies. If mutation is to be allowed, this has to be appropriately modified, 
resulting in a change in the third column of Table 2.1. An illustration of how 
to handle mutations in this set-up will be given later. 

Secondly, Natural Selection was also ruled out. This means that we im­
plicitly assumed all the genotypes to be equally fit to survive and reproduce. 
This, however, may not be true in reality. Consider, for example, a situation 
where the genotypes aa are sterile. Then , obviously, the mating types Aa x aa, 
AA x aa and aa x aa do not produce any offsprings. Therefore, as far as next 
generation is concerned, we may as well pretend as if the aa genotype is dead 
from the parental population. So it will be just a matter of restricting oneself to 
a parental population with only two genotypes AA and Aa (with their relative 
frequencies appropriately normalized), and proceeding exactly as above. But 
this is only an extreme illustration. In general, we may only know that the aa 
genotypes are less fit than the AA. The main problem then is how to quantify 
the notion of "less fit". One way to do this is to say that only a proportion 
of the aa genotypes survive to maturity and reproduce. Naturally therefore, 
before discussing the mating types, we must first re-evaluate the relative fre­
quencies of the different genotypes in the matured population. This is, for 
example, the case for sickle cell haemoglobin discussed in the earlier section. 
It is found that the fitness of the ss genotypes is much less compared to that 
of the SS genotypes. This is due to the fact that if the haemoglobin changes 
shape, then it cannot carry enough oxygen and, as a result, makes the per­
son weak and intrinsically tired. Certain tribes in Africa are found to contain 
a considerable proportion of ss genotypes. In this context, we should warn 
the reader that reality is often much more complex than simple mathematical 
models. For instance, with sickle cell, the genotype SS is also "less fit" in the 
sense that it is more susceptible to certain kinds of malarial parasites. 

Thirdly, we have implicitly assumed the population to be closed, that 
is, there is neither migration from the population nor any immigration from 
outside into the population. But, for our purposes, migration of a part of the 
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population can be thought of as death and brought under fitness assumptions. 
Similarly, immigration can also be handled via fitness. 

Finally, we assumed that the different generations are non-overlapping. To 
be precise, we are trying to evaluate the frequencies of the various genotypes 
in the different generations. But, what is a generation? To start with, we 
assumed that there is a generation Go, who produce the next generation G l . 

Then matings from only G l produce the next generation G2 , and so on. In 
reality, however, this may not be the case. In certain societies, a man getting 
married to his sister's daughter is quite customary. Such systems do not fit 
into our model. 

To make sense of random mating we must really assume that the male­
female ratio in the population is 1:1. Also, the population must be potentially 
infinite. To see what happens otherwise, let us think of an extreme case. 
Suppose a population has 3 males and 3 females, each consisting of 1AA + 
1Aa + 1aa. Clearly all the six possible mating types listed in our Table 2.1, do 
not arise in reality. Our model of random mating precludes such possibilities. 
We do not need to make any additional explicit assumptions to this effect, 
because the notion of random mating itself takes care of it. Whatever be the 
underlying mechanism involved, the assumption of random mating describes 
to us the relative frequencies of various mating types, and, that is all that we 
need for our calculations. Thus, the notion of random mating is not really as 
simple as it appears to be. Later, we will see that, if the population is finite, 
then this kind of stationarity of genotypic frequencies cannot arise. 

The assumption made about both sexes having the same genotypic frequen­
cies to start with, is not essential. One can do away with it and proceed in 
exactly the same way as above to arrive at the following general result. 

Theorem 2.1 (Hardy-Weinberg Law for Autosomal Genes): Consider 
a diploid bisexual closed population and an autosomal gene with two alleles A 
and a. Assume that there is no mutation and that all genotypes are equally fit. 
Suppose that initially we have the genotypic frequencies uAA + 2vAa + waa in 
males and uAA + 2vAa + waa in females. Then under random mating, the first 
generation consists of pp AA + (pq + pq)Aa + qq aa in both males and females, 
where p = u + v, 15 = u + v, q = 1 - p and q = 1 - p. From the second 
generation onwards, the population consists of P5AA + 2poqoAa + q5aa in both 
males and females, where Po = ~ (p + 15) and qo = ~ (q + q). Thus, the genotypic 
frequencies remain stationary from the second generation onwards. 

To prove the above theorem, we may proceed as earlier, preparing a table 
giving offspring types. This method is called the 'random mating method' 
in the literature. There is another method of calculations, known as random 
union of gametes, which leads to the same final result. We shall illustrate this 
method now. Males consist of uAA + 2vAa + waa. Each AA male produces 
two A genes; each Aa male produces one A gene and one a gene; and each aa 
male produces two a genes. Thus, if you think of a male gene pool, then it 
consists of A genes and a genes in the proportion pA + qa, where p = u + v and 



2.2. RANDOM MATING: HARDY-WEINBERG LAWS 107 

q = 1 - p. Similarly, the female gene pool consists of pA + qa, where p = u + v 
and q = v + W = 1 - p. The principle of random union of gametes says that, 
the offspring genotype is obtained by selecting at random one gene from the 
male gene pool and one from the female gene pool. If we do this, then clearly 
the offspring population will consist of ppAA + (pq + pq)Aa + qqaa for both 
sexes. Of course, it is legitimate to ask whether the model of random mating 
is equivalent to the principle of random union of gametes. This is, indeed, the 
case. The equivalence is discussed in detail in the book of Edwards. 

2.2.2 X-linked Genes 

Let us now consider an X-linked gene with two alleles A and a. As dis­
cussed earlier, the females, in this case, have three possible genotypes as 
usual, whereas the males have only two genotypes AY and aY (A and a, 
for short). Suppose that, initially females have the genotypic composition 
uAA + 2vAa + waa and males have PoA + qoa. Assuming random mating, 
calculations similar to Table 2.1 show that, the first generation will have the 
genotypic compositions PoPIAA + (POql + qopdAa + qoqlaa in females and 
PIA + qla in males, where PI = u + v and ql = 1 - PI. One can deduce, in 
general, that the nth generation will consist of PnA + qna among males and 
PnPn-IAA + (Pnqn-l + qnPn-dAa + qnqn-Iaa among females. This leads to 
the recurrence relation 

·11 
Pn+l = PnPn-1 + 2 (Pnqn-l + qnPn-d = 2(Pn + Pn-l). 

Thus, to see what happens eventually, we should solve the difference equation 
above and find the limit as n -+ 00. Denoting an = Pn+l - Pn, the above 
equation reduces to an = -!an-I. It follows that an = (-!)n ao , for all 

n 
n 2:: 1, yielding Pn+l = Po + ao L:= (- ~)k. Taking limit as n -+ 00, we get 

k=O 

00 2 2 1 
lim Pn = Po + ao 2:)-2)-k = Po + -aD = -PI + -Po· 

n-+oo 3 3 3 
k=O 

We have thus proved 

Theorem 2.2 (Hardy-Weinberg Law for X-linked Genes): Consider 
a diploid bisexual closed population and an X -linked gene with two alleles A 
and a. Assume that there is no mutation and that all genotypes are equally 
fit. Suppose that the population initially consists of PoA + qoa males and 
u AA + 2vAa+w aa females. Then, under random mating, the population would 
eventually consist of a A+ (I-a) a males and a 2 AA+2a{I-a)Aa+ (I-a)2aa 
females, where a = ~(u + v) + ~po. 

To see a concrete application of this theorem, suppose, for instance, that 
A is for normal vision and a for colourblindness. In the limiting population, if 
the proportion of colourblind males is (3, then only a proportion (32 of females 
are expected to be colourblind. 
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2.3 Random Mating with Mutations 

Let us now turn to situations involving mutations. To make calculations sim­
pler, we will work with the gamete pools and use the method of random union 
of gametes. Suppose that we have an initial population of gametes with the 
compositionpoA+qoa and that, in every generation, a proportion fJ (0 < fJ < 1) 
of a genes mutate to A. If the nth generation consists of PnA + qna, then by 
assumption, qn+l = (1 - fJ)qn. Thus, qn = (1 - fJ)n qo -t 0 as n -t 00, so that 
Pn -t 1. Thus, as expected, the population eventually consists entirely of A 
genes alone. 

Let us now consider two-way mutations. Assume that, in each generation, a 
proportion fJ (0 < fJ < 1) of a genes mutate to A and a proportion "( (0 < "( < 1) 
of A genes mutate to a. Of course, this raises the question as to whether it is 
possible for an a gene to mutate to A which again mutates immediately to a. 
Since the chances of mutation are usually very small, we assume that this does 
not happen. The second question that arises is about the order in which the 
two kinds of mutations take place. We assume both types of mutations to take 
place simultaneously, that is, a proportion of a genes mutate to A, and at the 
same time, a proportion of A genes mutate to a. As before, we start initially 
with a gene pool consisting of PoA + qoa. Now, if the nth generation consists 
of PnA + qna, then clearly, Pn+l = (1 - "()Pn + fJqn = (1 - fJ - "()Pn + fJ, or 
equivalently, Pn+1 - !t~'Y = (1 - fJ- "()(Pn - !t~'Y)' This gives 

Pn = _fJ_ + (1 - fJ - "()n (PO _ _ fJ_) . 
fJ+"( fJ+"( 

Since 0 < fJ,,,( < 1, so that 11 - fJ- "(I < 1, we have Pn -t ~ as n -t 00. 

Thus, the population will eventually stabilize at ~ A + !t~'Y a, a configuration 
that does not depend on the initial structure. As a theoretical curiosity the 
reader may ask what happens if fJ = "( = I? 

2.3.1 Fitness Coefficient 

We conclude this section with an illustration of how to take fitness constraints 
into account. Let us consider a diploid bisexual population and an autosomal 
gene with two alleles A and a. As usual, there are three genotypes in both 
males and females. Individuals with genotype AA or aa are referred in the 
literature as Homozygotes, while individuals with genotype Aa are referred 
as Heterozygotes. To start with, suppose that both males and females have 
genotypic frequencies P6AA + 2poqoAa + q6aa. 

Let us now bring in a fitness assumption. We assume that the heterozygotes 
are more fit to survive than the homozygotes. More specifically, suppose that 
only a proportion 0- of the AA genotypes and a proportion rJ of aa genotypes 
survive upto maturity. There is no restriction on the Aa genotypes, that is, 
they all survive. In the literature, this situation is referred to as heterozy­
gotic advantage. Roughly speaking, the explanation is that if you have two 
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different alleles present, then you are fit to survive in any environment where 
anyone of the alleles can survive; so you are better off than a homozygote. 
Thus, we assume that the "fitness coefficients" of the zygotes AA, Aa and 
aa are rr, 1 and TJ respectively with, of course, 0 < rr < 1 and 0 < TJ < l. 
Unlike mutation, where the total population remains the same, fitness con­
straints bring in deaths, so that the population has to be renormalized. Thus, 

2 2 

the matured initial population consists of ~AA + 2poqo Aa + !1'!.sJ. aa , where 
Wo Wo wo 

Wo = rrp6 + 2poqo + TJq&. Thus the gene pool in the matured initial population 
2 2 

consists of O-Po+POqO A + POqO+1)qo a = P A + q a say. Then under random mat-
Wo Wo 1 1, 

ing (equivalently, random union of gametes) and the usual conditions, the first 
generation would consist of pi AA + 2plq1 Aa + qraa, and the process repeats. 
Thus, if the nth generation initially consists of p;AA + 2PnqnAa + q;,aa, then 
the genotypic frequency of the (n + l)th generation, before maturity, would be 
P;H AA + 2pnHqn+l Aa + q;'H aa, where 

rrp; + Pnqn ( ) 
PnH = 2 2 2 and qnH = 1 - PnH . 1 

rrPn + Pnqn + TJqn 

To understand what happens eventually to the population, we have to know 
the dynamics of the map 

rrx2 +x(1-x) 
f(x) - for 0::; x::; 1, 

- rrx2 + 2x(1 - x) + TJ(l - X)2 ' 

because Equation (1) simply says that Pn+l = f(Pn). Routine algebra shows 
that 

x(l- x)(2 - rr - TJ)(x* - x) 
f(x) - x = rrx2 + 2x(1 - x) + TJ(1- X)2 ' (2) 

where x* = 2~~21)' from which it follows that the solutions of the equation 
f(x) = x are precisely 

x = 1, x = 0 and x = x* . 
2 

Thus, the only equilibrium states of the population are 1AA, 1aa and x* AA + 
2x*(1 - x*)Aa + (1 - x*)2aa. That is, if the population is in anyone of these 
states, then it remains so forever. In other words, if Po takes anyone of the 
three values 1 or 0 or x* , then Pn = Po for all n. We shall now show that for any 
value of Po with 0 < Po < 1, the population reaches the third equilibrium state 
eventually, that is, Pn --+ x* as n -+ 00. Thus the first two equilibrium states, 
namely, Po = 1 and Po = 0, are unstable equilibria, meaning that a slight 
perturbation from these equilibria causes the population to drift away from 
them. The third equilibrium state is, of course, a (global) stable equilibrium, 
meaning that starting from any other non-equilibrium state, the population 
gets drawn to this state eventually. Note that the third equilibrium state is 
one in which both genes are present, that is, a polymorphic state. 

To prove the result claimed above, first note that (2) implies that for all x 
with 0 < x < x*, f(x) - x> 0, so that f(x) > x. Moreover, since 2 - rr -TJ < 2, 
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we have x(l- x)(2 - 0" -1]) < 2x(1- x), whereas, O"x2 + 2x(1- x) +1](1- x)2 > 
2x(1 - x). Thus, the coefficient of (x* - x) on the right hand side of (2) is 
strictly smaller than 1, giving us f (x) - x < x* - x, and hence f (x) < x*. Thus 
we have, for all x with 0 < x < x*, x < f(x) < x*. Now, let Po = x for any 
x with 0 < x < x*, and define Pn = f(Pn-d for n 2: 1. Then {Pn} forms an 
increasing sequence and hence has a limit 15, say. Since Pn = f(Pn-d for all n, 
and f is continuous, this limit 15 must satisfy 15 = f(P)· Of course, 15 > Po > o. 
Also Pn < x* for all n, so that 15 :::; x*. All these imply that 15 must equal x*. 
A similar argument can be used for the case when x* < Po < 1. Of course, if 
Po = x*, then Pn = x* for all n, so that Pn -+ x* trivially. This completes the 
proof. 

It is possible to treat mutation and fitness constraints simultaneously. Most 
of what has been discussed in this section may also be found in the books of 
Feller, Karlin, Edwards and Jacquard. Incidentally, Jacquard's book considers 
other mating systems also. 

2.4 Inbreeding - Autozygosity 

So far, we have been preoccupied with random mating. It is time that we 
discussed some other mating systems and try to see what happens with such 
systems. In particular, we now consider populations that are inbred. We would 
somehow try to measure the extent of inbreeding. In this context, we now 
introduce an important concept, namely, that of genes identical by descent. 

2.4.1 Genes Identical by Descent 

If a system is inbred, then the same genes should keep on appearing over 
generations. After all, offsprings get their genes from their parents, who in 
turn get theirs from their parents, and so on. Inbreeding roughly means mating 
between close relatives. Thus, if you take a mating couple, they have some 
common ancestor, whose gene they are both likely to be carrying and are likely 
to pass on that common gene to an offspring. In that case, the two genes the 
offspring receives are just two copies of the same gene of an ancestor in the 
family. We say that this offspring has genes identical by descent. Thus, an 
individual of genotype af3 is said to have genes identical by descent if, a and (3 
are just replicas of the same single gene passed on by an ancestor. Note that 
this is much more than saying that af3 is a homozygote. To clarify ideas, let 
us look at an example illustrated in Figure 2.3. 

Consider a parent F (father) having af3 as a homologous pair of genes on 
chromosome 1 and its homologue L Suppose that he has three offsprings named 
I, Il and Ill; and that they had their genotypes formed as follows. The gene 
a from F's chromosome 1 is passed on to the chromosome 1 of the offsprings 
I and III while the offspring Il, on its chromosome 1 gets the gene (3 from 
F's chromosome L For all three of them, mother's gene gets passed on to 
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III 

SI 

Figure 2.3: Genes Identical by Descent 
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chromosome L Suppose now, that a mating of I and III produces 51, and 
that, to this offspring, both I and III pass on their a gene from chromosome 
1. Thus 51 will have genotype (F1a, F1a). If, on the other hand, Il and III 
mate to produce 52 and if again, to this offspring, both pass on genes from 
their chromosome 1, then 52 has genotype (Fl(3, F1a). By the definition given 
above, 51 clearly has genes identical by descent. The ancestor F is a proof of 
this. On the other hand, 52 does not have genes identical by descent unless F 
has so. Of course, 52 is always a homozygote if F is. 

Let us now try to understand why this concept of 'genes identical by descent' 
is important. So far we have distinguished different alleles of a gene, by using 
different names, for example, A and a, but have not distinguished one A from 
another. This may have seemed alright so far. After all, are all the A not 
the same? Strictly speaking, the answer is NO. To understand this, consider 
the gene responsible for the manufacture of haemoglobin. The allele A causes 
manufacture of normal haemoglobin. So A actually consists of a sequence of 
triplets of A, G, U and C. As we already know, triplets code amino acids, but 
for many amino acids, there are different codes. Because of this, there can 
be two entirely different sequences of triplets, which have the same functional 
property, that is, they decode to the same sequence of amino acids. Thus, 
when we talk of genes identical by descent, we demand that, in particular, 
they carry the same sequence of triplets. Another reason for considering this 
concept is that this is one method of investigating the extent of inbreeding in 
a population. This point will be explored shortly. You may, of course ask: 
how does one find out, for a given individual, whether genes are identical by 
descent? How does one go back in his family line and produce proof for such 
identicality? Well, we do not. This is not a laboratory concept. We make some 
assumptions and proceed. The end results turn out to be appealing. 

2.4.2 Coefficient of Parentage and Inbreeding Coefficient 

Following Malecot and Wright, we now define the concept of coefficient of 
parentage between two individuals. If I and J are two individuals of type a(3 
and ,0 respectively, then we define the coefficient of parentage between I and 
J to be 

Here 'a == " means that a and, are identical by descent. In other words, if 
you select at random one from the two genes of I and one from the two genes 
of J, then r/JIJ is precisely the chance that the selected genes are identical by 
descent. Note that if the individuals I and J mate to produce an offspring, 
then the possible genotypes of the offspring are a" ao, (3, and (30, each with 
probability i. Therefore r/JIJ equals the probability that this offspring has 
genes identical by descent. This leads us to make the following definition. If 5 
is an individual with parents I and J, then the coefficient of inbreeding of 5, 
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daughter 

Figure 2.4: <PFD 

denoted by Fs, is defined to be the coefficient of parentage between its parents 
I and J, that is, 

Fs = 4>IJ. 

Of course, as noted already, Fs gives the chances that S has genes identical by 
descent . We shall now put these ideas to work through some examples. 

Example 1: Consider a plant F of type afJ. Suppose we do selfing, that is, 
mate the plant with itself. This is possible with plants. What is 4>FF? To 
apply the definition, it should first be noted that, here 'Y is same as a and cS is 
same as fJ, that is, 'Y == a and cS == fJ. Suppose first that a and fJ are identical by 
descent. Then, clearly, 4>FF = i(l + 1 + 1 + 1) = 1. If, on the contrary, a and 
fJ are known to be not identical by descent, then 4>FF = i(l + 0 + 0 + 1) = ~. 
On the other hand, if instead of having any definite information about a and 
fJ, we only knew that the chances of their being identical by descent is p, then 
by the rule of total probability, one obtains 4>FF = Lp + ~.(1 - p) = ~(1 + p). 

Example 2: Let us consider a father F and his daughter D as illustrated in 
Figure 2.4. We wish to calculate 4>FD. Let the father be of type afJ, the mother 
of the type ab and the daughter of the type 'YcS, with 'Y being obtained from the 
father and cS from the mother. Let an offspring of F and D be denoted by S. 
If, to start with, we know that all the four genes a, fJ, a, and b are identical by 
descent, then it is clear that 4>FD = 1. However, we may not have any definite 
information to start with. In such situations, the convention will be to assume 
that the genes are not identical by descent. Thus, we assume here that no two 
of the genes a, fJ, a and b are identical by descent. You will, of course, agree 
that it makes no sense to make the same assumption about, say, the genes a, 
fJ, 'Y and cS. After all, we do know that one of a, fJ is definitely identical to "(. 
In view of this last fact, we have P(a == 'Y) + P(fJ == 'Y) = 1, and, of course, by 
our assumption P(a == cS) + P(fJ == cS) = O. This gives 4>FD = i. Note that, in 
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this calculation, the genotype of the mother turns out to be of no relevance at 
all. 

2.4.3 Selfing 

As explained earlier, Selfing means mating a plant with itself. You may wonder 
why we are considering populations other than human, and, even if we do, why 
we are interested in such mating systems. Well, this is the simplest kind of in­
breeding and is of theoretical interest. An understanding of simple phenomenon 
leads to some grasp and control on the more complicated phenomena. 

So, let us start with a plant population. In the absence of any prior infor­
mation, we assume that Fo, the inbreeding coefficient of any individual in the 
initial population, is zero; that is, no plant in the initial population has genes 
identical by descent. Do selfing and get generation 1; do selfing of plants of 
generation 1 and get generation 2, and so on. Let Fn denote the inbreeding 
coefficient of generation n. This makes sense, because whatever individual you 
take in the nth generation, its inbreeding coefficient is the same; it depends 
only on n and not on the individual. This is so, because we are following 
a regular pattern. If you do not agree now, just wait and convince yourself 
that, in our calculation of Fn , the individual is irrelevant. We first claim that 
Fl = ~. Indeed, take any individual S of the first generation, whose parent in 
generation 0 is of type afj, say. By assumption, a and fj are not identical by 
descent. Therefore, the only way S can have genes identical by descent is by 
being aa or fjfj, and the probability of this is ~. In general, by the last remark 
in Example 1 of the previous section, it follows that 

F _ 1 +Fn 
n+l - --2-' for n;::: O. 

Using Fo = 0, the unique solution of the above equation is given by 

1 1 1 
Fn = - + ... + - = 1 - -, for n > 0 . 

2 2n 2n -

Thus, in particular, as n -+ 00, Fn --t 1, at a geometric rate. Often, one talks 
about what is called the panmictic index, denoted by Pn , which is defined as 
1 - Fn. 'Pan' means 'all' and 'mictic' means 'mixing'; thus 'panmictic' means 
'all mixing'. This is an index that tells us how much the population is mixing. 
Clearly, in this case, Pn --t 0 as n -+ 00. Thus, the net result is that eventually 
all the genes will be identical by descent in each individual; in particular, the 
population will become homozygous. 

2.4.4 Sibrnating 

SIB is an abbreviation for siblings, brothers and sisters. So the mating system 
to be considered now is one in which only brothers and sisters mate. Such a 
mating system is known as Sibmating. Start with a population, to be called 
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K2 

J2 

Figure 2.5: Sibmating 

generation O. Assume that, initially no two genes in the entire population 
are identical by descent. In particular, Fa = O. Here Fn for n 2: 0, as in 
Section 2.4.3, stands for the inbreeding coefficient for the nth generation. Apply 
sibmating on generation 0 to get generation 1. Of course, you may say that, if 
we know nothing about generation 0, then how do we know who the sibs are. 
Well, our answer is that in that case, use any mating system (other than selfing) 
to get generation 1. Convince yourself that in any case F1 = 0 and hence does 
not make any difference in the sequel. Now mate siblings in generation 1 to 
get generation 2, and so on. Thus, for all n 2: 2, generation n is obtained by 
mating of siblings of generation (n - 1). We now proceed to obtain a recurrence 
relation between the successive Fn. We start with a few observations. 

Fact 1: For any individual K, 

(3) 

This is just what was observed in Example 1 of Section 2.4.2; the p there is 
precisely FK by definition. 

Fact 2: Let (KL) denote an offspring of K and L. Then for any individual 
M, 

(4) 

The proof of this is left as an exercise. One has to just apply the definition 
and simplify. It should be noted that M in (4) can be any individual, possibly 
even K or (KL). 

Let us now go back to our problem. Fix n 2: 2, and let I be an individual 
in generation n with parents J1 and J2 in generation (n -1). Note that J1 and 
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J2 are sibs, so that they have common parents, say, Kl and K2 in generation 
(n - 2). Then, Fn = FJ = c/Jhh = c/J(KIK2)h = ~(c/JKlh + c/JK2 J2) by (4) 
above. Now write J2 as (Kl K 2 ) and apply (3) and (4) to get 

1 1 (1 + FKl 1 + FK2) 
Fn = 4; (c/JK1Kl +c/JK1K2+c/JK2Kl +c/JK2K2) = 4; 2 + 2c/JKIK2 + 2 . 

Now, both Kl and K2 are from generation (n - 2), so that FKl = FK2 = Fn- 2. 
Also c/JK1K2 = F(KIK2) = Fn- l . These give us the recurrence relation 

or 
4Fn - 2Fn- l - Fn- 2 = 1. 

This (non-homogeneous) difference equation can be solved as follows. We first 
make the substitution Fn = 1 + an to convert this into the homogeneous 
equation 

1 1 
an - 2"an-l - 4;an- 2 = O. 

The characterstic polynomial of this equation is x 2 - ~x - t, whose two roots 
are given by t(1±J5). So the general solution of the above difference equation 
is 

( 1 + J5) n (1 _ J5) n an = Cl --4- + C2 --4-

Now note that the panmictic index Pn = 1 - Fn = -an. So writing dl and d2 
for -Cl and -C2 respectively, we obtain 

P =d (1+J5)n d (1_J5)n 
n 1 4 + 2 4 

Now, we apply the initial condtions Fo = Fl = 0 (equivalently, Po = Pl = 1) 
to get dl + d2 = 1 and (1 + J5)dl + (1 - J5)d2 = 4. These yield 

d = J5 + 3 and d = J5 - 3 . 
1 2J5 2 2J5 

Thus, Pn (and hence, Fn) is completely determined. Note that, just like in 
the case of selfing, here also Pn --+ 0 as n --+ 00 and the convergence is still 
geometric, though now at the rate (1+4V5)n, as compared to 2-n in selfing. 
Thus, eventually each individual in the population will have genes identical by 
descent. In fact, eventually all the genes (at that locus) in the population will 
be identical by descent (why?). In particular, the population would become 
homozygous. 

Thus, in both selfing as well as sibmating systems, the panmictic index 
Pn goes to 0, as n tends to 00, at a geometrically fast rate, but the rate of 
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convergence is 21n in the case of selfing and (1+4V5 )n in the case of sibmating. 

Since 1+4V5 > !, we conclude that in the latter case, the convergence of Pn to 
o is slower. This phenomenon has an interesting extension. 

Let us call two individuals to be Oth order cousins, if they have the same 
parents. Thus sibs are Oth order cousins. In general, mth order cousins can be 
defined as follows. Individuals A and Bare mth order cousins, if one parent 
of A and one parent of B are (m - l)th order cousins. One can then show 
that, in a system where only mth order cousins mate, the panmictic index Pn 

goes to zero as n goes to infinity and the convergence is geometric; however, 
the rate becomes slower with increasing m. Thus, for example, in a first order 
cousin mating system, Pn goes to zero at a rate slower than that in sibmating 
and, in a 7th order cousin mating system, the rate is much much slower. It 
is, therefore, no wonder why in some societies, mth order cousins with m :::; 6, 
are forbidden to marry. The idea is to delay the process of homozygosity or 
equivalently, (as explained earlier) to increase the fitness of the offspring. 

2.5 Random Mating in a Finite Population 

The above discussions underline the fact that in regular inbreeding systems, the 
population will eventually consist of autozygous individuals, that is, individuals 
carrying genes identical by descent. In a sense, this feature persists even under 
random mating as long as we are dealing with finite populations. This striking 
observation was made by R.A.Fisher, S.Wright and G.Malecot. We shall follow 
Malecot. 

2.5.1 Constant Population Size Model 

Imagine a diploid bisexual 129pulation, where the number of males and the 
number of females, M and M respectively, remain constant over generations. 
The mating system we consider is as follows. The genotype of an individual 
in any generation is determined by taking one gene at random from each of 
a randomly chosen male and a randomly chosen female of the previous gen­
eration. (M + M) such independent choices, with replacement, create the M 

males and the M females of the next generati9E: Equivalently, in any gen­
eration, consider the 2M male genes and the 2M female genes. Independent 
random selection of one gene from each of the two gene pools determines the 
genotype of an individual in the next generation. M such independent choices, 
with replac~ent, create the M males of the next generation and M selections 
create the M females. We shall refer to this mating system as random mating 
for finite populations. 

Denote by Fn , the inbreeding coefficient for generation n. We now proceed 
to obtain a recurrence relation for the Fn. Let us consider an individual in the 
nth generation, say, A with parents Band C in the (n - l)th generation. We 
claim that the chances of A getting both his genes from one single person of the 
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1 1 
(n-2)th generation is 4M + 4M· To prove this, we argue as follows. Let us fix 

an individual, say L, in the (n-2)th generation and ask, what the probability is 
for A to get both his genes from L? If L is a male, then this happens if and only 
if L is the father of both Band C and both pass on to A, the genes they received 

1 1 1 1 1 
from L. Clearly, the chance of this happening is M x M x 2" x 2" = 4M2· 

1 
Similarly, if L is a female, the chance would simply be -=-. Since the (n - 2)th 

_ 4M2 
generation consists of M males and M females, we conclude that the probability 
of A getting both his genes from the same individual in the (n-2)th generation 

1 - 1 1 1 
to be M x -4 2 + M x-=-= M + -=, as asserted. 

M 4M2 4 4M 

Given that A gets his genes from the same individual in the (n - 2)th gen­
eration, the chances of A having genes identical by descent is (1 + Fn - 2 )/2, by 
Example 1 of Section 2.4.2. In case A got his genes from two different indi­
viduals of the (n - 2)th generation, the chances of A having genes identical by 
descent would just be equal to the coefficient of parentage of those individuals 
(in the (n - 2)th generation), which, in turn, is same as the inbreeding coeffi­
cient of their offspring (in the (n - l)th generation), namely Fn - 1 . Thus, we 
obtain 

Let us denote ~ = _1_ + 1 ,that is, N is the harmonic mean of 2M and 
N 4M 4M 

2M. N is usually called the effective sample size in this context. Thus the 
above equation can be written as 

Letting Pn = 1 - Fn as usual, we have 

This homogeneous linear difference equation is solved by using the standard 
method of characterstic polynomial. The roots of the characterstic polynomial 
x2 - (1 -tt)x - 2~ in this case are given by 

and 

and therefore the general solution of the difference equation is given by 

Pn = o:x~ + ;3x~ . 
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The coefficients a and (3 are determined by the initial conditions. For example, 
if we assume that, to start with, no two genes in the initial population are 
identical by descent, that is, Po = PI = I, then we get a + (3 = 1 and aXl + 
(3x2 = I, determining a and (3. 

In any case, since both Xl and X2 are (in absolute value) strictly less than 
one, it is clear that Pn -+ 0 as n -+ 00. Thus, eventually the population consists 
only of autozygotes, that is, individuals carrying genes identical by descent. In 
fact, something much stronger is true, namely, that eventually only one of the 
initial genes survives and appears in all individuals. But this requires Markov 
chain methods, which will be taken up in the next chapter. Needless to say that 
this is interesting because, at each stage, we are selecting at random from the 
existing genes. It is the finiteness of the population which somehow forces it to 
proceed towards autozygosity. Again, from the view point of Markov chains, 
this is not all that surprising. 

2.5.2 Varying Population Size Model 

Even though we agree to work with finite populations only, the assumption in 
Section 2.5.1, that is, the number of males and females remain constant from 
generation to generation, undoubtedly looks artificial. Let us, therefore, relax 
this assumption, and, let these numbers vary with generation, with Mn and Mn 
denoting the number of males and females respectively for the nth generation. 
We consider the same mating system as in the previous section and, denote by 
Fn and Pn, the inbreeding coefficient and the panmictic index respectively, for 
the nth generation. Then, by the same argument as before, we obtain here 

(5) 

( 1 1)-1 
where N n = 4M + --=- denotes the effective population size of the 

n 4Mn 
nth generation. 

As usual, we assume that Po = PI = 1. It now follows from (5), by 
induction, that Pn > 0 for all n. Of course, we cannot explicitly hope to solve 
for Pn any longer. Let us put Pn = ao . al· .... an, that is, we put an = J:~1 
for n ~ 2 and ao = al = 1. We then claim that, for each n, ~ :S an :S 1. This 
is, of course, true for n = 0,1. Now by Equation (5), 

an +2 = Pn +2 = (1 _ ~) + Pn _1_ > 1 __ 1_ > ~ 
Pn+l N n Pn+l 2Nn - N n - 2' 

the last inequality being a consequence of the fact that N n ~ 2. Also 

an+2 = (1 - _1_) + _1 __ 1_ :S (1 __ 1_) + 2_1_ = I, 
N n an+l 2Nn N n 2Nn 

thus proving the claim. 
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In view of the inequality an :::; I, the sequence (Pn)n:::O is non-increasing in 
n, and, therefore has a limit, say, Poo . Moreover, noting that ao = al = I, we 
have 

(6) 

By the standard theory of infinite products, 

Poo > 0 if and only if 00 1 ( 1) 2:- 1--
n=O Nn 2an+l 

< 00. 

We now claim that 

00 1 ( 1) 2:- 1--
n=O Nn 2an+l 

<00 if and only if 

Denote the two series by SI and S2 respectively. Since 1 - 2a~+1 :::; ~ for all n, 
convergence of the series S2 clearly implies that of SI. Towards the other part, 

00 

we have already noted that, convergence of the series SI implies I1 an+2 > 0; 
n=O 

in particular, we will have an -+ 1 as n -+ 00. As a consequence, for all suf-
ficiently large n, an > 3/4 and hence 1 - 2!n > 1/3. The proof can now be 
completed easily. Thus, we have 

Theorem 2.3: Suppose that we have a finite bisexual diploid population evolv­
ing through random mating. Let N n denote the effective population size and 
Pn the panmictic index for the nth generation. Then, lim Pn always exists. 

n-)oo 
Further, 

lim Pn > 0 
n-)oo 

if and only if 

The moral of the story is that if the population size does not grow indef­
initely large or if it grows indefinitely large but not at a sufficiently fast rate, 
then the entire population will eventually become autozygous. Clearly, the con­
stant population size discussed in Section 2.5.1 is an extreme example of this. 
Other examples of asymptotic autozygosity would be (i) when the population 
size grows at a linear rate, that is, N n '" an + b, (ii) when N n '" n log n. On 
the other hand, if the population explodes sufficiently fast, for instance when 
N n '" nl+ f for some f > 0, the theorem says that, with positive probability, 
the eventual population will not be autozygous. The reader should contrast 
this with the Hardy-Weinberg law (Theorem 2.1), where the population is the­
oretically infinite. In the next chapter, we shall treat a more general situation 
when the population sizes are allowed to be random. 
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2.6 Exercises 

1. A woman has a rare abnormality of the eyelids called Ptosis which makes 
it impossible for her to open her eyes completely. This condition has 
been found to depend on a single dominant gene P. The woman's father 
has ptosis but her mother has normal eyelids. Her father's mother had 
normal eyelids. 

(a) What are the probable genotypes of the woman, her father and her 
mother? 

(b) What proportion of her children are expected to have ptosis if she 
marries a man with normal eyelids ? 

2. In humans a type of myopia (an eye abnormality) is dependent on a 
dominant gene M. Summarize the expected results from a cross between 
a woman with myopia but heterozygous and a normal man. 

3. In humans an abnormality of the intestines called polyposis is dependent 
on a dominant gene A and a nervous disorder called Huttington's Chorea 
is determined by a dominant gene H. Assume that these two genes have 
loci on different chromosomes. A man with genotype Aahh married a 
woman with genotype aaHh. Indicate the proportion of their children 
that might be expected to have (i) each abnormality, (ii) neither, (iii) 
both? 

4. Dark hair (M) in humans is dominant over blonde hair (m). Freckles 
(F) are dominant over no freckles (I). If a blonde freckled man whose 
mother had no freckles marries a dark haired non-freckled woman whose 
mother was blonde, what proportion of their children will be dark haired 
and freckled? blonde and non-freckled? 
If the woman in this problem were homozygous recessive for both genes, 
how would this change the answer? 
If the parents were both dyhybrids M mF f, how would this change the 
answer? If the parents were also heterozygous for brachydactly (short 
fingers) caused by a dominant gene B with recessive allele b (on a differ­
ent chromosome), what proportions of their children will be (i) blonde, 
freckled and short fingered, (ii) blonde, non-freckled with normal fingers? 

5. A man known to be a victim of haemophilia - a blood disease caused by 
an X-linked recessive gene h - marries a normal woman whose father 
was known to be a haemophilic. What proportion of their sons may 
be expected to be haemophilic? What proportion of their children are 
expected to be haemophilic? 
If the man in the above problem were normal, how would this affect the 
answers to these two questions? 

6. In humans two abnormal conditions - cataract in the eyes and excessive 
fragility in the bones - seem to depend on separate dominant genes 
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located on different autosomes. A man with cataract and normal bones 
whose father had normal eyes maries a woman free from cataract but with 
fragile bones. Her father had normal bones. What is the probability 
that their first child (i) will be free from both abnormalities? (ii) will 
have cataract but not fragile bones? (iii) will have fragile bones but no 
cataracts? (iv) will have both the abnormalities? 

7. Suppose a man is colourblind - determined by an X-linked recessive 
gene c and has blonde hair (see Exercise 4). His wife has normal vision 
and dark hair but her father is colourblind and has blonde hair. What 
proportion of their children will have the same phenotype as the man? 
What proportion will have the genotype MmCc? 

8. In short-horn cattles, the gene R for red coat colour is co-dominant with 
its allele r for white coat colour. The heterozygous are roans. A breeder 
has white, red and roan cows and bulls. What phenotypes might be 
expected from the following matings and in what proportions: Red (9 

Red, Red (9 White, Red (9 Roan, Roan (9 Roan, Roan (9 White, White 
(9 White? 

9. The coloured grain, purple or red, in maize is due to the presence of 
aleurone and it is suggested that it is controlled by four independent loci. 
The dominant genes at each locus are defined as follows. 
C is the gene for colour and must be present for any colour to develop; 
R is the gene for red aleurone and presence of C R exhibits red color; 
P is the gene for purple and is effective only in the presence of C R; 

(C RP exhibits purple, C Rp exhibits red, others give white grain) 
I is the gene which inhibits colour development. 

(only CRPi gives purple, CRpi gives red and others give white) 
Show that the offsprings of CcRrPpli (9 CcRrPpli have the phenotypic 
ratio 27 purple: 9 red: 220 white. Find the phenotypic ratios in the 
offsprings of (i) CcRRPpii (9 CcRRPpii, (ii) CcRRPpIi (9 CcRRPpIi 
and (iii) CCRrPpli (9 CCRrPpli. 

10. Suppose that a certain trait is controlled by one gene with two alleles A, 
a with A dominant and a recessive. Suppose that a is lethal recessive and 
that the survival ratio of the genotypes are AA : Aa : aa = 1 : 0: : 0 where 
o < 0: < 1. Suppose that initially AA : Aa := hI : h2 where hI + h2 = 1. 
Assume random mating. 

(a) Find the frequencies in the first generation. 

(b) What is the probability of occurrence of aa zygote in the first gen­
eration? 

(c) Suppose that the surviving individuals of the first generation are 
again subjected to random mating. Find the distribution of geno­
types in the seond generation. 
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11. Two parents are selected from the population uAA + 2vAa + waa at 
random. From their progeny two parents are selected and this process is 
repeated (sibmating). Find the probability that both parents of the k-th 
filial generation are of genotypes AA, for k = 1,2,3. 

12. Let a be a recessive X -linked gene and suppose that a selection process 
makes mating of a males impossible. If the genotypic composition of 
females is AA : Aa : aa = u : 2v : w, show that for female descendents of 
the next generation the genotypic composition is AA : Aa : aa = (u + v) : 
(v + w) : O. Conclude that the frequency of a genes among females is 
reduced by a factor of !. 

13. Suppose that AA : Aa : aa = u : 2v : wand by the time they become 
mature and become parents a fraction). , 0 < ). < 1 of aa is eliminated 
by a selection process. Show that for parents of the next generation, the 
proportions of A and a gametes are given respectively by 

u+v 
P = 1- ).w' 

v + (1 - ).)w 
q-- 1-)'w . 

If Pn and qn denote the proportions of A and a gametes in the parents of 
the n-th generation, then show that 

Pn 
Pn+1 = 1 _ ).q~ , 

In problems 14-21, random mating is assumed and in both males and 
females the genotypic ratios are AA : Aa : aa = p2 : 2pq : q2. 

14. Given that a man is of genotype Aa, show that the probability that his 
brother is of the same genotype is ~ (1 + pq). 

15. Number the genotypes AA, Aa, aa as 1,2,3. Let Pik be the conditional 
probability that an offspring is of genotype k, given that the father is of 
genotype i. Here the mother is assumed to be 1 or 2 or 3 with probabilities 
p2, 2pq, q2 respectively. Calculate this matrix denoted by P. 

16. Show that the conditional probability that the father is of genotype k 
given that the first offspring is of genotype i, is also Pik. 

17. Show that the conditional probability of a grandson (resp. grandfather) 
to be of genotype k, if it is known that the grandfather (resp. grandson) 

is of genotype i, is the (i, k )-th entry of the matrix p2, denoted by pl~). 

18. Show that p~~) is also the conditional probability that a man is of genotype 
k if it is known that a specified half-brother is of genotype i. 
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19. Let p~~) be the probability that a descendant of the n-th generation is of 
genotype k, if a specified ancestor is of genotype i. Show by induction 
on n, that this matrix is given by 

( '+ eo 
2pq + q(q-p) 2 q2 

) 
P 2n-1 2 n - 1 q - 2n - 1 

p2 + p(~:p) 2pq + 1~!pq q2 + q(~:q) 

2 p2 2pq + p(p-q) 2 +-E.L P - 2n-1 2 n - 1 q 2n - 1 

20. Consider Exercise 18 for a full brother instead of a half-brother. Show 
that the corresponding matrix is 

( '+p' 
q(1+p) q2 

) P(1;P) 

-2- "4 

l+pq q(1+q) 
2 -4-

It p(1+q) (1+q)2 
4 2 4 

21. Show that the degree of relationship between uncle and nephew is the 
same as that between grandfather and grandson, that is, the correspond­
ing transition matrices are same. 

22. Derive the following expressions for the coefficient of parentage. 
Father ® Daughter = Brother ® Sister = i. 
Uncle ® Niece = Double first-cousins = ~. 
First-cousins = 116 • First-cousins once-removed = 312. 

Second-cousins = 614. Second-cousins once-removed = 1~8. 
Third-cousins = 2;6. 
What is the formula for mth cousins n-removed ? 
Recall that A and Bare sibs, to be called Oth order cousins, if they have 
the same parents. A and Bare mth order cousins if one parent of A 
and one parent of B are (m - 1)th order cousins. Sometimes mth order 
cousins are also called mth order cousins O-removed. A and B are called 
mth order cousins 1-removed if EITHER B and a parent of A are mth 
order cousins OR A and a parent of Bare mth order cousins. In general, 
A and Bare mth order cousins n-removed in case, EITHER B and an 
nth ancestor of A are mth order cousins OR A and an nth ancestor of B 
are mth order cousins. 

23. (Parent-Offspring Mating) Consider the system where to get the n-th 
generation an individual of the (n - 1)-th generation is mated with its 
parent in the (n - 2)-th generation. Show that the Panmictic index Pn 

satisfies Pn+2 - ~ Pn+1 - t Pn = 0, just as in the sibmating. 

24. (Positive Assortative Mating) Consider a population doAA + hoAa+roaa. 
Assume that A is dominant over a so that there are only two phenotypes. 
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Consider the system where the same phenotypes mate. Show that the 
first generation is d1AA + h1Aa + r1aa where 

d ~ (do + ~hO)2 
1- do+ho ' 

h _ ho(do + ~ho) 
1- do+ho ' 

r1 = h6 + 4ro(do + ho) 
4(do + ho) . 

If Pn and qn are the frequencies of A and a genes in the n-th generation 
so that Po = do + ~ho and qo = ~ho + ro, show that Pn = Po for all n. 
Denote this by p. If hn is the proportion of heterozygotes in the n-th 
generation, then show that 

h _ 2pho 
1 - 2p+ ho' 

hn = 2pho 
2p+ nho 

Assuming that the initial population is p2 AA + 2pqAa + q2aa, show that 
the limiting population is pAA + qaa. 

25. Consider an autosomal gene with two alleles A and a. Assume zygotic 
selection to operate with fitness coefficients (J", "( and TJ for AA, Aa and 
aa respectively. This means a proportion (J" of AA zygotes survive to 
maturity and participate in producing offsprings of the next generation 
and similarly for other coefficients. Show that you can always take "( = 1, 
allowing the possibility of one or both of the other coefficients to be larger 
than one. This means the following. Consider the system with the above 
coefficients and the system with coefficients (J" / ,,(, 1, and TJ / "(. Of course, 
random mating of the matured population is assumed for obtaining the 
next generation. Show that these two systems are equivalent for our 
purposes. Incidentally, you can start with initial (unmatured) population 
to be P6AA + 2poqoAa + q6aa. 

26. In Section 2.4, we considered the above problem when both (J" and TJ are 
smaller than one (heterozygotic advantage). As stated there, anything is 
theoretically possible. Some of our calculations do not really depend on 
the assumption of the two fitness coefficients being smaller than one. Do 
the analysis. First find out the equilibrium states. See if there are stable 
equilibria and if so, how many and which initial positions lead where. 

27. An interesting situation arises when (J"' TJ = 1. (This means, in the unnor­
malized notation, "(2 = (J" • TJ or, in other words, "( is the geometric mean 
of the other two.) Of course, if both (J" and TJ are one, then fitness is same 
for all and the Hardy-Wienberg equilibrium persists. Assume therefore, 
that one of them is smaller than 1 and naturally, the other is larger than 
1. In this case, show that zygotic selection acts just like the gametic 
selection with fitness coefficients fo and ~ for the gametes A and a 
respectively. This means the following. Consider the present gene pool, 
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take fitness into account and look at the normalized matured genepool 
and use random union of gametes to arrive at the initial genotypic fre­
quencies of the next generation. This will be the same as what you arrive 
at, if instead, you normalized the matured zygotic pool, as we did and 
proceed. Discuss this situation. 

28. Now, do not normalize but keep the fitness coefficients as IJ, "( and 'T} as in 
problem 27. And initial population as P6AA+2poqoAa+q&aa. The mean 
viability for the population is defined to be IJP6 + 2,,(Poqo + 'T}q&. If you 
selected one person at random and asked about his fitness then this is the 
answer you get (convince yourself). There is a theorem of P.A.G.Scheur 
and S.P.H.Mandel which says that the mean viability can not decrease 
from one generation to the next. Show this. 

29. There is a general theorem due to L.E.Baum and J.A.Eagon. Let W be 
a symmetric k x k matrix with non-negative entries (like fitness matrix). 
Consider the quadratic form Q(x) = x'Wx, a homogeneous polynomial 
of degree 2 in the variables Xl, X2, ... , X k. Consider any point P in the 
gene-frequency space (corresponding to k alleles). Let p* denote the point 
whose i-th coordinate is 

Then show that Q(p*) > Q(p) unless p* = p. Assuming this, deduce the 
result of the previous problem. (These and many other interesting results 
are in the book of A. W. F. Edwards.) 

30. Describe Hardy-Wienberg equilibria for an autosomal gene with k alleles. 
Describe Hardy-Wienberg equilibria for an X -linked gene with k alleles. 

31. There seems to be more symmetry in the genetic code than what meets 
the eye. A. J. Koch and J. Lehmann, based on suggestions of previ­
ous researchers, analyzed a particular DNA data sequence. Recall that 
there are four nucleotides A,T,C,G and each trinucleotide (triplet of nu­
cleotides) codes an aminoacid or * . For each nucleotide, the data showed 
the following probabilities of its occurrence in the first or second or third 
place in the trinucleotide 

base a Pl(OO) p2(OO) P3(OO) 
A 0.276 0.315 0.222 
T 0.166 0.285 0.268 
C 0.204 0.228 0.268 
G 0.354 0.172 0.242 

For a trinucleotide oo(h define P(oo(3"() = Pl(OO)· P2((3)· P3("(). 
All the sixty trinucleotides - AAA, TTT, CCC, ·GGG are excluded -
are decomposed into three classes Co, Cl and C2 as follows. Put 00(3"( in 
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Co if! the chances of its occurrence are larger compared to its other two 
circular permutations, namely (3,a and ,a(3. That is, a(3, E Co if! 

P(a(3,) > P((3,a) as well as P(a(3,) > P(ra(3) 

If a(3, E Co then put (3,a E Cl and ,a(3 E C2 . 

Show that Co consists of 

AAT,AAC,ATT,ATC,ACT,CAC,CTT, 
CTC,GAA,GAT,GAC,GAG,GTA,GTT, 
GTC,GTG,GCA,GCT,GCC,GCG. 

Show that these classes Co, Cl and C2 are disjoint. 

Show that Co is self-complementary whereas Cl and C2 are complementary 
to each other. Here complement means the following. For nucleotides, 
A and T are complementary, whereas C and G are complementary. For 
trinucleotides, RST is complementary to XYZ if! Rand Z are comple­
mentary, Sand Y are complementary and T and X are complementary. 
Note carefully the order used here in the definition. 
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Chapter 3 

MARKOV MODELS IN 
GENETICS 

3.1 Introduction 

Markov chain models have been the most widely used ones in the study of ran­
dom fluctuations in the genetic compositions of populations over generations. 
Besides being a convenient theoretical tool, Markov chains have provided rather 
satisfactory theoretical explanations to some observed long-run phenomena re­
lated to the genetic structure of populations. 

In the previous chapter, we had already set the stage for discussing the 
fluctuations of genotypic frequencies over generations under various mating 
systems. For instance, under selfing and sibmating, we concluded that indi­
viduals become eventually homozygous (in fact, autozygous, even though that 
feature is not going to be highlighted in the sequel). However, the methods 
used there were not powerful enough and leave many questions unanswered. 
For instance, what will be the average number of generations needed to make 
the population homozygous? Also, if the alleles under consideration are A and 
a, say, then what are the' chances of the population being eventually stabilized 
or fixed at the particular homozygous state, say, AA? It is precisely in this 
context, that Markov chain methods will be helpful. We shall be discussing an 
autosomal gene with two alleles A, a throughout. As was already evident, once 
the mating system is fixed, the structure of a generation depends entirely on 
the previous generation. In other words, the future evolution of the population 
depends only on the composition of the present generation and the past history 
is irrelevant. Mathematically speaking, this precisely is the same as saying that 
the evolution is markovian. 

In this chapter, we discuss, in full detail, some of the fundamental and 
classical research done in this area. The most pioneering is, of course, the 
classical work of S. Wright and R. A. Fisher, now known as the Wright-Fisher 
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model. This is taken up in Section 3.4. This is preceeded by a discussion of 
two relatively simpler models, namely, selfing and sibmating, in Sections 3.2 
and 3.3. Section 3.5 is entirely devoted to three models proposed by Moran 
- one for the haploids and two for diploids. This is followed, in Section 3.6, 
by a discussion of an interesting classical model due to Kimura for ageing. 
In Section 3.7, we return to the Wright-Fisher model and present some more 
recent ramifications of the model, allowing the population size to change from 
generation to generation. The final section, Section 3.8, contains an outline of 
the diffusion approximations for the Wright-Fisher and Moran models. 

3.2 Selfing 

For an autosomal gene with two alleles A and a, we have three genotypes AA, 
Aa and aa. Let us name them as the three states 1, 2 and 3. Let us consider 
selfing and follow a line of descent. Thus, if an individual is in state 1 or 3, 
then all its descendents will be in the same state. If, on the other hand, an 
individual is in state 2, then its descendent in the next generation will be in the 
states 1, 2 or 3 with probabilities 1/4, 1/2 and 1/4 respectively. In other words, 
we have a Markov chain (Xn )n2:0 with states 1, 2, 3 and transition matrix 

( 
1 0 

P= 1/4 1/2 
o 0 

In this entire analysis, we assume, of course, that there are no mutations 
or fitness constraints. The states 1 and 3 are absorbing, whereas state 2 is 
transient. This matrix is simple enough to allow a complete analysis as follows. 
The matrix has eigen values 1, 1/2, and 1. The corresponding right eigen 
vectors are (1,1, I)', (0,1,0)' and (1,2,3)', while the left eigen vectors are 
(3/2,0, -1/2), (-1/2,1, -1/2) and (-1/2,0,1/2). Thus, P can be diagonalised 
as 

P=(~ ~ ~)(~ 
1 0 3 0 

o 0) (3/2 0 
1/2 0 -1/2 1 
o 1 -1/2 0 

-1/2 ) 
-1/2 = ADA -1. 

1/2 

This makes it possible to explicitly calculate the n-step transition matrix pn = 
ADn A -1, from which it easily follows that 

P(n) _ p(n) - l' 
11 - 33 - , 

(n) _ ~[1 _ Tnj (n) - 2-n (n) - ~[1 - 2-nj' 
P21 - 2 ,P22 - ,P23 - 2 ' 

From the above one easily gets 0;21 = P(Xn is eventually lIXo = 2) = 1/2 and 
0;23 = P(Xn is eventually 31Xo = 2) = 1/2. One can of course get all these by 
direct probabilistic calculations without bringing in the matrix P or pn - the 
reader should do this as an exercise. 

Thus starting from state 2, the absorption probabilities to the two states 
1 and 3 are 1/2 each, as is expected from symmetry. Let T be the time till 
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absorption, that is, T = n iff Xn = 1 or 3 but X n- I = 2. Then we have 
peT = n I Xo = 2) = (1/2)n-1 - (1/2)n = (1/2)n, so that E(T I Xo = 2) = 2. 
This says that , starting from state 2, the system takes two generations on 
an average to get absorbed in one of the two states 1 or 3. For the sake of 
completeness, we advise the reader to calculate the variance of T. The whole 
situation here is unusually simple and we actually have the exact distribution 
ofT. 

In the above, the Markov chain (Xn) models the genotype sequence of a line 
of descent under selfing. One can also get the structure of the population in 
the nth generation as follows. Suppose initially we have P = (PI, P2, P3) as the 
proportions of various genotypes in the population. Clearly, the proportions in 
the nth generation are given by ppn which is simple to explicitly evaluate in 
this case. Indeed, since 

3.3 Sibmating 

In case of selfing, an individual has only one parent and the transition from the 
genotype of the father to the genotype of the offspring is modelled by a Markov 
chain. But in sibmating, each offspring has two parents and hence the genotype 
of an individual depends on those of both its parents. It is therefore evident 
that simply the individual genotypic changes from generation to generation 
cannot form a Markov chain. To build a markovian model, we consider the 
evolution of genotypic pairs of sibs. In other words, we look at a line of descent 
of sibs as follows. Consider two sibs of a generation; from their offsprings, select 
two sibs at random; from their offsprings again select two at random and so 
on. For instance, if the present sibs are (Aa, Aa) , then their offsprings consist 
of ~ AA + ~ Aa + ~aa in both males and females, so that if two independent 
choices are made - one from males and one from females - then the sibs 
so formed will be of type (AA, AA) with chance 1/16, of type (AA, Aa) with 
chance 1/4, etc. While considering genotypic pairs of sibs, we do not attach any 
importance to which one of the pairs is a male member and which is female. In 
other words, genotypic pair (AA, Aa) means that one of the sibs is AA and the 
other is Aa and do not ask which is which. Thus the state space of our Markov 
chain (Xn) is (AA, AA), (aa, aa), (AA, Aa), (aa, Aa), (AA, aa) and (Aa, Aa) 
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- numbered as 1,2,3,4,5 and 6 respectively. The transition matrix is 

1 0 0 0 0 0 
0 1 0 0 0 0 

P= 
1/4 0 1/2 0 0 1/4 = ( hX2 02x4 ) , say. 0 1/4 0 1/2 0 1/4 R4X2 Q4X4 

0 0 0 0 0 1 
1/16 1/16 1/4 1/4 1/8 1/4 

States 1 and 2 are absorbing and the others are transient. We shall apply the 
fundamental matrix method to analyze this Markov chain. One can verify that 
the fundamental matrix, in the terminology of Section 0.8.3, is 

( 

8/3 2/3 1/6 

N = (I _ Q)-1 = 2/3 8/3 1/6 
4/3 4/3 4/3 
4/3 4/3 1/3 

so that the vector of mean times till absorption is 

m=Ne= (~i~i), 
17/3 

4/3 ) 4/3 
8/3 ' 
8/3 

and the absorption probabilities, in the terminology of Section 0.8.5, are 

A = NR= (m ~~~). 
1/2 1/2 

Thus, if we start with sibs (AA, Aa), that is in state 3, then in their progeny, 
sibs will eventually be of types (AA, AA) or (aa, aa) with chances 3/4 and 
1/4 respectively. Moreover it takes 29/6 (approximately 5) generations on an 
average, for this eventual fixation. Using Exercise 6, Section 0.8.3, the vector 
of variances of the absorption time in this case turns out to be 

V= (mm) . 
816/36 

A direct calculation shows that P has eigenvalues Al = A2 = 1, A3 = 1+4v'5, 

A4 = ~ A5 = 1/4 and A6 = 1-4v'5. Thus, following the general theory as 
discussed in Section 0.8.5, we conclude that the rate of absorption is given by 
1+4v'5. Of course this was already observed in Section 2.4.4 of the previous 
chapter. 

We leave it to the reader to make a similar analysis with X -linked gene 
with two alleles A and a. The state space now consists of (AA, AY), (aa, aY), 
(AA, aY), (aa, AY), (Aa, AY) and (Aa, aY). 
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3.4 The Wright-Fisher Model 

The Hardy-Wienberg law and its ramifications as discussed in the previous 
chapter have some serious limitations, namely, that the stochastic content in 
them is limited only to the randomness in the matings in a given generation. 
This stems from the tacit assumption of the population being potentially in­
finite. Such analysis, therefore, fails to capture the phenomenon of genetic 
evolution in finite populations, where the sampling fluctuations play a central 
role. This suggests adopting models that capture this component of random­
ness in evolution. This was already realized by Pearson (1904), Yule (1906) 
and Fisher (1911). The first such model was proposed by Fisher (1930) and 
Wright (1931). Since then this model, known as the Wright-Fisher model, has 
occupied the centre stage in mathematical models of genetics. We proceed to 
describe this model. 

Let us consider, as usual, an autosomal gene with two alleles A and a, so 
that, there are three genotypes AA, Aa and aa. We wish to study the evolution 
of genotypic frequencies in a given population. Ideally what we wish to do is 
the following. Suppose that initially there are NI males with composition 
Nu AA + N I2 Aa + N I3aa and N2 females with composition N2IAA + N 22 Aa + 
N 23 aa. Let us assume random mating. For the kth generation we want to 
know the data Nf = NflAA + Nf2Aa + Nf3aa and Nf = NflAA + Nf2 Aa + 
Nf3aa. The problem in this generality is complicated and first we affect some 
simplifications. 

Let us assume that for all k, Nfi = Nfi for i = 1,2,3, that is, in all genera­
tions the genotypic frequencies are the same for both the sexes. Of course, this 
will imply that Nf = Nf = N k , say. To put it differently, we consider unisex 
population, as for example, plants. Then the problem simplifies to describing 
the 3-tuple (Nf, Nf, Nf). As a further simplification, we assume that N k = N 
for all k, that is, variation in the total population size is also ruled out. This 
may look like a gross over-simplification, far removed from reality. However, it 
can be given the following interpretation. Imagine a 'real' population evolving 
in time with possibly changing size. But to facilitate calculations, we concen­
trate on N individuals randomly chosen from each generation. The cautious 
reader would of course realize that this is not a completely truthful interpre­
tation. Truly speaking, the population is constrained to have N individuals 
- neither more nor less - in each generation, where N is fixed in advance. 
Under this simplification, it suffices to know how many AA and how many aa 
are there. Thus, the problem is reduced to describing the evolution of the pair 
(Nf) Ng) only. 

Even after all these simplifications, the problem still remains quite in­
tractable. Therefore, we are going to simplify it further. However, in the 
subsequent sections, we shall return to the problems described above. For the 
time being we decide to concentrate only on the variations in the gene frequen­
cies rather than the genotypic frequencies. In any generation, the N individuals 
carry a total of 2N genes, some of which are A and the rest are a. Let X k be 
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the number of A genes in the kth generation so that 2N - X k is the number 
of a genes. We are going to study the evolution of X k . Of course, this would 
have been perfectly alright if, to start with, we had a haploid population of 2N 
individuals, in which case there are only two genotypes A and a. 

We now come to the specific hypothesis concerning how a generation gives 
rise to the next generation. We assume that the 2N genes of a generation 
are obtained by simply taking a random sample of size 2N with replacement 
from the 2N genes of the parent generation. This is the classical Wright­
Fisher model. It is clear that for each n, X n , the number of A genes in the 
nth generation, is a random variable taking values 0,1, ... , 2N. The above 
assumption really means firstly, that the conditional distribution of X n+l given 
X o, Xl'· .. ' Xn depends only on Xn and secondly, that given Xn = j, X nH is 
distributed as the binomial variable B(2N, 21v). In other words, the process 
(Xn)n;:::O forms a Markov chain with state space {O, 1, ... , 2N} and transition 
probabilities 

PJOk = (2kN) BJk (1 - BJo)2N-k £ 0 < . k < 2N lor _), _ , 

where 
j 

Bj = 2N· 

For this chain, it is clear that the states 0 and 2N are absorbing while others are 
transient. Thus, no matter where we start, the chain eventually gets absorbed 
in one of the two absorbing states. Thus X(XJ = lim Xn exists and takes the n ...... (XJ 
two values 0 and 2N with probability one. 

The first important question that we would like to address is the following. 
Given that the number of A genes is i to start with (that is Xo = i), what are 
the probabilities bo(i) and b2N(i) of the chain to be absorbed in the states 0 
and 2N respectively. Actually, bo(i) and b2N(i) are nothing but ai,O and ai,2N 
in the notation of Section 0.8.3. Note that bo(i) = P(XX! = 0 I Xo = i) and 
b2N(i) = P(X(XJ = 2NIXo = i). The usual fundamental matrix method is not 
of much help here (try and get convinced). Here is a beautiful alternative due 
to Feller. 

Observe that the process (Xn)n;:::O has the property that 

E(Xn+1IXn) = Xn for every n. 

Indeed, since the conditional distribution of X n+l , given Xn = j, is B(2N, 21v) 
we have E(Xn+l I Xn = j) = 2N . 21v = j. Because of the Markov property, 
the above equation is the same as 

E(Xn+l I X o, Xl, ... ,Xn) = Xn for every n. 

Thus (Xn)n>O is a martingale in the sense discussed in Section 0.7. In par­
ticular, for all n, E(Xn I Xo = i) = i. Since the martingale is uniformly 
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bounded, it follows that E(Xoo I Xo = i) = i. But of course, E(Xoo I Xo = i) = 
O· bo(i) + 2N· b2N (i). This yields 

and bo(i) = 1 __ z_. 
2N 

Thus, if initially there are i many A genes, then eventually the number of A 
genes will be 0 or 2N with probabilities 1 - 2jy and 2JY respectively. 

Having thus obtained the absorption probabilities, we now turn to the rate 
at which absorption takes place. One simple-minded way to get this would 

be to evaluate p~~ and P~~N explicitly. Khazanie and McKean have done 
this, but unfortunately their analysis is complicated. Instead, we recall that it 
suffices to know the largest (in modulus) eigenvalue of the transition matrix, 
which is smaller than one in modulus. S. Wright and G. Malecot obtained 
approximations for this eigenvalue. But later, Feller gave an elegant method to 
get the exact expression for all the eigenvalues, which is what we discuss now. 
Define 

AO = 1 and, for 1 < r < 2N A = 1 (1 _ ~) ... (1 _ r - 1) 
- - ,r 2N 2N ' 

or equivalently 

Ar = C;) (2~Y for O:S r :S 2N . (1) 

Note that, Ao = Al = 1 > A2 > A3 > ... > A2N. We shall now show that these 
are precisely the eigenvalues of P from which it would follow that convergence 
takes place geometrically at the rate A2 = (1 - 2~). 

Consider the two linearly independent vectors Vo = (1,1, ... ,1)' and VI = 
(0,1, ... ,2N)', each of order 2N + 1. Since P is stochastic matrix, Pvo = Vo. 
Also, since for each j, the j-th row of P is the probability mass function of 
B(2N, IN) distribution, one sees that PVl = VI. Since there are two absorbing 
states, by the general theory of Section 0.8.5, P has 1 as an eigenvalue and the 
dimension of the eigenspace associated to this eigenvalue is 2. This takes care 
of Ao and Al of Equation (1). To complete the proof we shall now exhibit, for 
each r = 2, ... , 2N, a non-null vector Vr such that PVr = ArVr . To this end, 
we fix some notation. For any real number x and any integer i ~ 1, let (X)i 
denote the i-th factorial power of x, that is, x(x - 1) ..... (x - i + 1). We 
define (x)o == 1. We first make the following observation. 

Lemma 3.l: Let 2 :S r :S 2N and ao, al,··., ar be numbers with ar f O. Then 
the vector V = (xo, Xl, ... ,X2N) with Xk = :z=~=o ai(k)i is non-null. 

Proof: P(x) = :z=~=o ai(x)i is a polynomial in x of degree exactly r :S 2N, and 
has at most r real zeros. Noting that Xk = P(k), for k = 0,1, ... , 2N, it follows 
that not all the Xk can be zero. • 

Our proposed Vr is going to be of the same form as V of the lemma. Note that 
the vector of the lemma is completely determined by the numbers ao, ... ,ar . 
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For a vector v of this type to satisfy Pv = Arv it is necessary and sufficient to 
have, for j = 0, 1, ... , 2N, 

2N 
ArXj 2:= PjkXk 

k=O 
2N r 
2:= Pjk 2:= al (k)1 

k=O 1=0 
r 2N 

2:= 2:= al(k)1 ef)Bj(l - Bj )2N-k 
I=Ok=1 

the last two equalities being consequences of the facts that (k)1 = ° for k < I 
and 

2N 
2:: C:_-/)BJ-I(l- Bj )2N-k = l. 
k=l 

Thus Pv = Arv becomes equivalent to having 

r r 

2:: Ar al (j)l = 2:: al (2N)1 B; for j = 0,1, ... ,2N . (2) 
1=0 1=0 

To proceed with the choice of the numbers ao, ... ,an so that the above holds , 
we need the following basic fact. 

Lemma 3.2: For any integer k ~ 0, the polynomials {(X)i , ° :::; i :::; k} form 
a basis for the vector space of all polynomials in x of degree less than or equal 
to k. 

The proof of Lemma 3.2 is easy and hence omitted. From this lemma, one 
obtains that for each rn, 0 :::; rn :::; 2N, there exist constants Cm,o, Cm,l, ... , 

m m 

Cm ,m so that (2~)m == ~ Cm,v(x)v. In particular, BJ = 2:=~=0 Ch,v(j)v, for 

every j. Comparing the coefficients of jh on both sides we get Ch,h = (2}:.)h' 
so that (2N)hCh,h = Ah. Using this, Equation (2) is equivalent to 

r r 1 

Ar 2:: al (j)l = 2:: al (2N)1 2:: Cl ,v (j)v , 
1=0 1=0 v=O 

or to 

~ Ar av (j)v = ~ [~ al (2N)1 Cl ,v 1 (j)v. 

For this to hold, it suffices to ensure that 

r 

Ar av = 2:: al(2N)1 Cl,v for lJ = 0,1, ... , r. 
l=v 

(3) 
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For v = r, this equation is trivially satisfied by any ar in view of the fact that 
(2N)r Cr,r = Ar. We can and do take ar = 1. For v < r, (3) is equivalent to 

l' 

(Ar - Av) av = L (2N)l Cl,v, 
l=v+l 

that is, 

Note that Ar -I Av, since r 2: 2 and v < r. This last equation is an equation 
prescribing av in terms of av+l, .. . ,ar. Having chosen ar = I, all the av for 
v < r can now be automatically determined. Thus we have proved the following 
theorem. 

Theorem 3.3: The numbers {Ar : 0::; r ::; 2N} as given in (1) are precisely 
the eigenvalues of the Wright-Fisher matrix P. 

In the terminology of genetics, absorption is called fixation or homozygosity 
and the rates of absorption are called the rates of fixation. In the Wright-Fisher 
model, we are selecting each generation as a random sample from the previous 
generation, but yet ultimately one gene is being fixed. This is what is called 
genetic drift and is attributed to the finiteness of the population and the con­
sequential sampling fluctuations. To understand this statement, suppose we 
have a sequence SI = (Xl, X2, ... , X M) of length M where each Xi is an integer 
from {I, 2, . .. , N}. One may think of SI as a sample (with replacement) of 
size M from a population having N distinct elements. Treating now SI as a 
population of size M, a simple random sample of size M is drawn to obtain 
another sequence S2. With S2 as the population of size M, we again draw 
a simple random sample of size M to get S3' We continue this process. It 
should be emphasized here that at each stage of our sampling scheme, the M 
population units need not be distinct, since our samples are always drawn with 
replacement. As a consequence, if a particular symbol, say i, occurs ni times 
in Sk then the chance of i being excluded from Sk+l can easily be seen to be 
[1- ~]M. Thus a symbol with less number of repetitions in Sk is more likely to 
be excluded from Sk+l. The reader can convince himself that even if the orig­
inal sequence SI consisted of M distinct symbols, sampling fluctuations force 
repetitions to occur sooner or later. This along with the previous observation 
explains why in the long run the process will stabilize at one symbol being 
repeated M times. A more precise formulation and justification of this phe­
nomenon can be given using Markov chain terminology. It will be instructive 
for the reader to try. 

We have discussed the simplest case of the Wright-Fisher model. The most 
important thing that happens in nature all the time is mutation. A realistic 
model should take this into account. Suppose we assume that there is a chance 
0:1 of A mutating to a and a chance 0:2 of a mutating to A. Any particular gene 
can mutate at most once in passing from one generation to the next. Suppose 
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that there are j many A genes and 2N - j many a genes now. Select one of 
them at random and allow for possible mutation. What is the chance that it 
is A ? This can happen only when A is selected and mutation did not take 
place or a is selected and mutation did take place. The selection probabilities 
should thus be modified as, 

(). = -..L (1- ad + (1- -..L) a2 
J 2N 2N· 

One can now discuss the model incorporating mutation as follows. Fix 
mutation probabilities 0 < a1 < 1 and 0 < a2 < 1. Then (Xn)n>O is a 
Markov chain with the conditional distribution of X nH , given Xn = j~ being 
B(2N, ()j) where ()j now is as above. In practice, only small values of a1 and 
a2 are relevant. Let us assume therefore that 0 < a1 + a2 < 1. Then the 
chain is irreducible and hence necessarily recurrent. One would like to know 
the stationary distribution. Also recall that since the chain is clearly aperiodic, 
the distribution of Xn is eventually going to be this stationary distribution, no 
matter how the chain started initially. If we derive the stationary distribution, 
this will give us the long-run proportion of A and a genes in the population, 
without any need for the knowledge of the origins of the population(!). 

We end this section by pointing out a limitation of the discrete model of 
Wright-Fisher. For example, going back to the Wright-Fisher model without 
mutation, one quantity of interest would be the average time needed for fixa­
tion. In other words, denoting by T the first time the chain is absorbed, T is 
clearly a random variable. We would like to know the distribution of T, or at 
least, the expected value of T. Clearly 

P(T = nlXo = i) P(Xn E {a, 2N}, X n- I ~ {a, 2N} I Xo = i) 

( (n) (n)) ((n-I) (n-I)) 
Pi,o + Pi,2N - Pi,O + Pi,2N . 

The above equation gives the exact distribution ofT, given Xo = i, from which 
it is theoretically possible to calculate its expected value. However the formulae 
for p~~) are complicated and do not yield a tractable and easily understandable 
expression for E(T I Xo = i). An alternative would be to look for at least an 
approximate expression for E(TIXo = i), which is simple enough to understand. 
Such an approximation was indeed given by Feller and subsequently studied 
by Kimura. We will take a brief look of these developments in Section 3.8. 

3.5 Moran's Models 

In this section we consider what seems to be the second most significant work 
on Markov chain modelling in population genetics. The following models were 
proposed by P. A. P. Moran in 1958. 
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3.5.1 Haploid Model 

The set-up is the same as in the Wright-Fisher model. We consider a haploid 
population with two genotypes A and a. Instead of forming new generation by 
sampling from the previous one, this model envisages to follow the population 
through its birth-death events. More precisely, a new generation is formed 
from the old one in the following way. One individual chosen at random from 
the existing population gives birth to an individual (naturally of the same 
genotype) and, at the same time, one randomly chosen individual of the old 
population dies. Note that this keeps the population size fixed. We denote it by 
M. As before, we denote by X n , the number of A genes in the nth generation. 
Here, the nth generation means the population after n birth-death events. We 
want to study the Markov chain (Xn)n::::O, which has state space {O, 1, ... ,M}. 
If the present population has composition iA + (M - i)a, then the individual 
who dies is A with probability ~ and is a with probability 1 - ~. At the 
same time, a new born is of type A with probability ~ and a with probability 
1 - ~. So the transition probabilities of the chain are given by 

. . 
z Z 

P,i,i-l = Pi,HI = M (1 - M)' 

i 2 i 2 
Pi,i = (M) + (1 - M) for 0 < i < M . 

Of course, Po,o = PM,M = 1. Note that Pi,j = 0 if j tf- {i - 1, i, i + I}. 

Here again, 0 and M are the absorbing states and all others are transient. 
Also, from the transition probabilities, it is clear that E(Xn+l I Xn = i) = i. 
Thus, as in the Wright-Fisher model, (Xn)n>O is a martingale and, as earlier, 
given Xo = i, the chain will be absorbed i; 0 with probability 1 - ~ and 
absorbed in M with probability ~. 

In this case again, we can write down all the eigenvalues of the transition 
matrix P. In fact, this matrix is much simpler than the Wright-Fisher matrix. 
We follow the method given in Watterson (1961) and prove the following two 
lemmas (attributed to E. J. Hannan). In the first lemma we use the usual 
convention that G) is zero for j > i. 

Lemma 3.4: Let R be the matrix with entries Rij = G) for 0 :S i,j :S M. 

Then R-1 is the matrix S with entries Sij = (-l)Hj G). 
Proof: The (i,j)-th entry of RS is Lk (D (-l)k+j (~). Note that, if i < j, then 

(D (~) = 0 for all k, while if i = j, then G) (~) = 0 for all k f. i (why?). This 
proves that (RS)ij = 0 if i < j and (RS)ij = 1 if i = j. Finally for i > j, 
(RS)ij equals 

(~)(_l)j-i L (:=i)(-l)i-k=O. 
J js,ks,i 

This completes the proof. • 
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Lemma 3.5: The matrix R-1 PR has non-zero entries only at the diagonal 
and the first super diagonal. More precisely, the matrix R-1 PR = A, say, has 
entries ai,j given by 

.. _1_ i(i-1) 
a.,. - M2' 

i(M - i) 
ai,i+l = M2 and ai,j = 0 for j =1= i, i + 1. 

Once this lemma is proved, it follows that the eigenvalues of the matrix P, 
same as those of R-1 PR, are given by 

A·=1_ i(i-1) 
• M2 

i = 0,1, ... ,M. 

Note that AO = Al = 1. Thus, the second largest (in modulus) eigenvalue after 
1 is given by A2 = 1 - ;;2' This gives the rate of approach to homozygosity, 
or fixation rate, in the same sense as before. 

Proof of lemma 3.5: Since Pk,l = 0 for I ~ {k - 1, k, k + I}, it is clear that the 
(i,j)-th element of SPR, with S as in Lemma 3.4, is 

M 

L Si,k(Pk,k-lR k-l,j + Pk,kRk,j + Pk,k+lRk+l,j). 
k=O 

Since Si,k = 0 for k > i, and Rl,j = 0 for j > l, the above sum actually extends 
from k = j -1 to k = i. In particular, when j - 1 > i, it is zero. Thus ai,j = 0 
for j > i + 1. In case j = i + 1, there is only one term in the sum. In case 
j = i, the sum consists of two terms only. These easily reduce to the stated 
expressions for ai,j' The only thing to be shown now is that for j < i, the 
sum above reduces to zero. If we substitute the values and use the fact that 
I: Si,kRk,j is zero for j < i, then we have to show that 

This easily follows from the following three equations whose verification is left 
to the reader. 

e7 1) -2G) + e;l) = j!(kk_-j~\)!j(j-1), 

if \ -1) k C -~ + 1) = 0 , 
k=O 

if1
(_1)(k-l) C -~ + 1) (k -1) = O. 

k=O 

This completes the proof. • 
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Next, we wish to know the time taken for absorption. The exact distribu­
tion, though complicated, has been evaluated by Watterson. Here we present 
his method to find the expected time for absorption. The fundamental matrix 
method applies here beautifully. 

From the transition matrix P, we omit the rows and columns corresponding 
to the two absorbing states and get the (M - 1) x (M - 1) matrix Q and 
the objective is to find the matrix N = (I - Q)-I. It is easy to see that 
I - Q = DB, where D is the diagonal matrix with diagonal entries k(~-:;k) for 
1 ::; k ::; (M - 1), and the matrix B = ((bi,j)) is given by 

bi,j 2 if i=j, 
-1 if i = j - 1 or j + 1, 
o otherwise. 

Moreover the rows of the matrix B-1 are given by 

( I(M-i) 2(M-i) i(M-i) i(M-i-I) i·2 i.I) 
M ' M , ... , M' M , ... , M' M ' 

for 1 ::; i ::; M - 1. Thus, the fundamental matrix N, which equals B-1 D- l , 

can be explicitly computed. In particular, mi = E(T I Xa = i), which is the 
i-th row sum of N, turns out to be 

mi = (M _ i) t (1 _ ~) -1 + i M t-l (1 _ ~)-1 
J=1 J=1 

However this expression does not admit a nice closed form. In particular, its 
dependence on i is not very clearly revealed from the above expression. We 
now proceed to obtain a neater expression which approximates mi. Rewrite 
the above expression as 

2 ( i) i 1 1 2 i M-i-l 1 1 
m·-M 1-- "'- +M - '" ----,-

2 - M L...J M (1 _ -.L) M L...J M (1 _ L) 
J=1 M J=1 M 

We observe that the two sums appearing above can be viewed as appropriate 
Riemann sums and it is natural to approximate them by the corresponding 
Riemann integrals. Denoting the initial proportion (i / M) of A genes by p we 
thus obtain that mi can be approximated, at least for large M, by 

M2(I- p) rp _1_ dx + M2 p rl - p _1_ dx = M2 log [p-P (1 - p)-(I-P)]. 
la 1- x la 1- x 

We can evaluate it for special values of p and in Section 3.8, we will use this to 
compare this model with the Wright-Fisher model. Note that the fundamental 
matrix method further enables us to evaluate the variance of the absorption 
time. 

In this model also, we can incorporate mutation. This gives an ergodic ape­
riodic chain, whose stationary distribution can be explicitly evaluated. Some 
of these aspects are discussed in the exercises. 
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3.5.2 Diploid Unisex Model 

We shall discuss diploid unisex population. As usual, we consider a gene with 
two alleles A and a. We fix the population size at N. At each instant, we should 
know the number of various genotypes present. Of course, the population 
size being fixed, it suffices to know the number of any two of the genotypes. 
Thus, if the population has the composition AA : Aa : aa = k : (N - k -
l) : l, it is enough to know k and l. In other words, this is essentially a 
bivariate process. How does this process evolve? One individual is born whose 
genotype is determined by two independent choices made from the existing 
gamete pool and simultaneously one randomly selected individual from the 
existing population dies. 

More precisely, let us denote by Yn and Zn the number of AA and aa 
individuals respectively, in the nth generation. Clearly Yn and Zn are random 
variables. We are interested in the bivariate process Xn = (Yn, Zn). The 
model simply says that (Xn )n20 is a Markov chain with state space {(k, l) : 
k 2: 0, 1 2: 0, k + 1 ::; N} and transition probabilities to be described shortly. 
Meanwhile, observe that the total number of states is ~(N + 1)(N + 2). Also, 
when the process is in the state (k, l), the gamete pool has the composition 
A: a = (N + k - l) : (N - k + l). The transition probabilities from the state 
(k, l) to the various states are given in the following table: 

State 

(k+l,l) 

(k + 1, 1 - 1) 

(k, 1 - 1) 

(k - l,l) 

(k - 1, 1 + 1) 

(k, 1 + 1) 

(k, l) 

Probability 

(N -k-l) (N +k-l)2 
4N3 

I(N+k-l)2 
4N3 

I[N2_(k_l)2] 
2N3 

k[N2-(k-l)2] 
2N3 

k(N+l-k)2 
4N3 

(N -k-l)(N+l-k)2 
4N3 

keN +k-l)2 +1(N +1-k)2 +2(N -k-l)(N2 _(k_l)2) 
4N3 

The reader can easily verify that from the state (k, l), transitions can occur 
only to the states listed above. As expected therefore, the second column 
of the above table adds to one. Note that for some boundary states like, 
(k, l) = (N,O), ordered pairs such as (N + 1,0) appear in the above list even 
though they are not elements of the state space. However, this poses no serious 
problem, because the corresponding entries for probabilities of such 'non-states' 
reduce to zero. 

There are two absorbing states, namely, (N,O) and (0, N), while the other 
states are all transient. However, application of the fundamental matrix method 
does not turn out to be convenient for this absorbing chain. Here is what 
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we do to evaluate the absorption probabilities. Set Wn = Yn - Zn and 
~Wn+l = W n+1 - Wn, for n ~ O. Then from the above table of transition 
probabilities, it can be easily seen that, given Xn = (k, l), the random variable 
~Wn+1 takes on the values -2, -1, 1,2 and 0 with (conditional) probabilities 

k(N + l - k)2 (N - k + l)(N2 + 3k2 - l2 - 2kl) 
P- 2 = 4N3 'P- 1 = 4N3 

(N + k -l)(N2 + 312 - k2 - 2kl) 
PI = 4N3 

l(N+k-l)2 
P2 = 4N3 ,and 

Po = 1 - (P2 + P-2 + PI + p-d 

respectively. A trite algebra shows that PI + 2P2 = P-l + 2p-2. It follows that 
E(~Wn+l I Xn) = 0, and consequently, E(Wn+11 Xn) = Wn. By the Markov 
property and the smoothing property of conditional expectations (Section 0.2), 
(Wn )n2':O is a bounded martingale. 

Let b(N,O) (k, l) be the probability of eventual absorption in the state (N,O) 
starting from (k, l). Then, conditional on Xo = (k, l), Woo = lim Wn takes the 

n 
values Nand -N with probabilities b(N,O) (k, l) and 1- b(N,O)(k, l) respectively. 
But E(W 00 I Xo = (k, l)) = Wo = k - l. One easily deduces that 

N +k-l 
b(N,O)(k, l) = 2N 

N -k+l 
and b(O,N) (k, l) = 2N . 

We shall now proceed to obtain the absorption rate or the rate of homozy­
gosity. Unlike in the previous cases, the eigenvalues of the transition matrix are 
almost impossible to find (at least, they have not been found so far). In par­
ticular, we do not even know whether the transition matrix admits a spectral 
representation (in the sense discussed in Section 0.8.5). Therefore, we are not 
in a position to apply the method of identifying the second largest eigenvalue 
as the fixation rate. Moran solved the problem by an ingeneous method which 
we now present. In the sequel we exclude the trivial case N = 1 and assume 
that N ~ 2. 

To motivate the idea, let us recall that if P admits a spectral representation, 
that is, P = L -1 D L as in Equation (32) of Section 0.8.5, then for any function 
! on the state space 

Ei(f(Xn)) = ai,O + ai,1 + L ai,r>'~, 
r2':2 

(4) 

where 1 = >'0 = >'1 > >'2 > >'3 > ... are the eigenvalues of P and, for r > 
0, ai,r = Lj(L-1)irLrj!(j). If! could be so chosen that ai,2 i- 0, then 
from the above equation itself, we could have got hold of the absorption rate. 
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Moran turned the tables around. By purely probabilistic arguments, he found 
a relation of the form (4) for a suitably chosen function f and was able to derive 
the absorption rate directly from that relation. One of the crucial advantages 
of his method is that one has to only find the eigenvalues of a 2 x 2 matrix 
rather than the huge matrix P. 

( 1-1.. .l) 
Let us consider the 2 x 2 matrix B = .IN ~~, which has 

N2 1 2N2 

.... 1 3 1 V,----,-I---,-9-
two dlstmct elgenvalues gIven by /11 = 1- - - -- - - 1- - +--

2N 4N2 2N N 4N2 
r-------

1 3 1/ 1 9 
and /12 = 1- -2N- - -4N-2 + -2N-Y 1- N + -4N-2' From N 2: 2, one gets that 

o < /11 < /12 < 1. 

Consider now the function 9 on our state space S = {( k, l) : 0 :::; k, l, k + l :::; 
N}, defined as g(k, l) = (k + l)/N. Then we have 

Theorem 3.6: For any transient state i, there exist numbers ai and bi with 
bi > 0 such that 

(5) 

To get on with the main idea, we shall postpone the proof of this theorem. 
Instead, let us now show that /12 is the rate of absorption. Following the general 
theory, we continue to denote the set of transient states by ST. Noting that 
g(s) = 1 for any absorbing state s, it follows that 

1- Ei(g(Xn)) = L [1- g(s)lp~;) . 
SEST 

Thus from Equation (5) we have 

L [1 - g(s)lp~;) = ai/1~ + bi/1~, 
SEST 

so that 

(6) 

We shall now show that 

" (n) 
O < 1· L....SEST Pis ImSUp < 00, 

n-too /12 
(7) 

which, by definition, implies that /12 is the rate of homozygosity. We first claim 
that 

o :::; lim sup [1 - g(~)lp~;) < 00 for every s E ST. (8) 
n /12 
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Indeed, the first inequality follows from the fact that g(8) :S 1 for each 8. On 
the other hand, if for some 80 E ST the limsup in (8) equals 00, then 

1. I:sEST[I- g(8)lp~;) 
Imsup n =00, 

n J-t2 

by the non-negativity of the summands above, thus contradicting (6). Our 
next claim is that 

lim sup [1 - g(~)lp~;) > 0 for some 8 E ST. 
n J-t2 

(9) 

Indeed, if this were zero for all 8 EST, then 

contradicting (6) again. Clearly, for any 8 as in (9), we must have g(8) < 1, 
whence it follows that for such an 8 

p(n) 
o < lim sup ~ < 00 . 

n J-t~ 
(10) 

The first inequality of (7) is an immediate consequence of the first inequality of 
(10). To prove the other inequality of (7), we show now that for every 8 EST, 

(n) 
lim sup Pis < 00 . 

n J1~ 

If g(8) < 1, then this follows directly from the second inequality of (8). Suppose 
now that 8 E ST and g(s) = 1. For any such 8, there is atE ST with g(t) < 1, 
such that Pst > O. Since 

one obtains 

(n+l) (n) 
Pit 2: Pis Pst, 

(n) (nH) 
Pis < ~ J-t2 for each n. 
/In - /In+l P 
""2 ""2 st 

The previous case now gives the desired inequality. The proof of (7) is now 
complete. 

We now return to proving the theorem. Fixing i EST, we denote Ei(g(Xn)) 
by Un. The idea behind getting the relation (5) is as follows. We introduce an 
'auxiliary' sequence Vn and get a recurrence relation for the vector sequence 
(un,vn). The Equation (5) is obtained simply by solving this recurrence rela­
tion. 

Proof of Theorem 3.6: Fix i E ST and denote by Un the quantity Ei(g(Xn)) 
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as above. Define Vn = [Ei(Yn - Zn)2]/N2. A direct computation using the 
transition matrix now shows that 

( Un+l ) = B ( Un ) + ( 1/2N2 ) 
Vn+l Vn 1/2N 

Using the above equation recursively one obtains 

( un) = Bn ( Uo ) + [Bn-1 + Bn-2 + ... + I] ( 1/2N2 ) 
Vn Vo 1/2N 

Noting that both the eigenvalues of B are different from one, so that I - B is 
invertible, it follows that 

Thus, if we denote, 

t; = ( Uo ) - (I - B)-l ( 11//22NN2 ) , c = (I - B)-l ( 11//22NN2 ) , 
Vo 

then, we have 

( ~: ) = Bnt; + c. 

Since J.Ll and J.L2 are distinct eigenvalues of B, we can diagonalize B as 

o ) R 
J.L2 ' 

with LR = RL = I. Observe that 

Using this, one gets 

Considering the first row of this equation one obtains 

(11) 

for appropriate constants 0, f3 and f. Since both J.Ll and J.L2 are less than one 
it follows that ° is actually lim Un. Recall however that the chain being ab-

n--+oo 
sorbing, g(Xn) --+ 1 with probability one, so that by the bounded convergence 
theorem, lim Un = 1. Thus 

n--+oo 

o = 1 and Un = 1 + f3J.L~ + ,,(J.L~ . 
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We now show that '"Y < o. As a first step, we argue that '"Y can not be strictly 
positive. Indeed, if'"Y > 0, then '"YJ-l~ = 1'"YJ-l~1 > 1,BJ-l?I, for all sufficiently large 
n. Here we are making use of the fact that 0 < J-ll < J-l2. From (11), this 
will imply that Un > 1 for suficiently large n, which contradicts the fact that 
Un = Ei(g(Xn)) ::; 1 for all n. 
Next we argue that '"Y = 0 is impossible. Indeed, if '"Y were zero, then Un = 
1 + ,BJ-l?, where of course ,B -:j; 0, because Un cannot be identically 1. Observe 
also that Un is a rational number, because it is the expectation of a random 
variable which takes finitely many rational values with rational probabilities. 
Since Uo = 1 + ,B, it follows that ,B is also rational. Since Ul = 1 + ,BJ-ll' it 
would follow that J-ll has to be a rational number. However, since for every 
N ~ 2, 4N2 - 4N + 9 is not a perfect square (left as an exercise), J-ll can not 
be rational. 
Having thus proved that '"Y of (11) is strictly negative, the proof is now complete 
in view of the fact that (5) is the same as (11) after making appropriate changes 
in the notation and making the dependence of ,B and '"Y on i explicit. • 

3.5.3 Diploid Bisexual Model 

We shall now briefly explain the diploid bisexual model of Moran. We shall fix 
the population size at NI for males and at N2 for females in each generation. 
As earlier, we consider an autosomal gene with two alleles A and a. If the 
population structure is AA : Aa : aa = k : (NI - k - l) : l in males and 
AA : Aa : aa = r : (N2 - r - s) : s in females, then the state of the system is 
specified by 4-tuples (k,l,r,s). In other words, the state space is 

{(k,l,r,s) : k,l,r,s ~ 0; k +l::; NI; r +s::; N 2}. 

When the population is in the state (k, l, r, s), then the proportion of A ga-
. NI + k - l . N2 + r - s 

metes IS N m males and in females. The system evolves 
2 1 2N2 

as follows. A new individual is born. Simultaneously, a randomly selected 
individual from the old population dies. To preserve the population sizes in 
males as well as in females, we assume that the sex of the new born is the 
same as that of the deceased. The genotype of the new born is determined by 
choosing at random one gamete from the male population and one from the 
female population. There are again two fixation states, namely, (N1 ,0,N2 ,0) 
and (0,N1 ,0,N2). All other states are transient. 

The detailed analysis of this chain is slightly complicated and hence not 
included here. However, it is worth noting that the rate of fixation has been 

analysed by Moran. He showed that it is approximately (1 ___ 1_) for 
4NIN2 

large values of NI and N 2. 
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3.6 Kimura's Model 

The model to be considered in this section is different from the earlier ones, 
both in its objective and in its analysis. The previous models aimed at studying 
the evolution of the aggregate population with respect to a fixed locus. In other 
words, it was a macro analysis. By contrast, the present model is going to be a 
micro-model. We still concentrate on one locus, but instead of considering the 
entire population, we focus our attention on one particular cell and study its 
evolution through cell divisions. More precisely, if an aberration enters the cell 
at some stage, a natural question is how this aberration propagates through 
subsequent generations via cell divisions. An understanding of such a question 
requires a little digression into cell mechanics. 

To fix ideas, let us consider the locus responsible for the manufacture of 
haemoglobin. The message to manufacture haemoglobin is stored like a tele­
graphic code at this locus. However, nature tries to be cautious rather than 
economical. So the same code is stored in various subparts at this locus. In 
other words, the gene has certain subparts each having the same code. This is 
to ensure that the proper transmission of the code from anyone part is enough 
to do the job. Let us assume that the gene has N subparts, say, PI, P2 , ... , PN, 
where the same code is stored. 

From now on, we shall think of PI, P2 , ... , PN themselves as N repetitions of 
the same code. Suppose that for some reason, one of them, say PI , suddenly ap­
pears in a mutant form, that is, as a useless code, say B. These N parts now are 
B, P2 , •.. , PN . Suppose that the cell now undergoes the process of cell division. 
Recall that during the cell division, it is not the chromosome, but the chromatin 
content that duplicates and goes on to form sister chromatids. The chromatin 
content corresponding to our locus is now B, P2 , ... , PN, so that when it dou­
bles we have B, B, P2 , P2 , ... , PN, PN. According to Mendelian hypothesis, the 
two sister chromatids should contain B, P2 , .•. ,PN each. However, all these 
take place in the miniature factory of the cell. Moreover, even though we are 
focussing our attention on one single locus of one chromosome, it should be 
borne in mind that during the actual cell division the entire chromatin con­
tent gets doubled and subsequently gets realigned to form sister chromosomes. 
Strict obeyance of the Mendelian hypothesis means that each daughter cell is a 
true replica of the mother cell even upto the subpart levels. As a consequence, 
the level of functioning of the different genes at the different loci would remain 
unaltered. In other words, each daughter cell would be functionally as efficient 
as the mother cell. However real life experience seems to contradict it. For 
example, with ageing, a definite deterioration in the functioning of the cells is 
observed. Kimura looked for an explanation of this phenomenon by suggesting 
a slight deviation from the Mendelian hypothesis. More precisely, returning to 
the particular locus considered earlier, his suggestion is that the 2N subparts 
B, B, P2 , P2 , ... , PN, PN are distributed at random into two subgroups of N 
parts each to form the sister chromosomes, rather than realigning in such a 
way as to form exact replicas (B, P2 , ... , PN) in each sister chromosome. 
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Assuming this model for cell division, what we wish to study can be precisely 
stated as follows. We start with a cell with configuration (B, P2 , ••• , PN) at a 
locus as before. This B, as explained earlier, appeared as a mutant and useless 
subpart. We allow cell divisions to take place to form successive generations. 
Let Xn denote the number of subparts with the label B, in a typical nth 
generation cell. Clearly (Xn)n2>:0 is a stochastic process and this is the subject of 
our study. Of course, Xo = 1 and the state space ofthe process is {O, 1, ... , N}. 
It is left to the reader to convince herself that (Xn)n2>:0 is a Markov chain with 
transition probabilities 

.. = (2i) (2N - 2i) / (2N) P',J . N· N J -J 
for 0:::; i, j :::; N . 

It is also clear that the states 0 and N are absorbing and the remaining states 
are all transient. To calculate the absorption probabilities, once again observe 
that (Xn)n2>:0 is a martingale and hence the absorption probabilities are Qi,N = 

~ and Qi,O = 1 - ~. Since we have started with one mutant subpart, that is 

Xo = 1, the probability that eventually the cell has all subparts consisting of 
B and hence ceases to function altogether is l/N. 

The present transition matrix is simple and all the eigenvalues can be eval­
uated by the same Fellerian argument used in the Wright-Fisher model. The 
eigenvalues are 

\r = 2r (2NN_-rr) / (2NN) , A for r = O,l, .... N . 

To see this, first observe the following. If (x)r denotes, as earlier, the factorial 
power, namely, x(x -1) ... (x - r + 1), then we know from the hypergeometric 
probabilities, that 

~ . (k) = (2i) (2N - r) / (2N) = (2i)r A L..J P"k r r N _ r N 2r r 
o 

Consider now the basis of R N +1 given by 

eo = (1,1, ... ,1)' and ei = (0, 1i ,2i , ... ,Ni)', for 1 < i < N. 

Then for the transition matrix P, Per is a linear combination of er, er-I, 
... , eo. Further, the coefficient of er in that linear combination is Ar. Thus, 
with respect to the above basis, P is lower triangular with diagonal entries 
Ao, AI, ... , AN. Since the eigenvalues do not depend on the choice of the basis, 
this shows that Ar , 0 :::; r :S N, are the eigenvalues. 

Noting that Ao = Al = 1 and A2 = (2N - 2)/(2N - 1) > A3 > ... > AN, it 
follows that the rate of absorption is 1- 21J-1. However, in this case, the two 
absorbing states are not on an equal footing. The state N corresponds to death 
of the cell as far as this locus is concerned, while state 0 corresponds to the 
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complete disappearance of the mutant subpart. The quantity of real interest, 
therefore, is the probability of getting absorbed in the state N at time n, that 
is, 

d'J. = P(Xn = Nand X n- 1 i- NIXo = 1). 

The values of d'J. can be evaluated for small values of N (see Exercise 8). 
Kimura has given continuous approximations for large values of N using hy­
pergeometric functions. An extension of the above idea for n-ploid organisms 
with N sets of chromosomes has also been considered by Kimura. 

3.7 W-F Model with Varying Generation Sizes 

In this section, we shall discuss a modification of the Wright-Fisher model which 
allows the population size to change from generation to generation. As in the 
classical Wright-Fisher model, we still consider a haploid population with two 
alleles A and a. However unlike in the classical case, here we will allow the 
size of the nth generation, 2Nn , to possibly depend on n. But of course, the 
stochastic mechanism of formation of new generation from the previous one is 
still the same, namely, by drawing a simple random sample, with replacement, 
of an appropriate size. 

3.7.1 Deterministic Generation Sizes 

Let (Nn)n "?o be a fixed sequence of positive integers with Nn denoting the size 
of the n-th generation. As before, denote by X n , the number of A genes in 
the n-th generation. The conditional distribution of X n+1, given Xn = j, is 
assumed to be Binomial with parameters (2Nn+1' 2t) irrespective of the past 
history of the evolution. Thus the sequence (Xn)n"?O is assumed to have the 
Markov property. However, we cannot call it a Markov chain in our sense, 
because the transition probabilities depend also on n. Of course if N n = N 
for each n, as in the classical case, then we have a traditional Markov chain. 
In this special case, (Xn)n"?O was indeed seen to be an absorbing chain so that 
fixation occurs with probability one. 

The question that we address here is what happens in the case of varying 
population sizes. Our previous experience with a similar situation, namely, 
Malecot's Theorem of Chapter 2, tempts us to conjecture that probability of 
eventual fixation· is one if and only if I: .zJn = 00. We show that this is indeed 
the case. 

At this point, of course, the notion of fixation should be clearly understood. 
We do not have an absorbing chain in the usual sense. Indeed, the process here 
is not even a time-homogeneous Markov chain, as in Section 0.8. In other words, 
although markovian property holds, but the transition probabilities are not 
the same over generations. Therefore, we cannot as such use the terminology 
and theory of absorption as discussed in Section 0.8. The usual and natural 
interpretation of fixation is that of reaching a stage where an entire generation 
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consists of only one kind of individuals, say, either all a or all A. This is 
the same as saying that for some n, Xn becomes equal to 0 or 2Nn. Notice 
that if this actually happens in some generation, then the same phenomenon 
persists with probability one in all subsequent generations. It turns out to be 
convenient to work with the proportion rather than the absolute number of A 
genes, that is, to work with the random variables Yn = 2t: rathr than X n . 

Fixation in the above sense then reduces to Yn becoming 0 or 1 eventually. 
This being too stringent in the context of varying sizes, we will take a broader 
view of fixation. Instead of requiring that Yn = 0 or 1 for some n, we would 
simply ask whether Yn --+ 0 or 1. Of course, a pertinent question is whether 
Yn converges at all. We will argue that Y = lim Yn exists with probability one. 

n 
The precise meaning of fixation that we use is in terms of this random variable 
Y as stated above. We say that fixation occurs if and only if Y = 0 or 1. 

Theorem 3.7: 
(a) (Yn)n>O is a martingale and Y = lim Yn exists with probability one. 

- n 

(b) Assume that P(O < Yo < 1) > O. Then P(Y = 0 or 1) = 1 iff I: I n = 00. 

Proof: (a) Since the conditional distribution of X n+l , given X o, Xl, ... ,Xn, is 
B(2Nn+1' 2?n)' we have E(Xn+11 X o, ... , Xn) = 2Nn+12?n. It follows that 
(Yn ) is a martingale. Since 0 :S Yn :S 1, the martingale convergence theorem 
implies that Y = lim Yn exists with probability one. 

n 

(b) It is easy to see that for Z ,..., B(m,p), E (~ (1 - ~)) = p(1 - p)(1 - ~). 
Therefore, 

and hence by smoothing property 

It follows that 

E(Yn(1 - Yn)) = E(Yo(1 - Yo)) IT (1 __ 1_) 
1 2Nk 

By the Dominated Convergence Theorem now, one gets 

E(Y(1 - Y)) = E(Yo(l- Yo)) IT (1 __ 1_) 
2Nn n=l 

The hypothesis implies that E(Yo(1 - Yo)) > O. Therefore E(Y(1 - Y)) = 0 
if and only if I1 (1 - 2fvn ) = 0, or equivalently, if and only if I: I n = 00. The 
proof is completed by noting that, since 0 :S Y :S 1 with probability one, the 
condition E(Y(1 - Y)) = 0 is equivalent to P(Y = 0 or 1) = 1. • 
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The hypothesis p(a < Yo < 1) > a simply means that the initial state is 
'transient' with positive probability. In the classical case, namely, N n = N 
for each n, the infinite series of Theorem 3.7(b) is clearly divergent and hence 
P(Y = a or 1) = 1. Of course, in this special case Y = a or 1 if and only if 
the Yn are eventually a or 1. Thus P(Yn = a or 1 eventually) = 1. This is 
consistent with what we otherwise derived earlier for the fixed generation size 
model. The main contention of (b) is that for polymorphism to occur with 
positive probability in the 'limiting' population, it is necessary and sufficient 
for the generation sizes to explode at a sufficiently fast rate. The remarks made 
after Malecot's Theorem in Chapter 2 are equally relevant here. 

3.7.2 Random Generation Sizes 

One can get a little more ambitious and consider the case when the Nn are 
themselves random rather than a fixed sequence of numbers. Thus now the Xn 
as well as the Nn are random variables. We shall prove results analogous to the 
previous section. The main ideas are borrowed from C. C. Heyde and E. Seneta. 
Even though the N n are random, our results do not require any stipulation on 
the distribution of these random variables. However the evolution of the process 
(Xn)n;::O:O is driven by a stochastic mechanism analogous to that of the previous 
section. To be precise, we assume that given (Xo, No), (Xl, NI)"'" (Xn, Nn) 
and Nn+l , the conditional distribution of X n+l is again B(2Nn+l' 2~n)' As 

before, denoting Yn = 2~n ' it follows that 

(12) 

and, 

(13) 

Thus (Yn)n;::O:O is a martingale and by the martingale convergence theorem, 
Y = lim Yn exists with probability one. We continue to say that fixation occurs 

n 
if and only if Y = 1 or a with probability one, or equivalently E(Y(l- Y)) = a. 
A possible generalization of Theorem 3.7(b) would say that P(Y = a or 1) = 1 
if and only if P(r:, ~n = (0) = 1. We first show that the if part of the statement 
is indeed correct. 

Theorem 3.8: 
n-l 

(a) Let Un = Yn(1- Yn) + r:, 2NI Yk(l- Yk). Then (Un)n;::o:O is a martingale. 
k=O k+" 

00 

(b) The series r:, ~ Yn (1 - Yn ) converges with probability one. 
o n+l 
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Proof: (a) Using Equation (13), 

E(UnIXi,i:S n -1;Ni,i:S n) (1 - 2Fvn )Yn- I (1 - Yn-d 

+ 2:Z~~ 2N~+1 Yk(1 - Yk) 
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Yn- I (I- Yn-d + 2:Z~~ 2N~+1 Yk(l- Yk) 

Un-I. 

This shows that (Un)n?O is a martingale. 
(b) Since the Un are all non-negative, by the martingale convergence theorem, 
Un converges with probability one. Since Yn(1 - Yn) also converges with prob-

00 

ability one, we conclude that the series 2: 2NI Yn (1 - Yn ) converges with 
k=O n+l 

probability one. • 

Theorem 3.9: If P(2: I n = (0) = 1, then P(Y = 0 01" 1) = l. 
Proof: Theorem 3.8(b) implies that whenever lim Yn (1 - Yn ) > 0, the series 

n 
2: J has to converge. Thus, if P(2: J = (0) = 1, then lim Yn(1- Yn ) = 0 

n n n 
with probability one, completing the proof. • 

Remark: The proof of Theorem 3.9 shows something stronger. It actually 
shows that with probability one the occurrence of the event (2: In = (0) 
implies the occurrence of the event (Y = 0 or 1). More precisely, 

P (L:: ~n = 00 and 0 < Y < 1) = o. 

Whether the converse holds is not known. Here are however a couple of 
results in that direction. 

Theorem 3.10: Assume that P(O < Yo < 1) > o. 
(a) If for each N, I n < an where (an) is a sequence of real numbers with 
2: an < 00, then P(O < Y < 1) > o. 
(b) If for each n, N n+1 is independent of (Xn, N n) and 2:~ E(Jn ) < 00, then 
P(O < Y < 1) > o. 
Proof: (a) Taking expectations on both sides of Equation (13) and using the 
fact that 1 - 2N~+1 :S 1, we get 

From the definition of Un, we get that, for any n < rn, 

m-I 1 
Um - Un - [Ym(l- Ym) - Yn(1- Yn)] = L:: --Yk(l- Yk). 

2Nk+1 k=n 

(14) 

Taking expectations on both sides and using that (Un)n?O is a martingale, we 
get 

E[Yn(1- Yn)]- E[Ym(1- Ym)] = f E [_I_ Yk (l_ Yk)] . 
2Nk+1 k=n 
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Letting m -+ 00 and using Dominated Convergence Theorem, one obtains 

Under the hypothesis, the right side of the above equation is 

00 1 :::; L 2ak+IE(Yk(l- Yk)) 
00 1 

:::; E(Yn(l- Yn )) L 2ak+l, 

k=n k=n 

where the second inequality is a consequence of (14). It is easy to see that the 
assumption P(O < Yo < 1) > 0 implies E(Yn(1 - Yn )) > 0 for all n. Since 

00 

2: an < 00, by choosing n so that 2: ak+1 < 2, one gets that for such n, 
k=n 

the right side of (15) is strictly smaller than E(Yn (1 - Yn)). It follows that 
E(Y(1 - Y)) > 0, thus completing the proof of (a). 
(b) We notice that the right side of (15) equals 

:::; E[Yn(1- Yn )] f E (-NI ) 
2 k+1 k=n 

00 

Again working with an n such that 2: E(2NI ) < 1, the proof can be com-
k=n k+l 

pleted as before. • 

3.8 Diffusion Approximations 

We shall return to the Wright-Fisher model of Section 3.4. Recall that the 
W-F model is a model for the evolution of gene frequencies for a gene with 
two alleles in a haploid population, whose size is constrained to be always 2N. 
More precisely, if the two alleles are named as A and a, and if Xn denotes the 
number of A genes in the nth generation, then Xn is a Markov chain with state 
space {O, 1, ... ,2N} and transition probabilities 

( 2N) ( i )j ( i )2N-j 
Pi,j = i 2N 1 - 2N 

We know that this is an absorbing chain, with 0 and 2N being the absorbing 
states. Further we know that given Xo = i, the probability of eventual absorp­
tion at 2N is 21v, while the rate of absorption is 1 - 2~. However, we still 
do not have any formula for the mean absorption time or the variance of the 
absorption time. While in principle these are completely determined from the 
transition matrix, in practice it is extremely difficult to find nice formulae. It 
turns out however, that one can get relatively simple approximations for these 
quantities. The main idea is to approximate the underlying Markov chain with 
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an appropriate diffusion on [0,1] and then evaluate these quantities for the 
diffusion process by the techniques outlined in Section 0.9.2. 

To mimic the Markov chain by a diffusion process on [0, 1], it is first of all 
necessary to change the state space of the discrete chain so as to take values 
in [0,1] only. This is easily achieved by considering the fraction rather than 
the number of A genes. This would give a Markov chain on the state space 
{O, 2~ ' 2~' .. . , 2';;/ , I} and transition probabilities 

We shall denote this Markov chain by Xn , which is still a discrete time chain. 
To proceed further, we observe a simple lemma. 

Lemma 3.11: For each N 2: 1, let X N rv B(2N, eN). Let YN = ~ - eN. 
Assume that eN -t e (0 < e < 1), as N -t 00. Then, 

E(YN) 

V(YN) 

EIYNlk 

0, 

2~e(1- e) + O(2~) ' 
o( 2~ ) for any k 2: 3 . 

Proof: The first two are simple consequences of the properties of Binomial 

distribution. For the third , we first show that for k 2: 1, EIXN - 2NeNl k ::; 
CkNk/2 for some constant Ck. Denoting (Uih<;,i~2N to be the mean zero i.i.d 
random variables taking values 1 - eN and -eN with probabilities eN and 
1 - eN respectively, it is clear that E(XN - 2NeN)2k = E(2:; Ui)2k. Using 
independence and mean zero property, it is easy to see that the only terms in 
the expansion of (2:; Ui)2k having non-zero expectation are those, where a Ui 

appears with either power zero or power at least two. Now using the identicality 
of distributions, the reader can easily verify that 

E(XN - 2NeN)2k < enE(U1 + ... + Uk)2k 

< ek') k2k+l E(Ur) ::; (2N)k k:kk~' . 

Therefore, 

It now follows that for k 2: 3, 

• 
Getting back to our discrete markov chain Xn , denote the increment in one 

step, namely, XnH - Xn by ~Xn+l. Let 0 < x < 1. It follows from Lemma 
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3.11 that 

( - - ~) E 6.Xn+1 I Xn = 2N 0, 

( - - _ [2Nx l ) V 6.Xn+1 I Xn - 2l'T 2~x(1-x) +o(2~)' 

(I A- Ikl- [2NXl) E uXn+1 Xn = 2N O(2~) for k 2: 3. 

These equations look somewhat similar to the Equations (38)-(40) of Section 
0.9.2, of course, with some obvious discrepancies. To remove these discrepancies 
and to get an exact match we need to do something more. The idea behind 
going from number of A genes to the fraction was to scale the state space of the 
chain to bring it down to the unit interval. The next thing we need is to use a 
different time scale also. The right scaling of the time that does the job is given 
by the following. Roughly what was one unit of time in the original chain will 
now become 1/2N units of time in the new time scale, or equivalently, one time 
unit in the new scale corresponds to 2N generations for our original population 
model. To be precise, we define a new discrete time process X;, indexed not by 

integers, but by t of the form 2'lv, n 2: 0 as X:~ = Xn . Now denoting t = 2'lv, 
and h = 2~' the above equations can be rewritten as 

E (X' - X' IX' - [2NXl) t+h t t - 2N 

E (IX' - X'I 2 IX' - [2Nxl ) t+h t t - 2N 

E (IX' - X'l k IX' - [2NXl) t+h t t - 2N 

0, 

x(l - x)h + o(h), 

o(h) for k 2: 3. 

These equations suggest that our Markov chain, after appropriate scaling in 
both time and space, should approximate - at least for large N - a continuous 
time Markov process (Zt) with state space [0,1] satisfying Equations (38)-(40) 
of Section 0.9.2, with a(x) = 0 and b(x) = x(l - x). By this we mean that, 
if we consider the diffusion process (Ztk;~o with a(x) an~ b(x) as above and 
with 0 and 1 as absorbing states, then the Markov chain Xn is approximately 
same as the chain obtained by observing this continuous process at time points 
{2'lv ,n 2: O}. That this is indeed true can be proved rigorously. Interested 
reader may look up the book by Ethier & Kurtz. 

From the theory outlined in Section 0.9.2, the expected time of absorption 
for the diffusion process (Zt) starting from the state x is given by the equation 

x 1 

T(x) = -2 j [y(l- y)t 1 (x - y)dy + 2x j[Y(l- y)tl(l- y)dy. 

o 0 

Note that 'ljJ == 1 here. Trite calculation now yields 

T(x) = -2[x logx + (1 - x) log(l - x)]. 



3.8. DIFFUSION APPROXIMATIONS 157 

In view of the fact that (Zt)t>o is continuous time approximation for the 
discrete time chain (X;) and that-(X;) is nothing but an appropriately scaled 
(with regard to time and space) modification of the original chain (Xn ), we 
conclude the following. Wright-Fisher chain starting with i many A genes is 
expected to take approximately 

t* (i) -4N -log- + (1- -)log(I--) [ i i i i ] 
2N 2N 2N 2N 

generations for fixation. This is a reasonably good approximation, which is 
simple to compute. For example starting with 1 (or 2N - 1) A genes, it is 
expected to take approximately 2 + 2 log 2N generations to get absorbed; while, 
if initially half the genes are of one type, it takes approximately 4N log 2 ~ 2.SN 
generations. It should not be surprising that, in case of equal initial frequencies, 
it takes a very long time for absorption. This is in confirmity with the fact 
that the second largest eigenvalue of the transition matrix is 1 - 2iv which is 
very close to unity. 

The same technique can be used to get simple approximation to the mean 
absorption time in Moran model too. We shall briefly outline the steps. De­
noting by (Xn ), the Markov chain of the Moran model with 2N haploids and 
denoting Xn = ;;:;. we obtain 

E(b.XnHI Xn = 2~) 

V (b.XnH I Xn = 2~) 

E(Ib.Xn+1I k I Xn = 2~) 

0, 
1 i i 

2]\i'2 2N (1 - 2N)' 

o( 2~2 ) for k 2: 3. 

As in the case of the W-F model, we now need to introduce an appropriate 
scaling of time. The obvious choice is to consider the process (Xn indexed by 
t of the form ~, for n 2: 0, defined as X~ = Xn . It is clear then that the 

2N2 

same diffusion process considered for the Wright-Fisher model (with a(x) = ° 
and b(x) = x(1 - x) ) is a continuous time approximation to the discrete time 
process (XD in the sense described earlier. 

It follows therefore that the Moran model starting with i many A genes is 
expected to take approximately 

t**(i) = -4N2 [~log ~ + (1 - ~) log(1 - ~)] 
2N 2N 2N 2N 

generations for fixation. Comparing the expressions for t*(i) and t**(i), we see 
that 

t** Nt* (16) 

In other words it takes N times longer in the Moran model to reach fixation 
than in the Wright-Fisher model. 

Of course in the W-F model, in each generation 2N individuals die and 2N 
new individuals are born, whereas in the Moran model, only one individual dies 
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and a new one born in passing from one generation to the next. Thus roughly 
speaking, 2N birth-death events of the Moran model should correspond to one 
generation in the Wright-Fisher model. Thus one would expect t** to equal 
2N t*. The discrepancy between this and Equation (16) is just a factor of 2, 
which also can be explained. However this is somewhat involved and hence we 
omit here. 

3.9 Exercises 

1. Verify the details of Selfing model. Show that P has eigenvalues 1 and 
1/2. Show that (i) (1,1, I)' and (1,2,3)' are two right eigenvectors asso­
ciated to the eigenvalue 1 and (0,1,0), is a right eigenvector associated 
to the eigenvalue 1/2; (ii) (3/2,0, -1/2) and (-1/2,0,1/2) are two left 
eigenvectors associated to the eigenvalue 1 and (-1/2,1, -1/2) is a left 

eigenvector associated to the eigenvalue 1/2. Calculate p~n) for i = 1,2,3 
and the absorption probabilities b2 ,1 and b2 ,3. Here 1, 2 ~nd 3 represent 
the states AA, Aa and aa respectively. 

2. Verify the details of Sibmating matrix. Show that the eigenvalues are 
. b' -, - 1 ' - 1+-15 , - 1 , - 1 d' - ~ Th gIven y /\,1 - /\'2 - ,/\,3 - -4 -, /\,4 - 2" /\,5 - 4' an /\'6 - 4' us 

the rate of absorption is given by 1+4-15. Show that the fundamental 
matrix is given by 

( 
8/3 2/3 1/6 4/3) 

_ 2/3 8/3 1/6 4/3 
N - 4/3 4/3 4/3 8/3 . 

4/3 4/3 1/3 8/3 

Calculate the absorption times and the absorption probabilities. Can you 
give a heuristic justification for your answers? 

3. In the usual Sibmating model, two parents are selected at random. Let 
us continue sibmating, but, following Kemeny and Snell, change the pro­
cedure as follows. Select one offspring who is then allowed to select a 
mate. Assume that A is dominant and a is recessive. In the selection, 
assume that the odds ratio is 0: : 1 for an offspring for picking someone 
with a different phenotype to picking someone of the same phenotype. 
In other words, an offspring selects someone like itself with probability 
1/(0: + 1). Of course, we also assume that an individual in the phenotype 
given by AA or Aa can be anyone of the two with equal probabilities. 

(a) Show that with appropriate naming of the states the transition ma­
trix takes the form 
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1 0 0 0 0 0 

0 1 0 0 0 0 
1 0 1 0 0 1 
4" "2 4" 
0 1 0 a 0 1 

2(a+1) (a+1) 2(a+1) 

0 0 0 0 0 1 
1 1 1 2a(a+1) a(a+1) 1 

4(a+3) 4(3a+1) (a+3) (a+3)(3a+1) (a+3)(3a+1) (a+3) 

(b) Show that the fundamental matrix N is (2a+1)(a+3) X 

( 4(a' + '" + 2) 
20«0< + 1)2 0«0< + 1) (30< + 1)(0< + 3) 

) 2(30< + 1) (40<2 + 90< + 3)(0< + 1) 0«0< + 1) (30< + 1)(0< + 3) 

4(30< + 1) 40«0< + 1)2 40<2 + 90< + 3 2(30< + 1)(0< + 3) 

4(30< + 1) 40«0< + 1)2 20«0< + 1) 2(30< + 1)(0< + 3) 

( c) Show that the average time for absorption m is given by 

( 

20:3 + 120:2 + 330: + 11 1 
1 40:3 + 170:2 + 290: + 8 

m= (20:+1)(0:+3) 40:3+180:2+450:+13 

40:3 + 160:2 + 380: + 10 

(d) Show that the absorption probabilities B are given by 

B= 1 
4(20: + 1)(0: + 3) 

( 

40:2 + 230: + 9 
90:+3 
180: + 6 
180:+6 

40:2 + 50: + 3 ) 
80:2 + 190: + 9 
80:2 + 100: + 6 . 
80:2 + 100: + 6 

(e) Calculate m for 0: = 0,1,2. 

(f) Show that for 0: > 1, the probability of absorption in aa x aa in­
creases with 0:. The reason is that a large 0: favours the recessive 
strain a. Explain why this is so. 

(g) Show that as 0: decreases from 1, the probability of absorption in 
AA x AA increases until it reaches a maximum at 0: = 1/3 and then 
decreases and at 0: = 0 the absorption probability is the same as at 
o:=l. 

(h) Deduce that if, mating takes place only between the same pheno­
types, then the probabilities of absorption are the same as for ran­
dom mating. Of course, time for absorption should be much less 
here. Show this. 
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4. A square matrix A with non-negative entries is called regular if some 
power of A has strictly positive entries. Such a matrix A has an eigenvalue 
A > 0, which is simple, and all other eigenvalues of A are strictly smaller 
than A in modulus. Moreover, associated to A there is a right eigenvector 
with strictly positive entries. Also, A is the only eigenvalue which has a 
right eigenvector with strictly positive entries. This is known as Perron­
Frobenius Theorem. Read a proof of this. 

5. In the Wright-Fisher model for N diploids, show that 

E(f(XnH ) IXn) = (1 - 2~ ) f(Xn), 

where f is the function f(k) = k(2N - k) for 0 :::; k :::; 2N. 
Use this to conclude that 1 - 2}Y is the second largest (in modulus) 
eigenvalue after l. 

6. Consider the Wright-Fisher model with mutation where A -+ a with 
chance a and a -+ A with chance 13. As usual, Xn denotes the number 
of A genes in the n-th generation. 

(a) Argue that (Xn)n:2:o is a markov chain with state space {O, 1, ... ,2N} 
and transition probabilities given by 

Pj,k = C:)pjq;N-k . 
where Pj = z1y(1- a) + (1- z1y)f3 and qj = 1- Pj. 

(b) If a + 13 = 1 then show that (Xn) is an i.i.d. sequence. 

(c) If a + 13 = 2 then what happens? 
Assume from now on that a, 13 > 0 and a + 13 < l. 

(d) Show that the eigenvalues of the transition matrix are 

( ) r (2N) r! Ar = 1 - a - 13 r (2N)r for 0:::; r:::; 2N. 

(e) Show that (Xn) is an aperiodic irreducible markov chain. 

The stationary distribution is difficult to obtain. But some idea of 
it can be got as follows. Let Yn = ;J:r denote the proportion of A 
genes in the n-th generation. Assume any initial distribution for the 
chain. 

(f) Show that E(Yn+d = (1 - a)E(Yn) + 13[1 - E(Yn)]. 
Deduce that lim E(Yn) = +!3!3. 

n--+oo Cl: 

(g) Show that 
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(h) Deduce that 

lim E(y2) [1 - (1 - ~) (1 - a - (3)2] 
n--+oo n 2N 

2 (2 -a - (3) + (3(1 - 2a)(1- a - (3) + (3(1 - (3) . 
(3 a + (3 2N(a + (3) 2N 

(i) Conclude that lim V (Yn ) is of the order of 2~' 
n--+oo 

7. Consider the Haploid model of Moran with mutation, where A -+ a with 
chance a and a -+ A with chance (3. Assume that, a, (3 > 0 and a + (3 < l. 
Let Xn denote the number of A genes in the n-th generation. 

(a) Show that (Xn)n>O is an aperiodic markov chain with the state 
space {O, 1, ... , M} and transition probabilities given by 

Pj,j-l = ~qj, Pj,j+1 = (1 - ~) Pj, Pj,j = ~Pj + (1 - ~) qj, 

where Pj = (1 - a) it + (3(1 - iT) and qj = 1 - Pj' 
Let 1f = (1fo, ... , 1f M) be the stationary distribution. 

(b) Show that 

M-k+1 
1fk-l Pk-l 

kqk 
M(M - 1) ... (M - k + 1) POPl ... Pk-l 

1f0 k(k-1)···1 qlq2"'qk 

and hence evaluate 1fk, 0 ::S k ::S M. 

(c) Prove the following by induction on M. 
If Uj = x + jy, Vj = 1 - x - jy for two real numbers x, y and if SM 
is defined by 

M (M) M (M) M M-I 
SM(X,y) = IT Vi + 1 Uo IT Vi + 2 UOUl IT Vi + IT Ui, 

1 2 3 0 

then show that 

SM(X,y) = (1- y)(l- 2y)··· (1- My). 

(d) Use the above with x = (3 and y = 1-~-(3 to show that 

M PO"'Pk-l 1 M M [M 1 
1 + {; ( k) ql'" qk = ql'" qM ~ ( i ) Jl Pj J1 qj 

(1 - (3 - 1-~-(3) (1 - (3 - 2(1-;;-(3)) ... (1 - (3 _ M(I-;:-(3)) . 
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(e) Deduce that 

f ( ~~~~ ) f ( ~~~~ ) 
7ro = -'-,-----''----'(~--),..:... 

f (1-~-(3) f 1.!~(3 

(f) Show that 

~=~ . 
f(k + l)f(M - k + l)f (~) f (M(l-(3)) 1-",-(3 1-",-(3 

f(M + l)f (~ + k) f (M(l-(3) - k) 1-",-(3 1-",-(3 

(g) Now suppose that M -t 00, Cl -t 0 and (3 -'-t 0 in such a way that 
M Cl -t a and M (3 -t b for some a > 0, b > O. Then show that 

M f(a + b) (1 )a-1 b-1 
7rk '" f(a)f(b) - x x 

where x = k/M. [see Section 4.3.4 for the definition of'''''; it is given 
just before Lemma 4.5.] Thus for a large population, that is, when 
M is large, the stationary distribution for the relative frequency of 
the genes can be approximated by a Beta distribution. 

Consider Kimura's model for n subunits of which one is in mutant form. 
Ca) Show that for n=2, 4, the transition matrices are given by 

( 1~6 
0 +) 4/6 
0 

and 

( 
1 0 0 0 

Jo) 15/70 40/70 15/70 0 
1/70 16/70 36/70 16/70 

0 0 15/70 40/70 15/70 
0 0 0 0 1 

(b) Let d~ be the probability that a gene with all parts mutant appears 
for the first time in the t-th generation. Show that 

1 (2)t-1 1 [ (6)t-1 (4)t-1 (16)t-1] 
d~ = 6 :3 ' ~ = 3080 195 7 - 330 7 + 135 70 . 

9. The idea of this problem is to extend the method of Feller and unify 
the techniques of evaluating the eigenvalues. This follows S.Karlin and 
J.Mcgregor. 
Let 1(s) = L~ aisi be a p.g.f. Let N ?: 2 be a fixed integer. 
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(a) Define 

coefficient of sjtN- j in fi(S)fN-i(t) 
Pij = N N for 0 :S i, j :S N. 

coefficient of w in f (w) 

Show that P = (( Pij )) is a transition matrix. Here, of course, we 
make the assumption that the denominator above is non-zero. What 
does this mean in terms of f? 

(b) The Markov chain corresponding to P is called the induced Markov 
chain of a direct product branching process. The reason is the fol­
lowing. Imagine two independent branching processes corresponding 
to two kinds of objects, say A and a, each having p.g.f. f. What is 
the conditional probability of having j objects of type A in the next 
generation given that there are i objects of type A in the present 
generation and in each generation the total number of objects is N. 
Verify that the answer is precisely Pij . 

( c) Let f (s) = eS - 1 . Show that you get the Wright-Fisher matrix. 

(d) Let f(s) = (q + ps)2, where 0 < p < 1. Show that you get the 
Kimura matrix. 

(e) Let f(s) = qCY. /(1- ps)CY., where 0 < p < 1 and 0: > O. Show that 

This generating function arises in the growth of heterogeneous pop­
ulations as follows. Suppose that in a large geographical area, the 
progeny follows a branching process with progeny distribution P(A). 
The parameter A depends on the sub-area and is assumed to have 
a distribution with density g(A) = (q/p)CY. ACY.-le-q>-.jp jf(o:), A> O. 
Then the compound distribution of the progeny is f. Verify this. 

(f) Show that 

coefficient of sj wN in Ji (sw) f N -i (w) 
Pij = -----::::--:---=---;;-;-",-'-....,...,-;,.::-.,.---'----'­

coefficient of wN in f N (w) 

Let Gi be the p.g.f. of Pij , O:S j:S N, that is, Gi(s) = L.~oPi,jsj. 
Show that 

Gi(s) = coefficient of wN in Ji(sw)fN-i(w) 
coefficient of wN in fN(w) 

(g) Show that G~(l) = iAl, where 

A _ coefficient of wN- 1 in fN-1(W)f'(W) 
1 - coefficient of wN in f N (w) 

Conclude that A1 is an eigenvalue of P with (0,1, ... N)' as a right 
eigenvector. 
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(h) Let Ao = 1 and for 1 :::; r :::; N 

A _ coefficient of wN- r in fN-r(w)[f'(w)r 
r - coefficient of wN in f N (w) 

By induction, show that for r = 0,1, ... , N, 

N 

L, Pi,jjr = Arir + ur-l(i), 
j=O 

where U r-l is a polynomial in i of degree smaller than r. 

(i) Let Vo be the vector with all entries 1 and for 1 :::; k :::; N, let Vk be 
the column vector with entries Ok, 1 k, •.. ,Nk . Show that these form 
a basis of RN+! and with respect to this basis, P is upper triangular 
with diagonal entries Ar , 0 :::; r :::; N. [Karlin and Mcgregor also 
show that if ao . al . a2 > 0, then 1 = Ao = Al > A2 > ... > Ar > 0.] 

(j) Going to (c) above, deduce that the Wright-Fisher eigenvalues are 

(k) Going to (d) above, deduce that the Kimura eigenvalues are 

(1) Going to (e) above, deduce that the eigenvalues are 

10. The idea is to discuss, following W. J. Ewens, the haploid model of Moran 
taking selection into account. 
Assume that A and a produce offsprings with relative proportions /h and 
/12 respectively. Thus a randomly chosen individual dies and is replaced 
by an individual who is A or a with probabilities /11i/[/11i + /12(M - i)] 
and /12(M - i)/[/11i + /12 (M - i)] respectively, where i is the number of 
A individuals before the death event. 

(a) Show that the transition probabilities of the corresponding Markov 
chain with state space {O, 1, ... , M} are 

Pi,i-l = /12i(M - i)/ M[/11i + /12 (M - i)] = 7ri, say, 

Pi,Hl = /11i(M - i)/ M[/1d + /12 (M - i)] = 1Ji, say, 

and Pi,i = 1 - 7ri - T]i . 
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(b) Show that the probability of absorption in 0 given Xo = k is 

(O'.M-k _ l)/(O'.M - 1) 

where 0'. = !-tl/ !-t2· 
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From now on we fix an initial state k. We wish to find the mean 
time for absorption given Xo = k. 

(c) Define an "amended chain" by putting PO,k = PM,k = 1. For 
i :I 0, M, Pi,j is the same as Pi,j' Thus this amended chain is 
like the original one except that whenever the original reaches an 
absorbing state then we make it start afresh again from k. Show 
that this amended chain is irreducible and aperiodic. Let.A = 
(.Ao, .A1, ... , .AM) be the unique stationary initial distribution. 

(d) Show that .A1 = .AO/7f1 and .A2 = .Ao(l + 0'.)/7f2' 

(e) Show that for 1 ::; i ::; k - 3, .Ai satisfies 

-O'.~i + (0'. + 1)~i+1 - ~i+2 = 0, 

6 = .Ao and 6 = .Ao(l + 0'.) . 

Deduce that, for 1 ::; i ::; k _ 1, .A. _ .Ao(O'.i - 1) 
"- 7fi(O'. - 1) . 

(f) Show that .AM-1 = .AM /TJM-1 and .AM-2 = .AM(l + ~)/TJM-2' 
(g) Put ~i = TJi.Ai and show that, for k + 1 ::; i ::; M-I, 

1 1 
-~i + (1 + - )~i+1 - -~i+2 = O. 

0'. 0'. 

Deduce that, for k + 1::; i ::; M-I, .A. _ .AM(O'.M - O'.i) 
" - TJi(O'.M - O'.M-1) . 

(h) There is one more equation from .AP = .A to be used now. Use it 
and show that 

(i) Show that 

.Ao Probability of absorption at 0 in the original chain 

.AM Probability of absorption at M in the original chain 

(j) Show that the mean time until absorption, say mk, for the original 
chain is L~~l .Ad(.Ao +.AM)' 
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(k) Show that 

(1) If ILl approaches IL2, so that 0: approaches 1 - that is, there is no 
selective advantage - verify that the above formula does indeed give 
the result of Watterson. 

11. Consider as usual an autosomal gene with two alleles A and a. The 
genotypes thus are AA, Aa and aa. Define a process as follows. Xo 
is arbitrary. Xn is genotype of an offspring whose father is X n- l and 
mother is AA, Aa or aa with probabilities p2, 2pq and q2 respectively. 
Show that we have here an aperiodic Markov chain with transition matrix 
P having rows (p, q, a); (p/2, 1/2, q/2) and (a,p, q) respectively. Show 
that the stationary distribution is given by 7r = (p2, 2pq, q2). Show that 
this chain is reversible, that is, 7riPij = 7rj P ji for all i and j. Interpret 
reversibility and compare with Exercises 15-18 of Chapter 2. Show that 
pn is given by the following matrix. 

1 ( pq 
ell' + 2n - l p(q - p)/2 

_p2 

q(q - p) 
(1 - 4pq) /2 

p(p- q) 
q(p - q)/2 . 

q2 ) 

pq 

12. The idea of this problem is to find a formula for the expected absorption 
time in the Wright-Fisher model. This follows R. G. Khazanie and H. 
E. Mckean. This will also rework some of the other quantities that we 
already know. 
Notation: M = 2N ; Pi = i/M ; Pi,j = ('1) p{ (1 - Pi)(M-j) ; P is the 
transition matrix (Pi,j) ; (x)o = 1; and for n;:::: 1, (x)n = x (x-I) ... (x­
n + 1) ; 6.f(x) = f(x + 1) - f(x) ; cT,n = 6.n xT In! I x=O also written as 
6.n aT In!. 

(a) Show that 6. (x)n = n (X)n-l . 
T 

(b) Show that xT = L: cT,n (X)n. 
n=O 

T 

(d) Deduce that xT = L: aT,n(x)n, where, for a :; n :; r, 
n=O 

n (.)T-l 
'"' . n-] 

aT,n = L....(-1)1 (n - j -l)!j! . 
)=0 

Note that aT,T = 1. 
These numbers aT,n are called Stirling numbers of the second kind. 
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M r 

(e) Show that "£ Pk,j Y = "£ ar,s(M)s(!) . 
j=O s=l 

(f) Show that ~ p(n+l) J"T = ~ a (M)s ~ pen) k S 
L...J 2 J 6 r,s Ms L 't k . 

j=O ' s=l k=O ' 

(g) Put 
P,n,r,i = E(X~ I Xo = i), 

en,i = the column vector (P,n,r,ih~r~M . 

Let C be the lower triangular matrix 

al,lAl 0 0 0 0 
a2,lAl a2,2 A2 0 0 0 

C= a3,lAl a3,2 A2 a3,3 A3 0 0 

aM,lAl aM,2 A2 0 0 aM,MAM 

s s-l (-1)i(s-W- 1 

where As = (M)s/M , ar,s = "£ (s-i-l)!i! for 1 ~ s ~ r. 
2=0 

Show that eO,i is the column vector (i, i 2 , ... , i M )'. 

Show that en+l,i = Cen,i. 

Deduce that en-l,i = Cn-leO,i. 
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(h) Show that AI, A2, ... ,AM are distinct and they are precisely the 
eigenvalues of C. 
Show that corresponding to As, there is a right eigenvector of the 
form 

Rs = (0,0, ... , 1, Us,s+l, Us,s+2, ... ,Us,M)' 

and a left eigenvector of the form 

Ls = (Vs,l, Vs,2, ... ,Vs,s-l, 1,0, ... ,0) 

and describe an algorithm to obtain these vectors. 
Show that RI = (1, M, M 2, ... , MM-l )'. 

(i) Show that 

M 

en-l,i = RlLleo,i + L A~-l RsLseO,i. 
s=2 

(j) Show that 

P,n-l,j+t,i = 1 if j = t = 0, 

M s 

_ 'Mj+t-l '"' '"' ,n-l '/3 P,n-l,j+t,i - Z + ~ ~ As Vs,(3Us,j+tZ 
s=2 (3=1 

ifj+t>O. 
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(k) Show that 

(n) ~ . (M) (M -j) -t-· 
Pi,j = 6 (-1)3 j t M J J.tn-I,j+t,i· 

(1) Show that for 0 < j < M, 

Show that 

. M s 
(n) _ Z M-M,", '"' \ n-I .(3 

Pi,M - M + ~ ~ As Vs ,(3Us ,M Z • 

s=2 (3=1 

Show that 

(n) _ Z t -t n-1 .(3 . M (M) M s 
Pi,O -1- M + 8(-1) t M ~,t; As vs ,(3us ,t Z . 

(m) Show that 

1. (n) _ i 
1mPiO -1- M' 
n ' 

1. (n) _ i 
1mPiM - M' 
n ' 

limp(n) = 0 for 1:::; j :::; M-I. 
n 1,,) 

(n) Show that Pi,j = PM-i,M-j. 

H cl cl h (n) (n) 
ence e lice t at Pi,j = PM-i,M-j' 

(0) Let T be the time spent before absorption. Clearly 

P(T = 01 Xo = 0) = 1, P(T = 01 Xo = M) = 1. 

So from now on 1 :::; i :::; M - 1. Show that 

P(T = 11 Xo = i) = Pi,O + Pi,M , 

P(T = nlXo = i) (n) (n-I) (n) (n-I) 
Pi,M - Pi,M + PM-i,M - PM-i,M 

M -M "M "S \n-2 (. (3) 
us=2 u(3=1 As C Z, S, , 

where 
c(i, s, (3) = (As - 1)[i(3 + (M - i)(3]Us ,MVs ,(3 . 

(p) Show that Gi(z), the p.g.f. of T when Xo = i, is given by 

[(1- ~)M + (~)M 1 z+ M-M t,~ c(i",~) 1 ~:,\. 

for Izl < M~I' 
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(q) Show that E(TIXo = i) is given by 

. . M s 2 \ 
Z M Z M -M,""", '"""' (. ) - AS 

mi=(I- M) +(M) +M ~~cz,s,(3 (I-A
8
)2· 

8=2/3=1 
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Chapter 4 

MODELS IN EPIDEMICS 

4.1 Generalities 

One of the important areas of real-life applications of stochastic processes is in 
epidemiology, more specifically, in analyzing the spread of epidemics. Roughly 
speaking, the situation that we want to look at is as follows. There is a group 
of individuals, all mixing homogeneously together. Due to some reason, one or 
more of them contracted an infectious disease. They are the individuals initially 
infected. After a certain period of time, called the latent period, the infected 
become infectious. This means that they are now capable of passing on the 
infection to other individuals in the population to be called susceptibles. This 
leads to new infections. Thus, some of the susceptibles move to the infected 
group and this continues. Simultaneously, as time passes there is also what 
is called removal of infectious from circulation. Such removals in reality may 
take place by way of death or by way of detection and quarantine. Of course, 
removal may not always mean that the concerned individuals are actually taken 
out of the population. For example, an infectious person may have been cured 
and has become immune. Thus, as far as the epidemic is concerned, they are 
as good as removed. 

In the next few sections, we shall model such phenomena mathematically. In 
the light of the different models, we would like to investigate how the epidemic 
progresses in terms of the changes in the number of infected and susceptibles. 
A quantity of vital interest is the total size of the epidemic, to be explained 
later. The rate at which the infection spreads is called the rate of infection, 
whereas the rate at which the infectious individuals get removed is called the 
rate of removal. If the infection rate is too small compared to the removal rate, 
then one intuitively feels that the epidemic should not build up. An important 
class of theorems in epidemiology known as the Threshold Theorems are aimed 
at justifying this mathematically. One distinctive feature of this chapter is that 
unlike the previous chapters where the models were discrete in time, here we 
have an evolution taking place in continuous time. As a result, in Sections 4.2 
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and 4.3, we will use continuous time Markov chains. 

Needless to say that the description given above conforms to the real world 
meaning of epidemics. However the same picture obtains if we wish to study 
the spread of a disease across the cells of a single individual. 

4.2 Simple Epidemic 

For the sake of simplicity, we first consider the case when there is no latent 
period and also there are no removals. The first assumption means that an 
individual becomes infectious as soon as he receives the infection. In the ab­
sence of removals , an infectious individual remains in circulation forever. In 
this case, it is intuitively clear that infection would continue to spread until all 
are infected. 

4.2.1 Deterministic Model 

We start with a deterministic model first. We consider a population of n + 1 
individuals in which initially, that is, at time t = 0, there are n susceptibles and 
1 infectious. We denote by x(t) and y(t), the numberof susceptibles and the 
number of infected individuals respectively at time t. Of course, it is clear that 
for every t, x(t) + y(t) = n + 1. Also x(O) = nand y(O) = 1. In view of the fact 
that y(t) = n+l-x(t), it suffices to describe x(t). The central step in modelling 
the process x(t) involves deciding on the mechanism governing the evolution of 
x(t). More precisely, suppose that at some time instant, say t, we have x(t) = a. 
This means that at time t there are a susceptibles and n + 1 - a infected in the 
population. The question is how x( t) should change in a small time interval, say 
t:.t. This, of course, means how many new infections take place during the time 
period (t, t+t:.t). This is where we bring in our modelling assumptions. First of 
all, the number of new infections should be proportional to the duration of the 
interval, namely, t:.t. Indeed, one does feel that the number of new infections 
in a given time interval should be large or small depending on whether the 
interval is large or small. Secondly, the number of new infections should be 
proportional to the possible number of contacts between the infected and the 
susceptibles. Since at time t we have a susceptibles and n + 1 - a infected 
the possible number of contacts (that is, pairings) between these two groups 
is a(n + 1 - a). Our modelling assumption, therefore, reduces to speculating 
that x(t + t:.t) - x(t) rv -,Bx(t)[n + 1 - x(t)]t:.t. Here,B is a positive constant, 
frequently referred to as the infection rate. Dividing by t:.t and taking the limit 
as t:.t -+ 0 the above amounts to 

x'(t) = -,Bx(t)[n + 1- x(t)]. (1) 

This is our precise mathematical assumption regarding the evolution of x(t) . 
An initiated reader would, of course, raise objections at this point. The fact 
is that x(t) denotes the number of susceptibles at time t and is hence integer 
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valued. Let alone being differentiable, x(t) cannot even be continuous unless it 
is a constant function of t. Here is one way to make sense out of Equation (1). 
Assume that the population size (n + 1) is large and consider the proportion 
x(t) = x(t)j(n + 1) of susceptibles rather than x(t) itself. In that case x(t) can 
be regarded as taking values in the continuum [0,1] (at least approximately). 
Our modelling assumptions can now be summarized in a genuine differential 
equation for x(t), obtained as follows. As seen earlier, for small 6.t, 

x (t + 6.t) - x (t) (3 () ( 1 ( )) ---'--~-'---":""";" '" - x t n + - x t 
6.t ' 

that is, 

x(t + 6.~~ - x(t) '" -(3(n + l)x(t)(l _ x(t), 

which on taking limit as 6.t -l- 0 yields 

x'(t) = -(3(n + l)x(t)[l - x(t)]. 

Of course, all this is just a matter of mathematical precision and should be 
viewed as a way of rationalizing Equation (1). In any case you should remember 
that Equation (1) itself reflects only an approximation for the actual state of 
affairs. 

Returning now to Equation (1), it can be written as 

x'(t) + x'(t) = -(3(n + 1). 
x(t) n+1-x(t) 

By integrating and using the initial condition x(O) = n, one obtains 

It follows that 

n(n + 1) 
x(t) = n + e!3(n+l)t . 

(n + l)e!3(n+l)t 

y(t) = n + e!3(n+l)t 

The rate at which the infections accrue is given by 

w(t) y' (t) = -x' (t) 

(3x(t)[n + 1- x(t)] 

2 e!3(n+l)t 
(3n(n + 1) . 

[n + e!3(n+l)t]2 

This is of considerable interest in epidemiology and the graph of w(t) is called 
the epidemic curve. The above epidemic curve starts at w(O) = (3n, increases 
until it reaches a peak at time to = log nj[(3(n + 1)] and then gradually dies 
down. The time point to is usually of some interest. In our model, the number 
of susceptibles and the number of infected become almost equal at time to. 
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The fact that lim x(t) = 0 is only natural because in this model the entire 
t--+oo 

population is clearly going to be infected eventually. This completes our dis-
cussion of the deterministic model. After all, the main purpose of this model 
is to motivate a more realistic model, namely, a stochastic one. 

4.2.2 Simple Stochastic Epidemic 

In the stochastic model we do not say that in the small time-interval t to 
t + 6.t, a certain number of new infections is sure to take place. Instead, we 
introduce a chance mechanism for the number of new infections. As before, 
let us imagine a population of size n + 1 with n susceptibles and 1 infected 
initially. Let X t and yt denote the number of susceptibles and the number 
of infected, respectively, at time t. Here X t and yt are going to be random 
variables. Of course X t + yt = n + 1, for all t ; Xo = nand Yo = 1. Now we 
come to the main assumption. Given that at time t, X t = a and yt = n + 1- a, 
we assume that during the time interval t to t + 6.t, the probability of exactly 
one new infection is (3a(n + 1 - a)6.t + o(6.t) and that of no new infection is 
1- (3a(n + 1- a)6.t + o(6.t). This of course implies that the probability of two 
or more new infections during the period t to t + 6.t is o(6.t). Thus (Xt)t>o 
is a continuous time pure death chain starting at Xo = n (see the concludi~g 
paragraph of Section 0.9.1). The death rates are given by 

ILi = (3i(n + 1 - i), i = 0,1, ... , n. 

Denoting, Pr(t) = P[Xt = r], the usual Kolmogorov equations are 

p~(t) = -(3r(n + 1 - r)Pr(t) + (3(r + 1)(n - r)Pr+l(t) for 0 :S r < n, 

and p~(t) = -(3nPn(t). (2) 

Of course Pn(O) = 1 where as Pr(O) = 0 for 0 :S r < n. 

As we shall see later, it is possible to solve the above equations successively 
for Pn, Pn-l, ... ,Po· But the formulae are too complicated to give an insight 
into the phenomenon. Of course, since (Xt)t>o is a pure death chain with death 
rates ILi given in (1), the general theory tells us that the first new infection takes 
place after a random time distributed as EXP(ILn) , the next infection occurs 
after a further random time with distribution EXP(ILn-d, and so on. Finally, 
the process comes to a halt when all are infected. This happens in a finite 
time with probability one. Denoting by T the total duration, it is clear that 
T is the sum of n independent exponential random variables with parameters 
ILn, ... , ILl· One can find the exact distribution of T. However, we shall be 
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content with noting that 

E(T) 
1 n 1 

:e ~ i(n + 1 - i) 

1 n [1 1] 
(3(n + 1) ~ i + n + 1 - i 

2 n 1 

(3(n + 1) L i' ,=1 

But, 
n 1 n 11iH n li+l 1 
L~ L~ dx > L -dx log(n + 1) 
i=1 Z 

Z . . X 
i=1 ' i=1 ' 

and, 

n 1 n 1 li n li 1 
L~ 1 + ~ i i-I dx < 1 + ~ i-I; dx = 1 + logn . 
i=1 z 

Thus, 
~log(n+1) < E(T) < ~l+logn. 
(3 n+1 - - (3 n+1 

That is, E(T) = O(logn/n). Incidentally, this also shows that E(T) ..j.. 0 as 
n -+ 00. This seems to contradict one's first intuition that large populations 
should take longer to reach complete infection. However, one should not forget 
that larger population implies increased death rate also. 

Returning to the Kolmogorov Equations (2), we now indicate how one can 
go about solving them and also what the nature of the expressions for Pr(t) is. 
Firstly, it is immediate that 

This can also be directly seen from the fact that Pn(t) is the probability that 
up to and including time t, no new infection has taken place and that the time 
till the first new infection is exponentially distributed with parameter (3n. 
Next, the Equations (2) can be rewritten as 

p~(t) + J-lrPr(t) = J-lrHPr+l(t) for 0 S r < n. 

Multiplying both sides by ei-'rt one obtains 

Solving this one obtains the recurrence relation 

(3) 
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Thus explicit expressions for the Pr(t), 0 ::::; r < n can be obtained. Since the 
actual formulae are quite complicated and do not seem to reveal much, we shall 
be content with giving the following partial result. 

Proposition 4.1: For each r > ~, Pr(t) is a linear combination of the func­

tions e-Mit , r::::; i ::::; n. 

Proof: Clearly the assertion is true for r = n. Let n > r > ~ and Pr+! (t) = 
L~r+l Cr+l,ie-Mit. We shall show that Pr(t) = L~=r Cr,ie-Mit. This will 
complete the proof. Using (3) and our hypothesis concerning Pr+! (t), 

t n 

Pr(t) = e-Mrt 1 L fJr+lCr+l,i e(Mr-Mi)S ds. 
o i=r+l 

Observe that fJi = fJr if and only if i = r or i = n + 1 - r. It follows that if 
r > n/2, then fJi i- fJr for every i > r. As a consequence, 

n 
'" C _e- Mit L...J 1",1, , 

where 

and for i > r, 

i=r 

n 

Cr,r = - L 
i=r+l 

fJr+lCr+1,i 
fJr - fJi 

• 
Remark: The condition that r > n/2 was crucially used in the above proof. 
For r ::::; n/2, Pr(t) is not a linear combination of the above type. Extra compli­
cations crop up due to the fact that for any r ::::; n/2 there is indeed an i > r, 
namely i = n + 1 - r, such that fJi = fJr. This gives rise to terms involving 
te-Mrt also, thus making explicit expression for Pr(t) more complicated. 

4.3 General Epidemic 

We now consider a slight generalization of the earlier' model in that, we allow 
removals. Of course, there is still no latent period. Thus a person infected 
becomes infectious instantly and remains so until he is removed from the pop­
ulation. This phenomenon is referred to as General Epidemic. As in the case 
of simple epidemic, here also we first consider a deterministic model and then 
a stochastic one. 
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4.3.1 Deterministic Model 

This deterministic model was proposed in 1927 by W. O. Kermack and A.G. 
McKendrick. Here is the model. We have a population of n individuals and ini­
tially a certain number of them are infected; the rest are naturally susceptibles. 
As time passes, new infections take place and also some infected individuals are 
removed. Thus at any point of time, the population consists of three groups of 
individuals - susceptibles, infected and removed. Let x(t), y(t) and z(t) denote 
the number of individuals in these three groups respectively at time t. Clearly 
x(t) + y(t) + z(t) = n, for all t. We assume that x(O) = Xo > O,y(O) = Yo > 0 
and z(O) = o. We assume that the number of new infections in time inter­
val (t, t + /}.t) depends only on the number of susceptibles and the number of 
infected at time t, but not on the number of individuals removed till time t. 
This stands to reason because new infections arise out of contacts between the 
susceptibles and the infected. 

As in the simple epidemic model, we postulate that the actual number of 
new infections during (t, t + /}.t) is (3x(t)y(t)/}.t. The rationale behind this 
postulate has already been explained in Section 4.2.1. Regarding removals, we 
assume that the number of individuals removed during (t, t + /}.t) depends only 
on the number of infected at time t and neither on the number of susceptibles 
at time t nor on the number of individuals removed till time t. This last 
assumption may be a little unrealistic in some situations. For example, one can 
very well have a situation where the health authorities have limited resources 
and try to put a check on the new removals. However, for the sake of simplicity, 
we rule out such a possibility. Following the same idea as in the case of new 
infections, we postulate that the number of individuals removed during (t, t + 
/}.t) is '"Yy(t)/}.t where '"Y is again a positive constant like (3. The constant (3 is 
still called the infection rate, while '"Y is called the removal rate. The quantity 
p = '"Y I (3 will play an important role in our analysis and is usually referred to 
as the relative removal rate. 

Our postulates above lead to the following differential equations: 

X' (t) 
y' (t) 
Zl (t) 

-(3x(t)y(t), 
(3x(t)y(t) - '"Yy(t) , 
'"Yy(t) , 

with the initial conditions x(O) = Xo, y(O) = Yo, z(O) = O. 

(4) 

The Equations (4) are known as the Kermack-McKendrick Equations, or, 
simply as KK Equations. The Equations (4) reveal that the functions x(t), y(t) 
and z(t) have derivatives upto any order. For example, the differentiability of 
x(t) and y(t) implies the differentiability of x' in view of the first equation in 
( 4). 

The first equation of (4) implies that x'(t) :S 0 for all t, so that x(t) is a 
non-increasing function. Similarly, from the third equation, it follows that z(t) 
is a non-decreasing function. We shall now solve for x in terms of z. Using the 
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third equation of (4) in the first, we get 

1 
x'(t) = -- z'(t)x(t). 

p 

Let to = sup{t : x(t) > O}. From the continuity of x(t) and the fact that 
x(O) = Xo > 0, we conclude that to > O. It could however be infinite. We shall 
now proceed to argue that to is indeed infinite. First note that, by monotonicity 
of x, we have x(t) > 0 for all t < to. Therefore on the interval (0, to) 

x'(t) _ -~z'(t) 
x(t) - P , that is, ~ log x(t) = -~z'(t). 

dt p 

This yields the simple solution 

x(t) = xoe-z(t)/p for t E (0, to) . 

If to were finite then the continuity of x and z would imply that 

x(to) = xoe-z(to)/p > xoe-n / p > O. 

But by definition of to, we must have x(to) = 0, if to is finite. This contradiction 
shows that to is indeed infinite. Thus we have 

x(t) = xoe-z(t)/p for all t 2: o. (5) 

First observe that, x and z being monotone, both the limits Xoo = lim x(t) 
t-+oo 

and Zoo = lim z(t) exist. Moreover, from (5), we get that Xoo = xoe- zoo / p. 
t-+oo 

Clearly, Zoo :S n, so that, Xexo 2: xoe-n / p > O. Since x(t) + y(t) + z(t) = n for 
each t, it follows that Yoo = lim y( t) also exists. 

t-+oo 
We shall now show that Yexo = O. These have the following epidemiological 

interpretation. After a sufficiently long time has elapsed and a stable state is 
reached no infected individual remains in circulation and the population still 
retains a positive number of un infected people. This, of course, is a consequence 
of the dynamics embodied in Equations (4). Reality may not always follow 
Equations (4). Turning to the second Equation in (4) let us rewrite it as 

y'(t) =;3y(t) [x(t) -plo 

If x(t) 2: p for all t, then y(t) would be non-decreasing throughout. In particular 
y(t) 2: Yo > 0 for all t, so that, z'(t) 2: "fYo for all t. But this would mean that 
z(t) 2: "fyot for all t, contradicting the fact that z(t) is bounded by n. Thus 
there exists a finite time point tl 2: 0, such that on [h,oo), x(t) :S p. As a 
consequence, y is non-increasing on rh, 00) and, in particular, y(t) 2: yoo. From 
the third Equation in (4), it follows that if t > t1 , then z(t) 2: Z(tl) +"fYoo (t-td. 
Now z(t) :S n for all t would force Yoo to be zero. 

Recalling the definition of tl in the above paragraph, it is clear that tl = 0 
or h > 0 according as Xo :S p or Xo > p. We now bring to the fore the fact that 
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these two cases are indeed different in terms of their epidemiological manifes­
tations. Let us first discuss the case Xo :S p. In this case, as observed above, 
y(t) is a non-increasing function throughout. This means that the number of 
infected in circulation keeps on decreasing as time passes. In epidemiological 
terms, one says that the epidemic never really builds up. This should not how­
ever be construed as saying that there are no new infections. This only means 
that the removal rate is sufficiently high compared to the infection rate, so as 
to keep the number of infected individuals in circulation going down. 

The more interesting case is when Xo > p. In this case, as observed above, 
y(t) increases upto a positive time instant tl and then decreases. That is, 
initially the epidemic does build up and reaches a peak at time instant tl, after 
which it gradually subsides. In this case, it is interesting to get an idea of the 
size of the epidemic. A good measure of the size could be (xo - x oo ), which is 
precisely the total number of individuals who got infected during the course of 
the epidemic. Of course, we know that 

Using the fact that Yoo = 0, so that Zoo = n - Xoo , we obtain 

or equivalently, 
n - Xoo = n - Xo e-(n-x=)/p . 

Denoting n - Xoo by u and setting g(u) = n - xoe-u / p, we get 

u=g(u). (6) 

Given n, Xo and p, the above is an equation in u, whose solution would give us 
n - Xoo or equivalently Xoo. Let us first point out that the equation (6) has a 
unique positive solution. Indeed, setting h(u) = g(u) - u, we observe that 

h'(u) = g'(u) - 1 = Xo e-u / p - 1. 
P 

Xo 
Let Uo = plog -. Since Xo > p, we have Uo > 0. Further, it is easy to 

p 
see that h'(u) > ° on [O,uo) and h'(u) < ° on (uo, (0). Consequently, his 
strictly increasing on [0, uo) and is strictly decreasing on (uo, (0). Noting that 
h(O) = n - Xo = Yo > 0 and lim h(u) = -00, it can be easily concluded 

u-too 
that h(u) = ° has a unique positive solution or equivalently that (6) has a 
unique positive solution. However, computing the exact value of the solution is 
difficult, perhaps impossible. There is no standard method of solving equations 
of the form u = g(u), where 9 is an exponential function. So the next best 
thing is to replace 9 by an approximating polynomial and solve the resulting 
equation to get an approximate solution. The classical finite Taylor expansion 
of 9 would be an ideal choice for such an approximation. Following Kermack 
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and McKendrick, we use the second order Taylor polynomial. More precisely, 
we replace g(u) = n - xoe-(u/p) by 

n - Xo [1 - ~ + ~] = (n - xo) + Xo ~ - Xo ~ , 
P 2p2 P 2p2 

so that Equation (6) takes the form 

or equivalently, 

u Xo 2 
U = (n - xo) + xo- - -u . 

P 2p2 

Xo 2 ( xo) -u + 1 - - u - yo = O. 
2p2 P 

(7) 

In view of Xo > p, this quadratic equation is easily seen to have only one 
positive solution. 
However, if we also assume that yo is small enough and can be neglected from 
(7), we get a simple formula for this unique positive solution, namely, 

* 2p ( ) u = - Xo - P . 
Xo 

We can utilize this simple form of u* to get a quantitative idea of the spread 
of the epidemic. Noting that u* was obtained as an approximation for n - X(X) 
and that n = Xo + yo we have 

2p 
n--(xo-p) 

Xo 

xo-2(xo-p)..E...+ yO 
Xo 

> xo-2(xo-p) [sincexo>p, 
p-(xo-p), 

that is, approximately, p - X(X) :S Xo - p. 

(8) 

Yo > 0] 

Thus, we are lead to the following conclusion. If the initial number of 
susceptibles exceeds p, then the epidemic certainly builds up. However, after 
the epidemic has died out, the final number of susceptibles can go only as 
far below p as the initial number was above p. Noting that Xo - X(X) gives 
the total number of new infections during the course of the epidemic, the 
above observation really says that this number is approximately no more than 
2(xo - p). We summarize our observations in the following theorem: 

Theorem 4.2: 
(a) We always have, 

lim y(t) = 0 and lim x(t) ;::: Xo e-(n/p) > o. 
t-t(X) t-t(X) 

(b) If Xo :S p, then y(t) continuously decreases in t. Thus, as long as Xo :S p, 
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the epidemic does not build up. 
(c) If Xo > p, then y(t) initially increases with t, reaches a peak and then 
gradually decreases. Thus the epidemic does build up. If it is further assumed 
that Yo is negligible, then 2(xo - p) is an approximate upper bound for the 
number of people infected in the course of the epidemic. 

Thus, p acts as a threshold value for the initial number of susceptibles in 
order for the epidemic to build up or not. For this reason, parts (b) and (c) 
of Theorem 4.2 are referred to as the Kermack-McKendrick Threshold Theo­
rem. Going back to (8), it is clear that if Yo is negligibly small and Xo is only 

. Xo 
margmally above the threshold value p, so that - rv 1, then one can safely say 

p 
that x= rv p - (xo - p). Very often the existing literature states this approx-
imate equality as part of the threshold theorem rather than the approximate 
inequality we stated in part (c). This is alright as long as the assumptions 

Yo rv 0, Xo rv 1 are kept in mind. 
p 

We now turn to the assumption that Yo is small. This amounts to saying 
that initially there is only a trace of the infection in the population. This is not 
altogether unjustified - and in fact quite natural - for the following reason. 
In the study of continuous time epidemic model, it is only natural to take the 
time origin as the time point when the infection first surfaced in the population. 
Granted that, the assumption of Yo being small is only logical because most 
infections start by traces. 

Before ending the section, we would like to take up a curious point. One of 
the key steps in getting an approximate solution of the equation u = g( u) was 
to replace g( u) by an appropriate Taylor polynomial. In deriving the Threshold 
Theorem, the second order polynomial was used. The natural question is: why 
not start with the first order polynomial? Here is an argument. Using the first 
order polynomial would lead to the equation u = Yo + Xo u. In case Yo rv 0 as 

p 

we have been assuming throughout, this equation almost reduces to u = Xo u. 
P 

This is of course no good. If Xo f 1, this equation admits no solution other 
p 

than zero, whereas if Xo rv 1, we end up with too many solutions! Going in 
p 

the other direction, it may be worthwhile to try and see what one obtains by 
approximating g(u) by a third order polynomial. 

4.3.2 General Stochastic Epidemic 

We start with a population consisting initially of a susceptibles and b infected 
persons. For any time instant t, X t will denote the number of susceptibles at 
time t, yt the number of infected in circulation at time t and Zt the number 
of persons removed till time t. We shall assume now that the spread of the 
epidemic is governed by a chance mechanism, so that Xt, yt and Zt are random 
variables. Our object of study is the evolution of the process (Xt , yt, Ztk20. 
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The initial conditions, as stated already, are Xo = a, Yo = band Zo = O. It is 
clear that, for all t, X t + yt + Zt = a + b. Thus, studying the two-dimensional 
process (Xt, ytk::o suffices. We now describe the chance mechanism. The idea 
is the same as in the case of simple stochastic epidemic. Given X t = x and 
yt = y, we assume that during a small time interval (t, t + .6.t), there will be 
one new infection with probability (Jxy.6.t + o(.6.t) and no new infection with 
probability 1 - (Jxy.6.t + o(.6.t). This, of course, means that the probability of 
two or more new infections during (t, t+.6.t) is o(.6.t). Regarding removals, our 
assumption is that during the same time interval, there will be one removal with 
probability ,y.6.t + o(.6.t) and no removals with probability 1 -,y.6.t + o(.6.t). 
Further, the two events, namely, that of infection and that of a removal during 
such small time intervals, are assumed to be independent. This description 
clearly entails that (Xt, yt)t:2:o is a bivariate continuous time Markov chain 
with state space 

S = {(r, s) : r, s non-negative integers, r ::; a, r + s ::; a + b} . 

It is also clear, by considering the embedded discrete chain, that this is an 
absorbing chain with the states {(r, 0) : 0 ::; r ::; a} being the absorbing states 
and all others transient. In particular, Yoo = Hm yt = 0 with probability 1, 

t-too 
and Xoo = lim X t exists. In line with the deterministic case, the random 

t-too 
variable (Xo - Xoo) would denote the size of the epidemic. For (r, s) E S, let 

Pr,s(t) = P(Xt = rand yt = s). 

It is convenient to have Pr,s defined for (r, s) tt S also, by simply adopting the 
convention that, for (r, s) tt s, Pr,s(t) = 0 for all t. We then have 

Pr,s(t + .6.t) Pr+l,s-l(t)(J(r + l)(s -l).6.t[l-,(s -l).6.t] 

+Pr,s+l(t)r(S + l).6.t[l- (Jr(s + l).6.t] 

+Pr,s(t)[l - (Jrs.6.t][l -,s.6.t] 

+Pr+l,s(t) [(J(r + l)s.6.t][,s.6.t] + o(.6.t). 

This gives us the Kolmogorov equations 

In particular, 

dP~~(t) = -b((Ja + ,)Pa,b(t). 

Using the initial condition Pa,b(O) = 1, we get 

Pa,b(t) = e-b(/3a+,y)t. 

For r = a, s = b - 1, the Equation (9) becomes 
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or equivalently, 

Using the initial condition Pa,b-l (0) = 0, the solution can easily be seen to be 

Thus the Kolmogorov equations (9) can be successively solved, using the initial 
condition Pr,s(O) = 0 for (r, s) =I- (a, b), to get Pr,s(t) for all r, s. However, 
explicit formulae turn out to be extremely complicated and fail to give any 
insight into the state of affairs. Nevertheless, several people had attempted 
to get Pr,s(t) explicitly by different methods. We briefly illustrate two such 
attempts here. For further details the reader may consult the book of Bailey. 

The first one, due to Siskind, converts the system of differential equations 
(9) to a single partial differential equation. The idea is to look at the joint 
p.g.f. of (Xt, Yt) defined as 

r,s 

The equations (9) lead to the following partial differential equation for F: 

of 2 02 F of 
- = (J(v - uv)-- + ')'(1- v)-, 
dt OUOV OV 

with the initial condition 
F(O, u, v) = uavb . 

Siskind solved this explicitly and derived formulae for the functions Pr,s(t). 

The second one, due to Gani, looks at the Laplace transforms of the func­
tions Pr,s(t). Recall that for any bounded continuous function p(t) on [0,00), 
its Laplace Transform is the function q(A) on (0,00), defined by 

Recall further that q determines p uniquely. The idea of Gani in considering 
the Laplace transforms qr,s(A) of Pr,s(t) was to convert the system of equations 
(9) into a system of recurrence relations for the functions qr,s given by, 

(A + (Jrs + ')'S)qr,s = (J(r + 1)(s - l)qr+l,s-l + ')'(s + l)qr,s+l, (10) 

for (r, s) =I- (a, b), with the initial condition 

(A + (Jab + ')'b)qa,b == 1. 
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These recurrence relations may not be difficult to solve. But in order to get 
back to the functions Pr,s, one still faces the problem of inverting the Laplace 
transforms qr,s, which is a difficult one. However, there is one probabilistic 
question that can be answered without having to go for inversion. For example, 
what is the probability that the total size of the epidemic, not including the 
initial number of infected, is k for a given 0 < k < a? In other words, we are 
interested in the quantity Pk = lim Pa-k o(t). Under suitable conditions, it is 

t-+oo ' 
easy to verify that, if q()..) is the Laplace transform of p(t), then 

lim p(t) = lim )..q()..) . 
t-+oo >--+0 

Thus, P k = lim ).. qa-k o ()..). Using the recurrence relations (10), one can reduce 
>--+0 ' 

this to 
Pk = 'Y lim qa-k 1 ()..) . 

>--+0 ' 

Thus, knowledge of qa-k,l would give us Pk for each k. 

4.3.3 A Closer Analysis: Threshold Theorems 

We now turn to what are regarded as two fundamental theorems in Markov 
models for epidemics - the so called "Threshold Theorems". Two quantities 
that are of interest in understanding the extent of the epidemic are its duration 
and size. To make the definitions of these quantities precise, let us turn to the 
Markov process (Xt, Ytk::o and observe the following salient features. Recall 
that the process has a finite state space given by 

S = {(r, s) : r, s non-negative integers; r ~ a; r + s ~ a + b}. 

As mentioned earlier, the states {(r, 0) : r ~ a} are precisely the absorbing 
states for the process. Also, the set of states {(O, s) : s ~ a + b} forms a closed 
set and once the process hits this set, it then evolves like a death chain in the 
second coordinate, getting ultimately absorbed at (0,0). Let us denote by F 
the union of the above two sets of states. Clearly, with probability one, the 
chain hits the set F in a finite amount of time. Once the set F is entered, 
no new infections are possible and therefore the epidemic can be thought of as 
having ended for all practical purposes. It is natural therefore, to regard the 
time T needed to enter F as the duration of the epidemic. One would like to 
draw conclusions about the distribution, and in particular, the expected value 
of T. To the best of our knowledge, the existing literature does not contain 
any non-trivial information on this. On the contrary, much emphasis has been 
given to what may be called the size of the epidemic. From the definition of 
T, it is clear that X (T) gives the eventual number of susceptibles left in the 
population. In other words, X(T) = lim X(t). The size of the epidemic is 

t-+oo 
clearly given by the random variable 

w = X (0) - lim X (t) = a - X (T) . 
t-+oo 
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One would like to obtain the distribution of the random variable W. Following 
the general theory of finite state Markov processes, the process (Xt, yt) evolves 
as follows. Given that at time instant t the process is in a non-absorbing 
state, it waits there for an exponential time and then makes a jump. From a 
non-absorbing state (1',8), jumps are possible to the states (1' - 1,8 + 1) and 
(1',8 -1) with probabilities Pr = (31'8/ ((31'8 + ry8) = 1'/ (1' + p) and qr = p/ (1' + p) 
respectively. Here, p is as defined in the deterministic case, namely, p = ry / (3. 
A moment's reflection shows that while T is the sum of all these waiting times 
starting from the beginning till the chain hits F, the random variable W has 
nothing to do with the waiting times. In order to get the distribution of W, it 
is therefore sufficient to keep track of only the states visited by the chain at its 
successive jumps. In other words, the distribution of W depends on (Xt, yt) 
only through the embedded Markov chain, as discussed in Section 0.9.1. Let 
us note that the embedded chain here can be described as follows. 

Let TO == 0 and (Tn, n 2: 1) be the successive jump times of the process 
(Xt, yt). For n 2: 0, let Un = XTn and Vn = Yrn · Then (Un' Vn)n20 is the 
embedded chain with state space S. The transition probabilities are as follows. 
From a state (1',8) with 8 f:. 0, transition can take place to (1' - 1,8 + 1) with 
probability Pr = 1'/(1' + p) and to (1',8 - 1) with probability qr = p/(r + p). 
The states (1',0) are absorbing. Now note that, lim Un = lim X t , so that, 

n t-+= 
W = a - lim Un. This is precisely what we meant, when we said earlier that 

n 
W depends only on the embedded chain. This was observed by Foster [1955] 
and was beautifully exploited by him and later, by Rajarshi [1981] to get the 
exact distribution of the random variable W. 

We start with some notation. For a non-negative integer w let Aw denote 
the set of all sequences a = (ao, al, ... , a w ) of length w + 1, where the ai are 
non-negative integers satisfying 
i) a w > 1 , 
ii) for j < w, ao + al + ... + aj < b + j , 
iii) ao + al + ... + a w = b + w . 

Theorem 4.3 (Foster): For 0 :::; w :::; a, 

w-l w 

P(W = w) = IT Pa-I L IT q~~j' 
1=0 ;EAw j=O 

Proof: We can view the state space S of the chain (Un, Vn)n>O as the set 
of lattice points (1',8) - that is, points with integer coordinates - in the 
xy plane. The evolution of the chain can then be regarded as the motion of a 
particle through these lattice points. From a point (1',8) with 8> 0 the particle 
moves either one step vertically downwards to (1',8- 1) or one step diagonally 
northwest (that is, up and left) to (1' -1,8 + 1). The probabilities of these two 
types of transitions are qr and Pr respectively. Once the particle hits the x-axis 
it halts. On the other hand once it hits the y-axis, then only the vertically 
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downward transitions are allowed until it reaches the origin. Viewed this way, 
the event (W = w) means that the particle starting from ( a, b) hits the x-axis 
precisely at the point (a - w, 0). 
Observe that for this to happen, the particle has to make exactly w many 
northwest transitions, with the first coordinate reducing by 1 after each such 
transition, until it finally becomes a - w. Note that, each of these transitions 
would result in an increase in the second coordinate by 1, so that the particle 
has to make b + w many vertically downward transitions in order to reach the 
x-axis. Starting from (a, b), denote by ao, the number of downward transitions 
before the first diagonal transition. In general, for 1 ::; j < w, let aj be the 
number of downward transitions between the j-th and (j + l)th diagonal steps. 
Finally a w is the number of downward transitions after the w-th diagonal step. 
Clearly aj, for 0 ::; j ::; w, are non-negative integers. Moreover, their sum is 
b + w. The fact that the particle does not hit x-axis before making the w-th 
diagonal transition implies that, for each j < w, ao + a1 + ... + aj < b + j. 
In particular, ao + a1 + ... + a w -1 < b + w - 1, implying that a w > 1. 
Thus the sequence et = (ao, a1, ... ,aw) E Aw. Conversely, any et E Aw is 
a possible choice for the number of vertical motions in between the successive 
diagonal ones, so that the required event (W = w) occurs. For any et E Aw , the 

w-1 w 
probability of making the transitions as prescribed by et is n Pa-I n q~~j" 

1=0 j=O 

Here the fact that the transition probabilities from any state (r, s) depend only 
on the first coordinate r is important. The proof is now complete. • 

For an estimate of the above probability later, we need the following lemma, 
as in Rajarshi [1981]. 

b (b + 2W) Lemma 4.4: The number of elements in the set Aw is b + 2w b + w . 

Proof: From Chapter 0.8.1, __ b_ (bb+ 2W) is precisely the number of paths 
b+2w +w 

of a random walk starting at (0,0) and ending at (b + 2w, b), which lie strictly 
above the horizontal axis. The proof will be completed by establishing a one­
one correspondence between such paths and elements of Aw. Here is the corre­
spondence. Consider such a path of random walk. First of all, the path would 
have w many downward steps and b + w many upward steps. Let ao be the 
number of upward steps after the w-th, that is, the final downward transition. 
Let a1 be the number of upward steps between the (w -1)th and w-th down­
ward motions. In general, aj will denote the number of upward steps between 
the (w - j)th and (w - j + l)th downward motions. Finally, a w is the number 
of upward steps before the first downward transition. This defines a sequence 
a = (ao, a1, ... , a w ) of non-negative integers of length w + 1. We now show 
that a E Aw. Since ao + a1 + ... + a w gives the total number of upward 
movements, it is clear that this sum is b + w. Now let 0 ::; j < w. To show that 
ao + a1 + ... + aj < b + j, it suffices to prove that aj+1 + ... + a w > w - j. 
From the definition of the aj, it should be clear that aj+1 + ... + a w is pre-
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cisely the total number of upward motions before the (w - j)th downward 
motion. Since the path lies strictly above the horizontal axis we must have 
etj+! + ... + etw > W - j . In particular, j = w - 1 gives etw > 1. In fact , this is 
also directly obvious because etw is the number of upward steps before the first 
downward step. Conversely, given a E Aw , consider the path which makes etw 

many upward transitions starting from (0,0), then makes a downward transi­
tion followed by etw-l many upward transitions, and so on. It is easy to see 
that this gives a path of the required type for the random walk. • 

The above two results lead to the following simple estimate of the distri­
bution of W, for large values of a. For stating this we need the following 
notation. For two functions h(a) and g(a), we will write h(a) '" g(a) as a -+ 00 

to mean that lim [h(a)/g(a)] = 1. It is easy to see that , hl(a) '" gl(a) and 
a-+oo 

h2(a) '" g2(a) as a -+ 00 imply that h1(a) + h2(a) '" gl(a) + g2(a) as a -+ 00. 

Lemma 4.5: For each w 2:: 0, 

P(W = w) '" _b_ (2W + b) w b+w 
2w + b w + b Pa qa 

Proof: For each l = 0,1, ... , w - 1, 

as a -+ 00. 

Pa-l 

Pa 

a-l a+p 
-----;--. -- -+ 1 as a -+ 00 . 
a-l+p a 

For each j = 0, 1, ... , w, 

qa-j _ p a + p -+ 1 
qa a - j + p' P 

asa-+oo. 

It follows that for a fixed wand an a E Aw we have, 

w-l w 

IT IT <>j w b+w 
Pa-l qa-j '" Pa qa . 

1=0 j=O 

By summing over a E Aw and using Theorem 4.3 , we get 

P(W = w) I Aw I p~q~+w as a -+ 00, 

whence the assertion follows by using Lemma 4.4. • 

We now present two theorems due to Williams (1971) and Whittle (1955), 
known as the Threshold Theorems for the General Stochastic Epidemic. The 
common theme of both the theorems is to identify p as a threshold quantity 
to determine whether the epidemic builds up or not. The following lemma 
will play a crucial role in the proofs of the threshold theorems. This is due to 
Williams. However, his proof is non-probabilistic and uses certain power series 
expansion. We give a probabilistic proof that uses transience of random walk. 
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Lemma 4.6: For 0 ::::; p < 1 and q = 1 - p, 

~ _b (2W + b) w b+w = min { (E) b I} 
L..t 2w + b w + b q P q , 
w=o 

Proof: It suffices to show that if p ;::: q, then 

~ _b _ (2W + b) w b+w = 1. 
~2w+b w+b q p 

First recall that 2w b+ b C: : bb) is precisely the number of paths of a random 

walk starting at the origin and reaching the state b in (2w + b) many steps 
without hitting the x-axis. But by reversing the motion, this would be the 
same as the number of paths starting at state b and reaching the origin for 
the first time in (2w + b) many steps, or equivalently (by shifting the x-axis), 
starting at the origin and reaching state -b for the first time in (2w + b) many 
steps. Thus if we consider a random walk with probability q (p respectively) 
of upward (downward respectively) transitions, then the summand is just the 
probability that such a random walk starting from the origin reaches -b for 
the first time in (2w + b) many steps. Since for different w, the above events 
are disjoint, summing over w gives us the probability that such a random walk 
starting from the origin ever reaches -b. By Exercise 2(vi) of Section 0.8.1, this 
probability is one whenever q ::::; p (Do not forget that here q is the probability 
of upward transition). • 

Let us now present the two threshold theorems mentioned above in the 
way that we understand them. Both the threshold theorems are statements 
concerning the extent of the epidemic for large values of the initial number of 
susceptibles a. To be precise they both talk about the limiting probabilities as 
a -t 00. Since we are varying a, it makes sense to allow P also to possibly vary 
with a. This dependence is going to be made explicit by using the notation 
Pa. In what follows we consider limits of certain probabilites as the pair (a, Pa) 
varies in such a way that a -t 00 and Pa/a converges to a limit, say, b. Since 
a is varying, the probabilities associated to the corresponding epidemic model 
will also vary. We will make it explicit by writing Pa for such probabilities. 
Note that we are keeping b, the initial number of infected individuals, fixed. 

Theorem 4.7 (Williams' Threshold Theorem): If (a,Pa) vary in such a 
a 

way that a -t 00 and - -t b, then 
Pa 

lim Hm Pa (W ::::; M) 
M-HX) a-+oo 

Proof: By Theorem 4.5, for each w, 

. b (2W + b) ( 1 ) w ( b ) b+w hmPW-w--- ----
a-+oo a ( - ) - 2w + b w + b 1 + b 1 + b ' 
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so that for any M, 

}~~ Pa (W ::; M) = t, 2w b+ b C:: : :) C! 8) w C! 8) b+w 

Lemma 4.6 now completes the proof. • 
The quantity lim Pa (W ::; M) can be interpreted as the probability of 

a--+oo 
having an epidemic of size at most M, for large values of a. Taking now the 
limit of that probability as M -+ 00 could therefore have the interpretation of 
being the probability of a finite epidemic for large values of a. Thus, Theorem 
4.7 says that, if 8 ;:: 1 then the epidemic is surely of finite size, while for 
8 < 1 the probability of a finite epidemic is 8b , which is strictly smaller than 
one. Indeed, this is how the Threshold Theorem is stated in the literature. 
There is one little subtlety, namely, instead of stating the result in terms of 
8 = lim(Pa/a), the standard practice is to simply say that for large values of a, 

a 

the probability of a finite epidemic equals one if Pa ;:: a, while it equals (Pa/a)b 
if Pa < a. This is what Theorem 4.7 may be argued to say, provided the 
inequalities and equalities are all interpreted properly. For example, Pa < a 
should be interpreted as lim (Pa / a) < 1 (or more generally, for the present 

a 
purpose, limsup(Pa/a) < 1). 

a 

We shall now proceed to Whittle's Threshold Theorem. This deals with 
the probability, for large values of a, of the epidemic not exceeding a certain 
proportion of the initial number of susceptibles a. More specifically, for fixed 
x, 0 < x < 1, we consider the probability Pa(W ::; xa). Whittle's Threshold 
Theorem attempts to get two-sided bounds for these probabilities, at least for 
large values of a. 

Getting an asymptotic lower bound is not difficult. Let us assume as before 
that the parameters (a, Pa) vary in such a way that a -+ 00 and (Pa/a) -+ 8. 
Denoting 7r~ = Pa (W ::; xa), we show that 

(11) 

To see this, fix any n and observe that for large a, we have xa > n , so that 

n 

7r~ > 2:: Pa(W = w). 
w=o 

Using Lemma 4.5, 

n b (2W + b) ( 1 ) w ( 8 ) b+w 
}~ 7r~ > ; 2w + b w + b 1 + 8 1 + 8 

The above inequality being true for all n, Lemma 4.6 yields the inequality (11). 
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Inequality (11) constitutes only one half of Whittle's Threshold Theorem 
and is often stated as 

P(W ~ xa) > min { (~) b ,I} for large values of a. 

This is true as long as it is properly interpreted as discussed after the statement 
of Theorem 4.7 above. 

The other half of Whittle's Theorem, which seeks an upper bound, is based 
on the use of a comparison technique which is interesting in its own right and 
is described below. 

Our epidemic process (Xt, yt) is a Markov process starting from (a, b) and 
having transition mechanism determined by the parameters Pr. Consider now 
another chain evolving in the same manner, but with a different transition 
mechanism determined by parameters p~. To avoid complication, we use the 
same notation (Xt, yt) for this new process also. The difference in transition 
mechanism is indicated by using P' for probabilities of the new chain. If Pr 2: p~ 
for every r, then it is natural (why?) to expect that the random variable Xr 
is stochastically larger under P' than under P, that is, 

P'(Xr 2: k) > P(Xr 2: k) for each k. (12) 

We shall show that this indeed is the case. But, for the present, we assume 
this and proceed to complete the remaining half of Whittle's theorem. 
Recall that the parameters for our epidemic process are defined as 

r 
Pr 

r + Pa 

Let us define P~ for 0 ~ r ~ a, as 

Pr 

(1 - x)a 
(1 - x)a + Pa 

for 0 < r < a. 

for r < (l-x)a 

for r 2: (1- x)a. 

Clearly, for every r, Pr 2: P~, so that by (12) 

P(Xr 2: (1 - x)a) < P'(Xr 2: (1 - x)a). 

In view of the fact that W = a - Xn the above inequality is the same as 

P(W ~ xa) < P'(W ~ xa). 

Invoking the arguments of Theorem 4.3 and using Lemma 4.4, the right hand 
side can easily be seen to equal 

xa b (2W+b)( (l-x)a )W( Pa )b+W 
~2W+b w+b (l-x)a+Pa (l-x)a+Pa ' 
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which by Lemma 4.6 is clearly bounded above by min { ((1 ~ax )a) b, 1 }. We 

conclude that 

We have thus proved 

Theorem 4.8 (Whittle's Threshold Theorem): For any x, 0 < x < 1, 
and for large values of a, 

Although we have stated the result in the way it is usually done, the reader 
should note that, the right hand side inequality is actually valid for all a, 
whereas the left hand side is valid only in the limit, that is, in the sense 
discussed earlier. It may be noted that a comparison technique, similar to 
the one used above, can be used also to get a lower bound valid for all a. 
Indeed, one can show (left as an exercise) that 

P(W::::: xa) > xa b (2W + b) ( a ) W ( Pa ) b+w 
~ 2w + b w + b a + Pa a + Pa 

for all a and all x, 0 < x < 1. It is tempting to claim that the right hand side 

of the above inequality is approximately min { (P:) b ,I} , for large a, in view 

of Lemma 4.6. One may then erraneously claim that min { (P:) b ,I} is an 

actual lower bound for P(W ::::: xa) for all large a. In fact, the standard liter­
ature seems to make that claim. We wish we could justify this, thus avoiding 
interpretation through limits. 

We now get back to our claim (12). Since comparison technique is an 
important and useful technique in the context of Markov chains, we will prove 
a slightly more general result. First, let us introduce some notation. 

For any pair of integers a 21, b 2 1, and any a-tuple B = (B1 , ... , Ba), with 
o ::::: Br ::::: 1 for all r, let Po denote the probability law of the Markov chain 
starting from (a, b) having state space 

s = {(r, s) : r, s non-negative integers; r::::: a; r + s ::::: a + b} 

and evolving in the following manner. State (r, s) is absorbing unless both r 
and s are strictly positive. From a non-absorbing state (r, s), the chain moves 
to (r - 1, s + 1) with probability Br and moves to (r, s - 1) with probability 
1 - Br. We will denote this process by (U:;;,b, V~,b). It is left as an exercise for 
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the reader to verify that we have a Markov chain on a finite state space for 
which every non-absorbing state is transient and hence it is an absorbing chain. 
Let T be the time till absorption. Thus Pe (T < (0) = 1. Our objective would 
be to get a stochastic comparison of the random variable U;,b, to be denoted 
by za,b, for various a-tuples B. The relevance of this in our context stems from 
the fact that, with Br = r/(r + p) for 1 ::; r ::; a, the chain (Un, Vn) is just the 
embedded chain associated with our epidemic process (Xl, yt) stopped at time 
T. In particular the random variable Xr and za,b are identical. We want to 
prove 

Theorem 4.9: If Band B' are two a-tuples with B~ ~ Br for all r, then za,b is 
stochastically larger under Pe than under Pe', that is, for all k, 

Pe(Za,b ~ k) > Pe' (za,b ~ k). 

To prove the theorem, we need a series of lemmas. 

Lemma 4.10: Let Wl, ... ,Wn and Vi, ... ,Vn be non-negative numbers such 
that for 1 ::; j ::; n, L Wi ::; L Vi· Then, for any sequence of numbers 

i5.j i5.j 
Cl ~ C2 ~ •.. ~ Cn ~ 0, one has L CiWi ::; L CiVi· 

i5.n i5.n 

Proof: Note that the hypothesis implies that for each j 
inequality 

(Cj - cj+d L Wi ::; (Cj - cj+d LVi 
i5.j i5.j 

1, ... ,n - 1, the 

holds. Putting cn+l = 0, the same inequality is seen to hold for j = n also. 
Adding these n inequalities yields the desired result. • 

Lemma 4.11: For any B, the probability Pe(Za,b ::; k) is non-decreasing in b. 

Proof: We shall show that Pe (za,bH ::; k) ~ Pe (za,b ::; k). Suppose that s ::; k 
and 0: is a path from (a, b) hitting the x-axis for the first time at (s,O). Let 0:* 

be the path obtained by adding one to the second co-ordinate of all points of 
the path 0:. Clearly 0:* is a path from (a, b + 1) and hitting the horizontal line 
y = 1 for the first time at the point (s,l). Let 'fJ be the hitting time of the line 
y = 1. The correspondence 0: +---+ 0:* and the fact that the two paths 0:,0:* 

have the same probabilities (because the transition probabilities from any state 
depend only on the first coordinate of the state and we have not disturbed the 
first coordinates of points in 0: to get 0:*) can be put together to deduce that 
Pe(U;,b ::; k) = Pe(U~,Hl ::; k). However from the dynamics of the process it 

is clear that the event (U~,bH ::; k) implies (U;,Hl ::; k). It now follows that 

Pe (U;,H 1 ::; k) ~ Pe (U;,b ::; k), as was to be shown. • 

Lemma 4.12: Let Band B' be two a-tuples such that B~ ~ Ba, while B~ = Br, 
for all r < a. Then za,b is stochastically larger under Pe than under Pe'. 

Proof: Let k ::; a - 1. We prove 

Pe(Za,b ::; k) < pw(za,b::; k). 



4.3. GENERAL EPIDEMIC 193 

Let TJ be the hitting time of the vertical line x = a-I. Note that the event 
(za,b :S k) implies that TJ < 00. Indeed, TJ :S b and hence 

b 

L po(za,b :S k ITJ = i)Po(TJ = i). 
i=1 

Using the Markov property, the conditional probability Pe(za,b :S k ITJ = i) is 
the same as the probability Pe(za-1,b-i+2 :S k), so that 

Analogously, 

po(za,b :S k) = L po(za-1,b-i+2 :S k)Pe(TJ = i). 
i 

Since (J~ = (Jr, for r :S a-I, it is clear that for every i, 

po(za-1,b-i+2 :S k) = Pe' (za-1,b-i+2 :S k) = Ci, say. 

Lemma 4.11 gives that Ci is non-increasing in i. Putting Wi = Pe(TJ = i) 
and Vi = Pe' (TJ = i) for i :S b, we complete the proof simply by showing 
that the hypothesis of Lemma 4.10 holds. Observe that Wi = (1 - (Ja)i-1(Ja 
and Vi = (1 - (J~)i-1(J~, so that for any j, LVj Wi = 1 - (1 - (Ja)J+1 and 
Li:::::j Vi = 1 - (1 - (J~)J+1. From the hypothesis-that (J~ ~ (Ja, it follows that 
Li:::::j Wi :S Li:::::j Vi holds for all j. • 

Lemma 4.13: Let 1 :S m :S a. Suppose (J and (J' are such that (J'm ~ (Jm while 
(J~ = (Jr for all r I: m. Then za,b is stochastically larger under Pe than under 
PO'. 

Proof: In view of Lemma 4.12, we need only consider m < a. Observe that for 
k ~ m, the hitting time TJ of the vertical line x = k has the same distribution 
under both Po and PO'. In view of 

Po (TJ :S b - a + k - 1) 

and similar equality under Pe', it follows that 

Re' (za,b :S k) C 11 k > lor a m. 

We now consider k :S m-I and show 

Let us now denote TJ to be the hitting time of the vertical line x = m - 1. By 
the same argument as used in Lemma 4.12, one sees that 

b+2(a-m) 
L Pe(zm-1,b-i+2a-2m+2:s k)Pe(TJ = i) 
i=1 
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and 

b+2(a-m) 
L POI(zm-1,b-i+2a-2m+2::; k)Pol(17 = i). 
i=l 

Let Wi = PO(17 = i) and Vi = POI(17 = i) for i ::; b + 2(a - m). As in the 
proof of Lemma 4.12, we get the desired result once we show that for every 
j, L Wi ::; L Vi, that is, Po (17 ::; j) ::; Pr)' (17 ::; j). This can perhaps be seen 

i50j i50j 
directly but here is a trite method. 
Let ij be the hitting time of the vertical line x = m. Noting that ij has the 
same distribution under Po and POI, it suffices to show that for every l ::; j -1, 
Po (17 ::; j I ij = l) ::; PO' (17 ::; j I ij = l). Using the Markov property, one sees that 
Po(17 ::; j lij = l) = 1- (1- em)j-l, while PO'(17::; j lij = l) = 1- (1- e'm)j-l, 
from which the required inequalities follow. The proof is now complete. • 

Proof of Theorem 4.9: Define a + 1 many a-tuples, eo, el, ... ,ea by 

for i::::: a - m + 1 
for i::; a - m . 

Note that for any 0 ::; m ::; a-I, we have e:-_m ::; e:_+;; and e~ = e~+1 for 
all r -:j:. a-m. It follows from Lemma 4.13 that 

Po= (za,b ::; k) < PO=+l (za,b ::; k) 

for all k and all m with 0 < m < a - 1. Noticing that eO = e and ea = e' the 
proof is complete. • 

4.4 Spread in Households: Chain Binomial 
Models 

The models discussed so far study the spread of an epidemic in a community 
at large. In this section, we take up the question of how an infectious disease 
spreads in a particular household. We shall discuss two stochastic models to 
describe this phenomenon - one is due to M. Greenwood and the other due 
to J. Reed and W.H. Frost. 

Suppose that in a household, some individuals got infected by a contagious 
disease. This puts the other members of the household at the risk of catching 
the disease. Of course, in reality there is a fixed period of incubation and it 
is only after that period, that the infected individuals become infectious. The 
disease now spreads through contacts between the infected and uninfected in­
dividuals. However, not every such contact is likely to result in a new infection. 
Thus, there is a chance factor arising out of both the possibility of contact as 
well as a contact resulting in an infection. Specification of this chance factor is 
what would constitute a stochastic model. Before going into the details of the 
models, we describe the common setup. 
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We assume that there are K individuals in a household and initially So of 
them are infected. We denote by ro the initial number of un infected individuals, 
that is, ro = K -So. We assume that the incubation period is one time unit. To 
simplify matters, we also assume that the infected individuals remain infectious 
only for an instant of time at the end of the incubation period. This is indeed 
a simplifying assumption. However, in reality the period of infectiousness may 
often be very small, for example, they may perhaps be quarantined or even be 
cured and become immune. Let SI denote the number of new infections at time 
1. The number of uninfected in circulation now is rl = ro - SI. In general, let 
Sn be the number of persons who got infected at time nand rn = rn-l - Sn 

be the resulting number of uninfected in circulation. It is to be noted that, 
at time n, the persons who can pass on the infection are precisely those who 
became newly infected at time n - 1. Also, at any point of time the persons 
who are susceptible are only those who have not been infected so far. Clearly, 
as soon as Sn = 0, there will be no more new infections and the epidemic will 
come to a halt. Of course r n+l = ° would also guarantee this (perhaps not in 
a desirable way). 

4.4.1 Greenwood Model 

According to the model proposed by M. Greenwood, the probability of a sus­
ceptible coming in contact with the group of infectious persons and getting 
himself infected is assumed to be a constant p, ° < p < 1. Moreover the fates 
of different susceptibles are assumed to be stochastically independent. Clearly, 
these assumptions lead to a binomial distribution for the number of new infec­
tions at time n. More precisely, if at time (n-1), there are Sn-l newly-infected 
persons (with Sn-l > 0) and if r n -l denotes the number of susceptibles, then 
the probability of Sn new infections at time n is 

for Sn = 0,1, ... . rn-l . 

In case Sn-l = 0, then Sn = ° and hence rn = rn-I. Note that in case 
Sn-l > 0, its actual value has no relevance in the distribution of the number of 
new infections at time n. This is one of the important features of this model. 

Denote by Sn and Rn, the number of new infections and the number of 
susceptibles respectively at time n. Thus Sn and Rn are random variables. 
Also (Rn, Sn)n?O is a Markov chain. The state space of this process is 

{( i, j) : i 2 0, j 2 0, i + j :S K} . 

This is an absorbing chain and the absorbing states are precisely the states 
{(i,O) : i:S K}. The transition probabilities are given by 

P(i,j) (i' ,j') (;,)p1'(l_ P)i' forO:S1':Siandi'=i-1' if j>O 

6(i,j)( i' ,j') if j = 0. 
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Note that, for j > 0, P(i,j),(il,jl) does not depend on j. This enables us to 
replace the original bivariate chain by an appropriately stopped univariate 
chain as follows. 

Consider the Markov chain (Xn)n2:0 with state space {O, 1, ... ,K}, initial 
state Xo = 1"0, and transition probabilities 

P(X -' I X -') - (i) i-)(l )j n+1 - J n - Z - j P - P for j = 0,1, ... ,i. 

Let T be the stopping time defined by 

T = min{n: Xn = Xn-d, 

that is, T is the first time the chain did not move from its previous state. Let 
(Yn) be the process (Xn) stopped at T, that is, 

Yn Xn if n < T 
X T if n > T. 

It is to be noted that (Yn)n2:0 is no longer a Markov chain, as we are going 
to see. A moment's reflection shows that the process (Yn)n2:0 is precisely 
(Rn)n2:o of the Greenwood Model; just recall that Sn = ° is same as saying 
that Rn = Rn-I. And of course, (Rn)n2:o itself is not a Markov chain. In 
the new formulation, the random variable T is clearly seen to represent the 
duration of the epidemic. The rest of this section is devoted to finding the 
distribution of T. 

More generally, let (Xn)n2:0 be a Markov chain with state space {O, 1, ... ,K} 
and an arbitrary transition matrix P = ((pij)). We only assume that the di­
agonal entries of P are positive. For this Markov chain, we want to find the 
distribution of the stopping time T defined as 

T = min{n: Xn = Xn-d. 

The analysis that follows is due to J. Gani and M. Jerwood. Let Q denote the 
diagonal matrix with diagonal entries same as those of P and let R = P - Q. 
Clearly, R has all its off-diagonal elements same as those of P, while all its 
diagonal entries are zero. Using this notation it is now easy to see that 

P(T = n, Xn = j I Xo = i) = R':j-Ipjj for each j , (13) 

so that 
(14) 

where e is the column vector with all entries one and e~ is the row vector with 
i-th entry one and all other entries zero. Recall that R is a matrix with non­
negative entries and having each row sum strictly less than one. Elementary 
matrix theory shows that (I - R) is invertible and (I - R)-I = 2:~=0 Rn. 
The facts that Q = P - R and Pe = e can now be used to deduce that 
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L~=l e~Rn-1Qe = 1. In view of (14), we have thus proved that T is finite 
with probability one. We now go on to find the p.g.f. of T. Throughout, we 
assume that we are starting from a fixed initial state i and denote by gi(B), the 
corresponding p.g.f. of T. Thus 

00 

gi(B) = L Bne~Rn-1Qe = e~(I - BR)-l(BQ)e. 
n=l 

In view of its similarity with the p.g.f. of the standard geometric distribution, 
the distribution of T has been called a Markov Geometric Distribution by Gani 
and Jerwood. The moments of T - in particular its expectation and variance 
- can now be easily obtained by successive differentiation of the p.g.f. For 
example, it turns out that 

E(TIXo = i) = e~(I - R)-le. 

Turning back to (13), it can also be written as 

P(T = nand XT = j IXo = i) = R'/j-lpjj. 

Thus we actually have the joint distribution of (T, X T ). One can use this to find 
the marginal distribution of XT, in particular the expected value and variance 
of XT. 

Let us now return to the Greenwood Model. This is a special case where, 

1 0 0 0 
p q 0 

P= p2 2pq q2 

pK (I[)pK-l q (~)pK-2q2 qK 

Note that in this case RK is the zero matrix, implying that T :s K with 
probability one. This is understandable, because the longest possible duration 
of the epidemic happens when one new person gets infected each day. However 
this does not make explicit computations all that easy (compare R2 and R3!). 

4.4.2 Reed-Frost Model 

The model proposed by J. Reed and W.H. Frost differs from the earlier one 
in that here the probability of one particular susceptible coming in contact 
with one particular infectious person and getting infected is denoted by p. Of 
course the usual assumption of independence of interaction between different 
individuals is retained. It follows that, with the same notations rn, Sn as in the 
Greenwood Model, the probability of anyone of the rn-l susceptibles getting 
infected at time n is 1 - (1 - p)Sn-l, so that the probability of Sn many new 
infections at time n is given by 

(r~:l) [1 - (1 - prn-1]Sn (1 - prn-1(Tn-l-Sn) for Sn = 0,1, ... , rn-l . 
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Note that in case Sn-l = 0, the above formula automatically implies that 
Sn = O. For detailed analysis of the Reed-Frost Model, interested reader can 
consult Von Bahr & Martin Lof (1980) and F. Ball (1983). 

4.5 Spatial Spread: N eyman-Scott Model 

In the earlier models, the geographic location of the epidemic was fixed and the 
temporal spread was under study. In this section, we describe a model proposed 
by J. Neyman and E. L. Scott for the spread of epidemic over a geographical 
area. 

The geographical area under consideration is called the habitat, denoted 
by H. Mathematically, H could be any subset of the Euclidean plane R2, 
preferably open. However, to simplify matters, we take our habitat to be all 
of R2. As before, the incubation period is assumed to be one time unit and 
the period of infectiousness is contracted to a single point. It is reasonable to 
assume that an infectious person at a particular location in the habitat infects 
only susceptibles at that location. However, it is equally reasonable that an 
infectious person at a crowded location is likely to infect more people than at 
a desolate location. This dependence of infectivity on the location should be 
captured in the model. Another feature of the proposed model is that it tries 
to capture the mobility factor also. In other words, it takes into account the 
fact that an individual infected at a particular location may move to another 
location by the time he becomes infectious. Indeed, that is how the infection 
spreads over the habitat. Mathematically, this will involve introducing two 
parameters, one for the spread of infection and the other for the mobility of 
the infected individual. This is done as follows. 

For every u E H, we have a probability distribution "tu on non-negative 
integers, representing the distribution of the number of individuals infected by 
one infectious person at the location u. We denote the p.g.f. of "tu by g(. I u). 
We emphasize the dependence of "tu on u as mentioned earlier. To take care 
of the mobility factor we have, for every u E H, a probability density function 
fuO on H. This has the following interpretation. A person infected at u at 
time k moves to a region S cHat time (k + 1) with probability Is fu(x) dx. 
Our model assumes that different individuals act independently. That is, first 
of all, the number of individuals infected by different infectious persons are 
independent random variables, no matter where the infectious persons are lo­
cated. Secondly, given any set of infected individuals at time k, no matter 
where they are located, the places where they move to at time k + 1 are inde­
pendent random variables. The dependence of fuO on the location u has an 
easy explanation. A person infected at home is not very likely to move away 
from home by the time he becomes infectious; whereas, if one catches infection 
when he is on board a train, he is quite likely to move far away. 

We shall now see how to describe mathematically the temporal spread of 
the epidemic over the entire habitat. To fix ideas, we start with one infectious 
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person at time 0 at location u. This infectious person will infect a certain 
number, say Xl' , of individuals at location u. From what has been said earlier, 
Xl' is a random variable with distribution IU and p.g.f. g(. 1 u). By the time 
these persons become infectious, they would have moved to various locations 
- each person, independently of the others, choosing a random location given 
by the probability density fuO. Each of them would now infect people in their 
respective new locations, who would in turn move to different locations by the 
time they become infectious, and so on. This is how the infection would spread 
over the habitat with time. Let X;: denote the number of infectious people in 
the entire habitat at time n. The dependence on u comes from the fact that we 
started initially with one infected person at the location u. We want to study 
the distribution of X;: for n 2 1. Let us denote the p.g.f. of X;: by Gn (·1 u). 
Thus dearly 

(15) 

To get the p.g.f. of Xlf, we argue as follows. Consider the i-th person infected 
by the initial infectious and let Yi denote the number of individuals infected 
by him at time 1. It should be dear that Yi has p.g.f. given by 

H1(tlu) = f g(tlx)fu(x)dx. (16) 

This is because, given that the i-th individual has moved to location x at time 
1, the conditional p.g.f. of the number of individuals infected by him is g(·lx), 
so that the unconditional p.g.f. would indeed be H1 as given. It should be 
noted here that to make sense of the integral in (16), some assumptions on gas 
a function of x are needed. [For example, assuming that 9 varies continuously 
with x would do. A reader familiar with the Lebesgue Integration Theory would 
quickly see that measurability of 9 in the x variable is all that is needed.] 

xf 
Since the Yi are i.i.d. and Xlf = L: Yi, it follows that 

;=1 

Proceeding in an analogous manner we can deduce that, for every n 2 1, 

Hn(·lu) = f Gn(· Ix)fu(x) dx, 

Gn+1 (·1 u) = g(Hn(·1 u) 1 u). 

(17) 

(18) 

Note that even if we are interested only in Gn(·1 u) for the specified initial 
location u, we have to compute Gn(·lx) for all x in order to get Hn(-lu) , which 
is required for the subsequent Gn+l(·lu). Having started with one infectious 
individual at time 0 at location u, we have obtained the p.g.f. of the number of 
infectious individuals in the habitat at time n to be Gn(·lu). Along the way, 
we came across another sequence of functions which are also p.g.f.s, namely the 
Hn(-lu). The reader would naturally wonder as to which stochastic process they 
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correspond to. Well, instead of starting with one infectious person, suppose 
we had started with one infected person at time 0 at location u. Let us now 
consider the number of infected individuals - say Z~, for n 2: 1 - in the entire 
habitat at successive time points. It is then clear that Z~ has p.g.f. Hn(·lu). 
Neyman and Scott describe X;t (Z~ respectively) as the n-th generation of an 
epidemic started by an infectious (infected, respectively) at location u at time 
O. Let us denote the expected values of X;t and Z~ by a~ and ,B~ respectively. 
Using Equations (15)-(18) one gets 

af = m(u), 

,Bf = J m(x)fu(x) dx, 

a~+l = m(u),B~, 

,B~+1 = J a~+1fu(x) dx, 

(19) 

(20) 

(21) 

(22) 

where m(u) denotes the mean of the distribution "tu. It is worth noting that, 
in order for the above formulae to be true, it is not necessary to assume that 
m(x) is finite for each x. 

We next discuss the problem of extinction of the epidemic from the habitat. 
We say that the epidemic, originating at u, is heading for an extinction, if 
X;t converges to zero in probability. Since the X;t are integer valued, this is 
equivalent to saying that P[X;t = 0] --+ 1 as n -+ 00. Here is a first positive 
result in this direction. 

Theorem 4.14: If sup m(x) < 1, then for every u, the epidemic originating 
x 

at u heads for extinction. 

Proof: Denote sup m(x) by c. Then clearly for any u, af :S c by (19) and 
x 

,Bf :S c by (20). Using induction and the relations (21) and (22), one easily 
obtains that, for every u in H and every n 2: 1, a~ :S cn and ,B~ :S cn . In 
particular if c < 1, then a~ -+ O. That is, E(X;t) -+ 0 as n -+ 00. Note that 

00 00 

E(X~) = L kP(X~ = k) 2: L P(X~ = k) = 1 - P(X~ = 0). 
k=l k=l 

It follows that P(X;t = 0) -+ 1 as n -+ 00. • 
We admit that the hypothesis that sup m(x) < 1 in the above Theorem 

x 
4.14 is a strong one. However, it should be noted that, first of all, nothing 
is assumed about the mobility distributions. Secondly, the conclusion of the 
theorem is also very strong in the sense that the convergence is uniform over 
u, that is, sup P(X~ > 0) -+ O. The next theorem on extinction has a slightly 

u 
weaker hypothesis. 

Theorem 4.15: If sup,Bf < 1, then for every u, such that m(u) < 00, an 
x 
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epidemic originating at u heads for extinction. 

Proof: Denote sup f3f by c. It is easy to see by induction that, for every n 2: 1, 
x 

a~ ::; m(u)cn - 1 . Therefore, if c < 1 and m(u) < 00, then a~ ~ O. The proof 
is now completed as earlier. • 

The reader may note that under the hypothesis of Theorem 4.14, one surely 
has sup f3'f < 1 and, of course, for every u, m( u) < 1. After the above two 

x 
theorems, which assert that under certain conditions the epidemic heads for 
extinction, we now go to a result describing when an epidemic does not. 

Theorem 4.16: If H1(0 I u) = 0 for every u, then for every u such that 
"tu ( {O}) < 1, an epidemic originating at u does not head for extinction. 

Proof: We first show that Hn(O I u) = 0, for every u and every n. Indeed, 
G2 (0 I u) = g(O I u), by Equation(18) and the hypothesis. But this, in turn, 
implies that H2 (0 I u) = 0 for all u, by Equation (17) and the hypothesis. 
Induction will now do the job. In particular, for every u and every n, one has 
P(X;: = 0) = Gn(Olu) = g(Olu) = "tu({O}), independent of n. It follows that 
if "tu ( {O}) < 1, then X;: does not converge to zero in probability. • 

We shall discuss one more problem related to this model. Can it so happen 
that an epidemic originating at some locations will head for extinction, whereas 
an epidemic originating at others will not? We show that this cannot happen 
unless there are deserts or unless the mobility is curtailed. A desert means a lo­
cation where an infectious person can not infect anybody else. More precisely, 
we say that a point u E H is a desert, if the distribution "tu is concentrated on 
the singleton {O}. Also we say that there is full mobility in the habitat if for 
every u, the density fu(-) is strictly positive everywhere. This means that an 
infected person from any location can move to any other location with positive 
probability by the time he becomes infectious. We are now ready to state the 
main result. 

Theorem 4.17: Assume that there are no deserts and that there is full mobil­
ity. Then, an epidemic originating at u will head for extinction, either for all 
u E H or for no u EH. 

For the proof, we need a little lemma on integrals. We simply state it with­
out proof, just because the proof needs Lebesgue integration theory, something 
that we are not assuming from the reader. However, those who are familiar 
with this theory will quickly agree that the result is indeed elementary. For 
those who are not, here is a motivation: suppose {an} is a non-negative se­
quence and you are told that for some strictly positive sequence {Pn}, the series 
L anPn = O. It trivially follows that an must equal zero for all n. Analogously, 
suppose that a(x) is a non-negative function of a real variable and you are told 
that the integral J a(x)p(x) dx = 0 for some strictly positive function p. Now 
of course we cannot say that a(x) must equal zero for all x. However what the 
lemma asserts is that a(x) is almost zero. 

Lemma 4.18: Let a(x) be a non-negative function on the real line such that 
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for some strictly positive function p(x), J a(x)p(x) dx = o. Then for every 
function q(x), J a(x)q(x) dx = O. 

Proof of Theorem 4.17: We start by showing that Gn(O I u) increases with 
n, for every u. This does not require any of the hypotheses of the theo­
rem. We prove by induction. First note that GI (0 I u) = g(O I u) and 
HI (0 I u) = J g(O I x)fu(x) dx 2: 0, so that 

G2 (0Iu) = g(HI(Olu) lu) > g(Olu) = GI(Olu). 

The inequality is a consequence of the fact that g(·1 u) is a p.g.f. and hence 
non-decreasing. Assuming now that Gn(O Ix) 2: Gn- I (0 I x) for all x, Equations 
(17) and (18) can be used to show that Gn+1(Olx) 2: Gn(Olx). 
As a consequence, for every x, limGn(Olx) exists, to be denoted by Goo(Olx). 

n 
From Equation (17), it follows that for every x, Hn(Olx) is also non-decreasing 
with n and hence has a limit, say Hoo(Olx). Further, the Equation (17) and 
the Monotone Convergence Theorem [see Exercise 4, Section 0.4] give 

(23) 

Again Equation (18) and the continuity of gu gives 

(24) 

To prove the theorem now, suppose that for some Uo EH, an epidemic starting 
at Uo heads for extinction, that is Goo(O I uo) = 1. We show that, under the 
hypotheses of the theorem, Goo(O I u) = 1 for all u, that is, an epidemic 
starting at any u heads for extinction. First observe that the hypothesis that 
there are no deserts, implies in particular, that IUO ({O}) < 1. This, in turn, 
implies that g(·1 uo) is strictly increasing and, hence g(t I uo) = 1 if and only 
if t = 1. Therefore, Equation (24) implies that Hoo(O I uo) = 1. In view of 
Equation (23), this means that III - Goo(O I x)]fuo(x) dx = O. Now invoke 
Lemma 4.18, with a(x) = 1- Goo(Olx) and p(x) = fuo(x), to deduce that for 
any u, III - Goo(O I x)lfu(x) dx = 0, that is, Hoo(O I u) = 1. This implies, by 
Equation (24), that Goo(Olu) = 1, as was to be proved. • 

So far, we have been considering the spread of the epidemic over the entire 
habitat. However, in practice one may be more interested in the spread of the 
epidemic over certain pockets ofthe habitat. More precisely, let RI, R2 , •.. , Rk 
be k disjoint sub-regions of the habitat. For any u E H, let X;::i' for 1 ~ i ~ k, 
denote the number of infectious persons in the region Ri at time n, for an 
epidemic starting at u. Note that we do not demand that U:=I Ri = H; 
also, we allow for the possibility that u (j. U:=I Ri. We may be interested in 

the distribution of the vector process X;:: = (X;::I' ... ' X;::k) , in particular its 
asymptotic properties. The methods of this section enable us to discuss these 
issues as well. We discuss some of them in the exercises. 



4.6. EXERCISES 203 

4.6 Exercises 

1. Consider the simple deterministic epidemic. Sometimes the following 
function is interpreted as the frequency function of the time of occurrence 
of a new infection. 

w(t) 1 dx 2 e!3(n+1)t 
-----;;- = --:;; dt = (J(n + 1) [n + e!3(n+1)tj2 . 

Show that this is indeed the probability density of a non-negative random 
variable with mean log (n + 1) / (In. 

2. Consider the simple stochastic epidemic with (J = 1. Let qr be the Laplace 
transform of PT> that is , 

Show that 

(r+1)(n-r) 
qr= A+r(n+1-r)qr+1 for 0:::; r < n, 

qn = l/(A + n) . 

Hence deduce that 

n!(n-r)! n 1 
qr = r! IT A+j(n-j+1)' 

J=r 

3. Consider the simple stochastic epidemic. Let F(x, t) be the generating 
function of Pr(t) for 0 :::; r :::; n, that is, 

n 

F(x, t) = LPr(t)Xr . 
r=O 

Show that F(x,O) = xn and 

8F (8F 82F) -=(J(l-x) n--x-
8t 8x 8x2 

4. In the Chain-Binomial models, let P(so, S1, ... , sn) denote the probability 
P(So = So, S1 = S1,···, Sn = sn). 
Show that in the Greenwood model 
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and in the Reed-Frost model 
n 

ro! L8jTJ+1 n-1 
P(S S S ) q 0 IT (1 - q8 i )8i +1 • 0, 1,···, n = " , , 

Sl· S2···· Sn·rn+1· o 

5. Let P(n, j, a) be the probability that a household of size n will have a total 
of j cases when there are a initial cases. Show that for the Greenwood 
model 

P(n,j, a) = I: (n ~ a)pkqn-a-k P(n - a,j - a, k). 
k=l 

Show that for the Reed-Frost model, P(n, a, a) = qa(n-a), and 

P(n,j, a) = I: (n ~ a) (1 - qa)kqa(n-a-k) P(n - a,j - a, k). 
k=l 

Hence deduce that in the Reed-Frost model, 

P(n,j,a) = (~-a)qj(n-j)p(j,j,a). 
J-a 

6. The idea is to describe, following R. Bartoszynski, a branching process 
model of epidemics. Here is the set-up. 
(i) Every infected individual passes through a period of illness of X + Y 
days, that is, a period of incubation of X days followed by a period of in-

00 00 

fectiousness ofY days. (X, Y) has joint p.g.f. F(s, t) = L L Pm,n smtn. 
m=On=l 

It is to be noted that Y is at least one. (ii) During the illness period of 
X + Y days, a person may be detected and automatically isolated. The 
probability of getting detected on a day is (1 - et) during the incubation 
period and (1 - (3) during the infectious period. Here 0 < et, (3 ~ 1. (iii) 
During the Y days of infectiousness an undetected individual makes a 
certain number of contacts with the susceptibles. The number of con­
tacts for different days are i.i.d with p.g.f. R( t) = L~o rk tk. (iv) Each 
contact of a susceptible with an infectious, independent of other contacts, 
leads to infection with probability "( where 0 < "( ~ 1. (v) The events 
described above are independent for different individuals. 
The interpretations of (i)-(v) are as follows. F describes the nature ofthe 
disease; R describes the social and environmental conditions like mobility 
etc.; et and (3 describe the efficiency of the health services in detecting the 
cases; "( measures the individual resistance via immunization programs 
of the health services. 

00 00 

(a) Put qm,n = L Pm,k, Q(s, t) = L qm,nsmtn . 
k=n+1 m,n=O 

Show that L:=o qm,osm = F(s, 1) . 

Show that for Isl ~ 1 and It I < I, Q(s, t) = F(s, 1i = ~(s, t) . 
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(b) Put Wn = the probability that an infected individual remains unde­
tected and infectious for exactly n days. Show that 

00 

Wn = L Pm,nam(3n + (1- (3)qm,nam(3n for n 2: 1, 
m=O 

00 

Wo = 1- LWn = 1- (3F(a, 1). 
I 

(c) Show that the p.g.f. of the number of persons infected by a single 
individual during one day of his infectiousness (when undetected) is 
given by R(1 - "( + "(t). 

(d) Let D(s) = gtF(s,t)lt=1 = LLnPm,nSm. 
Show that F(a, 1) is the probability that an infective remains un­
detected during the whole incubation period. 
Show that D (a) / F (a, 1) is the expected length of infectious period 
for those who remain undetected during the incubation period. 

(e) Let G(t) be the p.g.f. of the number of individuals infected by a 
single infective. Show that 

00 

G(t) L wnRn(1 - "( + "(t) 
n=O 
1 - F(a, 1) + F(a, (3R(1 - "( + "(t)) 

+(1 _ (3) F(a, 1) - F(a, (3R(1 - "( + "(t)) . 
1 - (3R(1 - "( + "(t) 

If R'(I) = "( with 0 < "( < 00, then show that G'(I) = "(rD(a) in 
case (3 = 1, and, = "(rl~j3[F(a, 1) - F(a, (3)], in case (3 < 1. 

1 1- x 
(f) For 0 < x :s 1, put hI (x) = F(a, x) and h2(X) = F(a, 1) - - --. 

"(r x 
Show that h~ > 0, h~ > 0, h~ 2: 0 and h~ < O. 
Show that x = 1 is a root of hI = h2' and, if h~ (1) :s h~(I), then 
this is the only root. 
Show that if h~ (1) > h~(I) then there is one more root x < 1 of the 
equation hI = h2. 

(g) Consider the n-th generation of infected individuals as follows. Zo = 
1 and for n 2: 1, Zn = the number of persons infected by the Zn-I 
persons of the (n - 1)-th generation. Show that (Zn) is a branch­
ing process with progeny generating function G(t) as given above. 
Define (3*(a,"() as the smallest positive root of 

"( r x [F(a, x) - F(a, 1)] + 1 - x = O. 

Show that 

P(limZn = 0) = 1 iff (3::; (3*(a,"(). 
n 
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[There are generalizations to the case when there are N zones and 
there is mobility for people from one zone to another.] 

7. The idea is to describe a simple mathematical model for muscle move­
ments. This is due to S. W. Greenhouse. 

Phenomenon: A muscle fibril consists of alternating thick and thin fil­
aments. During shortening and stretching they slide along each other. 
While this happens, certain chemical interactions occur at the molecular 
level. There are sites on the thin filament. Concentrate on one site now. 
The site may be occupied by a molecule or may be vacant. There are 
positions on the thick filament which are alternately 'release' and 'load' 
positions. A release position can pick up a molecule and a load posi­
tion can give a molecule. Suppose that 1,3,5, ... are release positions and 
2,4,6, ... are load positions. Imagine a site now at 0 and sliding along the 
positions. Wish to know whether a site is filled or vacant at time n, and 
time is counted in units of positions crossed by the site. Note that if the 
site is filled and arrives at a load position, then nothing happens and it 
passes on to the next position. Similarly, if the site is vacant and arrives 
at a release position then nothing happens and it passes on to the next 
position. 

In real life, positions on the thick filament are only release positions and 
moreover, a site may pickup a molecule at any point between two release 
positions. Further, during muscular contractions, the thin filament - and 
hence, the sites - move with varying velocity. The slower the speed, the 
greater the interaction and the parameters a and f3 given below change 
with n. This is a simplified treatment. 

Mathematically, Xo, Xl, ... is a sequence ofrandom variables each taking 
values 0 (vacant site) and 1 (filled site). Xo is the initial position and 
Xn its state after n interactions. The two matrices A and B given below 
represent the probabilities of transition from X 2r to X 2r+l and from 
X 2r+1 to X 2r+2 respectively. 

A_(1 0 ) 
- a I-a 

Here 0 < a < 1 and 0 < fJ < 1. 
For i = 0,1 and n 2: 1, let P~ = P(Xn = 11 Xo = i) . 
Show that for even integers n, 

° _ fJ 1 - [(1 - a)(1 - fJ)]n/2 
Pn - 1-(I-a)(I-fJ)' 

P~ = [(1- a)(1 _ fJW/2 + fJ 1 - [(1 - a)(1 - fJ)]n/2, 
1- (1- a)(I- fJ) 

and for odd integers n, 

° _ 1- [(1 - a)(1 - fJ)](n-I)/2 
Pn - fJ (1 - a) 1- (1 - a)(1 - fJ) , 
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P; = (1-a)[(1-a)(1-,8)](n-l)!2+,8 (1-a) 1- [(1- a)(1- ,8)](n-l)!2 
1- (1- a)(1 -,8) 

8. The idea is to discuss a model for Leukemia proposed by I. A. Chow. 
Phenomenon: The disease starts with anaemia and thrombocytopenia. 
This is followed by the appearance of immature leukemic cells which 
replace the normal mature leukocutes. As the disease advances the 
number of immature granulocytes increases while the number of normal 
cells (called polymorphonuclear granulocytes, abbreviated as PMNG) de­
creases. This is attributed to the fact that the abnormal immature cells 
have a long intravascular life and capacity for mitotic subdivision com­
pared with normal cells. The incapability of the abnormal immature cells 
in phagocytosis makes the patient very susceptible to infection or haem­
morhage leading to death. 
Notation: Let A > 0 and f-L > 0 be two numbers. m = maximum number 
of PMNG one can have. X(t)= Number of PMNG at time t. X(O)= 
initial number of PMNG at time 0 , say = no. 
Modelling Assumptions: The probability that PMNG will decrease by 1 
during (t, t + .6.t) given that there are n at time t is nf-L.6.t + o(.6.t). 
The probability that PMNG will increase by one during (t, t + .6.t) given 
that there are n at time t is (m - n)A.6.t + o(.6.t). 
The probability that PMNG will not undergo any change during (t, H.6.t) 
given that there are n at time t is 1 - [nf-L + (m - n)A].6.t + o(.6.t). 
Define Pn(t) = P(Xt = n I Xo = no) for 0 :::; n :::; m, and = 0 for other 
values of n. Set G(t, s) = 2::=oPn(t)sn , the p.g.f. of Xt. 

(a) Show that 

dPn(t) 
~ = ..\(m+n-l)Pn-l + f-L(n+l)Pn+l - [nIL +(m-n)..\]Pn. 

(b) Show that 

a a 
at G(t, s) = (1 - s) (f-L + ..\s) as G(t, s) (1 - s) A m G(t, s). 

G(O,s) sno. 

(c) Show that 

G(t,s) 

(d) Show that X t is the sum of two independent random variables, say, 
Xl and Xl, where 

xl '" B(no, a) with 
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xl '" B(m - no, fJ) 
1 - e-(A+Jt)t 

with fJ = A --0-,--­
/\+p, 

This can be interpreted as follows. The PMNG at time t is made up 
of two kinds. First, there are those of the initial no which are still 
surviving. Second, there are those that are liberated at some time 
T < t and are still surviving at time t. 

(e) Show that 

(f) Show that 

(g) Show that 

no p, - A e-(A+Jt)t [1 _ e-(A+Jt)t] 
p,+A 

1 - e-(A+Jt)t p, + Ae-(HJt)t 
+m A --:---- '---:-----

A+p, A+p, 

Po(oo) = lim Po(t) = (~) m 
t-400 /\ + P, 

(h) Assume that the volume of blood, say v units, is large and also the 
PMNG at time t is large. What is usually observed is yt, the density 
of PMNG, that is, the number of PMNG in unit volume of blood, 
at time t. Theoretically speaking, any of the X t cells has a chance 
l/v of appearing in the unit volume taken for the PMNG count. So 
it is believed that, given X t = n, yt is Poisson with parameter n/v. 
In other words, 

P(yt = n' I X t = n) 
(n/v)n l e-(n/v) 

n'! 
for n' 2: o. 

Show that the conditional p.g.f. of yt given X t = n is e-n(l-s)/v. 

(i) If H(t, s) is the unconditional p.g.f. of yt, then show that 

H(t,s) = H1(t,s) . H2 (t,s), 

where 

1 - + e-(l-s)/v [
A + p,e-(HJt)t A + p,e-(HJt)t ] no 

A+p, A+p, 

H2(t, s) = 1- A + A e-(l-s)/v [ 
1 - e-(HJt)t 1 _ e-(A+Jt)t ] m-no 

A+p, A+p, 

Conclude that Y, just like X, is the sum of two independent random 
variables. 
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(j) Show that 

E(yt) 

V(yt) 

(k) The parts (i) and (j) above are useful in estimating the parameters 
and making predictions. Chow considers these also. 
In practice (no/v) and (m/v) are not observable and they are re­
placed by nb, the initial PMNG density, and m', upper limit of the 
observed PMNG density. 
If the patient is under treatment then the chances of a PMNG lib­
eration from bone-marrow into the blood stream depends on the 
time instant t itself, apart from depending on the actual number at 
that time. In other words, ,\ is not a constant but a function of t. 
Similarly p also is a function of t. These are denoted by '\(t) and 
pet) respectively. 
From now on this is what is assumed and m, X o, X t , no, Pn and 
G(t, s) are as defined earlier. 

(1) Argue that G satisfies a similar equation as earlier except that the 
numbers ,\ and p are now functions of t. 

(m) Show that 

where 

G(t, s) 

1 - { 1 + fat '\(T) eR(r) dT} e-R(t) 

+ { 1 + fat '\(T) eR(r) dT } CR(t) s, 

G2(t, s) = I-fat '\(T) eR(r) dTe-R(t) + fat '\(T) eR(r) dTe-R(t) s 

and 
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(n) Show that 

and 

V(Xt ) = noe-R(t) [1 - e-R(t) {I + 2 J; A( T) eR(r) dT} ] 

+ m e-R(t) J; A( T) eR(r) dT [1 - e-R(t) J; A( T) eR(r) dT] 
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