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Preface 

The first Joint India-AMS meeting in Mathematics was held in 
Bangalore in December 2003. One of its themes was the "History of 
Indian Mathematics". Two sessions on this theme were organised jointly 
by Gerard G. Emch from the D.S., and R. Sridharan from India. These 
sessions were held on the 18th and the 20th of December. 

The speakers at these sessions covered a wide spectrum of topics 
ranging from Vedic Prosody and ancient Buddhist logic at one end to 
the contributions of Srinivasa Ramanujan and Indian contributions to 
Quantum Statistics at the other. 

The lectures were enthusiastically received and it was feIt that a 
volume based on these lectures in detail might be useful to the mathe
matical community; we thus formed an editorial committee to compile 
such a volume. Articles were invited from the speakers and were refer
eed. 

This volume, which is the outcome, begins with an overview1 of the 
subject and is divided into three sections. 

The first section which deals with the ancient period has two articles, 
one on Vedic Prosody and the work of Pirigala and the other on Buddhist 
Logic. 

The next section which discusses the mathematics of the classical 
and medieval periods begins with two articles, one on the work of Brah
magupta on Bhiivanii and its applications, another on the contributions 
of Bhäskara 11 to the mathematics of K arary[ or surds. The next article 
is on the use of power series techniques by the medieval Kerala School 
of Mathematics. The next two articles focus on the nature of algorithms 
in Indian Mathematics and Astronomy. The final article of this section 
is on the not ion of proofs in Indian Mathematics and the tradition of 
Upapattis in Mathematics and Astronomy of India. 

lThe overview is based on a lecture delivered by one of the editors at the Nehru 
Centre, Mumbai, during September 2002 and is to be published by the Nehru Centre 
in "Science in India: Past and Present", 2005 (in Press). We are grateful to Mr 
Sahani, the Executive Secretary of the Nehru Centre for allowing us to include it in 
this volume. 
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The third section is devoted to the modern period. The first arti
cle points to some surprising contributions of Srinivasa Ramanujan on 
partial fractions while the second surveys the history of some of the 
contributions of Indian mathematicians to Quantum Statistics. 

The editors are grateful to the organisers of the AMS-India confer
ence for their hospitality and to the contributors for their enthusiastic 
response. We are very happy to acknowledge the generous help of C. S. 
Seshadri and his colleagues at the Chennai Mathematical Institute (in 
particular C. S. Aravinda and V. Balaji) in making this volume possible. 
We are particularly thankful for the immense task accomplished by of 
P. Vanchinathan who prepared the camera-ready copy for the publisher. 

We thank J. K. Jain ofHindustan Book Agency whose active support 
and interest has made our endeavour a pleasure. 

June 17, 2005 Gerard G. Emch 
R. Sridharan 

M. D. Srinivas 
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Mathematics in Ancient and Medieval 
India * 

R. Sridharan 
Chennai Mathematical Institute, Chennai 600 017 

rsridhar@cmi.ac.in 

Baruch Spinoza (1632-1677), that gentle philosopher of the seven
teenth century laid down as his credo "Sedulo curavi, humanas actiones 
non redere, non ·lugere, neque detestari, sed intelligere" . He says that 
when he sets out to interpret the thoughts and his tory of a bygone age, 
he obeys the above injunctions set by him for himself - not to ridicule, 
not to mourn, never to detest, but try to understand - an excellent piece 
of advice to anyone who interprets ancient writings. I hope I abide by 
Spinoza's admonitions. 

Indian contributions to decimal systems and place value: 

Some concepts are so fundamental that they get absorbed in the 
general thinking of all the peoples of the world and it is indeed hard to 
pinpoint a specific period of time for their birth. One such is the basic 
idea of introducing the place value system and the number zero, the 
credit for which go es to Ancient India. The not ion of the place value 
has become 'obvious' and is now learnt even by young children at an 
early age. But, to have a true appreciation of the depth of this notion, 
one has merely to look at the clumsy Roman numerals and note that, not 
too long ago, these were very much in vogue in the West, in spite of their 
cumbersome notation. It has been held by a few of the Western scholars 
that the Arabs were responsible for the decimal notation even though 
the Arabs themselves clearly indicated that they were merely conveyers 
of the wisdom of India to the West. But it is now generally accepted that 

*Lecture given at the Nehru Centre, Mumbai, on 21st September 2002. To be 
published by the Nehru Centre in "Science in India: Past and Present", (2005, in 
Press) 
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the decimal notation is indeed a contribution of India, though, fixing an 
exact date for this invention is extremely hard. A possible guess could be 
100 B.C. Of course, large numbers have always been favourites ofIndians 
at all epochs and are mentioned in Vedic literat ure, in the epics like the 
Ramaya:r:la and the Mahabharata. A true assessment of the immensity 
of this great idea of the decimal system and the invention of zero can 
be found in the following quotation from Professor G.B. Halstead ("On 
the foundation of the technique of Arithmetic" Chicago, 1912). "The 
importance of the creation of the zero-mark can never be exaggerated. 
This gives to airy not hing not merely a local habitat ion and a name, 
a pidure, a symbol, but helpful power; it is the characteristic of the 
Hindu race whence it sprang. It is like coining Nirvana into dynamos. 
No single mathematical creation has been more potent for the general 
on go of intelligence and power" . 

The mathematical sophistication of the Harappan culture: 

As we know, the Indus Valley civilisation (now, more properly termed 
the Harappan civilisation) dates back to 2500-3000 :B.C. This was a city 
civilisation and hence, obviously, for town planning, a knowledge of prac
tical geometry must have been a must. Apart from this, we have clear 
evidence of the geometrie sophistication of this ancient civilisation. The 
patterns on the pottery excavated at these sites show that the artisans 
were very weIl acquainted with the concept of circles and weIl versed in 
the use of dividers for scratching on the surface of pottery. The mo
tif of triangles is also common on pottery. Apart from the use of such 
elementary geometry, a sophisticated system of weights and measures 
used by them shows that the civilisation was weIl acquainted with basic 
arithmetic. One of the highlights of this civilisation was its knowledge 
of brick building technology. The most ideal ratio of the length, breadth 
and the thickness of a brick to have efficient binding strength was known 
to the Harappan people. 

The vedic period and the Sulva geometry: 

There is a huge gap in our knowledge of the interim between the 
end of the Harappan civilisation and the beginnings of the vedic civili
sation. Whatever happened during this period, it is safe to ass urne that 
the skills and the culture of the earlier period could not aIl have disap
peared and it is indeed reasonable to postulate that there was a basic 
continuity in many human endeavours. In particular, the technology of 
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brick building during the Harappan age was perhaps put to good use for 
the eonstruetion of the saerificial altars during the vedie period. (Let 
us remember that eulture sometimes is defined as astate of the mind 
produeed by things forgotten.) 

Mathematies of the vedic period eonsists of those geometrie teeh
niques needed for the eonstruetion of the Vedis (altars) and Agnis (fire 
plaees) deseribed by the BrahmaJ).as for the obligatory (nitya) and op
tional (kamya) rites. This knowledge is eontained in Sulva Sutras whieh 
are apart of the so ealled Kalpa Sutras (more partieularly of the Srauta 
Sutras) attaehed to the Vedas a,.<; Vedangas ("limbs" of the Vedas). 
There are at least nine extant Sulva Sutras: Laugak~i, Manava, Varaha, 
Baudhayana, Vadhüla, Apastamba, HiraJ).yakesin, Katyayana and Mai
trayaJ).a. The date of the Sulva Sutras is purely eonjeetural exeept that 
from their language, it is clear that they are pre-PaJ).inian, and that 
800 B.C. would be a probable date for the eodifieation of the Sutras 
(one must remember that the vedie rituals must have preeeded even the 
Vedas so that the Sulva tradition must be mueh older than the age of 
their eodifieation). 

The word Sulva means a measuring rope or a rod (though the Sutras 
themselves do not use this; rajju is used for a measuring rod). We shall 
give a very brief sketeh of the eontents of the Sulva Sutras. We begin 
most importantly with the theorem of the square on the diagonal of a 
right angled triangle, popularly attributed to Pythagoras. A point to re
member is that the Sulva Sutras deal with right angled triangles not for 
their own sake but as two halves of a square or a rectangle when eut by 
a diagonal. While it is true that various particular integral values of the 
sides of a right angled triangle like 3, 4, 5 were known to all the ancient 
civilisations of the world, the real geometrie signifieanee of the theorem 
was perhaps first realised by the altar building vedic priests. It is be
lieved that the theorem was weIl known to the Indians at least by 800 
B.C. whieh is the estimated date of the oldest Sulva Sutra, namely, that 
of Baudhayana. Satapatha BrahmaJ).a gives 36 units as the length of the 
east-west line segment (prad) of the so ealled Maha vedi, and 30 units 
as one of the north-south sides and the prad and half the side, making 
a right angled triangle with sides 36, 15 and 39. The Sulva geometers 
were weIl aware of the notion of similarity of figures; (the Satapatha 
BrahmaJ).a mentions the mode of inereasing the size of the vedi, four-
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teen fold, to accommodate the 101st performance of the sacrifice). The 
Sauträma~I altar, for example, uses a right angled triangle whose sides 
are 5V3, 12V3, 13V3 and the Asvamedha altar involved a triangle with 
sides of 15.J2, 36.J2 and 39.J2. Thus irrational numbers occurred very 
naturally, the Vedic priests being interested in constructing altars whose 
areas were given multiples of the area of another altar. Many rational 
and integral solutions of the Pythagorean equation x2 + y2 = z2 were 
also quite weIl known to the Sulva geometers. For example, the tripies 
(3, 4, 5), (5, 12, 13), (7, 24, 25), (8, 15, 17), (12, 35, 37) are explicitly 
used. 

The quest ion whether the Sulvakäräs had a prooj of the Pythagoras 
theorem can be answered in the following way: Their approach to geom
etry was purely functional and they did not have the deductive approach 
to geometry as the Greeks had. The Sulvakäräs looked upon geometry 
as a necessity and a tool and their approach was therefore empirical. 

Among the many simple geometrical results that the Sulva Sutras 
mention, are the various properties of the diagonals of a rectangle, con
structions of isosceles right angled triangles, parallelograms, rhombi, 
construction of a trapezium similar to another and so on. 

As one of the most remarkable statements found in the Sulva Sütras, 
I would like to highlight a rational approximation to .J2 which occurs 
in the Baudhäyana, Äpastamba and Kätyäyana Sulva Sutras. The ap
proximation is 

1 1 1 
v'2 :::::: 1 + :3 + (3)(4) - (3)(4)(34)' 

which is correct up to five decimal places. It is indeed remarkable, 
whereas Greek geometry came to a grinding (though temporary) halt 
when the Greeks met with the phenomenon of irrationality of numbers 
for the first time, Indian thought went ahead, quite happy to accommo
date the irrationals. (Incidentally, a commentator by name Räma who 
lived in the middle of the 15th century A.D., in a place called Naimi~ä 
near modern Lucknow, improved upon this approximation and obtained 

1 1 1 1 1 
v'2 :::::: 1 + :3 + (3)(4) - (3)(4)(34) - ((3)(4)(34)(33) + (3)(4)(34)(34)' 

which gives a better approximation, correct up to seven decimal places). 
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The Sulvakaras sometimes had to deal with very sophisticated in
determinate equations in two or even four unknowns for the construc
tion of the altars. For instance, in the construction of Garu<;la Cayana, 
Baudhayana explains a procedure to have a Vedi constructed with five 
layers of bricks, each layer consisting of 200 bricks, covering an area of 
7~ sq. purshas and he indicates a construction ofthis vedi, using square 
bricks of four different sizes. This leads to a fairly intricate indetermi
nate equation. 

Baudhayana and Ä.pastamba give different solutions to this problem. 

Another curiosity is a derivation of an arithmetical identity from 
geometry and is found in Baudhayana Sulva Sutra (cf. [5]), where he 
wishes to construct larger and larger squares starting with a small one, 
by adding successively gnomons to it. The following geometrical figure 
illustrates this process, and gives a geometric proof of the identity: 1 + 
3+5+···+2n-1=n2 . 

r----,----r---, 

: ** I ** I ** I I I I I 

L--EJ········· J I : 

j _:~. 1 ..... * ..... 
I : : : 

I ** : * : * : I . 
L __ ...: ......... : ......... : 

We end our very short sketch of the mathematics of the Sulva period with 
the following passage which is a numerical curiosity from the Satapatha 
Brahmal.la (cf. [8, p. 351]) about finding all the divisors of 720. 1 

Now this Prajäpati, theyear, there are seven hundred and twenty 
days and nights, his lights (being) those bricks; three hundred and sixty 
enclosing stones and three hundred and sixty bricks with (special) for
mulas. This Prajäpati, the year has created all existing things, both what 
breathes and the breathless, both gods and men: Having created all ex
isting things he feU like one emptied out and was afraid of death. He 
bethought to himself "How can I get these beings back into my body? how 
can I be again the body of all these beings?". He divided his body into 
two. There were three hundred and sixty bricks in one and as many in 

lSee also I. 164 of the J:tgveda esp.) I. 164.11 and I. 164.48. 
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the other: He did not succeed. He made himself three bodies- in each of 
them there were three eighties of bricks: He did not succeed. He made 
himself four bodies of a hundred and eighty bricks each: He did not suc
ceed. He made himself five bodies- in each of them there were a hundred 
and forty-four bricks: He did not succeed. He made himself six bodies 
of a hundred and twenty bricks each: He did not succeed. He did not 
develop himself seven fold (na saptadhii vyabhavat). He made himself 
eight bodies of ninety bricks each: He did not succeed. He made himself 
nine bodies of eighty bricks each: He did not succeed. He made him
self ten bodies of seventy-two bricks each: He did not succeed. He did 
not develop eleven fold. He made himself twelve bodies of sixty bricks 
each: He did not succeed. He did not develop either thirteen fold or 
fourteen fold. He made himself fifteen bodies of forty-eight bricks each: 
He did not succeed. He made himself sixteen bodies of forty-five bricks 
each: he did not succeed. He did not develop seventeen fold. He made 
himself eighteen bodies of forty bricks each: He did not succeed. He did 
not develop nineteen fold. He made himself twenty bodies of thirty-six 
bricks each: he did not succeed. He did not develop either twenty-one or 
twenty-two or twenty-three fold. He made himself twenty-four bodies of 
thirty bricks each. Then he stopped at the fifteenth attempt and because 
he stopped at the fifteenth arrangement, there are fifteen forms of waxing 
and fifteen of the waning (of the moon). 

(Let me add on my own, one more numerieal euriosity based on 
the number seven hundred and twenty. The set of permutations of six 
symbols whieh is seven hundred and twenty eonstitutes a group, the 
so ealled symmetrie group of degree six. This group eontains fifteen 
transpositions (those permutations which interehange only two symbols) 
and fifteen other elements of order two which disturb all the six symbols.) 

The contribution of the Jainas: 

The Sulva period of mathematieal development in India represents 
also simultaneously the mathematical development brought about by 
the Jains. Fixing dates for Jaina eanonical literature is as difficult as 
(if not more diffieult than) fixing the date for Vedie literature. Ünee, 
it was thought that Vardhamana Mahavlra, a eontemporary of Buddha 
was the founder of Jainism but it has now been eonclusively estab
lished that he really was the last of the TIrthankaras; some of the earlier 
TIrthankaras like I:t~abha, Bharata being weIl known figures in Hindu 
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Puranic literat ure also. Thus, Jainism which arose as arevolt against 
the vedic sacrificial practices is perhaps as old as the Vedas themselves 
or even belongs to an earlier period. The mathematics of the Jains is 
also as old as the mathematics of the Sulvas (if not older). But most 
unfortunately, our knowledge of the mathematical contributions of the 
Jains is only through commentaries on earlier works, the original math
ematical works of the Jains having not come to light yet. In fact, there 
is a genuine need to search for original Jain manuscripts. 

A name which stands out as a Jain mathematician of farne is Uma
svati who belonged to the sect of Svetambara Jains. He most probably 
lived around 150 B.C. and belongs to the Kusumapura school near mod
ern Patna. We note in parenthesis that the later Astronomer - math
ematician Äryabhata I (born 476 A.D.) also belonged to the Kusuma
pura school. Umasvati was a great metaphysician. But he seems to 
have contributed considerably to mathematics too. His famous work 
is "Tatvarthadhigama Sutra Bh~ya". Here are found the weH known 
approximation V10 to 7r and substantial contributions to the geometry 
of the circles. The approximation V10 to 7r was used by the Jains from 
500 B.C. to 1500 A.D. The Jains came to study the circle in connection 
with their theory of cosmology . 

The Jains should have been weH aware of the place value system 
(their heavy calculations giving circumstantial evidence for this). They 
had names for very large numbers too and eventually had a concept of 
infinity, however imperfect. 

The Jains were aware of the law of indices: a m x an = a m+n . 

The Jain work Sthananga Sutra (c. 300 B.C.) classifies the study of 
mathematics under ten different heads: parikarrna, vyavahara, rajju, 
räSi, kalasavar1).a, yavat-tavat, varga, ghana, varga-varga and vikalpa. 
Parikarma probably refers to the four fundamental operations of arith
metic namely, addition, subtraction, multiplication and division; vyava
hara probably means applied arithmetic, kalasavar1).a probably refers to 
the study of fractions, rajju means geometry (as in the Sulva Sutras) räSi 
means measurements in general, varga means squaring, ghana means 
cubing and varga-varga may mean raising numbers to higher powers. 
yavat-tavat is the "unknown" x in the ancient Indian mathematics. 
vikalpa is the name given by the Jains to the theory of permutations 
and combinations. Even though permutations were known from ancient 
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times (they occur in the prosody of PiIigala, as also in Susruta's work 
"Susruta Saqlhitä" around 6th century B.C. where mention is made 
of 63 combinations which can be made out of 6 rasas (tastes)), the 
Jains, however were the ones who treated the theory of permutations 
and combinations systematically as a topie in mathematics and whose 
general formulae are completed by the Jain mathematician Mahävlra 
(850 A.D.). 

The Bak~älI manuscript: 

In 1881 A.D., in the course of excavations, a farmer came across a 
mathematies manuscript in birch-bark at a village at Bakl?älI near Pe
shawar. This manuscript was not complete; only about 70 leaves were 
available, a greater portion having been apparently lost. The language 
of the manuscript being Gäthä (a modified form of präkrta) in Säradä 
script. This manuscript was later printed and published by the then 
Government of India, edited by G.R. Kaye, with an introduction (Kaye 
has now become well known for his bias and prejudiee against Indians). 
This manuscript is a collection of rules along with illustrative examples, 
devoted to arithmetic and algebra, there being not much of geometry, 
except for a few isolated problems. Perhaps there was a section on geom
etry which had been lost. The topics on arithmetic deal with fractions, 
square roots, problems on profit and loss and problems related to the rule 
of three. The manuscript (whose date is controversial, Kaye having put 
it around the 12th century A.D., though Datta believes that it belongs 
to the 3rd or 4th century A.D.) must itself have been a commentary of 
a much earlier work. We mention some of the mathematies contained 
in the manuscript. For example, it finds the sum of a finite number of 
fractions by reducing them to a common denominator; gives the sum of 
n consecutive terms of an arithmetie or a geometrie progression; much 
more importantly gives a formula for the determination of approximate 
values of quadratie surds. This formula is usually attributed to Heron, 
a Greek mathematician of 200 A.D. An English translation of this Sutra 
in quest ion runs as follows: 

If the number is a non square, subtract the nearest square number, 
divide the remainder by twice (the nearest square), half square of this is 
divided by the sum of the approximate root and this when subtracted 
will give the corrected root. 

Expressed algebraically, this reads that if A = a2 + r, then, approx-
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imately, 
r (L)2 

VA = a + -2 - 2( 2a L) 
a a+ 2a 

This formula is used to give rational approximations to surds like J4I, 
V105, V889 and V339009. Using such approximations, the following 
kind of problem is for instance solved in the Bak:;;alI manuscript: Given 
the sum of the terms of an arithmetic progression whose first term and 
the common difference are also given, to find the approximate value of 
the number of terms of this progression. 

There are also problems involving indeterminate equations in the 
Bak:;;ali manuscript. Similar problems are discussed by Bhaskara 11 
(about whom we shall discuss later) in Lilavati. One is tempted to 
conclude that such problems were commonly considered in all works 
even before Bhaskara. 

Chandas Sütra of Phigala and Binary Arithmetic: ([11,12,18,19]) 

Prosody (Chandas) was one of the basic studies undertaken in India 
right from ancient times. Indeed, prosody was an important Vedanga 
as is borne by the following sloka. 

Chanda1.:t padantu vedasya hastau kalpo'tha pathyate 1 

J yoti:;;amayanal11 chak:;;urniruktarp. srotramucyate 11 

About Pingala, not much is known except that he lived most probably 
three or four centuries before Christ and that he authored an impor
tant work on Chandas written in Sutra style in eight chapters. (it is 
not clear whether he lived during the time of the grammarian Pa:r:tini 
or not). This work was commented upon by several people (Bharata, 
Halayudha, Hemacandra, J ayadeva, J ayaklrti, Kedara, Yadava Prakasa, 
... ) of which the commentary of Halayudha belonging to the 10th cen
tury, called Mrta SanjlvaiiI, is very weIl known. 

In the first seven chapters of his work, Pingala adopts the conven
tional method of metrical analysis of the padas or verses. However, in 
the last chapter of his work, he introduces a new method which leads 
to binary arithmetic. Before explaining this method, let me begin with 
some basic facts on metres. A metre consists of syllables contained in 
a foot or piida (there being generally four feet in a stanza). A syllable 
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is of two kinds, either it is light (represented by '-" and called laghu) 
consisting of a short vowel followed by at most one consonant or it is 
heavy (represented by - and called guru) which consists either of a long 
vowel, a diphthong or a vowel followed by two or more consonants. The 
usual method of scanning verses is to divide any verse into units of three 
syllables and assign names to met res on the basis of the combination of 
the triplets of syllables. As we have remarked, in the first seven chapters 
of his work, Piilgala uses this method of classifying metres. However, in 
the eighth chapter, Piilgala intro duces a new method. Let me make a 
remark on a standard convention in prosody. The prosodists ignore the 
first and the last syllable of a foot 2 , so that, for example for the GayatrI 
verse 

tat saviturvare:r;liyam 

whose metrical representation is 

the first and the last syllables are ignored so that the GayatrI met re is 
represented by the following sequence of six syllables. 

Piilgala associates to a syllabic foot, a table ca11ed Prastiira which 
consists of rows of laghus and gurus, listed horizonta11y. The idea of 
Piilgala is to attach a numerical value to each row in the Prastara by 
giving the value 0 to a guru and the value 1 to a laghu. The rule for 
constructing the Prastara (for the six syllabic verse) is as follows: 

First start with a11 gurus, (six in number in our example). Next, a 
new row of gurus is started but with the proviso that under the first guru 
in the li ne above a laghu is written instead. This procedure is continued 
until we reach a row consisting entirely of six laghus 

2 cf. e.g. A.A. MacDonneli "Vedic Grammar" , Appendix II, p. 437 for general 
rules of vedic prosody. 



Mathematics in India 11 

Pingala attaches a numerical value to each row as follows. Take for 
example the syllabic pattern '-../ - - - - -. The number attached to 
it is just the binary expansion 1 . 1 + 0 . 2 + 0 . 22 + ... + 0 . 25 = 1, 
increased by 1. i.e 1 + 1 = 2. The first horizontal line would then 
correspond to O· 1 + 0 ·2+ ... + 0 . 25 of 0 increased by 1, so that it 
has the numerical value 1. In other words, Pingala makes correspond 
to each row, the corresponding dyadic expansion and increases it by 1. 
For instance the third row has numerical value 3 and so on and the last 
row of the Prastara which is simply 

which corresponds to the binary expansion 1·1 + 1· 2 + 1· 22 + ... + 1· 25 = 
63, has as its value 63 + 1 = 64. The syllabic pattern for the Gayatrl 
verse we started with, according to this numbering system has the value 
44. The method of constructing a Prastara has been furt her explained 
in the works ofKedara (8th century A.D.) and Thivikrama (12th century 
A.D.) and others. To recapitulate, to each horizontal row of a Prastara 
consisting of a syllabic pattern one associates the dyadic expansion by 
assigning the values 0 and 1 to gurus and laghus respectively and by 
multiplying them by powers of 2 depending on their position and add 
1 to get the required number. The most remarkable contribution of 
Pingala are the Sutra (24 and 25 in Chapter VIII of Pingala's work) 
which show how to get back conversely, from any number, a syllabic 
pattern in a unique manner so that the procedure just described gives a 
one-to-one onto correspondence between numbers and syllabic patterns. 
The Sutras in quest ion are the cryptic 

24. 1 ardhe, 
25. saike g. 

Thanslated, they read "a laghu if divisible by 2; if not add 1 and a guru" . 
Let us interpret this remarkably brief Sutra and write down for example 
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the syllabic pattern corresponding to 44. Note that 44 is divisible by 2 
so that we divide 44 by 2 and we start with a '-", the quotient is 22 which 
is still divisible by 2 so that we divide by 2 and add one more laghu and 
'-"'-". The quotient is 11 which is not divisible by 2; add 1 divide by 
2 and and put a - so that we get '-"'-" -. Since the new number 6 is 
divisible by 2 we add a '-" and get '-"'-" - '-". The quotient is 3 which is 
not divisible by 2; we add 1 divide by 2 and put a - so that the pattern 
is '-"'-' - '-" -. The number 2 being divisible by 2 we put a '-" and get 
the pattern '-"'-" - '-" - '-" and end here. This is indeed the metrical 
pattern for the foot of the GayatrI verse we started with. 

To summarise, by means of a Prastara, Pingala gave an equivalence 
between the binary representations of numbers and their decimal rep
resentations. I would like to remark that the study of Sanskrit prosody 
initiated by Pingala had a continuing tradition in India, the study being 
taken up by the Jains too. 

We note thq,t in Europe, Leibniz, in the late seventeenth century, 
discovered binary expansions of numbers. When he later came across 
the Chinese hexagram depictions of Pu Hsi in the "Book of Changes" , 
he interpreted them as representing binary expansions and hence at
tributed the discovery of binary representation to the Chinese. One has 
to remember that the Indian contributions to mathematics had not yet 
reached Europe at that time. 

Indian mathematics during the classical age 

Ä.ryabha~a 

Among the mathematicians of the classical age in India, the first im
portant name is that of Äryabhata I (not to be confused with Äryabhata 
11 who lived nearly five centuries later). Not much is known about 
Äryabhata (from now on when we talk of Äryabhata we mean Äryabhata 
I) except that in 499 A.D., he wrote his work Äryabhatlya, in which he 
mentions he was then 23 years old, so that one concludes that he was 
born in 476 A.D. It has been, on the basis oftradition, assumed that he 
hailed from Kerala, though this is not certain. But, it is certain that he 
belongs to the Kusumapura school. It is there that he wrote his famous 
work mentioned above. His work is very concise and hard to understand. 
Most of it is devoted to Astronomy, though there are 33 slokas devoted 
to mathematics. The various subjects dealt with in his work are: the 
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theorem of Pythagoras, methods of extracting square roots and cube 
roots, progressions, geometrical problems, problems involving solutions 
of quadratic equations and most importantly, solutions of indeterminate 
equations of the first degf(~e. Äryabhata's method of solution of inde
terminate linear equations was termed by the later mathematicians a." 
Kuttaka (method of pulverization). After the discovery of the Bak~älI 
manuscript, parts of Äryabhata's work, except those dealing with linear 
indeterminate equations have lost mueh of their interest. He was most 
probably summarising the state of mathematieal knowledge of his time. 
One should, however, make a special mention of Äryabhata's work on 
his approximation for 1f and his tabulation of the values of sine. We 
shall first mention very briefly Äryabhata's diseussion of the sine. 

A 

r 

() o ~----L_-----t---i C 

B 

We note that in the are AC B of a circle with eentre 0 shown in the 
diagram, the ehord AB represents 2r sin (), r denoting the radius of the 
circle. Äryabhata took r = 360 x 60/2a, where a is a suitable approxi
mation for 1f, explained in the following sloka: 

eaturadhikarp. satama~tagul).arp. dv~~tistathä sahasräl).äm 1 

ayutadvayavi~kambhasyäsanno vrttaparil).ähal). 11 

We note the erucial word äsanna in the sloka which means "approxi
mately". Äryabhata defined 1f approximately to be that number which 
makes the cireumference of a circle of diameter 20000 units to be 62832 
so that 1f is approximately 3.1416. It is also very likely, (looking at the 
above sloka) , that Äryabhata was weIl aware that 1f is not a rational 
number. The sine table of Äryabhata consists of the values of r sin () 
for various angles () with r as above. It is amusing to note in passing 
the etymology of the word 'sine' in this connection. In Sanskrit, the are 
ACB was ealled Cäpa or Dhanus. The ehord AB was ealled jyä or jivä. 
With the Arabs jlvä beeame jiba and then jaib. Beeause of the existenee 
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of a word in Arabic, meaning heart and so unding similar, the Romans 
began calling what was originally jyä as sinus which means 'heart' in 
Latin. 

We shall now briefly discuss Äryabhata's work on linear indetermi
nate equations. i.e. those of the form ax - by = C, where a, b, C are 
integers, x and y being unknowns. The Kuttaka method of solution of 
such an equation is essentially an algorithm to obtain the greatest com
mon divisor of a and b. This is indeed the most original mathematical 
contribution of Äryabhata. He was obviously led to consider such equa
tions through problems in Astronomy - those dealing with planetary 
motions and conjunctions. Äryabhata is very brief (indeed too brief) 
in his work when he describes this method. There are indeed just two 
slokas in ÄryabhatTya on Kuttaka. These are 

adhikägrabhägahäraryt chindyäd unägra bhägahäreI).a 
se~aparasparabhaktaryt matiguI).amagräntare k~iptam 
adha upari gUI).itam antyayugunägra ccheda bhäjitese~am 
adhikägra ccheda gUI).aryt dvi cchedägram adhikägrayutam 

These slokas present many difficulties in translating and have led to a 
lot of different interpretations. B. Datta (1932) has given a translation 
based on the interpretation of the above slokas by the commentator 
Bhäskara I (625 A.D.) of Äryabhata. 

The Kuttaka method has been very popular with the later mathe
maticians of India like Bhäskara I, Mahävlra, Äryabhata II, Bhäskara 
II, and right up to the middle ages. There is in fact a text book from 
South India called Kuttäkära SiromaI).i by Devaräja. One also has to 
mention that in the solution of second degree indeterminate equations 
considered first by Brahmagupta, Kuttaka plays an important role. 

The Kuttaka method solves the problem of determining an integer 
which when divided by two integers a and b leaves remainders rl and 
r2. A generalization of this problem for several integers al, . .. ,an and 
corresponding remainders rl, ... , r n was also considered by Äryabhata. 
The Kuttaka method applies to this problem too. We note that this 
latter is just the classical Chinese Remainder theorem. 

Äryabhata I was followed by Varähamihira, an astronomer of great 
repute who wrote in 505 A.D. his great work "Paiica Siddhäntikä", ex-
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pounding the various prevalent astronomical doctrines named Paulisa, 
Romaka, Vasif;ltha, Saura and Brahma. Among these, he singles out 
the Saura as the only correct one. Varahamihira also wrote the famous 
treatises "B:rihajjataka" and "B:rhat Sarp.hita", dealing with various as
pects of Astronomy. Incidentally he seems to be the first astronomer in 
India who knew the need for the correction due to the precession of the 
equinoxes. 

Brahmagupta 

Brahmagupta is perhaps the most remarkable mathematician of the 
classical age in India. Ris contributions to mathematics are still remem
bered and with admiration. Re was born in 598 A.D. in Sind (now in 
Pakistan) and belongs to the Ujjain School, from where he wrote his 
famous work "Brahma Sphuta Siddhanta", in his 30th year, under the 
reign of the Saka King Vyaghramukha. Brahmagupta's idea in writing 
his work was to bring up to date an older astronomical work entitled 
"Brahma Siddhanta". This great work of Brahmagupta on Astronomy 
has more than four chapters devoted to pure mathematics. Among the 
commentaries on Brahmagupta's work, one should mention especially, 
that of P~thüdaka Swami (860 A.D.). 

It is interesting to note that Indian Astronomy became known to 
the Arab world only through Brahma Sphuta Siddhanta. Khalif Ab
basid Al Mansoor (712-775 A.D) founded the city of Baghdad (on the 
bank of Tigris) and made it a cent re of learning. A scholar from Ujjain 
was invited at his initiative in 770 A.D. to explain Indian Astronomy. 
Through the Khalif's orders Brahmagupta's work was translated into 
Arabic by Al Fazari and named "Sind Rind" or "Rind Sind". It is thus 
that the Arab world became cognizant of Indian Astronomy. 

We shaH pick two brilliant contributions of Brahmagupta, one in 
Algebra and the other in Geometry which clearly reveal the stature and 
sophistication of this first rate mathematician. 

(a) Varga Prak:rti (Solution of quadratic indeterminate equations) 

It must have been weH known to all ancient civilizations of the world 
that the product of the sum of two squares is again a sum of two squares; 
this comes from the identity 
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Brahmagupta stated for the first time a more general version of the 
above identity called Bhavana in his work cited above. It asserts that 
for any arbitrary (integer) N, we have 

Bhavana is an example of the notion of "composition" of quadratic forms 
invented by Gauss several centuries later. (The above identity (*) can be 
interpreted as saying that binary quadratic forms of the type x 2 - N y2 

admit "composition". The theory of composition of quadratic forms is 
still an active area of research in mathematics). 

Brahmagupta used Bhavana as a tool to study equations of the form 
x2 - N y 2 = k for integers x, y for any given positive integer N and 
a given integer k. Such equations are called Vargaprakrti (square na
tured). That Brahmagupta considered quadratic indeterminate equa
tions is itself remarkable, in view of the fact that in Astronomy (as we 
noticed when we were discussing Äryabhata's work) one comes across 
only linear indeterminate equations and there is apriori no reason to 
consider Vargaprakrti, unless out of sheer mathematical curiosity. This 
clearly shows the working of the mind of a pure mathematician, who 
has the penchant for picking up significant problems. Brahmagupta 
showed, using Bhavana, that if there is one solution (a, ß) of the equa
tion x 2 - N y2 = 1, then one has an infinity of solutions; indeed, applying 
( *) one sees that (a2 + N ß2, 2aß) is also a solution and one could iter
ate this procedure to get an infinity of solutions. But Brahmagupta did 
more. He proved using (*) that if one of x 2 - N y2 = -1, x 2 - N y2 = ±2 
or x 2 - N y2 = ±4 has a solution in integers, then x 2 - N y2 = 1 has a 
solution also in integers. Brahmagupta, by this method solves the equa
tion x2 - 92y2 = 1 (x = 1151, y = 120 is a solution) and the equation 
x2 - 83y 2 = 1 (x = 82, y = 9 is a solution). He however was unable to 
solve the equation x 2 - N y2 = 1 in general. 

The credit for giving an algorithm to solve the above equation in 
general goes to an unknown Indian mathematician who lived after Brah
magupta but before Bhaskaracarya II (whose contributions we shall dis
cuss subsequently). Bhaskaracarya II, in his work "Bljaga1).ita" (circa 
1150 A.D.) describes an algorithm to solve this equation and says "people 
call this method Cakravala" (the "cyclic method"). U sing the Cakravala 
method, he solves the rat her difficult equations x 2 - 61y2 = 1 and 



Mathematics in India 17 

x2 - 67y2 = 1 (x = 1766319049, y = 226153980 is the least positive 
integral solution of the first equation and x = 48842, Y = 5967 is the 
least positive integral solution of the second). 

In 1954, K.S. Shukla of Lucknow University discovered (cf. [15]) in 
Maharaja's Palace library in Thiruvananthapuram a commentary called 
"Sundarf' by a certain Udaya Divakara on the work of Bhaskara I, 
called "Laghu BhaskarTya", where the same Cakravala method is de
scribed with reference to a certain Jayadeva. The commentary itself 
dates back to 1073 A.D., so that the Cakravala method must be ante
rior to Bhaskara 11, at least by a hundred years. The Cakravala method 
is a beautiful algorithm which reminds one of Fermat's methods. Curi
ously enough, Fermat (1601-1665) set up as achallenge to some of his 
contemporaries like Frenicle, Brouncker and Wallis the problem of find
ing of an integral solution of the equation x 2 - 61y2 = 1 (They indeed 
found a solution). Thus began, in the 17th century in Europe the study 
of such equations which is the genesis of modern Arithmetic Geometry. 
A. Weil (cf. [21]) has this to say in this connection: "What would have 
been Fermat's astonishment if some missionary just back from India 
had told hirn that his problem had been successfully tackled there by 
the native Indians almost six centuries earlier?". One must add that 
Euler who looked at this problem of Fermat, wrongly attributed it to a 
certain British mathematician named Pell (who had not hing to do with 
this equation) and called it Pell's equation. His name has since stuck 
to the equation x 2 - N y2 = 1 through the mistake of Euler. It should 
really be called "Brahmagupta equation" . 

As an example of the prejudice of some of the mathematicians of the 
West, who would ins ist on depriving India of the honour of discovering 
mathematical ideas and try to prove that all mathematics originated 
in Greece, I quote the reasons of (a very fine mathematician) Van der 
Waerden to dismiss the claim that Brahmagupta was indeed the first one 
to study the so called Pell's equation and attributing it to the Greeks. 

"1) In Brahmagupta's treatise, the problem of solving Pell's equation 
is not motivated at all. 

2) The main subject of Brahmagupta's treatise is Astronomy. His 
Astronomical system is based upon the epicycle hypothesis which is 
a Greek invention. As one of his tools, Brahmagupta uses a table of 
sines. The Greeks have tables of chords which can be easily trans-
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formed into a table of sines. Some eighty years before Brahmagupta, 
Varahamihira presents excerpts from five Siddhantas one of which, the 
Romaka Siddhanta, was based on the solar and lunar theory of Hip
parchus while another Siddhanta is ascribed to "Paulisa, the Greek". 
Hence the Astronomy and the mathematical tools of the Hindus at 
the time of Brahmagupta and before, were largely derived from Greek 
sourees. This makes it even more probable that the Hindu method of 
solving Pell's equation also go es back to Greek sourees. 

Let us keep in mind that in history of science, independent inventions 
are exceptions: the general rule is dependence" (cf. [20]). 

(b) Brahmagupta's work on rational cyclic quadrilaterals 

I now discuss a typical contribution of Brahmagupta to geometry. As 
we have already remarked, Sulvakaras were familiar with the construc
tion of right angled triangles with rational sides. It is indeed remarkable 
that several centuries later, Brahmagupta was still interested in the 
problem of construction of figures with rational magnitudes, more pre
cisely, in the quest ion of constructing cyclic quadrilaterals with rational 
sides and diagonals. 

We begin with the following remark: Suppose that we have two right 
angled triangles ADB and A' D'C' with rational sides. We consider 
another triangle ADC which is similar to A' D'C'. By juxtaposing the 
triangles ADB and ADC along the side AD, we get a triangle ABC with 
rational sides and rational area. Conversely, any triangle with rational 
sides and rational area can be obtained by juxtaposing two rational right 
angled triangles. Indeed, one has to drop the perpendicular from one 
of the vertices to the opposite side and consider the two right angled 
triangles thus formed. 

A' 

A A 

B D B D c D' C' 
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This result is attributed to Euler by (cf. [7]) (though no proof is found in 
Euler's published papers). However this must certainly have been obvi
ous to Brahmagupta, as it is indeed a particular case of Brahmagupta's 
result on quadrilaterals by looking at a triangle as adegenerate quadri
lateral. What Brahmagupta did was much more. He constructed cyclic 
quadrilaterals with rational sides and diagonals by juxtaposing two right 
angled triangles in either of the fo11owing two ways. 

A A 

B~ __________________ ~ C 

B ~----------~+---~ c 

E E 

Figure 1 Figure 2 

The first figure corresponds to juxtaposing the rational right angled 
triangle ADB and ADC along AD and producing AD to meet the 
circumcircle of ABC at E. The quadrilateral ABCE is seen to be one 
with a11 sides, the intercepts on the diagonals and hence the diagonals a11 
rational. The other figure corresponds to juxtaposing two rational right 
angled triangles along their hypotenuses. Various numerical examples 
were considered by Brahmagupta. 

The work of Brahmagupta reached Europe through the translation 
by Colebrooke in the 19th century. The famous French geometer Chasles 
was very much impressed by this work and he published an appreciation 
ofthis. (cf. [2]). The German mathematician Kummer (cf. [10]) in 1846 
considers the general problem for a11 quadrilaterals, giving a complete 
solution for the cyclic case. Kummer modifies Brahmagupta's method 
of construction and shows that one can obtain a11 cyclic quadrilaterals 
whose sides, diagonals and area are rational, by employing a juxtapo
sition of three rational right angled triangles. (It is rat her amusing to 
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note that he blames Brahmagupta for not having thought of this so
lution!) He relates the solution in the possibly non-cyclic case to the 
existence of rational points of certain elliptic curves. 

The quest ions studied by Brahmagupta on quadrilaterals inspired 
further study and elaborat ions by successive generations of Indian math
ematicians like Mahavlra, Bhaskara 11 and the interest in these problems 
continued even in the middle ages. For instance, GaJ).esa (c 1545 A.D.) 
has results on rational quadrilaterals. 

The next few names of mathematicians of note in the classical age 
in India are those of Srldhara (c 750 A.D.) who composed a work on 
arithmetic called PatIgaJ).ita and a work on algebra. The latter is no 
longer extant. We know about the contributions of Srldhara from the 
later work of Bhaskara 11, who also mentions the name of another al
gebraist Padmanabha. One of the most celebrated mathematicians af
ter Brahmagupta was Mahavlra (C 815 A.D.). He was in the court of 
the Ra~trakiita king Amoghavar~a Nrpatmiga (who ruled over apart 
of the present state of Karnataka). Mahavlra wrote a work entitled 
"GaJ).itasarasa:tp.graha" (C 850 A.D.) which is really the first text book 
on arithmetic whose material is found even in the present text books in 
South India. Mahävlra mainly improved on the work of his predecessors 
and probably did not make any profound contributions himself. 

Bhäskaracärya 11 

The next celebrated and essentially the last mathematician of the 
classical period is Bhaskara 11 who was called Bhäskaracarya in view 
of the veneration that people had for his learning. Bhäskara 11 be
longs (according to his own statement in his work "SiddhantaSiromaJ).i" 
written around 1150 A.D.) to BijjaQ.a BIQ.a which has been identified 
with modern Bijapur. His work SiddhantaSiromaJ).i is divided into 
four parts: LIlavati, BljagaJ).ita (Algebra), GrahagaJ).ita (Astronomy) 
and Goladhaya (study of the celestial sphere). Bhaskara prided himself 
as a poet and wrote all his mathematics in verse form. (To my mind, 
verse form and mathematics do not go weIl with each other). 

As we already said, SiddhantaSiromaJ).i is essentially a text book, a 
consolidation of the state of mathematics at the time of Bhaskara 11, 
but his work was systematic and lucid so that Bhaskara was very much 
respected and termed an "Äcarya". . 
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The part of SiddhäntaSiroma:r;li, called LIlävatI deals with various 
aspects of arithmetic, whereas Bljagal).ita deals with algebraic, theoret
ical questions. LIlävatI has several problems in arithmetic, geometry, 
quadratic equations, permutations and combinations and Kuttaka. As 
a typical example, we mention a problem on permutations related to 
Chandas from LIlavati: 

Prastäre mitra gäyatryäl). syul). päde vyaktayal). kati 1 

Ekädi guravaScasu kati katyucyatäm p.rthak? 11 

[The met re GäyatrI, (as noted before) has six syllabies. The number 
of possible times the long syllable occurs in any päda in a met re with 
six syllables is six, the number of times it occurs twice is fifteen and so 
on, so that the sum total of all its occurrences is 64 (including the case 
when it does not occur at all. For the GäyatrI metre with four pädas, 
the number of all such possibilities is 644 = 16777216)J. 

There is a tradition that LIlävatI was the name of Bhäskara's daugh
ter who became a widow at an early age and that Bhäskara wrote his 
work LIlävatI to provide consolation for his daughter. It is not clear that 
this fanciful story has any basis. 

In Bhäskara's Bljagal).ita, there are problems which reduce to solving 
quadratic equations. Occasionally, there is an example of a problem 
which reduces to an easily solved cubic, 01' even a biquadratic. 

Bhäskara was familiar with the not ion of integration as a limit of 
finite sums. For instance, he calculates the surface area of the sphere, 
by dividing it into annuli and drawing a system of parallel circles, or 
by dividing the surface into lunes by drawing meridian circles through a 
pair antipodal points on the sphere and dissecting each lune into a large 
number of small quadrilaterals by drawing circles parallel to the equator. 
Bhäskara also had ideas about differentiation in connection with the so 
called instantaneous method (tätkälika) by dividing the day into a large 
number of small intervals and comparing the positions of the planet 
at the end of successive intervals. The tätkälika gati is essentially the 
instantaneous velo city of the planet. Bhäskara also knew the addition 
formula for the sine and special values of the sine function. Bhäskara's 
infinitesimal approach probably found its fruition in the mathematics of 
Kerala region in Medieval India which we now proceed to discuss. 
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Mathematics in Medieval India (cf. [1,12,13,17] 

It was believed till nearly a hundred and fifty years ago that creative 
contributions to mathematics form India came to a halt after Bhaskara 
H. However, in 1835, Charles M. Whish, a civilian employee of the East 
India Company sprang a surprise, when he published in the "Trans
actions of the Royal Asiatic Society of Great Britain and Ireland" , a 
paper entitled "On the Hindu quadrat ure of the circle and the infinite 
series for the proportion of the circumference to the diameter exhibited 
in four Sastras: Tantrasarigraham, Yuktibhaf?a, Kara~apaddhati and 
Sadratnamala". Whish gave an account of the contents of these works 
and assigned possible dates for these texts, some which have since been 
confirmed. Since the middle of the 20th century, several Indian scholars 
have worked on the contributions of the Kerala school during the middle 
ages and it is now obvious that, at least in Kerala, Indian mathemat
ics did not end with Bhaskara and in fact continued right through the 
middle ages. 

The great pioneer of the Kerala school was Madhava of Sarigama
grama who lived possibly during 1340 A.D. - 1425 A.D. He was usually 
referred to as a Golavid, an expert on the celestial sphere. Though he did 
not publish much, (he has works like Ve~varoha and Sputachandrapti, 
both giving rules of thumb for fixing lunar positions and some other 
works like Aga~ita, Laghuprakara~a), Madhava, however seems to have 
been a versatile genius and a source of inspiration to his students. We 
shall talk about Madhava in connection with a specific problem later. 
Next in line comes Paramesvara who was a prolific writer on Astron
omy and is especially remembered as the author of D:rgga~ita system of 
Astronomy. Based on his substantial observations spread over fifty-five 
years, he made some significant corrections to Aryabhata's astronomical 
calculations. 

The greatest personality of the Kerala school was NTlaka~tha So
mayaji, who was a student of Damodara (son of Paramesvara and like 
his father an Astronomer). NTlaka~tha Somayaji lived sometime during 
1440 and 1550 A.D., wrote a first rate commentary on Aryabhatyya, 
appropriately called Bhaf?ya (reminiscent of the great Mahabhaf?ya of 
Patanjali on the Af?tadhyayI of Pa~ini!). This work must have been 
composed late in his life since he quotes there from his other works in
chlding Tantrasarigraham. It may be interesting to note that among his 
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works there is one which is called Sundararaja PraSnottara which records 
Nilakal.ltha's answers to specific quest ions of a certain Sundararaja, a 
contemporary scholar from the Tamil country. The respect Sundararaja 
had for NIlakal.ltha bordered on veneration. 

Jyel?thadeva was another student ofDamodara and he authored Yuk
tibhal?a, a scientific text written in Malayalam modelled on NIlakal.ltha's 
Tantrasangraham. Yuktibhal?a is indeed unique in the sense that it is 
the first text in mathematics in India to state precise mathematical 
propositions along with their proofs. This was composed around 1520 
A.D. Karal.lapaddhati was written by Putumana Somayaji around 1730 
A.D. This is a work of ten chapters and verses and summarises all the 
mathematical contributions of the Kerala school in the sixth chapter, 
often quoting from Madhava, NIlakal.ltha and others. 

Sadratnamala belongs to the period after 1800, its author being 
Sankara Varma, a ruler of the local principality Ka<;lathana<;l in north 
Kerala. This work is merely an exposition of the achievements of the 
Kerala mathematicians. 

Though most of the above texts deal with Astronomy or with some 
special topics, they always contain sections on mathematics; for example 
Yuktibhal?a contains usual mathematical material on arithmetic, frac
tions, Kuttaka, a preliminary section with a proof of the Pythagorean 
theorem, approximation of the circumference of the circle by the perime
ters of inscribed regular polygons and finally and most importantly an 
infinite series for 1f / 4, which is customarily attributed to Gregory and 
Leibniz. It also contains several results on convergence of series, series 
for the sine and the eosine and a correct computation of the volume of 
the sphere, by the method of integration. It has also problems on the 
geometry of quadrilaterals. 

During our discussion of the work of Äryabhata, we mentioned his 
approximation for 1f as 3.1416 and his "qualification" that the latter is in
deed an approximation. NIlakal.ltha raises in his Bhäl?ya of ÄryabhatIya 
the quest ion "why this qualification?", "why not the precise value?" and 
he answers "because it is impossible to obtain apreeise one", asserting 
essentially that 1f is irrational. He also refers to the great Madhava 
and says that Madhava had even a better approximation to 1f namely 
3.1415926536 (this approximation is quoted in Karal.lapaddhati IV, 7). 
In other words, the mathematicians of Kerala already had a good no-
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tion of irrational numbers. Madhava also seems to have had the idea to 
look for an "infinite series" for 1r which would eventually lead to ratio
nal approximations. Proceeding in this manner, the Kerala school did 
produce power series expansions for tan- 1 x, sinx, cosx etc. Of course, 
they did not formally discuss the convergence of these series, but had 
a clear idea ab out convergence and in fact constructed more and more 
rapidly convergent series, and broke infinite series at a finite stage to 
estimate the error term. Let us remember, all these were achieved at 
least two centuries before Europe ever came to consider such quest ions. 

We conclude our account of the contributions of the Kerala school, 
by detailing just one example, which shows the level of sophistication 
and depth reached by them in analysis. Yuktibh~a, discussed earlier 
contains the following verse which is attributed to Madhava 

Vyase varidhinihate rupah:p;e vyasasagarabhihate 1 

Trisaradivi~amasarp.khya bhaktam:rr.1arp. svam p~"thak kramat kuryat 11 

which is merely a re-rendering of a verse in Kara:gapaddhati. The con
tent of the verse above is to relate the circumference C of a circle of 
diameter d in terms of d by the series 

4d 4d 
c=4d--+--··· 

3 5 

or equivalently !f = 1 - ! + ~ + ... , which is the so called Gregory
Leibniz series. We shall present the proof of the above equality due to 
the Kerala schooI. 

Consider a quarter of a circle of unit radius with cent re 0 inscribed 
in a unit square as in the following figure: 

0...::--______ ---, 

~~~------------~ JPn 
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Partition POPn into n equal parts. Let OPr - 1 , OPr meet the eircle at A 
and B. We draw AB' and Pr - 1C as perpendieulars to OPr from A and 
Pr - 1 respectively. 

From the similarity of the triangles OAB' and OPr - 1C, we get, in 
partieular 

AB' Pr - 1C 
OA = OPr - 1 ' 

From the similarity of the triangles CPr - 1Pr and OPOPr , we obtain 

Pr - 1C OPo 

so that we get 

AB' = OA· OPo ' Pr - 1Pr = Pr - 1Pr 

OPr - 10Pr OPr - 1 ·OPr 

We note that if n is suffieiently large, the segment AB' tends to are 
AB and OPr - 1 and OPr are approximately equal, so that we have the 
approximation 

11n 
are AB rv 0 2 

Pr - 1 

11n 

We therefore have, by using the geometrie series l~X = 1 - x + x 2 - ... , 

circumference 
8 

14 - r "n l / n 
7r - Imn-too L.."r=l 1+( r n 1)2 

( 
n-1 n-1 n-1 ) . 1 1 2 1 4 

hm -""'l--""'r +-""'r - .... 
n-too n L... n3 L... n5 L... 

r=l r=l r=l 

Remarkably, the Kerala mathematieians knew that for any integer p 2: 0, 
one has that np\r L:~==t r P tends to P~l as n -+ 00. Substituting this in 
the equation above and pushing the limit inside (whieh is eorreet, but 
needs justifieation) , we find the infinite series expansion for 7r 14 namely 

7r 1 1 
-=1--+-- .. ·. 
435 

In fact, the same method also exhibits the se ries 

x 3 x 5 
tan -1 x = X - - + - - ... 3 5 . 
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That nAl I:~;:i r P tends to P!1 as n -7 00 was proved in Europe by 
Roberval in 1634, nearly a century later than the discoveries of the 
Kerala mathematicians. 

As we mentioned earlier, the story does not end here. The Kerala 
school had several concrete infinite series, they also couldmanipulate 
to obtain rapidly convergent series and they even had vague notions of 
integration and differentiation. 

The achievements of the Kerala school may in part be explained 
by the leaders hip of that brilliant mi nd Madhava. The reason why 
the discoveries of the Kerala school did not reach the West is perhaps 
because the Portuguese dominated the West Coast of India and were 
not interested in the contributions of the natives. It indeed needed the 
British functionary Whish to bring to the knowledge of the rest of the 
world these achievements and it furt her took nearly a century for the 
Indian scholars to take cognition of this great and yet neglected chapter 
in the history of mathematics. 

Conclusion 

To sum up, the contributions of India to mathematics during the 
ancient, classical and medieval periods have been very noteworthy and 
many times profound. However, it has taken quite a while for the world 
to understand and appreciate their depth. There could be several rea
sons for this. It can in part be attributed to the overwhelming awe 
the rest of the world had for India's contributions to religion and tran
scendental philosophy, vis-a-vis the other contributions of India! Yet 
another reason could be the method, peculiar to ancient India, to hand 
down knowledge to posterity. Due, perhaps, to the paucity of writ
ing material, important ideas were preserved in the cryptic "Sutras" 
which could not be deciphered unless through extensive commentaries 
by certain distinguished teachers belonging to later traditional schools 
of learning based on the gurukula system. This sometimes had the effect 
of hiding the real meaning of the Sutras from the uninitiated and even 
if the Sutras did make sense, their fuH meaning was not always appar
ent. This had also the unfortunate effect of obscuring the original date 
of discovery of a particular Indian contribution, there being a possible 
ambiguity between the date of the actual discovery and the date of a 
later commentary on it. 
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I would like to end this article with a couple of general remarks. 
The Indian habit of using the verse form to state mathematical prob
lems and propositions has not been of much help in the propagation of 
mathematics; very often versification could be more of an impediment 
than help. One might also add that unlike in Greece, where mathemat
ics was held in high esteem for its own sake, in India, scientific thought 
was generally held subservient to tradition and was not cultivated for 
its own sake. This, in my opinion, is indeed a weakness in the approach 
in ancient and medieval India to science, in general, and mathematics, 
in particular. 
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Abstract 

In India, the science of prosody, had its beginnings in the Vedic 
period and has been held in high esteem, being regarded as a 
vediinga or a limb of the Veda. The earliest work on prosody was 
by Pirigala which is generic and on which all the subsequent works 
are based. It is an amazing fact that this early work already deals 
with matters relating to problems of combinatorics. The main aim 
of this paper is to give abrief description of this work of Pirigala 
and discuss in detail the mathematics arising out of it. 

§1. Introduction 

Classical Sanskrit composition is of two kinds: gadya (prose) and padya 
(poetry). Sanskrit prosody, the study of the metrical scanning of San
skrit poetry, called chandas sastra, has its beginnings already in the 
vedic times. In his classic work, Vedic Metre in its Historical develop
ment, first published in 1905, E. V. Arnold ([3]) begins with high praise 
for the IJ,gveda by remarking that The Rigveda is not a book, but a 
library and a literature. At the end of the first chapter, he adds: To 
whatever conc1usions we may be Eurther led in detail, it must be plain 
that as works oE mechanical art, the metres oE Rigveda stand high above 
those oE modern Europe in variety oE motive and in flexibility oE Eorm. 
They seem indeed to bear the same relation to them as the rieh har
monies oE c1assieal music to the simple melodies oE the peasant. And in 
proportion as modern students come to appreciate the skill displayed by 
the Vedic poets, they will be glad to abandon the easy but untenable 
theory that the variety oE Eorm employed by them is due to chance, or 
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the purely personal bias of individuals; and to recognize instead that we 
find all the signs of a genuine historical development, that is of uni ted 
efforts in which a whole society of men have taken part, creating an 
inl1Critance which has passed through generations from father to son, 
and holding up an ideal which has led in turn to seek rather to enrich 
his successors than to grasp at his own immediate enjoyment. If this 
was so, thell the vedic baJ;ds are also to be counted amongst 'great men 
and ..... such as sought out musical tunes and set forth verses in writillg'. 

To quote another great British Indologist on the Indian contributions 
to metres, here is what H. D. Colebrooke has to say in his essay entitled 
On Sanscrit and Prakrit poetry, published in "Asiatic Researches" in 
1808:xxx (and reprinted in Essays on History, Literature and Religion 
0/ Ancient India ([9])): The prosody of Sanskrit is found to be richer 
than that of any other known language, in the variations of the metre, 
regulated, either by quantity, or by the number of syllables both with 
or without rhyme and subject to laws imposing in some instances rigid 
restrictions, in others, allowing ample latitude. 

A few words ab out the arrangement of the article: Since a general 
reader, (for instance a mathematician) to whom this article is addressed, 
may not be familiar with principles of prosody in general and Sanskrit 
prosody in particular, this article begins with a rat her discursive account 
of some aspects of vedic prosody and also introduces so me basic facts on 
the rules of Sanskrit prosody in the first few preliminary sections. The 
main theme of the paper which is the discussion of the classical work 
of Pirigala on prosody is taken up, beginning §5. The crucial section is 
§8 , from the point of view of a mathematician, which deals with the 
combinatorial aspects of Pingala's work. 

§2. The beginnings of prosody 

As we said earlier, the beginnings of Sanskrit prosody go back to the 
vedic times. The Brähma'T}as speak eloquently of the origins of metres, 
colouring them with mysticism. The study of prosody has been held, 
right from the early times, with the greatest of esteern; At the end of 
section 7 of prapäthaka 1 of the Nidäna Sutra ([16]), we have for instance 
the following stanza: 

chandasärr vicayarr jänan ya~ sarzrädvimucyate 
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chandasameti salokyamanantyayasnute sriyam 

'a~ft i ~ ~ ~: 0\11 (H:r r6:~l"4 8 I 

'a~ftlilR1 ftIM1<NJOIH""f'4141'a8 ~II 

Translated roughly into English the above stanza reads: 

35 

One who a has deep knowledge of Chandas, shares, after liberation 
from his body, the same abode of the Chandas, acquiring eternity, glory 
and beatitude 

Prosody has been described as the feet of the Vedas; it is thus one 
of the limbs of the Veda - a vedariga. In Pa'l'}inzya sik$a, we have the 
following verse: 

Chandal} padantu vedasya hastau kalpo 'tha pathyate 
Jyoti$amayanaT!/' cak$urniruktaT[1 srotramucyate 

~:~~~~~~ 

'54.ll rd "11 JOI4 ;j ~ Ph> tti JSt1 SI ~ ~ 8 11 

Chandas are the feet of the Vedas, K alpa the hands, Astronomy the 
eyes and Nirukta the ears. 

The importance of the knowledge of chandas for understanding the 
Vedas is emphasised in Brhaddevata (a text dealing with the gods of 
the J,lgveda, supposedly written by that ancient venerable vedic seer 
Saunaka, verse 136, VIII, ([5]) as follows: 

aviditva r$iT[1 chando daivataT[1 yogameva ca 
yo' dhyapayejjapedvapi papzyaiijayate tu sal} 

airqr~~1 m ~ ~ ~"lJlilq "'f I 

m-s~ I q~\i\l1q6:1 N q l':tI41~ 148 ~ B": I 

One who teaches or recites the Veda without having proper knowl
edge of the applications, the seers, metres and Gods, becomes indeed a 
sinner. 
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As one of the earliest references to prosody, we have averse (1.1.5) in 
the Mur}(jakopani~ad ([IOD, which lists chandas as essential for attaining 
the "lower knowledge", the higher one being that of the Brahman. 

tatriiparii rgvedo yajurvedo siimavedo atharvavedaly, 
sik~ii kalpo vyiikara'T}arJ?, niruktarJ?, chando jyoti~amiti 

The six vediirigas which were considered essential for the understand
ing of the Vedas are as mentioned above: sik~ii, phonetics; kalpa, the 
knowledge of the sacrificial rites; vyiikara'T}a, grammar; nirukta, etymol
ogy; chandas, prosody; and jyoti~a, astronomy. 

These vediirigas, whose beginnings can be traced already to the 
Briihma'T}as and the Ära'T}yakas, did not originally refer to independent 
branches of knowledge but were only indicated as fields of study, essen
tial for the understanding of the Vedas. As time went by, it was realised 
that there was areal need to develop them as auxiliary subjects associ
ated with the study of the Vedas . Hence, independent texts were written 
in the (mnemonic) sütra style to expound these subjects. ([28]) . It is 
perhaps worthwhile to mention, by the way, that the sütra style of writ
ing is so met hing unique to Indian literature. A very succinct definition 
of a sütra is found ([14]) in the Vi~'T}udharmottara purii'T}a and runs thus: 

alpiik~aram asandigdharJ?, siiravat visvatomukham 
astobham anavadyarJ?, ca sütrarJ?, sütravido viduly, 

~ ~~ r~J er *11 vh"l rqlijci)Jj~ 1 

~~~~~rq(;il~: 11 

A sütra should have the least number oE syllables, should contain 
no doubtEul words, no redundancy oE words, should have unrestricted 
validity, should contain no meaningless words and should be Eaultless! 

The study of prosody which began in the vedic period evolved to 
apply to classical Sanskrit and to the Prakrit poetry as wen and had its 
continued impact on the poetry of the later ages too. 
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To quote an example, the slokas of the epics like the Riimiiya'T}a and 
the Mahiibhiimta are derived by and large from the vedic metre anu~tup. 
Indeed the vedic met re anu~tup came to be monopolised by the poets 
of the classical age. On the other hand, the vedic met res tri~tup and 
jagatf led to metres used by poets and bards at the courts of various 
kings. 

In this connection, it is amusing to note, parenthetically, that the 
great poet Kälidäsa (who himself is probably the author of a work enti
tled Srutabodha [21] on classical metres - though this work is attributed 
by some to Vararuci) employs a vedic met re in a very appropriate con
text in his great play Abhijiiiina Siikuntalam. 

When Sakuntalä is about to leave the hermitage of the sage KaI.lva 
to go to meet her husband Du:;;yanta, KaI.lva offers a benediction, which 
is set in the following beautiful stanza in the vedic metre tri~tup, with 
11 syllables in each of its four piidas. 

amf vedfm paritaJ:!, klrPtadhi~'T}yiiJ:!, 

samidvantaJ:!, priinta sarp,stfT'T}a darbhiiJ:!, 
apaghnanto duritarp, havyagandhai!;, 
vaitiiniistvii~ vahnayaJ:!, piivayantu 

Translated in to English, the stanza reads: 

May these sacrificial fires, fixed in their places around the altar, 
nourished by holy wood, with the darbhii grass strewn around their 
boundaries, removing sin by the Eragrance oE the oblations, purify thee! 

ai &11 ~ f~ 1:ffur: ~: 
+1 ftl G:~: ~ +1 PR11 01 00: 

aiq$l~1 ~ fiOllJIrQ-: 

adl'1lfqj ~: qlcP"'I"1j 11 



38 R. Sridharan 

§3. Units of prosody, the syllables 

The etymology of the Sanskrit word for prosody chandas traces it to 
various roots, for instance, it can de derived from the root chad, which 
means "to cover"; incidentally, this is not the only possible etymological 
derivation; there are several other possibilities too! Whatever be the 
etymology of chandas and the consequent derived meanings, it denotes 
the science of syllables in verses. 

A syllable (ak~ara in Sanskrit) is a vowel with or without one or 
more consonants. A syllable is called a laghu (short), (denoted by l), if 
it consists of a short vowel followed by at most one consonant. A syllable 
which is not a laghu is called a guru (long), (denoted by g). But there 
is a proviso by which even a short syllable will be treated as long while 
scanning, when it is followed by a conjunct consonant, an anusvära (a 
nasal) or a visarga (an aspirant). Unlike in classical Sanskrit prosody, 
where the nature of the syllables is also an important aspect of prosody, 
vedic metre is governed solely by the number of syllables in averse, 
called the length of the metre. (a verse is called a päda in Sanskrit), 
which forms the basic unit of Sanskrit poetry. Verses combine to form 
a rk, or a stanza, which is a unit of a vedic hymn. 

A stanza consists, generally, of not less than three and not more 
than fifteen verses. A stanza may consist of metrically identical (sama) 
or metrically different (vi~ama) verses. Two or three stanzas combine 
to form a strophe. 

The following is an example of a rk in gäyatri: met re (a stanza with 
three verses each of which has 8 syllabies): 

agnim ile I pur6hitam I 
yajfiasya de I vam rtvijam I 
h6täram ra I tnadlWtamam I 

which has the following arrangement of 8 syllables in each of its verses: 

d 9 9 9 ! 
d 9 l 9 9 ! 
d 9 9 9 9 ! 

(According to one of the rules of prosody, the first and the last syllables 
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.of a verse are ignored for scanning purposes. ) 

§4. Some works on prosody other than PiIigala's 

As we shall notice presently, Piilgala wrote a definitive work (in sutra 
style) on prosody, probably around the middle of the third century B.e. 
As is the case with such definitive works, (for example the A§tiidhyiiyz 
of Pa:r:üni), Piilgala's work systematises and improves upon the work 
of many earlier authors on the subject. The names of Yäska and the 
otherwise unknown prosodists like Saitava, Rata, Ma:!).<;!avya, Ta:!).<;!I, 
Krau~tiki and Kasyapa are mentioned as some of those who preceded 
hirn. Like Pa:!).ini once again, who dealt with classical Sanskrit gram
mar rather than vedic grammar, Piilgala, though he begins his work 
with vedic metres, deals for a substantial part with classical metres. 
It should be remarked that works like the Chando viciti (called Tatva 
subodhint) , which is apart of the Nidiina Sutra (which is a srauta 
sutra of the Siimaveda, and is supposed, according to some, to have 
been written by the great Patafijali, who wrote the Mahiibhii$ya - the 
"great commentary" - on Pa:!).ini's A$tiidhyiiyt), lJ,kpriitisiikhya (written 
by the venerable Saunaka) , Siinkhyiiyana BriihmaT}a, associated to the 
lJ,gveda and lJ,ksarviinukramaT}z, also deal with various aspects of vedic 
metres. The Agni puriiT}a, Niirada puriiT}a, Garu~a puriiT}a, and the 
Vi$T}udharmottara puriiT}a, Niitya Siistra by Bharata, and Varahamihira's 
Brhat saT[thitii are some of the fairly old texts which have separate sec
tions dealing with Sanskrit prosody. Subsequent to the classic work of 
Piilgala, apart from commentaries on it, like that of Halayudha (called 
Mrta saiijzvanz ([11]), that of Yadava Prakasa ([19]), there have been 
many authors like Kedara Bhatta ([25]), Svayambhil (847 A.D.), 
K~emendra (1100 A.D.) and Gailgadäsa (1500 A.D.)([6]) and others 
([26]), who have written texts on prosody. As we mentioned earlier, 
even Kalidäsa is said to be the author of the text Srutabodha, dealing 
with classical Sanskrit prosody. All of these are heavily infiuenced by 
the monumental work of Piilgala. There have also been many Jain au
thors who have written on prosody, like the author of JanasrayI (6th to 
the 7th century A.D)([12]), JayakIrti (1000 A.D.) Jayadeva (1000 A.D.) 
and that polymath from Gujarat, Hemacandra (1088-1172 A.D.)([7]). 

§5. PiIigala, the author of Chandas Sutra 

As is the case with many of the ancient personages in India, very little 
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is known ab out PiIigala hirnself except that he was highly venerated 
and referred to as Pingaliiciirya or Pingala Niiga. (Niiga in Sanskrit 
means a serpent and serpents are supposed to be endowed with great 
wisdom). Some think that he was identical with Patanjali the author 
of the Mahiibhiifya. $adgurusi~ya in his commentary (1187 A.D.) on 
J:lganukrama1)f refers to Pingala as pii1)infyiinuja which can be inter
preted to mean that Pingala was a younger contemporary of Pa:r:tini 
or even that he was the younger brother of Pa:r;lini. Though, conjec
turaHy, it is thought that Pingala lived in the middle of the third century 
B .C.,the precise period of Pingala is hard to determine. Most probably, 
Pingala was a younger contemporary of PäJ.lini and belonged to the third 
century B.C. With reference to his place of birth, we are equally igno
rant, though it is surmised that he might have been born somewhere on 
the west coast of India. That he lived near a coast is perhaps obliquely 
corroborated by the statement in the Paiicatantra (2,36) (cf. [18], p. 
255) ab out the manner in which Pingala met his death. Stressing the 
theme that even the meritorious ones can not take it for granted that 
they are safe frbm assault, it is mentioned there 

chandojiiiinanidhi'r(/- jaghiina makaro veliitate pingalam 

Translated into English, it reads Pirigala, the repository oE the knowledge 
oE metres was killed by a crocodile on the sea shore. The fuH verse in 
fact says that Pa:r;tini was killed by a lion, Jaimini by an elephant and 
Pingala by a crocodile. Albrecht Weber in his book, "Uber die Metrik 
der Inder" ([27]), guesses that this enumeration is perhaps in the order 
of time and therefore Pingala probably was later in time than PaJ).ini 
and J aimini. 

§6. Pirigala's Chandas Sütra 

However uncertain one is ab out Pingala as a man and his li fe history, his 
work on chandas (in eight chapters, containing 315 sütras) is very much 
extant and has been commented upon, as we said earlier, by several dis
tinguished authors including Halayudha (11th century), Yadava Prakasa 
(11th century), the latter being the weH known teacher of Ramanuja. 
As we also mentioned, there are severallater texts on Sanskrit prosody 
based on Pingala's work, one of the most important one being by Kedara 
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Bhatta (12-13th Century). We note also that in the Agni puräry,a ([1]), 
chapters 327-334 give a summary of the Chandas Sästra as expounded 
by Pirigala, beginning with a description of prosody thus: 

chando vak§ye mulajaistailJ pirigalokta'T{t yathäkramam 

~ ~ ~Jlkl: rq~·~lffi ~ 1 

In Varahamihira's Brhatsa'T{thitä ([23]) in section 104, which deals 
with grahagocarädhyäya (movements of planets), verse 58, emphasising 
the rule of prosody (already found in the first chapter of Pirigala's Chan
das Sutra), reads: 

prakrtyäpi laghuryasca vrttabähye vyavasthita/} 
sa yäti gurutärr~ loke yadä syu/} susthitä graM/} 

SI'{i~Ifi:l ~y;4~ 1'dQI&J ~: 1 

tr~~~~~:~~: 11 

Very much like the final syllable in averse which is deemed long by 
the rules oE prosody even iE it is short, a person though oE mean birth, 
and reprehensible in character, becomes respectable in this world, iE the 
planets are favourable. 

§7. Abrief discussion of PiIigala's Chandas Sutra 

As we said earlier, Pirigala's Chandas Sutra contains 315 sutras dis
tributed over eight chapters. Among these, the sutras of the first three 
chapters and the first seven sutras of the fourth are devoted to vedic 
metres. As mentioned before, the two basic building blocks of Sanskrit 
prosody are the guru (9) and the laghu (l). These correspond to the 
Greek syllabIes: thesis and arsis. From these, the following groups of 
disyllables can be built: 

9 9 which in Greek is the disyllable spondee 
l 9 " iambic 

9 l " trochaeus 
l " pyrrhic 
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Obviously, the number of trisyllables is eight and are as written 
below: 

Trisyllable Greek name Sanskrit name 
ggg molossus magar;a 

l 9 9 bacchius yagar;a 
glg amphimacer ragar;a 
l l 9 anapaestus sagar;a 

9 9 l anti bacchius tagar;a 
l 9 l amphibrachys jag ar; a 
9 l l dactylus bhagar;a 
l l l tribrachys nagar;a 

In the first chapter of his work, Pirigala gives the mnemonics ma, va, 
ra, sa, ta, ja, bha, na to the set of trisyllables written above. Any trisyl
lable is called a gar;a, so that the trisyllables are denoted, respectively 
by magar;a, yagar;a, ragar;a, sagar;a, tagar;a, jagar;a, bhagar;a, nagar;a. 
These are referred to in the Pirigala's Chandas Sütra as a$tau vasava iti. 
Pirigala remarks that these gaI).as along with the guru and laghu form 
the basis of all prosody. 

Many works on prosody, like Vrtta Ratnakara of Kedara BhaHa 
(1150 A.D.), the commentary of Yädava Prakasa (circa 1050 A.D.) and 
many other commentators of Pirigala's work have the following couplet 
which expresses poetically the pre-eminence of the above ten units of 
prosody: 

m yarastajabhnagairlantail} ebhirdasabhirak$ arai/} 
samasta'[ß varimaya'[ß vyapta'[ß trailokyamiva vi$r;una 

RI(ff1\J1~n~l4l: ~: I 

~ ~ &ITIf ~ ~")I CN rti q rCl ~l"11 11 

The world oE speech is enveloped by the ten units ma, va, ra, sa, ta, 
Ja, bha, na, 9 and l, like Lord Vi.~~u permeating the three worlds. 

(The same statement is also made by $adgurusi~ya in his commentary 
of ]J,ksarvanukramar;f.) We quote another sloka given by Kedara Bhatta 
in his Vrtta Ratnakara, which gives a mnemonic for the eight gar;as: 

adimadhyavasane$u bhajasa yanti gauravam 
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yaratä läghava'f!l- yänti manau tu guru läghavam 

~~~~I 

~ ~ ~ r:r-n- ~ Uf!~I€p:i 11 

A rough translation in to English of the above sloka reads: 

43 

The guru moves into the first, middle and the last position in bha, 
ja and sa. The laghu moves into the first, middle and the last positions 
in ya, ra and tao ma and na represent a11 gurus and a11 laghus. 

There are many features of Sanskrit prosody which distinguish it 
from the Greek. Greek prosody had its origin in music and dance, 
whereas in India, prosody began with the vedic chants. Also, whereas 
in Greek prosody, scanning is achieved though the analysis of the posi
tion and nature of disyllables, in Sanskrit, it is through the analysis of 
trisy11ables and the two single sy11ables 9 and l. 

We include at this point a few facts on vedic as we11 as classical 
prosody. In general, metrical music deals with three factors: the sound 
value of a sy11able, sy11abic quantity and the time taken for the utterence 
of a sy11able. In vedic metres, the music depends only on the modulation 
of the voice in the pronunciation of the sy11ablesj the essential features of 
the sy11ables, namely whether they are short or long do not matter. On 
the other hand, the nmsic of classical met res depends on the essential 
features of the sy11ables, their variations and their order of succession. 
Hence, in classical prosody, a single letter could not be the unit of a 
metrical line as in vedic metres. A mere mention of the . number of syl
lables which are a11 independent units sufficed to give an idea of the 
metrical line in the vedic metre and there was no need to give the es
sential features of the letters nor was it necessary to say how they were 
related to each other. But both these points required to be stated in the 
case of classical metres. Hence a method had to be found for scanning 
classical metres. Units of two sy11ables and their fourfold combinations 
are a choice and such a choice was indeed tried out by a Jain prosodist, 
as has been pointed out by H. D. Velankar in his book Jayadäman([13]). 
But these were found to be inadequate to express the basic constituents 
of the music of a metre, especia11y in the case of longer verses. So a 
new unit had to be found by the classical prosodists, which was neither 
too long nor too short. In ancient India, the number 3 was the least 
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number which denoted multiplicity; the number 2 did not really signify 
plurality and indeed enjoyed too special a status. This is perhaps one 
of the reasons why, as H. D. Velankar suggests in his Jayadäman([13]), 
groups of three syllables were chosen by the ancient prosodists of India 
for scanning classical metres. 

The second chapter of Pirigala's Chan das Sutra introduces and dis
cusses various aspects of the seven basic vedic metres: gäyatrf, UfT}ik, 
anu§tup, brhati, parikti, tri§tup and jagati. Gäyatrf consists generally 
of three pädas of eight syllables each and hence has 24 syllables in all , 
and from then on, the number of syllables in these met res increases by 4 
at a time, so that u§r;,ik has 28 syllabies, anu§tup has 32, brhatf has 36, 
parikti has 40, tri§tup has 44 and jagatf has 48. Eight different varieties 
of these metres, are also discussed. Thus the seven basic vedic metres 
are divided into eight forms each, and totally there are 56 different kinds 
of metres. 

In the third chapter, the not ion of a päda (foot) in Sanskrit prosody 
(which is very different from the not ion of a 'foot' in Greek prosody) 
is discussed. Rules regarding filling of a päda are also discussed. For 
example, in the gäyatrf when the number of syllables falls short of the 
required number of eight syllabies, as in the following: 

tatsaviturvarer;, yam 

where there are only seven syllabies, one should scan it as: 

tatsaviturvarer;,iyam 

d ct'I rCl tief{ fOl ~ 

changing y to iy. 

In this chapter, nine forms of the gäyatrf metre in terms of the 
number of pädas are described. To give an example, one could have 
a gäyatrf stanza containing four pädas with six syllables each, which is 
called catu§päda gäyatri. Haläyudha, in his commentary gives such an 
example from the Atharvaveda, Kär;,~a 6, Sukta 1.1 ([4]). 
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It is interesting to note that a non vedic catu$piida giiyatrz stanza 
(attributing it to the Piiiiciiläs) is also quoted in the Nidiina Sutra 
(prapiithaka 1, Chando viciti)([16]), whose meaning is unclear. 

It is also interesting to note that in §16 of the lJ,kpriitisiikhya ([20]), 
there is an example of such a stanza (stanza 7), which is given by 
Saunaka. The stanza runs as follows: 

indraf:i, saäpatir balena v~litaf:i, 

duscyavano vr$ii samatsu siisahif:i, 

This stanza is also found in the Nidiina Sutra (prapiithaka 1, Chando 
viciti)([16]). A small part of this stanza occurs in the lJ,gveda (Eighth 
Mal!-9ala, 19;20) namely: 

yenii samatsu siisahaf:i, 

(Yädava Prakasa in his commentary of Pingala Chandas Sutra notices 
this fact). 

Similar forms of other met res are also discussed in this chapter. Men
tion is made of a class of those metres whose first and last verses have 
correct number of syllables, but whose middle verses have smaller num
ber of syllables. Such metres are called pip rlika madhya that is, with 
amiddie like that of an antI For example, there are giiyatrf stanzas in 
which the first and the last piidas have eight syllables but whose middle 
piida has only three syllables. A general rule states that the number of 
syllables in the first piida determines the metre. 

To the seven basic met res are sometimes associated the seven svaras 
of music : namely $arjja, r$abha, giindhiira, madhyama, paiicama, dhai
vata and ni$iida (respectively); also the following colours: sita (silvery), 
siiranga (variegated), pisanga (brown), kr$,(w (black), nzla (blue), lohita 
(red) and gaura (white); and to the seven rishis: AgniveSya, KiiSyapa, 
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Gautama, .Angfrasa, Bharadvaja,Kausika and Vasi§tha. These identifi
cations are intended as alternate methods to identify these metres, in 
case there is a confusion! 

In chapter 4, after discussing fifteen kinds of vedic met res from utkrti 
to jagatf, Pingala introduces the cryptic statement 'from now on classical 
metres' and from then on, he deals only with classical met res till the end 
of the book. He in fact deals in the rest of this chapter with the so called 
matra vrttas, that is those met res of classical Sanskrit based on the 
syllabic instants (a syllabic instant being the time taken to pronounce a 
short syllable: a long syllable takes twice as much time and is therefore 
said to constitute two syllabic instants). He discusses, in particular, 
the .Arya and the Vaitalfya metres. (We note, incidentally, that the 
.Aryabhatfya of .Aryabhata is written in the .Arya metre.) 

In the fifth chapter, Pingala discusses the so called vrtta chandas. 
He classifies stanzas with four padas into three types: sama, ardhasama 
and vi§ama. Samavrttas are those which consist of the same number of 
syllables in each pada, while ardhasamavrttas have the same number of 
syllables in the first and the third padas, as well as in the second and 
the fourth padas. vi§ama vrttas are those in which all the padas have 
unequal number syllabies. 

The aim of the sixth chapter of Pingala's Chandas Sutra is principally 
to define the notion of yati (caesura). The sutra which describes yati 
is yati vicchedah. The word vicchedaJ:t signifies 'resting place'. It is the 
mechanical pause introduced in the middle of the verse. As against the 
irregular pauses in the vedic metres like tri§tup and jagatf, it is regularly 
admitted in classical metres. While the origin of yati can be traced to the 
need for the ease of recitation, it evolved into an art and ornamentation 
in classical poetry. The concept of yati has been discussed at length 
by all the later prosodists and has become a regular feature of classical 
vrttas. The effectiveness of yati in classical Sanskrit poetry, is best 
illustrated in the beautiful verses of the exquisite Meghaduta of Kalidasa 
(in the slow-moving, majestic metre of mandakranta, a classical metre, 
with seventeen syllables, with pauses at the end of the fourth and tenth 
syllables in each pada). 

In the seventh chapter, Pingala describes and discusses met res ati
jagatf, sakvarf, atisakvarf, a§ti, atya§ti, dhrti, atidhrti, krti, prakrti, 
akrti, vikrti, sa'rfl-krti, abhikrti and utkrti which are the so called atichan-
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das (hyper metres) containing 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 
96, 100 and 104 syllables respectively. At the end of the chapter, he also 
explains the met re dar.u;laka. 

The eighth chapter which is the concluding chapter of Pirigala's book 
begins with the sutra, atriinukta'f!/> giithii; Pirigala's idea is to include in 
this chapter those metres which had not been mentioned in the earlier 
chapters. 

The last fifteen sutras of this chapter (sutras 20 till 35) are the most 
interesting ones from the point of view of mathematics and deal with 
binary arithmetic and combinatorial quest ions arising out of the study 
of prosody. We shall discuss these in the next section. 

§8. Pingala's sütras and binary arithmetic 

Since prosody deals with two symbols land 9 and their repetitions, it is 
rather an easy matter for us (who live in this computer age) to guess1 

that the study of prosody should naturally lead to quest ions on binary 
arithmetic. Indeed, the study of prosody did lead the ancient Indian 
mathematicians to binary arithmetic and combinatorics, as is evidenced 
by the sutras 20-35 in the eighth chapter. As is usual with Pirigala, 
these sutras are cryptic to the point of being obscure. However, as 
is customary with the ancient Indian system of preserving knowledge, 
the later commentators of Pirigala's Chan das sutra have provided ample 
explanations of the sutras ([17], [22]). 

The sutras 20-23 deal with the construction of the so called prastiira 
of a metre, which can be translated roughly into English as a matrix or 
an array of syllabIes. The laghus and gurus in a metre of a given length 
are listed horizontally as rows (or lines) in a prastiira. This device of 
a prastiira can be thought of as a table written either on the ground 
or on a board. The rules for the construction of a prastiira, for met res 
of length one, two or three are given in these sutras. For example, the 
prastiira for a metre of length 1 is obtained by first writing the symbol 
9 (for guru) and beneath it the symbol l (for laghu). The prastiira for 

lOne remembers the words of Schiaparelli, the Italian historian of Early Greek 
Astronomy who wrote in the introductory section of his paper on the work of Eudoxus 
on Astronomy: "Thtto il nostro merito sta nell'esser venuti al mondo piu tardi": 'Our 
sole merit consists in having come to the world a little later'. 
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a met re of length 2 starts with a horizontal row with two gurus: 9 g. 
We begin the next row , by writing l (for a laghu) below the first entry 
9 of the first row and write 9 below the second entry 9 of the first row, 
so that this row reads l g. In the third row, we begin with a 9 and 
write a l beneath the next entry 9 of the second row so that, the third 
row reads 9 l. We begin the fourth row with an land write a l below 
the the next entry l of the third row. The prastära for a metre with two 
syllables is now complete and is the array of four horizontal rows 

9 9 1 

l 9 2 

9 l 3 

l 4 

consisting of two syllables each. The general rules for constructing the 
prastäras of met res of a given length n are similar and explained by 
the sutras. Namely, we start with a horizontal row consisting entirely 
of n gurus. The rest of the rows of the prastära are constructed by 
using the following rule: Start any row and continue filling the row with 
gurus until we see for the first time a guru in the previous row. Then 
write a laghu as the entry for this row below this guru and from then 
on, copy the rest of the syllables from the previous row. We continue 
filling rows this way until we reach a row consisting of all laghus, where 
we stop. 2 This method applied to two syllables gives obviously the 
prastära of two syllables we have written above. The prastära for a 
metre of three syllabies, using the rule described above gives the table 
for the eight ga'f}as (trisyllabies) we wrote down in the beginning of the 
previous section. 

The sutra 23 reads vasavastrikal}, which simply enumerates the num
ber of trisyllables as eight! (there are eight vasus according to the vedic 
lore!) 

2 As has been kindly pointed out by Professor M.G. Nadkarni, this rule applied 
to infinite sequences of zeros and ones (g = 0, l = 1) gives rise to a transformation 
on the space of sequences of zeros and ones. It is a very basic object in ergodic 
theory called dyadic adding machine or odometer transformation, and when viewed 
as a transformation of the unit interval, it is called von Neumann transformation, a 
name given by Kakutani. This transformation plays a very important role in orbit
equivalance theory and related areas. 
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Let us also add one more fact regarding the construction of the 
prastära. We number the rows of a prastära serially with the first row 
of the prastära consisting of all gurus being numbered as l. 

Before discussing the rest of the sütras, it is perhaps convenient to in
troduce a stanza which lists the various techniques, termed as pratyayas, 
by which some arithmetic quest ions related to met res can be analysed. 
This stanza is found in text books on prosody subsequent to Piilgala's 
work. For instance, it is found in Kedära Bhatta's vrüa ratnäkara, ([25]) 
Yädava Prakasa's commentary of Piilgala's Chan das Sütra, Hemacan
dra's chandonusäsana, and in many other works on prosody. The stanza 
in quest ion ([25], p. 187) reads as follows: 

prastäro na~tamuddi~tam ekadvayädi lagakriyä 
sankhyä caivädhvayogasca ~arj,ete pratyayäJ:!, smrtäJ:!, 

5lff11 Ü "1eJjr~i ~'fiG?"l1 r~ &PI r~~ I 1 

tIllT ~ ~~: ~: 11 

As we said, the above stanza enumerates the various components of 
some of the arithmetic aspects of prosody, namely: (i) prastära (whose 
meaning we just now explained), (ii) na~tam, (iii) uddi~tam, (iv) ekad
vayädilagakriyä, (v) sankhyä, (vi) adhva yoga. 

The following stanza ([25], p. 188) summarises what we said already 
ab out the way a prastära is constructed: 

päde sarvagurävädyällaghu'T{1 nyasya guroradhaJ:!, 
yathopari tathäse§a'T{1 bhüyaJ:!, kuryädamu'T{1 vidhim 
üne dadyäd guruneva yävat sarvalaghurbhavet 
prastäro 'ya'T{1 samäkhyätaJ:!, chandovicitivedibhiJ:!, 

~ f14U~Y-lI~I~~ ~~: 1 

~ ~ ~: !i~1~4 fcrNl:[ 11 

~~~~lqct14&1~~ 1 

5l ff11 Ü S (;j- f1 J4 I ~ I d: 0; rG 'I rq r"l rd 4 r~ fi.r: 11 

We shall describe now each of the other aspects listed above re
lated to the arithmetic of prosody. Sütras 24 and 25 of chapter eight of 
PiIigala's Chandas Sütra, which read: 
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(24) l'ardhe 
and 

(25) saike 9 
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refer to the process of na$tam and this word means 'vanishing' or 'dis
appearance'. Suppose that the prastiira of the metre (which is usually 
written on the sand) has been erased by mistake. The process described 
shows how to recover the met re only through the knowledge of the num
ber of the row in which the particular metre had appeared. This process 
is illustrated by the following example: Suppose that we know that a 
certain metre with a fixed number of syllables say 6, occurs as the 44th 
row in the prastiira, . how does one write down the corresponding me
tre? The answer is given by the two sutras above as elaborated furt her 
by the following stanza in Vrtta ratniikara ([25], p.192), which explains 
the process na§tam. (There are similar explanations of these sutras in 
Halayudha's and Yadava Prakasa's commentaries.) 

na$tasya yo bhavedankastasyiirdhe 'rdhe same ca lal; 
vi$ame caikamiidiiya tasyiirdhe 'rdhe gururbhavet 

~ ~ l1~G~taf'C4I~~ ~:;;r~: 

fcr!;rit ~ ~~ ~ 11 

The procedure indicated is best explained by applying it to the ex
ample mentioned above: the number 44 being divisible by 2, we write 
an l (for laghu) and divide 44 by 2 to get 22. The number 22 being 
still divisible by 2, we append an l to the earlier laghu and divide 22 by 
2, to get 11. Up to this point, the procedure is indicated by sutra 24 
which says iE it is possible to halve, then an l. When we, however, hit 
the number 11 which is odd, sutra 25 takes over and it says otherwise 
add 1 and a g. Now add 1 to 11 and write ag (a guru). The number 
now is 12, which is divisible by 2; and we divide by 2 to get 6. Now 6 
being divisible by 2, sutra 24 applies, we write an land divide 6 by 2. 
We get 3 which is odd. Sutra 25 tells us that we should add 1 and write 
a g. We now get 4, which we divide by 2 to get 2. We write an land 
divide 2 by 2 to get 1 as quotient and we stop here (since the metre has 
6 syllabIes) and the met re we are looking for is 

9 9 
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This is also the general rule given in the sutras 24 and 25 (and 
explained in the stanza) for writing down a metre, given the number of 
its row in the pmstam. 

The process uddi$tam is indicated by two sutras of the Chapter 8 of 
Pingala's Chandas Sutm which read: 

(26) pratilomaga'f}am dvirliidyam 

and 

(27) tatogyeka'f!1 jahyiit 

and expanded upon in the following couplet of Kedara BhaHa ([25], 
p.194): 

uddi$ta'rfl- dvigu'f}adyadyuparyankansamalikhet 
laghustha ye tu tatrankastail} saikairmisritairbhavet 

~ r;::aJoll~le;J;q4~·I""*1&:flr~i1~t I 

~ it ~ d~ltlfd: ~~r4P5l8~ 
These sutras, as interpreted by the couplet above, answer the follow

ing question: Suppose that one is given a met re with a certain number 
of syllables what is the number of the row representing this met re in the 
pmstam? 

The process uddi$tam is thus the converse of na$tam and can be 
translated as 'determination'; it gives a method of determining the num
ber of the row representing a met re with a certain number of syllabies. 

The answer , as given by the couplet is the following: We make the 
number 1 correspond to the first syllable from the left and from then 
on, make powers of 2, namely 2,4,8, ... correspond to each succeeding 
syllable. Ignoring the powers of 2 corresponding to the gurus of the 
metre and adding the powers of 2 corresponding only to the laghus of 
the metre and increasing this sum by 1 gives the requisite number of 
the li ne in the pmstam. (Put in the mathematical language, one thinks 
of the metre as a mnemonic for a dyadic expansion by thinking of the 
laghus as representing 1 and the gurus as representing O!) Let us consider 
as an example, the metre 

9 9 l, 
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as above. Then the number in quest ion is 1 + 2 + 8 + 32 = 43 increased 
by 1, that is 44. 

It should be remarked at this point that the sütras 26 and 27 as stated 
by PiIigala do not suggest the above procedure outlined by the couplet. 
The sütras themselves have been interpreted by Halayudha in a different 
way and this interpretation is also found in the commentary of Pingala's 
Chandas sütra by Yadava Prakasa. We shall discuss this presently. But 
before doing this, let us note that the processes of uddi$tam and na$tam 
described above, together give a one to one correspondence between 
non-negative integers and their dyadic expansions, via, metres. In fact, 
given any metre we get an integer by the process described ab ove , (by 
assigning the value 1 to a laghu and 0 to a guru and assigning the 
value 2i - 1 to the syllable which occurs at the ith position from the left; 
summing these numbers and adding 1 to it we get the number of the row 
corresponding to this metre in the prastiira). Conversely, sütras 24 and 
25 (explained further by the process of na$tam) assign to every integer 
a metre. These two processes are obviously inverses of each other. We 
further note that the metre which consists only of gurus corresponds to 
the dyadic expansion of 0 and since this is the first row of the prastiira, 
the number of the row corresponding to any met re is one more than the 
number given by the corresponding dyadic expansion. 

We shall now give the interpretations of Halayudha and Yadava 
Prakasa of the sütras 26 and 27 of Pingala, which give a very interesting 
method of computing the number represented by a dyadic expansion. 

We shall explain this principle now, mainly through examples, and 
then state the general principle without proof (the proof is easy to es
tablish). 

Consider for example the string of syllabIes: 

g 

The rule given by the sütras (and explained by Halayudha and Yadava 
Prakasa in their commentaries), applied to the above met re says that we 
first look at the syllable on the extreme right. Noting that this syllable 
is a laghu, we attach the value 2 to it. We next look at the syllable to 
its immediate left. Noting that this is a guru, we attach to it the value 
3 which is one less than twice the number 2, attached to the previous 
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syllable. We then look at the next syllable to the left which is a laghu. 
To this we attach twice the value attached to the previous syllable and 
this is 6. The number of the row representing this metre in the prastiira 
is 6! 

We note that according to our earlier computation, the above row of 
syllables represents the number 1 + 4 increased by 1 which is 6 again! 

As we shall remark presently, the above process applies, in general, 
to all metres of a given length n and the number associated to the 
first syllable is indeed the number of the row of the given met re in the 
prastiira of metres of length n. 

We look at the giiyatrf metre, considered earlier, as another example. 

9 9 

We assign the value 2 for the laghu on the extreme right, the value 
4 - 1 = 3, for the next syllable on its left which is a guru and then 6 for 
the next which is a laghu, then 11 for the next syllable which is a guru 
and 22 for the next syllable which is a laghu and finally 44 for the first 
syllable on the extreme left which is a laghu. This is the number for the 
giiyatrf row in the prastiira for a metre of six syllabIes! 

The general rule can now be formulated: If we take a metre of any 
length, and wish to find out what its number is as a row in the prastiira 
of metres of this length, we start by giving the value 2 or 2 - 1 = 1 to the 
syllable on the extreme right, according as it is a laghu or a guru. We 
multiply this number by 2 and attach this number to the next syllable 
on its left, if it happens to be a laghu or attach this number decreased by 
1 if this syllable happens to be a guru. Keep on repeating this procedure 
till we reach the beginning syllable of the metre. The number attached 
to this syllable is the number of the row in the prastiira. 

It is easily verified that the number obtained by the procedure indi
cated above coincides with the number given by the dyadic expansion 
(by assigning the value 1 to a laghu, 0 to a guru, increased by 1). 

Thus, the above is another method of finding a number through its 
dyadic expansion and this does not use addition of terms (as the earlier 
one did) and is more algorithmic, suited to the computer. In this sense, 
this ancient method is as modern as that of the computer! Actually, the 
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sütra 26 says that we first reverse the metre and carry the process from 
left to right. 

We now turn to the sütras 28 to 32 and 34, 35 of PiIigala, which deal 
with the combinatorics given rise to by the study of metres. The sütras 
in question are: 

(28) dvirardhe; 

(29) rupe siinyam; 

(30) dvi siinye; 

(31) tiivadardhe tadgu'T}itam; 

(32) dvirdyiinaT[t tadantiiniim; 

(3,1) pare piiT'T}am; 

and 

(35) parepiiT'T}amiti. 

The quest ions asked and answered are: How many metres with a 
given length have gurus ocurring once, twice etc? How many metres 
are there with a given length? These quest ions which naturally arise in 
the study of prosody, obviously deal with the theory of permutations 
and combinations. We shall see that in this connection, the so called 
Pascal triangle, from which one can read off the binomial coefficients 
was already constructed by the ancient prosodists of India. 

These topics are covered under the headings ekadvayiidilagakriyii and 
sarikhyii by the later prosodists like Kedara BhaHa and others. (As a 
matter of fact, PiIigala's Chandas Sütra deals with these topics in the 
reverse order.) PiIigala's sütras 28-32 treat sarikhyii and 34 and 35 with 
the computation of number of met res of a given length with prescribed 
number of gurus and laghus in it, through the combinatorics of what is 
now known as the Pascal triangle. ) The two verses in Kedara Bhatta's 
work ([25], p.196) which describe the first process is the following: 

var'T}iin vrttabhaviin saikiin auttariidharya tal} sthitiin 
ekiidikramatascaitiinuparyupari nik$ipet 
upiintyato nivarteta tyajennekaikamürdhvatal} 
uparyiidyiit gurorevamekadvayiidilagakriyii 
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The rnethod to find the nurnber of rnetres of length n in which g'urus 

and lagh'US oeeur onee, twice ete, as suggested in the above verse, is the 
following: 

We start with a row of length n + 1 eonsisting of the nurnber 1. (In 
what follows we ass urne for sirnplieity that n = 6 and the next figure 
illustrates the proeedure for n = 6.) 

1 1 1 1 1 1 1 
1 2 3 4 5 6 
1 3 6 10 15 
1 4 10 20 
1 5 15 
1 6 
1 

We start the second row with a 1. For the next position we take 
the surn of the nurnber whieh preeedes it in the row (which is 1 in our 
exarnple) and the nurnber of the previous row in the position above it 
(which is 1 again in our exarnple), and the surn here is 2. We ehoose the 
next nurnber of the row to be onee again the surn of the two nurnbers, 
one which is in the preeeding position in the row and the nurnber in the 
position above it in the previous row. 

Henee, in this ease, we take 2+ 1=3 as the next nurnber in the seeond 
row. The third nurnbei in the seeond row is chosen sirnilarly and we 
eontinue this proeedure, and end the seeond row with the nurnber of 
entries one less than that of the first row. In our exarnple, the second 
row has therefore 6 entries, the last entry being 5 + 1 = 6. We start 
the third row onee again with a 1; ehoose the nurnber for the seeond 
position of the row the surn of the nurnber in the row in the position 
preeeding it which is 1 in our ease and the nurnber in the position above 
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it in the second row which is 2 so that we take 1+2=3 as the second 
number of the third row. We stop this row once again with the number 
of its entries one less than the second row, which is five in our example, 
the last entry being 10+5=15. We continue this process until we stop 
with the (n + l)th row which has just one entry namely l. 

The number of met res with n syllables in which guru appears only 
once is given by the last number of the second row, which is n. This 
number is obviously also the number of metres of length n, in which the 
laghus appear n - 1 times. The nurnber of metres of length n in which 
guru appears exactly twice is given by the last number of the third row 
which is seen to be n(n - 1)/2. More generally, the number of metres of 
length n in which the guru appears i-times is given by the last term of 

the (i + l)th row, and which is (7). 
Thus, the array constructed with the specifications of the two verses 

above gives a computation for the binomial coefficients and is the so 
called Pascal triangle, (with its base tilted by 45 degrees) which was 
constructed by Pascal in 1654. This device had however been used 
by the Indian prosodists, und er the name meru prastara, at least two 
thousand years earlier, in connection with the study of metres. 

It is interesting to note that Bhaskaracarya 11, the mathematician, 
who lived in the 12th century A.D, in his famous book of problems 
called Lilavatf, has the following verse ([8]) which asks for the number of 
metres with a prescribed length and with a specified number of gurus or 
laghus (and the commentary provides a very simple algorithm for finding 
these.) The verse in quest ion (for the gayatrimetre), for example, is the 
following: 

prastare mitra gayatrya~ syu~ pade vyaktaya~ kati 
ekadi guravascasu kathyatarr- tatprthak prthak? 

~ fi:p.r ! Ji itj'$tj i : ~: qR-~: <fiftr 

QO'fi i fGU (cP4iI i!?l CfiV.fCIT ~ ~ ? 

'fhe figure below gives the solution: We begin a row with the length 
of the met re as its first entry. The succeeding entries of the row are those 
gotten by decreasing this number successively by one at a time, the last 
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entry of the row being 1. Below this row, we start a new row beginning 
with 1, the sueeeeding numbers in this row being those obtained by 
inereasing the numbers sueeessively by one, the last entry of this row 
being the length of the metre. We fill in a new row above these two rows 
by the following numbers. The first entry in the new row shall be the 
number obtained by multiplying the first entries of the two rows below, 
so that we get as the first entry of the row above as 1 x 6 = 6. The next 
entry of the new row is obtained by multiplying the first two entries of 
the first row and dividing it by the produet of the first two entries of the 
seeond row, so that we get in our example, the number in the new row 
to be ~~~ = 15. The third entry in the new row shall be the produet of 
the first three entries of the first row divided by the produet of the first 
three entries of the seeond row, which for our example is the number 
6x5x4 20 
lx2x3 = . 

We eontinue the proeess, till we get the last entry of the new row 
which is 1. 

6 15 20 15 6 1 
6 5 4 3 2 1 
1 2 3 4 5 6 

More generally, for any metre with length n, we get, as the first 

entry of the new row, the number n = n . 1 = (~), the seeond entry 

to be n'(~~l) = (;) and, more generally, for the ith entry the numher 

n.(n-l) ... (n-i+1) = (n). 
1·2 .. ·t i 

These, as we know, give the number of met res of length n, in whieh 
the guru (and similarly the laghu) oeeurs exactly onee, twiee, ... , i
times. In particular ,in the example of the gayatn metre, the numbers 
are 6,15,20,15,15,6. 

Lfliivatf ([8], Appendix p. 48) has another problem on the deter
mination of the number of sama, ardhasama and vi$ama vrttas in the 
metre anu$tbh, whieh is preeeded by a general rule valid for any metre, 
given below. 

padak$ammitagacche gU'f}avargaphalaiijaye dvigu'f}e 
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samavrttänär[!, sarikhyä tadvargo vargavargaica 
svasvapadonau syätämardhasamänäiica vi$amär,täm 

~n~ra1( f~ CI J 1 "e+&; U*~ *ti~ 51 ~ fu:uUr 
«141O'd H i . fIllT d'Wif CI *ph:l I 

fCIfCI q~t;f1 flIlCI 114 ~«14 H 1 ij f,:.j 111141011"L 11 

R. Sridharan 

The number of syllables in the four verses of the vrtta in anu~tup, 
being 32 (the anu~tup, has 8 syllabIes), the number of arrangements 
of the long and short syllables of all the pädas is 232 = 4294967296. 
Evidently, the number of arrangements where the pädas are all alike is 
the number of arrangements of the syllables in a single päda and is hence 
28 =: 256. The number of arrangements occuring as ardhasama vrttas 
is 216 - 256 = 65280. The number of vi$ama vrttas which is the total 
number of all the arrangements 'minus' the number of possibilities where 
two pädas are alike is 232 - 216 = 4294967296 - 65536 = 4294901760. 

We discuss finally sarikhyä. As we remarked earlier, this has been 
discussed in the PiIigala's sütras 28-32. Kedära BhaHa ([25], p.201), on 
the other hand, has the following verse describing sarikhyä. 

lagakriyärikasandohe bhavetsarikhyä vimisrite 
uddi$tänkasamähäral} saiko vä janayedimäm 

~Jlf-:tl41~«~1~ ~4ct1~1 fClfi1f>Sld 
\3 FI!:~j ~. «14 1 ~ 1 (: #cfit qr \11"'1 ~ f~ 14 I"L 11 

As the verse says, there are two methods of computing the number 
of met res of length n. One can either sum up the numbers (obtained 
by the process of lagakriyä) which count the number of met res in which 
the gurus occur once, twice, etc. (These numbers are the entries on the 
extreme right in the meru prastära we constructed earlier.) In other 
words, one is here summing up all the binomial coefficients of n and 

therefore one gets (~) + ( ~ ) ... + ( ~) = 2n , which is obviously the 

number of met res of length n. 

Otherwise, one can use the process of uddi§tam. We note that the 
required number is the number of metres in the prastära of the metre. 
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The length of the metre being n, as we have remarked earlier, the last 
row of the prastara consists of n lagh'US, and then we know that it cor
responds to the dyadic expansion 1 + 21 + 22 + ... + 2n - 1 = 2n - 1, and 
the number of rows of the prastara is gotten by adding 1 to it, so that 
one obtains 2n . 

PiIigala's sutras, mentioned above, give a somewhat elaborate 
method of arriving at this number, which we shall not discuss, since, 
in any case, it is simple combinatorics. 

The sutra 33 of PiIigala reads ekona adhvii, which deals with the 
space required on the sacrificial ground for writing the prastiira of a 
metre of a given length. Since there is no mathematics involved in it, 
we shall pass over this sutra and its explanation given by Kedara BhaHa 
in his Vrtta Ratniikara. 

§9. Concluding remarks 

To summarise,our aim in this article has been to highlight the con
tribut ions of PiIigala to Sanskrit prosody with a special emphasis on 
the combinatorial aspects. As we mentioned earlier, the influence of 
PiIigala on the later prosodists has been profound. Particularly inter
esting is the development of Prakrit prosody with emphasis on matra 
vrttas. One of the greatest of the later prosodists is Hemacandra whose 
nam€ we already have mentioned. The construction of the prastara and 
the other devices mentioned in the earlier section can be extended to 
matra vrttas too, as has been explained by Kedara BhaHa [25]. The 
work of Hemacandra ([8], [2]) has a complete chapter on the combina
torics of prosody with special reference to matra vrttas (in particular, to 
the A rya metre). We do not discuss these here. 
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Abstract 

Numerous authors over the eenturies have puzzled over what 
has been ealled the Buddhist paradigm of eatu~ko~i. A classie 
example: the four statements, eonsidered both mutually exclusive 
and jointly exhaustive, 

(i) the Tathagata exists after death; 

(ii) the Tathagata does not exist after death; 

(iii) the Tathagata both does and does not exist after death; 

(iv) the Tathagata neither does nor does not exist after death. 

We offer some linguistie gedanken-experiments illustrating ev
eryday situations in which appropriate analogues to the above four 
statement-forms are entirely plausible as mutually exclusive or 
jointly exhaustive alternatives; and we offer a framework, based 
on the logical paradigms of loeale or topos theory, illustrating how 
forms (iii) and (iv), in particular, need be neither eontradietory, 
nor paradoxical, nor even mutually equivalent. 

1 Foreword 

As an exemplary model- what in German might be called a Vorbild or 
Musterexemplar - of catu~koti or tetralemma, one would be hard-pressed 
to find a more quintessentially perfect instance than the following, taken 
from verse XVIII.8 of the Mülamädhyamakakärikä by Nagarjuna, as 
kindly rendered into English by the generous referee: 
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Anything is either true, 
Or not true, 
Or both true and not true, 
Or neither .... 

F. E. J. Linton 

This fragment provides what a mathematician of a certain bent might 
call a universal example of catul?koti in all regards - form and content, 
structure and message - without a single superfiuous word or restriction. 

Of course, to the reader steeped in the bivalent logical tradition 
prevalent in the West from the time of Aristotle, or even before, through 
the time of Boole, and beyond, already the first two lines of this frag
ment would seem to cover all the bases, with the last two being quite 
superfiuous, little more than incomprehensible, contradictory, mystify
ing mumbo-jumbo, if not downright misleading mystical nonsense. 

The very modest aim of the presentation that follows will be to 
tease out of the catu~koti any lingering fiber of paradox, conundrum, or 
mysticality, so as to allow such areader to recognize, in each of the four 
alternatives that the catul?koti sets forth, a familiar, viable, and relevant 
state of affairs. The means by which to accomplish this aim will number 
but two: suitable models of (nonstandard) logical systems (cf. [R] for 
a thorough if technical introduction to such ideas), and examples from 
everyday language. 

The reader expecting anything more will, alas, come away disap
pointed. Neither the history of the catu~koti, nor the role of catu~koti 
in Indian philosophy, nor any critical analysis of their many commenta
tors, nor any sensitive comparisons or contrasts of those commentators, 
or their comments, one with another - no such scholarly discourse - will 
be found here. For such material, the reader is better advised to visit 
the pages of [B], [Cl, [G], or [Si], or, even better, the many works cited 
therein. 

Nor will the reader find any attempt to provide information as to the 
nature of Truth, or Reality, or what it means to be Valid, or to Exist -
here again, for etymological as weIl as for epistemological enlightenment, 
our advice would be to consult articles like [K] and [Sä], or to browse 
through the pages of [JIPR] and of its subsequent sister volumes, where 
similar articles have appeared. 
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Finally, beyond offering all due gratitude to the reader who can for
give these omissions (and abject apologies to the reader who cannot), 
I must express profound thanks to Professors Emch and Sridharan for 
having encouraged the preparation of the present material in the first 
place; to the referee (alas, anonymous), whose numerous valuable sug
gestions upon an earlier draft, I hope, I have adequately incorporated 
into the present revision; to Professor P. Vanchinathan for a master
ful translation of my HTML submission into the requisite LaTeX; to 
the airlines UAL and Lufthansa, whose frequent flyer program and air
craft, respectively, graciously facilitated my participation in the Banga
lore conference by providing complimentary air transport between the 
North American continent and India; and to the Faculty Research Grant 
program of Wesleyan University, for its generosity in underwriting se
lected additional travel expenses connected with the presentation of this 
material at Bangalore. 

2 Taming the Terrible Catu~koti 

What the extract from Nagarjuna cited in the foreword suggests, as 
regards the catuf:'koti quoted in the abstract (to be found as item /1/ on 
page 28 of [B]), is that, writing P for the proposition that the Tathagata 
exists after death, the four propositions 

(i') P 

(ii') -,p (not-P) 

(iii') P&-,P (P and not-P) 

(iv') -,P&-,-,P (neither P nor not-P) 

(corresponding to (i)-(iv)) are mutually exclusive and cover all possibil
ities. What sort of logic can be at work here? 

Classically, of course, at least in the western tradition, where P 
and -,p are complementary and -"P = P, the last two formulations 
are identically trivial and the first two already cover all possibilities 
(principle of excluded middle, or tertium non datur). 
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In the intuitionistic logic of a topos, on the other hand - and, unlike 
in an earlier lecture [L), we shall refrain here from attempting to offer 
any introduction to the not ion of topos, or to the sort of logic prevailing 
there, preferring to send the interested reader to such standard exposi
tions of those matters as [J] (especially Chapter 5, sections 1 and 2), or 
[L&S] (especially the marvellously informal overview ofpp. 123-128),or 
[M&M] - the first two formulations are no longer complementary. They 
do remain mutually exclusive, however, and the last two, consequently, 
are still identically trivial. It is just that the first two need no longer 
cover all possibilities, that is, the principle of excluded middle need no 
longer hold (concrete illustrations of such state of affairs appears below). 

If, instead, we envision a logic dual to that of a topos, more like the 
logic of the lattice of closed subsets of a topological space, we finally 
reach a situation where both P&-,P and -,P&-,-,P may be non-trivial. 
But now P, -,P, P&-,P, and -,P&-,-,P may weIl no longer be mutually 
exclusive. Indeed, at least for closed P, we have the order-inclusions 

-,P&-,-,P < P&-,P ~ P and 

-,P&-,-,P < P&-,P ~ -,P, 

so that if P is "regular-closed", say, that is, if P = -"P, the last 
two formulations coincide and fall within both P and -,p (indeed, they 
constitute the boundary of P). 

Somehow, -,p must not be getting treated purely as the negation of 
P. Let us write Q temporarily for this negation of P, and see what we 
can make of statements (i) through (iv) in such a setting. They become 

(i") P, 

(ii") Q, 

(iii") P&Q, and 

(iv") -,P&-,Q( = -,(P V Q)), 

where the last formulation is logically tantamount to the negation of "P 
or Q (or both)", i.e., to the negation of what the first two alone jointly 
cover. Certainly the last item here excludes each of the earlier ones, 
and all are, in general, non-trivial. But if all four are to be mutually 
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exclusive, what (i") and (ii") are implicitly intending to represent must 
surely be rat her 

(illl ) P&.Q and 

(iilll ) .P&Q, 

respectively. Then, at least classically, we obtain the four mutually ex
clusive, jointly exhaustive, atomie generators of the free Boolean algebra 
on the two free generators P and Q, viz.: 

(a) P&.Q = P - Q, 

(b) .P&Q = Q - P. 

(e) P&Q = P&Q, and 

(d) .P&.Q(= .((P - Q) V (Q - P) V (P&Q)) = .(P V Q)). 

But how is one now to malm any sense of the hope that Q may stand 
for .P? That is, how shall we maintain the mutual exclusivity and 
individual non-triviality of the four items 

(a') P& •• P, 

(b') .P&.P, 

(e') P&.P, and 

(d') .P& •• P, 

obtained from (a)-(d) by putting .p in plaee of Q ? 

Let us simplify, for the moment, by assuming that •• P = P, so that 
the four eonjunetions above become 

(a") P&P, 

(b") .P&.P, 

(e") P&.P, and 

(d") .P&P. 
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p x 

Figure 1 Figure 2 

Next, let us imagine that the second occurence of P in each of these 
four conjunctions is merely a homonym for the P that occurs first. 
Mostly, in living languages, homonyms are words that sound alike, but 
are spelled differently and have different meanings, like red, the color, 
and read, the past participle, or pear, the fruit, pair, the duo or couple, 
and pare, the verb meaning to peel (and perhaps also cut up) a fruit 
(perhaps even a pear) or vegetable. But there are homonyms also with 
both sound and spelling identical, like sucker, which can at onee signify 
a person easily duped or taken advantage of, or a tendril on a vine. 

How may we realize the two oecurrenees of P in (a")-( d") as mere 
homonyms of eaeh other? It would be enough, for example, were our 
lattiee of propositions somehow spatial, that is, representable as some 
sort of subsets of some particular spaee X, to place ourselves in the 
Cartesian produet X x X of the spaee X with itself. For now, eorre
sponding to P, there arise two clearly distinguishable homonyms of P 
in X x X: one, the "vertical eylinder" P x X over the P in the first 
spatial factor Xi the other, the "horizontal eylinder" X x P alongside 
the P in the seeond factor X (cf. Figures 1 & 2). 

If we now simply treat eaeh first occurrence of P in the forms (a")
(d") as instances of the vertical cylinder P x X, and each second occur
rence as the horizontal one X x P, then our four conjunctions eorrespond 
to the four reetangles in Figure 3 in the following page ( P &P being in
terpreted, for example, as the interseetion, P x P, of P x X with X x P, 
ete.). 

For what it is worth, we exhibit a topos whose internal logic has 
system of truth values inherently of this form. Indeed, where S is any 
of the very classical topoi of absolutely standard sets - say, made up of 
the sets in Gödel's eonstruetive hierarchy - the topos S x S of ordered 
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P&~P ~P& ~P 
Cc') (b") 

x 

P&P ~P&P p Ca") (d") 

p x 
Figure 3 

pairs of such sets is such a topos. Its truth value object is the ordered 
pair (2,2) consisting of two copies of the usual two-element Boolean 
algebra formed from the ordinal number 2 = {O, 1}, and this has exactly 
fOUf global elements: (1, 1) and (0, 0), playing the roles of True and 
NotTrue, and serving as counterparts of P&P and ,P&,P, respectively; 
and (1, 0) and (0, 1), playing the roles of BothTrueAndNotTrue and 
NeitherTrueNorNotTrue, counterparts in turn of P&,P and ,P&P. 

Not every topos whose truth value object has exactly four global ele
ments has them arranged quite in this way, however. For example, if we 
topologize the ordinal number 3 (whose points are the smaller ordinals 
0, 1 and 2) by declaring open exactly those subsets of 3 that happen 
themselves to be ordinal numbers (viz., 0 (the empty subset), {O}, {O, 1} 
and all of 3), then the topos of sheaves on this space 3 has truth value 
object whose global elements likewise number four, but correspond ex
actly, even as to their ordering, to the fOUf open subsets of 3 that make 
up the topology just described. Here, between True and NotTrue (or 3 
and the empty set) we have two intermediate truth values, each neither 
True nor NotTrue, but one "more true", as it were, and "less not true" , 
than the other: 

NotTrue = 0 < {O} < {0, 1} < 3 = True. 

To within isomorphism, this topos mayaIso be depicted as the topos 
of double-transitions among sets, that is, as configurations of the form 
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4 --j+-73 --j. -72 
11 11 

made up of three sets and two functions, as depicted. The truth value 
object for this topos is the configuration above, where 4, 3, and 2 are 
the ordinal numbers 4 = {O, 1,2, 3}, 3 = {O, 1, 2}, and 2 = {O, I}, and 
the functions 1+ and 1- both carry 0 to 0 and 1 to 1, but 1-(2) = 1, 
while 1+(2) = 1+(3) = 2, as depicted above. 

The four global elements here are simply the four length-two paths, 
or orbits, seen to emanate from the various members of 4, the upper
most and lowermost of which it seems plausible to accept as playing the 
roles of True and NotTrue, respectively, while the remaining two paths, 
clearly neither True nor NotTrue, somehow represent the values "more 
True than NotTrue" and "more NotTrue than True". Or perhaps the 
catui?kotian express ions "both true and yet not true" and "neither true 
nor yet not true" better convey the sense of these intermediate truth 
values, though we suspect this is not an illustration of the classical 
paradigm the catui?koti had in mind. 

But in fact, the logic of this topos does realize the way apparent 
contradictions are commonly used in everyday speech. A daiquiri made 
with far too much lime juice, for example, and a little too much sugar, 
may weH be caHed both sweet and not sweet; a coffee prepared with just 
barely not enough sugar for the taste of a particular coffee-drinker may 
be disparaged as neither sweet nor not sweet. If the best student to pass 
through your department in the past ten years has an uncanny knack 
for getting arrested at student political demonstrations, you will be apt 
to wonder whether your department should once again post bail for this 
student who is both reaHy very bright and yet not reaHy very bright. 
Or, of another student, not quite so bright - generaHy dealing very weH 
with the more difficult problems and readings, but sometimes inexplica-
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bly failing utterly when faced with far simpler ones - and yet having an 
investment acumen that is simply uncanny, you may weIl think, some
what perplexedly, this student is neither really all that bright, nor not 
really all that bright. 

There are, of course, also everyday linguistic settings in which the 
last two catu~koti options (iii) and (iv), far from being mutually exclu
sive, coincide completely. This state of affairs corresponds, perhaps, to 
the Trairasika viewpoint (cf. [B], p. 35). A grape-fruit, for example, 
sour, to some extent, like all its kin, but remarkably less so than most, 
you might be equally happy to describe as both sour and not sour, or 
as neither sour nor not sour. Would you like a topos whose truth value 
object epitomizes just this situation, not envisioned in the catu~koti, of 
the last two options (iii) and (iv) coinciding? The Sierpinski topos, as 
it is known, is a case in point. 

The objects of the Sierpinski topos are shortened versions of the con
figurations shown above: only two sets, Band C , rat her than three, 
and only one function g. The truth value object is the right-hand frag
ment of the truth value object shown above, and has only three global 
elements, namely the three one-step paths emanating from the various 
elements of 3, which have reason to be thought of as True, Neither
WhollyTrueNorNotWhollyTrue, and NotTrue (taken from top to bottom), 
respectively, though the middle value may equally weIl be thought of as 
TruelnTheLongRunEvenlfNotTrueAtTheOutset. This middle truth value, 
in other words, is at once BothTrueAndNotTrue and NeitherTrueNorNot
True, and is the only alternative to the extreme values True and NotTrue. 

3 Afterword 

As a final topic, perhaps not worthy of even this passing mention, let 
us take up one objection on the part of some commentators to the 
tetralemma paradigm, namely, that there should by rights be yet a fifth 
alternative, something like NoneOfTheAbove, to the classical four. The 
Buddha hirnself, after all , is reported in one instance to have rejected, 
each in its turn, all four alternatives of one particular quadrilemma, 
indicating that the truth lay somehow elsewhere. 

There are indeed topoi, readily described, whose global truth values 
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easily realize the ideal of being five in number. For that matter, that 
ideal can be realized in three wholly different ways. In all cases, how
ever, the lattice of global truth values must, for purely topos-theoretic 
reasons (that is, by virtue of what has been called generalized abstract 
nonsense), be what is known, to those in the lattice trade, as distributive. 
That requirement rules out the last two lattices depicted in Figure 4 
above. The remaining five-element lattices number three: they too ap
pear in Figure 4, as the first three on the left: they are all distributive, 
but none is Boolean. 

And just which of their intermediate members (between True at the 
top and NotTrue at the bottom) should be interpreted as BothTrueAnd
NotTrue, as NeitherTrueNorNotTrue, or as NoneOfTheAbove, I leave as 
my parting conundrum to you. 
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Abstract 

We shall present Brahmagupta's treatment of the indetermi
nate equation Dx2 + 1 = y2 highlighting some ideas of modern 
algebra that are implicit in this ancient work of 628 CE and dis
cuss the consequent pedagogic potential of Brahmagupta's results. 

1 The Bhävanä - An Introduction 

Mathematics in India attained one of its highest peaks during the 7th 
century CE with the arrival of the versatile astronomer-mathematician 
Brahmagupta (born 598 CE). His major work Brähma Sphuta Siddhänta 
([B]) , comprising over 1000 verses in 24 chapters, was composed in 628 
CE. Two of these chapters (12 and 18), dealing exclusively with math
ematics, were translated into English by Colebrooke in 1817 ([C]). 

Brahma Sphuta Siddhanta is probably the first ancient Indian text 
having aseparate chapter (18) on algebra. A substantial portion of this 
chapter is devoted to solutions of indeterminate equations of the first and 
second degree. This includes partial solutions of the celebrated Pell's 
equation. Brahmagupta is the earliest known mathematician to have 
systematically investigated integer solutions of Dx2 + 1 = y2. In the 
process he discovered significant results on the more general equation 
Dx2 + m = y2 called varga-pmkrti (square-natured) in ancient India. 
In the Preface of his treatise on history of number theory, L.E. Dickson 
made a special mention of this work ([Di], p. xi): 
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It is a remarkable fact that the Hindu Brahmegupta in the 
seventh century gave a tentative method of solving ax2 + c = 

y2 in integers, which is a far more difficult problem than its 
solution in rational numbers. 

All the results of Brahmagupta on this topic are clever applications of 
a certain law of composition called "bhävanä ". This principle can be 
formulated, in modern language and notations, as follows: 

Theorem 1 (Brahmagupta's Bhävanä) 
The solution space of the equation Dx2 + m 
operations 

y2 admits the binary 

(Xl, YI, ml) 8 (X2, Y2, m2) =: (XIY2 ± X2YI, DXIX2 ± YIY2, mlm2). 

In other words, if (xI,YI,ml) and (x2,Y2,m2) are solutions of Dx2 + 
m = y2, then so are (XIY2 + X2YI,DxIX2 + YIY2,mlm2) and (XIY2 -
X2YI, DXIX2 - YIY2, mlm2). 

The consequent identities 

(Y1 2 - DX?)(Y22 - DX22) = (DXIX2 ± YIY2)2 - D(XIY2 ± X2Yl)2 

are now called Brahmagupta's identities. The result was rediscovered 
by Euler during the middle of the 18th century. Euler highlighted the 
result in his writings as "theorema eximium" (a theorem of capital im
portance), "theorema elegantissimum" (a most elegant theorem), etc.1 

For brevity, we shall adopt a notation suggested by Weil ([W2], p 21). 
For a given positive integer D, (p, q; m) will denote a tripie of numbers 
satisfying D p2 + m = q2. Thus Theorem 1 states: 

(p, q; m) 8 (r, s; n) = (ps ± qr, Dpr ± qs; mn). 

Ancient Indian algebraists had realised the importance of the two laws 
and used the special technical term bhävanä (composition) - the for
mula obtained by taking the positive sign was called the samäsabhävanä2 

1 ([W2], p 284-285; [Se], p 168). 
2Frorn the Vedic era, addition has been called samäsa ("putting together") and 

the surn obtained samasta ("whoie" , "total", etc) - see [D3], p 226. Note that the 
prefix sam (together) is used like the Latin con expressing "conjunction", "union", 
etc. 
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or yoga-bhiivanä (additive composition) and the one obtained by tak
ing the negative sign was called the vise§a-bhiivanii or antara-bhiivanii 
(subtractive composition). In the special case of equal roots and inter
polators, the rule was called tulya-bhiivanä (composition of equals); the 
general case was called atulya-bhiivanii (composition of unequals).3 

The sheer beauty apart, Theorem 1 has a technical power, a glimpse 
of which can be feIt from the way it can be used to solve a difficult 
indeterminate equation like 92x2 + 1 = y2 in a few steps. This example 
is mentioned in ([Cl, p 364) immediately after the verses describing 
Theorem 1. 

Example 1 (Brahmagupta) Solve the equation 92x2 + 1 = y2, zn 
integers. 

Solution. One readily observes that 92 x 12 + 8 = 102 . Composing 
the tripie (1,10; 8) with itself (by samiisa-bhiivanä) , and dividing the 
resulting tripie (20, 192; 82 ) by 82 , one obtains the tripie (~, 24; 1) which, 
when composed with itself, gives the integer tripie (120,1151; 1). Thus 
(120,1151) is a solution of 92x2 + 1 = y2. • 

It is interesting to note that after stating this problem, Brahmagupta 
had used the phrase kurvannävatsaräd ga'T}akal} - "One who cau solve 
it within a year (is truly a) mathematician." 

The Pedagogic Issue 

What strikes a modern algebraist reviewing Brahmagupta's inge
nious treatment of the equation Dx2 + m = y2 is an incredible sophisti
cation in the very attitude towards an algebraic problem. Fundamental 
concepts and principles of modern algebra are implicit in the bhiivanii 
and its applications. But though the ideas are modern, the presentation 
does not involve the elaborate language of modern abstract algebra. This 
aspect of Brahmagupta's work makes it particularly relevant for the al
gebra training of "would-be creative mathematicians,,4 among students 
(at higher-secondary or first-year college level) who have already demon
strated their skill in high-school algebra. 

3See ([Sh] p 5-8; [C] p 170-172; [DS] p 146-148). 
4Modification of a phrase from Weil ([1], p 228). 
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It is generally agreed that for a fuller realisation of one's creative 
potential, "One should learn from the (works of the) Masters". But 
does a higher-secondary student have an immediate, realistic and rapid 
access to any of the Masters embodying, even partially, the spirit of mod
ern algebra? We suggest that Brahmagupta's results and applications 
can be utilised to promote the mathematical maturity and creativity 
of a bright student who has completed high-school algebra and is on 
the verge of making the sharp (and rather abrupt) transition from the 
"classical algebra" of school mathematics to the "modern algebra" or 
"abstract algebra" of college mathematics. 

Arrangement 

Some readers would be weU-informed about ancient Indian results 
on indeterminate equations, some might not be. Again, while the pro
fessional algebraist knows the subtleties involved in the bhiivanii, the 
richness and depth of the result might not be apparent to all histori
ans. Keeping. in mind the possible diverse background of the readers, 
the paper has been arranged as follows. 

In Section 2 we highlight certain features of modern algebra implicit 
in the bhiivanii and its applications. Section 3 proposes the central theme 
of the paper - the pedagogic potential of aspects mentioned in Section 
2 in the context of "abstract algebra". 

The applications of Theorem 1 are revisited in Sections 4 and 5 
chiefly from the pedagogic perspective: Section 4 describes the immedi
ate applications of the bhiivanii, mostly by Brahmagupta hirnself, while 
Section 5 traces its influence on the cakraviila. Section 6 touches an
other thought-provoking topic for the students: the possible genesis of 
the bhiivanii. 

Section 7 discusses the possible motivation for investigation of the 
equation Dx2 + 1 = y2. Section 8 contains a few miscellaneous historical 
remarks on the bhiivanii. 

To convey to the readers some flavour of the original "composi
tion" (pun intended!), Appendix presents the transliteration of Brah
magupta's verses describing Theorem 1. For readers uncomfortable with 
Sanskrit, these verses are followed by a translation. As Brahmagupta's 
language is somewhat cryptic, a more lucid version of Theorem 1, due 
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to Bhaskara II, has also been included in Appendix. 

2 Bhävanä and Modern Algebra 

Andre Weil asserted ([W1], p 231-232): 

An understanding in depth of the mathematics of any given 
period is hardly ever to be achieved without knowledge ex
tending far beyond its ostensible subject-matter. More often 
than not, what makes it interesting is precisely the early oc
currence of concepts and methods destined to emerge only 
later into the conscious mind of mathematicians; the histo
rian's task is to disengage them and trace their 'influence or 
lack of influence on subsequent developments. 

81 

The entire section of Brahma Sphuta Siddhanta on the Varga- Prakrti 
demonstrates a phenomenal wizardry in classical algebraic manipula
tion at an early stage in the history of symbolic algebra. But more 
exciting is the implicit occurrence of some of the simple but powerful 
ideas which characterise modern algebra. We mention below three re
lated concepts that are embedded in the bhävanä: binary composition, 
the multiplicativity of the norm function, the composition and prop
erty of a binary quadratic form. If we leave aside the set-theoretic 
language, the principle of binary composition is quite explicit - in 
fact, in ancient Indian mathematics, bhävanä means "composition"! We 
shall also analyse Brahmagupta's methods and highlight in his approach 
the dynamic anticipation of a certain mathematics culture that even
tually evolved much later, albeit on a more broad and firm founda
tion. 
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Binary Composition 

Theorem 1 defines an intricate binary operation (samäsa-bhävanii) 

(Xl, YI, ml) 0 (X2, Y2, m2) = (XIY2 + X2YI, DXIX2 + YIY2, mlm2) 

on S = {(x,y,m) E Z x Z x Z I Dx2 + m = y2} where Z denotes 
the set of integers. This sophisticated idea of constructing a binary 
composition on an abstractly defined unknown set is the quintessence 
of modern "abstract algebra". The idea occurs in Brahmagupta's work 
in a fluid amorphous form - it had not been crystallised in a precise 
set-theoretic framework. 

Brahmagupta did not present the collection S as a single entity. But 
he had envisaged the key ingredient of a modern abstract structure: 
binary composition. If we exclude the four elementary arithmetic op
erations on usual numbers, the bhävanii is perhaps the first conscious 
construction of a binary composition. Further, the binary operation 
is quite a complicated one: it involves two integral triples of unknown 
raots. Recall that even basic symbolic computations with unknown raots 
- treating thern as if they were known quantities - is a fairly modern 
approach that emerged during the investigations on the general polyno
mial in one unknown. 

Norm Function 

The bhävanii laws 0 have an elegant interpretation in terms of the 
norm function - a very important concept in modern mathematics. Let 
A = Z[VD] (= {b + aVDla,b E Z}). The norm function on A is the 
map N : A -t Z defined by 

N(y + xVD) = (y + xVD)(y - xVD) = y2 - x2 D. 

Brahmagupta's identity can be reformulated as the statement: 

The norm function N is multiplicative, Le., 
N(aß) = N(a)N(ß) Va, ß E A. 

Consider the bijective maps J, 9 : Z x Z -t A defined by J(x, y) = 
y + xVD and g(x,y) = y - xVD. Then the set S = {(x,y,m) E 
Z x Z x Z I Dx2 + m = y2J is simply the graph of each of the functions 
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N 0 fand N 0 g. Let p : Z x Z x Z -+ Z x Z denote the map defined 
by p(x, y, z) = (x, y). Then pis is a bijection from S to Z x Z and 
hence ljJ = J 0 pis and 'ljJ = go pis are bijections from S to A. The 
multiplicative structure bhiivanä on S is essentially the multiplication in 
the ring A: the samäsa-bhiivanä on S is obtained by transferring the ring 
multiplication on A via ljJ and the antara-bhävanä is obtained through 
the conjugate 'ljJ. 

It is possible that Brahmagupta discovered the identity through an 
algebraic manipulation which was, in essence, the verification of the 
structure preserving property of the norm function - the natural mul
tiplieation in A providing the precise formula (see the last paragraph of 
Section 6). 

Binary Quadratic Form 

y2 _ Dx2 is a binary quadratie form with discriminant D. In the 
language of quadratic forms, Brahmagupta's identity says that two such 
forms (say y2 - Dx2, v2 - Du2) can be composed to yield another such 
form with discriminant D in a new pair of variables (xv ± yu, yv ± Dxu). 
Again recall that the term bhävanä means "composition"! The theory 
of composition of quadratic forms, an important and rieh topic initiated 
by Gauss and Dirichlet, is still an active area of research. 

Here one mayaiso recall that Fermat's researches in number theory 
led hirn to a deep study of the binary quadratic form y2 - 2x2 which 
must have resulted in his realisation of the far-reaching importance of the 
equation y2 - Dx2 = 1. As is well-known, Fermat not only investigated 
Pell's equation but also inspired others to take interest in the problem. 

Before mentioning another aspect of Theorem 1 in the context of 
quadratie forms, we recall a few definitions. Two quadratie forms J(x, y) 
and g(x, y) over an integral domain Kare defined to be equivalent if 
there exists a homogeneous linear change of variables which takes the 
form f to the form g; more precisely, if there exists an invertible matrix 
A with entries in K such that g(x) = J(Ax) where x denotes the vector 
(x, y) T. Thus J and gare equivalent if if there exist a, b, c, d in K such 
that g(x,y)=J(ax + by,cx + dy) and ad - bc is a unit in K. 

An element c in K is said to be represented by a binary form f(x, y) 
if the value c is attained by J, i.e., if there exist a, b E K such that 
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c = f(a, b). A quadratic form f is said to be strongly multiplicative if f 
is equivalent to cf for every unit c represented by f. 

Theorem 1 can be viewed as the result: 

The binary form y2 - Dx2 is strongly multiplicative (over 
ration als) . 

For, if f denotes the form y2 - Dx2, c a non-zero number represented 
by f, say c = b2 - Da2, and 9 = cf, then g(x,y) = (b2 - Da2)(y2 -
Dx2 ). Now Brahmagupta's identity prescribes the substitution that 
has to be made to obtain g(x, y) = f(u, v): namely, the homogeneous 
linear transformation given by 11, = bx + ay,1) = Dax + by which is 
invertible (since the determinant of Brahmagupta's transformation is 
c =1= 0). This version of Theorem 1 was generalised in 1965 by A. Pfister 
using, what are now called, "Pfister forms". Pfister's discovery opened 
up new directions in the theory of quadratic forms. 

In his recent research monograph ([0]) in this area, Manuel Ojan
guren begins Chapter 5 by quoting Brahmagupta's original Sanskrit 
verses describing Theorem 1; the chapter itself is titled Also sprach 
Brahmaguptas. The first result in the chapter (Lemma 5.1) states: 

If K is a field of characteristic different from 2, and c is a 
non-zero element of K represented by the quadratic space 
< 1, a >, then < 1, a > is isometric to < c >< 1, a >. 

Readers familiar with the relevant terminology can see that Lemma 5.1 
is aversion of the fact that y2 - Dx2 is strongly multiplicative. M. 
Ojanguren referred to Lemma 5.1 as "Brahmagupta's lemma" ([0], p 
55).6 Theorem 5.2 in ([0], p 55) states the generalisation of Lemma 5.1 
by Pfister: Pfister forms are multiplicative. 

5In English: "Thus Spake Brahmagupta" ! 
6Just before the statement of Lemma 5.1, Ojanguren writes ([0], p 54): "In [5, 

Ch.18) Brahmagupta proves, in the slightly different formulation quoted above, the 
following lemma.". With a quiet humour characteristic of Ojanguren, Item 5 is 
listed in "References" as: 5. Brahmagupta: Brähmasphutasiddhänta, Bhlnmäla, 
628 (preprint). 
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Quest for General Aigebraic Principles 

One profound message of modern algebraic research is that an iso
lated problem can often be handled more effectively by viewing it as 
part of a larger set-up. A deep understanding of the general picture 
not only generates additional techniques for the special situation, it 
also leads to new creations and discoveries whose overall impact could 
be of much greater value than a mere solution to the original prob
lem. This realisation has heralded a new attitude in algebra: the search 
for general principles. Lagrange (1770 CE) pioneered the trend. The 
culture of generalisation has been diligently pursued in 20th century 
algebra. 

Now let us consider certain aspects of Brahmagupta's ancient work 
in this light. The example D = 92, mentioned in Section 1, serves as an 
illustrative model. 

(i) While trying to solve a specific hard problem Dx2 + 1 = y2 (in two 
variables), Brahmagupta undertook a bold and farsighted exploration of 
the general picture: the solution space of Dx2 + m = y2 (in three vari
ables). In the process he discovered and extracted an important general 
and abstract principle (Theorem 1), and made a clear enunciation of 
this principle for posterity. It is amazing that in an attempt to solve an 
indeterminate equation in two variables, a seventh-century mathemati
cian thought of constructing, what amounts to, an intricate abstract 
structure on the solution space of an equation in three variables. This 
is an original attitude in mathematics the like of which was not to be 
seen for the next 1000 years. 

(ii) The power of the general principle can be seen from the deceptive 
ease with which it immediately provides the solution of a difficult equa
tion like 92x2 + 1 = y2 (Recall Example 1). 

(iii) Apart from providing partial solutions to the original problem (see 
Section 4), the samiisa-bhiivanii principle contained the key to the the 
subsequent complete solution (see Section 5). 

(iv) In retrospect, one realises that the samiisa-bhiivanii had also opened 
up new possibilities discussed in Section 2. However, it was far too 
ahead of the times to have immediate fruition beyond the solution of 
Pell's equation. Its true potential began to be harnessed only after its 
rediscovery in the 18th century. This general principle turned out to be 
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"a theorem of capital importance" and even a starting point of an area 
in algebra. 

A Caveat 

Sometimes the brilliance of an algebraic research lies in its opening 
up of new and unexpected horizons with immense possibilities through 
surprisingly simple innovations. Ironically, the very simplicity of the 
work tends to hinder or distract later generations from a deep percep
tion of its true worth. A casual ob server could very weIl fail to fully 
appreciate the richness and magnificence of the ideas encapsuled in the 
construction of a mere 2-step solution of 92x2 + 1 = y2. Further, once 
the mathematical community gets accustomed to an original idea like 
the bhävanii, it becomes all the more difficult to fathom the greatness 
of the discovery. Historians need to be aware of this intrinsic risk of 
missing the real depth and significance of Brahmagupta's work on the 
Varga- Prakrti. 

3 Pedagogic Potential of Bhävanä 

We first clarify the aspect of mathematics education which we shall 
be addressing. Our target is the (potentially) research-oriented higher
secondary or first-year college student who is about to leam modern 
algebra. We focus on two related aspects: (1) promotion of a culture of 
creativity in the introduction to abstract structures and (2) promotion 
of "the art of discovery" . 

Training in Abstract Algebra 

During his first encounter with "abstract algebra", the student of 
mathematics is suddenly confronted with a formidable edifice ofax
iomatic structures. He leams systematically, but more or less passively, 
a large number of definitions and basic properties. For the student, 
this "algebra" has not much apparent connection with the manipulative 
high-school algebra that he hitherto enjoyed. In fact, with passage of 
time, he even tends to lose his classical manoeuvring skill as his train
ing usually focusses, almost exclusively, on understanding of abstract 
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structures. During this transitional period, the student has hardly any 
chance to mentally participate in the process of discovery of the basics 
of modern algebra - he has to patiently learn a radically new approach 
to mathematics suspending his creative impulse. The situation is all the 
more grave for the large number of students who do not have scope for 
interaction with creative algebraists. 

The current group-ring-field approach of abstract algebra is undoubt
edly neat, elegant and has enormously simplified mathematics. But sim
plicity tends to· hide mathematical subtleties. Abrupt introduction to 
abstract structures, completely divorced from their original contexts, 
could stifte the natural growth of thought-process and promote a sort of 
mechanical pursuit of forms missing the substance. The achievement of 
extreme elegance and simplicity, therefore, has a potential risk for new
generation learners. They tend to approach algebra with a mechanised 
mindset for too long.7 

Is it possible to present before a high-school student a non-trivial but 
accessible algebraic work of a mathematical genius which can creatively 
orient hirn to the principles of modern algebra through the language of 
high-school algebra? 

We affirm that, before the student gets lost in the elaborate maze 
of groups, rings, fields, vector spaces, etc, Brahmagupta's results can 
be used to informally introduce hirn to the essence of abstract algebraic 
ideas. An imaginative and effective use of Theorem 1 and Example 1 
can convey to the fresh student the power of "binary composition" much 
more deeply and rapidly than any of the standard pedagogic approaches. 
It could be inspiring for hirn to realise that the simplicity of the solution 
to Example 1 has its secret in the monoid structure of (8,0) of Sec
tion 2 which in turn has its root in the natural ring structure of the set 
A in Section 2. He could be excited by the observation that, through 
samiisa-bhiivanii, the set {(x, y, m) E Q x Q X QIDx2 +m = y2} forms a 
group or the later realisation that {(x, y) E N X NIDx2 + 1 = y2} forms 

7 As the inevitable perils are gradually emerging, there is now an increasing trend to 
supplement the organised and rapid presentation of abstract algebra in its generality 
with some discussion on the genesis of the subject. It is a welcome sign that attempts 
are being made in recent texts to impart some familiarity with the original approach 
of Galois supplementing the standard 20th century presentation. But considerable 
preparation is needed before one can get introduced to fragments of the thought
process of a Lagrange or a Galois. 
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a cyclic monoid. What is more, the unexpected invocation of abstract 
algebraic technique for a concrete problem by an ancient mathematician 
could infuse in hirn a dynamic and creative vigour in his formal study of 
abstract algebra. Thus, through this deep but easily accessible work of 
a Master, the perceptive student can get an early exposure to modern 
sophistication, see a natural application of abstract algebraic principles, 
develop a flair for exploring worthwhile generalisation, and truly imbibe 
the spirit of the abstract algebra culture without getting swept away by 
its formalism. 

The Art of Discovery 

In his plenary lecture at the ICM (1978), Andre Weil quoted the 
following statement of Leibniz on history of mathematics: 

fts use is not just that History may give everyone his due 
and that others may look forward to similar praise, but also 
that the art of discovery be promoted and its methods known 
through illustrious examples.8 

Weil added ([WI], p 229): 

Deviating only slightly from Leibniz, we may say that its first 
use for us is to put or to keep before our eyes "illustrious 
examples" of first-rate mathematical work. 

For our target students, the developments on Diophantine equations 
in ancient India - the kuttaka of Äryabhata and his successors, the 
bhävanä of Brahmagupta and the cakraväla of Jayadeva-Bhäskara -
could be utilised to promote the "art of discovery". Especially, Brah
magupta's bhävanä would serve not only as an "illustrious example of 
first-rate mathematical work" but also as an early example of modern 
methods and techniques and of the harmonious blending of the classical 
and modern algebra styles. It would help students realise how the seeds 
of various abstract structures He in earlier classical algebra. 

Brahmagupta's bhävanä is the first known instance of an involved 
abstract algebraic thinking. Its pedagogic value sterns from the fact 

8Both the original and the above translated version occur in ([W!], p 227). 
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that it is a self-contained gern. When the same ideas resurfaced in 
Europe after more than a thousand years, they came as part of big 
theories developed by a large number of mathematical giants. The raw 
student needs a long time to assimilate even the subsequent simplified 
versions of these theories. By contrast, the applications and influence of 
bhävanä (discussed in next two sections), especially the cakraväla, are 
ready-made materials for promoting the art of discovery. The student 
need not have prior preparation and the volume of work he has to dweIl 
on is weIl within a manageable limit. 

Note that the solution of Pell's equation is taught quite neatly in 
several texts on classical algebra and elementary number theory. But 
those presentations off er a finished product to the students. Continued 
fraction is defined, its properties are systematically established and, in 
due course, the solution of Pell's equation is described. The approach 
has its usefulness but does not serve the purpose alluded to by Leibniz 
and Weil. 

To look at the pedagogic aspect from another angle, a research scholar 
gets trained from two sources: text books, research papers. They serve 
complementary purposes. By and large, school and college students have 
access only to the former. Can one give them some material which fulfils 
one aspect of the role played by research papers at a later stage? 

We affirm that robust expositions on the kuttaka, bhiivanä, cakraväla, 
etc, in the style of modern expository research papers, can play that 
role. A preliminary attempt was made in that direction by the present 
author in ([Du1], [Du2]) for a journal on science education.9 Each of 
these articles contained an introductory part meant to excite or inspire 
the student on the topic; but the major part of the articles tried to give 
some flavour of research culture. 

Besides, to use a phrase of Weil ([W1], p 231) made in a slightly 
different context, the students could also gain by the encouragement to 

recognize mathematical ideas in obscure or inchoate form, 
and to trace them under the many disguises which they are 
apt to assume before coming out in full daylight. 

9The pedagogic usefulness of bhävanä was also perceived by M. Ojanguren. After 
receiving a draft of ([Du2]), Ojanguren mentioned in an e-mail to the author that he 
thought of using the results in an elementary course for school teachers. 
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4 Immediate Applications of Bhavana 
by Brahmagupta 

Brahmagupta's presentation of the results on Varga-Prakrti resembles a 
typical modern arrangement where one first develops the fundamental 
theory or principle that emerges out of the investigations into a problem, 
and then records the solution to the original problem(s) as one applica
tion of the basic theory. Thus, after announcing Atha Vargrz PrakrtiQ" 
Brahmagupta immediately states Theorem 1 - the cornerstone of the 
section on Varga-Prakrti - in Verses 64-65 of ([1], Ch. 18). This is 
followed by a few general results on the varga-prakrti which are useful 
offshoots of Theorem 1: construction of infinitely many rational solu
tions of Dx2 + 1 = y2 (Verse 65), generation of infinitely many integer 
solutions of Dx2 + m = y2 from a given one (Verse 66), derivation of 
solutions of Dx2 + 1 = y2 from solutions of Dx2 ± 4 = y2 (Verses 67-68), 
etc. The results are then illustrated by several concrete numerical ex
amples. The example D = 92 (Example 1) is mentioned in Verses 71-72. 

Application 1: Rational Solutions of Dx2 + 1 = y2. 

The verses 64-65 in ([1], Ch. 18) contain, apart from Theorem 1, 
th8 following two corollaries (see Appendix). 

Corollary 1 (Brahmagupta) 
1f Dp2 + m = q2, then D(2pq)2 + m 2 = (Dp2 + q2)2. 

Corollary 2 (Brahmagupta) 
1f(P,q) is a root of Dx2±c = y2, then (~, Dp2c+q2) is a root of Dx2+1 = 
y2. 

In fact, immediately after stating their respective verses describing 
Theorem 1, Brahmagupta, Jayadeva ([8h], p 8) and Bhäskara 11 ([Ba], 
p 23) describe non-trivial rational solutions of Dx2 + 1 = y2. 

This is actually an easy application - the full strength of Theorem 
1 is not really needed. One can always choose a positive integer p (for 
instance, p = 1) and a positive integer q such that q2 > Dp2 and put 
m = q2 - Dp2 to get Dp2 + m = q2 and then apply Corollary 2. The 
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latter needs Corollary 1 which could be discovered directly. In fact, 
finding a non-trivial rational solution of the Pell's equation could itself 
be set as a reasonable challenge to the student inciting hirn to directly 
discover Corollaries 1 and 2. 

Brahmagupta simply made a terse statement amounting to Corollary 
2 (see Appendix) but did not bother to give the trivial explanation as 
to how to obtain some integer-triple (p, q; m). As in modern times, one 
cannot always expect the Masters, who have to ofIer volumes of original 
materials, to speIl out all obvious details. (See Remark 4 in Appendix.) 

But as the history of algebra from the 1870s will testify, clarity of 
exposition can do wonders for the rapid progress of a subject. In an
cient Indian algebra, the terseness of Brahmagupta was balanced by 
the clearer accounts of later expositors. For instance, Srlpati (1039) 
described the method for obtaining rational solutions as follows: 

"Unity is the lesser root. Its two squares [set at two places] are [each] 
multiplied by the prakrti [and the product is] decreased [by the prakrti 
and] increased by a [suitable] interpolator whose square-root will be the 
greater root. From these two, two roots are obtained by bhiivanii. There 
will be an infinite [set of two roots]."lO 

In other words, applying Brahmagupta's bhiivanii on two copies of 
the identity 

one gets a rational solution 

2q 
x= 2 D' q ,...., 

q2 +D 
y= q2,...., D 

of Dx2 + 1 = y2. Infinitely many roots can be obtained by varying q 

(also by repeated use of bhiivanii). 

The above solution was also described by Bhaskara II (1150), 
NarayaI).a (1350) and later writers like Jfianaraja (1503), K:r~I).a (1600) 
and Kamalakara (1658). To quote Bhäskara II: 

"Divide twice an optional number by the difIerence between the 
square of that optional number and the prakrti. This [quotient] will 

lOVerse 33 of Chapter 14 (on algebra) of the astronomy treatise Siddhänta.sekhara; 
quoted (in translation) in ([Si], p 40; [DS], p 153, 150). 
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be the lesser root [of a varga prakrtz] when unity is the additive. From 
that [folIows] the greater root." 11 

Now the application of bhiivanii on the identity D.12 +q2 - D = q2 to 
obtain rational solutions might appear to be a relatively minor feat in the 
history of Indian algebra. But the clear formulation of this identity, the 
display of the action of bhiivanii on it, and explicit mention of division 
by q2 - D might have facilitated the invention of the cakraviila (see 
next section). We can also expect that, during actual computation, 
there would be a tendency to choose q so as to avoid division by large 
numbers. This leads to a q for which Iq2 - DI is the minimum - another 
component of the complex cakraviila. In this connection, one is reminded 
of Weil's caveat ([Wl], p 235): 

1t is also necessary not to yield to the temptation (a nat
ural one to the mathematician) of concentrating upon the 
greatest among past mathematicians and neglecting work of 
only subsidiary value. ... historically it can be fatal, since 
genius seldom thrives in the absence of a suitable environ
ment, and some familiar'ity with the latter is an essential 
prerequisite for a proper understanding and appreciation of 
the former. Even the textbooks in use at every stage of math
ematical development should be carefully examined in order 
to find out, whenever possible, what was and what was not 
common knowledge at a given time. 

However not enough of historical materials have been found to ascertain 
the actual sequences in emergence and flow of ideas. (See Section 8.) 

Application 2: Generation of Infinitely Many Roots 

Verse 66 in ([B], eh 18) can be stated as: 

Theorem 2 (Brahmagupta) 1f the equation Dx2 + m = y2 has one 
positive integral solution, it has infinitely many. 

The general equation Dx2 + m = y2 need not have any integral 
solution (students could be encouraged to find simple examples like 

llVerse 73 of BIjaga~ita ([Ba], p 23); quoted (in translation) in ([DS], p 154). 



Brahmagupta's Bhavana 93 

D = 3, m = 2). However, when it does have an integral solution, Brah
magupta's verse 66 prescribes the samiisabhiivanii to use that solution 
and a non-trivial integral solution of Dx2 + 1 = y2 to generate infinitely 
many integral solutions of Dx2+m = y2. In particular, from one positive 
integral solution of Dx2 + 1 = y2, one gets infinitely many. The verses 
65-66 tacitly describe infinitely many rational solutions of Dx2 + 1 = y2. 

This consequence is mentioned explicitly in Srlpati (quoted earlier) and 
Bhäskara H. 

It would be interesting for students to observe that the method for 
generating arbitrarily large solutions of Dx2 + 1 = y2 was useful for 
determination of rational approximation to VD. If Da2 + 1 = b2 , then 

b b2 - Da2 
- - v'r5 = ----==-
a a(b + aVD) 

1 

a(b + aVD)· 

Thus, for a sufficiently large solution (a, b), ~ will be a good approxi
mation for VD. This application was explicitly stated by the algebraist 
NarayaJ).a around 1350 ([D2], p 187- 188). By that time, the cakraviila 
method for determination of one (in fact, the minimum) positive integral 
solution had already been invented - NarayaJ).a himself was an expos
itor of both the bhiivanii and the cakraviila. NarayaJ).a illustrated the 
method for successive approximations of surds by two numerical exam-

pIes: Vfö and A. For Vfö, he mentioned the rational approximations 
19 721 d 27379 D D 10· 9· h t h th 6"' 228 an 8658· rOr = ,smce lS t e neares square, one as e 
initial tripie (1,3; -1). Now, 

(1,3; -1) 0 (1,3; -1) = (6,19; 1), 

(6,19; 1) 0 (6,19; 1) = (721,228; 1), 

(6,19; 1) 0 (721,228; 1) = (27379,8658; 1) 

and hence the three successive fractions of NarayaJ).a. The case of A is 
similar. This method of getting successively closer approximations was 
restated by Euler in 1732 ([D2], p 188). 

Application 3: Integer Solution of Dx2 + 1 = y2 (Partial) 

Verses 67-68 in ([B), eh 18) give the following consequences of the 
samiisabhiivanii. 
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Theorem 3 (Brahmagupta) 

(i) 1] Dp2 + 4 = q2, then (!p(q2 - 1), !q(q2 - 3)) is a solution 0] 
Dx2 + 1 = y2. 

(ii) 1] Dp2_4 = q2, and r = !(q2+3)(q2+1), then (pqr, (q2+2)(r-l)) 
is a solution 0] Dx2 + 1 = y2. 

Since (±1)2 = 1 and (±2)2 = 4, it follows that from any positive 
integer solution of Dx2 + m = y2, where m E {-1,±2, ±4}, one can 
derive a positive integer solution of Dx2 + 1 = y2 by repeated use of 
the samäsabhävanä. This consequence was explicitly recorded by Srlpati 
([Si], p 40 ;[DS], p 157). Brahmagupta applied it to numerical examples. 
We quote two of them ([B], Ch 18, Verses 71-72, 75). 

Example 2 (Brahmagupta) Solve, in integers, 13x2 + 1 = y2. 

Solution. 13 x 12 -4 = 32. Now Theorem 3 yields the solution (180,649) . 

• 
Brahmagupta mentioned the equations 13x2 + 300 = y2 and 13x2 -

27 = y2. By inspection, one has solutions (10,40) and (6,21) respec
tively. Composing with (180,649) one gets larger solutions for the two 
equations. 

Example 3 (Brahmagupta) Solve, in integers, 83x2 + 1 = y2. 

Solution. 83 x 12 - 2 = 92. (1,9; -2) 0 (1,9; -2) = (18,164; 4). As the 
quantities are all even, dividing by 22, one gets the tripie (9,82; 1), i.e., 
the solution (9,82). • 

Brahmagupta stated the formulae for D = ±4 in a generality re
quired for the harder case: p odd. Students could be encouraged to 
deduce Theorem 3 from Theorem 1 and to find simpler formulae when 
p is even as also the formulae for D = -1 and D = ±2. They should be 
able to discover results like (p,q;-I) * (2pq,2q2 + 1;1), (p,q;±2) * 
(pq, q2 =f 1; 1); and, for p even, (p, q; 4) * (P/2, q/2; 1), (p, q; -4) * 
(pq/2, q2/2 + 1; 1). Brahmagupta used these simple formulae in his ex
amples though he did not state them explicitly. 
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Theorem 3 already enabled Brahmagupta to solve various difficult 
cases like D = 83 or D = 92. In the next section, we sha11 see, with the 
example of the famous case D = 61, how it accelerated the subsequent 
cakraviila algorithm. 

5 Role of Bhavana in Cakravala 

Brahmagupta attained partial success in his attempt to solve Dx2 + 1 = 
y2. His results can directly be applied only to those specific values of D 
for which one gets some integer triple (p, q; m), where m E {±1, ±2, ±4}, 
through inspection or clever manipulations. Even when such a tripIe 
becomes available for a special D, the methods lead to some positive 
integral solution of Dx2+1 = y2 - but not necessarily the minimum and 
hence although the samiisabhiivanii would fetch infinitely many integral 
solutions, it might not fetch alt integral solutions. For instance, for 
D = 3, an application of Brahmagupta's formula (for m = 4) on the 
simple identity 3 x 22 + 4 = 42 yields the tripIe (15,26; 1); but the 
minimum tripIe (for D = 3) is (1,2; 1). 

But Brahmagupta's partial solution, apart from being a remarkable 
land mark by itself, was also a significant step towards the celebrated 
cakraviila algorithm - a perfect method (free from trial-and-error) for 
obtaining, for any D, a11 positive integral solutions of Dx2 + 1 = y2. 

Actually the set of positive integral solutions of Dx2 + 1 = y2 forms 
a cyclic monoid under the operation samiisabhiivanii and the cakraviila 
method fetches the minimum solution, i.e., the generator of the above 
monoid. Thus, after the application of cakraviila, the samiisabhävanii 
generates alt integral solutions from the minimum one. 

Historians have paid glowing tributes to the cakraviila. H. Hankel 
exclaimed12 : 

It is beyond alt praise; it is certainly the finest thing achieved 
in the theory of numbers before Lagrange. 

More recently, Selenius13 opined ([Se], p 180): 

12Zur Geschichte der Mathematik in Alterthum und Mittelalter (Leipzig, 1874), p 
202; quoted in ([Bg], p 28; [Se], p 170). 

13C.O. Selenius gave a formal justification of the cakraväla in terms of his gener-
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The old Indian cakraväla method for solving the mathemati
cally fundamental indeterminate varga-prakrti equation [Dx2 

+ 1 = y2] was a very natural, effective and labour-saving 
method with deep-seated mathematical properties. . .. More 
than ever are the words of Hankel valid, that the cakraväla 
method was the absolute climax ("ohne Zweifel der Glanz
punkt") of old Indian science, and so of all Oriental math
ematics.... no European performances in the whole field of 
algebra at a time much later than Bhäskara 's, nay nearly up 
to our tim es, equalled the marvellous complexity and inge
nuity of cakraväla. 

The earliest known author on the cakraväla is Äcarya Jayadeva.14 

His verses on cakraväla have been quoted in ([Sh]). Bhaskara 11 15 (1150) 
too described the algorithm in ([Ba], Verse 75).16 

The underlying idea of this brilliant algorithm can be put as follows: 
From a tripie (Pn, qn; m n) such that Imnl is "small" , one has to construct 
a tripie (Pn+1, qn+1; m n+1) with Imn+11 "small" eventually arriving at 
(p,q;1). 

As we remarked in the preceding section, tripies of the type (1, y; y2_ 

D) seem to have been "in the air" among Indian algebraists who ex
pounded on Brahmagupta's work. The authors of cakraväla begin with 
an initial tripie (Po, qo; mo) of this type: Po = 1, qo a number for which 
Iq0 2 - DI is minimum, and mo = q02 - D. 

Now having arrived at an integer tripie (Pn, qn; m n), it would be nat
ural to compose it with the (variable) tripie (1, Y; y2 - D) and explore the 
outcome. The samäsabhävanä yields an integer tripie (PnY + qn, Dpn + 

alised continued fraction expansion. He gave a talk on it in a Short Communications 
session of the "Algebra and Theory of Numbers" section of the 1962 ICM at Stock
holm. 

14Jayadeva's verses on the complete solution of the indeterminate equation Dx2 + 
1 = y2 have been quoted in the text Sundarf of Udayadiväkara composed in 1073 
CE. This text itself was discovered only in 1954 by K.S. Shukla. Nothing is known 
so far about Jayadeva except for the obvious fact that he lived before 1073 CE. The 
algebraist Jayadeva is not to be confused with the Vaii?I).ava poet of the 12th century 
who composed GIta-Govinda. 

15 Also known as Bhäskaräcäfya. 
16Bhäskara's version has been quoted in the paper "Algorithms in Indian Mathe

matics" by M.S. Sriram in this volume. 
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qnY; m n(y2 - D)). Dividing by m n2 (another natural idea given the ear
lier emphasis on methods for obtaining rational solutions) one obtains 

t · 1 t . 1 (p .) - (l!E.1l±!lr!:. Dpn+qnY. y 2 _D) N a ra lOna np e n+l, qn+l, m n+l - m' , . OW n m n m n 

the above triple would be an integer triple if y can be so chosen such 
that Pn+ 1 (and hence qn+ 1, m n+ 1) becomes an integer. This amounts 
to finding integer solutions of the equation mnx - PnY = qn. The lin
ear indeterminate equation had been extensively discussed by Indian 
algebraists from the time of Aryabhata (499 CE) and they knew the 
complete solution to the problem. Now among the infinite solutions, 
one would obviously choose the solution for which ly2 - DI would be 
minimum so that Imn +ll is minimised (as desired). And that is pre
cisely the prescription of the cakraviila! Andre Weil's remark can hardly 
be bettered ([W2], p 22): 

As is the case with many brilliant discoveries, this one [cakra
viila} can be seen in retrospect as deriving quite naturally 
from the earlier work [samiisabhiivaniij. 

Weil had written in a different context ([W1], p 231): 

... in large part the art of discovery consists in getting a firm 
grasp on the vague ideas which are "in the air", some of them 
flying all around us, some (to quote Plato) floating around 
in our own minds. 

It would be instructive for the students to see that Brahmagupta's novel 
ideas contained the key to the discovery of the cakraviila and that the 
astonishing algorithm was possibly the result of a marvellous interplay 
between the two great preceding works - the kuttaka and the bhiivanii 
- perhaps catalysed by the clarity brought ab out by expositions on 
lesser results like rational solutions of varga-prakrti. 

Selenius expressed doubt ([Se], 176-177) whether the original in
ventors of cakraviila actually thought in terms of the bhiivanii. In the 
absence of historical details, one can never be sure regarding the chain 
of thoughts involved in the discovery. But this reconstruction is, in 
any case, useful for our pedagogic purpose. It is historically plausible 
given that the verses on cakraviila, in both Jayadeva and Bhäskara, are 
preceded by verses on the bhiivanii; and that the bhiivanii was highly 



98 Amartya Kumar Dutta 

regarded by Indian algebraists including Jayadeva and Bhäskara -
Jayadeva remarking that the bhävanä pervades numerous algorithms. 
The alternative interpretation of Selenius, in the framework of contin
ued fractions, too has its pedagogic merits in promoting the culture of 
creativity. 

In retrospect, the original cakraväla can be simplified by avoiding the 
kuttakaY Denote by (xn , Yn) the solution of mnx - PnY = qn for which 
ly2 -DI is minimal. Then Yn+1 +Yn == 0 (mod m n ). Thus the sequence Yn 
can be inductively constructed as follows: having constructed Yn, Yn+1 

is defined to be an integer Y satisfying the simple congruence Y == -Yn 
(mod m n ) for which ly2 - DI is minimal. 

Simplifications are observed after initial breakthroughs. For the pur
pose of promoting the art of discovery, it is desirable to highlight the 
initial thought-process which actually achieved the breakthrough and 
which tends to get camouflaged in later simplifications. There is a cer
tain richness of thought in the cute approach through the blending of 
kuttaka and bhävanä which would be good for the students to imbibe. 
Of course, they should also see the subsequent simplification which too 
serves a lesser, but still important, pedagogic purpose. 

The bhävanä also aids the cakraväla in rapidly arriving at the minimum 
solution. Let us recall the famous example of Bhaskara ([Ba], Verse 76): 

Example 4 (Bhaskara 11) Solve, in positive integers, 61x2 + 1 = y2 • 

Solution. As 64 is the perfect square nearest to 61, we have the initial 
tripie (1,8; 3). Now one finds positive integer y for which Y!8 is an 
integer and ly2 - 611 is minimised. Clearly Y = 7. Now 

7 + 8 = 5. 61 + 8 x 7 = 39. 72 - 61 = -4. 
3 ':3 '3 

Thus we have the second tripie (5,39; -4). Now rather than continuing 
the cakraväla, one can apply Brahmagupta's formula (Theorem 3) on 
the tripie (5,39; -4) to immediately get the minimum positive solution 
(226153980,1766319049) of 61x2 + 1 = y2• • 

17This observation is mentioned in the pioneering work of A.A. Krishnaswamy 
Ayyangar ([K], p 234). 



Brahmagupta's Bhävanä 99 

As displayed in the two tables in Sriram's paper in this volume, the 
Brouncker-Euler algorithm needs 22 steps while the cakraväla algorithm 
(without the bhävanä) needs 14 steps. Thus, although the "cyclic" char
acter of cakraväla gets destroyed (making theoretical justification more 
complicated), the bhävanä provides a very effective short-cut for the 
purpose of practical numerical computations. 

In 1657, Fermat, in an effort to arouse the interest of contemporary 
mathematicians to number theory, issued a few challenge problems with 
special emphasis upon the problem of finding integer solutions to the 
equation Dx2 + 1 = y2, unaware of the works of Brahmagupta-Jayadeva
Bhaskara. Regarding the challenge, Andre Weil remarked ([W2], p 81-
82): 

What would have been Fermat's astonishment if somemis
sionary, just back from India, had told him that his problem 
had been successfully tackled there by native mathematicians 
almost six centuries earlier! 

It is interesting to note that Fermat specifically mentioned the case 
D = 61 which was used by Bhaskara to illustrate the cakraväla. 

6 Possible Genesis of the Bhävanä 

It would also be useful for a budding researcher to try to imagine, in 
retrospect, how a great mathematician could possibly have arrived at 
his discovery. Even if the actual thought-process had been completely 
different, meaningful speculations can serve an important purpose by 
providing fresh mathematical insights to students. We briefly summarise 
the discussion on the genesis of bhävanä made in this light in ([Du2], p 
20-21). 

It is well-known that the Vedic fire-altar construction problems often 
involved the so-called Pythagorean tripies - integer tripies (x, y, z) sat
isfying x2 + y2 = z2. The Sulba Sutras mention several such tripies. It is 
possible that the Sulba authors were aware ofthe formula (2mn)2+(m2-
n2)2 = (m2+n2)2.18 It is likely that, while handling Pythagorean tripies, 

18This identity can be obtained from the algebraic formulae pq = (~? - (9)2 
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ancient Indians investigated the more general indeterminate equation 
z = x 2 + y 2 and discovered the algebraie formulae l9 

(X1 2 + Y1 2)(X22 + Y22) = (XIX2 ± YIY2)2 + (XIY2 =t= X2YI)2. (*) 

Now Brahmagupta explicitly gave the integer solution (2mn, m 2 -

n2, m2 + n2) of the equation x2 + y2 = z2 ([B], Chap 12, Verse 33; 
[Cl, p 306). It is thus possible that Brahmagupta had also examined 
x2 + y2 = C, arrived at the result (*) and, then, while considering the 
more difficult Dx2 + m = y2 , he could have been on the lookout for 
analogous formulae! 

Brahmagupta's identity readily foHows from (*) by replacing Xl by 
xlv'-D and X2 by x2v'-D. Weil remarks ([W2], p 14) that "this could 
not have been fuHy realized until the eighteenth century". Complex 
numbers appeared in formal mathematics only in the 16th century CE 
and its vigorous use can be seen only from the 18th century. 

True, that validity of complex numbers had not been recognised in 
ancient Indian mathematies. But it is still possible that Brahmagupta 
might have heuristically used them as a secret trick - an inspired "rough 
work" - for guessing the magie identity which could then be verified 
by recognised algebraie manipulations.2o 

Brahmagupta's identity (y2-Dx2)(t2-Dz2) = (yt+Dxz)2_D(yz+ 
tx)2 mayaiso be obtained by splitting the terms y2 - Dx2, t2 - Dz2, 
observingthe identity (y+xVD)(t + zVD) = (yt+Dxz) + (yz+xt)VD, 
and multiplying this identity by the conjugate identity (y - xVD)(t -

as well as ka 2 = (!:P ?a2 - (k~l ?a2 (putting p = m 2 , q = n 2 ; a = n2 , k = m 2 /n2 

and clearing denominators); and these two formulae are involved in the Sulba trans
formation of a rectangle into a square (of equal area) and Katyayana's ingenious rule 
for combining k squares into a single square. (See [D3], p 133-136.) 

19This surmise finds some support from parallel developments in Greek mathemat
ics. The Greeks too were fascinated by the Pythagorean tripies - both Euclid (300 
BCE) and Diophantus (c. 250 CE) gave the general solution to the Pythagorean 
equation - and there are indications that Diophantus was familiar with the identity 
(*). For, Diophantus mentioned that 65 is expressible as sum of two different squares 
in two different ways since 65 is the product of 13 and 5, each of which is a sum of 
two squares ([W2], p 10-11). 

2oTo give an analogy, recall the non-commutative ring-theoretic result: "If 1- ab is 
invertible, then so is 1 - ba." and consider the effective trick of guessing the inverse 
of 1- ba through power-series expansion of (1 - ba)-l even when the latter does not 
make formal mathematical sense. 
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zv75) = (yt + Dxz) - (yz + xt)v75. This was the approach of Euler 
([W2], p 15). One wonders if Brahmagupta's thought-process too had 
taken a similar route! That would amount to an implicit handling of 
the norm function mentioned in Section 2. 

7 Possible Motivation for Varga-Prakrti 

Pell's equation is the most famous Diophantine equation after x 2 + y2 = 

z2. Its importance in the study of binary quadratic forms and real 
quadratic fields is well-known. But what prompted Brahmagupta's vig
orous pursuit of Dx2 + 1 = y2 in the seventh century? 

Different explanations can be offered on the basis of the scarce his
torical materials available - each instructive in its own way. 

(i) Astronomy 

In Laghu-Bhäskarzya (Chap 8; Verse 18) of Bhaskara I, there is a 
problem from astronomy involving the simultaneous equations 

By inspection, one readily gets an integral solution y = 3, z = 8 for 
the second equation. Did such problems provide the original motivation 
for exploring a systematic method of determination of integer solutions 
to the general varga prakrti? Possible. In his commentary (Sundart) 
on the Laghu-Bhäskarzya, Udaydivakara (1073) prescribes Jayadeva's 
general method for solving 7y2 + 1 = z2 ([Sh], p 4). 

But the central problems in the vast canvas of ancient Indian astron
omy do not seem to seriously involve the Pell's equation. It is true that 
the examples of Brahmagupta on varga prakrti (as also on other topics 
in algebra) are put in the language of astronomy. Given the exalted 
status of astronomy, it was natural to put the illustrative examples in 
a glamorous astronomy framework for greater impact. But consider
ing the prevailing interests in astronomy, it looks more likely that these 
examples were invented to illustrate the rules; rat her than the rules hav
ing emerged from an attempt to solve those examples. Astronomy alone 
might not have provided sufficient impetus for the sustained effort that 
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would have gone into the partial (and later the general) solution to such 
a difficult problem. 

(ii) Rational Approximation to Vi5 
Aryabhata's method for computing Vi5, when D is a perfect square, 

is well-known ([DS], p 170-175) - a modified version of his algorithm 
is taught in school arithmetic. But right from the Vedic times, there 
have also been efforts to obtain convenient, reasonably accurate, rational 
approximations to Vi5 when D is not a perfect square. In the Sulba 
Sutras (c. 800 BCE), the most ancient mathematics treatises available, 
t, g, ~b~ have been used as approximations for V2 ([D3), p 202; [Di), 
p 341; [Sa], p 18). These three fractions may be interpreted as arising 
out of solutions of 2x2 ± 1 = y2; for 2.52 - 1 = 72 , 2.122 + 1 = 172 and 
2.4082 + 1 = 5772 . 21 In fact, they are respectively the third, fourth and 
eighth convergents of the simple continued fraction expansion of V2. 22 

lt is possible that, at some stage, Indians noticed that a sufficiently 
large integer solution (a, b) of Dx2 + 1 = y2 (or even Dx2 ± c = y2 where 
c is a relatively small positive integer) will give a good approximation ~ 
for Vi5 and that this realisation triggered a quest not only for a method 
of solving the varga-prakrti but also a device for generating arbitrarily 
large solutions from a given one. The hypothesis may have a pedagogic 
usefulness, but there does not seem to be any concrete evidence so far to 
indicate that this was indeed the original motivation for Brahmagupta. 
Naraya1).a, who explicitly used the varga-prakrti for approximating Vi5 

2IOne may recall here that Archimedes (287-212 BCE) gave the approximations 
i~~ and v:~ for V3 and that, in his commentary on Archimedes, Eutocius (700 CE) 
mentioned the relations 2652 -3 x 1532 = -2 and 13512 -3 x 7802 = 1 as a verification 
of the validity of the approximations ([W2], p 16). 

22To cite two other examples of rational approximations: Srldhara (750 CE), 
Äryabhata II (950), SrIpati (1039), NäräyaI.1a (1350) and MunIsvara (1603) gave 

the rule VD >::; [Vr;:2 j for a conveniently chosen large integer N ([Bg], p 98-99). 
Jiiänaräja (1503), his son Suryadäsa (1541), and Kamaläkara (1658) gave a method 
of successive approximation ([D2], p 193-194) which may be expressed as follows: 
Let ao = a = [VD] and ai+1 = ~(ai + ~); then aj >::; VD and each ai is a better 

approximation than the previous ai-I. The case a2 >::; VD was mentioned earlier 

in the ancient BakhshälI Manuscript in the form VD >::; a + {a - 2(~"i$~), where 

r = D - a 2 ([D1], p 11-12). The Sulba fractions Hand ~b~ are respectively the a2 

and a3 for D = 2. 
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(see Section 4), lived more than seven centuries after Brahmagupta. It 
is however possible that Indians did have an early realisation of this 
application of large solutions of varga-prakrti but did not mention it in 
any major text till the discovery of a general algorithm for finding a 
non-trivial solution of Dx2 + 1 = y2 for any D. 

(iii) Pursuit as Pure Mathematics 

The mathematical chapters of Brahmagupta's treatise ([B]) reveal 
the mind and spirit of a great pure mathematician. Many of Brah
magupta's discoveries show his enthusiastic pursuit of results from a 
feel for their intrinsic mathematical worth rat her than the requirements 
of immediate applications. One may cite, for instance, his theorems (Ch 
12, Verses 21, 28) on the area and diagonals of a cyclic quadrilateral 
(rediscovered by W. Snell in 1619) and his ingenious construction (Ch 
12, Verse 38) of a cyclic quadrilateral whose sides, diagonals, circum
radius and area are all rational and whose diagonals are perpendicular 
to each other (which drew the admiring attention of M. Chasles and 
E.E. Kummer in 19th century). 

Now Äryabhata had already presented a cryptic solution to the lin
ear indeterminate equation ax - by = c. This problem probably arose 
from, and certainly had applications in, Indian astronomy. Subsequent 
algebraists, including Brahmagupta, brought clarity and made refine
ments on Äryabhata's pioneering work. Having successfully dealt with 
the linear case, the pure mathematician's impulse might have driven 
Brahmagupta to take up the harder problem of the quadratic indeter
minate equation. The peculiarity of the varga-prakrti would have come 
out from his investigations. He would also have recognised the funda
mental nature and importance of the equation Dx2 + 1 = y2 on which 
he clearly focussed considerable attention. 

The achievements on Pell's equation tend to overshadow the fact 
that, at least from the time of Brahmagupta, Indian algebraists had 
produced a large bulk of work involving ingenious solutions of various 
types of indeterminate equations.23 Most of these equations were clearly 
investigated for their own sake. This zest for exploration of higher degree 
indeterminate equations (after the application-oriented linear case) fits 

23See [DS] for some examples. 
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into the general spirit of the era - the "Classical Age" of Indian history 
- when any department of knowledge or sphere of activity, once taken 
up, was pursued to its extreme. 

Brahmagupta's. penchant for pursuing problems in algebra for the 
sheer joy (and glory) is explicitly recorded towards the end of his chapter 
on algebra, i.e., Kuttaka ([B], Chapter 18, Verses 99-100; [C], p 377): 

sukhamatramamI praSna~praSnanyatsahasraSa~ kuryat 
anyairdattatpraSnanuktairva sadhayetkaraI).ai~ 

jana sarilsadi daivavidaril tejo nasayati bhanuriva bhanam 
kuttakarapraSnai~ pathitairapi kiril punarjfiatai~ 

"These quest ions are stated simply for delight. One may devise a 
thousand others; or may resolve the problems proposed by others, by 
the rules given here. 

"As the sun eclipses the stars by his brilliance, so will an expert 
eclipse the glory of other astronomers24 in assemblies of people, by the 
recital of algebraic problems, and still more by their solution." 

While stating concrete examples, especially those involving the varga 
prakrti, he often used the phrase kurvanniivatsariid gary,akal} - "One 
who can solve it within a year (is truly a) mathematician." Clearly he 
revelled in the challenge posed by the varga prakrti, the determination of 
a solution of which was described by Jayadeva ([Sh], p 14-15) as being 
"as difficult as setting a fly against the wind": 

prakatitamatigahanamidaril marutimukhe mak~ikakaraI).am 

24daivavid means "destiny-knowing" or "astrologer" ([Mwl, p 497). In this con
text, "astronomer" seems more appropriate. As some of the great mathematical 
astronomers (like Varähamihira) were also famous for their knowledge of astrology, a 
sharp distinction was not always made. In the quoted line, the word daivavid might 
have been preferred to a standard term for astronomer for greater impact. Apart from 
the nuance of "godly" in daiva, the word seems to create a powerful sound-effect in 
that line. 
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8 Historical Context 

In the his tory of indeterminate equations in India, the three greatest 
achievements are the kuttaka, the bhävanä and the cakraväla. The 
kuttaka algorithm occurs in Äryabhatlya (499 CE). In the absence25 

of evidence to the contrary, one may regard Äryabhata as the pioneer 
of kuttaka. 

Brahmagupta (628 CE) flourished a century after Äryabhata. A 
truly original idea, the bhävanä has the unmistakable stamp of Brah
magupta's genius. One does not see any seed of the bhävanä in the trea
tises of his predecessors Äryabhata and Bhaskara I or in the Bakh~alI 
manuscript. None of the results in these remarkable texts come elose to 
the algebraic sophistication shown by Brahmagupta's research on Pell's 
equation. In fact, in several results of Brahmagupta, one discerns a 
similar abrupt jump in the mathematical maturity level. 

Brahmagupta was born in an era when symbolic algebra was at its 
infancy. He hirnself established some of its seminal features - he intro
duced the concept of zero as an integer in algebra, formulated the rules of 
arithmetic operations involving negative numbers and zero, contributed 
to the evolution of convenient notations and terminology (like the use 
of distinct letters for several unknowns) and the formation and handling 
of equationsi and so on. It is astonishing that an ancient scientist, who 
had to develop such basic principles in algebra, could have taken the 
leap into investigation of a topic like Pell's equation -- and that too 
with the mi nd and approach of a modern algebraist. 26 

The bhävanä influenced, directly and indirectly, subsequent research 
on indeterminate equations by Indian algebraists. For tracing the pos
sible flow and development of ideas, it isdesirable to have some elar
ity regarding the knowledge and achievements at various time-points. 
However, due to the absence of certain crucial historical documents, the 

25Hardly any complete post-Vedic mathematics treatise, prior to ÄryabhaFya, has 
survived. 

26The achievement appears all the more startling ",hen contrasted with the gen
eral evolution of algebraic thought: till the 16th century CE, Arab and European 
mathematicians struggled with problems involving equations of the type ax + b = c 
(a, b, c positive numbers) as shown by the prevalence of the cumbrous "rule of false 
position" . 
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modern historian faces some difficulties. 

Now some of the crucial unresolved questions are: Who invented the 
cakraväla and when? What was the progress in indeterminate equations 
during the intermediary period (between Brahmagupta and the inven
tion of cakraväla) and how were the results presented? To what extent 
had the awareness of this discovery spread among the mathematicians 
in the course of time? One has to remember the caveat of Weil ([W1l, 
p 234) that "one should not invariably ass urne a mathematician to be 
fully aware of the work of his predecessors" . 

Perhaps one has to await the discovery of the lost algebra treatises 
of Srldhara, Padmanabha, Jayadeva, SrIpati and other algebraists who 
fiourished during the 5 centuries between Brahmagupta (628 CE) and 
Bhaskara II (1150 CE), or at least come across relevant quotations from 
these texts. 

So far, the earliest author who refers to cakraväla is Udayadivakara 
(1073 CE) who quotes Jayadeva's verses on cakraväla. But we have 
no idea regarding the dates or other results of Jayadeva. Given the 
brilliance of the work, it is surprising that Jayadeva is not mentioned 
by Bhäskara lI-he does not seem to have been referred to by most of 
the mathematicians. 

The earliest extant original expositor27 of the cakraväla (so far) is 
Bhaskara II (1150 CE) who attributes the name of the method (and 
hence the method) to earlier writers without specifying any name. Be
ing a gifted algebraist hirnself, Bhäskara II would have undoubtedly 
realised the greatness of this work. Now, at the end of his algebra 
text Bfjagary,ita, he makes a general acknowledgement of Brahmagupta, 
Srldhara and Padmanabha as his sources. There is then a strong possi
bility that Srldhara or Padmanabha invented, or at least wrote on, the 
cakraväla. But none of Padmanabha's works has been found. There is 
no clue as to his dates. Srldhara's date is estimated to be around 750 
CE. But his algebra treatise is no longer extant. Some of its content, 
like the method of "completing the square" in quadratic equations, is 
known from references by Bhaskara. Another relevant missing text is 
the Bfjagary,ita (algebra) of Srlpati (dated 1039 CE). 

27By original expositor we mean here one who is presenting the result in his own 
language and not quoting his predecessor(s). 
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If a book specialises on the most advanced topics of the time, or is 
too difficult, it is likely to be published in fewer numbers with fewer 
editions. Perhaps, for a similar reason, there was not enough circulation 
of the exdusively algebra treatises of the 8th-11th centuries. 

Appendix: Original Verses on Brahmagupta's 
Bhävanä 

~f!(PllffOl<tllJUllr<e1(1rq@~lij I 
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Theorem 1 (in Section 1) was stated by Brahmagupta in Verses 64-65 
of Chapter 18 (titled Kuttakadhyayal.:t28) of Brahma Sphuta Siddhanta 
([B]) in the following form: 

Atha Varga Prakrtil.l 

mulam dvidhe$tavargäd gU'T}akagu'T}Jidi$ta yutaviMnäcca 
ädyavadho gU'T}akagu'T}a1y, sahäntyaghätena krtamantyam 

vajravadhaikyam prathamam prak$epa1y, k$epavadhatulya1y, 

In symbols, the first line states: 

[If] Yi = VDXi2 + mi, i = 1,2; 

while the second and third line taken together mean: 

28 Kuttakädhyäyaf;,=Kuttaka (algebra) + adhyäyaf;, (chapter). The subject algebra 
was called kuttaka-ga1J,ita before the use of the current Sanskrit term bfjaga1J,ita. The 
term kuttaka (pulverisation) indicates that it was regarded as the science of solving 
problems by a process of simplification - by breaking quantities (for instance, the 
coefficients or solutions of a given equation) into sm aller pieces. The term, reminis
cent of Fermat's descent, was particularly appropriate for the solution of the linear 
indeterminate equation pioneered by Äryabhata ([Du1], p 10-22). 



108 Amartya Kumar Dutta 

[then] Y = DXIX2 ± YIY2, x XIY2 ± X2Yl, m = mlm2 

satisfy y 2 = Dx2 + m. 

(Mention of Y = DXIX2 + YIY2 and x = XIY2 + X2Yl is explicit; mention 
of Y = DXIX2 ,....., YIY2 and x = XIY2 ,....., X2Yl also seem implicit.) 

A literal translation ofLine 1 would be: "[Given] the square roots [Yi 
for i = 1,2] of [the following] two [quantities]: the [two] desired squares 
[Xi 2] multiplied by the gu:r;taka [D] and increased or decreased by the 
desired [ciJ," Thus Yi = VDXi2 ± Ci, where Ci are positive integers; 
i.e., Yi = V DXi2 + mi, where mi are integers. Another literal transla
tion could begin as follows: "[Consider following] two [integral/rational 
quantities] which have square-roots [i.e., are perfect squares Yi 2]: ", 

i.e., Yi 2 = DXi2 + mi (i = 1,2). 

A literal translation of Line 2: "The product of the [given] initial (i.e., 
first) roots [Xl, X2] multiplied by the gu:r;taka [D] together with the prod
uct of the [given] final (i.e., second) roots [Yl, Y2] yields a [new] final (i.e., 
second) foot [y] [of the equation y2 = Dx2 +m].", i.e., Y = DXIX2 +YlY2 
or y = DXIX2 ± YIY2. 

A literal translation ofLine 3:: "Cross-multiplication [yields new] first 
[root of the above equation); [new) interpolator is equal to the product 
of the previous interpolators." 

Theorem 1 was also stated in verse form by Äcarya J ayadeva, 
Bhaskara II (1150), Naraya:r;ta (1350), Jiianaraja (1503) and Kamalakara 
(1658). 

Remark 1 

As pointed out by Datta-Singh ([DS], p. 146), the word dvidhä in 
Line 1 has two-fold implication: 

(i) Consider two tripies satisfying Dx2 + m = y2 • 

(ii) Consider two copies of a triple satisfying Dx2 + m = y2. 
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Thus (ii) is a special case of (i) and, together with the next two lines, 
indicate Corollary 1: If Dp2+ m = q2, then D(2pq)2+ m 2 = (Dp2+ q2)2. 

That the audience is also expected to read the implication (ii) in 
Line 1, and therefore Corollary 1 in Lines 1-3, is confirmed by the very 
next Line 4: 

prak§epasodhakahrte mule prak§epake rupe 

"On dividing the roots [obtained] by the [original] additive or sub
tractive, [roots for the] interpolator unity [will be found]." OR "On 
dividing [the roots obtained] by the square root of the [new] additive or 
subtractive, [roots for the] interpolator unity [will be found]." 

Thus, we have, Corollary 2: If (p, q) is a root of Dx2 ± c = y2, then 
(~, Dp2c+q2) is a root of Dx2 + 1 = y2. 

Line 4 is in harmony with the previous lines if the implication (ii) is 
also considered; otherwise the language used might appear abrupt. 

Remark 2 

Both the additive and subtractive versions of Theorem 1 seem to 
find simultaneous mention in Brahmagupta's verses through the expres
siöns saha and aikyam with the ambiguous sense of "combining" DXIX2 
with YlY2 and XlY2 with X2Yl. The word "combining" certainly includes 
the implication "adding". Thus the reference to the more important 
additive principle (producing new roots DXIX2 + YIY2 and XIY2 + X2Yl) 
is obvious. Presumably, "combining" also includes "taking difIerence"; 
the subtractive principle (generating DXIX2 '" YIY2 and XIY2 '" x2yd is 
unlikely to have been overlooked by Brahmagupta. (Also see Remark 
4 below.) In any case, Jayadeva, Bhaskara II and subsequent writers 
clearly describe the two principles successively in separate verses. 

Remark 3 

Theorem 1 in the Introduction was stated in three equivalent forms. 
Brahmagupta's verses (quoted above) seem to resemble best the second 
form. But the perception of Theorem 1 in the first form (i.e., in terms 
of an operation 0) comes out in the applications by Brahmagupta and 
others, in the version of Theorem 1 due to Bhaskara (quoted below) and, 
above all , in the choice and use of the term bhiivanä (composition). 
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Remark 4 

During our literal translation, we had to insert several brackets '[ l' 
to include express ions which are implieit in Brahmagupta's verses. The 
3 lines, conveying Theorem 1, could appear obscure for a person not 
already familiar with the essence of the result. Cryptic brevity is a gen
eral feature of the original treatises of the earlier greats like Äryabhata 
(499 CE) and Brahmagupta (espeeially the former). The verses were 
meant to indicate broad hints- not complete details. There used to be 
emphasis on the use of a learner's own intellect for filling up the details. 
Here one may point out that most modern mathematieians feel that a 
researcher eventually gains more insight into his area from a terse text 
than from a clearly spelt-out text, from an obscure important paper 
than from alueid one. 

Besides, coneiseness was also a practical necessity. Palm-leaf manu
scripts do not last long. Thus a treatise could be preserved only through 
memorisation or through repeated copying. In either case, the more con
eise the work, the better its chance of survival through faithful memo
risation or copying. Brevity would have been particularly indispensable 
for an aneient author with enormous output. One can appreeiate Brah
magupta's compulsions when one considers that, in spite of its oppressive 
terseness, the number of verses in Brahma Sphuta Siddhanta exceeds a 
thousand. 

With passage of time (and improvement of writing materials), the 
later treatises, even by stalwarts, give more and more elaborate versions 
of the results of the predecessors. Jayadeva's verses on the bhiivanii 
([Sh], p. 4-8) have greater clarity than Brahmagupta's, Bhäskaracarya's 
version (quoted below) is still more lucid. 

Detailed expositions on the works of the Masters were meant to be 
orally transmitted through the guru-si~ya (mentor-diseiple) link. The 
commentaries too try to clarify the implications of the passages of the 
original treatises. Brahmagupta's verses are explained by P:rthiidaka 
Svami (860 CE); Bhaskara's verses by K:r~J).a (1600) and Siiryadasa 
(1541).29 

Brahmagupta's result, once stated, is not difficult to prove. Proofs 

29The footnotes in [Cl, p 170-172 and 363-364 contain excerpts from these com
mentaries on Brahmagupta's and Bhäskara's verses describing the bhävanä. 
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of such results are not to be expected in the original treatises (where 
even the statements ofmain results are terse). They were communicated 
orally and sometimes recorded in the later works. A proof of Theorem 
1 is described by Kr~J.la in his Bfjapallava (1600) - see ([DS], p 148-149). 

The version of Bhäskara 11 

Bhäskaräcärya's version ([Ba], p 22) of Brahmagupta's bhiivanii oc
curs in the section "Varga Prakrti" of his text "BljagaJ.lita" (Verses 
70-71). We present below the transliteration followed by a translation. 

i$tam hrasvam tasya varga~ prakrtyii k$u'(///'}au yukto varjitii vii sa yena 
rniilam dadyiit k$epakam tam dhanarry,am rniilam tacca jye$tharniilam 

vadanti 

hrasvajye$tha k$epakiin nyasya te$iim tiinanyiinvii'dho niveSya krarnery,a 
siidhyiinyebhyo bhiivaniibhirbahiini rniiliinye$iim bhiivanii procyate 'ta~ 

vajriibhyiisau jye$thalaghvostadaikyam hrasvam laghvoriihatisca prakrtyii 
k$ury,ry,ii jye$thiibhyiisa yug jye$tharniilam tatriibhyiisa~ k$epayo~ k$epaka~ 

syiit 

hrasvam vajriibhyiisayorantaram vii laghvorghiito ya~ prakrtyii vinighna~ 
ghiito yasca jye$thayostadviyogo jye$tham k$epo 'triipi ca k$epaghiita~ 

"[Consider] the desired lesser root [X].3° Its square, multiplied by 
prakrti [D], is added or subtracted by some quantity [cl such that it [the 
sum or difference Dx2 ±c] gives a [integer] square root. The interpolator 
[m = ±c], positive or negative, is called the k$epa; the square root [y] is 
called the greater root. 

"Set down successively the lesser root [Xl], the greater root [Yl] and 
the interpolator [mI]. Place under them, the same or another [triple 
X2, Y2, m2], in the same order. From them, by repeated applications of 
the bhiivanii, numerous roots can be sought. Therefore, the bhiivanii is 
being expounded.3l 

30 X and y in Dx2 + m = y2, which were called iidya (initial or first) and antya 
(final) respectively by Brahmagupta, were named hrasva (lesser) andjye~tha (greater) 
respectively by Bhäskara 11; the gur;taka D of Brahmagupta was called prakrti by 
Bhäskara 11. 

31 The last sentence comes from the phrase bhiivanii procyate 'tal} which can also 
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"[Consider] the two cross-products of the two greater and the two 
lesser roots. The surn [XIY2 + X2Yl] of the two cross-products is a lesser 
root. Add the product of the two [original] lesser roots rnultiplied 
by the prakrti [D] to the prodl:lct of the two greater roots. The surn 
[DXIX2 + YIY2] will be a greater root. The product of the two [previous] 
interpolators will be the [new] interpolator. 

"Again the difference between the two cross-products is a lesser root. 
The difference between the product of the two [original] lesser roots 
rnultiplied by the prakrti and the product of the two greater roots will 
be a greater root. Here also, the interpolator is the product of the two 
[previous] interpolators." 

We rnention here that Bhaskaracarya referred to Brahrnagupta as 
ga1}aka cakra cürj,äma1}i32 (jewel arnong rnathernaticians). 

Acknowledgement. The author sincerely thanks Prof. Sitanath Goswarni 
for verifying the accuracy of the Sanskrit-English translations and ac
cornpanying notes, and Professors Arnit Roy, Kalyan Mukherjea and 
Raja Sridharan for stimulating rnathernatical discussions and valuable 
suggestions. 
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Abstract 

This paper presents the kam"}f, a mathematical construction 
to use integers to make calculations with square roots. Indian 
mathematicians invented new operations for this purpose (e.g. 
(V2 + yB)2 = 2 + 8 + 2 v'2X'8 = (JI8)2 for the sum of what 
they call the kam"}z 2 and 8, the sum of which is the kam"}z 18). 
This construction seems to be sophisticated, even useless, but we 
can find an explanation in a commentary (17th century): if all 
the calculations on square roots are made with kam"}z, and the 
approximate value is taken only at the end, the result is more ac
curate than if approximate values are taken at the beginning of 
the calculation. 

This paper intends to present a mathematical construction made 
by Indian mathematicians in order to use integers in the calculations 
involving square roots: these mathematical objects are called kara7}f. 

To begin with, it may be useful to introduce the authors and the 
texts on which this paper is based. According to the Indian tradition, 
knowledge develops and is transmitted through a fundamental text and 
the commentaries written on it. Here, the main text is the Bfjaga7}ita 
of Bhaskaracarya, and two commentaries are used: the SüryaprakiiSa by 
Suryadasa ([1]) and the Bfjapallava by K.r~l).adaivajiia ([2]). 



116 Frant;ois Patte 

There are two Indian mathematicians by the name of Bhaskara: one 
who lived in the 7th eentury and is often referred to as Bhaskara I 
and one who lived in the 12th eentury and is known as Bhäskaraearya 
(Bhaskara-aearya: Bhaskara the master) or Bhäskara 11; in this paper, 
his name will be shortened to Bhaskara beeause there is no ambiguity 
here: we shall never use the works of the first Bhaskara. In the same 
way, Krl?I.ladaivajiia, is abbreviated as Krl?I.la. 

1 The author: Bhäskara 

Bhaskaraearya was born in 1036 saka, which is 1114 A.D., as he puts 
it hirnself at the end of the third part of his main work, the Siddhiinta
siroma~i([3]): "1 was born in the year 1036 of saka kings, during my 
thirty-sixth year 1 composed the Siddhanta.siromaI.li ".1 

Then, he gives the name of a town and its loeation, the name of 
the gotra he belongs to and the name of his father: "There was at 
Vijjatj,avüja, a town located in the Sahya mountains . .. a twice-born from 
the Sii:fy,tj,ilya lineage . .. the virtuous Mahesvara . .. , born from the latter, 
the clever poet Bhäskara . .. ,,2 

What remains a mystery up to now is the exaet name and loeation of 
the town: Vijja<,lavi<,la. The Sahya mountains are loeated in the northern 
part of the Maharashtra state and hold the well-known sites of Ajanta 
and Ellora; in these mountains, an inseription was diseovered about 
1850 in the basement of atempie at PatnadevI, a small plaee near the 
modern Chalisgaon; this inseription gives Bhäskara's genealogy from the 
10th to the 13th eentury, approximately, and was engraved to eelebrate 
the foundation by his grandson of a sehool dedicated to the studies of 
Bhäskara's works in this very plaee. The name of Vijja<,lavi<,la is not 
quoted in this inseription which explains that king Jaitrapala, from the 
Yadava dynasty, made Bhaskara's son, Lakl?mldasa, his astrologer and 
took hirn from "this town" to his eapital; at that time, the eapital of 
the Yädavas was Devagiri whieh has been identified as Daulatabad near 

lrasagUI].apürI].amahlsamasakann>asamaye 'bhavan mamotpattil.ll rasaguI].avar!?e
I].a mayä siddhäntaSiromaI].il.l racita~L 11 

2äslt sahyakuläcaläSritapure ... vijja(,iavi(,ie säI].(,iilyagotro dvijal.l ... mahesvara
k~tl ... tajjas ... suddhll.l kavir bhäskaral.ll 
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Aurangabad and is not that far from PatnadevI. 

1.1 Bhäskara's works 

The main work of Bhäskara is the Siddhiintasiromary,i; it is composed 
of four parts: the first two are mathematical ones, the last two are as
tronomical ones. The two mathematical parts are respectively entitled: 
Lflävatf and Bfjagary,ita. 

Let us briefly explain the title Siddhiintasiromary,i: "The Diadem on 
the Siddhiinta". Siddhänta means "settled opinion". In India this name 
was given to the fundamental astronomical works; there were five major 
Siddhiintas but there remains only one of them: the Silryasiddhiinta, 
"The Siddhänta of the Sun", thus called because it is assumed to have 
been revealed by the god Sun. The work of Bhäskara is based on it. 

The Lflävatf is a treatise of elementary calculus; numeration, oper
ations, rules of proportions, calculation of areas, volumes and so on; it 
belongs to the dass of pätf-gary,ita or vyakta-gary,ita. pätf means method, 
gary,ita means calculus and vyakta means manifested; this is a "method 
of calculus" or a "calculus on manifested numbers". 

We can find the name of the title at the end of the first stanza of the 
Lflävatf which describes the method (pätf): "(. .. ) I proclaim with soft 
and correct words, using short syllabies, a method of good computation, 
which causes great satisfaction, which is clear and possesses the grace 
0/ the play. " 3 

The Moghul Abu al Fay<,l Fay<,lI reports a legend about this title, 
which is also a name given to a girl in India, in his translation of this work 
into Persian, in 1587. He says that LIlavati is the name of Bhaskara's 
daughter to whom this book was dedicated. We did not find anything 
about this in Sanskrit commentaries; commentators merely explain the 
formation of the word lflä-vat: "that which possesses the play, that 
which is like agame". 

Bfjagary,ita: this is the generic name for algebra. Bfja means seed, 
so Bfjagary,ita is calculus on seeds, the seeds which potentially contain 

3( ... ) pätiIp. sadgalfitasya vacmi caturaprItipradäm prasphutäm I saIp.k!?iptä
k!?arakomalämalapadair lälityaffiävatIm 11 
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calculus on manifested numbers; another name for this is avyakta-ga'T}ita: 
calculus on non-manifested numbers. We can find in the commentaries 
some parallel with the vyakta and avyakta worlds, the manifested and 
non-manifested worlds of the Särp,khya philosophy, the non-manifested 
world containing the manifested world before the creation. 

The Bfjaga'T}ita expounds calculus on negative and positive num
bers, calculus on unknown quantities - these are the avyakta, the 
non-manifested numbers which contain the possibility of making "real 
computations" if you replace them by numbers (manifested-numbers); 
another name for unknown quantities is var'T}a: color, letter - and it ex
plains resolution methods of equations: linear, Diophantine, algebraic ... 
The fourth chapter, following the chapter on unknown quantities, is 
devoted to the kara'T}f. 

The two astronomical parts of the Siddhäntasiroma'T}i are entitled: 
Grahaga'T}itädhyäya, "Lesson on the Computation of Planets", and Go
lädhyäya, "Lesson on Spheres". This part contains some trigonometry: 
calculation of additions of sines etc. 

The Siddhäntasiroma'T}i was written in verse, as is usually done for 
this kind of treatises, and it is often difficult to understand without 
the help of commentaries. Here, we shall use two commentaries on the 
Bfjaga'T}ita: one is the SüryaprakäSa by Suryadäsa, composed around 
1530; the other is the Bfjapallava by Krl?l.ladaivajiia, composed around 
1604. 

The other Bhäskara's known works are: a commentary on his Sid
dhäntasiroma'T}i, the Mitäk~ara "Having Measured Syllables" or Väsa
näbhä~ya; these are the names given for small commentaries to explain 
works very briefly. The Kararwkutühala: "The Wonder of Astronomical 
Calculations" is a practical treatise on astronomy. It is dated 1183 by 
Bhäskara hirnself; this is the last date that is known about hirn and, 
for this reason, some people think that he died about 1185. We do not 
know exactly when and where. Some think that he was in charge of the 
astronomical observatory in Ujjain and that he died there, but there are 
no texts and no inscriptions to support these facts. The astronomical 
instruments that we can see nowadays in Ujjain were erected in the 
18th century by the maharajah of Jaipur, Jai Singh 11. The last work 
is a commentary on a mathematical work by Lalla, an astronomer from 
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the 8th century: the Si§yadhivrddhidatantra: "A Treatise to Increase 
the Understanding of Students". 

2 The commentators: Süryadasa and 
K:r~I).adaivaj iia 

2.1 Süryadäsa 

We do not know much about Siiryadäsa. As is usually the case, he 
belonged to a family of astronomers and, very likely, lived in the west
ern part of the GodavarI valley during the first part of the 16th cen
tury. He is known for two commentaries: one on the Lfliivatf, entitled 
Ga'(titiimrtaküpikii, "The Well of Nectar which is The Calculus" , and one 
on the Bfjaga'(tita: the SüryaprakiiSa, "The Brightness of the Sun"; this 
title is a play on words: his own name, Siiryadasa, but also the name of 
Bhäskara, which also means the Sun, as does the word sürya. The name 
of his father is also known, Jiianaraja. He wrote an astronomical trea
tise too: the Siddhiintasundaraprakrti or "The Charming Foundation of 
the Siddhanta", and a mathematical work, in imitation of Bhäskara's 
Bfjaga'(tita: the Siddhiintasundarabrja. 

2.2 K:r!?l}.adaivajiia 

Kp;lI).adaivajiia was born in a family of astronomers who had settled in 
Varanasi at the end of the 16th century. He was a protege of the Moghul 
emperor Jahangir (1605-1627). His commentary on the Bfjaga'(tita, the 
Bfjapallava or "The Sprout of the Seed", is dated Saturday, the fourth 
tithi of the dark fortnight of the Caitra month, in the year 1523 of 
the saka era, namely: Tuesday, March 12th, 1602. He also wrote some 
examples (udiihara'(ta) using the horoscopes he made about members of 
the Moghul dynasty and he may have composed a commentary on the 
Lfliivatf. Unlike the others, Bhäskara and Siiryadasa, he seems to have 
had as a guru, not his own father, but a nephew of GaI).esa, another 
great Indian mathematician. 
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3 The karal).I 

3.1 The "concept" of karar}/i 

The word kararyr means producer. It is in the feminine for, in Sulbasütra 
texts, "The Aphorisms on the Rope", it was originally in relation to 
the word rajju, or rope, whieh is feminine too. This rajju kararyr has 
been used to produee geometrie squares, that is a right angle; there are 
some aphorisms in the Sulbasütra explaining how to plaee some marks 
on a rope, at the distanee of 3, 4 and 5, in order to produee a right
angled triangle and henee a square. So, the word karaT}/r was used to 
designate the side of a square and beeause of that, it ean mean the 
square root of a number. From the 5th eentury before the eommon era 
to the 17th eentury, the word kararyr seems to have had many meanings 
related to squares and square roots and eonsequently it is not easy to 
translate. Moreover, the mathematical eoneept expressed by this word 
in this papaer, has no equivalent in modern mathematics. For this reason 
we will not translate it. One eommon translation into English is surd. 
The word surd is ambiguous, for it means either irrational number or 
square root; there is no idea of irrational numbers in karaTyr, no idea of a 
number which cannot be expressed by a ratio, by a fraction of integers. 
As for the meaning "square root", this is not a eorrect translation for 
karar},Z, as kara'!}f are not merely numbers, but numbers with a set of 
operations. 

Bhaskara does not give any definition of kara'!}f; the first rule, "sütra" 
as this kind of stanza is ealled in Sanskrit, deals straight with the rules 
of addition and multiplieation, but we ean find some information in the 
eommentaries. Here is what Suryadasa says about this first sütra4 : 

"Now, [theauthor] who examines the nature of these karal.lIs, under 
the pretext of explaining the rule of multiplication, says: "vargel.la". 

One will multiply a square varget'-a by a square number; likewise, 
one will divide a square by a square only; on the contrary, one will not 
multiply or divide a square by a number. It is pointed out by this, that 
what is of the nature of karar;tI by name is of the nature of a number 

4We will see the sutra itself later on. The transliteration of all quoted texts is 
given at the end of the article, see page 133. 
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accepted with the quality 01 square; this is said by Närayary,a: 

"The name olkara1).I will be for that [numberj the square root 
01 which must be taken.5 " 
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We shall examine the first part of this text later, and use now only 
the underlined part. What is important here is that if you consider 
the number two as a karary,i, you must accept that this number is a 
square; this is reinforced by the above quotation from Naraya1).a who is 
a mathematician from the 14th century. A karary,iis a number for which 
you have to compute the square root, so you must think that it is a 
square, you must think of amental squaring operation. 

Here is now what Kr~1).a says as an introduction to his commentary 
on this chapter: 

"Noware commented the six operations on the kara1).I. In this mat
ter, one should understand that the six operations on kara1).I, are six 
operations done through the squares 01 two square root quantities. Be
cause the origin 01 these six operations is preceded by astate of square, 
therelore, [there will bej also the use of the expression "state of kara1).I", 
in relation with these six operations, lor a quantity producing a square 
root; this usage will not be possible il the calculation proceeds with the 
state 01 square root as the first step. The technical word "six operations 
on kara1).I" must be understood because of the necessity of such calcula
tions about square root numbers; in this [casej, that quantity for which 
a square root without a remainder is not possible, when its square root 
is required, is a kara1).I, but this is not merely a quantity which does not 
produce a square root; il it were so, there would always be the use of the 
expression "state of kara1).I" for two, three, five, six, and so on. 

- Let it be so! 

No! If the operations were done on that basis, for instance, eight 
added to two would be eighteen, ete." 

This commentary requires some explanations. Note that the "six 
operations" are the operations which are studied in the Bijagary,ita, 
whatever the objects (negative numbers, unknown quantities, karar-i ), 

5Quoted by Süryadäsa from NarayaI).a's B'ijaga'T}itävata'f[tsa. 
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namely: addition, subtraction, multiplication, division, squaring and 
square root. First, we recognise the same idea as in the commentary by 
Süryadasa: a karar}/f is a number which is the square of its square root. 
Of course, this is a truism. For a modern mathematician, every number 
is the square of its square root; but at the time of Bhäskara, and his 
commentators, it was not so obvious that a number which was not a 
square could have a square root; we can see that in this text: Kr~1).a 

speaks of a quantity producing a square root, the Sanskrit compound 
mula-da (which gives a root) is used by Indian mathematicians to des
ignate a perfect square. Here, we are told that a square can be called 
a kara'T}z but - and it is the second fact to be noticed - "in relation 
with these six operations", that is to say that we cannot separate, for a 
number, the state of being a kara'T}z from the dass of operations defined 
for them. 

This becomes dearer with the end of the text: Kr~1).a explains that 
a "quantity for which a square root without a remainder is not possible, 
when its square root is required, is a kara1).I but this is not merely a 
quantity which does not produce a square root". Indeed! For if we keep 
in mind that every number which is a square could be called a kara'T}f, 
every integer should be a kara'l}f. The explanation comes right after, 
taking the form of a small dialogue, as is often the case in Sanskrit 
commentaries: an opponent argues "Let it be so!": and what if we take 
this definition for granted? Kr~1).a answers: "lf the operations were to be 
done on that basis, for instance, eight added to two would be eighteen." 
So we cannot call a number a kara'T}z without thinking of how to make 
operations with it. 

3.2 Rules of computation 

We can now analyse the text of Bhaskara and see why "eight added to 
two would be eighteen"; here are the two first rules of this chapter: 

Let us fix the mahatI as the sum of the two kara1).Is and the 
laghu as twice the square root of their product, the sum and 
the difference of these two are as for the integers. One will 
multiply and divide a square by a square. -1- But the square 
root of the larger [number} divided by the smaller [number}, 
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plus one or minus one, multiplied by itseli and by the sm aller 
[number], will also be respectively, the sum and the difference 
oi these two [karaJ.lIs]. One will leave them apart if there is 
no square root. -2-6 
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These sütras give two ways of calculation for the sum and the dif
ference of two kara'T}fs: in the first one, two new objects are defined: 
the mahatf, the greater, which is the sum of the two kara'T}fs, that is 
to say the sum of the two integers which measure the two kara'T}fs; the 
second object is the laghu, the smaller, which is twice the square root of 
the product of the same integers. The names chosen for these technical 
words are obvious, for the sum of two integers is always greater than 
twice the square root of their product. Once the mahatf and the laghu 
have been calculated, the two integers produced are added and the re
sult is the kara'T}f sum of the two kara'T}fs, that is to say: the square of 
the sum of the square roots of the two integers measuring the kara'T}f. 

If the difference of the mahatf and the laghu is computed, the result is 
the difference of the two kara'T}fs. There is a problem with this definition: 
the difference between two kara'T}fs is the same whether you compute the 
difference between the greater one and the smaller one or the smaller 
minus the greater. 

Before going deeper in the explanations of these rules, let us see the 
example given by Bhaskara, and its solution by Suryadasa. 

Say the sum and the difference oi the two karaJ.lIs measured 
by two and eight and by three and twenty-seven and after 
a long while, ii you know the six operations on karaJ.lI, say, 
dear, [the sum and the difference] oi these two measured by 
three and seven.7 

Now the commentary by Suryadasa: 

6yogaI!l karaJ;lyor mahatII!l prakalpya ghätasya mülaI!l dviguJ;laI!l laghuI!l 
ca! yogäntare rüpavad etayol). sto vargeJ;la vargaI!l gUJ;layed bhajec ca IIlaghvyä h~täyäs 
tu padaI!l mahatyäl). saikaI!l nirekaI!l svahataI!llaghughnam I yogäntare stal). kramaSas 
tayor vä p~thaksthiti},l syäd yadi nästi mülam 11 

7 dvikä~tamityos tribhasaI!lkhyayos ca yogäntare brühi p~thak karaJ;lYol). I trisap
tamityos ca ciraI!l vicintya cet ~aQ.vidhaI!l vetsi sakhe karaJ;lyäl). 11 
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In this case, putting down ka 2 ka 8, by: "Let us fix the mahatz as 
the sum of the two kara'T}zs", the mahatz is 10. 

Now, the product of these two karaJ).Is is 16, its square root 4, when 
multiplied by two, the laghu is produced: 8. 

"The sum and the difference of these two are as for the integers": 18 
and 2; these two karaJ).I: ka 18 and ka 2 are the sum and the difference. 

The solution of this exercise put forward by Bhaskara is dear. We 
can observe how the mathematicians proceeded to differentiate a simple 
number and a number which must be considered as a karaT}z: they wrote 
the first syllable of the word karaT}z before the number: ka 2 and this 
means that this "2" is the square of the square root of 2, so, in this 
addition we have to find out the square of the square root which is the 
sum of the square root of 2 and the square root of 8; with our modern 
notations, we have: 

(V2 + Vs)2 = 2 + 8 + 2V2X8. = (V1S)2 

If we could mix our modern formalism with the ancient Indian one, 
we would write that the set of karaT}z is a set of numbers with this 
particular addition: 

ka a 83 ka b = ka (a + b + 2vab) 

It is obvious that this addition (and subtraction) is only defined 
if the product of the two integers measuring the karaT}z is a square. 
What happens if this is not the case is expressed by the last sentence of 
Bhäskara's rule: "One will leave them apart if there is no square root." 
This situation is illustrated by the third example given: the sum of the 
karartz measured by three and seven is impossible because 21 is not a 
square, so the solution of this exercise is merely: ka 3 ka 7. 

This creates an extension of the meaning of karaT}f. In Sanskrit texts 
there are some statements like: "Let the karaJ).I be measured by 2, 3 and 
5" as if a karaT}z was also a composition of several kara'T}zs the sum of 
which is not possible but which can be used for other calculations. 

The second way for adding, or subtracting, the karaT}zs given by 
Bhaskara (see page 122) is very simply derived from the first one and 
there is no need to comment upon it: 
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Let us focus on the sentence of the rule: "One will multiply and divide 
a square by a square." We have seen how one of the commentators, 
Silryadäsa, had explained it (page 120) in order to put forward the 
nature of square of the kara'f}2. 

Here is now what Kr~l).a says about it: ''vargel).a vargaIp gUl).ayed 
bhajec ca": here is what is said: when you want to multiply karal).Is, 
iJ there is the state oJ multiplicand or the state oJ multiplier Jor some 
integer - or iJ you want to divide karal).Is, iJ there is the state oJ divi
dend or the state oJ divisor Jor some integer - then, having squared the 
integer, the multiplication and the division can be perJormed, because a 
karal).I has the nature oJ square. " 

Another idea springs from this commentary: how to "embed" the 
integers in the kara'f}f set; if we want to make operations mixing integers 
and kara'f}f, we have to square the integers in order to give them astate 
of kara'f}fs and this will change the general rules given for the operations. 
For instance, the rule for squaring the integers given in the Lflävatf uses 
the identity (a + b)2 = a2 + b2 + 2 ab. So Kr~l).a explains afterwards: "Jor 
the square also, the Julfilment is in like manner because it (the square) 
is a kind oJ multiplication according to its nature oJ product oJ two equal 
[numbersJ. Or, according to the method stated Jor the maniJested num
bers: "The square of the last [digit] must be placed and [the other digit 
must bel multiplied by the last one increased two times ... "s, there will 
be a Julfilment [oJ this methodJ Jor the squaring oJ the karal).I also but, 
as has been said: "One will multiply and divide a square by a square" , 
when it is said: "multiplied by the last increased two times" , we must 
understand: "multiplied by the last increased Jour times. " 

Let us now make a digression. Notice the extreme degree of con
ciseness of Sanskrit works such as the Bfjaga'f}ita: in one single rule, 
Bhäskara describes four of the six operations: addition, subtraction, 
multiplication and squaring. Although he describes the addition and 

8 sthapyo 'ntyavargo dvigUI,lantyanighnal,l I svasvopari~tä.c ca tathapare 'Iikas 
tyaktväntyam utsärya punaS ca räSim - Lfliivatf 
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the subtraction, by giving two methods, because these operations differ 
from the same operations applied to numbers or unknown quantities, a 
simple sentence is enough for hirn to say how to handle the multiplication 
and consequently, the squaring. 

This method of exposition is usual in the fundamental works of San
skrit literat ure and the works of Bhäskara are of this kind; they were 
used for centuries as a basis for mathematical teaching: students learned 
them by heart, then their masters composed commentaries which be
came original lectures. In order that they may be easily remembered, 
they were composed in verse, "using short syllabies", as seen earlier 
(page 117), and any unnecessary rule was avoided. So, in this chapter 
on the kara'T}z, there will not be any proper rule for multiplication: onee 
it is understood - with the help of the eommentator - that for any 
"simple" kara'T}z9 the multiplieation is merely given by: 

the general rule for kara'T}z measured by more than one integer has al
ready been given in a preeeding chapter, the chapter on unknown quan
tities: 

One must think here, in like manner, 01 the rule 01 multipli
cation by parts stated lor manilested numbers, in the case 01 
the square of non-manifested numbers and in the case 01 the 
multiplication 01 karaJ).Is. 10 

And even here, the rule refers to another rule given in the Lzlävatz 
which describes the property of distributivity of the multiplication with 
respect to the addition - the "multiplication by parts": 

(. .. ) Or the multiplicand, equal in number to the number 01 
parts of the multiplier, being placed under each of them, ~s 

multiplied by these parts and added up.u 

9Let us caU "simple" a karaT}'i: measured by a single integer 
lOavyaktavargakaraI).lgUI).anäsu cintyo vyaktoktakhaI).<jaguI).anävidhir evam atra I 
llgUI).Yas tv adho 'dho gUI).akhaI).<jatulyas tail~ khaI).<jakai1:.t sarp.guI).ito yuto vä I 
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In fact , it is clear from the text of the Lilävati and its commentaries 
that the "parts" in quest ion are either the result of splitting an integer 
into two (or more) parts in order to perform amental ca1culation or the 
digits of the number with their decimal place value; so, this last rule can 
be used to perform ca1culations on polynomial-like quantities: a number 
considered in such a way being merely a polynomial in the powers of ten. 

Let us see now the example given by Bhaskara for the multiplication 
of the kara1Ji: 

Set the multiplier as the kara:t:lI counted by two, three and 
eight and the multiplicand as counted by [the kara1Ji} three 
with the integer jive; say the product quickly. Or the multi
plier is the two kara:t:lIs measured by three and twelve less the 
integer jive. 12 

and the solution given by Suryadasa: 

Here, the multiplier is: ka 2 ka 3 ka 8. 

In like manner, the multiplicand is counted by three with jive units; 
in this multiplicand, there are: ka 3 rü 5. 

One notices an integer: after taking its square, the state of kara:t:lI 
must be brought about because it has been said: "One will multiply and 
divide a square by a square". By so doing, ka 3 ka 25 are produced. 

Now, according to the method of the rule: "One must think here, in 
like manner, of the rule of multiplication by parts stated for manifested 
numbers, in the case of the square of non-manifested numbers and in the 
case of the multiplication of kara1Jf', after multiplication, ka 54 ka 450 
ka 9 ka 15 are produced. 

The rule "One willleave them apart if there is no square root" is used 
in this example and we discover a new formalism to denote integers: rü, 
first syllable of the Sanskrit word rüpa, the meaning of which is "unity", 
"integer". The commentator squares this integer to transform it into a 
kara1Ji before he performs the multiplication. 

12dvitry~tasal1lkhyä gu~akal.t kar~yo gu~yas trisal1lkhyä ca sapaiicarüpä I va
dhal1l pracak::;väSu vipaiicarüpe gu~o 'thavä tryarkamite kara~yau " 
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Aeeording to Bhäskara's rule for the multiplication "by parts" (see 
page 126), we eould represent the way to do this multiplieation with the 
following table: 

ka 2 ka 3 

ka 3 ka 25 ka 3 ka 25 

ka 6 ka 50 ka 9 ka 75 

t :j: 

ka 8 
ka 3 ka 25 
ka 24 ka 200 

t :j: 

The multiplier is split in to three parts, as stated in Bhäskara's rule, 
and plaeed in the first row; then the multiplieand is put under eaeh part 
of the multiplier and the multiplication is performed in eaeh eell of the 
table, the results being written in the third row. 

We have put an identical symbol under the kara1J.z for whieh the 
addition is possible. 

t: 6 + 24 + 2 yI6X24 = 54 
:j:: 50 + 200 + 2 v'50 x 200 = 450 

Onee the addition is done, the result is the one given by Süryadasa. 

The seeond example raises a problem beeause there is no mathemat
ieal notation for addition or subtraction; the Indians have developed for
malisms in some branehes of knowledge like grammar and mathematics 
but there are no signs to denote the operations. In this ehapter on the 
kara1J.f, putting two kara1J.fs side by side indicates that it is the sum of 
these two kara1J.f whieh is eonsidered. This is the meaning of: "One 
will leave them apart if there is no square root". For the subtraction, 
the notation is almost the same beeause it has been explained at the 
beginning of the Bfjaga1J.ita that a subtracted positive number beeomes 
a negative number, therefore, subtraeting a number is only adding its 
opposite. There is a sign to denote negative numbers: a dot is plaeed 
over them; applying this notation to the kara1J.z leads to: 

• ka 8 ka 2 

meaning that the kara1J.f 2 is subtraeted from the kara1J.f 8. 

As long as only kara1J.fs are eonsidered, no problems oeeur: the sub
traction rule applies as it is formulated: the differenee is the kara1J.z 
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measured by the number 8 + 2 - 2.J2X8 = 2. But in his example, 
Bhaskara says: "(. .. ) Or the multiplier is the two kara~I measured 
by three and twelve less the integer jive" and aeeording to the Indian 
notation system, we have to write: 

• ka 3 ka 12 ru 5 

Beeause karw;/i and integers are mixed in this multiplier, we have to 
square the integer in order to transform it into a karary/i and when doing 
this, we willloose the "negative sign" showing that the last eomponent 
must be subtraeted. 

To solve this problem, Bhaskara introdueed a rest riet ion to the gen
eral rule whieh says that the square of a negative quantity is positive: 

The square of negative integers will also be negative if it is 
calculated for the reason of astate of kara~I. Likewise, the 
square root of a kara~I the nature of which is negative will 
be negative for the reason of creation of astate of integer. 13 

• 
With this rule, the multiplier beeomes: ka 3 ka 12 ka 25, which 

• 
ean be simplified as ka 27 ka 25, by the addition of the karary/is 3 and 
12 (3 + 12 + 2 y!3 x 12 = 27). Now, the multiplieation ean be performed 
in the same way as in the first example; let us summarize this with a 
table: 

• 
ka 25 ka 27 
ka 3 ka 25 ka 3 ka 25 

• • 
ka 75 ka 625 ka 81 ka 675 

Depending on the eommentator, the result ean be simplified in more 
than one way: noticing that 81 and 625 are squares, we ean give them 
back their state of integers and subtract one from the other, beeause the 

• 
square root of the "negative square", 625, remains negative aeeording 

• • 
to the last given rule; we get ru 16. The two remaining karary/is, ka 75 

13k~ayo bhavec ca k~ayariipavargaS cet sädhyate 'sau kara~ltvahetolf I ;-~ätmikäyäS 
ca tathä kara~yä miilal!l k~ayo riipavidhänahetolf 11 
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and ka 675 can be subtracted, for 675 x 75 = 50625 is a square and we 
get ka 300. 

It may seem strange for a modern mathematician to state a general 
rule, such as: Uthe square 0/ a positive or a negative number is a positive 
number", then to restrict its range of application by another rule which 
may even contradict the general one. Nevertheless this is found very 
often in mathematical Sanskrit texts because the paradigm of logic in 
Sanskrit scientific knowledge is grammar rat her than mathematics. We 
can see an example of this here and this procedure repeatedly occurs 
in Pa:r;lini's grammar which is the fundamental text of Indian scientific 
tradition. 

There are two more operations to complete the six operations de
scribed in the Bzjaga1}ita: division and square root. 

Division is easy to perform -- and Bhaskara does not give any rule for 
this, only examples - because the algorithm given for the multiplication 
is the same as the one given für the unknown quantities and thus, as 
is shown by the two preceding tables, the division is very similar to 
today's Euclidean division of polynomials: it is suflicient to read these 
tables in the reverse order, making the third row the dividend and the 
first one the divisor to find out that the middle row is the quotient of the 
division. All the examples given for the multiplication are used in this 
way to explain the division in both chapters: the one ab out unknown 
quantities and the present one on the kara1}f. 

The square root is rat her diflicult and we shall not discuss it in this 
paper. Let us just say that its algorithm is based on the identity: 

which the mathematicians inverted in order to find out the quantities 
a, b, c from the left member of the identity. We have just written down 
three quantities, but there are some examples given by Bhaskara with 
more than three kara1}zs. 
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3.3 The use of the karar)/i 

What was the purpose of Indian mathematicians when they constructed 
these karar/ts? They knew perfectly weH how to calculate the approxi
mate values of a square root VA, using the first two or three values of 
the sequence: 

Let us consider what Kr~J)a says about it (this text is the paragraph 
that foHows the text quoted on page 121): 

"But it may be argued that these are only words! Why, then, trouble 
yourself to study these operations on karaJ)Is for, in common practice, 
there is no use of karaJ)Ts but only of the approximate values of their 
square roots and, with the use of six operations on numbers, these six 
operations [on karaJ)Is] are meaningless. Moreover, even if the calcula
tion with karaJ)Is is done, in common use, [calculation] with approximate 
square roots from the beginning is better than this and is preferable to it. 

- This is not correct. If a rough square root is taken from the 
beginning, there will be a big roughness in its multiplication and so on; 
but if the calculation of karaJ)Is, which is minute, is performed, later, 
when the approximate square root is taken, there will be some difference 
but not very much; for this great distinction, the six operations with 
karaJ)Is must necessarily be undertaken. " 

As already seen this justification for the construction of kara1'}f takes 
the form of a dialogue; an opponent develops the idea that this eon
struction is useless and that only approximate ealculations of square 
roots is enough for everyday transactions. He is told in return that if 
many operations are done with approximate values of square roots the 
final error is much bigger than if the calculations were done through the 
sophisticated construction of kara1'}f and if the approximate value of the 
result is taken at the very end of the ealculation. 

The next paragraph justifies the loeation of this chapter in the com
plete book of Bhaskara's mathematical works; in Sanskrit eommentaries, 
it is mandatory to give the reasons why a particular subject is studied 
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and to justify its place in the succession of the topics developed by an 
author. 

"Although it is suitable that these [six operations on kara~IJ should 
be undertaken before the six operations on var~a 14, because they are 
closer to the operations on manifested numbers, according to the maxim 
of the needle and the kettle15 , it is however suitable to undertake them 
immediately after the operations on var~a for the reason that a great 
effort is required by their examination and understanding." 
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Appendix: Sanskrit texts 

Siiryadasa, page 120: 

athaitasyal). karaJ).ya gUJ).anavidhikathanavyajena svariipaIp niriipa
yann aha vargetteti-

vargeJ).a vargankena vargaIp gUJ).ayet tatha vargeJ).aiva vargaIp bha
jen na paraIp tu riipeJ).a vargaIp gUJ).ayed bhajed vety arthal). I anena 
karaJ).ItvaIp nama vargatvenabhimatankatvaIp siicitaIp bhavati tad uk
taIp narayaJ).ena 

mülar[!, grähyar[!, räSer yasya tu karattznäma tasya syät I 

iti 

K:r~J).a, page 121: 

atha karaJ).I~aQ.vidhaIp vyakhyayate I atredam avagantavyaIp miila
rasyor vargadvara yat ~aQ.vidhaIp tat karaJ).I~aQ.vidham iti I asya ~aQ.
vidhasya vargatvapuraskareJ).aiva prav:rtter ata eväsmin ~aQ.vidhe miila
darasav api karaJ).Itvavyavaharal). karaJ).ItvapuraskareJ).a gaJ).itaprav:rttav 
ayaIp na syat I karaJ).I~aQ.vidham iti saIpjiia tu karaJ).Irasav etasya gaJ).ita
syavaSyakatvad dra~tavya I tatra yasya raser miile 'pek~ite niragraIp 
miilaIp na saIpbhavati sa karaJ).I I na tv amiiladarasimatram I tatha sati 
dvitripaiica~agädi~u sarvadä karaJ).Itvavyavahäral). syät I 

- astu sa iti cet I 

na I tatha sati tatprayuktaIp karyaIp syat I yatha~tau dvisaIpyuta 
~tadaSaiva syur ity adi 11 

K:r~J).a page 125: 

"vargetta vargar[!, guttayed bhajec ca" iti I etad uktaIp bhavati
karaJ).IguJ).ane kartavye yadi riipaJ).a:rp. gUJ).yatvaIp gUJ).akatvaIp va syat 
karaJ).Ibhajane va kartavye yadi riipaJ).aIp bhajyatvaIp bhajakatvaIp va 
syat tada riipaJ).aIp vargaIp k:rtva gUJ).anabhajane karye I karaJ).ya var
gariipatvad iti I 

K:r~J).a page 125: 

vargasyapi samadvighätataya gUJ).anavise~atvad uktavat siddhil). I 
"sthäpyo 'ntyavargo dviguttäntyanighnä" ityadina vyaktoktaprakareJ).a 



134 Fran~ois Patte 

va karaI,lIvargasyapi siddhil). syat kirp. tu "vargery,a vargarp, gury,ayed" 
ityuktatvad dvigury,äntyanighnä ity atra caturguI,lantyanighna iti drru]ta
vyaml 

KnlI,la page 131: 

nanv astu paribh~amatram idarp. tathapi kim anena karaI,lI~a<;lvidha
nirupaI,laSrameI,la na hy asti loke karaI,lIbhir vyavaharal). kintu tadasanna
mUlair eva tat~a<;lvidharp. ca rupa~a<;lvidhenaiva gatartham I kirp. ca krte 
'pi karaI,lIgaI,lite tatas tadasannamUlenaiva vyavaharal). tadvararp. prag 
eva tadadara iti cet 11 

maivam I prag eva sthUlamUlagrahaI,le tadguI,lanadav atisthUlata 
syat krte 'pi suk~me karaI,lIgaI,lite paScat tadasannamUlagrahaI,le kirp. 
cid evantararp. syan na mahad ity asti mahan vise~a iti karaI,lI~a<;lvidham 
aVaSyam arambhanlyam I 

tad yady api vyaktru]a<;lvidhantarangatvad varI,lru]a<;lvidhat prag eva
rabdhurp. yuktarp. tathapy etasya nirupaI,lavagamayol). prayasagauravat 
sucIkatahanyayena varI,lru]a<;lvidhanantaram arambho yukta eva I 
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Abstract 

The mathematicians of the school of Mädhava in late me
dieval Kerala (South India) described various series expressions for 
trigonometrie quantities. This paper examines the reasoning un
derlying two such formulas and the possible connections between 
them. 

1 Introd uction 

The school of Mädhava in fifteenth- and sixteenth-century Kerala is fa
mous for its brilliant mathematieal diseoveries in a number of areas, 
including astronomieal modeling, trigonometrie series, infinitesimals, it
erative funetions, a.nd solution of equations. Some of their best-known 
work involves express ions (attributed to Mädhava hirnself) for the Sine 
and eosine that are equivalent to what we now eall Taylor series ex
pansions. The modern name ean be misleading, however, sinee formulas 
that in modern mathematies represent essentially the same eoneept ean 
differ widely in their original Sanskrit eontext. Exploring the apparent 
motivations of these rules, as suggested by their aeeompanying "yuktis" 
or rationales, provides a better understanding of their relationships and 
their underlying eoneepts of trigonometrie series. 
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Most of the results diseussed here date back to the time of Madhava 
himself or his student Paramesvara, but the yuktis explaining them in 
detail did not appear, as far as the existing texts indieate, until ab out a 
eentury later. It is not known how they originated: they may have been 
written along with the original results in texts now lost, or passed down 
orally from teaeher to pupil, or devised by later members of the sehool 
to make sense of the enigmatic formulas, or some eombination of all of 
these. 

2 The Sine and eosine se ries in the soure es 

We begin our examination of the Kerala power series by quoting their 
formulations· as they appear in Sanskrit sourees, translating them as 
literally as possible into modern mathematical notation, and showing 
their relation to the modern forms of these series. 

2.1 The "Mädhava-Newton" power series 

The following statements aböut the Sine (here eapitalized to indieate 
that it is sealed to a non-unity trigonometrie radius R, instead of being 
sealed to 1 like the modern trigonometrie functions) and Versine (the 
"versed sine", equal to the Radius minus the eosine) are part of a yukti 
laid out by one Sankara in the first half of the sixteenth eentury. They 
form part of his eommentary Yuktidfpikii ("Lamp of Rationales") on 
an astronomieal text ealled Tantrasangraha ("Epitome of Astronomical 
Treatises") written in 1500 by his teaeher NIlakaI).tha, who studied under 
the son of Madhava's student Paramesvara. (See [12], 184-190, in which 
similar statements are attributed to a manuseript of the Tantrasangraha 
itself, [7], 169-173, and [9].) 

The yukti is derived from a Malayalam exposition by Jye!?thadeva, 
another of Sankara's teaehers, entitled Yuktibhii§a or "Vernaeular [Ex
position] of Rationales". This part of Sankara's eommentary applies 
to the beginning of the seeond ehapter, where the Tantrasangraha, like 
other Sanskrit astronomical treatises, introduces trigonometry. Sankara 
is explaining ([13], 118) a way to find accurate Sine and Versine values 
for a given are () (measured in areminutes): 
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[Yuktidzpikii 2, 440-441:] Having multiplied the are and the 
results of eaeh [multiplieation] by the square of the are, di
vide by the squares of the even [numbers] together with 
[their] roots, multiplied by the square ofthe Radius, in order. 
Having put down the are and the results one below another, 
subtraet going upwards. At the end is the Sine ... ([3], 57) 

[Yuktidzpikii 2, 442-444:] Having multiplied unity and the 
results of eaeh [multiplication] by the square of the are, di
vide by the square~ of the even [numbers] minus their roots, 
multiplied by the square of the Radius, in order. But divide 
the first [instead] by twice the Radius. Having put down the 
results one below another, subtraet going upwards. At the 
end is the Versine ... 
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In the eomputation for the Sine discussed in verses 440-441, the initial 
"result" is () . (}2 the second () . (}2 . (}2 the third () . (}2 . (}2 . (}2 and so , , , 
forth. For n = 1,2,3, ... , the nth result is divided by R2 times a term 
depending on the corresponding even number 2n: namely, (2n)2 + 2n. 
Thus the sequence of results will be 

(}3 (}3 

R2(22 + 2) R2. 6' 

e5 e5 

R4(22 + 2)(42 + 4) R4. 120' 
(}7 (}7 

~~~~~~~~~--= ~----

R6(22 + 2)(42 + 4)(62 + 6) R6 . 5040' 
(1) 

and so forth. Since, for the nth such result, the denominator term 

n n 

I1 ((2i)2 + 2i) = I1 (2i(2i + 1)) = (2n + 1)!, (2) 
i=l i=l 

it follows that Sankara's sequence of recursive subtractions of terms from 
the next higher term will give 

Sin(} = () - (R:~ 3! - (R:~ 5! - (R:~ 7! - .. .) ) ) . (3) 
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The Versine eomputation in the subsequent verses similarly gives 

Sinee Kerala trigonometry uses the standard value for R of about 3438 ~ 
360· (;0/271", the division of 0(') by R pro duces what we would eall 0 in 
radians. This means that the above expressions are equivalent to the 
following modern series normalized to R = 1: 

x3 x5 x 7 

sin(x) = x - 3! + 5T - 7! + ... 
x 2 x 4 x 6 

1 - eos(x) = - - - + - -2! 4! 6! ... (5) 

Other verses quoted by Sankara in this yukti (Yuktidzpikä 2,437-439: 
[13], 117- 118) , and elsewhere aseribed to Mädhava, eontain numerieal 
values for the eoeflicients (up to the fifth-order term) of a slightly differ
ent form of the same se ries for Sine and Versine. Henee it is clear that 
these power series were known (and probably originally developed) by 
Mädha va hirnself. 

2.2 Mädhava and the "Taylor-series-like approximation" 

Near the beginning of its seeond ehapter, the Tantrasarigraha states a 
rule for determining the Sine of some arbitrary are 0 by means of Sines 
and Cosines from a Sine-table. More detailed analyses of this rule, and 
of an elaborat ion of it reeorded by Mädhava's student Paramesvara, 
are given in [4], [5], and [10]. Briefly, ehoosing from the Sine-table the 
tabulated are a dosest to 0, and knowing the tabulated Sine and Cosine 
of a, we manipulate them as follows: 

[Tantrasarigraha 2, lOed-12ab:] Having set down the two 
eomposite Sines [i.e., the tabulated Sine and Cosine of the 
tabulated are] dosest to the [arbitrary] are whose Sine and 
Cosine are sought, one should eompute the are [of] deficieney 
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or exeess [depending on whether the desired Sine or Cosine 
is less or greater than the tabulated one]. 

And set down as a divisor 13751 divided by twice the aremin
utes of that [difference are], for the purpose of the mutual 
eorrection of those [quantities]. Having first divided [either] 
one [of the tabulated Sine or Cosine by that divisor], add or 
subtraet [the result] with respeet to the other, aeeording as 
the [differenee] are is exeessive or deficient. 

Now in the same way, apply that [eorreeted quantity] times 
two to the other: this is the eorreetion. ([13], 112) 
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The differenee (() - a) is found in areminutes, and used to eompute 
a "divisor" D: 

D = 13751 = 2· 3437;45 ~ 2R 
2(() - a) (() - a) (() - a)" 

(6) 

The Sine and Cosine of aare "mutually eorrected" after being divided 
by D, to give a first approximation to the Sine and Cosine of (): 

S· () S· Cosa 
m ~ ma+-n' 

Sina 
Cos () ~ Cos a - ----y;-' (7) 

The sign of the eorreetion term depends on whether the function of () 
is greater or less than that of a. These approximate results are then 
doubled, divided by D, and applied in another "mutual eorrection": 

S· () S· (c Sina) 2 m ~ ma + osa - ----y;- D' 

Cos () ~ Cos a - (Sin a + C~ a) ~. (8) 

Reealling that D ~ 2R/(() - a), and again normalizing to R = 1 as for 
modern trigonometrie functions, we get equivalent express ions with x 
and a in the plaee of () and a: 

sin(x) ~ sin(a) + eos(a)· (x - a) - sin;a) . (x - a)2, 

( ) () ' eos( a) 2 
eos x ~ eos a - sm(a) . (x - a) - -2- . (x - a) . (9) 

NIlakaI).tha deseribes this method too as "spoken by Mädhava" ([13], 
120). 
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2.3 The common equivalent in the modern Taylor series 

Both sets of Madhava's Sine and Cosine rules, as represented in equa
tions (5) and (9), can be derived from the general Taylor polynomial 

1" (a) 1'" (a) 
f(x) = f(a) + f'(a)(x - a) + ~(x - a)2 + -3!-(x - a)3 + ... (10) 

where f(x) is the sine or cosine function whose value at x is sought. 
Equation (9) gives the first three terms of the Taylor series, while equa
tion (5) is equivalent to the corresponding Maclaurin series where a = O. 

The Taylor and Maclaurin expansions per se, of course, are theo
retically and historically very closely intertwined. They emerged in the 
seventeenth and eighteenth centuries, in forms very similar to their mod
ern representation, as part of the early calculus toolkit for dealing with 
arbitrary functions in the form of polynomials. The Maclaurin series 
was from the beginning considered as a special case of the Taylor series. 

3 The series as explained in their yuktis 

It is clear that the context in which Madhava developed his "mutual 
corrections" of the Sine and Cosine or Sine and Versine was very different 
from the generalized techniques of successive differentiation employed 
by Taylor, Maclaurin, and their predecessors. What was the relation, if 
any, between Madhava's two methods as perceived by the members of 
his school? 

3.1 Correcting Sines by Versines 

Sankara's exposition culminating in the "Madhava-Newton" series is de
tailed and intricate, comprising nearly a hundred Sanskrit verses ([13], 
109-118). We can only touch upon its highlights here: more thorough 
summaries (though mostly without translations) ofJye~thadeva's ratio
nale, from which Sankara derived this explanation, may be found in [11], 
[7], [9], [12], and [14]. 

The foundation of the yukti is its division of a given arc into n unit 
ares /j.(). Each unit are is bisected by a radius. For each successive arc 
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R 

.6.9 

Figure 1: The quadrant with radius R, divided into unit arcs 11() 

()i = il1(), the Sine and Cosine line segments Sini and Cosi are drawn, 
as are the "medial" Sines and Cosines at the bisection points, Sini.5 and 
COSi.5· 

As Figure 1 illustrates, the similar right triangles thus produced 
imply that the differences 11 Sin and 11 Cos between pairs of successive 
Sines and Cosines can be found from the medial Cosines and Sines. 
Each triangle with hypotenuse Rand verticalleg Sin ()i is similar to the 
smaller triangle with hypotenuse Crd 11() and horizontal leg 11 COSi.5, as 
in the pair of shaded triangles in the figure. As Sankara puts it, 

[Yuktidfpikä 2, 349-352:] ... The change in the difference be
tween Sines produced from the junctions of the correspond
ing arcs should be [proportional] to the change in the Cosine 
produced from the center of the arc. [Likewise,] the differ
ence in Sine produced from the center of the arc is known as 
the change in Cosine-difference at the junctions of the corre
sponding arc. Thus the changes in difference are mutual[ly 
dependent ]. 

Then divide the Sine produced to the junction of the first arc, 
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multiplied by the Chord, by the Radius: [it is] the differenee 
of the Cosines in the centers of those ares. 

In our notation, 

Crd 
~ Cos'+ l = Sin' 5 .--~ ~. R' 

~ COSi.5 = Sini . ~d, 

AS' C Crd 
L.l. llli+l = OSi.5 'R; 
AS' C Crd 

L.l. Ini.5 = OSi' R' (11) 

For any eonseeutive pair of, e.g., Sine-differenees, their "seeond differ
enee" or "differenee of the differenees" ~~ Sin also depends on these 
quantities: 

[Yuktidfpikä 2, 352-354:] ... Having multiplied that [Cosine
differenee, ~ COS1.5] by the Chord, divide again by the Ra
dius. [That] should be the differenee of the differenees of the 
Sines produeed to the junctions of the first and seeond [ares]. 
Therefore, divide the first Sine, multiplied by the square of 
the Chord, by the square of the Radius. [The] quotient is the 
differenee of the differenc~s of the first and seeond [Sines]. 

[Yuktidfpikä 2, 358-359:] ... In the same way, the division 
by the square of the Radius of every Sine multiplied by the 
square of the Chord should be similarly the differenee of [its 
own differenee and] the differenee after that. 

That is to say, in terms of the relations from equation 11, 

~~ Silli = ~ Sini -~ Silli+l = (COSi.5- 1 - COSi.5) . C~d = ~ COSi.5 ' C~d 
Crd2 

= Sin' .-- (12) 
~ R2' \ 

Consequently, any desired Sine-differenee ~ Sini+l (for i > 0) ean 
be expressed in terms of the previous Sine-differenee and the seeond
differenee between them. But the previous Sine-differenee itself ean be 
expressed in terms of another seeond-differenee, and so on, until we are 
left with a sum of seeond-differenees. And eaeh seeond-differenee, we 
reeall from equation (12), is dependent upon the eorresponding Sine, as 
Sailkara goes on to state: 
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[Yuktidzpika 2, 361-363:J However many differences of [Sine
Jdifferences there are, when the sum of that many, beginning 
with the first, is subtracted from the first difference, the 
desired difference is obtained. When it is desired to obtain 
the total of the differences of [Sine-Jdifferences, [the quotient J 
from the sum of Sines multiplied by the square of the Chord, 
divided by the square of the Radius, should be the sum of 
the differences of the differences . 

.6. SiI1i+l = .6. Sini -.6..6. Sini 

= .6. Sini-l -.6..6. Sini-l -.6..6. Sini 

i 

= .6. Sinl - I:.6..6. Sink 
k=l 

i 2 
AS· "S· Crd = ~ llll - ~ lllk .-W. 

k=l 
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(13) 

From equation (13) we can see that if we were to add up i consecutive 
Sine-differences, the result would involve a sum of sums of Sines (or, al
ternatively, of Cosine-differences, which are equal to Versine-differences). 
But the sum of i consecutive Sine-differences is also just the ith Sine it
self: 

[Yuktidzpika 2, 367-371:J Therefore, many sums of Sines one 
below another, ending with the sum of the first and sec
ond, are to be made here successively. [The quotient J from 
the sum of all those [sums], multiplied by the square of the 
Chord, divided by the square of the Radius-which is the 
result produced from the sums of the Sines-is equal to the 
quotient [from divisionJ by the Radius of the sum of [the 
successive sums ofJ the Versine-differences, times the Chord. 

However many differences are considered in the case of [anyJ 
desired arc, subtraet that [sum of sumsJ from the first dif
ference times that number of differences. That should be 
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the Sine of the desired are in the form of a sum of Sines of 
[are-]portions. 

i-I k 2 

.6. Sinl +.6. Sin2 + ... + .6. Sini = i.6. Sinl - L L Sinj . Cr~ 
. R k=l )=1 

i-I k C d 
= i.6. Sinl - L L.6. VerSj.5· ~ 

k=lj=l 

= Silli . (14) 

Sankara now simplifies the above expression by taking .6. Sinl to be 
approximately equal to the unit are .6.(): 

[Yuktidfpikä 2, 375-376:] Beeause of the uniform smallness of 
the are-portions, the first Sine-differenee is assumed [equal 
to the unit are]. That [.6. Sinl] multiplied by the number 
of differenees is the amount of the desired are. Therefore, 
subtraet from the desired are the result produeed as stated. 
The desired Sine remains there; it is [made] aecurate by the 
rule to be stated [below]. 

So we can rewrite equation (14) as 

i-I k C d2 i-I k C d 
Sin' :::::; (). - "" Sin· ._r_ = (). - "" .6. Vers' 5 ._r_ (15) ~ ~ ~ ~ ) R2 ~ ~ ~ ). R' 

k=lj=l k=lj=l 

The proeess of "making the desired Sine aeeurate" eommenees with 
several more simplifying assumptions: 

[Yuktidfpikä 2, 379-382:] ... Whatever is the sum-of-sums of 
the ares-owing to ignoranee of [the values of] the Sines- is 
to be eonsidered the sum [of the sums] of the Sines. But in 
that ease, the last Sine should be the desired arc ... Beeause 
of the smallness [of the unit], those are-portions are eonsid
ered [to be eomposed] with unity [i.e., as integers]. So the 
integers in the desired are are equal to that [are]. Therefore 
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the sum of the Sines is assumed from the sum of the num
bers having one as their first term and eommon differenee. 
That, multiplied by the Chord [between] the are-junetures, 
is divided by the Radius. The quotient should be the sum of 
the differenees of the Cosines drawn to the centers of those 
ares. 

[Yuktidfpikii 2, 384-385:] The other sum of Cosine-differenees, 
[those] produeed to the are-junetures, fis] the Versine.[But] 
the two are approximately equal, eonsidering the minuteness 
of the are-division. On aeeount of eonsidering the are-units 
[equal] to unity beeause of [their] minuteness, the Chord too 
is equal to that [unity], whieh makes no differenee in the 
multiplier. 
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Sankara points out, quite rightly, that we eannot use a sum of i -1 sums 
of unknown Sines to eompute an equally unknown ith Sine. He proposes 
instead taking the sum of i sums of the sueeessive ares, which (if we take 
~() ~ Crd ~() ~ 1) is just a sum-of-sums of sueeessive integers, whose 
values are of course known. We will also assurne that a sum of medial 
Cosine- (or Versine-) differenees, which really equals a medial Versine, 
is roughly equal to the adjaeent non-medial Versine. This gives us the 
following modified expression for Sini: 

ik 1 ik 1 i 1 
Silli ~ i-LI>· R2 ~ i-LL~ VerSj 'R ~ i-LVersk 'R' (16) 

k=l j=l k=l j=l k=l 

Abrief detour then provides a general expression for sums of sueeessive 
integers and their sueeessive sums: 

[Yuktidfpikii 2,386-387:] Whatever is the product ofhowever 
many numbers beginning with the first-term and inereasing 
[sueeessively] by one, that [produet] is divided by the product 
of that many numbers beginning with one and inereasing by 
one. The results one after another are the sums-of-sums of 
those [numbers]. 

That is, for a sequenee of "however many" (say, q) eonseeutive integers 
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beginning with any "first-term" p, Sankara notes that 

p . (p + 1) ... (p + q - 1) = (p + q - 1)! = ~ ~ ~. (17) 
1.2 ... q (p-1)!q!.~ ... ~ ~J1' 

)q-1=1 )2=1)1=1 

Yet another simplifying assumption follows: 

[Yuktidzpikä 2, 389-393:] Half that square of the are should 
be the sum of the [eonseeutive] ares. Beeause half the prod
uet of the first-term and the first-term plus one is a sum: 
therefore, from the eube and squared-square [ete.] of the de
sired are, divided by the product of numbers beginning with 
one and inereasing by one, there are many resulting sums 
one after another. 

So in this ease, the first sum of the are-portions ... should 
be eonsidered the sum of the Sines. But that sum of Sines, 
multiplied by the Chord and divided by the Radius, is the 
desired Versine. 

We know from the familiar rule for the sum of an arithmetic series that 
half the produet p(p+ 1) equals the sum of the first pintegers. Sankara 
now assurnes that, sinee the desired are i ~ i + 1, the sum of the first i 
integers is approximately i 2 /2, and generalizes that assumption (relying 
on an earlier demonstration in his eommentary) to eonclude that 

ete. From this approximation and from equation (16), we ean assurne 
that 

i 1 '2 
'"' k . - ~ Vers' ~ _2_ 
~ R ~ 2R' 
k=l 

(19) 

We ean also make a substitution for the double sum of integers in 
equation (16): 
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[Yuktidfpikä 2, 401-403:] ... But the differenee of the desired 
Sine and [its] are is from the sum of the sum of the Sines. 
The square of the desired are should be divided by the Ra
dius; thenee is [found] the Versine. But thenee whatever 
[results] from the eube of the same desired are [divided] by 
the square of the Radius, from that the quotient with six is 
approximately inferred [to bel the differenee of the are and 
Sine ... 

That is, 
i k 1 '3 1 

. S' '"' '"' . z Z - llli::::: ~ ~ J . R2 ::::: "6 . R2' 
k=lj=l 
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(20) 

Now Sankara reminds us that this double sum of eonseeutive integers 
or ares should really have been a double sum of Sines, so every are in 
the sum needs to be eorreeted by the above expression for the differenee 
between the are and its Sine: 

[Yuktidfpikä 2, 406-408:] To remove the inaeeuraey [result
ing] from producing [the Sine and Versine express ions] from 
a sum of ares [instead of Sines], in just this way one should 
determine the differenee of the [other] Sines and [their] ares, 
beginning with the next-to-last. And subtract that [differ
enee eaeh] from its are: [those] are the Sines of eaeh [are]. Or 
else therefore, one should subtraet the sum of the differenees 
of the Sines and ares from the sum of the ares. Thenee should 
be the sum of the Sines. From that, as before, determine the 
sum of the Versine-differenees ... 

[Yuktidfpikä 2, 417-419:] ... [W]hatever sum-of-sums is in
ferred from the determination of the Versine, the differenee 
of the Sine and [its] are is dedueed from the sum-of-sums 
after that [one]. Thenee in this ease, the quotient from the 
produet of the eube and square of the desired are, [divided] 
by whatever is the produet of five numbers beginning with 
one and inereasing by one, [is] also divided by the squared
square of the Radius. The differenee of the Sine and [its] are 
determined in this way should be more aeeurate. 
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All the corrected consecutive terms must be re-summed to produce a 
more correct Versine, using the approximation for successive sums-of
sums in equation (18): 

i ( k3) 1 i k i k3 i2 i4 
Versi ~ L k- 6R2 . R == L R - L 6R3 ~ 2R - 24.R3· (21) 

k=l k=l k=l 

And we can use the same sort of term-by-term correction to modify all 
the Versines composing the Sine in equation (16): 

i 1 i (k2 k4 ) 1 
Silli ~ i - L Versk . R ~ i - L 2R - 4!R3 . R 

k=l k=l 

(
i k2 i k4 ) 

= i - L 2R2 - L 4!R4 
k=l k=l 
i3 i ,5 

~ i - 3!R2 + 5!R4· (22) 

These recursive corrections of the Sine by the Versine and vice versa 
are then applied indefinitely to produce the general rules of equations (3) 
and (4). 

3.2 Correcting Sines by Cosines 

We turn now to the Tantrasangraha's "Taylor-series-like approxima
tions" of equation (8) to see what we can glean of the reasoning be
hind them. Consider first of all that if we omit their final terms, we get 
expressions equivalent to the following: 

Sine - Sina ~ Cosa· ~, Cosa - cose ~ Sina· ~, (23) 

or equivalently 

e - a Sine - Sina Cosa - cose 
-m ~ 2Cosa ~ 2Sina 

(24) 

As discussed in ([10], 287-288), Sankara analyzes in a different com
mentaryl on the same text (Laghuvivrti, or "Minor Commentary") an 

lSaIikara does not comment on this approximation in the Yuktid'ipikä. I'm in
debted to the reviewer of this paper for the important observation that such a yukti 
is in fact provided in the Yuktibhä§a of Jye~thadeva. 
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approximation very elose to the first of these, namely 

B-a SinB-Sina 
2ii: ~ Cosa + CosB' 

as follows: 

[Laghuvivrti on Tantrasarigraha 2, 14ed-15ab:] Here, where 
the divisor should be made from the Cosine of the medial 
are, it is said [to be made] with the sum of the Cosines of 
both full [ares], by assuming that that [sum] equals twice the 
medial Cosine. But in reality, the sum of the Cosines of the 
two full [ares] is somewhat less than twice the medial Cosine. 
Beeause of the defieieney of that divisor, the result of that is 
somewhat too big. But actually, that is what is desired: for 
that result is really the Chord, which is a little less than its 
are ... 
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(25) 

In other words, if we eonsidered the slightly smaller Crd(B - a) rather 
than its are, it would be more appropriate to write: 

Crd(B - a) ~ SinB - Sina 

2R ~ ( B - a)· 
2Cos a+ -2-

(26) 

But this is essentially the same similar-triangle relation expressed in 
equation (11): it states the differenee between two sueeessive Sines in 
terms of a linear proportion involving the Chord of the are-differenee, 
the Radius, and the medial Cosine. This exact linear proportion is what 
validates the slightly adjusted one, using the are instead of the Chord, 
in equation (24). The "Madhava-Newton series" and the "Taylor-series
like approximation" are therefore ultimately based on the same Rule of 
Three derived from similar right triangles. 

Sankara does not explain here the reason for adding the seeond-order 
eorrection term, but he proposes the option of ineluding several more of 
them (see [10], 292): 

[Laghuvivrti on Tantrasarigraha 2, lOed-14ab:] Although 
here, prior to that, the quotient from half the Cosine with 
that same divisor [ean] be applied to the Sine-and prior 
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to that, the quotient-result from a fourth part of the Sine 
to the [half-]Cosine, and prior to that [the result] from an 
eighth part of the Cosine to the [fractional] Sine and [simi
lady, the result] from a sixteenth part of that [Sine] to the 
[fractional] Cosine--yet because of the smallness of that, it 
is to be considered negligible. 

That is, the approximations in equation (8) might be expanded (if the 
size of the correction made it worthwhile) to 

.. . (cosa (Sina (cosa SmO,::::Sma+(Cosa-(Sma+ -2-- -4-+ -8-

_ S~ a . ~) ~ ) ~ ) ~ ) ~ ) ~, 
. (Sina (cos a (Sina CosO,:::: Cosa - (Sma + (Cosa - -2- + -4- - -8-

+ Cosa. !...)!...)!...)!...)!...)! 
16 D D D D D D' (27) 

Recalling that D = 2R/(O - a), we may rewrite these as 

Cosa(O - a)3 
8R3 

Sina(O - a)4 Cosa(O - a)5 Sina(O - a)6 
+ 32R4 + 128R5 512R6 

.. Sina(O - a)2 
SmO,::::Sma+Cosa(O-a)- 2R2 

..., LI C S' (LI ) Cos a(O - a)2 Sina(O - a)3 
Cos u':::: os a - mau - a - 2R2 + 8R3 

Cosa(O - a)4 Sina(O - a)5 Cosa(O - a)6 
+ 32R4 128R5 512R6 

(28) 

And if we set a = 0 in order to compare these approximations with their 
counterparts in equations (3) and (4), they reduce to 

(29) 
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3.3 Conclusion: the same or different series? 

These commentaries of Sankara contain almost the last known treat
ments within Mädhava's school of these two types of approximation 
to the Sine and Cosine. (The anonymous sour ce in [3J appears to 
be somewhat later.) As understood in this mature form by Sankara, 
the "Mädhava-Newton" series and' the "Taylor-like" approximation are 
clearly independent rules. The former is valued largely for its pro duc
tion of Sine-values without the need for Sine-tables; the latter depends 
on a known tabulated Sine and Cosine to determine those of a nearby 
arc. Even ifreduced to an equivalent form as in equation (29) (and there 
is no evidence that the "Taylor-like" approximation was ever actually 
handled this way in the Indian texts), they would be incompatible, since 
the integer coefficients in the denominators of the former are factorials, 
while those of the latter are powers of 2.2 

Yet the two series may be linked conceptually. They are both founded 
on the Rule of Three arising from the same pair of similar right triangles 
in the sub division of the quadrant. And they are both developed, after 
an initial approximation from this Rule of Three, via recursive mutual 
corrections of Sine-terms by Cosine-terms and vice versa. The power 
and fecundity of these basic concepts is illustrated in the variety of the 
approximations derived from them. In particular, the origin of these 
brilliant derivat ions in an elementary linear proportion recalls Bhäska
ra's comment on mathematical foundations: "Just as this universe is 
pervaded by Lord Näräyal.la (who removes the sufferings of those who 
worship hirn and is the sole generator of this universe ), with his many 
forms-worlds and heavens and mountains and rivers and gods and men 
and demons and so on-in the same way, this whole type of computation 
is pervaded by the [rule of] three quantities." 
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Abstract 

Indian Mathematics is predominantly algorithmic. In fact, the 
very word "Algorithm" is derived from the name of Al Khwarizmi 
(c. 9th Century) whose works played a crucial role in the transmis
sion of Indian algorithmic procedures to the Islamic and later to 
the Western world. We shall discuss a few selected algorithms that 
are representative of the Indian mathematical tradition from the 
ancient Sulbasiitriis to the medieval texts of the Kerala SchooI. In 
particular, we shall outline some of the constructions described in 
the Sulbasiitras, the algorithm for computing the cube-root given 
by Äryabhata (c.499) and the kuttaka and cakraviila algorithms for 
solving linear and quadratic indeterminate equations as discussed 
by Äryabhata (c.499), Brahmagupta (c.628), Jayadeva (prior to 
the 11th century) andBhäskara (c.1150). We shall also discuss 
the efficient algorithms for accurate computation of 7r and the sine 
function due to Mädhava (c.14th century) as discussed in the texts 
of the Kerala School of Mathematics and Astronomy. 

1 Introduction 

The very word algorithm is derived from the name of the famous ninth 
eentury Islamie mathematician AI-Khwarizmi who was greatly influ
eneed by the Indian proeedures in mathematies and wrote the famous 
book Kitab al-hisab al-hindi on the art of Hindu reekoning [lJ. Indian 
Mathematies is predominantly algorithmie. It abounds in algorithms 
for quiek and efficient eomputations with numbers, and algebraie, geo
metrie and trigonometrie quantities. However, it was understood that 
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rationale and proofs have to be provided for all mathematical operations 
and they are to be found in the commentaries [2]. 

In this art icle , we describe some representative algorithms in Indian 
mathematics, as they have been developed over the ages. We begin with 
the Sulbasutms, which are adjuncts to Vedas and contain the procedures 
for constructing various types of Vedic altars, of which we discuss some 
interesting examples. Aryabhatzya (c.499) is one of the earliest texts 
which gives algarithms for finding the square, cube, square root, cube 
root, etc. of a number. Detailed discussions of the same are found in 
the commentary on Aryabhatzya by Bhaskara I (c.629). We present the 
algorithms far finding the square and the cube root given in Aryabhatzya 
and its commentary. We also describe the K uttaka or the pulverizer 
algorithm far solving linear indeterminate equations. 

We next discuss the solution of quadratic indeterminate equations 
ar Vargapmkrti which was first considered by Brahmagupta in his 
Brähmasphuta-siddhänta (c.628). An optimal algorithm for the same 
called Cakmväla has been discussed by Bhaskara II in his BzjagaT}ita 
(C.1150). The algorithm can at least be traced back to Jayadeva who 
lived prior to 11th century. We shall compare the Cakmväla algorithm 
with the one discovered by 1Nallis and Brouncker in the 17th century 
and proved later by Lagrange. We then discuss the algorithms for con
structing the si ne tables in Indian astronomy both in their earlier ver
sions and as given in Tantmsarigmha (c.1500) and Aryabhatfyabhä$ya 
of Nilakal.ltha SomayajI, the famous Kerala astronomer-mathematician. 
Finally, we describe the accurate calculation of 7r with a suitable re
mainder term, due to Madhava (14th cent.) as described in the Ker
ala warks Yuktidzpikä (c.1530), a commentary on Tantmsarigmha by 
Sankara Variyar and Yuktibhä$ä (c.1530) of Jye~thadeva. 

2 Geometrical construction in Sulbasutras [3] 

Sulbasütms are part of Kalpasütms, which are one of the six Vedärigas. 
These are essentially manuals for geometrical constructions of Vedic 
altars. Baudhayana, Äpastamba, Katyayana etc. are some of the 
Sulbasütms. Some of the simpler procedures discussed here are for 
dividing a line into equal parts, drawing perpendiculars, constructing 
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squares and rectangles, etc. Pythagoras theorem or the 'Theorem of the 
square of the diagonal' plays a crucial rule in most of these constructions. 
This theorem was known in India, at least by the time of Baudhayana 
Sulbasütra, where right triangles with sides (3,4,5), (15,3,39), (7,24,25), 
etc., are mentioned. The earliest recorded explicit statement of the the
orem is also to be found there. 

(Baudhiiyana Sulbasütra 1.48) 

The diagonal cord of a reet angle makes both (the squares) 
that the vertical and horizontal sides make separately. 

We give some illustrative examples of geometrical algorithms in the 
Sulbasütras in the following. 

2.1 To draw a square equal to the difference of two 
squares 

~ ~ßt~q~ 4Iqfilßt~q<t ~ ~ ~1J"i~;@<t I 
~ ~ ~ ~ ~ 3q.g~"{<t w ~ ~qd<t
ct«qfifl~ltt 11 

(Apastamba Sulbasütra 2.5) 

Wishing to deduct a square from a square one should cut off 
a segment by the side of the square to be removed. One of 
the lateral sides of the segment is drawn diagonally across to 
touch the other lateral side. The portion of the side beyond 
this point should be cut off. 

ABC D is the larger square. AE is the side of the sm aller square. AD 
is drawn diagonally across with point A fixed till D touches E F at P. 
Considering the triangle AE P. 

Ep2 Ap2 - AE2 

= AD2 -AE2 
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D F c 

p 

E B 

Fig.l 

Hence, the square with side EP is the required answer. 

2.2 To eonvert a reet angle into a square 

(Äpastamba Sulbasütra 2.7) 

Wishing to turn a rectangle into a square, one should cut off 
apart equal to the transverse side and the remainder should 
be divided into two and juxtaposed at the two sides (of the 
first segment). The bit (at the corner) should be filled by 
an imported bit. The removal of this has been explained 
already. 

ABCD is the given rectangle (see Fig.2). Consider the square ABlClD 
with side AD. The remaining rectangle BlBCCl is divided into two 
equal strips B l B2ECl and B2BCE. The strip B2BCE is cut off and 
applied to the side of the square DCl . So the original rectangle has been 
converted into a square with side ADI with the small square Cl EC2F 
unfilled at one corner. Hence, 

Area of the required square Area of the square AB2C2Dl 

Area of the square Cl EC2F. 

Using the previous procedure, this square is easily constructed. 
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Dl r--------------

DI-------

A BI 

Fig.2 

2.3 Combining equal squares 

(a) Combining two equal squares 

The rule in the Äpastamba Sulbasütra (1.5) is 

~ ~t.fI'(o~ I 

B 

The diagonal of the square is the double-maker. 

157 

c 

ABCD is the given square with side a and area a2 . Then the square 
on the diagonal AC is the square with area 2a2. That is, AC = V2a. 
Incidentally, Fig.3 also indicates the proof. 

Both Äpastamba (1.6) and Baudhayana Sulbasütras (1.62) give a very 
good approximation to the value of V2: 

The measure should be increased by one-third of itself, which 
is again increased by its one-forth and diminished by l4 of 
that (second) increment. This is the savise~a. 

That is, 

1 1 1 577 J2 ~ 1 + - + - - -- = - ~ 1.414216, 
3 3.4 3.4.34 408 

which is correct to 5 decimal places. 
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D C 
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a a 

A a 

A a B 

Fig.3 

(h) An ingenious method for constructing a square with area 
n times a given square is given in Kiityiiyana-sulbasutra (6.7) 

As many sides (of equal side) as you wish to combine into 
one, the transverse line will be( equal to) one less than that; 
twice a side will be( equal to) one more than that. It will be 
a triangle. Its arrow(i.e., altitude) will do that. 

Let the side of the original square be a. Construct an isosceles triangle 
ABC (see Fig.4) with base 

and sides 

BC = (n -1)a, 

AB = AC = (n+ 1)a. 
2 

This is easily achieved by stretching the mid point A of a rope with 
length (n + 1)a away from BC such that the rope is taut. Then the 
altitude AD is the side of the square with area na2 , for, 

AD2 AB2 - BD2 

[(n ~ 1)a r -[(n ~ 1)a r 
q 

na"'. 
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B .. 

(n+l)a 
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A 

D 

(n-l)a 

Fig.4 

c 
• 

3 AIgürithms für square and the eube rüüt 

3.1 Square 

159 

One of the earliest example of an algorithm in arithmetic is the one for 
squaring a number. In his Äryabhatfya-bhii~ya (c.629) Bhaskara I cites 
the following as an ancient rule for squaring [4]: 

3'I~q~H4 ~ ~ ~d{Cli1I~q~J4 I 

~t1q:a'O~W4ltt 3RlI4YRU4 ~ 11 " 

To calculate the square of a number, the square of the last 
digit is to be placed over it. And the rest of the digits, 
doubled and multiplied by the last are to be placed over them 
respectively. Then, (omitting the last digit and) moving the 
rest by one place, the process is repeated. 

Consider for example, the square of 125. The procedure is summarized 
below. 

1 5 6 2 5 
25 52 = 25 

4 20 22 = 4, 5.2.2 = 20 
1 4 10 12 = 1, 2.2.1 = 4, 5.2.1 = 10 
1 2 5 
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It is noteworthy that this 'ancient rule' for squaring is already opti
mal. The mechanical method of squaring a n - digit number involves n 2 

multiplications, whereas the above method clearly involves only n(n2+1) 

multiplications. 

3.2 Cube root 

An algorithm for square root is given in A ryabhatfya. Indeed, texts 
prior to this work also deal with square roots. However, the first clear 
enunciation of the cube root algorithm is found in Aryabhatiya , which 
we proceed to describe [5] 

(Having subtracted the greatest possible cube root from the 
last cube place and then having written down the cube root 
of the number subtracted in the line of the cube root), di
vide the second non-cube place (standing on the right of 
the last cube place) by thrice the square of the cube root 
(already obtained); (then) subtract from the first non-cube 
place (standing on the right of the second non-cube place) 
the square of the quotient multiplied by thrice the previous 
(cube root); and (then subtract) the cube (of quotient) from 
the cube place (standing on the right of the first non-cube 
place) (and write down the quotient on the right of the pre
vious cube root in the line of the cube root, and treat this 
as the new cube root. Repeat the process if there are still 
digits on the right). 

We consider the cube root of 17,71,561 as an example. Beginning from 
the units place, the notational places are called cube place (c), first non
cube place (n), second non-cube place(n'), cube place(c), first non-cube 
place(n) , second non-cube place(n'), and so on. 
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c n' n c n' n c 121 
1 7 7 1 5 6 1 (line of eube root) 

Subtraet 13 1 
Divide by 3.12 3) 0 7 (2 

0 6 
1 7 

Subtraet 3.1.22 1 2 
5 1 

Subtraet 23 0 8 
Divide by 3.122 432) 4 3 5 (1 

4 3 2 
3 6 

Subtraet 3.12.12 3 6 
0 1 

Subtraet 13 1 
0 

The proeess ends and the eube root is 121. The algorithm is obviously 
based on the algebraic identity: (a + b)3 = a3 + 3a2 b + 3ab2 + b3. 

4 Kuttaka or 'pulveriser' algorithm for linear 
indeterminate equations 

The subjeet of first order indeterminate equations was eonsidered very 
important by the ancient Indian mathematicians and most of them have 
dealt with the K uttaka or pulveriser method to solve them, beginning 
with Ä ryabhatzya . They are important in astronomy also, for instance, 
in the calculation of Aharga'f}a (the number of days elapsed from a given 
epoch) from the mean longitudes of planets. This algorithm also plays 
a erucial role in the solution of the mueh more diffieult seeond order 
indeterminate equations. 

In one of its versions, the problem is to find an integer N whieh be
ing divided by two given integers (a, b) will leave two given remainders 
(TI, r2). Thus we have 

N = ax + rl = by + r2. 
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K uttaka method for this equation is summarized in two verses In 

Äryabhatfya (Gary,itapäda, 32, 33). 

Below we give the translation of these verses by Datta and Singh fol
lowing the interpretation of Bhäskara I [6]: 

Divide the divisor corresponding to the greater remainder 
by the divisor corresponding to the sm aller remainder. The 
remainder (and the divisor corresponding to the smaller re
mainder) being mutually divided, the last residue should be 
multiplied by such an optional integer that the product being 
added (in case the number of quotients of the mutual divi
sion is even) or subtracted (in case the number of quotients 
is odd) by the difference of the remainders (will be exactly 
divisible by the penultimate remainder. Place the quotients 
of the mutual division successively one below the other in a 
column, below them the optional multiplier and underneath 
it the quotient just obtained). Any number below (i.e., the 
penultimate) is multiplied by the one just above it and then 
added to the one just below it. Divide the last number (ob
tained by doing so repeatedly) by the divisor correspond
ing to the sm aller remainder; then multiply the remainder 
by the divisor corresponding the smaller remainder and add 
the greater remainder. (The result will be) the number cor
responding to the two divisors. 

In the following we take rl > r2, so that a is the divisor corresponding 
to the greater remainder, and b the one corresponding to the sm aller 
remainder. Let 



Algorithms in Indian Mathematics 163 

We write down the procedure, when the number of quotients (ignoring 
the first one q, as is usual with Äryabhata) is even. 

b) a (q 
bq 

~ b (ql 
rlql 
r2) rl (q2 

r2q2 

r2n) r2n-l (q2n 
r2nq2n 

r2n+l 

Now a number t (mati) is chosen such that r2n+lt + cis divisible by r2n 
with quotient s. Then these are set down in the form of a vallf(column) 
and the successive columns are generated: 

q2n-l 
q2n 
t 
s 

q2n-l 
q2nt + s = ßl 
t 

q2n-l ßl + t = ß2 

qlß2n-l + ß2n-2 
ß2n-l 

Divide qlß2n-l + ß2n-2 by b. The remainder is x and N = ax + rl. 

When we divide this by b, the quotient is y and the remainder is r2. 

When the number of quotients (omitting q) is an odd integer 2n - 1, the 
number t is chosen such that r2nt - c is divisible by r2n-l. 

Example: To solve 45x + 7 = 29y. 

Here 

a = 45, b = 29, rl = 7, r2 = o. 
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29) 45 (1 
29 

16) 29 (1 
16 

13) 16 (1 
13 
3) 13 (4 

12 
1 

Here the number of quotients (omitting the first) is odd. t should be 
chosen such that 1 x t - 7 is divisible by 3. Hence t is chosen to be 10. 
Therefore we have, 

1 1 1 92 
1 1 51 51 
4 41 41 
10 10 
1 

Now, 92 = 29 x 3 + 5. Therefore, 

N = 49 x 5 + 7 = 29 x 8. 

Hence, 
x = 5, Y = 8. 

5 Varga-prakrti: Quadratic indeterminate 
equations 

The quadratic indeterminate equation 

x 2 - D y2 = 1, 

for a non square integer D is generally referred to as Pell's equation, 
though the 17th century English mathematician Pell had very little to 
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do with either posing the problem or solving it. The problem of finding 
the integer solutions x, y to this equation was posed as achallenge to 
the European mathematicians by Fermat in 1653, for specific values of 
D = 61, 109, 149, etc. The English mathematicians Brouncker and 
Wallis solved the equation. Fermat is credited with proving that the 
equation has infinite number of solutions. 

In fact, the quadratic indeterminate equations of the form 

x2 - D y 2 = K, 

known as Varga-pmkrti had been considered nearly thousand years ear
lier by Brahmagupta in his Briihmasphuta-siddhiinta (c.628). D, the 
given non-square integer is called "prakrtz", K, a given integer, is called 
K$epa and the integer solutions x and y are called Jye#ha-miila and 
Kani$tha-miila respectively. The fact that the equation has infinite num
ber of solutions is implied by Brahmagupta's Bhiivanii Principle, to be 
described below. The equation x 2 - D y2 = 1, had been solved for all 
D by Jayadeva (c.11th century or earlier) as cited by Udayadivakara 
(c.11 th century) in his commentary Sundarf on Laghu-bhiiskarfya of 
Bhäskara I [7]. Bhaskara II has also discussed this Cakmviila algorithm 
in his Bfjaga'TJita (c.1150) [8]. 

The motivation for solving such equations was probably to find rational 
approximation for surds. From x 2 - Dy 2 = 1, we find 

1Vi5 - ~I ::;_1 , 
y 2xy 

so that Vi5 ~ ~, if x and y are large. For instance, 

so that 

5772 - 2 X 4082 = 1, 

v'2 ~ 577. 
408 

It is noteworthy that this is the value of v'2 given in Sulbasiitms. The 
Cakmviila algorithm makes crucial use of the Bhiivanii Principle of Brah
magupta which is summarised below.1 

1 Furt her details regarding the Bhavana principle may be found in the contribution 
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5.1 Brahmagupta's Bhavana 

If 
and 

then 

So, if the solution of the Varga-prakrti for the K$epas K I and K I are 
known, the solution for the k$epa K I K 2 can be found immediately [9]. 

In particular, 

Thus, if one solution of the equation is known, an infinite number of 
solutions can be found. 

Brahmagupta's Bhiivanii not only helps in finding any number of solu
tions from just one solution, it also enables us to solve the K = 1 case, 
provided we know a solution for K = -1, or ±2 or ±4. We give the 
solutions (x, y) of x 2 - D y2 = 1 in terms of the solutions (Xl, YI) of 
XI - DYI = K, when K assumes any of these five values below: 

K= -1 X 21)2 2 Xl + YI, Y = XIYI· 

K=±2 X 
(XI + Dyn 

Y = XIYI· 
2 

K=-4 x (xi + 2) [~ (xi + 1) (xi + 3) - 1] , 

Y 
XIYI (xI + 1) (xi + 3) 

2 

K=+4 
(xi - 2) XIYI 

if Xl is even , x y= -2-' 2 

x 
(xi-3) yI(xi- 1) .. 

Xl 2 ,y = 2 ' 1f Xl lS odd. 

of Amarthya Kumar Dutta in this volume. 
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5.2 Cakravala algürithm für the Varga-prakrti x 2 - D y2 = 1 

In his Bfjaga'T}ita, Bhaskaracarya gives the Cakraväla algorithm for solv
ing the equation x2 - D y 2 = 1 in fOUf verses (71 -75) [10]. 

Considering the lesser root, greater root and interpolator 
(K~epa) as the dividend, addend and divisor respectively of 
pulversier) the indeterminate multiplier of it should be so 
taken as will make the residue of the prakrti diminished by 
the square of that multiplier or the latter minus the prakrti 
(as the case may be) to be the least. That residue divided by 
the (original) interpolator is the (new) interpolator; it should 
be reversed in sign in case of the subtraction from the prakrti, 
The quotient corresponding to that value of the multiplier 
is the (new) lesser root, like wise is obtained the greater 
root. The same process should be followed putting aside 
(each time) the previous roots and the interpolator. This 
process is called Cakraväla (or the cyclic method). By this 
method, there will appear two integral roots corresponding 
to an equation with ±1, ±2 or ±4 as interpolator. In order to 
derive integral roots corresponding to an equation with ad
ditive unity from those of the equation with the interpolator 
±2 or ±4, Bhävanä (should be applied). 

We describe algorithm in the following. To solve 
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we have to consider equations of the form 

in the intermediate stages, and also an indeterminate multiplier Pi. Here 
Yi is the lesser root, Xi is the greater root and K i is the k§epa. We start 
with, 

X6 - DY6 = K o, with Xo = 1, Yo = 0, K o = 1, 

and set Po = O. Given Xi , Yi , Ki and Pi, YHl and PHI are obtained by 
solving the kuttaka, 

Yi PHI + Xi 
YHl = IKil 

with the extra condition that IPT+! - DI is chosen to be minimum. Then 
XH 1 and K i+ 1 can be found from: 

They satisfy: 

X;+! - DYT+! = K H 1· 

Note that the above equation arises by doing Bhiivanii between 

PT+! - D.12 = PT+l - D, 

and dividing the new x, Y and K by IKil, IKil and IKrl respectively. 

This process is repeated till we get one of the values ±1, ±2, ±4 for the 
K§epa. If we obtain the K§epa to be 1, we have solved the problem. If 
the K§epa is -1 or ±2 or ±4, Bhiivanii can be used to obtain the solution 
for x 2 - Dy2 = 1, as explained earlier. 

Bhäskara II or his commentators have not outlined any proof that 
Cakraviila algorithm always leads to a solution in a finite number of 
steps. In 1929, A.A.Krishnaswami Ayyangar proved that the Cakraviila 
algorithm always leads to a solution in a finite number of steps [11]. 
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He also show~d that the above procedure is equivalent to the one in 
which the kuttaka equation for PHI is replaced by the condition that K i 

divides Pi + PHI, with the other conditions being the same (including 
minimization of IPT+1 - D I)· 

Bhaskara himself considered the example of D = 61 in his Bijaga'T}ita. 
The successive iterated values of Pi, K i , Xi, Yi are given in Table 1. 
The smallest solution X = 1766319049, Y = 226153980 is reached after 
the 14th step, if Cakraväla algorithm is applied mechanically. However, 
just after two steps we find K = -4, so that the solution is found im
mediately using the Bhävanä. 

Cakraväla algürithm für x 2 - 61y2 = 1 

i Pi K· 2 Xi Yi 
0 0 1 1 0 
1 8 3 8 1 
2 7 -4 39 5 
3 9 -5 164 21 
4 6 5 453 5 
5 9 4 1523 195 
6 7 -3 5639 722 
7 8 -1 29718 3805 
8 8 -3 469849 60158 
9 7 4 2319527 296985 

10 9 5 9747957 1248098 
11 6 -5 26924344 3447309 
12 9 -4 90520989 11590025 
13 7 3 335159612 42912791 
14 8 1 1766319049 226153980 

Table 1 

After the first step, we have 
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In step 2, 8 + P2 is divisible by 3 and the minimum value of Ip~ - 611 is 
obtained when P2 = 7. Then X2 = 39, Y2 = 5, K 2 = -4 and we have 

392 - 61 X 52 = -4. 

Since K = -4, we can use Bhävanä to obtain 

;r (392 + 2) [(~) (392 + 1) (392 + 3) -1] = 1766319049, 

Y (~) (39 x 5) (392 + 1) (392 + 3) = 226153980. 

The Brouncker-Wallis-Euler-Lagrange algorithm for solving the equa
tion x 2 - Dy2 = 1, is based on the continued fraction expansion of v75. 
It can be shown to be identical to Cakraväla algorithm, except that the 
condition 

1 D - P;+ 11 is minimum, 

is replaced by 

D - P~+1 is minimum and positive. 

The Cakraväla algorithm often skips some of the steps encountered in 
the Brouncker-Wallis-Euler-Lagrange algorithm. Table 2 gives the suc
cessive values of Pi, K i , X i , Yi in the Brouncker-Wallis-Euler-Lagrange 
algorithm for D = 61 where arrows indicate Cakraväla steps. The so
lution is reached after 22 steps using this algorithm, in contrast to 14 
steps in the case of Cakraväla algorithm. If the number of steps in the 
Cakraväla algorithm and the Brouncker-Wallis algorithm are denoted by 
nc and nB respectively, then it has been shown [12] empirically that for 
large D, 

nB 
- ~ 1.44. 
nc 

Thus, the Chakraväla algorithm is about 44% more efficient for large D. 
Quadratic indeterminate equations in which ancient Indians did such 
pioneering work is an active field of research even today and is at the 
heart of computational mathematics [13]. 
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Brouncker-Wallis-Euler-Lagrange algorithm for x2 - 61y 2 = 1 

I Pi K j Xi Yi 

--+ 0 0 1 1 0 
1 7 -12 7 1 

--+ 2 5 3 8 1 
--+ 3 7 -4 39 5 

4 5 9 125 16 
--+ 5 4 -5 164 21 
--+ 6 6 5 453 58 

7 4 -9 1070 137 
--+ 8 5 4 1523 195 

9 7 -3 5639 722 
10 5 12 24079 3083 

--+ 11 7 - 29718 3805 
12 7 12 440131 56353 

--+ 13 5 -3 469849 60158 
--+ 14 7 4 2319527 296985 

15 5 -9 7428430 951113 
--+ 16 4 5 9747967 1248098 
--+ 17 6 -5 26924344 3447309 

18 4 9 63596645 8142716 
--+ 19 5 -4 90520989 11590025 
--+ 20 7 3 335159612 42912791 

21 5 -12 1431159437 183241189 
--+ 22 7 1 1766319049 226153980 

Table 2 

6 Construction of the Sine-table 

In the above figure AP = R sin e. This is the Indian jya , where R the 
radius or trijya is normally chosen such that one minute of arc on the 
cirele corresponds to one unit of distance. Hence R is the number of 
minutes in a radian, and its value is very elose to 3438, which is the 
value mentioned in the earlier texts. More exact values are mentioned 
in later texts, especially those of the medieval Kerala school. 
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Fig: 5 

NormaIly a quadrant is divided into 24 equal parts, so that eaeh are bit 
0: = ~~ = 3045' = 225'. Then the proeedure for finding R sin io:, i = 
1,2, ... 24 is explicitly given. The R sines of the intermediate angles are 
to be determined by interpolation. 

Äryabhatfya gives the explieit algorithm for eonstructing the sine-table 
(verse 12, Ga1Jitapiida): 

The first Rsine divided by itself and then diminished by the 
quotient gives the seeond Rsine differenee. The same first 
Rsine diminished by the quotients obtained by dividing eaeh 
of the preeeding R-sines by the first Rsine gives the remain
ing Rsine-differences. 

This teIls us that 

Rsino: 
Rsin20: - Rsino: = Rsino: - R . 

sm 0: 
(0: = 225'), 

( ) R sin 0: + R sin 20: + ... + R sin io: 
R sin i + 1 0: - R sin io: = R sin 0: - R . . 

sm 0: 
The seeond equation is equivalent to the relation: 

Rsinio: 
Rsin(i + 1)0: - Rsin io: = Rsin io: - Rsin(i - 1)0: - R. . 

sm 0: 
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The values of the 24 Rsines are explieitly noted in another verse, and 
the first Rsine is given by 

R sin 0: ~ 225' 

which obviously uses 
sin 0: ~ 0:, 

when 0: is small. The exaet reeursion relation for the Rsine differenees 
is: 

Rsin(i+1)0:-Rsinio: = Rsinio:-Rsin(i-1)0:-Rsinio: 2(1-eoso:). 

Now, 2(1 - eos 0:) = 0.0042822, which is approximated in Aryabhatfya 
to be 

R 1 = _1_ = 0.00444444. 
sin 0: 225 

The A ryabhatfya 's sine values are given in the Table 4. The same 
proeedure with the same values are to be found in many other works in
cluding Süryasiddhiinta [14]. However the Rsine values given by Govin
dasvami in his eommentary on Mahiibhiiskarfya of Bhäskara I whieh are 
reprodueed in Table 4 are more aeeurate (eorreet to five decimal plaees) 
[15,16]. 

Far more aeeurate values for the sines were given by Madhava of 
Sangamagrama (1340-1425), the father figure of the Kerala sehool of 
astronomy and mathematies. These are cited in the two eommen
taries on NIlakalftha Somayaji's Tantrasangraha (e.1500)[17,18] namely 
Laghuviv'[tti [17] and Yuktidfpikii [18], both eomposed by Sankara 
Variyar. 

These results are based on the series expansion for sine, which we write 
in the following form: 

where Re is the are in minutes [19]. Explicit values of the magnitudes 
of the terms starting in the reverse from sixth and up to the seeond in 
(the RHS of) the above equation, given by Madhava when the are Re = 
5400' = 90°, are mentioned in Yuktidfpikii in the katapayiidi notation. 
The verse giving these values is quoted below[18]. 
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These values along with the modern values for eomparison are listed in 
Table 3. The last eolumn in this table was eomputed using R = 3437.747 
and Re = 5400. 

Term Mädhava's 
no. in Sanskrit equivalent value aeeording Modern 
RHS in katapayiidi to Yuktidzpikii value 

VI ~ 0'0" 44'" 0'0" 44.54'" 

V ~: 0'33"6'" 0'33" 5.6'" ... 

IV q;;~~~~tI: 16'05" 41'" 16'05" 40.87'" 

III ~: 273'57" 4 7'" 273'57" 47.11'" 

II ~ Fc\:gI~;:R: WS ~~ 2220'39" 40'" 2220'39" 40.10'" 

Table 3 

We find that the values given by Mädhava are indeed very. aeeurate. For 
an arbitrary are Re (in minutes), the proeedure is given in the later half 
of the verse quoted above [18]: 

It is the following formula for R sin e that is delineated by the above 
verse: 

Rsine Re - ß3(2220'39" 40"') + ß5 (273'57" 47"') - ß7 (16'5" 41"') 

+ ß9 (0'33" 6"') - ßll (0' 0" 44"'), 
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where ß = 5~gO· The 24 Rsines corresponding to Re = 225', 450' , 675' ... 
were also explicitly stated by Mädhava in the katapayiidi notation and 
th~y have been.given in Laghuvivrtti in the set of verses beginning with 
ß ;m:r C1~8IWiI ~""'1~4~~: and ending with dtq'ORtlMI'"ftI*f]. 
J4~I\541 """W~)Rdl: I They coincide with the modern values up to "thirds" 
(corresponding to an accuracy of sines up to seventh or eighth decimal 
places). 

R sin e according to 
ein min. Ä ryabhatfya Govindasvämi Mädhava( also Modern) 

225 225 2245023 2245022 
450 449 4484253 44842 58 
675 671 67040 11 67040 16 
900 890 8894508 88945 15 
1125 1105 11050130 11050139 
1350 1315 1315 33 56 1315 347 
1575 1520 1520 28 22 1520 28 35 
1800 1719 1718 52 10 1718 52 24 
2025 1910 1909 54 19 1909 5435 
2250 2093 20924546 20924603 
2475 2267 22663844 2266 39 50 
2700 2431 24305054 

I 
2430 51 15 

2925 2585 25843743 25843806 
3150 2728 27272029 27272052 
3375 2859 2858 22 31 28582255 
3600 2978 2977 10 09 2977 10 34 
3825 3084 3083 12 51 3083 13 17 
4050 3177 31750323 31760350 
4275 3256 3255 1754 3255 18 22 
4500 3321 33203602 33203630 
4725 3372 3371 41 01 3371 41 29 
4950 3409 3408 1942 3408 20 11 
5175 3431 34302242 3430 23 11 
5400 3438 343744 19 34374448 

Table 4 

In Table 4, we compare the values of the Rsines in Ä ryabhatfya , Govin
dasvämin's commentary of Mahiibhiiskarfya, and Mädhava's values as 
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stated in Laghuvivrtti [16] and the modern values. 

It may be noted that the table gives the Rsine values eorresponding to 
are lengths which are multiples of 225'. In the third and the fourth 
eolumns, the values are in minutes, seconds and thirds. Note that the 
modern values eoineide with the Madhava's values in the last eolumn. 

7 Accurate computation of 7r using an 
error-minimization algorithm 

It is weH known that an infinite series for 7f was first given by the Ker
ala mathematicians, who invariably aseribe the result to Madhava of 
Sangamagrama (1340 - 1425 AD): 

Circumference = 7f = 4(1 _ ~ + ~ _ ~ ... ). 
Diameter 3 5 7 

An ingenious geometrieal proof of this is to be found in the eelebrated 
Malayalam text Yuktibhii~ii of Jye~thadeva (c.1530) [20,21J. As is weIl 
known, this se ries eonverges very slowly. An algorithm for aeeurate and 
effieient eomputation of 7f using the teehnique of eorreetion terms was 
also given by Madhava. This result is eited in Yuktidipikä of SaIikara 
Variyar [22]. 

The diameter multiplied by four and divided by unity (is 
found and stored). Again the products of the diameter and 
four are divided by the odd numbers like three, five, ete., and 
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the results are subtracted and added in order (to the earlier 
stored result). 

Take half of the succeeding even number as the multiplier 
(gu'I)-a term) at whichever (odd) number the division process 
is stopped, because of boredom (by the slow converging pro
cess). The square of that (even number) added to unity is 
the divisor. The ratio has to be multiplied by the product 
of the diameter and four as (stated) earlier. 

The result obtained has to be added if the earlier term (in 
the series) has been subtracted and subtracted if the earlier 
term has been added. The resulting circumference is very 
accurate; in fact more accurate than the one which may be 
obtained by continuing the division process (with a large 
number of terms in the series). 

Essentially, 

to a fairly good approximation. 

177 

Describing differeht ways by which better approximations can be ob
tained, finally Sarikara Variyar states a more accurate correction term 
[22]: 

N ow a correction term better than the others will be pre
sented. Here square of half of the even term increased by 
unity, is the multiplier. The same (square) increased by 
unity and multiplied by four, and furt her multiplied by half 
the even term is the divisor. This correction term should be 
applied after dividing by the odd numbers three, five, etc. 
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In Yuktibhii§ii , these correction terms are derived using an error
minimization algorithm [21,23]. We give a summary of this procedure 
as explained in the above references. If the series is truncated at odd 
number p - 2 with a correction term i 1 , i can be written as: 

1T 1 1 1 1 1 - = 1 - - + - - - ... - -- + -. 
4 3 5 7 p - 2 8 1 

On the other hand, if the series is truncated at p with a correction term 
i2 ' we will have . 

1T 1 1 1 1 1 1 
-=1--+--- ---+---4 3 5 7 . . . p - 2 P 8 2 . 

If the correction terms are exact, then both should yield the same result. 
That is, 

1 1 1 1 1 
or -+-=-. 

81 82 P 

81 = 82 = 2p actually satisfies the equality. However both the correc
tions should follow the same rule. If 8 1 = 2p - 2 and 8 2 = 2p + 2, that 
is 8 is twice the even number above the last odd number in the series, 
then the Sthaulya or inaccuracy is 

111 1 11 4 
~= -+- - - = --+-- - - = ---".--

81 82 P 2p - 2 2p + 2 P 4p3 - 4p' 

and it can be shown that the error (corresponding to this choice of 8) 
is minimum. For other choices such as 8 1 = 2p - 3 and 8 2 = 2p + 1, 
the inaccuracy ~ will have a term proportional to p in the numerator, 
whereas the denominator ~ 4p3. So the inaccuracy ~ will be much 
larger than its value for 8 1 = 2p - 2, when pis large. By choosing 8 2 (p) 

of the form, 
8 ( ) _ 1 

2P - 2 +2+~' 
P 2p+2 
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it can be shown that the inaccuracy is reduced further and inaccuracy 
ß is minimum at A = 4. So, 

1 
S2(p) = 4 

(2p+2) +--
2p+ 2 

(~) 
(p + 1)2 + 1· 

This leads us to 

~ 1 1 1 1 (~) 
"4 = 1 - "3 + "5 - "7 ... ± P =F (p + 1)2 + l' 

which is the first rule given in Yuktidzpikii. Proceeding in the same 
manner, the error is furt her reduced and will be minimum when we take 

1 
S2(p) = 4 

(2p + 2) + 16 

2p+ 2 + 2p+ 2 

which leads to 

( p + 1)2 
~ 1 1 1 1 -2- + 1 
-=1--+--- ... ±-=F . 
4 3 5 7 p [(P+1)2+ 4 + 1J(P;1) 

This is the more accurate second rule given in Yuktidzpikii. When p = 99 
(that is, considering 50 terms in the series), the resulting value of ~ is 
found to be accurate to 11 decimal places. This is same as the value 
~ ~ 3.14159265359222 ... given by the rule, ~4~"I\i1I~~dl~I"'1 ... , at-- _...... 
tributed to Mädhava by Nilakantha in his A ryabhatzyabhii$ya Ga'f}itapiida, 
verse 2. 

When the error-minimization algorithm is continued along the above 
lines two steps furt her , 

1 
S2(p) = 4 

(2p + 2) + 16 
2p + 2 + 32 

2p+ 2 + 64 
2p+2+--

2p+ 2 
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When p = 99, this yields 7r = 3.141592653589793241, which is correct 
to 17 decimal places. This is the same as the value for 7r stated by Raja 
Sarikara Varma in his Sadmtnamälä (c.1823). 

Acknowledgement 

I thank M.D.Srinivas, Centre for Policy Studies, Chennai, and KRama
subramanian, I1T Bombay, for many useful discussions on this topic. 

References 

1. See for instance, Jacques Sesiano, 'Al-Khwarizmi', Encyclopedia oi 
the History oi Science, l'echnology, and Medicine in Non- Western 
Cultures, Ed. by Helaine Selin, Kluwer Academic Publishers, Dor
drecht, 1997. 

2. M.D.Srinivas, 'Proofs in Indian Mathematics', Contribution to this 
volume. 

3. See for instance, T.A.Sarasvati Amma, Geometry in Ancient and 
Medieval India, Motilal Banarasidass, 1979. 

4.. Ä ryabhatfya of Äryabhata with the commentary of Bhaskara 1 and 
Somesvara, K.S.Shukla, Indian National Science Academy, New 
Delhi, 1976, p.49. 

5. Ä ryabhatfya Ga1}itapäda, verse 5, Edited with English translation, 
not es and comments by KS.Shukla and KV.Sarma, Indian Na
tional Science Academy, New Delhi, 1976. 

6. B.B.Datta and A.N.Singh, History oi Hindu Mathematics, Part 11, 
Motilal Banarasidas, Lahore, 1938. 

7. The manuscript of Udayadivakara's commentary on Laghu
bhäskarfya is available in the Kerala University Oriental Research 
Institute and Manuscripts Library, Trivandrum. 

8. Bfjaga1}ita of Bhaskaracarya edited by Achyutananda Jha, 
Chowkhamba, Benaras, 1949. 



Algorithms in Indian Mathematics 181 

9. Brähmasphuta-siddhänta (with Hindi translation) 4 vols., Ed. by 
R.S.Sharma, Indian Institute of Astronomical and Sanskrit Re
search, New Delhi, 1966. 

10. Bfjagar;,ita, cited earlier, Translation by Datta and Singh in Ref.6. 

11. A.A.Krishnaswamy Ayyangar, Journal of Indian Mathematical So
ciety, 18, 225, 1929. 

12. Tomas Olivera Silva, 'Record holder solutions of Pell's equation', 
www.ieeta.pt-/ tos/pell.html, September 2003. 

13. See far Example, S.Hallgren, 'Polynomial-Time Quantum Algo
rithms for Pell's equation and the Principal ideal problem', Cali
fornia Institute of Technology preprint, November 2001. 

14. Süryasiddhänta , verses 15-16, Chapter 2, Ed. by KC.Dvivedi, 
Sampurnanand Sanskrit University, Varnasi, 1987. 

15. Mahäbhäskarfya of Bhäskara I, Ed.by T.S.Kuppanna Sastri with 
the Bhä$ya of Govindasvami, Govt. Oriental Manuscripts library, 
Madras, 1957, p.200-1. 

16. A.KBag, Mathematics in Ancient and Medieval India, 
Chaukhambha Orientalia, Varanasi, 1979. 

17. Tantrasarigraha of NllakaJ).tha with the commentary Laghuvivrtti 
of Saükara Variyar, Ed. Surnad Kunjan Pillai, Trivandrum San
skrit Series, No.188, Trivandrum, 1958, p.19. 

18. Tantrasarigraha of NllakaJ).tha SomayajI with Yuktidzpikä and 
Laghuvivrtti of Saükara Variyar, Ed.by KV.Sarma, V.V.B Insti
tute, Hoshiarpur, 1977, p.117. 

19. A.KBag, 'Madhava's sine and eosine series', Indian Journal of 
History of Science, 11, 54-57, 1976. 

20. Gar;,itädhyäya, of the text Yuktibhä$ä , Ed. by Ramavarma Tham
puran and A.R. Akhileswara Aiyer, Trichur, 1947: See also 
M.D.Srinivas in Ref.2. 

21. Gar;,ita-yuktibhä$ä, Vol. I, Ed. and Translated by KV.Sarma, 
with Explanatory Notes by KRamasubramanian, M.D.Srinivas 
and M.S.Sriram (in press). 



182 M.S.Sriram 

22. Cited earlier; translation by K.Ramasubramanian. 

23. Jolly John, 'Derivation of the saTTLskiiras applied to the Madhava 
series in Yuktibhii§ii " in 500 years of Tantrasangraha : A 
Landmark in the History of Astronomy, Ed. by M.S.Sriram, 
K.Ramasubramanian and M.D.Srinivas, Indian Institute of 
Advanced Study, Shimla, 2002. 



Algorithms in Indian Astronomy 

K.Ramasubramanian 
Cell for Indian Science and Technology in Sanskrit 

Department of HSS, IIT Bombay 
Powai, Mumbai 400 076, India 

kramas@iitb.ac.in 

Abstract 

Indian Astronomy is rich in algorithms. The algorithms pre
sented in the Indian astronomical texts have varying degrees of 
complexities starting from the simple trairiiSika rule, to the treat
ment of parallax in asolaI' eclipse or the computation of the ele
vation of lunar cusps. In the present article we will discuss a few 
algorithms that are representative of the ingenuity and continuity 
of the Indian astronomical tradition. We start with the interpo
lation formula presented by Brahmagupta (c.665 AD) and then 
proceed to describe a select few algorithms from Tantrasarigraha 
of NlIakal,ltha composed in 1500 AD. Here we present the algo
rithm for the calculation of time from shadow measurements and 
the exact algorithm for the computation of lagna and the time 
for the duration of an eclipse. We also comment on the iterative 
process known as avise§akarma which aims at circumventing the 
problem of interdependencies among several variables. 

1 Introduction 

It is not uncommon to find words which originate with a different conno
tation and in due course pick up a completely different connotation. The 
word algorithm farms a good example of this. Its origin can be traced 
back to the Persian mathematician, al-KhwarazmI (800-847 AD). It is 
quite interesting to note the observations made by D.E. Knuth in this 
context [1]: 
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In the middle ages, abacists computed on the abacus and 
algorists computed by algorism. Following the middle ages, 
the origin of this word was in doubt, and early linguists at
tempted to guess at its derivation by making combinations 
like algiros [painful] + arithmos [number]; others said no, the 
word comes from "King Algor of Castile". Finally, his tori ans 
of mathematics found the true origin of the word algorism: it 
comes from the name of a famous Persian textbook author, 
Abu Ja'far Mohammed ibn Musa al-KhwarizmI (,,-, 825 AD) 
- literally, "Father of Jafar, Mohammed, son of Moses, na
tive of Khwarizm." Khwarizm is today the small Soviet city 
of Khiva. al-KhwarizmI wrote the celebrated book Kitab al 
jabr w'al-muqabala ("Rules of restoration and reduction"); 
another word, "algebra", sterns from the title of his book, 
although the book wasn't really very algebraic. 

Gradually the form and meaning of "algorism" got distorted; The change 
from "algorism" to "algorithm" is any body's guess. The remarks by 
the well-known historian C.B.Boyer in this context are also noteworthy 
[2]. 

. ..... when subsequently Latin translations of his (al 
KhwarizmI's) work appeared in Europe, careless readers be
gan to attribute not only the book but also the numeration 
to the author. The new notation came to be known as that of 
al-KhwarizmI, or more carelessly, algorismi; ultimately the 
scheme of numeration making use of Hindu numerals came 
to be called simply algorism or algorithm. 

The terms process, method, technique, procedure, routine, and so on 
all essentially refer to a sequence of operations to be carried out to ac
complish a given task. The word "algorithm" though similar, connotes 
something more. For a procedure to be termed algorithm it must termi
nate after n steps and upon termination it must yield a sensible result. 
However, this is not true of all procedures. In this sense, all algorithms 
are procedures; but all procedures are not algorithms. 

Indian astronomy is essentially algorithmic in nature. The algorithms 
presented are precise and fairly sophisticated [3]. Some of them are 
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amazingly accurate [4]. We shall illustrate these points by considering 
a few examples. 

2 Brahmagupta's interpolation formula 

Interpolation is the art of reading between the lines in a table. The 
rule of trairasika [5,6] employed in Indian astronomy is dose to what is 
known as the first-order interpolation in modern parlance. This tech
nique has been extensively applied to solve a variety of mathematical 
and astronomical problems, beginning from the evaluation of si ne func
tion to the calculation of edipses, at least from the time of Äryabhatfye 
(c.499 AD). 

It is quite interesting to note that Brahmagupta introduced the second 
order interpolation formula to determine more precise value of the sine 
function, called jyä , for an arbitrary angle, from the set of tabulated 
values of si ne given at fixed intervals. The following verse from his 
famous work Khary,rjakhädyaka (c.665 AD) explains the algorithm [7]: 

Multiply the residual arc left after division by 900' by half 
the difference of the tabular difference passed over and that 
to be passed over and divide by 900'; by the result increase 
or decrease, as the case may be, half the sum of the same two 
tabular differences; the result which, whether less or greater 
than the tabular difference to be passed, is the true tabular 
difference to be passed over. 

Generally in Indian astronomical texts, the interval chosen for tabulating 
values of sines is 225'. However, Brahmagupta has chosen the interval to 
be 15° = 900' for the sake of simplicity, as Kha'f}rjakhädyaka is a kara'f}a 
text. 1 This explains the number 900 figuring in the above verse. 

lOf the three kinds of texts, Siddhiinta, Tantra and K araTJa, the last is meant to 
serve as a simple manual used for quick computations. 
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Before we represent the content of the above verse in a mathematical 
form, it would be useful to introduce the terminologies and the notation 
employed. Let the equal intervals chosen be represented by a. That is, 

Xn - Xn-l = Xn+l - Xn = a = 900, (1) 

where the variable x denotes the angle and x~s are multiples of 900'. 
The term Bhogya refers to the present interval between Xn and Xn+l. 
The term khanlf,aka refers to t he I order tabular differences in the sine 
values and we denote it by ~n . 

(2) 

Let us suppose that the value of the function at three points 
!(Xn-l) , !(xn ), and !(Tn+1) are known, and it is required to find out 
!(xn + ßa). Now, the formula given by Brahmagupta may be written 
as 

where 0 < ß < 1. With a little algebraic manipulation, and suitably 
rearranging the terms , the above equation may be rewritten as 

Clearly, the formula given by Brahmagupta is identical with the stan
dard quadratic interpolation formula [8]. 

3 Algorithm for finding the time from shadow 

The technique of making a fairly good estimate of the time from the 
shadow of an object cast by the Sun has been in vogue from time im
memorial. Different cultures and traditions across the world have de
vised simple instruments for this purpose. In the Indian astronomical 
tradition the instrument used is called sariku . 
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Figure 1: Zenith distance and the length of the shadow. 
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The sariku essenti2Jly consists of a rod of suitable thickness and height. 
Generally the height is taken to be 12 arigulas . For performing experi
ments with sariku, it must be placed at the centre of a circle as shown 
in Fig.1. Here, G X represents the sariku and GY is its shadow cast by 
the sun. If the longitude of the sun, A is known at a given instant, then 
its declination, eS at that instant can be calculated using the relation (see 
Fig.2) 

sin 6" = sin E sin A, (5) 

where E is the obliquity of the ecliptic. The procedure for obtaining 
accurate values of the observer's latitude, rjJ, are discussed in detail in 
several Indian astronomical texts [9]. 

Celestial Equator 

r 
(Vemal equinox) 

Figure 2: Declination of the Sun. 

s 
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The formula given by NIlakar:ttha in his celebrated work Tantrasarigraha 
(c.1500 AD) for determining the time from shadow measurement turns 
out to be essentially a function of cjJ, 8 and z, where z is the zenith 
distance of the sun. Since cjJ and 8 are already found through shadow 
measurements, only z needs to be known. For this, consider the triangle 
OXY in Fig.l. It can be easily seen that 

sinz 

or z = 

OY 
XY 

. -1 (OY) 
sm XY' (6) 

where XY is the hypotenuse given by )122 + OY2. Thus, the zenith 
distance of the sun can also be obtained at any time by measuring the 
shadow cast by the sariku. 

The algorithm for finding the time from shadow measurements is pre
sented by NIlakar:ttha as follows [lOJ: 

~ d"ff: ~: M<kIq;iIH Ri!J)cp:U U 

~ i(J\?4I~~ d"ff ~ ~oi~q 'tf I 

41.,::4)«-;'(OM 4I*fH4 '~~~: U 
.gBfi141 "m;jIAu41 QqlQ'(q;iqIM4I: I 

--
The sariku is multiplied by radius (trijyii ) and divided by 
lambaka. This is furt her multiplied by trijyii and divided 
by dyujyii. To this quantity the carajyii is applied posi
tively or negatively depending upon whether the Sun is in 
the southern or the northern hemisphere. 

To the are of the result, the cariisaval} (ascensional differ
ence) has to be applied in the reverse order. This gives the 
time that has elapsed or yet to elapse in the eastern and the 
western half of the hemisphere. 

Before we express the above verse in mathematical notation we introduce 
a few technical terms appearing in the above verse. The term trijyii 
refers to R,2 lambaka is R cos cjJ and dyujyii is R cos 8. The word sariku 

2It is usually taken to be the measure of one radian in minutes. That is R ~ 3438'. 
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in the first line of the quotation is used to denote R cos Z. 3 Carajyä is 
R sin ßa. With this, the the first two lines of the verse translate to the 
relation 

[ RCOSZ . ] 
RsinO = <P 8 ± Rsmßa 

cos cos 
(7) 

In the latter half of the quotation given above it is mentioned that to 
the arc of the above (0), the ascensional difference, which is the angular 
separation between the vernal equinox and the celestial object measured 
along the celestial equator (see Fig.3), has to be applied in the reverse 
order to obtain the required time t. That is, 

t = 0 =t= ßa. 

Substituting for 0 we have 

t = (Rsin)-l [ R;OSZ 8 ± RSinßa] =t= ßa. 
cos cos 

(8) 

(9) 

The above result can be easily understood using the tools of spherical 
trigonometry.4 For this, consider Fig.3 where S is the Sun on its diurnal 
path whose zenith distance is z, corresponding to the arc ZS. The 
point where the sun sets in the western part of the horizon is denoted 
by St. The segment PW is apart of the 6 0' dock cirde, and the angle 
ZPW = 90°. Applying four-part formula to the triangle PWSt , it can 
be shown that, the ascensional difference ßa is given by the relation 
(weH known in Indian Astronomy) 

sin ßa = tan <p tan 8. (10) 

Further , it may be noted that S P St = 0 + ßa is the angle to be covered 
by the Sun from the given instant up to the sunset. This angle divided 
by 6 and 15 give the time that is to elapse before sunset in hours and 
nät;likäs (time unit of approximately 24 minutes) respectively. 

3Generally Rcos z, which is the perpedicular distance of the sun from the horizon, 
is called mahäsanku in order to distinguish it from the gnomon (dviidasiingulasanku) 
used for shadow measurement. But sometimes mahiiSanku would be simply referred 
as sanku, as in the above verse, and what it refers to would be clear from the context. 

4Detailed demonstrations of the algorithms enunciated in Indian astronomical 
and mathematical texts are given in the famous Malayalam work Gar,tita- Yuktibhiifii 
(c.1530 AD) of Jyei?thadeva [Ref.6, Vol.I & 11]. 
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Figure 3: Determination of time from shadow measurements. 

Applying the eosine formula to the spherieal triangle PZS, we have 

or, 

eos z = sin 4> sin 8 + eos 4> eos 8 sin e, 

sine 
eosz 

'" x - tan 4> tan 8 
eos <j/ eos u 

eosz 
---- - sin D-n. 
eos 4>eos 8 

Henee, the time, t that is yet to elapse before sunset in angular measure 

is 

t = e + D-n = sin-1 [ cosz 8 - sin D-n] + D-n, (11) 
eos 4>eos 

which is the same as Eq.(9) given by NllakaI).tha . 
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The method to determine the time elapsed after sunrise is exactly sim
ilar. It is worth mentioning in this context that, in finding z, the cor
rection due to the finite size of the Sun and its parallax have also been 
taken into account by NllakaJ:.ltha [11]. If z' were the apparent zenith 
distance, then the true zenith distance z is given by 

z = z' + b.O with b.O = ds - p, 

where ds is the angular semi-diameter of the Sun and p its parallax. As 
b.O is small, 

Rcosz Rcos(z' + b.O) 

~ R ' b.O (Rsin z') ~ cosz - R. (12) 

This is precisely what is stated to be the mahiiSanku, R cos z, in an earlier 
verse [12], which is to be used in the expression (Eq.9) for determining 
the time from the shadow. 

4 AIgürithm für finding lagna 

Lagna refers to the orient ecliptic point, that is, the point of the eclip
tic which intersects with the ea.'3tern horizon at any desired instant. 
NllakaJ:.ltha while discussing the procedure for finding lagna, in his 
Tantrasangraha first presents the conventional method, which could be 
found in many of the earlier texts on Indian astronomy. Later, pointing 
out that this procedure would give only approximate results, he proceeds 
to give an exact algorithm for finding the lagna . 

4.1 Conventional method 

The following verses of Tantrasangraha describe the standard procedure 
used for the computation of lagna at any desired instant [13]. 
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From the longitude of the Sun eorreeted for ayana, the num
ber of minutes to be elapsed in that rasi (are ealculated). 
This is multiplied by the duration of rising of that rasi and 
is divided by the number of minutes in a rasi. This gives 
that priir;as for the remaining rasi to rise and that has to be 
subtraeted from the duration elapsed (sinee the sunrise). 
From the remainder (hf), the durations of rising of the rasis 
that follow have to be subtraeted. Having added the degrees 
remaining in that rasi to the Sun, the other rasis (degrees 
eorresponding to rasis ), as many number of them, whose 
rising times were subtracted are also added. The remaining 
priir;as (r) are multiplied by 30 and divided by the duration 
of rising of that rasi. The result obtained is onee again 
added to the Sun. 
The remainder when multiplied by 60 gives the result in min
utes. Thus, priiglagna , the orient ecliptie point should be 
obtained. The astalagna , setting ecliptie point is obtained 
by adding six signs to that. 
To know the longitude of the ecliptic points from the me$adi, 
the ayana eorreetion has to be applied reversely. 

The proeedure deseribed here may be understood with the help of Fig.4. 
Here S represents the Sun in the eastem part of the hemisphere, r the 
vemal equinox. R 1, R2 ete., are the ending points of the first rasi (sign), 
seeond rasi and so on. h refers to the time elapsed after the sunrise and 
H the hour angle of the the Sun. 
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Diurnal circ1e Z (zenith) 

s 
HOrizon 

E 

Figure 4: Determination of praglagna (orient eeliptic point) - by the 
eonventional method 

Let As be the sayana longitude5 of the Sun. Suppose the Sun is in the i th 

rasi (in the Fig.4, it is shown to be in the first riiSi ), whose rising time 
at the observer's loeation is given by Ti. If ()Ri be the angle remaining to 
be eovered by the Sun in that rasi (in minutes), then the time required 
for that segment of the riiSi to eome above the horizon is given by 

()Ri x Ti 
tRi = 30 x 60 ' (13) 

where Ti is in ghatikas. A factor of 60 in the denominator indieates 
that the result tRi is expressed in praT}as.6 Subtracting this time tRi 

from the time elapsed sinee sunrise h, we have 

h' = h - tRi' 

From h' the time required for the subsequent riiSis to rise, T i +1, Ti+2, 
ete., are subtracted till the remainder r remains positive. That is, 

(r + ve) 

5This refers to the longitude measured from the vernal equinox. Here, it may be 
noted that in Indian astronorny, nimya'(!a longitudes are more comrnonly used. They 
refer to the longitude measured from a fixed point, which is generally taken to be the 
beginning point of, star called Asvini. It is also referred to as me~ädi as in the last 
line of the Sanskrit quotation given above. 

6 Ghafikä is a measure which is elose to 24 minutes and prä'(!a ~ 4 seconds. 
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Suppose we are in the i + yth riiSi whose rising time is ~+j. Then, 
the portion of RHj , which would have co me above the horizon in the 
remaining time r is given by 

(in deg.). (14) 

Now, the longitude of the praglagna (L) is given by 

(15) 

If so, then the astalagna is given by 

astalagna = praglagna + 1800 , (16) 

because the horizon divides the ecliptic exactly into two parts. The 
lagnas obtained by the above procedure are sayana lagnas. To obtain 
the nimyar;a ones, one needs to subtract the ayana'f!Lsa. 

After describing the above method, NIlaka~tha remarks that it is only 
approximate [14]: 

The (rising) time gradually differs even in the same riiSi 
Hence, applying rule of three here, is not appropriate. There
fore the lagna obtained by the above procedure will only be 
approximate and not exact. 

4.2 Exact algorithm 

Subsequently, NIlaka~tha gives an exact algorithm for finding lagna. 
This is presented in several steps. First he finds the kalalagna (defined 
in the following verse [15]), which is nothing but the time difference 
between the desired instant and the time of rising of the vernal equinox 
f. 
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The right ascension of the siiyana Sun corrected by the as
censional difference ... this added to the prii'f}as elapsed gives 
the kiilalagna . 
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The time difference between the sunrise and the rising of the vernal 
equinox r is 0: - ~o: (see Fig.5), where 0: is the right ascension of the 
Sun and ~o: the ascensional difference. When this is added to the time 
elapsed after sunrise, we obtain the kiilalagna at the desired instant, 
which we denote by L'. 

kiilalagna = L' = Time elapsed after sun rise + (0: - ~o:). (17) 

z 

lIorizon 

Figure 5: Determination of kiilalagna . 

Now, vitribhalagna is the point on the ecliptic which is 90° away from 
the lagna. Consider Fig.6, where S is the Sun, r is the vernal equinox 
and L is the orient ecliptic point, whose longitude is the lagna. V is 
the vitribhalagna and K is the pole of the ecliptic. Drk§epa is si ne of 
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the zenith distance of the vitribhalagna (R sin ZV). When r is on the 
horizon, K is on the meridian. It can be easily seen that the kiilalagna 
is the hour angle of K, or L' = Z?K. Now, 

ZK = KV - ZV = 90 - ZV, 

as K is the pole of the ecliptic. Also, KP = E and ZP = 90 - cp. Then, 
using the cosine formula we obtain the following expression for drk$epa 

Rsin ZV = Rcos ZK = Rcos Esincp + Rcos cpsinEcos L'. (18) 

Z (zenith) 

P (pole) 

s - N 

Figure 6: Determination of priiglagna (orient ecliptic point) - exact 
method. 

This is essentially what is stated in the following verse [16J . 

The ak$a multiplied by antyadyujyii and divided by trijyii, 
and, lambaka multiplied by the koti of the kiilalagna and di
vided by 8452 (are kept separately). The drk$epa is the dif
ference or sum of the two depending upon whether kiilalagna 
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is within the 6 signs beginning from karkataka or mrga Capri
corno 
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Here NIlakal.ltha defines two intermediate quantities x and y whose sum 
or difference gives the expression for the sine of the zenith distance of 
the the vitribhalagna . They are given by 

and, 

antyadyujyä x ak$a R cos f X R sin cjJ 
x=--'---=---=....:----'--=---::-----'-

trijyä R 

lambaka x koti of kälalagna 
y= -----------

8452 

R cos cjJ x R cos L' x sin f 

R 

It may be noted in the above equation that si~ E = s~~ii is taken to be 
Sl52. Now, drk$epa (= RsinZV, refer Fig.6) is given to be 

Substituting for x and y we have, 

R sin ZV = R cos f sin cjJ ± R cos cjJ cos L' sin f, (19) 

which is same as Eq.(18). From this, cos ZV is to be calculated. With 
this, the lagna is to be found as follows [17]: 

The nata (hour angle) or unnata may be obtained depend
ing upon whether the computation is done at midday or 
midnight. If nata is obtained, then the bär;w (versed sine, 
utkramajyä) of it is to be subtracted from trijyä , and the re
sult is added to the carajyä. If unnata, (is obtained) then the 
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result deficient from cara.iya is found. [This is the procedure 
for the northern hemisphere]. For the southern hemisphere 
the operation is reversed. 

Here it is essentially stated that 

R(cos q;cos 8[eos H + sin ßo:]) 
eosZV 

R( cos q; cos 8 cos H + sin q; sin 8) 
cosZV 

where Al and A8 are the lagna and the Sun's longitude respectively. From 
the above equation, taking the inverse si ne we get Al - A8 • To this, if we 
add the longitude of the Sun we get the desired longitude that is lagna 
(Al)' The rationale behind the above equation can be easily understood 
with the help of Fig.6. 

Applying the eosine formula to the spherieal triangle PZS we have, 

cos Z S = sin q; sin 8 + cos q; cos 8 cos H. 

Similarly from the triangle ZVS we get, 

VS _ eosZS 
cos - Z' cos V 

Now, VS + SL = VS + Al - A8 = 90. Therefore, eos VS = sin(AI - A8 ), 

which results in the above expression for sin(AI - A8 ). 

5 Instantaneous velocity of the true planet 

Both in the modern as weIl as ancient Indian astronomy, the true po
sition of the planet 7 is obtained from the mean position by applying 
a correction to it. The correction term is known as mandaphala , in 
Indian astronomy, while it is known as 'equation of centre' in modern 
astronomy. 

In Fig. 7, A represents the direction of the mandocca (apside) and its 
longitude raA = 'W. Po is the me an planet whose longitude called 

7Though the treatment is general, in this section planet refers to either the Sun 
or the Moon. 
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P (planet) 
A (direction of mandocca) 

o 

Figure 7: The manda-samskiira or the equation of centre correction. 

madhyamagraha (mean longitude) is given by 00 = ropo. The circle of 
radius r' with Po as centre, is the epicycle on which the mandasphuta 
(true planet) is located. By construction, P Po is parallel to 0 A. The 
longitude of the mandasphuta is given by 0MS = rop. It can be easily 
seen that 

. (0 _ 0 ) _ PQ _ r' sin( 00 - w) 
sm 0 MS - 0 P - K ' 

where 
K = [(R + r' cos(Oo - w))2 + r'2 sin2 (Oo - w)J~, 

is the mandaka'r'T}a. As per the formulation in Tantrasarigraha , r' also 
varies such that 

r' r 
K R' 

is a constant. Here r is a given parameter. Then, 

sin(OMS - (0 ) = - ~ sin(Oo - w). (20) 

The difference between the true (mandasphuta ) and the mean position, 
is called mandaphala, whereas the difference between the mandocca and 
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mean position is called mandakendra. Denoting them by b.O and M 
respectively, the mandaphala is given by 

b.O = - sin -1 (~ sin M) . (21 ) 

Thus the mandasphuta (true longitude) of the planet is given by 

(22) 

It may be noted that the calculation of true position of the planet in
volves sine inverse function (Eq.(22)). Hence, if one needs to find the 
instantaneous velo city of the planet called tatkalikagati, one would have 
to find the time derivative of this function. It is indeed remarkable that 
an exact formula for the derivative of sine inverse function is given in 
Tantrasarigraha as follows [18]: 

Let the product of the kotiphala (in minutes)[r cos M] and 
the daily motion of the manda-kendra (d!Jf) be divided by the 
square root of the square of the dof;,phala subtracted from the 
square of trijya (J R2 - r2 sin M). The result thus obtained 
has to be subtracted form the daily motion of the Moon if 
the manda-kendra lies within six signs beginning from mrga 
and added if it lies within six signs beginning from karkataka. 
The result gives more accurate value of the Moon's angular 
velo city. In fact, the procedure for finding the instantaneous 
velo city of the Sun is same as this. 

If M be the manda-kendra , then the content of the above verse can be 
expressed in mathematical form as 

dM 
d r rcosM-
-(sin-1 ( - sinM)) = dt 
dt R VR2- r 2sin2 M 

(23) 
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This verse appears in the context of finding the true rate of motion of 
the Moon (instantaneous velocity) from its average rate of motion (mean 
velocity). The term gati refers to the rate of change of the longitude of 
the planet. 

Recalling the expression for the true longitude of the planet, Eq.(22), 
the rate of change of it is 

d d d 
-(JMS = -(Jo - -b.(J. 
dt dt dt 

(24) 

Here, the first term in the RHS represents the mean velo city of the planet 
and the second term the change in the mandaphala given by Eq.(23). 
In the following section dealing with the computation of the duration of 
an eclipse, the daily motion of the Moon denoted by dm is nothing but 
the derivative of mandasphuta given by Eq.(23),(24). 

6 Algorithm for finding eclipse duration 

In Indian astronomy, the total duration of an eclipse is found by deter
mining the first and the second half durations separately. More often 
than not, there will be significant difference between the two durations. 
For obtaining accurate values, they are calculated using an iterative pro
cedure, called avise§akarma, as will be explained in this section. The 
sum of the two durations gives the total duration of the eclipse. For in
stance, if Tl and T2 be the first and second half durations of the eclipse, 
then the total duration of the eclipse is given by 

where both Tl and T2 are found iteratively. 

6.1 Half duration of the eclipse 

The time interval between the Moon entering the umbral portion of the 
shadow and the instant of opposition is the first half duration, Tl, and 
that between the instant of opposition and the exit of Moon out of the 
umbral region is the second half duration T2 . Naively, one may think 
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that these two durations would be equal. However, this is not true 
because of the continuous change in the velocities of both the Sun and 
the Moon. 

In Fig.6(a), AX = ß and OX = S represent the latitude ofthe Moon and 
the sum of the semi-diameters of the shadow and the Moon respectively. 
If dm - ds refers to the difference in the instantaneous daily motion of 
the Sun and the Moon, then the first half duration (Td is given by 

T _ OA 
1 - Dif f. in daily motion 

(25) 

(a) 

Ecliplic 

(b) 

Ecliptic 

Figure 8: (a) The Earth's shadow and the Moon just before the begin
ning of the eclipse and just after the release. (b) The Earth's shadow 
and the Moon just after the beginning of total eclipse and just before 
its release. 

6.2 The need for iteration 

In Eq.(25), ß is the Moon's latitude at the beginning of the eclipse. The 
denominator represents the difference in the daily motion of the Sun and 
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the Moon. If Am and As are the longitudes of the Sun and the Moon, 
this differenee in their daily motion ealled gatyantara or bhuktyantara is 
given by 

d 
gatyantara = D(t) = dt (Am - A8). 

Initially, ß and D(t) are ealculated at the instant of opposition. If 
Moon's latitude and the rate of motion of the Sun and the Moon were 
to be eonstant, then Eq.(25) would at onee give the eorreet half dura
tion of the eclipse and there would be no need for an iterative proeedure. 
However, they are eontinuously varying quantities. Henee, determining 
Tl, using the latitude and gatyantara eomputed at the instant of opposi
tion is only approximate and to get more aeeurate values avise§akarma, 
a special kind of iterative proeedure, is preseribed. 

6.3 Concept of Avise~akarma 

A viSe§akarma refers to an iterative proeess that is to be earried out 
whenever there is an interdependeney (anyonyasraya) between the quan
tity to be ealculated and the parameters which are involved in the eal
eulation. For instanee, in eclipse ealculation, without knowing the lati
tude at the end of the eclipse, we will not be able to give the exact half 
duration, and without knowing the half-duration it is not possible to 
find the exact latitude of the Moon. To get over this tricky situation, 
avise§akarma is recommended. The need for it is succinctly explained 
Sarikara Variyar in his Yuktidzpikii as follows [19]: 

The declination circle (of the Moon) keeps changing every 
seeond (eontinuously). [Henee], the latitudinal deflection of 
the Moon is different at the beginning, middle and the end 
of the eclipse. 

Thus the two half durations (first and the second half) differ 
beeause of the variation in the latitudinal deflection. There-
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fore, the half-duration may be determined through the avise§a 
proeess. 

The word vise§a means 'distinetion'; therefore avise§a is "without dis
tinction". Though the meanings of the words vise§a and avise§a are 
opposed to eaeh other, the latter should not be taken to refer to tulya 
or 'eompletely identical'. In the eontext of mathematieal ealculations, 
it only means - without distinction to a desired degree 0/ accumcy. In 
other words, in avise§akarma, the iterative proeess needs to be earried 
out only up to a point wherein the two sueeessive values of the results 
are 'without distinction' for a desired degree of aeeuraey. Onee this 
aeeuraey is reaehed the proeess should be terminated. 

6.4 The iterative process for half duration 

Now, we illustrate the avise§a proeess by eonsidering the example of 
finding the half duration of an eclipse. Let tm be the time of opposition 
or madhyakala of a lunar eclipse, and !.lto be the zeroth order approx
imation of the half duration of eclipse determined with the parameter 
values obtained at tm. That is, 

To get the first approximation, the sum of the semi diameters S, the 
latitude of the Moon ß and the differenee in daily motion D are then 
determined at tm - !.lto. With them the first approximation to the half 
duration is obtained. It is given by 

!.ltl = JS2(tm - !.lto) - ß2(tm - !.lto) 
D(tm - !.lto) 

To get the seeond approximation, S, ß and D are determined at t m - !.ltl. 
With these values the seeond approximation to the half duration is 
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Similarly, determining S, ß and D at tm - b.t2, the third approximation 
is found. 

This process will be continued until, 

(26) 

where f is the desired degree of accuracy. At this stage, since b.t has 
converged to the desired accuracy, the iteration is terminated. In terms 
of the notation used earlier, the first half duration Tl = b.tn. Therefore, 
the instant of the commencement of the eclipse, known as spariakiila, is 
given by 

(27) 

A similar procedure is to be adopted for the determination of mok~akiila 
(te), with the only difference that, instead of subtracting, the half du
ration b.t' from tm, we need to add to it. If b.t~ be the second half 
duration of the eclipse obtained after the i th iteration, then it is given 
by 

b.t' = JS2(tm + b.ti-l) - ß2(tm + b.ti-l) 
t D(tm + b.ti-l) 

As in the case of sparta, here again the process of iteration has to be 
continued till b.t~ converges. That is, 

b.t~ - b.t~_l < f. (28) 

At this stage, the second half duration of the eclipse and the mok~akiila 
are given by 

(29) 

Now, the total duration of the eclipse is t e - tb = Tl + T2 . 
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7 Concluding Remarks 

Many of the algorithms presented in the paper, barring some refine
ments, can be found even in the celebrated text A ryabhatfya , composed 
by Äryabhata as early as 499 AD. The Kerala school of astronomy and 
mathematics which is weH known for its pioneering work in mathemat
ical analysis and many innovations in the Indian astronomical tradition 
has tried to perfect these algorithms, the culmination of which can be 
seen in the works of NllakaJ.ltha SomayajI. Particularly, the exact al
gorithm for the computation of lagna and the formula for the instan
taneous velocity of the planet presented by NllakaJ.ltha , are indicative 
of how in the Indian astronomical tradition there has been a continu
ous endeavour to improvise and achieve better and better accuracy in 
aH computations. As regards the avise~akarma, it will be interesting to 
study the convergence properties of this iterative process as employed 
in different contexts in Indian Astronomy. 
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Abstract 

Contrary to the widespread belief that Indian mathematieians 
did not present any proofs for their results, it is indeed the ease 
that there is a large body of souree-works in the form of eom
mentaries whieh present detailed demonstrations (referred to as 
upapatti-s or yukti-s) for the various results enuneiated in the major 
texts of Indian Mathematics and Astronomy. Amongst the pub
lished works, the earliest exposition of upapatti-s are to be found 
in the eommentaries of Govindasvamin (e.800) and Caturveda 
P~thudakasvamin (e.860). Then we find very detailed exposition 
of upapatti-s in the works of Bhaskaraearya II (e.1150). In the 
medieval period we have the eommentaries of Sankara Variyar 
(e.1535), Gal,lesa Daivajiia (e.1545), K~~l,la Daivajiia (e.1600) and 
the famous Malayalam work Yuktibha~a of Jye~thadeva (e.1530), 
which present detailed upapatti-s. By presenting a few seleeted 
examples of upapatti-s, we shall highlight the logical rigour whieh 
is eharacteristie of all the work in Indian Mathematies. We also 
diseuss how the not ion of upapatti is perhaps best understood in 
the larger epistemologie al perspective provided by Nyayasastra, 
the Indian Sehool of Logie. This eould be of help in explicating 
some of the important differences between the not ion of upapatti 
and the notion of "proof" developed in the Greeo-European tradi
tion of Mathematies. 
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1 Alleged Absence of Proofs in Indian 
Mathematics 

Several books have been written on the history of Indian tradition in 
mathematics. 1 In addition, many books on history of mathematics de
vote a section, sometimes even a chapter, to the discussion of Indian 
mathematics. Many of the results and algorithms discovered by the 
Indian mathematicians have been studied in some detail. But, little 
attention has been paid to the methodology and foundations of Indian 
mathematics. There is hardly any discussion of the processes by which 
Indian mathematicians arrive at and justify their results and procedures. 
And, almost no attention is paid to the philosophical foundations of In
dian mathematics, and the Indian understanding of the nature of math
ematical objects, and validation of mathematical results and procedures. 

Many of the scholarly works on history of mathematics assert that Indian 
Mathematics, whatever its achievements, does not have any sense of 
logical rigour. Indeed, a major historian of mathematics presented the 
following assessment of Indian mathematics over fifty years ago: 

The Hindus apparently were attracted by the arithmetical 
and computational aspects of mathematics rather than by 
the geometrical and rational features of the subject which 
had appealed so strongly to the Hellenistic mind. Their 
name for mathematics, ga1}ita, meaning literally the 'science 
of calculation' weIl characterizes this preference. They de
lighted more in the tricks that could be played with numbers 
than in the thoughts the mind could produce, so that nei
ther Euclidean geometry nor Aristotelian logic made a strong 
impression upon them. The Pythagorean problem of the 
incommensurables, which was of intense interest to Greek 
geometers, was of little import to Hindu mathematicians, 
who treated rational and irrational quantities, curvilinear 

lWe may cite the following standard works: B.B.Datta and A.N.Singh, History 0/ 
Hindu Mathematics, 2 parts, Lahore 1935, 1938, Reprint, Delhi 1962; C.N.Srinivasa 
Iyengar, History 0/ Indian Mathematics, Calcutta 1967; A.K.Bag, Mathematics in 
Ancient and Medieval India, Varanasi 1979; T.A.Saraswati Amma, Geometry in An
cient and Medieval India, Varanasi 1979; G.C.Joseph, The Crest 0/ the Peacock: The 
Non-European Roots 0/ Mathematics, 2nd Ed., Princeton 2000. 
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and rectilinear magnitudes indiscriminately. With respect to 
the development of algebra, this attitude occasioned perhaps 
an incremental advance, since by the Hindus the irrational 
roots of the quadratics were no Ion ger disregarded as they 
had been by the Greeks, and since to the Hindus we owe also 
the immensely convenient concept of the absolute negative. 
These generalizations of the number system and the conse
quent freedom of arithmetic from geometrical representation 
were to be essential in the development of the concepts of 
calculus, but the Hindus could hardly have appreciated the 
theoretical significance of the change ... 

The strong Greek distinction between the discreteness of 
number and the continuity of geometrical magnitude was 
not recognized, for it was superfiuous to men who were not 
bothered by the paradoxes of Zeno or his dialectic. Ques
tions concerning incommensurability, the infinitesimal, infin
ity, the process of exhaustion, and the other inquiries lead
ing toward the conceptions and methods of calculus were 
neglected.2 
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Such views have found their way generally into more popular works 
on history of mathematics. For instance, we may cite the following as 
being typical of the kind of opinions commonly expressed about Indian 
mathematics: 

As our survey indicates, the Hindus were interested in and 
contributed to the arithmetical and computational activities 
of mathematics rather than to the deductive patterns. Their 

2C.B.Boyer, The History 0/ Calculus and its Conceptual development, New York 
1949, p.61-62. As we shall see in the course of this article, Boyer's assessment -
that the Indian mathematicians did not reach anywhere near the development of 
calculus or mathematical analysis, because they lacked the sophisticated methodology 
developed by the Creeks - seems to be thoroughly misconceived. In fact, in marked 
contrast to the development of mathematics in the Creco-European tradition, the 
methodology of Indian mathematical tradition seems to have ensured continued and 
significant progress in all branches of mathematics till barely two hundred year ago; it 
also lead to major discoveries in calculus or mathematical analysis, without in anyway 
abandoning or even diluting its standards of logical rigour, so that these results, and 
the methods by wh ich they were obtained, seem as much valid today as at the time 
of their discovery. 
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name for mathematics was ga7}ita, which means "the seien ce 
of calculation". There is much good procedure and technical 
facility, but no evidence that they considered proof at all. 
They had rules, but apparently no logical scruples. More
over, no general methods or new viewpoints were arrived at 
in any area of mathematics. 

It is fairly certain that the Hindus did not appreciate the 
significance of their own contributions. The few good ideas 
they had, such as separate symbols for the numbers from 1 
to 9, the conversion to base 10, and negative numbers, were 
introduced casually with no realization that they were valu
able innovations. They were not sensitive to mathematical 
values. Along with the ideas they themselves advanced, they 
accepted and incorporated the crudest ideas of the Egyptians 
and Babylonians.3 

The burden of scholarly opinion is such that even eminent mathemati
cians, many of whom have had fairly dose interaction with contempo
rary Indian mathematics, have ended up subscribing to similar views, 
as may be seen from the following remarks of one of the towering figures 
of twentieth century mathematics: 

For the Indians, of course, the effectiveness of the cakraväla 
could be no more than an experimental fact, based on their 
treatment of great many specific cases, some of them of 
considerable complexity and involving (to their delight, no 
doubt) quite large numbers. As we shall see, Fermat was 
the first one to perceive the need for a general proof, and 
Lagrange was the first to publish one. Nevertheless, to have 
developed the cakraväla and to have applied it successfully 
to such difficult numerical cases as N = 61, or N = 67 had 
been no mean achievements.4 

3Morris Kline, Mathematical Thought trom Ancient to Modern Times, Oxford 
1972, p.190. 

4Andre Weil, Number Theory: An Approach through History trom Hammurapi to 
Legendre, Boston 1984, p.24. It is indeed ironical that Prof. Weil has credited Fermat, 
who is notorious for not presenting proofs for most of the claims he made, with the 
realization that mathematical results need to be justified by proofs. While the rest of 
this article is purported to show that the Indian mathematicians presented logically 
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Modern scholarship seems to be unanimous in holding the view that 
Indian mathematics is bereft of any not ion of proof. But even a cur
sory study of the sOlH'Ce-works that are available in print would reveal 
that Indian mathematicians place much emphasis on providing what 
they refer to as upapatti (proof, demonstration) for every one of their 
results and procedures. Some of these upapatti-s were noted in the early 
European studies on Indian mathematics in the first half of the nine
teenth century. For instance, in 1817, H.T. Colebrooke notes the fol
lowing in the preface to his widely circulated translation of portions of 
Briihmasphutasiddhiinta of Brahmagupta and Lfliivatf and Bfjagar;ita of 
Bhäskaräcärya: 

On the subject of demonstrations, it is to be remarked that 
the Hindu mathematicians proved propositions both alge
braically and geometrically: as is particularly noticed by 
Bhäskara hirnself, towards the close of his algebra, where 
he gives both mo des of proof of aremarkable method for the 
solution of indeterminate problems, which involve a factum 
of two unknown quantities.5 

Another notice of the fact that detailed proofs are provided in the Indian 
texts on mathematics is due to C.M.Whish who, in an article published 
in 1835, pointed out that infinite series for 7r and for trigonometrie func
tions were derived in texts of Indian mathematics much before their 
'discovery' in Europe. Whish concluded his paper with a sampIe proof 

rigorous proofs far most of the results and processes that they discovered, it must be 
admitted that the particular example that Prof. Weil is referring to, the effective
ness of the cakravala algorithm (known to the Indian mathematicians at least from 
the time of Jayadeva, prior to the eleventh century) for solving quadratic indetermi
nate equations of the form x 2 - N y2 = 1, does not seem to have been demonstrated 
in the available source-works. In fact, the first proof of this result was given by 
Krishnaswamy Ayyangar barely seventy-five years aga (A.A.Krishnaswamy Ayyan
gar, "New Light on Bhäskara's Cakravala or Cyclic Method of solving Indeterminate 
Equations of the Second Degree in Two Variables', Jour. Ind. Math. Soc. 18, 228-
248, 1929-30). Krishnaswamy Ayyangar also showed that the cakravala algorithm is 
different and more optimal than the Brouncker-Wallis-Euler-Lagrange algorithm for 
solving this so-called "Pell's Equation." 

5H.T. Colebrooke, Algebra with Arithmetic and Mensuration /rom the Sanskrit 0/ 
Brahmagupta and Bhaskara, London 1817, p.xvii. Colebrooke also presents some of 
the upapatti-s given by the commentators GaJ.lesa Daivajfia and Kp,lJ.la Daivajfia, as 
footnotes in his work. 
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from the Malayalam text Yuktibhä$ä of the theorem on the square of 
the hypotenuse of a right angled triangle and also promised that: 

A further account of the Yuktibhä$ä, the demonstrations of 
the rules for the quadrat ure of the circle of infinite series, 
with the series for the sines, eosines, and their demonstra
tions, will be given in a separate paper: I shall therefore 
conclude this, by submitting a simple and curious proof of 
the 47th proposition of Euclid [the so called Pythagoras the
orem], extracted from the Yuktibhä$ä. 6 

It would indeed be interesting to find out how the currently prevalent 
view, that Indian mathematics lacks the not ion of proof, obtained cur
rency in the last 100-150 years. 

2 Upapattirs in Indian Mathematics 

2.1 The tradition of Upapatti-s in Mathematics and 
Astronomy 

A major reason for our lack of comprehension, not merely of the Indian 
notion of proof, but also of the entire methodology of Indian mathemat
ics, is the scant attention paid to the source-works so far. It is said that 
there are over one hundred thousand manuscripts on Jyotil}sästra, which 
includes, apart from works on ga'T}ita (mathematics and mathematical 
astronomy), also those on sarp,hitä (omens) and hora (astrology). 7 Only 
a small fraction of these texts have been published. A well known source 
book, lists ab out 285 published works in mathematics and mathematical 
astronomy. Of these, about 50 are from the period before 12th century 
AD, about 75 from 12th -15th cent uries , and about 165 from 16th _19th 

6C.M. Whish, 'On the Hindu Quadrature of the Circle, and the Infinite Se
ries of the Proportion of the Circumference to the Diameter Exhibited in the Four 
Shastras, the Tantrasangraham, Yucti Bhasa, Carana Paddhati and Sadratnamala', 
Trans.Roy.As.Soc.(G.B.) 3, 509-523, 1835. However, Whish does not seem to have 
published any further paper on this subject. 

7D. Pingree, Jyotil;'sastra: Astral and Mathematical Literature, Wiesbaden 1981, 
p.1l8. 
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centuries.8 

Much of the methodologieal discussion is usua11y contained in the de
tailed commentaries; the original works rarely touch upon such issues. 
Modern scholarship has concentrated on translating and analysing the 
original works alone, without paying much heed to the commentaries. 
Traditiona11y, the commentaries have played at least as great a role in 
the exposition of the subject as the original texts. Great mathemati
cians and astronomers, of the stature of Bhaskaracarya I, Bhaskaracarya 
II, Paramesvara, Nllaka1).tha Somasutvan, Ga1).esa Daivajfia, Mun!svara 
and Kamalakara, who wrote major original treatises of their own, also 
took great pains to write erudite commentaries on their own works and 
on the works of earlier scholars. It is in these commentaries that one 
finds detailed upapatti-s of the results and procedures discussed in the 
original texts, as also a discussion of the various methodologieal and 
philosophieal issues. For instance, at the beginning of his commentary 
Buddhiviläsinf, Ga1).esa Daivajfia states: 

~1#~ftlq~;~:UJ4fq ~~clw1i 
&l1'tö#·ul4~~q;;~;r ~ ~ 
3t~qqRlq;;~SR1lM;gI'(~ " 
q~~ ;g~"lolq;;1 ~ qQ~"J4 11 ... ... ... ..... 

There is no purpose served in providing furt her explanations 
for the already lucid statements of Sr! Bhaskara. The knowl
edgeable mathematicians may therefore note the specialty of 
my inte11ect in the statement of upapatti-s, whieh are after 
a11 the essence of the whole thing.9 

Amongst the published works on Indian mathematies and astronomy, 
the earliest exposition of upapatti-s are to be found in the bhä~ya of 
Govindasvamin (c 800) on Mahäbhäskarfya of Bhaskaracarya I, and 
the Väsanäbhii~ya of Caturveda P~thudakasvamin (c 860) on Brähma-

8K.V. Sarma and B.V. Subbarayappa, Indian Astronomy: A Source Book, Bombay 
1985. 

9BuddhiviläsinfofGaT).esa Daivajiia, V.G. Apte (ed.), Vol I, Pune 1937, p.3. 
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sph-utasiddhiinta of Brahmagupta.10 Then we find very detailed ex
position of upapatti-s in the works of Bhaskaracarya 11 (c.1150): his 
Vivara'!La on Si?yadMvrddhidatantra of Lalla and Viisaniibhii?ya on his 
own Siddhiintasiroma'!Li.ll Apart from these, Bhaskaracarya provides an 
idea of what is an upapatti in his Brjaviisanii on his own Bfjaga'!Lita in 
two places. In the chapter on madhyamiihara'!La (quadratie equations) 
he poses the following problem: 

Find the hypotenuse of a plane figure, in which the side 
and upright are equal to fifteen and twenty. And show the 
upapatti (demonstration) of the standard procedure of com
putation.12 

Bhaskaracarya provides two upapatti-s for the solution of this problem, 
the so-called Pythagoras theorem; and we shall consider them later. 
Again, towards the end of the Bfjaga'!Lita in the chapter on bhiivita 
(equations involving products), while considering integral solutions of 
equations of the form ax + by = cxy, Bhaskaracarya explains the nature 
of 'apapatti with the help of an example: 

The upapatti (demonstration) follows. It is twofold in eaeh 
ease: One geometrie and the other algebraie. The geometrie 
demonstration is here presented ... The algebraie demonstra
tion is next set forth ... This proeedure [of demonstration] 
has been earlier presented in a eoncise instruetional form 
[saT(l,k?iptapiitha] by ancient teachers. The algebraie demon
strations are for those who do not eomprehend the geomet
rie one. Mathematicians have said that algebra is eompu
tation joined with demonstration; otherwise there would be 
no differenee between arithmetie and algebra. Therefore this 
demonstration of bhiivita has been shown in two ways.13 

lOThe Äryabhatfya-bha!;!ya of Bhäskara I (c.629) does occasionally indicate the 
derivation of some of the mathematical procedures, though his commentary does 
not purport to present upapatti-s for the mIes and procedures given in Äryabhatfya. 

llThis latter commentary of Bhäskara 11 is a classic source of upapatti-s and needs 
to be studied in depth. 

12 Bfjagar;tita of Bhäskaräcärya, Muralidhara Jha (ed.), Varanasi 1927, p.69. 
13 Bfjagar;tita, cited above, p.125-127. 
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Clearly the tradition of exposition of upapatti-s is much older and 
Bhäskaracarya, and the later mathematicians and astronomers are 
merely following the traditional practice of providing detailed upapatti-s 
in their commentaries to earlier, or their own, works. 14 

In Appendix A we give a list of important commentaries, available in 
print, which present detailed upapatti-s. It is unfortunate that none of 
the published source-works that we have mentioned above has so far 
been translated into any of the Indian languages, or into English; nor 
have they been studied in depth with a view to analyze the nature of 
mathematical arguments employed in the upapatti-s or to comprehend 
the methodological and philosophical foundations of Indian mathematics 
and astronomy.15 

141gnoring all these classieal works on upapattirs, one scholar has recently claimed 
that the tradition of upapatti in India "dates from the 16th and 17th centuries" 
(J.Bronkhorst, 'Pä'f}ini and Euclid', Jour. Ind. Phi!. 29,43-80, 2001). 

15We may, however, mention the following works of C.T.Rajagopal and his eol
laborators whieh diseuss some of the upapatti-s presented in the Malayalam work 
Yuktibhä~ä of Jye~thadeva (e.1530) for various results in geometry, trigonometry and 
those eoneerning infinite series for 'Ir and the trigonometrie funetions: K. Mukunda 
Marar, 'Proof of Gregory's Series', Teaeher's Magazine 15, 28-34, 1940; K. Mukunda 
Marar and C.T.Rajagopal, 'On the Hindu Quadrature of the Circle', J.B.B.R.A.S. 
20, 65-82, 1944; K. Mukunda Marar and C.T.Rajagopal, 'Gregory's Series in the 
Mathematieal Literature of Kerala', Math Student 13, 92-98, 1945; A. Venkatara
man, 'Some Interesting Proofs from Yuktibhä~ä " Math Student 16, 1-7, 1948; 
C.T.Rajagopal 'A Neglected Chapter of Hindu Mathematies', Ser. Math. 15, 201-
209, 1949; C.T.Rajgopal and A. Venkataraman, 'The Sine and Cosine Power Series 
in Hindu Mathematies', J.R.A.S.B. 15, 1-13, 1949; C.T. Rajagopal and T.V.V.Aiyar, 
'On the Hindu Proof of Gregory's Series', Ser. Math. 11,65-74,1951; C.T.Rajagopal 
and T.V.V.Aiyar, 'A Hindu Approximation to Pi', Ser.Math. 18, 25-30, 1952. 
C.T.Rajagopal and M.S.Rangaehari, 'On an Untapped Souree of Medieval Keralese 
Mathematies', Arch. for Hist. of Ex. Sc. 18, 89-101, 1978; C.T.Rajagopal and 
M.S.Rangaehari, 'On Medieval Kerala Mathematies', Areh. for Hist. of Ex. Sc. 
35(2), 91-99, 1986. 

Following the work of Rajagopal and his eollaborators, there are some reeent studies 
whieh diseuss some of the proofs in Yuktibhä~ä. We may here eite the following: 
T.Hayashi, T.Kusuba and M.Yano, 'The Correetion of the Mädhava Series for the 
Cireumferenee of a Circle', Cent auras , 33, 149-174, 1990; Ranjan Roy, 'The Diseovery 
of the Series formula for 'Ir by Leibniz, Gregory and NlIakaI,ltha', Math. Mag. 63, 
291-306, 1990; V.J.Katz, 'Ideas of Calculus in Islam and India', Math. Mag. 68, 
163-174, 1995; C.K.Raju, 'Computers, Mathematies Edueation, and the Alternative 
Epistemology of the Calculus in the Yuktibhä~ä ',Phi!. East and West 51, 325-
362, 2001; D.F.Almeida, J.K.John and A.Zadorozhnyy, 'Keralese Mathematies: Its 
Possible Transmission to Europe and the Consequential Edueational Implieations', 
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In this article, we shall present some examples of the kinds of upapatti
s provided in Indian mathematics, from the commentaries of GaI).esa 
Daivajiia (c.1545) and Kp?I).a Daivajiia (c.1600) on the texts Lzlavatz 
and BZjaga'T}ita respectively, of Bhaskaracarya 11 (c.1150), and from the 
celebrated Malayalam work Yuktibha~a of Jye~thadeva (c.1530). We 
shall also discuss how the not ion of upapatti is perhaps best understood 
in the larger epistemological perspective provided by Nyaya-sastm the 
Indian School of Logic. This enables us to explicate some of the impor
tant differences between the not ion of upapatti and the not ion of "proof" 
developed in the Greco-European tradition of Mathematics. 

2.2 Mathematical results should be supported by 
Upapatti-s 

Before discussing some of the upapatti-s presented in Indian mathemat
ical tradition, it is perhaps necessary to put to rest the widely prevalent 
myth that the Indian mathematicians did not pay any attention to, and 
perhaps did not even recognize the need for justifying the mathemat
ical results and procedures that they employed. The large corpus of 
upapatti-s, even amongst the small sampie of source-works published so 
far, should convince anyone that there is no substance to this myth. 
Still, we may cite the following passage from K:r~I).a Daivajiia's commen
tary BZjapallava on Bzjaga'T}ita of Bhaskaracarya, which clearly brings 
out the basic understanding of Indian mathematical tradition that cit
ing any number of instances (even an infinite number of them) where a 
particular result seems to hold, does not amount to establishing that as 
a valid result in mathematics; only when the result is supported by a 
upapatti or a demonstration, can the result be accepted as valid: 

How can we state without proof (upapatti) that twice the 
product of two quantities when added or subtracted from 

J. Nat. Geo. 20, 77-104, 2001; D.Bressoud, 'Was Calculus Invented in India?', 
College Math. J. 33, 2-13, 2002; J.K.John, 'Derivation of the SaTfl,skäras applied 
to the Mädhava Series in Yuktibhä§ä " in M.S.Sriram, K.Ramasubramanian and 
M.D.Srinivas (eds.), 500 Years of Tantrasangraha : ALandmark in the History of 
Astronomy, Shimla 2002, p 169-182. An outline of the proofs given in Yuktibhä§ä can 
also be found in T.A. Saraswati Amma, 1979, cited earlier, and in S.Parameswaran, 
The Golden Age of Indian Mathematics, Kochi 1998. 
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the suru of their squares is equal to the square of the surn 
or difference of those quantities? That it is seen to be so 
in a few instances is indeed of no consequence. Otherwise, 
even the statement that four tirnes the product of two quan
tities is equal to the square of their surn, would have to be 
accepted as valid. For, that is also seen to be true in sorne 
cases. For instance, take the nurnbers 2, 2. Their product 
is 4, four tirnes which will be 16, which is also the square 
of their surn 4. Or take the nurnbers 3, 3. Four tirnes their 
product is 36, which is also the square of their surn 6. Or 
take the nurnbers 4,4. Their product is 16, which when rnul
tiplied by four gives 64, which is also the square of their surn 
8. Hence, the fact that a result is seen to be true in sorne 
cases is of no consequence, as it is possible that one would 
corne across contrary instances (vyabhicam) also. Hence it 
is necessary that one would have to provide a proof (yukti) 
for the rule that twice the product of two quantities when 
added or subtracted frorn the surn of their squares results in 
the square of the surn or difference of those quantities. We 
shall provide the proof (upapatti) in the end of the section 
on ekava'T"1Ja-madhyamaham'T}a.16 
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2.3 Square of the hypotenuse of a right-angled triangle: 
the so-called Pythagoras Theorem 

GaI).esa provides two upapatti-s for the rule concerning the square of the 
hypotenuse (ka'T"1Ja) of a right-angled triangleY These upapatti-s are 
the same as the ones outlined by Bhaskaracarya II in his Bijavasana on 
his own Bfjaga'T}ita, that we referred to earlier. The first involves the 
avyakta rnethod and proceeds as follows: 

16 Bfjapallava of Kp2Ifa Daivajiia, T.V. Radhakrishna Sastri (ed.), Tanjore, 1958, 
p.54. 

17 Buddhiviläsinf, cited earlier, p.128-129. 
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ya 

(;a) + (t~) 
25 

= 5 
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Take the hypotenuse (ka'r'f'}a) as the 
base and assurne it to be yä. Let 
the bhujä and koti (the two sides) 
be 3 and 4 respectively. Take 
the hypotenuse as the base and 
draw the perpendicular to the hy
potenuse from the opposite vertex 
as in the figure. [This divides the 
triangle into two triangles, which 
are similar to the original] Now by 
the rule of proportion ( anupäta) , 
if yä is the hypotenuse the bhujä is 
3, then when this bhujä 3 is the hy
potenuse, the bhujä, which is now 
the äbädhä (segment of the base) 
on the side of the original bhujä will 
be (;a). 

Again if yä is the hypotenuse, the 
koti is 4, then when this koti 4 is 
the hypotenuse, the koti, which is 
now the segment of base on the side 
of the. (original) koti will be (t~). 
Adding the two segments (äbädhä
s) of yä the hypotenuse and equat
ing the sum to (the hypotenuse) 
yä, cross-multiplying and taking 
the square-roots, we get yä = 5, 
the square root of the sum of the 
squares of bhujä and koti . 

The other upapatti of GaI).esa is k~etragata or geometrieal, and proceeds 
as follows: 18 

18This method seems to be known to Bhäskaräcärya I (c.629 AD) who gives a 
very similar diagram in his Äryabhatfyabhä~ya, K.S. Shukla (ed.), Delhi 1976, p.48. 
The Chinese mathematician Liu Hui (c 3rd century AD) seems to have proposed 
similar geometrical proofs of this so-called Pythagoras Theorem. See for instance, 
D.B.Wagner, 'A Proof of the Pythagorean Theorem by Liu Hui', Hist. Math.12, 
71-3, 1985. 
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(a - b)2 + 4aab) 
a2 + b2 
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Take four triangles identical to 
the given and taking the four hy
potenuses to be the four sides, 
form the square as shown. Now, 
the interior square has for its side 
the difference of bhuja and koti 

The area of each triangle is 
half the product of bhuja and koti 
and four times this added to the 
area of the interior square is the 
area of the total figure. This is 
twice the product of bhuja and 
koti added to the square of their 
difference. This, by the earlier 
cited rule, is nothing but the sum 
of the squares of bhuja and koti 
. The square root of that is the 
side of the (big) square, which is 
nothing but the hypotenuse. 

2.4 The rule of signs in Algebra 

One of the important aspects of Indian mathematics is that in many 
upapatti-s the nature of the underlying mathematical objects plays an 
important role. We can for instance, refer to the upapatti given by K:ri?l).a 
Daivajiia for the well-known rule of signs in Algebra. While providing an 
upapatti for the rule, "the number to be subtracted if positive (dhana) is 
made negative (!"'I)a) and if negative is made positive", K:ri?l).a Daivajiia 
states: 

Negativity (r'f}atva) here is of three types - spatial, tempo
ral and that pertaining to objects. In each case, it [neg
ativity] is indeed the vaiparftya or the oppositeness ... For 
instance, the other direction in a line is called the oppo
site direction (viparfta dik); just as west is the opposite of 
east ... Further , between two stations if one way of traversing 
is considered positive then the other is negative. In the same 
way, past and future time intervals will be mutually negative 
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of each other ... Similarly, when one possesses said objects 
they would be called his dhana (wealth). The opposite would 
be the case when another owns the same objects ... Amongst 
these [different conceptions], we proceed to state the upa
patti of the above rule, assuming positivity (dhanatva) for 
locations in the eastern direction and negativity C!7}-atva) for 
locations in the west, as follows ... 19 

K:r~J:.la Daivajiia goes on to explain how the distance between a pair of 
stations can be computed knowing that between each of these stations 
and some other station on the same line. Using this he demonstrates 
the above rule that "the number to be subtracted if positive is made 
negative ... " 

2.5 The Kuttaka process for the solution of linear 
indeterminate equations 

To understand the nature of upapatti in Indian mathematics one will 
have to analyse some of the lengthy demonstrations which are presented 
for the more complicated results and procedures. One will also have to 
analyse the sequence in which the results and the demonstrations are 
arranged to understand the method of exposition and logical sequence 
of arguments. For instance, we may refer to the demonstration given by 
K:r~J:.la Daivajiia20 of the well-known kuttaka procedure, which has been 
employed by Indian mathematicians at least since the time of Äryabhata 
(c 499 AD), for solving first order indeterminate equations of the form 

(ax + c) 
b = y, 

where a, b, c are given integers and x, y are to be solved for in integers. 
Since this upapatti is rather lengthy, we merely recount the essential 
steps here.21 

19 B'ijapallava, cited above, p.13. 
20 B'ijapallava, cited above, p.85-99. 
21 A translation of the upapatti may be found in M.D.Srinivas, 'Methodology of 

Indian Mathematics and its Contemporary Relevance', PPST Bulletin, 12, 1-35, 
1987. 
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Knn.la Daivajiia first shows that the solutions for x, y do not vary if we 
factor all the three numbers a, b, c by the same common factor. He then 
shows that if a and b have a common factor, then the above equation 
will not have a solution unless c is also divisible by the same common 
factor. Then follows the upapatti of the process of finding the greatest 
common factor of a and b by mutual division, the so-called Euclidean al
gorithm. He then provides an upapatti far the kuttaka method of finding 
the solution which involves carrying out a sequence of transformations 
on the vallf (line or column) of quotients obtained in the above mutual 
division. This is based on a detailed analysis of the various operations 
in reverse (vyasta-vidhi). The last two elements of the vallf, at each 
stage, are shown to be the solutions of the kuttaka problem involving 
the successive pair of remainders (taken in reverse order from the end) 
whieh arise in the mutual division of a and b. Finally, it is shown how 
the procedure differs depending upon whether there are odd or even 
number of coefficients generated in the above mutual division. 

2.6 NIIaka1}tha's proof for the sum of an infinite 
geometrie series 

In his Äryabhatfyabhii~ya while deriving an interesting approximation 
for the are of circle in terms of the jyii (Rsine) and the sam (Rversine), 
the celebrated Kerala astronomer Nllakal).tha Somasutvan presents a de
tailed demonstration of how to sum an infinite geometrie series. Though 
it is quite elementary compared to the various other infinite series ex
pansions derived in the works of the Kerala School, we shall present 
an outline of Nllakal).tha's argument as it clearly shows how the no
tion of limit was weIl understood in the Indian mathematical tradition. 
Nllakal).tha first states the general result22 

a [ G) + G)' + G)' +] a 

r-l 

where the left hand side is an infinite geometrie series with the succes
sive terms being obtained by dividing by a cheda (common divisor), r, 
assumed to be greater than 1. Nllaka1).tha not es that this result is best 

22 Äryabhatfyabhä$ya of Nllakal,ltha, Gary,itapada, K.Sambasiva Sastri (ed.), Trivan
drum 1931, p.142-143. 
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demonstrated by considering a particular case, say r = 4. Thus, what 
is to be demonstrated is that 

(l) + (l) 2 + (l) 3 + ... = ~ . 
Nllakal.ltha first obtains the sequence of results 

1 

3 
1 

(4.3) 
1 

(4.4.3) 

1 1 
4 + (4.3) , 

1 1 -- + ...,-----,-
(4.4) (4.4.3) 

1 1 ...,-----,- + -:-------:-
(4.4.4) (4.4.4.3) 

and so on, from which he derives the general result 

1 

3 

Nllakal.ltha then goes on to present the following crucial argument to 
derive the sum of the infinite geometrie series: As we sum more terms, 
the difference between i and sum of powers of ~ (as given by the right 
hand side of the above equation) , becomes extremely small, but never 
zero. Only when we take all the terms of the infinite series together do 
we obtain the equality 

1 (1)2 (1)n 1 4+ 4 + ... + 4 +···=3· 

2.7 Yuktibhii$ii proofs of infinite series for 7r and the 
trigonometrie functions 

One of the most celebrated works in Indian mathematies and astron
omy, which is especially devoted to the exposition of yukti or proofs, is 
the Malayalam work Yuktibhä$ä (c.1530) of Jye~thadeva.23 Jye~thadeva 

23 Yuktibha$ii of Jyei?thadeva, K. Chandrasekharan (ed.), Madras 1953. 
Ga'[!itiidhyiiya alone was edited along with notes in Malayalam by Ramavarma 
Thampuran and A.R.Akhileswara Aiyer, Trichur 1948. The entire work has been 
edited, along with an ancient Sanskrit version, Ga'[!itayuktibhii$ii and English transla
tion, by K.V.Sarma, with explanatory mathematical notes by K.Ramasubramanian, 
M.D.Srinivas ahd M.S.Sriram (in press) . 
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states that his work closely follows the renowned astronomical work 
Tantrasarigraha (c.1500) of Nilakal).tha Somasutvan and is intended to 
give a detailed exposition of all the mathematics required thereof. The 
first half of Yuktibhä$ä deals with various mathematical topics in seven 
chapters and the second half deals with all aspects of mathematical as
tronomy in eight chapters. The mathematical part includes a detailed 
exposition of proofs for the infinite series and fast converging approx
imations for 7r and the trigonometric functions, which were discovered 
by Mädhava (c.1375). We present an outline of some of these proofs in 
Appendix B. 

3 Upapatti and "Proof' 

3.1 Mathematics as a search für infallible eternal truths 

The notion of upapatti is significantly different from the not ion of 'proof' 
as understood in the Greek as weIl as the modern Western tradition 
of mathematics. The ideal of mathematics in the Greek and modern 
Western traditions is that of a formal axiomatic deductive system; it 
is believed that mathematics is and ought to be presented as a set of 
formal derivations from formally stated axioms. This ideal of mathe
matics is intimately linked with another philosophical presupposition -
that mathematics constitutes a body of infallible eternal truths. Per
haps it is only the ideal of a formal axiomatic deductive system that 
could presumably measure up to this other ideal of mathematics being 
a body of infallible eternal truths. It is this quest for securing certainty 
of mathematical knowledge, which has motivated most of the founda
tional and philosophical investigations into mathematics and shaped the 
course of mathematics in the Western tradition, from the Greeks to the 
contemporary times. 

The Greek view of mathematical objects and the nature of mathematical 
knowledge is clearly set forth in the following statement of Proclus (c. 
5th century AD) in his famous commentary on the Elements of Euclid: 

Mathematical being necessarily belongs neither among the 
first nor among the last and least simple kinds of being, but 
occupies the middle ground between the partless realities -
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simple, incomposite and in divisible - and divisible things 
characterized by every variety of composition and differenti
ation. The unchangeable, stable and incontrovertible char
acter of the propositions ab out it shows that it is superior 
to the kind of things that move about in matter ... 

It is for this reason, I think, that Plato assigned different 
types of knowing to the highest, the intermediate, and the 
lowest grades of reality. To indivisible realities he assigned 
intellect, which discerns what is intelligible with simplicity 
and immediacy, and by its freedom from matter, its purity, 
and its uniform mode of coming in contact with being is su
perior to all other forms of knowledge. To divisible things 
in the lowest level of nature, that is, to all objects of sense 
perception, he assigned opinion, which lays hold of truth ob
scurely, whereas to intermediates, such as the forms studied 
by mathematics, which fall short of indivisible but are supe
rior to divisible nature, he assigned understanding .... 

Hence Socrates describes the knowledge of understandables 
as being more ob sc ure than the highest science but clearer 
than the judgements of opinion. For, the mathematical sci
ences are more explicative and discursive than intellectual 
insight but are superior to opinion in the stability and ir
refutability of their ideas. And their proceeding from hy
pothesis makes them inferior to highest knowledge, while 
their occupation with immaterial objects makes their knowl
edge more perfect than sense perception. 24 

While the above statement of Proclus is from the Platonist school, the 
Aristotelean tradition also held more or less similar views on the nature 
of mathematical knowledge, as may be seen from the following extract 
from the canonical text on Mathematical Astronomy, the Almagest of 
Claudius Ptolemy (c.2nd century AD): 

For Aristotle divides theoretical philosophy too,very fittingly, 
into three primary categories, physics, mathematics and the
ology. For everything that exists is composed of matter, form 

24proclus: A Commentary on the First Book 0/ Euclid.'s Elements, Tr.G.R.Morrow, 
Princeton, 1970, p.3,1O. 
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and motion; none of these [three] can be observed in Hs sub
stratum by itself, without the others: they can only be imag
ined. Now the first cause of the first motion of the universe, 
if one considers it simply, can be thought of as invisible and 
motionless deity; the division [of theoretical philosophy] con
cerned with investigating this [can be called] 'theology', since 
this kind of activity, somewhere up in the highest reaches of 
the universe, can only be imagined, and is completely sep
arated from perceptible reality. The division [of theoretical 
philosophy] which investigates material and ever-moving na
ture, and which concerns itself with 'white', 'hot', 'sweet ' , 
'soft' and suchlike qualities one may call 'physics'; such an 
order of being is situated (for the most part) amongst cor
ruptible bodies and below the lunar sphere. That division [of 
theoretical philosophy] which determines the nature involved 
in forms and motion from place to place, and which serves 
to investigate shape, number, size and place, time and such
like, one may define as 'mathematics'. Its subject-matter 
falls as it were in the middle between the other two, since, 
firstly, it can be conceived of both with and without the aid 
of the senses, and, secondly, it is an attribute of all existing 
things without exception, both mortal and immortal: for 
those things which are perpetually changing in their insep
arable form, it changes with them, while for eternal things 
which have an aethereal nature, it keeps their unchanging 
form unchanged. 

From all this we concluded: that the first two divisions of the
oretical philosophy should rather be called guesswork than 
knowledge, theology because of its completely invisible and 
ungraspable nature, physics because of the unstable and un
clear nature of matter; hence there is no hope that philoso
phers will ever be agreed about them; and that only math
ematics can provide sure and unshakeable knowledge to its 
devotees, provided one approaches it rigorously. For its kind 
of proof proceeds by indisputable methods, namely arith
metic and geometry. Hence we are drawn to the investigation 
of that part of theoretical philosophy, as far as we were able 
to the whole of it, but especially to the theory concerning 

227 
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the divine and heavenly things. For that alone is devoted to 
the investigation of the eternally unehanging. For that rea
son it too ean be eternal and unehanging (which is a proper 
attribute of knowledge) in its own domain, which is neither 
unclear nor disorderly.25 

The view, that it is mathematies whieh ean provide "sure and unshake
able knowledge to its devotees" has persisted in the Greeo-European 
tradition down to the modern times. For instanee, we may eite the 
popular mathematician philosopher of our times, Bertrand Russel, who 
declares, "I wanted eertainty in the kind of way in whieh people want 
religious faith. I thought that eertainty is more likely to be found in 
mathematies than elsewhere". In a similar vein, David Hilbert, one of 
the foremost mathematicians of our times declared, "The goal of my 
theory is to establish onee and for all the eertitude of mathematical 
methods" . 26 

3.2 The raison d'etre of Upapatti 

Indian epistemologieal position on the nature and validation of mathe
matieal knowledge is very different from that in the Western tradition. 
This is brought out for instanee by the Indian understanding of what 
indeed is the purpose or raison d'etre of an upapatti. In the beginning 
of the goliidhyiiya of Siddhiintasiromary,i, Bhaskaraearya says: 

Without the knowledge of upapatti-s, by merely mastering 
the gary,ita (ealculational proeedures) deseribed here, from 

25 The Almagest of Ptolemy, Translated by G.J.Toomer, London 1984, p.36-7. 
26Both quotations cited in Ruben Hersh, 'Some Proposals for Reviving the Philos

ophy of Mathematics', Adv. Math. 31,31-50, 1979. 
27 Siddhäntasiroma7,!i of Bhäskaräcärya with Väsanäbhä§ya and Väsanävärttika of 

Nrsirpha Daivajiia, Muralidhara Chaturveda (ed.), Varanasi 1981, p.326. 
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the madhyamiidhikara (the first chapter of Siddhiintasiro
ma'f}i) onwards, of the (motion of the) heavenly bodies, a 
mathematician will not have any value in the scholarly as
semblies; without the upapatti-s he himself will not be free 
of doubt (nittsarp,saya). Since upapatti is clearly perceivable 
in the (armillary) sphere like a berry in the hand, I there
fore begin the goliidhyiiya (section on spherics) to explain the 
upapatti-s. 

229 

As the commentator Nrsirpha Daivajiia explains, 'the phala (object) of 
upapatti is pii'f}~itya (scholarship ) and also removal of doubts (for oneself) 
which would enable one to reject wrong interpretations made by others 
due to bhriinti (confusion) or otherwise.'28 

The same view is reiterated by GaI).esa Daivajiia in his preface to Bud
dhiviliisinf. 

Whatever is stated in the vyakta or avyakta branches of 
mathematics, without upapatti, will not be rendered nirbhra
nta (free from confusion); will not have any value in an as
sembly of mathematicians. The upapatti is directly perceiv
able like a mirror in hand. It is therefore, as also for the 
elevation of the intellect (buddhi-vrddhi) , that I proceed to 
enunciate upapatti-s in entirety. 

Thus as per the Indian mathematical tradition, the purpose of upapatti 
is mainly (i) To remove doubts and confusion regarding the validity 
and interpretation of mathematical results and procedures; and, (ii) To 
obtain assent in the community of mathematicians. 

Further , in the Indian tradition, mathematical knowledge is not taken 
to be different in any 'fundamental sense' from that in natural sci-

28 Siddhantasiromar;,i , cited above, p.326. 
29 Buddhiviliisinf, cited above, p.3. 
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ences. The valid means for acquiring knowledge in mathematies are 
the same as in other sciences: Pratyak~a (perception), Anumäna (infer
ence) , Sabda or A.gama (authentie tradition). In his Väsanäbhä~ya on 
Siddhäntasiroma'T}i Bhaskaracarya refers to the sources of valid knowl
edge (pramä'T}a) in mathematical astronomy, and declares that 

For all that is discussed in Mathematical Astronomy, only an 
authentie tradition or established text whieh is supported by 
upapatti will be a pramä'T}a. 

Upapatti here includes observation. Bhaskaracarya, for instance, says 
that the upapatti for the mean periods of planets involves observations 
over very long periods. 

3.3 The limitations of Tarka or proof by contradiction 

An important feature that distinguishes the upapattirs of Indian math
ematicians is that they do not generally employ the method of proof 
by contradiction or reductio ad absurdum. Sometimes arguments, which 
are somewhat similar to the proof by contradietion, are employed to 
show the non-existence of an entity, as may be seen from the following 
upapatti given by Knn;ta Daivajiia to show that "a negative number has 
no square root": 

The square-root can be obtained only for a square. A neg
ative number is not a square. Hence how can we consider 
its square-root? It might however be argued: 'Why will a 
negative number not be a square? Surely it is not a royal 
fiat' ... Agreed. Let it be stated by you who claim that a 
negative number is a square as to whose square it is: Surely 
not of a positive number, for the square of a positive miinber 
is always positive by the rule ... Not also of a negative num
ber. Because then also the square will be positive by the 
rule ... This being the case, we do not see any such number 
whose square becomes negative ... 31 

30 Siddhantasiromar,ti, cited above, p.30. 
31 Bfjapallava, cited earlier, p.19. 
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Such arguments, known as tarka in Indian logic, are employed only 
to prove the non-existence of certain entities, but not for proving the 
existence of an entity, which existence is not demonstrable (at least in 
principle) by other direct means of verification. 

In rejecting the method of indirect proof as a valid means for estab
lishing existence of an entity which existence cannot even in principle 
be established through any direct means of proof, the Indian mathe
maticians may be seen as adopting what is nowadays referred to as the 
'constructivist' approach to the issue of mathematical existence. But the 
Indian philosophers, logicians, etc., do much more than merely disallow 
certain existence proofs. The general Indian philosophical position is 
one of eliminating from logical discourse all reference to such aprasiddha 
entities, whose existence is not even in principle accessible to all means 
of verification.32 This appears to be also the position adopted by the 
Indian mathematicians. It is far this reason that many an "existence 
theorem" (where all that is proved is that the non-existence of a hypo
thetical entity is incompatible with the accepted set of postulates) of 
Greek or modern Western mathematics would not be considered signif
icant ar even meaningful by Indian mathematicians. 

3.4 Upapatti and "Proof" 

We now summarize our discussion on the classical Indian understanding 
of the nature and validation of mathematical knowledge: 

1. The Indian mathematicians are clear that results in mathematics, 
even those enunciated in authoritative texts, cannot be accepted 
as valid unless they are supported by yukti or upapatti . It is not 
enough that one has merely observed the validity of a result in a 
large number of instances. 

2. Several commentaries written on major texts of Indian mathemat
ics and astronomy present upapatti-s far the results and procedures 
enunciated in the text. 

32For the approach adopted by Indian philosophers to tarka or the method of 
indirect proof see for instance, M.D.Srinivas, "The Indian Approach to Formal Logic 
and the Methodology of Theory Construction: A Preliminary View", PPST Bulletin 
9, 32-59, 1986. 
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3. The upapatti-s are presented in a sequence proceeding systemat
ically from known or established results to finally arrive at the 
result to be established. 

4. In the Indian mathematical tradition the upapatti-s mainly serve 
to remove doubts and obtain consent for the result among the 
community of mathematicians. 

5. The upapatti-s may involve observation or experimentation. They 
also depend on the prevailing understanding of the nature of the 
mathematical objects involved. 

6. The method of tarka or "proof by contradiction" is used occa
sionally. But there are no upapatti-s which purport to establish 
existence of any mathematical object merely on the basis of tarka 
alone. 

7. The Indian mathematical tradition did not subscribe to the ideal 
that upapatti-s should seek to provide irrefutable demonstrations 
establishing the absolute truth of mathematical results. There 
was apparently no attempt to present the upapatti-s as apart of 
a deductive axiomatic system. While Indian mathematics made 
great strides in the invention and manipulation of symbols in rep
resenting mathematical results and in facilitating mathematical 
processes, there was no attempt at formalization of mathematics. 

The classical Indian understanding of the nature and validation of math
ematical knowledge seems to be rooted in the larger epistemological 
perspective developed by the Nyiiya school of Indian logic. Some of the 
distinguishing features of Nyiiya logic, which are particularly relevant in 
this context, are: That it is a logic of cognitions (jiiiina) and not "propo
sitions" , that it has no concept of pure "formal validity" as distinguished 
from "material truth", that it does not distinguish necessary and con
tingent truth or analytical and synthetic truth, that it does not admit, 
in logical discourse, premises which are known to be false or terms that 
are non-instantiated, that it does not accord tarka or "proof by contra
diction" a status of independent pmmiir:ta or means of knowledge, and 
so on.33 

33For a discussion of some of these features, see J.N.Mohanty: Reason and Tradition 
in Indian Thought, Oxford, 1992. 
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The close relation between the methodology of Indian mathematics and 
Nyäya epistemology, has been commented upon by a leading scholar of 
navya-nyäya: 

The western concept of proof owes its origin to Plato's dis
tinction between knowledge and opinion or between reason 
and sense. According to Plato, reason not merely knows ob
jects having ontological reality, but also yields a knowledge 
which is logically superior to opinion to which the senses 
can aspire. On this distinction is based the distinction be
tween contingent and necessary truths, between material 
truth and formal truth, between rational knowledge which 
can be proved and empirical knowledge which can only be 
verified ... 

As a matter of fact, the very concept of reason is unknown 
in Indian philosophy. In the systems which accept inference 
as a source of true knowledge, the difference between percep
tion and inference is not explained by referring the two to 
two different faculties of the subject, sense and reason, but 
by showing that inferential knowledge is caused in a special 
way by another type of knowledge (vyäpti-jiiäna [knowledge 
of invariable concomitanceJ), whereas perception is not so 
caused ... 

In Indian mathematics we never find a list of self-evident 
propositions which are regarded as the basic premises from 
which other truths of mathematics follow ... 

Euclid was guided in his axiomatization of geometry by the 
Aristotelean concept of science as a systematic study with a 
few axioms which are self-evident truths. The very concept 
of a system thus involves a distinction between truths which 
need not be proved (either because they are self-evident as 
Aristotle thought, or because they have been just chosen as 
the primitive propositions of a system as the modern logi
cians think) and truths which require proof. But this is not 
enough. What is important is to suppose that the number 
of self-evident truths or primitive propositions is very small 
and can be exhaustively enumerated. 
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Now there is no Indian philosophy which holds that some 
truths do not require any proof while others do. The sys
tems which accept svatalfprämii:ry,yaväda hold that all (true) 
knowledge is self-evidently true, and those which accept para
talfprämäry,yaväda hold that all (true) knowledge requires 
proof; there is no system which holds that some truths re
quire proof while others do not ... 34 

3.5 Towards a new epistemology for Mathematics 

Mathematics today, rooted as it is in the modern Western tradition, 
suffers from serious limitations. Firstly, there is the problem of 'foun
dations' posed by the ideal view of mathematical knowledge as a set 
of infallible eternal truths. The efforts of mathematicians and philoso
phers of the West to sec ure for mathematics the status of indubitable 
knowledge has not succeeded; and there is a growing feeling that this 
goal may turn out to be amirage. 

After surveying the changing status of mathematical truth from the 
Platonic position of "truth in itself", through the early twentieth cen
tury position that "mathematical truth resides ... uniquely in the logi
cal deductions starting from premises arbitrarily set by axioms", to the 
twentieth century developments which quest ion the infallibility of these 
logical deductions themselves, Bourbaki are forced to conclude that: 

To sum up, we believe that mathematics is destined to sur
vive, and that the essential parts of this majestic edifice will 
never collapse as a result of the sudden appearance of a con
tradiction; but we cannot pretend that this opinion rests on 
anything more than experience. Some will say that this is 
small comfort; but already for two thousand five hundred 
years mathematicians have been correcting their errors to 
the consequent enrichment and not impoverishment of this 
science; and this gives them the right to face the future with 
serenity.35 

34Sibajiban Bhattacharya, 'The Concept of Proof in Indian Mathematics and 
Logic' , in Doubt, Belief and Knowledge, Delhi, 1987, p.193, 196. 

35N.Bourbaki, Elements of Mathematics: Theory of Sets, Springer 1968, p.13; see 
also N.Bourbaki, Elements of History of Mathematics, Springer 1994, p.1-45. 
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Apart from the problems inherent in the goals set for mathematics, 
there are also other serious inadequacies in the Western epistemology 
and philosophy of mathematics. The ideal view of mathematics as a 
formal deductive system gives rise to serious distortions. Some scholars 
have argued that this view of mathematics has rendered philosophy of 
mathematics barren and incapable of providing any understanding of 
the actual history of mathematics, the logic of mathematical discovery 
and, in fact, the whole of creative mathematical aetivity.36 

There is also the inevitable chasm between the ideal notion of infalli
ble mathematical proof and the actual proofs that one encounters in 
standard mathematical praetice, as portrayed in arecent book: 

On the one side, we have real mathematics, with proofs, 
which are established by the 'consensus of the qualified'. A 
real proof is not checkable by a machine, or even by any 
mathematician not privy to the gestalt, the mode of thought 
of the particular field of mathematics in which the proof is 
located. Even to the 'qualified reader' there are normally 
differences of opinion as to whether areal proof (i.e., one 
that is actually spoken or written down) is complete or cor
reet. These doubts are resolved by communication and ex
planation, never by transcribing the proof into first order 
predicate calculus. Once a proof is 'accepted', the results of 
the proof are regarded as true (with very high probability ). 
It may take generations to detect an error in a proof ... On 
the other side, to be distinguished from real mathematics, we 
have 'meta-mathematics' ... It portrays a strueture of proofs, 
which are indeed infallible 'in principle' ... [The philosophers 
of mathematics seem to claim] that the problem of fallibility 
in real proofs ... has been conclusively settled by the presence 
of a not ion of infallible proof in meta-mathematics ... One 
wonders how they would justify such a claim.37 

Apart from the fact that the modern Western epistemology of mathe
matics fans to give an adequate account of the history of mathematics 

36I.Lakatos, Proofs and Refutations: The Logic of Mathematical Discovery, Cam
bridge 1976. 

37Philip J.Davis and Reuben Hersh, The Mathematical Experience, Boston, 1981, 
p.354-5. 
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and standard mathematical practice, there is also the growing awareness 
that the ideal of mathematics as a formal deductive system has had seri
ous consequences in the teaching of mathematics. The formal deductive 
format adopted in mathematics books and articles greatly hampers un
derstanding and leaves the student with no clear idea of what is being 
talked about. 

Notwithstanding all these critiques, it is not likely that, within the West
ern philosophical tradition, any radically different epistemology of math
ematics will emerge; and so the driving force for modern mathematics is 
likely to continue to be a search for infallible eternal truths and modes of 
establishing them, in one form or the other. This could lead to 'progress' 
in mathematics, but it would be progress of a rather limited kind. 

If there is a major lesson to be learnt from the historical development of 
mathematics, it is perhaps that the development of mathematics in the 
Greco-European tradition was seriously impeded by its adherence to the 
cannon of ideal mathematics as laid down by the Greeks. In fact, it is 
now clearly recognized that the development of mathematical analysis 
in the Western tradition became possible only when this ideal was given 
up during the heydays of the development of "infinitesimal calculus" 
during 16th - 18th centuries. As one historian of mathematics notes: 

It is somewhat paradoxical that this principal shortcoming 
of Greek mathematics stemmed directly from its principal 
virtue-the insistence on absolute logical rigour. .. Although 
the Greek bequest of deductive rigour is the distinguishing 
feature of modern mathematics, it is arguable that, had all 
the succeeding generations also refused to use real numbers 
and limits until they fully understood them, the calculus 
might never have been developed and mathematics might 
now be a dead and forgotten science.38 

It is of course true that the Greek ideal has gotten reinstated at the heart 
of mathematics during the last two centuries, but it seems that most of 
the foundational problems of mathematics can also be perhaps traced 
to the same development. In this context, study of alternative episte
mologies such as that developed in the Indian tradition of mathematics, 
could prove to be of great significance for the future of mathematics. 

38C.H.Edwards, History of Calculus, New York 1979, p.79. 
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Appendices 

A List of Works Containing Upapatti-s 

The following are some of the important commentaries available in print, 
which present upapatti-s of results and procedures in mathematics and 
astronomy: 

1. Bhii~ya of Bhäskara I (c.629) on Ä ryabhatzya of Äryabhata (c.499), 
K.S.Shukla (ed.), New Delhi 1975. 

2. Bhii~ya of Govindasvamin (c.800) on Mahiibhiiskarfya of Bhaskara 
I (c.629), T.S.Kuppanna Sastri (ed.), Madras 1957. 

3. Viisaniibhii9ya of Caturveda P~thudakasvamin (c.860) on 
Briihmasphutasiddhiinta of Brahmagupta (c.628), Chs. I-III, XXI, 
Ramaswarup Sharma (ed.), New Delhi 1966; Ch XXI, Edited and 
Translated by Setsuro Ikeyama, Ind. Jour. Hist. Sc. Vol. 38, 
2003. 

4. Vivara~a of Bhäskaracarya II (c.1150) on Si9yadhZvrddhidatantra 
of Lalla (c.748), Chandrabhanu Pandey (ed.), Varanasi 1981. 

5. Viisanii of Bhäskaracarya II (c.1150) on his own Bzjaga~ita, Ji
vananda Vidyasagara (ed.), Calcutta 1878; Achyutananda Jha 
(ed.) Varanasi 1949, Rep. 1994. 

6. Mitiik9arii or Viisanii of Bhäskaracarya II (c.1150) on his own 
Siddhiintasiroma~i, Bapudeva Sastrin (ed.), Varanasi 1866; Mu
ralidhara Chaturveda (ed.), Varanasi 1981. 

7. Viisaniibhii9ya of Ämaraja (c.1200) on Khanif,akhiidyaka of Brah
magupta (c.665), Babuaji Misra (ed.), Calcutta 1925. 

8. Ga~itabhii9a1'}a of MakklbhaHa (c.1377) on SiddhiintaSekhara of 
Srlpati (c.1039), Chs. I-III, Babuaji Misra (ed.), Calcutta 1932. 

9. Siddhiintadzpikii of Paramesvara (c.1431) on the Bhii9ya of Govin
dasvamin (c.800) on Mahiibhiiskarfya of Bhäskara I (c.629), T.S. 
Kuppanna Sastri (ed.), Madras 1957. 
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10. Äryabhatzyabhii9ya of Nllakal).tha Somasutvan (c.1501) on 
Äryabhatzya of Äryabhata (c.499), K. Sambasiva Sastri (ed.), 3 
Vols., Trivandrum 1931, 1932, 1957. 

11. Yuktibhii9ii (in Malayalam) of Jye~thadeva (c.1530); Gar;,itiidhyiiya, 
RamaVarma Thampuran and A.R. Akhileswara Aiyer (eds.), 
Trichur 1948; K.Chandrasekharan (ed.), Madras 1953. Edited and 
Translated by K.V. Sarma with Explanatory Notes by K. Rama
subramanian, M.D. Srinivas and M.S. Sriram (in Press). 

12. Yuktidzpikii of SaIikara Variyar (c.1530) on Tantrasarigmha of 
Nllakal).tha Somasutvan (c.1500), K.V.Sarma (ed.), Hoshiarpur 
1977. 

13. Kriyiikmmakarf of SaIikara Variyar (c.1535) on Lzliivatz of 
Bhäskaracarya II (c.1150), K.V.Sarma (ed.), Hoshiarpur 1975. 

14. SüryapmkiiSa of Suryadäsa (c.1538) on Bhaskaracarya's BZjagar;,ita 
(c.1150), Chs. I-V, Edited and translated by Pushpa Kumari Jain, 
Vadodara 2001. 

15. Buddhiviliisinz of Gal).esa Daivajiia (c.1545) on Lzliivatz of 
Bhäskaracarya II (c.1150), V.G.Apte (ed.), 2 Vols, Pune 1937. 

16. Tzkii of Mallari (c.1550) on Gmhaliighava of Gal).esa Daivajiia 
(c.1520), Balachandra (ed.), Varanasi 1865; Kedaradatta Joshi 
(ed.), Varanasi 1981. 

17. BZjanaviirikurii or Bzjapallavam of K:r~l).a Daivajiia (c.1600) on 
BZjagar;,ita of Bhäskaracarya II (c.1150), V.G.Apte (ed.), Pune 
1930; T.V.Radha Krishna Sastri (ed.), Tanjore 1958; Biharilal Va
sistha (ed.), Jammu 1982. 

18. Siromar;,ipmkiiSa of Ga1)esa (c.1600) on Siddhiintasiroma'T}i of 
Bhäskaracarya II (c.150), Gmhagar;,itiidhyiiya, V.G.Apte (ed.), 2 
Vols. Pune 1939, 1941. 

19. Gü<j,hiirthapmkiiSa of RaIiganatha (c.1603) on Süryasiddhiinta, Ji
vananda Vidyasagara (ed.) , Calcutta 1891; Reprint, Varanasi 
1990. 
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20. Väsanävärttika, commentary of N:rsirpha Daivajiia (c.1621) on 
Väsanäbhä$ya of Bhäskaracarya II, on his own Siddhäntasiroma'T}i 
(c.1150), Muralidhara Chaturveda (ed.), Varanasi 1981. 

21. Marfci of MunIsvara (c.1630) on Siddhantasiroma'T} i of 
Bhäskaracarya (c.1150) , Madhyamädhikära, Muralidhara Jha 
(ed.), Varanasi 1908; Grahaga'T}itädhyäya, Kedaradatta Joshi 
(ed.), 2 vols. Varanasi 1964; Golädhyäya, Kedaradatta Joshi 
(ed.), Delhi 1988. 

22. ÄsayaprakäSa of MunIsvara (c.1646) on his own 

23. 

Siddhäntasärvabhauma, Ga'T}itädhyäya Chs. I-lI, Muralid-
hara Thakura (ed.), 2 Vols, Varanasi 1932, 1935; Chs. III-IX, 
Mithalal Ojha (ed.), Varanasi 1978. 

Se$aväSanä of Kamalakarabhatta (c.1658) on 
Siddhäntatattvaviveka, Sudhakara Dvivedi (ed.), 
1885; Reprint, Varanasi 1991. 

his own 
Varanasi 

24. Sauraväsanä of Kamalakarabhatta (c.1658) on Suryasiddhänta, 
Chs. I-X, Sri Chandra Pandeya (ed.), Varanasi 1991. 

25. Ga'T}itayuktayal:t, Tracts on Rationale in Mathematical Astronomy 
by Various Kerala Astronomers (c.16th -19th century), K. V.Sarma 
(ed.), Hoshiarpur 1979. 

B Same Upapatti-s fram Yuktibhii§ii (c.1530) 

In this Appendix we shall present some of the proofs contained in the 
Mathematics part of the celebrated Malayalam text Yuktibhä$ä 39 of 
Jye~thadeva (c.1530). This part is divided into seven chapters, of which 
the last two, entitled Paridhi and Vyäsa (Circumference and Diame
ter) and Jyänayana (Computation of Sines), contain many important 
results concerning infinite series and fast convergent approximations 

39 Yuktibhii~ii (in Malayalam) of Jyei?thadeva (c.1530); Ga7}itiidhyiiya, Ra
mavarma Thampuran and A.R. Akhileswara Aiyer (eds.), Trichur 1947; K Chan
drasekharan (ed.), Madras 1953; Edited, along with an ancient Sanskrit version 
Ga7}itayuktibhii~ii and English Translation, by KV.Sarma, with Explanatory Notes 
by KRamasubramanian, M.D.Srinivas and M.S.Sriram (in press). 



240 M.D.Srinivas 

for 7r and the trigonometrie functions. In the preamble to his work, 
Jye~thadeva states that his work gives an exposition of the mathemat
ies necessary for the computation of planetary motions as expounded 
in Tantrasarigraha of NIlakal).tha (c.1500). The proofs given in Yuk
tibhii$ii have been reproduced (mostly in the form of Sanskrit verses 
or kiirikiis) by Saukara Variyar in his commentaries Yuktidzpikii 40 on 
Tantmsarigraha and K riyiikramakarz 41 on Lzliivatz. Since the later work 
is considered to be written around 1535 A.D., the time of composition 
of Yttktibhii$ii may reasonably be placed around 1530 A.D. 

In what follows, we shall present abrief outline of some of the mathe
matieal topies and proofs given in Chapters VI and VII of Yuktibhii$ii, 
following closely the order which they appear in the text. 

B.I Chapter VI : Paridhi and Vyasa (Circumferene and 
Diameter) 

The chapter starts with a proof of bhujii-koti-kar'f}a-nyiiya (the so called 
Pythagoras theorem), whieh has also been proved earlier in the first 
chapter of the work. 42 It is then followed by a discussion of how to 
arrive at successive approximations to the circumference of a circle by 
giving a systematic procedure for computing successively the perimeters 
of circumscribing square, octagon, regular polygon of sides 16, 32, and 
so on. The treatment of infinite series expansions is taken up thereafter. 

B.1.l To obtain the circumference without calculating 
square-roots 

Consider a quadrant of the circle, inscribed in a square and divide a side 
of the square, whieh is tangent to the cirde, into a large number of equal 

40 Yuktidfpikii of Sankara Variyar (e.1530) on Tantrasarigraha of NIlakaJ?tha Soma
sutvan (c.1500), K.V.Sarma (ed.), Hoshiarpur 1977. At the end of each chapter of 
this work, Sarikara states that he is only presenting the material which has been weIl 
expounded by the great dvija of the Parakroq.ha house, Jye:;;thadeva. 

41 Kriyiikramakarf of Sarikara Väriyar (c.1535) on Lfliivatf of Bhäskaräcärya II 
(c.1150), K.V.Sarma (ed.), Hoshiarpur 1975. 

42In fact, according to Yuktibhii~i.i , almost all mathematical computations are 
pervaded (vyiipta) by the trairiiSika-nyiiya (the rule of proportion as exemplified for 
instance in the case of similar triangles)and the bhujii-koti-ka17}a-nyiiya. 
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parts. The more the number of divisions the better is the approximation 
to the circumference. 

( 
k. /kij 

I / 

C /8 (one eighth of the cireumferenee) is approximated by the sum of the 
jyärdhäs (half-ehords) bi of the are-bits to which the circle is divided by 
the ka'T"7}as (hypotenuses) whieh join the points whieh the divide tangent 
to the eentre of the eircle. Let ki be the length of the i th ka'T"7}a. Then, 

Hence 

m~(~:)' 

m ~ [R2+;2(~)'l 
Series expansion of each term in the RHS is obtained by iterating the 
relation 

which leads to 

b 
~_ (~) (b:C) + (~) (b:c)2 + .... a 
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This (binomial) expansion is also justified later by showing how the 
partial sums in the following series converge to the resulto 

100 
10 

Thus 

4 

When n becomes very large, this leads to the series given in the rule of 
Mädhava vyase varidhinihate 0 0 0 43 

C 7l" 1 1 
4D = 4" = 1 - 3 + "5 - 0 0 0 

B.1.2 Samaghata-sankalita -- Sums of powers of natural numbers 

In the above derivation, the following estimate was employed for the 
samaghata-sankalita of order k, for large n : 

n k+1 

8~k) = 1k + 2k + 3k + 000 + nk ~ (k + 1) 

This is proved first for the case of miila-sankalita 

8(1) 1 + 2 + ~{ + 0 0 0 + n n 

Hence far large n, 

[n - (n - 1)] + [n - (n - 2)] + 000 + n 

n 2 - 8(1) 
n--l 

Then, for the varga-sankalita and the ghana-sankalita, the following es
timates are proved for large n: 

n3 
12 + 22 + 32 + 000 + n 2 ~ -

3 
n4 

13 + 23 + 33 + 0 0 0 + n3 ~ -
4 

43This result is attributed to Mädhava by Sankara Väriyar in Kriyiikramakari, cited 
earlier, po379; see also Yuktidfpikii, cited earlier, polOl. 
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It is then observed that, in each case, the derivation above is based on 
the result 

S Ck-l) _ SCk) = SCk-l) + SCk-l) + + SCk-l) n n n n-I n-2 . . . I 

It is observed that the right hand side of the above equation is a re
peated sum of the lower order (k - 1) sankalita. Now if we have already 

estimated this lower order sankalita, S~k-I) ~ n: ' then 

nSCk-l) _ SCk) ~ 
n n 

Hence, for the general samaghiita-sankalita, we obtain the estimate 

n k+1 

(k + 1)' 

B.1.3 Viira-sankalita - Repeated summations 

The viira-sankalita or sankalita-sankalita or repeated sums, are defined 
as follows: 

v2) S~I) = 1 + 2 + ... + (n - 1) + n 

v~r) VICr-l) + V2(r-l) + ... + v~r-I) 

It is shown that, for large n 

v: (r) ~ 
n ~ (r+l)!' 

B.1.4 Ciipfkarar;,a - Determination of the are 

This can be done by the series given by the rule44 i§tajyiitrijyayorghiitiit 
which is derived in the same way as the above series for f 

R() = R (sin ()) _ R (sin () ) 3 + R (sin () ) 5 
COS () 3 cos () 5 cos () 

44See für instance, Kriyakmmakan, cited earlier, p.95-96. 
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It is noted that I ~~~~ I :S 1, is a necessary condition for the terms in the 
above series to progressively lead to the result. Using the above, for 
e = ~, the following series is obtained: 

B.1.5 Antya-sarp,skiira - Correction term to obtain accurate 
circumference 

Let us set 

C 1 1 ()n-l 1 ()n 1 - = 1 - - + - - ... -+ -1 + -1 -. 
4D 3 5 (2n - 1) an 

Then the sarp,skiira-hiiraka (correction divisor), an will be accurate if 

1 1 1 
-+--=--
an an+l 2n + 1 

This leads to the successive approximations:45 

4 
1 1 ()n 1 1 ()n 1 

~ 1 - "3 + "5 - ... + -1 - (2n _ 1) + -1 4n' 

~ 1 _ ! + ! _ ... + (_1)n-l 1 + (_1)n __ 1_4.,--, 
3 5 (2n - 1) 4n +_ 

4n 

7f 

4 

1 1 ()n-l 1 ()n n 
1- 3+ 5 -",+ -1 (2n-1) + -1 (4n2 +1)' 

Later at the end of the chapter, the rule46 ante samasankhyiidalavargal} 
... , is cited as the sük$matara-sarp,skiira, a much more accurate correc
tion: 

4 

1 1 (_1)n-l (_1)n(n2 + 1) 
~ 1 - - + - - + + --'----,--'-:,.-'----'-

3 5 ... (2n-1) (4n3 +5n) ' 
7f 

45These are attributed to Madhava in Kriyäkramakar'i, cited earlier, p.279; also 
cited in Yuktidfpikä, cited earlier, p.101. 

46 Kriyäkramakar'i, cited earlier, p.390; Yuktidfpikä, cited earlier, p.103. 
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B.l.6 Transformation of series 

The above correction terms can be used to transform the series for the 
circumference as folIows: 

4~ = ~ = [ 1 - :J -[~ -:1 -:J + [~ - :2 -:J ... 
It is shown that, using the second order correction terms, we obtain the 
following series given by the rule47 samapaficiihatayol} ... 

C 1 1 1 
16D = (15 + 4.1) - (35 + 4.3) + (55 + 4.5) - ... 

It is also noted that by using merely the lowest order correction terms, 
we obtain the following series given by the rule48 vyiisiid viiridhinihatiit 

C 3 1 1 1 
4D = 4: + (33 - 3) - (53 - 5) + (73 - 7) - ... 

B.l. 7 Other series expansions 

It is furt her noted, by using non-optimal correction divisors in the above 
transformed series, one can also obtain the following results given in the 
rules49 dvyiidiyujiirr vii krf;ayo ... and dvyiideScaturiidervii ... 

C 1 1 1 1 
4D 2 + (22 - 1) - (42 - 1) + (62 - 1) - ... 

C 1 1 1 1 
8D 2 (42 -1) (82 -1) (122 -1) 
C 1 1 1 

8D (22 - 1) + (62 - 1) + (102 - 1) - ... 

47 Kriyiikmmakarf, cited earlier, p.390; Yuktidfpikii, cited earlier, p.l02. 
48 Kriyiikmmakarf, cited earlier, p.390; Yuktidfpikii, cited earlier, p.102. 
49 Kriyiikmmakarf, cited earlier, p.390; Yuktidfpikii, cited earlier, p.103. 
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B.2 Chapter VII : Jyiinayanam - Computation of Sines 

B.2.1 Jyä, koti and sam - Rsinx, Rcosx and R(l - cosx) 

First is discussed the construction of an inscribed regular hexagon with 
side equal to the radius, wh ich gives the value of R sin( ~l Then are 
derived the relations: 

Rsin (~- x) 
Rsin (~) 

Rcosx = R(l - versin x) 

~[(Rsinx)2 + (R versin x)2]L 

U sing the above relations several Rsines can be calculated starting from 
the following: 

Rsin nD 
Rsin (~) 

R 
2 

(~2) l 

This is one way of determining the pathita-jya (enunciated or tabulated 
si ne values), when a quadrant of a circle is divided into 24 equal parts 
of 3°45' = 225' each. To find the Rsines of intermediate values, a first 
approximation is 

Rsin(x + h) ~ 'Rsinx + h Rcosx. 

Then is derived the following better approximation as given in the rule50 

istadol},kotidhanu$ol}, ... : 

Rsin(x + h) ~ Rsinx + (~) (RCOSX - (~) RSinx) 

Rcos(x + h) ~ Rcosx + (~) (Rsinx - (~) RCOSX) , 

where ß = 2:;. 
50 Tantrasarigraha , 2.10-14. 
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B.2.2 Accurate determination of sines 

Given an are s = Rx, divide it into n equal parts and let the piry,da-jyiis 
B j , and sams Sj-1' with j = 0,1, ... n, be given by 

B j RSin(j:) , 

S. 1 = R vers [(j -n !)x] 
J-'2 

If Cl: be the samasta-jyii (total ehord) of the are ~, then the second order 
si ne difference (jyii-khary,{1iintam) is shown to satisfy 

(;) (Sj_~ - Sj+~) 

(;r B j , 

for j = 1,2, ... n. From this are derived the relations 

(;) (BI + B2 + ... + Bn - I ), 

-(~r [BI + (BI + B2) + ... + (BI + ... + Bn - I )] 

- (~) [SI + S:J. + ... + Sn_ l - nSl] 
r 2 2 2 2 

If Band S are the jyii and sam of the are s, then it is noted that, in 
the limit of very large n, we have as a first approximation 

Hence 

and 

js 
Bj~-, 

n 
S 

Q~ -. 
n 

B ~ s- (~)2 (~r[1+(1+2)+ ... +(1+2+ ... +n-1))] 

s3 

~ S - 6R2' 
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Iterating these results we get sueeessive approximations for the differenee 
between the Rsine and the are (jyä-cäpäntara), leading to the following 
series given by the rule51 nihatya cäpavarge'T}a ... : 

Rsin (~) 

R - Reos (~) 

While earrying sueeessive approximations, the following result for vära
sarikalitas (repeated summations) is used: 

~ j (j + 1) ... (j + k - 1) 
L...J k! 
j=1 

n(n + l)(n + 2) ... (n + k) 
(k + 1)! 

Then is obtained aseries for the square of sine, as given by the rule52 

nihatya cäpavarge'T}a ... 

4 x6 

sin
2 

x = x
2 - --;(-22-X_--=-~)0- + (2' _ D (3' -D 

Chapter VII of Yuktibhä§ä goes on to diseuss different ways of deriving 
the jfve-paraspara-nyäya53 , whieh is followed by a detailed diseussion of 
the eyclic quadrilateral. The ehapter eoncludes with a derivation of the 
surfaee area and volume of a sphere. 
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Abstract 

The subject of partial fractions is usually confined to the stan
dard calculus course and is viewed as a useful albeit mundane 
tool. This paper looks at partial fractions starting with Euler. We 
then consider some of the very surprising and appealing discoveries 
made by Ramanujan. 

1 Introd uction 

The idea of partial fractions must surely have arisen after calculus and 
basic analysis had asolid footing. We can certainly find carefully pre
pared examples in Euler's Introduction in Analysis Infinitorum, Volume 
1 [3, Chapter 2]. 

For example, [3, pp. 34-35] Euler proves that 

1 112 1 7 1 
z3(1 - z)2(1 + z) = z3 + z2 +:;+ 2(1 - z)2 + 4(1 - z) - 4(1 + z)' (1.1) 

or [3, pp. 31-32] 

Z2 Z - 1 1 1 1 
(1 - z)3(l + z2) = - 4(1 + z2) + 4(z - 1) - 2(z - 1)2 2(z _ 1)3' (1.2) 

Ramanujan was not the first to observe that there are appealing and 
sophisticated extensions of partial fractions. For example, there is the 
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classical partial fraction expansion for the reciprocal of Jacobi's theta 
product [6, p.136] 

(1.3) 

L::~=o( -1)n(2n + 1)qn(n+1)/2 
L::~=-oo( _l)n znqn(n-l) (1.4) 

where Iql < 1 and z i- q-N for any integer N. Actually we find (1.3) in 
Ramanujan's Lost Notebook [5, p.1]. 

In the following pages, we shall examine some of Ramanujan's ideas. 
Our object will be to choose formulas that illustrate how one can proceed 
from first principles to obtain some quite surprising formulas. 

2 A Partial Fraction 

In the following, we shall use the standard notation [4, p.3, eq. (1.2.15) 
and p. 20, Ex. 1.2]. We shall always ass urne Iql < 1. 

(A)n (A; q)n = (1 - A)(1 - Aq)··· (1 - Aqn-l), 
00 

[Z ] O~M~N - -

M < 0 or M > N. 

Our first result is the following: 

Theorem 2.1. 

Proof. Both sides of (2.1) are rational functions of z with 2N + 1 sim
ple poles at z == q-N, q-N+l, .. . ,q-l, 1, q, . .. ,qN. Let us calculate the 
residues of each side at these simple poles. 
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If z = qm for 1 ~ m ~ N, then the residue on the right-hand side is 

On the left-hand side 

lim (z _ qm) t [ N ] (q) nqn
2 

z--+qm n=O n (z)n+1(q/z)n 

= N [N] (q)nqn2+m 
~ n (qm;q)n+1(q1-m;q)m_1(q)n_m 

= t [ N ] (q) nqn2+m(m+1)/2( _1)m-1 

n=m n (q)n+m(q)n-m 

N (_1)m-1qn2+m(m+1)/2 
= (q) N L """'----'-----=-----

n=m (q)n+m(q)N-n(q)n-m 

= 

= 

N-m (_l)m-1 q(n+m)2+m(m+1)/2 
(q) N L -'---'------=------

n=O (q)n+2m(q)N-n-m(q)n 

(q)N( _1)m-1 N-m (q-N+m)n( _1)nqn(n+1)/2+n(N+m)+m(3m+1)/2 

(qhm(q)N-m ~ (q2m+1 )n(q)n 

(q)N( _1)m-1 qm(3m+1)/2 . ( q-N+m, T- 1; q, TqN+m+1 ) 
() () hm 2 cP1 2m+ 1 
q 2m q N-m 7--+0 q 

(in the notation of [4, p.3, eq. (1.2.14)]) 
(q)N( _1)m-1 qm(3m+1)/2 

(qhm(q)N_m(q2m+1 )N-m 
(by the q-Chu-Vandermonde summation [4, p.1l, eq. (1.5.2)]) 

( _l)m-1 qm(3m+1)/2(q)m 

(q)N+m [ ~ ] 
Next we consider z = q-m for 0 ~ m ~ N. In this case, the residue 

on the right-hand side is 

( _1)m-1 qm(3m-1)/2(q)m 

(q)N+m 
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On the left-hand side 

lim (z _ q-m) t [ N ] (q) nqn2 

z-+q-m n=O n (Z)n+l(q/Z)n 

N [N] (q) nqn2-m 
- ~ n (q-m)m(q)n_m(qm+l )n 

N [N] (q) nqn2+m(m-l)/2( _l)m-l 

~ n (q)m(q)n_m(qm+l )n 

N (_1)m-lqn2+m(m-l)/2 
= ( q ) N L -':---,--'---.,---......,.-,----

n=m (q)n+m(q)N-n(q)n-m 

N-m (_1)m-l q(n+m)2+m(m-l)/2 
(q) N L ~':------=-"-.,...---:--:---

n=O (q)n+2m(q)N-n-m(q)n 

George E. Andrews 

(q)N( _1)m-l qm(3m-l)/2 N-m (q-N+m)n( _1)nqn(n+l)/2+n(N+m) 

(q)2m(q)N-m ~ (q2m+l )n(q)n 

(_1)m-lqm(3m-l)/2 (q)m 

(q)N+m 

as before. 

Hence by the classical theorem for the representation of a proper 
rational function with simple poles by a partial fraction decomposition 
[2, pp.56-57], we have established Theorem 2.1. 0 

Note that the proof of Theorem 2.1 required nothing more sophist i
cated than the very elementary q-Chu-Vandermonde summation. 

Theorem 2.1 has some very appealing corollaries. While it does 
not appear in Ramanujan's Lost Notebook, many instances of it do. 
It should be noted that this result was first explicitly stated by G.N. 
Watson [7, p.64]. 

Corollary 2.1. 
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Praaf. Let N -t 00 in Theorem 2.1. The quadratic exponent on q easily 
allows one to justify this limiting process, and a little algebra transforms 
the result into the above expression. 0 

From Corollary 2.1, G.N. Watson [7, p.64] and presumably Ra
manujan deduced three important formulas for Ramanujan's third order 
mock-theta functions: 

f(q) 

<p(q) 

x(q) 

Corollary 2.2. [7, p. 64J 

f(q) = - 1 + 4 " -'----'------
1 ( 00 (-1 )nqn(3n+1)/2) 

(q) 00 ~ 1 + qn ' 
(2.3) 

<p(q) 
1 ( 00 (_1)n(1+qnqn(3n+l)/2) 

-()- 1 + 2 L 1 2n ' 
q 00 n=l + q 

(2.4) 

1 ( 00 (_1)n(1 + qn)qn(3n+1)/2) 
- 1 + " -'--'----'------=-...:...::.....".----(q) Lt 1 _ qn + q2n 

00 n=l 
x(q) (2.5) 

Praaf. To obtain (2.3) set z = -1 in (2.2) and simplify. To obtain (2.4) 
set z = i in (2.2) and simplify. Finally to obtain (2.5) set z = e7ri / 3 . 0 

3 Another Partial Fraction 

In this section we present a second result. This result is dosely related 
to the one in the previous section as Watson has shown [7, p. 63-66] 
in that each is deducible from the same master formula. We treat this 
theorem separately because we want to deduce these results from very 
elementary identities. 
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Theorem 3.1. 

Proof. We proceed exactly as we did with Theorem 2.1. Both sides 
of (3.1) are rational functions of z with 2N + 2 simple poles at z = 

-N_1 -N+1 _1 1 N--,l N+1 ur 1 1 t th . q 2,q 2, ... ,q 2,q2, ... ,q 2,q 2. vvenowcacuae ereSl-
dues of each side at these simple poles. Furthermore it is easy to check 
that each side is symmetrie in z and ~; hence we need only check the 
residues at the positive power of q. 

Ir z = qm+~ for 0 ~ m ~ N, then the residue on the right-hand side 
is clearly 

[ 
N ] (_1)mq3m(m+l)/2+m+~(q)m 

m (q)m+N+l . 

On the left-hand side 

1 N [N] (q) nqn2+n 
lim (z - qm+-z) ~ ---:"1--':":":"":":""::"""""-1---

z->qm+t ;~ n (zq-z)n+l(q-z/Z)n+l 

N [N] (q)nqn2+n+m+~ 
~ n (qm+l )n+l(q-m)m(q)n-m 

N n2+n 
(_1)mqm(m+l)/2+m+~(q)N L ..,....--:---...:.,q-,----:--:--

n=m (q)n+m+l (q)N-n(q)n-m 

N-m (n+m)2+n+m 
(_1)mqm(m+l)/2+m+~ (q)N L ..,.......,.---q----:-:------:,..-:

n=O (q)n+2m+l (q)N-n-m(q)n 

( _1)mqm(m+l)/2+m+~+m2+m(q)N 

(qhm+l (q)N-m 

X ~ (q-N+m)n(_1)n qn(n+l)/2+n(N+m+l) 

;;:0 (q)n(q2m+2)n 
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(qhm+l (q) N -m (q2m+2) N-m 
(by the q-Chu-Vandermonde summation [4, p. 11, eq. (1.5.2)]) 

[ 
N ] (_1)mq3m(m+1)/2+m+~(q)m 

m (q)m+N+l 

As with Theorem 2.1, our theorem follows from the standard partial 
representation of a proper rational function with simple poles [2, pp. 
56-57]. 0 

Corollary 3.1. [7, p.66} 

(3.2) 

Proof. Let N --+ 00 in Theorem 4.1. As in the proof of Corollary 2.2, the 
quadratic exponents on q easily allow one to justify this limit. Algebraic 
simplifieation then yields the assertion in Corollary 3.1. 0 

From Corollary 3.1, we ean easily deduee (as did Watson [7, p. 66] 
and probably Ramanujan) three more important formulas for three more 
of the third order moek-theta funetions: 

w(q) 

v(q) 

p(q) 
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Corollary 3.2. [7, p.66} 

w(q) = (3.3) 

v(q) (3.4) 

p(q) (3.5) 

Praof. To obtain (3.3) replace q by q2 then set z = 1 in (3.2), and 
simplify. To obtain (3.4), set z = i in (3.2) and simplify. To obtain (3.5) 
replace q by q2, then set z = e21Ti/3 in (3.2) and simplify. 0 

4 The Simplest Partial Fraction 

In the last two sections. we proved two partial fraction decompositions 
relying only on the q-Chu-Vandermonde summation. In this section we 
provide a proof of (1.3) that does not even require that much. 

Theorem 4.1. 

Praof. Both sides of (4.1) are rational functions of z with 2N + 1 simple 
poles at z = q-N, q-N+l, ... , q-l, 1, q, ... ,qN. 

First we calculate the residue at z = qm, 1 ~ m ~ N. The residue 
on the right-hand side is clearly 

[ 
N ] (q) mqm(m+l)/2 

(_1)m-l m 
(q)m+N 
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On the left-hand side, the residue is 

1. (z - qm)(q)N 
1m 

z--+qm (Z)N+l(qjZ)N 

qm(q)N 
= (qm)N+l (ql-m)m_l (q)N-m 

( _1)m-l qm(m+1)/2(q)N 

(q)N+m(q)N-m 
[ 

N ] (q) qm(m+l)/2 (_1)m-l ..:...:..:...:m.:.:..=:--__ _ 

m (q)m+N 

Next we consider Z = q-m, 0 ~ m ~ N. The residue on the right
hand side in this instance is 

_q-m [ N ] (q)m(_1)m qm(m+l) /2 = (_1)m-l [ N ] (q)mqm(m-l) /2 

m (q)m+n m (q)m+N 

and on the left-hand side, the residue is 

1. (z - q-m)(q)N 
1m 

z--+q-m (Z)N+1 (qj Z)N 
(_1)m-l qm(m-l)/2 (q)N 

= ~~--~------~-
(q)N+m(q)N-m 

As before, our result now foHows from the standard theorem on 
partial fraction decompositions [2, pp.56-57] 0 

Corollary 4.1. Identity (1.3) is valid. 

Proof. The same argument used for CoroHaries 2.1 and 3.1 holds here 
as weH. 0 

5 Conclusion 

There are many more results beyond those considered in this paper that 
were included in Ramanujan's Lost Notebook. Bruce Berndt and I [1] 
are publishing a fuH treatment of the results from the Lost Notebook, 
and we present in Chapter 12 of that work a fuH account of Ramanu
jan's partial fraction theorems. The proofs there are more succinct, but 
rely on more sophisticated background. The object in this paper was to 
illustrate the fact that one can deduce some of Ramanujan's most sur
prising partial fraction formulas using not hing deeper than the q-analog 
of the Chu-Vandermonde summation. 
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Abstract 

While modern Algebra and Number Theory have well docu
mented and established roots deep into India's ancient scholarly 
history, the understanding of the springing up of statistics, specif
ically quantum statistics, demands a closer inquiry. My project is 
two-fold. Firstly, I explore and delineate the cultural and eduea
tional eireumstances that presided over the ineeption of the very 
eoneept that quantum theory required its own dedieated statistical 
analysis. My quest therefore is anehored in a brief review of the 
pioneering eontributions of personalities as diverse as those of Bose 
and Chandrasekhar, or Raman and Krishnan, and Mahalanobis. 
Seeondly, lexamine how the intelleetual climate and some of the 
loeal mathematical traditions have fostered the ongoing develop
ment of quantum prob ability and stoehastie pro ces ses theories in 
India. 

Science is not an impersonal stream of dis
coveries. It is created by human beings and 
its advances are very much products of highly 
personal actions and reactions of some gified 
individuals. [70, p.31] 
... science is a collective endeavour ... any 
single life is but a fragment in a larger fabric. 
[71, p.55] 
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1 Preliminary considerations 

The main quest ions I want to explore in this essay are How and Whyan 
interest in quantum statistics developed among Indian mathematicians. 
Indeed, the field of quantum statisties might appear at first sight to be 
a singularity against the background of profound traditions, the deep 
roots of whieh are illustrated in other communieations reported in these 
proceedings on the History of Indian Mathematics. Upon listening to 
these enlightening contributions, we could not but be vividly reminded 
of the continuity between the ancient schools and modern disciplines 
such as algebra, geometry, combinatorics and number theory, in which 
the accomplishments of Indian mathematiciitns are recognized the World 
over as centrally influential. 

In contrast, quantum probability, and in partieular the theory of 
quantum stochastic processes, is arecent field of enquiry in which con
siderable pioneering work was achieved in twentieth-century India. It 
would be futile to attempt and give here a detailed survey that would 
do justiee to all facets of this effort. Rather, I will focus on those whieh 
relate most to areas of mathematical physies with whieh I am familiar, 
and yet bring out the partieular flavours of the Indian contributions and 
of the intellectual climate in which they originated. 

Among foreign physicists and mathematicians, the very words of 
"quantum" and "statisties" might evoke developments in Indian sci
ence of cultures imported here from the outside in the early twentieth
century. Such a naive cosmopolitan account would however miss sev
eral Indian idiosyncrasies, two extremes among whieh are: a form of 
governmental establishment that encourages the influence of strong per
sonalities, and yet a demographie diversity that allows the independent 
pursuits of individual thinkers. To illustrate this dualism, suffice it to 
mentioll here only one of its mallY aspects: the flowering in the nine
teenth century of the "Bengali Renaissance" right in Calcutta, while the 
port-city was the traditional seat of British presence. 

I will thus sketch in Section 2 how strong personalities developed into 
pioneers who paved the way towards the modern form of quantum statis
ties: S.N. Bose, C.V. Raman alld K.S. Krishnan, S. Chandrasekhar, and 
P.C. Mahalanobis. In section 3, I turn to contemporary Indian figures 
who have contributed to the developments of various aspects of the the-
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ory of quantum probability and of quantum stochastie processes: V.S. 
Varadarajan, K.R. Parthasarathy, K.B. Sinha, and M.D. Srinivas. In 
the interest Qf conciseness, the bibliography at the end of this essay is 
intended to be an integral part of my account, as the titles of the papers 
I included provide in a nutshell the most essential information their au
thors surely wanted to convey. I should also mention that in the course 
of my essay I respect the contemporary usages when speaking of cities 
like Calcutta [Kolkata] or Madras [Chennai]. 

2 The pioneers 

2.1 Satyendra Nath Bose, 1894-1974 

Wearing an illustrious Bengali patronym, Bose was born and died in 
Calcutta, studied there, receiving his M.Sc. from Presidency College 
in 1915 and continuing his studies in mathematies and physies at the 
University College of the University of Calcutta, taking his Ph.D. in 
1917; he first taught there, until he went to Dacca in 1921, from whieh 
he came back to Calcutta in 1945 to teach again there until1956. 

After he had translated and published a collection of Einstein papers 
on relativity, he spent time rethinking ("in my own way" as he declared) 
the published lectures of Boltzmann and of Planck on classieal statistical 
mechanies, as well as the the book of Gibbs, and several of the original 
papers of Einstein, Bohr and Sommerfeld, Le. the foundations of a well
informed study of the current physical literat ure, namely what we call 
today the "old" quantum mechanics. 

Bose's own contributions to quantum statisties [10, 11] occurred dur
ing a burst of creativity that lasted just a few years. This happened de
spite the well-documented and enthusiastic support of Einstein who was 
instrumental in the granting to Bose of a generous two--year travel fel
lowship that brought hirn into contact with Langevin and Marie Curie 
in Paris, and with Einstein and the Berlin establishment. After this, 
Bose returned to teaching and some research, first in Dacca and then 
again in Calcutta. 

The reason for Einstein's enthusiasm must have been the authentie 
simplicity of Bose's derivation of the Planck black-body radiation law 
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whieh is best understood when written in the form: 

p(v, T) = n(v) . u(v, T) 
with 

( 2.1) 
n(v) = 87rv2 

c3 

hv 
and u(v,T) = exp(hvjkT) -1 

where p is the energy density distribution of the radiation, as a function 
of the frequency v and the temperature T at whieh the radiation is in 
thermal equilibrium. Earlier, the first factor, n(v) , had been derived 
from a classical notion, the number N(v) = Vn(v) of electromagnetic 
mo des of frequency v; V is the volume of the cavity in which the radia
tion is trapped. This number obtains as a straightforward adaptation of 
an argument by Rayleigh (187'7-78) on standing sound waves, the only 
two changes required here being to substitute the speed of light c for the 
speed of sound; and to take into account that electromagnetie waves are 
transversal waves, thus with two polarizations at the same frequency, 
while sound waves in air are compression waves, thus with only one 
mode for each frequency. The second term, u(v, T), had appeared as a 
"lucky" manifestation of the genius of Planck who, in 1900, interpolated 
between previously known formulas valid separately in low and high fre
quency regimes. In the intervening years, Einstein had proposed that the 
radiation consists of indivisible light quanta of energy hv, an interpre
tation he supported by his concise and consistent explanation of all the 
known features of the photo-electric effect, features whieh the Maxwell 
theory of electromagnetism had thoroughly failed to account for. The 
photon hypothesis enabled Debye and Einstein to account for u(v, T) 
and Bose was willing to accept their quantum counting argument. It 
was on the first term that he concentrated his critique; we read from 
his famous June 4, 1924 letter to Einstein, that "I have tried to deduce 
the coefficient 87rv2 j c3 in Planck's law independent[ly] of the classieal 
electrodynamies, only assuming that the ultimate elementary region in 
the phase space has the content h3 ." In postulating the irreducibility of 
any such partition, Bose was striving to restore the consistency of the 
premises; both terms in the Planck radiation formula were to have a 
purely quantum origin: now, the Bose-Einstein statistics had found a 
proper logieal frame. 

Einstein was sufficiently impressed by Bose's manuscripts to trans
late them into German and an·ange for their publication. Moreover, he 
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assimilated Bose's two papers thoroughly enough to realize that the new 
statistics, if extended from radiation to material particles would imply 
that a quantum ideal gas [23] would condensate in a superfiuid phase if 
the temperature were lowered deeply enough: a phenomena that has no 
classical analogue. 

Although Einstein was not fully satisfied, Bose was not able to re
spond to Einstein's objections, even after meeting personally with hirn in 
Berlin. How Dirac was able to perform the necessary synthesis through 
his symmetrization prescription has been described in [66] and [41, 
pp.424-425]; incidentally, the word "Boson" to refer to particles that 
obey the Bose-Einstein statistics was coined by Dirac. 

As long as liquid Helium remained the only available laboratory 
manifestation of the Bose-Einstein condensation, a hiatus remained 
between theory and experiment, since the intermolecular interactions 
surely present in superfiuid Helium were not accounted for in the orig
inal model of an ideal quantum gas. The situation changed drastically 
in the 1980s and 1990s with the observation of Bose-Einstein conden
sation in dilute atomic gases at temperatures in the milli- and then 
micro-Kelvin ranges, thus projecting again Bose's name to the frontier 
of contemporary physics. 

2.2 Chandrasekhara Venkata Raman, 1888-1970 and 
Kariamanikkam Srinivas Krishnan, 1898-1961 

Raman's 1930 Nobel Prize serves here as a historical marker to witness 
the development of modern physics in India at the time when the new 
quantum statistics was emerging in the midst of significant developments 
in the classical theory of stochastic processes. The Nobel citation reads 
for his work on the scattering of light and for the discovery of the effect 
named after hirn. It was only in February 1928 [52] that the discovery 
was made by Raman's research team at the Indian Association for the 
Cultivation of Science; he was Professor of Physics at the University of 
Calcutta since 1917 until 1933 when he joined the Indian Institute of 
Science in Bangalore; there, in 1948, he became director of the Research 
Institute that bears his name. His formal education had ended in 1907 
with a M.A. from the University of Madras; he had obtained a B.A. 
from Madras Presidency College in 1904, at the age of 16. 
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The Raman effect belongs to molecular spectroscopy, and it helps 
determine the structure of molecules. Specifically, when a spectro
scope analyses the light emitted from a transparent medium on which 
a monochromatic light beam of frequency Va is directed, one observes 
symmetrically on each side of the 0riginal spectralline a relatively faint 
secondary spectrum 

{V = Va ± vm } , ( 2.2) 

now called the Raman spectrum. The observed frequency shifts V m and 
the relative intensities of the secondary lines - both of which are char
acteristic of the material target rat her than of the incident light beam -
allow us to interpret this spectrum as being due to the inelastic collisions 
between the incident light quanta and the molecules, involving the dis
crete energy levels hVm associated by quantum theory to the vibrational 
and/or rotational degrees of freedom of the molecules of the medium 
- primarily liquids, but also solids and even gases. The fact that the 
so-called "Stokes" lines (those on the low-frequency side of the exciting 
line) are more intense than the corresponding "anti-Stokes" lines (on 
the high-frequency side) in the ratio 

lai ls = exp( -hvmlkT) ( 2.3) 

is taken as a furt her confirmation of the quantum nature of the Raman 
effect, so much so that to the physicist R.W. Wood is attributed the 
opinion that "Raman's long and patient study 01 the phenomenon 01 light 
scattering is one 01 the most convincing prools 01 the quantum theory" 
[74, p.208], thus suggesting it was on par with Einstein's explanation 
of the photo-electric effect. As R.W. Wood may not be so well known 
in the mathematical community, let it be noted that Niels Bohr, who 
had recommended Raman for the 1930 Nobel Prize for Physics, not only 
had also included Wood's name as a co-nominee, but had done so even 
earlier for the 1929 Prize [54]. 

While the effect had been predicted before by Smekal (1923), its ac
tual discovery demonstrated a degree of sophistication, both theoretical 
and experimental, that was immediately recognized - in particular by 
the Nobel committee - as a crowning achievement of what we call now 
the "old" quantum physics epitomized by Bohr. All along, Raman con
tinued to be very much involved in more general, albeit classical, physi
cal aspects of oscillatory phenomena. Indeed two examples ought to be 
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mentioned here; the first is that along with his better known activities 
in optics, Raman maintained a creative interest in acoustics; see for in
stance [51] where Raman describes the physics of musical instruments ... 
induding some Indian instruments such as the sitar and the tabla. The 
second example of Raman's activity is dos er to the subject of this es
say: after having been struck by the deep blueness of the Mediterranean 
sea, he questioned Rayleigh's theory on the blueness of the sky, and he 
applied to the diffraction of light the Einstein-Smolukowski stochastic 
theory of fluctuations and the attendant correlations [50], which was 
extended by his collaborators; amongst them was K.S. Krishnan, who 
belongs to this essay on several accounts. He performed some of the 
crucial experiments leading to the unambiguous detection and thus the 
very discovery ofthe Raman effect; and later, in the early 1940s, when as 
professor of physics at Allahabad, Krishnan kindled Harish-Chandra's 
first scientific direction of research - theoretical physics - which Harish
Chandra pursued in Bangalore with Bhabha [5], and then in Cambridge 
under Dirac [71, p.56]. 

Krishnan's talents as an experimental physicist first came to light in 
Raman's IACS laboratory; recall [52] and see [54]. The cultivation of 
these exceptionally acute abilities later made hirn famous as a pioneer 
in the investigation of quite an array of diverse phenomena in condensed 
matter physics - cf. e.g. [4] - so much so that the present address of 
the National Physics Laboratory, of which he was the first director, is 
on K.S. Krishnan Road in Delhi. His early association with Raman's 
research programme on "light scattered in a homogeneous medium" is 
explicitly acknowledged in the opening paragraphs of both [35, 36], his 
only overt contribution in and to mathematics. This belongs here for 
three reasons: first, it sterns from an analysis of a physically important 
stochastic process; second, it gives a mathematically elegant proof for a 
special version of a theorem now known to all probability theorists; and 
third, it provides my story with a link to Ramanujan, indispensable to 
any paper in the history of modern Indian mathematics. 

First, the theorem. Krishnan begins by citing [22]- in which Einstein 
pursues the theory of critical opalescence proposed by Smolukowski [58] 
- for its use of an approximation amounting to the formula: 

lim a '"'" sm na + = dx sm x . 
+00 • 2 ( 0) joo . 2 

Q:--+O n~oo (na + 0)2 -00 x2 ( 2.4) 
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What Krishnan realizes is that this formula hides a deeper mathematical 
truth, namely the following general result which he proceeds to prove. 
Let f be an even real function of a real variable x such that its Fourier 
transform 

](k) = (27r)-~ i: f(x) exp( -ikx) 

exists and vanishes for Ikl ~ ko . Then 

+00 
Va E (0, 27r/ko] a L f(na + 0) = ..,12;](0) 

n=-oo 

( 2.5) 

Note that: (i) sin2 x/x2 satisfies the assumptions, with ko = ..,12; j (ii) 
the validity of formula (2.5) extends over a range of values of a rat her 
than as a limit, as (2.4) does; (iii) the assumptions are very permissive; 
and (iv) (2.5) itself is a special case of the sampling theorem: 

+00 
Va E (0, 27r/(ko + k)] a L f(na) exp( -inak) = ..,I2;](k) 

n=-oo 

( 2.6) 
variously ascribed to Nyquist, Shannon or Whittaker; probabilists learn 
this from [25, Thm.XIX.5.2]; and it is also recognized to be of cardinal 
relevance in communication theory. 

The second aspect of (2.5), which Krishnan recognizes already in [35], 
is that the functions f for which the formula is valid cover a wide range; 
from a wealth of examples, he is manifestly gratified in [36] to choose 
and present, in the light of his own result (2.5), several of Ramanujan's 
identities. 

This spontaneous demonstration of such an interdisciplinary purview 
appears to have been a major contributing factor in the systematic de
velopment of the modern scientific establishment in India. Indeed sev
eral other scientists of the time shared this broad vision. Consider thus 
briefly the case of H.J. Bhabha (1909-1966), whom I mentioned already 
in connection with Harish-Chandra [5]. Along with his long-lasting inter
est in relativistic quantum theory of elementary particles [6], he belongs 
to the present story also for his classical stochastic analysis of electron 
cascades [7, 8], a theoretical aspect of cosmic rays physics; furthermore 
- as with Krishnan - experimental physicists know hirn perhaps even 
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better for his persistent and suecessful observational pursuits. Bhabha's 
multidimensional drives are further evideneed by his being the founder 
in 1945, and first Director, of the Tata Institute for Fundamental Re
search in Bombay; and by the eminent role he played on the international 
political scene as president of the IAEC for the peaceful use of nuclear 
power. Beyond the confines of this essay, I discern in [28] several ele
ments that would help enlighten a discussion of the considerations (or 
theses) I proposed in section 1 above; see also subsection 2.4 below. 

2.3 Subrahmanyan Chandrasekhar, 1910-1995 

Chandrasekhar is also an alumnus of Presidency College, Madras (B.Sc. 
with honours in Physics, 1930), and then 'frinity College, Cambridge 
where he studied under R.H. Fowler, met Dirac, and was awarded the 
Ph.D. in 1933. After Cambridge, he was associated with the University 
of Chicago from 1937 to the end of his life, thus overlapping there with 
the Marshall Stone era in mathematics. Although many of us know 
Chandrasekhar as a most agile classical applied mathematieian, he is 
known primarily as an astronomer and was Editor of the Astrophysical 
Journal from 1952 to 1971. He received the Nobel Prize in Physies in 
1983, which brings us straight into his early involvement with quantum 
statistics. 

Chandrasekhar was prompted in this direction by no less a master 
than Sommerfeld during an apparently dramatie private interview that 
took place in the fall of 1928 in Madras, in the eourse of which the 
"Professor of Professors" assured the eighteen year old student - so 
proud ofhaving studied on his own Maxwell-Boltzmann statisties and an 
early edition of Sommerfeld's book Atomic Structure and Spectral Lines 
- that everything he knew had been superseded by the new quantum 
meehanics of Sehroedinger, Heisenberg, and Dirae. To drive horne his 
point, Sommerfeld mereifully passed to Chandrasekhar the galley-proofs 
of a paper where he proposed to apply the Fermi-Dirae statisties to the 
theory of eleetrons in metals. Chandrasekhar had thus inadvertently 
landed on the hinge between the "old" quantum meehanies and the 
"new", with a clear admonition that the passage from the former to the 
latter was ineluetable. "Chandra would later eharaeterize this eneounter 
as the 'single most important event' in his seientifie eareer." [75, p.1] 
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Chandrasekhar indeed understood the lesson: he so on wrote a paper 
of his own [15]; and he read a 1926 paper by R.H. Fowler, which he de
seribes later as "the fundamental diseovery that the electron assembly 
in the white dwarfs must be degenerate in the sense of the Fermi-Dirae 
statistics" [17, fn.1,p.451]: indeed Fowler had identified the electron de
generaey press ure as the press ure that keeps the stars from gravitational 
eollapse. Following up on this reading, Chandrasekhar published astring 
of papers on relativistic quantum degenerate stellar configurations and 
the theory of white dwarfs [16]; these early papers are part of his Nobel 
prize citation. 

It is in the course of this analysis that Chandrasekhar made the 
discovery that white dwarfs have a maximum mass M max ~ 1.4 M(:) 
where M (:) is the mass of the sun: 

M - (hC)3/2 -2 
max - G mB ( 2.7) 

where mB refers here to the mass of electrons (or, see below, neutrons). 
Note that the eoefficients in front of mB -2 depend only on universal 
physical quantities: the Planek constant h, the velo city of light c, and 
the gravitational constant G. The maximum mass Mmax is called the 
Chandrasekhar limit. 

Although Chandrasekhar's derivation is mathematically correct, it 
seemed somewhat eumbersome. Already by the end of 1932, L.D. Lan
dau not only presented a more elementary explanation of the Chan
drasekhar limit but, upon hearing of the diseovery of the neutron, he ap
plied the above formula to then putative neutron stars. Chandrasekhar's 
analysis implies that stars of mass larger than the eritical mass Mmax 

eould not be self-sustained, but would eollapse under their own gravity. 
These theoretieal predictions had to wait till the 1960s for observational 
confirrnation; in the meantime, these eonsequenees of the Fermi-Dirac 
statisties first eaused quite a surf, at the forefront of which stood Edding
ton, an astronomer eommanding an imposing authority, who is reported 
to have spoken of a reductio ad absurdum ealling for the interposition 
of an as yet unknown fundamental theory. For the unfolding of the res
olution of the eonflict, cf. e.g. [53], the title of which already indicates 
the eomplete extent to which Chandrasekhar was ultimately vindicated. 
Chandrasekhar however did not pursue this line of research past the syn
thesis he presented in [17]) (see in particular Chap. XI). Nevertheless, 



Indian Contributions to Quantum Statistics 271 

he revisited in the mid-1960s the quest ion of the general-relativistic 
stability of stars. 

The early period of Chandmsekhar's diverse aetivities - the most 
pertinent to my purpose here - ealls for three re marks relative to the 
emergenee of quantum statistics in India. The first remark is that while 
[15] - aeeepted upon Fowler's recommendation - is widely acknowledged 
as Chandrasekhar's 'first' paper on the subjeet, it was preeeded by an 
earlier paper, really his first publieation, whieh had appeared in volume 
3 (1928) of the Indian Journal 0/ Physics; its very title indicates al
ready the astronomical motivations that were to move Chandrasekhar 
along mueh of his career: it announees unambiguously his interest in the 
"Thermodynamics of the Compton Effeet" (eompare with [15]) "with 
Referenee to the Interior of the Stars." 

The seeond remark is to draw attention to the mention, in the title 
of [15] of the 'New Statistics': in the matter of a few months sinee his 
eneounter with Sommerfeld reealled above, Chandrasekhar had eaught 
the gist of the Fermi-Dime statistics. The Fowler-:-Chandrasekhar pa
pers truly rank among the very first and perhaps the most speetaeular 
applieations of the Fermi-Dime statisties, right with the semi-classical 
theory of multi-electron atoms proposed independently in 1927-1928 by 
Thomas and by Fermi (who had proposed in 1926 the statistics that 
bears his name); and the 1928 Sommerfeld theory of eleetrons in met
als. The impact of the diseovery of the Chandrasekhar limit may be 
eompared with the predietion of the superfluid eondensate in perfeet 
quantum gases obeying the Bose-Einstein statisties (see Subseetion 2.l. 
above). 

My third remark eoneerns the way Chandrasekhar later eonsidered 
quantum statisties: "It is somewhat misleading to use the word 'statis
ties' in 'Einstein-Bose statisties' and 'Fermi-Dime statistics.' There is 
only one statisties, namely the Gibbs statisties ... the symmetrie al and 
antisymmetrical eases simply eorrespond to two different assumptions ... 
but nevertheless, we have the same statistical theory (Gibbs) underlying 
both eases. It would be more logical to refer to 'Einstein-Bose formulae' 
and 'Fermi-Dime formulae'." [17, p.384, fn.5]. The reason for this foot
note seems to have lost some of its bite today, perhaps partly in view 
of the spin-statisties theorem of quantum field theory; another reason 
might be more idiosyneratie: classical meehanics and classical statistics 
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were to take an increasingly more important place in Chandrasekhar's 
career; cf. for instance the masterful paper [18] that he reportedly had 
first prepared for his own use and published only at the insistence of von 
Neumann. I find it interesting to note here, from [65, p.i], that during 
the summer of 1928 Chandrasekhar had visited his unde C.V. Raman 
in Calcutta, who was active on both fronts of physics, quantum and 
dassical: the Raman efIect had just been discovered, and the Einstein-
8molukowski theory of fluctuations had recently been called upon - and 
refined - to account for light scattering in fluids; see 8ubsection 2.2 
above. Perhaps in a belated reflection of this earlyencounter, Chan
drasekhar selected in [19] "... aseries of papers which 8molukowski 
wrote during the last five years of his life, papers in which the founda
tions of the modern theory of stochastic pro ces ses were laid ... " 

2.4 Prasanta Chandra Mahalanobis, 1893-1972 

As the eminence of statistical studies in India is inseparable from Maha
lanobis' name, it may be worth mentioning, in an essay on the contribu
tions of Indian mathematicians to quantum statistics, that Mahalanobis 
hirnself graduated in 1912 with honours in physics from Presidency Col
lege in Calcutta, and that he was the only candidate to achieve First 
Class in Physics when he took the tripos in Cambridge. Furthermore, 
it was from within the Physics department of Presidency College in 
Calcutta that, in the early 1920s, Mahalanobis planted a seed, the 8ta
tistical Laboratory, that under his tutelage became in 1931 the Indian 
8tatistical Institute, which in 1959 was officially dedared an "Institution 
of National Importance" by an act of Parliament. Indeed, to ensure that 
a flow of new ideas and problems would stimulate its team of statist i
cians, the Institute included, from its beginning, practitioners of other 
disciplines independently organized in a wide variety of departments; 
for the immediate purpose of this essay, suffice it to recall the strong 
tradition maintained in their own fields by the 181 mathematicians and 
physicists who personify the motto of the Institute "Unity in Diversity". 

In the public-relations material distributed by 181, one reads that 
Mahalanobis was a science organizer who disliked all forms of bureau
cracy in science. Be that as it may, the inheritance of this ideal may 
begin to explain how our Indian colleagues manage to maintain their 
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personal scholarly production in difficult interdisciplinary fields, amidst 
often demanding circumstances and extensive administrative responsi
bilities. In this sense also, Mahalanobis ought therefore to be mentioned 
here as one of the pioneers who created ahorne for the educational and 
research initiatives discussed in the next section. As unmistakable signs 
that Mahalanobis' successors have successfully pursued his lofty ideals I 
ought to mention two of them who are directly related to my story: C.R. 
Rao, who lists among his more than 50 Ph.D. students both Varadarajan 
(1960) and Parthasarathy (1962), the contributions of whom I delineate 
in subsections 3.1 and 3.2 below; and the current ISI Director, Kalyan 
B. Sinha, cf. subsection 3.3. 

3 Contemporary Figures 

3.1 Veeravalli S. Varadarajan 

In the 1950s and 1960s the frustrating inconsistencies of quantum field 
theory prompted fundamental re-examinations of the mathematical foun
dations of quantum mechanics laid down in 1932 by von Neumann. The 
henceforth universal Fock space framework - that imprudently extended 
to infinitely many degrees of freedom von Neumann's uniqueness the
orem on the representation of the canonical commutation relations for 
finitely many degrees of freedom - was the first casualty of this on
slaught, as the works by Friedrichs, and by Garding and Wightman, 
unearthed the existence of uncountably many inequivalent irreducible 
representations of the CCR for infinitely many degrees of freedom. 

This discovery was part of a renewed interest in earlier proposals to 
revise the basic axioms of quantum mechanics, namely those by Jordan, 
von Neumann and Wigner (1934) and by Birkhoff and von Neumann 
(1936). 

JvNW's "On an Algebraic Generalization of the Quantum Mechan
ical Formalism" is an attempt to replace the algebra of all bounded 
operators on a Hilbert space, which ends up with a complete classifi
cation of all finite-dimensional Jordan algebras; this approach matured 
in the hands of Segal (1947), and of Haag and Kastler (1964) into the 
C* -algebraic approach to quantum field theory and statistical mechan-
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ics; the conceptual problem of characterizing the Jordan algebras, the 
elements of which are the self-adjoint elements of a C* -algebra, was 
solved in the 1980s by Alfsen and his collaborators. 

BvN's "The Logic of Quantum Theory" focuses on the structure of 
the projectors on a Hilbert space, and is perhaps better characterized 
as the germ of a non-Boolean proposition calculus or, even better, of an 
infinite-dimensional projective geometry. 

This is where Varadarajan enters the story. A mathematician by 
training - M.A. in mathematics and statistics, University of Madras, 
1957; Ph.D. in mathematics, ISI-Calcutta, 1960 - he made a point "to 
mention that it was through the lectures of Prof. G.W. Mackey at Seat
tle in 1961 on the mathematical foundations of quantum mechanics that 
I first began to appreciate the beauty and depth of the subject" [69]. 
As a complement to this tribute to Mackey's influence on the coming 
generation of mathematicians and mathematical physicists throughout 
the world, let me mention also that at the very same time Varadarajan 
was imbibing the physical thinking underlying Mackey's project, some of 
us were learning its mathematical underpinnings - especially systems of 
imprimitivity and induced representations (on which Varadarajan was 
already an expert) - starting from Mackey's mimeographic Chicago lec
ture notes [38] that were circulating at CERN in Geneva and elsewhere 
in Europe. 

Moving forward in time, one discerns that the overarching theme 
of Varadarajan's many-faceted research - much of which conducted at 
UCLA - came to be the mutually stimulating roles geometry, and in 
particular symmetry, plays in mathematics and in physics. 

In mathematics, his efforts were directed first to measure-theoretical 
aspects of, and convergence problems in dassical probability, a field in 
which he wrote an early burst of some fifteen papers in a span of five 
years; his research turned then to the representation theory of Lie groups 
and algebras, its first published result being [47]. He later established 
hirnself as one of the dosest followers, the best interpreter and heir of 
Harish-Chandra who, after a presentation by Varadarajan, indeed told 
hirn that "he was very pleased ... and feIt like a composer meeting a 
conductor." [70, p.32]. Varadarajan's mathematical purview extends 
as weIl to the theory of fiber bundles and connections, cr. e.g. [73] 
in which the physics reader is treated to a grand tour from Weyl and 
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Dirac, through Bohm-Aharanov, to Yang-Mills and Atiyah and Bott, 
not to speak of Singer; cf. also [72]. 

Varadarajan's interest in the foundations of quantum mechanics is 
already evidenced in [67] and continues to this day [3, 12]. With regard 
to quantum statistics proper ~ the focus of this essay ~ the projective 
geometry approach Varadarajan chooses in [68] allows hirn to offer what 
I consider to be the best presentation of a central element in the inter
pretation of von Neumann density matrices as quantum states, namely 
Gleason's theorem [68, Thm.4.23] and its extension to probability mea
sures on the lattice of projectors of a general von Neumann algebra 
[68, pp.146-147]; the latter thus establish contact, at the representation 
level, with the other branch of quantum axiomatics, the C* -algebraic 
approach (see above). 

3.2 Kalyanapuram Rangachari Parthasarathy 

Shortly after Varadarajan (see subsection 3.1 above), Parthasarathy ob
tained his Ph.D. from ISI~Calcutta in 1962, after having taken the BA 
from the University of Madras in 1956. They actually wrote together 
[47]. With certainly different emphases, they both had acquired a broad 
background in functional analysis allowing them to master measure the
ory and integration, Banach spaces and involutive algebras, and repre
sentations of Lie groups and algebras. Pertaining more immediately to 
Parthasarathy's training in probability, I wish to note his initial stay 
abroad, at the Steklov Mathematical Institute in Moscow (1962-1963). 

Early confiuences, bearing Parthasarathy own stamp, obtained in his 
classicjclassical [42], and his sharp but perhaps somewhat less widely 
known [43]. The collection [9] illustrates the diverse interests Partha
sarathy developed during his career. 

Several of these strands are later braided in his magnum opus [44], 
the official birth certificate of the theory of quantum stochastic processesi 
for a presentation offering additional perspectives, see also [45]. 

Three quest ions must be addressed about the birth of any mathemat
ical theory, and this one is no exception: the first is to account, however 
succinctly, for the gest at ion period; the second concerns the actual time 
and place of its birth; and the third has to do with the resonance of the 
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event. 

Firstly, the gestation period. In this case, one may want to skip 
the archaeological phase (1932-1947) in which the physical concepts 
and mathematical tools were devised that allowed the passage from a 
quantum probability theory for finitely many degrees of freedom, to 
one better adapted to the consideration of systems with infinitely many 
degrees of freedom. Let it suffice here to evoke the spirits of Fock, 
Wiener, Itö and Segal. In the most elementary sense, the question was 
to unify two heretofore separated domains of enquiry, the description of 
the classical, stochastic process behind the evolution equation proposed 
in 1908 by Langevin for the Brownian motion of a particle in a viscous 
stochastic medium 

dv/dt = -,v + ~(t) ( 3.1) 

with v the velo city, , the coefficient of viscosity, and ~ a random function, 
the time average of which vanishes; and the quantum, deterministic 
evolution described by the Heisenberg equation 

dB/dt = i [H,B] ( 3.2) 

where Band H are self-adjoint linear operators acting on a Hilbert 
space, with B representing an observable, and H the Hamiltonian; equiv
alently, upon viewing [H, .] as a derivation, the latter may be written 
more intuitively in the Liouville form dB / dt = i.c[ B]. In the modern 
era, the problem is brought in context by mentioning, on one side, the 
work of Itö, cf. Iteka and Watanabe (1981); and, on the other side, 
the seminal contributions of Segal (1956, 1960), Streater (1969), Araki 
(1970), Parthasarathy and Schmidt (1972), Hudson and Cockroft (1977), 
Hudson (1980), or Barnet, Streater and Wilde (1982); Accardi, Frigerio 
and Lewis (1982); cf. Hudson [30] who does speak with a particular 
authority allowing for the expression of some freely admitted personal 
bias; some of these may have been softened by a few additions in the 
above list, still incomplete, even as it is limited to the years preceding 
1984 for reasons to be presently explained. 

Secondly, the actual birth place of the theory of quantum stochastic 
processes is generally marked as the papers ofHudson and Parthasarathy 
[32, 33, 34]; see already [31] for an early appearance of the quantum 
stochastic differential equation which they will use to describe quantum 
diffusion. 
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Thirdly, the resonance. While the above line travels mainly through 
territories where the language of quantum physics is spoken, the waves 
reached quite rapidly the French coast where classical probabilists viewed 
the event as a mathematically genuine generalization of their lallguage, 
requiring llew techniques; one of the most influential advocates of the re
quired reformulations is Paul-Andre Meyer in whose work [39] the change 
in perspective is explicitly implemented. Parthasarathy also found it ill
structive to sketch an outline of quantum stochastic calculus that nev
ertheless allows hirn to demonstrate how the familiar classical Markov 
processes can be realized in the quantum framework [46]. Yet, as echo es 
were also heard from furt her intellectual shores: "Quantum probability 
has been parodied, and indeed bitterly criticized, as an industry consist
ing in proving non-commutative analogues of well-known commutative 
theorems. In my opinion it is, or should be, not hing of the kind ... " 
[29]. Indeed, no one here would represent differential geometry as just 
generalizing Euclidean geometry to curved manifolds. Hudson contin
ues, offering his own view of quantum stochastic theory: "It illhabits 
a non-commutative, quantum world which is fundamentally different 
and new, and which completely transcends conventional mathematical 
experience." One of the talents of Parthasarathy is to combine unflap
pable firmness, steady diligence, and a necessary dose of that Indian 
ingredient, patience. As already mentioned, these were recognized by 
the request that he present [45]. Another tribute to these talents is 
the creation of the flourishing school of quantum stochastic theory in 
India, going hand-in-hand with its perhaps more outspoken counter
part in England. Indeed, this development is in large part a deliberate 
consequence of Parthasarathy's dedication which is evidenced - perhaps 
unwittingly - by his message to Sridharan, one of the organizers of "a 
useful symposium which could inspire the young colleagues of Seshadri 
to stay in India and bring up a new generation of mathematicians" [37, 
p.xxv]. 

3.3 Kalyan Bidhan Sinha 

Sinha joined Parthasarathy at ISI-Delhi in 1978. He had taken his 
Ph.D. in Physics (1969) from the University of Rochester, where he had 
joined us in 1965, fresh from a M.Sc. from the University of Delhi; his 
B.Sc was from Presidency College, Calcutta, 1963. I am pleased to say 
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here again that the young faculty members of the physics department at 
Rochester - which I joined in 1966 - had their pick from a long parade of 
brilliant Indian Ph.D. students attracted there by the reputation of our 
eminent senior colleagues, Robert Marshak, Emil Wolf, Leonard Man
del, Bruce French, and Susumu Okubo. Some students, like Sudarshan 
who had worked with Marshak, helped in no small way in establishing 
our appeal; others, more adventurous perhaps, choose recent arrivals, 
and I was fortunate indeed that Kalyan approached me in the very first 
weeks after I had arrived in Rochester. As part of his own research pro
gramme, he attended my classes and seminars on the algebraic approach 
to statistical mechanics and field theory, just at the time when Marshak 
had commissioned me to write a book on the subject [24]; the book it
self appeared after Kalyan had left, but several footnotes bring explicit 
witness to his early mastery, part of which, I am sure he acquired from 
his interaction in Rochester with athen post-doctoral associate of mine, 
Richard Herman. 

Having finished his Ph.D. with me, Kalyan joined my own former 
Ph.D. advisor, J.M. Jauch in Geneva, where the second phase of his 
training was completed. Werner Amrein and Kalyan Sinha drove to 
completion the book [2] on the rigorous mathematical treatment of par
ticle scattering in quantum mechanics, an oeuvre which Jauch had left 
in outline at the time of his unexpected death in 1974. After the book 
had appeared, and was greeted with universal acclaim, Kalyan contin
ued along this line of research, first in various positions he occupied in 
Europe, North America, and Brazil, and then upon his return in India, 
where he started training his own graduate students. 

The theory of quantum stochastic processes seemed to be pretty 
much set on its path when Kalyan joined Parthasarathy at ISI-Delhi. 
Their first papers indeed confirmed its increasing scope [48]; see also [40, 
1,49]; and for reviews, see [55] and [57] respectively; these advances were 
gained in part by taking furt her advantage of techniques in functional 
analysis and operator algebra theory which Kalyan had acquired in his 
earlier and diverse activities in mathematical physics. 

As these techniques were opening new vistas in modern geometry, 
Parthasarathy, Sinha, their collaborators and their students were ready 
for the extension of quantum stochastic processes to general von Neu
mann algebras [27, 26] and non-commutative manifolds [13, 14, 56]. 
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At this point, the quest ion must be asked as to whether these beau
tiful mathematical constructs may have as immediate an impact on our 
physical understanding of this world as had their classical counterparts. 

From my own vantage point in non-equilibrium statistical mechan
ics, I am particularly impressed by the fact that a bridge is now con
structed from both ends of the problem. Traditionally, we had started 
from the quantum mechanics of finite systems, then taking their infinite 
thermodynamicallimit and various mixed limits - e.g. long-timejweak 
coupling - to focus on the appropriate regimes. Beyond this mid-point, 
we aimed at obtaining - and in particular cases, we did obtain - by a 
projection on the proper subalgebra of relevant observables, some con
tractive semigroups of completely positive maps, such as those encoun
tered in the actual phenomenological world, e.g. those described by the 
Bloch equation in quantum spin relaxation or electric conductivity. 

Thus, those of us who are involved in trying to obtain quantitative 
microscopic explanations of transport phenomena would be happy to get 
from the quantum stochastic calculus some information on the mathe
matical structures encountered at the mid-point of the putative bridge, 
as this calculus starts from the semigroups and constructs their stochas
tic dilations in ways that can be viewed as canonical. Enthusiasts of 
the new canon may even speculate that travelling the road by way of 
stochastic dilations is a11 there is: what was envisaged as the 'mid-point' 
may be what the microscopic world ultimately looks like, a brand-new 
challenging world indeed. 

3.4 Mandyam Doddamane Srinivas 

The work of Srinivas offers original insights towards an approach to 
quantum stochastic processes, although the name of some of the pre
cursors - notably J.T. Lewis - appeared also in subsection 3.2 above. 
The motivations here are quite different, reflecting the fact that, as a 
physics graduate student in Rochester during the 1970s, Srinivas found 
hirnself at the confluence of two streams: quantum axiomatics and quan
tum optics. The first was initiated upon my own arrival in Rochester 
a few years before Srinivas joined us; the second was dominated on the 
theoretical side by an eminent pilot, Emil Wolf, and on the other side 
by the pioneering experiments conducted in the laboratory directed by 
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Leonard Mandel. Although Srinivas and I had several happy discus
sions together, as explicitly acknowledged in [59], Wolf - who had also 
directed recently the thesis of G.S. Agarwal, yet another of the brilliant 
Indian students in Rochester - became Srinivas' Ph.D. advisor and they 
wrote several papers together; cf. e.g. [63]. Srinivas completed his Ph.D. 
thesis in 1976. 

Srinivas' own motivation to study quantum stochastic pro ces ses 
comes from a critique of von Neumann's description of the quantum 
measurement process on two accounts: (1) the traditional presentation 
is limited to the measurement of observables with purely discrete spec
trum; and (2) no provision is made for repeated measurements, nor a 
fortiori for measurements carried on continuously in time. His critique 
[59] challenges the concept of so-called "experimentally verifiable propo
sitions" , and examines means to replace it by not ions that reflect more 
closely experimental procedures such as "operations", "instruments", 
and "effects". 

Again, as narrated in the preceding subsection, proposals such as 
these do not spring out of thin air; they cannot be entirely new, and they 
follow steps taken earlier by others. Here, I should certainly refer to the 
inspirations of G. Ludwig (1967), and especially to the contributions of 
J.T. Lewis and E.B. Davies (1969); some ofthe latter are systematically 
developed by Davies in [20], who does cite the above paper by Srinivas. 

Srinivas later contributed several responses - among which [60] - to 
the challenges just described. For applications to the original motivation 
in quantum optics, cf. [62]. These, as weIl as other related papers by 
Srinivas, are collected in [61]. 

4 Concluding re marks 

I aimed at presenting some of the circumstantial evidences for the H ow 
and Why of quantum statistics in India, as they do appear to an outsider; 
and I hope that my account can prove useful, however biased it may be 
by my being a mathematical physicist whose career had to unfold on 
foreign soils. What I see from this position is that a vital Indian school 
of quantum statistics has been created, enhanced by deliberate cross
fertilizations between diverse scientific disciplines. I expect that any 
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revision of this essay in a not too distant future will be able to sight also 
the rising stars of quantum communication theory, and to focus more 
on ideas than on personalities, thus reflecting the staying power of the 
field rather than the genius of its early leaders. 
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