
GPU-Based Parallel Computing
for the Simulation of Complex Multibody
Systems with Unilateral and Bilateral
Constraints: An Overview

Alessandro Tasora, Dan Negrut, and Mihai Anitescu

Abstract This work reports on advances in large-scale multibody dynamics
simulation facilitated by the use of the Graphics Processing Unit (GPU). A de-
scription of the GPU execution model along with its memory spaces is provided to
illustrate its potential parallel scientific computing. The equations of motion associ-
ated with the dynamics of large system of rigid bodies are introduced and a solution
method is presented. The solution method is designed to map well on the parallel
hardware, which is demonstrated by an order of magnitude reductions in simulation
time for large systems that concern the dynamics of granular material. One of the
salient attributes of the solution method is its linear scaling with the dimension
of the problem. This is due to efficient algorithms that handle in linear time both
the collision detection and the solution of the nonlinear complementarity problem
associated with the proposed approach. The current implementation supports the
simulation of systems with more than one million bodies on commodity desktops.
Efforts are under way to extend this number to hundreds of millions of bodies on
small affordable clusters.

1 Introduction

Gauging through simulation the mobility of tracked and/or wheeled vehicles on
granular terrain (sand and/or gravel) for commercial (construction equipment in-
dustry), military (off-road mobility), and deep space exploration (Rover mobility

A. Tasora (�)
University of Parma, Parma, Italy
e-mail: tasora@ied.unipr.it

D. Negrut
University of Wisconsin, Madison, WI-53706, USA
e-mail: negrut@wisc.edu

M. Anitescu
Argonne National Laboratory, Argonne, IL-60439, USA
e-mail: anitescu@mcs.anl.gov

K. Arczewski et al. (eds.), Multibody Dynamics: Computational Methods
and Applications, Computational Methods in Applied Sciences 23,
DOI 10.1007/978-90-481-9971-6 14, c� Springer Science+Business Media B.V. 2011

283

tasora@ied.unipr.it
negrut@wisc.edu
anitescu@mcs.anl.gov

284 A. Tasora et al.

on Martian terrain) applications leads to very challenging multibody dynamics
problems. In the past, when applicable, the only feasible approach to these and other
granular dynamics dominated problems was to approximate the discrete nature of
the material with a continuum representation. For the classes of problems of interest
here, such as material mixing, vehicle mobility on sand, piling up of granular bulk
material, the flow in pebble bed nuclear reactors, rate of flow in silos, stability of
brick buildings to earthquakes, etc., a continuum representation of the problem is ei-
ther inadequate or paints with too wide of a brush the dynamics of interest. Tackling
head on the discrete problem, characterized by a large number of bodies that inter-
act through frictional contact and might have vastly different mass/inertia attributes,
has not been feasible in the past.

The computational multibody dynamics landscape has experienced recently
changes fueled by both external and internal factors. In terms of the former, se-
quential computing appears to lose momentum at a time when the microprocessor
industry ushers in commodity many-core hardware. In terms of internal factors,
contributions made in understanding and handling frictional contact [1–11], have
led to robust numerical algorithms that can tackle sizeable granular dynamics prob-
lems. This paper discusses how the interplay of these two factors will enable in
the near future a discrete approach to investigating the dynamics of systems with
hundreds of millions of rigid bodies.

The paper is organized as follows. Section 2 starts with a brief discussion of three
roadblocks that adversely impact the potential of sequential computing and limit
its future role in computational science in general, and computational multibody
dynamics in particular. An argument is made that in large scale multibody dynam-
ics emphasis should be placed on implementations that can leverage commodity
high performance parallel computing. In this context, an overview is presented of
NVIDIA’s hardware architecture, which is adopted herein when tackling large scale
multibody dynamics problems. The discussion focuses on a description of the par-
allel execution model, execution scheduling, and memory layout. Section 3 details
how large scale frictional contact problems associated with granular dynamics are
solved by a computational approach that maps well onto parallel execution hard-
ware available on the GPU. The approach implemented has two compute intensive
parts: the solution of a cone complementarity problem (CCP) and the resolution
of a collision detection (CD) analysis. In both cases, the solution embraced draws
on parallel computing and a discussion of the CCP algorithm adopted concludes
Section 3. Section 4 demonstrates the use of the solution approach implemented.
First, the paper briefly reports on the largest granular dynamics problems solved us-
ing the methodology discussed in Section 3. Next, a pebble bed nuclear reactor flow
problem compares the efficiency of the parallel implementation on the GPU to that
of the sequential implementation. The paper closes with concluding remarks and a
discussion of future directions of research.

Invited Papers from Multibody Dynamics 2009 285

2 Review of Computing on the Graphics Processing Unit

As pointed out in [12], three road blocks prevent traditional sequential computing
from experiencing future major gains in flop rate: the memory block, the instruction
level parallelism block, and the power dissipation block. The first one is a conse-
quence of the fact that as the data processing power of a CPU core increases, the
number of memory transactions in the time unit also goes up. From 1986 to 2000,
CPU speed improved at an annual rate of 55% while memory access speed only
improved at a 10% rate. One outcome of this trend was an increase in the likelihood
of cache misses, which have been partially alleviated by employing hyper-threading
technologies and considering ever increasing cache memories. Nonetheless, cache
misses occur and they lead to the CPU waiting for chunks of data moved over a
32.5 GB/s connection that currently connects the CPU to the RAM. The second
block stems from the exhaustion of the idea of speculative execution of future
instructions to produce results ahead of time and make them available to the pro-
cessor in case the actual computational path was correctly anticipated. However,
this speculative execution strategy necessitates power and is plagued by a combina-
torial increase in the number of possible computational paths. This translates into
a short future execution horizon that can be sampled by these techniques. The at-
tractive attribute of this strategy is that the programmer doesn’t have to do anything
to speed up the code. Instead, the CPU takes upon itself the task of employing this
strategy. On the flip side, this avenue of speeding up execution has been thoroughly
taken advantage of and its potential has been already fulfilled. Thirdly, the amount
of power dissipated by a CPU/unit area has approached that of a nuclear plant [13].
Since the power dissipated is proportional to the square of the microprocessor clock
frequency, it becomes apparent that significant microprocessor frequency increases,
which were primarily responsible for past reductions in computational times in com-
modity scientific computing, are a thing of the past.

One bright spot in this bleak background against which the future of commodity
hardware for scientific computing is projected comes from the consensus in the
microprocessor industry that for at least one more decade Moore’s law will hold.
The law states that the number of transistors that can be placed inexpensively on
an integrated circuit is doubling approximately every 2 years. Since this translates
into a steady increase in the number of microprocessors that can be packed on the
unit area, Moore’s law indirectly defines the source of future increases in flop rate
in scientific computing. Specifically, rather than hoping for frequency gains, one
will have to count on an increase in number of cores as the means for speeding up
simulation.

Figure 1 confirms this trend by comparing top flop rates for the CPU and GPU.
Since the plot compares double precision (DP) CPU flop rates with single precision
(SP) rates for the GPU, the relevant point is not made by the absolute values. Rather,
the trends are more important: the slope for the CPU is significantly smaller than
that of the GPU. Table 1 partially explains the momentum behind parallel comput-
ing on the GPU. The last generation of NVIDIA cards packs 1.4 billion transistors,
reaching 3 billion with the release of Fermi in early 2010, to produce a GPU with

286 A. Tasora et al.

Fig. 1 Evolution of flop rate, comparison CPU vs. GPU

Table 1 CPU vs. GPU comparison. Flop rates reported
are in single precision (SP) for the GPU and double preci-
sion (DP) for the CPU

Tesla C1060 Intel I7 975 Extreme

Cores 240 4
Memory 4 GB 32 KB L1 cache/core

256 KB L2 cache/core
8 MB L3 for all cores

Clock 1.33 GHz 3.20 GHz
Bandwidth 102 GB/s 32.0 GB/s
FLOPS 933 � 109 (SP) 70 � 109 (DP)

240 scalar processors, or 512 on Fermi. Their clock frequency is lower, that is,
1.33GHz, thus partially alleviating the heat dissipation issue. Yet, the GPU compen-
sates through a larger memory bandwidth (likely to increase to more than 200 GB/s
on Fermi) and sheer number of scalar processors.

The idea of using the graphics card for scientific computing dates back more
than one decade. Their use was motivated by the sheer amount of computational
power available on the GPU. Fueled by a steady demand for a more realistic video
game experience, the GPU experienced a continuous increase in flop rate to facili-
tate the rendering of more realistic visual effects at a rate of 20 frames/s or higher.
The original graphics pipeline operated through graphics shaders and was meant to
perform the same set of operations on multiple data sets. The data here is the infor-
mation associated with a pixel; the operations were the set of instructions necessary
to determine the state of each pixel of the screen. At high resolutions, this required
a large number of threads to process in parallel the information that would make
possible the output of one frame. This computational model, in which one set of
instructions is applied for many instances of data, is called SIMD (single instruc-
tion multiple data). It is the paradigm behind processing data on the GPU and was
leveraged before 2006 by drawing on existing graphics application programming
interfaces (API) such as OpenGL and DirectX.

Invited Papers from Multibody Dynamics 2009 287

However, scientific computing through a graphics API was both cumbersome
and rigid. It was cumbersome since any data processing task had to be cast into a
shader operation. This either required a lot of imagination, or outright prevented
one from using GPU computing for more complicated tasks. The approach was also
rigid in that it only allowed a limited number of memory transaction operations
(for instance one thread could only write to one memory location), it lacked certain
arithmetic operations (such as integer and bit operations), and implementation of
the IEEE754 standard for arithmetic operations was of secondary importance.

The GPU computation landscape was revolutionized by the release in 2006 of
the version 1.0 of the CUDA Software Development Kit (SDK) and library [14],
which eliminated the vast majority of the barriers that prevented the use of the GPU
for scientific computing. CUDA allows the user to write “C with extensions” code
to directly tap into the computational resources of the GPU through a run-time API.
The CPU, typically called the host, is linked to the GPU, called the device, through
a Peripheral Component Interconnect Express 2.0 (PCIe 2:0 � 16) connection. This
connection supports an 8.0 GB/s data transfer rate and represents the conduit for
data exchange between the host and device.

The hardware layout of the latest generation of NVIDIA graphics cards for scien-
tific computation called Tesla is schematically shown in Fig. 2. The GPU is regarded
as one big Stream Processor Array (SPA) that for the Tesla C1060 hosts a collection
of 10 Texture Processor Clusters (TPC). Each TPC is made of a texture block (called
TEX in Fig. 2), and more importantly, of three Stream Multiprocessors (SM). The
SM, sometimes also called the multiprocessor, is the quantum of scalability for the
GPU hardware. Thus, entry level graphics cards might have four SMs, such as is

Fig. 2 Hardware layout for the Tesla C1060 card. The SPA has ten TPCs, each with three SMs,
each of which has eight SPs for a total of 240 SPs

288 A. Tasora et al.

the case for GPUs like NVIDIA’s 9700M GT which are used in computer laptops.
High end GPUs, such as the NVIDIA GTX 280, have 30 SMs. The Tesla C1060 has
also 30 SMs since the SPA has ten TPCs, each with three SMs. Finally, each SM
has eight Scalar Processors (SP). It is these SPs that eventually execute the instruc-
tions associated with each function that is processed on the GPU. Specifically, the
device acts as a co-processor for the host, which sends down to the device tasks for
parallel execution. For this computational model to be effective, at least two require-
ments must be met. First, the ratio of arithmetic operations to data transfer should
be high enough to cover the transfer overhead associated with the 8.0 GB/s data
transfer from host to device for processing, and then back to the host for subsequent
use. Second, the task sent for completion on the GPU, encapsulated in a C function
called kernel, should have a high level of fine grain SIMD type parallelism.

For effective use of the available SMs, a kernel function must typically be ex-
ecuted by a number of threads in excess of 30,000. In fact, the more threads are
launched, the larger the chance of full utilization of the GPU’s resources. It should
be pointed out that there is no contradiction in 240 SPs being expected to process
hundreds of thousands or millions of parallel invocations of a kernel function. In
practice, the largest number of times a kernel can be asked to be executed on Tesla
C1060 is more than two trillion (65;535 � 65;535 � 512) times.

When discussing about running kernels on the GPU, it is important to make a
distinction between being able to execute a kernel function a large number times,
and having these executions run in parallel. In practice, provisions should be made
that there are enough instances of the kernel function that are lined up for execu-
tion so that the 240 SPs never become idle. This explains the speed-ups reported
in conjunction with GPU computing when applications in image processing, quan-
tum chemistry, and finance have run up to 150 times faster on the GPU although
the peak flop rate is less than 10 times higher when compared to the CPU. For the
latter, cache misses place the CPU in idle mode waiting for the completion of a
RAM transaction. Conversely, when launching a job on the GPU that calls for a
very large number of executions of a kernel function, chances are that the scheduler
will always find warps, or collections of threads, that are ready for execution. In this
context, the SM scheduler is able to identify and park with almost zero overhead the
warps that wait for memory transaction completion and quickly feed the SM with
warps that are ready for execution. The SM scheduler (which manages the “Instruc-
tion Fetch/Dispatch” block in Fig. 2) can keep tabs on a pool of up to 32 warps of
threads, where each warp is a collection of 32 threads that are effectively executed
in parallel. Thus, for each SM, the scheduler jumps around with very little overhead
in an attempt to find, out of the 32 active warps, the next warp ready for execution.
This effectively hides memory access latency.

Note that the number of threads that are executed in parallel (32 of them), is
typically orders of magnitude smaller than the number of times the kernel function
will be executed by a user specified number of threads. The latter can be specified
through a so called execution configuration, which is an argument passed along
to the GPU with each kernel function call. The execution configuration is defined
by specifying the number of blocks of threads that the user desires to launch.

Invited Papers from Multibody Dynamics 2009 289

The maximum number of blocks is 65;535 � 65;535; i.e., one can specify a two
dimensional grid of blocks. Additionally, one has to indicate the number of threads
that each block will be made up of. There is an upper limit of threads in a block,
which currently is set to 512. When invoking an execution configuration, that is
a grid of m blocks each with n of threads, the kernel function that is invoked to
be executed on the device will be executed a number of m � n times. In terms of
scheduling, the m blocks are assigned to the available SMs and therefore a high
end GPU comes ahead since the m blocks will end up assigned to four SMs on an
entry level GPU, or to 30 SMs on a high end GPU. The assignment of blocks to
SMs might lead to the simultaneous execution of more than one block/SM. Yet, this
number cannot be larger than eight, which is more than sufficient since when they
land on the same SM the eight blocks of threads are supposed to share resources.
Indeed, due to the limited number of registers and amount of shared memory avail-
able on a SM, a sharing of resources between many threads (n� the number of
blocks executed on the SM) makes very unlikely the scenario of having a large
number of blocks simultaneously running on one SM.

In terms of block scheduling, as one block of threads finishes the execution of
the kernel function on a certain SM, another block of threads waiting to execute is
assigned to the SM. Consequently, the device should be able to do scheduling at
two levels. The first is associated with the assignment of a block to an SM that is
ready to accept a new block for execution. What simplifies the scheduling here is
the lack of time slicing associated with block execution: if a block is accepted for
execution on an SM, no other block is accepted by that SM before it finishes the
execution of a block that it is already dealing with. The second level of scheduling,
which is more challenging, has to do with the scheduling for execution of one of the
potentially 32 warps of threads that each SM can handle at any given time. Note that
all the 32 threads in one warp execute the same instruction, even though this means,
like in the case of if-then-else statements, serializing the code of the if-branches
and running no-ops for certain threads in the warp (this thread divergence adversely
impacts overall performance and should be avoided whenever possible). However,
when switching between different warps, the SM typically executes different in-
structions when handling different warps; in other words, time slicing is present in
thread execution.

In conclusion, one Tesla C1060, can be delegated with the execution of a kernel
function up to approximately 2 trillion times. However, at each time, since there
are 30 SMs available in this card, it will actively execute at most 30;720 D 30 � 32

warps � 32 threads at any time. Moreover, as shown in Fig. 3, existing motherboards
can accommodate up to four Tesla C1060 cards, which effectively supports up to
122;880 D 4 � 30;720 threads being active at the same time. The single precision
flop rate of this setup is approximately 3,600 billion operations/s.

It was alluded before that one of the factors that prevent an SM from actually
running at full potential; i.e., managing simultaneously 32 warps of threads, is the
exhaustion of shared memory and/or register resources. Each SM has 16 KB of
shared memory in addition to 16,384 four byte registers. If the execution of the
kernel function requires a large amount of either shared memory or registers, it is

290 A. Tasora et al.

Fig. 3 Image of GPU and desktop with a set of four cards that can be controlled by one CPU.
There is no direct memory access between the four GPUs. The HW configuration in the figure
is as follows. Processor: AMD Phenom II X4 940 Black Edition. Power supply 1: Silverstone
OP1000-E 1000W. Power supply 2: Corsair CMPSU-750TX 750W. Memory: G.SKILL 16GB (4�
4 GB) 240-Pin DDR2. Case: LIAN LI PC-P80 ATX Full Tower. Motherboard: Foxconn Destroyer
NVIDIA nForce 780a SLI. HDD: Western Digital Caviar Black 1TB 7200 RPM 3.0 Gb/s. HSF:
Stock AMD. Graphics: 4x NVIDIA Tesla C1060

clear that the SM does not have enough memory available to host too many threads
executing the considered kernel. Consequently, the ability of the SM to hide global
memory access latencies with arithmetic instructions decreases since there are less
warps that it can switch between.

In addition to shared memory and registers, as shown in Fig. 4, each thread has
access to global memory (4 GB of it on a Tesla C1060), constant memory (64 KB),
and texture memory, the latter in an amount that is somewhat configurable but close
to the amount of constant memory. Additionally, there is so called local memory
used to store data that is not lucky enough to occupy a register and ends up in the
global memory (register overflow). Effectively, local memory is virtual memory that
is carved out of the global memory and, in spite of the word “local”, it is associated
with high latency. In this context, accessing data in registers has practically no la-
tency, shared memory transactions have less than four clock cycles of latency, as
do cached constant and texture memory accesses. Global memory transactions are
never cached and, just like un-cached constant and texture memory accesses or ac-
cesses to local memory, they incur latencies of the order of 600 clock cycles. Note
that typically the device does not have direct access to host memory. There are ways
to circumvent this by using mapped page-locked memory transactions, but this is an
advanced feature not discussed here.

For the GPU to assist through co-processing a job run on the CPU, the host
must first allocate memory and move data through the PCI connection into the de-
vice memory (global, texture, or constant memory spaces). Subsequently, a kernel
function is launched on the GPU to process data that resides in the device mem-
ory. At that point, blocks of threads executing the kernel function access data
stored in device memory. In unsophisticated kernels they can immediately pro-
cess the data; alternatively, in more sophisticated kernel functions, they can use the

Invited Papers from Multibody Dynamics 2009 291

Fig. 4 GPU memory layout.
Device memory refers to the
combination of global,
texture, and constant memory
spaces. Arrows indicate the
way data can move between
different memory spaces and
SM. While the device
memory is available to
threads running on any SM,
the registers, shared memory,
and cached constant and
texture data is specific
to each SM

shared memory and registers to store the data locally and thus avoid costly device
memory accesses. If avoiding repeated data transfers between host and device is
the first most important rule for effective GPU computing, avoiding repeated high-
latency calls to device memory is the second most important rule to be observed in
GPU computing. It should be pointed out that device memory access can be made
even more costly when the access is not structured (uncoalesced). Using CUDA
terminology, the device memory accesses result in multiple transactions if the data
accessed by a warp of threads is scattered rather than nicely coalesced (contiguous)
in memory. For more details, the interested reader is referred to [14].

One common strategy for avoiding race conditions in parallel computing is the
synchronization of the execution at various points of the code. In CUDA, synchro-
nization is possible but with a caveat. Specifically, threads that execute the kernel
function yet belong to different blocks cannot be synchronized. This is a conse-
quence of the earlier observation that there is no time slicing involved in block
execution. When there are thousands of blocks that are lined up for execution wait-
ing for their turn on one of the 30 SM of a Tesla C1060, it is clear that there can be no
synchronization between a thread that belongs to the first block and one that belongs
to the last block that might get executed much later and on a different SM. Overall
synchronization can be obtained by breaking the algorithm in two kernel functions
right at the point where synchronization is desired. Thus, after the execution of the
first kernel the control is rendered back to the host, which upon the invocation of
the subsequent kernel ensures that all threads start on equal footing. This approach
is feasible since the device memory is persistent between subsequent kernel calls
as long as they are made by the same host process. The strategy works albeit at a
small computational cost as there is an overhead associated with each kernel call.

292 A. Tasora et al.

Specifically, the overhead of launching a kernel for execution is on average between
90 �s (when no function arguments are present) and 120 �s (when arguments such
as pointers to device memory are passed in the kernel argument list).

Looking ahead, the next generation of GPU hardware and CUDA software will
make the heterogeneous computing model, where some tasks are executed by the
host and other compute intensive parts of the code are delegated to the GPU, even
more attractive. Slated to be released by March 2010, the Fermi family of GPUs will
have 512 SPs in one SM and up to 1 TB of fast Graphics Double Data Rate, version
5 (GDDR5) memory. Moreover, the current weak double precision performance of
the GPU (about eight times slower than single precision peak performance) will
be improved to clock at half the value of the single precision peak performance.
Finally, on the software side, the CUDA run-time API will provide (a) support for
stream computing where expensive host-device data moving operations can be over-
lapped with kernel execution, and (b) a mechanism to simultaneously execute on
the device different kernels that are data independent. It becomes apparent that if
used for the right type of applications, that is, when the execution bottleneck fits
the SIMD computational model, and if used right, GPU computing can lead to im-
pressive reductions in computational time. Combined with its affordability attribute,
GPU computing will allow scientific computing to tackle large problems that in the
past fell outside the realm of tractable problems. The class of granular dynamics
problems is one such example, where a discrete approach to equation formulation
and solution was not feasible in most cases in the past.

3 Large Scale Multibody Dynamics on the GPU

This section briefly introduces the theoretical background for mechanical systems
made up of multiple rigid bodies whose time evolution is controlled by external
forces, frictional contacts, bilateral constraints and motors.

3.1 The Formulation of the Equations of Motion

The state of a mechanical system with nb rigid bodies in three dimensional space
can be represented by the generalized coordinates

q D
h
rT

1 ; �T
1 ; : : : ; rT

nb
; �T

nb

iT 2 R7nb

and their time derivatives

Pq D
h
PrT

1 ; P�T
1 ; : : : ; PrT

nb
; P�T

nb

iT 2 R7nb ;

Invited Papers from Multibody Dynamics 2009 293

where rj is the absolute position of the center of mass of the j -th body and the
quaternion �j expresses its rotation. One can also introduce the generalized veloc-
ities v D ŒPrT

1 ; N!T
1 ; : : : ; PrT

nb
; N!T

nb
�T 2 R6nb , directly related to Pq by means of the

linear mapping Pq D L.q/v that transforms each angular velocity N!i (expressed in
the local coordinates of the body) into the corresponding quaternion derivative P�i by
means of the linear algebra formula P�i D 1

2
G.�j / N!i , with

G.�j / D
2
4

C�1 C�0 ��3 C�2

C�2 C�3 C�0 ��1

C�3 ��2 C�1 C�0

3
5 :

Mechanical constraints, such as revolute or prismatic joints, can exist between
the parts: they translate into algebraic equations that constrain the relative position
of pairs of bodies. Assuming a set B of constraints is present in the system, they
lead to the scalar equations

‰i .q; t/ D 0; i 2 B:

To ensure that constraints are not violated in terms of velocities, one must also
satisfy the first derivative of the constraint equations, that is

r‰T
i v C @‰i

@t
D 0; i 2 B:

with the Jacobian matrix rq‰i D Œ@‰i=@q�T and r‰T
i D rq‰T

i L.q/. Note that
the term @‰i =@t is null for all scleronomic constraints, but it might be nonzero for
constraints that impose some trajectory or motion law, such as in the case of motors
and actuators.

If contacts between rigid bodies must be taken into consideration, colliding
shapes must be defined for each body. A collision detection algorithm must be used
to provide a set of pairs of contact points for bodies whose shapes are near enough,
so that a set A of inequalities can be used to concisely express the non-penetration
condition between the volumes of the shapes:

ˆi .q/ � 0; i 2 A
Note that for curved convex shapes, such as spheres and ellipsoids, there is a

unique pair of contact points, that is the pair of closest points on their surfaces, but
in case of faceted or non-convex shapes there might be multiple pairs of contact
points, whose definition is not always trivial and whose set may be discontinuous.

Given two bodies in contact A; B 2 f1; 2; : : : ; nbg let ni be the normal at the
contact pointing toward the exterior of body A, and let ui and wi be two vectors
in the contact plane such that ni ; ui ; wi 2 R3 are mutually orthogonal vectors.
When a contact i is active, that is, for ˆi .q/ D 0, the frictional contact force acts on
the system by means of multipliers O”i;n � 0; O”i;u, and O”i;w. Specifically, the normal
component of the contact force acting on body B is Fi;N D O”i;nni and the tangential
component is Fi;T D O”i;uui C O”i;wwi (for body A these forces have the opposite
sign).

294 A. Tasora et al.

Also, according to the Coulomb friction model, in case of nonzero relative
tangential speed, vi;T , the direction of the tangential contact force is aligned to vi;T

and it is proportional to the normal force as kFi;T k D �i;d kFi;N k by means of the
dynamic friction coefficient �i;d 2 RC. However, in case of null tangential speed,
the strength of the tangential force is limited by the inequality kFi;T k D �i;skFi;N k
using a static friction coefficient �i;s 2 RC, and its direction is one of the infinite
tangents to the surface. In our model we assume that �i;d and �i;s have the same
value that we will write �i for simplicity, so the abovementioned Coulomb model
can be stated succinctly as follows:

O�i;n � 0; ˆi .q/ � 0; ˆi .q/ O�i;n D 0;

�i O�i;n �
q

O�2
i;u C O�2

i;w

hFi;T ; vi;T i D �kFi;T k kvi;T k

kvi;T k
�

�i O�i;n �
q

O�2
i;u C O�2

i;w

�
D 0

Note that the condition O”i;n � 0; ˆi .q/ � 0; ˆi .q/ O”i;n D 0 can also be written as
a complementarity constraint: O”i;n � 0 ? ˆi .q/ � 0, see [15]. This model can also
be interpreted as the Karush–Kuhn–Tucker first order conditions of the following
equivalent maximum dissipation principle [6, 16]:

. O�i;u; O�i;w/ D argminq
O�2
i;uC O�2

i;w��i O�i;n

vT
i;T . O�i;uui C O�i;wwi /: (1)

Finally, one should also consider the effect of external forces with the vector of
generalized forces f.t; q; v/ 2 R6nb , that might contain gyroscopic terms, gravita-
tional effects, forces exerted by springs or dampers, and torques applied by motors;
i.e. all forces except joint reaction and frictional contact forces.

Considering the effects of both the set A of frictional contacts and the set B of
bilateral constraints, the system cannot be reduced to either a set ordinary differen-
tial equations (ODEs) of the type Pv D f .q; v; t/, or to a set of differential-algebraic
equation (DAEs). This is because the inequalities and the complementarity con-
straints turn the system into a differential inclusion of the type Pv 2 F.q; v; t/, where
F.�/ is a set-valued multifunction [17]. In fact, the time evolution of the dynamical
system is governed by the following differential variational inequality (DVI):

Pq D L.q/v

MPv D f.t; q; v/ C
X
i2B

O�i;br‰i

C
X
i2A

. O�i;nDi;n C O�i;u Di;u C O�i;w Di;w/

Invited Papers from Multibody Dynamics 2009 295

i 2 B W ‰i .q; t/ D 0

i 2 A W O�i;n � 0 ? ˆi.q/ � 0; and

. O�i;u; O�i;w/ D argmin
�i O�i;n�

q
O�2
i;uC O�2

i;w

vT . O�i;u Di;u C O�i;w Di;w/ (2)

Here, to express the contact forces in generalized coordinates, we used the tan-
gent space generators Di D ŒDi;n; Di;u; Di;w� 2 R6nb�3 that are sparse and are
defined given a pair of contacting bodies A and B as:

DT
i D

h
0 : : : �AT

i;p AT
i;pAA

Qsi;A 0 : : :

0 : : : AT
i;p �AT

i;pAB
Qsi;B 0 : : :

i (3)

Here Ai;p D Œni ; ui ; wi � is the R3�3 matrix of the local coordinates of the i -th
contact, and the vectors si;A and si;B to represent the positions of the contact points
expressed in body coordinates. The skew matrices Qsi;A and Qsi;B are defined as

Qsi;A D
2
4

0 �si;Az Csi;Ay

Csi;Az 0 �si;Ax

�si;Ay
Csi;Ax

0

3
5 ; Qsi;B D

2
4

0 �si;Bz Csi;By

Csi;Bz 0 �si;Bx

�si;By
Csi;Bx

0

3
5

The DVI in (2) can be solved by time-stepping methods. The discretization
requires the solution of a complementarity problem at each time step, and it has
been demonstrated that it converges to the solution to the original differential inclu-
sion for h ! 0 [15, 18]. Moreover, the differential inclusion can be solved in terms
of vector measures: forces can be impulsive and velocities can have discontinuities,
thus supporting also the case of impacts and giving a weak solution to otherwise
unsolvable situations like in the Painlevé paradox [19].

3.2 The Time Stepping Solver

Within the aforementioned measure differential inclusion approach, the unknowns
are not the reaction forces and the accelerations Pv as in usual ODEs or DAEs.
Instead, given a position q.l/ and velocity v.l/ at the time step t .l/, the unknowns are
the impulses ”s, for s D n, u, w, b (that, for smooth constraints, can be interpreted
as O”n D h”n; O”u D h”u; O”w D h”w; O”b D h”b/ and the speeds v.lC1/ at the new
time step t .lC1/ D t .l/ C h. These unknowns are obtained by solving the following
optimization problem with equilibrium constraints [2]:

M.v.lC1/ � v.l// D hf.t .l/; q.l/; v.l// C
X
i2B

�i;br‰i

C
X

i2A.�i;n Di;n C �i;u Di;u C �i;w Di;w/;

296 A. Tasora et al.

i 2 B W 1

h
‰i .q.l/; t/ C r‰T

i v.lC1/ C @‰i

@t
D 0

i 2 A W 0 � 1

h
ˆi .q.l// C DT

i;nv.lC1/? � i
n � 0;

.�i;u; �i;w/ D argmin
�i �i;n�

q
�2

i;uC�2
i;w

vT .�i;u Di;u C �i;w Di;w/

q.lC1/ D q.l/ C hL.q.l//v.lC1/: (4)

The 1
h

ˆi

�
q.l/

�
term is introduced to ensure contact stabilization, and its effect

is discussed in [3]. Similarly, the term 1
h

‰i

�
q.l/

�
achieves stabilization for bilateral

constraints.
Several numerical methods can be used to solve (4). For instance, one can ap-

proximate the Coulomb friction cones in 3D as faceted pyramids, thus leading to a
LCP whose solution is possible by using off-the-shelf pivoting methods. However,
these methods usually require a large computational overhead and can be used only
for a limited number of variables.

Therefore, in a previous work [20] we demonstrated that the problem can be
cast as a monotone optimization problem by introducing a relaxation over the
complementarity constraints, replacing 0 � 1

h
ˆi

�
q.l/

�C DT
i;nv.lC1/ ? ”i

n � 0 with

0 � 1
h

ˆi

�
q.l/

�C DT
i;nv.lC1/ � �i

q�
vT Di;u

�2 C �
vT Di;w

�2 ? � i
n � 0. The solution

of the modified time stepping scheme approaches the solution of the original dif-
ferential inclusion for h ! 0 just as the original scheme [3]. Most importantly, the
modified scheme becomes a Cone Complementarity Problem (CCP), which can be
solved efficiently by an iterative numerical method that relies on projected contrac-
tive maps. Omitting for brevity some of the details discussed in [21], the algorithm
makes use of the following vectors and matrices:

�i;a � f�i;n; �i;u; �i;wgT ; i 2 A;

bi �
�

1

h
ˆi .q.l//; 0; 0

�T

; i 2 A;

bi � 1

h
‰i .q.l/; t/ C @‰i

@t
; i 2 A (5)

The solution of the CCP is obtained by iterating the following expressions on r

until convergence, or until r exceeds a maximum amount of iterations, starting from
v0 D v.l/:

8i 2 A W � rC1
i;a D …‡i

h
� r

i;a � !�i

�
DT

i vr C bi

	i
(6)

8i 2 A W � rC1
i;b

D � r
i;b � !�i

�
r‰T

i vr C bi

	
(7)

Invited Papers from Multibody Dynamics 2009 297

vrC1 D vr C M �1

 X
z2A

Dz�
rC1
z;a C

X
z2B

r‰z�
rC1
z;b C h f.t .l/ ; q.l/ ; v.l//

!
(8)

Note that the superscript (l C 1) was omitted for brevity.
The iterative process uses the projector …‡i

.�/, which is a non-expansive metric
map …‡i

W R3 ! R3 acting on the triplet of multipliers associated with the i -th
contact [20]. In detail, if the multipliers fall into the friction cone

‡i D
n
�i;a 2 R3 W ��2

i;u C �2
i;w

�1=2 � �i �i;n

o

they are not modified; if they are in the polar cone

‡o
i D ˚

xi 2 R3 W hxi ; �i;ai � 0; 8�i;a 2 ‡i

they are set to zero; in the remaining cases they are projected orthogonally onto
the surface of the friction cone. The over-relaxation factor ! and �i parameters are
adjusted to control the convergence. Interested readers are referred to [21] for a
proof of the convergence of this method.

For improved performance, the summation of Eq. (8) can be computed only once
at the beginning of the CCP iteration, while the following updates can be performed
using an incremental version that avoids adding the f.t .l/; q.l/; v.l// term all the
time; in case there is no initial guess for the multipliers and �0

i;b
D 0; �0

i;a D 0,
Eq. (8) turns into:

v0 D v.l/ C M �1h f
�
t .l/; q.l/; v.l/

	
(9)

vrC1 D vr C
X

�vi (10)

where

i 2 A W �vi D
X
i2A

M �1Di �� rC1
i;a

i 2 B W �vi D
X
i2B

M �1r‰i�� rC1
i;b

In the case that only bilateral constraints are used, this method behaves like the
typical fixed-point Jacobi iteration for the solution of linear problems. If one in-
terleaves the update (8) after each time that a single i -th multiplier is computed in
(6) or (7), the resulting scheme behaves like a Gauss–Seidel method. This variant
can benefit from the use of Eq. (10) instead of Eq. (8) because it can increment only
the �vi term corresponding to the constraint that has been just computed. Also,
this immediate update of the speed vector provides better properties of convergence
(especially in case of redundant constraints) but it does not fit well in a parallel
computing environment because of its inherently sequential nature.

298 A. Tasora et al.

3.3 The GPU Formulation of the CCP Solver

Since the CCP iteration is a computational bottleneck of the numerical solution
proposed, a great benefit will follow from an implementation that can take advantage
of the parallel computing resources available on GPU boards.

In the proposed approach, the data structures on the GPU are implemented
as large arrays (buffers) to match the execution model associated with NVIDIA’s
CUDA. Specifically, threads are grouped in rectangular thread blocks, and thread
blocks are arranged in rectangular grids. Four main buffers are used: the contacts
buffer, the constraints buffer, the reduction buffer, and the bodies buffer. Since re-
peated transfers of large data structures can adversely impact the performance of the
entire algorithm, an attempt was made to organize the data structures in a way that
minimized the number of fetch and store operations and maximized the arithmetic
intensity of the kernel code. This ensures that the latency of the global memory can
be hidden by the hardware multithread scheduler if the GPU code interleaves the
memory access with enough arithmetic instructions.

Figure 5 shows the data structure for contacts, which contains two pointers BA

and BB to the two touching bodies. There is no need to store the entire Di matrix
for the i -th contact because it has zero entries everywhere except for the two 12 � 3

blocks corresponding to the coordinates of the two bodies in contact. In detail, we
store only the following 3 � 3 matrices:

DT
i;vA

D �AT
i;p; DT

i;!A
D AT

i;pAA
Qsi;A

DT
i;vB

D AT
i;p; DT

i;!B
D �AT

i;pAB
Qsi;B

Fig. 5 Data structures in GPU global memory

Invited Papers from Multibody Dynamics 2009 299

Once the velocities of the two bodies PrAi
; N!Ai

; PrBi
and N!Bi

have been fetched,
the product DT

i vr in Eq. (6) can be performed as

DT
i vr D DT

i;vA
PrAi

C DT
i;!A

N!Ai
C DT

i;vB
PrBi

C DT
i;!B

N!Bi
(11)

Since DT
i;vA

D �DT
i;vB

, there is no need to store both matrices, so in each contact

data structure only a matrix DT
i;vAB

is stored, which is then used with opposite signs
for each of the two bodies.

Also, the velocity update vector �vi , needed for the sum in Eq. (10) is sparse:
it can be decomposed in small 3 � 1 vectors. Specifically, given the masses and
the inertia tensors of the two bodies mAi

; mBi
; JAi

and JBi
, the term �vi will be

computed and stored in four parts as follows:

�PrAi
D m�1

Ai
Di;vA

�� rC1
i;a ; � N!Ai

D J �1
Ai

Di;!A
�� rC1

i;a

�PrBi
D m�1

Bi
Di;vB

�� rC1
i;a ; � N!Bi

D J �1
Bi

Di;!B
�� rC1

i;a (12)

Note that those four parts of the �vi terms are not stored in the i -th contact or
data structures of the two referenced bodies (because multiple contacts may refer the
same body, hence they would overwrite the same memory position). These velocity
updates are instead stored in the reduction buffer, which will be used to efficiently
perform the summation in Eq. (10). This will be discussed shortly.

The constraints buffer, shown in Fig. 5, is based on a similar concept. Jacobians
r‰i of all scalar constraints are stored in a sparse format, each corresponding
to four rows r‰i;vA

; r‰i;!A
; r‰i;vB

; r‰i;!B
. Therefore the product r‰T

i vr in
Eq. (7) can be performed as the scalar value:

r‰T
i vr D r‰T

i;vA
PrAi

C r‰T
i;!A

!Ai
C r‰T

i;vB
PrBi

C r‰T
i;!B

!Bi
(13)

Also, the four parts of the sparse vector �vi can be computed and stored as

�PrAi
D m�1

Ai
r‰i;vA

�� rC1
i;b

; � N!Ai
D J �1

Ai
r‰i;!A

�� rC1
i;b

�PrBi
D m�1

Bi
r‰i;vB

�� rC1
i;b

; � N!Bi
D J �1

Bi
r‰i;!B

�� rC1
i;b

(14)

Figure 5 shows that each body is represented by a data structure containing the
state (velocity and position), the mass moments of inertia and mass values, and the
external applied force Fj and torque Cj . Those data are needed to compute the CCP
iteration and solve for unknowns.

When it comes to the implementation of the CCP solver on the GPU, using ker-
nels that operate on the abovementioned data buffers, the task is not trivial because
the iteration cannot be performed with a single kernel. In fact, considering the iter-
ation over Eqs. (6), (7), and (10), one can see that Eqs. (6) and (7) fit into parallel
kernels that operate, respectively, one thread per contact and one thread per bilat-
eral constraint. Moreover, the summation in Eq. (10) cannot be easily parallelized

300 A. Tasora et al.

GPU reduction buffer

Body 0

Body 1

Body 2

Constraint

K
er

ne
l:

C
C

P
 c

on
st

ra
in

t
it
er

at
io

n

K
er

ne
l:

se
gm

en
te

d
re

du
ct

io
n

K
er

ne
l:

bo
dy

 v
el

oc
it
y

up
da

te

0

1

2

3

i,vA
∇ΨT

i,vB
∇Ψ

T

0

1

i,ωA
∇Ψ

T

i,ωB
∇ΨT

ηi γibi

0 2 0 0

Constraint

i,vA∇ΨT

i,vB
∇ΨT

0

2

i,ωA
∇ΨT

i,ωB
∇ΨT

ηi γibi

1 3 1 0

rj,x rj,y rj,z

ω j,xω ω j,z

r j,x r j,y r j,z
ej,0 j,1 j,2 j,3

Jj,x Jj,y Jj,x mj

Fj,x Fj,y Fj,z

Cj,x Cj,y Cj,z

-1 -1 -1 -1

0
. . .

rj,x rj,y rj,z

ω ω ω
r j,x r j,y r j,z

ej,0 εj,1 εj,2 εj,3

Jj,x Jj,y Jj,x mj

Fj,x Fj,y Fj,z

Cj,x Cj,y Cj,z

-1 -1 -1 -1

2
. . .

rj,x rj,y rj,z

ω ω ω

r r r
εj,0 εj,1 εj,2 εj,3

Jj,x Jj,y Jj,x mj

F Fj,y Fj,z

C C Cj,z

−1 −1 −1 −1

3
. . .

Δωi 0

Δri
.

Δωi 1

Δri
.

Δωi 0

Δri
.

Δωi 0

Δri
.

 j,y

 j,z j,y j,x

 j,x j,y j,z

 j,z j,y j,x

j,y

j,x

j,x

Fig. 6 Example of reduction buffer for summing up body velocities

in the same way because it may happen that two or more contacts need to add
their velocity updates �vi to the same rigid body: this would cause a race condition
where multiple threads might need to update the same memory value, something
that can cause errors or indefinite/nondeterministic behaviors on the GPU hard-
ware. Therefore, in order to parallelize Eq. (10), a parallel segmented scan algorithm
[22] was adopted that operates on an intermediate reduction buffer (see Fig. 6); this
method sums the values in the buffer using a binary-tree approach that keeps the
computational load well balanced among the many processors. In the example of
Fig. 6, the first constraint refers to bodies 0 and 1, the second to bodies 0 and 2; mul-
tiple updates to body 0 are then accumulated with parallel a segmented reduction.

Note that several other auxiliary kernels that have minimal impact on the compu-
tation time are used to prepare pre-process data before the CCP starts, for example
to compute Eq. (9). Also, to speed up the computation, matrices DT

i;vA
; DT

i;!A
and

DT
i;!B

are not provided by the host; instead they are computed on the GPU using
the data coming from the collision detection code, that is, si;A; si;B and ni .

The following pseudocode shows the sequence of the main computational stages
at each time step, which for the most part are executed as parallel kernels on the
GPU (Table 2).

Stages 1 and 10 can be avoided if one manages to keep all the data on the GPU,
by letting the collision detection engine communicate with the CCP solver directly.
Even if those memory transfers are executed only at the beginning and at the end
of the CCP solution process, their impact on the overall simulation time might be
significant.

Invited Papers from Multibody Dynamics 2009 301

Table 2 Pseudocode for the CCP solver

Stage Context Operations/kernels

1 HOST Copy memory CPU! GPU
Serial Copy contact and body data structures from host memory to

GPU buffers
Copy constraint data (residuals bi and Jacobians) into the

constraint buffer
2 GPU Force kernel

Parallel on
bodies

For each body, compute forces f.t .l/; q.l/; v.l//, if any. Store
these forces and torques into Fj and Cj

3 GPU Contact preprocessing kernel
Parallel on

contacts
For each contact, given contact normal and position, compute in

place the matrices DT
i;vA

, DT
i;!A

and DT
i;!B

, then compute �i

and the contact residual bi D ˚
1
h
ˆi .q/; 0; 0

T

4 GPU CCP force kernel
Parallel on

bodies
For each body j , initialize body velocities:

Pr.lC1/
j D h m�1

j Fj and N!.lC1/
j D h J �1

j Cj

5 GPU CCP contact iteration kernel
Parallel on

contacts
For each contact i, do

”
rC1
i;a D …‡i Œ”

r
i;a � !�i .D

T
i vr C bi /�

Note that DT
i vr is evaluated with sparse data, using Eq. (11)

Store �”
rC1
i;a D ”

rC1
i;a � ”r

i;a in contact buffer. Use Eq. (12) to
compute sparse updates �Pr and � N! to the velocities of the
two connected bodies A and B , and store them in the Ri;A

and Ri;B slots of the reduction buffer
6 GPU CCP constraint iteration kernel

Parallel on
constraints

For each constraint i, do

”
rC1
i;b D ”r

i;b � !�i .r‰T
i vr C bi /:

Note that r‰T
i vr is evaluated with sparse data, using Eq. (11)

Store �”
rC1
i;b D ”

rC1
i;b � ”r

i;b in contact buffer. Use Eq.(14) to
compute sparse updates �Pr and � N! to the velocities of the
two connected bodies A and B , and store them in the Ri;A

and Ri;B slots of the reduction buffer
7 GPU Segmented reduction kernel

Parallel on
reduction
slots

Sum all the �Pr and � N! terms belonging to the same body, in the
reduction buffer. This may require a sequence of short
kernels

8 GPU Body velocity updates kernel
Parallel on

bodies
For each j body, add the cumulative velocity updates which can

be fetched from the reduction buffer, using the index Rj

9 HOST
Serial

Check convergence and repeat from stage 5 if convergence
tolerance is not reached

10 HOST
Serial

Copy memory GPU! CPU

Copy contact multipliers from GPU buffers to host memory,
if interested in reaction forces

Copy constraints multipliers from GPU buffers to host memory,
if interested in reaction forces

Copy rigid body velocities from GPU buffers to host memory

302 A. Tasora et al.

4 Numerical Experiments

The largest simulation run to date using the CCP-based GPU solver discussed herein
contained approximately 1.1 million bodies that interacted through frictional contact
as illustrated in Fig. 7. This problem has a large number of small spheres made up
of a material with high density. There is one large ball of low density mixed up
with the rest of the spheres. The collection of balls is inside a three dimensional
rectangular box that experiences a left-to-right harmonic motion. Because the large
ball has lower density, it will eventually “float” on the spheres of high density as
illustrated in the figure. This test, along with other simulations focused on tracked
vehicle mobility on granular terrain are discussed in detail in [23,24]. An animation
is available at [25].

In what follows the emphasis is on a comparison between the GPU-based solu-
tion and a sequential approach used to solve a benchmark problem; i.e., the flow of
a pebble bed nuclear reactor (Fig. 8). The fuel is encased in tennis-ball-size graphite
spheres, each filled with nuclear fuel, specifically, coated UO2, with sub-millimeter
diameter [26]. The approximately 400,000 pebbles are continuously recirculated or
refreshed at a rate of about 2/min [27]. They are densely packed, at volume fractions
approaching 0.6, and thus constitute a dense granular flow [28]. The center pebbles,
represented with a different color, are moderator pebbles with comparable weight to
the fuel pebbles, even if they do not contain particles of coated UO2. The reactor is
cooled with a fast helium flow blown top-down that has negligible drag effects on
the spheres when compared to gravitational forces [28]. Predicting the dynamics of
the fuel pebbles in the pebble-bed reactor is important for its safety and gauging its
performance [29].

To better understand the potential of parallel computing when employed to
solve the problem at hand, both the sequential and parallel implementations draw on
the same solution procedure detailed in Section 3. The only difference is that in one
case the collision detection and the solution of the cone-complementarity problem
are carried out sequentially, on the CPU, while for the parallel implementation these

Fig. 7 Largest problem
simulated to date, the system
has about 1.1 million bodies
that are shaken in a moving
box

Invited Papers from Multibody Dynamics 2009 303

Fig. 8 Pebble bed nuclear
reactor simulation

two stages, along with several other less computationally intensive steps of the so-
lution methodology, are executed on the GPU. The benchmark problem was run for
a set of 16, 32, 64, and 128 thousand particles. The sequential simulation was run
on a single threaded Quad Core Intel Xeon E5430 2.66 GHz computer. For the par-
allel version, the collision detection was implemented on a NVIDIA 8800 GT card,
while the cone complementarity problem was solved on a Tesla C870. The integra-
tion time step considered for this problem was 0.01 s. A number of 150 iterations
was considered in the solution of the CCP problem.

The dynamics of the pebble flow is as follows. First, the silo is closed and the
balls are dropped from the top until the desired number of spheres is reached. The
silo is subsequently opened, at which time the pebble flow commences. Shortly
thereafter the flow reaches a steady state. At this time, the amount of time it
takes to advance the simulation by one time step is measured. An average of this
value obtained over several simulations is reported in Fig. 9. This process is car-
ried out for both the GPU and CPU implementations for each of the four scenarios
(16,000–128,000 bodies). The plot reveals that (a) both the CPU and GPU imple-
mentations scale linearly with the number of bodies in the problem, and (b) the slope
of the plot associated with the GPU implementation is smaller than that associated
with the CPU solver. In fact, for 128,000 particles, the GPU solver is about 10 times
faster than the CPU solver. As the interest is in multi-million body problems, this
slope difference will result in significant reduction in simulation times.

The plot in Fig. 10 provides the history for the amount of time it took the GPU
solver to perform one integration step. In the beginning, when the balls are filling
up the silo, there are few contacts and one integration time step is cheap. As the
number of spheres in contact increases due to piling up of the bodies at the bottom
of the silo, the time it takes to complete one time step increases. This is due to the
gradual increase in the dimension of the CCP problem that needs to be solved. An
artifact of the fact that only 150 iterations were considered in the CCP problem is
the spurious increase (the peak) that is more pronounced for the 128,000 body case.

304 A. Tasora et al.

Fig. 9 Average duration in
seconds for taking one
integration time step (0.01 s)
when taking 150 iterations in
the CCP solver

Fig. 10 For the GPU solver, the plot shows how much time it took the solver to advance the sim-
ulation by one time step. On the horizontal axis is shown the simulation time. After approximately
3 seconds, when the flow reaches a steady state, each time step takes about the same amount of
time, that is, approximately 9 s. These times were used in Fig. 9 to generate the lower curve (one
with smaller slope)

This was intentionally kept in order to demonstrate what happens if the CCP prob-
lem is not solved accurately. Specifically, if the number of iterations is not enough to
lead to the convergence of the CCP solver, the amount of penetration between bod-
ies will increase leading to a larger number of contacts and therefore a larger CCP
problem. However, as the bottom of the silo opens up, the bodies start falling and
this regime is less challenging for the solver since the number of contacts suddenly
decreases until reaching a steady state shortly after 3 s. At that point the amount of
time required to advance the simulation by one time step stabilizes. Note that the
average of this value over several simulations was used in Fig. 9 to generate the plot
associated with the GPU-based solution.

Invited Papers from Multibody Dynamics 2009 305

5 Conclusions and Directions of Future Work

Two observations justify today a fresh look at the solution of frictional contact prob-
lems in large scale multibody dynamics simulation. First, existing graphics cards
provide tremendous flop rate at very low costs. Second, there is a wide spectrum of
real-life applications that lead to large frictional contact dominated multibody dy-
namics problems that couldn’t be solved in the past. The contribution of this paper is
in presenting an approach for parallel computational multibody dynamics that can
be used to tackle many of these applications. The frictional contact problem was
formulated in a form that is suitable to be numerically solved in parallel and could
take advantage of commodity parallel computing support available on the GPU. The
collision detection and solution of the cone complementarity problem turned out to
be the main computational bottlenecks of the simulation. Both these stages of the
solution have been parallelized thus enabling the implementation of an approach
that can tackle problems with more than one million bodies.

Ongoing projects are aimed at: (a) increasing the size of the problem that can
be solved by the proposed approach, (b) improving the speed of convergence of the
CCP solver, (c) establishing the hardware infrastructure that can support the simu-
lation of multibody dynamics problems with tens to hundreds of millions of bodies,
and (d) performing an experimental validation of the simulation approach proposed.
In terms of (a), current numerical experiments revealed that the 4 GB memory on
the Tesla C1060 cards is exhausted for simulations that exceed 1.1 million bodies.
A domain decomposition approach is anticipated to further increase this number
by distributing a large problem to multiple GPUs using a spatial domain decom-
position idea. The net outcome of this approach will be a pooling together of the
memory resources of multiple cards. In terms of (b), it is anticipated that algebraic
multi-grid methods will enable a reduction of the number of iterations required for
convergence. Unless this issue gets addressed, problems with tens of millions of
bodies might require prohibitively long convergence times that render the approach
infeasible. In terms of (c), a 21 SP Teraflop cluster is currently assembled at the
University of Wisconsin to support the domain decomposition approach described.
The cluster will have one head node and six compute nodes, each of the latter with
four Tesla C1060 NVIDIA GPUs. Finally, experimental validation is currently car-
ried out both at macroscale, using 5 mm plastic particles, and microscale, using 100
and 500 �m glass spheres, respectively. In both cases, the experiments measure flow
rates in silo replicas and a small hopper to validate the correctness of the simulation
results. In addition to these four initiatives, there is a multitude of small projects that
remain to be completed, the most important of which being the integration of the
collision detection and CCP data structures. Currently, data is moved back and forth
between the device and host right after the collision detection and before performing
the CCP. This adds a significant overhead that once eliminated is anticipated to fur-
ther improve the performance of the GPU solver.

306 A. Tasora et al.

References

1. Pfeiffer F, Glocker C (1996) Multibody dynamics with unilateral contacts. Wiley, Singapore
2. Anitescu M (2006) Optimization-based simulation of nonsmooth dynamics. Math Program-

ming 105(1): 113–143
3. Anitescu M, Hart GD (2004) A constraint-stabilized time-stepping approach for rigid multi-

body dynamics with joints, contact and friction. Int J Numer Methods Eng 60(14): 2335–2371
4. Anitescu M, Potra FA, Stewart DE (1999) Time-stepping for three-dimensional rigid body

dynamics. Comput Methods Appl Mech Eng 177(3–4): 183–197
5. Lotstedt P (1982) Mechanical systems of rigid bodies subject to unilateral constraints. SIAM J

Appl Math 42(2): 281–296
6. Marques M (1993) Differential inclusions in nonsmooth mechanical problems: shocks and dry

friction. Birkhäuser, Boston, MA
7. Moreau JJ (1983) Standard inelastic shocks and the dynamics of unilateral constraints: CISM

Courses and Lectures. In: Piero GD, Macieri F (eds) Unilateral problems in structural analysis.
Wiley, New York, p 173–221

8. Pang JS, Kumar V, Song P (2005) Convergence of time-stepping method for initial and
boundary-value frictional compliant contact problems. SIAM J Numer Anal 43: 2200

9. Pang, JS, Trinkle JC (1996) Complementarity formulations and existence of solutions of dy-
namic multi-rigid-body contact problems with Coulomb friction. Math Programming 73(2):
199–226.

10. Song P, Kraus P, Kumar V, Dupont P (2001) Analysis of rigid-body dynamic models for simu-
lation of systems with frictional contacts. J Appl Mech 68(1): 118–128

11. Glocker C, Pfeiffer F (1995) Multiple impacts with friction in rigid multibody systems. Non-
linear Dyn 7(4): 471–497

12. Manferdelli JL (2007) The many-core inflection point for mass market computer systems.
CTWatch Quart 3(1)

13. Negrut D (2008) High performance computing for engineering applications, Course Notes
ME964 (September 9 Lecture): http://sbel.wisc.edu/Courses/ME964/2008/index.htm, Univer-
sity of Wisconsin

14. NVIDIA (2009) Compute unified device architecture programming guide 2.3: http://developer.
download.nvidia.com/compute/cuda/2 3/toolkit/docs/NVIDIA CUDA ProgrammingGuide 2.
3.pdf.

15. Stewart DE, Trinkle JC (1996) An implicit time-stepping scheme for rigid-body dynamics with
inelastic collisions and Coulomb friction. Int J Numer Methods Eng 39: 2673–2691

16. Moreau J (1988) Unilateral contact and dry friction in finite freedom dynamics. Nonsmooth
Mech Appl, 302: 1–82

17. Pfeiffer F, Foerg M, Ulbrich H (2006) Numerical aspects of non-smooth multibody dynamics.
Comput Methods Appl Mech Eng 195(50–51): 6891–6908

18. Stewart DE (2000) Rigid-body dynamics with friction and impact. SIAM Rev 42(1): 3–39
19. Stewart DE (1998) Convergence of a time stepping scheme for rigid body dynamics and reso-

lution of Painlevé’s problem. Arch Ration Mech Anal 145(3): 215–260
20. Tasora A, Anitescu M (2008) A fast NCP solver for large rigid-body problems with contacts,

friction, and joints. Multibody dynamics: computational methods and applications. Springer,
Berlin, p. 45

21. Anitescu M, Tasora A (2010) An iterative approach for cone complementarity problems for
nonsmooth dynamics. Comput Optim Appl 47(2): 207–235

22. Harris M, Shubhabrata S, Owens JD (2008) Parallel Prefix Sum (Scan) with CUDA.
In: Nguyen H (ed) GPU Gems 3, Addison-Wesley, New York, p. 851–876

23. Heyn T, Mazhar H, Negrut D (2009) On the simulation of tracked vehicles operating on
granular terrain: a parallel multibody dynamics aproach (to be submitted). Multibody system
dynamics

24. Heyn T (2009) Simulation of tracked vehicles on granular terrain leveraging GPU computing.
M.S. Thesis, in Mechanical Engineering, University of Wisconsin-Madison, Madison

http://sbel.wisc.edu /Courses/ME964/2008/index.htm
http://developer.download.nvidia.com/compute/cuda/2_3/ toolkit/docs/NVIDIA_CUDA_ProgrammingGuide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/ toolkit/docs/NVIDIA_CUDA_ProgrammingGuide_2.3.pdf
http://developer.download.nvidia.com/compute/cuda/2_3/ toolkit/docs/NVIDIA_CUDA_ProgrammingGuide_2.3.pdf

Invited Papers from Multibody Dynamics 2009 307

25. Mazhar H (2009) Million body simulation. http://sbel.wisc.edu/Animations/index.htm
26. Gougar H, Ougouag A, Terry W (2004) Advanced core design and fuel management for

pebble-bed reactors. Idaho National Engineering and Environmental Laboratory, INEEL/EXT-
04-02245

27. Kadak A, Bazant M (2004) Pebble flow experiments for pebble bed reactors, 2nd International
Topical Meeting on High Temperature Reactor Technology, Beijing, China, 22–24 Sept 2004

28. Tasora A, Anitescu M (2010) A convex complementarity approach for simulating large granu-
lar flows. J Comput Nonlinear Dynam 5(3): 031004

29. Ougouag A, Ortensi J, Hiruta H (2009) Analysis of an earthquake-initiated-transient in a PBR.
Tech. Rep. INL/CON-08-14876, Idaho National Laboratory (INL)

http://sbel.wisc.edu/ Animations/index.htm

	GPU-Based Parallel Computing for the Simulation of Complex Multibody Systems with Unilateral and Bilateral Constraints: An Overview
	1 Introduction
	2 Review of Computing on the Graphics Processing Unit
	3 Large Scale Multibody Dynamics on the GPU
	3.1 The Formulation of the Equations of Motion
	3.2 The Time Stepping Solver
	3.3 The GPU Formulation of the CCP Solver

	4 Numerical Experiments
	5 Conclusions and Directions of Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

