
Chapter 8
Copulas – New Risk Assessment
Methodology for Dam Safety

Bastian Klein, Andreas H. Schumann, and Markus Pahlow

Abstract Consideration of a broad range of hydrological loads is essential for
risk-based flood protection planning. Furthermore, in the planning process of tech-
nical retention facilities it is necessary to use flood events, which are specified
by several characteristics (peak, volume and shape). Multivariate statistical meth-
ods are required for their probabilistic evaluation. Coupled stochastic-deterministic
simulation may be applied to generate a runoff time series, since the required
amount of data is generally not available. Even the effect of complex flood pro-
tection systems may be evaluated through generation of a data base by means of
stochastic-deterministic simulations with subsequent statistical analysis of the indi-
vidual hydrological load scenarios. Multivariate frequency analyses of correlated
random variables are useful to specify these scenarios statistically. Copulas are a
very flexible method to estimate multivariate distributions, because the marginal
distributions of the random variables can differ. Here a methodology for flood risk
assessment is presented which was applied in two case studies in Germany.
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8.1 Introduction

Recent flood events and the related drastic consequences indicate that it is impor-
tant to consider a broad range of different hydrological loads for the design of
flood protection structures such as flood control reservoirs and polders, instead of
using the traditional approach of considering only a single design flood of a prede-
fined return period. For single flood protection structures the different hydrological
inflows can be generated stochastically (see e.g. De Michele et al., 2005; Klein and
Schumann, 2006) or by rainfall-runoff modeling. In large catchments with interact-
ing flood protection structures the efficiency in flood mitigation depends mainly on
the spatial distribution of the flood event. To consider these aspects in the design
phase spatially distributed precipitation events can be generated by coupling a spa-
tially distributed stochastic rainfall generator with a distributed or semi-distributed
rainfall-runoff model to generate hydrological scenarios (see e.g. Blazkova and
Beven, 2004; Haberlandt et al., 2008). These hydrological scenarios have to be eval-
uated probabilistically by frequency analysis to provide a base for risk analyses of
flood protection structures or systems.

In most cases, the return period of flood events is defined by a univariate analysis
of a random variable such as the flood peak (Hosking and Wallis, 1997; Stedinger
et al., 1993). However, technical flood retention depends on several coinciding ran-
dom variables such as flood peak, volume, shape of the hydrograph and duration.
Hence univariate frequency analysis may lead to an over- or underestimation of the
risk associated with a given flood (Salvadori and De Michele, 2004). For the design
of flood control structures the flood peak plays a fundamental role. However, for
flood storages such as reservoirs and polders the flood volume is also very impor-
tant and should be considered in design and planning. For example an event with a
very large peak and a small volume could be stored in the flood control storage of a
reservoir, whereas an event with a smaller peak but a larger volume may well lead
to flood spillage.

If a dependency exists between the random variables it is advantageous to
define the return period of a flood event by using joint probabilities for the flood
characteristics that are relevant for the design.
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8.2 Copula Theory

One reason for the fact that multivariate statistical models are rarely used for multi-
variate analysis of random variables in hydrology is that they require considerably
more data for the estimation of a reliable model than the univariate case. Owing
to the data requirements, also the application of multivariate analysis of correlated
random numbers in practice is mainly reduced to the bivariate case.

Several multivariate distributions are available for multivariate frequency anal-
ysis. In 1976, Hiemstra derived the bivariate lognormal probability distribution for
bivariate frequency analysis (Hiemstra et al. 1976). More recently bivariate distri-
butions such as the bivariate exponential distribution (Singh and Singh, 1991), the
bivariate normal distribution (Bergmann and Sackl, 1989; Goel et al., 1998; Yue,
1999), the bivariate gamma distribution (Yue, 2001; Yue et al., 2001) and the bivari-
ate extreme value distribution (Shiau, 2003; Yue et al., 1999) have been applied to
bivariate frequency analysis (e.g. for the correlated variables flood peak and flood
volume or flood volume and flood duration). Sandoval and Raynal-Villasenor (2008)
applied a trivariate extreme value distribution for frequency analysis.

The application of these multivariate distributions to model the dependency
between the correlated random variables has a number of drawbacks. First of all, it is
a precondition that the marginal distributions have to come from the same family of
distributions or the random variables have to be transformed otherwise (e.g. normal-
ized in the case of the bivariate normal distribution). This is not necessarily fulfilled
by the dependent variables characterizing a given process. Furthermore, most of
the available distributions are limited to the bivariate case and an extension to the
multivariate case can not be derived easily. In addition, the dependencies between
the random variables of these distributions are generally described by the Pearson’s
coefficient of linear correlation. However, in reality the dependency structure of the
flood variables may not be Gaussian.

These problems can be avoided by applying copulas to model the dependencies
between correlated random variables. A joint distribution of correlated random vari-
ables can be expressed as a function of the univariate marginal distributions using
a copula. Copulas enable one to model the dependency structure independently
from the marginal distributions. A large number of different copulas are avail-
able to describe this dependency. Therefore it is possible to build multidimensional
distributions which differ in their marginal distributions.

Copulas have been extensively used in financial studies (see e.g. Cherubini
et al., 2004; Embrechts et al., 2003), but more recently copulas also have been
implemented in hydrology for multivariate analysis of hydrological random vari-
ables. Salvadori and De Michele (2004) provide a general theoretical framework
for exploiting copulas to study the return periods of hydrological events. In several
works copulas have been used for the bivariate analysis of the properties of flood
events (Karmakar and Simonovic, 2008, 2009; Shiau et al., 2006; Zhang and Singh,
2006), for the bivariate frequency analysis of the properties of precipitation (De
Michele and Salvadori, 2003; Evin and Favre, 2008; Zhang and Singh, 2007a) and
for the analysis of droughts (Shiau et al., 2007). In De Michele et al. (2005) the
dependency between peak and volume is described using the concept of copulas. In
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this work the adequacy of dam spillways is tested by means of Monte-Carlo sim-
ulation for the generation of volume-peak combinations from copula and marginal
distributions and their transformation into hydrographs. Favre et al. (2004) presented
modeling results of bivariate extreme values using copulas for different case stud-
ies. Trivariate analyses of the dependency of random variables using copulas have
been applied to model the properties of precipitation events (Grimaldi and Serinaldi,
2006a; Kao and Govindaraju, 2008; Salvadori and De Michele, 2006; Salvadori
and De Michele, 2007; Zhang and Singh, 2007b) and for the trivariate flood fre-
quency analysis of flood peak, volume and event duration (Grimaldi and Serinaldi,
2006b; Serinaldi and Grimaldi, 2007; Zhang and Singh, 2007c). In Renard and Lang
(2006) the use of copulas for multivariate extreme value analysis is demonstrated
with different case studies.

8.2.1 Basic Principles of Copula Theory

Only a short overview of the theory of copulas is presented here. More detailed
discussions can be found in Joe (1997), Nelsen (1999), Salvadori and De Michele
(2004) and Salvadori et al. (2007). A copula is a function which exactly describes
and models the dependency structure between correlated random variables indepen-
dently of their marginal distributions. It is defined as mapping C : [0, 1]n → [0, 1],
such that for all u1, u2, . . . , un ∈ [0, 1] the copula function C(u1, u2, . . . , un) = 0 if
at least one of the arguments is equal to zero and C(u1, u2, . . . , uk, . . . , un) = uk if
all the arguments are 1 except uk.

The link between the copula and the multivariate distribution is provided by the
theorem of Sklar (1959):

FX1,X2,...,Xn (x1, x2, . . . , xn) = C[FX1 (x1), FX2 (x2), . . . , FXn (xn)] (8.1)

where FX1,X2,...,Xn (x1, x2, . . . , xn) is the joint cumulative distribution function (cdf)
with the continuous marginals FX1 (x1), FX2 (x2), . . . , FXn (xn) of the random vari-
ables.

The content of this chapter is concentrated on bivariate analysis of the random
variables X and Y with the marginal distributions FX(x) and FY (y) with a joint
cumulative distribution function (cdf):

FX,Y (x, y) = C[FX(x), FY (y)]. (8.2)

Because copulas are invariant for strictly increasing transformations of X and Y
it is possible to use two uniformly distributed random variables U and V on [0,1],
defined as U = FX(x) and V = FY (y).

Assuming continuous marginal distributions with the probability density func-
tions fX(x) und fY (y) the joint probability density function (pdf) becomes:

fX,Y (x, y) = c[FX (x), FY (y)] fX(x) fy(y) (8.3)
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where c is the density function of the copula C:

c(u, v) = ∂2C(u, v)

∂u∂v
. (8.4)

Three special cases of copulas are of particular importance:

1. The copula of the Fréchet-Hoeffding lower bound W:

W (u, v) = max {u + v − 1, 0} (8.5)

2. The copula of the Fréchet-Hoeffding upper bound M:

M (u, v) = min {u, v} (8.6)

3. The independence copula Π :
Π (u, v) = u · v. (8.7)

The copulas W and M are the general bounds for any copula C and any pair
(u, v) ∈ [0, 1]2:

W (u, v) = max (u + v − 1, 0) ≤ C(u, v) ≤ M(u, v) = min (u, v). (8.8)

In Fig. 8.1 the level curves, which connect the points (u, v) where the value of
the copula has the same value t for the three special cases, W(u, v) = t, M(u, v) = t
and Π (u, v) = t are illustrated.

Conditional distributions such as the conditional distribution of U for a given
value of V = v can be calculated easily using copulas (other conditional laws see e.g.
Salvadori and De Michele, 2004; Salvadori et al., 2007; Zhang and Singh, 2006):

P(U ≤ u|V = v) = ∂

∂v
C(u, v). (8.9)

Fig. 8.1 Level curves of the
special cases W(u, v), M(u, v)
and Π (u, v)
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The empirical copula (Deheuvels, 1979) derived from a random sample
(X1, Y1), . . . , (Xn, Yn) of size n is formally defined by:

Cn(u, v) = 1

n

n∑
i=1

1

(
Ri

n + 1
≤ u,

Si

n + 1
≤ v

)
(8.10)

where Ri is the rank of Xi ∈ {X1, . . . , Xn} and Si is the rank of Yi ∈ {Y1, . . . , Yn} of
the sample and 1(A) the indicator function of the set A.

A large variety of families of copulas described e.g. in Joe (1997) and Nelsen
(1999) are available to model multivariate dependencies. There are generally three
families of copulas that are applied in hydrological practice: the Archimedian cop-
ulas, the elliptical copulas (including the Gaussian, Student and Cauchy copulas)
and the extreme-value copulas (including the Gumbel-Hougaard copula -the only
Archimedian extreme-value copula-, the Galambos copula and the Hüsler-Reiss
copula). The Archimedian copulas are widely used because they can be constructed
easily and a large variety of copulas belongs to this family.

8.2.2 Archimedian Copulas

Archimedian copulas are expressed by the copula generator ϕ : [0, 1] → [0, ∞],
which is a convex, continuous decreasing function with ϕ(1) = 0:

Cθ (u, v) = ϕ−1[ϕ(u) + ϕ(v)]. (8.11)

In Table 8.1 four widely used one parameter Archimedian copulas are presented
with their corresponding generator ϕ (t), where θ is the parameter of the generator
function.

All four copulas are applicable to positively correlated random variables but only
the Ali-Mikhail-Haq and the Frank copula can model negatively correlated ran-
dom variables as well. The Ali-Mikhail-Haq copula is not appropriate for highly
correlated (both positive and negative) variables.

Besides one-parameter Archimedean copulas several two-parameter copulas are
described in Nelsen (1999) and Joe (1997). The advantage of these two-parameter
copulas is that they may be used to capture more than one type of dependencies. One
parameter models the upper tail dependency and the other parameter models the
lower tail dependency of the copula. As an example the two-parameter copula BB1
(as described in Joe (1997)), which has also the form of the Archimedian copula
family (Eq. 8.11) is presented in Table 8.1.

8.2.3 Parameter Estimation

There are several methods employed to estimate the parameter θ of the copula
function. The two standard rank-based nonparametric measures of dependency,
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Table 8.1 Summary of various 2-dimensional Archimedean copulas and their generator (Joe,
1997; Nelsen, 1999)

Copula ϕ (t)

Gumbel-Hougaard:

exp
{
− [
(− ln u)θ + (− ln v)θ

]1/θ
}

θ ≥ 1 (− ln t)θ

Ali-Mikhail-Haq:
uv

1−θ(1−u)(1−v) −1 ≤ θ < 1 ln 1−θ(1−t)
t

Frank:

− 1
θ

ln

[
1 +

(
e−θu−1

)(
e−θv−1

)
e−θ−1

]
θ �= 0 − ln

(
e−θ t−1
e−θ−1

)

Cook-Johnson:
[
u−θ + v−θ − 1

]−1/θ θ ≥ 0 t−θ − 1

BB1

Cθ (u, v) ={
1 +

[(
u−θ1 − 1

)θ2 + (
v−θ1 − 1

)θ2
]1/θ2

}−1/θ1

θ1 > 0, θ2 ≥ 1 ϕ (t) = (
t−θ1 − 1

)θ2

Spearman’s ρ and Kendall’s τ can be expressed solely in terms of the copula func-
tion. Therefore the parameter of the copula can be estimated from the measure of
dependency of the bivariate sample. Kendall’s τ can be expressed as:

τ =
∫

[0,1]2
Cθ (u, v)dCθ (u, v) − 1 (8.12)

which, for Archimedian copulas with a generator function ϕ, is reduced to

τ = 1 + 4
∫
ϕ(t)

ϕ′(t)
dt, (8.13)

where ϕ′ is the derivative of ϕ with respect to t.
Another estimation method is the maximum pseudolikelihood method (Genest

and Favre, 2007) which is also called canonical maximum likelihood. It can also be
used if θ is multidimensional. The method of maximum pseudolikelihood involves
maximizing a rank-based log-likelihood function of the form:

l(θ ) =
n∑

i=1

log

[
cθ

(
Ri

n + 1
,

Si

n + 1

)]
, (8.14)

where Ri is the rank of Xi ∈ {X1 . . .Xn} and Yi ∈ {Y1 . . . Yn} of the sample of size n
and the copula density distribution cθ (u, v) after Eq. (8.4)
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In Joe (1997) a parametric two-step procedure called the “inference from mar-
gins” or IFM method is recommended to estimate the parameter of the model. An
estimate of θ is obtained by maximizing the log-likelihood function

l(θ ) =
n∑

i=1

log {cθ [FX (xi), Fy (yi)] fX(xi) fy(yi)}. (8.15)

In general estimation methods are based on a measure of dependency. The
maximum pseudolikelihood estimation method estimates the parameters indepen-
dently from the marginal distributions. They only model the rank-based dependency
between the two random variables. In contrast the IFM depends on the estimation
of the margins and therefore the parameters of the copula are unduly affected if the
marginal distributions are wrong (see e.g. Kim et al., 2007).

8.2.4 Identification of the Appropriate Copula Model

Methods to identify the copula which provides the best fit to the observed data
are required, since there is a large variety of different copula families available to
model the dependency between random variables. Several methods exist to select
the appropriate model.

8.2.4.1 Graphical Diagnostics

Possibly the most natural way for the identification of the appropriate copula is the
graphical comparison between the scatter plot of the pairs [Ri/(n + 1), Si/(n + 1)]
(representing the empirical copula Cn) from the bivariate data with pairs (Uj, Vj)
from an artificial data set, generated from the copula Cθn, or by comparing the pairs
of the bivariate data with the pairs (Xj, Yj) generated from the copula Cθn. and trans-
formed back into the original units using the marginal distributions FX (x) and FY

(y). Algorithms to generate random pairs (U, V) from a copula are described e.g. in
Whelan (2004). A simple simulation algorithm to generate random pairs (u,v) from
the copula is given in Genest and Favre (2007):

1. Generate U from a uniform distribution on the interval (0,1).
2. Given U = u, get V = Q−1

u (U∗) from the inverse function of the conditional dis-
tribution according to Eq. (8.16), where U∗ is another random number generated
from the uniform distribution on the interval (0,1).

Qu(v) = P(V ≤ v|U = u) = ∂

∂u
C(u, v). (8.16)

Another option is the comparison between the parametric and nonparametric esti-
mate of the probability KC(t) (Genest and Rivest, 1993) that the value of the copula
C (u, v) is smaller than or equal to t(0 < t ≤ 1):

KC(t) = P[C(u, v) ≤ t], 0 < t ≤ 1. (8.17)
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Let
BC(t) = {(u, v) ∈ [0, 1]2 : C(u, v) ≤ t}, 0 < t ≤ 1 (8.18)

where BC (t) is the region within [0,1]2 lying on, below and to the left of the level
curve Lt with

Lt = {(u, v) ∈ [0, 1]2 : C(u, v) = t}, 0 < t ≤ 1 (8.19)

of the joint distribution. The level curve is a function of the two variables u and v that
connects points where the copula has the same value t. The probability distribution
KC (t) provides a unique probability measure of the set BC (t) (see Salvadori and De
Michele, 2004). For Archimedian copulas the parametric estimate of KCθ (t) can be
calculated easily using

KCθ (t) = t − ϕ(t)

ϕ′(t)
(8.20)

and the level curve Lt as a function of u:

Lt(u) = ϕ−1[ϕ(t) − ϕ(u)]. (8.21)

The nonparametric estimate of KCn (t) can be calculated after Genest et al. (2006):

KCn (t) = 1

n

n∑
i=1

1(Vin ≤ t); t ∈ [0, 1] (8.22)

where

Vin = 1

n

n∑
j=1

1(xj ≤ xi, yj ≤ yi) = 1

n

n∑
j=1

1(Rj ≤ Ri, Sj ≤ Si). (8.23)

8.2.4.2 Goodness-of-Fit Statistics

There are different possibilities to compare and evaluate the goodness of fit of the
different possible copula functions to model the dependency of the random vari-
ables. The “Root Mean Square Error” (RMSE) goodness-of-fit measure is the mean
squared difference between the empirical and the estimated distribution functions:

RMSE =
√

E(xc − x0)2 =
√√√√ 1

n − k

n∑
i=1

[xc(i) − x0(i)]2, (8.24)

where xc (i) is the i-th computed value (here: value of the fitted theoretical distribu-
tion function), x0 (i) the i-th observed value (here: value of the empirical distribution
function), k the number of model parameters used to obtain the calculated value and
n the number of observations.

The Akaike’s information criterion AIC (Akaike, 1974) and the Bayesian infor-
mation criterion BIC (Schwarz, 1978) are measures of the goodness of fit of an
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estimated statistical model and can also be used for model selection. Both criteria
depend on the maximized value of the likelihood function L for the estimated model.
The AIC is defined as

AIC = (−2) · ln(L) + 2 · k (8.25)

where k is the number of model parameters and the BIC is defined as:

BIC = (−2) · ln(L) + k · ln(n) (8.26)

where n is the sample size. Both criteria differ from each other with increasing
sample size. According to these criteria, the model with the lowest value of the AIC
and BIC is the best model.

The multidimensional Kolmogorov-Smirnov (KS) goodness-of-fit test uses (see
Saunders and Laud, 1980), in a similar way as for the univariate KS-Test, the
maximal distance between the empirical and the theoretical distribution func-
tion as a goodness-of-fit measure. Standard tables or bootstrap resampling can be
applied to find the critical values for a significance level α or the p-values for the
goodness-of-fit test.

In Genest et al. (2006, 2009) and Genest and Favre (2007) several methods
for formal goodness-of-fit testing of copulas are presented. Two of these methods
use the difference between the empirical and theoretical distribution of KC (t) (see
Eq. 8.17) as test measure. The first methodology is based on the Cramér-von-Mises
statistics and the second one on the Kolmogorov-Smirnov statistics. To estimate the
critical values for a significance level α and the p-value a bootstrap methodology
is presented for the goodness-of-fit test of copulas. Another bootstrap methodol-
ogy based on the Cramér-von-Mises statistics as goodness-of-fit test for copulas is
described in Genest and Favre (2007) and Genest and Remillard (2008). There the
difference between the empirical and theoretical copula is used as measure.

8.2.5 Bivariate Frequency Analysis

The joint distribution of Eq. (8.2) is the probability P(X ≤ x, Y ≤ y) = FX,Y (x, y)
that X and Y are less than or equal to the specific thresholds x and y, respectively.
Given the assumption of total independence between the two random variables, the
joint probability FX,Y (x, y) becomes the product of the two individual probabilities
FX (x) and FY (y):

P(X ≤ x, Y ≤ y) = FX,Y (x, y) = FX(x)FY (y). (8.27)

The joint probability FX,Y (x, y) is reduced to the univariate probability FX (x) or
FY (y) if the two random variables are completely dependent. In this case the random
variables X and Y are functions of each other:

P(X ≤ x, Y ≤ y) = FX,Y (x, y) = FX(x) or FX,Y (x, y) = FY (y). (8.28)
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If there are dependencies, the probability that X and Y both exceed x and y is
defined as

P(X > x ∧ Y > y) =1 − FX(x) − FY (y) + FX,Y (x, y)

=1 − FX(x) − FY (y) + C[FX(x), FY (y)].
(8.29)

In the case of independence between the two random variables the joint return
period is the product of the two univariate return periods:

T∧
X,Y = μT

1 − FX(x) − FY (y) + FX(x)FY (y)
= μT

(1 − FX(x))(1 − FY (y))
= TXTY ,

(8.30)
where μT is the mean interarrival time between two successive events (μT = 1 year,
considering annual values).

Under consideration of dependency the corresponding joint return period
(labeled with the logical AND operator “∧”) is expressed as

T∧
X,Y = μT

P(X > x ∧ Y > y)
= μT

1 − FX(x) − FY (y) + C[FX(x), FY (y)]
. (8.31)

This joint return period is always larger than the maximum of the univariate
return periods TX = μT/(1 − FX(x)) and TY = μT/(1 − FY (y)) of the individual
random variables.

The probability with which either X or Y exceed their respective thresholds x or
y is defined as

P(X > x ∨ Y > y) = 1 − FX,Y (x, y) = 1 − C[FX(x), FY (y)]. (8.32)

Here the joint return period (labeled with the logical OR operator “∨”) is
expressed as

T∨
X,Y = μT

P(X > x ∨ Y > y)
= μT

1 − C[FX(x), FY (y)]
. (8.33)

This joint return period is always smaller than the minimum of the two univariate
return periods TX and TY of the individual random variables:

T∨
X,Y ≤ min[TX , TY ] ≤ max[TX , TY ] ≤ T∧

X,Y . (8.34)

In the case of independence of the two random variables this joint return period
becomes:

T∨
X,Y = μT

1 − FX(x)FY (y)
= TXTY

TX + TY − μT
. (8.35)

In Fig. 8.2 the regions of [0,1]2 embodying the probability masses for the two
cases: exceedance probability P(X > x∨Y > y) -“OR” case- and P(X > x∧Y > y)
-“AND” case- are illustrated as shaded areas.
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Fig. 8.2 Regions in [0,1]2 (shaded areas) embodying the probability masses of (a) P(X > x∨Y >
y) and (b) P(X > x ∧ Y > y)

Conditional distribution functions and return periods can also be expressed easily
with copulas (see e.g. Salvadori and De Michele, 2004; Salvadori et al., 2007; Zhang
and Singh, 2006). For example the conditional distribution Fx(x|Y = y) of X for
a given value of Y = y can be calculated using Eq. (8.9) with u = FX(x) and
v = FY (y).

In Salvadori and De Michele (2004) another “secondary” return period ρ∨
t is

defined to emphasize the difference to the “primary” return period T∨
X,Y BC(t) in Eq.

(8.18) is the region where the return period T∨
X,Y of all events is equal to or less than

a threshold

ϑ(t) = μT

(1 − t)
. (8.36)

Therefore KC (t) is the probability that an event with the return period T∨
X,Y ≤

ϑ(t) = μT/(1 − t) occurs for any realization of the random process. This implies
that the survival function of KC (t), defined as

K̄C(t) = 1 − KC(t), (8.37)

is the probability that for any given realization of the random process an event with
a return period T∨

X,Y > ϑ(t) = μT/(1 − t) occurs. The secondary return period ρ∨
t

can be expressed as the reciprocal value of the survival function

ρ∨
t = μT

K̄C(t)
= μT

1 − KC(t)
. (8.38)

If a critical threshold ϑ(t) is defined in the design stage for a flood protec-
tion structure, the secondary return period specifies the mean interarrival time of
a critical event.

The regions in [0,1]2 embodying the probability masses for KC(t) = P(C(u, v) ≤
t) and K̄C(t) = P(C(u, v) > t) (shaded areas) are illustrated in Fig. 8.3.
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Fig. 8.3 Regions in [0,1]2 (shaded areas) embodying the probability masses of (a) KC (t) =
P (C (u, v) ≤ t) and (b) K̄C (t) = P (C (u, v) > t)

8.3 Case Study 1: Risk Analysis for the Wupper Dam

The first case study for an application of copulas within the framework of risk anal-
ysis of dams is concerned with the Wupper dam, located in the mid-western part of
Germany (see Fig. 8.4). As mentioned before it is very important for the design
of flood control structures to consider the flood volume besides the flood peak.

Fig. 8.4 Topographical map of the watershed of the river Wupper
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Therefore these two flood variables have been used in this case study for a bivariate
frequency analysis of flood events. The flood events for the risk analysis were gen-
erated by coupling a continuous stochastic rainfall generator with a deterministic
rainfall-runoff model. Using this methodology a synthetic 2000 year time series of
discharge with a time step of 1 h was generated. Since the observed time series was
too short for multivariate frequency analysis, these 2000 years has been used as a
database for bivariate frequency analysis.

8.3.1 Study Area

The Wupper dam has a watershed of 212 km2 and a mean inflow of 4.4 m3s−1. It
is located in the catchment of the river Wupper with a total area of 813 km2 (see
Fig. 8.4). Apart from the flood control function it is used mainly for low water regu-
lation in drought periods. The available flood control storage is seasonally variable.
In the summertime between May and October no flood storage is alocated. From the
beginning of November until the end of January a maximum flood storage of 9.9 ×
106 m3 is provided. This flood storage is reduced continuously until the end of April.
The flood spillway is a weir with a total width of 36 m and is controlled with fish
belly gates. The maximum capacity of the spillway with open gates is 318 m3s−1.
The two bottom outlets have a capacity of 88 m3s−1 each.

In the watershed of the Wupper dam several smaller dams are located. From these
dams particularly the dam Bever is important for flood control with a catchment area
of 25.7 km2 and an available flood control storage of 5 × 106 m3 in wintertime from
November until the begin of February.

During a flood the Wupper dam is operated in dependency of the discharge at
the control gage Kluserbruecke located downstream in the city of Wuppertal. The
discharge at this gage is an indicator for the danger of flooding of the residen-
tial areas downstream. The uninfluenced subcatchment between the dam and the
gage has an area of 125 km2. During a flood the controlled discharge at the gage
should stay below 80 m3s−1. The outflow of the dam should not exceed 50 m3s−1

to ensure this limit. During large floods the control level for the discharges at the
gage Kluserbruecke is increased stepwise to 100, 150 and 190 m3s−1.

8.3.2 Stochastic-Deterministic Generation of Flood Events

In the first step the stochastic rainfall generator of Hundecha et al. (2009) was
applied to generate continuous spatially distributed precipitation time series with
a time step of 1 day and a length of 2000 years. In total 28 stations with
daily precipitation with a minimum time series length of 30 years were used
for model parameterization. In the second step the 2000 year time series of
daily precipitation was disaggregated in hourly values using the stochastic models
MuDRain (Koutsoyiannis, 2001) and HYETOS (Koutsoyiannis et al., 2003). The
semi-distributed deterministic model NASIM (Hydrotec, 2007) has been used for
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rainfall-runoff modeling. It was calibrated with observed rainfall-runoff data for the
period 1. January 2001–31 December 2006. The operation of the dams in the region
has been considered in NASIM. It has been shown that the statistical properties of
the rainfall and the runoff were well reproduced (Petry et al., 2008).

8.3.3 Bivariate Frequency Analysis of Annual Flood Peaks
and Corresponding Volumes

The annual flood peaks and corresponding volume were selected from the gener-
ated hourly inflow time series of 2000 years for the Wupper dam. The start of the
surface runoff was marked by the abrupt rise of the hydrograph and the end of the
flood runoff was identified by the flattening of the recession limb of the hydrograph.
Between these two points the total volume was estimated for the analysis. In Fig. 8.5
the selection of the flood volume is illustrated.

The statistical dependencies between the two random variables flood peak
and flood volume have been estimated by the statistical measures listed in
Table 8.2, where particularly Pearson’s coefficient of linear correlation and the
rank based measure of dependency Spearman’s ρ as well as Kendall’s τ have been
considered.

Pearson’s correlation coefficient provides a measure of linear dependency only
and depends on the marginals, in contrast to the rank-based measure of depen-
dency provided by Kendall’s and Spearman’s coefficient. The population value of

Fig. 8.5 Evaluation of the corresponding flood volume

Table 8.2 Measure of
dependency for flood peaks
and corresponding volumes
for the Wupper dam

Sample size Pearson’s r Kendall’s τ Spearman’s ρ

2,000 0.546 0.379 0.541
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the Pearson’s correlation coefficient is always well defined. However, in some cases
(e.g. for heavy-tailed distributions such as the Cauchy-distribution) a theoretical
value of Pearson’s correlation does not exist. Furthermore, Pearson’s correlation
coefficient is not robust. If the two variables are not linearly related the correlation
is not well defined and outliers can strongly affect the correlation. On the other hand
the rank based correlations such as Kendall’s τ and Spearman’s ρ are robust since
they are not dependent on the distributional assumptions. They can describe a wider
class of dependencies and are resistant to outliers. The summary in Table 8.2 shows
that there is a strong positive dependency between the two random variables.

8.3.3.1 Marginal Distributions

The first step to build the bivariate probability distribution according to Eq. (8.2)
consists in an estimation of the marginal distributions of the random variables.
The Pearson type 3, log-Pearson type 3, Gumbel, Weibull, Gamma, Exponential,
Generalized Pareto and Generalized Extreme Value (GEV) distributions were used
for the univariate statistical analyses of the random variables. The goodness-of-fit
of the different distributions and the different parameter estimation methods have
been compared with the Kolmogorov-Smirnov and the Cramér-von-Mises nω2 tests.
Because the focus of this chapter is the bivariate analysis the results of the univariate
frequency analysis are not described here in detail.

These goodness-of-fit tests revealed that the flood peak can be described in the
best way by the GEV distribution. The volume is described with the Pearson III
distribution optimally. For parameter estimation the product moments were used.
The fitted distributions are shown in Fig. 8.6.

8.3.3.2 Copula Estimation

The bivariate probability distribution (Eq. 8.2) has been constructed using the
four Archimedian copulas Ali-Mikhail-Haq, Frank, Cook-Johnson (also known as
Clayton copula) and Gumbel-Hougaard (Equations see Table 8.1), since those are
the commonly used families of Archimedian copulas (see e.g. Shiau et al., 2006;

Fig. 8.6 Comparison of the (a) annual flood peaks and the (b) corresponding flood volumes of the
simulated inflows to the dam Wupper using the stochastic-deterministic approach and the fitted (a)
GEV distribution and (b) Pearson III distribution
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Table 8.3 Parameters and
goodness-of-fit measure AIC
of the fitted copulas for the
analysis of the flood peaks
and the corresponding flood
volumes at the dam Wupper

Copula Estimate(s) AIC

Gumbel-Hougaard θ = 1.53 –689
Frank θ = 3.83 –681
Cook-Johnson θ = 0.858 –631
Ali-Mikhail-Haq θ = 0.963 –658
BB1 θ1 = 0.404; θ2 = 1.31 –779

Zhang and Singh, 2006). The parameters have been estimated with the maximum
pseudolikelihood method. The fitted parameters are summarized in Table 8.3.

In Fig. 8.7 the parametric and nonparametric values of KC (t) are plotted for the
four different copulas. A copula is considered as satisfactory if the plot shows a
good agreement with the straight dashed line that passes through the origin at 45◦.

As a further visual test, the margins of 100,000 random pairs (Uj, Vj), chosen
from the copula and transformed back into the original units using the marginal
distributions FX (x) and FY (y), are compared with the sample values. The scatter

Fig. 8.7 Comparison of nonparametric and parametric estimations of KC (t) for the fitted
Archimedian copulas (The dashed 45◦-line represents perfect agreement)
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Fig. 8.8 100,000 random pairs (grey dots) of the annual flood peaks and the corresponding vol-
umes at the dam Wupper chosen from the four Archimedian copulas and the events from the
simulated time series (black dots)

plots of the four copulas are shown in Fig. 8.8. It can be seen that among these four
Archimedian copulas only the Gumbel-Hougaard copula can describe the depen-
dency structure of the sample adequately since only the random pairs generated from
this particular copula (grey dots) follow the dependency structure of the sample data
(black dots).

As an additional measure the Akaike’s information criterion AIC (Eq. 8.25) was
used to compare the goodness of fit of the different copula models and to select the
appropriate model which models the dependency between the two random variables
optimally. The best model provides the minimal value for this criterion.

Comparing the AIC values of the four Archimedian copulas in Table 8.3 and the
parametric and nonparametric estimates it seems that the Gumbel-Hougaard cop-
ula and the Frank copula provide a similar goodness-of-fit to the database. Looking
more closely at the comparison of the parametric and nonparametric estimation of
KC (t) for these two copulas in the region of large probabilities (Fig. 8.9) it is obvious
that the Gumbel-Hougaard provides a better fit in this region. For the Frank cop-
ula the parametric estimate is much higher than the corresponding nonparametric
estimate from the sample.
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Fig. 8.9 Comparison of the
nonparametric and parametric
estimations of KC (t) for the
Frank and Gumbel-Hougaard
copula in the region of large
probabilities

Fig. 8.10 100,000 random pairs (grey dots) of the annual flood peaks and the corresponding vol-
umes at the dam Wupper chosen from the Frank copula, the events from the simulated time series
(black dots) and level curves for different probabilities C(u, v) = t

E.g. for the same value t the nonparametric value provides KCn (t) = 0.99 and the
parametric estimate of KCθ (t) for the Frank copula has a value of approx. 0.996. If
the random process is modeled with the Frank copula the probability of the occur-
rence P(C(u, v) ≤ t) = KCθ (t) = 0.996 of an event with a value of the copula
C(u, v) ≤ t is much higher than the empirical probability derived from the dataset
P(C(u, v) ≤ t) = 0.99, which was used for parameter estimation of the model. This
effect could be demonstrated for the 100,000 random pairs generated from the Frank
copula in Fig. 8.10.

In the random process 18 values of the random pairs (Xj, Yj) generated from the
copula are above the level curve of C(u, v) = t = 0.99. The parametric estimate of
KCθ (0.99) for the fitted Frank copula is 0.99981. Hence generating 100,000 random
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Fig. 8.11 Comparison of
nonparametric and parametric
estimations of KC (t) for the
fitted BB1 copula (The
dashed 45◦-line represents
perfect agreement)

pairs from the copula theoretically 99981 of the pairs should be lying on, under
or to the left of the level curve C(u, v) = t = 0.99 und 19 random pairs above.
In the sample with the size of 2,000 elements four pairs are above the level curve
C(u, v) = t = 0.99. Therefore for 100,000 realisations of the random process 200
values should be above the level curve to model the random process adequately.
This analysis has shown that the Frank copula can not model the dependency struc-
ture adequately in the region of large probabilities. Using the Frank copula only
a few random pairs are generated where both variables have a small exceedance
probability. This example shows that it is important to use different methods for
model selection to choose the model with the best fit to the data. Using only one
goodness-of-fit measure may result in selecting a wrong model.

None of the four considered copulas provides an acceptable fit to the database.
Therefore the two parameter BB1 copula was analyzed besides the four one param-
eter Archimedian copulas. The comparison of the parametric and nonparametric
values of KC (t) are shown in Fig. 8.11 and the comparison between 100,000 ran-
domly generated pairs from the BB1 copula and the database are shown in Fig. 8.12.

Fig. 8.12 100,000 random
pairs (grey dots) of the annual
flood peaks and the
corresponding volumes at the
dam Wupper chosen from the
BB1 copula and the events
from the simulated time
series (black dots)
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Fig. 8.13 Joint return periods T∨
X,Y (exceeding x or y) and T∧

X,Y (exceeding x and y) of the corre-
sponding flood peak and flood volume and the annual events from the simulated time series (black
crosses)

From these figures and the AIC values in Table 8.3 it became obvious that the BB1
copula provides the best fit to the database. Therefore it was selected for further
analysis.

8.3.3.3 Bivariate Frequency Analysis

For the bivariate frequency of flood events the contours of the joint return periods
T∧

X,Y (for which x and y are exceeded) and T∨
X,Y (for which either x or y are exceeded

by the respective random variables X and Y) with respect to flood peak and corre-
sponding volume and the annual events from the simulated time series are illustrated
in Fig. 8.13.

8.3.4 Evaluation of the Effect of the Wupper Dam
on Flood Control

The yearly floods from the simulated 2000 year time series of the inflow to the dam
were used for the analysis of the efficiency of the Wupper dam in flood mitiga-
tion. The resulting maximum water levels and maximum releases for these events
were calculated with the integrated storage module of the rainfall-runoff model
NASIM considering the release rules of the dam with respect to the control gage
Kluserbruecke. The discharge from the uninfluenced subcatchment area between
the dam and the control gage was considered. As mentioned before it is important
to consider flood volume and flood peak for the design and analysis of flood con-
trol structures. Here the joint probability of these two flood variables was used as
probability measure for the single flood events.

Two different critical values for the release were considered in the analysis:
(1) a first control level of 80 m3s−1 and (2) a second critical control discharge
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Fig. 8.14 Maximum resulting outflows at the dam Wupper from the annual events from the
simulated time series and the contours of the joint return periods T∨

X,Y (exceeding x or y)

of 100 m3s−1 at the gage Kluserbruecke. If the releases of the dam exceed these
values critical control levels are exceeded anyway independently from the runoff
of the uninfluenced subcatchment between the dam and the gage. These two crit-
ical values were chosen to demonstrate the methodology to evaluate the effect of
the Wupper dam on flood control. Though these values are defined as control lev-
els at the gage Kluserbruecke both are not specifying critical flood conditions in
this region. In Fig. 8.14 the critical events which exceed the respective thresholds
are illustrated together with the contours of the joint return periods T∨

X,Y (for which
either x or y are exceeded by the respective random variables X and Y).

The contours of the joint return period T∨
X,Y can be used to define regions of

different hydrological risk where an critical event occurs. The contours which define
the boundaries of the different regions are selected in relation to the secondary return
period ρ∨

t after Eq. (8.38). Thresholds ϑ (t) for the boundaries were selected for
which (in the statistical mean) every ρ∨

t = 25, 50, 100 and 200 years an event with
a joint return period T∨

X,Y > ϑ(t) occurs. E.g. the value ϑ(t) of the contour line
for which in the random process every ρ∨

t = 200 years an event with a return
period T∨

X,Y > ϑ(t) occurs (region situated to the right and above the contour line)
is according to the inverse function of Eqs. (8.38) and (8.36) ϑ(t) = 50 years. The
tresholds ϑ (t) for the other secondary return periods ρ∨

t = 25, 50 und 100 years are
summed up in Table 8.4.

If the discharge value of 80 m3s−1 is defined as a critical release of the Wupper
dam (triangles and squares in Fig. 8.14) 81 out of the 2,000 events are specified as
critical events. The ratios of critical events in the different regions defined by their
boundaries in Table 8.4 are illustrated in Table 8.5.

In the region with T∨
X,Y > 8 years 60% (45 of 76 events) of the events are critical

events. The statistical return period that an event with a joint return period T∨
X,Y > 8
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Table 8.4 Tresholds ϑ (t),
for which every ρ∨

t years an
event occurs with a joint
return period T∨

X,Y > ϑ(t)

ρ∨
t [a] ϑ(t) [a]

200 50
100 26

50 14
25 8

Table 8.5 Ratio of critical events for the regions depending on the joint return period T∨
X,Y

T∨
X,Y

Number of
events Ratio of critical events

Critical release > 80 m3s–1 Critical Release> 100 m3s–1

> 50 a 9 100% (9 events) 89% (8 events)
26 a < T∨

X,Y ≤ 50 a 7 71% (5 events) 28% (2 events)
14 a < T∨

X,Y ≤ 26 a 25 68% (17 events) 24% (6 events)
8 a < T∨

X,Y ≤ 14 a 35 40% (14 events) 11% (4 events)
< 8 a 1, 924 2% (36 events) 0.2% (4 events)

years occurs in the random process is according to Table 8.4 ρ∨
t = 25 years. Hence

the hydrologic risk is high that an event in this region is a critical event.
If a value of 100 m3s−1 is defined as critical release (squares in Fig. 8.14) 24 out

of the 2,000 events are specified as critical events. Eight out of nine events with a
joint return period T∨

X,Y > 50 years are critical events. The statistical return period
that an event with T∨

X,Y > 50 years occurs in the random process is ρ∨
t = 200 years

(see Table 8.4). In this region the hydrological risk is very high that an event is a
critical event.

Measures to improve the efficiency of flood protection of the dam, e.g. optimized
flood control or enlarged flood control storage, can be evaluated by comparing the
change of the ratios of critical events in Table 8.5. For the example illustrated in
Table 8.5 the flood protection of the dam is higher for a larger defined critical
release.

It is obvious that the distribution of the critical events can not be described by
using the univariate return period of flood peak or flood volume only. Hence it is
very important to consider the joint probability of these two flood characteristics.
Even with the joint probability of flood peak and flood volume the distribution of
critical events can not be described completely because it depends also on other
random variables such as the water level at the begin of the event, pre-events, runoff
of the subcatchment, shape of the event, etc.

8.4 Case Study 2: Unstrut River Basin

The second case study for the application of copulas for the risk analysis of dams
is the Unstrut River Basin. In contrast to the first case study examining only a sin-
gle dam the flood protection system of the river Unstrut catchment is substantially
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more complex. The flood control system of the river Unstrut has been investi-
gated, optimized and extended through an integrated and interdisciplinary flood risk
assessment instrument as part of an interdisciplinary research project (Nijssen et al.,
2009). For the risk-oriented approach a large variety of different hydrological sce-
narios was generated by coupling a stochastic rainfall generator with a deterministic
rainfall-runoff model. For risk analysis a probability has to be attributed to the indi-
vidual hydrological scenarios. Copulas are used to set up multivariate probability
distributions which consider more than one flood characteristic in the frequency
analysis of the events (Klein et al., 2010). Two different bivariate probabilities were
used for the risk-analysis:

The joint probability of flood coincidences at reservoir sites at two rivers is
applied to consider possible superposition of floods from the main river and one
tributary. It aims to describe the spatial heterogeneity of flood events within these
analyses (Section 8.4.3).

The joint probabilities of the flood peak and corresponding flood volume at the
two reservoirs sites are used to characterize the flood retention in both reservoirs
completely. The flood volume is very important and therefore its probability should
be considered in the risk-based analysis in addition to the probability of the peak
(Section 8.4.4).

8.4.1 Description of the River Basin

The flood prone catchment of the river Unstrut has a watershed of 6,343 km2 and is
situated in Mid-East Germany (see Fig. 8.15). The catchment has a variable topo-
graphic structure with elevations ranging from 104 to 982 m a.s.l. Two mountainous
regions are located in the area: the Harz Mountains in the North and the Thuringian
Forest Mountains in the South of the basin. Two large flood control reservoirs, the
reservoir Kelbra with a catchment area of 664 km2 and a flood control storage of
35.6 × 106 m3 and the flood detention reservoir Straussfurt with a catchment area
of 2,044 km2 and a flood control storage of 18.6 × 106 m3 were built to con-
trol the two main tributaries. A large polder system with a total storage volume
of approximately 50 × 106 m3 is located downstream of these two flood control
reservoirs.

The reservoir Straussfurt is operated with seasonally varying flood control stor-
age. During winter time a storage of 18.6 × 106 m3 and in summer a storage of
12.7 × 106 m3 is allocated for flood control. The maximum capacity of the oper-
ating outlets is approx. 300 m3s−1 and the flood spillway is a crested weir with a
length of 270 m.

The reservoir Kelbra is operated with seasonally varying flood control stor-
age as well. In winter a storage of 35.6 × 106 m3 and in summer a storage of
23.3 × 106 m3 is available for flood control. The maximum capacity of the oper-
ating outlets is 244 m3s−1. Due to this large capacity of the operating outlets the
reservoir has no flood spillway. The control gages for the combined control of the
reservoirs are Bennungen, Oldisleben and Wangen. During a flood the discharges at
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Fig. 8.15 Topographical map of the watershed of the river Unstrut, shown are important gages
in the watershed, the polder system and the dams Kelbra and Straussfurt with their respective
subcatchments

the gage Bennungen must not exceed 30 m3s−1, at gage Oldisleben 131 m3s−1 and
at the gage Wangen 152 m3s−1.

8.4.2 Stochastic-Deterministic Generation of Flood Events

A long-term daily discharge time series of 10,000 years was generated by coupling
a stochastic spatially distributed daily rainfall generator (Hundecha et al., 2009)
with a hydrological rainfall-runoff model following the concept of the well-known
Swedish model HBV (Lindström et al., 1997). For the parameter estimation of the
stochastic rainfall generator 122 stations with observed daily values from 1961 to
2003 and for the calibration of the continuous rainfall-runoff model on daily basis
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discharge series from 1991 to 1996 were used. It has been shown that the statisti-
cal properties of the daily rainfall and the runoff were well reproduced (Hundecha
et al., 2008, 2009). Due to computational limitations it wasn’t possible to build up
a continuous rainfall-runoff model on hourly basis. Flood events have been selected
from the generated daily discharge time series of 10,000 years. For these events the
daily precipitation was disaggregated into hourly values using the models MuDRain
(Koutsoyiannis, 2001) and HYETOS (Koutsoyiannis et al., 2003) and used as input
for an event-based hourly hydrological rainfall-runoff model following the same
concept as the continuous rainfall-runoff model on daily basis. The starting and
boundary conditions for the event-based model were derived from the continuous
model. For the calibration of the event-based rainfall runoff model only two flood
events (April 1994 und December/January 2002/03) were available. The operation
of the reservoirs has been implemented in the rainfall-runoff models.

A representative sample of the population of possible flood events is required
to evaluate a flood control system. Here six different return periods were consid-
ered (T = 25, 50, 100, 200, 500, 1, 000 years). The risk is not only related to the
flood peak, since different hydrograph shapes (e.g. multi-peak floods or floods with
long duration and large volume) will result in different risk levels. The selection of
hydrological scenarios was therefore further supported by cluster analysis of his-
torical events to determine typical hydrograph shapes and volumes. In total five
different hydrological scenarios were selected for each return period at the reference
gage Straussfurt, which encompass various spatial distributions of precipitation.
Furthermore, one event with a return period of the peak of more than 1,000 years
was considered. Hence in total 31 hydrological scenarios were selected from the
entire 10,000 years discharge time series. A more detailed description of the event
selection and the generation of the flood events can be found in Schumann (2009).

8.4.3 Bivariate Frequency Analysis of Corresponding
Flood Peaks at the Reservoir Sites

Since the observed time series was too short for multivariate frequency analysis and
was influenced by the control of the reservoirs and river construction works in the
sixties the generated synthetic 10,000 year time series has been used for the bivariate
frequency analysis shown here.

To account for the impact of different tributaries in the risk analysis, it is crucial
to characterize the spatial distribution of the flood events due to the topographic
structure of this particular catchment, where flooding originates mainly from moun-
tainous regions upstream of the two reservoirs. From the analysis of the historical
flood events, it was found that particularly three different rainfall distributions have
to be considered in the risk-analysis: (1) heavy precipitation in the mountainous
region in the North/North-West, (2) heavy precipitation in the mountainous region
in the South and (3) concurrent heavy precipitation in both mountainous regions.

The inflow gages of the two reservoirs (see Fig 8.15) were henceforth used as
reference locations to quantify the probability of occurrence of the 31 hydrological
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Table 8.6 Measure of
dependency for
corresponding flood peaks at
reservoirs Straussfurt and
Kelbra

Sample size Pearson’s r Kendall’s τ Spearman’s ρ

12,768 0.72 0.48 0.67

scenarios that were selected from the generated 10,000 year time series for the risk
analysis. These two reservoirs represent the upper boundary of the flood control sys-
tem of the Unstrut catchment. The remaining flood protection structures are located
downstream of these two reservoirs. The joint probability between the two flood
peaks at the inflow gage of the two reservoirs was assessed by copulas to describe
the overall probability of occurrence of flood events for the entire region in terms of
probabilities of coincidences of a particular flood event at both tributaries. Hence the
corresponding annual flood peaks had to be selected for further analysis. The annual
flood peaks of the inflow time series to the reservoir Straussfurt and corresponding
flood peaks of the inflow time series to the reservoir Kelbra have been determined.
In cases where the identified flood peak at the reservoir Kelbra did not coincide with
the annual flood peak at this reservoir, the annual flood peak at dam Kelbra and the
corresponding flood peak at dam Straussfurt were added to the sample. In 2,768
years of the generated 10,000 years of discharge the annual flood peaks of the two
inflow gages did not occur at the same time, and therefore the total selected sample
size was 12,768.

The statistical dependencies between the two random variables have been esti-
mated by the statistical measures listed in Table 8.6. The summary shows that there
is a strong positive dependency between the two random variables.

8.4.3.1 Marginal Distributions

It was found that both variables can be described in the best way with the GEV
distribution. The two parameter estimation methods L-Moments and product of
moments provided nearly identical goodness of fit to the flood peaks at the two
reservoirs. However, using graphical diagnostics the parameter estimation method
of L-Moments (Hosking and Wallis, 1997) gave a better fit to the sample data for
the distribution of the flood peaks at Straussfurt, while the method of product of
moments provided a better fit for flood peaks at Kelbra, particularly in the region
with small exceedance probabilities.

8.4.3.2 Copula Estimation

Only the Gumbel-Hougaard family was applicable to describe the dependency struc-
ture of the data among the four commonly applied Archimedian copulas mentioned
in Section 8.3.3. This copula was chosen for the analysis, since the dependency
structure between the flood peaks and the volumes at the dam Wupper is akin to
the dependency structure between the two corresponding flood peaks. However, in
addition to the Gumbel-Hougaard copula, the two-parameter copula BB1 was used
for the construction of the bivariate distribution function. The parameters have been



176 B. Klein et al.

Table 8.7 Parameters and
goodness-of-fit measure AIC
of the fitted copulas for the
analysis of the corresponding
flood peaks at the two
reservoirs

Copula Estimate (s) AIC

Gumbel-Hougaard θ = 1.88 –8,254
BB1 θ1 = 0.114; θ2 = 1.79 –8,303

Fig. 8.16 Comparison of
nonparametric and parametric
estimations of KC (t) for the
fitted Gumbel-Hougaard
copula

estimated with the maximum pseudolikelihood method. The fitted parameters are
summarized in Table 8.7.

The goodness-of-fit of both copulas was nearly identical (see e.g. the AIC values
in Table 8.7. Hence the Gumbel-Hougaard copula, having less parameters than the
BB1 copula, was selected for further analysis. For brevity only the results for the
analysis of the Gumbel-Hougaard copula are shown here.

In Fig. 8.16 the parametric and nonparametric values of KC (t) are plotted for the
Gumbel-Hougaard copula. If the plot is in good agreement with the straight dashed
line that passes through the origin at 45◦, then the copula is considered satisfac-
tory. In Fig. 8.17 the margins of 1,000,000 random pairs (Uj, Vj), chosen from the
copula and transformed back into the original units using the marginal distributions
FX (x) and FY (y), are compared with the sample values. Both figures show that

Fig. 8.17 1,000,000 random
pairs (grey dots) of the
corresponding annual flood
peaks at the two reservoirs
chosen from the
Gumbel-Hougaard copula
and the events from the
simulated time series (black
dots)
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Fig. 8.18 Joint return periods T∨
X,Y (exceeding x or y) and T∧

X,Y (exceeding x and y) of the annual
flood peaks at the two reservoirs, the annual events from the simulated time series (black crosses)
and the selected hydrological scenarios (grey triangles)

the Gumbel-Hougaard copula models the dependency structure between the two
random variables adequately.

8.4.3.3 Bivariate Frequency Analysis

Figure 8.18 illustrates the contours of the joint return periods T∧
X,Y (“OR”-case) as

well as the joint return periods T∨
X,Y (“OR”-case) with respect to the corresponding

flood peaks at the two reservoirs.
The selected 31 events represent a large variety of different hydrological sce-

narios. Interestingly, using for example the selected events with a flood peak of a
∼100 year return period at the reservoir Straussfurt for the design of flood protec-
tion structures, the corresponding return periods of the selected flood peaks at the
reservoir Kelbra range between 10 and 500 years. This additional information can
be used for the planning and design of spatial distributed flood control structures in
general as it is shown in Chapter 12.

8.4.4 Bivariate Frequency Analysis of the Annual Flood Peaks
and the Corresponding Volumes

As mentioned before, for flood storage facilities such as reservoirs and polders it
is important to consider the flood volume besides the flood peak in frequency anal-
yses. Hence the joint return period of the corresponding flood peak and volume
is used to assign a return period to the flood events at the reservoirs Straussfurt
and Kelbra. Corresponding values of annual flood peaks and flood volumes were
selected from 10,000 years of generated data. The corresponding flood volume to
the annual flood peaks is selected according to Fig. 8.5. The estimated parameters
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Table 8.8 Measure of dependency for the peak-volume datasets at the Unstrut watershed

Sample size Pearson’s r Kendall’s τ Spearman’s ρ

Corresponding flood peaks and volumes at reservoir Straussfurt
10,000 0.81 0.66 0.85
Corresponding flood peaks and volumes at reservoir Kelbra
10,000 0.74 0.57 0.76

which were applied to describe the dependency between flood peak and volume are
given in Table 8.8. As before, there is a strong positive dependency between the
corresponding flood peaks and volumes at the two reservoirs. For brevity, only the
results of the analysis at the reservoir Straussfurt are presented here, since the depen-
dency structures of the corresponding flood peaks and volumes at the two reservoirs
were found to be similar.

8.4.4.1 Marginal Distributions

As for the analysis of the corresponding flood peaks at the two reservoirs, the
Generalized Extreme Value (GEV) distribution was chosen as marginal distribution
for the annual flood peaks at Straussfurt and Kelbra. For the corresponding flood
volumes the GEV distribution provided the best fit using the method of product of
moments as parameter estimation method.

8.4.4.2 Copula Estimation

As before the Gumbel-Hougaard and the BB1 copula were chosen for the analysis.
The fitted parameters and the goodness-of-fit measure are listed in Table 8.9.

For both reservoirs the BB1 copula provided the better fit for the structure
of dependency of the two random variables. Therefore it was chosen for further
analysis.

In Fig. 8.19 the parametric and nonparametric values of KC (t) are plotted for the
BB1 copula and in Fig. 8.20 the margins of 1,000,000 random pairs (Uj, Vj), chosen
from the copula and transformed back into the original units using the marginal
distributions FX (x) and FY (y), are compared with the sample values. Both figures

Table 8.9 Parameters and goodness-of-fit measure AIC of the fitted copulas for the analysis of
the flood peaks and the corresponding flood volumes at the dam Straussfurt and Kelbra

Copula Estimate (s) AIC

Corresponding flood peaks and volumes at reservoir Straussfurt
Gumbel-Hougaard θ = 2.6 –11,787
BB1 θ1 = 1.13; θ2 = 1.79 –13,725
Corresponding flood peaks and volumes at reservoir Kelbra
Gumbel-Hougaard θ = 2.12 –8,256
BB1 θ1 = 0.986; θ2 = 1.52 –9,818
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Fig. 8.19 Comparison of
nonparametric and parametric
estimations of KC (t) for the
fitted BB1 copula (The
dashed 45◦-line represents
perfect agreement)

Fig. 8.20 1,000,000 random
pairs (grey dots) of the annual
flood peak and the
corresponding flood volume
chosen from the BB1 copula
at the reservoir Straussfurt
and the events from the
simulated time series (black
dots)

show that the BB1 copula models the dependency structure between the two random
variables adequately.

8.4.4.3 Bivariate Frequency Analysis

Figure 8.21 illustrates the contours of the joint return periods T∧
X,Y (“AND”-case)

and T∨
X,Y (“OR”-case) with respect to the annual flood peak and the corresponding

volume, the annual events from the simulated time series and the selected events (tri-
angles). Again, using the events with a return period of the flood peak around 100
years as an example, the corresponding return periods of the flood volume range
between 25 and 2,000 years. It is therefore recommended to use the joint prob-
abilities for a detailed description of flood events instead of using the univariate
probability of the flood peak only.
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Fig. 8.21 Joint return periods T∨
X,Y (exceeding x or y) and T∧

X,Y (exceeding x and y) of the flood
peaks and corresponding flood volumes at the reservoir Straussfurt, the annual events from the
simulated time series (black crosses) and the selected hydrological scenarios (grey triangles)

A broad range of events has been selected from the time series and categorized
based on the analysis of joint return periods of the flood volume at the reservoir
Straussfurt, as well as the joint return periods of the flood peak at the reservoirs
Straussfurt and Kelbra. The selected events are displayed in Figs. 8.18 and 8.21
(shown as triangles). By using this approach, the spatial distribution between the two
main tributaries is considered and the crucial aspect of using different combinations
of flood peak and volume can be taken into consideration in flood risk analyses.
Those data are in turn used for assessment of the flood control system, which hereby
integrates the spatial component of probability.

8.4.5 Evaluation of the Effect of the Reservoir Straussfurt
on Flood Control

The efficiency of the reservoir Straussfurt in flood mitigation is evaluated using the
31 selected hydrological scenarios. In Fig. 8.22 the maximal resulting water levels
at the reservoir Straussfurt are shown to demonstrate the effects of the different
hydrological loads on the flood protection structures depending on the combination
of flood peak and flood volume.

Here a water level exceeding 150.3 m a.s.l. is defined as a critical hydrologic
event, since it is known that the corresponding outflow of more than 200 m3s−1

would cause severe damage downstream. With a joint return period T∨
X,Y (exceed-

ing x or y) greater than 50 years (gray area in Fig. 8.22), all considered events are
critical events according to this definition. Hence the hydrological risk is very high
for these events. The mean interarrival time of an event lying in the region of very
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Fig. 8.22 Maximum resulting water levels at the reservoir Straussfurt from the different hydro-
logical scenarios and the contours of the joint return periods T∨

X,Y (exceeding x or y)

high hydrological risk, calculated with the secondary return period (Eq. 8.38) is up
to 110 years. For joint return periods between 25 and 50 years (black shaded area
in Fig. 8.22) five of the seven events which were considered are critical events. In
this region the risk is high that an event with a return period T∨

X,Y (exceeding x or
y) between 25 and 50 years is a critical event. The return period of an event lying
in this region 25 a < T∨

X,Y < 50 a can be calculated to 105 years using following
formula

λ∨
t1t2 = μT

P(t1 < C(u, v) ≤ tl2)
= μT

KC(t2) − KC(t1)
(8.39)

with

t = 1 − μT

T∨
X,Y

. (8.40)

In the region with a joint return period T∨
X,Y smaller than 25 years only two out

of 12 events will result in substantial damages. The risk that events with these joint
probabilities may cause damage is relatively low. Not all critical events can be iden-
tified by the joint return period T∨

X,Y such, as e.g. the two critical events lying in
the region with T∨

X,Y < 25 a, because the distribution of the critical events depends
additionally on other flood characteristics (shape of hydrograph, antecedent condi-
tions, flood storage at the onset of the event etc.). But not all random variables can
be considered in the multivariate frequency analyses and therefore this analysis is
reduced to the two most important random variables flood peak and corresponding
volume.
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Flood reduction measures such as an optimized control or enlarged flood storage
could be analyzed by the change of the critical events in the defined regions.

8.5 Conclusions

A large variety of different hydrological loads can be generated by coupling
a spatially distributed stochastic rainfall generator with a rainfall-runoff model.
Especially in large catchment areas with several interacting flood protection struc-
tures it is important to consider the spatial distribution of floods. For the risk analysis
the different hydrological loads have to be categorized probabilistically. In this chap-
ter a methodology to categorize flood events for risk analysis and risk-orientated
design of dams and flood control systems using copulas is presented. The advantage
of using copulas is the possibility to apply a multivariate distribution function with
different univariate marginal distributions. Joint return periods and also conditional
return periods can be derived easily for hydrologic scenarios from copulas.

Results from two different case studies were presented: a single dam located at
the river Wupper was analyzed in the first case study and a flood protection system
with two dams and a flood polder system – the river Unstrut – were analyzed in
the second case study. Different flood characteristics were used to derive probabil-
ities for the risk analysis. For single flood control structures the flood volume was
considered besides the flood peak to estimate the joint probability. For large river
basins it is also important to consider the spatial distribution of the flood events
in the risk analysis. Therefore, to reassign an overall probability of a flood event,
which has different probabilities in the different tributaries, the joint return period
of the corresponding flood peaks in the main tributaries can be obtained using cop-
ula analysis. For the example of the case study for the Unstrut river the flood peaks
of the inflows to the two reservoirs located at two main tributaries were used for the
bivariate frequency analysis to characterize the flood risk for the confluence.

Another advantage using copulas is the possibility to identify critical events for
flood protection structures such as reservoirs and to evaluate the effect of flood con-
trol of these reservoirs. Using the joint return period T∨

X,Y , for which the random
variables flood peak (X) or corresponding flood volume (Y) exceed the respective
thresholds x or y, thresholds can be identified to evaluate the hydrological risk of
critical events.

In general observed time series are too short for multivariate frequency analysis.
By generating a synthetic discharge time series through coupling a stochastic rainfall
generator with a deterministic rainfall-runoff model the database can be extended for
the multivariate analysis. It must be noted that a simulated database can not replace
observed records. On the contrary observations are required for reliable parameter
estimation of the simulation model and for the verification of the results.

Copula analysis can provide valuable information to decision makers. Such infor-
mations is more adequate for flood control problems than traditional return period
analysis. Consideration of multiple flood characteristics is essential for risk-based
planning.
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