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Abstract. A linear model of the microstructured continuum based on Mindlin the-

ory is adopted which can be represented in the framework of the internal variable 

theory. Fully coupled systems of equations for macro-motion and microstructure 

evolution are represented in the form of conservation laws. A modification of 

wave propagation algorithm is used for numerical calculations. Results of direct 

numerical simulations of wave propagation in periodic medium are compared with 

similar results for the continuous media with the modelled microstructure. It is 

shown that the proper choice of material constants should be made to match the 

results obtained by both approaches. 

1. Introduction 

The classical theories of continua describe the behaviour of homogeneous materi-

als. In reality, however, materials are always characterized by a certain micro-

structure at various scales. The character of a microstructure can be regular (like in 

laminated composites) or irregular (like in polycrystalline solids or alloys). Even 

more, regularity and irregularity may be combined like for some FGMs. The char-

acteristic scale of a microstructure must always be compared with the spatial scale 

of excitation. The choice of proper mathematical models is extremely important in 

order to describe the wave fields with needed accuracy. 

In general terms, the starting point for describing a microstructure could be ei-

ther the discrete or the continuum approach. In the discrete approach the volume 

elements are treated as point masses with interaction [1]. Or, especially for lami-

nated composites, the effective stiffness theory has been used [2]. The homogeni-

zation methods based on properties and geometry of constituents are widely used 
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for static and quasi-static problems [3]. From the viewpoint of continua, the 

straight-forward modelling leads to assigning all the physical properties to every 

volume element dV in a solid which means introducing the dependence on space 

coordinates. Thus, the governing equations are so complicated that can be solved 

only by numerical methods. 

Another way is to separate macro- and microstructure in continua. Then the 

conservation laws for both structures should be formulated separately [4, 5] or in a 

more sophisticated way the microstructural quantities could be introduced into one 

set of conservation laws for the macrostructure [6]. Quite recently it has been 

shown that the generalization of such theories can be obtained by using the con-

cept of dual internal variables [7]. 

To check the capabilities of the theory, it is useful to compare the theoretical 

predictions with results of direct numerical simulation of wave propagation 

through a certain known microstructure. In what follows, the derivation of a mi-

crostructure model is presented in the one-dimensional setting. The concept of 

dual internal variables is applied for the physical description of continua with mi-

crostructure. The finite volume wave propagation algorithm is used for both direct 

numerical simulation and the microstructure modeling. Results of direct numerical 

simulations of wave propagation in a periodically layered medium are compared 

with similar results for the homogeneous medium with a modelled microstructure. 

2. Governing Equations 

The governing equations of thermoelasticity are local balance laws for linear mo-

mentum and energy [8]. In the one-dimensional case these governing equations 

are reduced to (no body forces) 
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complemented by the second law of thermodynamics 
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Here t is time, ρ0 is the matter density, v is the physical velocity, σ is the Cauchy 

stress, E is the internal energy per unit volume, S is the entropy per unit volume, θ 

is temperature, Q is the material heat flux, and the "extra entropy flux" K  vanishes 

in most cases, but this is not a basic requirement. 

3. Internal Variables 

Up to now the microstructure was not specified. In the framework of the phe-

nomenological continuum theory it is assumed that the influence of the micro-

structure on the overall macroscopic behaviour can be taken into account by the 

introduction of an internal variable φ, which we associate with the integral distrib-

uted effect of the microstructure, and a certain dual internal variable ψ. We sup-

pose that the free energy depends on the internal variables φ, ψ and their space de-

rivatives W = W*(ux, φ, φx, ψ, ψx). Then the constitutive equations follow 

* * * * *

: ,    : ,   : ,   : ,   : . 
x x x

W W W W W

u
σ τ η ξ ς

φ φ ψ ψ
∂ ∂ ∂ ∂ ∂= = − = − = − = −
∂ ∂ ∂ ∂ ∂

 (3.1) 

We include into consideration the non-zero extra entropy flux [9] 

1 1 .K θ ηφ θ ςξ− −= − −ɺ ɺ  (3.2) 

It can be checked that the dissipation inequality in the isothermal case reduces 

to 

( )     (    )  0.x xτ η φ ξ ς ψ− + − ≥ɺ ɺ   (3.3) 

In the non-dissipative case the dissipation inequality can be satisfied by the 

choice 

( )  (    ),           , x xm mφ ξ ς ψ τ η= − = − −ɺ ɺ  (3.4) 

where m is a coefficient. The latter two evolution equations express the duality be-

tween internal variables: one internal variable is driven by another one and vice 

versa. 

The simplest free energy dependence is a quadratic function [10] 

2
* 2 2 2 20 1 1 1

   ,  
2 2 2 2x x x

c
W u A u B C D

ρ φ φ φ ψ= + + + +  (3.5) 

where A, B C, D, and c are material constants. 
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Here we include only the contribution of the second internal variable itself. In 

this case, the evolution equation for the internal variable φ is a hyperbolic equation 

[7] 

( )2     . xm D φ τ η= −ɺɺ  (3.6) 

As a result, we can represent the equations of motion in the form 

2
0 0    ,tt xx xu c u Aρ ρ φ= +  (3.7) 

       , tt xx xI C Au Bφ φ φ= − −  (3.8) 

where I = 1/(m 2D) is  an internal inertia measure. In terms of stresses introduced 

by Eq. (3.1), the same system of equations is represented as 

2 2

0 2 2
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  (3.9) 

It is worth to note that same equations are derived in [11] but based on different 

considerations. 

3.1 Single Wave Equation 

The governing equations (3.7) and (3.8) can be reduced to one equation. We can 

determine the first space derivative of the internal variable from Eq. (3.8) and its 

third derivatives from Eq. (3.7). Inserting the results into the balance of linear 

momentum (3.7), we obtain a higher order equation [9] with clearly separated 

wave operators which describe the influence of the microstructure 

2 2 2

0

    (  )     (  ) . tt xx tt xx xx tt xx tt

A C I
u c u u c u u c u

B B Bρ
 

= − + − − − 
 

  (3.10) 

3.2 System of Equations 

At the same time, in terms of strain and velocity, Eq. (3.7) is rewritten as 

2
0 0    . t x xv c Aρ ρ ε φ= +  (3.11) 
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The particle velocity and the strain are related by the compatibility condition 

  , t xvε =  (3.12) 

which form the system of equations for these two variables. 

Similarly, introducing a microvelocity w as follows: 

 :  , xw Dψ= −  (3.13) 

and using Eq. (3.6) with m =1, we have 

  , t xwφ =  (3.14) 

that is nothing else but the compatibility condition at micro-level. It follows from 

Eqs. (3.14) and (3.8) that 

       .x xxIw C A Bφ ε φ= − −ɺ  (3.15) 

Integrating the latter equation over x, we arrive at 

( )     t xIw C A B dxφ ε φ= − +∫  (3.16) 

Thus, we have two coupled systems of equations (3.11), (3.12) and (3.14), 

(3.16) for the determination of four unknowns: ε, v, φ, and w. These two systems 

of equations are solved numerically to describe the microstructure dynamics. 

4. Numerical Simulations  

4.1 Algorithm Description 

There are many computational methods used to describe wave propagation 

phenomena (see, e.g. [12]). In our computations we apply a modification of the 

wave propagation algorithm [13] that was successfully applied to the simulation of 

wave propagation in  inhomogeneous media with rapidly-varying properties [14]. 

In simulations of wave propagation in a layered medium with known location of 

inhomogeneities, the numerical scheme is the same as described in [14]. However,  

the wave propagation algorithm is modified in order to solve the coupled systems 

of equations in the modelling of the microstructure. This modification is needed to 

treat the source terms which appeared in equations due to their coupling.  



J. Engelbrecht, A. Berezovski and M. Berezovski  

 

24 

4.2 Linear Waves 

As an example, the propagation of a pulse in an one-dimensional medium which 

can be represented as an elastic bar is analysed. This bar is assumed homogeneous 

except of a region of length d, where periodically alternating layers of size l are 

inserted. The density and longitudinal velocity in the bar are chosen as ρ0 = 4510 

kg/m3 and c = 5240 m/s, respectively. The corresponding parameters for the mate-

rial of the inhomogeneity layers are ρ1 = 2703 kg/m3 and c1 = 5020 m/s, respec-

tively. The shape of the pulse before the crossing of the inhomogeneity region is 

formed by an excitation of the strain at the boundary for an limited dimensionless 

time period (0< t < 100) 

(0, )  (1  cos( ( 50) / 50)) .t tε π= + −   (4.1) 

The time step used in calculations is by definition a unit. The length of the 

pulse L = 100 ∆x is comparable with the size of inhomogeneity (l = 128 ∆x).  Us-

ing the notion of the bar, it must be stressed that l and L are much smaller than the 

diameter of the bar [15]. 

 

Fig. 4.1 Scattering of a pulse by a periodic multilayer. 
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Direct numerical simulation of linear elastic wave propagation in the medium 

with variable properties shows that the pulse holds its shape up to the entering into 

the inhomogeneity region. After the interaction with the periodic multilayer, the 

single pulse is separated into many reflected and transmitted parts as it can be seen 

in Fig. 4.1. Normalized time shown in Fig. 4.1 is measured in hundreds of time 

steps. During the propagation in the periodic medium, the amplitude of the pulse 

is diminished due to multiple reflections. 

The same pulse propagation was simulated by the microstructured model de-

scribed above with the following choice of material parameters: A = 49 ρ0c
2, I = 

ρ1, C = Ic1
2, B = 24.6 A2

ρ0c
2. In this case, there is no assumption of periodicity of 

microstructure, however, in calculations of the pulse propagation, the internal 

length l for the microstructure is kept the same as in the case of periodic multi-

layer. The ratio of scales l and L together with the value of the parameter A deter-

mines the contribution of the microstructure to the macromotion.  

Here the coupled systems of equations (3.11), (3.12) and (3.14), (3.16) are 

solved simultaneously. It should be noted that no boundary conditions for the in-

ternal variable are prescribed. A non-zero solution for the microstructure is in-

duced due to the coupling.  

Results of numerical simulation are presented in Fig.4.2, where the correspond-

ing transmitted pulses from the solution of the problem with periodic multilayer 

are also shown. 

 

Fig. 4.2 Transmitted pulses.  
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As one can see, the adjustment of material parameters in the microstructure 

model allows us to reproduce the first pulse with perfect accuracy while the sec-

ond one is essentially smaller in amplitude, because of the absence of a reflected 

trail in the case of the microstructure model. 

4.3 Weakly Nonlinear Waves 

We consider again the propagation of a pulse in a layered 1D medium (elastic bar) 

where the length of inhomogeneity l = 4 ∆x is much smaller than the length of the 

pulse L = 100 ∆x.  The properties of materials are the same as previously with a 

weak nonlinearity for the less stiff material (cf. [16]) 

( )2
0  1  ,x xc u Nuσ ρ= +  (4.2) 

where N is a parameter of nonlinearity. 

Direct computations in this weakly nonlinear case (N = 0.04) show that the ini-

tial bell-shaped pulse is transformed in a train of soliton-like pulses propagating 

with amplitude-dependent speeds (Fig. 4.3) like for the celebrated KdV case. 

 

Fig. 4.3 Transformation of a bell-shaped pulse in a weakly nonlinear periodic medium (af-
ter 4600 time steps). 
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If we return to the microstructure model then the linear governing equations 

(3.7), (3.8) must be modified. Instead of the free energy function (3.5), a cubic 

function is used: 

2 2 2
* 2 2 2 2 3 30 0 01 1 1

   ,
2 2 2 2 6 6x x x x

c c c
W u A u B C D M Nu

ρ ρ ρφ φ φ ψ φ= + + + + + +  

 (4.3) 

where M  and N are new material constants (see [17]). 

Now the governing equations yield (cf. (3.7), (3.8)) 

2 2
0 0 0    ,tt xx x xx xu c u c Nu u Aρ ρ ρ φ= + +   (4.4) 

       .tt xx x xx xI C M Au Bφ φ φ φ φ= + − −   (4.5) 

Besides dispersive effects (see [10]), the governing equations (4.4) and (4.5) 

include also nonlinear effects in macro- and microscale. The dispersive effects are 

analysed in [10] while the influence of nonlinearities is described in [18]. It is not 

surprising that the balance between the dispersive and nonlinear effects can occur 

resulting in emergence of solitons.  

For numerical simulation, the system of equations (4.4), (4.5) can be repre-

sented in the form of a single (4th order) equation (like Eq. (3.10)). The initial 

value problem for such a model nonlinear equation is solved by the pseudospectral 

method [18]. The initial pulse-type excitation leads to the train of solitons similar 

to that shown in Fig. 4.3. 

5. Conclusions  

If we know all the details of a given microstructure, namely, size, shape, composi-

tion, location, and properties of inclusions as well as properties of a carrier me-

dium, the classical wave theory is sufficient for the description of wave propaga-

tion. Usually our knowledge about the microstructure is limited – we know only 

the characteristic scale of microstructure and its physical properties. Then the ac-

curacy of classical theories is not sufficient and the more advanced theories of 

continua should be used.  

In the paper, we have compared results of direct numerical simulations of wave 

propagation in given layered media with the corresponding results obtained by a 

continuous model of the microstructure. The presented model looks like a promis-

ing variant of the theory, complicated enough to describe various effects of the 
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microstructure. This model can be naturally extended to include non-linear effects 

and dissipation [19]. However, numerical simulations demonstrate that the 

straight-forward numerics and the modelling on the basis of continuum theories 

need a careful matching of material coefficients. 

Some general remarks should be made in addition. The concept of dual internal 

variables introduced in [7] permits to model consistently microstructure(s) for 

both dissipative (not analysed here) and non-dissipative processes (see above). 

Such an approach gives an excellent basis to clarify the structure of generalised 

continuum theories such like linear Cosserat, micromorphic, and second gradient 

elasticity theories. This will be a subject of our forthcoming publications. 

      Once the wavefields in microstructured materials are described with needed 

accuracy, the respective mathematical models can also be used for solving the in-

verse problems. In linear cases, the dependence of phase velocities on the micro-

structure can be used for determining the material properties. In nonlinear cases, 

when the balance between dispersive and nonlinear effects supports the propaga-

tion of solitary waves, the algorithms for solving the inverse problems can be 

based on the analysis of shapes of solitary waves. It has been shown namely [17] 

that the nonlinearity of the microstructure leads to asymmetric solitary waves. 

This property can be used for constructing an algorithm which determines the pa-

rameters of the microstructure from measured asymmetry (see [17]). 
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