
Chapter 5

Stochastic Reasoning

When reason is against a man, a man will be against reason.

T. Hobbes

5.1 Lifting Isis’ Veil

Sometime during the early fifth century BC, Heraclitus famously uttered: FύsiB
krύptetai ’ileı́. 1 Many centuries later, Werner Heisenberg famously postulated

that “Not only is Nature stranger than we think, it is stranger than we can think.”Was

Heisenberg right, andwhat exactlyhemeant by“wecan think”?The spirit of this book

is based on the premise that the precisemeaning of this sort of thoughts can attune IPS

to new dimensions of human inquiry, change one’s sense of what is possible and

meaningful, and guide one toward unforeseen horizons of understanding.

Metaphorically speaking, Heraclitus’ and Heisenberg’s thoughts seem to con-

verge to a common image of Nature using some sort of a “veil” or “mask” to

deceive humans and make it difficult or even impossible for them to discover the

truth. History-prone readers may recall that Nature has been allegorically identified

with the goddess Isis of ancient Egypt. The statue of Isis covered in a black veil was
erected on a tomb close to Memphis. On the statue’s pedestal was engraved the

inscription:

I am everything that was, everything that is, that will be, and no mortal has yet dared to lift

my veil.

The ancients believed that knowledge and truth were hidden beneath Isis’ veil.

The lifting of the veil represented the revelation of the truth, and to succeed in doing

so is to become immortal. Accordingly, since ancient times philosophical investi-

gations have focused on questions like: Is Isis (Nature) unknown or unknowable?

Can the veil be removed from Isis (Nature) by reason, experiment, or intuition?

Should the veil be removed, and what are the possible consequences?

1Nature loves to hide.

G. Christakos, Integrative Problem-Solving in a Time of Decadence,
DOI 10.1007/978-90-481-9890-0_5, # Springer Science+Business Media B.V. 2011

243



Perhaps, one should not be over-concerned about goddess’ veil. After all, ancient

Greeks expected their gods and goddesses to behave as human beings do. Humans

are often masked from one another, and so do their gods. This is true in modern

times, and perhaps even more so. The imaginative ways humans are masked from

others, masked even from those who they love most are masterfully explored in

Carolyn Parkhurst’s 2003 novel The Dogs of Babel. Just as is the case with human

behavior, all options are on the table: Nature’s veil may be impenetrable, she may

chose to lift the veil herself, or the veil can be finally removed using the tools of

human inquiry. In the latter case, it is left to inquisitive minds to search for creative

ways that could progressively, profitably, and safely lift Isis’ veil, so to speak.

Resorting once more to metaphor, stochastic reasoning2 is an attempt to lift Isis’

veil using a synthesis of tools (abstract and intuitive, mathematical and physical,

rational and empirical) provided by the sometimes productive-sometimes fruitless,

sometimes enjoyable-sometimes agitating, sometimes exhilarating-sometimes dis-

couraging, yet always fascinating dialectic between the human mind and Isis

(Nature). The correspondence between the inner and the outer, the intellectual

and the sensuous, the seer and the seen, is a daring attempt to visualize invisible

Isis out of space and time. It is also an attempt to obtain a deeper understanding of

the distinction between the Nature impressing itself on the mind and fashioning it,

on the one hand, and the mind portraying Nature in its own creative way, on the

other hand. A word of warning may be appropriate at this point. Following Niccolo

Machiavelli’s advice that “injuries should be inflicted all at once,” this chapter

exposes the readers to a good dose of mathematics.

5.2 Reasoning in a Stochastic Setting

Although many investigators would claim that they do not consciously practice

formal reasoning, nevertheless, they often unwittingly practice an informal yet

distinctive reasoning mode. This is true even in cases in which the investigator’s

reasoning begins simply with the recognition of clues. The matter is of consider-

able importance since it can effectively help the investigators scrutinize the main

presumptions underlying their research techniques, improve their understanding of

key concepts, test and reshape their intuition. It is surprising that recent debates

concerning epidemiology research and its consequences in public health (Boffetta

et al. 2008, 2009a, b; Blair et al. 2009) do not pay sufficient attention to the

soundness of the logical reasoning that underlies each approach. Instead, the

focus is on technical data analysis and empirical evidence. I will start with a review

of traditional reasoning modes, and then will make the connection with uncertainty

in a real-world setting.

2 Already briefly introduced in Section 1.5.3.
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5.2.1 Basic Reasoning Modes

It has been said that we live in a sound-bite society, in which it is the simple issues

that predominantly attract people’s attention. According to this perspective, if an

idea cannot be presented on a bumper sticker, it has little or no chance to succeed.

But this does not mean that one has to give in to hopelessness, which is how the

story of stochastic reasoning unfolds.

5.2.1.1 Elements of Reasoning

Generally speaking, reasoning is a thought process that involves arguments

(sentential, syntactic, symbolic, or numerical). An argument is a mental construct

that starts with specified premises or hypotheses (data, facts, observations or mea-

surements, statements, assumptions, and physical laws), and develops certain con-

clusions or consequences (problem-solutions, attribute predictions across

space–time, system evaluations, and new laws). There is a list of so-called indicator

words, which point out which part of the argument is the premises and which

the conclusions. Words like, “assuming that,” “if,” “because,” “since,” and “by

virtue of” indicate the beginning of premises. On the other hand, words like

“therefore,” “hence,” “so,” “consequently,” and “it follows that” indicate the begin-

ning of conclusions. For illustration purposes, Table 5.1 gives a list of common

arguments. Whatever is above the horizontal line is a premise and whatever is below

the line is a conclusion. The symbol “\” means “entails,” or “implies” in a broad

sense (i.e., it is valid for any rational agent). The readers may notice that (5.1) is a

commonly used argument. When the focus of the study is a physical attribute

Xp ¼ Xs;t, the premises and the conclusions may take a symbolic and/or numerical

form, see argument (5.2); the Xp changes across space–time according to physical

law, which means that the “premises” are causally linked to the “conclusion” (as we

saw in Section 1.2.3, this is a key premise of stochastic reasoning).Measurement and

prediction values in Eq. (5.2) are in suitable numerical units.

Table 5.1 Examples of arguments

Every Thessalos is a good horserider

Alkividas is not a good horserider

\Alkiviadis is not Thessalos

(5.1)

Xs;t ¼ 0:9tX0;0 þ 2:1s2tðPhysical lawÞ
X0;0 ¼ 1:3 ðMeasurementÞ
\X2;1 ¼ 9:57 ðLaw predictionÞ

(5.2)

All Romans spoke Latin

Nero spoke Latin

\Nerowas Roman

(5.3)

All Romans spoke Latin

Descartes spoke Latin

\Descartes was Roman

(5.4)

All Italian� Americans are tall

DannyDeVito is an Italian� American

\ DannyDeVito is tall

(5.5)

All men aremortal

DannyDeVito is aman

\DannyDeVito is mortal

(5.6)
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In terms of logic, an argument may be concerned with a number of things.

It could be for or against a specific thesis, suggest a solution of a problem, or lead

to a novel result. In evaluating an argument one is basically interested about two

items: (i) Are the premises true? (ii) Assuming that the premises are true, what kind

of support do they offer to the conclusion? Although Element i is not the business of
logic, it is of great concern in scientific investigations. Element ii, on the other hand,
is definitely the business of logic. Valid argument is one that cannot have true

premises followed by wrong conclusions (i.e., if the premises are true then one is

assured that the conclusion is also true). Three classical premise-conclusion com-

binations associated with a valid argument are shown in Table 5.2. The word

“possible” in the legend of Table 5.2 implies that a true premise and a true

conclusion are not, by themselves, enough to have a valid argument; it must also

hold that to assert the premise and deny the conclusion would involve a contradic-

tion (i.e., it will be logically inconsistent). It is instructive to consider the arguments

(5.3)–(5.4) in Table 5.1. Neither of these arguments is necessarily a logically valid

argument (even when the premises are true, one is not assured that the conclusion is

also true). As a matter of fact, it is on historical grounds that one can say that

the argument (5.3) is valid (Nero was Roman), whereas the argument (5.4) is wrong

(Descartes was not Roman). In fact, when the premises are indeed true (which is not

the task of logic but of science, history, etc., to confirm) the argument is more than

valid – it is sound. Consider the argument (5.5) in Table 5.1. This is a valid but not a

sound argument (because, obviously, the premise that “All Italian-Americans are

tall” is not true). Now consider the argument (5.6) in Table 5.1. This is a valid and

sound argument (both premises are true in the real-world).

Rather simple arguments like the above can offer insights concerning sound

reasoning that can deepen conscious awareness and improve one’s capacity for

experience. As we will see later, these qualities play a key role in the development

of an IPS that accounts for conditions of in situ uncertainty. Possible insights include

the following: (a) A rigorous formalization may guarantee general logical validity but

not substantive soundness (scientific or otherwise). An argument may be perfectly

valid from a purely formal viewpoint, and yet make no sense from the viewpoint of

science or even common sense. Hence, one needsmore than pure logic to establish the

truth of many real-world arguments. (b) It is doubtful that most real-world arguments

fit the strict “premises-conclusion” formalization. Instead, there is considerable uncer-

tainty about several aspects of the premises (e.g., physical law parameters and

associated measurements are often uncertain). The “theory–evidential support” rela-

tionship is not as definite as the formalization may assume (e.g., general relativity

theory is assumed valid in a wider physical domain than that covered by the available

data). (c) The logical process used in Arguments (5.5)–(5.6) offers a complete

Table 5.2 Possible valid

argument forms
Premise Conclusion

True True

False False

False True
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confirmation, whereas the process used in (5.3)–(5.4) only provides a partial confir-

mation. It is noteworthy that many everyday life arguments are based on the latter

rather than the former logical process. Below, I will first examine the two traditional

reasoning modes, deduction and induction, and then will briefly discuss hypothetico-

deduction, which is a reasoning mode that became popular mainly during the last

century. Some of the pros and cons of the three modes will be pointed out as well.

5.2.1.2 Deductive Reasoning

Deduction or deductive reasoning is reasoning from the general to the particular or

less general. It evaluates the arguments on the basis of validity, i.e., it allows only

valid arguments. The premises, if they were true, guarantee the truth of the

conclusion, which means that deductive inferences preserve truth. For illustration

purposes, let Xpi , Ypj , Zpk etc. denote space–time attributes with possible realizations

wpi , cpj
, zpk etc. (p ¼ ðs; tÞ). The attribute realizations wpi and cpj

may be linked by

means of a causal relationship in a physical continuum (Fig. 5.1). The symbol “:”
denotes negation (e.g., :wpi means that it is not the case that the realization wpi is
true). The symbol “ ^ ” denotes conjunction (wpi ^ cpj

means that both the realiza-

tions wpi andcpj
are true). The symbol “ _ ” denotes disjunction (wpi _ cpj

means that

either wpi or cpj
is true). The symbol “ ! ” denotes implication (wpi ! cpj

means

that if wpi is true, then cpj
is true).3 The symbol “ $ ” denotes equivalence

(wpi $ cpj
means that wpi is true if and only if cpj

is true).4 The symbol wpi $ cpj
also implies that wpi ^ ð:cpj

Þ is a contradiction (wpi ^ ð:cpj
Þ $ ‘), whereas

wpi _ ð:cpj
Þ is a tautology, (wpi _ ð:cpj

Þ $ t). The symbol “ � j �h i” denotes that

whatever is on the right of the vertical line has the property on the left of the line. If A
is a set of realizations wpi , the Y j Ah i and Y j wpi

D E
denote, respectively, that the set

A or just a realization wpi has the propertyY; lastly, the symbol “ 2 ”means “belongs

to.” Logic operators can be combined in different ways leading, to a variety of

deductive reasoning results that are not always obvious a priori. In Chapter 6, wewill

Physical continuum
causal relation

χpi

ψpj

Fig. 5.1 Realizations of two

different attributes linked by a

physical continuum

3What is asserted by implication is that :ðwpi ^ ð:cpj
ÞÞ, i.e., it is not the case that wpi and not cpj

.
4 Equivalence is a strong logic operator that means the same as ðwpi ! cpj

Þ ^ ðcpj
! wpi Þ.
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see how these logic operators (as well as the rules of Tables 5.3 and 5.4) can be

considered in a stochastic logic milieu in conditions of uncertainty.

Table 5.3 provides a useful list of deductive argumentation rules in terms of

attribute realizations. The same rules are valid if the attribute realizations are

replaced with statements A, B, C. . . of everyday language. Deductive reasoning is

defined in a very precise way: it is the kind of reasoning in which it is logically

impossible for the premises to be true and the conclusion false. According to Karl

Popper (1963: 51), “The role of deductive logic reasoning remains all-important for

the critical approach. . .because only by purely deductive reasoning is it possible for
us to discover what our theories imply, and thus to criticize them effectively.”

Mathematics is based on deductive reasoning, which is why mathematics possesses

all the pros and cons of this mode of reasoning. In the case of deduction, the

conclusion asserts no more information than is asserted in the premises, and gener-

ally has nothing to say about the validity of these premises per se (which is the

business of science).6 In fact, the deductive process is so precise albeit mechanical

and essentially content-free that Bertrand Russell once emphatically wrote that

Pure mathematics consists entirely of such asseverations as that, if such and such a

proposition is true of anything, then such and such another proposition is true of that

thing. . . It’s essential not to discuss whether the proposition is really true, and not to

Table 5.3 Deductive reasoning rules in terms of attribute realizations5

Modus tollens Modus ponens Simplification Conjunction

wpi ! cpj

:cpj

\:wpi

wpi ! cpj

wpi
\cpj

wpi ^ cpj

\ wpi

wpi ;cpj

\ wpi ^ cpj

Absorption Excluded middle Disjunctive syllogism Constructive dilemma

wpi ! cpj

\ wpi ! ðwpi ^ cpj
Þ

wpi ! cpj

:wpi ! cpj

\cpj

wpi _ cpj

:wpi
\cpj

wpi _ cpj
;

ðwpi ! zpk Þ ^ ðcpj
! opq Þ

\ zpk _ opq

Contradiction Addition Hypothetical syllogism Direct generalization

wpi ! cpj

wpi ! :cpj

\:wpi

wpi
\ wpi _ cpj

wpi ! cpj

cpj
! zpk

. . .

upq ! opm

\ wpi ! opm

Y j Ah i
wpi 2 A

\ Y
��� wpi

D E

5 Otherwise said, these are realizations of the spatiotemporal random field model (Section 5.3

below).
6Whereas in induction the conclusion goes beyond, i.e. “amplifies,” the content of premises

(see below).
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mention what the anything is of which it is supposed to be true. . . If our hypothesis is about
anything and not about some one or more particular things, then our deductions constitute

mathematics. Thus mathematics may be defined as the subject in which we never know

what we are talking about, nor whether what we are saying is true.

The take-homemessage is that one should be aware of the seduction-by-deduction
temptation, since in many cases a direct, uncritical implementation of deductive

reasoning in real-world applications may be like using both feet to test the depth of

the river.

5.2.1.3 Inductive Reasoning

Induction is reasoning from the particular to the general. It evaluates the arguments

on the basis of probability (may allow invalid arguments that are, though, highly

probable arguments on the basis of the premises). The premises, if they are true,

make probable the truth of the conclusion. Accordingly, induction includes argu-

ment forms in which the conclusion does not follow necessarily from the premises

(as is the case of valid deductive reasoning), but, instead, is inferred as likely.

Otherwise said, inductive reasoning assures one that the conclusion is likely, but not

that it is certain, and it analyzes risky arguments using probabilistic statements.

There exist several classifications of inductive reasoning. One classification distin-

guishes between induction by enumeration and induction as inference to the best

explanation or abduction. In enumerative induction, a conclusion is derived on the

basis of a large and representative attribute sample. In abductive inference, a

conclusion concerning one thing is obtained as the best explanation of something

else. In other words, the basic difference between enumeration and abduction is

that, while the former proceeds from a large and representative sample to an

unrestricted conclusion, the latter proceeds from a single observed attribute or

phenomenon to the explanation of another attribute or phenomenon. Abduction is

frequently employed in scientific investigations; e.g., although electrons them-

selves cannot be seen, scientists conclude that they exist since such a conclusion

provides the best possible explanation of certain observations. Table 5.4 gives a list

of inductive rules. Inductive arguments are partial confirmation arguments to which

Table 5.4 Inductive reasoning rules in terms of attribute realizations

Partial confirmation Partial rejection Causal generalization

wpi ! cpj

cpj

;wpi is probable

wpi ! cpj

:wpi
;:cpj

is probable

cpj
follows wpi

;wpi is probably

the cause of cpj

Analogy Simple enumeration Statistical generalization

Yi wpi ;cpi

���D E
i ¼ 1; :::;N � 1

YN wpN

���D E
; YN cpN

���D E
is probable

Y
��� wpi

D E wpi 2 A

ði ¼ 1; 2; :::;NÞ

(

; Y j Ah i is probable

Y j Sih i
Si � O

ði ¼ 1; 2; :::;NÞ

(

; Y j Oh i is probable
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one can assign probability values that depend on the available knowledge, i.e., given

the historical knowledge available, the probability that Nero was Roman tends to

one, whereas the probability that Descartes was Roman tends to zero. In less

developed fields the violation of the reasoning rules of Tables 5.3 and 5.4 frequently

leads to problematic results. In clinical research, e.g., the probabilistic nature of the

inductive rules in Table 5.4 is often ignored, and the rules are misinterpreted as

deductive. Thematter will be studied in Section 6.1, after the random field concept is

introduced in Section 6.3 that follows. As in Table 5.3, the inductive rules of

Table 5.4 remain valid if the attribute realizations are replaced with statements.

Epicureans have held that there exist shortcuts to happiness, but induction is not

one of them. As it turns out, the direct, uncritical implementation of pure or naive

induction in scientific research can be problematic. David Hume (Section 2.2.9) was

probably the first to put into question the legitimacy of pure induction, due to its

circularity: the only grounds we have for trusting induction are circular, in the sense

that inductive inferences are justified on the basis that these inferences have worked

in the past. Remarkably, one of the best-known responses to Hume’s challenge is one

of desperation: as long as induction works, one can ignore any circularity problems.

This is an inadequate argument, of course, that essentially applies to everything

under the Sun. And if this is the best argument pure induction can come upwith, then

too bad for pure induction. Nevertheless, even this simplistic argument is not

problem-free in its implementation: What is the meaning of the term “works” in

the setting of the above argument? Under what special conditions the argument

applies? When pure induction fails, what we learn about the source of its failure? Its

inability to convincingly respond to these and similar questions has caused many

scientists to seriously doubt the effectiveness of pure induction. Sir Peter Medawar

(1969: 11) jokingly remarked that, “If anyone working in a laboratory professed to

be trying to establish laws of Nature by induction, we should begin to think he was

overdue for leave.” Surprisingly, some empirical data analysts still remain in an

unconscious bondage to outdated practices of pure induction that have been widely

repudiated or otherwise allowed to fade away (see, also, Sections 8.2.2 and 9.4).

The above considerations by no means imply that pure induction has no place

in scientific inquiry, rather its implementation makes sense in certain special

cases that must be carefully considered. Most investigators would agree that in

real-world studies one rather employs valid combinations of inductive and deduc-

tive elements; e.g., induction is used in the determination of premises (first stage),

and the verification of conclusions (third stage), whereas deduction is used in the

derivation of conclusions from premises (second stage). Due to its importance in

scientific inquiry, the matter is discussed in other parts of this book.

5.2.1.4 Hypothetico-Deductive Reasoning

The hypothetico-deductive mode of reasoning is as follows: a hypothesis or theory

is formulated concerning a problem, its consequences (e.g., predictions) are worked

out, and then tested by means of observations and/or experiments. A test that could

and does run contrary to the consequences of the hypothesis or theory is taken as a
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falsification of the hypothesis or theory (Popper 1963; see also Section 1.1.2).

On the other hand, a test that could but does not run contrary to the hypothesis or

theory corroborates the hypothesis or theory. In hypothetico-deductive reasoning, a

mental entity (hypothesis, theory, or solution) needs to be testable in some definite

way, i.e. be capable of proven wrong (falsified) under certain conditions, in which

case the entity is termed falsifiable. A falsifiable entity is provisionally accepted

until it is falsified.

Popper claimed that for a construct to be scientific, it must satisfy the

conditions of the above framework. As considered by him, falsification demands

absolute specificity, in which case probabilistic statements are not directly falsi-

fiable. The statement “It will probably rain in Paris tomorrow,” e.g., is

not directly falsifiable in the above sense, because it is not a clear-cut statement.

The latter is the case of mathematical statements, since they are tautological

(proving mathematical theorems involves reducing them to tautologies, i.e.,

reducing the negative to a contradiction). The above imply some limitations of

both, the conceptual framework of falsification and its practical usefulness. Imre

Lakatos (1976, 1978a, b), e.g., argued that there is no falsification before the

emergence of a better theory – theories and models are more often repaired than

they are refuted.

5.2.2 Transition to Stochastic Thinking

The preceding discussion of reasoning modes provides a starting point from which

to interpret as significant the conceptual gaps in standard logic between formal rules

and in situ reality. Undoubtedly, the implementation of a reasoning mode in most

in situ situations should involve the notions of probability and uncertainty. Given

the multisourced in situ uncertainty, failing to include a suitable probability

theory in the scientific field can be an obstacle to the field’s progress. In this spirit,

Paul W. Glimcher (2004: 177) maintained that, “The fundamental limitations which

neurobiology faces today is a failure to adequately incorporate probability theory

into the approaches we use to understand the brain.”

5.2.2.1 A Slippery Affair and Its Psychology Connections

Having said that, it must not escape the readers’ attention that reasoning in terms

of probabilities can be a slippery affair. For Charles Sanders Peirce, “This branch of

mathematics is the only one, I believe, in which good writers frequently get results

entirely erroneous.” In a similar vein, George N. Schlesinger (1991: 16) writes:

The susceptibility to error is caused by allowing oneself to be guided too much by intuition

and common sense. In probabilistic reasoning, more often than elsewhere, things are not

what they seem, and untutored innate intelligence may frequently prove an unreliable guide.
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These probability features are sometimes so difficult to comprehend that

practitioners armed with only a superficial knowledge of probability theory, often

make nonsensical claims (see, also, Sections 6.1, 6.3 and 9.4). Jeffrey S. Rosenthal

(2006) offers some insight why human intuition is often very bad in guessing

probabilities. Ola Svenson (2008) gives a psychological perspective on why in

many cases human intuition is completely wrong. Furthermore, a few decades ago,

Amos Tversky and Daniel Kahneman (1973, 1982) published some results suggest-

ing that people have serious difficulties with probabilistic reasoning. They claimed

that much of people’s thinking under conditions of uncertainty is based merely on

heuristics7 (Workman and Reader 2004). Tversky and Kahneman attributed the

poor performance of the study participants to their using heuristics: representative

bias (participants are misled by what seems to be representative of the real-world),

and base-rate neglect (participants failed to take prior probabilities into account).

The response of the evolutionary psychology school was that, while it is true that

people show rather poor intuitions when making decisions under conditions of

uncertainty, however, this is due to the way things are presented to them. In many

cases, e.g., people are presented with problem formulations that their minds are not

evolutionary adapted to cope with. In particular, Leda Cosmides and John Tooby

(1996) presented some results suggesting that when a problem is presented to a

group of study participants in terms of single-case probabilities, most of them

derive an incorrect solution. However, when the same problem is presented to the

same group of participants in terms of frequencies, the majority of them derive the

correct solution. The explanation of this apparent paradox is that while our ances-

tors have gained considerable benefits from evolving frequency-sensitive mechan-

isms, they have found little use for single-case mechanisms, in case the latter had

been evolved. Two main conclusions could be drawn concerning the above views

that seek to explain an agent’s difficulties with probabilistic thinking: the heuristics

perspective focuses on the irrationality of human reasoning, whereas the evolution-

ary perspective properly emphasizes its adaptive rationality. The former perspec-

tive seeks explanations in terms of proximate mechanisms, whereas the latter rather

stresses ultimate explanation. A matter of significant interest is to assess how these

different perspectives can affect the IPS approach that the agent chooses to use

under conditions of uncertainty. This includes the solution of in situ problems in the

physical and health sciences alike.

In an attempt to deal effectively with the state of affairs described above,

stochastic reasoning requires from the investigator considerable levels of introspec-

tion and interpenetration, in addition to formal derivations. Unlike the mainstream

paradigm, in the stochastic reasoning milieu, uncertainty characterizes not only

inductive but deductive modes of argumentation too. Accordingly, logical deriva-

tions are not certain but have realistic probability values assigned to them. For

reasons discussed in Sections 1.2.3, 4.3.1 and 4.3.2, uncertain attributes of a

real-world system are usually linked to other uncertain attributes via physical or

7Heuristics are short-cut solutions to a problem, which, while are often quick and easy (or, in some

cases, “quick and dirty”) to implement, do not guarantee a correct solution.
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logical relations. Even when an attribute is known with certainty, in situ relations

most often link it to other attributes to which they assign probability values. Only in

the rare case that the strict dependency of deductive reasoning connects one

attribute to another the certainty of the first can be transferred to the second. As a

consequence,terms like “probable,” “causation,” “implication,” “contradiction,”

and “conditional” need to be re-interpreted in the appropriate contextual settings.

5.2.2.2 The Relationship Between Logic and Psychology

Continuing our discussion of the role of psychology in human reasoning, I will start

with a real-world example that is paradoxical and at the same time somehow

entertaining. The statements P¼ In favor of family values and C¼ In favor of
assault weapons logically should represent mutually inconsistent or exclusive

possibilities. Said otherwise, occurrence of one of them makes the occurrence of

the other highly improbable. Yet public opinion polls show a clear shifting of

American attitude toward P ^ C, an astonishing result that belongs to the sphere

of psychology rather than logic. As far as the relationship between logic and

psychology is concerned, the readers are reminded that the two contradictory

viewpoints traditionally considered are: (a) logic as a tool for exploring standards

of human reasoning (philosophical viewpoint) and (b) logic as a quarry for

extracting hypotheses concerning human thought processes (psychological view-
point). Viewpoint a has a normative structure, whereas Viewpoint b has a rather

descriptive structure. Concerning Viewpoint a, it is known that mathematical

(deterministic) logic assumes a closed system with controlled environment. And

even within this system, logic cannot demonstrate whether a possibility expresses

an objective truth or not. It can only prove the validity of a possibility relative to

other possibilities that an agent already knows to be true or false. Despite the

usefulness of Viewpoint b in certain psychological investigations, it is considered

of rather limited value outside these investigations (Macnamara 1994).

In view of the above considerations, the objective of stochastic reasoning is to

reshape the relationship between logic and psychology in ways that enhance the

experience of the investigating agents involved: stochastic reasoning seeks a

fruitful synthesis of Viewpoints a and b that accounts for the fact that standard

logic does not constitute the entire thinking process, but is only part of it; the

synthesis incorporates uncertainty due to multiple sources (linked to the theory of

knowledge or reality itself); and also confronts the fact that an agent’s thinking in a

real-world situation is a much more sophisticated process than the mechanistic

scheme assumed by standard logic. In a sense, then, stochastic reasoning suggests

that logic and psychology mutually constrain each other in an analogous way

that mathematics and physical sciences constrain each other. Logic, e.g., could

provide a rigorous language in which to express mental states and formulate these

expressions in mathematical terms, which can be used in IPS under conditions

of in situ uncertainty and space-time heterogeneity (Chapter 3). Human under-

standing and creativity are often richer than standard logic, indeed, which is
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content-insensitive and ignores that agents operate in an open system rather than in

the idealistic closed system of formal logic. In so far as understanding thinking

changes thinking, stochastic reasoning needs to substantially enrich and even

modify formal logic, if it is to incorporate in situ situations that currently elude it.

Stochastic reasoning expresses a cognitively general viewpoint (where the agent

can only know that there exist some entities that have a certain feature), rather than

a cognitively specific viewpoint (in which the agent definitely knows the exact

entities that have this feature). It is more reasonable, e.g., to claim that due to its

doctors’ high qualifications, most of the patients who have open-heart surgery in the

St. Therese of Liseux hospital survive (one may even be able to provide probabilities

of survival for individual patients), rather than to claim to know exactly which

patients will survive. In some special cases the cognitive generalmay be reduced to

the cognitive specific. For example, when one knows with certainty all the input

parameters and coefficients of a stochastic law (Section 5.5.3 below), the associated

probability distributions reduce to single values, and the solution of the law

becomes deterministic. But, this is a rather unlikely scenario in the vast majority

of in situ situations. Last but not least, stochastic reasoning is purposive, which

means that it delivers the agent’s values and principles. This is a definite advantage,

since any kind of reasoning, regardless of how rigorous and sound it is, if it lacks

values, is of limited use or even dangerous in human affairs.

5.2.2.3 Some Distinctions

For procedural purposes, it is important to distinguish between three key fields:

probability theory, statistics, and stochastics. As described in Collani (2008),

“Probability theory develops ‘mathematical concepts’ independently of their

usefulness. Statistics develops methods for analyzing large data sets in order to

detect stabilities;” whereas “Stochastics represents a conceptual and theoretical

basis covering all aspects which are involved in the scientific process of making

predictions.” Failing to acknowledge the key differences between these fields can

lead to misconceptions, such as that stochastics is merely akin to descriptive

statistics, or that spatial statistics includes both stochastic modeling and geostatis-

tics (Myers 2006).

Noteworthy limitations of mainstream statistics that have been pointed out in the

literature include (e.g., Wang 1993; Sivia 1996; Christakos 2000; Hyman 2006):

(i) It is dominated by symbolic thought and not the free exchange between meaning

and the empirical world, or the creative thought that is open to the new and risky. (ii)
Substantive inadequacy of assumptions, like statistical independency and stability,

which do not account for the physics of space–time. (iii) Lack of rigorous mechan-

isms to incorporate important forms of core knowledge (natural laws, primitive

equations, social structures, etc.). (iv) Many tests entail serious logic problems and

are often irrelevant to the objectives of the study (e.g., a statistical test states the

probability of the observation given that a null hypothesis is true, whereas scientific
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investigation seeks the probability that the null hypothesis is true given the observa-

tion). (v) Analysis often relies on a collection of data processing recipes and number-

crunching software (pattern fitting, trend projection, regression analysis, copula

technology, etc.) that are introduced on the basis of mere convenience than sound

reasoning and scientific insight –which is probably why Thomas Mikosch (2006b:

61) made a rather pessimistic comparison: “Living in the twenty-first century, we

stand on the shoulders of giants such as Kolmogorov, Levy,Wiener and Cramer who

did things not just because they could or because it was convenient.”

To avoid the above limitations, stochastic reasoning assumes a very different

conceptual structure than mainstream statistics. It focuses on deep theory

(founded on natural laws, phenomenological representations, and epistemic prin-

ciples) that enhances its scientific content and makes it a central force in the

realistic study of natural systems. This is the kind of reasoning that can incorpo-

rate, inter alia, the sophisticated mathematics of stochastics, which has been very

successful in the study of such diverse phenomena as contaminant transport in

environmental media, atmospheric turbulence, electromagnetic wave propagation

through atmosphere, large-scale systems linked to disease and mortality, epidemic

propagation, embryonal formative processes, and organic molecules organizing

themselves into organisms of increasing complexity through random chemical

processes. Stochastic reasoning is endorsed with a solid theoretical background, a

sound methodology, and a useable set of tools to study complex in situ situations

associated with several possible “scenarios” of how a system or attribute might

change in space–time under conditions of uncertainty, rather than a single yet

unrealistic “scenario.” As a matter of fact, due to its inevitably high level of

sophistication, working in the field of stochastic reasoning requires a proportion-

ally high level of intellectual effort on behalf of the investigator, who should not

expect to be rewarded with a trip to the exotic Rondônia.8 Instead of the

mouthwatering Caruru do Pará, pure intellectual satisfaction most probably

will be the theorist’s only reward.

5.2.2.4 Interpretive Matters

In sum, nothing less is asked of an investigator today than to be at the same time

within and outside things. The challenge of using stochastic reasoning in situ is

often not in its formal component, but in the validity of its interpretive component

in the specific application that goes beyond pure mathematics into the realms of

physical knowledge and empirical observation. Interpretation issues are relevant

when one needs to establish correspondence rules between natural attributes and

formal mathematics that describe them, to measure and test the formal structure or

to justify the methodological steps. This does not intend to imply that the two

components are totally independent or merely linked by correspondence rules.

Instead, the formal and the interpretive form an integrated whole. As such, the

8 Region in Brazil that has been the theater of NASA’s field-data acquisition campaigns.
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fruitful interaction of formal and interpretive investigations plays a crucial role in

the successful application of stochastic reasoning in real-world IPS. The essential

connection between formal and interpretive components has been astonishingly

productive, in both ways: formal techniques provide the means for understanding a

phenomenon beyond sense perceptions, and interpretive investigations lead to new

and more powerful formal techniques.

In short, stochastic reasoning lies at the interface of logic and empirical evi-

dence, with strong ties to philosophy, linguistics, sociology, psychology and

cognitive science. In the human inquiry milieu, stochastic reasoning acts as an

intellectual catalyst that shows how different topics ran naturally into each other.

Accordingly, stochastic reasoning needs to conceal any antagonistic demands of in

situ observation and theory-based interpretation, which implies that the meaning of

logic operators may change in the stochastic reasoning context. The strict deter-

minism of the formal logic operators ( ^ , _ ,:, ! , $ ) discussed in the previous

sections is replaced by the reasonable indeterminism of stochastic reasoning. In

other words, the meaning of the operators is re-interpreted to account for the

uncertainty of the premises, the conclusions, and the operator-based process itself.

For example, in formal logic, wp ^ cp denotes that both attribute realizations wp and
cp are definitely true. But in stochastic reasoning, wp ^ cp means: “Agent’s asser-

tion that wp is true and the agent’s assertion that cp is true.” These assertions are not

definite but, rather epistemic, i.e., they are conditioned on the available knowledge,

which means that to each assertion (or, more generally, to any combination of

assertions) one can assign a probability value. Also, instead of explaining a fallacy

by trying to show that a valid realization wp of the attribute Xp can cause an invalid

realization cp of another attribute Yp (standard logic), it makes more sense to show

that a probable realization wp can cause an improbable realization cp (stochastic

reasoning). This approach may involve natural laws that link Xp and Yp, incomplete

yet valuable databases, and other sources of knowledge under conditions of uncer-

tainty. In our next example the space–time attribute Xp denotes the average daily

temperature. Consider an agent’s prediction that the Xp value at p ¼ (San Diego,

September 19, 2011) will be wp ¼ 26:3� with probability PKB½Xp ¼ 26:3�� ¼ 0:6.9

This probability refers to the agent’s assertion (based on the available knowledge

base, KB) that the temperature value wp ¼ 26:3� has probability 0.6, rather than the
standard claim that the probability of the temperature value above is 0.6. Said

otherwise, since the term “probability” is used by the agent to talk about the

attribute realization wp ¼ 26:3�, it is part of the stochastic reasoning metalanguage.

I will revisit the subject in Chapter 6, after we first introduce in the next section

another key element of stochastic reasoning, namely, the spatiotemporal random

field concept.

9 In mathematical terms, stochastic reasoning views the temperature attribute as a spatiotemporal

random field, see Section 5.3 that follows.
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5.3 The Spatiotemporal Random Field Concept

Stochastic reasoning involves a variety of concepts – abstract and intuitive, formal

and interpretive, epistemic and ontic, mathematical and physical. And, equally

important, it involves interactions between these concepts that honor a capacity

for experience, engage consciousness, and offer new ways of imagining the world.

As such, the subject of stochastic reasoning is replete with theoretical issues. One

of the main theoretical concepts is the spatiotemporal random field (S/TRF). Let
us start with the thought process that leads to the formulation of the S/TRF

as currently conceived.

5.3.1 The Possible Worlds Representation:
Epicurus, Leibniz, and Voltaire

An influential school of thought promotes the study of Nature in terms of the

so-called possible worlds representation (PWR). According to PWR, the agent’s

mental conception of Nature should involve many possible worlds (or realizations).

The world that is currently observable by means of the agent’s cognitive means is

just one of the many possible worlds – the worlds of possibilities concerning what

one may find if Isis’ veil is ever lifted, metaphorically speaking.

The PWR idea can be traced back in the third and fourth centuries BC Epicurean

teachings “on the plurality of worlds (kòsmoi).” According to Epicurus, it is

possible to propose multiple explanations of a phenomenon, each of which must

agree with appearances. In a famous letter to Herodotus, Epicurus writes that,

“there are infinite worlds both like and unlike this world of ours” (Konstan,

1972).10 Gottfried Leibniz viewed the PWR as ideas in the God’s mind who

accordingly created the currently existing world to be “the best of all possible

worlds.” A well-known reference to the religious relevance of this characterization

is due to François-Marie Arouet, better known as Voltaire. Voltaire (2005) used the

characterization in his novel Candide to ridicule the theologicians’ claim that

divine justice was served by the great Lisbon earthquake on All Saints’ Day,

1755 (over 30,000 lives were allegedly lost). In modal logic, the PWR is called

modal actualism, which assumes that possible worlds exist as abstract entities that

are distinguished from the actual world. Another PWR interpretation is modal

realism, which assumes that the possible worlds exist just as surely as the actual

world does. In Epibraimatics (see, also, Section 3.5.1), the PWR posits the exis-

tence of worlds within our mentally extended senses that must connect or relate

with our own. PWR is inherent in the imaginative construction approach of human

inquiry. An agent constructs an approach to reality (rather than reality per se),

which relies on agent’s coherent and creative imagination. In the context of the

10A relevant source is Lucretius’ poem on Epicureanism titled De Rerum Natura (“On the Nature
of Things”; Book 2, ll. 1023–1089).

5.3 The Spatiotemporal Random Field Concept 257



imaginative construction approach, one uses an instrument to see a world (say, W2)

that one can never see with the naked eye (which can only see the world W1). The

action of building and using the instrument implies that the agent assumes that there

indeed exists a world to be seen. The PWR realizations in connection with the real-

world situation have two main features: (a) the realizations are consistent with the

physical, practical, or logical conditions of the specified problem and (b) they

have different probabilities of occurrence, depending on the epistemic situation of

the agent. Feature a may be linked to different IPS kinds (Section 2.3.4), i.e.,

solutions that are physically, practically, or logically possible (the reader is

reminded that something that is not physical is only accessible mentally). And

Feature b may be associated with the agent’s mode of thinking, worldview, system

of beliefs, cognitive means, and knowledge sources.

5.3.2 Causality–Randomness Interaction

According to many historians, Aristotle was the first to combine probability with

necessity (Section 4.3.3). Aristotelian insight underlies the basic idea of stochastic

reasoning concerning the co-existence and interaction of randomness with causality

in the quantitative description of attributes and systems that unfold spatially
with the course of time. In addition, stochastic reasoning includes a group of

spatiotemporal models with attractive features that reflect the epistemic fact that

agents are pattern-forming creatures: they like to, have to, or do connect things. As

emphasized by Gerald M. Edelman (2006: 58), brain is a selectional system that

operates prima facie by pattern recognition. In this respect, the S/TRF model plays

an important role that aims at studying the uncertain properties of a system as a

whole, and connecting them to causal relations and space–time patterns. The S/TRF

model is briefly reviewed below; a detailed presentation of the mathematical theory

and its various applications can be found in the literature (Christakos 1991a, b,

1992; Christakos and Hristopulos 1998).

5.3.2.1 Agents Who Are Not Mute in Their Souls

Consider an in situ attribute that varies in a composite space–time domain (e.g., air

pollution concentration, water level, epidemic mortality, soil property, land use,

poverty level, or commodity price). In light of the PWR, the S/TRF Xp ¼ Xs;t is

represented as

Xp !

wð1Þp ¼ðwp1 ; :::; wpkÞ
ð1Þ

wð2Þp ¼ðwp1 ; :::; wpkÞ
ð2Þ

..

.

wðRÞp ¼ðwp1 ; :::; wpkÞ
ðRÞ

8>>>>>><
>>>>>>:

; (5.7)
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i.e., Xp is viewed as the collection of all possible space–time distributions or

realizations, wðjÞp (j¼ 1,. . ., R) at the space–time points p ¼ ðp1; :::; pkÞ of the

attribute represented in terms of the S/TRF. In the random field setting, the attribute

realizations wðjÞp have some features that are worth noticing: (i) The realizations

are consistent with the physical properties, uncertainty sources, and space–time

variations characterizing the attribute distribution (i.e., the multiplicity of realiza-

tions makes it possible to account for uncertainty sources and, at the same time, to

adequately represent the spatiotemporal variation of an attribute). (ii) They have the
epistemic quality of corresponding to ways that are consistent with the known11

system properties rather than to all possible ways a system could be represented in

terms of formal logic. (iii) They have different chances of occurrence, in general;

each realization has a distinct probability to occur that depends on the epistemic

condition of the investigator and the underlying mechanism of the in situ phenom-

enon. The implication of Feature iii is that Eq. (5.7) could be re-written in a more

informative way as follows:

Xp !

wð1Þp with probability P
ð1Þ
KB

wð2Þp with probability P
ð2Þ
KB

..

.

wðRÞp with probability P
ðRÞ
KB

8>>>>>><
>>>>>>:

; (5.8)

where the subscript KB denotes the knowledge base used to construct the proba-

bility model in the stochastic reasoning setting of Section 5.2.2. According to the

above perspective, the agent is in control of possibilities (S/TRF realizations), but

not actualities. In other words, the control involves the agent’s mind in a way that

the agent could predict what was likely to occur, but not what will actually occur.

In this sense, the future could potentially influence the present as much as the past.

That which does not exist in one realization but exists in some other realization

shares certain important characteristics with that which actually exists. To under-

stand a phenomenon and assess the actual risks linked to it, one needs to be aware

not only of the favorable scenarios but also of the usually much larger number of

unfavorable scenarios that did not occur this time, but could occur the next time

around.12 To put it in a literary way, that which probably isn’t affects what is.
It is a signature of our times that this sort of multi-thematic integrative thinking

cannot be appreciated by those who promote a society with low intellectual

11 “Known” is here associated with human consciousness.
12 To use a real life scenario, since there are so many conditions that need to be satisfied

simultaneously for Tiberius Finamore to be the only survivor of an airplane crash, the fact that

he survived makes it tempting to believe that there was another reason that made his survival

highly probable a priori (say, God likes Tiberius) rather than to admit that his chances to survive

were indeed extremely small (there are many possible realizations that did not favor Tiberius’

survival but are ignored).
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standards, and an eye only for the illusive “bottom line.” It is not difficult to imagine

just how startling, and even frightening, the PWR idea of an infinity of possible

worlds seem to those who have been programmed to think “within the box” and

only believe what they can touch. On the contrary, integrative thinking under

conditions of uncertainty is the kind of stuff that can be appreciated by those

individuals who are not mute in their souls. Understanding, appreciating, and

implementing stochastic reasoning and random field theory require a broad and

penetrating imagination rather than a dry pedantic brain, and an incisiveness of the

mind rather than a formulaic thinking.

5.4 Stochastic Characterization

The mathematical S/TRF theory will be presented to the extent necessary for the

purposes of this book. In stochastic reasoning terms, the description of an attribute

distributed across space–time concentrates on the web of possible attribute patterns

across space–time andwhat lies beneath them. Correspondingly, the S/TRFmodel of

such an attribute is fully characterized by its PDF, fKB, which is generally defined as

PKB½Lðxp; dxpÞ� ¼ fKBðxpÞ dxp; (5.9)

where dxp ¼
Qk

i¼1 dxpi
and Lðxp; dxpÞ ¼ ðwpibXpibwpi þ dwpi ; i ¼ 1; :::; kÞ for

all k. When k¼1, Eq. (5.9) reduces to the special case of a univariate PDF; and

when k>1, the term multivariate PDF is used, instead. While the univariate PDFs

define the S/TRF at a local scale, the multivariate PDF characterizes it at a global

scale. Technically, fKBðxpÞ dxp could be replaced by the more general dFKBðxpÞ,
where FKBðxpÞ is the corresponding CDF, but at the moment continuous and

differentiable CDF are assumed, in which case Eq. (5.9) is sufficient for the goals

of our investigation.

5.4.1 The Holy Grail

Equation (5.9) involves both the content of the investigator’s thinking process and the
in situ context of the attribute. Naturally, the construction of fKB on the basis of the

available KBs is a critical process with epistemic, cognitive, and psychological

characteristics. It is, hence, important that the investigator uses the appropriate fKB
interpretation, be aware of the problem space within which the interpretation is valid,

and carefully implement content-sensitive logic norms (Section 6.1) that maintain

consistency among theKB elements. This being the case, it should come as no surprise

that the fKB is considered the Holy Grail, so to speak, of S/TRF analysis.
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By means of Eq. (5.9), the fKB assigns numerical probabilities to the Xp

realizations that evolve between multiple space–time points, see Eq. (5.8). The

fKB describes the comparative likelihoods of the various realizations and not the

certain occurrence of a specific realization. Accordingly, the PDF unit is probability

per realization unit. This may be the time to remind the readers that one should not

underestimate the importance of notation. The same entity may be represented

using different symbols, depending on the context and the emphasis one wants to

assign to the relevant variables. A probability may be denoted as PX if it is

contextually significant to denote that this is the probability function of the S/

TRF Xp; or by PKB if one needs to emphasize that the probability function has been

constructed on the basis of a specified KB and that underlying it is a particular

methodology and worldview. Similarly, a PDF may be simply denoted as fKB; as
fKBðwpÞ if the goal is to emphasize the Xp realizations; or as fX;p, p ¼ ðp1; :::; pkÞ if it
is necessary to indicate that the PDF is a function of the space–time domain. Also,

while fX;p ¼ fXðp1; :::; pkÞ denotes a multivariate PDF, fX;pi ¼ fXðpiÞ, i¼1,..., k,
denotes a set of univariate PDFs.

5.4.2 Multiple Conceptual Layers

In view of Eq. (5.9), multiple realizations of the attribute under consideration are

possible before the event (i.e., before the actual attribute distribution reveals itself).
In the investigator’s mind, the attribute could exhibit one of several possible

realizations, until it is observed or measured. Attribute’s probability of exhibiting

any particular realization is a measure of how likely it is that the attribute exhibits

this realization when it is observed or measured given the agent’s epistemic

condition. Plainly speaking, the attribute realizations exist as probabilities (or

potentialities), becoming certain only as they are observed or measured. Observa-

tion of an attribute realization by a conscious investigator (using the cognitive

means available, natural or technical) transfers its state from one of uncertainty into

one of definiteness. But this is not the whole story. Just like an onion with its many

layers, each of which is attached to the one beneath it, the S/TRF has several

conceptual layers, each one possessing some salient features: (a) It assumes the

existence of a composite space–time manifold, i.e., space and time constitute an

integrated whole than two separate entities; (b) it incorporates spatiotemporal

interdependencies and cross-correlations of the attribute distribution expressed by

the laws of change; (c) it is of immediate relevance to models that are mathemati-

cally rigorous and tractable and, at the same time, logically or physically plausible;

and (d) it is capable of generating informative images enabling the determination of

important characteristics of the attribute distribution across space–time. When

representing an attribute in terms of an S/TRF, the investigator assigns to it a

random character and an equally important structural character. Thus, a realization

is allowed only if it is consistent with the KBs about the situ attribute and the
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investigator’s logical reasoning. Clearly, not all S/TRF realizations are equally

probable. Depending on the underlying mechanisms, some realizations are more

probable than others, and this is reflected in the PDF model of the S/TRF.

It is always enlightening to think in a literary way about a mathematical concept,

and view its properties in the light of historical or cultural situations. Accordingly, let

us consider two instructive yet very different examples representing extreme cases of

parallel worlds. Around 250 BC, King Ptolemy Philadelphus sent 72 Hebrew scho-

lars (six from each tribe of Israel) to translate Septuagint (Hebrew Scriptures) into

Greek and add them to theAlexandria library. He secluded thesemen on the island of

Phares, where each worked separately on his own translation, without consultation

with one another. According to legend, when they came together to compare their

work, the 72 copies proved to be identical. This is an extreme case, onemust admit, in

which all parallel worlds (realizations) reduce to a single world with probability of

occurrence equal to one (certainty or determinism). If the Septuagint example

represents a rather extreme case of “perfectly consistent parallel worlds,” the oppo-

site is the case of the second example drawn from contemporary European politics:

politicians with radically postmodern features gained fame for their political style

based on a set of parallel worlds that often contradicted each other, involved logically

inconsistent accounts of events, and had no relation whatsoever to evidential truth

and objective facts. These politicians are characterized by their Orwellian twists of

the truth. One of their “gifts” is their ability to comfortably generate contradicting

worlds (account of events): oneworld for their voters, another one for lobby interests,

another one for activist organizations, and yet another one for foreign leaders.13

Unlike the parallel worlds of contemporary politics, the S/TRF worlds of scientific

inquiry share a common structure that is determined by what is known about the

phenomenon and by the rigorous rules of internal consistency and truth searching.

5.4.3 Robert Frost’s Moment of Choice,
and the Case of Paradoxes

In sum, because it can investigate the different forms of space–time dependency

allowed by the available knowledge, the Xp model is able to generate multiple

permissible realizations and provide assessments of their likelihood of occurrence.

Technically, by combining fX;p with some kind of efficient Monte Carlo simulator,

one can comfortably generate numerous Xp-realizations and look at certain of their

prevalent features, thus gaining additional intuition to that obtained by studying the

analytical expression of fX;p, when available.

13 Europe’s ruling elites (cliques would be nearer the mark) are engaged in policies that go so

radically against the wishes of ordinary citizens that the rift is widening between the people and the

governing elite.
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5.4.3.1 The Road Not Taken

In Section 1.1.3 we suggested that just as poetry does, creative modeling feeds

one’s imagination with possibilities. Surely, the consideration of all possible

realizations provided by the S/TRF model can be very informative and insightful

in the investigator’s effort to assess both how much one knows and how much one

does not know about the in situ situation. But if one needs to make a choice, which

realization one should select and why? This is a reasonable question that cannot be

answered using technical tools alone, although it can be aided considerably using

substantive means (e.g., understanding the underlying physical mechanisms, exper-

tise with the in situ conditions, and logical considerations). A poem, on the other

hand, can stir all of the senses, which means that resort to the literary way of

expressing one’s thinking is intriguing and often conceptually motivating. In his

poem The Road Not Taken, Robert Frost challenges the reader’s imagination with

the dilemma:

I shall be telling this with a sigh

Somewhere ages and ages hence:

Two roads diverged in a wood, and I–

I took the one less traveled by,

And that has made all the difference.

One road is well traveled – like a high probability random field realization. And

another one is less traveled – like a low probability realization. What is then the

optimal choice? This depends, the readers may comment, on the agent’s grasp of

the in situ situation, personal conviction, creative imagination, and well-thought

objectives. Selecting the most probable realization may seem a rational decision,

but is it always so? The highly improbable realization, when it occurs, can be very

consequential. Indeed, as deadly worldwide epidemics and financial disasters

have shown, it does not matter how rare an event is, if its occurrence is too costly

to bear.

In any case, the take home message is that choices are inevitable. And just like in

Frost’s poem, one will not knowwith certainty what the specific choice of a possibil-

ity actually implies until one has lived it, until the possibility has been observed and

its former probability obtains its maximum value. Ex animo, isn’t this state of one
constantly facing crucial choices andnewchallenges the essence of an uncertain life?

5.4.3.2 The Case of Apparent Paradoxes

Admittedly, one may get the impression that there are a few conceptual paradoxes

linked to the stochastic reasoning implicit in S/TRF analysis. An apparent paradox

is that the S/TRF gives answers in terms of possibilities, all considered by the

investigator at the same time, which seems unreal. However, one should not forget

that we already have a very good non-technical word for the mixture of possibilities

that co-exist at the same time: we call it future, which is imperfectly known to
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humans due to their incomplete knowledge about the in situ phenomenon.14

Another apparent paradox is that the S/TRF seems to imply that there is an instant

awareness between the attribute values across space–time, which seems strange

(especially if one is used to work with independently distributed variables). But,

this awareness is in the investigator’s mind (epistemic entity), and not in the actual

phenomenon (unknown ontic entity). A posse ad esse, from possibility to actuality,

the S/TRF model allows for the observation effect: when an observation takes place

at a specific space–time point, awareness is expressed by a reduced set of possibi-

lities at all points according to the model (in technical terms, this is sometimes

called conditional S/TRF simulation).

5.5 About Laws, Power Holders, and Rembrandt’s Paintings

“Laws? Like who the f*** cares?” was the attitude of the people participating in

CIA programs in the early 2000s, according to a senior CIA official (Horton 2008:

50).15 However, as any rational human being (who is not blinded by the extremist

dogmas and the superiority complexes of clerkdoms and power holders) knows,

laws constitute an important component of organized social life and, as far as this

book is concerned, scientific life too. In the latter case, the natural laws are essential

ingredients of real-world IPS. As David Novak (2008: 177) puts it, “Human

cultures can only avoid the question of natural law when they identify themselves

alone with humankind per se and regard all outsiders as devoid of humanity.” The

following is a famous passage from John Donne’s 1624 prose Meditation XVII:

No man is an island, entire of itself; every man is a piece of the continent, a part of the main.

If a clod be washed away by the sea, Europe is the less, as well as if a promontory were, as

well as if a manor of thy friend’s or of thine own were. Any man’s death diminishes me,

because I am involved in mankind, and therefore never send to know for whom the bells

tolls; it tolls for thee.

These lines reflect powerful ideas of the Renaissance era about the inter-

connectedness of human experience. This interconnectedness extends to any entity

(attribute, process, phenomenon, etc.) within a system, since no entity is isolated

from the other entities of the system. The breaking of the isolation and the

simultaneous formation of interconnectedness is made possible by means of natural

laws. For Xie Liu (2003) even literary works are created according to the natural

laws of the universe. All entities depicted in these works (people, animals, trees,

mountains, etc.) are in accord with the rational principle expressed in words and

14On the contrary, determinism describes events as inevitable, effectively depriving humans of a

future.
15 Remarkably, a similar attitude toward human laws was exhibited in President Lyndon Johnson’s

blast to a European ambassador in the 1960s (Wittner 1982: 303): “F*** your Parliament and your

Constitution . . . If your Prime Minister gives me talk about Democracy, Parliament and Constitu-

tion, he, his Parliament and his Constitution may not last very long.”
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things with their specific characteristics. At this point, it would be useful to consider

yet another classification of the laws used in scientific applications. In Epibrai-

matics, the reader is reminded, natural laws are linked to the agent’s capacity of

rational reason to reflect upon the conditions and content of in situ experience.

5.5.1 Deterministic Laws

In the case of deterministic causal laws, the value wp of an attribute Xp can be

calculated at any space–time point p ¼ ðs; tÞ, if the relevant boundary and/or initial
conditions (BIC) X0 and coefficients ai (i¼ 1,2...,k) are known. In a symbolic form

MXðai;X0;XpÞ ¼ 0; (5.10)

where MX denotes a model derived on the basis of a scientific theory. Law (5.10)

represents persistent and reproduced features of natural phenomena, whereas X0

represents individual, contingent, and irreproducible cases of the law’s action, in

general. Using Newton’s laws and the necessary BIC, e.g., one could, in principle,

calculate the position and velocity of an object at any time instant. Although

scientific laws of the form suggested by Eq. (5.10) are assumed to be generally

applicable, they may be of different levels of fundamentality (e.g., Darcy’s law is of

a lower level than that of Newton’s laws). In addition, some of them are observable

laws (macroscopic level), whereas some others are not (subatomic level). Certain

laws specify the actual mechanism underlying a phenomenon, whereas other laws

are purely phenomenological (Table 1.12).

5.5.2 Statistical Laws

In the case of a statistical law, the attribute value wp cannot be calculated with

certainty at any space–time point p, but only its frequency of occurrence

FX;pðwpÞ ¼ nwpN
�1 (5.11)

can be calculated experimentally on the basis of past data (N is the total number of

data, and nwp is the number of times the value wp turned out). When tossing a die,

e.g., one cannot predict whether “heads” or “tails” will come up. But, on the basis of

past experiments with the die, one can say that among any number of throws, it is

expected that about half will turn up “heads.” There is no causality present in

the statistical law above (say, in the form of the Newtonian laws characterizing the

motion of an object such as the die). Methodologically, statistical analysis of this
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sort is based on pure induction, which means that it suffers from many of the

problems associated with this sort of reasoning (Section 5.2.1).

5.5.3 Stochastic Laws

Now comes the interesting part, as far as stochastic reasoning is concerned.

A stochastic law obeyed by the S/TRF Xp has the same symbolic form as Eq. (5.10),

MXðai;X0;XpÞ ¼ 0; (5.12)

with one key difference: the BIC X0 and the coefficients ai (i¼ 1,2,...,k) are now

random fields.16 The (uncertain) causality between the random fields ai, X0 and Xp

is expressed by the stochastic formulation (5.12). In this setting, a natural law can

be put in the form of stochastic equations by admitting that some or all of its

constituents are not perfectly known and, hence, they must be represented as

random fields. The upshot is clear: while Eq. (5.10) is a law of necessity and

Eq. (5.11) is a law of chance, Eq. (5.12) is a law that expresses the dialectics of
randomness and necessity. In this sense, a stochastic law is closer to a natural law

than to a purely statistical one. Readers have already acquainted themselves with

the species growth law of Section 4.3.3, in which the attribute was represented by

the stochastic differential equation

d
dtXp � aXp ¼ 0; (5.13)

where a is a known physical coefficient. The attribute’s X0 refers to the point ðs; 0Þ
and is random. As a second example consider a quantum system governed by the

stochastic Schrödinger law,

i�h@
@tcp � Ĥcp ¼ 0; (5.14)

where i here denotes the imaginary unit, �h is the reduced Planck constant, Ĥ is the

Hamiltonian operator, and cp is the wave function.
17 The readers may be reminded

that, although Schrödinger’s equation is fundamentally stochastic expressing

quantum uncertainty, his thinking was not always so, as he once declared in no

uncertain words that, “It has never happened that a woman has slept with me and

did not wish, as a consequence, to live with me all her life” (Mlodinow 2001: 221).

The method that derives the equation of the corresponding PDFs from the

stochastic natural law (5.12) is conceptually straightforward, but its practical

16 Note that since Eq. (5.10) is deterministic, the solution Xp ¼ wp has probability 1. This is not the
case, however, with Eq. (5.12).
17 A detailed discussion of the underlying physics is beyond the scope of the present discussion,

but the interested reader is referred to the numerous volumes on quantum mechanics (e.g., Messiah

1999).
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implementation is often not an easy task. In a symbolic form, the stochastic law that

fX;p satisfies is generally represented by

Mf ðfai ; fX;0; fX;pÞ ¼ 0; (5.15)

where fai and fX;0 are the PDFs of the random coefficients ai (i¼ 1,2,...,k) and the BIC
(X0), respectively. In more involved physical situations, it is also possible that

the stochastic law (5.15) includes the joint PDF of ai, X0, and Xp. Remarkably,

while the (uncertain) causality between the random fields ai, X0, and Xp is expressed

by the stochastic formulation (5.12), the (deterministic) causality (5.15) does not

connect the attribute values themselves, but their PDFs. A more detailed analysis of

the equations governing the PDFs will be given in Section 5.6.2. Epibraimatics

focuses primarily on Eq. (5.12)–(5.15), since this is the formulation that best

expresses the original ideas of Aristotle, Kant, Boltzmann, Schrödinger, and others

concerning the fundamental connection of randomness and causality. Moreover,

these equations are in agreement with the fundamental viewpoint that data are not

merely numbers. Instead, they convey a message from the natural phenomenon they

represent in the same way the paintings of Rembrandt convey a message from

seventeenth-century Europe. From the stochastic law (5.15), one can estimate any

attribute value wp one wishes. The term “estimate” is important here: Unlike the case

of the deterministic causal law (5.10), the stochastic solution wp does not necessarily
have probability 1. Instead, the solution has a specified probability of occurrence

(between 0 and 1) with its associated estimation accuracy. To put it in different

words, this sort of estimation may be seen as a process by means of which the

probabilities turn into uncertain possibilities. In which case Judea Pearl (2010: 1)

justifiably complains that certain fields seem to ignore the knowledge provided by

science-based laws generating the data distributions: “Questions [in health, social

and behavioral sciences] require some knowledge of the data-generating process,

and cannot be computed from the data alone ... Remarkably, although much of the

conceptual framework and algorithmic tools needed for tackling such problems are

now well established, they are not known to many of the researchers who could put

them into practical use.”

5.5.4 Comparative Summary

Before leaving this section, in Table 5.5 I summarize some of the salient differences

between the three types of laws considered above. The readers may recall that in the

case of the deterministic law, one observes the coefficients and BIC, and then

derives attribute values wp at any p. In the case of the stochastic law the

corresponding entities are random fields, which means that the law represents the

co-existence of randomness and causality (the law can be conditioned by data,

whenever available). Given the fX;0 and fai , the PDF law (5.15) derives fX;p across
space–time. In the case of the statistical law, on the other hand, based on a certain

5.5 About Laws, Power Holders, and Rembrandt’s Paintings 267



number of wp observations one merely derives a frequency law of the attribute that

is assumed valid, in general. Having as a common origin a scientific theory, the

deterministic and stochastic laws are science-based conceptual schemes, whereas

the statistical law is merely a statement about observed facts.

5.6 Constructing Multivariate PDF Models

Since in stochastic reasoning one must learn to think and act in terms of PDFs

(distributed across space–time and following laws of Nature) rather than single

attribute values, it makes sense to develop effective ways to construct these PDF in

praxis. Like Percival, the Round Table Knight who needed to grow mentally before

he could locate the Holy Grail, stochastic theorists need to constantly improve their

epistemic conditions in order to be able to credibly construct the complete multi-

variate PDFs across space–time. Since this turns out to be a difficult endeavor in

real-world situations, it is not surprising that a number of “shortcuts” are often used

in practice. This section examines certain well-known approaches to construct a

PDF model. To paint with a broad brush, a basic classification of these approaches

is as follows: (i) Formal PDF model construction, which includes models that are

speculative, analytically tractable, or ready-made. (ii) Substantive PDF model

construction, which includes models having a firm basis in reality (determined

on the basis of scientific knowledge and evidential experience), taking into account

the contentual and contextual domain of the in situ situation.

5.6.1 Formal Construction: Copulas and Factoras

First, we will study speculative PDF models that are either ready-made or possess

analytically tractable properties. As to the merits of formally constructed PDFs, it

must be said at the very outset that the consequences of using the wrong PDF in

real-world situations can be more severe than those displayed by the PDF itself.

Table 5.5 Main characteristics of deterministic, statistical, and stochastic laws

Entities related by law

Description of what is

observed or observable

Symbolic pattern

describing entities

Deterministic
law:

Attribute values linked by

causality

Law coefficients, BIC Science-based

conceptual

scheme

Statistical
law:

No causality present Dataset Statement about facts

Stochastic
law:

Attribute values linked by

(uncertain) causality

Random law coefficients,

BIC

Science-based

conceptual

schemePDFs linked by causality PDFs of coefficients, BIC

Uncertain dataset
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5.6.1.1 Ready-Made and Tractable PDF Models

There is a list of PDF models that have been derived using formal analytical

techniques. The most famous example, of course, is the multivariate Gaussian
(normal) PDF model

fX;p ¼ ½ð2pÞkjCj��1=2e
�1
2

Pk

i;j¼1
cijðwpi�miÞðwpj�mjÞ; (5.16)

with parameters mi and mj (i,j¼1,...,k); |C| is the determinant of a positive-definite

matrix C with elements cij. The PDF (5.16) has many convenient properties that are

described in the relevant literature (Tong 1990). Despite its attractive properties,

many experts argue that the multivariate Gaussian PDF is unequipped to answer

questions about the occurrence of rare but catastrophic events (linked to

natural disasters, financial crises etc.). Beyond that, often there is no substantive

justification why to prefer this type of “well behaved” PDF to those models that

emphasize the possibility of “catastrophic” events.

Other well-known analytically tractable ready-made multivariate PDFs include

the Student, exponential, lognormal, elliptical, Cauchy, beta, gamma, logistic,
Liouville, and Pareto models (a detailed presentation of ready-made multivariate

distributions can be found in Kotz et al. 2000 and Genton 2004). A basic feature of

many of these multivariate PDFs is that the corresponding univariate PDF are of the

same kind (e.g., if the multivariate PDF is Gaussian, so is the univariate). As the

readers are aware, the inverse is often not true. That is, a univariate PDF (say,

Gaussian) may be associated with a multivariate PDF of a different kind (non-

Gaussian).18 These facts can cause serious problems in many applications in which

one deals with non-Gaussian fields Xp that have different kinds of univariate fX;pi
(e.g., fX;p1;p2 is non-Gaussian, whereas fX;p1 is Gaussian and fX;p2 is gamma). In such

cases, a key question is how to extend the univariate PDFs that are usually available

in practice to a multivariate PDF that fits the attribute of interest across space–time.

This kind of problems constitutes a prime reason for the systematic development of

the copula- and factora-based representations of a multivariate PDF (Section 5.6.1.2

and 5.6.1.3).

There are also PDF models that are assumed to have particularly tractable

analytical forms. A rather trivial case of such a multivariate model is the PDF

with full stochastic independence:19

fX;p ¼ fXðp1; :::; pkÞ ¼
Yk

i¼1
fX;pi (5.17)

18 In this sense, the multivariate PDF behaves like the Holy Grail of the legends of the questing

king Arthur’s knights, which assumed different shapes, forms, origins, and interpretations.
19 The reader is reminded that stochastic (or probabilistic) independence is different from logical

independence (Table 4.2).
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for all k. This model essentially describes phenomena that do not transmit

knowledge across space–time, i.e. one’s knowledge of the attribute’s state at

point pi does not affect one’s knowledge of the state at point pj. Although mathe-

matically convenient, model (5.17) is of rather limited use in real-world situations.

A more interesting model is that of partial stochastic independence (e.g. (5.17)

holds for k¼ 2, but not for k¼ 3, etc.). Multivariate PDFs can be derived in cases

when a specific relationship is known to exist between the random-field realiza-

tions. An interesting yet rather limited model is the PDF with spherical symmetry,
simply written as (Blokh 1960)

fX;p ¼ fXðp1; :::; pkÞ ¼ gðxÞ; (5.18)

where x ¼ ðPk
i¼1 w

2
pi
Þ1=2. This PDF is an even function that is symmetric with

respect to wpi . All univariate PDFs are the same, fX;pi ¼ fXðwÞ, i¼ 1,..., k. The
multivariate PDF (5.18) is determined from the univariate PDF via the integral

representation

fX;piðwÞ ¼ 2pðk�1Þ=2

Gðk�1
2

Þ

Z 1

0

dx xk�2gððw2 þ x2Þ1=2Þ; (5.19)

where G is the gamma function. The class of multivariate fX;p ¼ gðxÞ is obtained by
assuming different univariate PDF fX;pi and then inverting Eq. (5.19). In the case of

stochastic independence, fX;p ¼
Qk

i¼1 fX;pi ¼ gðxÞ, one finds the PDF model

fX;pi ¼ c0e
c1w2 (c0, c1 are suitable coefficients), which is the Gaussian case. In

some other situations, the multivariate PDF fX;p can be expressed in terms of its

univariate PDFs fX;pi (i¼ 1,...,k) and a set of functions of wpi . This could be of

considerable interest, because often one has good knowledge of fX;pi and seeks to

construct fX;p that is physically meaningful, and its parameters can be estimated in

practice. Two noteworthy cases are considered next: Copulas and factoras.

5.6.1.2 Copula-Based PDF Models

Under certain technical assumptions, a multivariate PDF can be written in terms

of the so-called copula (Sklar 1959; Genest and Rivest 1993; Nelsen 1999),

CX;fpig ¼ CXðFX;p1 ; :::;FX;pkÞ ¼ P½FX;p1bup1 ; :::; FX;pkbupk �; (5.20)

where FX;pi are univariate CDF, and upi are realizations of Upi ¼ F�1
X;pi

� Uð0; 1Þ,
i¼ 1,..., k. Any distribution function with support on ½0; 1�k and uniform marginals

has been termed a copula (Mikosch 2006a: 5). The corresponding copula density is

defined by BX;fpigdy ¼ dCX;fpig (assuming copula continuity and differentiability).

The fX;p is reformulated in terms of its univariate PDF and the copula density as
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fX;p ¼ ½
Yk

i¼1
fX;pi � BX;fpig: (5.21)

Equation (5.21) basically decomposes the multivariate PDF (fX;p) into the prod-

uct of the univariate densities (fX;pi) and the multivariate copula density (BX;fpig) that
expresses a certain form of interaction between univariate PDFs. Copula families

with useful properties include the elliptic and the Archimedian ones (Genest and

Rivest 1993).

As is the case with all technical apparatuses, the copula technology has its pros
and cons. Basically, copula is yet another tool to estimate multivariate non-

Gaussian PDFs, which is suitable for some applications, but not for some others

(Joe 2006). Under certain conditions, copulas yield useful parametric descriptions

of multivariate non-Gaussian fields (Scholzel and Friederichs 2008). According

to Andras Bardossy (2006), a copula can express whether the corresponding spatial

dependence changes for different attribute quantiles (high values may exhibit

a strong spatial dependence, whereas low values a weak dependence) – although

the situation is more difficult or even impossible for copulas to handle when

multivariate (higher than second-order) copulas are considered. Copulas are

scale-invariant in the sense that the copula of Zp ¼ fðXpÞ is equal to the copula

of Xp if fð�Þ is a strictly monotonic function. On the other hand, one should

keep in mind that the copula technology mainly applies to continuous-valued

attributes so that the marginals are uniform according to the probability integral

transform theorem. No general approach exists to construct the most appropriate

copula for an attribute, whereas the choice of a copula family for an in situ problem

is often based not on substantive reasoning, but on mathematical convenience

(Mikosch 2006a, b). If construction methods are available for componentwise

maxima, no unique approaches can be established for a set of attributes that are

not all extremes. This is also the case of univariate analysis, where distribution

functions are usually chosen on the basis of theoretical observations and goodness-

of-fit criteria. Direct interpretation of the copula alone does not offer insight about

the complete stochastic nature of the attribute and there is no dependence separately

from the marginals. Also, copulas do not solve satisfactorily the dimensionality

problem (Scholzel and Friederichs 2008). Interpretive issues concerning the copu-

las’ in situ applications emerge too. There are many real-world attributes that are

not continuous-valued but rather discrete- or mixed-valued (e.g., daily rainfall),

which means that the integral transform theorem (on which the copula technology

of continuous variables relies) cannot be implemented, since the FX;pi are no longer

uniformly distributed in the interval (0,1), thus giving rise to so-called unidentifia-

bility issues (Genest and Nešlehová 2007). In this respect, although copulas can be

used in simulation and robustness studies, they have to be used with caution

because some properties do not hold in the discrete case. Applying copula models

to datasets that do not satisfy the necessary assumptions, or disregarding proper

inferential procedures, is like “the modeller telling Nature what to do,” which can

lead to unsatisfactory results. Also, experts have linked the extensive use of

Gaussian copulas in finance with the 2008 worldwide meltdown (Salmon 2009).
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This is a widely publicized case in which the model (Gaussian copulas) provided a

poor representation of reality (financial markets), which also showed that analysts

often use copulas without a correct inferential procedure. Attracted by the possibil-

ity to select arbitrary marginals, they sometimes forget that a suitable copula should

be chosen as well as marginals. In other words, assuming a priori a Gaussian copula

is like assuming Gaussian marginals without any theoretical reason or empirical

evidence.

5.6.1.3 Factora-Based PDF Models

The factora technology has its origins in the Gaussian tetrachoric series expansion

of Karl Pearson (1901). Although the factora PDF is apparently an older concept

than the copula PDF, both concepts share some common features. The class of

factora PDFs extends Pearson’s original insight in a non-Gaussian random field

context, leading to the class of factorable S/TRF (Christakos 1986, 1989, 1992).

Let yðwpÞ, wp ¼ ðwp1 ; :::; wpkÞ, be a multivariate function of L2ðRk;
Qk

i¼1 fX;piÞ,
rk ¼

R
dxp

Qk
i¼1 fX;piy

2ðxpÞ<1, and let $jiðwpiÞ be sets of complete polynomials

of degree j¼ 0,1... in L2ðR1; fX;piÞ that are orthogonal with respect to fX;pi . Then,
one can write

yðwpÞ ¼ ½
Yk

i¼1

X1
ji¼0

�ðyj1:::jk
Yk

i¼1
$jiðwpiÞÞ ¼ yX;fpig; (5.22)

where the yX;fpig ¼ y $jiðwpiÞ; i ¼ 1; . . . ; k; ji ¼ 0; 1 . . .
� �

is called a factora, and
the corresponding completeness relationship is ½Qk

i¼1

P1
ji¼0 � y2j1:::jk ¼ rk (which

assures that the series expansions converge). Accordingly, the multivariate PDF

is expressed as

fX;p ¼ ½
Yk

i¼1
fX;pi � yX;fpig; (5.23)

which decomposes themodeling of themultivariate PDF (fX;p) into the product of the
univariate (non-uniform, in general) densities (fX;pi ) and the factoras (yX;fpig) that
express interactions between univariate functions of wpi . This is an advantage of the
way factoras are defined over that of copulas. Also, the factoras may offer a measure

of the deviation of the multivariate PDF from the product of the univariate PDFs. An

S/TRF Xp that satisfies Eq. (5.23) is called a factorable S/TRF (of order k).
For illustration purposes, in the bivariate case Eq. (5.23) can be reduced to

fX;p1;p2 ¼ fX;p1 fX;p2

X1
j¼0

yj$jðwp1Þ$jðwp2Þ; (5.24)

for all p1, p2. In this case, y0 ¼ 1, y1 ¼ rX;p1;p2 is the correlation coefficient and

yjdjj0 ¼ $jðwp1Þ$j0 ðwp2Þ, with $0ðwpiÞ ¼ 1 and $1ðwpiÞ ¼ ðwpi � XpiÞ s�1
pi

for all
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space–time points pi. In (5.24), knowledge of lower order statistics is linked to the

first terms of the series, whereas that of higher order statistics is linked to later terms

of the series. A key step is to calculate $j that are orthogonal to a univariate PDF.

There exist several methods for this purpose, where $j include Hermite, Laguerre,

Generalized Laguerre, Legendre, Gegenbauer, Jacobi, and Stieltjes-Wigert poly-

nomials.20 To call a spade a spade, the main challenge presented by the factora

formulation is how to define factoras yX;fpig with the prescribed mathematical

properties and associated complete sets of orthogonal polynomials (the difficulty

increases with k> 2. A widely applicable method is based on the formula (Jackson

1941),$jðwpiÞ ¼ f�1
X;pi

dj

dwjpi
½uðwpiÞ

jfX;pi �, where uðwpiÞ is a function that satisfies specific
conditions. This formula has been used to find polynomials for a wide range of

continuous univariate PDF, including the Gaussian, exponential, and Pearson

(Type I). For illustration, if fX;pi ¼ 1ffiffiffiffi
2p

p ew
2
pi
=2 (�1bwpib1), the bivariate PDF is

fX;p1;p2 ¼ fX;p1 fX;p2 yX;p1;p2 ¼ fX;p1 fX;p2
P1

j¼0 r
aðjÞ
X HaðjÞðwp1ÞHaðjÞðwp2Þ, H are Hermite

polynomials. For a(j)¼ j, the fX;p1;p2 is bivariate Gaussian; but for a(j)¼ 2j, the
fX;p1;p2 is non-Gaussian (Christakos 1992: 162–164). This is not surprising, since to

a given univariate PDF, onemay associate more than one bivariate PDF.Many other

examples are found in the cited literature.

Some useful properties of the factorable S/TRF model may grab the readers’

attention, and so may do its limitations. If Xp is such an S/TRF field and fð�Þ is a
strictly monotonic function, the random field Zp ¼ fðXpÞ is also factorable. This

means that starting from the known classes of factorable fields Xp, new classes Zp
can be constructed using different kinds of fð�Þ. In the bivariate case (k¼ 2), the

PDF is written as fZ;p1;p2 ¼ fZ;p1 fZ;p2
P1

j¼0 yj$j½f�1ðzp1Þ�$j½f�1ðzp2Þ�. Another

interesting property of the factorable model is that it satisfies the relationshipZ
dwp1ðwp1 � Xp1ÞfX;p1;p2 ¼ cX;p1;p2s

�2
X;p2

ðwp2 � Xp2ÞfX;p2 ; (5.25)

for all p1, p2. Remarkably, (5.25) is valid for S/TRF classes other than factorable.

In the special case that Xpi ¼ X ¼ m and fX;pi ¼ fX (for all pi), Eq. (5.25) reduces to
a more tractable form,

R
dwp1ðwp1 � mÞfX;p1;p2 ¼ rX;h;tðwp2 � mÞfX, h ¼ js1 � s2j

and t ¼ jt1 � t2j. A direct consequence of (5.25) is

Xp1X
m
p2
¼ rX;h;tXmþ1

p2
� mðrX;h;t � 1ÞXm

p2
; i.e., a higher-order, two-point dependence

is conveniently expressed in terms of one-point functions. Other attractive proper-

ties emerging from formulation (5.25) could be considered by the interested read-

ers. In fact, those among the readers with an eye for unconventional results may also

wish to develop the multivariate (higher than two) version of Eq. (5.25). Yet,

another interesting property of the factoras is that they can generate estimators of

nonlinear state-nonlinear measurement systems that are superior to those of

20 For example, the Gaussian, Gamma, or Poisson univariate PDF is associated with Hermite,

Laguerre, or Charlier polynomials.
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the Kalman filter (Christakos. 1989). For example, the Kalman filter estimates

include only linear correlation, whereas the factora estimates include linear and

nonlinear correlations; also, the Kalman filter is limited to the estimation of

the lower-moments (mean and variance), whereas the factora estimator can provide

lower- and higher-order moments.

5.6.1.4 Comparative Comments and Pontius Pilate’s Evasion

Theorists are sometimes accused of having the tendency to make otherwise simple-

minded ideas and concepts look impressive, by using a sufficient string of intimi-

dating Greek symbols.21 If this is indeed the case, no theorist can repeat Pontius

Pilate’s ayo�oB tou aı́matoB22 evasion, and claim innocence. But if this is not the

case, one cannot really see the need to misrepresent complex ideas by making them

look overly simple, in the name of a misplaced and misunderstood populism in

science. In a nutshell, underlying both the copula and factora technologies is the

basic idea of replacing an unknown entity (original multivariate PDF) with another

unknown entity (factora or copula), which is supposedly easier to infer from the

available data and manipulate analytically. Whether this is actually a valid claim of

practical significance depends on a number of technical and substantive issues,

some of which were touched upon in the previous lines.

In technical terms, a prime advantage of the copula technology is its analytical

tractability, although this is mainly valid in low dimensions (2–4). While factoras

involve infinite series that have to be truncated, many copulas are available in a

closed-form. This comes at the cost of some restrictive assumptions made by

copulas, such as low dimensionality, uniform marginals, and the applicability of

the integral transform theorem.Attempts to involve transforms of uniformmarginals

are rather ad hoc and can add considerable complexity to the process. Potential

advantages of factoras include the elimination of the above restrictive requirements,

and the rich classes of PDFs derived by taking advantage of the f-property and

generalization formulas (like (5.25)). The functional form of yX;fpig is explicitly

given in terms of known polynomials, whereas the explicit form of BX;fpig is

generally unknown and needs to be derived every time.

5.6.2 Substantive Construction

Though the importance of theory in real-world IPS is undeniable, explicating the

relationship between theory and in situ phenomena is a perennial epistemological

issue. A cette fin, the substantive approach of constructing multivariate PDF adopts

a definite science-based viewpoint. Readers are reminded that a prime source of

substantive knowledge is provided by natural laws and scientific theories. Indeed,

21 The situation may worsen if the theorist happens to be Greek.
22 I am pure of this blood.
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investigators often have at their disposal a well-established set of natural laws to

work with (e.g., one can hardly imagine a physical law free atmospheric science).

Most commonly these laws have the form of algebraic or differential equations

(a list of natural laws is presented in Table 1.12), whereas the study of a natural law

requires some auxiliary conditions in the form of boundary and/or initial conditions

(BIC), see Section 5.5.3. The crux of the matter is that if the natural laws are

known, this is core knowledge that should be used in the derivation of the PDF

models, which is a definite advantage of substantive model construction (e.g., prior

probability problems of the so-called objective and subjective Bayesian analyses

could be avoided). One may distinguish between the direct involvement of natural

laws in terms of the corresponding stochastic equations and their indirect involve-

ment by means of the knowledge synthesis framework.

5.6.2.1 The Stochastic Equations Method

During the development of his kinetic theory of gases in the nineteenth century,

Boltzmann rigorously demonstrated that reliable physical laws could be built on a

stochastic foundation involving probability functions. In a similar vein, Sir Arthur

Eddington remarked that, “It is impossible to trap modern physics into predicting

anything with perfect determinism because it deals with probabilities from the outset”

(Newman 1956). This is indeed the case of the stochastically formulated natural law

(5.12) obeyed by attribute Xp. In a symbolic form, the law that the corresponding fX;p
satisfies is Eq. (5.15). Its derivation from the stochastic law (5.12) is conceptually

straightforward, but its practical implementation is often not an easy task.

When all coefficients are assumed fixed and only X0 is random, Eqs. (5.12),

(5.15) give

Xp ¼ M�1
X ðX0Þ ! fX;p ¼ M�1

f ðfX;0Þ: (5.26)

A visual representation of Eq. (5.26) is attempted in Fig. 5.2, which indicates

that stochastic laws have their rationale in symbolic language (in terms of mathe-

matical attribute symbols) and visual language (probability shapes and function

plots). Both languages are important in one’s effort to reproduce the laws of

Nature into a coherent and comprehensive system of knowledge. Consider the

Langevin-type equation gddt Xt ¼ sxt, where Xt denotes the velocity of a particle at

time t, g is a coefficient associated with the velocity-dependent frictional term, and

xt is a fluctuating force term with coupling coefficients s. The corresponding

physical probability (Fokker-Planck) equation is @
@t fX0

ðXtÞ ¼ 52 s2
2g2 fX0

ðXtÞ. For

illustration, examples of two different ways to construct the PDFs from the physical

laws are briefly examined next. The first example is the stochastic differential

Eq. (5.13) of Xp with X0 � fX;s;0 ¼ em0þm1ws;0þm2w
2
s;0 , and known coefficients mi

(i¼ 0,1,2). The analytical solution of (5.13) yields the attribute PDF (Gardiner

1990), fX;p ¼ e�btþm0þm1wp e
�btþm2w

2
p e

�2bt

as a function of p. The second example uses

a quantum system governed by the stochastic Schrödinger law (5.14). The associated
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probability has the form fc;p ¼ jcpj2, i.e., the PDF is determined in a straightforward

manner, as soon as the solution cp of (5.14) is available.
23 Several other studies can

be found in the literature which focus on the derivation of useful attribute probabil-

ities from physical laws. In subsurface flow, e.g., one notices the pioneering work of

Gedeon Dagan (1982, 1989) that includes both conditional and unconditional prob-

abilities in heterogenous porous formations, and the research efforts of Shlomo

Neuman and co-workers (Neuman, 2005: Neuman and Tartakovsky, 2009) who

also considered stochastic flow in fractured rocks and anomalous transport.

5.6.2.2 The Knowledge Synthesis Method

Surely, knowledge comes to people through a non-uniform network of beliefs,

presumptions, self-corrections, opinions, and experiences. In the face of this, it is

difficult to exactly reconstruct the process of thought. Nevertheless, there are

certain important major knowledge stages that can be outlined (at the very least)

and offer inspiration for IPS purposes. Chapters 6–7 present a general knowledge

synthesis framework for constructing multivariate PDFs in a manner that incorpo-

rates G-KB (natural laws, theoretical models, scientific theories, empirical relation-

ships) and S-KB (site-specific knowledge like hard data, uncertain information,

secondary sources) of the in situ situation.24 In Section 6.5.1, the knowledge

synthesis-based PDF is compactly expressed as

fX;p ¼ A�1

Z
dx xS e

m�g: (5.27)

23While Newton’s laws deal with actual positions and velocities, the Schrödinger law essentially

describes the evolution of probabilities.
24 The core and the specificatory knowledge bases, G-KB and S-KB, respecitvely, were introduced
in Section 1.2.3, and are discussed in detail in the Section 3.6.

p

p

0
0

fX;0

fX ;p

p = MX

1
( 0)

fX;p = Mf
1
( fX;0)

Fig. 5.2 A visual

representation of Eqs. (11)
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where A is a normalization parameter, g is a vector with elements representing the

G-KB (including the natural law),m is a space–time vector with elements that assign

proper weights to the elements of g and xS represents the S-KB available. When

used in (5.27), the core knowledge widens horizons by abiding with site-specific data

by a process of integrating S with G in a physically and logically consistent

manner. Equation (5.27) accounts for local and nonlocal attribute dependencies across

space–time. The above are noticeable advantages of the knowledge synthesis method

of PDF building, which is why its description covers two of the following chapters.

5.6.3 Drunkard’s Search

It is worth reviewing some technical and interpretive features of the methods used to

construct a PDF. When the formal approach of Section 5.6.1 is favored, the PDF can

have a variety of shapes, as long as certain conditions are fulfilled (satisfaction of the

mathematical PDF admissibility requirements); and when selected from the list of

models available in the literature, the PDF should not be merely a convenient choice

but also a physicallymeaningful and internally consistentmodelwhose parameters are

obtained from the databases. When, on the other hand, the substantive methods of

Section 5.6.2 are chosen, the PDF is derived directly from the in situ situation (physical

laws, biologicalmodels, social constructs). Definite advantages of thismethod include

that the derived PDFs have physical substance, and onemay not need to checkwhether

the technical conditions of Section 5.6.1 are satisfied. An obvious difficulty is that

natural lawsmaynotbeavailable for all in situsituations.But in this case,many thinkers

argue, itmay be appropriate to admit that no sufficient in situ knowledge is available to

pursue the task (of PDFconstruction) at thepresent time. Indeed, there is a considerable

number of problems that the scientificmethod can solve and also a number of problems

that cannot be currently solved on the basis of the existing data and current knowledge.

What the readers should take home from the discussion so far is that the search

for the most adequate PDF model should be wide open and not merely a drunkard’s

search.25 In some cases, the convenience of the formal approach may be a reason-

able option, whereas in other applications a substantive approach will need to be

used that accounts for physical and other kinds of knowledge sources. As already

noted, a challenge faced by PDF modelers is how best to present detail-drenched in

situ phenomena alongside theoretical constructions without twisting the former

beyond recognition or viewing the latter as an interesting but unrealistic abstrac-

tion. On occassion, the real search begins with the recognition of clues. Like in

detective novels or history books, the development of PDF rests on highlighting

minuscule clues that may shed small beams of light on a hidden picture inferred by

induction rather than deduced from general principles.

25 The drunk looks for the lost keys only under a sidewalk lamp because this is where the best light is.
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5.7 Spatiotemporal Dependence and Woody Allen’s Prose

When a thing is funny, search it for a hidden truth. In a hilarious passage,

characteristic of Woody Allen’s prose, reference is made to “the bizarre experience

of two brothers on opposite parts of the globe, one of whom took a bath while the

other suddenly got clean” (Allen 1998: 16). Allen’s special brand of humor portrays

a case of spatiotemporal dependence, in which what happens in one space–time

point strongly affects what happens in another point. In sciences there exist

different ways to assess the space–time change (in the sense of stochastic causality

or association) of a natural attribute, and each one of them has its pros and cons.
One way may be a perfect fit for an end, but not for other ends.

5.7.1 Dependence in Terms of Stochastic Expectation

Useful S/TRF tools for assessing spatiotemporal change are the dependence func-
tions of the attribute Xp defined in terms of stochastic expectation. In principle,

these functions, say DXp
, can be calculated in terms of the PDF as follows:

DXp
¼ YðxpÞ ¼

Z
dxp YðxpÞfX;p; (5.28)

where, as usual, the bar denotes stochastic expectation, Y is a known function.

A few examples of DXp
functions are given in Table 5.6. Some of these examples

should look familiar to the readers, whereas some others may not. The covariance

function, e.g., is obtained from the general Eq. (5.28) by letting Yðwpi ; wpjÞ ¼ðwpi � mpiÞðwpj � mpjÞ, in which case cX;pi;pj ¼
RR

dwpi dwpjYðwpi ; wpjÞfX;pi;pj .26 The

reader will observe that not all dependence functions can be derived from Eq. (5.28).

This is, in fact, the case of the sysketogram and contingogram functions in Table 5.6

(we will revisit these functions later in this chapter). In principle, one can assume an

Table 5.6 Examples of spatiotemporal dependence functions.

Name Form

Mean: mp ¼ Xp (5.29)

Covariance: cX;p
i
;pj ¼ ðXp

i
� mp

i
ÞðXpj � mp

j
Þ (5.30)

Variogram: gX;pi;pj ¼ 1
2
½ðXpi � Xpj Þ2 � ðmpi � mpj Þ2� (5.31)

Multiple-point: gX;fpig; l ¼
Ql

i¼1 ðXpi � mpiÞ (5.32)

Sysketogram: bX;pi ;pj ¼ logðfX;pi ;pj=fX;pi fX;pj Þ (5.33)

Contingogram: cX;pi ;pj
¼ fX;pi ;pj=fX;pi fX;pj � 1 (5.34)

26 It is easily seen that the attribute variance, s2X; pi , is obtained from cX; pi ; pj if we let pi ¼ pj.
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infinite number of Y functions, and then calculate DXp
from (5.28). At this point,

one may legitimately ask: Since each DXp
is calculated in terms of fX;p, how can DXp

be used instead of fX;p? This is a legitimate question. Its answer will concern us next.

5.7.1.1 Abstract and Intuitive Appraisals of Reality

Most experts agree that the usefulness of the DXp
-sets consists in their anticipated

ability to express important aspects of the space–time attribute distribution in a

form that is more convenient to use than the multivariate PDFs, which are often

difficult to obtain or may have an arbitrary and difficult to interpret general shape

(Bogaert 1996; Douaik et al. 2005; Law et al. 2006; Choi et al. 2007; Coulliette

et al. 2009). In theory, assuming that fX;p is known exactly, any DXp
can be derived

from Eq. (5.28). But a careful consideration of the matter shows that some impor-

tant issues emerge in the real-world. If the fX;p shape is completely unknown, how

can one select a DXp
-set that enables an adequate characterization of the attribute

distribution across space–time? Also, assuming that a DXp
-set has been somehow

selected in theory, how can it be computed reliably from the limited databases?

Plainly speaking, there are no generally valid answers to these questions. The fact

that fX;p may have an arbitrary shape creates serious difficulties concerning DXp

selection. In many problems, the PDF shape is indeed completely unknown (one

does not even know if the PDF is symmetric, etc.), which makes it difficult or even

impossible to decide what sort of dependence functions to select. A trivial excep-

tion, of course, is the Gaussian case: the DXp
-set (attribute mean and covariance)

allows a formally complete characterization of fX;p. In the vast majority of PDF

cases, however, this is not possible. Even if one makes a guess concerning the

general shape of fX;p, it may be not possible, on the basis of the available datasets, to

calculate those parameters that will allow an exact determination of the PDF. In a

way, it is like the general solution of a differential equation that is not of much use

in practice, unless realistic auxiliary conditions are available that allow the deriva-

tion of the particular solution of the in situ phenomenon.

But the situation may be not always as gloomy as seems to be implied above.

Many space–time modeling experts claim that in a large number of in situ cases the

DXp
set consisting of the first three functions in Table 5.6, i.e.,

DXp
¼ Xp; cX; pi;pj ; gX; pi;pj

n o
; (5.35)

can provide a formally incomplete yet practically satisfactory description of the

attribute’s space–time distribution (Jones and Zhang 1997; Kyriakidis and Journel

1999; Augustinraj 2002; Ma 2003; Fernandez-Casal et al. 2003; Douaik et al. 2005;

Stein 2005; Gneiting et al. 2007; Porcu et al. 2006, 2008; among others). This may

be a reasonable claim, as long as practicality is not confused with mere conve-

nience. Furthermore, the apparent success of the dependence set (5.35) in practice is

one of those unexpected yet welcomed “miracles” that sometimes occur in a
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scientist’s life. I will call it a “disconcerting” miracle for reasons that will become

clear later. It is true that the situation is much better in the exact than the non-exact

sciences. In the former case, an attribute obeys a physical law or a well-tested

empirical model, so that its values are causally linked across space–time. Then it

makes sense to determine DXp
that expresses this link in a stochastic way that

accounts for the co-existence of spatiotemporal structure and chance. However, this

is not necessarily valid in non-exact sciences, where the concept of dependence

(correlation) may be less meaningful or even deceiving. The co-association

between financial securities, e.g., is not measurable using correlation functions,

because past history can never prepare one for the day when everything goes south

(Salmon 2009: 112). Some experts suggest deriving mainstream dependence func-

tions (like the covariance and variogram) in terms of copulas (Bardossy 2006;

Bardossy and Li 2008). There exist other studies that favor the use of the sysketo-

gram (bX;pi;pj) or contingogram (cX;pi;pj
) functions (Christakos 1991a, 1992). Are

there any sound criteria for favoring a specific set of dependence functions over

another, or is it simply a case of fides quaerens intellectum? The answer to this

“faith seeking understanding” sort of question depends on the relation between the

abstract and intuitive appraisals of reality in terms of dependence functions, the

space–time structure of the underlying phenomenon, and the IPS objectives. As it

will be shown in the following sections, each dependence function has its pros and
cons, but some of them contain more grains of truth than others.

5.7.1.2 Concerning Mainstream Dependence Functions

Let us make a few observations concerning the most commonly used set of space –

time dependence functions. The attribute mean function Xp is defined at each point

of the continuum, it can be calculated at a local and/or a global scale, and it gives an

idea about dominant trends in the spatiotemporal variation of the attribute. The

covariance cX; pi;pj and the variogram gX; pi;pj measure the degree of agreement of

attribute values at pairs of points pi and pj. In other words, the covariance and the

variogram functions show how dependence between pairs of attribute values

changes with space–distance and time-lag (in commonly encountered cases, e.g.,

the observed reduction of covariance values with spatial distance and time lag

implies a reduced space–time attribute dependency). This dependence is an inher-

ent feature of the attribute’s composite variation across geographical space and

during different time periods. There exist, of course, different forms of space–time

dependency, which lead to distinct covariance and variogram shapes that satisfy the

required mathematical permissibility criteria.27 The cX; pi;pj and gX; pi;pj models may

27A list of space–time covariance and variogram models together with their permissibility condi-

tions can be found in Christakos (1991a, c, 1992, 2005b, 2008a, b), Christakos and Hristopulos

(1998), Gneiting (2002), Kolovos et al. (2004), Christakos et al. (2000, 2005), and Porcu et al. (2006,

2008).
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be space–time separable (e.g., they are expressed as the product of purely spatial

and purely temporal components), whereas other models are assumed to be non-
separable (they cannot be expressed as the above product).

Alexander Kolovos and co-workers have described a variety of mathematical

and physical methods that can be used to construct valid space–time dependence

models for theDXp
-set of Eq. (5.35), separable and non-separable (Table 5.7; details

can be found in Kolovos et al. 2004 and references therein). Using the ST method,

dependence models in higher dimensionality domains are obtained from functions

that are permissible in a lower dimensionality domain. The LN method expresses

natural laws in a stochastic form, and the associated dependence functions are

derived accordingly (see also the following Section 5.7.2). Using the SM, PD, and

GM methods, valid dependence models are obtained from different kinds of

measures by means of appropriate operations. In the PC method various combina-

tions of existing permissible models can generate rich families of new space–time

dependence functions. It is a matter of choice what knowledge bases and methods

of analysis one should use. Each choice has its own merits and domain of applica-

bility. However, there are cases where rationality and rigor require that some bases

and methods be preferred over others. Many experts are critical of data-driven

regression modeling that uses a fixed list of covariance models, independent of

the underlying physics, rather than deriving them on the basis of substantive

knowledge. On the other hand, the Spartan random field modeling of Dionissios

T. Hristopulos28 and co-workers properly uses covariance models established by

means of physically or intuitively motivated interactions, instead of a purely

data-driven matrix (Hristopulos 2003; Elogne et al. 2008).

5.7.1.3 The Indiscrimination Property

Studying space–time dependence functions, rather than the complete PDFs, is often

a legitimate way of confronting S/TRF theory with in situ observations, and then

making informative space–time predictions. But one should be always reminded

of the warning of Section 5.2.2 that the uncritical implementation of probabilistic

analysis can be a slippery affair. A telling example is the so-called indiscrimination
property of lower order dependence functions: the same covariance or variogram

Table 5.7 Methods for constructing space–time dependence models

Space transforms (ST) Probability distribution (PD)

Laws of Nature (LN) Generalized random measure (GM)

Spectral measure (SM) Permissible combinations of valid models (PC)

28 Beyond being a distinguished researcher, Hristopulos is an impressive performer capable of

leaping across the dance floor in a series of faultless grand jetés. Talking about synthesizing

personalities of large scope.
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function can be assigned to random fields that exhibit very different space–time

variation patterns (which may partially justify the characterization “disconcerting

miracle” used earlier). Accordingly, the indiscrimination property raises legitimate

questions regarding the validity of some theory–reality associations. The best

response probably is to view the dependence function and the generated realizations

in combination with other knowledge sources and analysis tools. Viewing a

problem from the perspective of (intradisciplinary or interdisciplinary) knowledge

synthesis is often a sound approach.

Let us consider a simple example. The two random fields Xs and Ys are

empirically related by Ys ¼ v Xs, where the field v � Uð0; 1Þ is independent of

Xs and Ys. Trivial calculations show that the two random fields have the same

covariance, cY; si; sj � cX; si; sj . As one can see in Fig. 5.3, however, the two random

fields can generate very different realizations representing the variation of the

corresponding attribute, which means that the “black box” use of the covariance

can provide a poor representation of the actual variation. In many cases, the

situation can be improved significantly by conditioning the generated realizations

with good quality datasets. In sum, the covariance and variogram functions should

be used only when there is a deeper understanding and a valid working hypothesis

about the natural system. Understanding guides one’s sensory engagement with in

situ evidence, and improves one’s interpretation of the dependence functions

calculated from this evidence.

Fig. 5.3 Realizations of two random fields sharing the same covariance form
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5.7.2 Dependence in Terms of Natural Laws

I hope the readers like ancient legends as much as I do. While considering

dependence functions, the legend of the Irish king Fergus Mac Leda came to my

mind. The king used to take long journeys in the land of Ireland, until he encoun-

tered a fierce river horse in Loch Rury. The encounter so terrified Fergus that his

face became permanently distorted with fear. He kept on thinking about the

incident, and since it was a matter of honor for the king to resolve the situation,

he returned to Loch Rury several times to confront the monster. During the final

struggle, Fergus managed to slay the monster before going down himself. But

having finally resolved the matter, the king’s face at last was restored and serene.

It is not unusual that contemporary investigators find themselves in Fergus’ posi-

tion, hopefully with a few variations. During their long journeys in the land of

scientific inquiry, the investigators too encounter difficult problems and serious

obstacles that they cannot handle at the time, but they keep on thinking about them

until they are able to finally resolve them. Let us apply this approach in the case of

space–time dependence characterization, and revisit the issue of how to adequately

develop the corresponding models.

Returning to the problem of space–time dependence representation, if an inves-

tigator seeks to construct a dependence model from incomplete datasets, one needs

to have an understanding of what kind of space–time structure one is looking for.

This understanding comes, inter alia, from natural laws of various kinds. This is the

basic idea underlying the LN method for constructing dependence models

(Table 5.7). The method has two versions. In the first version, after the solution

Xp of the stochastic attribute Eq. (5.12) has been obtained, the dependence functions

can be derived using Eqs. (5.29)–(5.32) in Table 5.6. In the second version of the

LN method, the stochastic causality of (5.12) gives rise to the deterministic

causality that connects the space–time dependence of the relevant attributes by

means of the general model

MDðDX; pi; pjÞ ¼ 0; (5.36)

where DX; pi; pj denotes the dependence function set of the attribute Xp across

space–time, and MD includes the known dependence sets of ai and X0. Equation

(5.36) is very informative: it shows how the dependence functions propagate across

space–time so that they are consistent with the attribute’s natural law. It is doubtful

that this kind of information can be extracted from the incomplete dataset alone. In

this sense, (5.36) unites the various space–time patterns emerging from natural law in

a single network. Its solution gives DX; pi; pj between all pairs of points pi, pj. For
illustration, consider the temporal variation of the pollutant burden on a human organ,

Xt, that obeys the stochastic kinematics law (Christakos and Hristopulos 1998: 284),

d
dt Xt þ lt Xt � Ut ¼ 0; (5.37)
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given X0 ¼ 0 (IC), Ut is the random uptake rate, and lt is the random transfer rate

out of the organ. This implies, e.g., that the pollutant was first introduced in another

compartment at t¼ 0 and then transferred to the compartment (5.37). The covari-

ance of the burden fluctuation is governed by

Dti Dtj cx; ti; tj ¼ a e�ejtj�tij; (5.38)

where Dti ¼ ½ ddti þ lti �, a is the known variance of the uptake rate fluctuation, and

e�1 is the correlation time of the biological field. Equation (5.38) shows how the

burden covariance propagates in the time domain. If one assumes that cX; 0; 0 ¼ 0

(IC), and l ¼ lt is constant, Eq. (5.38) can be solved for the burden covariance

cX; ti; tj ¼ a
l
2�e2

½e�ejtj�tij � e
l
e�l jtj�tij þ lþe

l
e�l ti�l tj � e�e ti�l tj � e�l ti�e tj �: (5.39)

Eq. (5.39) is a symmetric function with respect to ti and tj. The burden covariance

depends on the absolute time lag jtj � tij, as well as on the disposition of both ti and
tj with respect to uptake initiation (the burden is nonstationary, even when the

uptake rate covariance is stationary). As it happens, theoretical toxicokinetics is

ahead of its experimental counterpart, which means that advances in public health

knowledge have to wait until the necessary experimental techniques are developed

that can measure certain parameters of toxicokinetics models like Eqs. (5.38)–

(5.39). Last but not least, consider a neuron morphology in which the evolution of

the nerve cell potential Xp obeys the stochastic equation

½ @2
@s2 � @

@t � 1�Xp þ a @2

@s@t Wp þ b ¼ 0;

where s varies within a nerve cylinder, tr0, a and b are constants,Wp is a white-noise

field with covariance cW; pi;pj ¼ dsi; sj dti; tj , and the cell is initially at rest. Then, under
certain conditions (cell potential is initially zero, an infinite nerve cylinder is

assumed, and smoothness requirements are met; Tuckwell 1989:69), the potential

mean and variance are found from the above equation to be, Xp ¼ bð1� e�tÞ and
s2X;p ¼ 1

4
a2½1� erfcð ffiffiffiffi

2t
p Þ�.

5.7.3 The Predictability Power of a Model

The predictability power of the model MD of the previous section may be consid-

ered in terms of its predictability ranges across space and time (eMs and eMt ,
respectively). Let cM; S

X ðh; tÞ denote the spatiotemporal covariance between the

Xp values generated by MD and those obtained from the attribute dataset S. The

ðeMs ; eMt Þ set is defined such that

cM; S
X ðeMs ; eMt Þ ¼ � c0X; (5.40)
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where h ¼ eMs ; t ¼ eMt , c0X is the corresponding variance, and the value of �
is selected by the investigator to represent the desired level of model predictability

(usually, 0:5b�<1). Equation (5.40) provides a stochastic measure of similarity

between the attribute values generated by MD and S. The longer the spatial

(temporal) range is, the higher is the spatial (temporal) predictability of MD with

respect to Xp. The predictability ranges ofMD can be also compared to those of the

dataset S. For example, S may include measurements Yp via the empirical relation-

ship Yp ¼ Xp þWp (Wp is the measurement error due to equipment imperfections,

site conditions, etc.). Let cSYðh; tÞ be the Yp covariance calculated on the basis of

the S data, and let cSYðes; etÞ ¼ � c0Y define the corresponding correlation range

set ðes; etÞ. In this case the cM; S
X;Y ðh; tÞ denotes the spatiotemporal covariance

between the Xp values generated by the model MD and the Yp values obtained

from the dataset S; and eMs , e
M
t are the associated space and time ranges. If the

model MD provides an adequate representation of the attribute distribution one

should expect that eMs >es and eMt >et.
The readers may notice that in the limit when eMs ¼ es and eMt ¼ et, MD is not

an improvement over the dataset S, in the predictability sense above. This is a

point to be carefully investigated when using statistical regression and time

series models in real-world applications (Smith et al. 2000; Hwang and Chan

2002; Martin and Roberts 2008). Since these models express Xp as a function of

S data, the derivation of cM; S
X; Y ðh; tÞ is essentially based on the same dataset as

cSYðh; tÞ, and so does the calculation of the coefficients of the statistical models.

Hence, under certain circumstances it is possible that eMs 	 es and eMt 	 et,
which is a result that may doubt the validity of the models.

5.7.4 Information Theoretic and Copula Dependence Functions

Given the fundamental doctrine of scientific inquiry that one should always search

for alternatives, I suggest examining the possibility of space–time dependence

functions that lie outside the framework of the mainstream dependence functions.

We start with the sysketogram bX;p1;p2 
 0, Eq. (5.33), which is also written as

bX;p1;p2 ¼ log f�1
X;p1

�
Z

dwp2 fX; p2 log f
�1
X; p1jp2 ; (5.41)

i.e., it is a spatiotemporal dependence measure with information-theoretic properties.

Eq. (5.41) may be viewed in the context of the Kullback-Leibler divergence

DðfX;p1;p2 ; fX;p1 ; fX;p2Þ, where the D form is logarithmic. The sysketogram has

some noticeable properties: in the case of stochastic independence (Section 5.6.1.1),

it is valid that bX;p1;p2 ¼ 0. The sysketogram depends only on the PDF and not the
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Xp values.
29 And it is not affected if Xp is replaced by some function fðXpÞ, provided

thatf is one-to-one.30 The last property means that bX;p1;p2 is an absolute rather than a
relative quantity, in the sense that the space–time correlation defined by bX;p1;p2 is

completely independent of the scale of measurement of Xp. This property is useful in

physical applications in which the concepts of “scale of measurement” and “instru-

ments window” play an important role. Similarly, when the attribute has random

space–time coordinates (e.g., distribution of aerosol particles), bX;p1;p2 is independent
of the coordinate system chosen. The absoluteness property brings to mind a basic

result of modern physics, according to which only absolute quantities (independent of

the space–time coordinate system) can be used as essential components of a valid

physical law (in which case the term “covariant” is used).

Another possible measure of space–time dependence is the contingogram

cX;p1;p2
, which is based on Karl Pearson’s original idea of a discrete contingency

coefficient. In the continuous space–time domain, the counterpart of Pearson’s

contingency was defined in Eq. (5.34).31 The contingogram can be also written as

cX;p1;p2
¼

Z Z
dwp1dwp2 f

2
X;p1;p2

ðfX;p1 fX;p2Þ�1 � 1; (5.42)

which shows that in the case of stochastic independence, cX;p1;p2
¼ 0. As was the

case with bX;p1;p2 , the cX;p1;p2
depends only on the PDF of Xp, and is not affected if

the ðXpÞ is replaced by the one-to-one function fðXpÞ. From a stochastic reasoning

viewpoint, Xp characterization provided by bX;p1;p2 and cX;p1;p2
is cognitively

general. The reader may notice a certain similarity between their definitions in

Eqs. (5.33)–(5.34). Both dependence functions offer measures of the degree of Xp’s

departure from stochastic independence. It is noteworthy that if

A ¼ fX;p1;p2=fX;p1 fX;p2 , then bX;p1;p2 ¼ logA and cX;p1;p2
¼ A� 1. And by using series

expansions32 (small A values), one finds bX;p1;p2 	 A� 1 ¼ cX;p1;p2
. At the moment,

little is known about the in situ performance of bX;p1;p2 and cX;p1;p2
, which remains

an open field of research.

There are more space–time dependence functions that do not readily fit the

general formulation of Eq. (5.28). One of them is defined as follows. To an

S/TRF Xp one can associate the indicator random field: IX;p;z ¼ 1 if Xp<z (z is a

cutoff), and IX;p;z ¼ 0 otherwise. The corresponding indicator variogram of geos-

tatistics can be written as (Bardossy 2006)

29 This is easily seen in the discrete case, bX;p1 ;p2 ¼
P

i f1; i log f
�1
1; i �

P
j f2;j log f

�1
1j2 , where only

the probability values are needed and not the numerical values of the realizations.
30 That is ðwp1 ; wp2 Þ ! ðw0p1 ¼ fðwp1 Þ; w0p2 ¼ fðwp2 ÞÞ, in which case fX;p1 ;p2 dwp1 dwp2 ¼
f 0X;p1 ;p2 dw

0
p1
dw0p2

31 Actually, Pearson defined the discrete-valued contingency as ’ ¼ ½Pi

P
j
�2ðwi ;wjÞ
�ðwiÞ�ðwjÞ � 1�

0:5

,

where � denotes discrete probabilities. Here the idea is extended in a continuous space–time

domain with c ¼ ’2.
32 That is, logA ¼ ðA� 1Þ � 1

2
ðA� 1Þ2 þ 1

3
ðA� 1Þ3 � :::
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gIX ;p1;p2 ¼ F�1
X ðzÞ � CX;p1;p2ðF�1

X ðzÞ;F�1
X ðzÞÞ; (5.43)

where

CX;p1;p2 ¼ P½FXðXp1Þbup1 ; FXðXp2Þbup2 � ¼ CX½FXðXp1Þ; FXðXp2Þ� (5.44)

is the space–time dependence copula. One may, also, express gIX ;p1;p2 in terms of the

space–time copula density, fX;p1;p2 ¼ ðfX;p1 fX;p2Þ BX;p1;p2 . An interesting property of

(5.43)–(5.44) is that they express space–time dependence not in terms of the

bivariate probability, but as a function of the corresponding univariate probabilities.

This convenience often comes at a cost, which should be taken into consideration

(Section 5.6.1). Just as is the case with the direct determination of the fX;p1;p2 shape,
Bardossy says, the determination of the CX form remains a difficult problem with no

general solution available. In the same setting, the copulas do not contain different

or more information than indicator variograms, but they allow a joint handling and

a different presentation with a more parsimonious parameterization. As it turns out,

the bX;p1;p2 and cX;p1;p2
functions can be also expressed in terms of copulas: i.e.,

bX;p1;p2 ¼
Z 1

0

Z 1

0

dup1dup2 BX;p1;p2 log BX;p1;p2 ¼ log BX;p1;p2 ; (5.45)

and,

cX;p1;p2
¼

Z 1

0

Z 1

0

dup1dup2 B
2
X;p1;p2

� 1 ¼ BX;p1;p2 � 1: (5.46)

In view of Eq. (5.46), the readers may notice an analogy between cX;p1;p2
and

Kendall’s rank correlation coefficient discussed by Francesco Serinaldi (2008)

tk ¼ 4

Z 1

0

Z 1

0

dCX;p1;p2CX;p1;p2 � 1 ¼ 4CX;p1;p2 � 1; (5.47)

where, as usual, dCX;p1;p2 ¼ BX;p1;p2dup1 dup2 . The readers may argue that in the

copula-based expressions of bX;p1;p2 and cX;p1;p2
, the arbitrarily complex fX;p1;p2 is

essentially replaced by what can be an equally complex BX;p1;p2 . Nevertheless,
according to Serinaldi the advantage of expressing bX;p1;p2 and cX;p1;p2

in terms of

copulas is that these expressions involve integrals on finite supports.

Some further comparison between the mainstream space–time dependence func-

tions and the information-theoretic dependence functions above is instructive. The

bX;p1;p2 and cX;p1;p2
have properties that may favor their use in place of the

covariance cX;p1;p2 : (i) bX;p1;p2 ¼ cX;p1;p2
¼ 0 in the case of stochastic independence,

whereas cX;p1;p2 may be 0 even when only space–time non-correlation holds;

(ii) bX;p1;p2 and cX;p1;p2
depend only on the PDF, whereas the cX;p1;p2 depends on

both the PDF and Xp values. (iii) bX;p1;p2 and cX;p1;p2
are not affected if Xp is
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replaced by a one-to-one function fðXpÞ, which is not the case with cX;p1;p2 ; and (iv)
bX;p1;p2 and cX;p1;p2

can be extended in a straightforward manner to the multipoint

case using copulas. Property i implies that bX;p1;p2 and cX;p1;p2
contain more

information about space–time dependence than cX;p1;p2 ; or that bX;p1;p2 and cX;p1;p2
uncover dependence features that cX;p1;p2 does not. Using Schwartz’s inequality, it is
shown that r2X;p1;p2bcX;p1;p2

. For the indicator field IX;p;z, it is valid that

r2IX ;p1;p2;z ¼ cIX ;p1;p2;z. Concerning property iv, the sysketogram and contingogram

can be expressed in terms of copulas in the multipoint case as well; i.e.,

bX;p1;::::pk ¼ log BX;p1;::::pk
cX;p1;::::pk

¼ BX;p1;::::pk � 1

)
; (5.48a - b)

respectively. Hence, as soon as the copula density BX;p1;::::pk ¼ BX;p is calculated

using standard techniques, the multipoint sysketogram bX;p1;::::pk ¼ bX;p and con-

tingogram cX;p1;::::pk
¼ cX;p can be calculated too.

5.7.5 Spatiotemporal Homostationarity

Spatially homogeneity and temporally stationarity in the wide sense, also termed

spatiotemporal homostationarity (STHS), assumes that the space–time mean �m of

the attribute Xp is a constant throughout the space–time domain of p, and the

covariance and variogram are functions only of the space–time lag

pi � pj ¼ ðsi � sj; ti � tjÞ ¼ ðh; tÞ, see Table 5.8. As happens in similar modeling

cases, to perceive an STHS attribute is not to see that actual attribute; it is to see

(from the perspective of one who uses) STHS. For bX;p1;p2 and cX;p1;p2
, the STHS

may be defined in the strict sense involving the corresponding PDFs (the PDFs do

not change by a transformation dp of the space–time coordinates); then, bX;p1;p2 ¼ 0

(jp1 � p2j ! 1). The vector distance h ¼ ðr; yÞ consists of its magnitude jhj ¼ r
and its direction (angle y). A special case of homogeneity is spatial isotropy: the
covariance depends only on r (not on y). Also, another way of looking at the set Y
(Fig. 4.1a) is like a set of iso-covariance contours.

The need to use simplified assumptions (such as STHS, low-order dependence

functions, etc.) in real-world studies provides investigators with a perspective from

which to interpret potentially significant gaps between theory and practice. Moving

between theory and practice can help investigators appreciate the impact what they

do has in what they think. Lastly, commonly used terms like “homogeneity,”

Table 5.8 Dependence

functions for STHS fields

(wide-sense)

Mean: Xp ¼ �m (5.49)

Covariance: cX; pi;pj ¼ cX; pi�pj (5.50)

Variogram: gX; pi ;pj ¼ gX; pi�pj
(5.51)
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“stationarity,” “stochastic,” and “isotropy” are sometimes misunderstood, and

misused. Non-stationarity, e.g., has been associated with a white-noise process,

and stochasticity has been confused with spatial stationarity (Cliff and Ord 1981).

As a consequence, it is suggested to use the term homogeneity instead of stationar-

ity in the spatial case, and keep stationarity for the temporal component of the

variation (Yaglom 1961).

5.8 A Generalized View of S/TRF

In real life, one is often faced with the so-called “extension” problem. Scientists, for

example, constantly seek to develop mental constructs that creatively extend

an existing theory in order to include new and previously unobserved phenomena,

solve previously unsolvable problems, and generate new and unexpected results.

5.8.1 Random Fields Based on Generalized Functions
or Distributions

In the early 1950s, the need emerged to extend the homogeneous spatial random

field (SRF) theory to include fields with spatially nonhomogeneous features.33

Responding to this need, the theory of generalized SRF was developed (Yaglom

and Pinsker 1953; Gelfand 1955; Yaglom 1957) based on the mathematics of

generalized functions (or distributions),34 in the sense of Laurent Schwartz and

Kiyoshi Ito (Schwartz 1950; 1951; Itô 1954). In the 1970s, parts of the generalized

theory were repackaged and extended in a geostatistics context, in which case the

term “intrinsic SRF” was introduced (Matheron 1973). Another extension of

the generalized theory was suggested in the composite space–time domain of

Section 4.2. The extension was able to study physical attributes with heterogeneous

space–time variability features, and led to the development of the heterogeneous
S/TRF theory (Section 5.3.2), which is considerably richer than the STHS class, i.e.

the S/TRF theory can be linked to a larger number of in situ phenomena than the

STHS one. Random fields with spatial and temporal heterogeneity orders n and m,
respectively, and the associated support functions, satisfy physical law-based con-

ditions of change in the composite space–time domain. In the same setting, several

classes of fractal and wavelet fields were derived as special cases of the heteroge-

neous S/TRF theory for suitable choices of the heterogeneity orders and support

functions.

33 Again, it is preferable that “nonstationary” be associated with time series rather than spatial

functions, the latter being linked to the term “nonhomogeneous.”
34 Also known as SRF with homogeneous spatial increments of order n.
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5.8.2 An Operational Treatment of Space–Time
Heterogeneous Attributes

Heterogeneous S/TRF theory (Christakos 1990a, 1991a, c, 1992, 2008a, b) is subject

to the rules of engagement between the mind (mental construct) and its object of

study (reality). In the following, for generality’s sake, I assume that the space–time

distribution of the attributeXp ¼ Xs;t of interest is heterogeneous.
35 Also, for reasons

that will become clear soon, the focus is on S/TRFs that satisfy the formulation

Qn=m½Xp� ¼ Yp; (5.52)

where Qn=m is a space–time operator, the parameters n and m characterize the

degrees of Xp heterogeneity in space and time, respectively; and the field Yp exhibits
some specified characteristics that serve an in situ objective (e.g., it is STHS).

Throughout the book, an attempt has been made to demonstrate and to advocate the

fruitfulness of understanding quantitative concepts in terms of literary metaphors.

Resorting to such a metaphor, the paradoxical interchange between heterogeneous

and homogeneous features is perceptible in Goethe’s novel Wilhelm Meister
expressed as the unusual co-existence of liberalism and absolutism, or in Beetho-

ven’s musical composition in which dynamic expositions and regular recapitula-

tions form a binding entity. In the continuous case, the heterogeneity parameters

(n,m) may imply spatial derivatives of order nþ 1 and time derivatives of order

mþ 1 operating at the point p ¼ ðs; tÞ. This is a convention, according to which a

STHS field has n ¼ m ¼ �1. If the PDF of Xp is known, it is possible to readily

construct the Qn=m operator. In fact, if the operator expresses the dynamical laws

that govern the natural attribute, the Xp is fully determined. Also, it is possible that

the Qn=m operator of Eq. (5.52) enhances one’s knowledge about the original

attribute represented by the S/TRF Xp. Assume that via Qn=m the Xp leads to Yp;
then, the inverse operation Q�1

n=m may yield a new S/TRF representation of Xp that

contains more knowledge than the original one.

There exist a large number of Qn=m choices in association with Xp (see examples

in Table 5.9; Christakos 1992; Christakos and Hristopulos 1998). It is instructive to

consider two main groups of operators, depending on the motivation behind their

construction: Group a includes operators linked to substantive knowledge (natural

laws, scientific theories, and empirical models). Equation (5.52) takes advantage of

the fact that scientists often have at their disposal a set of sound natural laws to work

with. In this sense, the heterogeneous S/TRF is a scientific method rather than a

purely data-driven scheme, such as the statistical regression, time series, and

hierarchical techniques. These techniques are satisfied with the mere description

of data across space–time, whereas the S/TRF method has an explanatory character

as a result of its connection with the laws describing the mechanisms underlying the

35Heterogeneity may be interpreted, e.g., in terms of complex spatial patterns combined with

varying temporal trends (at local or global scales).

290 5 Stochastic Reasoning



data. Knowledge produced from these natural laws is used in the definition (5.52) of

the S/TRF and the derivation of the corresponding dependence models. This leads

to an exact specification of attribute dependence models about which limited or no

information exists in terms of other attribute models about which sufficient infor-

mation is available (e.g., the hydraulic head covariance is determined from the

conductivity covariance using the continuity equation and Darcy’s law).

Group b includes operators chosen so that they satisfy problem related require-

ments (e.g., they annihilate trend functions with space–time coordinates). Hence,

S/TRFs defined by (5.52) are capable of handling complicated space–time patterns

based on the intuitive idea that the variability of an attribute can be characterized by

means of its degrees of departure from STHS. In Group b, more than one Xp are

generated from Yp by using different Qn=m, which shows the generality of formula-

tion (5.52). The notation S/TRF-n=m is used to show that Qn=m eliminates composite

space–time trends expressed in terms of polynomial functions #n=m;p (of degrees n in
space, m in time). When an attribute Xp has certain features, fi (i¼ 1,...,q), and one or
more of them are removed, it is physically possible that several of the remaining fi
cease to exist too. Which raises the question whether it is possible that by removing

the heterogeneous features of Xp, one also (unintentionally and unknowingly)

removes some other features. The answer to this question is twofold: when Qn=m
is based on a natural law, it is very likely that Qn=m will account for all essential

features of the phenomenon; and the removal of the heterogeneity features, if it

happens, is not permanent, since one returns to the original Xp, after the necessary

Yp-based analysis has been performed.

In the above setting, Eq. (5.52) underscores the conceptual and methodological

significance of theory in scientific inquiry. Depending on the shape of Qn=m,

Eq. (5.52) can be formulated and solved in the continuous- or discrete-valued

domain. A solution of (5.52) in the case, e.g., of the third operator in Table 5.9 is

(Christakos and Hristopulos 1998),36

Xp ¼
Z

dp0 cp0 G
ðnþ1=mþ1Þ
0;p;p0 þ Yp0 #n=m;p: (5.53)

Table 5.9 Examples of Qn=m operators

@nþmþ2

@sn11 @sn22 ::: @s
nn
n @tmþ1

½��, Pn
i¼1 ni ¼ nþ 1

Xn

i¼1

@nþmþ2

@snþ1
i @tmþ1

½��
@mþ1

@tmþ1
þ
Xn

i¼1

@nþ1

@snþ1
i

� �
½��

36#n=m;p ¼ 1
ðnþ1Þ!

Pn
i¼1 y

2
i s

nþ1
i þ 1

ðmþ1Þ! t
mþ1,

Pn
i¼1 y

2
i ¼ 1, and the Green’s function satisfies

Qn=m ½Gðnþ1=mþ1Þ
0;p;p0 � ¼ ds�s0dt�t0 , where ds�s0 and dt�t0 are delta functions in space and time, respec-

tively.

5.8 A Generalized View of S/TRF 291



When the natural laws are not fully known, guidance regarding the form of Qn=m
is offered by empirical relations expressed in terms, either of algebraic equations or

algorithmic rules aiming to emulate physical reality. Last but not least, even

if knowledge of the specific laws is not available, dependence models derived

from generally applicable physical laws can be used as potential candidates for

describing particular datasets, in which case the law parameters are estimated from

these data. Some readers would notice that considering the mainstream para-

digm that claims to reduce to simple formulas any kind of uncertainty by forcing

people to think in terms of independent trials, to make bets, and to throw dices,

the stochastic modeling issues discussed in this and other chapters may look as

foreign to them as a Jackson Pollock expressionist creation would look to a painter

of melodramatic scenes like Delaroche. Nevertheless, the complex real-world

problems emerging with increasing frequency nowadays should convince one that

these modeling issues do make sense and are very important indeed.

5.8.3 Spatiotemporal Dependence and Heterogeneity Parameters

The covariance cX; pi;pj linked with S/TRF (5.52) is generally a heterogeneous

space–time dependence function. Given the Qn=m shape, a variety of cX; pi;pj models

can be obtained, separable and non-separable. For illustration, the following

covariance class is derived from a partial differential equation law (Christakos

and Hristopulos 1998):37

cX; pi;pj ¼
Z
T

dt0
Z
V

dh0 G1;t�t0 G2;h�h0 cY;h0;t0 þ #2nþ1;h#2mþ1;t

þ #n=m;pi#n=m;pj : (5.54)

Since the covariance (5.54) can be linked to substantive knowledge, the cX; pi;pj
expresses a degree of stochastic space–time causation that is significantly more than

the mere statistical association measured by the purely data-driven covariance or

variogram. Although this is an idea logically derivable from theoretical considerations

and the existing evidence, the weakness of imagination may require a wealth of

carefully acquired data to make the idea psychologically possible and its potential

IPS impact well-understood. The matter could be an interesting avenue of future

research.

37G1;t�t0 ¼ ð�1Þm
ð2mþ1Þ!ðt� t0Þ2mþ1yt�t0 (T ¼ ð�1; t�), G1;h�h0 ¼ ð�1Þn

ð2nþ1Þ!ðh� h0Þ2nþ1yh�h0 (V ¼ R1),

G2;h�h0 ¼ 1

22nþ1 p ðn!Þ2jh� h0j2n log jh� h0j (V ¼ R2), G3;h�h0 ¼ ð�1Þnþ1 Gð1
2
�nÞ

22nþ2 p3=2 n! jh� h0j2n�1
(V ¼ R3);

G2;h�h0 ¼ G2;h0�h (V ¼ R2; R3); y is the unit step function.
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5.8.3.1 Generalized Space–Time Dependence Models

Equation (5.54) can be written in the rather more concise form,

cX; pi;pj ¼ kX;pi�pj þ #n=m;pi#n=m;pj , where kX;pi�pj ¼ kX;h;t depends only on the

space–time distance pi � pj.
38 An attractive feature of the decomposition is that

in certain types of spatiotemporal analysis (e.g., linear prediction), only the kX;h;t
part is required. This decomposition has at least one important consequence: kX;h;t
can be constructed first, and then cX; pi;pj is obtained by adding suitable space–time

#-functions. In relation to the last observation, it is valid that (Christakos and

Hristopulos 1998: 148)

UQn=mkX;h;t ¼ cY;h;t; (5.55)

where UQn=m is a space–time differential operator defined as the product of Qn=m and

its complex conjugate operator.39

In the case of STHS, a set of computational formulas provide an efficient means

for calculating experimental values of low-order dependence functions – such as

the covariance cY;h;t in Eq. (5.55) – from the available database. A valid model is

subsequently fitted to the experimental values using a model fitting technique. If the

data are clustered in space, efficient algorithms exist for the practical estimation of

the sample covariance (Kovitz and Christakos 2004a): a coefficient of variation of

the dimensionless spatial density of the point pattern of sample locations is intro-

duced as a metric of the degree of clusteredness of the database, and a modified

covariance estimator form is used that incorporates declustering weights and

proposes a scheme for estimating the declustering weights based on zones of

proximity. Given the covariance cY;h;t, Eq. (5.55) provides the means for construct-

ing the corresponding models kX;h;t and cX; pi;pj . For example, Equation (5.56) of

Table 5.10 is linked to the simple case cY;h; t ¼ dh dt, whereas Eq. (5.57) is linked to
cY;h;t ¼ ae�ðbhþctÞ (n¼ 1). Space transforms (Table 5.7) offer a means to produce

valid covariances in R2 � T and R3 � T starting from the known models in R1 � T
(Kolovos et al. 2004). It seems logical that the class of kX;pi�pj models is richer than

that of cY;h;t, and the class of cX; pi;pj is richer than both.

5.8.3.2 On Fractal Space–Time Models

Data occasione, since fractal random fields (Feder 1988) constitute a special case of

the richer class of S/TRF (5.52), several fractal covariances can be derived as

38A terminology issue emerges here. Due to mathematical associations of Eq. (5.52) with the

theory of generalized functions (distributions), and in order to distinguish it from the STHS

covariance cY;h;t, it seems natural to call cX; pi ;pj a generalized spatiotemporal covariance, keeping

in mind that the term “generalized covariance” has been used in physics (Joseph 1965) and

geostatistics (Matheron 1973).
39 For example, UQn=m ¼ ð�1Þnþm ð@2mþ2

�
@t2mþ2Þ ðr2

hÞnþ1
; Christakos and Hristopulos (1998:

160).
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special cases of kX;h;t. Examples are given in Table 5.11; the fractal model (5.59) is

plotted in Fig. 5.4. The reader may notice that the function f̂z has an unusual

dependence on the space and time lags through t
�
rb. For large t, the t

�
rb is close

to 0 if r is sufficiently large and f̂z is close to 1. With regard to f̂z, the equation for

equidistant space–time contours is t
�
rb ¼ c. This dependence is physically different

than that implied by, say, a Gaussian covariance model, in which case equidistant

lags satisfy r2
�
x2rþt2

�
x2t ¼ c. The difference is shown in Fig. 5.5 that plots the

equidistant contours for f̂z and r
2
�
x2rþt2

�
x2t as a function of space and time lags. A

class of fractal S/TRFs satisfies the mathematical relationship Xc�s;cxt ¼ cHXs;t (in

the self-similarity sense), where Xp ¼ Xs;t, p ¼ s; tð Þ 2 Rn � T (n¼ 1,2,3), and

c> 0, �, z, and H are the usual scaling coefficients. This class of fractal spatiotem-

poral random fields is denoted as FS/TRF-H. Under certain conditions, the

corresponding expectation is written as X2
c�s;cxt

¼ c2HX2
s;t. Consider the S/TRF

(5.52), where Qn=m is the first operator in Table 5.9 and Yp is a zero-mean STHS

Table 5.11 Examples of

fractal kX;h;t; r ¼ jhj,
models 41

kX;r;t / ra ðt�rbÞz (5.58)

kX;r;t ¼ s2X f̂zðt
�
rb; ucÞf̂aðr;wcÞ (5.59)

Fig. 5.4 Plot of the fractal covariance model for s2X ¼ 1, z ¼ a ¼ �0:5, b ¼ 1:1, uc ¼ wc ¼ 25

40 The coefficients c0; az; br; arz; a; b; c must satisfy certain permissibility criteria; dr and dt are
delta functions in space and time, respectively; and g is an incomplete gamma function.
41 The r0<<r<<rm, t0<<t<<tm define space-time fractal ranges; �1< z< 0,

� 0:5 ðnþ 1Þ<a� b z<0 are permissibility conditions; s2X is variance; uc, wc are cutoffs.

Table 5.10 Examples of kX;h;t; r ¼ jhj, models 40

c0drdt þ dr
Xm

B¼0
ð�1ÞBþ1aBt2Bþ1 þ dt

Xn

r¼0
ð�1Þrþ1brr

2rþ1

þ
Xn

r¼0

Xm

B¼0
ð�1ÞrþBarBr

2rþ1t2Bþ1; n ¼ 1; 2; 3;
(5.56)

ð�1Þnþm½ð2nþ 1Þ!ð2mþ 1Þ!��1a b�2n�2c�2m�2e�br�ctgð2nþ 2;�brÞ gð2mþ 2;�ctÞ; n ¼ 1 (5.57)
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white-noise field with covariance cY;h; t ¼ 2Ddh dt, where D is a suitable coeffi-

cient. Then, the FS/TRF-H is a member of the class of S/TRF-n=m subject to the

condition H ¼ nðnþ 1
2
Þ� þ ðmþ 1

2
Þx.

5.8.3.3 Physical Interpretation of the Heterogeneity Parameters

In addition to making mathematical considerations, one should be prepared to

shift the heterogeneous S/TRF theory one layer deeper. What, when, and how a

scientist can investigate in situ situations is a function of the scientist’s theoretical

commitments and originality. In the case of the S/TRF theory, the heterogeneity

parameters n and m of theQn=m operator provide a quantitative assessment of the rate

of change of attribute patterns across space–time, and also offer information about

Fig. 5.5 Equidistant contours for fractal space–time dependence (solid contours) and for Gauss-

ian dependence (dotted contours). Contour labels represent c0t
�
rb values (solid lines) and

r2
�
x2rþt2

�
x2t values (dots) using c0 ¼ 62:95, xr ¼ 10 and xt ¼ 5
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the stochastic model representing the in situ system. These parameters, which are

functions of space–time coordinates, determine, e.g., how “far” in space and how

“deep” in time the operator searches for information about the attribute. Additional

insight may be obtained by taking into consideration that the heterogeneity para-

meters n and m are directly related to the fractal coefficient H.

Plots of the n� m values associated with mortality distributions in the case of the

bubonic plague in India (late nineteenth–early twentieth century) are shown in

Fig. 5.6. Note that the space–time covariance model (5.56) in Table 5.10 (with

n¼ 2) was used in the Indian bubonic plague study. This study shows that the

S/TRF (5.52) offers a general theoretical model of the population mortality distri-

bution that reflects the way stochastic causal influence is propagated across

space–time, and gives valuable information about the attribute dynamics at the

scale of interest. Generally, for natural systems that evolve within domains contain-

ing complicated boundaries and trends, the degrees of S/TRF heterogeneity should

vary geographically and dynamically.

5.9 Constructive Symbiosis and Its Problems

Comments such as the following sometimes appear in the literature: “A criticism of

the utility of geostatistics in agriculture is that the mathematical framework in

which it is usually presented is beyond many potential users” (Nelson et al., 1999:

311). Otherwise said, a theory that can offer an improved representation of Nature

but requires some extra effort on the part of its practitioners, is doomed to failure

(and together with it any attempt to "lift Isis’ veil" – see Section 5.1). This is rather

disappointing. Expert practitioners should appreciate the fact that theorists spend

countless hours trying to create improved representations of reality, excogitating

the vast physical world, and studying the significance of human existence within it.

They struggle with new thoughts and imaginative mathematical constructs so that

originality is not sacrificed to the Moloch of everyday pseudo-practicality. They

Fig. 5.6 Space–time maps of the n� m differences associated with the Indian bubonic plague

mortality distributions during different times (Yu and Christakos 2006)
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continuously search for shreds of evidence and meaning hidden in every aspect of

the world, because they believe that an unexamined world is a world not

fully appreciated, a world not explored, investigated, and discovered. In a harmonic

symbiosiswith theorists, expert practitioners should view the in situ implementation

of the fruits of the theorists’ labor as a basic component of scientific inquiry, rather

than a chore involving “bottom line” recipes and “black-box” software (so that their

users can have a carefree life, frolicking in their field of expertise without bothering

to address meaning and purpose).

Along the lines of constructive symbiosis, many in situ applications of the STRF

theory can be found in the relevant literature, including environmental exposure,

health effects, epidemiology, earth and atmospheric sciences, forestry, ecology,

geography, and history.42 A prime concern of these applications is not only to make

possible the investigators’ access to increased amounts of data, but most impor-

tantly, to present these data in a way that is consistent with the theory and improve

the investigators’ comprehension of the in situ phenomenon. This is made possible

because, although their precise methods of inquiry differ from one discipline to the

next, the investigators basically understand one another and share overlapping

intellectual goals.

Naturally, the effort toward a constructive symbiosis of theory and practice is not

always without difficulties. A point of friction between theorists and practitioners is

often the tendency of the former to question the fundamentals of techniques that are

dear to the latter. Two examples are the dependence function metrics and the

popular Bochnerian criteria that are discussed below.

The readers may recall that the metric that determines space–time distance

affects the mathematical permissibility of a dependence model; i.e., a model that

is permissible for one metric may be not so for another. Moreover, when depen-

dence models are related through a law or relationship, the permissibility of one of

these models may affect that of another. For example, in light of Eq. (5.54) the

permissibility of cX; pi;pj is affected by that of cY; h; t. For illustration purposes,

consider a covariance of the space–time separable form, cY; h; t ¼ cY; h cY; t.
A general class of mathematical functions that can be associated with (Euclidean

or non-Euclidean) metrics is cY; h ¼ e�NmðhÞ, where NmðhÞ ¼
Pn

i¼1 jhij m and

0<mb 2 (Christakos and Papanicolaou 2000). Now consider some examples of

permissible models. The covariance cY;h ¼ e�jhj2 is permissible for the Euclidean

metric – it is not permissible for the absolute metric (Table 4.1). The covariance

42 The relevant literature includes (but is not limited to) the following: Serre et al. (2001, 2003a, b),

Querido et al. (2007), Tuia et al. (2007), Bogaert and Fasbender (2007), Fasbender et al. (2007),

Orton and Lark (2007a, b), Vyas et al. (2004), Bogaert (2002, 2004), Bogaert and Wibrin (2004),

Wibrin et al. (2006), Yu et al. (2007a, b,c), Douaik et al. (2004, 2005), Serre and Christakos

(1999a, b; 2003), Quilfen et al. (2004), Kolovos et al. (2002), Papantonopoulos and Modis (2006),

Akita et al. (2007), Lee et al. (2008a, b, 2009), Bogaert and D’Or (2002), D’Or and Bogaert (2003),

Coulliette et al. (2009), Yu and Christakos (2005, 2006), Pang et al. (2009), Puangthongthub et al.

(2007), LoBuglio et al. (2007), Choi et al. (2003, 2006, 2007), Savelieva et al. (2005), Parkin et al.

(2005), Augustinraj (2002), Law et al. (2006), Wang (2005), Gummer (2009), Kolovos

et al. (2010), and de Nazelle et al. (2010).
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cY; h ¼ e�N1ðhÞ, on the other hand, is permissible for an absolute (non-Euclidean)

metric. The analysis above can be extended to include metrics of the more general

form jhj ¼ ðPn
i¼1 li jhij mÞm

�1

, where 1bm<2, and li (i¼ 1,...n) is a weight deter-

mining the “salience” of the hi-direction. Space–time prediction and mapping

depend on the metric structure assumed, since the dependence models are used as

inputs in most prediction and mapping techniques. It can be shown, indeed, that the

same dataset with its space–time dependence structure represented by covariance

models of the same functional form can lead to different space–time predictions and

maps, if prediction is performed using different metric structures (Christakos 2000).

In sum, S/TRF modeling allows the evaluation of distinct uncertainty types

(conceptual and technical, ontic and epistemic); involves space–time coordinate

systems to accommodate different kinds of attribute variability; makes an episte-

mically sound distinction between general (or core) and specificatory KBs; offers

complete system characterization in terms of prediction probability laws (not

necessarily Gaussian) at every mapping point (vs. a single prediction at each

point); represents heterogeneous dependence patterns and landscapes (rather than

artificial curve fitting, ad hoc trend surfaces, etc.); accounts for multiple-point

functions representing higher-order spatiotemporal attribute dependencies; and its

choice of a coordinate system and associated norm to describe a phenomenon

depends on the nature of the properties being described. In fact, metric-dependent

analysis of permissibility has important consequences in applications (e.g., space–-

time mapping, or the solution of stochastic partial differential equations) in which

the investigator is concerned about the validity of space–time dependence functions

associated with a physically meaningful metric (Euclidean or non-Euclidean). At

this point, let me highlight that so far we have mostly been talking about theoretical

space–time dependence models, rather than about their practical counterparts.

Often the investigator has to make certain compromises, so to speak, concerning

what an adequate and at the same time convenient representation of the theoretical

model should be. It is not uncommon in practice, or “practice”, that the latter

characteristic (convenience) takes precedence over the former (adequacy).

It has been noticed on various occasions that, from amathematical standpoint, not

every function can serve as a spatiotemporal dependence model. Certain formal

permissibility criteria must be satisfied, which are based on the celebrated Bochner’s

theorem of positive-definite functions. These criteria – which are valid for spatial

and spatiotemporal dependence functions associated with ordinary, generalized, and

fractal random fields – are discussed in detail in the relevant literature (Christakos

1984, 1992; Cassiani and Christakos 1998; Christakos and Hristopulos 1998;

Christakos et al. 2000; Kolovos et al. 2002). Numerous theoretical and applied

studies derive and/or use dependence functions, the validity of which is essentially

based on the criterion of Bocherian positive-definiteness (Yaglom 1986; Goodall

and Mardia 1994; Jones and Zhang 1997; Ma 2003, 2008, 2009; Fernandez-Casal

et al. 2003; Christakos et al. 2005; Stein 2005; Porcu et al. 2008).

It has been said that nothing in “fine print” is ever good news. And the readers

should know that there is plenty in “fine print” linked to Bochner’s theorem. Certain
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difficulties with the implementation of the Bochnerian permissibility criteria

in practice were identified early on in the spatial analysis literature (Christakos

1984: 257). As it turns out, dependence functions that satisfy these criteria are not

necessarily permissible for every random field, even if data analysis seems to

associate the dependence functionwith this field. In the case of covariance functions,

the relevant Bochnerian criterion merely guarantees that a Gaussian field exists with

the corresponding positive-definite function as its covariance, but it does not neces-

sarily imply that the covariance function is permissible for non-Gaussian fields.

Spherical and cosine covariances, e.g., are compatible with the Gaussian law, but not

necessarily with the Lognormal probability law. The gist of the whole business is

then concentrated in the fact that the Bochnerian limitations brieflymentioned above

have potentially serious consequences in real-world applications involving space–-

time analysis, attribute prediction, and risk assessment. Unfortunately, such facts are

not always explicitly stated in the relevant literature, which makes one look like a

character from Akira Kurosawa’s 1950 film Rashomonwho prefers to live a lie than
admit the truth. Truth was buried in Rashomon because no one could handle it.

Plato maintained that, “Serious things cannot be understood without laughable

things.” Which brings us to the curious phenomenon of the so-called “Hamlets of

geostatistics.” One cannot avoid noticing the unique reasoning style of certain

studies characterized by their use of logically inconsistent arguments, and a pro-

found misunderstanding of the theory’s fundamental principles. A characteristic

example is the paper “To be or not to be. . .stationary? That is the question” (Myers

1989). Despite the paper’s title, its author was presumably unaware of Hamlet’s

misfortunes in the Shakespearean play. Mutatis mutandis, the paper’s content

is almost as troublesome as was Hamlet’s situation. Confusion is caused by

statements like, “stationarity is not scale related” and “weakly stationary with

drift,” which involve conflating concepts that need to be distinguished. Incorrect

statements that are assumed to be generally applicable include, “variograms are

generalized covariances (with a change in sign);” and epistemic notions are min-

gled with ontic ones (e.g., datasets that are samples from random field realizations

vs. datasets that can be represented as a random field realization). There are several

contradictory statements, e.g., “stationarity is a property of the random function, not

of the data,” and a few lines later, “data sets with apparent non-stationarities.” What

the author also did not know is that in Shakespeare’s original play, “when troubles

come, they come not as single spies but in battalions.”43 So, conspicuous inaccura-

cies include statements like, “in Bayesian maximum entropy, it is the posterior

distribution for which the entropy is maximized,” and that spatial statistics “could

be interpreted as including both geostatistics and stochastic modeling” (Myers

2006). In addition, the goal to achieve by definition what one could not achieve

by logic or knowledge led to the now famous locus classicus: “Generalized func-

tions, i.e., any function that is zero except at one point has a zero integral” (Myers

1993: 408). Laurent Schwartz might turn in his grave if he knew of the above

43 Shakespeare’s Hamlet (1603, Act IV, Scene V).
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Shakespearean adventures in the mathematical field he pioneered many decades

ago. The reason that the above examples are mentioned in this section is instructive:

to show why scientists should be prepared to be taught things they know already by

“experts” who do not know them. For these self-appointed “experts,” understanding

an entity is routinely base3d on the confusion between the name of the entity and

the entity itself. This leads to nothing less than a gross perversion of technical

notions, which are also irrelevant to the issues the “experts” profess to study.

300 5 Stochastic Reasoning


	Chapter 5: Stochastic Reasoning
	5.1 Lifting Isis´ Veil
	5.2 Reasoning in a Stochastic Setting
	5.2.1 Basic Reasoning Modes
	5.2.1.1 Elements of Reasoning
	5.2.1.2 Deductive Reasoning
	5.2.1.3 Inductive Reasoning
	5.2.1.4 Hypothetico-Deductive Reasoning

	5.2.2 Transition to Stochastic Thinking
	5.2.2.1 A Slippery Affair and Its Psychology Connections
	5.2.2.2 The Relationship Between Logic and Psychology
	5.2.2.3 Some Distinctions
	5.2.2.4 Interpretive Matters


	5.3 The Spatiotemporal Random Field Concept
	5.3.1 The Possible Worlds Representation: Epicurus, Leibniz, and Voltaire
	5.3.2 Causality-Randomness Interaction
	5.3.2.1 Agents Who Are Not Mute in Their Souls


	5.4 Stochastic Characterization
	5.4.1 The Holy Grail
	5.4.2 Multiple Conceptual Layers
	5.4.3 Robert Frost´s Moment of Choice, and the Case of Paradoxes
	5.4.3.1 The Road Not Taken
	5.4.3.2 The Case of Apparent Paradoxes


	5.5 About Laws, Power Holders, and Rembrandt´s Paintings
	5.5.1 Deterministic Laws
	5.5.2 Statistical Laws
	5.5.3 Stochastic Laws
	5.5.4 Comparative Summary

	5.6 Constructing Multivariate PDF Models
	5.6.1 Formal Construction: Copulas and Factoras
	5.6.1.1 Ready-Made and Tractable PDF Models
	5.6.1.2 Copula-Based PDF Models
	5.6.1.3 Factora-Based PDF Models
	5.6.1.4 Comparative Comments and Pontius Pilate´s Evasion

	5.6.2 Substantive Construction
	5.6.2.1 The Stochastic Equations Method
	5.6.2.2 The Knowledge Synthesis Method

	5.6.3 Drunkard´s Search

	5.7 Spatiotemporal Dependence and Woody Allen´s Prose
	5.7.1 Dependence in Terms of Stochastic Expectation
	5.7.1.1 Abstract and Intuitive Appraisals of Reality
	5.7.1.2 Concerning Mainstream Dependence Functions
	5.7.1.3 The Indiscrimination Property

	5.7.2 Dependence in Terms of Natural Laws
	5.7.3 The Predictability Power of a Model
	5.7.4 Information Theoretic and Copula Dependence Functions
	5.7.5 Spatiotemporal Homostationarity

	5.8 A Generalized View of S/TRF
	5.8.1 Random Fields Based on Generalized Functions or Distributions
	5.8.2 An Operational Treatment of Space-Time Heterogeneous Attributes
	5.8.3 Spatiotemporal Dependence and Heterogeneity Parameters
	5.8.3.1 Generalized Space-Time Dependence Models
	5.8.3.2 On Fractal Space-Time Models
	5.8.3.3 Physical Interpretation of the Heterogeneity Parameters


	5.9 Constructive Symbiosis and Its Problems



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


