
Chapter 9

Modelling the Earth’s Magnetic Field from Global
to Regional Scales

Jean-Jacques Schott and Erwan Thébault

Abstract In the recent years, a large amount of
magnetic vector and scalar data have been measured
or made available to scientists. They cover different
ranges of altitudes from ground to satellite levels and
have high horizontal densities over some geographical
areas. Processing these potential field data may require
alternatives to the widely used Spherical Harmonics.
During the past decades, new techniques have been
proposed to model regionally the magnetic measure-
ments. They complement the set of older approaches
that were revived and sometimes revised in the mean-
time. The amount of available techniques is intimi-
dating and one often wonders which method is the
most appropriate for what purpose. In this paper, we
review several modelling strategies. Starting from the
Spherical Harmonics, we discuss methods with global
support (wavelets, multi-scale, Slepian functions,. . .)
and then bring the focus on regional methods with local
support (Rectangular Harmonic Analysis, Cylindrical
Harmonic Analysis, Spherical Caps,. . .). We briefly
examine the theoretical aspects and properties of each
approach. We compare them with the help of a unique
set of perfect synthetic data that mimic an ideal spa-
tial distribution at a fixed surface. This helps us to
better emphasize the theoretical characteristics of each
approach and suggest, when relevant, improvements
that would be useful for future practical applications.
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9.1 Introduction

During the last assembly of the International
Association of Geomagnetism and Aeronomy (IAGA)
that took place in Sopron, Hungary, and within the
division V (“Geomagnetic Observatories, Surveys and
Analyses”), a significant number of contributions were
related to global and regional modelling of the Earth’s
magnetic field. The ubiquity of this topic through
sessions is a nice tribute paid to recent successful and
future satellite missions (Friis-Christensen et al., 2006)
and to continuous efforts made by the geomagnetic
community towards the acquisition, maintenance,
compilation, and fast online availability of magnetic
data.

We noticed different modelling strategies among the
variety of presentations. A first philosophy relied on
the properties of Spherical Harmonics (SH) either by
modelling all available data in a grand inversion or by
modelling sources separately. The former approach is
often referred to as a comprehensive inversion, was
initiated decades ago (Sabaka and Baldwin, 1993;
Langel et al., 1996), and was later pursued until today
by including long series of magnetic observatory and
recent satellite measurements (Sabaka et al., 2004).
This approach can deal with the coupling between the
ionosphere and the magnetosphere (see Sabaka et al.,
2009; for instance) and the field does not need to be
potential. It is based on the Mie representation well
described in Backus et al., (1996; Chapter 5) that is
not the scope of the present paper as no regional tech-
nique currently consider non potential fields. Other
models are comprehensive-like but are based on poten-
tial field theory (see Gillet et al., 2010 for a review).
Such models like, for instance, CHAOS (Olsen et al.,
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2006), CHAOS-2 models (Olsen et al., 2009), and
GRIMM (Lesur et al., 2008), are all exploiting a selec-
tion of recent Ørsted (Olsen et al., 2000) and CHAMP
(Reigber et al., 2002) satellite data. They mostly
focus on the Earth’s core field and have therefore low
spatial resolution. Improving the resolution may be
achieved by modelling the satellite data sequentially.
This approach, traditionally dedicated to the modelling
of the lithospheric field, uses stringent data selection
and correction (Maus et al., 2008), and is therefore
more subjective (see Sabaka and Olsen., 2006 for a for-
mal discussion and Thébault et al., 2010 for some prac-
tical implications). Whatever the selected SH mod-
elling approach (comprehensive or sequential), the
hundreds of kilometer distance between Low Earth
Orbiting satellite and the crustal sources introduce a
blurring effect. Thus, an horizontal spatial resolution
of about 350 km (about SH degree 130) is probably the
maximum achievable with data measured at 350 km
altitude by a single satellite. Dense near-surface mea-
surements, on the contrary, are closer to the crustal
sources and have kilometric spatial resolution (see
the World Digital Magnetic Anomaly Map project—
WDMAM, Korhonen et al., 2007). Unfortunately, they
are also so unevenly distributed at the Earth’s scale
that the internal SH Gauss coefficients cannot be esti-
mated readily without data interpolation (Hamoudi
et al., 2007; Maus et al., 2007b; Maus et al., 2009).
This can only be done at the cost of manufacturing
synthetic data and thus, possible wrong wavelengths
and artefacts. Would the data be uniformly distributed,
the number of required Gauss coefficients to represent
the data to their intrinsic resolution would be anyway
daunting.

The concept of regional modelling is precisely
devoted to process dense sets of data available at
different altitudes and to adjust the model to the
data resolution; the ulterior motive being often to
perform spectral analyses. Some methods were pro-
posed in the past but only since the 1980’s with
the availability of MAGSAT vector satellite mea-
surements (Langel et al., 1980) are they obeying
Laplace equation (Alldredge, 1981). Among them,
the first family uses functions with global support
on the sphere; they are based on spherical splines
(Shure et al., 1982), wavelets (e.g., Holschneider et al.,
2003) or other types of localized spherical func-
tions (e.g., Lesur, 2006; Simons et al., 2006). The
second family relies on functions with local support.

They may rely on a flat Earth approximation like the
Rectangular Harmonic Analysis (Alldredge, 1981) and
the Cylindrical Harmonic Analysis (Alldredge, 1982)
or may consider the spherical curvature of the Earth
like the Spherical Cap Harmonics Analysis (SCHA,
Haines, 1985a) and its revision (Revised-SCHA,
Thébault et al., 2004, for instance). This diversity of
techniques is confusing and one often wonders what
method is the most appropriate for his purpose. All
techniques are obviously not equivalent in practice.
They are founded on different theoretical arguments
and were often originally derived in a framework
far from geomagnetism. They address problems using
assumptions with which any new application in geo-
magnetism must be consistent. We easily understand
that modelling data in wide areas does not always
bear the flat Earth approximation. Likewise, process-
ing multi-level data with a technique not initially
designed to allow upward and downward continuation
makes little sense, even though it might give some
numerical results. Most of the techniques presented
here are in a development stage in the framework
of geomagnetism. They currently allow mapping the
data with more or less success. We consider that a
better knowledge of their mathematical foundations
will certainly help developing them towards more geo-
physical applications related, for instance, to spectral
analysis, internal/external field separation and source
characterization.

In this paper, we focus on potential field mod-
elling techniques and outline the general theoretical
properties of each approach by recalling some of
their fundamentals. We begin with some generalities
deduced from the Spherical Harmonics and proceed
from global to regional scales keeping the same con-
ventions when possible. We emphasize the orthog-
onality and completeness properties of the methods
developed and discuss, when applicable, their rela-
tionship with Spherical Harmonics. We provide an
example of inverse problem using a set of synthetic
data distributed equally over a region at a unique alti-
tude. This helps us to discuss the practical feasibility
of the techniques regarding rates of convergence of the
solutions and edge effects. However, we should keep
in mind that real inverse problems often necessitate
subtleties and, sometimes, had hoc procedures, regu-
larization, or other kinds of a priori information. This
requires specific ‘know-how’ acquired by experience.
The examples are thus for illustrative purpose and by



9 Modelling the Earth’s Magnetic Field from Global to Regional Scales 231

no means aimed at demonstrating the performance of
one particular technique. In some examples, the set-
ting of the inverse problem is purposefully designed
to enhance a specific weakness or strength and there-
fore precludes direct figure comparisons between
techniques.

9.2 Global Modelling With Spherical
Harmonics in a Shell

The Spherical Harmonic (SH) expansion is well known
and explained in many papers and books (in particular,
we refer to Backus et al., 1996). However, for forth-
coming discussions and comparisons with regional
modelling methods, we provide a general solution
of the Laplace equation in a shell and recap some
important properties of SH.

The shell S(b, c) is the open bounded set of R
3

defined by S(b, c) = {r ∈ R
3 | b <| r |< c}. Due to the

spherical symmetry of the problem and to the shape
of the boundaries of the domain, the most appropri-
ate solutions are expressed in spherical coordinates
(r, θ , ϕ). Laplace equation then writes

∇2(V) = 1

r2
∂r

(
r2∂rV

)
+ 1

r2 sin θ
∂θ (sin θ∂θV)

+ 1

r2 sin2 θ
∂2
ϕV ,

(9.1)

= 1

r2
∂r

(
r2∂rV

)
+ 1

r2
∇2

S (V) = 0, (9.2)

where

∇2
S (V) = 1

sin θ
∂θ (sin θ∂θV)+ 1

sin2 θ
∂2
ϕ2V , (9.3)

is the Beltrami-Laplace operator. The spectral prop-
erties of this operator are essential for the functions
belonging to the Hilbert space defined on the unit
sphere S(1), hence for the solid SH. The solutions
of Eq. (9.1) in a ball 0 < | r | < c may be expressed
in terms of harmonic homogeneous polynomials, an
approach adopted by Backus et al. (1996, Section 3.1).
This approach has close connections with rotational
symmetries on the sphere and with commutativity
properties of a class of differential operators on the

sphere. However, we cannot generalize this way of
doing to domains with geometry breaking up the rota-
tional symmetry. We therefore prefer to deal with the
problem from another viewpoint, which yet remains a
standard one (Hobson, 1965).

9.2.1 Resolution of Laplace Equation by
the Fourier Decomposition Method

In the geocentric reference frame, the Fourier method
provides solutions of Eq. (9.1) in terms of products
of separate functions of r, θ and ϕ. This requires set-
ting two Sturm-Liouville problems and one ordinary
differential equation. Writing

V(r, θ ,ϕ) = R(r)P(θ )F(ϕ), (9.4)

we obtain the following equations

dr

(
r2drR

)
= ν(ν + 1)R, (9.5)

d2
ϕ2 F = −κF, (9.6)

Eq. (9.6) being associated to the boundary
conditions

F(0) = F(2π );
(
dϕF

)
0 = (

dϕF
)

2π , (9.7)

du

[(
1 − u2

)
duP

]
+

[

ν (ν + 1)− κ

1 − u2

]

P = 0,

(9.8)

and Eq. (9.8) associated to the boundary conditions

P and duP finite at 0 and π , (9.9)

with u = cos θ . Equation (9.5) is an Euler equation of
degree 2 without boundary condition. The constant is
written ν(ν + 1) for well-known convenience. At this
stage, ν could be real or complex. The differential
equation has two independent solutions admissible in
the range [b, c]

R(r) = rν ; R(r) = r−ν−1. (9.10)

Equation (9.6) is a regular Sturm-Liouville problem
with periodic boundary conditions (Eq. 9.7), which
dictate the range of values κ and impose them to be
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of the form κ = m2, m ∈ Z. One may take m as a pos-
itive or null integer without loss of generality. Thus,
Eq. (9.6) has two independent solutions

F(ϕ) = eimϕ ; F(ϕ) = e−imϕ . (9.11)

Note that F(ϕ) is an eigenvector of the oper-
ator −d2

ϕ2 F applied to functions belonging to the

space C2 ([0, 2π ]) ∩ L2 ([0, 2π ]), L2 ([0, 2π ]) being
endowed with the inner product

〈F, G〉 =
2π∫

0

F(ϕ) G(ϕ) dϕ. (9.12)

On the subspace of the functions verifying Eq.
(9.7), −d2

ϕ2 F is self-adjoint. Hence, the eigenvectors
F(ϕ) given by Eq. (9.11) are orthogonal. The Sturm-
Liouville problem defined by Eqs. (9.8) and (9.9) is
termed ‘singular’ due to the vanishing of the coeffi-
cient of the highest derivative order occurring at both
ends of the interval. Replacing κ with m2, and mak-

ing the successive changes P(u) = (
1 − u2

)m/2
T(u),

s = (1 − u) /2, the differential Eq. (9.8) is reshaped
into an hypergeometric equation

s (1 − s) d2
s2 T + (m + 1) (1 − 2s) dsT

+ (ν − m) (ν + m + 1) T = 0,
(9.13)

which solutions have properties described for instance
in Morse and Feshbach (1953, Section 5.2). There is
only one analytical solution in the vicinity of each sin-
gular point (s = 0 or 1) and the solution is analytical at
both ends if and only if ν is an integer l. This implies
that −l � m � l and T(s) being a polynomial of degree
l − m.

Turning back to P(u), it may be shown (for instance,
Olver, 1997, p.180) that if l and m are integers,
P(u) takes the familiar form derived from Rodrigues’s
formula and is called associated Legendre functions
Pm

l (cos θ ). Eq. (9.8) may now be written

−du

[(
1 − u2

)
duPm

l

]
+ m2

1 − u2
Pm

l = l(l + 1)Pm
l ,

(9.14)

which shows that Pm
l (u) is an eigenvector of the

operator

Dm = −du

[(
1 − u2

)
du

]
+ m2

1 − u2
I, (9.15)

where I is the identity operator. Dm is self-adjoint on
the subspace of the functions belonging to the space
C2 ([−1, 1]) ∩ L2 ([−1, 1]) and taking finite values at
|u| = 1, the Hilbert space L2 ([−1, 1]) being equipped

with the inner product
∫

f , g〉 =
1∫

−1
f (u)g(u)du, with

respect to which the Legendre associated functions are
orthogonal. Together with the orthogonality properties
of the functions F(ϕ) (Eq. 9.11), the orthogonality of
Pm

l is a fundamental property of the spherical harmonic
expansions. Consider now the space L2(S(ρ)) of the
functions defined on the sphere S(ρ) centered on the
origin, with radius ρ. L2(S(ρ)) is a Hilbert space for
the inner product

〈f , g〉 = 1

4π

π∫

0

2π∫

0

f (ρ, θ ,ϕ) g (ρ, θ ,ϕ) sin θdθdϕ.

(9.16)

The operator ∇2
S (Eq. 9.3) is self-adjoint on the sub-

space C2 (S (1)) ∩ L2(S(1)) of the functions taking
finite values at θ = 0 and θ = π . From the properties
of F(ϕ) and Pm

l (cos θ ) we derive readily that

βm
l (θ ,ϕ) = Pm

l (cos θ )eimϕ (m = −l, . . . , l), (9.17)

are eigenfunctions of −∇2
S associated to the eigen-

values l (l + 1). Thus, to the eigenvalue l (l + 1) is
associated an eigensubspace of dimension 2l + 1. The
functions βm

l (θ ,ϕ) are orthogonal with respect to the
inner product defined on L2(S(1)). This property is
a straightforward consequence of the orthogonality
properties of F(ϕ) and Pm

l . In Geomagnetism, the
common convention is to use the Schmidt functions
written pm

l (see Langel, 1987, p. 254 for a defini-
tion). However, the norm of the SH

∥
∥βm

l

∥
∥

L2(S(1)) may
take various expressions (see Langel, 1987, p. 255
for the most common ones). The final solutions of
the Laplace equation are, according to the Fourier
decomposition

ψm
i, l(r, θ ,ϕ) = RE

(
RE

r

)l+1

βm
l , (9.18a)



9 Modelling the Earth’s Magnetic Field from Global to Regional Scales 233

ψm
e, l(r, θ ,ϕ) = RE

(
r

RE

)l

βm
l , (9.18b)

where RE is the mean earths’ radius. Its incorporation
in expressions (9.18) is common in earth’s magnetic
field modelling and traces back at least to Chapman
and Bartels (1940). The subscripts ‘i’ (inner) and
‘e’ (external) are self-explanatory for readers familiar
with SH.

9.2.2 Orthogonality and Completeness
Properties

The Laplace equation is the most famous exam-
ple of second-order partial differential equations. In
modern studies of second-order PDE in an open
set �, an extensive use is made of the Sobolev
space H1 (�). It is the space of functions belong-
ing to L2(�) as well as their first derivatives. H1 (�)

is a Hilbert space for the inner product 〈f , g〉H1 =
∫

�

[
f (r)g(r) + −→∇ (f (r)) · −→∇ (g(r))

]
dτ (Reddy, 1998,

p. 227). Let be � = S(b, c), and ∂� its boundary:
∂� = S(b) ∪ S(c). It may be shown that the functions
ψm

i, l and ψm′
e, l′ ,which belong to H1 (�)) are orthogonal

with respect to the inner product 〈., .〉H1 unless l = l′
and m = m′. However, within the frame of the earth’s
magnetic field modelling, H1 (�) is not the most rel-
evant space because the measured data is the gradient
of the potential, not the potential itself. Beside H1 (�),
H1

0(�) which is the subspace of H1 (�) of the func-
tions taking the value 0 on the boundary ∂�, is another
Sobolev space that plays a prominent role. H1

0(�) is
a closed subspace of H1 (�) with respect to the inner
product

〈f , g〉H1
0

=
∫

�

−→∇ (f (r)) · −→∇ (g(r))dτ . (9.19)

This inner product defines a true norm on H1
0(�)

because ‖f ‖H1
0

= 0 implies f = 0 due to the bound-

ary condition. However, H1
0(�) is still unsuitable in

the case of harmonic functions because ∇2(f ) = 0,
associated with the condition f = 0 on ∂�, is an
homogeneous Dirichlet problem which unique solu-
tion is f = 0. It is important, however, regarding the

uniqueness of the inverse problem, to find a subspace
where Eq. (9.19) provides a true norm. Backus (1986),
showed that the scalar magnetic potential V could be
chosen such that 〈V〉r = 0 without loss of generality,
where 〈V〉r stands for the mean value of V on any
sphere of radius r (b < r < c). Let thus U(�) be the
subset of H1 (�) of the functions verifying the prop-
erty 〈f 〉r = 0. U(�) is evidently a subspace of H1 (�).
In order to avoid confusions, we will note 〈f , g〉U the
inner product defined by Eq. (9.19) when it applies
to functions belonging to U(�). This inner product
defines a true norm on U(�) because if ‖f ‖U = 0 then
f = constant on U(�) but since 〈f 〉r = 0, then f = 0.
Backus et al. (1996, p. 125) showed that ψm

i, l(r, θ ,ϕ)
and ψm

e, l(r, θ ,ϕ) belong to U(�) except for l = 0,
though for two different reasons. These basis functions
are therefore excluded hereafter.

Furthermore, it may be shown that ψm
i, l(r, θ ,ϕ) and

ψm
e, l(r, θ ,ϕ) are orthogonal with respect to the inner

product 〈., .〉U , which means that

〈
ψm

i, l,ψ
m′
e, l′

〉

U
=

∫

�

−→∇ (ψm
i, l(r)) · −→∇ (ψm′

e, l′ (r))dτ = 0,

(9.20)
and

〈
ψm

i, l,ψ
m′
i, l′

〉

U
or

〈
ψm

e, l,ψ
m′
e, l′

〉

U
= 0 if l 	= l′ or m 	= m′.

(9.21)

Then, using definitions (9.18)

∥
∥ψm

i, l

∥
∥2

U
=

∫

�

∣
∣
∣
−→∇ ψm

i, l

∣
∣
∣
2

dτ = 4πR3
E (l + 1)

[(
RE

b

)2l+1

−
(

RE

c

)2l+1
]
∥
∥βm

l

∥
∥2

S(1) ,

(9.22)
and

∥
∥ψm

e, l

∥
∥2

U
=

∫

�

∣
∣
∣
−→∇ ψm

e, l

∣
∣
∣
2

dτ = 4πR3
El

[(
c

RE

)2l+1

−
(

b

RE

)2l+1
]
∥
∥βm

l

∥
∥2

S(1) ,

(9.23)

where ‖.‖S(1) is the norm defined previously on the
Hilbert space L2(S(1)). At last, the question arises of
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this set being a base on U(�). If so, only the null func-
tion is orthogonal to ψm

i, l or ψm′
e, l′ . An elementary proof

of this property may be given thanks to the following
Green identity (for instance, Reddy, 1998, p. 219)

∫

�

f ∇2hdτ =
∫

∂�

f
∂h

∂n
ds −

∫

�

−→∇ f · −→∇ hdτ =

∫

∂�

f
∂h

∂n
ds − 〈f , h〉U ,

(9.24)

where n is the outward unit vector, orthogonal to the
boundary. Let f be an harmonic function belonging to
U(�). With h = ψm

i, l, Eq. (9.24) becomes

〈
f ,ψm

i, l

〉
U

= (l + 1)

⎡

⎢
⎣b2

(
RE

b

)l+2 ∫

S(1)

f (b, θ ,ϕ)β
m
l dσ

−c2
(

RE

c

)l+2 ∫

S(1)

f (c, θ ,ϕ)β
m
l dσ

⎤

⎥
⎦ ,

(9.25)
and with h = ψm

e, l

〈
f ,ψm

e, l

〉
U

= l

⎡

⎢
⎣c2

(
c

RE

)l−1 ∫

S(1)

f (c, θ ,ϕ)β
m
l dσ

− b2
(

b

RE

)n−1 ∫

S(1)

f (b, θ ,ϕ)β
m
l dσ

⎤

⎥
⎦ .

(9.26)

The unique solution to the system of equations <
f ,ψm

i, l >U =< f ,ψm
e, l >U = 0 is

∫

S(1)

f (b, θ ,ϕ)β
m
l dσ =

∫

S(1)

f (c, θ ,ϕ)β
m
l dσ = 0. (9.27)

Since
{
βm

l

}
is an orthonormal base on L2(S(1))

(Backus et al, 1996), f is null on the boundary ∂�
and since the function f is the solution of the follow-
ing Dirichlet problem: ∇2(f ) = 0 on �, f = 0 on ∂�,
the unique solution is f = 0 on �.

9.2.3 Spherical Harmonic Expansion
and Convergence Properties

Consider now a potential V belonging to U(�). Its SH
expansion, SV , on the basis {ψm

i, l,ψ
m
e, l} is the double

series

SV =
∞∑

l=1

n∑

m=−n

(
gm

n ψ
m
i, l + qm

n ψ
m
e, l

)
. (9.28)

The internal and external Gauss coefficients gm
l and

qm
l are respectively given by the relations

gm
l = 1

∥
∥
∥ψm

i, l

∥
∥
∥

2

U

< V ,ψm
i, l >U , (9.29)

qm
l = 1

∥
∥
∥ψm

e, l

∥
∥
∥

2

U

< V ,ψm
e, l >U. (9.30)

The Green’s identity (9.24) may be used to compute
the Gauss coefficients in two other ways, which are
equivalent to solving a Dirichlet or a Neumann bound-
ary value problem, but give nevertheless the same
expression of Gauss coefficients. In geomagnetism and
potential theory, V is an harmonic function on�, which
gradient

−→
B = −−→∇ V is known on �. A standard way

of solving this problem is to search for the Gauss coef-
ficients of the SH expansion SV of V, which minimize
the functional

d2 =
∫

�

∣
∣
∣
−→∇ SV − −→

B
∣
∣
∣
2

dτ = 〈SV , V〉U . (9.31)

This problem is closely connected to the inverse prob-
lem based on the least squares method, which is widely
used in geomagnetic field modelling. The functional
d2 is a quadratic form in the Gauss coefficients and it
turns out that the coefficients which minimize d2 are
given by Eq. (9.29) and (9.30). Thus, the mean-square
solution is the same as the solution of the Dirichlet
problem and the Neumann problem. The equivalence
between Dirichlet and Neumann problems is specific
to the space U(�) but the equivalence between the
Dirichlet problem and the minimization of the func-
tional d2 (Eq. 9.31) is a general property in H1(�)
(Dautray and Lions, 1987, vol. II, p. 632).

We thus now examine the convergence proper-
ties of expansion (9.28). From the property of the
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set {ψm
i, l,ψ

m′
e, l′ } (Eq. 9.18) being a basis of the space

U(�), the SH expansion (9.28) converges towards V
with respect to the norm ‖·‖U . Such convergence is
consistent with the least-squares minimization prob-
lem set in Eq. 9.31 but does not preclude the Gibbs
phenomenon. This typical well-known approximation
error occurs in Fourier-like expansions and its quan-
titative description refers to uniform convergence,
which is the convergence associated to the infinity or

Chebyshev norm ‖f ‖∞ = sup |f |or ‖f ‖∞ = sup
∣
∣
∣
−→∇ f

∣
∣
∣

on �. These norms (or semi-norm regarding the sec-
ond expression) are typical for spaces of continuous or
continuously differentiable functions. The relationship
between these spaces and H1(�) or U(�), and hence
between ‖·‖∞ and ‖·‖U , is not obvious. Harnack’s
first theorem on uniform convergence (Kellog, 1929,
p. 248) enunciates a condition relevant for the earth’s
magnetic field modelling, which states that the infinite
series SV converges uniformly towards V if

−→∇ sV (the
surface gradient, see, for instance, Backus et al., 1996
p. 324) is continuous on the sphere or, in the present
case, on the set of two concentric spheres. Thus, in
practice, the SH expansion is uniformly convergent if
we exclude singular sources on the boundary of the
domain of interest, which explains why, to our knowl-
edge, Gibbs phenomenon has not been reported in SH
but in very few cases for which a small number of
outliers precisely behaved like singular sources on the
sphere (e.g., Hamoudi et al., 2007 Section 4.6).

For the following discussions, we construct a bench-
mark magnetic field over Western Europe. We use
the SH models associated to published Gauss coeffi-
cients to synthesize a set of perfect data for X, Y and
Z magnetic field components. In Fig. 9.1 we present
the Z component that results from the superimposi-
tion of the main field at epoch 2010 (IGRF11 model,
see http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html
for details) and an estimation of the crustal field up to
SH degree 720 (i.e., a maximum spatial resolution of
about 55 km; see Maus, 2010 for details). We call it
Zall in the following.

9.3 Other Modelling at a Global Scale

Spherical harmonic expansions remain the fundamen-
tal tool for modelling the Earth’s magnetic field thanks
to their completeness and convergence properties, be
it through the Gauss or the Mie representation. Both
rely strongly on Newtonian potentials, which verify the
Laplace equation in any source-free domain. However,
invoking concepts more familiar in the physics of wave
propagation and signal processing, some authors argue
that there is no possible balance between spectral and
spatial localization with SH (e.g., Freeden and Michel,
2000; Lesur, 2006; Simons et al., 2006). SH are
indeed perfectly localized in the frequency domain but
not localized in space, their support being the whole
sphere, and the necessary truncation of the expansion

Fig. 9.1 Z component of the magnetic field at the Earth’s ref-
erence radius within a Spherical Cap centred on Europe. Left:
superimposition of the field at 2010.0 and an estimate of the

crustal field (see text for details) and (right) the crustal field
alone with about 50 km horizontal spatial resolution. Units are
in nT
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introduces some further level of subjectivity. Shure
et al. (1982) tackled this last inconvenience by intro-
ducing the concept of harmonic splines. Concerning
the localization in space, several proposals were made
during the last decade, which amount to generate the
Hilbert space of harmonic functions by other functions
than the SH defined as βm

n by Eq. (9.17) but still based
upon Legendre polynomial expansions. Strictly speak-
ing, these functions are only numerically localized, the
counterpart being that their spectrum covers a more
or less extended range of frequencies. Hereafter, we
selected three representations that emerged recently in
geomagnetism and we refer the reader to Shure et al.
(1982) for a presentation of spherical splines (see also
Langel, 1987; section 13.1).

9.3.1 Wavelets

We consider the following Dirichlet problem: to find
the potential V

(−→r )
, which is harmonic in the infinite

shell S(R, ∞) and which is known on the sphere S(R).
Note that R does not need to be the Earth’s mean radius
RE. We assume that the potential vanishes at infinity.
Thus, the Gauss coefficients gm

l are given by the lim-
iting expression of Eq. (9.29) when c is put to infinity

gm
l = 1

4πR
∥
∥βm

l

∥
∥2

L2(S(1))

∫

S(1)

V(R, θ ,ϕ)βm
l (θ ,ϕ) dσ ,

(9.32)

where we assume that βm
l takes real values. We adopt

this formulation in order to avoid unnecessary com-
plications with complex functions and Hermitian inner
products. For the sake of convenience, we continue to
select the orders m in the range [−l, +l], thus adopt-
ing the notations used by other authors (Lesur, 2006;
Simons and Dahlen, 2006). We further consider the
βm

l as fully normalized with respect to the inner prod-
uct defined by Eq. (9.16). Following the notation of
Backus et al. (1996), we define −→r = r̂r so that Eq.
(9.32) becomes

gm
l = 1

4πR

∫

S(1)

V(R ŝ)βm
l ( ŝ) dσ . (9.33)

Assuming that interchanging the integration and
summation makes sense, the expansion given by
Eq. (9.28) may be written

V(r̂r) = 1

4πR

∞∑

l=1

l∑

m=−l

∫

S(1)

ψm
l (r̂r)βm

l (̂s)V(R ŝ)dσ ,

(9.34)

= 1

4π

∫

S(1)

V(R̂s)
∞∑

l=1

n∑

m=−n

(
R

r

)l+1

βm
l (̂r)βm

l (̂s) dσ (̂s) ,

(9.35)
where dσ (̂s) means that the integration on the unit
sphere is performed with respect to the variable ŝ.
Eq. (9.35) is more concise using the spherical har-
monic addition theorem (Backus et al., 1996, p. 62)

l∑

m=−l

βm
l (̂r)βm

l (̂s) = (2l + 1)Pl (̂r · ŝ) , (9.36)

where Pl is the Legendre polynomial of degree l
(which expression must be consistent with the norm
chosen for βm

l ). We obtain finally

V(r̂r) = 1

4π

∫

S(1)

K(r̂r, ŝ)V(R̂s)dσ (̂s) , (9.37)

with

K(r̂r, ŝ) =
∞∑

l=1

(2l + 1)

(
R

r

)l+1

Pl (̂r · ŝ) . (9.38)

Equation (9.37) teaches us that the potential V can
be computed at any point r̂r within the infinite shell
S(R, ∞) by an integral transform based upon the ker-
nel K(r̂r, ŝ), which maps the potential known on the
boundary S(R) to the potential at any point r̂r. Note
that this formalism is defined for r > R,where R is the
chosen reference surface (again not necessarily Earth’s
mean radius and it could be the core mantle bound-
ary, see Constable et al., 1993, for instance). Eq. (9.37)
and (9.38) are the departure point of many representa-
tion using the global support. Constable et al., (1993;
Appendix) expanded Eq. (9.38) making use of the gen-
erating Legendre polynomials and called K(r̂r, ŝ) the
Green’s function. In a recent paper presented during
the IAGA in Sopron, Stockmann et al. (2009) used
this kernel and a spherical triangle tesselation to esti-
mate from satellite data the lithospheric field near the
Earth’s surface. In fact, Eq. (9.37) and (9.38) may be
obtained when one takes the Poisson integral kernel
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as a departure point (Kellog, 1929, p. 251), hence
the name of Poisson wavelet generally given to this
solution. Eq. (9.37) also writes

V(r̂r) = 〈K(r̂r, ŝ), V(R̂s)〉L2(S(1)) , (9.39)

which is the definition of the convolution on the sphere
(Holschneider et al., 2003). In addition, Eq. (9.37)
looks like defining K(r̂r, ŝ) as being a reproducing ker-
nel on the Hilbert space L2 (S (R, ∞)), the subtlety
being that the equality (9.37) has to be interpreted in
terms of the norm of L2 (S (R, ∞)) and not in terms
of a pointwise equality between functions (see Backus
et al., 1996, section 3.3 for a definition and proper-
ties of reproducing kernels). The kernel K(r̂r, ŝ) has
another important property regarding the construction
of spherical wavelets or scaling functions since it can
be interpreted as the rotated function K(r̂ez · ŝ) in the
rotation R̂r on the sphere such as r̂ = R̂r (̂ez). Here,
êz is the unit vector carried by the axis Oz of the
Cartesian reference frame to which the spherical coor-
dinate θ is referred (see Backus et al., 1996, p.59, for
further details about rotations on the sphere). Knowing
that

K(r̂ez, ŝ) =
∞∑

l=1

(2l + 1)

(
R

r

)l+1

Pl (̂ez · ŝ) , (9.40)

Eq. (9.40) shows that K(r̂ez, ŝ), regarded as a function
of ŝ, is the sum of zonal spherical harmonics in the
usual sense, and, therefore, is itself a zonal function.
Therefore, K(r̂r, ŝ) is a zonal function around the axis
defined by the unit vector r̂.

If r = R, the series (Eq. 9.40) no longer converges in
a classical sense and cannot be used to define a wavelet
transform (actually, K(r̂r, ŝ) → δ (̂r, ŝ), the Dirac dis-
tribution when r → R, see Simons et al., 2006). This
inconvenience is mitigated in spherical wavelets and
scaling functions theory by a flexible modification of
the kernel, which then writes

K(r̂ez, ŝ) =
∞∑

l=1

(2l + 1) γ (l)

(
R

r

)l+1

Pl (̂ez · ŝ) ,

(9.41)

where γ is an appropriate function defined on N which
gives sense to the infinite sum for r = R. Furthermore,
the well-known scaling in wavelet theory is introduced
through a dilation generator Da (Holschneider, 1995,

p. 3, Freeden and Michel, 2000, p. 209), which define
a dilated function γ (an) by

Da (γ (n)) = γ (an) , (9.42)

where a is a real positive number. Finally, the modified
kernel writes

Ka(r̂ez, ŝ) =
∞∑

l=1

(2l + 1) γ (al)

(
R

r

)l+1

Pl (̂ez · ŝ) .

(9.43)

Equation (9.43) is a relevant expression for introducing
wavelets and scaling functions.

9.3.1.1 Poisson Wavelets

We focus on the family of Poisson wavelets, which are
scalar wavelets that were proposed by Holschneider
et al. (2003), because it has a simple and attractive
interpretation in terms of multipolar potentials. The
properties of the wavelets require so-called admissi-
bility conditions on the function γ . According to the
expression given in Panet et al. (2006), the Poisson
wavelets write (not to be confused with gm

n the SH
Gauss coefficients)

gn
a (r̂r) = 1

R

∞∑

l=1

(2l + 1) e−al (al)n
(

R

r

)l+1

Pl (̂ez · r̂) .

(9.44)

Between Eqs. (9.43) and (9.44), the function γ takes
the particular expression γ (t) = e−ttn. We denote
gn

ŝ,a (r̂r) the scalar field derived from gn
a (r̂r) by a

rotation R̂s and write

gn
ŝ,a (r̂r) = 1

R

∞∑

l=1

(2l + 1) e−al (al)n
(

R

r

)l+1

Pl (̂s · r̂) .

(9.45)

As mentioned above, the wavelet family gn
a

(Eq. 9.44) has an interesting interpretation in terms of
multipoles. Consider the potential

ψλn (r̂r) = [
λ∂z′ ◦ (

z′∂z′
) ◦ . . . ◦ (

z′∂z′
)] 1

|r̂r − r′̂r′| ,

(9.46)

where the derivatives are taken n times, r̂r =
x̂ex + ŷey + ẑez, r′̂r′ = z′̂ez, and λ is an arbitrary,
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dimensionless constant. Developing the derivations
between brackets, Eq. (9.46) becomes

ψλn (r̂r) =
n∑

k=1

Ck
nλ

k
(

∂k
z′

1

|r̂r − r′̂r′|
)

z′=λR
, (9.47)

where the coefficients Ck
n are computed recursively

using the recurrence relation Cn
k = Cn−1

k−1 + kCn−1
k , k =

1, . . . , n − 1, with the convention Cn−1
0 = Cn−1

n = 0.

Each term λk
(
∂k

z′
1

|r̂r−r′̂r′|
)

z′=λR
is a zonal multipole of

order k, having k identical axes along Oz and located
at the point (0, 0, λR). Thus, ψλn is the sum of n zonal
multipoles of orders ranging from 1 (dipole) to n, all
located on the Oz axis, at the point (0, 0, λR). It may
be shown, using the expansion of 1

|r̂r−r′̂r′| in terms of
Legendre polynomials, that

ψλn (r̂r) = 1

r

∞∑

l=1

λlln
(

R

r

)l

Pl (̂r · êz) . (9.48)

Writing now λ = e−a, the potential ψλn takes the
form

ψλn (r̂r) = a−n

R

∞∑

l=1

e−al (al)n
(

R

r

)l+1

Pl (̂r · êz) .

(9.49)
Comparing Eq. (9.49) with Eq. (9.44), we obtain

ga
n (r̂r) = an (2ψλn+1(r̂r) + ψλn (r̂r)

)
. (9.50)

Thus, the wavelet ga
n (r̂r) is the sum of the potentials

produced by a set of (n + 1) zonal multipoles, with
orders ranging from 1 to (n + 1), having all their axes
along Oz, and located at (0, 0, R exp (−a)). The rota-
tional properties of gn

ŝ, a (Eq. 9.45) are such that gn
ŝ, a

is the sum of the same multipoles located at point
R exp (−a) ŝ with axes along the direction defined by
the unit vector ŝ.

The set
{

gn
ŝ, a

}
is a continuous family of wavelets,

where ŝ defines the radial axis � (̂s) carrying the set
of (n + 1) multipoles as well as the direction of the
axes of the multipoles, and a refers to the location of
the multipoles on �. In practice, the number of data

being finite, the family
{

gn
ŝ, a

}
must be discretized.

This operation leads to the concept of a frame in the
Hilbert space H of the harmonic functions belonging

to L2 (S (R, ∞)). A frame is a generating system which
linear combinations are dense in the Hilbert space, the
elements of the frame being neither linearly indepen-
dent nor orthogonal to each other. Holschneider et al.
(2003) provided some qualitative evidences about the
completeness of the frame by comparing the dimen-
sions of wavelet and spherical harmonic subspaces
and by computing misfits between spherical harmon-
ics and their approximation by a finite series of discrete
wavelets.

Discretizing the dilation factor a (the depth of the
(n + 1) multipoles) is straightforward but requires the
definition of a reference radius R. Various spheres
of geophysical importance may be used, for instance
core-mantle boundary, which may offer more flexibil-
ity in the distribution of the depths of the multipoles
(see Chambodut et al., 2005). The discretizing of the
directions � (̂s) is, however, a more heavy task, con-
nected to the long standing difficulty of defining a
quasi-uniform distributions of a finite number of points
on the sphere (Holschneider et al., 2003; Chambodut
et al., 2005).

The inverse problem formally consists in approxi-
mating a potential V (r̂r) with a linear combination of
a given finite subspace of a frame of discrete wavelets.
This writes

WV (−→r ) =
J∑

j=1

K∑

k=1

αj, kgn
ŝ(j), a(k)

(−→r )
, (9.51)

where the discrete family
{

gn
ŝ(j), a(k)

}
has been indexed

according to a pair of indexes (j, k) for the sake
of clarity. Actually, for inversion purposes, a single
indexing was used by Holschneider et al. (2003). WV

is the approximation of V in the subspace spanned
by the wavelets gn

ŝ(k), a(k). There is a fundamental
difficulty raised by the redundancy of the wavelet
frame. Whereas the Gauss coefficients are theoreti-
cally unique, the coefficients αk are not. Therefore,
the inverse problem is by essence ill-conditioned and
requires some regularization. Fortunately, the wavelets
have convenient properties with respect to the inner
product on L2 (S (1)) that allows the quadratic term
involved in the smoothness constraint to be written in
a concise form. The reader is referred to Holschneider
et al. (2003), Chambodut et al. (2005) and Panet
et al. (2006) for applications in geomagnetism and
geodesy.
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9.3.1.2 Multi-scale Modelling

Mayer and Maier (2006) proposed a modelling of
CHAMP satellite measurements based upon vector
scaling functions as an alternative to the Mie rep-
resentation. However, we discuss the expression for
the scalar potential only that was elaborated by Maier
(2003, Chapter 4), and was applied to the crustal
field modelling by Maier and Mayer (2003). More
specifically, they proposed a multi-scale method for
downward continuation of the crustal field estimated
at satellite altitude. A less sophisticated and older
approach based on scalar data may also be found in
Achache et al. (1987). The method may apply to vec-
tor data but hereafter we restrict ourselves to the radial
component modelling. The problem is the following:
how from the given radial component Br known over
the surface of a sphere of radius r can we express Br

over a lower spherical surface R. The solution in terms
of spherical harmonics is of course well-known (for
instance Maus et al. 2007a), but we review it because,
first, it is interesting to see which advantages could
be drawn from the flexibility of the wavelet repre-
sentation, second, it is the heart of many problems
in geomagnetism, and thus regional modelling. We
start again with the expansion (9.28) and we assume
internal fields only. The radial component then simply
writes

Br (r̂r) = −∂rV =
∞∑

l=1

l∑

m=−l

gm
l (l + 1)

(
R

r

)l+2

βm
l (̂r) .

(9.52)

As in the previous section, βm
l is a real, normalized,

spherical harmonic function and r ≥ R. We remark
that rBr is itself an harmonic function in S (R, ∞). In
particular for r = R

RBR (R̂r) = R
∞∑

l=1

l∑

m=−l

gm
l (l + 1) βm

l (̂r) . (9.53)

where BR stands for Br calculated on the sphere S (R).
The coefficients Rgm

l (l + 1) are obtained straightfor-
wardly by

Rgm
l (l + 1) = 1

4π

∫

S(1)

βm
l (̂r)RBR (R̂r) dσ . (9.54)

Introducing the expression of gm
l (l + 1) into Eq.

(9.52), we obtain a relationship between rBr (r̂r) and
RBR (R̂s) similar to that given by Eq. (9.37)

rBr (r̂r) = 1

4π

∫

S(1)

K (r r̂, ŝ)RBR (R̂s) dσ (̂s) , (9.55)

with K (r r̂, ŝ) being explicitly written in Eq. (9.38).
K (r r̂, ŝ) is the kernel of an operator designated by
 AP, according to Maier (2003, p. 99), which links rBr

to RBR. Formally

 AP (RBR) = rBr. (9.56)

RBR (respectively rBr) is an element of the Hilbert
space L2 (S (R)) (respectively L2 (S (r))), the inner
product on L2 (S (ρ)) (ρ = R or r) being defined by
Eq. (9.16). With respect to this inner product, the
functions

Ym
ρ, l (ρ̂r) = βm

l (̂r) , (9.57)

are still orthonormal (note that we use explicit nota-
tions to designate elements belonging to each of the
spaces L2 (S (R)) and L2 (S (r))).  AP is an operator
mapping the Hilbert space L2 (S (R)) onto the Hilbert
space L2 (S (r)) and defines the upward continuation
operation. It may be shown that its adjoint operator
 ∗

AP is given by

 ∗
AP rBr (r̂r) = 1

4π

∫

S(1)

K (r r̂, ŝ) rBr (r̂s) dσ (̂s) ,

(9.58)
and that ψm

R, l (respectively ψm
r, l) is an eigenvector of

 AP (respectively  ∗
AP) associated to the eigenvalue

σl =
(

R

r

)l+1

. (9.59)

Thus, the limit of σ l, when l tends toward infinity, is
0 and there is no theoretical difficulty in the calcula-
tion of rBr knowing RBR (Eq. 9.56). In general, we
also face the problem of calculating RBR knowing rBr

because small scales are geometrically more enhanced
than larger scales with downward continuation. The
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difficulty is more explicit if we write rBr in terms of
spherical harmonics

rBr =
∞∑

l=1

l∑

m=−l

qm
l Ym

r, l with qm
l = 〈

rBr, Ym
r, l

〉
L2(S(r))

.

(9.60)
Using Eqs. (9.56, 9.60) and the above-mentioned prop-
erties of Ym

R, l and Ym
r, l with respect to the operators AP

and  ∗
AP respectively, we obtain

 ∗
AP ◦ AP (RBR) =

∞∑

l=1

l∑

m=−l

σlq
m
l Ym

R, l. (9.61)

On the other hand, we are looking for the expansion of
RBR of the form

RBR =
∞∑

l=1

l∑

m=−l

pm
l Ym

R, l. (9.62)

Applying the operator  ∗
AP ◦ AP to this expansion,

we obtain

 ∗
AP ◦ AP (RBR) =

∞∑

l=1

l∑

m=−l

σ 2
l pm

l Ym
R, l. (9.63)

Comparing it to expression (9.61) and using

 AP

(
Ym

R, l

)
= σlYm

R, l, we obtain finally

RBR =
∞∑

l=1

l∑

m=−l

σ−1
l

〈
rBr, Ym

r, l

〉
L2(S(r))

Ym
R, l. (9.64)

Equation (9.64) makes the generalized, Moore-
Penrose, inverse of  AP explicit. Hereafter, we denote
 +

AP this generalized inverse (hence, formally, RBR =
 +

AP (rBr)). Due to the behavior of σ−1
l , the conver-

gence of the double series is by no means ensured and
some regularization method has to be invoked. It is
precisely at this point that the multi-scaling approach
can be involved. We assume for a while that Eq.
(9.64) makes sense, and we split this expression into
two successive operations following Freeden et al.
(1999)

AD (R̂r) =
∞∑

l=1

l∑

m=−l

σ
−1/2
l

〈
rBr, Ym

r, l

〉
L2(S(r))

Ym
r, l (̂r) ,

(9.65)

and

AR (R r̂) =
∞∑

l=1

l∑

m=−l

σ
−1/2
l

〈
AD, Ym

R, l

〉
L2(S(R))

Ym
R, l ( r̂ ) .

(9.66)
It may be shown that AR (R r̂) = RBR (R r̂), at least for-
mally. Now, Eq. (9.65) may be written as a mapping
from L2 (S (r)) onto L2 (S (R)), which gives AD (R r̂)
knowing rBr (r ŝ). Likewise, Eq. (9.66) is an inter-
nal mapping on L2 (S (R)). Each of these mappings
is expressed through an integral equation using a
kernel �

AD (R r̂) = 1

4π

∫

S(1)

�D ( r̂, ŝ ) rBr (r ŝ) dσ ( ŝ ) , (9.67)

with

�D ( r̂, ŝ ) =
∞∑

l=1

l∑

m=−l

σ
−1/2
l Ym

R, l ( r̂ ) Ym
r, l ( ŝ )

=
∞∑

l=1

σ
−1/2
l (2l + 1)Pl ( r̂ · ŝ ) ,

(9.68)

and

AR (R r̂) = RBR (R r̂) = 1

4π

∫

S(1)

�R ( r̂, ŝ )AD (R ŝ) dσ ( ŝ ) ,

(9.69)
with

�R ( r̂, ŝ ) =
∞∑

l=1

l∑

m=−l

σ
−1/2
l Ym

R, l ( r̂ )Ym
R, l ( ŝ )

=
∞∑

l=1

σ
−1/2
l (2l + 1)Pl ( r̂ · ŝ ) .

(9.70)

On the right-hand sides of Eqs. (9.68) and (9.70),
we have applied the addition theorem (Eq. 9.36)
and we recognize, again, the expressions in terms
of Legendre polynomials. Of course, � = �D = �R

but their expressions are formally different for the
sake of clarity, �D being the kernel of an operator
mapping L2 (S (r)) onto L2 (S (R)) and �R being the
kernel of an operator on L2 (S (R)). The right-hand
sides of Eqs. (9.68) and (9.70) show that the series
do not converge. In order to remedy this drawback,
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Freeden et al. (1999) replaced the problematic coeffi-
cients σ−1/2

l by a family of coefficients
{
γj (l)

}
called

filters, j, being a positive or negative integer. The ker-
nel �D

j (̂r, ŝ), for which σ−1/2
l is replaced by γj (l),

is called regularization decomposition kernel whereas
�R

j (̂r, ŝ) is called regularization reconstruction ker-

nel. We define AD
j (R̂r) and AR

j (R̂r) the functions

obtained in Eqs. (9.65) and (9.66), with σ−1/2
l replaced

by γj (l). These functions are smoothed, and approx-
imate, versions of the exact solutions AD and AR.
If the families

{
γj (l)

}
verify appropriate constraints

(see Freeden et al., 1999, for the details and for
some relevant functions l → γj (l)) it may be shown

that lim
j→∞

∥
∥
∥AR

j (R̂r)− +
AP (rBr)

∥
∥
∥

L2(S(R))
= 0, which is

obviously a desired property of the regularization. The
regularized solution finally writes

AR
j (R̂r) =Pj (rBr) = 1

16π2

∫

S(1)

∫

S(1)

�R
j (̂r, ŝ)�D

j

(
ŝ,̂ t

)

rBr
(
r̂t
)

dσ
(
t̂
)

dσ (̂s) .
(9.71)

Pj being defined by the right-hand side and being
an approximation of

∧+
AP. The functions rBr that

are upward continuations onto the sphere S(r) of
radial components known on the sphere S(R), belong
to the range Image ( AP) ⊂ L2 (S (r)) of  AP. This
implies that AR

j = Pj (rBr) belongs to the subspace
Vj = {Pj (f ) | f ∈ Image ( AP)}. It may be shown that
Vj ⊂ Vj′ when j < j′ and that the closure of lim

j→∞Vj =
L2 (S (R)). Thus the solution of the generalized inverse
problem may be approximated to arbitrary accuracy
(in the sense of ‖·‖L2(S(R))) by increasing the scaling
index j. However, every approximation AR

j (R̂r) has to
be computed by means of a numerical surface inte-
gration. Freeden et al. (1999) suggest a possibly more
efficient way. The decomposition �D

j (̂r, ŝ) and recon-

struction �R
j (̂r, ŝ) wavelets take the same expressions

as the corresponding decomposition and reconstruc-
tion kernels when the family of coefficients

{
γj (l)

}
is

replaced by the family
{
ϕj (l)

}

ϕj (l) =
[(
γj+1 (l)

)2 − (
γj (l)

)2
]1/2

. (9.72)

Using �D
j (̂r, ŝ) and �R

j (̂r, ŝ), Freeden et al. (1999)
define a new operator Rj

Rj (rBr) = 1

16π2

∫

S(1)

∫

S(1)

�R
j (̂r, ŝ)�D

j

(
ŝ,̂ t

)
rBr

(
r̂t
)

dσ
(
t̂
)

dσ (̂s) ,
(9.73)

and subspaces Wj = {Rj (f ) | f ∈ Image ( AP)}. It

may be shown that PJ (rBr) = P0 (rBr)+
J−1∑

j=0
Rj (rBr)

and that VJ = V0 ⊕
J∑

j=0
Wj where the symbol ⊕ stands

for the direct sum of the subspaces Wj. Thus, V0

and
{
Wj

}
j=0,···J are a partition of the approximation

subspace VJ. Using this wavelet approach, the approx-
imation gained at step j + 1 is directly obtained by
upgrading it from step j thanks to Eq. (9.73). However,
as noticed by Maier (2003) there are some practical
difficulties in the implementation. First, this method
assumes data located on the sphere S(r), thus neglect-
ing altitude variations. Second, if the crustal field
modelling is the target, an appropriate low-frequency
global model has to be subtracted from the selected
(and already processed) data. Third, since surface inte-
grations have to be performed (Eq. 9.71 and 9.73),
it is necessary to resample scattered data onto the
nodal points of an appropriate grid and use integra-
tion algorithms (see Lesur and Gubbins, 1999, for a
review). The multi-scale resolution was applied by
Maier (2003, Chapter 4) on two spherical caps, one
enclosing the Bangui anomaly and one enclosing the
European continent. Due to the limited areas, Gibbs
effects appeared on the boundaries that could be hid-
den using caps larger than the integration domain,
themselves larger than the visualization caps. As we
shall see in Section (9.4), this is reminiscent of a
numerical ’trick’ often employed in regional mod-
elling that help artificially improving the convergence
of the numerical solution by in fact implicitly impos-
ing homogeneous conditions near the boundaries. The
field is free to take any value and shape in regions with
no data. This will, in turn, improve the fit in regions
where data are available.

9.3.2 Localized Harmonic Functions

The localized functions proposed by Lesur (2006) are
similar to the discretized Poisson wavelets described
in Section (9.3.1.1) in the sense that they are linear
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combinations of zonal solid spherical harmonics.
However, they do not conform to the wavelet con-
cept (described so far) because they are not constructed
using a dilated mother wavelet and are band-limited.
From this last viewpoint, the localized functions are
closer to the Slepian functions (Section 9.4.5). The unit
vectors ŝk which defines the symmetry axis of the zonal
spherical harmonics Pl (̂sk · r̂) are distributed on a grid
according to the following scheme

θi = arccos (ui) i = 1, . . . , (L + 1) ;

ϕj = 2π j

2L + 1
j = 1, . . . , (2L + 1) ,

(9.74)

where ui is the ith zero of the Legendre polynomial
PL+1. This distribution addresses the issue of com-
puting spherical integrals using quadrature methods.
The grid defined by Eq. (9.74) is often referred to as
a Gauss-Neumann grid (see Sneeuw, 1994 and refer-
ences therein). Accordingly, hereafter, we will use the
double index (i, j) instead of the single one k, although
it would not be difficult to map the pair (i, j) to a
single index. The Gauss coefficients of an expansion

V (R̂r) = R
L∑

l=1

l∑

m=−l
gm

l β
m
l (̂r), assuming that the βm

l are

real and Schmidt quasi-normalized, are given by the
classical integral

gm
l = 2l + 1

4πR

∫

S(1)

V (̂r) βm
l (̂r) dσ . (9.75)

Using the grid with the associated weight

wL+1
i = 2

1 − u2
i

∂u (PL+1 (ui))
−2 i = 1, . . . , (L + 1) ,

(9.76)

the integral may be approximated to high accuracy, by
the finite sum (Lesur, 2006)

gm
l = 2l + 1

2 (2L + 1)R

L+1∑

i=1

wL+1
i

2L+1∑

j=1

V
(
R̂rij

)
βm

l

(
r̂ij

)
.

(9.77)
Now, the localized functions write

FL
ij (r̂r) = R

L∑

l=1

l∑

m=−l

(
R

r

)l+1

flβ
m
l

(
ŝij
)
βm

l (̂r) .

(9.78)

where the coefficient fl is a tuning factor allowing
to tighten more or less the functions flβm

l

(
ŝij
)
βm

l (̂r)
around the point ŝij. Note that as before the functions
FL

ij (r̂r) could be again expressed in terms of Legendre

polynomials
(R

r

)l+1
Pl (̂s · r̂) using the addition theo-

rem. It may be shown that, like the basis functions
(R

r

)l+1
βm

l , they span the space HL of the harmonic
functions in the domain S(R, ∞), of maximum degree
L. The dimension of HL being L (L + 2), they are not
linearly independent (this property is similar to the
concept of frame in Section 9.3.1.1) and they do not
necessarily form a basis. Thus, the coefficients γij of
the expansion

V (r̂r) =
L+1∑

i=1

2 L+1∑

j=1

γijF
L
ij (r̂r) (9.79)

are not unique. However, thanks to the orthogonality
properties of the spherical harmonics βm

l with respect
to the quadrature expressed by Eq. (9.77), Lesur (2006)
gave an elegant expression of the γij in terms of the
Gauss coefficients. In the framework of the inverse
problem, Lesur (2006) discussed the choice of fl in
connection with the weight functions wL (θ) and with
the decrease rate of the gradient away from ŝij. The
inverse problem amounts to find the coefficients γij

which parameterize the model

−→
B = −−→∇

⎧
⎨

⎩

L+1∑

i=1

2L+1∑

j=1

γijF
L
ij (r̂r)

⎫
⎬

⎭
. (9.80)

Due to the non-uniqueness of this expansion, a smooth-
ness constraint built via a damping matrix may be
introduced. Localized harmonic functions are used in
Lesur and Maus (2006) model globally the lithospheric
field with reduced spatial resolution at high latitudes.
According to Lesur and Maus (2006), this flexibility
allowed reducing the spurious effects visible in the
polar regions with model MF4 (Maus et al., 2006) and
dealing with multi-level data.

Figure 9.2 shows a reconstruction of the crustal
part of the synthetic Zall data (see Fig. 9.1-right) using
Eq. (9.80) with Eq. (9.78) up to L = 400 (about 100-
km wavelength). We recall that the synthetic data are
calculated to SH 720 (L = 720). This difference intro-
duce some spatial aliasing in the modelling that may
explain part of the observed tiny wiggles both in the
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Fig. 9.2 Example of radial magnetic field reconstruction using the philosophy of band-limited functions (left) and the residuals
(right) between this approximation and the original data shown in Fig. 9.1

model and the residual maps. However, the setting of
the tuning factor fl plays also a key role in the appar-
ent stability of the modelling. Increasing the expansion
of the series (9.78) and selecting a more appropriate fl
factor, for instance, would provide an almost perfect
residual mean squares fit.

9.4 Modelling the Field Regionally

SH basis functions are neither well suited for mod-
elling unevenly distributed data nor for crustal field
modelling because their sensitivity at the global scale
is in poor agreement with the local nature of the
geological sources. We saw that only combinations
of band limited and weighted SH harmonics could
help circumventing this difficulty. Another philoso-
phy, however, is to perform data fitting at a regional
scale using functions with local support. Such an
approach has a long history (e.g., Howarth, 2001)
and we focus here on regional modelling methods
based upon the resolution of the Laplace equation in a
bounded domain � leading to Fourier-like expansions.
Before proceeding further, it is important to keep in
mind that the concept of internal and external field at
regional scale is complicated by the existence of a lat-
eral boundary, be it a square or a circle (or any other
type of boundary). We thus assert without formally
demonstrating it (but we will give some arguments
below in Section 9.4.2.2) that regional basis functions
are not able to distinguish between magnetic fields
generated below or above the Earth’s surface. Thus, if

one wants to study and interpret the modelled magnetic
field source, specific data pre-processing are required
in order to remove unwanted contributions. We do not
take much risk by further asserting that this difficulty
arises also with global modelling techniques as long as
they are used over a small portion of the Earth only,
even though they are based on functions with global
support. For this reason it is advisable to filter out
the undesired magnetic field contributions, generally
of external origin, before performing the regional mod-
elling. At present, no comprehensive modelling of the
magnetic field was undertaken. Some recent general
reviews regarding other methods of local modelling,
the availability of magnetic data at the regional scale,
and applications may be found in several papers or
books (Langel and Hinze, 1998; Mandea and Purucker,
2005; Purucker and Whaler, 2007 and Thébault et al.
2010, for instance).

9.4.1 Review of Modelling in the Flat
Earth Approximation

Every method leading to a Fourier series expan-
sion could be presented in a way similar to the SH
formalism that is, via the resolution of a boundary
value problem for the Laplace equation in the domain
� using the method of variable separation. For some
reason, this way of doing has not been systematically
applied to the flat earth approximation methods as is
outlined below. In these methods, the earth is locally
approximated by its tangent plane and the domain
of interest is built upon this plane (see Langel and
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Hinze, 1998, p. 134 for a qualitative discussion about
the validity of this approximation). The main advan-
tage of this assumption is that the involved functions
are much simpler to compute than in the spherical
geometry.

9.4.1.1 Rectangular Harmonic Analysis

Rectangular harmonic analysis (RHA) refers to
a local domain consisting in a rectangular box.
Alldredge (1981, 1982, 1983) applied RHA to sur-
face data whereas Nakagawa and Yukutake (1985) and
Nakagawa et al. (1985) extended its use to the analysis
of satellite data but at the expense of using an had-
hoc weighting to minimize edge effects. Haines (1990)
made a thorough analysis on RHA which led him to
suggest basis functions provided by various boundary
value problems.

Let us start however with the most frequently used
expansion, written in terms of periodic functions.
Following the notations of Langel and Hinze (1998,
p. 132), the expression of the expansion SV of a poten-
tial V can be conveniently expressed in complex form

SV (x, y, z) = X0x + Y0y + Z0z +
K∑

k=−K

L∑

l=−L

χkl exp

[

−2π i

(
kx

LX
+ ly

LY

)]

exp (Dklz) ,

(9.81)
with

Dkl = 2π

(
k2

L2
X

+ l2

L2
Y

)1/2

, (9.82)

which, apart from the linear term, is valid in the
unbounded domain ]0, LX[ x ]0, LY [ x ]0, ∞[ with the
z axis oriented positively downwards (Fig. 9.3). The
potential is essentially a LX, LY periodic function in an
horizontal plane, and vanishes when z tends towards
minus infinity. The expansion is complemented with
linear terms which are intended to reduce boundary
effects (Note that Eq. 9.82 has been corrected for the
error in Eq. 9.5) of Alldredge, 1981, as was under-
lined by Malin et al., 1996). Nakagawa and Yukutake
(1985) and Nakagawa et al. (1985) worked on an area

with square section (LX = LY ) and isotropic expan-
sions (K = L = 3) whereas Alldredge used a domain
with a rectangular section but restricted the sums in
(9.81) by the relationship k + l = Nmax + 1. As the
function to be modelled is not periodic at all, Gibbs
effects are to be expected. They are all the more seri-
ous as the values at opposite boundaries are different.
The linear terms, which are obviously harmonic, are
intended to minimize the ringing effects and some
authors (e.g., Nakagawa et al., 1985) further weighted
the data in an area along the edges with a cosine
taper function or even added some more terms solving
Laplace equation (Malin et al., 1996).

Haines (1990) made a thorough analysis of RHA.
To our knowledge, he was the first to spot the fun-
damental drawbacks of the original RHA expansion,
the one based on periodic basis functions. Noting that
these functions solve a particular boundary value prob-
lem, he suggested applying other boundary conditions
that would be consistent with the properties of the
function to be modelled. Haines focused his discussion
on the uniform convergence properties of generalized
Fourier expansions SV. In the most general case of a
regular Sturm-Liouville problem, the expansions are
the solutions of the ordinary second-order differential
equation on the interval ]a, b[

− dx (p(x)dxf )+ (q(x) − λg(x)) = 0, (9.83)

subject to the general mixed boundary conditions

α1 f (a) − β1 (dx f )a = 0, (9.84a)

α2 f (b) + β2 (dx f )b = 0, (9.84b)

where p(x) is positive, continuously differentiable on
[a, b], g(x) is positive and continuous, q (x) is continu-
ous. Note that −(dxf )a and (dxf )b are one-dimensional
expressions of the normal derivative to the boundary
of the domain. Setting p (x) = g (x) = 1 and q (x) =
0, and periodic boundary conditions on f (x) and its
derivative, we obtain the familiar expansion given by
Eq. (9.81). The Dirichlet boundary value problem is
defined by setting β1 = β2 = 0, whereas α1 = α2 = 0,
define a boundary value problem of Neumann type.
Note that the boundary value problem is incomplete
as no condition is set neither on the lower nor the
upper surface so that the solution with altitude is not
a basis and thus does not necessarily agree with the
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Fig. 9.3 Schematic representation of the domain of validity of the Rectangular Harmonic Analysis (RHA). The colour surface
represents the rectangular harmonics for l = 3 and k = 3 (see Eq. 9.81). f(z) is the exponential radial field dependence with altitude

behavior of Newtonian potential fields with altitude.
The discussions made by Haines (1990) concerning
the choice of the most appropriate lateral bound-
ary conditions rely on the Sturm-Liouville theorem
(Gonzalez-Velasco, 1995, Section 4.4), which simplest
expression is “if f is continuous and satisfies the bound-
ary conditions in Eqs. (9.84a), (9.84b) and f′ piecewise
continuous on [a, b], the generalized Fourier series
Sf converges absolutely and uniformly towards f on
[a, b]”.

In the absence of magnetic sources close to the
boundary of the domain, the regularity conditions are
fulfilled by the magnetic potential under consideration.
However, the magnetic potential in general verifies
neither Neumann nor Dirichlet nor mixed boundary
conditions, which is particularly troublesome. In this
case, the problem is no longer self-adjoint (i.e., the
basis is not orthonormal) and becomes by far more
difficult (Coddington, 1955, Chapter 12). The sim-
plest way to overcome the difficulty, as advocated
by Haines (1990), is to mix up basis functions of
self-adjoint problems. This solution should preserve
uniform convergence but at the expense of introduc-
ing non-orthogonal basis functions. Another way of
circumventing the difficulty is to deal with poten-
tials having wavelengths shorter than the dimension
of the domain, thus reduced values on the bound-
ary, closer to Dirichlet or Neumann conditions. These
arguments should be kept in mind as they are particu-
larly important to understand some of the properties of

Spherical Cap Harmonic Analysis discussed in Section
(9.4.2.2).

Figure 9.4 illustrates this previous discussion. The
model is obtained by inverting the synthetic data Zall

(see Section 9.2.3) with the basis functions defined
by Z = −∂zSV (x, y, z) using Eq. (9.81); thus without
setting specific boundary conditions. The maximum
series expansion defines a minimum wavelengths of
about 100 km. As can be verified, the RHA does
quite well in modelling single surface data and is
able to represent both large (core) and small (crustal)
wavelengths up to the required resolution. However,
the residual map exhibits long oscillation, spreading
from the edges to the center of the rectangle, that is
symptomatic of Gibbs effect. The slight curvature in
these large residuals also show the consequence of the
flat Earth approximation. Whether or not the shape
and magnitude of residuals are significant is a mat-
ter of judgement left to the reader as, in practice, it
depends on the purpose for which the model is derived.
The non-orthogonality of the basis functions is another
property that forbids us to carry out spectral anal-
yses and restricts ourselves to relatively low series
expansion since expanding the series further keeps
degrading the conditioning of the inverse matrix. Note
that such a spectrum would anyway be difficult to inter-
pret because of spatial aliasing unless some detrending
is carried out prior to the inversion. At last, introducing
data measured at different altitudes does not provide
satisfactory solutions because the radial functions are
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Fig. 9.4 Example of Rectangular Harmonic Analysis using the Z vector component only. The obtained RHA model (left) and the
residuals between the model and data (right) illustrate some of the properties discussed in the text. Units are in nT

not designed for it. Setting appropriate boundary con-
ditions on each surface of the whole domain (including
upper and lower surfaces) would likely alleviate part of
these practical difficulties.

9.4.1.2 Cylindrical Harmonic Analysis

Alldredge (1982) also studied the solutions of the
Laplace equation in a circular cylindrical region. The
vertical axis of the area is its axis of symmetry and its
lateral boundary a cylinder of radius ρ (Fig. 9.5). In
cylindrical coordinates (r, θ , z), the Laplace equation
writes

1

r
∂r (r∂rV)+ 1

r2
∂2
θ2 V + ∂2

z2 V = 0. (9.85)

The method of variable separation, with V(r, θ , z) =
R(r)T(θ )Z(z) leads to the following set of ordinary
differential equations

d2
z2 Z = μ2Z, (9.86a)

r2d2
r2 R + rdrR +

(
μ2r2 − λ2

)
R = 0, (9.86b)

d2
θ2 T = −λ2T , (9.86c)

where μ2 and λ2 are a priori complex constants.
Equation (9.86c) associated to 2π -periodic conditions
for the function and its first derivative, leads to the

Fig. 9.5 Schematic representation of the domain of validity of
the Cylindrical Harmonic Analysis (CHA). The colour surface
represents the cylindrical harmonics for m = 2 and k = 2 (see
Eq. 9.92). f(z) represents the exponential radial field dependence
with altitude

condition λ = m, positive integer and to the familiar
solution

T(θ ) = Ameimθ + Bme−imθ . (9.87)
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With the change of variable μr = s, and the change
of function S(s) = R(s/μ), Eq. (9.86b) is reshaped into
the Bessel differential equation

s2d2
s2 S + sdsS +

(
s2 − m2

)
S = 0, (9.88)

with s also a priori a complex variable. The appro-
priate form of the solution and the values taken by μ
are found when Eq. (9.88) is associated with boundary
conditions at s = 0 and s = μρ. This leads to a singular
Sturm-Liouville problem because the coefficient of the
second derivative vanishes at s = 0. Eq. (9.89) has two
linearly independent solutions, the Bessel function of
the first kind and integer order Jm(s) and the Neumann
function Nm(s). However, the Neumann functions have
to be discarded because they tend towards infinity
when s tends towards 0, thus

R(r) = Jm(μr). (9.89)

The factor μ can be specified by setting the boundary
condition at s = μρ. This writes

αJm(μρ) + βJ
′
m(μρ) = 0. (9.90)

The zeros of Jm and J
′
m are real (Abramowitz and

Stegun, 1965, section 9.5). In addition, if α = 0 or
β = 0, μ must be real but it may be shown that this
remains true (in the general case) for any real value
of α and β. Therefore, the variable s is real and μ is
a root of the function αJm(μρ) + βJ

′
m(μρ). There are

infinitely many values of μ which verify Eq. (9.90).
They build up a countable subset of R, depending on
m and which can therefore be indexed by the pair (m, k)
with k ∈ N

∗. Formally, the solution should write

V(r, θ , z) =
M∑

m=0

K∑

k=0

Jm(μmkr) (Dmk cos mθ

+Emk sin mθ) exp(μmkz),

(9.91)

and be a complete basis. In spite of these considera-
tions, (Alldredge, 1982) adopted another form, with no
definite boundary condition on the boundary r = ρ

V(r, θ , z) =Az +
M∑

m=0

K∑

k=0

Jm(kνr) (Dmk cos mθ

+Emk sin mθ) exp(kz),

(9.92)

with ν a scaling factor that is tuned manually and
empirically by trials and errors.

Equation (9.92) is valid inside the cylinder, half-
infinite towards negative z, apart from the linear term.
Indices m are integers, as expected. In the formalism
of Alldredge (1982), the choice of μ (=kν) is not
based upon boundary condition but on scale consider-
ations. This raises some important practical difficulties
illustrated by Fig. 9.6 that shows the CHA model
obtained from the set of synthetic data Zall using
expression (Eq. 9.92) for the potential. After several
tries, we could find a scaling parameter ν that allowed
an apparent satisfying fit of the large scales of the
magnetic field; there are certainly an infinite number
of ν that would give comparable result. However, the
same value of ν cannot represent both large and small
scales and all crustal field contributions end up in the
residual map. For some applications related to regional
main field modelling, this low-pass property appears
interesting as it seems to filter out crustal field con-
tamination. This result is however misleading because
the manual choice of ν act as a filter that has no real
significance. By no means can we assert that the main
field has been correctly represented because the set of
functions do not form a complete basis; the residuals
illustrate this incompleteness not a resolution problem
imposed by the series truncation. The functions being
not orthogonal, spectral analysis are not permitted and
introducing multi-altitude data would have introduced
other difficulties. As it stands, the CHA modelling is
flawed. The mathematics would be correct after set-
ting boundary conditions, at least on the lateral surface.
They would define not one value of ν in Eq. (9.92) but
a discrete set of μmk (Eq. 9.91) varying in m and k thus
defining a complete basis function allowing the repre-
sentation of any contribution of magnetic field (core
and crustal) in the horizontal plane (dealing with mul-
tilevel data would require boundary conditions on the
lower and upper surfaces).

9.4.2 SCHA and R-SCHA

Spherical Cap Harmonic Analysis and Revised
Spherical Cap Harmonic Analysis are, in regional
modelling, the closest relatives to SHA. SCHA was
designed by Haines (1985a) to provide a reference
field for Canada (Haines, 1985b). Since then, SCHA
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Fig. 9.6 Example of Cylindrical Harmonic Analysis using the Z vector component only. The obtained CHA model (left) and the
residuals between the model and data (right) illustrate some of the properties discussed in the text. Units are in nT

has been widely used in a variety of regional mod-
els, including reference field models, secular variation,
crustal field, external field, and even outside geomag-
netism making it probably the most popular regional
modelling method (see Torta et al., 2006, for a review).

9.4.2.1 Definition of the Domain

The domain of interest is shown on Fig. 9.7. It is the
bounded volume � delimited by the intersection of a
spherical shell S(b, c) defined in Section (9.2), with a
circular cone having its summit at the center of the
Earth and aperture angle θ0. The location of the cone
axis and the half-angle θ0 on the Earth depend of
course on the area of interest. Generally, the radius of
the inner sphere is the earth’s mean radius (i.e., b = RE

according to previous notations. We now set RE = a to
avoid confusion with the radial function). The closed
boundary ∂� of � consists in three pieces of geo-
metrically simple boundaries: ∂θ0� denotes the lateral
portion of the cone θ = θ0, ∂a� and ∂c� stand for the
lower and upper cap at radii a and c respectively. Thus,
the boundary ∂� = ∂θ0� ∪ ∂a� ∪ ∂c� is substantially
more complicated than the boundary of the spherical
shell.

9.4.2.2 Resolution of Laplace Equation in SCHA
by the Fourier Decomposition Method

The resolution follows closely the pattern of Section
(9.2.1). The only difference resides in the boundary
conditions on Eq. (9.9). In SCHA, they are

Fig. 9.7 Schematic representation of the spherical cone consid-
ered when solving a R-SCHA problem. The upper color surface
(at r = a) represents the superimposition of the two independent
solutions found when splitting the original BVP (Eq. 9.99) into
two independent BVP’s (Eq. 9.100 and 9.101). f (r) represents
the respective radial solution of BVP1 and BVP2 (see text for
details)

P and P′ finite at θ = 0, (9.93a)

αP(θ0) + βP
′
(θ0) = 0. (9.93b)

Instead of the mixed boundary condition defined
in Eq. (9.93b), Haines (1985a) uses two separate
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Dirichlet (with β = 0) and Neumann conditions (with
α = 0) and adds both sets of solutions. As already
said above this non-orthodox procedure is applied
with the hope to define a series expansion that con-
vergences uniformly towards the solution. Here, for
discussion purposes, we call SCHA the well-known
solution of the Sturm-Liouville problem defined by Eq.
(9.8) together with boundary conditions (9.93a) and
(9.93b). We solve

∇2V = 0 on �, (9.94a)

α (V)∂θ0 + β
(
∂V

∂n

)

∂θ0

= 0. (9.94b)

Note that in SCHA the Boundary Value Problem
(BVP) is again incomplete as no condition is put on
the boundary ∂a� ∪ ∂c�. As was the case for RHA
and CHA, there is no sufficient constraint on the radial
function to ascertain that the solution will behave cor-
rectly with altitude. This, in turn, prevents us from
dealing with multi-level data.

The solutions of Eq. (9.8), where the constant ν is
a priori arbitrary, are the generalized Legendre func-
tions (Hobson, 1965, Chapter V; Robin, 1958, Vol.
II) of first (Pm

ν ) and second (Qm
ν ) kind. As in SH,

the condition expressed by (93a) excludes the sec-
ond kind. The function Pm

ν is the eigenvector of the
operator defined in Eq. (9.15). Thanks to the bound-
ary conditions (9.93b), this operator is self-adjoint on
the space D = {P ∈ L2 ]u0, 1[ ∩ C2 [u0, 1], P fulfill-
ing the boundary condition Eq. (9.93b)}, where u0 =
cos θ0. Therefore, the eigenvalues ν (ν + 1) are real.
If, in addition, the constants α and β have the same
sign (a condition obviously fulfilled with Dirichlet
or Neumann conditions), the operator in Eq. (9.13)
is positive (Reddy, 1998, section 6.5), which in turn
implies that the eigenvalues ν (ν + 1) are real positive.
The detailed resolution of the hypergeometric equation
defined by Eq. (9.13) shows that ν > m if the bound-
ary condition (93b) is also to be fulfilled. There is no
loss of generality if we take ν real positive or null (with
Neumann condition) since Pm

ν = Pm
−ν−1 (Robin, 1958,

Vol. II, p.52 ). As in SH, the functions

βm
k (θ ,ϕ) = Pm

ν(k, m)(cos θ )eimϕ m ∈ Z, (9.95)

are eigenfunctions of −∇2
S associated to the

eigenvalues ν (ν + 1) (in order to avoid unnecessary

complications, we will hereafter discard the complex
form because Pm

ν and P−m
ν are connected to each

other by a factor involving the gamma function — see
Robin, 1958, Vol. II, p. 58). For simplicity we again
keep the notation appropriate to the complex form.
The constant function β0

0 (θ ,ϕ) may or not be included
into the set of basis functions, depending on the values
taken by the coefficients α and β: if α = 0 (Neumann
boundary condition), β0

0 (θ ,ϕ) fulfills the boundary
condition and is therefore acceptable, but has to be
discarded in all other cases.

The values of ν are the roots of the function
αPm

ν (θ0) + βP′m
ν (θ0) and depend on m. The integer k

indexes these roots for fixed m. Haines (1985a) showed
how to compute them in the case of the Dirichlet or
Neumann boundary conditions. The method applies
likewise to the mixed boundary condition with some
more numerical complexity. The general expressions
of the basis functions are

ψm
i, k(r, θ ,ϕ) = a

(a

r

)ν(m, k)+1
βm

k , (9.96a)

ψm
e, k(r, θ ,ϕ) = a

( r

a

)ν(m, k)
βm

k , (9.96b)

and the potential simply writes

V(r, θ ,ϕ) =
∞∑

k=0

∞∑
m=0

Gi, m
k ψm

i, k(r, θ ,ϕ)

+Ge, m
k ψm

e, k(r, θ ,ϕ).

(9.97)

Such expressions look very similar to SH expansion
(Eq. 9.18), which is misguiding. The degrees ν form
a discrete set of real values depending on the order m.
Therefore, the interpretation of the subscripts i and e
in terms of truly inner and external field sources with
respect to the sphere S(a) is not as straightforward as
in SH.

Despite its popularity and its apparently close rela-
tionship with SH, it was noticed by several authors
(e.g., De Santis and Falcone, 1995) that it was difficult
to model correctly the radial dependency, particularly
when considering cones of small aperture (De Santis,
1991). This led some authors (Torta et al., 2006 for a
review) to artificially increase the size of the cap (we
understand now that this is done empirically to enforce
the data to agree with the Neumann and Dirichlet
conditions on the lateral surface). More intriguing, it
was doubted that SCHA could simultaneously solve
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for the horizontal and radial components with com-
parable accuracy (Langel and Hinze, 1998, p. 132;
Thébault and Gaya-Piqué, 2008). In fact, troubles arise
because the incomplete setting of the boundary value
problem leads to an incomplete set of basis functions
with respect to the relevant function space defined on
�. Mathematically, it is sufficient to demonstrate the
lack of completeness of SCHA by finding one single
counter-example. The following Dirichlet problem

∇2(V) = 0 on � (9.98a)

V = f on ∂θ0� (9.98b)

V = 0 on ∂a� ∪ ∂b�, (9.98c)

for instance, would have a null SCHA expansion on the
spherical cap; the true solution being obviously not the
null function.

Figure 9.8 illustrates one peculiarity of SCHA. We
apply the original formalism of Haines (1985a) who,
once more, introduces both bases derived from the
Neumann and the Dirichlet boundary value problem.
We use only the core field part of Zall so that the data
do not contain crustal field contributions. This helps us
to illustrate the major deficiency of SCHA. The data
are represented to 380 km wavelength only because
reaching the 100 km spatial resolution was not pos-
sible (this resolution is reached in Fig. 9.2 and 9.4).
The contradiction between the horizontal and verti-
cal component, as well as non-orthogonality between
basis functions, grew up so much that SCHA increas-
ingly failed in representing the field and become more
and more unstable. Since the data are equally dis-
tributed and dense, regularization based on minimum
norm solution is helpless. It suggests that SCHA does
not converge towards SH as it should do in the case
of an infinite expansion (see also the above discus-
sion about the lack of completeness of SCHA). Such
problems are less prominent in many situations, when
considering residual fields (even though they are pro-
portional to the strength of the magnetic field, the
model error may be of the order of the data noise
and thus, discarded) or when considering very large
caps.This latter case is better understood by noting that
lim
θ0→π/2

ν(m, k) = n, where n is an integer degree of SH;

thus SCHA becomes an even closer relative to SH for
large caps.

9.4.2.3 R-SCHA as a Boundary Value Problem

The Revised SCHA (R-SCHA) is a proposal that
should remedy the drawback of SCHA (e.g., Thébault
et al., 2004). We give here a general form of the com-
plete boundary value problem. A general BVP, adapted
to the domain� described in Section 9.4.2.1 and to the
Laplace equation, would write (Reddy, 1998, section
8.3)

∇2V = 0 on � (9.99a)

αV + β ∂V

∂n
= G on ∂� = ∂θ0� ∪ ∂a� ∪ ∂c�,

(9.99b)

where α, β, G are given functions on ∂� (see Fig. 9.7).
A first limitation arises if the BVP is to be resolved
with the method of variable separation that requires α
and β being constant on each piece ∂a�, ∂c�, ∂θ0� of
the closed surface ∂� but allows however these con-
stants to be different on each piece. The method of
variable separation requires in addition to split up the
initial BVP into two simpler, partially homogeneous,
independent BVP problems

∇2V1 = 0 on � (9.100a)

αθ0

r
V1 + βθ0

∂V1

∂n
= 0 on ∂θ0� (9.100b)

αaV1 + βa
∂V1

∂n
= Ga on ∂a� (9.100c)

αcV1 + βc
∂V1

∂n
= Gc on ∂c�, (9.100d)

∇2V2 = 0 on � (9.101a)

αθ0

r
V2 + βθ0

∂V2

∂n
= Gθ0 on ∂θ0� (9.101b)

αaV2 + βa
∂V2

∂n
= 0 on ∂a� (9.101c)

αcV2 + βc
∂V2

∂n
= 0 on ∂c�, (9.101d)

where, for the sake of clarity, the function G has
been subscripted according to the piece of boundary
involved. Clearly, due to the linearity of the prob-
lem, the sum V = V1 + V2 is a solution of the initial
BVP (Eq. 9.99). The BVP defined by the set of
Eq. (9.100), (respectively Eq. 9.101), will be termed
BVP1 (respectively BVP2) hereafter.
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Fig. 9.8 Example of Spherical Cap Harmonic Analysis by least-squares inversion of the Z vector core component. The obtained
SCHA model (top-left) and the residuals between the model and data (top-right) are discussed in the text

BVP1 was solved in Section 9.4.2.2 and will not
be discussed any further. BVP2 was extensively dis-
cussed elsewhere in two particular cases: (αθ0 = αa =
αc = 0; Thébault et al., 2004) and (βθ0 = αa = αc =
0; Thébault et al., 2006a; 2006b). We thus limit
ourselves to the changes inferred by the more gen-
eral boundary conditions (101c and 101d). The most
striking difference between BVP2 and the SCHA
formulation (typically BVP1) is the Sturm-Liouville
problem arising for the radial function R(r) that
writes

− dr

(
r2drR(r)

)
= λR(r) on ]a, c[ (9.102a)

αaR(a) − βaR′(a) = 0 (9.102b)

αcR(c) + βcR′(c) = 0, (9.102c)

Define L2 (]a, c[) the Hilbert space on the inter-
val ]a, c[ endowed with the inner product 〈f , g〉 =
c∫

a
f (r)g(r)dr. The operator D = −dr

(
r2dr

)
appearing

on the left-hand side of (102a) is a particular case of
a regular Sturm-Liouville operator that is self-adjoint
on the space of the functions of C2 ([a, c]) ∩ L2 (]a, c[)
fulfilling conditions (Eq. 9.102b) and (Eq. 9.102c).
Therefore, the eigenvalues λ are real. If, in addition, the
pairs (αa,βa), (αc,βc) have the same sign, the operator
is positive (i.e., 〈D(f ), f 〉 ≥ 0) and λ is real positive

or null. This positivity property, which is not really
important for our purpose, derives from the expression
of D, which includes the minus sign, in accordance
with the general form of a Sturm-Liouville opera-
tor (see Eq. 9.83). Note that the sign change in Eq.
(9.102a) does not follow the convention adopted in
Thébault et al., (2004, 2006a). The general solution of
(102a) may be still formally written

R(r) = A1

( r

a

)ν + A2

(a

r

)ν+1
, (9.103)

with λ = −ν (ν + 1) when λ 	= 1/4, and

R(r) =
(

A1 ln
( r

a

)
+ A2

) (a

r

)1/2
, (9.104)

when λ = 1/4, that is when ν = −1/2. As usual, the
values of ν are such that the BVP2 (Eq. 102) has a non
trivial null solution. They are the roots of an equation,
which resolution relies upon approximate numerical
methods in the general case. However, analytical solu-
tions can be straightforwardly derived if we adopt more
restrictive boundary conditions

a
αa

βa
= −c

αc

βc
= α, (9.105)
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which assumes non zero values for βa and βc but
includes the Neumann homogeneous boundary condi-
tions (αa = αc = 0), when α = 0, and

βa

aαa
= − βb

bαc
= α, (9.106)

which assumes non zero values for αa and αc but
includes the homogeneous Dirichlet boundary condi-
tions (βa = βc = 0) when α = 0. Hereafter, the con-
ditions defined in Eq. (9.105) (respectively Eq. 9.106)
are referred to as case 1 (respectively case 2). Case 1
leads to eigenfunctions Rp, up to a multiplying constant
given by

Rp (r) =
√

a

r

[
πp

S (α + 1/2)
cos

(πp

S
ln

( r

a

))

+ sin
(πp

S
ln

( r

a

))]
,

(9.107)
that are associated to the eigenvalues

λ = 1

4
+

(pπ

S

)2
p ∈ N

∗, (9.108)

where S = ln (c/a), or eigenfunctions

Rα(r) =
( r

a

)α
, (9.109)

associated to the eigenvalue λ = −α (α + 1), which is
null if α = 0 or α = −1 and negative if α /∈ ]−1, 0[.
We note that there is only one possibly negative eigen-
value. Interestingly, the eigenfunction associated to
the negative eigenvalue (i.e., for α /∈ ]−1, 0[) have the
same shape as the basis functions of BVP1 but verify
nevertheless the boundary conditions of BVP2. Case 2
leads to eigenfunctions

Rp (r) =
√

a

r

[
παp

S (1 + α/2) cos
(πp

S
ln

( r

a

))

+ sin
(πp

S
ln

( r

a

))]
,

(9.110)
that are associated to the eigenvalues given by
Eq. (9.108) or to

R(r) =
( r

a

)1/α
, (9.111)

associated to the possibly negative eigenvalue λ =
− 1
α

(
1
α

+ 1
)

. In this last case, the complete solutions

of BVP2 take again the form Eq. (9.96b) with ν (m, k)
replaced by 1/α. Of course, this basis functions exist
only in the case α 	= 0. Let us summarize the shape of
the solutions for the problem BVP2. In every case the
basis functions may be written in the complex form

ψm
p (r, θ ,ϕ) = γm

p (r,ϕ)Km
p (cos θ ), (9.112a)

ψm
α (r, θ ,ϕ) = γm

α (r,ϕ)Pm
α (cos θ ). (9.112b)

The γm
p (r,ϕ) and γ c, m

α (r,ϕ) functions are defined by

γm
p (r,ϕ) =Rp(r)eimϕ ; γm

α (r,ϕ) = Rα(r)eimϕ

with m ∈ N

.

(9.113)

Km
p (cos θ ) are the Mehler or conical functions

described in Thébault et al. (2004, 2006a) (see also
Gil et al., 2009 for a recent numerical discussion)
and Pm

α (cos θ ) generalized Legendre functions of real
degree Pm

α (cos θ ). As usual, the complex notation is
kept for simplicity but we consider only real functions
as solutions. The expressions of Rp(r), Rα(r), eigenval-
ues λ and, hence, of Km

p (cos θ ), Pm
α (cos θ ), depend on

the boundary conditions.

9.4.2.4 Orthogonality Properties, Uniqueness
and Completeness

We now examine to which extent the orthogonality
properties valid in SHA with respect to the inner
product (Eq. 9.19) are valid for SCHA and R-SCHA
functions. The orthogonality properties of ψm

i, k, and
ψm

e, k rely on those of βm
k (θ ,ϕ) (Eq. 9.95) on the spher-

ical cap Sθ0 (1). The proofs were given by Lowes
(1999). For R-SCHA, there is an extra complication
with respect to SH due to the orthogonality proper-
ties of, and between, the basis functions ψm

p (r, θ ,ϕ),
ψm
α (r, θ ,ϕ) (see Eq. 9.112) as well as between

these letters and family of functions ψm
k . Functions

ψm
p (r, θ ,ϕ) (orψm

α (r, θ ,ϕ)) are not orthogonal to each

other with respect to the inner product defining L2(�)
because Rp(r) and Rp′ (r) (Eq. 9.107 or Eq. 9.110)
are orthogonal with respect to the inner product
c∫

a
Rp(r)Rp′(r)dr not with respect to

c∫

a
r2Rp(r)Rp′(r)dr

as derived from Eq. (9.19). Orthogonality properties
are restored if we resort to a weighted inner prod-
uct and to a weighted Sobolev space W1(�) defined
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by the functions f on � possessing the properties:
f (r)

(a2+r2)
1/2 and every partial derivative ∂xi(f ) belong

to L2(�) (Dautray and Lions, 1988, Chapter XI, p.
649). Knowing that on the domain � under considera-

tion, a ≤ r ≤ c, the denominator
(
a2 + r2

)1/2
may be

equivalently replaced by r, W1(�) is a Hilbert space
for the following (real) inner product

〈f , g〉W1 =
∫

�

[
f (r)g(r)

r2
+ −→∇ f · −→∇ g

]

dτ . (9.114)

For the same reasons as for the SH analysis the sub-
space W1(�) is not relevant for harmonic functions
since the potential is not the measured quantity. It is
thus judicious to define an inner product based only on
the gradients. Thus, let us denote again U(�) the sub-
space of the harmonic functions of W1(�) and provide
U(�) with the inner product defined by Eq. (9.19). As
it defines only a semi-norm, it is possible to put further
constraints on U(�) in order to derive a true norm. We
did not explore this possibility but leave it for future
investigations.

The basis functions ψm
p , ψm

α (Eq. 9.112) are orthog-
onal with respect to the inner product (Eq. 9.114),
both terms of the integrand being null. The same prop-
erty holds true for each family of the basis functions
ψm

i, k(r, θ ,ϕ) and ψm
e, k(r, θ ,ϕ), (Eq. 9.96) but not neces-

sarily between the families. The orthogonality between
the families of functions arising from BVP1 or BVP2,
namely pairs like (ψm

k ,ψm′
p′ ) are obviously holds true

for m 	= m′ but we need to compute

I =
〈
ψm

k ,ψm
p

〉

U
=

∫

�

−→∇ ψm
k · −→∇ ψm

p dτ . (9.115)

Writing ψm
k = {ψm

i, k(r, θ ,ϕ), ψm
e, k(r, θ ,ϕ)} and

using the Green identity Eq. (9.24), Eq. (9.115) may
be transformed into

I =
∫

∂�

ψm
k · ∂ψ

m
p

∂n
dσ =

∫

∂θ0�

1

r

(
∂θψ

m
p

)

θ0
ψm

k dσ−

∫

∂a�

(
∂rψ

m
p

)

a
ψm

k dσ +
∫

∂c�

(
∂rψ

m
p

)

c
ψm

k dσ .

(9.116)
Taking the general form of the boundary condi-

tions (9.100b), (9.101c), (9.101d) but restricting them
to the particular forms aαa

βa
= −cαc

βc
= α1 or βa

aαa
=

− βc
bαc

= α2, it turns out that I vanishes only in the cases
(α1 = βθ0 = 0) or (α2 = αθ0 = 0). These conditions
are respectively equivalent to

(
αa = αc = βθ0 = 0

)
,

a Neumann condition on ∂a� ∪ ∂b� and a Dirichlet
condition on ∂θ0�, and to

(
βa = βc = αθ0 = 0

)
, a

Dirichlet condition on ∂a� ∪ ∂b� and a Neumann
condition on ∂θ0�. Conditions

(
βa = βc = αθ0 = 0

)

are hereafter denoted model M1 and conditions(
αa = αc = βθ0 = 0

)
model M2.

Considering a function V belonging to U(�), its

expansion on the bases
{
ψm

i, k,ψm
e, k,

}
and {ψm

p ,ψm
α } is

the sum of the following double series (Thébault et al.,
2006a)

SV = a
∞∑

m=0

∞∑
k=1

(
Gi, m

k ψm
i, k + Ge, m

k ψm
e, k

)

+a
∞∑

m=0

∞∑
p=1

(
G m

p ψ
m
p

)
+ a

∞∑
m=0

(
G m
α ψ

m
α

)
.

(9.117)

The gradients of V are orthogonal in � only in the
cases described by M1 and M2. This provides a mean
to estimate the Gauss coefficients separately by

Gi, m
k

∥
∥
∥ψm

i, k

∥
∥
∥

2

U
=
〈
V ,ψm

i, k

〉

U
; Ge, m

k

∥
∥
∥ψm

e, k

∥
∥
∥

2

U
=

〈
V ,ψm

e, k

〉

U

Gm
p

∥
∥
∥ψm

p

∥
∥
∥

2

U
=
〈
V ,ψm

p

〉

U
; Gm
α

∥
∥ψm
α

∥
∥2

U = 〈
V ,ψm

α

〉
U ,

(9.118)

Equation (9.118) provides the essential argument
against the ability of regional modelling technique to
discriminate between internal and external magnetic
fields with respect to the Earth’s surface. Considering
the expansion of V in SH (Eq. 9.28) is may be readily
shown that setting qm

n = 0 does not impose Ge, m
k = 0.

This demonstrates that the “external” coefficients do
not have the same meaning in SH and in R-SCHA
formalisms. Regarding the completeness of R-SCHA
expansion, the demonstration relies on the complete-
ness of the bases βm

k and γm
p on their respective spaces.

The completeness is derived from the spectral prop-
erties of operators like ∇2

S . Good accounts of the
properties of this kind of operators may be found in
Dautray and Lions (1988, Chapter VIII). R-SCHA is
not designed to deal with single surface measurements.
A good account of the ability of R-SCHA to process
multi-level data is given in Thébault et al., (2006b).



254 J.-J. Schott and E. Thébault

9.4.3 Boundary Effects

Boundary effects, as already stated in Section (9.2.3),
are closely related to uniform convergence (see Haines,
1990, for examples in one-dimensional spaces). Within
the frame of generalized Fourier series, the bound-
ary effects are nothing else than the expression of the
Gibbs phenomenon, well-known and investigated at
length in the case of the Fourier expansion of peri-
odic functions. In this latter case, various summing
methods may be used in order to accelerate the con-
vergence rate and reduce the Gibbs effect (see for
instance Robin, 1958, vol. II, Chapter VI, Hobson,
1965, Chapter VII, Jerri, 1998, section 3.5) which
could probably be adapted in some cases in two dimen-
sions (e.g., Thébault, 2006 who applied the Fejér
partial sum theorem). Things are however a great deal
more complicated with multi-dimensional series, more
specifically with two-dimensional infinite series in the
present case. Gonzalez-Velasco (1995, section 9.2)
explored in details the case of harmonic expansion on a
rectangular domain which involves periodic functions
and showed, with a simple manageable example, how
the complexity increases from the one-dimensional to
two-dimensional situations. In particular, he stressed
that uniform convergence depends on continuity prop-
erty of the second mixed derivative ∂2

xy. The difficulties
are still enhanced in the case of SCHA and R-SCHA
expansions due to the transcendental nature of the basis
functions. Haines (1985a) claimed uniform conver-
gence depending on consistency between the boundary
conditions fulfilled by the basis functions and those
verified by the potential to be approximated, refer-
ring to Sturm-Liouville theorem (see Section 9.4.1.1).
This theorem is valid in the context of one-dimensional
Sturm-Liouville problems only. To our knowledge,
there is no extension to multi-dimensional problems,
as illustrated by RHA and the two-dimensional ordi-
nary Fourier series involved. Therefore, including both
Neumann and Dirichlet conditions in SCHA does
not even ensure a uniform convergence of the solu-
tion (but we admit that in practice they do converge
faster).

Uniform convergence conditions have been set up
for SH expansions. In that case, one may involve the
first Harnack theorem mentioned in Section (9.2.3)
(Kellog, 1929, p.248) which connects uniform con-
vergence inside the domain to uniform convergence

on its boundary. When the domain is a sphere or
a shell, uniform convergence on the boundary relies
on properties of Laplace series. The addition theo-
rem of spherical harmonics allows transforming the
two-dimensional series in degree l and order m into
a one-dimensional series in l involving a Legendre
expansion (see Kellog, 1929, chap. X and Hobson,
1965, chapter VII, for details). This is a mathematically
well-founded simplification not possible in the case of
SCHA or R-SCHA, although addition theorems exist
for generalized Legendre functions (Hobson, 1965,
chap. VIII, Robin, 1958, vol. III, chap. VII). According
to Jerri (1998, Section 3.5), further investigations
illustrating the link between rate of convergence and
boundary conditions fulfilled by the potential to be
approximated, could be carried out for instance with
models M1 and M2 defined in the previous section.
This investigation has not yet been performed.

9.4.4 Infinite Conical Domain

We define the infinite conical domain �∞ as the
domain described in Section (9.4.2.1) bounded by a
sphere of infinite radius c. In order to investigate the
changes brought to the expression of the basis func-
tions for the bounded domain, we solve the following
boundary value problem which is similar to problem
M2 defined in Section (9.4.2.4)

∇2 (V) = 0 on �∞ (9.119a)

V = Gθ0 (r,ϕ) on ∂θ0�∞ (9.119b)

∂V

∂n
= Ga(θ ,ϕ) on ∂a�∞ (9.119c)

V and
−→∇ V −→ 0 when r → ∞. (9.119d)

The problem is again split up into two sub-
problems with partially homogeneous boundary con-
ditions (compare to Eqs. 9.100 and 9.101)

∇2V1 = 0 on �∞ (9.120a)

V1 = 0 on ∂θ0� (9.120b)

∂V1

∂n
= Ga on ∂a� (9.120c)
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V1 and
−→∇ V1 −→ 0 when r → ∞, (9.120d)

∇2V2 = 0 on �∞ (9.121a)

V2 = Gθ0 on ∂θ0�∞ (9.121b)

∂V2

∂n
= 0 on ∂a�∞ (9.121c)

V2 and
−→∇ V2 −→ 0 when r → ∞. (9.121d)

Basis functions derived from BVP (Eqs. 9.120) are
the same as those of the BVP (Eqs. 9.100) except for
the functions ψm

e,k (Eq. 9.96b) which do not vanish at
infinity and have therefore to be discarded. The main
difference with the case of the bounded domain comes
from the solutions of the second BVP (Eq. 9.121)
and more specifically from the changes in Eq. (9.102)
which now writes

− dr

(
r2drR(r)

)
= λR(r) on ]a, ∞[ (9.122)

R′(a) = 0 (9.123)

R(r) and R′(r) → 0 when r → ∞. (9.124)

It turns out that the eigenvalues are no longer a
discrete set of complex numbers. They build up a
continuum of the form

λ = 1

4
+ y2 = ν (ν + 1) , (9.125)

where y is a real number, positive or null and the roots
ν write

ν = −1

2
+ y with y � 0. (9.126)

The radial functions, denoted Ry (r), take the form

Ry(r) =
√

a

r

[
2y cos

(
y ln

r

a

)
+ sin

(
y ln

r

a

)]

when y > 0,
(9.127a)

and Ry(r) =
√

a

r

[
ln

r

a
+ 2

]
when y = 0, (9.127b)

The basis functions, equivalent to those given by Eq.
(9.112a), write now

ψm
y (r, θ ,ϕ) = γm

y (r,ϕ)Km
y (cos θ ), (9.128)

with

γm
y (r,ϕ) = Ry(r)eimϕ m ∈ N, (9.129)

where the complex form, as before, is kept for simplic-
ity. In the particular case y = 0, the Mehler function
Km

y may be more clearly written Pm
−1/2 which is a par-

ticular generalized Legendre function with real degree.
Splitting the exponential form of the ϕ-function

into real-valued trigonometric function, the Fourier-
like expansion of a potential V on the basis functions
ψm

y more explicitly writes

SV = a
∞∑

m=0

⎡

⎢
⎣cos mϕ

∞∫

y=0

Gm (y)Ry(r)Km
y (cos θ )dy

+ sin mϕ

∞∫

y=0

Hm (y)Ry(r)Km
y (cos θ )dy

⎤

⎥
⎦ .

(9.130)

The integral factors are the equivalent of inverse
Fourier transforms, the coefficients Gm (y) and Hm (y)
being now functions of the real variable y instead
of being indexed terms of a series. Thus, the for-
malism for the infinite cone is derived from that
of the bounded cone in very much the same way
as the Fourier transform may be derived from the
ordinary Fourier series when the periodic interval is
stretched out to infinity. The functions Gm (y) and
Hm (y)might thus be interpreted as generalized Fourier
transforms of the potential V. The space U (�) men-
tioned in Section (9.4.2.4) is still the functional frame.
However, the domain being now unbounded, some care
must be taken regarding the existence of the inner
products 〈f , g〉 defined by Eq. (9.114) and 〈f , g〉U =
∫

�∞

(−→∇ f · −→∇ g
)

dτ . Likewise, care must be exercised

in the use of Green’s identity (Eq. 9.24). The computa-
tion of Gm (y) and Hm (y) is alike the bounded case if
the basis functions are still orthogonal with respect to
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the inner product 〈·, ·〉U . Assuming that Green’ identity
holds true, we have

〈
ψm

y ,ψm′
y′
〉

U
=

∫

∂θ0�∞

ψm
y

(
∂ψm′

y′

∂n

)

∂θ0�∞

sin θ0rdrdϕ

(9.131a)

= δm, m′
(
1 + δm,0

)
π sin θ0Km

y (θ0)∂θ0
(

Km
y

)

∞∫

a

Ry(r)Ry′(r)dr,

(9.131b)
where δm, m′ , δm, 0 are the Kronecker symbols. It may
be shown, using the Fourier transform of the Heaviside
function that

∞∫

a

Ry(r)Ry′(r) dr = 2πa(yy′ + 1

4
)δ (y − y′), (9.132)

where δ (y) is the Dirac distribution. Thus, ψm
y , ψm

y′
are orthogonal in the generalized sense defined by
Eq. (9.132). On the other hand, ψm

y and ψm
i, k are still

orthogonal due to the boundary conditions (Eqs. 9.120
and 9.121) they respectively fulfill. Taking into account
the orthogonality property expressed by Eq. (9.132), it
is now straightforward to compute Gm (y) and Hm (y).
For instance

Gm (y) =
sin θ0dθ0

(
Km

y

)

a
∥
∥
∥RyKm

y cos mϕ
∥
∥
∥

2

U

∞∫

a

Ry(r)dr

2π∫

0

V(r, θ0,ϕ) cos mϕdϕ.

(9.133)

Thébault (2008) used an hybrid variant of this
method to construct a time-varying magnetic field
model over France for the epochs between 1965 and
2007.5, restricting the expansion on the ψm

y to the only
term y = 0 as this term at least was necessary in order
to comply with basic properties of the magnetic field,
and keeping the so-called external basis function in
order to balance the incompleteness induced by this
restriction. Therefore, the basis function correspond-
ing to this latter approximation is, strictly speaking, not
complete.

Figure 9.9 displays an application of the infinite
cone restricting the expansion (Eq. 9.130) to y = 0

that is referred to as R-SCHA2D. The maximum series
expansion in Eqs. (9.96a) and (9.96b) are defined to
resolve the Zall data to 100 km wavelengths. The model
fits Zall correctly both for the main and crustal fields.
Part of the residuals are due to wavelengths smaller
than 100 km but one can see the presence of circular
edge effects near the Southern boundary. This is mostly
caused by the choice of the Dirichlet boundary condi-
tion set in Eq. (9.120b) that makes the Z component
converge slower than the horizontal component but
the restriction to y = 0 may likely be responsible for
some part of the residuals. Since the basis functions
are orthogonal we could, in principle, compute a power
spectrum (which does not make sense in case of alias-
ing). The total field can be fairly well represented but
we cannot ascertain that the upward/downward con-
tinuation will be stable, unless we deal with magnetic
fields with very specific properties, because the restric-
tion to y = 0 may very well hold at the data surface but
not anymore at another radius.

9.4.5 Slepian Functions

We now finish our overview of regional modelling with
the Slepian functions. These functions originate from a
problem in information theory, dealing with the opti-
mal concentration of a signal in both the time and
frequency domains (see Simons et al., 2006, for refer-
ences). They may be introduced in two ways. First, by
adopting the viewpoint of strictly band-limited func-
tions (up to degree L in terms of spherical harmonics)
which is an approach comparable to the SH expansion.
Second, by making use of the concept of strictly spa-
tially localized functions, which is closer to regional
modelling like SCHA and R-SCHA. We restrict our-
selves to the first approach, which takes a simple
algebraic form, part of which has already been seen
in the above paragraphs.

Let be HL the space defined in Section (9.3.2)
and KL (ρ) the subspace of L2

(
Sρ

)
of the band-

limited spherical harmonic functions defined on the
sphere S (ρ) (ρ = RE or simply r). L2

(
Sρ

)
is endowed

with the inner product defined in Eq. (9.16). HL and
KL (ρ) have the same dimension, namely L (L + 2).
The functions ψm

l (R̂r) are identical to βm
l (̂r) and are

therefore orthonormal on KL (R), whereas ψm
l (r̂r) are

orthogonal on KL (r) (see Eq. 9.18a for the definition
of ψm

l -the subscript i having been dropped).
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Fig. 9.9 Modelling of the magnetic field and the crustal field using an approximate expansion resembling to the solution of the
infinite cone. This approach is called R-SCHA2D. On the left are shown the residuals. Units are in nT

As in Section (9.3.1.2), we illustrate the Slepian
technique with the expression of the radial component
rBr. According to Eq. (9.52) and (9.53), where the
maximum degree is L, the components rBL, r (r̂r) and
RBL, R (R̂r) write

rBL, r (r̂r) = R
L∑

lm

pm
l ψ

m
l (r̂r) = R

L∑

lm

pm
l (r) Ym

R, l (R̂r) ,

(9.134a)

RBL,R (R̂r) = R
L∑

lm

pm
l ψ

m
l (R̂r) = R

L∑

lm

pm
l Ym

R, l (R̂r) ,

(9.134b)
with

pm
l (r) =

(
R

r

)l+1

(l + 1) gm
l =

(
R

r

)l+1

pm
l . (9.135)

We define Ym
R, l (R̂r) as in Eq. (9.57) in order to bet-

ter stress that they are functions defined on SR. The

expression
L∑

lm
hereafter stands for

L∑

l=1

l∑

m=−l
accord-

ing to the convention adopted by Simons and Dahlen
(2006). The relation between rBL, r (r̂r) and RBL, R (R̂r)
expanded in terms of the SH Ym

R, l (R̂r), hence the
upward and downward continuation, has been dis-
cussed in (section 9.3.1.2).

9.4.5.1 Slepian Functions in KL (R)

We are now looking for a set of basis functions of
KL (R) localized in a region�R ⊂ SR. These functions,

defined as g (̂r), maximize the space energy ratio
(Simons et al., 2006; Simons and Dahlen, 2006)

λ =

∫

�R

[
g (R̂r)

]2
dσ

∫

SR

[
g (R̂r)

]2
dσ

. (9.136)

As g belong to KL (R), there are at most L (L + 2) lin-
early independent functions. Their expansion on the

basis
{

Ym
R, l

}
writes

gk (R̂r) =
L∑

lm

γm
l, kYm

R, l (R̂r) . (9.137)

For simplicity, the double indices (l, m) are mapped to
a single index j according to the rule

j (l, m) = l2 + l + m, (9.138)

and the coefficients γm
l, k can be written Cjk, j =

1, . . . , L (L + 2). The column vector "k = C·, k belong-
ing to R

L(L+2) contains the components of the vector

gk (R̂r) on the basis
{

Ym
R, l (R̂r) orYR, j (R r̂)

}
. Using

the mapping from KL (R) onto R
L(L+2) just described,

Simons et al. (2006) showed that the vectors "k are the
eigenvectors of the algebraic eigenvalue problem

D (") = λ", (9.139)
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where D is the L (L + 2)× L (L + 2) — dimensional
matrix whose elements are given by

Dlm, l′m′ = 1

4π

∫

�1

Ym
R, l (R̂r)Ym′

R, l′ (R̂r) dσ . (9.140)

�1 is the radial projection of �R onto S1. According
to the mapping defined by Eq. (9.138), the elements
of D may be indexed Dij, i = 1, . . . , L (L + 2) , j =
1, . . . , L (L + 2). D is the matrix of a symmet-
ric (i.e., self-adjoint), positive operator on R

L(L+2),
which range is R

L(L+2). Hence, there are L (L + 2)
positive eigenvalues λk, associated to L (L + 2)
orthogonal eigenvectors "k whose components are
(
Ci,k

)
i=1,..., L(L+2) =

(
γm

l, k

)
. These eigenvectors may

be normalized. Hence, the columns of the matrix C
verify the property

L(L+2)∑

α=1

CαjCαk =
L∑

lm

γm
l, jγ

m
l, k = δjk, (9.141)

and the matrix C maps the basis
{

Ym
R, l

}
onto the basis

{gk}

gk (R̂r) =
L(L+2)∑

j=1

CT
kjYR, j (R̂r) , (9.142)

where C is an unitary matrix and therefore C−1 = CT .
Conversely

YR, j (R̂r) =
L(L+2)∑

k=1

Cjkgk (R̂r) or Ym
R, l (R̂r)

=
L(L+2)∑

k=1

γm
l, kgk (R̂r) .

(9.143)

Thus, the Slepian functions are constructed such as to
verify the property

1

4π

∫

S1

gj (R̂r) gk (R̂r) dσ = δjk. (9.144)

In addition, they have the nice property of being like-
wise orthogonal on the region�R (Simons and Dahlen,
2006)

1

4π

∫

�1

gj (R̂r) gk (R̂r) dσ = λjδjk. (9.145)

As one may conjecture, this property plays a cen-
tral role in the inverse problem. As expected, when
�R tends to cover the whole sphere, every eigenvalue
tends towards 1 and gk (R̂r) tends towards Ym

R, l (R̂r).
Technical details about the actual calculation of the
Slepian functions are to be found in Simons et al.
(2006). They show in particular that the mathemat-
ics are definitely simpler if �1 is a circular cap. The
component RBL, R (R̂r) which expansion on the basis{

Ym
R, l (R̂r)

}
is given by Eq. (9.134b) may be likewise

expanded on the basis {gk (R̂r)}

RBL, R (R̂r) = R
L(L+2)∑

k=1

skgk (R̂r) . (9.146)

According to the well-known algebraic rules for basis
change, sk and pm

l are linked by

sk =
L(L+2)∑

j=1

Cjkpj =
L∑

lm

γm
l, kpm

l , (9.147a)

pj =
L(L+2)∑

k=1

Cjksk or pm
l =

L(L+2)∑

k=1

γm
l, ksk. (9.147b)

9.4.5.2 Slepian Functions in KL (r)

In order to calculate rBL, r (r̂r), which expression
in terms of solid spherical harmonics is given by
Eq (9.134a), we may search likewise an expansion
using the functions gk (R̂r). Therefore rBL,r (r̂r) writes

rBL, r (r̂r) = R
L(L+2)∑

k=1

sk (r) gk (R̂r) . (9.148)

The functions sk (r) gk (R̂r) are orthogonal with respect
to the inner product defined in Eq. (9.16) on the space
L2 (Sr). This property guarantees the uniqueness of the
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functions s k (r). Let us calculate them in terms of the
constant pm

l . We obtain

sk (r) =
L∑

lm

γm
l, kpm

l

(
R

r

)l+1

, (9.149)

which shows that the radial functions sk (r) are signifi-
cantly more complicated than the pm

l (r) defined in Eq.
(9.135). This will require that multi-level data have to
be modelled with different functions sk (r). In order to
write sk (r) in terms of sk (R), we replace pm

l by its
expression given by Eq. (9.147b)

sk (r) =
L(L+2)∑

j=1

[
L∑

lm

γm
l, kγ

m
l, j

(
R

r

)l+1
]

sj. (9.150)

9.4.5.3 Potential Field Estimation On �r

Let us turn back to the eigenvalues λk of Eq. (9.136).
They are clearly in the interval [0, 1]. The largest val-
ues correspond to the Slepian functions most concen-
trated in the area �R or equivalently �r. The so-called
“spherical Shannon number” defined by (Simons and
Dahlen, 2006)

N =
L(L+1)∑

k=1

λk = (L + 1)2
A

4π
, (9.151)

where A is the area of �R divided by R2, provides
an estimate of the number of Slepian functions to be
retained in the expansion. The reduction of basis func-
tions according to the eigenvalue magnitude, together
with the property expressed by Eq. (9.145) makes the
Slepian basis attractive for the inverse problem. We
illustrate this point by considering the inverse problem
consisting in estimating the coefficients sk (r) knowing
rBr (= rBr, mes) on �r. As usual, in the least-squares
approach, we minimize a functional with respect to
the coefficients sk (r) of the expansion given by Eq.
(9.148). In the present case, the functional writes

d2 = 1

4πr2

∫

�r

[
rBL, r (r̂r)− rBr, mes (r̂r)

]2
r2dσ .

(9.152)

In practice, it is advisable to use a truncated sum. The
Shannon number gives an indication of how to select

the minimal eigenvalue but other choices may be made
(see Simons and Dahlen, 2006 for a discussion) and
therefore, we write J the maximal index (therefore, λJ

is the smallest eigenvalue). Replacing rBL,r (r̂r) by the
truncated expansion, we obtain

d2 = R2

4π

J∑

j=1

J∑

k=1
sj (r) sk (r)

∫

�1

gj (R̂r) gk (R̂r) dσ

− 2Rr
4π

J∑

j=1
sj (r)

∫

�1

gj (R̂r)Br, mes (r̂r) dσ

+ r2

4π

∫

�1

(
Br, mes (r̂r)

)2
dσ . (9.153)

Taking into account Eq. (9.145), d2 becomes

d2 = R2
J∑

j=1

λj
(
sj (r)

)2 − 2Rr

4π

J∑

j=1

sj (r)
∫

�1

gj (R̂r)

Br, mes (r̂r) dσ + r2

4π

∫

�1

(
Br, mes (r̂r)

)2
dσ .

(9.154)
The normal equations write

λjsj (r) = 1

4π

( r

R

) ∫

�1

gj (R̂r)Br, mes (r̂r) dσ . (9.155)

Equation (9.155) shows clearly the importance of the
property expressed by Eq. (9.145) and of a good selec-
tion of the eigenvalue and Slepian eigenfunction set.
Of course, this presentation is a rather elementary
approach to the inverse problem. The reader is referred
to Simons and Dahlen (2006) for further developments
and to Simons et al. (2009) for an application to the
modelling of the Bangui anomaly.

Figure (9.10) shows the residuals between the SH
synthetic data Zall and the Slepian reconstruction to
L = 200. Note its similarity with Figures (9.9-right)
and (9.2). The Slepians do rather well in reconstruct-
ing the total field in this case. Some subtleties are
worth being mentioned. First, the Slepian reconstruc-
tion was performed here within a spherical cap but this
is not required. Among the methods presented so far,
this flexibility is rather unique and allows adjusting
a model to very specific geometry (that is in gen-
eral imposed by the available data distribution often
correlated with the boundaries of countries). Second,
the inverse problem is numerically well conditioned
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Fig. 9.10 Residuals in nT
between the Zall synthetic data
and the slepian reconstruction
using L = 200

thanks to the orthogonality of the Slepian functions and
this allows estimating power spectra (Simons, 2010).
Note, however, that a good a priori knowledge on the
data error is required to avoid modelling the noise and
select the optimal number of Slepian functions. At
last, by virtue of Eq. (9.145) and its associated com-
ments, Slepian functions are currently powerful for
spectral analysis of surface collocated data but efforts
are being made towards implementing the technique in
order to process simultaneously the three components
of the magnetic field vector data measured at different
altitudes (Beggan and Simons, 2009).

9.5 Conclusions

We presented in a formal manner different techniques
under development for modelling the Earth’s mag-
netic field with, in its wide acceptation, local functions.
We showed that the methods based on functions with
global support are in fact different realizations of a
unique expression given by Eqs. (9.37) and (9.38); they
will then differ according to the chosen kernel and reg-
ularization. We then illustrated that most approaches
provide similar result when a sufficiently large set of
perfect magnetic field data at a single surface is avail-
able. The techniques are, however, not equivalent from

a practical point of view when moving away from
this ideal situation. The differences come up because
the approaches discussed rely on sometimes funda-
mentally different concepts. Some do not necessarily
solve Laplace equation (techniques inherited from sig-
nal processing, for instance), others do not converge
uniformly (regional modelling without the appropri-
ate boundary conditions) and, in general, none of them
allow internal/external field separation (when applied
over a portion of the sphere only). Methods with global
support are arguably ill suited for dealing with mag-
netic field signals with local characteristics but are
likely to allow internal/external field separation when
they are applied at the global scale since they encom-
pass the internal magnetic field sources of the Earth.
Conversely, we do not see how regional modelling
could be superior to SH for representing the large-
scale fields (unless there is a data distribution issue, of
course) because the lateral boundaries may introduce
convergence difficulties such as Gibbs phenomenon.
Roughly speaking, regional or global approaches thus
require signals with wavelengths consistent with the
dimension of the studied region. It does not mean that
they will fail but that they will necessitate incorporat-
ing a priori information and regularization.

As one can realize by the preceding pages none of
the technique is user-friendly. They require time of
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adaptation and sometimes new coding from scratch.
Understanding the groundwork of each philosophy
first (global or regional support), then of each
approach, to be able to pick up the technique the most
relevant with respect to a particular magnetic dataset
is a tedious work that explains well why local func-
tions have not been more widely adopted so far even
though they are, in principle, dedicated to detecting
small-scale features detection that would be otherwise
smoothed out in SH. Other difficulties, not detailed
here, arise due to the real data accuracy, distribution
of noise, artefacts or biases that require a specific
expertise.

Yet, we argue that developing these techniques in
the framework of geomagnetism is worth the effort,
at least for two simple reasons. One is practical as in
the forthcoming years a significantly large amount of
high quality satellite data will complement the already
large available dataset (Friis-Christensen et al., 2006).
However, the amount of near-surface data will not
grow as rapidly and the issue of near-surface data
spatial distribution will remain critical. In addition,
we should not forget that potential fields, in partic-
ular magnetic fields, are ones of the few remotely
accessible internal properties in planetary explorations.
Among some planetary magnetic fields, at least for the
Moon and Mars, the contribution from the crust and
thus small scales dominate other internal field con-
tributions (e.g., Langlais et al., 2009). Local analysis
should be there particularly effective. The second rea-
son is to our point of view too often overlooked. The
temptation is big to evaluate, or validate, the robust-
ness of a regional model by comparing results with
those provided by SH models. It is customary to pre-
judge that SH are more or less robust because models
indeed showed remarkable fidelity over the last years,
especially for the lithospheric field. One should keep in
mind, however, that the similarities obtained between
SH models may also reflect the self-consistency of the
SH procedure (including the data processing) rather
than the physics of the magnetic field. Early models
of lithospheric fields in SH, based on different pro-
cedures, are in fact different (Thébault et al., 2010).
In that respect, regional schemes may also be used to
challenge the robustness of the standard SH models, to
assess regionally their compatibility with dense near-
surface measurements, and to verify that magnetic field
features are indeed not bound to one specific way of
representing the data.

Regional modelling is in its infancy and we do not
have the necessary hindsight to state the context in
which it is unquestionably superior to SH. Until now
regional models have been generally presented as pro-
totypes or used simply for mapping the magnetic field
at national scales. Little serious work has been carried
out regarding the possible significance of the residuals
obtained between their results and equivalent SH mod-
els. Investigating if the mismatches show persistent
features, if they are independent from the local method
used and if they contain time-variability or even peri-
odicity, etc. is ultimately a scope of regional modelling
that is likely to offer geophysical novelties. This com-
pels more development, one of the most urgent being
probability the ability to define a geomagnetic field
spectrum and to separate the sources at a regional scale
as this would open new ways to characterize the mag-
netic field sources in the crust. This, we believe, is not
necessarily a long call as the forthcoming abundance
of magnetic field measurements and always denser
compilations will prompt new interests and thus new
practitioners in regional magnetic field modelling.
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