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Introduction

This contribution tries in an exemplary way to look at the case of the historical devel-
opment of important tendencies in mathematics education (Mathematikdidaktik) in
Germany in the last 40 years. This description can only follow one line of devel-
opment; it cannot and will not summarize other research approaches existing in
mathematics education in Germany. A major concern is to investigate the clari-
fication process of the central objects of mathematics education research and to
analyze the important role that the content matter ‘mathematics’ plays for teaching
and learning processes. The main interest of this paper is to better understand the
special German case of how theoretical considerations for mathematics education
developed, changed and expanded. This development cannot and will not explain a
universal, all-embracing theory of mathematics education, but it reflects one impor-
tant German tradition (without looking here at other traditions) and is an example
of a theoretical evolution of mathematics education. Within this historical devel-
opment, there are to be found strategies of comparing, contrasting and of (locally)
integrating theories and theoretical aspects.

‘Mathematics learning’ as an object of didactical considerations has consistently over time
been regarded as the triad ‘Learner – Teacher – Learning/Teaching-Content’. In pedagog-
ics, these three elements are labeled as the ‘didactical triangle’ since Friedrich Herbart
(1776–1848) (see Peterßen, 2001, p.140, and Künzli, 2000, pp. 48–49). According to
Herbart “. . . education within instruction does not [take place] in the immediate relationship
between educator and pupil, but educator and pupil [enter] into an indirect relationship to
each other. Between them stand the instruction objects”1 (Peterßen, 2001, p. 140, translated
by H.S.).

In mathematics education (in Germany), the didactical triangle (see Fig. 4.1)
has a long tradition. The vertices for mathematics education represent: (1) the
mathematical knowledge, (2) the student, and (3) the teacher (cf. Steinbring, 1998a).
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The schema of the didactical triangle with its three elements will be used as a
kind of ‘test instrument’ for the following considerations and analyses. By using
this triangle, the following orientating questions will be asked for the elaboration of
the changes and developments in mathematics education:

(A) Which explicit and implicit (unconscious) concepts and role descriptions
exist about the three ‘elements’: mathematics, teacher and students?

(B) Which explicit and implicit (unconscious) concepts and role descriptions
exist about the relationships or interactions between the three ‘elements’:
mathematics, teacher and students?

(C) What is explicitly or implicitly (unconsciously) seen as the central and cru-
cial means (among the three ‘elements’: mathematics, teacher and students)
of positively influencing and improving the learning process?

These questions, combined with the resulting insights and answers, will help to
provide a more fully differentiated picture of which research concepts and objects
have been predominant in mathematics education in the course of its historical
development, and how the role and nature of (school) mathematical knowledge has
changed and been redesigned in the course of this development.

The ‘Stoffdidaktik’ Elaboration of Mathematical
Knowledge as an Essential Factor Influencing
Teaching and Learning Processes

Until the mid-1960s, the emphasis in Germany was on didactical works and analyses
which concentrated on school-mathematical knowledge, its didactical elementa-
rization and on subject matter aspects. These works were essentially linked to
mathematics as a pre-given content for learning and instruction, and specific fea-
tures of a genuinely mathematics education research approach had not yet become
noticeable in them. Especially within the German-speaking countries, this didactical
research paradigm developed as stoffdidaktik2 (Content based Didactics).

2In this paper ‘stoffdidaktik’ is restricted to a certain fundamentalist form of content-related math-
ematical analysis based on ideas from the New Math era. Later, there were further developments
and modifications of the stoffdidaktik approach – no longer explicitly linked to the New Math
era – that relate the analysis of mathematical content knowledge to the learning processes of stu-
dents. These kinds of stoffdidaktik still exist; there are also types of stoffdidaktik that emphasize
the epistemological analysis of mathematical content matter.
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. . . ‘stoffdidaktik’ is dominated by too simple a model to solve didactical questions and
research problems. [It] acts on the assumption that mathematical knowledge – as researched
and developed in the academic discipline – is essentially unchanged and absolute . . ..
Though ‘stoffdidaktik’ in the meantime notices the problems of understanding that students
have in learning, and accordingly it specifically proceeds to prepare the pre-given mathe-
matical disciplinary knowledge for instruction as a mathematical content, to elementarise
it and to arrange it methodically; yet the principle remains unchallenged that mathemati-
cal knowledge represents a finished product, and that the teaching-learning-process can be
organised linearly, emanating from the content, over the teacher, into the students’ heads,
and can ultimately be controlled and influenced at every step by mathematics educators
(Steinbring, 1997, p. 67, see also Steinbring, 1998a, and Steinbring, 1998b, pp. 161–162).

Under the abbreviated label stoffdidaktik, this direction was especially repre-
sented by ‘didactically oriented content analysis’.

The research complex of didactically oriented content analysis (Sachanalysen) has lately
engaged mathematics education in the Federal Republic of Germany in a particular way . . ..
The research methods of this area are identical with those of mathematics, so that outsiders
have sometimes gained the impression that, here, mathematics (particularly elementary
mathematics) and not mathematics education is being conducted . . .. The goal of ‘didac-
tically oriented content analysis’ which essentially follows mathematical methods is to give
a better foundation for the formulation of content-related learning goals and for the devel-
opment, definition and use of a differentiated methodical set of instruments. (Griesel, 1974,
p. 118, translated by H.S.).

What does progress in mathematics education depend upon? 1. Upon the state of devel-
opment of the analysis of the content, the methods and the application of mathematics. 2.
Upon didactical ideas and insights, which make it possible to attend better, or at all, to a
subject area within instruction. (Griesel, 1971, p. 7, translated by H.S.).

Griesel names four further influential factors (general experience and statistically
based evidence about instruction, insights into the mathematical learning process,
development-psychological and sociological conditions); yet the didactical work on
the ‘content’ is the most important.

In a critical comparison between (German) ‘didactically oriented content anal-
ysis’ and (French) ‘ingénierie didactique’, Strässer (1994) states that stoffdidaktik
ultimately pursued the goal of elaborating school-mathematical subject areas – sim-
ilar to mathematical areas in Bourbakism – in a logically consistent way and built
upon unambiguous foundations. As an example, Strässer quotes from the fore-
word to the two-volume book by G. Holland Geometry for Teachers and Students
(1974/1977):

This book arguably offers the reader a complete axiomatic composition of the Euclidian
geometry of the plane, which in its system of concepts as well as in the choice and organ-
isation of the geometrical contents orientates itself as much as possible to contemporary
geometry instruction in school (Holland, 1974, p. 7, translated by H.S.).

An archetype for stoffdidaktik was uniform mathematics, as it was exemplarily
given by Bourbaki and then by the so-called New Mathematics. Connected with this
archetype of uniform, axiomatic mathematics, the illusion for work in stoffdidaktik
was that mathematics for teachers, students and pupils (i.e., school-mathematics)
could also ultimately be elaborated in a logically correct and consistent manner,
definite and absolute for all teaching and learning processes.
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The whole of mathematical knowledge, ordered in this way, is, in principle, describable
with a single, universal language. This uniformity . . . means essentially that the elemen-
tary concept of the number ‘5’ and the more abstract concept of the ‘expectation of a
binomially distributed random variable’ are objects at the same level of description by
mathematical set-language. This product of the mathematical knowledge corpus reflects
the preoccupations of the historical period during which it originated; its logical clarity, the
construction from the simple to the complex and abstract, as well as its uniform language,
are together imagined to provide the ideal preparation of knowledge for its acquisition and
its understanding – as was also for example the maxim of the movement of so-called ‘New
Mathematics’ (Steinbring, 1998b, p. 161).

The stoffdidaktik work undertaken focused initially on the school mathematics of
higher school grades (especially grammar school, the German Gymnasium covers
the grades 5–13, age 10–19); then, at the end of the sixties, with didactical works
in the frame of the movement of ‘New Mathematics’ (especially the works of Z. P.
Dienes), it was extended to mathematics instruction in primary school (grades 1–4,
ages 6–10).

The modernisation of mathematics instruction in primary school only started much later,
about the year 1966, when the inventive ideas of Z. P. Dienes became familiar . . .. We can
speak of a modernisation of mathematics instruction in primary school and in grades 5 and
6 . . . (Griesel, 1971, p. 8, translated by H.S.).

For a summary, characterizing the position of stoffdidaktik as described in this
paragraph, the three aforementioned questions (A, B and C) shall now be consulted
and answered in a general way. About the mathematical content, there clearly is
the conception that ultimately a uniform, objective and unchangeable content of
teaching and learning is to be elaborated in didactics according to the paradigm of
scientific mathematics. The teaching, learning and understanding processes of the
participating persons (teacher and students) are orientated around the rigid subject
matter structures: the teacher is the ‘conveyor’ of the didactically prepared content
to the student(s) who are seen as passive receivers. The relations between the three
elements of the didactical triangle are of an essentially linear nature: the mathemat-
ical knowledge arrives by means of the preparation and transfers from the teacher to
the students. In the research paradigm of stoffdidaktik, the scientific elaboration of
mathematical knowledge is the central and crucial means practiced for steering and
optimizing mathematical instruction, learning and understanding processes.

The Synchronization Between the Dynamics of Knowledge
Development and the Processes of Teaching and Learning

The international criticism of New Mathematics (Kline, 1973) led also in Germany
to a long-term critical altercation with New Mathematics. Furthermore, the scien-
tific debate about the status and the objects of a science genuinely concerned with
mathematics education took place over a longer period (Steiner in ZDM, 1974;
Winter, 1985; Wittmann, 1992). One prominent voice, Winter (1985, pp. 80–81),
states:
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So-called Sachanalysen (‘didactically oriented content analyses’) can have a downright
calamitous effect on the school reality, if they refer reductionistically solely to mathematics
(perhaps even to assumed mathematics) and fade out other essential constituents of learning
mathematics . . .. [One] inevitably encounters problems of the goals and forms of learning
itself, which are not, or hardly, explained in the Sachanalysen . . .. In general: Sachanalysen
are in danger of losing focus on the outer-mathematical reality and thus on the students’
experience of the world, and this is only one pedagogical sin of such reductions (Winter,
1985, p. 80/81, translated by H.S.).

The relation between mathematical learning content and teaching and learning
processes did not work in the way imagined from the perspective of stoffdidak-
tik. A new perspective on the subject matter content needed to be developed
which took the sequential development and dynamics of teaching and learning pro-
cesses into account. Freudenthal (1973, p. 114) emphasized the process character of
mathematics for learning in a paradigmatic way:

It is true that words such as mathematics, language, and art have a double meaning. In the
case of art it is obvious. There is a finished art studied by the historian of art, and there is an
art exercised by the artist. It seems to be less obvious that it is the same with language; in
fact linguists stress it and call it a discovery of de Saussure’s. Every mathematician knows
at least unconsciously that besides ready-made mathematics there exists mathematics as an
activity. But this fact is almost never stressed, and non-mathematicians are not at all aware
of it.

Mathematics, as an activity, implies that learning becomes an active process in
the construction of knowledge.

The opposite of ready-made mathematics is mathematics in statu nascendi. This is what
Socrates taught. Today we urge that it be a real birth rather than a stylized one; the pupil
himself should re-invent mathematics . . .. The learning process has to include phases of
directed invention, that is, of invention not in the objective but in the subjective sense, seen
from the perspective of the student (Freudenthal, 1973, p. 118).

Development processes are not uniform, universal or homogeneous. Subjective
characteristics of those people keeping the process going, as well as situated repre-
sentations, notations and interpretations of mathematical knowledge, are manifold,
divergent and partly heterogeneous. Further, cultural contexts, subjective influences
and situated dependencies are both active and inevitable; such are the reasons for an
observable diversity and non-uniformity of the emerging knowledge.

The contrast between uniform scientific mathematics (oriented towards a gen-
erally valid (research) product) and the different perspectives and interpretations
of mathematics produced in social environments for different application domains
(tied up in situatedly-framed development processes) becomes extremely apparent
against the background of the different cultures in which mathematical knowledge
is used and experienced. The culture of the researching and teaching mathematician
and the culture of mathematics teaching face one another in an obviously distinct,
and sometimes opposing, way. The role the Bourbakist mother structures play for
the unity of mathematics cannot be understood by mere appropriation of the princi-
ples given by these structures. The culture of mathematical science and the historical
development of mathematics form the necessary background for an understanding.
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These principles of the unity of mathematical knowledge cannot easily be trans-
ferred to school mathematics. With such an endeavor, school mathematics would
lose its cultural background and become mere formalistic signs and formulas. In
order to understand these signs and formulae, the formation of a new, distinct cul-
ture, a kind of mathematical re-invention, would again be necessary. From the point
of view that mathematical knowledge has to be seen as a newly-emerging culture,
one has to question the unity of mathematics in learning and teaching processes.
If mathematical knowledge can only be meaningfully interpreted in the frame of a
specific cultural environment, then there is not simply one single, but many different
forms of practicing mathematics.

Wittmann (1995, pp. 358–359) distinguishes between specialized, scientific
mathematics and the general social ‘phenomenon’ of mathematics.

[One] . . . must conceive of ‘mathematics’ as a broad societal phenomenon whose diversity
of uses and modes of expression is only a part reflected by specialized mathematics as typ-
ically found in university departments of mathematics. I suggest a use of capital letters to
describe MATHEMATICS as mathematical work in the broadest sense; this includes mathe-
matics developed and used in science, engineering, economics, computer science, statistics,
industry, commerce, craft, art, daily life, and so forth according to the customs and require-
ments specific to these contexts . . .. It should go without saying that MATHEMATICS, not
specialized mathematics, forms the appropriate field of reference for mathematics educa-
tion. In particular, the design of teaching units, coherent sets of teaching units and curricula
has to be rooted in MATHEMATICS.

On the basis of this position about the role of mathematical knowledge in
instruction processes, Wittmann characterizes didactics of mathematics as a ‘design
science’ (1998, 2001). In German-speaking mathematics education, especially
concerning teacher education at universities and teachers’ further professional edu-
cation, Wittmann is a protagonist for a new perception on the role and the meaning
of mathematical knowledge for teaching and learning processes, which critically
distances itself from New Mathematics.

At the Institute for Didactics of Mathematics (IDM), founded at the University
of Bielefeld in 1973, fundamental studies about mathematics education positions,
problems and research questions were carried out in three working groups of sci-
entists. In the “Mathematics Teacher Education” working group (Arbeitsgruppe
Mathematiklehrerbildung, 1981), two central research approaches in mathematics
education were mainly pursued: (1) the particular epistemological nature of math-
ematical knowledge, and (2) the central role of the teacher within mathematical
teaching and learning processes.

Historical, philosophical and epistemological analyses were elaborated as a basis
for characterizing mathematical knowledge ultimately as theoretical knowledge. A
central criterion of theoretical mathematical knowledge – also observable in the
course of its historical development – lies in the transition from pure object or
substance thinking to relation or function thinking.

The transition from a substance concept to a relational concept is a central part
of Ernst Cassirer’s epistemological philosophy.
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. . . the theoretical concept in the strict sense of the word does not content itself with sur-
veying the world of objects and simply reflecting its order. Here the comprehension, the
‘synopsis’ of the manifold is not simply imposed upon thought by objects, but must be
created by independent activities of thought, in accordance with its own norms and criteria
(Cassirer, 1957, p. 284).

And in another passage, Cassirer (1923, p. 20) writes:
It is evident anew that the characteristic feature of the concept is not the ‘uni-

versality’ of a presentation, but the universal validity of a principle of serial order.
We do not isolate any abstract part whatever from the manifold before us, but we
create for its members a definite relation by thinking of them as bound together by
an inclusive law.

This understanding of theoretical mathematical concepts as referring to relations,
rather than to objects or to the empirical properties of objects, constitutes the basic
step towards developing mathematics education into a scientific discipline.

For didactics, for instance, it is obvious that the didactic problem in its deeper sense, that
is in the sense that it is necessary to work on it scientifically, is constituted by the very fact
that concepts will reflect relationships, and not things. Analogously, we may state for the
problem of the application of science that it will become a real problem only where the
relationship between concept and application is no longer quasi self-evident, but where to
establish such a relationship requires independent effort (Jahnke & Otte, 1981, pp. 77–78).

A perception that mathematical knowledge does not reflect things, but relations,
implies a differentiated view of teaching and learning mathematics as independent
activities of the participating persons. Thus, the role of the teacher comes to the fore.

A description of the requirements on the teacher and the teaching activity has been
attempted in the debate about the relation between teaching and learning. From this debate,
one can record as a consequence that ‘teaching’ cannot be derived from descriptions of
‘learning’ – and that according to the opinion of many authors the developmental status
of learning theories is more advanced than that of teaching theories. After all, the concep-
tion that the contents of teacher education should essentially consist of insights about the
student’s learning process is very common.

What is the specificity of teaching? The specificity of teaching lies within the con-
tent of the activity, which aims at effectuating learning. Every theory of academically
institutionalised education thus presupposes a concept of teaching and cognition, but
also requires perceptions about the questions by which mechanisms the teaching/learning
process leads or shall lead to an interactionally imparted forming of the learner.” (AG
Mathematiklehrerbildung, 1981, p. 57, translated by H.S.).

According to this perspective, theoretical and empirical works about the par-
ticularity of the teacher’s activity have been carried out in the aforementioned
working group of scientists at IDM Bielefeld (see for instance: Bromme,1981,
1992; Bromme & Seeger, 1979). These concepts and works about the activity of
the mathematics teacher reveal, in particular, that within the didactical triangle, the
teacher and his role are determined neither by the mathematical knowledge nor by
the learning students. For instance, Bromme (1981, 1992) analyses central aspects
of the teacher’s activity (e.g., the preparation of mathematics instruction) under the
perspective that teachers are to be regarded as experts in their professional field
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of work. In addition to the two essential fields of professional teacher knowledge:
‘content knowledge’ and ‘pedagogical content knowledge’ (according to Shulman,
1986), Steinbring (1998c) elaborates the particularity of ‘epistemological knowl-
edge for mathematics teachers’ with a view to the theoretical and dynamic character
of mathematics. This knowledge concerns insights about the particular epistemolog-
ical nature of mathematical knowledge for teaching and learning processes, which
are not contained in the ‘pedagogical content knowledge’, which Shulman (1986,
p. 9) briefly describes as “. . . the ways of representing and formulating the subject
that make it comprehensible to others”.

Furthermore, the independent role of the learning child with his or her cognitive
predispositions moved to the centre of didactical research, a position which it had
already taken for a longer time in primary school didactics. In a summarizing main
lecture at the Federal Congress for ‘Didaktik der Mathematik in Osnabrück’ in 1991,
Peter Sorger sums up a view taken in German mathematics education:

Today, we know so much more, especially about the individual primary school child, about
his cognitive activities, about his thinking, about the initiation and course of mathematical
learning processes, about the influences of the individual learning history onto new learning
situations, about the variety of possible thinking and solution strategies, which the adults’
perceptions are always in danger of cutting too short. The diagnosis, analysis and therapy
of learning difficulties have also been thoroughly researched (Sorger, 1991, p. 39, translated
by H.S.).

The research on this topic in particular uses methods from reference disciplines
and they are not reducible to mathematical works (i.e., they essentially contribute to
an independent research profile for mathematics education).

Again, the three questions (A, B and C) shall be asked and answered in a general
way, in order to characteristically sum up the positions about mathematical instruc-
tion (respectively teaching and learning processes) described in this section. The
mathematical content is interpreted more diversely and its dynamic and procedu-
ral character is particularly emphasized. (School-) Mathematical knowledge is not
identical with scientific mathematical research knowledge, but, at the same time, it
is theoretical knowledge which means that it is subject to a particular epistemology
(also in the frame of the activities of teaching and learning). It is this developmen-
tal aspect of mathematical knowledge that makes possible to coordinate the ongoing
students’ learning activities with the teachers’ teaching activities. These more differ-
entiated perceptions of mathematics education negate an immediate dependence of
the teacher on mathematical knowledge and of the student on the instructing teacher.
From this perspective, learning mathematics is autonomous: “socially and actively
discovering, independent learning by the students”; teaching is likewise viewed as
an independent activity (AG Mathematiklehrerbildung of the IDM Bielefeld).

The three elements of the didactical triangle, (1) the mathematical knowledge,
(2) the student and (3) the teacher stand ‘apart’ and gain independence as well as
their own dynamics with new didactical research questions. The relations between
these elements are of a rather indirect nature. For instance, the teacher is now
regarded rather like a moderator or initiator of learning processes, while the student
is conceded his own responsibility for his mathematical understanding and learning
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processes. The developing mathematical knowledge becomes manifest in different
ways in different using and teaching/learning practices; it is no longer consistently
and universally given, for example, on the basis of the Bourbakian structure types
(Bourbaki, 1971).

The ‘steering’ of the students’ learning processes by the teacher can no longer
be perceived as mechanical conducting. The ‘functioning’ of the didactical triangle
now rather represents a reciprocal process between its three elements and not a linear
or circular movement of mathematics via the teacher to the students, or vice-versa.
The mathematical knowledge (now in its new interpretation as theoretical knowl-
edge within a development process) remains important, but shows itself in different
characteristics in learning and teaching activities; however, the student’s learning
activities and the teacher’s teaching activities also have an essential influence on the
whole process.

At first, didactical research concentrated rather on the three relatively
autonomous elements of the didactical triangle, (1) the mathematical knowledge,
(2) the students and (3) the teacher; only with the beginning of mathematics educa-
tion interaction research was the co-action of the three elements taken seriously and
treated explicitly as the central object of didactical research.

Mathematics Education Research and Mathematical
Teaching-Learning-Practice as Independent
Institutional Systems

For a long time, researchers in mathematics education research took the standpoint
that mathematics teaching practice had to strictly follow the insights constructed
by mathematics education. This point of view is also found in those didacti-
cal works which emphasize the procedural character of mathematical knowledge
and of mathematical teaching and learning situations. There still exist perceptions
according to which instruction practice could be directly improved by educational
research.

Mathematics education is faced with the tension between scientific research and
constructive development work. This problematique has been discussed intensively
for a long time, for instance in the scientific debates about the so-called ‘Theory-
practice-problem’ (Bazzini, 1994; Even & Loewenberg Ball, 2003; Seeger &
Steinbring, 1992; Steinbring, 1994; Verstappen, 1988).

Facing this complementary task of research and constructive development, math-
ematics education is confronted with the fundamental question: “What is the
particular nature of the relation between theory and practice?” One traditional solu-
tion to this question that educational research exclusively provides the necessary
knowledge and prescriptions for school practice has been decidedly criticized and
replaced by other conceptions.

An essential criticism has been developed by means of the work of the research
group around Heinrich Bauersfeld at the IDM (Bielefeld). Since the beginning of the
eighties, research started in which everyday mathematics teaching as autonomous
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social events was taken seriously and analyzed under an interactionistic perspective
(e.g., Bauersfeld, 1978, 1988; Cobb & Bauersfeld, 1995; Krummheuer, 1984, 1988;
Maier & Voigt, 1991, 1994; Voigt, 1984, 1994). Everyday mathematics instruction
is seen as a peculiar culture, which is neither completely nor directly determined by
the scientific discipline ‘mathematics’, nor can it be directly guided and improved
by mathematics education research results.

Voigt (1996, p. 384, translated by H.S.) calls this the ‘turn to everyday life’ of
the authentic classroom in mathematics education:

. . . the ‘turn to everyday life’ . . . with its criticism of ‘holiday didactics’ . . . contained the
claim of assigning a greater meaning than before to the features of everyday instruction.
In ethnographic observations of instruction and interpretative studies, one saw a corrective
for conceptions of instruction which emerge at the didactical desk; one was disillusioned
by the effects of the school reforms (see among others the ‘New Mathematics’) and wanted
to understand better the surprising stability of everyday instruction, its own progress and
its traditions. At the same time, there was the hope of being able to better connect with
the experience and the problem awareness of the practitioners through softer methods of
empirical research”.

(School) Practice and (content-related educational) science need to be seen as
two relatively autonomous institutions and fields of work between which there are
no direct possibilities of influence or change (see Bartolini-Bussi & Bazzini, 2003;
Krainer, 2003; Scherer & Steinbring, 2006; Steinbring, 1994, 1998c). Each of the
two fields is subject to its own expectations and aims, as well as to system-internal
requirements and norms which cannot be externally invalidated in order to appar-
ently be able to directly interfere in and to purposefully regulate from within the
other field.

The relative separation and autonomy of (content-related educational) theory
and (school) practice, however, does not mean that there are no reciprocal actions
between the two at all. Rather, in the relation between theory and practice, the
respective other field can be seen as a necessary environment in which irritations
and stimulations occur, which indirectly animates the first field in order to imple-
ment changes, alternative ways of proceeding and further developments. What is
important here is to notice that not only such changes within (school) practice, but
also within content-related educational theory, must ultimately occur and establish
themselves from the inside and ‘out of themselves’. In order for this to happen, irri-
tations and stimulations from the outside are helpful and necessary, yet they are not
deterministic influencing instruments.

Under this fundamentally changed perspective on the ‘theory-practice-problem’,
the didactical triangle takes on a different orientation function for mathematics
education research. It no longer represents an ideal paradigmatic schema against
which everyday instruction must be measured, but instead becomes an instru-
ment for the analysis of actual mathematics instruction in which the reciprocal
interconnectedness between the three relevant elements participating in the instruc-
tion process are systematically captured.

In works of interpretative classroom research, social interactions and their
patterns and mechanisms were the centre of research interest; the mathematical
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teaching and learning content was, in principle, faded out. Thus, the particular rela-
tion between two elements of the didactical triangle (2) the student, and (3) the
teacher within the frame of everyday instruction events was prioritized.

The interactionist perspective relies mainly on two (previously neglected) basic
aspects: the learning child (in the classroom) and the interaction between the
learner and the teacher. In this research context, one has to distinguish between
two theoretical perspectives:

The one is an individual-psychological perspective which emphasizes the learner’s auton-
omy and his cognitive development and which leads to the concept of student-oriented,
‘constructivistic’ mathematics instruction. The other is a collectivistic perspective which
criticizes the ‘child-centered ideology’ of the first perspective and understands learning
mathematics as the socialization of the child into a given classroom culture . . . (Voigt, 1994,
p. 78).

These two research perspectives are based on reference to different scientific
disciplines. The individual-psychological perspective relies, for example, on cogni-
tive psychology as well as on radical constructivism (von von Glasersfeld, 1991)
and the collectivistic perspective uses sociological and ethnographic theories. In
the analyses of mathematical interactions, one or the other of these two theoretical
orientations is often emphasized.3 An over-emphasis on either the individual-
psychological or the collectivistic perspective was a major critique and a starting
point for the working group around H. Bauersfeld to develop a theoretical con-
cept which explicitly brings together the individual cognitive perspective and the
collective social perspective, as a basis for qualitative analyses of interaction.

On the one hand, it asserted that a single student cannot discover all school
knowledge by himself. “Culture, we can say, is not discovered; it is traded or falls
into oblivion. All this indicates for me that we should rather be more careful when
talking about the discovery method or about the conception that discovery is the
basic vehicle of instruction and education” (Bruner, 1972, p. 85). On the other hand,
it is considered doubtful that effective participation in social interaction patterns can
lead to successful mathematics learning.

In everyday lessons, interaction patterns often can be reconstructed in which the teachers
influence every step of the students‘ activities without creating favourable conditions for
the student to make desirable learning processes in problem solving and developing con-
cepts . . .. We should resist the temptation of identifying learning mathematics with the
student’s successful participation in interaction patterns (Voigt, 1994, p. 82).

Consequently, an interaction theory was developed in which both perspectives
were connected to each other:

[A]n interaction theory of teaching and learning mathematics [offers] a possibility of regard-
ing social aspects of learning mathematics and at the same time of avoiding the danger of
overdoing the cultural and social dimensions. For the interaction theory emphasizes the pro-
cesses of sense making of individuals that interactively constitute mathematical meanings.

3Concerning the individual-psychological perspective, see e.g. Cobb, Yackel, and Wood (1991);
and for the collectivistic perspective, see Solomon (1989).
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The interaction theory of teaching and learning mathematics uses findings and methods
of micro sociology, particularly of symbolic interactionism and ethnomethodology . . .. Of
course the interaction-theoretical point of view does not suffice if one wants to understand
classroom processes holistically (Voigt, 1994, p. 83).

The interaction-research approach of the social epistemology of mathematical
knowledge (Steinbring, 2005) understands itself as an important, independent and
complete model inasmuch as the particularity of the social existence of mathemati-
cal knowledge is an essential component of this theoretical approach of interaction
analysis. In this theoretical conception of the social epistemology of mathematical
knowledge, the epistemological particularity of the subject matter ‘mathematical
knowledge’ dealt with in the interaction, constitutes a basis for its theoretical
examination.

Epistemology-based interaction research in mathematics education accentuates
the assumption that a specific social epistemology of mathematical knowledge is
constituted in classroom interaction and this assumption influences the possibili-
ties of how to analyze and interpret mathematical communication. This assumption
includes the following view of mathematics: mathematical knowledge is not con-
ceived as a ready-made product, characterized by correct notations, clear cut
definitions and proven theorems. If mathematical knowledge in learning processes
could be reduced to this description, the interpretation of mathematical communi-
cation would become a direct and simple concern. When observing and analyzing
mathematical interaction, one would only have to diagnose whether a participant
in the discussion has used the ‘correct’ mathematical word, whether he or she has
applied a learned rule in the appropriate way, and then has gained the correct result
of calculation.

Mathematical concepts are constructed in interaction processes as symbolic rela-
tional structures and are coded by means of signs and symbols that can be combined
logically in mathematical operations. This interpretation does not require a fixed,
pre-given description for the mathematical knowledge (the symbolic relations have
to be actively constructed and controlled by the subject in interactions). Further,
certain epistemological characteristics of this knowledge are required and explic-
itly used in the analysis process (i.e., mathematical knowledge is characterized in
a consistent way as a structure of relations between (new) symbols and reference
contexts).

The intended construction of meaning for the unfamiliar new mathematical signs,
by trying to build up reasonable relations between signs and possible contexts of
reference and interpretation, is a fundamental feature of an epistemological perspec-
tive on mathematical classroom interaction. This intended process of constructing
meaning for mathematical signs is an essential element of every mathematical activ-
ity, whether this construction process is performed by the mathematician in a very
advanced research problem, or whether it is undertaken by a young child when
trying to understand elementary arithmetical symbols with the help of the place
value table. The focus on this construction process allows mathematics teaching
and learning at different school levels to be viewed as an authentic mathematical
endeavour.
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In epistemologically-oriented mathematical classroom research, the subject of
teaching and learning mathematical knowledge is taken into account as an impor-
tant element within the didactical triangle. For empirical, interpretative research,
the didactical triangle takes a descriptive function – and it has no prescriptive
function – with which guidelines for instruction practice are provided. As a descrip-
tive schema, the didactical triangle serves to characterize an essential and complex
(i.e., not further dissectible) fundamental object of mathematics education research:
namely, (everyday) mathematical interactions and communications within teaching
and learning processes.

To sum up, one can ascertain the following alongside the three questions (A, B
and C). The three elements of the didactical triangle, (1) the mathematical knowl-
edge, (2) the student and (3) the teacher, are seen in the institutional context of the
joint interaction as relatively independent ‘systems’, which are engaged in recip-
rocal actions with each other. The mathematical interactions between teacher and
students take place between autonomous subjects, who are aware of each other dur-
ing the reciprocal communication, but who cannot directly influence the psyche
or the consciousness of the other. The communicated and negotiated mathematical
knowledge is interactively constructed within this social context on the basis of its
epistemological basic conditions of consistence and structure.

Accordingly, the teacher continues to take the role of a moderator or a facilita-
tor of learning occasions for the students, who continue to be responsible for their
own understanding processes and participate by means of socially and actively dis-
covering mathematics learning. The instructional communication process emerges
and constitutes itself within the actual course of teaching and learning; it cannot
be planned and prepared in detail beforehand. Mathematics as a teaching-learning-
object develops within the social interaction, and is in different ways the ‘subjective
property’ of the persons taking part in the interaction.

The question about decisive means for positively changing and affecting the
teaching, learning and understanding processes (C) gains a more differentiated
background. Changes and improvements cannot take place from the outside, or
by means of a direct intervention. Changes can only be encouraged in the partic-
ipating autonomous systems and then need to be continued and realized within the
systems themselves. This concerns the learning student to whom the teacher can
ultimately only offer opportunities to learn for himself. But this is also true for the
teacher and the development of his professional teaching activity in connection with
mathematics education research.

Mathematical Knowledge in Teaching: A Case
Illustrating the Epistemology-based Interaction
View on Teaching Learning Processes

In what follows, a short teaching episode is used to illustrate exemplarily how,
from the perspective of epistemologically-oriented empirical instruction research,
the three elements of the didactical triangle, (1) the mathematical knowledge, (2) the
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Object/refe-
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Concept

Fig. 4.2 The epistemological
triangle

student, and (3) the teacher, autonomously and interactively generate mathematical
knowledge within this social situation (based on Steinbring, 2005).

Mathematics teaching and learning deal with the use and interpretation of math-
ematical signs, symbols and symbol systems. The mediation between mathematical
signs or symbols and structured reference contexts can be described with the help
of the epistemological triangle (see Fig. 4.2) (see Steinbring, 2005, 2006). This
triangle serves as a theoretical instrument for analyzing the connection of yet unfa-
miliar mathematical signs/symbols, of partly familiar reference contexts for the
signs/symbols and of fundamental mathematical concept principles, which regulate
the mediation between signs and reference contexts.

This epistemological triangle is a theoretical schema, in which the corners recip-
rocally ‘determine’ each other; thus, none of the three elements can be explicitly
or unequivocally given in order to then deductively determine the other elements.
A fundamental concept is necessary to regulate the mediation between sign and
reference context, and in the further development of mathematical knowledge, the
fundamental conceptual knowledge is enhanced and differentiated.

The following classroom scene is taken from a third grade class working on
the topic of ‘figurate numbers’. All the children are sitting in a circle facing the
board. Displayed on the board are dot patterns for the first five rectangular numbers
(divided into two triangular configurations by means of different colours) together
with the values of the respective triangular or rectangular numbers (see Fig. 4.3).
The discussion now focuses on determining the amounts and the configuration for
the 6th position.

88 T Yes. So what can we do to find out if this is always true?
89 S Nothing.
90 T Christopher.
91 Ch I notice something.
92 T Yes, tell us.
93 Ch Up there it goes four. Then it goes six. Then it goes eight. And then it
goes ten. [At this moment, T points at the number 20 and then at the number 30
on the left hand side of the table]. Then it goes twelve [T now points at the empty
field below the number 20]. Therefore, there should be thirty-two on the other sev-
enteen [2 sec pause] um, forty-two should be on that and on the other one twenty-
seven
94 T I see. You mean . . ., that‘s quite an interesting idea, Christopher. You mean,
here there should be forty-two? [points at the empty field below the number 30]
95 Ch Yes. [T writes the number 42 in the table]



4 Changed Views on Mathematical Knowledge 57

Picture

1

3

6

10

15

1.

2.

3.

4.

5.

2

6

12

20

30

Fig. 4.3 The connection
between triangular and
rectangular numbers

96 T Yes. And there? [points at the empty field below the number 15 on the right
side of the table]
97 Ch Twenty-seven.
98 T Why do you think there should be twenty-seven? . . . Can you give a reason
for that?
99 Ch No.
100 T No? . . . Nico.
101 N Twenty-one.
102 T Why do you think [it‘s] twenty-one?
103 N Because twenty and twenty are forty [points at the ten’s decimal place of
the number 42] and one and one are two [points at the unit’s place of the number 42].
104 T Mhm [writing the number 21 in the table]. Oh yes, then we already know
the next thing. But we ought to check whether it is indeed correct from the picture,
whether it is really always like this.

This classroom scene will first be structured and summarized. First the teacher
asks again his question as to whether it is always true, and after that he asks: “How
can we find out whether this is always true?”

Phase 1 (90–97): Christopher continues the numbers in the column of the
rectangular numbers and derives a new triangular number.

Christopher notices something. He names the sequence of numbers one after
another: “. . . there it goes 4, then it goes 6, then it goes 8, then it goes 10, then it
goes 12”. With this, he seems to refer to the second column, and the teacher points
at this column, at the numbers 20 and 30. Christopher names the respective differ-
ence or increase between the numbers in his sequence. Then he infers: “Therefore
there should be thirty-two and on the other seventeen”. He has (mistakenly?) con-
structed a number bigger by 2 in the left number column and he does the same in the
right number column: from 15 to 17. Christopher corrects his statement: “Forty-two
should be on that and on the other one twenty-seven”. Here he has raised the two
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numbers by 12. The teacher confirms the first number with the question whether “. . .
here there should be forty-two?” and he writes this number down after Christopher
has agreed. Christopher repeats once again that, in the other position, there should
be ‘27’.

Phase 2 (98–100): Christopher cannot justify his procedure.
The teacher asks Christopher to justify his claims. But Christopher cannot justify

why ‘27’ is supposed to be here.
Phase 3 (100–104): Nico corrects Christopher‘s triangular number and gives a

justification for his claim.
Nico says ‘21’ and means that this number is correct. He justifies this with the

following ‘calculation’: “Because twenty and twenty are forty [points at the tens
decimal place of the number 42] and one and one are two [points at the units place
of the number 42].” The teacher agrees with him and writes down the new numbers
(see Fig. 4.4). The teacher formulates a new ‘research mission’: “But we ought
to check whether it is indeed correct from the picture, whether it is really always
like this”.

This detailed description of the short mathematical interaction between the two
boys and their teacher clearly shows that the mathematical knowledge and under-
standing of this knowledge emerges, and is not completely fixed and clear-cut
(as, for instance, stoffdidaktik (see part 2) would assume). The learning process
is not simply a procedure of acquiring step-by-step the correct and undisputed
mathematical rules and expressions.

The reactions and the following proposals in this mathematical interaction – con-
tributed by the boys as well as by the teacher – develop and evolve according to the
ongoing intention to commonly clarify and gain an understanding of, and a mean-
ing for, the mathematical knowledge in question. This is what is meant by a parallel
development of mathematical knowledge and the teaching and learning processes
(see Part III).

The following (limited) epistemological analysis will show how central ideas
of Part IV become relevant: the mathematical knowledge that develops in this
communication process is open; it has to be constructed and interpreted by

Picture

1

3

6

10

15

1.
2.

3.

4.

5.

2

6

12

20

30

42 21
Fig. 4.4 New triangular and
rectangular numbers



4 Changed Views on Mathematical Knowledge 59

the participants, but it is subject to epistemological constraints of coherence
and consistency. The knowledge is not a priori given and fixed, but develops
within its epistemological frames by subjective constructions and alternating social
interactions.

First, Christopher’s contributions, together with the teacher’s pointing gestures,
can be understood in the following way. Christopher names the differences between
the rectangular numbers that have been written down. The teacher points at the
respective number column. Christopher seems to have in view the additive contin-
uation of the number sequence. He continues this characterization: “Then it goes
12”; this increase by 2 is supposed to lead to the new rectangular number in the
sixth row.

Christopher now uses his arithmetical progression as a justification for the new
numbers. He infers first, the two numbers 32 and 17, numbers which differ by 2
from their antecedent numbers; perhaps he transfers the increase of the differences
directly to the new situation and corrects himself immediately. Now he seems to add
12 in both cases, and he names the numbers 42 and 27.

In his argumentation, Christopher referred to the arithmetical continuation pat-
tern of the rectangular numbers without the geometrical situation. In a rather typical
manner, the teacher takes the ‘correct part’ out of Christopher’s argument. He says:
“You mean . . ., that’s quite an interesting idea, Christopher. You mean, here there
should be forty-two? [points at the empty field below the number 30]” (94). And
then: [T writes the number 42 in the table] (95). In this way, there is an implicit
agreement in this social interaction that one part of the expected answer is correct,
namely ‘42’. After the teacher‘s question, Christopher confirms that he believes that
27 belongs to the empty field. However, he cannot justify his claim.

Nico continues the knowledge construction. His justification: “Because 20 + 20
are 40 and 1 + 1 are 2” results in halving 42 into 20 + 20 and 1 + 1. If this is put in
connection with the relation “Always half ”, which has been thoroughly discussed
before, Nico intends a justification by using this relation. Again the teacher confirms
this correct number as before by writing down 21 (104).

The knowledge constructions of the two boys can be characterized epistemo-
logically in the following way. The mediation between sign/symbol and reference
context carried out in this situation can be shown by the following epistemological
triangle (Fig. 4.5).

For Christopher’s knowledge construction, the analysis shows that he developed
a continuation principle for the sixth rectangular number from the given arithmeti-
cal pattern. His counting by twos – 4, 6, 8, 10, 12 – is meant to suggest that the
difference between the rectangular numbers is always an increase by ‘2’ and that,
therefore, ‘12’ must now be added to the value of the fifth number. This addi-
tion of ‘12’ is transferred to the fifth triangular number, and ‘27’ is determined
as the sixth triangular number. Christopher constructs a general arithmetical rela-
tion between the rectangular numbers in a verbal way and transfers it directly to the
triangular numbers. This connection is inferred only from the arithmetical structure.
No justification is given, for instance, using the geometric pattern of the rectangular
numbers.
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In Nico’s knowledge construction, the rectangular number ‘42’ is halved in a par-
ticular way. The intention connected with this proposal is not articulated directly.
The brief argument is restricted to the procedure of the arithmetic bisection or dou-
bling only. Nico constructs a brief verbally-formulated sign “20 + 20 = 40 and
1 + 1 = 2” with reference to the number 42 which was noted on the poster. This
mediation between sign/symbol and reference context is represented as above in the
epistemological triangle (Fig. 4.6).

In their contributions, both students constructed new knowledge relations which
could not be directly inferred from knowledge that was already there. These knowl-
edge relations were restricted to the arithmetical number symbols and structures
with no reference to the geometrical configurations.

The question why the structure, that was observed locally in the numbers, is
really generally valid needs, for example, the reference to the geometrical, general
patterns of the triangular and rectangular configurations.

Based on this analysis, it can be stated that Christopher and Nico constructed
mathematical signs that are not connected to the presupposed problem knowledge,
but signs that use the visible arithmetical structure of the numbers on the poster.

In this short episode, the teacher intervened at certain moments to confirm correct
answers or correct parts of answers or arguments developed by the two students. To
give an example:

94 T I see. You mean . . ., that’s quite an interesting idea, Christopher. You
mean, here there should be forty-two? [points at the empty field below the
number 30].

The teacher also writes the number in question, 42, in the table (he gives sim-
ilar feedback to the student Nico when writing the proposed number 21 in the
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Fig. 4.6 The epistemological
triangle: Nico dissects 42 into
20 + 20 and 1 + 1

table). In this way, the teacher comments and moderates the contributions and argu-
ments developed by the students. He does not simply follow an anticipated ‘correct’
solution procedure strictly, but he accepts, at least in great part, the activities and
proposals by the students and he guides them. Surely the students also have learned
how to participate in a question-answer game in mathematics teaching and they
are certainly conscious of the teacher’s feedback as questioning some proposed
numbers (this cannot be the right one), or as writing down other numbers (these
are the expected right numbers). This exemplifies how, through common interac-
tion, mathematical knowledge develops along the epistemological constraints (see
Part IV).

Looking back to the earlier sections (2, 3 and 4), again a further summarizing
interpretation can be given concerning the three elements of the didactical triangle,
(1) the mathematical knowledge, (2) the student, and (3) the teacher. The mathe-
matical knowledge, essentially the important mathematical relations and structures,
are in a way interactively constructed between the boys and the teacher. Thus, the
theoretical (school-) mathematical knowledge (1) evolves here in a communication
process between these three persons.

Christopher (2) argues in a situation-bound relational justification context. He
constructs new arithmetical relations in the given structure that are also transferred
to the arithmetical continuation of the triangular numbers without an additional
underlying justification.

Nico (2) argues within an algorithmic justification context. He communicates
factual knowledge. He seems to have in mind a relation between rectangular and
triangular numbers by saying 21 + 21 = 42. Also, Nico does not produce true
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new mathematical knowledge as his argumentation refers exclusively to arithmetical
relations, and does not take the geometrical knowledge problem into consideration.

The teacher (3) participates in this interaction as a moderator and he comments
on students’ proposals in a way of pointing at acceptable and unacceptable sugges-
tions, thus guiding the process of negotiating the evolving mathematical relations of
theoretical knowledge.

Looking at the didactical triangle as a descriptive instrument (see end of
Part IV) in order to label the essential elements and their reciprocal actions within
mathematical teaching and learning processes, the new interpretation from an
epistemological mathematics education research perspective becomes clear: math-
ematical knowledge is interactively constructed by the participants on the basis of
specific epistemological conditions thereof, which are effective also within instruc-
tional learning processes and which, in this teaching learning context, lead to a
socially-developed epistemology of (school) mathematical knowledge.

Acknowledgement With kind permission from Springer Science+Business Media: Steinbring,
H. (2008). Changed views on mathematical knowledge in the course of didactical theory develop-
ment – independent corpus of scientific knowledge or result of social constructions? Zentralblatt
für Didaktik der Mathematik, 40(2), 303–316. Many parts of this contribution are based on
Steinbring, 2005.
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