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Chapter 1
Introduction:
Mathematical Knowledge in Teaching

Tim Rowland and Kenneth Ruthven

Background: The Topic and the Book

This book examines the issue of mathematical subject knowledge in teaching.
There is now widespread agreement that the quality of primary and secondary
school mathematics teaching depends crucially on the subject-related knowledge
that teachers are able to bring to bear on their work. However, when discussion
starts to focus in on the specific forms and functions of mathematical knowledge for
teaching, there is much less concurrence. There is now, however, a prevalent sugges-
tion that effective teaching calls for distinctive forms of subject-related knowledge
and thinking. These are particularly live issues for policy and practice because of
the longstanding difficulties in recruiting teachers who are confident and conven-
tionally well qualified in mathematics, and because of rising concern that teaching
of the subject has not adapted sufficiently to the changing circumstances of schools
and their students. The issues to be examined in this book are, then, of considerable
significance in addressing world-wide aspirations to raise standards of teaching and
learning in mathematics through developing more effective approaches to charac-
terising, assessing and developing mathematical knowledge for teaching within the
professional workforce.

Public discussion often proceeds on the basis either that teachers need only
have such mathematical competence as they are expected to develop in their stu-
dents, or that it may also be beneficial for them to have somewhat ‘more advanced’
knowledge of mathematics than the subject matter they are teaching. However, it is
now clear that such perspectives fail to do justice to the situation. Rather, a num-
ber of Anglo-American, Continental-European and East-Asian traditions point to
particular forms of subject-related knowledge that underpin effective teaching of
mathematics and to distinctive mechanisms for developing such knowledge. An
important objective of this book, then, is to develop a critical synthesis of differ-
ent perspectives on mathematical knowledge for and in teaching and to establish

T. Rowland (B)
Faculty of Education, University of Cambridge, Cambridge CB2 8PQ, UK
e-mail: tr202@cam.ac.uk
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2 T. Rowland and K. Ruthven

their professional implications. This synthesis seeks to bring key conceptual and
theoretical problems to the fore and to find cogent ways of addressing them. For
example, much work in this field has taken for granted the conceptions of mathemat-
ical knowledge, successful learning and effective teaching reflected in the customary
educational practices familiar to the researchers. We seek to adopt a more detached
perspective which seeks explicitly to take account of differing and changing per-
spectives on such matters. Equally, much work in this field has treated mathematical
knowledge for teaching as residing solely with the classroom teacher. We aim to fol-
low an approach which recognises the part played by textbooks and other tools and
resources in classroom teaching and learning (forming a larger distributed system
through which mathematical knowledge comes into play). We intend also to con-
sider the possibility that some students help to bring such knowledge into play in
the classroom (in particular through systematic reflection and thoughtful interaction
with teacher and peers); indeed, that some students may themselves develop per-
sonal mathematical knowledge which includes aspects of what has been taken to be
knowledge distinctively for teaching.

Inevitably, however, the different contributions to this book reflect the current
flux in thinking about this area. Certain well-established ideas, notably that of ‘peda-
gogical content knowledge’, provide shared but contested points of reference, while
alternative ways of thinking, drawn from a variety of sources, offer contrasting
accounts and suggest neglected aspects. The authors of each chapter bring their spe-
cial expertise to bear on the phenomenon of mathematical knowledge in teaching,
reflecting different perspectives about the knowledge of mathematics teachers and
different ways of ‘knowing’ within teaching. The coherence of the book comes less
from consensus on the issues and more from a collective understanding and appre-
ciation of the different perspectives and convictions of the contributors as a whole,
developed within a series of seminars on Mathematical Knowledge in Teaching held
over a 2-year period and sponsored by the Nuffield Foundation. Nevertheless, the
contributions all broadly proceed from a view that attempts to assess and develop
mathematical knowledge for teaching are unlikely to be meaningful or successful
unless they take the classroom context of teachers’ professional work into account,
so that the focus of fundamental and applied research in the field becomes teach-
ers’ mathematical knowledge in teaching. This belief in the social and institutional
situatedness of the domain – if the research is to be of any practical use – justified
the title of the seminar series that brought the authors together in the first place, and
thus explains the title of this book.

Introduction to Section 1

Every profession – every ‘job’, for that matter – has its own knowledge base.
However, discussion of the relation between knowledge and the profession of teach-
ing must take into account the way in which knowledge itself lies at the heart of
education. Thus, Kelly (1995, p. 103) writes that “. . . knowledge is the very stuff
of education; it is impossible to conceive of, or to plan, any educational activity
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without recognising the central role that some knowledge-based transaction must
play in it.”

The relationship between teacher knowledge as the means of education and
student knowledge as its goal is explored in the first section of the book, which
focuses on some of the approaches which have been developed to conceptualise
mathematical knowledge in teaching. One debate running through this first sec-
tion is the extent to which mathematical knowledge in teaching is wholly derivable
from considerations of a mathematical kind, or whether pedagogical knowledge
rooted in other disciplines, such as psychology and the human and social sciences
more broadly, needs to be incorporated into the model. Another crucial question is
whether mathematical knowledge in teaching is located ‘in the head’ of the indi-
vidual teacher or is somehow a social asset, meaningful only in the context of its
application.

Each of the main contributions introduces and examines a particular type of
approach to theorising mathematical knowledge in teaching. In each case, the related
conceptual framework provides significant insight into key forms of mathematical
knowledge which play a part in successful teaching. Each of these frameworks is
then brought to bear on the analysis of the part played by mathematical knowledge
in successful teaching. Beginning with Shulman’s essentially individualist concep-
tion of teacher knowledge, and moving through overtly mathematical conceptions
to social practice-based reconceptualisations, the authors explain how and why each
conceptual framework can be seen to represent a significant advance on, or alter-
native to, earlier conceptions. The value of these theories is demonstrated in their
practical application: our contributors were also presented with the challenge of
identifying significant implications of bringing these conceptual frameworks to bear
on policy and practice in school teaching, teacher education and professional devel-
opment. The final contribution to this first section offers a critical appreciation of
these approaches and develops a more overarching framework for synthesising their
differing contributions to the analysis of key issues of policy and practice.

Introduction to Section 2

Socio-cultural considerations of the nature of mathematical knowledge in teaching
lead naturally to the subject matter in the second section of the book. Here, the var-
ious authors bring to light the different ways in which conceptions of mathematical
knowledge in teaching are determined by cultural assumptions at local, institutional
and national levels. These, for the most part tacit, assumptions are the invisible
substrate from which theory and practice in the characterisation, assessment and
development of teachers’ mathematical content knowledge proceed. Such cultural
‘givens’, typically unseen and unquestioned, have the potential to limit what can be
imagined and, therefore, what can be achieved in the practice of education. On a
more positive note, these embedded starting points can also foster attitudes, habits
and practices in one culture that would be difficult to sustain in another. The abil-
ity to see possibilities beyond familiar ways of being and doing can be achieved



4 T. Rowland and K. Ruthven

not only by a more anthropological perspective on our own practices, but also by
looking to practice in cultures other than our own. In this latter respect, the study
of educational theory and practice beyond our own shores (wherever they might be)
has proved to be especially illuminating in the recent decades.

Thus, the focus of the chapters in the second section of the book is on different
ways in which the cultural context shapes the development of mathematical knowl-
edge in teaching. Each of the main contributions examines some aspect of cultural
variation and shaping, and each introduces a conceptual framework by which the
cultural embedding of mathematical knowledge in teaching can be understood. The
relevant chapter then illustrates the use of this conceptual framework to analyse a
particular aspect of the cultural variation and shaping of mathematical knowledge in
teaching, identifying significant implications of bringing this conceptual framework
to bear on policy and practice in school teaching, teacher education and professional
development. The final contribution to this section offers a critical appreciation of
these frameworks and illustrations and provides a synthesis of their implications for
issues of policy and practice.

Introduction to Section 3

The focus in the third section is on the various means by which progress is being
made in enhancing mathematical knowledge in teaching, within teacher education
programmes and professional development initiatives. The different approaches fea-
tured in this section are explicit in identifying the ‘tools’ that are brought to bear on
the development of teacher knowledge. In this case, ‘development’ includes iden-
tification and assessment of the mathematical knowledge (and the various kinds of
such knowledge) that teachers bring to their work. The approach in each case is
principled, in that the relevant tools have themselves been developed in research or
are firmly rooted in research in mathematics education and teacher education. The
authors report firsthand the development and application of different theorised tools
for the development of mathematical knowledge in teaching. While these tools dif-
fer considerably, each creates favourable conditions for teachers to reflect deeply on
what they know and understand about mathematics and/or mathematics teaching, so
that this knowledge becomes available to them for regulation and control.

Each of the main contributions in this third section introduces the relevant tool
and explains its guiding principles and underlying rationale. In doing so, the authors
relate their accounts to the conceptual frameworks discussed in earlier chapters,
especially those in the first section. In this way, a ‘theoretical loop’ (Skott, 2005)
can be seen to be activated, in which practice feeds on theory and feeds back to
theory. In each case, the authors illustrate the use of the relevant tool to develop
and/or assess mathematical knowledge in and for teaching and explain how and
why such a tool represents a significant advance on, or alternative to, existing ones.
The authors identify significant issues which might arise in developing further and
wider use of these tools and ways in which these issues might be addressed. The final
contribution to this section offers a critical appreciation of these tools and examines
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how they might contribute to a more overarching system aimed at developing and
assessing mathematical knowledge in and for teaching.

Critical Discussion and Synthesis

Each section of the book concludes with a chapter that offers critical discussion
and synthesis of the preceding chapters. Likewise, the book concludes with a chap-
ter that reviews how each section has contributed to a comprehensive and systematic
understanding of mathematical knowledge in teaching, and how the book as a whole
is intended to constitute a foundation for a systematic and reflexive research pro-
gramme. The purpose of such a programme, and of this book in the first place, must
be to enhance theory and practice in mathematics teacher education and professional
development and, ultimately, the mathematics learning experiences of students in all
phases of education.

Acknowledgement We thank the Nuffield Foundation for the support provided for the seminar
series on Mathematical Knowledge in Teaching and the preparation of this book, and Anthony
Tomei and Linton Waters for their interest and encouragement.
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Chapter 2
Conceptualising Teachers’ Mathematical
Knowledge in Teaching

Marilena Petrou and Maria Goulding

Introduction

It seems obvious that a teacher’s mathematical knowledge is an important ingredient
for teaching, and while a teacher needs to be able to do the mathematics required for
the curricular level being taught, this may not be sufficient to ensure pupil progress.
Indeed, research on effective primary teachers indicates that those who produce the
highest numeracy gains in pupils do not necessarily hold advanced qualifications
in mathematics (Askew, Brown, Rhodes, Johnson, & William, 1997). We need to
know what other factors come into play, and how these interact with each other in
the teaching process. Internationally, however, there is no universal agreement on
a widely-accepted framework for describing teachers’ mathematical knowledge in
teaching (Tirosh & Even, 2007). This is a concern not only for pre-service teacher
education and professional development courses, but also for research, since with-
out some common understanding of what subject knowledge means and what it
looks like in practice, there can be no coherent approach to designing courses, or
answering research questions about the role of teachers’ mathematical knowledge
in teaching. None of these issues is politically neutral. International comparisons
of pupil performance in the 1990s fuelled widespread anxiety in both the United
States and England and Wales about mathematical standards. Teachers were seen
to be part of the problem of relatively poor performance and strengthening their
subject knowledge as a contribution to the improvement of overall standards. In
this chapter, the meaning, importance and limitations of several analytical mod-
els of teachers’ mathematical knowledge will be discussed with some reference
to their political context, and a synthesis will be proposed. Finally, the implica-
tions of using this synthesis in future teacher development programmes will be
presented.

M. Petrou (B)
Institute of Educational Technology, The Open University, Milton Keynes MK7 6AA, UK
e-mail: m.petrou@open.ac.uk
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10 M. Petrou and M. Goulding

Shulman’s Conceptualisation

In the United States in the 1980s, broad agreement on the inadequacy of the tradi-
tional curriculum for preparing students for the demands of the 21st century, coupled
with disappointing results from international comparisons of mathematical achieve-
ment, led to calls for reform in the mathematics curriculum, and its teaching and
assessment (Schoen, Fey, Hirsch, & Coxford, 1999). At the same time, but inde-
pendently from the reform agenda, Shulman (1986, p. 6) identified a blind spot with
respect to content knowledge in the teacher effectiveness research for as much atten-
tion to be paid to what the teacher is teaching as is paid to generic pedagogic factors
such as wait time and time on task: “How do teachers decide what to teach, how to
represent it, how to question students about it and how to deal with problems of mis-
understanding?” His work with secondary teachers of English, biology, mathematics
and social studies allowed him and his colleagues to develop a more coherent theo-
retical framework of teacher knowledge which has since become widely influential
(Grossman, Wilson, & Shulman, 1989; Shulman, 1986, 1987). There was an imme-
diate interest in his ideas, and Shulman’s (1986) new conceptualisation led to a new
phase, continuing to the present, of research on teacher knowledge. In these stud-
ies, the focus is on teaching itself, and on providing rich descriptions of teachers’
actions while teaching. Ball, Thames, and Phelps (2008) point out that Shulman’s
work has been cited in more that 1,200 refereed journal articles in a wide variety of
disciplines. Given its importance, a review of the model will be presented, interwo-
ven and supplemented with a discussion of how the ideas have been modified and
expanded by others.

Shulman and his colleagues proposed different categories of teacher knowledge
that are needed for effective teaching. Although the specific boundaries and the
names of the categories varied across publications, one of the most detailed descrip-
tions of their model is given in Shulman (1987) publication. Here Shulman proposed
seven different categories of teacher knowledge:

– general pedagogical knowledge;
– knowledge of learners’ characteristics;
– knowledge of educational context;
– knowledge of educational purposes and values;
– content knowledge;
– curriculum knowledge;
– pedagogical content knowledge.

The first four categories listed above refer to general aspects of teacher knowl-
edge and were not the focus of Shulman’s work (Ball et al., 2008), which focused
on the missing-content dimension of teacher knowledge. In his account, however,
Shulman (1987) made it clear that an emphasis placed on this was not intended to
limit the importance of general categories of teacher knowledge in teaching.

The last three categories – content knowledge, curriculum knowledge and peda-
gogical content knowledge – describe the content dimensions of teacher knowledge
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and together make up, what Shulman referred to as, the missing paradigm in
research on teaching. These three content dimensions of teacher knowledge are
discussed in detail in Shulman (1986) publication. Content knowledge includes
knowledge of the subject and its organising structures, and is what Shulman called
Subject Matter Knowledge (SMK). SMK refers to “the amount and organization
of knowledge per se in the mind of the teacher” (Shulman, 1986, p. 9). Shulman
went on to suggest that, “to think properly about content knowledge requires going
beyond knowledge of the facts or the concepts of a domain” (p. 9). Thus, under-
standing subject matter not only includes awareness of its facts, but also goes beyond
the facts to include understanding of its structure. SMK consists of what Schwab
(1978) named ‘substantive’ and ‘syntactic’ knowledge. Substantive knowledge con-
cerns the organisation of key facts, theories, models and concepts, while syntactic
knowledge concerns the processes by which theories and models are generated and
established as valid. For example, in mathematics, syntactic knowledge consists of
activities such as formulating and testing generalisations and constructing proofs.
Ball (1991) echoes Schwab’s concepts of substantive and syntactic knowledge disci-
pline makes a distinction between knowledge of mathematics and knowledge about
mathematics.

The second content-related category is curriculum knowledge, that is:

Represented by the full range of programs designed for the teaching of particular subjects
and topics at a given level, the variety of instructional materials available in relation to
those programs, and the set of characteristics that serve as both the indications and the
contraindications for the use of particular curriculum or program materials in particular
circumstances (Shulman, 1986, p. 10).

Thus, curriculum knowledge is knowledge of the available instructional materi-
als, such as the curriculum and textbooks (what Shulman calls lateral curriculum
knowledge), as well as knowledge of the topics and the ways in which these were
addressed during the previous and subsequent years in schools (what Shulman calls
vertical curriculum knowledge). The United States does not have a national curricu-
lum, and Shulman’s early work coincided with a period in the US when a variety
of reform programs were being funded (Schoen et al., 1999). Shulman’s description
of content knowledge conjures up a view of a loose curriculum frame with a degree
of choice about materials and approaches, which may not be applicable in different
contexts. Contemporary practice in the UK, for instance, is strongly constrained by
official guidance and assessment systems; so the teachers’ curriculum knowledge
not only includes the materials and resources from which they can draw, but also
the frame in which they are working. Thus teachers may not draw on the full range
of what is available to them, or even know about what is available to them, because
they are limited by the testing regime.

The last and most influential of the three content-related categories is the new
concept of Pedagogical Content Knowledge (PCK). PCK is:

That special amalgam of content and pedagogy that is uniquely the province of teachers,
their own special form of professional understanding [. . .] It goes beyond knowledge of
subject matter per se to the dimension of subject matter knowledge for teaching (Shulman,
1986, p. 9).
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It includes the content specific representations, examples and applications that
teachers use in order to make subject matter comprehensible to students together
with the strategies that teachers use in order to overcome their students’ difficulties.
PCK suggests that it is not just knowledge of the subject, or knowledge of pedagogy
that is needed in mathematics teaching, but rather a combination of both.

The power of PCK is illustrated by a number of researchers who have assim-
ilated, criticised and reformulated the concept. For example, Meredith (1995)
suggests a reformulation of the concept of PCK and claims that a wider framework,
extending PCK to incorporate alternative forms of teaching, is needed.

In particular, Meredith (1995, p.176) argues that PCK, as defined by Shulman:

seems to imply one type of pedagogy rooted in particular representations of prior knowl-
edge. Most of the research posits a teacher-directed, didactic model of teaching. PCK
does not seem to encompass alternative views of teaching which, for instance, conceive
of learners as autonomous agents constructing their own understanding of subject matter.

Meredith’s stance is clearly influenced by the reform agenda mentioned earlier,
which included a much greater emphasis on problem solving, in contrast to the
predominant teaching method where teachers explain and illustrate procedures, and
pupils practice the procedures using examples. Her argument is that PCK, as defined
by Shulman, seems to see the teacher’s role as transmitting mathematical knowl-
edge and helping learners to acquire understanding. In addition, Meredith claims
that Shulman’s conceptualisation does not acknowledge that teachers develop dif-
ferent forms of PCK depending on the knowledge and beliefs they bring to learning.
Shulman’s concept of PCK:

is perfectly adequate if mathematical knowledge is seen as absolute, incontestable, uni-
dimensional and static. On the other hand, teachers who conceive of subject knowledge
as multidimensional, dynamic and generated through problem solving may require and
develop very different knowledge for teaching (Meredith, 1995, p. 184).

It is debatable, however, whether Shulman’s conceptualisation necessarily entails
a view of knowledge as incontestable or of teachers as transmissive. It seems just as
important for teachers working in a constructivist way to have a range of alternative
ways of representing mathematics and responding to pupils’ ideas and to have a rich
knowledge base on which to draw.

Although Shulman’s work was ground-breaking and his ideas continue to influ-
ence the majority of research in the field, later researchers in the same tradition
argue that it is not sufficiently developed to be operationalised in research on teacher
knowledge and teacher education. According to Ball et al. (2008), the distinction
between Shulman’s notions of content knowledge and pedagogical content knowl-
edge is often unclear. In addition, the conceptualisation does not acknowledge the
interactions between the different knowledge categories (Hashweh, 2005) and can
be criticised for presenting what seems to be a static view of teaching knowledge.
It ignores the dynamic nature of knowledge, and that teacher knowledge often
develops through classroom interactions with the students on the subject matter
(Fennema & Franke, 1992).
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Fennema and Franke’s Conceptualisation

Fennema and Franke (1992) work is discussed here because it responds to the last
criticism and focuses specifically the case of mathematics teaching. Their model
builds on and modifies Shulman’s framework by suggesting that the knowledge
needed in teaching is interactive and dynamic in nature. They propose a model of
teacher knowledge that can be used to describe what teachers need in mathemat-
ics teaching. They argue that mathematical knowledge for teaching includes four
components: knowledge of the content, knowledge of pedagogy, knowledge of stu-
dents’ cognition and teachers’ beliefs (Fig. 2.1). Their model centres on teacher
knowledge as it occurs in the context of the classroom. Central to their conceptu-
alisation is the claim that knowledge is interactive in nature, and that, in a given
context, teachers’ knowledge of content is related to knowledge of pedagogy and
students’ cognition and combines with beliefs to create a knowledge set that deter-
mines teaching practices and teachers’ behaviour in the classroom. Moreover, they
suggest that knowledge is of a dynamic nature and claim that teaching is a process
in which teachers can change their existing knowledge and create new knowledge.

The content of the mathematics component includes:

teachers’ knowledge of the concepts, procedures, and problem-solving processes within
the domain in which they teach [. . .] It includes knowledge of the concepts underlying the
procedures, the interrelatedness of these concepts, and how these concepts and procedures
are used in various types of problem solving (Fennema & Franke, 1992, p. 162).

Beliefs

Context-
specific

knowledge

Knowledge of
mathematics 

Pedagogical
knowledge 

Knowledge of learners
cognitions inmathematics 

Fig. 2.1 Teacher knowledge: developing in context (Fennema & Franke, 1992, p. 162)
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The parallels between the definition of content of mathematics domain and the
definition of SMK as conceptualised by Shulman (1986) are clearly visible. Central
to both accounts is the idea that teachers need not just to know the procedures, but
also to understand the concepts underlying them. They need to know that something
is so, and also why it is so.

The pedagogical knowledge component refers to “teachers’ knowledge of teach-
ing procedures such as effective strategies for planning, classroom routines, behav-
ior management techniques, classroom organisation procedures, and motivational
techniques” (Fennema & Franke, 1992, p. 162). From Fennema and Franke’s con-
ceptualisation, it can be said that the pedagogical knowledge component is related
to Shulman’s category of general pedagogical knowledge which includes broad
principles and strategies of classroom management. Furthermore, in considering
teachers’ knowledge of pedagogy, they discuss teachers’ knowledge of representa-
tion in a manner similar to Shulman’s conceptualisation, according to which the use
of representations is central in teaching.

The learner’s cognition component includes:

knowledge of how students think and learn and, in particular, how this occurs within specific
mathematics content [. . .] as well as understanding the processes that students will use and
the difficulties and successes that are likely to occur (Fennema & Franke, 1992, p. 162).

In Shulman’s conceptualisation of knowledge, students’ conceptions are consid-
ered as part of teachers’ pedagogical knowledge. In Fennema and Franke (1992)
model, this kind of knowledge is considered as a category on its own, not as a sub-
category of teachers’ pedagogical knowledge. What is common to both accounts is
the idea that knowledge of how students think and learn is central to effective math-
ematics teaching. This idea is consistent with later publications from Shulman’s
colleagues (Grossman, 1990). The foremost claim in Grossman’s approach is the
recognition that teachers must also know their learners. According to Marks (1990),
this includes knowing learners’ cognitive processes, typical patterns of understand-
ing, common errors, things frequently found to be difficult or easy, and interpreting
students’ understanding in the midst of a lesson.

Fennema and Franke (1992) see teacher knowledge as both interactive and
dynamic in nature. Knowledge is developed in a specific context and often develops
through interactions with the subject matter and the students in the classroom. In
their model, all aspects of teacher knowledge and beliefs are related to each other,
and all must be considered to understand mathematics teaching. They suggest that
no one domain of teacher knowledge has a singular role in ‘effective’ mathematics
teaching.

Therefore, for Fennema and Franke, the challenge for research in the field of
teacher knowledge is to develop methodology that can encompass all of these, with
the aim of understanding the interaction between different categories of teacher
knowledge, the roles they play in mathematics teaching and how these roles dif-
fer as teachers’ knowledge changes when they interact with their students. Adding
to this, they claim that the key to understanding this kind of relationship requires
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researchers to carefully take into account the context in which teachers work, as
central to the knowledge and beliefs that are evidenced in mathematics teaching.

The Mathematics Teaching and Learning to Teach Project
(MTLT) and the Learning Mathematics for Teaching Project
(LMT): A Practice-Based Framework of Teachers’
Mathematical Knowledge for Teaching

The third US model to be described, whilst influenced by critiques of Shulman,
falls broadly within his cognitive tradition. Like Fennema and Franke, the team
at University of Michigan examines ways in which Shuman’s ideas can be opera-
tionalised in mathematics education. For the past 15 years, the work of Mathematics
Teaching and Learning to Teach Project (MTLT) and Learning Mathematics for
Teaching Project (LMT) have focused both on the teaching of mathematics and on
the mathematics used in teaching. The aim was to develop a practice-based theory
of content knowledge needed for mathematics teaching. The first project focused on
what teachers do while teaching. By teaching was meant:

everything that teachers do to support the instruction of their students [. . .] the interactive
work of teaching lessons in classrooms, and all the tasks that arise in the course of that
[. . .] Each of these tasks involves knowledge of mathematical ideas, skills of mathematical
reasoning [. . .] fluency with examples, and thoughtfulness about the nature of mathematical
proficiency (Ball, Hill, & Bass, 2005, p. 17).

The team used qualitative methods to collect and analyse data in order to investi-
gate what teachers do as they teach mathematics and what mathematical knowledge
and skills teachers need to hold in order to be able to teach mathematics effectively.
Data analysis led to the conceptualisation of a model of mathematical knowledge
for teaching as illustrated in Fig. 2.2.

This model builds on Shulman’s work by clarifying the distinction between SMK
and PCK. The team’s work attempts to validate Shulman’s conceptualisation by
developing reliable and valid measures of mathematical knowledge for teaching.
The model suggests that Shulman’s SMK can be divided into three categories:
common content knowledge, specialised content knowledge and horizon knowl-
edge. Common content knowledge refers to mathematical knowledge and skills that
are used in any setting, not necessarily that of teaching, and includes an individ-
ual’s ability to calculate an answer and to solve mathematical problems correctly.
Specialised content knowledge, a central idea in the model proposed, is the knowl-
edge that is used in classroom settings and is needed by teachers in order to teach
effectively (Ball et al., 2008). Finally, horizon knowledge includes teachers’ aware-
ness of how the mathematical topics covered in previous years in schools are related
to curriculum topics addressed in the subsequent years in schools.

In addition to this, they suggest that PCK, as conceptualised by Shulman, can
be divided into Knowledge of Content and Students (KCS), Knowledge of Content
and Teaching (KCT) and Knowledge of Content and Curriculum (KCC) (Ball et al.,
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Fig. 2.2 Mathematical knowledge for teaching (Ball, Thames, & Phelps, 2008, p. 403)

2008). KCS is ‘knowledge that combines knowledge about students and knowing
about mathematics’ (Ball et al., 2008, p. 36). This means that teachers must be
able to anticipate students’ difficulties and obstacles, hear and respond appropriately
to students’ thinking and choose appropriate examples and representations while
teaching. Both in planning and teaching, teachers must show awareness of students’
conceptions and misconceptions about a mathematics topic.

Finally, KCT is ‘knowledge that combines knowledge about mathematics and
knowledge about teaching’ (Ball et al., 2008, p. 401). It refers to teachers’ deci-
sions on the sequencing of activities and exercises, their awareness of the possible
advantages and disadvantages of representations used while they teach and to
their decisions to pause a classroom discussion for more clarifications, or to use
a student’s opinion to make a mathematical remark.

The framework presented in Fig. 2.2 supports Shulman (1986) idea that knowl-
edge for teaching includes a specialised knowledge of content which elaborates the
constructs of SMK and PCK. For example, the two central dimensions of PCK as
defined by Shulman (1986) are included in the constructs of KCS and KCT. These
are, firstly, teachers’ awareness of their students’ conceptions and misconceptions
and, secondly, the representations and examples that teachers use in order to make
subject matter comprehensible to students. Furthermore, this framework develops
the concept of SMK in more detail by proposing its sub-domains and developing
measures of these sub-domains. For instance, the way horizon knowledge is defined
is clearly related to Shulman’s notion of vertical curriculum knowledge.

However, Ball et al.’s (2008) conceptualisation of mathematical knowledge for
teaching does not acknowledge the importance of teachers’ beliefs in their teaching.
Research has suggested that teachers’ “beliefs about the nature of mathematics may
be tied up with subject-matter knowledge in the way in which teachers approach
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mathematical situations” (Goulding, Rowland, & Barber, 2002, p. 691). If teach-
ers believe that mathematics is principally a subject of rules and routines which
have to be remembered, then their own approach to unfamiliar problems will be
constrained, and this may impact on their teaching. Beliefs may be particularly
salient in the development of syntactic knowledge, where conjecturing, finding evi-
dence and seeking explanations is quite different from finding rules and routines in
recognizable contexts.

Furthermore, Ball et al.’s new framework can be criticised for its account of the
concept of SCK. This concept is central in the conceptualisation of teachers’ math-
ematical knowledge and is defined as the mathematical knowledge that is used in
classroom settings and needed by teachers in order to teach effectively. The defini-
tion of SCK, as it stands, does not clearly distinguish between SCK and PCK. After
all, PCK is also uniquely needed by teachers and is used in classroom settings. As
Shulman (1987, p. 8) noted, PCK is “a special amalgam of content and pedagogy
that is uniquely the province of teachers, their own special form of professional
understanding.”

What is valuable in the development of this framework of teacher knowledge is
that the Michigan team made some progress in identifying the relationship between
teacher knowledge and students’ achievement in mathematics. Hill, Rowan, and Ball
(2005) argue that teachers’ mathematical knowledge is related to students’ achieve-
ment in mathematics and they provide evidence that teachers with weak knowledge
transmit this to their students. Another central contribution of the MTLT and LMT
projects was the development of measures of teachers’ mathematical knowledge. In
his account, Shulman (1986) hopes that researchers working in the field of teacher
knowledge will manage to develop instruments that could be used to test aspects
of teacher knowledge. Within the work of these two projects, the research teams
managed to develop a series of multiple choice items that can be used to measure
mathematical knowledge for teaching. These kinds of items could reasonably be
used to inform the content and structure of different courses within teachers’ initial
training.

Ball’s work was of interest to both sides of the ‘maths wars’ that followed what
had seemed like a broad consensus on the need for major curriculum, teaching and
assessment reform in the United States. Into this acrimonious debate, the work of
Liping Ma, a Ball’s student at Michigan, brought surprising agreement between the
reformers and the traditionalists. Her comparative study of Chinese and US teach-
ers’ knowledge of fundamental mathematics found a knowledge gap between the US
and Chinese teachers (who had significantly fewer years of formal mathematics edu-
cation at school) which mirrored the gap between US and Chinese students found
in other studies. She argued that in the US, the lack of attention to mathematical
content knowledge in teacher education programmes reinforced low quality school
mathematics education and that this was an important impediment to reform. Her
conclusions found favour with both the reformers advocating a focus on problem
solving and teachers as facilitators of children’s thinking, and the traditionalists with
a concern for underlying structure, formal reasoning and deductive proof. (Shulman
in Ma, 1999).
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The Knowledge Quartet

Also, in a broadly cognitive tradition, but in the different political circumstances
of England and Wales, is the theoretical model reported in the findings of the
SKIMA (Subject Knowledge in Mathematics) project by members of the Faculty
of Education at the University of Cambridge (Rowland, 2005; Rowland, 2007;
Rowland, Huckstep, & Thwaites, 2003). This arose out of earlier work on pri-
mary pre-service mathematical subject knowledge which was a response to the
increased prescription of the initial teacher training curriculum and its assessment
by the government, over a decade after the introduction of the National Curriculum
in 1989.

The Knowledge Quartet is a theoretical framework which arose from the inves-
tigation of the mathematical content knowledge of pre-service elementary school
teachers in England and Wales. The project is set within the theoretical framework
set out by Shulman (1986) but responds to Fennema and Franke (1992) by cat-
egorising situations from classrooms where mathematical knowledge surfaces in
teaching. The team’s approach to investigate the relationship between pre-service
teachers’ SMK and PCK of mathematics was to observe and videotape mathemat-
ics lessons taught by pre-service teachers in a 1-year Postgraduate Certificate of
Education course.

The detailed analysis of the lessons observed resulted in the identification of a
framework called ‘The Knowledge Quartet’. This framework can be used as a tool
for classifying ways in which the pre-service teachers’ SMK and PCK come into
play in the classroom. The Knowledge Quartet consists of four dimensions, namely,
Foundation, Transformation, Connection and Contingency.

(Foundation) consists of trainees’ knowledge, beliefs and understanding acquired in the
academy, in preparation for their role in the classroom. Such knowledge and beliefs
inform pedagogical choices and strategies in a fundamental way [. . .] the second category
(Transformation) concerns knowledge-in-action as demonstrated both in planning to teach
and in the act of teaching itself [. . .] Connection binds together certain choices and decisions
that are made for the more or less discrete parts of mathematical content [. . .] contingency
concerns classroom events that are almost impossible to plan for (Rowland et al., 2003,
pp. 97–98).

Each component of the Knowledge Quartet is composed of a number of codes.
The key components of the Foundation category are teachers’ knowledge and under-
standing of mathematics pedagogy, as well as their beliefs about it. Transformation
includes the kind of representation and examples used by teachers, as well as
teachers’ explanations and questions asked from students. The third category,
Connection, includes the links made between different lessons, between different
mathematical ideas and between the different parts of a lesson. It also includes
the sequencing of activities for instruction and an awareness of possible difficulties
and obstacles that students may have with different mathematical topics and tasks.
Finally, the fourth category, Contingency, concerns teachers’ readiness to respond
to students’ questions, to respond appropriately to students’ wrong answers and to
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deviate from their lesson plan. In other words, it concerns teachers’ readiness to
react to situations that are almost impossible to plan for.

This framework elaborates the constructs of SMK and PCK as these were
defined by Shulman, and takes up Hashweh (2005) suggestion that what is miss-
ing from Shulman’s account is the identification of interactions among the different
categories of teachers’ knowledge. The Knowledge Quartet can be used in under-
standing the ways in which SMK and PCK are related and come into play in the
classroom. In this framework, all aspects of teachers’ knowledge and beliefs come
together as resources from which to draw both in planning and in the act of teaching.
The Knowledge Quartet can be seen as a response to Fennema and Franke (1992)
call to develop studies that focus on the identification of a framework for thinking
about the ways in which different components of teachers’ knowledge are integrated
and come into play in the classroom. In addition, the Foundation dimension of the
framework can be understood as a response to Meredith (1995) call for a model
that acknowledges that pre-service teachers may develop different forms of PCK
depending on the knowledge and views they bring to their training.

The Knowledge Quartet is currently used as a framework for lesson observation
and for mathematics learning development within the primary PGCE programme
at Cambridge University (Rowland, 2007). The framework is also being applied to
support teaching development in early career teachers in England (Turner, 2006) and
structuring initial teacher education in Ireland (Corcoran, 2007). Finally, the frame-
work was used with the aim of understanding what relationship can be observed
between Cypriot pre-service teachers’ mathematical knowledge and their teach-
ing (Petrou, 2009). Petrou (2009) argued that, in general, the Knowledge Quartet
was comprehensive in the classification of teaching situations in which participants’
mathematical knowledge surfaces in teaching. Issues related to the interpretation
and use of textbooks in mathematics teaching were not addressed by the frame-
work; however, they proved important in analysing the mathematics lessons taught
in Cypriot classrooms. This suggested that when adapting the Knowledge Quartet
for observing lessons in Cyprus, and indeed, in many other countries, there is a
need to take careful account of possible differences between the context in which
the framework was originally developed and the context in which it is being applied.

The neglect of textbooks in the English conception of the Knowledge Quartet
may be partly because they were less visible than they are in Cyprus. But it may
be because the original study was very focused on SMK and PCK and not so
much on curriculum knowledge. According to Shulman (1986), curriculum knowl-
edge includes the ‘knowledge of instructional materials’, such as textbooks. So, the
enlargement of the Knowledge Quartet to include use of textbooks brings curricu-
lum knowledge within the orbit of the Knowledge Quartet in a way that it was
not before. Petrou (2009) argues that the original analysis of the video data in
the English study may have been limited by the neglect of curriculum knowledge.
Indeed, although texts were less visible, practice in the UK is strongly framed by
the National Curriculum and its associated assessment systems. Therefore, since the
curriculum is the key to mathematics teaching in the UK, and we imagine this is to
be true in many countries, it seems reasonable to argue that ‘curriculum knowledge’
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is important in any attempt to understand what teachers need to know in order to
teach mathematics effectively.

Synthesis

The models about teacher knowledge described above can be understood as elab-
orating, and not replacing, Shulman’s (1986) conceptualisation of content-related
categories of teacher knowledge, and in particular, the notions of SMK and PCK.
The conceptualisations of teacher knowledge proposed are not inconsistent; rather,
they build on each other. Even though the researchers have stressed different
domains of teacher knowledge, all focus on the importance of seeing the content
to be taught as an important part of teaching.

However, the conceptualisations raise questions about whether the distinction
between SMK and PCK could and should be made. Aubrey (1997) and McEwan
and Bull (1991) agree with McNamara (1991) in arguing that there is no distinc-
tion between SMK and PCK, and that for teachers, all knowledge is pedagogic.
Similarly, An, Kulm, and Wu (2004, p. 146) define PCK as “the knowledge of effec-
tive teaching, which includes three components, knowledge of content, knowledge
of curriculum, and knowledge of teaching.”

The advantage of these perspectives is that they acknowledge the importance of
teaching and are very appropriate when we are seeking to understand what is going
on in the classroom. After all, “teachers use mathematical knowledge not so much
for the doing of mathematics but rather for the teaching of mathematics” (Hodgen,
2003, p. 106).

However, considering all mathematical knowledge in teaching as pedagogic may
not be helpful in teacher preparation and development programmes. There is an
argument for some specific attention to be paid to SMK. For instance, those who
have had limited experience of reasoning and proof, may need opportunities to work
on this at their own level as learners of mathematics. The important thing here would
be that the examples and activities chosen for this work would not be far removed
from the school curriculum. For instance, reasoning associated with odd and even
numbers and operations upon them, or algebraically generalizing patterns in number
squares, could be appropriate for primary pre-service teachers. Secondary teachers
may not be called upon to prove the rules for operations on directed numbers in the
classroom, but being exposed to this exercise could enlarge their own understanding
and help them to see that understanding is a continual process. In geometry, sec-
ondary teachers may know the conditions for congruency of the triangles, but may
not fully understand why these conditions hold and what can be deduced, once con-
gruency has been established. The unpacking and deepening of SMK can be seen as
part of the process of transformation required for robust PCK to be developed.

For this reason, the synthesis proposed here (Fig. 2.3) maintains a distinction
between SMK and PCK, but recognizes the interplay between the two categories.
We position ourselves with Fennema and Franke (1992) in believing that teacher
knowledge can only be understood in the context in which they work. We take the
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Fig. 2.3 Synthesis of models on teacher mathematical knowledge

view that the context in which teachers work is the structure that defines the compo-
nents of knowledge central to mathematics teaching. Included in this ‘context’ are
the educational system, the aims of mathematics education, the curriculum and its
associated materials (such as textbooks) and the assessment system. Within a partic-
ular country, therefore, the curriculum and its associated materials provide the frame
within which teachers work. They reflect beliefs about what mathematics is, what
students need to know about mathematics, and in what ways mathematics needs to
be taught. However, we acknowledge that context is also local. This would include
the resources, both material and human, that teachers have in their school or locality,
as well as the practices and ethos of the workplace.

In focusing on investigating the nature, role and importance of SMK, PCK and
the related categories in the Knowledge Quartet, the earlier models neglect the
importance of curriculum knowledge in conceptualising mathematical knowledge
for teaching. In Ball et al., (2008, p. 403), Curriculum Knowledge is provisionally
placed within pedagogical content knowledge:

We are not yet sure whether this may be a part of our category of knowledge of content
and teaching or whether it may run across the several categories or be a category in its own
right. We also provisionally include a third category within subject matter knowledge, what
we call “horizon knowledge” [. . .] Again we are not sure whether this category is part of
subject matter knowledge or whether it may run across the other categories. We hope to
explore these ideas theoretically, empirically, and also pragmatically as the ideas are used
in teacher education or in the development of curriculum materials for use in professional
development.

Ball et al. seem to recognise that there is need in their model to further refine and
investigate the concept of curriculum knowledge.

Our model suggests that Curriculum Knowledge as defined by Shulman (1986) is
central in understanding what teachers need to know in order to teach mathematics
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effectively. In addition, the model implies that teachers’ SMK and PCK can deter-
mine the ways in which teachers understand, interpret and use the mathematics
curriculum and its associated materials. Indeed, research suggests that teachers
interpret the curriculum materials, such as textbooks, in different ways and that their
interpretation determines the ways they use these in their teaching (Ball & Cohen,
1996; Petrou, 2009). In a study that focuses on investigating how pre-service teach-
ers interpret and use mathematics textbooks, Nicol and Crespo (2006) show that
teachers have various approaches to using textbooks, ranging from adherence (the
textbook is seen as authority), elaboration (the textbook is seen as the main resource,
but teachers elaborate it with other resources), and creation (the teacher examines
the textbook with a critical eye for its potential and limitations in deciding what to
teach). Clearly, SMK and PCK are factors influencing these three approaches.

Elsewhere, Ball and Feiman-Nemser (1988) show how pre-service teachers’
beliefs and knowledge of mathematics influence the way they use textbooks. They
describe how one teacher had problems in understanding the suggestions in the text-
book about a lesson on measurement, because of her insufficient knowledge of the
content and of how students make sense of measurement. Thus, curriculum materi-
als may provide ways of organising content, activities and tasks that help teachers
in their planning and teaching. However, in order to implement a curriculum that
was designed to promote students’ deep understanding of mathematics effectively,
teachers themselves need the understanding to exploit the potential of texts and other
resources.

Implications and Limitations

The synthesis proposed above demonstrates the multidimensional nature of teacher
knowledge and the connections between different categories, but like all models,
there are inevitably some over-simplifications. We have already pointed out the
ambiguous boundary between SMK and PCK, but feel that the two categories are
useful organizing devices in describing teacher knowledge for research purposes,
and particularly in devising pre-service and professional development programmes.
For instance, an appropriate level of mathematical knowledge will be one of the
criteria for entry into a course of training. This may simply be a question of pro-
viding evidence of achieving a specific examination qualification, but it could also
be probed in an interview. We would also argue for the provision of opportuni-
ties for all teachers to work on mathematics relevant to the school curriculum, but
at their own level. Later chapters in this book will cover those areas of primary
teachers’ knowledge, such as fractions, division, and proof, where common weak-
nesses have been identified. Work on these areas and others, about which less is
known, would not only strengthen the resource of SMK from which teachers can
draw in teaching, but would also give them opportunities to reflect upon the expe-
rience of doing mathematics themselves. Moreover, they may experience different
ways of learning mathematics which could impact on their beliefs of how it can be
learned.
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In many of the projects described earlier, this kind of approach to strengthen
SMK has already been adopted. One of the dilemmas here, however, is how the
approach is implemented. If implemented through an audit, the dimensions of fear
and control may inhibit pre-service teachers and encourage compliance rather than
engagement. If the approach is developmental, there is a danger that it receives
lower priority than other elements, and is not taken very seriously. Moreover, a
developmental approach may be time consuming, expensive and difficult to track as
teachers move through their professional careers.

One of the common features of the different models of teacher knowledge dis-
cussed here is the largely individualistic assumption which underpins them. Despite
the acknowledgement of context, the focus tends to be on the knowledge that an
individual teacher brings to a course of teacher education and then into the class-
room. This can result in a deficit view of the individual teacher, who at worst needs
remediating and at best developing, rather than seeing teacher knowledge as a prod-
uct of the educational system in which she is located. We cannot assume that the
frameworks discussed here are universal. Even if there are some commonalities,
there may be great differences in emphasis in various cultural contexts and differ-
ent priorities for research and development. Switching attention to the system would
mean paying more attention to the prior mathematical experiences of teachers and to
the resources available to teachers for their own use. In situations where the assess-
ment of subject knowledge is seen as a means of weeding out prospective teachers,
more communal ways in which teachers’ mathematical knowledge in teaching could
be encouraged, whether in training or professional development. This could include
paying more attention to the mathematical knowledge which teachers want help
with, as well as the elements deemed important by teacher educators. It could also
mean more use of peer teaching and development.

Switching the focus from the individual teacher to the system brings in the third
element – curriculum knowledge. The curriculum and its associated materials can
act as both a resource and a constraint on the teacher. Critical analysis can expose
the intentions of both the policy makers and the writers of curriculum materials,
whether these materials are for pupils (e.g. textbooks), or for teachers (e.g. teach-
ers’ guides). These may be quite different from the knowledge that teachers use and
reveal through their practice, either because of inadequacies in the teacher’s knowl-
edge base, or because of informed rational choices. We need to know more about
how teachers use curriculum materials to improve their teaching, and which curricu-
lum materials are most effective in doing this. For instance, building on the work of
Davis and Krajcik (2005) and Stylianides (2007) provides a theoretical framework
showing how features of educative curriculum materials may promote teacher learn-
ing by enabling them to engage their students effectively in tasks related to proof.
These materials may be strengthening teachers’ own knowledge of proof through
the development of their teaching.

We would also argue that the Knowledge Quartet is a framework that can be
used for developing educative curriculum materials. For instance, in terms of the
Transformation dimension, curriculum materials can provide several appropriate
representations of different ideas. Also, a discussion of the possible advantages or
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disadvantages of using a certain representation can support teachers in adapting and
using the suggested representation in their teaching. This can help make teachers
better prepared not only to explain concepts to their students, but also to understand
the ways their students make sense of different ideas in mathematics. However, such
guidance cannot help every teacher. Educative curriculum materials, like any inno-
vation, are not a solution in themselves. Their effectiveness might be limited by
teacher knowledge and beliefs. Nevertheless, Ball and Cohen (1996) showed that
when educative elements were included in the guidance provided to teachers about
using textbooks, and when these textbooks were used as an important part of teacher
training, this resulted in favourable gains in both teachers’ SMK and PCK.
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Chapter 3
Knowing and Identity: A Situated Theory
of Mathematics Knowledge in Teaching

Jeremy Hodgen

A group of prospective secondary teachers are engaged in a school mathematics problem
involving fractions: why can you multiply to multiply, but not add to add? All the prospective
teachers are well qualified. In fact, several have doctorates in mathematics. All, of course,
can add, subtract, multiply and divide fractions with ease. Yet, they are finding the problem
of explanation exceedingly difficult.

How is it that such an apparently elementary problem can cause a group of
mathematical experts such problems? Mathematically, the problem involves the
algorithms for arithmetic involving fractions. One multiplies the numerators and the
denominators to multiply fractions: a

b × c
d = a×c

b×d , but one does not add them to add:
in general, a

b + c
d �= a+c

b+d . Of course, the problem is that these prospective teachers
have never been asked this question before. But the problem becomes more complex
when posed in the context of teaching in that it is no longer simply a mathematical
question (how to show the statement is true), but also a pedagogical question (how
to enable others to see the statement is true). At the heart of these mathematical and
pedagogical questions lie some of the “big ideas” of school mathematics: the notion
of rational numbers as division of integers, the relationship between multiplication
and addition and the ways in which rational number may be represented. The notion
of pedagogical content knowledge (PCK) as developed by Shulman, Ball and oth-
ers is one response to this complexity: mathematics teaching requires a specialist
knowledge of mathematics for teaching that integrates a knowledge of mathemat-
ics and pedagogy. These approaches have been discussed in depth in Chapter 1
by Goulding and Petrou in this book. Yet, as Goulding and Petrou indicate, these
approaches have downplayed the importance of context. In this chapter, I take this
critique further. I examine this issue of context and argue that mathematics teacher
knowledge is not simply applied within the context of teaching mathematics but is
rather situated within the complex and social world of mathematics classrooms. In
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other words, to simply focus on application and context is to underplay the ways in
which social structures support (or hinder) teacher knowledge and its use.

My analysis draws on what Lerman (2000) terms the ‘social turn’ in mathematics
education. A key work in this social turn is Lave and Wenger’s (1991) monograph
examining the nature of learning as apprenticeship and re-casting knowledge in
terms of situated cognition. Whilst this original work largely considered learning in
informal settings outside formal education, it has nevertheless been influential in the
formal context of mathematics education (Boaler, 2002; Greeno, 1998), particularly
in relation to the perennial issue of how students use or transfer the mathematics
learnt in school, into real world contexts. This notion of transfer – how knowledge
learnt in one context can be used or applied in a different context – has in turn been
the subject of much contentious debate (e.g., Anderson, Greeno, Reder, & Simon,
2000), although it is arguable that this debate has often been characterised more
by misunderstandings than by genuine disagreement. As Putnam and Borko (2000,
p. 12) argue,

It is easy to misinterpret scholars in the situative camp as arguing that transfer is
impossible—that meaningful learning takes place only in the very contexts in which the
new ideas will be used. The situative perspective is not an argument against transfer, how-
ever, but an attempt to recast the relationship between what people know and the settings in
which they know—between the knower and the known.

From this perspective, knowledge is social and contextualised rather than individ-
ual and general, whilst knowledge about mathematics teaching is less about general
principles and more about ‘intertwined collections of more specific patterns that
hold across a variety of situations’ (Putnam & Borko, 2000, p.13). It is a recognition
of the similarities and differences between these patterns that enables the growth of
a more abstract mathematical knowledge.

The Problem of Mathematics Teacher Knowledge

It appears self-evident that teachers should know about mathematics in order to
teach it effectively. But teacher knowledge in mathematics is an area of some contro-
versy. There is evidence that poor subject knowledge in mathematics has a negative
impact on teaching (e.g., McDiarmid, Ball, & Anderson, 1989; Rowland, Martyn,
Barber, & Heal, 2000). There is considerably less consensus on what constitutes the
mathematical knowledge necessary for teaching. Some have argued that improv-
ing teachers’ knowledge of mathematics per se will lead to better teaching (e.g.,
Alexander, Rose, & Woodhead, 1992). However, the evidence base in this area sug-
gests otherwise. Several studies, for example, have found no link between teachers’
mathematical knowledge, as measured in terms of academic mathematical qualifi-
cations, and effective teaching (Askew, Brown, Rhodes, Johnson, & Wiliam, 1997;
Begle, 1968). What is clear is that the connection between teacher knowledge and
teaching outcomes is neither simple nor straightforward.

To deal with this problem, research has focused on exploring the nature of
teacher knowledge in mathematics. One strand of this research has been to link
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mathematical knowledge for teaching to ways of knowing in the discipline of
mathematics. Lampert (1986), for example, distinguishes between procedural and
principled knowledge of mathematics. Procedural knowledge is a rule-guided
‘knowing that’ and concerns mathematical procedures and their use to compute
correct answers. Principled knowledge, on the other hand, is a wider and more
conceptual ‘knowing how’ and includes the knowledge of mathematical concepts
that enable the construction of procedures for solving mathematical problems.
Lampert’s distinction has similarities to Skemp’s (1976) distinction between instru-
mental and relational understandings, Prestage and Perks (2001) learner-knowledge
and teacher-knowledge, and Thompson, Philipp, Thompson, and Boyd’s (1994)
calculational and conceptual orientations.

Increasingly, researchers have argued that mathematical knowledge for teach-
ing is distinct and different to the knowledge necessary to practice mathematics.
As I have already noted, a key starting point for much of this work is Shulman’s
(1986) notion of pedagogical content knowledge which ‘goes beyond the subject
per se to the dimension of subject knowledge for teaching . . . the particular form of
content knowledge that embodies the aspects of content most germane to its teach-
ability’ (p. 9, original emphasis). The nature of pedagogical content knowledge is
itself, however, something of a contested idea within the education research com-
munity. McNamara (1991), for example, argues that there is no clear distinction
between subject knowledge and pedagogical content knowledge. Indeed, Corbin
and Campbell (2001) argue that pedagogical content knowledge is most useful as
a metaphor that locates teacher knowledge as embedded within the complex and
unpredictable practice of teaching. Another critique is epitomised by Brown and
McIntyre (1993), who argue that much of teachers’ knowledge is tacit, craft knowl-
edge that cannot be codified as theoretical abstract knowledge. For Brown and
McIntyre, the knowledge of an expert teacher is more intuitive and, in a very real
sense, less explicit than that of a novice.

Taking this notion of tacit knowledge further, situated theorists problematise the
very nature of knowledge, arguing that teachers’ mathematical knowledge, like any
other form of knowledge, is located in social practice (Greeno, 1998; Putnam &
Borko, 2000). Hence, in a development of Lave and Wenger’s (1991) work, Adler
(1998) refers to a dynamic, contextualized and active process of ‘knowing’ rather
than the more static, abstract and passive notion of ‘knowledge’. Thus, teacher
knowledge is embedded in the practices of teaching and any attempt to describe
this knowledge abstractly is likely to fail to capture its dynamic nature.

A Case Study from Primary Mathematics: Alexandra’s
Knowledge of the Multiplication and Division of Fractions

In this section, I discuss the case of Alexandra,1 a primary teacher, and
her knowledge of proportional reasoning. I contrast Alexandra’s knowledge of

1Alexandra is a pseudonym.
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proportional reasoning in the context of developing lessons and leading professional
development sessions with her knowledge in the context of a structured mathematics
interview.

This case study is drawn from a 4-year longitudinal study into the professional
change of six teachers involved as teacher-researchers in the Primary Cognitive
Acceleration in Mathematics Education (CAME) Project research team (Johnson,
Hodgen, & Adhami, 2004). This team consisted of four researchers, four teacher-
researchers and the Local Education Authority mathematics advisor. During the
school year 1997/1998, the team met fortnightly to develop Thinking Maths lessons
specifically for primary children aged 9–11. During the second phase of the project,
over the school years 1998/1999 and 1999/2000, a further cohort of teachers joined
the project to implement the Thinking Maths lessons more widely. In Phase 2, the
teacher-researchers led professional development sessions aimed at enabling this
new cohort of teachers to teach the Thinking Maths lessons in their own classes.

In the research study, data collection was qualitative using multiple methods,
including observations of seminars, lessons and professional development sessions,
interviews with individuals and groups, and structured mathematical interviews
(adapted from Millett, Askew, & Simon, 2004).2 Here, my focus is on the mathemat-
ics interview, which took place in December 2000. During this interview, Alexandra
was asked to solve several problems and to suggest models, stories, or diagrams to
use when teaching the ideas to children. The questions themselves largely related
to two aspects underlying the elementary mathematics curriculum: rational number
and multiplicative reasoning. I focus on three related questions from this interview:

How would you solve these problems? What would be a good story, diagram or model for
them?

0.5 × 0.2 3 ÷ 0.75 1
3

4
÷ 1

2

I was particularly interested in the extent to which the teachers could generate
a variety of appropriate and pedagogically useful illustrations, and in the range of
different meanings of multiplication and division that they drew upon. Ma (1999),
for example, describes three models of division: measurement, partitive, and factors
and product. These broadly relate the understandings of multiplication in terms of
repeated addition, scaling and arrays (and areas). There is extensive research evi-
dence to suggest that the area model is used in only limited ways in UK primary
(and secondary) mathematics classrooms (Nunes, 2001).

As a Primary CAME teacher-researcher, Alexandra was involved in the develop-
ment of a number of lessons addressing students’ misconceptions in collaboration
with other teacher-researchers and academics. Specifically, she, together with
another teacher, developed two lessons focusing on fractions: ‘Share an Apple’, and

2This drew on previous work at King’s (Askew et al., 1997), which in turn drew on a range of
sources. An item on division of fractions, 1 3

4 ÷ 1
2 , for example, was drawn from Ball (1990) work

and is also discussed in Ma (1999).
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‘Halving and Thirding’ (Johnson et al., 2003). In Share an Apple, the focus is on
representations and comparisons of fractions. So, for example, children are asked
to consider various ways of representing and comparing the magnitude of simple
fractions of everyday objects. In Halving and Thirding, the focus is on developing
and connecting different representations for the multiplication of fractions, includ-
ing repeated multiplication by 1/2 and 1/3, with a particular focus on developing the
area model for multiplication and linking this to other representations. Alexandra
herself suggested this focus on the area model based on her experiences of team-
teaching the lesson. She also led the professional development sessions introducing
these lessons and had contributed to an academic paper on their development.

The research reported here took place in the context of the National Numeracy
Strategy (NNS) in England, a national initiative focused on primary mathemat-
ics pedagogy (Brown, Millett, Bibby, & Johnson, 2000). One feature of the
NNS was the appointment of several hundred Numeracy Consultants. The role
of these local primary mathematics specialists was to support teachers and to
deliver professional development to them. Throughout much of her participation
in Primary CAME, Alexandra was also a Numeracy Consultant, whose responsi-
bilities included delivering training aimed at enhancing primary teachers’ subject
knowledge of mathematics. In this mathematics educator role, I observed her teach
several National Numeracy training sessions on both fractions and multiplication,
during which she appeared to be fluent with a variety of both techniques and repre-
sentations. In addition, in response to her perceptions of weaknesses in these training
materials and in collaboration with another Numeracy Consultant, she developed a
further session for teachers in which she focused on the use of the area model of
multiplication in relation to fractions together with the concept of equivalence.

Given these experiences, I had expected Alexandra to demonstrate a sophis-
ticated understanding of multiplication in the mathematics interview. Yet, her
knowledge appeared to be very significantly weaker in this setting: in the inter-
view, she appeared to know ‘less’ and to know it less securely. Alexandra could
successfully answer all the questions performing most of the necessary calcula-
tional procedures correctly, although on several questions this took a considerable
amount of time and whilst solving the problems, she made several mistakes which
she corrected during the interview. At one point, she indicated some awareness of
her limited understanding referring to division by fractions [13/4 ÷ 1/2] as follows:
“If I was doing that the way I was taught to do it, I would just turn that all upside
down. And I have real problems with this idea of division by fractions.” However,
she was unable to carry out this procedure and solved the question by converting
to decimals mentally, and then using a calculator. To solve 0.5 × 0.2, she used a
standard multiplication algorithm, as in Fig. 3.1.

0 . 5
× 0 . 2

1 0
0 0 0
0 . 1 0

Fig. 3.1 Alexandra’s
procedure for solving
0.5 × 0.2
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As she carried out the algorithm, she commented on how she knew where to place
the decimal point in the product: “There are two decimal places in the question, so
there must be two decimal places in the answer.” This, together with her inclusion of
the multiplication by zero, strongly suggests that her understanding of this method
is certainly heavily reliant on procedural knowledge.

Although Alexandra read the answer correctly as 0.1 and used the same form
as in the question, she did not notice that this could be read as a tenth or that the
calculation was equivalent to either of the relatively simple ‘half of two tenths’ or
‘half of a fifth’. Hence, she appeared to have no strategy to check, or make sense of
the result of this calculation procedure. Indeed, she could not generate an illustration
of this problem. Whilst she did not get this problem ‘wrong’, her knowledge did
appear to be partial and limited.

Alexandra found the generation of any models extremely difficult and required
considerable support and prompting to tackle these questions. Indeed, she asked me,
with apparent disbelief, if I could do it. She provided a single story for just two of the
three problems. Reflecting her preference for decimal fractions, she found 3 ÷ 0.75
relatively straightforward, after I had suggested thinking about contexts involving
measures: “how many lots of 75 pence can you get from three pounds.” However,
she had considerable difficulty with 13/4 ÷ 1/2, eventually producing the following
story:

If you said that was one, and that was three quarters you’d get three halves and half a half
out of it. But that’s not very helpful is it? . . . One, OK, that’s one and three quarters, so you
can get one, two, three. Three halves out of it. And half of a half.

The example is more ‘helpful’ than Alexandra suggests. Repeated addition does
provide one satisfactory explanation for the answer. The ‘pure’ mathematics con-
text of numbers is, in this case, rather more helpful than the commonplace use of
pizzas or cakes to illustrate problems involving fractions. Yet, whilst Alexandra’s
subject knowledge here appears stronger than any of the US teachers in Ma’s (1999)
study, this example does highlight a problematic issue. Alexandra had developed
the two fractions lessons with the specific aim of enabling children to develop a
range of models for the representation of fractions. The Halving and Thirding les-
son had used both measurement and area representations for the multiplication of
fractions, an aspect of the lesson which she herself had highlighted several times
during the lesson simulation to Phase 2 teachers. It is somewhat surprising that,
given these fairly intense lesson development experiences together with her expe-
riences as a mathematics educator, she was not able in the interview to draw on
the area model to division by fractions, or more significantly, to the multiplica-
tion of decimal fractions. Indeed, she was unable to provide an illustration of
0.5 × 0.2. More surprising still is her reaction to being asked to think of mod-
els, given that I had observed her emphasise different meanings of multiplication
and division (including repeated subtraction/addition and the area/array models)
and the need to understand children’s different ways of seeing mathematical rela-
tionships when leading training sessions. Of course, this does not mean that she
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did not know other models. However, the difficulty that she encountered generat-
ing these stories does suggest that she lacked an intuitive familiarity with these and
different models of multiplication/division. Alexandra’s failure to draw on her expe-
riences of developing the fractions lessons suggests that her knowledge was highly
contextualised.

This case presents a dilemma. This is not a case where transfer has failed.
Faced with these interview problems in other situations, Alexandra ‘knew’ more and
performed ‘better’, and thus, in these different contexts, her mathematics appeared
‘good enough’. Certainly, her knowledge in context appeared stronger than her
knowledge out of context. In order to make sense of this, Lave and Wenger’s insights
about situated cognition are helpful. Alexandra’s mathematics knowledge for teach-
ing had developed in large part within the context of teaching, teacher education
and curriculum development. Contrary to common wisdom, this knowledge was
situated; it was ‘known’ in the context of teaching.

In the context of teaching, Alexandra ‘knew’, for example, about different mod-
els for the multiplication of fractions in the context of lesson development and, as a
tutor during INSET sessions, when such knowledge was explicitly part of her role.
Significantly, these were the settings where she was working in collaboration with
others, and she had access to lesson or course guidance. She was not simply a pas-
sive participant in these contexts, nor was she simply ‘delivering’ the pre-prepared
course materials. In fact, Alexandra’s knowledge appeared to be relatively strong in
both settings, and at least as strong as that of Numeracy Consultants in general3: it
allowed her not only to participate in the discussions within the research team, but
also to respond authoritatively to teachers’ questions. However, Alexandra’s knowl-
edge in teaching did not simply derive from a more general individual mathematics
knowledge. Rather, her knowledge in teaching was supported by the social commu-
nities and relationships in which she acted as an expert. These communities provided
the cognitive and discursive tools with which Alexandra could be knowledgeable
mathematically. It was distributed in the sense that it was ‘stretched over’ (Lave,
1988) and supported by other individuals and artefacts, in particular, lesson materi-
als and structures. In other words, in being situated, her knowledge was both social
and distributed (Putnam & Borko, 2000).

It is important to recognise that the interview was something of a ‘testing’ and
artificial situation. The problems posed were deliberately ‘tricky’, and the situation
raised issues of mathematics anxiety. Alexandra certainly seemed to perceive the
interview as something of a threat to her professional identity. It is quite possible
that in normal classroom contexts, Alexandra would be less unsettled. However, an
important aspect of teacher knowledge is that it can act as a resource to enable a
teacher to act in an unpredicted or unexpected situation. Thus, the situated, social

3My evidence here is partly based on my own observations and partly based on evidence gathered
for the Leverhulme Numeracy Research Programme, an extensive 5-year longitudinal study of
primary mathematics covering the period of the introduction of the NNS and the appointment of
Numeracy Consultants (Millett, Brown, & Askew, 2004b).
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and distributed nature of a teacher’s mathematical knowledge for teaching may hin-
der the teacher’s ability to respond appropriately in novel contexts, for which the
teacher does not have an instant recourse to support her knowledge.

Is this just an Issue for Primary Teaching?

The literature on teacher knowledge is dominated by research in primary/elementary
education, and one could be forgiven for concluding that the problem of teacher
knowledge is primarily an issue in this sector. In a sense, this emphasis is unsur-
prising since the problem of teacher knowledge is brought into sharp focus in a
sector where the majority of teachers are generalists4 and primary teachers gen-
erally have considerably less formal education in mathematics. As a result, their
mathematical knowledge is likely to be weaker and more influenced by contextual
factors. Certainly, most mathematically trained secondary teachers’ mathematical
knowledge is likely to be rather more secure than that of most primary teachers,
particularly when it comes to solving school mathematical problems of the sort
Alexandra was asked to solve.5

The evidence, whilst less extensive, suggests that secondary teachers’ knowl-
edge is no less situated. Thompson and Thompson (1994), for example, describe
a middle-school specialist teacher whose knowledge of rate and speed was strong
and fluent: he himself could solve classroom problems with ease. Yet this very flu-
ency was a barrier to teaching. When observed teaching a student one-to-one, the
teacher conceived, albeit implicitly, of speed in terms of the covariance of distance
and time, whilst the student’s understanding was additive and discrete. The stu-
dent did not have an image of motion as the simultaneous accumulation of distance
and time (i.e. direct proportion). The teacher’s own connections between represen-
tational structures and ‘calculational’ procedures for solving the problem were so
strong that, when working with a student, he “saw (i.e. imputed) appropriate reason-
ing any time [the student] employed an appropriate calculation” (p. 299, emphasis
in original). In a later analysis, they argue that the teacher’s understandings of divi-
sion and proportionality were so “packed” that they were “insensitive to conceptual
subtleties in the situations” (Thompson & Thompson, 1996, p. 4).

One aspect of the power of mathematics lies in this “packed” and abbreviated
nature. A fluent mathematician can choose the most appropriate representation for
solving a problem irrespective of whether this representation is actually appropriate
for modelling this particular problem. The essence of teacher knowledge involves
an explicit recognition of this – “unpacking” the mathematical ideas (Ball & Bass,

4I recognize that there are a number of educational systems internationally (e.g. in Israel) in which
there are specialists teachers of elementary mathematics. Nevertheless, the generalist remains the
norm.
5Not all secondary teachers of mathematics are mathematically trained, of course. In England, for
example, a significant proportion of them have weak mathematics qualifications, particularly those
teaching lower secondary mathematics (Johnston-Wilder et al., 2003).
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2000). On the other hand, doing mathematics only requires an implicit recognition
of this. Indeed, fluency in mathematics arguably involves developing such implicit
understandings. To a competent mathematician, the nuances of meaning inherent
in these different pedagogical representations of mathematics can seem trivial and
unimportant.6 Hence, it may be that there is a tension for many secondary teachers
of mathematics in that some aspects of mathematics knowledge for teaching run
counter to the habits and norms of mathematics as a discipline.

This is not to argue that mathematics knowledge does not matter, but rather that
mathematical knowledge is not sufficient in isolation. Lloyd and Wilson (1998)
discuss how a teacher’s sophisticated understanding of functions enabled him to
implement an innovatory reform-focused curriculum. Lloyd and Wilson’s teacher
had previously taught a traditional curriculum for 14 years. They argue that the
teacher’s rich and well-articulated mathematical knowledge enabled innovation, but
only in the context of curriculum materials and a related professional development
programme that supported the innovation. Like Alexandra, Lloyd and Wilson’s
teacher’s mathematical knowledge for teaching was supported by artefacts and
social structures. Unlike Alexandra, his knowledge was also supported by a rich
understanding of mathematics.

The Contribution of Situated Theories:
What Does This Mean for Teacher Knowledge?

There is no doubt that Shulman’s (1986) pedagogical content knowledge and the
work of Ball and others provide a very significant contribution to understanding
teacher knowledge. However, the analysis that I have presented here strongly sug-
gests that mathematics teacher knowledge is very much more deeply embedded in
practice than the PCK literature generally acknowledges. Whilst subsequent work
has emphasised the aspects of Shulman’s work that attempt to codify teacher knowl-
edge, it is often overlooked that he did examine the forms of knowledge. This
neglected area of Shulman’s work relates to the way teacher knowledge is ‘held’
and used in teaching. Shulman conceives of knowledge as involving propositional,
case and strategic aspects. These are discussed in some depth by Goulding and
Petrou in Chapter 2. The case and strategic aspects of knowledge do certainly go
some way towards recognizing the interrelationship between knowledge and its use.
Shulman conceives of teaching “theory through cases” (p. 11). Further, he suggests
that the strategic may be better captured as a process of “knowing” rather than the
more static “knowledge” (p. 14) and argues that this “comes into play as the teacher
confronts particular situations or problems whether theoretical, practical or moral,
where principles collide and no simple solution is possible” (p. 13). This aspect

6See Saunders (1999) for an example in which a professional mathematician rejects the pedagogi-
cal distinction between fractions as operators and quantities as “playing tricks” (p. 3) and indicative
of the de-professionalisation of teachers.
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of Shulman’s work provides many insights, particularly regarding the application
and use of teacher knowledge. Nevertheless, it is a largely individual conception of
knowledge. One consequence is a negative focus on the problem of teacher knowl-
edge in terms of finding and fixing individual deficits (Askew, 2008). However,
some aspects of mathematics teachers’ subject knowledge are more difficult than
others to pin down and codify. Almost inevitably, the focus on knowledge is con-
centrated on the more easily describable ideas (e.g. number facts) with much less
emphasis placed on the more ephemeral but equally important ideas that Yackel and
Cobb (1996) term socio-mathematical norms such as symmetry.

In viewing knowledge as situated, social and distributed, the situated perspective
presents a significant advance. A major contribution is that this approach places
much greater emphasis on the communities in which mathematics teachers are
engaged rather than on individual knowledge. In principle, it is certainly desirable
for teachers to ‘possess’ a sophisticated knowledge of mathematics for teaching that
is evident in a variety of contexts, both inside and outside the classroom. I have lit-
tle doubt, for example, that, were the gaps in Alexandra’s mathematics knowledge
to be addressed, her knowledge of mathematics in teaching – and her teaching of
mathematics – would also improve. However, it is also important to bear in mind
that the key setting in which teachers ‘use’ and ‘apply’ their mathematics knowl-
edge is in the classroom. In Alexandra’s case, there certainly were significant gaps
in her knowledge of rational number, as evident in the mathematics interview. But
ultimately, the quality of a teacher’s mathematical knowledge in interview situations
does not matter in itself, except possibly for research purposes. What does matter
is that a teacher’s mathematical knowledge as situated in teaching contexts is suf-
ficient for successful learning to occur. The evidence presented here suggests that
classroom knowledge is not a straightforward contextualisation or application of a
more abstract and general a priori mathematical knowledge.

A second contribution relates to the nature of learning. Adler (1998) argues that
becoming a mathematics teacher involves learning to talk both within and about
mathematics teaching and learning, rather than simply learning new knowledge.
In their study involving a group of mathematics teachers from one middle school,
Stein, Silver, and Smith (1998) similarly highlight the importance of story and nar-
rative in restructuring and reworking knowledge about mathematics teaching. They
see this restructuring of existing knowledge and experience as more important than
the acquisition of new knowledge – echoing Askew et al.’s (1997) findings about
the importance of teachers’ beliefs about mathematics in the teaching of numeracy.
Stein et al. (1998) place these notions of story and narrative in the context of teach-
ers’ professional identities, arguing that teacher learning is best conceived of as a
process of identity change.

One criticism of the situated learning literature, and in particular the work of
Lave and Wenger, is that the context is conceived of as relatively static and fixed.
Hence, individual learning can appear as following fixed and predictable trajectories
of learning. Holland, Lachicotte, Skinner, and Cain’s (1998) conceptualisation of
identity in terms of agency and social structure provides a way of understanding the
unexpected and surprising nature of learning. In an analysis of students’ mathemati-
cal identities, Boaler and Greeno (2000) relate Holland et al.’s (1998) conception of
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identity to Belenky, Clinchy, Goldberger, and Tarule’s (1986) notions of authority
and knowing. They link procedural knowing to an acceptance of external author-
ity in mathematics; and conceptual or principled knowing, to a more questioning
and critical stance – the need to ‘know why’. Similarly, Povey, Burton, Angier,
and Boylan (1999) discuss how developing an authorial stance towards mathemat-
ics enables teachers to develop such a critical stance. Hodgen and Johnson (2004)
examine teacher motivation and the reasons why teachers participate (or do not
participate) in learning about mathematics education, arguing that the motivation
to change is inextricably linked to teachers’ identities and the social context in
which they are located. Focusing on the aforementioned case of Alexandra, they
discuss how the context of a school mathematics lesson prompted her to make
an explicit connection between spatial and numerical representations (seeing the
Cartesian system as “like a 2D number line”, p. 236) and to ‘see’ the mathematical
nature of diagrams and representations of fractions. Clearly, these are key compo-
nents of mathematical knowledge for teaching, but Hodgen and Johnson conceive
of her learning as an authorial choice in response to the particular demands of cir-
cumstance. This focus on identity highlights part of the difficulty of teacher learning.
Bartholomew (2006), for example, uses the notion of the ‘defended self’ to highlight
how mathematics teachers may resist learning because they perceive it as a threat to
their being. Hodgen and Askew (2007) suggest that imagination plays a key role in
overcoming such threats, thus developing and transforming teachers’ relationships
with and knowledge of (school) mathematics.

A third contribution relates to the analysis of learning settings. The situative per-
spective is often seen as providing a critique of current practices in schooling rather
than offering an alternative vision (Lerman, 2000).7 Greeno’s (1998) work, how-
ever, provides a useful method of analysing learning situations. He highlights the
importance of understanding the constraints and affordances: constraints that enable
participants (teachers and learners) to predict and anticipate activities and outcomes;
affordances that provide opportunities for participants to draw on practices from
elsewhere. Boaler (2000) highlights the importance of the social context of learn-
ing. In a re-analysis of her study of open-ended and traditional approaches to school
mathematics (2002), she describes how the students, who experienced the open-
ended approach, more easily related school mathematics to out-of-school contexts
in part because of the similarities in the way mathematics was practiced. In a similar
vein, Lave (1992) argues that much problem-solving in schools is not authentic: in
contrast to the messy and complex problems of the real world, school mathemat-
ics problems tend to be straightforward and routine. But Putnam and Borko (2000,
pp. 4–5) argue that the problem of authenticity is related to the authenticity of learn-
ing rather than necessarily to the authenticity of problems themselves: “Authentic
activities foster the kinds of thinking and problem-solving skills that are important
in out-of-school settings, whether or not the activities themselves mirror what prac-
titioners do”. This highlights the two-fold problem of authenticity in mathematics.

7See, for example, Lave and Wenger’s (1991) rather brief and simplistic critique of school
education.
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Mathematics teaching involves two stages of re-contextualisation of mathematics
knowledge: a re-contextualisation of teachers’ own mathematics learner knowledge
for the classroom to enable students to re-contextualise this classroom mathematics
for out-of-school contexts.

Implications for the Practices of Teaching,
Teacher Education and Development

Recognising the situated nature of mathematics knowledge suggests that focus-
ing exclusively on mathematics knowledge in isolation from the classroom context
is unlikely to be effective. In developing strategies directed at improving teacher
knowledge, there is a need to examine the contextual constraints and affordances
which help or hinder teachers to act knowledgably in the classroom (Greeno, 1998).
A crucial issue is to examine how collective knowledge can be harnessed to support
an individual teacher’s mathematical knowledge in the classroom.

One productive strategy is to provide tools that focus on the use of teacher knowl-
edge in the practice of teaching mathematics. One constructive tool of this kind, the
Knowledge Quartet, is described in some depth elsewhere in this book, particu-
larly in the Chapter 12 by Turner and Rowland. To date, like much of the literature
on mathematics teacher knowledge, this approach has focused on primary or ele-
mentary mathematics teaching, although there is every reason to suggest that this
approach could be useful in secondary teaching and teacher education. In partic-
ular, key aspects of the Knowledge Quartet resonate with active research topics
in secondary mathematics, including the choice and construction of mathematical
examples.

A second implication relates explicitly to the social aspect of teacher knowledge.
If teacher knowledge is supported by social structures and relationships, then it is
likely to be productive to focus on developing shared expertise rather than individ-
ual ‘knowledge’. The efficacy of collaborative approaches to mathematics teacher
education is well-established (e.g. Clarke, 1994) and the situated perspective lends
further theoretical weight to such approaches. Millett, Brown and Askew (2004a)
highlight the importance of the professional community of teachers in a school and
find that some primary schools appear to be able to successfully ‘share’ mathemat-
ics knowledge and expertise amongst a group of teachers through a mathematics
co-ordination team.

A third implication concerns lesson materials, textbooks and, more broadly, the
distributed aspects of teacher knowledge. There is certainly an urgent need to exam-
ine how textbooks and other materials can best support teacher knowledge in the
practice of teaching. However, there is a great deal of evidence that materials on
their own are insufficient (e.g. Askew, 1996). Spillane (1999) argues that for pro-
fessional change of any significance, mathematics teachers need social spaces in
which they have access to “rich deliberations about the substance . . . a practising of
reform ideas with other teachers and reform experts includ[ing] material resources
or artefacts that support [these] deliberations” (p. 171). Looking at Alexandra’s
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subject knowledge development, one of the significant features was her engage-
ment in lesson development (Hodgen & Johnson, 2004; Johnson et al., 2004). There
has been a great deal of focus on translating the Japanese practice of lesson study
to a Western context. But actually, this may be a misguided attempt to transfer a
very contextualised cultural practice. What made a difference for Alexandra was
not lesson study per se, but rather the more general practice of lesson development
carried out in collaboration with others: constructing pedagogic strategies, exam-
ples, tasks, etc. that enable students to do and learn mathematics. Key to this is that
lesson development is not merely a pedagogic exercise; it necessitates the investiga-
tion and exploration of topics from school mathematics, as described in Chapter 5
by Watson and Barton. That such apparently simple and elementary topics can chal-
lenge mathematical experts, is clear from the example of prospective secondary
teachers cited at the beginning of this chapter.

A fourth implication relates to identity, care and relationships. For many pri-
mary teachers, the problem of maths anxiety is well-documented (Bibby, 1999).
However, simply reducing anxiety and enabling teachers to ‘feel better’ about math-
ematics can lead to complacency (Askew, 1996). Askew and I have argued that
teachers’ knowledge of mathematics is both intellectual and emotional (Hodgen &
Askew, 2007). The motivation to do mathematics – or to teach mathematics – is
both individual and social. This is as true for well-qualified and knowledgeable
secondary teachers, as it is for primary teachers. However, interventions related
to teachers’ knowledge of mathematics have generally focused on cognitive and
pedagogic issues: teachers’ mathematics subject knowledge, how children learn
and teaching approaches. These issues are, of course, important, but the impor-
tance of identity in coming to know as suggested by the situated perspective,
implies that such an approach is doomed to failure unless placed within an affec-
tive frame in which teachers have space to question and enjoy mathematics and
mathematics teaching. In analysing mathematics subject knowledge, for example,
Askew (2008) presents a convincing case for a focus on the big ideas – or socio-
mathematical norms – of precision and generalization, as well as the romance of the
subject.

Finally, there are implications for research into mathematics teacher knowl-
edge. There is an increasing interest in the measurement of teachers’ mathematics
knowledge and the relationship with student learning (Hill, Rowan, & Ball, 2005).
However, the situated perspective suggests that problem goes beyond this issue of
codification in that teachers’ knowledge is not only situated but also social and dis-
tributed. The testing of individual teachers is likely to focus on de-contextualised
mathematics knowledge which, as in the case of Alexandra above, may be very dif-
ferent from their classroom knowledge. Nevertheless, the issue of how mathematics
teacher knowledge is enacted and the relationship with classroom practice remains
poorly understood, and research in this area, like the research in mathematics teacher
education generally (Adler, Ball, Krainer, Lin, & Novotna, 2005), is largely lim-
ited to small scale studies. Given the analysis above, approaches that focus on
the notion of re-contextualisation (Adler & Davis, 2006) may offer insights in
this area.
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Chapter 4
Changed Views on Mathematical Knowledge
in the Course of Didactical Theory
Development: Independent Corpus of Scientific
Knowledge or Result of Social Constructions?

Heinz Steinbring

Introduction

This contribution tries in an exemplary way to look at the case of the historical devel-
opment of important tendencies in mathematics education (Mathematikdidaktik) in
Germany in the last 40 years. This description can only follow one line of devel-
opment; it cannot and will not summarize other research approaches existing in
mathematics education in Germany. A major concern is to investigate the clari-
fication process of the central objects of mathematics education research and to
analyze the important role that the content matter ‘mathematics’ plays for teaching
and learning processes. The main interest of this paper is to better understand the
special German case of how theoretical considerations for mathematics education
developed, changed and expanded. This development cannot and will not explain a
universal, all-embracing theory of mathematics education, but it reflects one impor-
tant German tradition (without looking here at other traditions) and is an example
of a theoretical evolution of mathematics education. Within this historical devel-
opment, there are to be found strategies of comparing, contrasting and of (locally)
integrating theories and theoretical aspects.

‘Mathematics learning’ as an object of didactical considerations has consistently over time
been regarded as the triad ‘Learner – Teacher – Learning/Teaching-Content’. In pedagog-
ics, these three elements are labeled as the ‘didactical triangle’ since Friedrich Herbart
(1776–1848) (see Peterßen, 2001, p.140, and Künzli, 2000, pp. 48–49). According to
Herbart “. . . education within instruction does not [take place] in the immediate relationship
between educator and pupil, but educator and pupil [enter] into an indirect relationship to
each other. Between them stand the instruction objects”1 (Peterßen, 2001, p. 140, translated
by H.S.).

In mathematics education (in Germany), the didactical triangle (see Fig. 4.1)
has a long tradition. The vertices for mathematics education represent: (1) the
mathematical knowledge, (2) the student, and (3) the teacher (cf. Steinbring, 1998a).
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Teacher

Mathematics

StudentFig. 4.1 The didactical
triangle

The schema of the didactical triangle with its three elements will be used as a
kind of ‘test instrument’ for the following considerations and analyses. By using
this triangle, the following orientating questions will be asked for the elaboration of
the changes and developments in mathematics education:

(A) Which explicit and implicit (unconscious) concepts and role descriptions
exist about the three ‘elements’: mathematics, teacher and students?

(B) Which explicit and implicit (unconscious) concepts and role descriptions
exist about the relationships or interactions between the three ‘elements’:
mathematics, teacher and students?

(C) What is explicitly or implicitly (unconsciously) seen as the central and cru-
cial means (among the three ‘elements’: mathematics, teacher and students)
of positively influencing and improving the learning process?

These questions, combined with the resulting insights and answers, will help to
provide a more fully differentiated picture of which research concepts and objects
have been predominant in mathematics education in the course of its historical
development, and how the role and nature of (school) mathematical knowledge has
changed and been redesigned in the course of this development.

The ‘Stoffdidaktik’ Elaboration of Mathematical
Knowledge as an Essential Factor Influencing
Teaching and Learning Processes

Until the mid-1960s, the emphasis in Germany was on didactical works and analyses
which concentrated on school-mathematical knowledge, its didactical elementa-
rization and on subject matter aspects. These works were essentially linked to
mathematics as a pre-given content for learning and instruction, and specific fea-
tures of a genuinely mathematics education research approach had not yet become
noticeable in them. Especially within the German-speaking countries, this didactical
research paradigm developed as stoffdidaktik2 (Content based Didactics).

2In this paper ‘stoffdidaktik’ is restricted to a certain fundamentalist form of content-related math-
ematical analysis based on ideas from the New Math era. Later, there were further developments
and modifications of the stoffdidaktik approach – no longer explicitly linked to the New Math
era – that relate the analysis of mathematical content knowledge to the learning processes of stu-
dents. These kinds of stoffdidaktik still exist; there are also types of stoffdidaktik that emphasize
the epistemological analysis of mathematical content matter.
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. . . ‘stoffdidaktik’ is dominated by too simple a model to solve didactical questions and
research problems. [It] acts on the assumption that mathematical knowledge – as researched
and developed in the academic discipline – is essentially unchanged and absolute . . ..
Though ‘stoffdidaktik’ in the meantime notices the problems of understanding that students
have in learning, and accordingly it specifically proceeds to prepare the pre-given mathe-
matical disciplinary knowledge for instruction as a mathematical content, to elementarise
it and to arrange it methodically; yet the principle remains unchallenged that mathemati-
cal knowledge represents a finished product, and that the teaching-learning-process can be
organised linearly, emanating from the content, over the teacher, into the students’ heads,
and can ultimately be controlled and influenced at every step by mathematics educators
(Steinbring, 1997, p. 67, see also Steinbring, 1998a, and Steinbring, 1998b, pp. 161–162).

Under the abbreviated label stoffdidaktik, this direction was especially repre-
sented by ‘didactically oriented content analysis’.

The research complex of didactically oriented content analysis (Sachanalysen) has lately
engaged mathematics education in the Federal Republic of Germany in a particular way . . ..
The research methods of this area are identical with those of mathematics, so that outsiders
have sometimes gained the impression that, here, mathematics (particularly elementary
mathematics) and not mathematics education is being conducted . . .. The goal of ‘didac-
tically oriented content analysis’ which essentially follows mathematical methods is to give
a better foundation for the formulation of content-related learning goals and for the devel-
opment, definition and use of a differentiated methodical set of instruments. (Griesel, 1974,
p. 118, translated by H.S.).

What does progress in mathematics education depend upon? 1. Upon the state of devel-
opment of the analysis of the content, the methods and the application of mathematics. 2.
Upon didactical ideas and insights, which make it possible to attend better, or at all, to a
subject area within instruction. (Griesel, 1971, p. 7, translated by H.S.).

Griesel names four further influential factors (general experience and statistically
based evidence about instruction, insights into the mathematical learning process,
development-psychological and sociological conditions); yet the didactical work on
the ‘content’ is the most important.

In a critical comparison between (German) ‘didactically oriented content anal-
ysis’ and (French) ‘ingénierie didactique’, Strässer (1994) states that stoffdidaktik
ultimately pursued the goal of elaborating school-mathematical subject areas – sim-
ilar to mathematical areas in Bourbakism – in a logically consistent way and built
upon unambiguous foundations. As an example, Strässer quotes from the fore-
word to the two-volume book by G. Holland Geometry for Teachers and Students
(1974/1977):

This book arguably offers the reader a complete axiomatic composition of the Euclidian
geometry of the plane, which in its system of concepts as well as in the choice and organ-
isation of the geometrical contents orientates itself as much as possible to contemporary
geometry instruction in school (Holland, 1974, p. 7, translated by H.S.).

An archetype for stoffdidaktik was uniform mathematics, as it was exemplarily
given by Bourbaki and then by the so-called New Mathematics. Connected with this
archetype of uniform, axiomatic mathematics, the illusion for work in stoffdidaktik
was that mathematics for teachers, students and pupils (i.e., school-mathematics)
could also ultimately be elaborated in a logically correct and consistent manner,
definite and absolute for all teaching and learning processes.
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The whole of mathematical knowledge, ordered in this way, is, in principle, describable
with a single, universal language. This uniformity . . . means essentially that the elemen-
tary concept of the number ‘5’ and the more abstract concept of the ‘expectation of a
binomially distributed random variable’ are objects at the same level of description by
mathematical set-language. This product of the mathematical knowledge corpus reflects
the preoccupations of the historical period during which it originated; its logical clarity, the
construction from the simple to the complex and abstract, as well as its uniform language,
are together imagined to provide the ideal preparation of knowledge for its acquisition and
its understanding – as was also for example the maxim of the movement of so-called ‘New
Mathematics’ (Steinbring, 1998b, p. 161).

The stoffdidaktik work undertaken focused initially on the school mathematics of
higher school grades (especially grammar school, the German Gymnasium covers
the grades 5–13, age 10–19); then, at the end of the sixties, with didactical works
in the frame of the movement of ‘New Mathematics’ (especially the works of Z. P.
Dienes), it was extended to mathematics instruction in primary school (grades 1–4,
ages 6–10).

The modernisation of mathematics instruction in primary school only started much later,
about the year 1966, when the inventive ideas of Z. P. Dienes became familiar . . .. We can
speak of a modernisation of mathematics instruction in primary school and in grades 5 and
6 . . . (Griesel, 1971, p. 8, translated by H.S.).

For a summary, characterizing the position of stoffdidaktik as described in this
paragraph, the three aforementioned questions (A, B and C) shall now be consulted
and answered in a general way. About the mathematical content, there clearly is
the conception that ultimately a uniform, objective and unchangeable content of
teaching and learning is to be elaborated in didactics according to the paradigm of
scientific mathematics. The teaching, learning and understanding processes of the
participating persons (teacher and students) are orientated around the rigid subject
matter structures: the teacher is the ‘conveyor’ of the didactically prepared content
to the student(s) who are seen as passive receivers. The relations between the three
elements of the didactical triangle are of an essentially linear nature: the mathemat-
ical knowledge arrives by means of the preparation and transfers from the teacher to
the students. In the research paradigm of stoffdidaktik, the scientific elaboration of
mathematical knowledge is the central and crucial means practiced for steering and
optimizing mathematical instruction, learning and understanding processes.

The Synchronization Between the Dynamics of Knowledge
Development and the Processes of Teaching and Learning

The international criticism of New Mathematics (Kline, 1973) led also in Germany
to a long-term critical altercation with New Mathematics. Furthermore, the scien-
tific debate about the status and the objects of a science genuinely concerned with
mathematics education took place over a longer period (Steiner in ZDM, 1974;
Winter, 1985; Wittmann, 1992). One prominent voice, Winter (1985, pp. 80–81),
states:
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So-called Sachanalysen (‘didactically oriented content analyses’) can have a downright
calamitous effect on the school reality, if they refer reductionistically solely to mathematics
(perhaps even to assumed mathematics) and fade out other essential constituents of learning
mathematics . . .. [One] inevitably encounters problems of the goals and forms of learning
itself, which are not, or hardly, explained in the Sachanalysen . . .. In general: Sachanalysen
are in danger of losing focus on the outer-mathematical reality and thus on the students’
experience of the world, and this is only one pedagogical sin of such reductions (Winter,
1985, p. 80/81, translated by H.S.).

The relation between mathematical learning content and teaching and learning
processes did not work in the way imagined from the perspective of stoffdidak-
tik. A new perspective on the subject matter content needed to be developed
which took the sequential development and dynamics of teaching and learning pro-
cesses into account. Freudenthal (1973, p. 114) emphasized the process character of
mathematics for learning in a paradigmatic way:

It is true that words such as mathematics, language, and art have a double meaning. In the
case of art it is obvious. There is a finished art studied by the historian of art, and there is an
art exercised by the artist. It seems to be less obvious that it is the same with language; in
fact linguists stress it and call it a discovery of de Saussure’s. Every mathematician knows
at least unconsciously that besides ready-made mathematics there exists mathematics as an
activity. But this fact is almost never stressed, and non-mathematicians are not at all aware
of it.

Mathematics, as an activity, implies that learning becomes an active process in
the construction of knowledge.

The opposite of ready-made mathematics is mathematics in statu nascendi. This is what
Socrates taught. Today we urge that it be a real birth rather than a stylized one; the pupil
himself should re-invent mathematics . . .. The learning process has to include phases of
directed invention, that is, of invention not in the objective but in the subjective sense, seen
from the perspective of the student (Freudenthal, 1973, p. 118).

Development processes are not uniform, universal or homogeneous. Subjective
characteristics of those people keeping the process going, as well as situated repre-
sentations, notations and interpretations of mathematical knowledge, are manifold,
divergent and partly heterogeneous. Further, cultural contexts, subjective influences
and situated dependencies are both active and inevitable; such are the reasons for an
observable diversity and non-uniformity of the emerging knowledge.

The contrast between uniform scientific mathematics (oriented towards a gen-
erally valid (research) product) and the different perspectives and interpretations
of mathematics produced in social environments for different application domains
(tied up in situatedly-framed development processes) becomes extremely apparent
against the background of the different cultures in which mathematical knowledge
is used and experienced. The culture of the researching and teaching mathematician
and the culture of mathematics teaching face one another in an obviously distinct,
and sometimes opposing, way. The role the Bourbakist mother structures play for
the unity of mathematics cannot be understood by mere appropriation of the princi-
ples given by these structures. The culture of mathematical science and the historical
development of mathematics form the necessary background for an understanding.
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These principles of the unity of mathematical knowledge cannot easily be trans-
ferred to school mathematics. With such an endeavor, school mathematics would
lose its cultural background and become mere formalistic signs and formulas. In
order to understand these signs and formulae, the formation of a new, distinct cul-
ture, a kind of mathematical re-invention, would again be necessary. From the point
of view that mathematical knowledge has to be seen as a newly-emerging culture,
one has to question the unity of mathematics in learning and teaching processes.
If mathematical knowledge can only be meaningfully interpreted in the frame of a
specific cultural environment, then there is not simply one single, but many different
forms of practicing mathematics.

Wittmann (1995, pp. 358–359) distinguishes between specialized, scientific
mathematics and the general social ‘phenomenon’ of mathematics.

[One] . . . must conceive of ‘mathematics’ as a broad societal phenomenon whose diversity
of uses and modes of expression is only a part reflected by specialized mathematics as typ-
ically found in university departments of mathematics. I suggest a use of capital letters to
describe MATHEMATICS as mathematical work in the broadest sense; this includes mathe-
matics developed and used in science, engineering, economics, computer science, statistics,
industry, commerce, craft, art, daily life, and so forth according to the customs and require-
ments specific to these contexts . . .. It should go without saying that MATHEMATICS, not
specialized mathematics, forms the appropriate field of reference for mathematics educa-
tion. In particular, the design of teaching units, coherent sets of teaching units and curricula
has to be rooted in MATHEMATICS.

On the basis of this position about the role of mathematical knowledge in
instruction processes, Wittmann characterizes didactics of mathematics as a ‘design
science’ (1998, 2001). In German-speaking mathematics education, especially
concerning teacher education at universities and teachers’ further professional edu-
cation, Wittmann is a protagonist for a new perception on the role and the meaning
of mathematical knowledge for teaching and learning processes, which critically
distances itself from New Mathematics.

At the Institute for Didactics of Mathematics (IDM), founded at the University
of Bielefeld in 1973, fundamental studies about mathematics education positions,
problems and research questions were carried out in three working groups of sci-
entists. In the “Mathematics Teacher Education” working group (Arbeitsgruppe
Mathematiklehrerbildung, 1981), two central research approaches in mathematics
education were mainly pursued: (1) the particular epistemological nature of math-
ematical knowledge, and (2) the central role of the teacher within mathematical
teaching and learning processes.

Historical, philosophical and epistemological analyses were elaborated as a basis
for characterizing mathematical knowledge ultimately as theoretical knowledge. A
central criterion of theoretical mathematical knowledge – also observable in the
course of its historical development – lies in the transition from pure object or
substance thinking to relation or function thinking.

The transition from a substance concept to a relational concept is a central part
of Ernst Cassirer’s epistemological philosophy.
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. . . the theoretical concept in the strict sense of the word does not content itself with sur-
veying the world of objects and simply reflecting its order. Here the comprehension, the
‘synopsis’ of the manifold is not simply imposed upon thought by objects, but must be
created by independent activities of thought, in accordance with its own norms and criteria
(Cassirer, 1957, p. 284).

And in another passage, Cassirer (1923, p. 20) writes:
It is evident anew that the characteristic feature of the concept is not the ‘uni-

versality’ of a presentation, but the universal validity of a principle of serial order.
We do not isolate any abstract part whatever from the manifold before us, but we
create for its members a definite relation by thinking of them as bound together by
an inclusive law.

This understanding of theoretical mathematical concepts as referring to relations,
rather than to objects or to the empirical properties of objects, constitutes the basic
step towards developing mathematics education into a scientific discipline.

For didactics, for instance, it is obvious that the didactic problem in its deeper sense, that
is in the sense that it is necessary to work on it scientifically, is constituted by the very fact
that concepts will reflect relationships, and not things. Analogously, we may state for the
problem of the application of science that it will become a real problem only where the
relationship between concept and application is no longer quasi self-evident, but where to
establish such a relationship requires independent effort (Jahnke & Otte, 1981, pp. 77–78).

A perception that mathematical knowledge does not reflect things, but relations,
implies a differentiated view of teaching and learning mathematics as independent
activities of the participating persons. Thus, the role of the teacher comes to the fore.

A description of the requirements on the teacher and the teaching activity has been
attempted in the debate about the relation between teaching and learning. From this debate,
one can record as a consequence that ‘teaching’ cannot be derived from descriptions of
‘learning’ – and that according to the opinion of many authors the developmental status
of learning theories is more advanced than that of teaching theories. After all, the concep-
tion that the contents of teacher education should essentially consist of insights about the
student’s learning process is very common.

What is the specificity of teaching? The specificity of teaching lies within the con-
tent of the activity, which aims at effectuating learning. Every theory of academically
institutionalised education thus presupposes a concept of teaching and cognition, but
also requires perceptions about the questions by which mechanisms the teaching/learning
process leads or shall lead to an interactionally imparted forming of the learner.” (AG
Mathematiklehrerbildung, 1981, p. 57, translated by H.S.).

According to this perspective, theoretical and empirical works about the par-
ticularity of the teacher’s activity have been carried out in the aforementioned
working group of scientists at IDM Bielefeld (see for instance: Bromme,1981,
1992; Bromme & Seeger, 1979). These concepts and works about the activity of
the mathematics teacher reveal, in particular, that within the didactical triangle, the
teacher and his role are determined neither by the mathematical knowledge nor by
the learning students. For instance, Bromme (1981, 1992) analyses central aspects
of the teacher’s activity (e.g., the preparation of mathematics instruction) under the
perspective that teachers are to be regarded as experts in their professional field
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of work. In addition to the two essential fields of professional teacher knowledge:
‘content knowledge’ and ‘pedagogical content knowledge’ (according to Shulman,
1986), Steinbring (1998c) elaborates the particularity of ‘epistemological knowl-
edge for mathematics teachers’ with a view to the theoretical and dynamic character
of mathematics. This knowledge concerns insights about the particular epistemolog-
ical nature of mathematical knowledge for teaching and learning processes, which
are not contained in the ‘pedagogical content knowledge’, which Shulman (1986,
p. 9) briefly describes as “. . . the ways of representing and formulating the subject
that make it comprehensible to others”.

Furthermore, the independent role of the learning child with his or her cognitive
predispositions moved to the centre of didactical research, a position which it had
already taken for a longer time in primary school didactics. In a summarizing main
lecture at the Federal Congress for ‘Didaktik der Mathematik in Osnabrück’ in 1991,
Peter Sorger sums up a view taken in German mathematics education:

Today, we know so much more, especially about the individual primary school child, about
his cognitive activities, about his thinking, about the initiation and course of mathematical
learning processes, about the influences of the individual learning history onto new learning
situations, about the variety of possible thinking and solution strategies, which the adults’
perceptions are always in danger of cutting too short. The diagnosis, analysis and therapy
of learning difficulties have also been thoroughly researched (Sorger, 1991, p. 39, translated
by H.S.).

The research on this topic in particular uses methods from reference disciplines
and they are not reducible to mathematical works (i.e., they essentially contribute to
an independent research profile for mathematics education).

Again, the three questions (A, B and C) shall be asked and answered in a general
way, in order to characteristically sum up the positions about mathematical instruc-
tion (respectively teaching and learning processes) described in this section. The
mathematical content is interpreted more diversely and its dynamic and procedu-
ral character is particularly emphasized. (School-) Mathematical knowledge is not
identical with scientific mathematical research knowledge, but, at the same time, it
is theoretical knowledge which means that it is subject to a particular epistemology
(also in the frame of the activities of teaching and learning). It is this developmen-
tal aspect of mathematical knowledge that makes possible to coordinate the ongoing
students’ learning activities with the teachers’ teaching activities. These more differ-
entiated perceptions of mathematics education negate an immediate dependence of
the teacher on mathematical knowledge and of the student on the instructing teacher.
From this perspective, learning mathematics is autonomous: “socially and actively
discovering, independent learning by the students”; teaching is likewise viewed as
an independent activity (AG Mathematiklehrerbildung of the IDM Bielefeld).

The three elements of the didactical triangle, (1) the mathematical knowledge,
(2) the student and (3) the teacher stand ‘apart’ and gain independence as well as
their own dynamics with new didactical research questions. The relations between
these elements are of a rather indirect nature. For instance, the teacher is now
regarded rather like a moderator or initiator of learning processes, while the student
is conceded his own responsibility for his mathematical understanding and learning
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processes. The developing mathematical knowledge becomes manifest in different
ways in different using and teaching/learning practices; it is no longer consistently
and universally given, for example, on the basis of the Bourbakian structure types
(Bourbaki, 1971).

The ‘steering’ of the students’ learning processes by the teacher can no longer
be perceived as mechanical conducting. The ‘functioning’ of the didactical triangle
now rather represents a reciprocal process between its three elements and not a linear
or circular movement of mathematics via the teacher to the students, or vice-versa.
The mathematical knowledge (now in its new interpretation as theoretical knowl-
edge within a development process) remains important, but shows itself in different
characteristics in learning and teaching activities; however, the student’s learning
activities and the teacher’s teaching activities also have an essential influence on the
whole process.

At first, didactical research concentrated rather on the three relatively
autonomous elements of the didactical triangle, (1) the mathematical knowledge,
(2) the students and (3) the teacher; only with the beginning of mathematics educa-
tion interaction research was the co-action of the three elements taken seriously and
treated explicitly as the central object of didactical research.

Mathematics Education Research and Mathematical
Teaching-Learning-Practice as Independent
Institutional Systems

For a long time, researchers in mathematics education research took the standpoint
that mathematics teaching practice had to strictly follow the insights constructed
by mathematics education. This point of view is also found in those didacti-
cal works which emphasize the procedural character of mathematical knowledge
and of mathematical teaching and learning situations. There still exist perceptions
according to which instruction practice could be directly improved by educational
research.

Mathematics education is faced with the tension between scientific research and
constructive development work. This problematique has been discussed intensively
for a long time, for instance in the scientific debates about the so-called ‘Theory-
practice-problem’ (Bazzini, 1994; Even & Loewenberg Ball, 2003; Seeger &
Steinbring, 1992; Steinbring, 1994; Verstappen, 1988).

Facing this complementary task of research and constructive development, math-
ematics education is confronted with the fundamental question: “What is the
particular nature of the relation between theory and practice?” One traditional solu-
tion to this question that educational research exclusively provides the necessary
knowledge and prescriptions for school practice has been decidedly criticized and
replaced by other conceptions.

An essential criticism has been developed by means of the work of the research
group around Heinrich Bauersfeld at the IDM (Bielefeld). Since the beginning of the
eighties, research started in which everyday mathematics teaching as autonomous
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social events was taken seriously and analyzed under an interactionistic perspective
(e.g., Bauersfeld, 1978, 1988; Cobb & Bauersfeld, 1995; Krummheuer, 1984, 1988;
Maier & Voigt, 1991, 1994; Voigt, 1984, 1994). Everyday mathematics instruction
is seen as a peculiar culture, which is neither completely nor directly determined by
the scientific discipline ‘mathematics’, nor can it be directly guided and improved
by mathematics education research results.

Voigt (1996, p. 384, translated by H.S.) calls this the ‘turn to everyday life’ of
the authentic classroom in mathematics education:

. . . the ‘turn to everyday life’ . . . with its criticism of ‘holiday didactics’ . . . contained the
claim of assigning a greater meaning than before to the features of everyday instruction.
In ethnographic observations of instruction and interpretative studies, one saw a corrective
for conceptions of instruction which emerge at the didactical desk; one was disillusioned
by the effects of the school reforms (see among others the ‘New Mathematics’) and wanted
to understand better the surprising stability of everyday instruction, its own progress and
its traditions. At the same time, there was the hope of being able to better connect with
the experience and the problem awareness of the practitioners through softer methods of
empirical research”.

(School) Practice and (content-related educational) science need to be seen as
two relatively autonomous institutions and fields of work between which there are
no direct possibilities of influence or change (see Bartolini-Bussi & Bazzini, 2003;
Krainer, 2003; Scherer & Steinbring, 2006; Steinbring, 1994, 1998c). Each of the
two fields is subject to its own expectations and aims, as well as to system-internal
requirements and norms which cannot be externally invalidated in order to appar-
ently be able to directly interfere in and to purposefully regulate from within the
other field.

The relative separation and autonomy of (content-related educational) theory
and (school) practice, however, does not mean that there are no reciprocal actions
between the two at all. Rather, in the relation between theory and practice, the
respective other field can be seen as a necessary environment in which irritations
and stimulations occur, which indirectly animates the first field in order to imple-
ment changes, alternative ways of proceeding and further developments. What is
important here is to notice that not only such changes within (school) practice, but
also within content-related educational theory, must ultimately occur and establish
themselves from the inside and ‘out of themselves’. In order for this to happen, irri-
tations and stimulations from the outside are helpful and necessary, yet they are not
deterministic influencing instruments.

Under this fundamentally changed perspective on the ‘theory-practice-problem’,
the didactical triangle takes on a different orientation function for mathematics
education research. It no longer represents an ideal paradigmatic schema against
which everyday instruction must be measured, but instead becomes an instru-
ment for the analysis of actual mathematics instruction in which the reciprocal
interconnectedness between the three relevant elements participating in the instruc-
tion process are systematically captured.

In works of interpretative classroom research, social interactions and their
patterns and mechanisms were the centre of research interest; the mathematical
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teaching and learning content was, in principle, faded out. Thus, the particular rela-
tion between two elements of the didactical triangle (2) the student, and (3) the
teacher within the frame of everyday instruction events was prioritized.

The interactionist perspective relies mainly on two (previously neglected) basic
aspects: the learning child (in the classroom) and the interaction between the
learner and the teacher. In this research context, one has to distinguish between
two theoretical perspectives:

The one is an individual-psychological perspective which emphasizes the learner’s auton-
omy and his cognitive development and which leads to the concept of student-oriented,
‘constructivistic’ mathematics instruction. The other is a collectivistic perspective which
criticizes the ‘child-centered ideology’ of the first perspective and understands learning
mathematics as the socialization of the child into a given classroom culture . . . (Voigt, 1994,
p. 78).

These two research perspectives are based on reference to different scientific
disciplines. The individual-psychological perspective relies, for example, on cogni-
tive psychology as well as on radical constructivism (von von Glasersfeld, 1991)
and the collectivistic perspective uses sociological and ethnographic theories. In
the analyses of mathematical interactions, one or the other of these two theoretical
orientations is often emphasized.3 An over-emphasis on either the individual-
psychological or the collectivistic perspective was a major critique and a starting
point for the working group around H. Bauersfeld to develop a theoretical con-
cept which explicitly brings together the individual cognitive perspective and the
collective social perspective, as a basis for qualitative analyses of interaction.

On the one hand, it asserted that a single student cannot discover all school
knowledge by himself. “Culture, we can say, is not discovered; it is traded or falls
into oblivion. All this indicates for me that we should rather be more careful when
talking about the discovery method or about the conception that discovery is the
basic vehicle of instruction and education” (Bruner, 1972, p. 85). On the other hand,
it is considered doubtful that effective participation in social interaction patterns can
lead to successful mathematics learning.

In everyday lessons, interaction patterns often can be reconstructed in which the teachers
influence every step of the students‘ activities without creating favourable conditions for
the student to make desirable learning processes in problem solving and developing con-
cepts . . .. We should resist the temptation of identifying learning mathematics with the
student’s successful participation in interaction patterns (Voigt, 1994, p. 82).

Consequently, an interaction theory was developed in which both perspectives
were connected to each other:

[A]n interaction theory of teaching and learning mathematics [offers] a possibility of regard-
ing social aspects of learning mathematics and at the same time of avoiding the danger of
overdoing the cultural and social dimensions. For the interaction theory emphasizes the pro-
cesses of sense making of individuals that interactively constitute mathematical meanings.

3Concerning the individual-psychological perspective, see e.g. Cobb, Yackel, and Wood (1991);
and for the collectivistic perspective, see Solomon (1989).
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The interaction theory of teaching and learning mathematics uses findings and methods
of micro sociology, particularly of symbolic interactionism and ethnomethodology . . .. Of
course the interaction-theoretical point of view does not suffice if one wants to understand
classroom processes holistically (Voigt, 1994, p. 83).

The interaction-research approach of the social epistemology of mathematical
knowledge (Steinbring, 2005) understands itself as an important, independent and
complete model inasmuch as the particularity of the social existence of mathemati-
cal knowledge is an essential component of this theoretical approach of interaction
analysis. In this theoretical conception of the social epistemology of mathematical
knowledge, the epistemological particularity of the subject matter ‘mathematical
knowledge’ dealt with in the interaction, constitutes a basis for its theoretical
examination.

Epistemology-based interaction research in mathematics education accentuates
the assumption that a specific social epistemology of mathematical knowledge is
constituted in classroom interaction and this assumption influences the possibili-
ties of how to analyze and interpret mathematical communication. This assumption
includes the following view of mathematics: mathematical knowledge is not con-
ceived as a ready-made product, characterized by correct notations, clear cut
definitions and proven theorems. If mathematical knowledge in learning processes
could be reduced to this description, the interpretation of mathematical communi-
cation would become a direct and simple concern. When observing and analyzing
mathematical interaction, one would only have to diagnose whether a participant
in the discussion has used the ‘correct’ mathematical word, whether he or she has
applied a learned rule in the appropriate way, and then has gained the correct result
of calculation.

Mathematical concepts are constructed in interaction processes as symbolic rela-
tional structures and are coded by means of signs and symbols that can be combined
logically in mathematical operations. This interpretation does not require a fixed,
pre-given description for the mathematical knowledge (the symbolic relations have
to be actively constructed and controlled by the subject in interactions). Further,
certain epistemological characteristics of this knowledge are required and explic-
itly used in the analysis process (i.e., mathematical knowledge is characterized in
a consistent way as a structure of relations between (new) symbols and reference
contexts).

The intended construction of meaning for the unfamiliar new mathematical signs,
by trying to build up reasonable relations between signs and possible contexts of
reference and interpretation, is a fundamental feature of an epistemological perspec-
tive on mathematical classroom interaction. This intended process of constructing
meaning for mathematical signs is an essential element of every mathematical activ-
ity, whether this construction process is performed by the mathematician in a very
advanced research problem, or whether it is undertaken by a young child when
trying to understand elementary arithmetical symbols with the help of the place
value table. The focus on this construction process allows mathematics teaching
and learning at different school levels to be viewed as an authentic mathematical
endeavour.
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In epistemologically-oriented mathematical classroom research, the subject of
teaching and learning mathematical knowledge is taken into account as an impor-
tant element within the didactical triangle. For empirical, interpretative research,
the didactical triangle takes a descriptive function – and it has no prescriptive
function – with which guidelines for instruction practice are provided. As a descrip-
tive schema, the didactical triangle serves to characterize an essential and complex
(i.e., not further dissectible) fundamental object of mathematics education research:
namely, (everyday) mathematical interactions and communications within teaching
and learning processes.

To sum up, one can ascertain the following alongside the three questions (A, B
and C). The three elements of the didactical triangle, (1) the mathematical knowl-
edge, (2) the student and (3) the teacher, are seen in the institutional context of the
joint interaction as relatively independent ‘systems’, which are engaged in recip-
rocal actions with each other. The mathematical interactions between teacher and
students take place between autonomous subjects, who are aware of each other dur-
ing the reciprocal communication, but who cannot directly influence the psyche
or the consciousness of the other. The communicated and negotiated mathematical
knowledge is interactively constructed within this social context on the basis of its
epistemological basic conditions of consistence and structure.

Accordingly, the teacher continues to take the role of a moderator or a facilita-
tor of learning occasions for the students, who continue to be responsible for their
own understanding processes and participate by means of socially and actively dis-
covering mathematics learning. The instructional communication process emerges
and constitutes itself within the actual course of teaching and learning; it cannot
be planned and prepared in detail beforehand. Mathematics as a teaching-learning-
object develops within the social interaction, and is in different ways the ‘subjective
property’ of the persons taking part in the interaction.

The question about decisive means for positively changing and affecting the
teaching, learning and understanding processes (C) gains a more differentiated
background. Changes and improvements cannot take place from the outside, or
by means of a direct intervention. Changes can only be encouraged in the partic-
ipating autonomous systems and then need to be continued and realized within the
systems themselves. This concerns the learning student to whom the teacher can
ultimately only offer opportunities to learn for himself. But this is also true for the
teacher and the development of his professional teaching activity in connection with
mathematics education research.

Mathematical Knowledge in Teaching: A Case
Illustrating the Epistemology-based Interaction
View on Teaching Learning Processes

In what follows, a short teaching episode is used to illustrate exemplarily how,
from the perspective of epistemologically-oriented empirical instruction research,
the three elements of the didactical triangle, (1) the mathematical knowledge, (2) the
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student, and (3) the teacher, autonomously and interactively generate mathematical
knowledge within this social situation (based on Steinbring, 2005).

Mathematics teaching and learning deal with the use and interpretation of math-
ematical signs, symbols and symbol systems. The mediation between mathematical
signs or symbols and structured reference contexts can be described with the help
of the epistemological triangle (see Fig. 4.2) (see Steinbring, 2005, 2006). This
triangle serves as a theoretical instrument for analyzing the connection of yet unfa-
miliar mathematical signs/symbols, of partly familiar reference contexts for the
signs/symbols and of fundamental mathematical concept principles, which regulate
the mediation between signs and reference contexts.

This epistemological triangle is a theoretical schema, in which the corners recip-
rocally ‘determine’ each other; thus, none of the three elements can be explicitly
or unequivocally given in order to then deductively determine the other elements.
A fundamental concept is necessary to regulate the mediation between sign and
reference context, and in the further development of mathematical knowledge, the
fundamental conceptual knowledge is enhanced and differentiated.

The following classroom scene is taken from a third grade class working on
the topic of ‘figurate numbers’. All the children are sitting in a circle facing the
board. Displayed on the board are dot patterns for the first five rectangular numbers
(divided into two triangular configurations by means of different colours) together
with the values of the respective triangular or rectangular numbers (see Fig. 4.3).
The discussion now focuses on determining the amounts and the configuration for
the 6th position.

88 T Yes. So what can we do to find out if this is always true?
89 S Nothing.
90 T Christopher.
91 Ch I notice something.
92 T Yes, tell us.
93 Ch Up there it goes four. Then it goes six. Then it goes eight. And then it
goes ten. [At this moment, T points at the number 20 and then at the number 30
on the left hand side of the table]. Then it goes twelve [T now points at the empty
field below the number 20]. Therefore, there should be thirty-two on the other sev-
enteen [2 sec pause] um, forty-two should be on that and on the other one twenty-
seven
94 T I see. You mean . . ., that‘s quite an interesting idea, Christopher. You mean,
here there should be forty-two? [points at the empty field below the number 30]
95 Ch Yes. [T writes the number 42 in the table]
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96 T Yes. And there? [points at the empty field below the number 15 on the right
side of the table]
97 Ch Twenty-seven.
98 T Why do you think there should be twenty-seven? . . . Can you give a reason
for that?
99 Ch No.
100 T No? . . . Nico.
101 N Twenty-one.
102 T Why do you think [it‘s] twenty-one?
103 N Because twenty and twenty are forty [points at the ten’s decimal place of
the number 42] and one and one are two [points at the unit’s place of the number 42].
104 T Mhm [writing the number 21 in the table]. Oh yes, then we already know
the next thing. But we ought to check whether it is indeed correct from the picture,
whether it is really always like this.

This classroom scene will first be structured and summarized. First the teacher
asks again his question as to whether it is always true, and after that he asks: “How
can we find out whether this is always true?”

Phase 1 (90–97): Christopher continues the numbers in the column of the
rectangular numbers and derives a new triangular number.

Christopher notices something. He names the sequence of numbers one after
another: “. . . there it goes 4, then it goes 6, then it goes 8, then it goes 10, then it
goes 12”. With this, he seems to refer to the second column, and the teacher points
at this column, at the numbers 20 and 30. Christopher names the respective differ-
ence or increase between the numbers in his sequence. Then he infers: “Therefore
there should be thirty-two and on the other seventeen”. He has (mistakenly?) con-
structed a number bigger by 2 in the left number column and he does the same in the
right number column: from 15 to 17. Christopher corrects his statement: “Forty-two
should be on that and on the other one twenty-seven”. Here he has raised the two
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numbers by 12. The teacher confirms the first number with the question whether “. . .
here there should be forty-two?” and he writes this number down after Christopher
has agreed. Christopher repeats once again that, in the other position, there should
be ‘27’.

Phase 2 (98–100): Christopher cannot justify his procedure.
The teacher asks Christopher to justify his claims. But Christopher cannot justify

why ‘27’ is supposed to be here.
Phase 3 (100–104): Nico corrects Christopher‘s triangular number and gives a

justification for his claim.
Nico says ‘21’ and means that this number is correct. He justifies this with the

following ‘calculation’: “Because twenty and twenty are forty [points at the tens
decimal place of the number 42] and one and one are two [points at the units place
of the number 42].” The teacher agrees with him and writes down the new numbers
(see Fig. 4.4). The teacher formulates a new ‘research mission’: “But we ought
to check whether it is indeed correct from the picture, whether it is really always
like this”.

This detailed description of the short mathematical interaction between the two
boys and their teacher clearly shows that the mathematical knowledge and under-
standing of this knowledge emerges, and is not completely fixed and clear-cut
(as, for instance, stoffdidaktik (see part 2) would assume). The learning process
is not simply a procedure of acquiring step-by-step the correct and undisputed
mathematical rules and expressions.

The reactions and the following proposals in this mathematical interaction – con-
tributed by the boys as well as by the teacher – develop and evolve according to the
ongoing intention to commonly clarify and gain an understanding of, and a mean-
ing for, the mathematical knowledge in question. This is what is meant by a parallel
development of mathematical knowledge and the teaching and learning processes
(see Part III).

The following (limited) epistemological analysis will show how central ideas
of Part IV become relevant: the mathematical knowledge that develops in this
communication process is open; it has to be constructed and interpreted by
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the participants, but it is subject to epistemological constraints of coherence
and consistency. The knowledge is not a priori given and fixed, but develops
within its epistemological frames by subjective constructions and alternating social
interactions.

First, Christopher’s contributions, together with the teacher’s pointing gestures,
can be understood in the following way. Christopher names the differences between
the rectangular numbers that have been written down. The teacher points at the
respective number column. Christopher seems to have in view the additive contin-
uation of the number sequence. He continues this characterization: “Then it goes
12”; this increase by 2 is supposed to lead to the new rectangular number in the
sixth row.

Christopher now uses his arithmetical progression as a justification for the new
numbers. He infers first, the two numbers 32 and 17, numbers which differ by 2
from their antecedent numbers; perhaps he transfers the increase of the differences
directly to the new situation and corrects himself immediately. Now he seems to add
12 in both cases, and he names the numbers 42 and 27.

In his argumentation, Christopher referred to the arithmetical continuation pat-
tern of the rectangular numbers without the geometrical situation. In a rather typical
manner, the teacher takes the ‘correct part’ out of Christopher’s argument. He says:
“You mean . . ., that’s quite an interesting idea, Christopher. You mean, here there
should be forty-two? [points at the empty field below the number 30]” (94). And
then: [T writes the number 42 in the table] (95). In this way, there is an implicit
agreement in this social interaction that one part of the expected answer is correct,
namely ‘42’. After the teacher‘s question, Christopher confirms that he believes that
27 belongs to the empty field. However, he cannot justify his claim.

Nico continues the knowledge construction. His justification: “Because 20 + 20
are 40 and 1 + 1 are 2” results in halving 42 into 20 + 20 and 1 + 1. If this is put in
connection with the relation “Always half ”, which has been thoroughly discussed
before, Nico intends a justification by using this relation. Again the teacher confirms
this correct number as before by writing down 21 (104).

The knowledge constructions of the two boys can be characterized epistemo-
logically in the following way. The mediation between sign/symbol and reference
context carried out in this situation can be shown by the following epistemological
triangle (Fig. 4.5).

For Christopher’s knowledge construction, the analysis shows that he developed
a continuation principle for the sixth rectangular number from the given arithmeti-
cal pattern. His counting by twos – 4, 6, 8, 10, 12 – is meant to suggest that the
difference between the rectangular numbers is always an increase by ‘2’ and that,
therefore, ‘12’ must now be added to the value of the fifth number. This addi-
tion of ‘12’ is transferred to the fifth triangular number, and ‘27’ is determined
as the sixth triangular number. Christopher constructs a general arithmetical rela-
tion between the rectangular numbers in a verbal way and transfers it directly to the
triangular numbers. This connection is inferred only from the arithmetical structure.
No justification is given, for instance, using the geometric pattern of the rectangular
numbers.
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Concept

arithmetical relations
between triangular and
rectangular numbers
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rence context
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30 + 12 = 42    and
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Fig. 4.5 The epistemological
triangle: Christopher
considers arithmetical
distances of number
sequences

In Nico’s knowledge construction, the rectangular number ‘42’ is halved in a par-
ticular way. The intention connected with this proposal is not articulated directly.
The brief argument is restricted to the procedure of the arithmetic bisection or dou-
bling only. Nico constructs a brief verbally-formulated sign “20 + 20 = 40 and
1 + 1 = 2” with reference to the number 42 which was noted on the poster. This
mediation between sign/symbol and reference context is represented as above in the
epistemological triangle (Fig. 4.6).

In their contributions, both students constructed new knowledge relations which
could not be directly inferred from knowledge that was already there. These knowl-
edge relations were restricted to the arithmetical number symbols and structures
with no reference to the geometrical configurations.

The question why the structure, that was observed locally in the numbers, is
really generally valid needs, for example, the reference to the geometrical, general
patterns of the triangular and rectangular configurations.

Based on this analysis, it can be stated that Christopher and Nico constructed
mathematical signs that are not connected to the presupposed problem knowledge,
but signs that use the visible arithmetical structure of the numbers on the poster.

In this short episode, the teacher intervened at certain moments to confirm correct
answers or correct parts of answers or arguments developed by the two students. To
give an example:

94 T I see. You mean . . ., that’s quite an interesting idea, Christopher. You
mean, here there should be forty-two? [points at the empty field below the
number 30].

The teacher also writes the number in question, 42, in the table (he gives sim-
ilar feedback to the student Nico when writing the proposed number 21 in the
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Fig. 4.6 The epistemological
triangle: Nico dissects 42 into
20 + 20 and 1 + 1

table). In this way, the teacher comments and moderates the contributions and argu-
ments developed by the students. He does not simply follow an anticipated ‘correct’
solution procedure strictly, but he accepts, at least in great part, the activities and
proposals by the students and he guides them. Surely the students also have learned
how to participate in a question-answer game in mathematics teaching and they
are certainly conscious of the teacher’s feedback as questioning some proposed
numbers (this cannot be the right one), or as writing down other numbers (these
are the expected right numbers). This exemplifies how, through common interac-
tion, mathematical knowledge develops along the epistemological constraints (see
Part IV).

Looking back to the earlier sections (2, 3 and 4), again a further summarizing
interpretation can be given concerning the three elements of the didactical triangle,
(1) the mathematical knowledge, (2) the student, and (3) the teacher. The mathe-
matical knowledge, essentially the important mathematical relations and structures,
are in a way interactively constructed between the boys and the teacher. Thus, the
theoretical (school-) mathematical knowledge (1) evolves here in a communication
process between these three persons.

Christopher (2) argues in a situation-bound relational justification context. He
constructs new arithmetical relations in the given structure that are also transferred
to the arithmetical continuation of the triangular numbers without an additional
underlying justification.

Nico (2) argues within an algorithmic justification context. He communicates
factual knowledge. He seems to have in mind a relation between rectangular and
triangular numbers by saying 21 + 21 = 42. Also, Nico does not produce true
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new mathematical knowledge as his argumentation refers exclusively to arithmetical
relations, and does not take the geometrical knowledge problem into consideration.

The teacher (3) participates in this interaction as a moderator and he comments
on students’ proposals in a way of pointing at acceptable and unacceptable sugges-
tions, thus guiding the process of negotiating the evolving mathematical relations of
theoretical knowledge.

Looking at the didactical triangle as a descriptive instrument (see end of
Part IV) in order to label the essential elements and their reciprocal actions within
mathematical teaching and learning processes, the new interpretation from an
epistemological mathematics education research perspective becomes clear: math-
ematical knowledge is interactively constructed by the participants on the basis of
specific epistemological conditions thereof, which are effective also within instruc-
tional learning processes and which, in this teaching learning context, lead to a
socially-developed epistemology of (school) mathematical knowledge.

Acknowledgement With kind permission from Springer Science+Business Media: Steinbring,
H. (2008). Changed views on mathematical knowledge in the course of didactical theory develop-
ment – independent corpus of scientific knowledge or result of social constructions? Zentralblatt
für Didaktik der Mathematik, 40(2), 303–316. Many parts of this contribution are based on
Steinbring, 2005.
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Chapter 5
Teaching Mathematics as the Contextual
Application of Mathematical Modes of Enquiry

Anne Watson and Bill Barton

One of Bill’s Experiences

The syllabus I am using requires five lessons on 2×2 matrices for my class of 14-
year-olds. We have looked at arrays and gone through the operations +, −, ×, ÷ with
other matrices and 1×2 vectors. The final section is on matrices as transformations
of the unit square: reflections, stretches, shears and rotations. We do not quite finish,
so I use a little of the next lesson in a tight syllabus. In response to an invitation to
the students to give me a random matrix so we can look at its effect, I get a 3×3
matrix suggested. Smart kid. The class appear to have understood the 2-dimensional
concept, so I extend, draw a unit cube and watch as they quickly pick up the idea
and stretch and reflect it in a plane. No problem – until the same child, flushed with
her success, asks about a 4×4 matrix with a smile, knowing that there are only three
dimensions. I seize the moment to demonstrate the power of mathematics to go
beyond our experience and soon hypercubes are being reflected through 3-D space
using the patterns of 2×2 and 3×3 reflections. The keen students take home work
on problems in 5 or 6 dimensions. But that lesson has been used up, and half the next
one, and I am dreadfully behind my schedule. After the lesson, why did I not feel
concerned? And why, 30 years later, do I remember that lesson as one of my best?

One of Anne’s Experiences

One student, a good mathematics graduate training to be a teacher, told me that he
had expected to shut down his intellectual engagement with mathematics in order
to teach at a lower level than had been normal for him. Instead, he had found think-
ing about mathematics as a teacher every bit as mathematical and challenging as
his first degree. An example occurred when thinking about preparing a lesson on
straight line graphs, when he suddenly became aware that the schoolbook use of the
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term ‘linear’ for functions of the form y = mx + c did not equate with his university
use of ‘linear’ to refer to functions for which f(λx) = λf(x) and f(x + y) = f(x) + f(y).
That is, keeping within the school syllabus, f(x) = 3x – 4 is not linear in the sense of
transformations of vector spaces. He used this realisation to springboard a brief dis-
cussion with his school students of other mathematical meanings that appear to vary
as you learn more mathematics, such as: multiplication not always making things
bigger; translation being a different kind of symmetry from reflection, rotation and
enlargement because it is not a matrix transformation; division not always being
represented by sharing, and so on.

Introduction

As teachers and educators, we have spent many hours in mathematics class-
rooms observing and participating. Knowing mathematics means being able to
use mathematical concepts mathematically: the two cannot be separated. For us,
lists of required mathematics content knowledge are hypothetical until mathemat-
ical modes of seeking, using, and exemplifying understanding are understood. We
have explored the teacher task of preparation of resources in order to investigate
our hypothesis that mathematical modes of enquiry are an important component of
mathematical knowledge for teachers. We set up an artificial resource preparation
exercise amongst a group of knowledgeable mathematics educators and recorded
their collaboration to develop a description of how mathematical enquiry affected
the process. This chapter is a contribution to making fluency in mathematical modes
of enquiry an integral part of the conceptualisation of mathematical knowledge in
teaching.

The Roles of Mathematical Modes of Enquiry in Teaching

Research about how teachers’ mathematical knowledge relates to student achieve-
ment is of varied quality and gives varied results. Wilson, Floden, and Ferrini-
Mundy (2001) undertook a systematic review of the literature and found that, while
many studies find that personal knowledge does make a difference to teaching as
one would expect, one study suggested that between four and six ‘courses’ did
make a difference, but further courses did not make a further statistical difference
(see Monk, 1994). However, they point out that different studies do not necessarily
look at similar kinds of subject matter. In the Oxford Internship course, we find that
undergraduate courses in real analysis, linear algebra, number theory, and abstract
algebra enable teachers to use connections and overarching similarity within math-
ematics in their work, history of mathematics courses enable them to portray
mathematics as a human and cultural endeavour, while engineering and physics
courses enable them to provide interesting contexts and motivations for mathe-
matics. This does not mean that new teachers with these backgrounds definitely
use them in these ways, nor that those without cannot provide these experiences.



5 Teaching Mathematics as the Contextual Application 67

The question of connection between knowledge and teaching is still open and
another way to approach it is to ask how mathematical knowledge influences the
tasks of teaching in practice. The work of the SKIMA project team (Chapter 12
by Turner and Rowland, this volume) goes some way towards this in the primary
phase by analysing epistemologically the way that teachers structure mathematical
conceptual understanding in lessons.

Watson and DeGeest (2008) analysed 40 lesson videos from 18 teachers, teach-
ing 11–14 year-old students on a range of subjects. The teachers worked in teams
to plan and review lessons. They had shared aims, sometimes observed each other’s
lessons, and all taught in an interactive style coordinating students’ responses to a
range of varied tasks. Most of them believed they were teaching similarly to each
other. After students had completed tasks involving mathematical techniques and
processes, the teachers initiated further interactions which focused on discussing
mathematical implications and connecting, integrating and affirming mathematical
ideas. Teachers with little university-level mathematics in their past qualifications
either ignored these aspects, or undertook them in everyday ways, such as: implica-
tions would be in terms of mentioning real-world applications, or saying what was
important for an upcoming test; connections to easier mathematics already used in
the work would be made, and no integration within mathematics was offered; new
knowledge would be affirmed through its usefulness in getting answers, or students
were affirmed by being praised for effort. By contrast, teachers with more mathe-
matical past qualifications were more likely to discuss mathematical implications
by comparing methods or exploring more complex cases; to connect and compare
new experiences to other areas of mathematics that were structurally similar or con-
ceptually related; and to suggest proof, or experiments, or explanatory usefulness to
affirm what had been done.

Since Shulman (1986, 1987), mathematical knowledge for teaching has often
been theorised using the idea of acquisition of types of content knowledge for teach-
ing. For example, Kennedy (1999) claims that teachers need to understand the ways
students hold mathematical conceptions, to know what representations and analo-
gies will be useful in teaching, and to understand developmental stages. While such
models might be useful for adding nuance to a continuum of pedagogical content
knowledge and subject matter knowledge, in our view they risk missing out a cru-
cial aspect of what a mathematics teacher does in relation to mathematics: teachers
enact mathematics. In discussing mathematical knowledge for teaching, we can eas-
ily be drawn into a curriculum that claims a need for knowledge about quadratic
equations, differentiation, the history of negative numbers, stages in development
of number awareness, common misconceptions and so on. What is often missed
is the teacher’s mathematical thinking and awareness which Mason described as
‘knowing-to’ act in the moment (Mason & Johnston-Wilder, 2004, p. 289). It is
not just a question of what teachers know, but how they know it, how they are
aware of it, how they use it and how they exemplify it. As Chapter 3 by Hodgen
(this volume) shows, the knowledge that is overtly apparent in teaching does not
necessarily correlate with the knowledge that is displayed in audits. However, we
believe from our own experience that there is more to these apparent mismatches



68 A. Watson and B. Barton

than a general argument about situatedness can provide, so our question is: how
do people who are fluent in mathematics bring this fluency to bear on teaching
tasks?

Experiences like those at the start of this chapter have led us to consider math-
ematical modes of enquiry: a teacher ‘sparking off’ a student comment to make a
wider point about mathematics and extend the students’ thinking when the moment
was ripe, at the later cost of having to squeeze the syllabus; a new teacher challeng-
ing himself with elementary material by thinking about mathematical definitions,
assumptions and implications; a lecturer becoming carried away with making con-
nections and using new perspectives to re-view familiar material; new teachers
treating a curriculum topic as an arena for comparing examples, definitions, assump-
tions and implications. Again and again we observe, in ourselves and in others, that
some of the best teaching and learning moments occur when mathematical modes
of enquiry are invoked. We have come to believe that they are central to what a
teacher does.

In this chapter we investigate this belief by enacting the selection and prepara-
tion of resources appropriate for mathematics teaching in secondary school. This
grounded investigation of a mathematical perspective into teacher thinking con-
firms our belief, but leaves many questions untouched. Without understanding more
about how mathematical knowledge is brought to bear on the tasks of teaching,
descriptions and audits of necessary knowledge are hypothetical.

Mathematical Modes of Enquiry

In March, 2008, the ICMI Centennial conference had a Working Group on
Disciplinary Mathematics1 and School Mathematics, in which questions were asked
about the relationship between research mathematics and what happens in sec-
ondary classrooms. Initially, it appeared that strongly differing orientations were
being expressed; on the one hand, it was argued that school mathematics had to be
a ‘shadow’ of the discipline and, on the other, that it was fundamentally different
in context (Watson, 2008). However, a consensus did emerge that “students learn
through reasoning that resembles mathematical thought” (Barton & Gordeau, 2008,
p. 255). It was noted that a significant difference between disciplinary and school
mathematical experiences was the mediation of the teacher as provider of tasks, lan-
guage and authority for validation. This begs the question of how the teacher can
best undertake the mediation. ‘Working as a mathematician’ was one answer to this
question and yet, as has been observed by many, the teacher is not usually or solely
acting as a mathematician while teaching. While this leads some authors to look at
social issues of identity, agency, language, power and so on, for us, any discussion
of the mathematics involved in teaching has to start from an understanding of what
doing mathematics entails and then seeing how this acts out in teaching. Without

1In this Group, ‘Disciplinary Mathematics’ was intended to mean, and was taken to mean,
mathematics as a research discipline.
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this focus, there is a temptation to see teaching mathematics as to do with exercising
power versus constructing identity, rather than as an arena for acting mathematically.

What do we mean by ‘acting mathematically’? Krutetskii’s (1976) seminal study
of gifted Soviet mathematics students identified several common features. These
students all had a tendency to:

• grasp formal structure;
• think logically in spatial, numerical and symbolic relationships;
• generalise rapidly and broadly;
• curtail mental processes;
• be flexible with mental processes;
• appreciate clarity and rationality;
• switch from direct to reverse trains of thought;
• memorise mathematical objects.

These tendencies have been elaborated by Cuoco, Goldenberg, and Mark (1996)
to attach their specific manifestations in various branches of mathematics as a taught
subject in schools and undergraduate courses. They have also extended the list
to include the qualities of ‘sustained niggling’ that bother mathematicians. Their
characterisation of ‘habits of mind’ includes: pattern-sniffing, experimenting, visu-
alising, forming conjectures, reasoning proportionally, loving systems, embracing
unifying theories, looking at variance and invariance, extending meanings, thinking
generally from examples and exemplifying from generalities.

Sustained niggling is also described by Hadamard (1945) and extended to include
moments when insight occurs unexpectedly after being totally engaged with a
problem for a period of time, then relaxing to do something else. This common
experience reminds us that the natural ways in which the mind works includes reflec-
tion, organising, and seeking ways to compare and generalise experience. Mason
(1988) puts some structure on ‘sustained niggling’ by focusing on stages and states
of mathematical thinking. His inspiration came from Polya’s (1962) classic work
on problem-solving, encapsulating Polya’s extensive list of the many strategies on
which mathematicians can call. Mason sloganised these as ‘specialise, generalise,
conjecture, convince’, but the common use of these strategies in the curriculum is
as instructions rather than as descriptions of behaviour. This sometimes leads to an
assumption that these actions should happen in a given order. It is more common
for mathematical thinkers to roam between and within these approaches. It is also
worth noting that ‘specialise’ implies a special choice of examples, rather than using
examples as data for inductive purposes. We mention this here because purposeful
generation and use of examples is also a major feature of being mathematical and
also one that characterises good planning and teaching. For example, in a lesson
about probability that we observed, the teacher offered examples in which P(r) +
P(not r) = 1 emerged as a conjecture that was obvious to many learners, followed
by an example in which P(r) = 1 and a following example in which P(not r) = 1.
Creating and using examples to structure generality requires that teachers see what
they are teaching in terms of generalities rather than techniques. Using extreme and
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special examples, as this teacher did, is a commonly used mode of enquiry to see
how far a conjecture holds up, but one which is rarely explicit in textbooks. This
teacher clearly understood this and tried to communicate it to her students: ‘Look’,
she said ‘the mathematics is telling you something’.

Of course, one cannot be mathematical without the specific intellectual toolkit
and repertoire of mathematics. The ‘habits of mind’ model includes many of the
intellectual tools and skills of mathematics such as the use of representation and
generalisation in the example above. Simon (2006) described key developmental
understandings of mathematics not as first order knowledge, but as foundations for
learning other ideas. We see these key understandings as threads that run through-
out mathematics, so that the ways in which we read mathematical situations are
profoundly influenced by them. For example, understanding number multiplica-
tively as a first resort, not as something to be used if additive models fail, is key
to understanding much secondary and tertiary mathematics; understanding func-
tions as mathematical objects, rather than as algebraic representations of data
sets, is key to understanding much higher mathematics. While conceptual under-
standing is an aspect of mathematical knowledge and pedagogic design based on
these understandings is important, it is only part of what constitutes mathemat-
ical knowledge. To become a fluent mathematician, a student must learn to act
in certain ways in mathematical and other situations, to develop mathematical
habits of mind, to enact mathematical modes of enquiry, and to think in terms
of these underpinning key understandings. The stoffdidaktik approach to peda-
gogy described in Chapter 4 by Steinbring (this volume) offers scientific design
which, as he describes, ignores the dynamic co-construction of knowledge which
takes place through interaction in classrooms. But rather than take a position in a
debate between external design and live interaction, we take a different viewpoint: a
teacher has both to design and plan, and also to respond in dynamic situations, and
hence needs to know what it means to act mathematically while both preparing and
teaching.

Silverman and Thompson (2008) show that merely being offered situations in
which conceptual development of key understandings are made apparent is not guar-
anteed to lead to improved mathematics teaching. Nor, as we know from experience,
is experience of exploratory and interactive teaching necessarily going to lead to
better teaching. Why does this transfer not take place? To contribute to this puzzle,
we want to develop the reverse story: how do teachers who have over time devel-
oped significant ways of thinking about and interpreting mathematics bring that
experience and knowledge to bear on pedagogic tasks?

An Artificial Teacher Activity

In order to explore our belief that mathematical modes of enquiry are central to
effective teacher activity, we set up an artificial teacher activity, that of planning to
use resources, and asked two other experienced mathematics educators to join us.
All four of us regard ourselves as mathematicians in our habits of mind.
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The behaviour of mathematics education experts demonstrates what is possi-
ble when there is a background of fluency and experience. For example, Carlson
and Bloom (2005) examined the behaviour of 12 mathematicians when solving
problems and used their observations to devise a framework for describing suc-
cessful problem-solving heuristics. Wild and Pfannkuch (1999) investigated models
of statistical thinking by examining statisticians and graduate students at work. The
argument for this approach is that knowing what expert behaviour can be like pro-
vides a frame for thinking about development. Our investigation is much smaller
in scale and involves ourselves as subjects; however, the principle of examining
expert behaviour to inform the possibilities of more general behaviour remains
valid. Like those other researchers, we do not claim that our behaviour is what
novices would do, nor that ours was the best, or the only possible behaviour,
nor that what we did was all that is required for planning. Rather, we are using
this situation to expose possible roles for mathematical expertise in planning to
use resources. The aim is to become more articulate about these possibilities and
thus contribute to discussions about how mathematical expertise can contribute to
planning and teaching. The study draws its methodological base from participant
observation; we constitute in part the group being observed. Nevertheless, the ethno-
graphic nature of our account is subject to concerns about subjectivity, observation
choices and generalisability. We acknowledge these while arguing that this case
study both supports and illuminates roles for mathematical modes of enquiry in
teaching.

We took two starting points and gave ourselves the artificial task of using them
to devise teaching situations, role-playing teachers embarking on a shared planning
exercise.

The first stimulus was a page of exercises from a school textbook chosen because
it exemplified the kind of exercises in pure mathematics that are very familiar to any
secondary mathematics teacher. The second stimulus was that day’s newspaper and
was chosen because many new teachers talk of ‘everyday relevance’ as a motiva-
tion for learning mathematics. For this activity, we assumed the content aims of the
author of the textbook page, and also assumed that exploring the mathematics of an
‘everyday’ issue from the newspaper could be a lesson aim in itself. The task for the
team of four was to describe the possibilities they could see in these stimuli for a
teacher faced with creating lessons based on them. Of course, it is very rare that a
teacher would have the luxury of 2 hours with three interested colleagues to create
two lessons. Lessons are more usually created within a continuous curriculum, and
with certain aims.

Our approach was first to identify, according to our mathematical knowledge, the
range of potential mathematics afforded by these artefacts. In addition we agreed to
discuss, after the event, what mathematical knowledge, experience and modes of
enquiry we had used in this identification.

We audio-recorded the discussion and then analysed it to identify the math-
ematical practices and repertoire implicit and explicit in our responses. Each of
the two authors wrote field notes soon after the event, and later separately anal-
ysed the recorded discussion, tracking mathematical actions and comments. These
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summaries were returned to the other participants for verification and combined to
construct the descriptions below.

Stimulus 1: Problems About Inverse Proportion

The textbook page concerned inverse proportionality, expressing this relationship
in a variety of ways, including two which offered interplay between data sets and
algebraic representations (see Appendix). A range of letters as variables was used,
and the independent variable in the proportional relationship was itself a function in
some of the questions. For example, in one question the independent variable was
expressed as a positive square root.

Our initial responses may be described as alerts: Pedro2 noted that the symbol
∝ is not universal and, for example, is not used in Portugal; Bill noted that the
term ‘inverse’ has multiple mathematical meanings that students of this level would
know (for example, ‘inverse operation’ and ‘invert and multiply’); Anne noted that
particular letters used on the page, such as t, L and v, have common contextual
meanings in mathematics and science that were not preserved in these examples; and
John noted that the two ways of expressing inverse proportion algebraically x = k

y

(implied in Qn.1a) and x1
x2

= y2
y1

(implied in Qn.2) might not be obviously equivalent
because of the difference in notation. All of us saw these expressions of relationship
as fundamental to a fluent understanding and recognition of inverse proportionality,
too important to be offered only as implications, as in Qn.1 and Qn.2.

The group then began to respond in more detail to features of the set of exercises.
For example, Qn.4 essentially asked for the factors of 12, and could be completed
without thinking about inverse proportion. Another feature noted was that all the
numbers on the page were simple integers or simple fractions and have simple mul-
tiplicative relationships. The discussion quickly moved into a suggestion by Pedro
that Qns. 7 and 8 would be more interesting if the table did not include any matched
pair. For example, instead of

y 2 4 1/4

z 8 16

one could offer

y 4 1/4

z 8 16

2We acknowledge the help of Pedro Palhares and John Mason in preparing this chapter.
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Such an exercise would not only make the question more open, but students
working with it would be led naturally into the concept of the constant of pro-
portionality, k. We wondered if the necessity to understand an expression such as
t2 to be a variable in itself, as is offered in Qn.8, detracted from the main idea of
inverse proportion or encouraged a focus on ‘inverseness’. The extensive discussion
ended up with agreement that a whole series of lessons could be constructed so that
students would develop for themselves the concept of inverse proportionality by
engaging with suitably constructed and sequenced tasks that either avoided comple-
tion by merely templating numbers, or that challenged such completion by affording
cognitive conflict. However, we agreed that the page as a whole attempted to avoid
the possibility that learners would get locked into simplistic assumptions about the
relationship and did offer the potential for complex engagement with the concept
approached from several different perspectives, using different symbolisations and
also within composite functions.

The point we are making here is that it was our mathematical engagement with
the page that problematised the content, and our pedagogical experience that sug-
gested what can be done about it in the classroom. From our initial alerts about
ambiguities of language, symbolism, and possible confusion of equivalent expres-
sions, we deduced that this page could not be used effectively without considerable
discussion with students about the purpose and meaning of inverse proportional-
ity. If such discussion was effective, then it is unclear what purpose the exercise
would serve. The questions are so different that fluency would be unlikely to
be achieved, and the conceptual understanding afforded by connecting and relat-
ing different questions would, for most students, need to be developed through
discussion, or through the teacher orientating the class towards it. While we recog-
nised the potential of comparing answers and approaches between questions, our
pedagogical experience tells us that, on their own, learners are unlikely to make
these comparisons. We decided that, in a classroom, we would probably pick
out particular questions and discuss the implications of them for the meaning
of proportionality and the ways that proportional relationships might appear in
symbolic form.

From here, the group moved away from the exercises themselves to con-
sider what further mathematics could be developed through using such examples.
Graphical plots, the effects of using different types of graph paper, and a general
study of hyperbolae were the first suggestions; we all regularly use electronic graph-
plotters as a mathematical tool alongside data sets and/or symbolic representations
to increase our understanding of relationships. Next we talked about the hidden
inverse proportionality in functions of two variables such as y3 x2 = 8, which can
be decomposed as g(y)f(x) = k. By plotting g(y) against 1/f(x) (f(x) �= 0), a level of
complexity following that offered by the exercise, we noted that such functions go
through the origin and the constant of proportionality is always the gradient. Finally,
we discussed how one might go about developing an algebra of ‘varies in relation
to’, such as ‘if x varies with y this way, and y varies with z that way, how does x
vary with z?’ We agreed that this question could be explored by students at this
mathematical level with appropriate technology.
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Further discussion focused on contexts outside pure mathematics: where does
inverse proportion occur and how could the concept emerge from student experi-
ences? The Gas Law example (Qn.10) was related to the difficulty of opening and
closing a fridge door, and the inverse proportion arising from a fixed amount of a
resource being used by differing numbers of people were suggested. We noted that
many examples exist in physics and wondered whether it was wise to use letters
that have conventional physical meanings in equations that do not have those mean-
ings. At a more general level, it was realised that proportionality could be regarded
as the invariant relationship between a pair of variables independent of scaling.
Familiar examples are density, expressing the invariant relationship between vol-
ume and mass for a particular substance, and the gravitational constant, expressing
the invariant relationship between vertical force and mass.

Finally we turned to the meta-question of where our ideas had come from. What
mathematical learning in our own histories had led to us expressing these thoughts?
There were some particular answers: Bill is interested in language and mathematics
so he focused on words; Anne had a current preoccupation with notation because,
in her experience, some notations lead too easily to manipulation without meaning
(Watson, 2009); some of John’s responses were triggered by his rejection of all
‘copy and complete’ exercises because he has found such tasks are likely to lead
to over-attention to answers, and failure to grasp underlying meanings; Pedro has a
habit of using ‘make something different’ to extend a mathematical situation when
he is working on his own mathematics. John’s habit leads him to reject textbook
pages, whereas Pedro adapts a textbook task and uses it to scaffold engagement in
something challenging (see also Prestage & Perks, 2001).

We all agreed that much of how we reacted was already rehearsed in other sit-
uations. We have habits of analysing the variation, relationships and constraints
implied in collections of mathematical objects. We had all looked at the questions
as a sequence of mathematical objects which were exemplifying inverse proportion-
ality. For example, we all had the habit of treating functions as variables, so a shift
to thinking about g(y) = kf(x) rather than y = kx was a fluent way to raise more
questions. We asked what meanings and understandings can be inferred from this
collection. We brought prior experiences of many different kinds and we realised
that, during the course of the discussion, we had each done some new thinking,
for example, thinking about the relationship between equal ratios and constants of
proportionality was not something we had explicitly done before in a general way,
although it was, perhaps tacitly, embedded in mathematical experiences such as the
Sine Rule. What made us alert to that?

On reflection, it was clear that we had responded on several mathematical levels:
we thought about symbolic representation; equivalence of notations; relevant and
irrelevant features of examples; the nature and representation of relevant functions;
applications and meanings in other contexts; domain of applicability as represented
in these questions; the affordances of other exemplifications; and the extension
of the concept of proportionality into an algebra of relations. We had pedagogic
responses (what would these exercises afford for students? how could they be
changed to afford more?), as well as mathematical ones (what mathematics can
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we do in this situation? what potential mathematical meanings are suggested in the
given presentation?), and we were attuned to ‘reading’ the mathematical text offered
by each other in addition to that in the textbook.

Stimulus 2: The Day’s Newspaper

Bill brought a newspaper and had already identified three potential articles to use
as stimuli for mathematical activity. The first was a map of UK divided into dif-
ferent electoral regions. Three of us immediately started thinking about the Four
Colour Theorem and its variants (for example, using regular-shaped areas or on dif-
ferent surfaces); the fourth member of the group thought of statistical questions. We
asked ourselves what it was that made the stimulus different for each of us, but got
only vague answers such as prior experience, familiarity with similar stimuli, dis-
position towards classical mathematical questions or social applications. A second
article was about car finances and prompted a brief conversation about sequences
and series, economic indices, and the volume of crushed scrap cars.

The item we decided to discuss in depth concerned the possibility of a new out-
break of smallpox and a discussion of plagues and epidemics. We started talking
about modelling spread of disease. What was interesting, however, was that two
of us began sifting our memories for the appropriate differential equations and the
best variables to use (how do we write down the probability of two people meeting
and one infecting the other?), while another looked at the situation more globally
as ‘some form of exponential growth’ and thought about the reasons why or when
exponential functions are the appropriate models. Both approaches ultimately lead
to similar ideas, but it generated a discussion of how these two approaches can be
balanced, which (if either) is useful in the school curriculum and the importance of
the interaction between the approaches.

In this discussion, we all acknowledged the accessibility of our intellectual
resources for modelling populations, such as knowledge of appropriate functions
and prior experience of working on similar issues, and that there are many different
modelling tools that can be used (graph theory, statistical mechanics, statistical data
analysis, and so on). None of us considered plotting given data to explore the situ-
ation empirically in the hope that a generality would emerge from the data, but as
teachers we felt we would have to consider such an approach since some students
are oriented to ‘pattern-spotting’ by their algebra curriculum.

We became aware of several mathematical issues that could arise in the class-
room. One issue was the way models shift between discrete and continuous
formulations, often without this being made explicit. Our facility comes from mul-
tiple situated experiences of using functions in many contexts, and this situatedness
probably contributes to difficulties in being meaningfully explicit with students. Any
invented rule about what sort of situations require discrete or continuous treatment
is likely to be over-simplistic and prey to counter-examples. Another is the idea of
big numbers and how we develop our appreciation of what big numbers mean in a
practical sense. Our own appreciation appears to have developed during adulthood
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through being genuinely interested in ‘big number’ situations, such as those that
arise in natural disasters.

Our discussion then turned to other links that could be made from this material.
Issues of disease prevention, the experience of false positive tests, and other medical
science issues that could be regarded as part of general education and for which
mathematics teachers (alongside other subject teachers) have some responsibility.
We reflected on our uncertainty about some of this: what are the dangers that we (or
teachers at large) might not be informed sufficiently and thereby give bad practical
advice? What are the problems for mathematics teachers entering these areas? This
led to considering the wider role of teachers in grappling with big issues, and the
extent to which the skills of mathematical analysis are important in nearly every
case. We discussed the Game of Life (Gardner, 1970), John Conway’s original idea
behind the mathematics of cellular automata, and related simulation “games” that
model the rise and fall of populations as contexts in which the setting up of rules
and examining the consequences could be raised with students. We moved on to talk
about iterative models, convergence, cycling and divergence. This led us to ideas of
chaos.

Our meta-reflection on the knowledge we had brought to our discussion focussed
on our prior experience. We were strongly aware that the main resource we brought
to the newspaper article discussion was our experience of using mathematics to deal
with social and economic questions. This kind of knowledge differs from the kinds
we used for the proportionality discussion. It hinges on a sustained mathematical
outlook on big social and political questions rather than being a form of pedagogic
knowledge. In our newspaper discussion, we did not get close to the task of design-
ing classroom tasks that would expose learners to the mathematical affordances of
the issues of disease. Rather, we talked about mathematics being used as a tool
to illuminate social and educational issues. The question we failed to address was
whether the outcomes of engaging with such material should be the understanding
of mathematical concepts, proficient use of mathematical tools, deeper insight into
the social issues, or some combination of the three. We agreed that, whatever the
outcome, engaging in such mathematical teaching requires knowledge and experi-
ence of using mathematics as an applied tool. Being mathematical in and with the
world is both implicit and explicit in our practice. The consequence of this is the
importance of mathematics teachers continuing to think about new mathematics,
new applications and new areas of social relevance, not because that is what the
four of us do, but because it contributes to mathematical richness and complexity.

Discussion

In our responses to these two stimuli, the dominant knowledge brought to bear on
the pedagogic tasks of planning and teaching was the personal mathematical past
experience of the protagonists. In the work on proportionality, the pedagogic task
was to discuss the affordances of the exercise and suggest better design, but the
knowledge we used to critique the design was about representation, equivalence,
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exemplification, classes of functions, associated meanings, applications, tendency
to treat relations as objects, and understanding of how to extend mathematical con-
cepts beyond their obvious domains without having to think consciously about these
strategies.

In the smallpox example, the protagonists brought past experience of modelling,
suitable functions, differential equations, and an over-arching judgement about
newspaper situations that might afford useful kinds of mathematical engagement.
This process is the opposite of the application of mathematics to real world con-
texts, through which one gains the experience necessary to make these kinds of
judgements.

Some mathematical modes of enquiry which arose in the situations above are:

• interpreting mathematical statements (e.g., identifying variables, identifying
relations, or constructing particular senses of structure);

• flexibility with representations (e.g., changing them, manipulating them, setting
up alternatives, comparing them, identifying different potentials that arise from
their use);

• flexibility with approaches to the mathematics (e.g., starting with equation detail
or the overall type of function) and making the links between these approaches;

• purposeful playing with an idea (e.g., instantiating it, finding particularly special
or extreme examples, simplifying, asking ‘what if’, noticing what changes and
what stays invariant);

• conjecturing, testing, deductive reasoning, and other forms of justifying;
• summing up by organising mathematical ideas; saying what is known or not

known;
• linking; finding similarities or isomorphisms through comparing formal struc-

tures.

Comparing these modes of enquiry to the characteristics identified by Krutetskii
above suggests that we were able to ‘unpack’ curtailed and generalised processes
and concepts using generic mathematical exploration strategies, in order to lay out
the ideas to be used in teaching. This is a different meaning of ‘unpack’ than is
often used in relation to mathematical knowledge in teaching, because ours draws
on the mathematical knowledge and experience that we have, and on the ways
we have individually encapsulated it, rather than elaborating surface procedural
knowledge.

One aspect of what a teacher provides, that a text cannot, is a range of mathemat-
ical options offered with judgement. While a text or website may contain several
options, they are not offered at a fine level in response to students’ reactions. To
‘know-to’ respond, teachers need: a repertoire of critical examples, a means to con-
struct more, and a sense of when it is appropriate to present them; to understand
when and why different representations are useful in a student’s learning trajectory;
to make purposeful connections between mathematical ideas; and to focus atten-
tion on just that aspect of a relationship that is important for the task at hand. In
our activity, connections were illustrated in the smallpox example; thinking about
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appropriate use of representations was illustrated in the proportion example, as was
our construction of new examples (or modified ones) to focus attention on particu-
lar relationships. Our argument is that a teacher for whom these are ways of being
mathematical is more likely to be able to act fluently in all classroom mathematical
contexts, compared with one who has learned a repertoire of pedagogical strategies
without personal mathematical involvement. For example, a teacher might encour-
age students to use a given sequence of problem-solving strategies without having
used them in tricky cases themselves. Those who undertake mathematical explo-
ration develop a pedagogic repertoire through dynamic engagement in classroom
mathematics.

Another aspect that a teacher provides is prediction. It is a peculiarly educational
task to predict the consequences of a particular experience for other people, but in
order to do this in mathematics, a teacher has to think about the mathematical con-
sequences of particular conceptual instances. An example at a complex level would
be the introduction of a concept within a limited frame which may later generalise
to wider frames. A further kind of prediction is to look at an example or set of exam-
ples and see with new eyes what generalisations might be inferred from them. Often
the cause of a so-called ‘misconception’ is inappropriate generalisation, or paying
attention to the wrong variables. Unless teachers consciously generalise from exam-
ples themselves, they may not understand how this process can go wrong even when
students are thinking very carefully.

Mathematics teachers have to react mathematically in the moment. Reacting
in the moment means understanding mathematics deeply enough to be aware of
affordances and opportunities. An important mode of enquiry in mathematics is an
awareness of all the possible connections and directions of mathematical develop-
ment from any particular situation. An equation can be read this way or that, the
expressions that comprise it can be factorised or expanded or ‘divided through’ or
several other options. It may conform to this pattern or that, it might be better to
see it as a polynomial of a particular order, or make a substitution to transform it
into another type of equation. It may be better to graph it or put it in matrix form.
Knowing all of these (and their consequences) and choosing between them is part
of both mathematics teaching and mathematical activity.

Finally, mathematics teachers must be able to “see behind”. They need to be able
to interpret students’ mathematical texts and verbal explanations to understand what
the student might be meaning, or is trying to express, and then work in such a way
that the mathematical thought becomes clearly expressed. Again, this is a mathe-
matical mode of working, it is what a mathematician might do when interpreting a
text, or when thinking through a problem: having an idea, struggling to express it
exactly, and it is through this process that justification and, ultimately, proving are
born. A particular manifestation of this mode is in the similarity between reading a
mathematics textbook and reading students’ mathematical attempts. Reading text is
a mathematical mode of enquiry. Most of the available typographies of mathemat-
ical knowledge in teaching claim that knowledge of misconceptions is important,
but we would say that personal experience of how misconceptions come to be con-
structed is a more powerful source of pedagogic knowledge. What enables us to
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work with these alternative constructions is our analysis of how they could have
been arrived at, in terms of inferred relationships between variables, or inferred
connections between representations. The analytical process is generally more use-
ful than trying to accumulate a list of possible curriculum misconceptions to be
remembered and anticipated.

Moving Forward

What might teacher educators do with this understanding of the importance of math-
ematical modes of enquiry? Let us assume for a moment that our teachers have
already developed a set of key modes. A classic situation is that teachers cannot
see how to use these modes in their work because school mathematics is strongly
framed by the curriculum and assessment regimes. We suggest that it is not so much
a matter of learning new or more modes; it is more a matter of maintaining math-
ematical activity so that these modes of enquiry are active and remain part of the
teacher’s way of being a mathematician in all pedagogic situations.

A recent experience working with teachers underscores the value of teach-
ers maintaining their mathematical modes. A year-long research study (Barton &
Paterson, 2009) centred on practising teachers who were supported in their quest
for new mathematics learning in areas in which they had uncertainties. Each teacher
chose their own topic and worked with the support of mathematicians and mathe-
matics educators from a university department of mathematics. They met together
as a group to share their insights and experiences. Topics included proof, the history
of the exponential function, mathematical modelling, trigonometry, and the concept
of probability. In the light of what we have said in this chapter, it is interesting that
some of their ‘topics’, proof and modelling, could be described as mathematical
modes of enquiry.

Teacher A found that she was restructuring her teaching to engage with ‘big
ideas’ in the classroom because that was what had been useful and interesting for her
in her own study. Teacher B saw a distinction between how she studied herself and
the methods she had used before to pass tests. Teacher C drew distinctions between
what you could do for yourself and why you sometimes need a teacher to explain.
In their meta-discussions, the research team found that studying for themselves had
led teachers to give more attention to learners’ voices and less to their own voices
in the classroom. The team also found that the ‘deepest learners’ were the better
listeners. There were several ways in which the experience of studying mathematics
impacted on the teachers’ practice:

• they taught their own new knowledge directly, or encouraged students to replicate
their learning;

• they explicitly used in class the new mathematical connections they had learned;
• they passed on to students their renewed knowledge of how to study;
• they expressed new insights and approaches more in terms of base structure and

less on procedure.
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All these teachers, in a short period of time, adapted their teaching, not only
as a result of their new learning, but as a result of using mathematical modes of
enquiry. Examples were: attention to ‘big ideas’; reproducing learning experiences;
being aware of the assistance that might support understanding a mathematical con-
cept; looking for and using connections between different mathematical ideas; and
seeking mathematical structure. Another mode was the way the teachers used each
other, both as support in their mathematical explorations and also as mathematical
sounding boards for ideas and sources of linked knowledge.

Not only did the teachers attempt to reproduce such modes of enquiry in their
classrooms, but they all reported talking to their students about their own learning
experiences – a meta-level discussion of mathematical modes. Two of these teachers
pursued this approach in further research.

Conclusion

Mathematical knowledge includes its own modes of enquiry, but these are not nec-
essarily explicit, nor are they always drawn into action when planning to teach.
Mathematical modes of enquiry are learned by engaging in authentic mathematical
experiences, although such learning can be enhanced both by having these modes
modelled, and also by having the modes explicitly discussed at a meta-level. This
applies to both teachers and students. We know from observations and from the lit-
erature (e.g., Kane, 2002; Lortie, 1975) that teachers appear much more likely to
draw on their past experiences of being taught, and on the norms around them in
school, than on being mathematical. Only rarely do we observe teachers applying
their full repertoire of mathematical modes in a planned and explicit way.

It is with these experiences in mind that we argue that teaching mathemat-
ics is the contextual application of modes of mathematical enquiry, and that, too
often, the modes of enquiry used in planning and teaching are drawn from a set
limited both by teachers’ own mathematical experiences and by the ways they
were taught. We have also shown in this chapter how knowledgeable mathematical
enquiry can act in a shared planning process. We report some evidence that teach-
ers will engage in personal mathematical experiences using mathematical modes of
enquiry, and finding ways to organise situations involving those modes in the class-
room. We hypothesise that such activity will result in better mathematics learning
for their students. Teachers’ own mathematical knowledge and enquiry can provide
an integrating context for all aspects of mathematics teaching in which the separate
actions of doing, planning, teaching and learning mathematics connect and inform
each other.
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Appendix

From Rayner, D. (2000). Higher GCSE mathematics: Revision and practice
(p. 188). Oxford, UK: Oxford University Press. Reproduced by kind permission
of Oxford University Press.

Exercise 12

1. Rewrite the statements connecting the variables using a constant of variation, k.
(a) x ∝ 1

y (b) s ∝ 1
t2

(c) t ∝ 1√
q

(d) m varies inversely as w (e) z is inversely proportional to t2

2. T is inversely proportional to m. If T = 12 when m = 1, find:
(a) T when m = 2 (b) T when m = 24.

3. L is inversely proportional to x. If L = 24 when x = 2, find:
(a) L when x = 8 (b) L when x = 32.

4. b varies inversely as e. If b = 6 when e = 2, calculate:
(a) the value of b when e = 12 (b) the value of e when b = 3.

5. x is inversely proportional to y2. If x = 4 when y = 3, calculate:
(a) the value of x when y = 1 (b) the value of y when x = 2 1

4 .
6. p is inversely proportional to

√
y. If p = 1.2 when y = 100, calculate:

(a) the value of p when y = 4 (b) the value of y when p = 3.
7. Given that z ∝ 1

y , copy and complete the table:

y 2 4 1
4

z 8 16

8. Given that v ∝ 1
t2

, copy and complete the table:

t 2 5 10

z 25 1
4

9. e varies inversely as (y – 2). If e = 12 when y = 4, find:
(a) e when y = 6 (b) y when e = 1.

10. The volume V of a given mass of gas varies inversely as the pressure P. When
V = 2 m3, P = 500 N/m2. Find the volume when the pressure is 400 N/m2.
Find the pressure when the volume is 5 m3.



Chapter 6
Conceptualising Mathematical Knowledge
in Teaching

Kenneth Ruthven

Each of the preceding four chapters in this section of the book has examined
the development of a particular line of thinking about mathematical knowledge
in teaching. My task in this chapter is to offer a critical appreciation of these
approaches, and to create a more overarching framework for synthesising their
differing contributions to the analysis of key issues of policy and practice.

Subject Knowledge Differentiated

The first line of thinking can be described as Subject knowledge differentiated
(Petrou and Goulding, Chapter 2). Its fundamental thrust is that expert teaching
requires more than what would ordinarily constitute expert knowledge of a subject.
Thus, its central concern is to identify types of subject-related knowledge that are
distinctive to teaching so as to develop a taxonomy of such knowledge. The goal is to
provide an overarching heuristic framework that can guide the analysis, assessment
and development of professional knowledge. This project has its roots in Shulman’s
pioneering sketch of a taxonomy of knowledge for teaching. Chapter 2 discusses
subsequent work that has sought to refine Shulman’s model in the light of more
direct practical experience of assessing and developing mathematical knowledge in
teaching.

Petrou and Goulding focus first on the way in which the range of subject-related
aspects identified in the Shulman knowledge taxonomy was extended by the model
of professional knowledge proposed by Fennema and Franke (1992). Because of
the significance of knowledge of learner cognitions within the Cognitively Guided
Instruction [CGI] approach with which Fennema and Franke had been involved,
it is not surprising that they singled this out as a primary category of professional
knowledge within their model. This of course reflected the much wider trend (as dis-
cussed more fully by Steinbring in Chapter 4) to conceive teaching less in terms of
direct instruction and more in terms of indirect (radical constructivist) facilitation, or
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(social constructivist) mediation, of students’ construction of knowledge. Likewise,
sensitised to the crucial interaction between knowledge and beliefs through their
experience of working with elementary-school teachers to develop the CGI instruc-
tional approach, Fennema and Franke incorporated teacher beliefs as well as teacher
knowledge into their model. Finally, perhaps the most important feature of Fennema
and Franke’s model was their insistence on the need to acknowledge “the interactive
and dynamic nature of teacher knowledge”, and to examine it “as it occurs in the
context of the classroom” (p. 162) (as discussed more fully by Hodgen in Chapter 3).
Both the other (and later) programmes of research that Petrou and Goulding then
go on to discuss in depth in Chapter 2 share this concern to attend to knowledge in
classroom (inter)action; however, these programmes position themselves differently
as regards the continuing centrality of the Shulman taxonomy.

From an extensive programme of research and development work conducted
at the University of Michigan, Ball, Thames, and Phelps (2008) have proposed a
refinement of the Shulman taxonomy in which some of its core categories are fur-
ther subdivided, and others reassigned. This refinement was informed by study of
the way in which mathematical knowledge plays out in classroom practice, con-
ducted with a view to developing operational measures of teacher knowledge. In
the Michigan model, Shulman’s pedagogical content knowledge [PCK] is con-
served, but subdivided into knowledge of content and students [KCS], typically
“an amalgam, involving a particular mathematical idea or procedure and familiar-
ity with what students often think or do” (p. 401); and knowledge of content and
teaching [KCT], typically “an amalgam, involving a particular mathematical idea
or procedure and familiarity with pedagogical principles for teaching that partic-
ular content” (p. 402). Moreover, in this model, Shulman’s curricular knowledge
becomes a further subcategory of pedagogical content knowledge in the form of
knowledge of content and curriculum [KCC]. Shulman’s content knowledge, too,
is conserved, as an overarching category of subject matter knowledge [SMK], but
differentiated into common content knowledge [CCK] used in settings other than
teaching (and so, of course, by non-teachers), and specialised content knowledge
[SCK] which uniquely enables “teachers . . . to do a kind of mathematical work
that others do not” (Ball et al., 2008, p. 400); for example, when they respond
to students’ questions and find a telling example to make a specific mathematical
point; or when they modify tasks to make them either easier or harder by antic-
ipating the effects of changing particular didactical variables that affect students’
approaches and responses (which also implies a potential involvement of aspects
of pedagogical content knowledge). Finally, the more tentative subcategory of hori-
zon content knowledge [HCK] is proposed, which concerns teacher awareness of
how mathematical topics are related across the span of mathematics, and of how
their development unfolds, as when teachers connect a topic being taught to topics
from prior or future years, or explain how it will contribute to longer-term mathe-
matical goals and purposes (although presumably such knowledge develops largely
through encounters, as both student and teacher, with particular curriculum schemes
and materials, raising the question of its relation to knowledge of content and
curriculum).
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Appraising this refinement of Shulman’s taxonomy, Petrou and Goulding ques-
tion the viability of demarcating specialised content knowledge from pedagogical
content knowledge. Nevertheless, the taxonomic urge encourages fine distinctions:

[S]izing up the nature of an error, especially an unfamiliar error, typically requires . . . flex-
ible thinking about meaning in ways that are distinctive of specialized content knowledge.
In contrast, familiarity with common errors and deciding which of several errors students
are most likely to make are examples of knowledge of content and students. (Ball, Thames,
& Phelps, 2008, p. 401).

Such examples also highlight the plurality of routes through which knowledge-
in-use can emerge in teaching situations. Likewise, the use of ‘amalgam’ signals that
many teaching problems cannot be adequately framed in ‘pure’ terms drawn from
a single knowledge domain, or even by drawing on several domains independently.
Put simply, satisfactory resolution of teaching problems must take account of, and
often trade off between, interacting considerations of quite different types, framed
in correspondingly different terms. This gives rise to solutions that often involve an
irreducible fusion of such considerations, not reducible to the practice, or even logic,
of any single pure knowledge domain. Moreover, for reasons both of ecological
adaptation and cognitive economy, much professional knowledge comes to organise
itself around paradigmatic problems and solutions that involve this type of fusion
since these are closer to experienced teaching situations.

Thus, the contrasting approach taken at the University of Cambridge by Rowland,
Huckstep, and Thwaites (2003, 2005) has been to develop a taxonomy more directly
grounded in analysis of teacher knowledge-in-use in the course of actual class-
room teaching episodes. While the Knowledge Quartet acknowledges parallels to
the Shulman knowledge taxonomy, it does not seek to refine that model. Rather, it
is designed to provide a guide to mathematical knowledge-in-use that is well suited
to supporting teachers’ professional reflection and learning. This Cambridge tax-
onomy, like the Michigan one, establishes prototypical systems of classification
rather than logical ones, evoked through paradigmatic examples more than for-
mulated through tight definitions. Essentially, the Knowledge Quartet provides a
repertoire of ideal types that provide a heuristic to guide attention to, and analy-
sis of, mathematical knowledge-in-use within teaching. However, whereas the basic
codes of the taxonomy are clearly grounded in prototypical teaching actions, their
grouping to form a more discursive set of superordinate categories – Foundation,
Transformation, Connection and Contingency – appears to risk introducing too
great an interpretative flexibility unless these categories remain firmly anchored in
grounded exemplars of the subordinate codes.

Petrou and Goulding conclude Chapter 2 by proposing a synthesis of the dif-
ferent taxonomies of teacher mathematical knowledge that they have reviewed.
In my view, while attempting this task is a valuable exercise in comparing and
clarifying the models, it is not one that can be completed satisfactorily. The com-
parability of categories from the different taxonomies is no less problematic than
the distinction between categories within any one. Influenced by experience of
transposing the Knowledge Quartet from an English to a Cypriot context, Petrou
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and Goulding’s synthesis gives more priority to curriculum knowledge than does
either the Michigan or the Cambridge model. In effect, Petrou and Goulding revert
to something close to core elements of the original Shulman taxonomy, wherein
curriculum knowledge sits alongside content (or subject matter) knowledge and
pedagogical content knowledge. This provides a reasonable match to Ball et al.’s
refinement of the Shulman taxonomy, but its fit to the Knowledge Quartet is more
problematic.

The Shulman knowledge taxonomy and its subsequent variants have mesmerised
the field rather at the expense of the model of pedagogical reasoning that accom-
panied early accounts of the taxonomy (Wilson, Shulman, & Richert, 1987). In
particular, this model incorporates a crucial process of transformation, which
focuses on the interpretation and representation of disciplinary concepts, and on
their adaptation to some general schooling situation and their tailoring to a particu-
lar group of students. If we view transformation as a process of problem solving, we
see that it is subject to a range of constraints, both mathematical and pedagogical,
which often cannot be considered in isolation from one another. Thus, what might
appear to be simply a solution to a mathematical problem may have also been condi-
tioned by pedagogical constraints and vice versa. Equally, where a teacher’s solution
to a problem of classroom teaching is also conditioned by curricular constraints,
this can disguise a further interplay of mathematical and pedagogical considerations
behind the institutionalised curriculum. Moreover, while solutions to such teaching
problems may become crystallised as stable knowledge, they may equally be subject
to continuing adaptation and refinement, and they will vary between teachers and
across teaching settings. From this viewpoint, it becomes clearer why it has been so
difficult to make demonstrable progress in establishing persuasive and productive
knowledge taxonomies.

Petrou and Goulding’s synthesis also incorporates the setting or context of teach-
ing as an explicit, though relatively underdeveloped, element of their model. On
the structural side, “the context in which teachers work is the structure that defines
the components of knowledge central to mathematics teaching”, and “this ‘context’
[includes] the educational system, . . . the curriculum and its associated materi-
als, such as textbooks and the assessment system”. On the agentic side, “teachers’
[knowledge] can determine the ways in which [they] understand, interpret and use
the mathematics curriculum and its associated materials”. Petrou and Goulding also
draw attention to the “largely individualistic assumption which underpins” the mod-
els of teacher knowledge that they have discussed and suggest that attention needs
to be given to teacher knowledge in relation to the wider systems within which it
functions and develops.

Subject Knowledge Contextualised

Analysing teacher (and teaching) knowledge from this wider perspective is the
focus of the second line of thinking to be reviewed here; what can be described
as Subject knowledge contextualised (Hodgen, Chapter 3). The fundamental thrust
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of this approach is that the (collective as well as individual) use and development of
subject-related knowledge in teaching is strongly influenced by material and social
context: the central concern of this approach is to identify and analyse significant
facets of this contextual shaping. The goal is to acknowledge the embeddedness of
knowledge in professional activity mediated by teaching tools and social organi-
sation, so providing a model better adapted to guide the analysis, assessment and
development of mathematical knowledge in teaching. This project as a whole draws
on more general socio-cultural models, and Chapter 3 pursues this line of argu-
ment by using these models to characterise examples from studies of mathematical
knowledge in teaching.

In Chapter 3, Hodgen seeks to illustrate the embeddedness of mathematical
knowledge in professional practice, principally through the case of an experi-
enced advisory teacher for primary mathematics who is actively involved in leading
professional and resource development that includes intensive work on particu-
lar mathematical topics. Observed in her ordinary professional work, the teacher
is able to function competently and confidently in tasks involving conceptual as
well as computational mathematical activity. Observed in a more pressured inter-
view situation involving apparently similar tasks, she does not display the same
competence and confidence. While Hodgen notes that the teacher’s capacity to
access relevant knowledge may have been disrupted by anxiety triggered by the
interview setting, the main explanation that he proposes is that the teacher’s nor-
mal competence and confidence depends on the support ordinarily available to her
through working collaboratively, using lesson materials, and drawing on curricular
guidance.

Indeed, as Hodgen later points out, another important issue, already recognised
by Shulman, is the form in which professional knowledge is held and the way
in which it is organised and accessed. Here, cognitive studies of expert mathe-
matics teaching at school level (Leinhardt, Putnam, Stein, & Baxter, 1991) have
found teachers’ knowledge and reasoning about a particular topic to be organised in
terms of ‘curriculum scripts’ closely tailored to the actual work of teaching; these
memory structures provide loosely ordered repertoires of action and argumentation,
including relevant representations and explanations as well as markers for antic-
ipated student difficulties. Likewise, Hodgen suggests that restructuring existing
knowledge and experience may play a more important part in learning to teach and
developing as a teacher than acquiring wholly new knowledge. As noted earlier by
Fennema and Franke, such restructuring is often likely to extend to belief as well
as knowledge, so that teacher learning also involves a degree of reconstruction of
identity.

While the approach developed in Chapter 3 offers a plausible broadening of
perspective, it appears to rest as yet on a relatively slender and fragmentary evi-
dential base. The other cases invoked are all treated much more briefly. One of
them provides a counterpoint to the main case in showing the distribution of profes-
sional expertise across personal knowledge, teaching tools and social organisation.
In it, the capacity of a high-school mathematics teacher to implement an innovatory
reform-oriented curriculum appears to rest not just on his rich and well-articulated
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mathematical knowledge, exercised and perhaps further developed through teach-
ing a traditional curriculum for many years, but also on the support provided by the
curriculum materials and the professional development associated with the innova-
tion. The other cases represent a particular type of dysfunction where the personal
knowledge of teachers is not well-adapted to the particular context of school teach-
ing. In the first of these, proficiency in academic mathematical practice does not
provide prospective secondary teachers with ready resources to respond to a naïve
question about what, for them, are taken-for-granted techniques, a type of question
often posed to teachers in school mathematical practice. In the second of these cases,
compacted knowledge of a mathematical topic accompanied by automated recogni-
tion of mathematical connections appear to impair the sensitivity of a middle-school
mathematics teacher to his students’ thinking, preventing him from connecting with,
and making sense of, this thinking. In effect, these cases show not only that knowl-
edge of more advanced mathematics does not, of itself, help a teacher to function
effectively (for the reasons reviewed by Petrou and Goulding in Chapter 2), but that
more elementary knowledge may have taken on a curtailed and automated charac-
ter that stands in the way of effective functioning in many teaching situations. It
seems that shifts in the preferred modalities of mathematical thinking associated
with more advanced study can create ‘expert blind spots’ for teachers (Nathan &
Petrosino, 2003; van Dooren, Verschaffel, & Onghena, 2002).

The approach to thinking about mathematical knowledge in teaching developed
in Chapter 2 focuses on different facets of individual knowledge and understand-
ing of mathematics, which enable teachers to deploy the ideas and methods of the
subject flexibly across teaching situations without reliance on contextual supports.
While the approach developed in Chapter 3 accepts the desirability of teachers
having these types of individual knowledge and understanding of mathematics, it
acknowledges the reality that many school systems are obliged to operate with
teachers who lack independent personal competence and confidence in the sub-
ject. Consequently, from a broader perspective which examines teaching in context,
this approach suggests that teaching tools and social organisation provide poten-
tially important mechanisms to help the teaching force function more effectively,
and that these are also potentially capable of contributing to the development of
teachers’ individual knowledge and understanding of the mathematics that they are
teaching.

Subject Knowledge Interactivated

The third line of thinking in this section on conceptualising mathematical knowl-
edge in teaching can be described as Subject knowledge interactivated (Steinbring,
Chapter 4). Unlike the other chapters, this one does not specifically examine teacher
knowledge and learning, but focuses rather on an evolution of thinking about the
character of mathematical knowledge and how it is mediated through teaching
and learning. The fundamental thrust of the evolution that Steinbring describes is
towards a view in which mathematical knowledge is taken to be only indirectly
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communicable and locally constructible through social interaction. Hence, the cen-
tral concern of this approach is with the epistemic and interactional processes
through which mathematical knowledge is (re)contextualised and (re)constructed
in the classroom.

For Steinbring, this forms part of a more general view that emphasises recip-
rocal interaction between relatively autonomous systems, rather than direct action
of one on another; a view applicable not just to relations between teacher and
student, but also to those between teacher educator and classroom teacher, educa-
tional researcher and teacher developer. Nevertheless, by examining Stoffdidaktik,
Steinbring is focusing on a tradition, which plays a central part in the subject-
related components of teacher education in the German-speaking world (Keitel,
1992). Thus, I will add to my précis of Steinbring’s argument some observations
of my own, based on my understanding of the form and function of Stoffdidaktik
in teacher education, as gleaned from working with colleagues in German-speaking
countries and from examining mathematics texts used in teacher education there.

Steinbring employs the widely-recognised ‘didactical triangle’, consisting of
Mathematics/Content, Teacher/Teaching and Student/Learning (and the relations
between them), as a device to compare three stages in the evolution of this central
component of the German tradition of Mathematikdidaktik. In order to trace the evo-
lutionary process, he describes changes at each stage in terms of the way in which
these elements, and the relations between them, are conceived. At the first stage, that
of classical Stoffdidaktik, attention was focused on Mathematics/Content, in partic-
ular on mathematically systematic analysis of curricular content to find an optimal
presentation and sequencing for teaching purposes. Fundamental assumptions, then,
were that achieving such a presentation is largely a problem of mathematical analy-
sis, and that such a presentation then provides an unproblematic basis for effective
teaching, and so for effective learning. Consequently, the other elements of the tri-
angle, Teacher/Teaching and Student/Learning, received little attention at this stage,
and the relationship between the elements was assumed to be a linear one in which
well-analysed Content is relayed by the Teacher to the Student. One can see how,
within teacher education, this view gave classical Stoffdidaktik a central place: a
good teacher must be well-versed in the analysis of subject content for teaching
purposes.

The second stage was precipitated by new views of the Student as a sense-
making agent in the classroom, and of Learning as a process of knowledge
construction. This was linked, in turn, to a new view of Mathematics/Content in
which the processes and products of academic mathematical practice were less
unquestioningly accorded a privileged place. Under these circumstances, the focus
of attention within Mathematikdidaktik enlarged to include Student/Learning as
well as Mathematics/Content, and the style in which Mathematics/Content was
treated shifted (as exemplified by Freudenthal’s influential work on didactical phe-
nomenology and progressive mathematisation). These new views rather neglected
the element of Teacher/Teaching, indeed sometimes treated it with a degree of sus-
picion. Within the institution of teacher education, reformed Stoffdidaktik responded
by taking a broader perspective on Mathematics/Content and incorporating greater
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attention to Student/Learning, often in the form of the results of psychological stud-
ies of student errors and misconceptions (e.g., Padberg, 1989; Vollrath, 1994). In
the third stage of the evolution described by Steinbring, attention has turned to
direct analysis of knowledge construction in the classroom, particularly to its epis-
temic and interactional aspects. Although Mathematics/Content, Teacher/Teaching
and Student/Learning are regarded as relatively independent systems, attention now
focuses on their operation and particularly their reciprocal interaction. The type
of analysis that results from this approach is illustrated in the final section of
Chapter 4. Steinbring argues, of course, that such analyses carry no direct implica-
tions for teacher education or for teaching. Nevertheless, one can see how exposure
to such examples might stimulate teacher educators to incorporate this type of fine-
grained analysis of the construction of mathematical knowledge through classroom
interaction into their work with prospective and serving teachers.

At one point, Steinbring introduces a comparison with the Anglo-American
tradition. He suggests that there is a further type of mathematical knowledge rel-
evant to teaching that goes beyond content knowledge and pedagogical content
knowledge as characterised by Shulman: what he terms epistemological knowledge
for mathematics teachers. We can perhaps best understand this by first observ-
ing how Steinbring’s use of the epistemological triangle draws attention to what
otherwise might be taken as unproblematic mathematical entities. This approach
highlights the way in which such entities are constituted by virtue of relationships
between Concept, Sign/Symbol and Object/Reference Context, and how these rela-
tionships provide a key focus for the unfolding construction and negotiation of
knowledge in classroom interaction. In effect, the epistemological triangle might
be seen as a necessary expansion of the Mathematics/Content element within
the didactical triangle to enable it to preserve its heuristic function given this
new view which emphasises “the theoretical and dynamic character of mathemat-
ics”. It is necessary, then, to treat with some caution apparent parallels between
relations implied by the didactical triangle and the subcategories of pedagogical
content knowledge in the refined (Michigan) version of the Shulman knowledge
taxonomy. Superficially at least, Knowledge of Content and Students focuses on
the relation (or, in this view, the interaction) between Mathematics/Content and
Students/Learning; Knowledge of Content and Teaching focuses on the relation
(or interaction) between Mathematics/Content and Teacher/Teaching. Knowledge
of Content and Curriculum presumably resides within the Mathematics/Content ele-
ment within the didactical triangle, but parallels are problematic given the way
that the analysis presented by Steinbring has shown how views of this element
have changed markedly within Mathematikdidaktik, as previously unacknowledged
complexities have been recognised.

Subject Knowledge Mathematised

The final line of thinking developed in this section of the book can be described as
Subject knowledge mathematised (Watson and Barton, Chapter 5). Its fundamental
thrust is that teachers must act mathematically in order to enact mathematics with



6 Conceptualising Mathematical Knowledge in Teaching 91

their students, and that doing so calls for a kind of knowledge rather different from
that which normally receives emphasis in discussions of mathematical knowledge
in teaching. The central concern of the chapter, then, is to characterise those math-
ematical modes of enquiry, which underpin any authentic form of mathematical
activity, and to show how teachers employ them to foster such activity in their
classrooms.

While also embracing Krutetskii’s ‘mathematical abilities’, the chapter locates its
approach principally within a tradition leading from Polya’s ‘mathematical heuris-
tic’ to Cuoco, Goldenberg and Mark’s ‘mathematical habits of mind’. The chapter
draws on each of these sources to exemplify the range of intellectual dispositions
and strategies which can be thought of as mathematical modes of enquiry. The
chapter then uses a simulated exercise in the planning of teaching situations from
contrasting types of resource to provide more fully-developed examples of math-
ematical modes of enquiry in action within the work of teaching. Retrospective
analysis of the thinking stimulated by this exercise also leads to more mathemat-
ical modes being identified. In an authentic piece of planning, of course, contextual
aspects of the teaching situation would also figure, and might indeed shape key
aspects of the process. Nevertheless, the artificiality of the exercise does help to
focus attention on the mathematical modes of enquiry and their significance. In
effect, what Watson and Barton are doing is “organizing the reality with mathe-
matical means” (Freudenthal, 1973, p. 44), bringing out how both the enaction of
teaching and its planning can be treated as processes of mathematising. This under-
pins their broader critique of predominant perspectives on mathematical knowledge
in teaching, challenging an apparent focus on frozen mathematical content at the
expense of fluid mathematical process (so taking further some of the critiques of
Shulman’s analysis reviewed in Chapter 2). Where teacher knowledge is concerned,
the crux for Watson and Barton is that “a teacher for whom these [modes] are ways
of being mathematical is more likely to be able to act fluently in all classroom math-
ematical contexts, compared with one who has learned a repertoire of pedagogical
strategies without personal mathematical involvement”.

Freudenthal (1991, p. 30) has described mathematisation as “the process by
which reality is trimmed to the mathematician’s needs and preferences” and this
seems a very apt description of the approach set out in Chapter 5. A recurring
feature of the argument is an emphasis on personal mathematical experience as a
source of insight. Reviewing the planning exercise, Watson and Barton conclude
that “the dominant knowledge brought to bear on the pedagogic tasks of planning
and teaching was the personal mathematical past experience of the protagonists”.
But potential limitations of the personal mathematical experience and thinking of
teachers as a guide to the mathematical experience and thinking of their students are
not explored. Challenging the value of teachers’ learning about common mathemat-
ical misconceptions amongst students, Watson and Barton suggest that “personal
experience of how misconceptions come to be constructed is a more powerful
source of pedagogic knowledge”. Arguing that mathematics teachers need to be
able to “see behind” students’ productions, they propose that this is exactly “what
a mathematician might do when interpreting a text, or when thinking through a
problem”.
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This approach comes close to a mode of thought that has been found to be preva-
lent amongst subject-specialist teachers, in which an explicit mathematical narrative
provides the organising structure for a tacit pedagogical one.

In mathematics teachers, the subject-matter-specific pedagogical content knowledge is to a
large part tied to mathematical problems. In a way, it is “crystallized” in these problems,
as research in everyday lesson planning has shown. In their lesson preparation, experienced
mathematics teachers concentrate widely on the selection and sequence of mathematics
problems . . . Nevertheless, pedagogical questions of shaping the lessons are also consid-
ered by teachers in their lesson planning, as these questions codetermine the decision about
tasks. By choosing tasks with regard to their difficulty, their value for motivating students,
or to illustrate difficult facts, and so forth, the logic of the subject matter is linked to teach-
ers’ assumptions about the logic of how the lesson will run, and how the students will learn.
. . . Teachers often do not even realize the integration they effect by linking subject-matter
knowledge to pedagogical knowledge. One example of this is their (factually incorrect)
assumption that the subject matter (mathematics) already determines the sequence, the
order, and the emphasis given to teaching topics. The pedagogical knowledge that flows
in remains, in a way, unobserved. To teachers who see themselves more as mathematicians
than as pedagogues, their teaching decisions appear to be founded “in the subject matter”
(Bromme, 1994, p. 76).

Too mathematically purist a stance risks isolating discussion of mathematical
knowledge in teaching from productive perspectives that are very much in sympa-
thy with the idea of mathematical modes of enquiry, but which frame such ideas in
different terms. For example, one of the cases which Collins, Brown, and Newman
(1989) use to illustrate their model of ‘cognitive apprenticeship’ is Schoenfeld’s
(1985) approach to teaching mathematical problem solving which lies in the same
tradition of critical refinement of Polya’s mathematical heuristic as does the mathe-
matical modes of enquiry approach. Schoenfeld, however, is not uncomfortable with
the language and concepts of the cognitive sciences; indeed, he uses that apparatus
to generate fresh insights into teaching for mathematical problem solving. Others
characterise his teaching in similar terms:

To students, learning mathematics had meant learning a set of operational methods, what
Schoenfeld calls resources. Schoenfeld’s method [involves] teaching students that doing
mathematics consists not only in applying problem-solving procedures, but in reasoning
about and managing problems using heuristics, control strategies and beliefs. Schoenfeld’s
teaching employs the elements of modelling, coaching, scaffolding and fading in a variety of
activities designed to highlight different aspects of the cognitive processes and knowledge
structures required for expertise (Collins, Brown, & Newman, 1989, p. 470).

The language employed by Watson and Barton in the Conclusion to Chapter 5
suggests that theirs is not a purist stance. For example, the references to “authen-
tic mathematical experiences”, “having modes modelled”, and “having the modes
explicitly discussed at a meta-level” appear to borrow from the same forms
of language as cognitive apprenticeship. Equally, Collins et al. (1989, p. 474)
acknowledge how mathematical and pedagogical considerations (of exactly the type
identified by Bromme in the quotation above) interact in Schoenfeld’s thinking
about his teaching: “Schoenfeld places a unique emphasis on the careful sequencing
of problems. He has designed problem sequences to achieve four pedagogical goals:
motivation, exemplification, practice, and integration.”
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Reconceptualising Subject Knowledge in Teaching

Originating in response to perceived inadequacies in received views of mathematical
knowledge in teaching, each of the lines of thinking presented in Chapters 2–5 has
given rise to productive reconceptualisations.

The first pair of approaches focus on how mathematical knowledge can be func-
tionally adapted and developed in ways that specifically support the teaching role.
Subject knowledge differentiated challenges the received idea that the mathematical
knowledge required in teaching is simply that developed through studying the sub-
ject to a level which provides adequate facility in (and perspective on) the material
to be taught. This approach has reconceived the issue productively by identifying
types of subject knowledge that are closely linked to teacher activity in promoting
effective learning, which are not normally developed as a student of the subject,
and that appear to be distinctive to teaching (or, at least, developed much more
fully than in other professions). This also introduces a challenge to the received
idea that teaching simply involves the direct application of mathematical knowledge
that is universal in its character and organisation. Subject knowledge contextualised
further reconceives this issue by showing how teachers’ knowledge undergoes a
professionally-specific adaptation, in which organising structures are developed that
support coordinated attention to the mathematical and pedagogical facets of teach-
ing, and that involve an important degree of (sometimes unacknowledged) fusion
between mathematical and pedagogical concepts. Subject knowledge contextualised
has also challenged what appears to be an unexamined emphasis in received views of
mathematical knowledge in teaching on such knowledge as individually and inde-
pendently held. In the face of widespread difficulties in securing and developing
a mathematically proficient workforce within teaching, this issue has been recon-
ceived productively by drawing attention to the distribution of subject knowledge
across teaching tools and professional communities, and so to the contribution that
(when appropriately developed and organised) these resources can make to sup-
porting knowledgeable subject teaching and the development of teachers’ subject
knowledge.

The second pair of approaches share an emphasis on a teaching role that centres
on supporting student knowledge construction. Subject knowledge interactivated
challenges the received idea that mathematical knowledge can be pre-formulated
in a way that enables it to be simply relayed by teachers to students (or indeed by
teacher educators to prospective teachers). This approach has reconceived the issue
productively by showing the types of interactional process through which math-
ematical knowledge undergoes a process of (re)construction by means of active
negotiation between the participants in classroom mathematical activity, medi-
ated by appropriately designed tasks. In particular, this highlights the types of
subject-specific epistemic and interactional competence that are required in effec-
tive teaching of this style. Closely related is the challenge which Subject knowledge
mathematised offers to the received idea that it is sufficient for teachers to know
their subject in the sense simply of being familiar with the finished mathematical
material to be taught and with associated difficulties that students may encounter.
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This approach reconceives the issue productively by highlighting the way in which
teachers are responsible for leading classroom enactment of mathematical activ-
ity through which knowledge can be (re)constructed, and by illustrating how, at its
best, such joint activity provides a means through which students become conver-
sant with the mathematical modes of enquiry that underpin such (re)construction
(i.e., how they can be led to develop syntactic as well as substantive competence
(Schwab, 1978)).

In the face of the widespread difficulties noted earlier in securing and developing
a mathematically proficient workforce within teaching, this latter pair of approaches
might be seen as setting a somewhat utopian (and overly challenging) standard
for mathematical knowledge in teaching. The counter to this is that more modest
strategies may only be capable of effecting marginal improvement within received
practices of mathematics teaching which are fundamentally flawed. Indeed, from
the more radical perspective, the problem of subject expertise in teaching is just
one component of a much larger issue of the social reproduction of mathematical
knowledge. In this view, inadequate mathematical knowledge on the part of individ-
ual teachers is a subsidiary phenomenon that ultimately resides in the inadequacies
of received practices, not just of mathematics teaching but of mathematical commu-
nication more broadly, because these lack mechanisms through which the thinking
processes and learning strategies that underpin the development of mathematical
knowledge are made accessible to students and significant to their teachers.

Within the practice of academic mathematics, for example, Thurston (1994, p. 8)
has argued that established protocols for communication fail to provide effective
means of revealing underlying thinking processes:

We mathematicians need to put far greater effort into communicating mathematical ideas.
To accomplish this, we need to pay much more attention to communicating not just our
definitions, theorems, and proofs, but also our ways of thinking. We need to appreciate
the value of different ways of thinking about the same mathematical structure. We need
to focus far more energy on understanding and explaining the basic mental infrastructure
of mathematics . . . This entails developing mathematical language that is effective for the
radical purpose of conveying ideas to people who don’t already know them.

Thurston is arguing that effective mathematical communication involves some
degree of interactivation and mathematisation of the knowledge at stake. In
particular, he criticises approaches to teaching mathematics that neglect such
interactivation in favour of a reductive focus on demathematised knowledge.

In classrooms . . . we go through the motions of saying for the record what we think the stu-
dents “ought” to learn, while the students are trying to grapple with the more fundamental
issues of learning our language and guessing at our mental models. Books compensate by
giving samples of how to solve every type of homework problem. Professors compensate by
giving homework and tests that are much easier than the material “covered” in the course,
and then grading the homework and tests on a scale that requires little understanding. We
assume that the problem is with the students rather than with communication: that the stu-
dents either just don’t have what it takes, or else just don’t care. Outsiders are amazed at
this phenomenon, but within the mathematical community, we dismiss it with shrugs (p. 6).
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This highlights how (presumably excellent) conventional mathematical knowl-
edge on the part of (university) teachers is unable to compensate for what Thurston
characterises as ‘often dysfunctional’ cultural practice. Translated into the language
of cognitive apprenticeship, the type of teaching practice sketched above models
mathematical activity in restricted terms, employs excessive scaffolding without
progressive fading, and neglects cognitive and metacognitive articulation and reflec-
tion. The result is impoverished joint activity, weak interaction between teacher and
students, and a corresponding polarisation of their classroom roles that accentuates
the shortfall of (particularly tacit) knowledge to which students are given access.

Under such conditions, few students will develop powerful and flexible strategies
of mathematical thinking and learning. A fundamental problem of mathematical
knowledge in teaching is that the school and university experience of many prospec-
tive and practising teachers has been of this limited type, creating reflexes that are
difficult to change. The models of subject thinking and learning that prospective
teachers have developed as students are well known to constitute an important base
for the forms of teaching practice that they go on to develop. Arguably indeed,
taking on a teaching role involves a recasting of intrapersonal metacognition into
interpersonal activity and dialogue. Interestingly too, this argument suggests that
the degree to which (what have been presumed to be) distinctive elements of math-
ematical knowledge for teaching can be differentiated from other mathematical
knowledge may actually be mediated by cultural practices of teaching. Specifically,
the degree of differentiation between what is regarded as teaching-specific, rather
than as more generic, mathematical expertise may be directly related to the asym-
metry of teacher and student roles in classroom mathematical activity, and inversely
related to the attention accorded there to cognitive and metacognitive articulation
and reflection. That provides one of the reasons why we have been keen in this
book, particularly in the next section, to extend our consideration of issues of math-
ematical knowledge in teaching beyond the English-speaking world in which the
predominant conceptualisations reviewed in Chapters 2 and 3 have been developed.
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Chapter 7
The Cultural Location of Teachers’
Mathematical Knowledge: Another Hidden
Variable in Mathematics Education Research?

Paul Andrews

Introduction

Much work on mathematics teacher knowledge has drawn on the earlier con-
ceptualisations of Shulman (1986). In brief, his model of teacher knowledge,
prompted more by concerns about inadequate teacher education programmes rather
than individual teacher competence, comprised three components: subject mat-
ter content knowledge, pedagogical content knowledge and curricular knowledge.
More recently, a number of researchers have developed frameworks that essentially
present mathematics teacher knowledge in generalised forms that acknowledge not
only the role of subject matter knowledge in successful teaching – an understanding
of the substantive and syntactic properties of mathematics – but also transforma-
tive pedagogic knowledge, whereby subject matter knowledge is made amenable to
multiple presentations. Such models include, for example, Sherin’s (2002) discus-
sion of content knowledge complexes, reflecting the automated and simultaneous
application of both content and pedagogic content knowledge, Rowland, Huckstep,
and Thwaites’ (2005) four-dimensional model of primary preservice teacher knowl-
edge, and the University of Michigan team’s model incorporating common content
knowledge, specialized content knowledge, horizon knowledge, knowledge of con-
tent and students and knowledge of content and teaching (Ball, Thames, & Phelps,
2008). All such models can be construed as representations or developments of
Shulman’s (1986) content and pedagogical content knowledge. However, such cat-
egorisations, in their presentations of essentially personal attributes, seem to locate
teacher knowledge within the individual. While this is not of itself problematic, it
is difficult to understand, particularly in the light of the arguments below, how such
frameworks are not consequences of particular cultural contexts drawing on both
systemic imperatives and didactic folklore.
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As can be seen from the above, with few exceptions, most mathematics teacher
knowledge research has been undertaken by US-based researchers, many of whom
seem to have overlooked the possibility that teachers’ mathematical knowledge, as
manifested in their observable behaviour, is a cultural construction, as evidenced
by other US-based researchers (Hiebert et al., 2003; Schmidt et al., 1996; Stigler,
Gallimore, & Hiebert, 2000). In this paper, a framework for analysing teachers’
mathematical knowledge that explicitly acknowledges the cultural discourse in
which mathematics teaching and learning occur is proposed. It does not seek to
replace existing models, but to complement them. Admittedly, some teacher knowl-
edge researchers have acknowledged the limitations of work undertaken in single
cultural contexts (Ball et al., 2008), but few have considered whether frameworks
developed in one cultural context are applicable in another (although the studies
of An, Kulm, and Wu (2004) and Delaney, Ball, Hill, Schilling, and Zopf (2008)
are exceptions). This is an issue of some salience. For example, discussing Spanish
teachers’ subject knowledge, Escudero and Sánchez (2007, p. 314) examine sev-
eral textbook representations of Thales’ theorem, one of which reads “if several
parallel straight lines (AA,́ BB,́ CC)́ are cut by two transversal lines (AC, AĆ)́,
the ratio of any two segments of one of these transversals is equal to the ratio of
the corresponding segments of the other transversal”. Such presentations, largely
unknown in current English texts, not only highlight differences in curricular expec-
tations, but also provoke the reaction that whether they are categorised as common
or specialised content knowledge is probably of less importance than whether they
should be required knowledge of teachers working within curriculum frameworks
that do not privilege them. Thus, in an attempt to shift teacher knowledge from the
personal construct embedded in much recent research, this paper considers teacher
knowledge as a social construction located within particular cultural contexts.

Mathematical Knowledge in Teaching:
A Culturally-Located Model

It is probably not an unreasonable conjecture that not only are teachers’ actions
reflections of their goals, but also that their goals reflect an idealised view of what
it is they want to achieve for their students. In this respect, Reeve and Jang (2006)
describe two forms of long term goals focused respectively on learner autonomy and
learner conformity, while others, in accordance with psychological research, have
discussed goals as focused on learner mastery or learner performance (Wolters &
Daugherty, 2007). In respect of this study, the professional goals and ambitions
teachers have for their students are construed as idealised learning outcomes relat-
ing to knowledge, skills and dispositions that are addressed by an equally idealised
set of didactics that may or may not be linked with learner autonomy or conformity,
mastery or performance orientation. In this manner, teachers’ long term goals reflect
an idealised curriculum. For example, an idealised curriculum may relate to learner
acquisition of adaptive expertise, or the flexible application of an integrated and
connected set of concepts and procedures (Baroody, 2003; Kilpatrick, Swafford, &
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Findell, 2001). Another may reflect Dutch expectations in which learner experi-
ences and teachers’ structuring of mathematics are located in problems that are
imaginably real to the learner (Van den Heuvel-Panhuizen, 2003). Importantly,
Andrews’ (2007a) investigation of English and Hungarian mathematics teachers’
professional goals found most English teachers articulating goals concerning math-
ematics as applicable number and the means by which learners are prepared for a
world beyond school, while their Hungarian colleagues privileged mathematics as
problem-solving and logical thinking. Such differences highlight two characteristics
of the idealised curriculum: it is located in individual experience and it is articulable.

According to Hufton and Elliott (2000, p. 117) teachers’ practices are so “deep
in the background of the schooling process . . . so taken-for-granted . . . as to be
beneath mention”. In this regard, a number of researchers have attempted to “reveal
taken-for-granted and hidden aspects of teaching” (Hiebert et al., 2003, p. 3) and
have unveiled unnoticed but culturally-located practices characteristic of the sys-
tems under scrutiny (Schmidt et al., 1996; Stigler et al., 2000). The consensus
seems to be that teachers employ pedagogical strategies which, through repeated
enactment, are not only typical of a country’s lessons, but also beneath their
consciousness (Cogan & Schmidt, 1999). This sense of typicality has found con-
firmation in Andrews’ research in which mathematics teachers from four European
countries have been observed to behave, at least as far as seven generic learning
outcomes and ten generic didactic strategies are concerned, in ways that align them
closely with their national colleagues and distinguish them from their overseas col-
leagues (Andrews, 2007b, 2009a, 2009b). Explanations suggest that cultures “shape
the classroom processes and teaching practices within countries, as well as how
students, parents and teachers perceive them” (Knipping, 2003, p. 282). Thus, it
seems that teachers’ actions, in addition to being informed by individuals’ idealised
curricula, are informed by culturally-located and beneath articulation received cur-
ricula. The received curriculum, characterised by its hidden, inarticulable, properties
is amenable only to inference and can be construed as a set of collective practices
and goals.

Of course, irrespective of the idealised and received curricular determinants of
their actions, most teachers work within systemically defined curricular frameworks,
which the second international mathematics study described as intended curricula –
systemically located expectations of learner outcomes which frequently reflect his-
torical values and imperatives. An assumption too frequently made in mathematics
education circles is that mathematics curricula, particularly in culturally similar
countries, share many similarities and few substantial differences. In this regard,
a brief analysis of the mathematics curricula of Flanders and Hungary and their
expectations with regard to linear equations, the countries and topic represented in
this chapter, is salient.

The Flemish curriculum for mathematics1 in the first grade of secondary edu-
cation is located in three domains: number theory, algebra and geometry. Within

1See http://www.ond.vlaanderen.be/dvo/english/
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each strand are three core objectives concerning (1) concept formation and knowl-
edge of facts; (2) procedures; and (3) cohesion between concepts. The particular
expectations for simple linear equations are:

• First grade of secondary education: Use letters to represent generalisations and
unknowns, solve equations of the first degree with one unknown and simple
problems, which can be converted to such an equations.

• Second grade of secondary education: Solve equations of the first and sec-
ond degree in one unknown, and problems which can be converted into such
equations.

The generic expectations focus on issues concerning language, problem solv-
ing as both a mathematical activity and as a means modelling the real world, ‘the
importance and the need for providing proof, which is inherent in mathematics’, and
a need for students to ‘develop self-regulation by focusing on the problem, planning,
executing and monitoring the solution process; develop self-confidence as a result
of successfully solving mathematical problems; develop a sense of independence
and determination in tackling problems’.

The Hungarian curriculum2 for grades 5–8 (upper primary) includes an intro-
duction locating the learning of mathematics within a developmental framework,
acknowledging explicitly the transition from concrete and inductive to abstract and
deductive. It addresses the affective domain while making no concession to ensure
that children are presented with intellectually challenging mathematics. These aims
are supported by five broad themes concerning the application of acquired math-
ematical concepts: the development of a mathematical approach; problem-solving
skills and logical thinking; the application of acquired learning methods and think-
ing; and developing the right attitude towards learning. Curriculum content is also
characterised according to five broad themes, namely: methods of thinking, alge-
bra and arithmetic, mathematical relations, functions and sequences, geometry, and
probability and statistics. First degree equations with a single unknown are covered
in each of the 4 years. Students should

• Year 5: Solve simple equations of the first degree by deduction, breaking down,
checking by substitution along with simple problems expressed verbally.

• Year 6: Solve simple equations of the first degree and one variable with freely
selected method.

• Year 7: Solve simple equations of the first degree by deduction and the balance
principle. Interpret texts and solve verbally expressed problems. Solve equations
of the first degree and one variable by the graphical method.

• Year 8: Solve deductively equations of the first degree in relation to the base
set and solution set. Analyse texts and translate them into the language of
mathematics. Solve verbally expressed mathematical problems.

2See http://www.okm.gov.hu/letolt/nemzet/kerettanterv36.doc
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Such details highlight differences in the underlying systemic conceptions of
mathematics and its teaching and, it is argued, confirm that teachers’ expected sub-
ject knowledge is clearly a function of the system in which they work. For example,
the Hungarian curriculum’s developmental framework, reflected in the annual visi-
tation and incremental conceptual growth of linear equations, differs markedly from
the espoused expectations of the Flemish.

In sum, teachers’ mathematical knowledge in teaching is a social construction
drawing, inter alia, on the culturally-located idealised, received and intended cur-
ricula. It is conjectured that the closer the three are aligned, the more coherent
both subject knowledge and its didactic manifestation are likely to be; although if
systemic expectations are limited, then even closely aligned curricula may result
in limited opportunities for learning. Also, of course, if the three curricula are
unaligned, then the result may be didactic anarchy, as in the case of Mrs. Oublier
whereby reform-oriented practices were incorporated alongside unconsciously held
traditional beliefs about mathematics teaching and normative classroom behaviours
(Cohen, 1990). In this chapter, the tripartite framework of idealised, received and
intended curricula is examined from the perspective of its explaining variation in
the ways in which teachers present mathematics to their students. To achieve this
objective, two sequences of lessons taught on linear equations to students in grade
8 in Flanders and Hungary are examined. Each sequence was taught by a teacher
defined locally as effective in the manner of the learner’s perspective study (Clarke,
2006).

The Project

Funded by the European Union, the Mathematics Education Traditions of Europe
(METE) project examined aspects of mathematics teaching in Belgium (Flanders),
England, Finland, Hungary and Spain. The main dataset comprised video record-
ings of four sequences of lessons taught in each country on agreed topics by teachers
defined locally, in the manner of the learner’s perspective study (Clarke, 2006) as
effective. After recording, videotapes were downloaded and compressed for ease of
sharing and coded against a generic schedule developed in a bottom-up and itera-
tive manner during the first year of the project. Full details of this process can be
seen in Andrews (2007c), although it is probably sufficient to say that the final cod-
ing schedule comprised seven generic learning outcomes and ten generic didactic
strategies which project colleagues thought, on the basis of a year’s live obser-
vations, reflected well their perceptions of the mathematics teaching of the five
countries.3 Codes were applied to the episodes of a lesson, where an episode was
defined “as that part of a lesson in which the teacher’s observable didactic inten-
tion remained constant” (Andrews, 2007c, p. 499), with no limit to the number
of codes that could be applied. The only criterion was the presence of a learning

3Working definitions of the codes can be seen below in Table 7.2.
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outcome or didactic strategy at some point during the episode. Several quantita-
tive analyses have been undertaken and these have proved effective in highlighting
similarities and differences in the emphases found in the respective countries’
episodes (Andrews, 2007b, 2009a, 2009b). However, much work has still to be
done in respect of qualitative analyses, and this chapter represents a first pass at that
process.

Two sequences of four lessons on the topic of linear equations, taught to grade 8
students in Flanders and Hungary, are reported below. The topic was chosen because
it reflects an important transition as mathematics passes from concrete and induc-
tive to abstract and deductive. Particularly pertinent to the analysis presented in
this chapter is research highlighting a distinction between arithmetical and alge-
braic equations. On one hand, arithmetic equations, with the unknown on one side
only, are generally assumed to be susceptible to undoing (Filloy & Rojano, 1989).
On the other hand, algebraic (non-arithmetic) equations, with unknowns on both
sides, cannot be solved by arithmetic-based approaches and require not only that
the learner “understand that the expressions on both sides of the equals sign are of
the same nature (or structure)” (Filloy & Rojano, 1989, p. 19), but also that they
are able to operate on the unknown as an entity and not a number. Thus, arithmetic
equations are procedural, while algebraic or non-arithmetic equations are structural
(Kieran, 1992). The choice of these two sequences was based on the availability of
English language mathematics curricula, and because they provided interesting sim-
ilarities and differences in the ways the two teachers concerned – Pauline in Flanders
and Eva in Hungary – conceptualised and presented this iconic topic to their stu-
dents. These similarities and differences, drawing on the generic learning outcomes
and didactic strategies exploited in the METE project, can be seen in Table 7.1.
In respect of similarities of learning outcomes, for example, both teachers empha-
sised student acquisition of conceptual knowledge and procedural knowledge, while

Table 7.1 Percentage of all Flemish and Hungarian episodes coded for each of the generic
learning outcomes and didactic strategies alongside the same for Pauline and Eva

Flanders Hungary Flanders Hungary

Pauline Eva Pauline Eva
Conceptual knowledge 71 44 64 40 Activating 23 20 35 47

Derived knowledge 5 4 6 0 Exercising 3 4 5 0
Structural knowledge 17 8 40 20 Explaining 52 44 59 67

Procedural knowledge 57 80 51 87 Sharing 61 40 97 100
Mathematical efficiency 13 12 36 33 Exploring 6 4 0 0

Problem-solving 7 4 31 33 Coaching 39 48 45 40
Reasoning 35 20 45 13 Assessing 20 32 36 27

Motivating 10 12 46 20

Questioning 49 28 87 100
Total episodes 111 25 78 15 Differentiating 6 12 0 0
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neither attended to derived knowledge. However, there were substantial differences
in the emphases placed on structural knowledge, mathematical efficiency and prob-
lem solving. Thus, the two teachers offer interesting and culturally different contexts
for discussing the proposed framework.

Both teachers were in their late twenties with between 6 and 7 years’ experience.
The Flemish lessons were drawn from a middle track class in an unremarkable
comprehensive in a provincial university city while the Hungarian derived from
a Budapest gimnazium. Each sequence is reported as accurately as data per-
mit. Videographers were instructed to focus on the teachers whenever they were
speaking. Teachers wore radio-microphones while a static microphone was placed
strategically to capture as much student talk as possible. Lessons were transcribed
and subtitles constructed so that colleagues from each country could watch any
lesson from another. Thus, any description of a lesson will be informed by sev-
eral layers of interpretation and choice – videographer, transcriber, interpreter and
writer. The descriptions below are also informed by a decision to focus attention
on the activities and tasks teachers present and the manner in which they imple-
mented them. As Thompson, Carlson, and Silverman (2007, p. 416) observe, “. . .
tasks do not have agency. Tasks do not elicit behavior any more than a hammer elic-
its hammering”. Thus, the manner in which the two teachers presented their tasks
and the means by which this presentation facilitated student agency informed the
interpretation and reporting of the two sequences. The order of the two sequences is
determined by nothing other than alphabetical order.

Pauline

Pauline’s class comprised 25 grade 8 students of average attainment. It was clear
from conversations between teacher and students that simple linear equations had
been covered earlier in the students’ learning of mathematics; an experience, draw-
ing on a vocabulary of task and outcome, where the unknown was always located
on the right hand side of an equation and solved by a process of intuitive undoing.

The first lesson began with Pauline posing a problem involving characters from
the cartoon series The Simpsons: if Bart, Lisa and Maggie, are 7, 5 and 0 years old
respectively and their mother, Marge, is 34 years old, in how many years would
the sum of the children’s ages equal their mother’s? Pauline drew a table of values
before completing, collaboratively, the first three columns.

Marge’s age 34 35 36 . . .

Children’s total age 12 15 18 . . .

Individual completion of the remaining columns was followed by a discussion
during which the solution of 11 years and the fact that with every year’s increase
in Marge’s age the sum of the children’s increased by three were agreed. Pauline
then introduced an unknown, x, to represent the number of years to pass before the
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two sums would be equal. This led, after several closed questions, to her writing
that Marge would acquire 34 + x years, while the children would reach 7 + x, 5 + x
and 0 + x respectively. Lastly, she wrote 34 + x = 7 + x + 5 + x + 0 + x, which she
simplified to 34 + x = 12 + 3x.

After this Pauline demonstrated how each of the two rows of the table of values
could be represented graphically to show an intersection after 11 years. This brief
exposure to an alternative approach was followed by her modelling, by means of
questions and the introduction of the balance, the solution to x + 7 = 9. She sketched
the left-hand image of the two below and asked how the unknown, x, could be found.
A student suggested that removing seven from both sides would not only maintain
the balance but also provide a unique value for x, as reflected in the second image.
The process was then summarised symbolically as shown. This was followed by
Pauline modelling, by means of the bracketed process, solutions to x – 2 = 10,
3x = 8 and x

3 = 7.

Finally, in this particular episode, Pauline drew the table below on an OHT and
explained, with no reference to the balance or any questions posed to her class, the
relationship between each of her four exemplars to their respective formalisations.
During this time, she included aspects of the history of equations on the same slide
and their significance in the work of, for example, Descartes.

a = b ⇒ a + c = b + c
a – c = b – c
a. c = b. c
a: c = b: c

The lesson ended with an exercise involving problems of the form, x – 3 = 10,
200 – x = 20 and so on. The solutions to these were to be placed in a crossword-like
grid.

The second lesson began with students continuing the exercise started the pre-
vious lesson. After several minutes Pauline initiated a class discussion focused on
particular difficulties. For example, she spent some time discussing the solution to
2x
3 = 30 and how division by 3/2 was equivalent to multiplying by its inverse. The

class then returned to the exercise before answers were presented on the overhead
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projector and students corrected their own work. During both periods of seatwork
Pauline circulated the room helping individuals. In this early part of the lesson, a
student asked whether they should continue to use the balance method and was told
that, for the time being, she should continue to use it.

In the next phase of the lesson, Pauline wrote 6(x – 5) – 8 = x – 3 on the board
and indicated to her students that this was a substantially more difficult equation
than those previously experienced but that, if they concentrated on what she was
about to show them, they would soon be able to solve it confidently. When asked
about the differences between this new equation and those solved earlier, one student
commented that there was an x in both the task and the outcome. Pauline commented
that they were no longer to think about equations as task and outcome but to talk
about left terms and right terms. Following this, Pauline began a formal treatment
in which the algebra, including actions, was written on the left side of the board and
justificatory annotations on the right. Throughout the process Pauline questioned
continuously. The following is what she wrote.

6(x − 5) − 8 = x − 3 (1) Eliminate brackets

A discussion followed in which Pauline drew from her students notions of
associativity and commutativity before settling on distributivity as the warrant for
what she was about to do. This included an aside, written on a different board,
during which she discussed which rule would be applied to 6.(5x). A student ini-
tially proposed the brackets rule (de haakjes regel) before Pauline steered them to
associativity.

6x − 30 − 8 = x − 3 (2) Calculate if possible

6x − 38 = x − 3
−x( ) − x

6x − 38 − x = − 3

Although this was not annotated, Pauline asserted the need to collect like terms
and, in particular, get the unknowns to one side and the numbers to the other.

5x − 38 = −3 (3) Get x in one term and the rest in the other

+ 38( ) + 38

5x = −3+38 (4) Calculate if possible

5x = 35

:5( ):5 (5) Divide both terms by the coefficient of x (Pauline encouraged her students
to use the expression factor of x)

x = 35

5

x = 7
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Having obtained a solution and discussed the uniqueness of the value obtained,
Pauline undertook a check. This took the following form.

6 · (7 − 5) − 8 = 7 − 3
6 · 2 − 8 = 4

12 − 8 = 4
4 = 4

The third and fourth lessons followed similar forms. They began with Pauline
revisiting the equations posed at the end of the previous lesson by means of closed
questions supplemented by overhead transparencies on which she had prepared
solutions. Subsequently, students were invited to work on selected problems from
their text while she circulated the room helping individuals before further discussion
of solutions. One point of interest arose during the public solution to an equation
in which all coefficients were fractions; Pauline explained to her students that by
rewriting all fractions over a common denominator and then multiplying the whole
equation by the common denominator reduced the equation to one with integer
coefficients that could be solved as all those that had gone before.

Eva

This sequence of lessons was taught to a class of 20 grade 7 students in a Budapest
gimnazium. The first lesson began with Eva presenting several open sentences, some
of which were mathematical, to revisit notions of truth and the role of the basic set
in determining the validity of a statement. This was followed by a brief discussion
in which she defined an equation as comprising two expressions connected by an
equals sign and that such expressions may or may not contain variables or unknowns
depending on circumstances. Throughout, Eva wrote much on the board, although
it is not clear whether or not students were expected to make notes. Next, Eva posed
an exercise in which three open sentences were to be solved in relation to a basic set
defined as integers in the range –3≤ � ≤ 3. The open sentences were 5 – � = 8,
5 – � > 6 and �.2 = 7.

Once solutions or ideas had been shared, Eva posed several oral problems like,
“Kala is twice as old as her sister. The sum of their ages is 24, how old are they?”
Each was solved individually before students shared their solution strategies. At the
close of this episode, Eva commented that such problems could be solved mentally
with the application of logic.

Eva now split the class into four groups. Each was given a different word problem
for translating into an equation. Eva made it clear that she did not expect the equation
to be solved, just constructed. The first group’s problem was:

Some friends went on a trip. The first day they covered just 2 km. The second day they
covered 2/10 of the remaining journey. If they covered 6 km on the second day, how long
was their journey?
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Each group worked for several minutes before a representative demonstrated
how its equation had been derived from the text. Eventually, all four stories had
been heard and four identical equations, 0,2.(x – 2) = 6, had been written on
the board. This process lasted many minutes with Eva offering many prompts
before all the equations had emerged correctly. She then recounted the story for
each equation before inviting approaches to their solution. A volunteer proposed a
thinking backwards strategy and, showing no anxiety concerning division by 0,2,
obtained a value of x = 32. Eva then checked this solution against the text of each
problem.

This was followed by a new word problem:

On two consecutive days, the same weight of potatoes was delivered to the school’s kitchen.
On the first day, 3 large bags and 2 bags of 10 kg were delivered. On the second day, 2 large
bags and 7 bags of 10 kg were delivered. If the weight of each large bag was the same, what
weight of potatoes was in the large bag?

As before, Eva asked her students to construct an equation and soon, despite
some hesitation concerning units, a girl wrote on the board 3x + 20 = 2x + 70.
Eva asked whether their intuitive strategies would be sufficient and suggested
that the balance principle would be able to help them. The class was questioned
as to what this meant and several contributed suggestions indicating their under-
standing of its function in relation to equations. With help from her students,
Eva wrote

3x + 20 = 2x + 70| − 20
3x = 2x + 50| − 2x

x = 50 kg

She reminded the class of the need to check and did so, substituting 50 back into
each expression separately before comparing for equality. Lastly, she posed some
algebraic equations for homework.

The second lesson began with Eva, by means of much questioning, revisiting the
previous lesson. When her students reached the potato problem, she reminded them
of the scale principle and, having reminded them of the importance of specifying
the meaning of x, drew the following.

Drawing on what her students suggested, Eva then rubbed out two small bags on
each side, leaving.
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Finally, she erased two large bags from each side to show that one large bag
balanced 5 bags of 10 kg.

On completion of the drawings, Eva asked students how the diagrams could be
represented symbolically. The students offered sufficient for her to repeat what she
had written on the board the previous lesson. At this point, she reminded her class
of the importance of checking and did so.

Eva then set about checking the previous lesson’s homework. With contributions
from various students, some oral and others written on the board, the class worked
publicly through solutions to several equations with the unknown on both sides.
Throughout, Eva focused her students on the balance principle and, in relation to
one particular problem, highlighted the difficulty of expressing negative terms on the
scales. On several occasions, more than one solution was reported for an equation
with all being compared and points concerning elegance and efficiency made. In
every case, Eva insisted that solutions were checked.

After this, an exercise was set. The first, 10a – 4 + 3a –11a = 2 + 4a + 4 – 7a,
was solved collectively with Eva orchestrating the process. Then students worked
quietly on their own before Eva paused to consider the solution to an apparently
problematic equation; 7.(2 – c) + 5 – 4.(c – 8) = –4 – 3.(c + 3). A student went to
the board and, after prompting, eliminated the brackets before completing the rest
unproblematically. Finally, two similar equations were set for homework.

The third and fourth lessons, following the sharing of homework solutions, com-
prised sequentially posed and publicly solved equations. Some were located entirely
within a world of mathematics while others were first derived from word problems.
One word problem, by way of example, was “A stake is driven through a pond into
the ground. If 1/4 of the stake’s length is in the ground, 3/5 in water and 2.8 m above
the water, how long is the stake?” Thus, in this and other equations, coefficients were
frequently fractions.
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Discussion

In the following, the two sequences of lessons are examined for their similarities
and key differences. This provides a basis for evaluating the effectiveness of the
tripartite curriculum as a complementary framework to the Shulman-related model
discussed above. To facilitate this process, the percentages, drawn from Andrews
(2009a, 2009b), of all Flemish and Hungarian episodes coded for each of the generic
learning outcomes and didactic strategies are presented in Table 7.1, alongside the
same summary statistics for the episodes of each of the two teachers. Details of the
codes are beyond this chapter, although working definitions can be seen in Table 7.2.
Each teacher is discussed separately with the intended curriculum being considered
before the received and idealised, due to the former being a systemic bench mark.
As above, Pauline is considered first.

Pauline

Firstly, in respect of the intended curriculum and the particular expectations relating
to equations, Pauline unambiguously and consistently addressed letters as unknowns
and solutions to first degree equations. There were occasional episodes in which
concept formation was addressed, as in her use of the Simpsons’ problem and the
invocation of the balance when solving x + 7 = 9. She placed considerable emphasis
on the development of students’ procedural knowledge. Indeed, it could be argued
that the key objective of all four lessons was the development of procedural flu-
ency. Also, despite her use of terminology relating to arithmetical structures as well
as the extended and formalised discussion of the use of the denominator during
the fourth lesson, there were few attempts to address cohesion between topics. In
respect of generic expectations, problem solving was limited to challenging context-
independent equations with no attempt to derive equations and then solve them.
In a similar vein, Pauline made no attempt to engage her students in real world
modelling. Lastly, there were several occasions when Pauline seemed to have been
caught off-guard by her students’ suggestions. In each case, she promised to address
students’ concerns or suggestions once she had completed her planned activity but
never did, indicating rare opportunities for students to acquire self-regulatory com-
petence. Overall, the resonance between the systemic expectations and Pauline’s
observed behaviour is strong in some areas and weak in others. Her competence
with the substantive and syntactic knowledge pertaining to equations seemed secure,
although her application of that knowledge to contexts other than those of math-
ematics itself seemed limited. In short, her mathematical knowledge in teaching
appeared less resonant with the intended curriculum than Flemish authorities might
have wished.

Secondly, there are aspects of Pauline’s practice that resonate with what the lit-
erature indicates is a Flemish mathematics education tradition, although, as will be
discussed below, there is also variation from it. For example, Pauline’s failure to
address in any significant manner mathematical problem solving and unambiguous
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Table 7.2 Working definitions of the codes used in Andrews (2009a, 2009b)

Observable didactic strategies (Andrews, 2009b)
Activating prior

knowledge
The teacher focuses learners’ attention on mathematics covered earlier in

their careers as preparation for activities to follow
Exercising prior

knowledge
The teacher focuses learners’ attention on mathematical content covered

earlier in their careers in the form of a period of revision unrelated to any
activities that follow

Explaining The teacher explains an idea or solution. This may include demonstration,
explicit telling or the pedagogic modelling of higher-level thinking or
procedures. In such instances, the teacher is the informer with little or no
student input

Sharing The teacher engages learners in a process of public sharing of ideas,
solutions or answers. The teacher’s role is one of manager rather than
explicit informer

Exploring The teacher explicitly engages learners in an activity which is not
teacher-directed, from which a new mathematical idea is explicitly
intended to emerge

Coaching The teacher offers hints, prompts or feedback to facilitate their
understanding of or abilities to undertake tasks or to correct errors or
misunderstandings

Assessing The teacher explicitly assesses or evaluates learners’ responses to determine
the overall attainment of the class

Motivating The teacher, through actions beyond those of mere personality, explicitly
addresses learners’ attitudes, beliefs or emotional responses towards
mathematics

Questioning The teacher explicitly uses a sequence of questions, perhaps Socratic, which
lead pupils to build up new mathematical ideas or clarify or refine
existing ones

Differentiation The teacher treats students differently in terms of the kind of tasks or
activities, the kind of materials provided and/or the kind of expected
outcome in order to make instruction optimally adapted to the learners’
characteristics and needs

Observable learning outcomes (Andrews, 2009a)
Conceptual K. The teacher encourages the conceptual development of his or her students
Derived K. The teacher encourages the development of new mathematical knowledge

or entities from existing knowledge or entities
Structural K. The teacher emphasises connections between different mathematical entities
Procedural K. The teacher encourages the acquisition of skills, procedures, techniques or

algorithms
Efficiency The teacher encourages learners’ development of procedural flexibility,

awareness of elegance or critical comparison of working
Problem solving The teacher encourages learners’ engagement with the solution of

non-trivial or non-routine tasks
Reasoning The teacher encourages learners’ development and articulation of

justification and argumentation

emphasis on procedural knowledge accords with earlier findings that Flemish math-
ematics teaching is largely transmissive (Waeytens, Lens, & Vandenberghe, 1997)
and privileges declarative knowledge and lower-order procedural skills (Janssen,
De Corte, Verschaffel, Knoors, & Colemont, 2002) above those of problem solving
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and adaptive expertise (Verschaffel, De Corte, & Borghart, 1997). When the quan-
titative data derived from Pauline’s lessons are considered, it would seem that she
placed greater emphasis on procedural knowledge and lower emphases on concep-
tual knowledge, structural knowledge and reasoning than her Flemish colleagues
(Andrews, 2009a). Moreover, in respect of her didactic emphases, she questioned
and shared more rarely than her colleagues and this, coupled with a tendency to
coach and assess more frequently (Andrews, 2009b), could be construed not only
as distinguishing her practice from the Flemish collective, but further evidence of a
teacher who, through frequent checks that students were succeeding with the work
set, places great value in procedural competence. In summary, the evidence high-
lights elements of Pauline’s received curriculum that identify her with her colleagues
and elements that suggest divergence from it.

Thirdly, in respect of the idealised curriculum, some conjectures are possible.
Pauline attempted neither to engage her students in translating word problems into
manipulable symbolic forms nor to offer them opportunities to model real world
situations. Moreover, on the single occasion she derived an equation from a word
problem – in this case an algebraic equation – she abandoned it and introduced the
balance as a strategy for solving arithmetic equations. However, introducing analyt-
ical approaches to solve equations amenable to a process of reversal is didactically
unproductive (Pirie & Martin, 1997; Nogueira de Lima & Tall, 2008). Additionally,
when she derived the equation, little input was sought from her students, reflecting
a practice whereby the problems posed, despite being mathematically challenging,
were never resolved in a genuinely collaborative manner, with collectively under-
taken activity always leading to a predetermined outcome. These latter observations,
further supported by her frequent use of pre-prepared OHTs comprising model
solutions, allude to a conception of teaching in which the role of the teacher is
to structure learners’ opportunities so tightly that not only is her students’ learn-
ing trajectory entirely predetermined but also any potential deviations are thwarted.
Thus, in sum, Pauline’s idealised curriculum, despite the complexity of the problems
posed, seemed to reflect a teacher-centred and procedurally-focused perspective on
mathematics teaching and learning. The totality of the above suggests that her ide-
alised curriculum was at odds with elements of the intended curriculum and, in the
characteristics of her observed practice, that her received curriculum also diverged
from that of the Flemish collective.

Eva

In terms of the intended curriculum, Eva’s lessons show adherence to systemic
developmental expectations, with the explicit curriculum content of the 4 years of
equations being observed at various times in the first two lessons. For example,
the year 5 and year 6 objectives were observed subsequent to the activity in
which each of four groups translated a word problem into the same equation.
The emphasis on the balance was not only introduced at the end of the first les-
son, but also repeated systematically at the start of the second, where clear links
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were made between the concrete and abstract. The early emphasis on the trans-
lation of word problems, an objective of the year 7 curriculum, was observed
in all four lessons, while relating the solving of equations to the base and solu-
tion sets was explicitly addressed at the start of the first lesson in a manner that
indicated that this was not an unfamiliar aspect of their work. Problem solving
skills were regularly addressed in both the translation of complex word problems
into equations and the expectation that the students would solve non-routine equa-
tions involving unknowns on both sides along with negative numbers, fractions
and brackets in various manifestations. Also, the constant sharing of solutions pro-
vided ample opportunity for students to engage with and explain their mathematical
reasoning. In sum, the evidence suggests that Eva adhered closely to systemic expec-
tations in respect of her presentation of both linear equations and generic learning
outcomes.

In respect of the received curriculum, some interesting insights emerged. Firstly,
Eva’s use of the balance in solving the potato problem reflected very closely a lesson
observed by Andrews (2003) in which the teacher, László, not only presented pic-
tures of the balance alongside a symbolic representation but also located his entire
exposition around a physical balance and small bags containing an unknown num-
ber of glass marbles. Thus, it is not inconceivable that such presentations form part
of a received didactic culture. Eva’s lessons not only adhered closely to a previously
observed cycle of problem posing, solving and sharing (Andrews, 2003; Szendrei &
Torok, 2007) but also reflected a tradition in which concrete materials and drawings
are used to scaffold students’ learning of mathematics (Depaepe, De Corte, Op’t
Eynde, & Verschaffel, 2005). The problems posed were frequently difficult. For
example, the translation from text to symbols of some of the word problems leading
to the shared equations of lesson one, and the pole driven through water into the
ground of lesson four were challenging, and presented not inconsiderable difficulty
for some students. Additionally, Eva’s constant invocation of brackets, negatives and
fractions imparted a different sense of difficulty in accordance with earlier findings
that Hungarian teachers operate with the general rather than the particular (Andrews,
2003), while her consistently high expectations in respect of procedural compe-
tence resonated closely with earlier observations (Andrews, 2003, 2007b, 2009a;
Depaepe et al., 2005). Thus, there is considerable evidence that Eva’s classroom
behaviours, as manifestations of her received curriculum, resonate closely with what
the literature says of Hungarian teachers generally. However, when compared with
her colleagues, the data presented in Table 7.1 show, as with Pauline above, lower
emphases on conceptual knowledge, structural knowledge and reasoning and a sub-
stantially increased emphasis on procedural knowledge. In respect of her didactic
practices, the same table shows little substantial variation between Eva’s practice
and that of her colleagues other than a lower emphasis on explicit motivational
strategies.

In relation to her idealised curriculum, several inferences can be made. The ways
in which Eva facilitated the collective construction of both procedural and concep-
tual knowledge through the use of non-routine problems reflects, it is argued, social
constructivist principles. Moreover, her frequent use of realistic word problems,
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as construed by the Dutch realistic mathematics education tradition as imaginably
real (Van den Heuvel-Panhuizen, 2003), presents an atypical perspective from the
Hungarian norm in which teachers rarely pose problems related to any context
other than mathematics itself (Andrews, 2003). Also, the manner in which Eva con-
structed her students’ engagement with both conceptual and procedural elements
indicates an implicit emphasis on their acquisition of adaptive expertise. Thus, it
seems that Eva’s idealised curriculum is located in beliefs about collectively con-
structed knowledge, which, supported by the systematic use of realistic problems,
facilitate her ambitions concerning learner acquisition of adaptive expertise.

In sum, despite some apparent discrepancies, the evidence indicates a close reso-
nance between the three curricula: the intended is reflected closely in Eva’s observed
practice. Eva’s received curriculum resonates well with both the intended and the
collective Hungarian, which seems equally resonant with her idealised. There are
differences, but it could be argued that Eva’s use of realistic problems allows her to
not only address the intended curriculum with authority but also raise her practice
above that of the collective received.

Conclusion

Quantitative analyses indicated that Pauline’s and Eva’s observable learning objec-
tives differed from the collectives of their respective countries. For example, both
were observed to privilege procedural knowledge while simultaneously placing
lower emphases on conceptual knowledge, structural knowledge and reasoning.
This highlights, I propose, the significance not only of acknowledging the cultural
context in which teaching and learning occur, but also the topic under scrutiny.
The lessons above were both on linear equations, a topic with limited opportuni-
ties for teachers to focus on, say, conceptual and structural knowledge, particularly
when compared with many topics in, say, geometry. In similar vein, linear equations
present fewer opportunities for high-level reasoning but many more opportunities
for procedural work than would the angle properties of polygons; both Pauline and
Eva offered considerable variation in respect of the exercises they posed, drawing
on a various forms of coefficients, exploiting brackets in different ways and so on.
This would be in contrast to the limited procedural opportunities embedded in, say,
the angle sum of a triangle. Thus, their observable behaviours may not have devi-
ated quite as far from the collective received curriculum as initially suggested. Other
deviations from the received curricula, as in Pauline’s lower emphasis on question-
ing and sharing, are conjectured to reflect individual idealised curricula and are not
necessarily topic related.

Of course, it would have been possible to analyse the subject knowledge manifes-
tations of both Pauline and Eva against existing frameworks. For example, Pauline’s
apparent reluctance to deviate from her planned sequences of activity could be con-
strued as low-level contingency (Rowland et al., 2005). However, whether or not
this reluctance is a reflection of, essentially, a deficit in her pedagogic repertoire
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or a desire not to deviate from a well-defined and articulated procedure is diffi-
cult to determine. What is clear, although possible explanations can be found in her
idealised curriculum, is that her observed behaviours set her apart from both the
intended expectations of her educational system and the received practices of her
colleagues. In similar vein, would the content knowledge observed in Eva’s lessons
be manifestations of Ball et al.’s (2008) common or specialised content knowl-
edge? The answer to this, I propose, requires acknowledgement of both intended
and received curricula. For example, the expectations of mathematics for all learn-
ers in Hungary, at least as far as the intended and received curricula indicate, are
high. Consequently, common content knowledge in that country would be qualita-
tively different from countries where systemic expectations are low. In summary, the
above shows that mathematical knowledge in teaching is a relative and not an abso-
lute construct and confirms that the proposed tripartite curriculum model provides a
worthwhile, but complementary, alternative to existing frameworks.
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Chapter 8
How Educational Systems and Cultures
Mediate Teacher Knowledge: ‘Listening’
in English, French and German Classrooms

Birgit Pepin

Introduction

In recent years, the question of teacher knowledge has received an increasing
amount of attention from researchers who have investigated the professional knowl-
edge of teachers from different angles. It is accepted that what teachers know is one
of the most important influences on what happens in classrooms. It has also been
established that the conceptual tools that teachers possess, in order to deal with their
work, depend to a large extent on the cultural and systemic traditions of the edu-
cational environment in which they work (Andrews & Hatch, 2000; Hiebert et al.,
2003; Pepin, 1999).

From my own research (e.g. Pepin, 1999; Pepin & Haggarty, 2003), that of col-
leagues, and larger-scale studies such as TIMSS (e.g. Hiebert et al., 2003), it is clear
that the work of teaching differs from country to country (e.g. Cogan & Schmidt,
1999). Whilst the quantity and quality of teachers’ mathematical knowledge has
been an area of great concern (e.g. Ma, 1999), it is, however, less clear how to
measure teacher knowledge, what it consists of and how it is comparable across
countries. Comparisons of, or simply ‘looking into’, different knowledges may
develop deeper understandings of what we mean by ‘knowledge in/for teaching’.

For more than 10 years, I have studied mathematics teachers and their curricular
practices in mathematics classrooms in different countries, particularly in England,
France and Germany. The goal of these studies has been to develop a deeper under-
standing of what is going on in mathematics classrooms at the lower secondary level,
especially with respect to teaching and learning mathematics with understanding,
and to the influence and nature of curricular materials, such as texts, used in class-
rooms. The comparative perspective has helped to highlight the particular features
of teachers’ pedagogic practice, to discover alternatives and, in turn, to develop a
deeper understanding of those features and practices, so as to stimulate discussion
about choices within teachers’ immediate environments and countries.
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Teachers have to make decisions and to assess whether students understand the
tasks and activities provided; support pupil learning and perhaps adapt the pace of
instruction accordingly; initiate and maintain discussions when appropriate; chal-
lenge and further student thinking; perhaps adapt the materials, or indeed choose
purposefully among materials, and so on (e.g. Ball, 1997; Even & Tirosh, 1995,
2002). Different classroom environments and cultures, constraints and affordances
provided by different settings and opportunities for developing particular mathemat-
ical practices are likely to influence teachers’ perceptions of what it means to teach
and learn mathematics with understanding, as well as what kinds of knowledge are
needed to do that. Teaching mathematics successfully means identifying with and
applying the norms of the classroom community which is likely to be different in
different contexts, whether they vary from school to school (e.g. Eisenman & Evan,
2007), or from country to country (e.g. Stigler & Hiebert, 1999). Teachers need
knowledge of, and perhaps ‘internalised’ these norms.

In terms of what knowledge is brought into play in any classroom, Sherin (2002)
found that in classroom exchanges of ideas, teachers typically negotiate between
three areas of knowledge: their understanding of subject matter, their perception of
curriculum materials and their personal theories of learning. Effective teachers, she
argues, ‘weave’ between these areas of knowledge (and deepen their own under-
standing of them) so as to increase student understanding. This reflection-in-action
can either take place in the classroom (e.g. Sherin, 2002), or beyond. These studies
argue that it involves, in the first instance, listening carefully to students’ expres-
sions of mathematical content (Davis, 1997), and that, by doing so, teachers notice
significant mathematical moments and respond appropriately (e.g. Sherin, 2002).

Moreover, a large number of studies (e.g. Boaler, Wiliam, & Brown, 2000; Clark,
1997) have reported the cognitive advantages to students from being able to par-
ticipate in mathematical discussion. However, pedagogic practice that is able to
move students’ thinking forward involves more than developing a respectful and
trusting environment for discussion and problem solving (O’Connor & Michaels,
1996). ‘Effective’ pedagogy demands careful attention to what students have to say
and what they do; ‘noticing’ and listening carefully is needed (Yackel, Cobb, and
Wood, 1998), as well as interacting ‘knowledgeably’ at critical moments (Jaworski,
1994). Researchers have provided evidence of the critical role of the teacher in
listening to students and orchestrating mathematical discourse (e.g. Manoucheri
& Enderson, 1999). The literature reveals that teachers’ sensibility for redirect-
ing discussion to ensure that important mathematical ideas are being developed
is dependent on a range of pedagogical content knowledge skills (e.g. Turner
et al., 1998). Broad guidelines have been provided, for example, by the National
Council of Teachers of Mathematics (2000, p. 19), and these include what teach-
ers might do to enhance effective classroom discourse: “Effective teaching involves
observing students (and) listening carefully to their ideas and explanations”. They
argue that effective pedagogy demands careful attention to students’ articulation
of ideas. Franke and Kazemi (2001) claim that effective teachers try to ‘delve
into the minds’ of students by noticing and listening carefully to what they have
to say.
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Thus, here the notion of ‘listening’ takes on a form different to how it may
be perceived in everyday language. Typically, there is a notion that teachers ‘tell’
and students listen; teachers teach and students (have to) learn. I argue that teach-
ers (have to) ‘listen’ in order to teach, and to listen to student talk amongst other
sources. Listening becomes teacher learning to teach and requires action: it is an
active rather than a passive process. The notion of listening to teach implies what
to listen for as well as how to listen (Schultz, 2003), under particular circumstances
and in particular contexts, as part of the knowledge in and for teaching.

‘Knowledge in/for teaching’ can take different shapes. Placing ‘listening’ at the
centre of teaching is not a common thing to do and stands in contrast to many coun-
tries’ prescriptive texts from which mathematics teachers are expected to teach. Ball
(1993, p. 388) emphasises that adopting a listening approach to teaching mathemat-
ics is complex, and that it is hard: “The ability to hear what children are saying
transcends disposition, aural acuity, and knowledge, although it also depends on all
of these.” In this chapter, I explore teacher knowledge with respect to ‘listening’ and
‘hearing’ students in English, French and German classrooms.

Listening to and ‘Hearing’ Students

Trying to find out what and how students are learning is central to teaching, although
it seems impossible to know with certainty what students learn. Teachers make sense
of their students’ work and understanding nearly all the time when working with
them in classrooms; it is not a separate activity but an integral part of instruction.
Listening to students ‘carefully’ seems to be an important factor in this and, indeed,
is assumed in terms of constructivist teaching: “. . . researchers and teachers must
learn to listen and to hear the sense and alternative meanings in these [students’]
approaches.” (Confrey, 1991, p. 111)

However, this is a difficult task and many studies have identified the difficulties in
attending to pupil understanding and strategies (e.g. Even & Wallach, 2004). Mason
(2002) illustrates that noticing what students say and do is complex; he proposes
the discipline of noticing which enhances awareness and sensitivities to student
experiences. Moreover, there are various ways in which teachers can listen to their
students’ mathematical ideas. Davis (1997) outlines three different orientations:

(1) an evaluative orientation – where teachers listen to students’ ideas in order to
diagnose and correct their mathematical understanding;

(2) an interpretative orientation – where the purpose is to access pupil thinking,
rather than to assess;

(3) a hermeneutic orientation – where teachers listen by engaging pupils in the
process of negotiation of meaning and understanding.

Despite reform efforts, the first appears, interestingly if expectedly, to be the
most common where teachers tend to ‘tell’ and explain rather than ‘listen’ (Crespo,
2000).
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Further, Ball (1997) coined the term ‘to hear students’ when trying to understand
what students know: to understand what they say, do and show. She identified three
main “challenges”:

(1) the challenge to ‘listen across divides’ – teachers facing the difficulty to under-
stand what students (who are usually younger than they are) think, say and
mean, within structures perhaps not familiar to them;

(2) the challenge to listen through the multiple influences of contexts – teachers
facing the ‘variability in students’ thinking shaped by context and moment’
(Ball, 1997, p. 800); and

(3) the challenge to listen with and through desire – teachers facing the disap-
pointment when their students are confused, and conquering the ‘fragility of
understanding’ when probing for clarity and evidence of student understanding.

These three ways of ‘hearing students’ potentially provide a useful tool to analyse
teacher action and pedagogic practice.

Moreover, Arcavi and Isoda (2007) described and analysed an approach to
develop teachers’ ‘productive listening capabilities’. They define ‘listening’ to stu-
dents as “giving careful attention to hearing what students say (and to see what
they do), trying to understand it and its possible sources and entailments.” (p. 112)
According to their view, it is not a passive attitude, but should include the following
components:

• Detecting, taking up, and creating opportunities in which students are likely to
engage freely, expressing their mathematical ideas;

• Questioning students in order to uncover the essence and sources of their ideas;
• Analysing what one hears (sometimes in consultation with peers) and mak-

ing the enormous intellectual effort to take the ‘other’s perspective’ in order to
understand it on its own merits; and

• Deciding in which ways the teaching can productively integrate students’ ideas
(p. 112).

They see this approach not only as beneficial for implementing a constructivist
approach, but also in terms of affective value and role model provision: students feel
that their voice is heard, they feel valued, and they may listen to others (peers or the
teacher) more carefully. In turn, this may provide opportunities to reflect on their and
others’ thinking, which is likely to develop deeper mathematical understandings.

Summarising these three positions, it seems that there is no ‘common use’ of the
term ‘listening’ in teaching: ‘to listen’ and ‘to hear’ students seem to be used nearly
interchangeably. However, there is a common notion of listening as paying careful
attention to what students say and do, and this is often linked to student experiences
in the classroom and, further, to their developing understandings. Conceptualising
teaching as listening suggests that the teacher is always learning and that this shapes
his/her decision making in the classroom (as reflection in action) and contributes to
teachers’ professional growth.
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Teaching is often perceived as ‘telling’: teachers talk and students listen. Instead,
and leaning on previous education research (e.g. Schultz, 2003), I put listening
at the centre of teaching: to listen to teach mathematics. Rather than a passive
stance, listening to teach necessitates action, and the act of listening is based on
student-teacher interaction and it focuses on meaning-making in the classroom. This
potentially includes listening to what students say, what they write and do, per-
haps their gestures and, moreover, the immediate classroom environment and wider
context in which the lesson takes place. Listening to teach mathematics involves
knowledge of the learners (and their development), knowledge of the immediate
classroom situation and the wider socio-cultural context and, of course, knowledge
of the subject matter. This provides the framework for my analysis.

Teacher Knowledge, Pedagogic Practice
and Classroom Environments

In terms of comparative education research in mathematics classrooms, there is a
variety of studies linking teacher knowledge and pedagogic practice. Stigler and
Hiebert (1999), for example, argue that different beliefs about the nature of math-
ematics, the nature of learning, the role of the teacher, the structure of the lesson,
and teacher responses to individual student differences lead to different modes of
instruction in the US and Japan. Others argue that there is a ‘globalisation effect’
in terms of moderation across models of schooling in national education systems
(Meyer, Ramirez, & Soyson, 1992) and, still others argue that these interact with
national educational traditions in ways that influence mathematics lessons and class-
rooms (LeTendre et al., 2001). As an example, Delaney, Loewenberg Ball, Hill,
Schilling, and Zopf (2008) argue that international comparisons of teachers’ math-
ematical knowledge need to be considered in the light of differences that may exist
in the knowledge that teachers use in each country. These studies highlight the com-
plexity of, and the difficulty in, determining correspondence between constructs in
the different contexts.

However, there is an agreement that knowledge in and for teaching is ‘situ-
ated’, that is ‘knowledge of and adapted to particular contexts’ (Putnam & Borko,
2000). Putnam and Borko (2000, p. 13) argue that “this professional knowledge
is developed in context, stored together with characteristic features of classrooms
and activities, organised around the tasks that teachers accomplish in classroom set-
tings, and accessed for use in similar situations.” Similarly, in her work on pupil
knowledge and identity construction, Boaler (2002, p. 1) views knowledge “not
as an individual attribute, but as something that is distributed between people and
activities and systems of their environment”. She contends that:

What is fundamental to the situated perspective is an idea that knowledge is co-produced
in settings, and is not the preserve of individual minds. Situated perspectives suggest that
when people develop and use knowledge, they do so through their interactions with broader
social systems. This may mean that they are learning from a book (written by others) or
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teacher, or engaging in individual reflection of some socially produced ideas. But the differ-
ent activities in which learners engage co-produce their knowledge, so that when students
learn algorithms through the manipulation of abstract procedures, they do not only learn the
algorithms, they learn a particular set of practices and associated beliefs (Boaler, 2000, p. 3).

Thus, these authors propose a shift from a focus only upon knowledge, to one
that attends to the inter-relationships of knowledge, practice and identity. Moreover,
there is a shift from teacher or pupil knowledge to knowledge that is constituted
through the course of mutual engagement and interactions. It is a proposal that is
fundamental to Lave and Wenger’s (1991) social practice theory, where the notions
of ‘community of practice’ and ‘connectedness of knowing’ are central features
(Walshaw & Anthony, 2008).

The Study

In a previous study (Pepin, 1997, 1999), I have developed an understanding of vary-
ing practices in mathematics classrooms in England, France and Germany, using
an ethnographic framework. It emerged that national educational traditions are a
large determinant and influence on teachers’ pedagogies in the 3 countries. More
recently, I have investigated with Linda Haggarty, the ways in which mathematics
textbooks are used by teachers in English, French and German lower secondary
classrooms (Pepin & Haggarty, 2001; Haggarty & Pepin, 2002). This work sug-
gested that the use of curricular materials (such as textbooks), together with the
selection of (mathematical) tasks, impacts to a large extent the mathematical ‘diet’
offered to students.

For this chapter, I have re-analysed some of the data collected over the years in
terms of teacher knowledge for ‘listening’. The selected data (for this study) con-
sisted of extended lesson observations and interviews with 12 teachers, four in each
country, plus shorter observations and interviews with an additional ten teachers in
each country. I re-analysed the data on the basis of my understandings of ‘listen-
ing’ and using a socio-cultural approach to gain new understandings about teacher
knowledge and listening to pupils. The main questions addressed are:

(1) How do teachers perceive ‘knowledge for/in teaching’?
(2) How do teachers ‘listen’ to students, making use of their own knowledge for/in

teaching? What are the characteristically different ways of ‘listening’? What are
the similarities and differences?

(3) How is this knowledge influenced by/embedded in the educational
environment?

A procedure involving the analysis of themes similar to that described by Woods
(1996) and by Burgess (1984) was adopted. Moreover, I tried at one level to main-
tain the coherence of the teacher cases through a holistic story of the case that is
respondent-validated by participant teachers and anchored on their own interviews
and my observations. At another level, I analysed across teacher cases using my
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conceptual framework of ‘listening’, testing the hypotheses offered by the litera-
ture, and building explanations and theorisations grounded in the data. On a third
level, I looked for similarities and differences of teacher ‘listening’ across country
cases. However, due to the additional cross-cultural dimension, it was impor-
tant to address the potential difficulties with cross-national research, in particular,
issues related to conceptual equivalence, equivalence of measurement, and linguis-
tic equivalence (Warwick & Osherson, 1973; Pepin, 2002). Particularly important
were the findings of Delaney et al. (2008), who compared teacher ‘mathematical
knowledge for teaching’ across the US and Ireland, highlighting the value of valid-
ity checks of constructs in both contexts. In this respect, it was important to locate
and understand teacher pedagogic practices and the classroom cultures in England,
France and Germany, and it was useful to draw on knowledge gained from earlier
research which highlighted the complex nature of teachers’ work and classroom
environments in the 3 countries, in addition to potential influences (e.g. systemic
developments and educational traditions).

Mathematics Classroom Environment

Teachers (and learners) of mathematics at secondary level work in different envi-
ronments in England, France and Germany. Whereas in England and France, most
pupils go to comprehensive schools, in Germany, pupils are divided into those
going to the local grammar school Gymnasium (about 40%), to the technical school,
Realschule, or the secondary modern school, Hauptschule. Furthermore, pupils in
the 3 countries experience different organisations of schooling, which in turn have
implications for the ‘mathematical diet’ they are provided with, and experience. In
England, most schools apply a ‘setting system’ to teach mathematics in perceived
ability sets, using differentiated texts which provide sets at different ‘levels’ with
different mathematical ‘diets’. In France, most pupils are taught in mixed-ability
groups (and provided with the same textbook): pupils are said to be ‘entitled’ to the
same curriculum. In Germany, pupils are effectively streamed by the three school
types, but within those streams they are taught in mixed-ability groups. The three
school types also have their own mathematics curricula and textbooks and, notably
for teacher knowledge, different types of teacher education.

In previous studies (e.g. Pepin 1999), I identified characteristic ‘profiles’ of class-
room situations in England, France and Germany. Teachers assigned significance
and value to particular practices which are commonly concerned with pupil engage-
ment and assessment of understanding. For example, in the English classroom, the
main aim was to (relatively briefly) explain a particular mathematical notion and let
pupils get as much practice as possible. Of particular importance was that pupils
were attentive during teacher explanations and subsequently worked on their own
whilst teachers attended to individual pupils’ needs. The French teachers regarded
their main aim as facilitating mathematical thinking by initiating tasks and help-
ing pupils to think around a particular concept, in whole-class conversation, as
individuals or in groups, followed by practice. Thus, of particular importance was
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that pupils would discover the concept with the help of selected cognitive activities.
The main objective in the German mathematics classrooms was to discuss mathe-
matical content. Teachers initiated tasks or discussed exercises from the homework
in a conversational style before giving pupils exercises to practice on their own. They
particularly valued that most pupils would be involved in a teacher-led discussion
about the mathematical content.

Moreover, there appeared to be particular ‘customary ways’ that all teachers
used in their teaching. For example, teachers in all three countries asked pupils to
work on exercises from textbooks for a considerable amount of time so that pupils
could practice what has been explained and teachers could monitor understanding.
However, in England, many pupils at Key Stage1 4 and almost all at Key Stage 3 had
not been issued with a textbook to use in school and at home; they only worked from
textbooks during lessons under teacher guidance. Thus, it is likely that the majority
of these pupils only ever had access to the textbook in class, and consequently, had
to rely entirely on teacher-guided input. In France, the situation was quite differ-
ent: every pupil had a textbook provided by the school to be used in school and at
home. In Germany, pupils had to buy their own textbooks which were selected by
schools/teachers from a ministry-approved range. Thus, already at the outset, there
are differences in the roles and importance assigned to textbooks in the classroom
environment, and for students, in terms of access to texts (Pepin, 2009a).

In recent analyses (Pepin, 2009a, 2009b), I have investigated the role of textbooks
and particular constructs such as ‘negativity’ (Vlassis, 2004) in the ‘figured worlds’
(Holland, Lachicotte, Skinner, & Cain, 1998) of English, French and German class-
rooms. I have argued that the ‘figured worlds’, in which pupils work, influence the
development of their identities as learners of mathematics and are different across
the 3 countries. These were linked to the mathematical tasks provided and medi-
ated by teachers, the practices that pupils are engaged in when doing those tasks,
and the environment they work in and experience in class. Analysing mathematical
tasks (in selected textbooks), it was found that the majority of textbook tasks were
procedural in nature, and while they allegedly help pupils to become ‘procedurally
fluent’ (Kilpatrick, Swafford, & Findell, 2001), they also portray this as necessary
to becoming a competent learner, whilst at the same time, it can be argued, obscur-
ing the meaning and concept of mathematics. In terms of teacher mediation of those
tasks chosen mostly from textbooks, providing students with a series of ‘coherent’
and appropriate tasks seemed important, and these depended to a large extent on
teachers’ beliefs and the environment in which they worked. Within the limits of the
system, whether students were taught in mixed classes (France), setted (England), or
streamed (Germany), teachers had the freedom to select tasks that could potentially
guide their instruction, and to mediate those tasks in ways they thought best. These
classrooms set the context of activity and provide the frames whereby meanings of
actions are mediated and conveyed (Pepin, 2009a).

1In England, compulsory schooling is divided into four key stages. The teachers in this study taught
pupils in Key Stage 3 (age 11–14) and Key Stage 4 (14–16).
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Teacher Knowledge and Listening to Pupils

Content Knowledge for Teaching

When talking about mathematical knowledge for teaching, most people would prob-
ably argue that content knowledge matters for teaching. Much research has gone
into this, and concepts such as pedagogical content knowledge (Shulman, 1986)
have been further developed and refined (e.g. Ball, Thames, & Phelps, 2008). When
asked explicitly about what knowledge is necessary for teaching mathematics, most
teachers in the study emphasized mathematical content knowledge (see Table 8.1).
However, how they ‘defined’ this was different. English teachers claimed that it
means “maths-wise to be confident and competent”, which includes having suffi-
cient knowledge “if kids go off on a little bit of a tangent which has relevance”.
They also talked about knowing how to make the mathematics ‘digestible’ for the
pupils/group they teach, to ‘adapt any topic in a hundred different ways according
to what children (one is) teaching’.

French teachers also pointed to subject knowledge and interestingly linked it to
the ability to ‘step back’ from the mathematics content. Teachers emphasised the
‘distance’ (recul) that a teacher needs to have, with respect to his/her subject.

. . . to have enough knowledge of the subject, of the mathematics, in order to have enough
distance in terms of what one teaches (Teacher 3, France- my translation)

At the pedagogic level one has to accept to step back, in terms of mathematical knowledge
. . . (Teacher 1, France- my translation)

This is an interesting notion which certainly involves a process of reflection. This
reflection is likely to involve consciously thinking about one’s experiences with the
mathematics, turning ideas over in one’s head, looking at things from a different
perspective, stepping back to review things, and consciously deciding what one is
doing and why. This process is likely to increase knowledge of the subject.

In Germany, the Hauptschule teachers emphasized in the study the importance of
subject knowledge and elaborated on it in terms of ‘conveying the content correctly’,
whereas Gymnasium teachers highlighted aspects of ‘logical thinking’ in connec-
tion with it. Logic was seen as the basis for their mathematics teaching and learning
and teachers worried that pupils often had problems with logic and reasoning. The
second most important knowledge aspect was knowledge about the children, in the
sense that all students must be heard (not only those with their hands up). In partic-
ular, the Hauptschule teachers stressed the ‘background knowledge of the children’
in order to “be able to act educationally soundly in problem situations, not only
through negative sanctions.” (Teacher 1, Germany- my translation)

Thus, it appears that even similar kinds of knowledge, commonly referred to
as mathematics ‘subject’ or ‘content’ knowledge, are perceived differently in dif-
ferent educational environments. This is most ‘visibly’ illustrated by the German
case teachers who worked within one country and Land, but in different school
types within that Land. This also implies that they have gone through different
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teacher education. Teacher education for Hauptschule teachers shares the pat-
terns of primary school teacher education; it may be argued that it also shares its
‘philosophy’, that is the ‘education of the child’, which would explain teachers’
discourse and emphasis of pastoral responsibilities in terms of teacher knowledge.
Gymnasium teacher education focuses on the subject matter (and its teaching),
which may explain the emphasis on logic and reasoning in their explanations of
subject knowledge.

‘Listening Knowledge’ in/for Teaching

Listening to pupils includes ways of figuring out what students are learning, and
also includes ways of monitoring students in terms of involvement and with respect
to difficulties with the mathematical content (Wallach & Even, 2007). Teachers con-
stantly ‘read’ their students; they make judgments about how things are going, for
the group as a whole, as well as for particular students (Ball, 1997). But listening
is also an essential feature of the classroom culture in terms of equitable learning
environments.

What it means to listen can be illustrated by describing instances from classroom
episodes, teacher actions and ways of ‘hearing’ students. In the classrooms studied,
there were characteristically different teacher practices: differences in the ways they
approached ‘listening’ to pupils. Teachers talked and reasoned about their practices
differently, in the sense that they used differently figured ‘knowledges’ to ‘hear’
students (see Table 8.1).

From what teachers said and did in their classrooms, teacher listening can be
divided into broadly three categories: those that relate to the individual learner, to the
group as a whole, and to the educational environment. In England, the mathematics
teachers studied geared their teaching to the group/set of children they had in front
of them, “. . . [and] that’s why it is important to get to know them as well as you
can . . .” (Teacher 1, England). For them, there was no ‘fixed formula’ or ‘best way
of teaching a topic’. Instead of considering the situation in mathematical terms,
the emphasis was on knowledge about (1) the group and set in order to pitch the
lesson at the right level; (2) about the individual children, so that the teacher would
know about their background in terms of mathematical experiences; and (3) how the
children feel on that particular day.

“I think every time I teach something I do it differently, according to how they
are, how they feel, what their experiences [are] and so on . . .” (Teacher 1, England).
Pupil engagement was an important aspect of these teachers’ pedagogic practices,
and they had particular ways of ‘hearing’ and finding out whether individual pupils
were truly involved or not, and how students could be re-engaged.

“I try and get them involved as much as I can . . . I look to who is concentrating, who is
may be not . . . try and involve them with eye contact if they are drifting a bit . . . I try and
get kids put their hands up . . . and work out if I have lost them or whether they are just not
concentrating . . . as much pupil involvement as possible . . . I also try to get them to explain
things . . .” (Teacher 2, England)
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When pupils were working on tasks, teachers typically circulated round the room
and attended to individual pupils or small groups, which gave them additional infor-
mation. It appears that there were a number of indications for teachers, that children
had or had not understood, and these needed careful ‘listening’, which included
knowing about and watching out for particular signs. For example, ‘the number of
hands up’, or ‘how confident [pupils] look’, were the usual cues, or the ‘weaker ones
tend[ed] to pull faces’.

One teacher pointed out that this is something that needed to be learnt over the
years and she provided strategies what to look out for:

“A lot comes with watching the children do maths . . . if possible getting them to say what
they are doing as they are doing it, to watch them do it so that one can see the processes they
go through . . . learn from them what the processes involve . . . mathematical knowledge and
then this ability to break down the procedures and to understand what the child is thinking
. . . if they have done some wired method, to work out what they have done, why they have
done it, whether it is a genuine method.” (Teacher 2, England)

Thus, for her, listening to children discuss mathematics, watching them do it
and considering their ideas carefully, was likely to develop teacher knowledge in
teaching. She was very clear that the source of this teacher knowledge lay with
the pupils, and that what is needed from the teacher was an ‘open eye’ and an
‘attentive ear’.

In summary, a characteristic of English mathematics teachers’ listening practice
was that they attended to individual pupils more than their ‘continental’ colleagues,
in the sense that relatively little time was spent with the group as a whole and more
time on talking and listening to individual pupils. ‘Individualistic listening’, a char-
acteristic of English teacher listening practices, is supported by their educational
environment including the setting system, in the sense that each child is expected
to get the individual support she/he needs to progress. Teachers generally dismissed
any ‘best practice’ for teaching, as it did not reflect the personal nature of learn-
ing; thus they felt that they needed to know a ‘hundred different ways’ of teaching
and learning a topic, to be able to attend to their pupils appropriately. This atten-
tion to the individual, in turn, meant not only that each pupil was likely to get a little
time, on average, from the teacher, but also that teachers themselves felt pressurised.
There was never enough time to ‘do it all’: “we are under the most relentless pres-
sure”. More generally, teachers appeared to feel responsible for the learning of their
pupils and there was the expectation that the teacher would identify those who did
not understand and help them along.

In contrast, French teachers attended and listened to the group as a whole, in
particular, to pupils’ mathematical misconceptions and common errors. In terms of
pedagogic practice, teachers typically got up to four pupils to the board and asked
them to do different exercises and explain their work to the whole class. They also
identified ‘test’ pupils: those who would be representative of a group of pupils who
had not understood.

Whilst they are at the board it allows me to see what they have done . . . very often I ask
several to the board . . . that allows me to correct relatively quickly . . . I try to take those
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pupils who are just at the border line of having understood and not . . . (Teacher 1, France-
my translation)

. . . either I check in their books, or I have one or two ‘test pupils’ . . . when I realise that
there is one who has not understood, that means that there are five or ten [who have not
understood] depending on the pupil. (Teacher 1, France- my translation)

For monitoring learning of a whole group, teachers needed in-depth knowledge
about their pupils’ developing understandings (and whom to take to the board) about
common errors and the ways these can be used as sites for learning in a whole class
context. In fact, misconceptions and mistakes appeared to be accepted as learning
sites. The conversations in class often centered on the nature of the method that was
used and mistakes were viewed as methods that could be improved.

The most important [things] are the mistakes . . . for the same multiplication there were
about 15 different answers and we try to understand the different mistakes they have made
. . . what interests me, I told them, is that they tell me what mistakes they have done, that we
look at them, that we try to understand them and that they subsequently don’t do them any
more . . . (Teacher 3, France- my translation)

Thus, errors were viewed as useful points of discussion; pupils were very willing
and were used to share their understandings with peers and with the teacher. More
importantly, mistakes were regarded as “natural and constructive consequences of
building improved methods of solving problems” (Hiebert et al., 1997, p. 168). This
not only developed a classroom culture based on ‘listening’ to each other’s concep-
tions, but also an atmosphere where students understood that they were responsible
for the correctness of their own work. It appeared to be the teacher’s role, depen-
dent to a large extent on his/her knowledge and experience, to make these solutions
available for everyone, to share their knowledge, and allow pupils to use the analysis
of methods and the mathematical reasoning related to it to determine correctness.
Students appeared to accept this responsibility.

Interestingly, a characteristic of French teachers was that they talked about keep-
ing pupils working more or less at the ‘same speed’. Considering that they were
teaching in mixed-ability classes, this needed considerable skill and careful ‘listen-
ing’ to the pace of the class. Their strategies to ‘keep the class together’ varied; one
of them was dictation.

Rather than distributing a worksheet, I also like to dictate the text (problem), specially in
geometry . . . that allows everybody to work more or less at the same speed, and from time
to time that obliges them to listen, to be attentive [rather than doing the things immediately]
. . . they are forced to follow a bit . . . (Teacher 3, France- my translation)

In terms of exploration and open problems, it appeared to be more difficult to
‘walk the same rhythm’. “I like to make them explore a bit, but to have everybody
search at the same speed, the same rhythm, is difficult to manage . . .” (Teacher 1,
France- my translation). However hard they tried, teachers realised that this aim was
not manageable with the ‘heterogeneity’ of their classes, and it concerned them.

In summary, a characteristic of the French mathematics teachers’ listening prac-
tices was that they tried to figure out where most of their pupils were (in terms of
understanding the mathematical concept), calling several pupils to the board and
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modelling the problem-solving processes on the board, working with the whole
group in a collaborative activity. The focus of classroom interactions was problem-
solving methods; it required careful listening to pupils’ explanations (also those
at the board) and suitably guiding the whole group to act on the information in
some way, such as using it to help solve another problem. Mistakes and com-
mon errors were seen as a natural part of the process of improving methods of
solution: they were sites for learning. Working in mixed-ability classes, teachers
developed skills to listen to the group as a whole. Working at the ‘same speed’
and ‘keeping the class together’ were central concerns in this mixed-ability group
environment.

Amongst German teachers, a distinction has to be made between Gymnasium
and Hauptschule. As explained earlier, their working conditions in terms of pupil
intake and school culture as well as their teacher education, were quite different.
Accordingly, the Hauptschule teachers had more pastoral care responsibilities than
their Gymnasium colleagues, which meant that they ‘listened’ differently and to dif-
ferent things. In more concrete terms, they lamented that, typically, at the beginning
of each lesson they were “bombarded with things that have nothing to do with the
subject instruction . . . [as a form tutor he had to deal with] problems of pupils, also
private (home) problems . . . [problems with] friendships . . . (Teacher 1, Germany-
my translation). Listening to pupils’ problems became a necessary part of the start of
the lesson, where pupils appeared to ‘pour’ their problems onto the teacher. Teachers
often felt ‘angry’ that ‘too much and too often’ things were fore-grounded that had
nothing to do with their (mathematics) lessons. Thus, balancing the pastoral side
(including listening to pupil problems) and the subject-oriented tasks seemed to be
a major dilemma for those teachers and they felt that they could not do justice to
either side.

Similar to their French colleagues (albeit in a mixed-ability teaching environ-
ment), the German Gymnasium teachers typically listened to the group by calling
a pupil (not several) to the board to explain a particular task which was subse-
quently discussed with the whole group, and teachers used reasoning and proof
to guide their explanations. When a task was presented to a whole class by the
teacher, a considerable amount of time was spent on discussing how to address that
problem, on questions and comments, potential solutions, comparison of answers,
and so on. Doing mathematics meant spending time to reflect, listening, explaining,
restructuring and trying out methods; in short, thinking about and reasoning within
mathematics. This involved skilful guidance by the teacher, listening to pupil expla-
nations and ‘hearing’ their problems and developing understandings. Interestingly,
teachers mentioned the ‘time aspect’: they “waited for a relatively long time for
an answer, so that as many as possible get thinking.” In fact, they appeared to be
committed not to rush their lessons.

Indeed, one Gymnasium teacher explicitly referred to “the ability to listen
[to pupils]” as an essential quality of a teacher. She believed that many of her
colleagues had an ‘underdeveloped’ understanding of pupils’ problems (with math-
ematics) because they did not listen and understand what pupils were saying and
meaning.
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I have often experienced that colleagues . . . don’t really listen, because they are not able to
leave their own train of thoughts and to follow another person’s thinking processes . . . not
able to pick up what [pupils] are saying . . . although teachers should be able to. (Teacher 3,
Germany- my translation)

In summary, a characteristic of the German mathematics teachers’ listening prac-
tices was that they were different according to the environments in which they were
working. Hauptschule teachers would have needed a large repertoire of strategies
and knowledge to teach the mathematics in a ‘difficult’ environment and allow for
access and equity in their classrooms. This was hard, often impossible, for teachers
to establish because a great part of their time was spent on pastoral responsibili-
ties and ‘listening’ to pupils’ private problems. The Gymnasium teachers’ practices
involved collaborative working in a whole-class context, in whole-class discus-
sions, and concentrating on mathematics (rather than pastoral aspects). Teacher
listening to pupils and pupils listening to each other were important aspects of
teachers’ strategies for developing pupil understanding, and for involving every
pupil in the thinking processes (e.g. reasoning and proof) that are typical for
mathematics.

Discussion and Conclusions

Exploring teacher knowledge with respect to listening to pupils is not common, per-
haps even less in terms of teacher listening (to learn) to teach mathematics. Teacher
teaching is often equated with ‘telling’ and pupil learning with listening. I argue
here that it is worth considering ‘listening’ in terms of ‘listening to teach mathemat-
ics’, which implies that the knowledge that both bring to the situation (e.g. about the
learner, about the situation and about mathematics) constitute the starting place for
the teaching (and learning) of mathematics (Schultz, 2003).

Teachers do not often mention their ‘listening’ to pupils. However, seen in a dif-
ferent light, listening is an essential feature of teaching and learning mathematics
and of the mathematics classroom culture. If the role of the teacher is to create a
classroom in which “all students can reflect on mathematics and communicate their
thoughts and actions” (Hiebert et al., 1997, p. 29), then listening must be an impor-
tant part of it. All of our teachers in England, France and Germany ‘listened’ to their
pupils in different ways and under different ‘conditions’ afforded by diverse envi-
ronments in which teachers (and pupils) worked and learnt. It appears that the three
different educational systems and environments provide and ‘create’ varying con-
texts for teaching and learning mathematics and that different knowledge is needed
to be effective in each.

In summary, ‘teacher listening to pupils’ was different in the English, French
and German classrooms studied in the sense that teachers needed different kinds of
knowledge to listen ‘appropriately’ within their respective environments. Even sim-
ilar kinds of knowledge (e.g. subject knowledge) appeared to be differently situated
in these culturally figured worlds. Whereas in one context (England), content knowl-
edge was seen to serve the adaptation of the mathematics to become ‘digestible’ for
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the students (a practical consideration), in another (France), the emphasis was on
the development of the knowledge residing within the teacher and reflection (step-
ping back) was necessary for that. The German cases also illustrated the influence of
context and environment on the knowledge perceived to be appropriate for teaching
mathematics: in one context (Hauptschule) subject knowledge was about the ‘cor-
rectness’ of the mathematics; in another (Gymnasium) about ‘thinking logically’ –
different types of subject knowledge.

The crucial point for listening is the ‘quality of listening’ and this is differ-
ently perceived in different educational environments. Whereas in one environment
(England), it appeared that quality of listening means ‘listening’ to individual pupils
talking about and developing their understandings of mathematics, in others (France
and German Gymnasiums), teachers develop listening skills for the group as a whole
in order to involve everybody in mathematical discussion and thinking processes.
Keeping pupils at the ‘same speed’ is a concern, in particular, in a mixed-ability
learning environment. These differences in the ‘quality of listening’ help us to bet-
ter understand the extent to which mathematical knowledge for and in teaching is
culturally specific.

Moreover, knowledge in and for teaching can be applied as well as developed
through ‘listening to’ and ‘hearing’ pupils: applied in terms of knowledge of math-
ematics, for example, to analyse an error mathematically with a group of pupils;
developed in terms of, for example, developing a repertoire of common problems
students have with a particular task/topic.

Considering ‘listening’ seriously may help us to redefine, further theoretically
develop and analytically clarify teacher knowledge for/in teaching, and drawing on
international comparisons may help us to sharpen and deepen our constructs. A
clearer sense of the categories of content knowledge for teaching (see Ball et al.,
2008), for example, might inform the design of support materials for teachers.
Locating ‘listening to teach’ at the centre of teaching mathematics means taking
a learning stance: learning from (and ‘listening’ to) the spoken and written words,
what was left unsaid and gestures. Listening is an active process that may allow for
‘quiet change’.
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Chapter 9
Modelling Teaching in Mathematics
Teacher Education and the Constitution
of Mathematics for Teaching

Jill Adler and Zain Davis

Introduction

The QUANTUM1 research project in South Africa has as its central concern answer-
ing the question of what is constituted as mathematics in and for teaching in
formalised in-service teacher education in South Africa and how it is constituted.
Entailed in the question is an understanding that, in practice, selections of content in
mathematics teacher education are varyingly drawn from mathematics and the arena
of education (including mathematics education, teacher education and teaching
experience). Debate continues as to whether and how mathematics teacher educa-
tion programmes should integrate or separate out opportunities to learn mathematics
and teaching. Programmes range across a spectrum of integration and separation of
mathematics and teaching, including variations in the degree to which opportunities
for teachers to learn both mathematics and teaching are presented as embedded in
problems of practice. Hence our concern with what, how and with what possible
effects mathematical knowledge and related practices are constituted in and across
a range of programmes, across diverse teacher training institutions in South Africa.

Our study has included three cases from three different teacher education sites
where teachers were enrolled in in-service ‘upgrading’ programmes: two cases spe-
cialising in a fourth and final year of accredited mathematics teacher education, and
the other specialising at the honours level.2 In our analysis we were struck by the

J. Adler (B)
University of the Witwatersrand, Parktown, Johannesburg 2196, South Africa; and King’s College
London, UK
e-mail: jill.adler@wits.ac.za
1QUANTUM is the name given to a Research and Development project on quality mathemat-
ical education for teachers in South Africa. The development arm of QUANTUM focused on
qualifications for teachers underqualified in mathematics (hence the name) and completed its tasks
in 2003. QUANTUM continues as a research project.
2In South Africa, teachers are required to obtain a 4-year post-school qualification in education
to practice. Those teachers who obtained only 3 (or fewer) year qualifications under previous dis-
pensations are now required to enrol for further study on in-service programmes to ‘upgrade’ their
teaching qualifications.

139T. Rowland, K. Ruthven (eds.), Mathematical Knowledge in Teaching, Mathematics
Education Library 50, DOI 10.1007/978-90-481-9766-8_9,
C© Springer Science+Business Media B.V. 2011
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observation that in each case teachers were presented with strong, though different,
images of the mathematics teacher and, thereby, of mathematics teaching. This is
no surprise. As a professional practice, we expect aspects of practice to be modelled
and further that such modelling will vary across programmes and contexts. Our pri-
mary interest was, however, not in modelling per se, but in how the modelling of
mathematics teaching related to the constitution of mathematics in each case. In this
chapter, we describe our observations and the analytic resources recruited to that
end, building on previous work reported in Adler and Davis (2006), Davis, Adler,
and Parker (2007), Adler and Huillet (2008). We will argue that three different orien-
tations to learning mathematics for teaching are exhibited across our cases – referred
to here as ‘look at my practice’, ‘look at your practice’ and ‘look at (mathematics
teaching) practice’ – and present different opportunities for learning mathematics in
and for teaching.

We begin with a discussion of teacher education in South Africa, and a location
of the chapter in debates on mathematics for teaching.

Mathematics Teacher Education in Post
Apartheid South Africa

Fifteen years into the new democratic dispensation in South Africa, school math-
ematics remains an area of national concern, a critical element of which is the
preparation and development of mathematics teachers. Shortages of secondary
school teachers persist, as do concerns with the quality of mathematics teaching
and poor learner performance across grade levels (Carnoy et al., 2008). As is well
known, the majority of black secondary teachers who trained under apartheid had
access to only a 3-year College of Education diploma. The quality of that train-
ing in general and in mathematics in particular was, by and large, poor (see Welch
(2002) for a more detailed discussion). Consequently many current secondary math-
ematics teachers have not had adequate opportunities to learn further mathematics
and/or study school mathematics from a teaching perspective. Formal upgrading
programmes for teachers – specifically, an Advanced Certificate in Education (with
Mathematics specialisation) – continue to be offered. In initial teacher education, in
addition to the usual degree plus Post-Graduate Certificate in Education, secondary
mathematics teachers can qualify by obtaining a Bachelor of Education (B.Ed.)
programme currently being implemented in some Higher Education Institutions,
including that of one of the authors. A specialization for teaching mathematics
in secondary schools is possible within the degree, with the mathematics courses
being designed and taught in the School of Education. Admission criteria for
gaining access to a B.Ed. degree with a specialization in mathematics are less
demanding than those for entry into mathematics courses offered in a B.Sc. or
B.A. degree programme. Typically, many of the students entering the B.Ed. pro-
gramme are not strong performers in mathematics in school. Degrees in science,
engineering and business science attract the mathematically strong students. Thus,
and as has been argued (Adler, 2002), both pre- and in-service mathematics teacher
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education programmes need to deal simultaneously with redress (past inequality),
repair (apartheid education did damage) and reform (orient teachers to the bias and
focus of the new school curriculum).

Most teacher educators would agree that it is important for secondary mathemat-
ics teachers to learn substantial mathematics in their undergraduate degrees; many
would simultaneously agree with the contention that novice teachers (including
those who enjoyed tertiary level studies in mathematics) come into the profession
with superficial understandings of the mathematics they learnt (Parker, 2009). From
her survey of research on mathematics teacher education policy and practice, Parker
concludes: “What these studies point to is that a strong mathematics subject identity
is important for successful secondary school mathematics teaching, where success
is measured by school learner success”, and further that while the claim that teachers
need to know the subject matter they teach has strong intuitive appeal, “. . . exactly
what they need to know to teach at various levels, and how they need to know
this are still debated and remain topics for further research” (Parker, 2009, pp. 35–
36). There are two critical points here. The first is that in both pre- and in-service
secondary mathematics teacher education programs in South Africa, mathematical
dispositions and know-how need to be produced, and in ways that will enable teach-
ers to project mathematical identities in their teaching; however, the what and how
of such programmes remain contentious. Secondly, programmes are presented with
both opportunity (for innovation towards such productions) and challenge (having
to do so in conditions of inequality, poor quality and, relatively speaking, limited
resources). Hence the focus in the QUANTUM research project: the what and how
of such programmes and their potential effects.

Precisely because socio-economic inequality persists and is pervasive in South
Africa, vigilance is required with respect to who has opportunity to learn what in
the context of teacher education as much as in school itself. The cases described in
this chapter open up such discussion and in doing so contribute to the discussion of
culture and the notion of mathematics in and for teaching in this book. In the first
instance, the South African context itself gives rise to questions and insights specific
to prevailing local conditions. A consideration of the context throws a spotlight on
the particular challenges in teacher education, which are nevertheless not unique to
South Africa. In their similarities and differences, the cases we discuss here may
be treated as windows into cultural practices within and across mathematics teacher
education itself, and mathematics in and for teaching within it.

Over the past two decades, a range of studies has developed out of Shulman’s
seminal study of teachers’ professional knowledge (Shulman, 1987), a consider-
able number of which have been located in mathematics teaching contexts (Ball,
Bass, & Hill, 2004; Ball, Thames, & Phelps, 2008; Even, 1990; Even, 1993; Krauss,
Neubrand, Blum, & Baumert, 2008; Ma, 1999; Marks, 1992; Rowland, Huckstep, &
Thwaites, 2005; Adler & Huillet, 2008). A number of the studies have sought
to elaborate SMK (e.g. Even, 1990, 1993) or to unpack PCK, and the boundary
between PCK and SMK (e.g. Adler & Huillet, 2008; Marks, 1992). Others have
appropriated the notions of PCK and SMK, sharpened them with respect to mathe-
matics and then explored the relationship between, for example, teachers’ SMK and
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PCK (e.g., Krauss et al., 2008), or, more broadly, the relationship between recently
constructed measures of teachers mathematical knowledge for teaching, the quality
of their instruction and student learning (e.g. Ball et al., 2008; Hill et al., 2008).
In what could be understood as a move to manage the tension between audit and
evaluation (Williams, this volume), Ball, Hill and their colleagues argue that their
measures are indeed derived from and validated in observations of practice. This
strand of their research has identified tasks of teaching and their specific mathemat-
ical entailments (Hill et al., 2008; Rowland et al., 2005). Together these studies have
contributed significantly to a developing discourse on mathematical knowledge for
teaching.

Shulman’s work, and Ball’s elaboration and development of that work in studies
of primary mathematics teaching in the USA, is discussed in many of the chapters in
this volume and in detail in that of Goulding and Petrou. Ball et al. are aware of the
cultural location of their work, and there are studies that have examined their mea-
sures of mathematical knowledge for teaching in different cultural contexts, such as
Ireland (see Delaney, Ball, Hill, Schilling, & Zopf, 2008); and we are aware of a
similar study underway in Ghana. However, how their measures are shaped and in
what ways, by both curriculum in use and reform discourses in the USA is not elab-
orated. As Andrews argues (Chapter 7, this volume), there is a cultural specificity
of mathematics in use in teaching, that is, of forms and functions of PCK across
contexts. A particular contribution of this chapter then, is its description of how
mathematics in and for teaching comes to ‘live’ in mathematics teacher education
in a range of South African institutions.

Studying Mathematics and Teaching
in Mathematics Teacher Education

Our observations are, of course, a function of how we have read teacher educa-
tion practice. We have developed a methodology3 that enables us to describe what
and how mathematics is constituted in teacher education practice. We accept as
axiomatic that pedagogic practice entails continuous evaluation (Bernstein, 2000),
the function of which is the constitution of criteria for the production of legitimate
texts. Further, any evaluative act, implicitly or explicitly, has to appeal to some or
the other ground in order to authorise the selection of criteria. Our unit of analysis
is what we call an evaluative event, that is, a teaching-learning sequence that can be
recognised as focused on the pedagogising of particular mathematics and/or teach-
ing content, the latter being the ‘object’ of the event. In other words, an evaluative
event is an evaluative sequence aimed at the constitution of a particular mathemat-
ics/teaching object. The shift from one event to the next is taken as marked by a
change in the object of attention. Evaluative events therefore vary in temporal extent

3The methodology is detailed in a range of publications from the QUANTUM study already
mentioned. It draws substantially from Davis’ (2001, 2005) Hegelian elaboration on Bernstein’s
proposition asserting that pedagogic discourse is necessarily evaluative.
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and can also be thought of as made up of a series of two or more sub-events when it
is productive to do so, as in cases where the content that is elaborated is itself a clus-
ter of distinct but related contents. The evaluative activity that inheres in an event
can be thought of as a series of pedagogic judgements, as defined in Davis (2001).
By describing observed pedagogic practice in terms of evaluative event series we
produce units for the analysis of pedagogy.

Reading ‘What’ in the Constitution
of Mathematics in and for Teaching

Each course, all its contact sessions and related materials were analysed and parti-
tioned into evaluative events. After identifying starting and endpoints of each event
or sub-event, we first noted whether the object of attention was mathematical and/or
pedagogic (i.e. about teaching), and coded this M or T respectively. We added codes
of m and t where some assumed background knowledge either of mathematics or of
teaching was also in focus. For example, a focus on misconceptions in mathemat-
ics learning was coded as T, as a teaching object. The code Tm was used when
the discussion of misconceptions, for example, included assumed mathematical
knowledge.

We worked with the idea that in pedagogic practice, in order for some content
to be learned, it has to be represented as an object available for semiotic mediation
in pedagogic interactions between teacher and learner. An initial orientation to the
object, then, is one of immediacy: The object exists in some initial (re)presented
form. Subsequent to the moment of immediacy, pedagogic interaction generates a
field of possibilities for predicating the object through related judgements made on
what is and is not the object, which might be thought of as a moment of pedagogic
reflection in which criteria are constituted. All judgement, hence all evaluation,
necessarily appeals to some or other locus of legitimation to ground itself, even
if only implicitly. Legitimating appeals can be thought of as qualifying reflection
in attempts to fix meaning. We therefore examine what is appealed to and how
appeals are made in order to deliver up insights into the constitution of mathemat-
ics for teaching (MfT) in mathematics teacher education. Given that mathematics
teacher education draws varyingly from the domains of mathematics, mathematics
education and mathematics teaching, what come to be taken as the grounds for eval-
uation are likely to vary substantially within and across sites of pedagogic practice
in teacher education. We eventually described the grounds appealed to across the
three courses in terms of six ideal-typical categories: (1) mathematics, (2) math-
ematics education, (3) metaphor, (4) experience of teaching (adept or neophyte),
(5) curriculum, and (6) the authority of the adept.

By way of example, we present the analysis of three evaluative events in one ses-
sion in one of our cases, numbered Case 1 here, where the first event was divided
into seven sub-events. This was the fourth 3-h session in a course: Teaching and
Learning Mathematical Reasoning. The course comprised seven such sessions in
total. The focus of the particular session discussed here was ‘misconceptions’.
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Assignment 2  

Consider the following problem given to grade 8, 9  or 10 learners: 

Someone makes a conjecture that x2 + 1 can never equal 0 if x is a real number. 

Is this person correct or not? Justify your answer. 
Your task is to: 

1. Predict the misconceptions that might arise when Grade 8, 9 or 10 learners attempt this 
problem. 

2. Discuss the importance of these misconceptions for you as a teacher, drawing on the paper 
by Smith et al. 

3. Discuss how you would work with these misconceptions in a Grade 8, 9 or 10 classroom. 

You should write about 4−5 pages in total (1200−1500 words). 

All teachers have experiences of learners’ misconceptions in mathematics. How we think about and 
work with learners’ misconceptions might differ from teacher to teacher, depending on how we 
view learning and the role of the teacher. In Hatano’s paper, he argued that misconceptions give us 
evidence that learners are in fact constructing their own knowledge and so they are important for 
teachers. Thus from a constructivist perspective, misconceptions are seen as an important part of 
learning. In this week’s paper, Smith et al. argue very strongly that misconceptions are a normal part 
of learning and are to be expected on the difficult road to mathematical understanding. Sasman  et al.
argue that we should try to counter misconceptions with cognitive conflict although they argue that 
this is very difficult. In the session, we will critically discuss these papers. Our guiding questions 
will be: Can we consider misconceptions to be an important part of learning? How might teachers 
best work with misconceptions in the classroom? 

Required reading 
1.Smith, J.P., DiSessa, A.A. and Roschelle, J. (1993) Misconceptions reconceived: A constructivist 
analysis of knowledge in transition. The Journal of the Learning Sciences, 3(2), 115−163. 

2. Sasman, M., Linchevski, L., Olivier, A., and Liebenberg, R. (1998) Probing children’s thinking in 
the process of generalization. Paper presented at the fourth annual congress of the Association for 
Mathematics Education of South Africa (AMESA), Pietersburg, July 1998.

Fig. 9.1 Assessment task case 1

Students had been provided an assessment task marked “Assignment 2”, shown
in Fig. 9.1 below, which was accompanied by an introductory paragraph and two
papers. Students (most of whom were practicing secondary teachers) were expected
to read the introduction and study the papers as preparation for the lecture.

We use parts of this session to show how events/sub-events begin and end and
how they were analysed, specifically their categorisation as either T or M, as well
as t or m; and then what was recorded as legitimating appeals. We show here that
appeals over this session varied across mathematical principles, mathematics educa-
tion, practical experience of teaching and curriculum knowledge (i.e., ideal-typical
categories 1, 2, 4 and 5), with mathematics education dominant. As will become
evident, an idea of what a misconception is in mathematics teaching and learning
was constituted in this session in interaction between the lecturer, the students and
the range of discursive and practice-based resources (research papers, a video record
and a transcript) made available for the session by the lecturer.

The lecture began with a viewing of a video extract of a typical secondary town-
ship school Grade 10 class, where the learners had worked on a problem and were
discussing it as a class with the teacher. In addition to the video extract, students
had a transcript of the classroom discourse. After the video had played and the
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Fig. 9.2 Students’
anticipations of school
learners’ misconceptions

Fig. 9.3 Students’ ideas rephrased by the lecturer

lecturer had discussed the ethics of observing and respecting data from a col-
league’s classroom, she directed attention to the students’ anticipations of school
learners’ misconceptions, as required by task 1 of Assignment 2 (see Fig. 9.1).
This was marked as the beginning of event 1 of session 4. The resulting series of
lecturer-student interactions was recorded as sub-event 4.11.

Ideas offered by students were recorded on a flip chart (Figs. 9.2 and 9.3) and
rephrased by the lecturer (L = lecturer; Sn = student n).

L: (After recording the students’ suggestions shown in Fig. 9.2.) So you are
telling me here the one misconception you predicted that didn’t come up on
the tape is that learners will try to solve the expression, and learners in the
tape didn’t do that . . . Did any other prediction you had come up that didn’t
involve solving?

S1: They will take any real number for x. Say, try x is equal to 2.
L: Why would you see this as a misconception?
Ss: They will try a few numbers.
L: What kind of numbers at grade 10?
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We captured and categorised this sub-event (4.11) as having a teaching object in
focus (specific misconceptions) in the context of mathematics, i.e., Tm. What stu-
dents were to grasp was a notion of misconceptions in mathematics learning (T), and
the mathematics in discussion was incidental and presumed known (m). The imme-
diate representation was the task from a Grade 10 class, recontextualised as the focus
of their assignment and focus of this session. Reflection in this event was on student
predictions. Criteria legitimating student suggestions (i.e., the grounds functioning
as to whether and how this was a misconception) were located in students’ practical
experience.

Table 9.1 shows how we recorded and categorised each of the events and sub-
events in this session. All sub-events 4.11–4.17 of event 4.1 were directed at the
notion of misconceptions. Before we present the table, we describe sub-events 4.12
and 4.17 in some detail in order to illuminate further our rules for recognition of the
notion and legitimating appeals.

Following the recording of predicted misconceptions, the session moved on to
categorising the misconceptions listed and evident in the video extract students had
watched. The announcement by the lecturer below marked the beginning of sub-
event 4.12:

L: I think there are different kinds of misconceptions here that we can see . . . three
different ones.

As in the previous sub-event, discussion between the lecturer and students
followed. The lecturer probed student offerings with the following questions:
“. . . where is it [the misconception] coming from?”, “Why might it make sense to
the learner?”, “How would Smith [or DiSessa] say that?”, thus directing students to
the published texts on misconceptions that they had read in preparation for the ses-
sion. The types of misconceptions identified and discussed were again recorded on
the flip chart. Over-generalising, using wrong schema or strategies from a different
set of problems (none of which are sensible here) are indicated in Fig. 9.3.

Substitution using examples was noted separately as “testing the conjecture”.
The lecturer returns to this in sub-event 4.15 (below), with the question: are some
misconceptions “more correct” than others? Sub-event 4.12 was categorised as Tm:
again, the notion of misconceptions was in focus, and specifically the identification
of types of misconceptions as described in the mathematics education research texts
students were required to read. Appeals were consistently to the field of mathemat-
ics education. Misconceptions named and recognised in the field of mathematics
education (e.g., over-generalising, retrieving wrong schema, strategies appropriate
in a different context) were to be found in the texts read by the students. The begin-
ning of sub-event 4.13 was marked by the lecturer bringing into focus students’ view
that misconceptions originate in teaching, and ends with reference to the texts where
over-generalising is described as something that learners will do as they learn some-
thing new. The example from the video discussed is where learners want to find a
value for x, and suggest x = 1, equating the value of x with the coefficient of x2.

Sub-event 4.14 was marked by the lecturer effecting a shift in focus to other
contributions from learners in the video, and she posed the question of whether some
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Fig. 9.4 Additional solutions offered by learners in the video

misconceptions were ‘more correct’ than others. The lecturer focused attention on
the suggestion by one learner that x2 + 1 = x2 + 1 (and thus not 0), and asked
if the statement was more or less ‘correct’ than the suggestion, x = 1. As with
sub-event 4.12, the object of subsequent two sub-events was categorised as Tm.
Appeals were made to the field of mathematics education, specifically to the types
of misconceptions identified in the texts the students had read.

In sub-event 4.15, the recognition and marking of misconceptions continued.
Focus shifted from strategies that were not productive to two additional solutions
offered by learners in the video: (1) the ‘numerical’ solution (where students substi-
tuted 0, then 1, then –1 and then agreed with the conjecture (see Fig. 9.4); and (2)
the reasoning that if x2 + 1 is equal to 0, then x2 must be equal to -1.

The lecturer asked students “which response would you prefer?” And, after some
interaction between the lecturer and students, and students themselves, the lecturer
stated that the learners (in the video):

L: . . . are trying to falsify this [referring to the conjecture], to prove the opposite.
If they can’t, then they will prove it is true. The teacher [in the video] thought
they are trying to get to zero . . .. It is a systematic approach, trying to test the
conjecture.

As indicated in Table 9.1, we categorised this as Tm, with appeals located in
mathematics, rather than mathematics education as previously. The criteria for
judging what is more or less correct are mathematical principles.

The categorisation of the remaining sub-events making up event 4.1 and then
events 4.2 and 4.3 are summarised below, with an interesting appeal in event 4.16
to curriculum knowledge. In event 4.16, there was discussion of whether learners’
conception of the square root of –1 as not valid was a misconception. There is a
suggestion in the video that not “valid” and “error” as responses derive from the
displays of calculators when students/learners attempt to perform a calculation like
finding the square root of –1. In the end, in a context where complex numbers are not
part of the curriculum and learners’ experience (indeed the problem was explicitly
restricted to real numbers), declaring the square root of –1 “not valid” could not be
classified as incorrect, and consequently, not as a misconception either.
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Reading ‘How’ in the Constitution
of Mathematics in and for Teaching

Our data suggests that the image of teaching is a significant element of pedagogic
practice in teacher education and so of the constitution of teaching and/or mathe-
matical objects in this practice. The last column in Table 9.1 describes the location
of the image of teaching in each of the events. As discussed in the introduction to
this chapter, across the cases students were presented, both implicitly and explicitly,
with images of the mathematics teacher and mathematics teaching. In the events
summarised above, the most visible image of mathematics teaching is in the video
students watch and consider in the session. While the most visible, it was not the
only image. The initial image of teaching in this session, however, is that of the
students (as practising teachers) themselves. Additional implicit images of mathe-
matics teaching are contained in discussion in the research texts. Students are thus
presented with a range of images of teaching. While this includes their own teaching
practice, the dominant images are located in recognisable situations, distant from the
course itself, and in the broader practices of mathematics teaching. We refer to this
imaging of teaching and the teacher as “look at (mathematics teaching) practice”.

There were similarities and differences in the way mathematics teaching was
modelled across the cases, and it is our contention that images of mathematics teach-
ing are instrumental in the way in which appeals emerge, and thus how mathematics
in and for teaching comes to be constituted. We elaborate on this claim through the
case discussions following. It is evident in Table 9.1 that the notion of ‘misconcep-
tion’ is filled out in time and over time and the recognition and realisation criteria
(Bernstein, 2000) for discerning and marking misconceptions are exhibited through
appeals.

In addition, there were similarities and differences in the strength of the lecturer’s
control over criteria for what is and is not legitimate in the practice (Bernstein,
2000). Varying strengths become evident through the consistency and spread of
appeals within and across cases, as we elaborate below. In Case three, as illustrated
in Session 4, the lecturer has strong control over criteria, selecting what is to be
focused on, and directing students to linking learner contributions in the video and
its transcript to descriptions of misconceptions in the readings for the session.

The illustrations of the three events in Session 4, with elaboration of some of the
sub-events within event 4.1, reveal the methodology employed in the project and
specifically how events were recognised and described. We now move on to discuss
the three cases we studied.

Three Cases of Mathematics Teacher Education

The discussion of each case begins with a general statement of the approach to learn-
ing mathematics for teaching, and so a reading of the practice to be acquired. This
is then supported by extracts from events, including those that illustrate appeals
different in kind from those described earlier. The extracts are selected for illus-
trative purposes and to discuss the way mathematics teaching is modelled and the
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mathematical knowledge that is in focus, and thus our interpretation of what and
how MfT came to be constituted in each of the cases. We begin with Case 1.

Case 1: Teaching and Learning Mathematical Reasoning

The practice to be acquired in this course was the interrogation of records of practice
with mathematics education as a resource. The image of teaching was presented
in a range of records of practice including video of other teachers. We referred
to this as: Look at (mathematics teaching) practice. The structure of each of the
sessions of the course was similar to that of Session 4, as illustrated and described
above. The image of the school learner and the teacher were continually subjected to
interrogation from discursive resources constituted by mathematics education. The
principles structuring the activity in the course were explicit and distanced from
the teacher educator herself. The teachers were required to describe, justify and
explain their thinking in relation to both what they brought to the discussion or
observed and what they had read. The records of practice were the images of practice
constituted as objects for interrogation by the field of mathematics education. The
pattern of interaction between the lecturer and students was similar throughout the
course, where the academic text was emphasised and made to frame criteria for what
was and was not legitimate. Within the focus on mathematics teaching as object in
Case 1, mathematics itself came into focus and mathematical principles functioned
to ground notions of teaching.

Table 9.2 summarises the appeals made for legitimating the texts within this ped-
agogic practice. Evidence for our description of the practice to be acquired lies in the
table. In the total of 34 events across the course, 31 (91%) direct appeals are made
to mathematics education texts. We also note from Table 9.2 that there is a spread
of appeals across possible domains, reflecting the complex resources that constitute
knowledge for teaching mathematics within the practice.

We note that appeals to the metaphorical and to the authority of the lecturer
(which we elaborate and exemplify in discussion of Case 2 following) are low, sug-
gesting that mathematics is presented as a reasoned activity and interrogation of
practice is through the field of mathematics education. Secondly, the relatively high
percentage of appeals to experience, together with appeals to mathematics educa-
tion shows a particular kind of evaluation at work. We noticed with interest that in
this course, there are 95 appeals across 34 events. We suggest that this density of
appeals reflects strong pedagogic framing (control of the criteria by the lecturer), a
key feature that marks out the different practices across cases.

Case 2: Algebra Content and Pedagogy

In Case 2, the practice to be acquired was a particular pedagogy modelled by the
lecturer who presented the activity as a specific practical accomplishment. We refer
to this as: Look at my practice. Look at me and you will see and experience what
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it means to teach algebra. Do what I do, and the way I do it. The lecturer worked
with her students (the teachers) in ways similar to that which she advocated they
work with their learners. That this is set up as a practical accomplishment is clearly
recognised in and across the course sessions. The lecturer also stated on a num-
ber of occasions: “I am not teaching you content, that you must do on your own
. . .. I am teaching you how to teach [algebra]”. She further emphasised that it was
not enough to know how to carry out a calculation, but that teachers “also need
to understand why it works”. Lectures were structured around and supported by a
booklet of activities and exercises that dealt with “different methods of introducing
and teaching algebra in the Senior Phase”. In other words, teachers on the course
were to (re)learn how to teach grades 7–9 algebra.4 The teaching sequence below
captures this central feature of Case 2 and illustrates how the modelling of mathe-
matics teaching – ‘look at me and see how to teach’ – functioned, together with the
mathematics that came into focus.

In the first few sessions of the course, the focus was on learning to teach some of
the general properties of operations on numbers and rules of algebra, for example,
rules for operating on exponential expressions. The lecturer frequently employed
everyday and visual metaphors, sometimes combined them. For example, the dis-
tribution of food and the act of commuting between towns were used to illustrate
the distributive and commutative laws, respectively.5 With respect to the distribu-
tive law, its introduction in class (i.e. the beginning of an evaluative event) was
through a descriptive metaphor of distributing food. The distributive law was then
elaborated through a visual metaphor represented on the lecturer’s board, as shown
in Fig. 9.5.

Students on the course were thus offered metaphorical and visual representations
of the distributive law, which were intended, at once, to enable them to under-
stand the distributive law and have ways of presenting it to their learners so that
they too might achieve understanding: look at me, and you will see what and how
to teach.

In this case, and we are not suggesting a necessary relationship here, mathemat-
ics comes to be constituted as sensible in the strict sense of the term (it is what we
see/experience) and not as reasoned activity. Let us elaborate: Fig. 9.5 shows that
the lecturer used areas of squares and rectangles to establish further grounds for
accepting the distributive law, grounds that brought in mathematical features, but

4Most of the teachers on this programme were initially trained to teach in primary schools and
were upgrading a 3-year qualification and improving their level of teaching. A design principle of
the course was that by learning to teach algebra, the teachers would themselves have opportunities
to (re)learn algebra.
5More generally, it is interesting to note that in instances such as these there is a question of
the integrity of the metaphor with respect to the mathematical idea being ‘exemplified’. This
specific point is a general concern in mathematics education where the everyday is frequently
recruited to invest mathematical objects and notions with meaning. Given the intelligible nature
of mathematical ideas, this presents teachers with difficulties of finding useful and meaningful
metaphors.
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Fig. 9.5 Area and the
distributive law

nevertheless remain at the level of the sensible. A geometrical metaphor is employed
to generate a representation of binomial–binomial multiplication as an exemplifica-
tion of the distributive law. The idea seems to be that since the learner can recognise
that 5 × 5 = 25, and that 5 = 3 + 2, and also that (3 + 2)(3 + 2) must therefore
be 25, she/he will be convinced that binomial–binomial multiplication must func-
tion as described by the lecturer. The products corresponding to the areas of the
four rectangles produced by the partitioning of 5 into (3 + 2) are identified with
the products produced during the calculation of (3 + 2)(3 + 2). The validity of the
calculations performed in both representations of binomial–binomial multiplication
depicted (arithmetic and geometric) relies on the distributive law, so that neither is
a direct demonstration of the validity of the other.

What is of great importance in this practice, however, is that a visual demon-
stration of the procedure for (binomial–binomial) multiplication is presented to
teachers. In terms of our analytic tools, the legitimating appeal here (qualifying
reflection on the notion of the distributive law in mathematics) is metaphori-
cal. The appeals to Mathematics in Case 2, where the focus was on learning to
teach rules of algebra, were, for the most part, of the form of using numbers
to test and assert the validity of mathematical statements, or, of actually assert-
ing a procedure or rule (as with the distributive law), which was then redescribed
metaphorically.

In Case 2, we find the distribution of appeals shown in Table 9.3. We see that
only four of 36 events explicitly appealed to teaching; three of those appeals were
to the localised experiences of the teachers and one to the official curriculum. No
appeals were made to the arena of mathematics education. This observation supports
the point made earlier that the teaching of mathematics is presented as a practi-
cal accomplishment modelled by the lecturer, where its principles are to be tacitly
acquired. The framing of criteria with respect to mathematics teaching is weak.
Moreover, as Table 9.3 shows, the meaning of mathematics was strongly grounded
in metaphor. What we find provocative here is that in this practice, neither mathe-
matics nor teaching is underpinned by principles – the ground functioning here is at
the level of the sensible and metaphorical.
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Case 3: Reflecting on Mathematics Teaching

In Case 3, the practice to be acquired was that of reflecting on practice, understood
as the conscious examination and systematisation of one’s own mathematics teach-
ing practice. In the terms we have used for other cases, the students here are to
learn by looking at your own practice. The Reflecting on Mathematics Teaching
(RMT) course that is in focus in this section was one of two specialist mathematics
education courses; the remaining four specialist courses were mathematics courses.
RMT was delivered through seven 3-hour fortnightly Saturday sessions and a week
long vacation school. RMT students were supplied with the learning materials and
expected to work through them independently in preparation for the contact ses-
sions. In the materials and in the contact sessions the lecturer explicitly positioned
teachers as already experienced and knowledgeable. The course notes suggest that
teachers would acquire the ‘tools and the space’ to think about and improve their
teaching through action research. It would help them to ‘systematise what they
already do’, namely, reflect on their practice to improve mathematics teaching and
learning. Teachers were expected to use their existing mathematical and professional
competence to engage independently at home with the course materials to identify a
problem in their teaching and then plan and implement an intervention. In prepara-
tion for the contact sessions, they were thus expected to work through the activities
to produce resources from their own practice for reflection and further elaboration.

However, by the second contact session it was clear that the presumed math-
ematical and professional competences6 for teaching that were to be used as the
main resource for the course were absent. Whatever the reasons, the teachers did
not bring expected examples from their own practice to the sessions. That reality
presented major obstacles to progress in the course and in response the lecturer
inserted an example of what was required. She did so by modelling the ‘expert prac-
tice’ required. The image was elaborated through examples of how the lecturer (as
expert teacher) would go about planning for and engaging in mathematics classroom
teaching. The focus fell on the practices themselves, while the principles of the prac-
tice that she herself used were rendered implicit. Indeed, starting from an orientation
to learning mathematics for teaching by reflecting on students’ own practices, the
orientation that emerged in this Case (see Table 9.4) resembled that exhibited in
Case 2: look at my practice.

Unexpected obstacles to the planned arrangements for teaching are not unique
to the course, though, in this instance, there were sustained and substantial dif-
ficulties the lecturer had to confront. We include it for illustration here for two
reasons. Firstly, it points to a well-established orientation in teacher education (self-
reflection), or what we have called ‘look at yourself’. Secondly, it highlights for us
the hidden assumptions in such an orientation – that students (teachers) can recog-
nise in their own practice that which is intended to be interrogated in the programme

6For example, a deep knowledge of the school mathematics required by the new curriculum, or
professional competence such as an ability to produce a year plan based on a curriculum document.
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and reveals unintended consequences of such. Here, the majority of students did
not follow the expected practice (suggestions) with the result that the resources
required in the contact sessions for enabling progress in the module were absent.
The lecturer tried to overcome the problem by modelling an example of the required
expert practice. The lecturer drew on principled knowledge to produce the exam-
ples she used; however, as noted earlier, the principles that structured her activity
remained implicit. The image (of the teacher and of teaching) that came to be pre-
sented, though unintended, was (as in Case 2) the lecturer herself, and the dominant
ground and criteria for interpreting practice was the experience she demonstrated
with respect to both mathematics and teaching.

Mathematics for Teaching Across Cases
of Mathematics Teacher Education

In each of the three cases, we have discussed criteria for what was to count as either
mathematics or mathematics teaching. The appeals and grounds that illuminated the
criteria ranged across mathematics, mathematics education, metaphorical recruit-
ments of the everyday teaching experience and curriculum, evidencing our earlier
point that mathematics teacher education does indeed draw from a range of domains.
Significantly, however, the spread of appeals differed across the cases in nature,
extent and density.

While we do not and cannot claim any necessary causal relations here, two
observations are pertinent. The first is that there was a dominance of particular
appeals in each case, illuminating different orientations to practice. In Case 1, the
dominant appeals were to mathematics education in the main (91.2% of all events
included appeals to mathematics education), together with appeals to mathematics
itself (58.8%) and to the students’ experience as practicing teachers (67.7%). In
Case 2, appeals were strongly grounded in metaphor (69.4%) together with mathe-
matics (41.7%). In Case 3, as a result of the lecturer having to shift orientation from
reflection on examples of practice brought by students themselves to examples she
provided on the spot, dominant appeals were to experiences of teaching (71.8%) and
to her authority (61.5%).

Second, and co-incident with types and spread of appeals was their relative den-
sity. Of the three cases, the distribution of appeals was least dense in Case 2: 45
appeals across 36 events in the course overall; and most dense in Case 1: 95 across
34 events, with Case 3 somewhere between: 74 appeals across 36 events. The consti-
tution of mathematics for teaching in these three cases as reflected in the operation of
pedagogic judgement and criteria in use, was different. Consequently, while students
in each of these sites of teacher education were offered opportunities for learning
mathematics for teaching, the opportunities were of different kinds and at different
levels of sophistication.

The density and nature of appeals correlated further with the way in which
teaching was modelled in each of the cases. Modelling the practice is, we may
wish to argue, a necessary feature of all teacher education: there needs to be some
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demonstration/experience (real or virtual) of the valued practice. That is, it seems
necessary for students to encounter some image of what mathematics teaching per-
formances should look like (cf. Ensor, 2004). In the Algebra course of Case 2, the
image of teaching was located in the performance of the lecturer whose concern
(stated repeatedly through the course) was that the teachers themselves experience
particular ways of learning mathematics. Such an experiential base was believed to
be necessary, if they were to enable others to learn in the same way. The mathe-
matical examples and activities in the course thus mirrored those that the teachers
were to use in their Grades 7–9 algebra class. However, the teaching perspective
on the school mathematics content remained at the level of practical demonstration,
presenting students with instances they could imitate and hence no principled ways
in which to engage with Grade 7–9 algebra, nor with how it could/should be taught.
In Case 1, the model of teaching mathematical reasoning was externalised and dis-
tanced from both the lecturer and the teacher-students themselves, and located in
images and records of the practice of teaching, specifically in video records of
local teachers teaching mathematical reasoning and related transcripts and copies
of learners’ work. Teaching practices were objects to be described and analysed by
drawing on discursive resources (texts, explaining, arguing, describing practice in
systematic ways) situated within the field of mathematics education.

We have been struck in our presentation of this work how the identification of the
different orientations to modelling teaching across our cases resonates deeply with
colleagues in the field. The pedagogic forms in Cases 2 and 3, in particular, are very
familiar in South Africa. We see these as a function of ideologies and discourses in
teacher education practice that assert the importance of teacher educators practicing
what they preach (the need to ‘walk the talk’). Such pressure is particularly strong
when new practices (reforms) are being advocated and so a significant feature of
in-service teacher education. More generally, the modelling forms also reflect well-
known theory-practice discourses, in particular, that theories without investment in
practice are empty.

In Conclusion

In this chapter we have presented our in-depth analyses of selected courses in math-
ematics teacher education and what and how practice (in this instance, mathematics
for teaching) was differently constituted. Our findings thus need to be understood as
a result of a particular lens, a lens that we believe has enabled a systematic descrip-
tion of what is going on ‘inside’ teacher education practice, and in particular, ‘what’
comes to be the content of mathematics for teaching; that is, the mathematical con-
tent and practices offered in these courses and ‘how’ this occurs. We are calling this
‘mathematics for teaching’. It is not an idealised or advocated set of contents or prac-
tices, but rather a description of what is recognised as content through our gaze. This
content is structured by a particular pedagogic discourse, a component of which is
the projection and modelling of the activity of teaching itself. In Bernstein’s terms,
we have seen through an examination of evaluation at work and of how images of
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teaching are projected; that different opportunities for learning mathematics in and
for teaching are offered to teachers by different programmes. The research we have
done suggests that developing descriptions of what does or should constitute mathe-
matics for teaching outside of a conception of how teaching is modelled is only half
the story.

Returning to the introduction to this chapter and the South African context where
concerns with quality are accompanied by concerns to address inequality, important
questions arise for further research. Do particular orientations necessarily give rise
to a particular kind of mathematics in and for teaching? How do the ranging forms
we have described relate to teachers’ learning from and experiences of mathematics
for teaching and, ultimately, the quality of their teaching? What possible conse-
quences follow for social justice in and through teacher education itself? These
questions have their basis in our empirical work. The orientation “look at my prac-
tice” in Case 2 was part of a course for teachers coming from rural schools and
where it is fair to say historical disadvantage is at its most acute. Further research
needs to pursue: for which teachers, in what contexts, there are opportunities for
learning mathematics for teaching and with what effects.
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Chapter 10
Audit and Evaluation of Pedagogy: Towards
a Cultural-Historical Perspective

Julian Williams

Introduction

In this chapter, I first outline a theory of audit and evaluation building on Cultural-
Historical Activity Theory (CHAT) and Power’s (1999) critical perspective and
present an analysis of audit and evaluation in education in general. Second, I draw on
some recent empirical case studies – mainly conducted with my doctoral students –
of teachers’ knowledge, in particular, teachers’ understanding of their students’
mathematical knowledge. These studies showed that the teachers we studied some-
times mis-judged their students knowledge; that their judgments were influenced
by their own mathematical knowledge and by their teaching experience; and that
their knowledge of their students was task-situated and tool-mediated rather than ‘in
the head’. Shulman’s notion of pedagogical content knowledge is reconceptualised
via CHAT as a boundary object between reflection on teaching and the practice of
teaching. Third, I argue the need to examine our methodology for tapping teacher
knowledge with due recognition of the danger, or opportunity, presented by teacher
knowledge auditing. I finally develop some further implications of CHAT perspec-
tives on pedagogy and its audit or evaluation: The distribution of knowledge across
activity systems involves contradictions between ‘de-coupling’ and ‘colonisation’,
which I attribute to exchange-value and use-value contradictions in the knowledge
economy.

I argue that the problem of auditing and evaluating teachers’ knowledge for
teaching requires us to answer some basic questions:

• What is the purpose of the practices of audit and evaluation, in general and of
teachers’ knowledge, in particular?

• What kinds of knowledge do mathematics teachers need in order to teach or to
produce evidence for auditors?
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• How can teacher knowledge be audited/assessed: what tools/technologies are
available, or needed?

For the analysis of activities and their purposes, I turn to CHAT for theoreti-
cal perspectives. The main citations to the original corpus of literature on CHAT
are usually to Vygotsky, Luria and Leont’ev, but also sometimes to Bakhtin and
Voloshinov, and to the Western developers and disseminators, Cole (1996) and
Engestrom (1987, 1991); see also Roth and Lee (2007) for a general review, and
Williams and Wake (2007a, 2007b) or Ryan and Williams (2007) in the specific
mathematics education context.

It is important to mention that this tradition has influenced another significant
socio-cultural current well-known to mathematics educators: that of situated learn-
ing in communities of practice (Lave & Wenger, 1991; Lave, 1996; Wenger, 1998).
However, CHAT theory has an extensive history and more extended repertoire
of social-psychological, Marxist/ian concepts such as ‘subject’, ‘object’, ‘system’,
‘tool-mediation’ and ‘division of labour’ in ‘activity’ that will prove useful. Thus,
auditing and evaluation refer to different social practices, arise in distinct activi-
ties, defined by different motives and engage the subjects and subjectivities of those
involved in contradictory ways. I ultimately attribute the tensions between audit and
evaluation and, what Power calls ‘de-coupling’ and ‘colonising’, to contradictions
between the use-value and exchange-value of mathematics in a knowledge economy
(see Williams et al., 2009; Williams, in press). I will be drawing on all these con-
cepts here and argue that these perspectives raise new horizons with regard to audit
and evaluation of teachers and teacher knowledge.

Accounting for the Dialectic of Audit

Let me begin with the function of audit in society in general, as the recent intro-
duction of audit to teacher knowledge and education has a historical context and
Power’s work, inter alia, will prove useful (Power, 1999). The critical sociological
literature on ‘audit’ suggests that we face an audit explosion in all public sectors
of the economy from health and education to policing. It is widely recognised
how dysfunctional this can be and the literature is not without passionate, strongly
politically-positioned critiques of its often deleterious, often unintended impact on
practice (See several chapters in Strathern, 2000).

In a recent case in the UK, a hospital is discovered to have killed approximately
400 patients as the unintended consequence of its efforts to meet the audit require-
ments for becoming a ‘Trust’, giving it certain advantages in terms of funding and
autonomy over non-Trust hospitals. On the other hand, the consequences of NOT
auditing can have unintended consequences too: As I write this chapter, I hear that
one consequence of cancelling the national tests for 14-year-olds in England is that
many Shakespeare theatre companies have experienced a sudden burst of cancella-
tions by schools (Shakespeare used to be on the test syllabus and so it was worth
motivating students even at the cost of a school trip). In both cases the diagnosis is
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quite simple: management is mediated by proxy measurements for ‘use’ that do not
faithfully measure use-value – in the one case the impact on ‘health’ is measured by
Accident and Emergency department wait-times, in the other the educational value
is measured by the national test scores.

On the other hand, auditing practices are no doubt here to stay and seem to go
from strength to strength in the UK: in education, despite powerful critiques and
the cancellation of some of the national tests, one may argue it is stronger than ever
before. The managerial elites need audit to protect themselves from their own lack
of accountability and potential accusations of bad judgment, indeed of having made
any personal judgment at all, as ‘personal judgment’ is the only one that can thereby
become critical personally (Power, 1999).

With international audits such as TIMSS and PISA, one sees league tables going
global: it is not difficult to imagine potentially homogenising effects on education
internationally to suit the international labour market and much EU policy seems
directed along these lines. Indeed, the nation-states in these circumstances may
come to have less room for manoeuvre themselves (Williams, 2005, 2009).

Yet in the education literature, it seems, our theoretical understanding of auditing
practices is slim. Power (1999) made an important contribution with the conceptions
of ‘de-coupling and colonising’ in this context. I introduce these notions here and
their relation to ‘audit’ versus ‘evaluation’ practices:

Audit focuses on verification . . . Audit is a normative check whereas evaluation . . .

addresses cause and effect issues; audit is orientated to compliance whereas evaluation seeks
to explain the relationship between the changes observed and the programme (Power, 1999,
p. 118).

Furthermore:

Although forms of self-evaluation are viewed as a necessary component threshold for any
spending to be taken seriously, cost effectiveness auditing sits above them . . .. (p. 118)

Audit is driven by a degree, perhaps a healthy degree, of mistrust and by the
need for accountability and some degree of transparency of procedure: thus the audit
holds the auditee to ‘account’ to the auditor who, as a result, may influence a flow
of resource – essentially it is economic and about the power to control.

(T)he development of auditable performance measures is much more than a technical issue:
it concerns the power to define the dominant language of evaluation (within a hierarchy of
economy, efficiency, and effectiveness) . . .. (Power, 1999, p. 117)

Notice here that the hierarchy places economy and efficiency over effectiveness,
which implies a colonisation of practice by audit, or the authority of cost-benefits, or
of exchange value over the use-value of the outcomes of a practice. Yet evaluation
is at heart a self-valuation process, an attempt by practitioner(s) to reflect and to
understand and improve what they do: this use is – in the professions, at least – a
use-value.

In particular, Power has shown how the tensions involved in audit arise from con-
tradictions between audit from the bottom-up, reflecting evaluations by practitioners
and professionals on the ground and audit from the top-down, based on performance
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objectives set by managers under the regime of ‘New Public Management’. He has
used these notions to ground insights into contrasting, empirical case studies, in
finance, in health and in Higher Education. My purpose here is to use his approach to
re-conceptualise ‘formative’ assessments (broadly corresponding to evaluation) and
‘summative’ assessments (broadly corresponding to audit) and thus reinforce the
controversial insight that both are necessary components of a functional assessment
process (see Williams and Ryan (2000), which builds on Black and Wiliam (1998)).

Power shows that the entire history of audit involves a problematic: the purpose
of audit is said to be to reduce the necessity of relying on the validity of local custom
and practice, e.g. of professional subjective judgment. And yet the audit practice is –
or claims to be – itself unauditable, i.e. it relies in the end on the professional judg-
ment of experienced auditors and this judgment essentially includes their subjective
evaluation (based on finite, even quite small sets of data and impressions) of the
people they are auditing. In practice, there is a ‘gap’ between what audit promises
and what can realistically be ‘known’ (with limited resources a significant part of
the problem).

In addition, the survival of evaluation in a regime of audit creates the need for
new measures, i.e. for measures of primary products of practices that professionals
believe to be valuable. In some areas of education this can be problematic and I will
argue this is the case with teacher knowledge. The problem of measurement tech-
nologies has led in some spheres to second-order constructs, whereby the processes
of management are measured instead of their products (what we have come to know
as Quality Assurance, or what Power refers to as control of control). Thus, it seems
auditors can be persuaded to use second order measures as long as they are credi-
ble and can be counted. What auditors need is a politically acceptable system that
can be credibly said to hold the system being audited to ‘account’ for its outcomes,
increasingly against costs on a ‘value for money’ basis.

It emerges from Power’s account that credible auditing in practice always needs
to engage with its auditees and their practices. Increasingly, the auditors expect (and
on grounds of efficiency this is inevitable) the auditees to actively ‘comply’ with
the audit and this provides room for manoeuvre if auditees are to collect data, or
maybe even construct their own measures. Indeed, in persuading doctors to collect
measures, Power recalls that one of the first moves of audit was to use the evaluation
data that doctors already used to monitor practice for formative purposes. Similarly,
academics have been brought to engage with research assessment exercises as a
means of accounting for their research practices and the associated flow of resource.

Of course there is a huge tension in the purposes of audit and evaluation, as Black
and Wiliam (1998) and others have pointed out (an account of this is in Williams
and Ryan (2000)). When the ‘bottom-up’ evaluation process breaks free from top-
down audit pressures, Power calls this ‘de-coupling’. In the extreme, if decoupled
from the practice it is supposed to record, audit may thereby be rendered totally
ineffective in holding local practice accountable: typically organisations de-couple
by setting up specialist departments to isolate the productive parts of the organisa-
tion from its effects. In a number of assessment projects in Manchester, we tried to
develop formative and diagnostic work in connection with summative assessment
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as a means of offering some de-coupling possibilities: by encouraging teachers to
focus on the formative aspects of their work with national tests, we sought to counter
the most offensive effects of ‘teaching to the test’ – where summative testing effec-
tively colonises teaching practice (see Williams & Ryan, 2000; Williams, Wo, &
Lewis, 2007). The use of an ‘audit’ instrument by Ryan and Williams in the ser-
vice of teachers’ metacognitive evaluation (see Chapter 15 by Ryan and Williams,
this volume) is another pertinent example: a device designed principally to mea-
sure students’ mathematics knowledge can sometimes be ‘turned’ into a tool for
self-evaluation.

When evaluators on the ground find themselves using instruments devised
by Ofsted (the national inspection agency for schools in England) to observe
each others’ lessons (see e.g. Williams, Corbin, & MacNamara, 2007b; Corbin,
MacNamara, & Williams, 2003) then the auditing practice ‘takes over’ the evalu-
ation practice on the ground. Power refers to this as ‘colonisation’ and this neatly
describes what happens when teaching becomes dominated by preparation for the
tests that were introduced as audit measures. The account of this in Williams et al.
(2007a), however, revealed that colonisation can sometimes be contested: teachers
can develop surprising resources for turning accountability systems to their own
purposes, e.g. turning audit into evaluation. Thus, when teachers – who were also
‘managers’ required to audit their colleagues’ compliance with the so-called three
part lesson – saw a ‘great lesson’ that did not conform, they went straight out and
told everyone about it.

An important conclusion for understanding of auditing practices is that the ten-
sion referred to is actually caused by a ‘contradiction’ between opposite purposes
of assessment for audit (usually summative) and evaluation (usually formative).
These purposes are part of the contradictory ‘objects’ of two distinct ‘activities’
(‘audit’ and ‘evaluation’) that engage with distinct Activity Systems. The audit
system collects data for managers and ultimately the state to count the ‘success’
of their expenditures in practice. Ultimately, the audit justifies a flow of further
resource to the primary practice. We say that what is audited is thereby shown to
have ‘exchange value’.

On the other hand, the primary professional practice being audited in general
self-evaluates as part of its own system in terms of the usefulness of its outcomes,
with a view to improving practice in utilitarian terms. In this context, what is eval-
uated normally is supposed to have ‘use-value’. (For a full exposition of a theory
of value in education, see Williams (in press) and Williams et al. (2009).) The trou-
ble arises when the two activities engage together, share common instruments and
objects, even subjectivities, as they inevitably do. The hospital manager responsi-
ble for the bid for Trust status leans on the Accident and Emergency staff to cut
wait-times, patients get insufficient or inappropriate care, patients die. The school
bursar no longer has the funds for the trip to the Shakespeare play, because the argu-
ment formerly applied by the English staff no longer holds; the funds are distributed
elsewhere, the school trip to see Shakespeare is cancelled.

Audit and evaluation in practice always mutually engage and feed off each other:
audit MUST engage with local practice to be credible and inevitably WILL try to
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colonise local practices even to the point of endangering their use. On the other
hand, local practice demands to be resourced and professional practitioners will feed
the audit system with data accordingly. Indeed, this engagement with audit gener-
ally offers opportunities for subversion and the local effects of audit can generally
be, to some extent, de-coupled and made useful in evaluation precisely because of
auditors’ need for credibility.

Thus, there is always a political struggle over audit and evaluation, their distinct
values, systems, objects, sources of credibility and power bases. To understand this
is essential to understanding the education system today. For instance, to attempt to
‘deny’ audit may be to try to refuse to engage with powerful social forces and so
leave the field open to their colonisation. Rather, we may criticise existing audits,
subvert them and devise better technologies that reassert the use of professional
evaluation and reflection.

In contrast to the effects of audit on learners in schools, professional auditing of
teachers’ knowledge has so far made quite limited inroads into professional practice.
In the UK, there has been the introduction of a requirement for teacher educators to
audit elementary aspects of teachers’ mathematical knowledge for primary school
teaching. Summing up the recent literature, I conclude that we do not know much
about the effects of this on trainees or on practice in general.

We know that many of the auditing instruments used are essentially crude tests
of mathematics not much different from school mathematics tests, assessing mainly
substantive elementary mathematics, though a few attempt to touch on syntacti-
cal knowledge (e.g. Rowland, Barber, Heal, & Martyn, 2003). In general, these
audits repeat the school assessments that the trainee teachers would have com-
pleted some years earlier in school and the same deficit model applied: as Murphy
(2003) points out, this can lead to a kind of complacency (‘jumping through hoops’)
among those who pass and desperation (or worse, denial) among those who do not.
Almost nothing in this work has been done to actually audit ‘teaching knowledge’,
i.e. knowledge distributed in the act of teaching.

Let us take an exemplary audit item from this literature: “Some children have
measured their desk to be 53 cm by 62 cm. State the possible limits to the lengths
of their sides” (Goulding, Rowland, & Barber, 2003).

It is quite evident to me that any teacher in the flow of teaching is going to think:
“Well, 53 cm could be anywhere between 50 and 53, as these tape measures tend to
stretch, and the desk may have been a true rectangle many years ago, . . . but why
do you ask?” But of course, we are not auditing knowledge in (or even for) teach-
ing, we are auditing schooled knowledge with its arcane conventions, language and
values (“State the limits . . .”), stripped of any practical or pedagogical or even math-
ematical sense of purpose. In this context, it is surprising that educators reflecting
on these audits see them as being broadly positive for teachers in training, i.e. an
improvement on what went before. But then, they did write these audits/tests and
they do know what went before.

What of the prospect of auditing knowledge for, or distributed in, teaching then?
Ball, Thames, and Phelps (2008) report that they have developed some proxies and
I will report some potential instruments later in this paper that similarly bear on
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teacher knowledge of their students’ learning. (In addition, for an account of such
assessment of teachers’ knowledge and their own learning, see Chapter 15 by Ryan
and Williams, this volume) .

But first, we proceed with the analysis of audit-versus-evaluation by considering:
(i) the contradictory purposes of audit and evaluation (exchange versus use); (ii)
what kinds of knowledge teachers need to teach (for use) and what they need to
display (for exchange); and (iii) what technologies of assessment we need to prevent
audit from colonising evaluation.

What Is the Purpose of Audit and Evaluation
of Teachers’ Knowledge?

The CHAT analysis of the contradiction referred to above has its roots in two distinct
activities and activity systems: those of the auditors (teachers’ managers, certifiers,
accreditors and maybe even teacher educators) and those of the auditees (the teach-
ers and student teachers themselves, but maybe also the teachers and their educators,
too). Teachers’ knowledge, for the purpose of the activity of teaching, has a differ-
ent ‘meaning’ and ‘purpose’ from that of teacher knowledge for audit and for their
auditors: it can be considered a boundary concept, and when reified in audit prac-
tices becomes a boundary object at the interface between the two and so its meaning
is contested.

In socio-cultural theory, boundary objects are considered to be interesting theo-
retically and methodologically: they serve contradictory purposes, being involved in
distinct activities, and as such they can provide insights into system dynamics (see
e.g. Star & Griesemer, 1989). Thus, by exposing the audit item above to the (incor-
rect, improper and subversive) point of view of the practising classroom teacher
engaged in the (imaginary) flow of teaching, I reveal that it assesses for audit, but
not for teaching practice.

Who are the auditors or more significantly the commissioners of audit here, and
what does ‘teacher knowledge’ mean for them? I mention a number of groups
that may each have distinct interests and between whom there are potentially yet
more contradictions and tensions. Politicians, their officers and teacher educators
may have need of data to record and monitor the success of their work, and hence
to account to their own public audiences – and hence ensuring their own flow of
resource.

For these groups, some measure of ‘their’ teachers’ knowledge may provide
essential exchange value in meeting their social need for accountability. But in addi-
tion, in order for these measures to be credible, there is a need for auditors and their
own audiences to believe that the measure does represent something real, some use-
value in teaching: this can only be determined by an articulation of a relation to the
practice of teaching. Thus, the measure of ‘percentage of teachers who are gradu-
ates in mathematics’, say, is only a viable audit measure if there is a credible relation
between this measure and teaching or potential teaching quality. This all offers much
disputable terrain, but the contest over credibility is not only, or even essentially, an
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academic one. It is in everyday political discourses and discourses of common sense
that the battle is fought by operators on the political stage.

Who are the auditees here and what is knowledge for them? It may be the teach-
ers, for whom their knowledge is both use-value (knowledge needed for them to
be able ‘to teach’) and exchange value (the means for them to stake a claim to
professional status, possibly accreditation). This signals another contradiction in
the commodification of knowledge. The student teachers may unhelpfully become
engaged subjectively in this audit process: they may ‘pass’ and therefore their
knowledge is credibly ‘assured’, and perhaps then they may have less motivation
to learn more. Or, they may ‘fail’ and believe that they are failures, and as tried and
well-practised failures they may proceed to learn instrumentally to try to pass and
even teach this expertise and knowledge to others.

In conclusion: the essential primary tensions and contradictions of audit and eval-
uation reside in the contradictions ‘within’ the objects of the activities of teaching
and auditing, between the exchange and use-value of the knowledge being audited
for the different, contradictory social groups with their different interests. Resolving
these contradictions involves auditing and giving exchange value to ‘useful’ knowl-
edge: the introduction of syntactical knowledge to audit is a good start, albeit that
this has proved somewhat problematic to teacher education so far.

What Kinds of Knowledge ‘Should’ (Mathematics) Teachers
‘Have’ for – or ‘Display’ in – Teaching?

This is the favourite territory of dispute for the mathematics teacher educator and
many a researcher: ‘we’ all like to say that we want more than for teachers to ‘just’
have/display mathematical knowledge, facts and skills they can ‘pass on’ to chil-
dren/students, while for the public, common sense suggests that this is just what
teachers should know and do. This disjuncture between the teacher-educator dis-
course and that of the general public (to whom government accounts) is ultimately
what gives audit so much room for colonisation in the practice of teacher education.

We must also ask, what do teachers need ‘before’ and ‘when’ they teach? Note
that in this question the acquisition metaphor (to ‘have’ knowledge) is implicit and
the process of ‘display’ appears somewhat strange or at least non-normative (Sfard,
1998). Note also the ‘before’ and ‘when’ that signify distinct audit/evaluation pur-
poses again at the boundary between training and teaching institutions. This is
another boundary that signals a contradiction between the exchange value in the
feeder institution (e.g. the teacher-training institution) and the use-value in the
receiver system such as the school where the teacher will practise. In general,
audit and evaluation at the transition or boundary between institutions becomes
problematic (see Williams et al., 2009).

Ultimately, it must be argued that the ‘acquisition’ of certain objects of knowl-
edge (concepts, etc.) in pre-service training practices become mediating tools in the
subsequent practice of teaching. But the third generation Western version of CHAT
due to Engestrom and Cole asks us to attend to contradictions arising from just this



10 Audit and Evaluation of Pedagogy 169

kind of linkage between the two. What is reified in one system tends to need a lot
of work to become a useful tool in another. When assessment in training becomes
a tool of audit, this strengthens the links between training systems with a third sys-
tem, i.e. the audit system. It becomes more difficult to structure it to the purpose of
‘use’ in teaching, as each system has its own objectives, its own technologies and
discourses. Thus, according to Ball et al. (2008) teacher knowledge ‘in mathemat-
ics teaching’ is multi-dimensional: this implies that audit instruments that credibly
measure this will yield multiple measures and make auditing very complicated and
perhaps even impossible. In such cases audit tends to reduce multiple measures to
one, thereby constraining the evaluation of use.

In part, this becomes a matter of technology: can we devise assessment tools that
bring the training practices in line with ‘use’, but still satisfy the demands of the
audit culture for some measure of knowledge that is credible?

How Can We Audit/Assess Teacher Knowledge:
What Tools/Technologies Do We Have?

The need for the development of appropriate technologies is by now apparent:
the demands of audit require a credible measure, but credibility and de-coupling
demand a sense of authenticity in relation to the primary products of teaching. One
very simple technology in the field of formative assessment is an apt case to dis-
cuss. It is one of a number of studies conducted in which diagnostic assessment
instruments were designed for students, but were adapted to assess their teachers’
knowledge too. In addition to the case described here below, we found in a study of
primary and secondary school teachers’ knowledge about probability that the effect
of teaching experience is distinct to that of prior subject matter knowledge (with the
more experienced teachers better predicting learners’ errors, but the less experienced
teachers showing better schooled knowledge of the topic; see Afantiti-Lamprianou
and Williams (2003)).

I now describe one example in some detail, following the account given in
Hadjidemetriou and Williams (2002, 2003). A diagnostic assessment tool, devel-
oped from items from the research literature (Bell & Janvier, 1981; Bell, Brekke,
& Swan, 1987a, 1987b; Hart, 1981) was constructed, (a) to elicit pupils’ graphical
conceptions and misconceptions, and (b) to function as a questionnaire for assessing
(and measuring) teachers’ perception of the difficulty of the items for their learn-
ers, based on a test instrument of items already calibrated for 14-year-old students
learning about graphs. The test instrument was given to a sample of pupils and their
teachers in order to establish a link between these two groups and to compare results.
(Pupils’ group interviews and teachers’ semi-structured interviews also helped us
to validate responses and to gain an insight into the thinking of learners and
teachers.)

The items of the diagnostic instrument were deliberately posed in such a way as
to ‘surface’ known ‘everyday’ graphical conceptions. It developed from an analysis
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Fig. 10.1 Showing the main
responses (line-graphs),
frequencies (%) and mean
ability parameters (measured
in Logits1) to an item from
Hadjidemetriou and Williams
(2002)

of the key literature in the field of children’s thinking and involved misconcep-
tions such as ‘slope-height confusion’ (e.g. Bell & Janvier, 1981; Clement, 1985),
the tendency towards linear, smooth and other ‘prototypical’ graphs (Leinhardt,
Zaslavsky, & Stein, 1990), the ‘graph as picture’ misconception, pupils’ tendency
towards reversing the x- and y- co-ordinates, misreading the scale and so on
(Williams & Ryan, 2000). One example is given in Fig. 10.1: the four interest-
ing responses included linear and inverse correlation and lines that either crossed
(32.7%) or failed to cross (5.6%) the x- and y-axes.

The pupils’ test was scaled using a Rasch methodology resulting in a five-
level hierarchy of responses, each level of which was described as a charac-
teristic performance including errors which diagnose significant misconceptions
(Hadjidemetriou & Williams, 2002). The key point about Rasch methodology is
that it helps develop a unidimensional interval scale for an underlying ‘attainment’
construct (which, in this case, we take to be ‘graphical understanding’: note that in
the psychometric literature, the term ‘ability’ is always used as the technical term
for this dimension, but for obvious reasons we try to avoid this). Because the Rasch
model observes the principle of conjoint additivity, it is the most parsimonious one-
dimensional model that meets the essential audit requirement, i.e. that scores can be
legitimately added, subtracted or averaged.

However, group interviews also gave us the opportunity to validate the test
responses, in particular, that the interpretation of the errors found in the test are
symptomatic of the misconceptions discussed in the literature. In general, we found
such interpretations to be valid, with just one problematic case of a misconception
concerning children’s slope-height confusion (Hadjidemetriou & Williams, 2002).

Twelve experienced teachers also participated in the study. They were asked
to answer all the items and: (a) to predict how difficult their children would find

1The average ability [see comment above] of those on the test that made these responses is
measured in logits: one logit corresponds approximately to one standard deviation of a normal
distribution. Thus, those that drew straight lines with negative slopes would be about one standard
deviation above the average of those that drew a positive slope if the sample were normal.
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Teachers' Perception and Actual Pupil Difficulty
(IPCM: T1 and T8 excluded)
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Fig. 10.2 Teachers’ perception and actual pupil difficulty: from Hadjidemetriou and Williams
(2002)

the items (on a five-point scale starting from Very Difficult, Difficult, Moderate,
Easy, Very Easy); (b) to suggest likely errors and misconceptions the children
would make; and (c) to suggest methods/ideas they would use to help pupils
overcome these difficulties. Teachers’ knowledge was further explored through
semi-structured interviews. From the teachers’ rating scale data using Rasch models,
we scaled the teachers’ perception of difficulty and contrasted it with the learn-
ers’ difficulty hierarchy (see Fig. 10.2). It was shown that some teachers over- or
under-estimated the difficulties of some items. In Fig. 10.3, the circled items are
the items that the teachers ‘most mis-estimated’ in terms of their difficulty. Data
from questionnaires and interviews suggested that these mis-estimations were due
either to: (a) the teachers having the misconception the item was designed to elicit
(i.e. a failure of content knowledge), or (b) the teachers incorrectly assuming that
pupils required formal understanding of mathematical concepts to answer questions
correctly, i.e. a failure of pedagogical content knowledge.

The teachers’ interviews, on the other hand, confirmed that the majority of
them follow similar instructional sequences and that these are aligned with the pre-
scribed National Curriculum. They also revealed that teachers’ judgement of what
is difficult is structured by this curriculum sequence: i.e. they sometimes incorrectly
think that topics being more ‘advanced’ in the curriculum implies they are more
difficult.
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Fig. 10.3 The emergence of
knowledge about
misconceptions: from
Hadjidemetriou and Williams
(2002)

Finally, we were struck by these teachers’ apparent lack of awareness, in general,
of their children’s conceptions and misconceptions (see Table 10.1). When asked
what misconceptions they might anticipate in their planning of teaching, few had
much to say; yet when asked to predict errors in response to the test instrument, they
were better able to predict what their pupils would do. Thus, these teachers’ (who
might generally be described as ‘leading teachers’ in the sense that they were all
experienced, promoted to leading positions, or active in education in their region)
audited knowledge was highly sensitive to the methodology adopted to collect it
(Hadjidemetriou & Williams, 2002). We concluded that their knowledge is ‘dis-
tributed’ and that well-researched tools might make all the difference in what they
are able to articulate, or to show in practice (see also Chapter 3 by Hodgen, this vol-
ume). This suggests consequences for their planning of teaching perhaps, but also
for the results of audit.

Shulman (1986) proposes that pedagogical content knowledge appears in three
different forms: propositional knowledge (e.g. knowledge of students’ errors and
misconceptions drawn from the literature), case knowledge (e.g. a personal, vivid

Table 10.1 Misconceptions identified by 12 teachers: from Hadjidemetriou and Williams
(2002)

Teacher Misconception 1∗ 2∗ 3∗ 4∗ 5∗ 6∗ 7∗ 8∗ 9 I 10 I 11 I 12 Q

Slope height Q Q Q Q Q
Linearity I
Y=X prototype Q Q
Origin prototype Q Q
Picture as graph Q Q Q Q Q Q I I
Co-ordinates IQ I I IQ Q I I
Scale I I I I I IQ IQ IQ I Q

‘Q’, ‘I’, and ‘QI’ indicate whether the misconception/error was mentioned by the teacher in
the Questionnaire (Q), Interview (I) or both (IQ) while ∗ indicates the teachers who were both
interviewed and answered the questionnaire.
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classroom experience of an error that a teacher was surprised by) and strategic
knowledge (i.e. the art of acting in the moment, in particular, to act in situations
of information overload, openness, or lack of knowledge relevant to the situation).
Much knowledge is presented by teacher educators in the form of declarative state-
ments or propositions, possibly framed around a theory, in a logical form. But these
often lack richness of context and are, therefore, hard for practitioners to recall or
use in practice. According to Shulman, these limitations make propositional knowl-
edge hard to apply. Case knowledge, on the other hand, may bring these propositions
to life and embed them in context:

Case knowledge is knowledge of the specific, well-documented and richly described events.
Whereas cases themselves are reports of events, the knowledge they represent is what makes
them cases. The cases may be examples of specific instances of practice- detailed descrip-
tions of how an instructional event occurred- complete with particulars of contexts, thought
and feelings. (Shulman, 1986, p. 11)

By providing teachers with the appropriate tools that will ‘surface’ errors
and misconceptions, we hoped to enrich this kind of well-organised but well-
contextualised and usable knowledge. Thus, such pedagogical tools might help
mediate research knowledge, which might thereby be transformed aptly for teach-
ing practice. All that is then needed is the strategic judgment to use the knowledge
effectively in practice.

This link between ‘case knowledge’ and ‘propositional knowledge’ is, in our
view, generally best conceptualised not just as a cognitive one (i.e. it is not only
based on what teachers know and keep in their mind), but one which is socio-
culturally structured, i.e. mediated by well-researched tools in practice. Figure 10.3
illustrates the relationship proposed.

This suggests that teachers acquire (maybe largely through classroom practice)
knowledge about their pupils’ errors. This knowledge is tacit, based on the tasks
and items used in the classroom. This also relates to teachers’ propositional knowl-
edge. However, if these propositions and pupils’ errors and misconceptions are
theoretically organised around tasks that aim to diagnose them, then, firstly, deeper
cognitive problems such as misconceptions come to the surface, and secondly,
teachers are made aware of them. We concluded that a well-designed diagnostic
tool that includes items which will elicit errors that reveal theoretically-based errors
(i.e. misconceptions), might help to transform teachers’ tacit knowledge into explicit
knowledge that could be used in planning.

In terms of CHAT, the propositional knowledge relates most clearly to research
and perhaps teacher education practices of ‘reflection’ on teaching; it is mediated
by scientific language, and facilitates reflection and planning, and discourses about
teaching generally. But case knowledge is mediated much more obviously by the
everyday language of the context of teaching in classroom action, or generally in
interaction with learners. Strategic knowledge is wholly embedded in the practice
of teaching in the flow of the moment.

Thus, in CHAT terms, I argue that Shulman’s three components of pedagogical
content knowledge reveal the way such knowledge sits at the boundary between
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two different practices. On the one hand, we have the reflection, discussion and
theorisation of teaching of the kind found in an inquiry group, or perhaps a staff
room, or privately when a teacher is engaged in evaluating, planning, problem solv-
ing or reviewing strategies. On the other hand, we have the teaching practice itself.
I argue that the different perspectives on knowledge revealed by the two practices
explain the difference and the relation between the forms of knowledge proposed by
Shulman (propositional, case, and strategic knowledge).

Conclusion

In summary, previous studies have shown that (a) the teachers we studied sometimes
mis-judged their students’ knowledge, and their judgments are influenced not only
by their own mathematical knowledge, but also by their teaching experience and the
intended curriculum; and (b) their knowledge of their students can be strongly ‘task-
situated’ and ‘tool-mediated’ rather than ‘in the head’. In fact teacher knowledge is
distributed.

All this is suggestive of the observation that audit and evaluation are tool-
mediated, and that these tools shape cognition in practice. But the triple objects
of audit, training and teaching practices are at stake here: the tools we use are at
the boundary of all three activity systems and need somehow to satisfy the needs
of the three systems if they are to become stable. On the contrary, the contradictory
demands of the three practices may create instability, political contestation and tend
towards colonisation or de-coupling. The triumvirate involves an interesting set of
power relationships.

Audit tools can be critical in shaping the backwash effects of audit and need to
be thought through in terms of their affordances for the colonising or decoupling
of practices. It seems to be important that the tools we designed potentially coordi-
nated training and teaching practice and also the propositional and case knowledge
implicated. It also seems to be important that they can be used to construct sum-
mative measures and hence offer tools for audit. In this sense they might provide
affordances for three systems and practices.

There will always be this uneasy struggle over the use of assessment tools. If
any one community gains the upper hand such as that implied by decoupling or
colonisation, it can lead to dysfunctional practices that may serve no-one. Even
Prime Minister Tony Blair was discomforted when confronted on live television by a
patient who observed that, since his government had introduced an audit measure of
waiting times for medical appointments that punished centres where times went over
2 days, doctors’ surgeries had started refusing to make appointments (de-coupling)
more than 2 days in advance, leaving the patient angry and frustrated. Why don’t
auditors see this coming?

Let us imagine, then, the unintended consequences of audit in advance. If audit
tools become a means to control a flow of resource, one should ask how this will
distort their use in evaluation. In general, it becomes more important for the subject
to get the right answer (a measure has to have right answers) than to learn. We
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must anticipate that if a measurement becomes high stakes in the assignment of
exchange value, then the use of the tool for knowledge creation purposes in the
primary practice at stake may be compromised.

In conclusion, I have argued that educational researchers need to understand
audit as a practice and the contradictions inherent in it that might be politically
exploitable. I have given an example from our own development work of how
tools that audit knowledge-for-teaching provoke the realisation that knowledge is
socio-culturally distributed. A credible audit of knowledge-for-teaching requires
engagement with useful evaluation of learning and the development of case and
propositional knowledge that might be productive for teaching in practice. Hence
credibility of audit tends to produce a de-coupling effect – perhaps a necessary cor-
rective in these colonised times. On the other hand, the engagement of ‘evaluation
and use’ value with ‘audit and exchange’ value imposes some of the constraints
of audit on practice, e.g. audit abhors multidimensionality and complexity. This
contradiction fuels tendencies towards colonisation.

Discussion: Towards a Collective Subject

I have appealed to social, cultural analyses of audit, evaluation and assessment prac-
tices in the foregoing argument, and especially to the way that tension and political
conflict arises from contradictory practices and their objects (e.g. use and exchange
values). In reflecting on empirical work in assessment, I have focussed on how
particular tools may mediate audit and evaluation in significant ways.

It is increasingly obvious and widely recognised, I believe, that practice is medi-
ated by tools and that, therefore, audit is sensitive to the technologies of surveillance
available. Less obvious or less well known is our analysis of the social forces at
work in audit and the consequences for understanding what is possible, and how
and why productive or unproductive coupling, de-coupling or colonisation might
be designed. Finally, I suggest some new directions where the CHAT perspective
might lead.

First, CHAT recognises tool-mediation in object-orientated activity as only one
mediating factor among many that may be the source of significant contradic-
tions and therefore, dynamics. In addition, CHAT recognises the division of labour,
governed by social, cultural, historically-formed ‘norms’ that position differently
disposed subjects in collective activity. Furthermore, in particular, CHAT recog-
nises the inner contradictions within the subject and within the object of activity,
and between activities and their bounding activities through boundary objects and
boundary crossers (Cole, 1996). Finally, CHAT recognises the possibility of ‘expan-
sion’, for instance, via the re-formulation of the object of activity, or the formation
of the collective subject (Engestrom, 1987, 1991).

Where might these notions lead in the case of the audit of teacher knowledge?
First, it is significant that pedagogical knowledge is distributed in assessment tools,
but this is only one cultural reification of a more general social distribution of
knowledge.
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To credibly formulate the problem of auditing pedagogic knowledge at the level
of the individual teacher or student-teacher logically requires the presumption of
a ‘normative’ level playing field consisting of (a) a scheme of work, the depart-
ments’/schools’ plans, etc., (b) a standardised textbook and teaching resources, and
(c) a common assessment and professional development system, inter alia. However,
each institutional, classroom and pedagogical context is different. Appealing for a
normative uniformity of affordances in school context is not only unrealistic, it is
equitable to the point of being revolutionary.

If pedagogic knowledge then includes the assembly of knowledge distributed
across the learning-teaching environment, then one must evaluate this in its social
context. The result may be to question, not why a teacher is unaware of the learners’
needs, say, but why the scheme of work, the departments’ or schools’ plans, the
text book and the assessment and professional development system as a whole, are
systemically unaware of the learners’ needs. In this view, a teacher’s knowledge can
only be evaluated at the level of the system and the remediation of the system is
at issue: the blame for weaknesses becomes distributed. But so then is the remedy,
which demands a collective organisation of the many agents involved: this raises the
possibility of a community of teachers as a collective subject (see Williams et al.,
2007b). It may make sense to think increasingly of teacher knowledge in this way
as a collective property of a collectively cognising subject: perhaps the department
or the school, or even ‘the mathematics teaching profession’ as a whole, though it is
necessary to work out the appropriate levels at which evaluation becomes useful.

Then there is the question of the ‘double bind’ (Engestrom, 1987). The cen-
tral contradiction of schooling, the principal source of alienation of learners, is
that between exchange value (the learning of knowledge for accreditation, i.e. for
advantage in the future distribution wars over resources, capitals etc.) and use-value
(learning useful knowledge that enhances the capacity of the individual/social sub-
ject to act usefully). The teacher may experience the same contradiction in relation
to their own pedagogic knowledge. The thrust of the argument for the formation
of a collective subject rests in finding allies that share an interest in escaping
this double bind and in rewriting the rules. What might this mean for teacher
knowledge?

The contest over values, surely, will not be decided within the teaching profession
alone and is manifest and of interest throughout society. But I suggest that under-
standing audit and evaluation at least requires us to see how values are critically at
issue for our profession as well.
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Chapter 11
The Cultural Dimension of Teachers’
Mathematical Knowledge

Andreas J. Stylianides and Seán Delaney

A Case for Considering Culture in Research
on Teachers’ Mathematical Knowledge

Much of the teacher knowledge literature has emerged from research programmes in
North America. In one review of research on the topic, the educational philosopher
Gary Fenstermacher identified four categories of teacher knowledge. Each category
was linked to researchers based in the United States or Canada (Fenstermacher,
1994). The categories he identified were personal practical knowledge (associated
with Jean Clandinin and Michael Connolly), knowledge developed from reflec-
tive practice (associated with Donald Schön), types of knowledge about teaching
(associated with Lee Shulman), and knowledge generated by teacher-researchers
(associated with Marilyn Cochran-Smith and Susan Lytle). Although this research
originated in North America, it has influenced research on teacher knowledge
elsewhere.

Take for example Shulman’s work, which has inspired much research on teacher
knowledge over the last two decades. In 1986, Shulman drew attention to the fact
that researchers at the time were attending to generic aspects of teaching, such as
classroom management and student reinforcement, whereas subject matter knowl-
edge was being relatively neglected. Shulman’s work inspired researchers to look
more closely at the content preparation of teachers in all school subject areas and
at all levels from primary school to college. In particular, his idea of pedagogical
content knowledge (e.g., Shulman, 1986) captured the attention of many educa-
tors so that by now the term is taken for granted (Bullough, 2001). Although a
huge amount of teacher knowledge research has taken place in the United States
(e.g., Ball & Bass, 2003; Simon, 1993), researchers throughout the world have
responded to the call to look at teacher content knowledge in several school subjects
(e.g., Padilla, Ponce-de-León, Rembado, & Garritz, 2008; Rowland, Huckstep, &
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Thwaites, 2005). Whether the studies originated inside or outside the United States,
a substantial number of them cite the work of Shulman.

The timing of Shulman’s article was good, coming at a time when teachers and
teacher educators in the United States were being criticised by several reports (see
Bullough, 2001, for a discussion of these reports). But the popularity of the con-
struct of pedagogical content knowledge inside and outside the United States is
probably due to the way in which it brought together content knowledge and the
practice of teaching. By combining content knowledge and the practice of teaching,
the construct implied that a special kind of subject matter knowledge is unique to
teaching. Although the idea of pedagogical content knowledge appealed to numer-
ous researchers, many of them used the term in different ways and the construct
needed additional specification, even in the United States (Ball, Thames, & Phelps,
2008). But even if a construct is well specified in a given country, it can be prob-
lematic if that construct is applied in a new setting where it may be interpreted
differently. When a construct has different meanings in different settings, it is con-
sidered to lack conceptual equivalence (e.g., Harachi, Choi, Abbott, Catalano, &
Bliesner, 2006).

The example of pedagogical content knowledge is an illustration of how a teacher
knowledge construct developed in one country is assumed to apply universally.
But assumptions of universality need to be treated with caution. In relation to
intelligence tests, Straus (1969) made the following point:

The items used in most standard intelligence tests contain many references to objects and
events which would be outside the range of experience of a village child in Africa or India.
Of course, some children would get the correct answer to these “culturally biased” items,
but these are likely to be children who have had exposure to modern urban settings. Thus,
children getting the highest scores will not necessarily be the brightest children, but rather
the more “Westernized” (p. 234).

Although the construct of intelligence had been developed to the satisfaction of
researchers in “westernized” settings, when tests based on the construct were trans-
ferred to another setting, the construct was different and students’ scores on the
tests, which were based on the construct, had little meaning in relation to the con-
struct as originally conceived. Straus acknowledged that remedying such problems
in research poses practical difficulties, including those of time and cost.

It is possible to understand why the cultural dimension of pedagogical content
knowledge was not acknowledged when the construct was introduced. As Shulman
himself noted about the teaching effectiveness studies which were popular when
he proposed the idea of pedagogical content knowledge, “to conduct a piece of
research, scholars must necessarily narrow their scope, focus their view, and for-
mulate a question far less complex than the form in which the world presents itself
in practice” (Shulman, 1986, p. 6). Shulman focused on specific school subjects at
secondary school level and studied teachers in California. But can observations of
teachers in one US state produce a construct that has the same meaning through-
out the world? For example, Shulman asked about the knowledge needed by a
teacher when presented with “flawed or muddled textbook chapters,” and what
“analogies, metaphors, examples, demonstrations, and rephrasings” the teacher can
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use to explain, represent or clarify ideas (Shulman, 1986, p. 8). Yet in some coun-
tries, flawed or muddled textbook chapters may be rare, reducing the necessity for
teachers to possess such knowledge; and metaphors can be sensitive to national and
organisational cultures (Gibson & Zellmer-Bruhn, 2001) so that knowing a useful
metaphor in one setting may be unhelpful in another.

We have used the example of pedagogical content knowledge to urge caution in
assuming that ideas about teacher knowledge which apply in one setting have uni-
versal application. Variations in how teacher knowledge is conceived matter because
conceptions may be expressed similarly but understood differently in various coun-
tries. That is problematic for policy makers, researchers or educators who need to
be explicit about the meaning of terms they use. Furthermore, some researchers
are currently studying mathematical knowledge held by student teachers in several
countries (Tatto et al., 2008). In order to interpret the findings of the mathemat-
ics known by student teachers, it is important to know what kind of mathematical
knowledge they hold and why that knowledge is important in the particular countries
in which they will teach.

Acknowledging the cultural dimension of teachers’ mathematical knowledge is
a relatively recent phenomenon (Ball et al., 2008; Delaney, 2008; Delaney, Ball,
Hill, Schilling, & Zopf, 2008). One reason for the increased attention to the role
of culture in teacher knowledge may be due to our growing understanding of the
influence culture has in many aspects of life, from homicide rates (Nisbett, 1993)
to safety on aeroplanes (Gladwell, 2008; Merritt, 2000). Although the work pilots
do is similar from country to country, cultural attributes, such as taboos against
questioning a more senior colleague, interact with their training and other factors to
shape how they do their work. In her study of 9,400 pilots in 19 countries, Merritt
(2000) concluded that “the effects of national culture can be seen over and above
the professional pilot culture, and that one-size-fits all training is not appropriate”
(p. 299).

A major reason for our interest in teacher knowledge is to inform the professional
formation and development of teachers so that they in turn can help to raise the math-
ematical achievement of their students. If Stigler and Hiebert (1999) and others are
correct that teaching is a cultural activity, then the knowledge teachers possess or
need may depend on the culture in which they are working. Alternatively, if, like
flying planes, teaching is largely the same from country to country1 and teachers
require the same knowledge wherever they teach, cultural attributes are likely to
interact differently with teachers’ acquisition of that knowledge from one country
to another. In both cases, the cultural dimension of teacher knowledge needs to be
considered. The four chapters in this section of the book add considerably to this
discussion in relation to teachers’ mathematical knowledge, and illustrate some of
the avenues currently being pursued within the rapidly growing body of research
that acknowledges and studies the cultural dimension of teachers’ mathematical
knowledge.

1For an overview of this argument, see Dale (2000).
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In what follows, we review the four chapters with a focus on the interplay
between the cultural context and mathematical knowledge for/in teaching. We make
a distinction between “mathematical knowledge for teaching” and “mathematical
knowledge in teaching.” We use the former term to describe knowledge that can
enable teachers to effectively support student learning of mathematics. In a sense,
this kind of knowledge can be understood as being essential, or necessary, for
successful teaching (as defined within a particular cultural setting). We use the lat-
ter term to describe knowledge that teachers use as they teach mathematics, i.e.,
teachers’ knowledge as manifested in their practice. There is no suggestion about
the capacity of this kind of knowledge to necessarily support a particular form of
teaching (successful or not).

The review illuminates three different, but complementary, aspects of the cul-
tural embedding of mathematical knowledge for/in teaching. The first aspect, which
is represented by the chapters of Andrews and Pepin, situates mathematical knowl-
edge in teaching in the context of different national educational systems. The second
aspect, which is represented by the chapter of Adler and Davis, situates mathemati-
cal knowledge for teaching in the context of diverse teacher education programmes.
The final aspect, which is represented by the chapter of Williams, situates math-
ematical knowledge for teaching in the culture of a “knowledge economy”. In all
cases, the identified context of mathematical knowledge for/in teaching denotes the
main (rather than the exact or only) cultural locus of this knowledge as reflected in
the chapters.

We acknowledge that the focus of our review on the cultural embedding of
mathematical knowledge for/in teaching inevitably downplays some important con-
tributions made by the chapters that did not fit directly within the scope of our
review. We will allude to some of these contributions in the final section of our chap-
ter where we will consider implications of the four chapters for teacher education
research and practice.

The Interplay Between the Cultural Context
and Mathematical Knowledge for/in Teaching

The Cultural Embedding of Mathematical Knowledge
in Teaching in the Context of National Educational Systems

Andrews and Pepin both located teachers’ mathematical knowledge in the national
cultural discourse in which mathematics teaching and learning occur, and consid-
ered teacher knowledge as a social construction that is shaped by the particular
national educational system wherein it functions. They argued that consideration
of the characteristics of different educational systems (curricular expectations, typ-
ical teaching practices, etc.) can offer useful insight into explaining the variation
observed in the ways teachers’ mathematical knowledge is manifested in teaching
practices of these systems. Accordingly, the two chapters acknowledged the impor-
tance, and examined the role, of the cultural embedding of mathematical knowledge
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in teaching in the study of mathematics teachers’ practices in different countries.
The cross-national comparative aspect of the chapters became, then, a means by
which the authors understood and described mathematical knowledge in teaching in
their selected countries.

Having outlined in general terms the chapters’ common position on the cul-
tural embedding of mathematical knowledge in teaching, we will now consider the
development of this position in each chapter separately.

Andrews criticised existing frameworks on teachers’ mathematical knowledge in
that they tend to consider this knowledge as a personal construct, paying insufficient
attention to its cultural embedding in the context of national educational systems
that have their own systemic imperatives and didactic folklore. In an attempt to
contribute to the development of existing frameworks, Andrews proposed a comple-
ment to these frameworks, a tripartite classification of what he called “idealised”,
“received”, and “intended” curricula. This classification considers teacher knowl-
edge as a social construction that is located in the classification’s constituent and
culturally dependent curricula: one that describes teachers’ personal and articulable
perspectives on mathematics teaching and learning (idealised curriculum), one that
describes hidden and inarticulable aspects of teachers’ practices that are taken for
granted within an educational system (received curriculum), and a third one that
describes systemically defined expectations of learning outcomes that often reflect
societal or historical values (intended curriculum).

Andrews used this classification as an analytic tool to examine mathematical
knowledge in teaching as manifested in two lesson sequences on linear equations
taught by a Flemish teacher and a Hungarian teacher to grade 8 students in their
respective countries. The findings of the examination, which had a comparative
cross-national nature, suggested the utility of the classification in revealing cultur-
ally relevant aspects of mathematical knowledge in teaching. The importance of the
findings lies in that the revealed aspects could remain tacit, or defy explanation,
under alternative examinations that would use existing frameworks on teachers’
mathematical knowledge. For example, Andrews discussed the case of the Flemish
teacher who seemed reluctant to deviate from her planned lesson activities, an
attribute of her practice that could be construed as a low level “contingency” (see
Rowland et al., 2005). However, Andrews observed that it is difficult for one to
determine whether this teacher’s reluctance suggests a deficit in her pedagogical
practice or whether it actually reflects a conscious decision on the part of the teacher
not to deviate from well-articulated procedures. Andrews noted, then, that the terms
“intended” and “received” curricula offer a useful language for one to describe the
teacher’s observed behaviours: these behaviours set the teacher apart both from sys-
temic expectations of the Flemish educational system (intended curriculum) and
from practices shared among her colleagues (received curriculum).

Pepin began from the premise that the practice of “listening” is central to
mathematics teaching (and thus an important element of mathematical knowl-
edge for teaching) and examined how mathematical knowledge with respect to
listening is manifested in the teaching practices of English, French, and German
teachers. Specifically, she used a socio-cultural approach to examine mathematical
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knowledge in teaching from the point of view of listening, using data from
interviews and lesson observations with 42 teachers (14 in each country). The
cross-national nature of Pepin’s examination illuminated, like Andrews’ study did,
culturally relevant aspects of mathematical knowledge in teaching that seemed to
be shaped by the national educational contexts in which the teaching practices were
embedded.

In particular, Pepin’s examination showed that teachers’ listening (and, by impli-
cation, teachers’ knowledge with respect to listening) took different forms in the
three countries and that this variation might be explained in terms of different aims,
values, or school types in place in each country’s educational system. In England, an
aspect of teachers’ listening was its individualistic nature, which might be explained
with reference to one of the aims of the English educational system to provide
students with the individual support they need to make progress in their studies.
Contrary to what was observed in England, teachers’ listening in France tended to
attend to the group as a whole; this aspect of French teachers’ listening might be
attributed to the fact that the French educational system values whole-class dis-
cussions of mathematical problems. Finally, the considerable variation that was
observed among German teachers’ listening might be explained in terms of the dif-
ferent school types where the teachers worked. For example, German teachers who
worked in secondary modern schools (Hauptschulen), which are considered to be
educationally challenging working environments for teachers, tended to listen more
for the correctness of students’ contributions and less for the logical underpinnings
of these contributions, which was one of the characteristics of the listening practices
of their colleagues who worked in the local grammar schools (Gymnasien).

To conclude, the two chapters reinforced, extended, and further exemplified an
important point made by prior comparative research: the cultural aspects of national
educational systems not only influence what mathematics teaching looks like in
these systems and students’ learning outcomes (e.g., Cogan & Schmidt, 1999;
Hiebert et al., 2003), but also the nature and manifestation of teachers’ mathematical
knowledge in teaching practice.

The Cultural Embedding of Mathematical Knowledge
for Teaching in the Context of Diverse
Teacher Education Programmes

Adler and Davis examined the constitution of mathematical knowledge for teach-
ing in various teacher education cultures, which were shaped by the broader,
socio-economically diverse South African context. Adler and Davis argued that
descriptions of the constitution of mathematical knowledge for teaching in teacher
education would be incomplete without serious consideration of how mathemat-
ics teaching was modelled in it, i.e., the images of the mathematics teacher and,
by implication, of mathematics teaching, presented to pre- or in-service teach-
ers in teacher education programmes. Accordingly, Adler and Davis studied how
mathematics teaching was modelled in teacher education programmes as a means
of describing the kinds of learning opportunities teachers are afforded in these
programmes to develop mathematical knowledge for teaching.
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In analysing how mathematics teaching is modelled, and thus in interpreting the
mathematical knowledge for teaching constituted, in teacher education programmes,
Adler and Davis used a methodology that built on the works of Bernstein (1996)
and Davis (2001). The methodology was premised on the assumption that ped-
agogic practice entails continuous evaluation, with every evaluative act, a form
of pedagogic judgement, appealing to an authorising ground (being mathematics,
mathematics education, teaching experience, etc.) in order to legitimise the peda-
gogic judgement. Adler and Davis applied this methodology in case studies of three
teacher education programmes for in-service teachers in South Africa, and derived
three different models of mathematics teaching (one for each programme).

The models of mathematics teaching, and the corresponding kinds of learning
opportunities for teachers to develop mathematical knowledge for teaching that
these support or imply, are referred to in the chapter as (1) “look at my practice”,
(2) “look at your own practice”, and (3) “look at mathematics teaching practice”.
In the first model, developing mathematical knowledge for teaching is by emulation
of the practice (performance) of the teacher educator who aims to provide teach-
ers with an experiential base of the (reform-oriented) practice teachers are expected
to enact in their classrooms. In the second model, developing mathematical knowl-
edge for teaching is by systematic reflection on teachers’ own practices as part of an
action-research paradigm to teacher professional development. In the third model,
developing mathematical knowledge for teaching is by interrogation of records
of classroom practice, using analytic tools derived from the field of mathematics
(teacher) education.

In light of their findings of how mathematical knowledge is constituted in
teacher education, Adler and Davis raised questions about, and set a foundation for
future investigations of, the role of teacher education in redressing or reproducing
socio-economic inequality in South Africa and elsewhere. Who has access to what
learning opportunities in teacher education for developing mathematical knowledge
for teaching? How does teachers’ acquired knowledge in teacher education shape
teachers’ capacity to teach mathematics and, by implication, the learning oppor-
tunities that the teachers ultimately offer to students in schools in different areas
and of different socio-economic status? For example, Adler and Davis observed
that the first model of mathematics teaching (look at my practice) was promoted
in a teacher education programme for teachers from rural and socio-economically
disadvantaged schools. To what extent, then, does this particular teacher education
orientation to mathematics teaching account for, or contribute to, the generally low
student learning outcomes in these schools?

The Embedding of Mathematical Knowledge for Teaching
in a “Knowledge Economy” Culture

Williams situates his chapter in the culture of the “knowledge economy”. One fea-
ture of a knowledge economy is a political requirement to audit services and service
providers in order to establish a cost-benefit analysis for expenditure in particular
areas. Teachers’ mathematical knowledge for teaching has not been immune from
this societal preoccupation with auditing. The goal of auditing teacher knowledge
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is to establish an “exchange value” so that if it is found to be satisfactorily present,
resources will continue to flow towards teachers who possess such knowledge or
towards the teacher educators who help teachers develop such knowledge. In con-
trast to auditing, evaluating mathematical knowledge for teaching is concerned with
determining its “use-value”, or how it can be used in the practice of teaching.

Although audit and evaluation may often be in conflict, common to both endeav-
ours is the need for tools to audit and evaluate teacher knowledge. According to
Williams, developers of such tools face two major challenges. One is that knowledge
is sensitive to the tool that is used to audit or evaluate it. Propositional knowledge is
removed from practice and often found in research on teaching, whereas case knowl-
edge and strategic knowledge are more directly connected to classroom practices;
a tool designed to evaluate one type of knowledge may be ineffective in evaluating
another type. The second challenge identified by Williams is that teacher knowl-
edge is distributed; rather than being held “in the head” of any individual teacher,
such knowledge is held by teachers collectively – in a school or in the profession.
Given these challenges, any tool designed to evaluate or audit teacher knowledge
involves compromise. Furthermore, Williams contends, the tools that are shaped
will ultimately shape our conception of teacher knowledge.2

An analysis of culture is central to Williams’s thesis. When people are immersed
in a culture, they can be unaware of how it shapes their thoughts and actions. But
when features of a culture are highlighted or contrasted with other cultures, biases
and orientations become apparent. By attending to contemporary Western society’s
bias towards audit, and the potential for evaluation to be conflated with audit, it is
possible to consider how such an orientation affects our understanding of teacher
knowledge.

Implications for Teacher Education

Implications for teacher education of the cultural dimension of mathematics and
mathematics education (the values inherent in them, their historical and social bases,
etc.) have been considered elsewhere (see, e.g., Bishop, 1988; Gerdes, 1998). The
four chapters in this section add to these implications via another route: that of
acknowledging the cultural dimension of teachers’ mathematical knowledge. In
this section, we discuss implications that derive from this route and concern how
teacher education is, or might be, influenced by the cultural dimension of teachers’
mathematical knowledge.3

2In interpreting and describing Williams’s view, we paraphrased an expression attributed to
McLuhan (1964, 1994) in Lewis H. Lapham’s introduction to the 1994 edition of Understanding
Media: “we shape our tools and then our tools shape us” (p. xi). McLuhan’s actual quotation seems
to be that “the beholding of idols, or the use of technology conforms men to them” (p. 45).
3We use “teacher education” broadly to include both the initial training of pre-service teachers and
the continued professional development of in-service teachers.
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An important concern of mathematics teacher education is to articulate a cur-
riculum that will help teachers develop mathematical knowledge that is useful in
teaching. Some of the research that is available to inform such a curriculum has
evaluated the knowledge – often the absence of knowledge – held by teachers and
student teachers (e.g., Ball, 1990; Borko et al., 1992; Ma, 1999; Stein, Baxter,
& Leinhardt, 1990). The methods used in this research included teacher observa-
tion, asking teachers to respond to mathematics teaching scenarios, and categorising
mathematical objects. But Williams would advocate adopting a sceptical approach
to the findings of such research because in at least one case described by him the
knowledge teachers were deemed to hold was sensitive to the methodology used to
audit it. Although such methods have yielded compelling data to inform, by implica-
tion, teacher education curricula, Williams’s chapter cautions against complacency
with existing tools for evaluating teacher knowledge and advocates the need to be
mindful of the cultural-boundedness of any tools used. Future research into teachers’
mathematical knowledge, therefore, would benefit from using multiple and inno-
vative means to study mathematical knowledge in and for teaching. This would
ensure that mathematics teacher educators have rich and diverse data about teacher
knowledge to draw on when designing and delivering teacher education curricula.

Another area influenced by the cultural dimension of teachers’ mathematical
knowledge concerns the role of teacher educators. The chapters by Andrews and
Pepin both made the point that the manifestation of teachers’ mathematical knowl-
edge in teaching practice is shaped by cultural aspects of the national educational
systems wherein teachers work. In cases where these cultural aspects are aligned
with visions of effective teaching and learning of mathematics in the respective
educational systems, a potentially important element of the role of teacher educa-
tors would be to facilitate teachers’ acculturation to the existing systems. Part of this
process of acculturation would happen naturally anyway, assuming that prospective
teachers were themselves educated in those systems in which they will be employed.

Yet, in several educational systems nowadays, new visions of effective teach-
ing and learning are introduced in the context of curricular reforms. These new
visions deviate from some previous systemically defined expectations of learning
outcomes or how to achieve those outcomes, thereby creating a need for teacher edu-
cators to acculturate teachers to novel (from the point of view of a given educational
system) conceptions of teaching and learning mathematics. The “apprenticeship-of-
observation” (Lortie, 1975) would be a major obstacle to the process of acculturation
to novel conceptions, as “it is an ally of continuity [of existing practices] rather
than of change” (p. 67).4 Accordingly, a different potentially important element of
teacher educators’ role would be to help teachers become more aware of, and reflect
critically on, their “cultural scripts for teaching” (see Stigler & Hiebert, 1999) with

4The apprenticeship-of-observation is a process through which students internalise (in the
most part unconsciously) the practices of their own teachers. Lortie (1975) commented on the
apprenticeship-of-observation: “[T]he apprenticeship-of-observation undergone by all who enter
teaching begins the process of socialization in a particular way; it acquaints students with the tasks
of the teacher and fosters the development of identifications with teachers” (p. 67).
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an eye towards developing new conceptions of teaching and learning that better
meet the goals of curricular reforms in the respective educational systems.5 The
method, however, by which teacher educators can acculturate teachers to new forms
of teaching and learning remains unclear and is a fertile direction for future research.

The chapter by Adler and Davis informs this issue with its discussion of how
mathematics teaching is modelled in teacher education. It would seem that tradi-
tional discourses in teacher education would advocate the importance of the “look
at my practice” model of mathematics teaching on the basis that teachers might not
be expected to enact reform-oriented teaching without having first experienced for
themselves this kind of teaching from the learners’ point of view. Notwithstanding
this argument in favour of the “look at my practice” model when acculturating teach-
ers to new forms of teaching and learning, Adler and Davis’s chapter suggests that
an effective teacher education practice would incorporate a variety of models of
mathematics teaching, for each model would underpin different kinds of learning
opportunities for teachers to develop mathematical knowledge for teaching.

Another question to be asked by teacher educators is the extent to which the
unit to be concerned with is the individual teacher. Williams argues that the knowl-
edge that matters for teaching is distributed across the system and that strengths
and shortcomings are located not in individuals but across textbooks, school plans,
assessment, professional development and so on. Take, for example, the issue of
textbooks: “educative curriculum materials” (Davis & Krajcik, 2005), which are
concerned not only with student learning but also with teacher learning, are more
likely to complement teachers’ knowledge in ways that will have a positive impact
on their teaching than other kinds of materials. Yet, existing curriculum materi-
als, even those which are reform-oriented, fall short of meeting key expectations for
being considered “educative” (Stylianides, 2007). But even the availability of educa-
tive curriculum materials does not imply by itself that teachers use these materials
productively to enhance their knowledge for teaching (Castro, 2006). Consequently,
teacher educators need to study the wider context in which individual teachers’
knowledge interacts with other aspects of the system. This study can inform teacher
educators’ understanding of the mathematical knowledge required of individual
teachers, of specialists within a school, of teachers collectively in a school, and
of the entire teaching profession.

Williams argues further that the systems across which teachers use their mathe-
matical knowledge differ to such an extent that auditing the knowledge of individual
teachers is futile. If Williams is correct about the distributed nature of teacher
knowledge and its cultural specificity, how should teacher educators plan and assess
their courses? What are the distinctive features of different pedagogical contexts

5According to Stigler and Hiebert (1999), people within an educational system share a mental
picture of what teaching is like, that is, they share a “cultural script for teaching.” A major factor
involved in the development of teachers’ cultural scripts for teaching is the apprenticeship-of-
observation. Indeed, Stigler and Hiebert (1999) argued that “we learn how to teach indirectly,
through years of participation in classroom life, and that we are largely unaware of some of the
most widespread attributes of teaching in our own culture” (p. 11).
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that affect the mathematical knowledge required by teaching? Is it feasible to offer
prospective teachers individualised programmes to prepare them specifically for the
diverse contexts in which they might teach and to evaluate every teacher’s knowl-
edge in the teacher’s unique teaching environment? Implementing such a system
in many contemporary models of teacher education would pose practical and eco-
nomic difficulties. But, is it possible to adapt existing models of mathematics teacher
education to take on board the idea of distributed mathematical knowledge of math-
ematics for teaching? Research that would directly address such questions may yield
fruitful answers to inform teacher education.

For example, one way in which teacher educators can incorporate the distributed
knowledge assumption of mathematical knowledge for teaching is to review how
they plan for and organise learning in their courses. Hewitt and Scardamalia (1998)
identified six strategies for distributed learning processes which could be modified
for and used in the teacher education context. These strategies are to:

1. support educationally effective peer interactions,
2. integrate different forms of discourse,
3. focus students on communal problems of understanding,
4. promote awareness of participants’ contributions,
5. encourage students to build on each others’ work, and
6. emphasise the work of the community.

Such strategies for developing teacher knowledge recognise the distributed
nature of knowledge for teaching mathematics at the level of teacher education.
The central goal in using the strategies could be to create a “Knowledge-Building
Community” where the focus would be on advancing knowledge through “reading
relevant resource materials, posing questions, offering theories, conducting experi-
ments, and generally working with peers to make sense of new ideas” (Hewitt &
Scardamalia, 1998, p. 82). By applying the work of Hewitt and Scardamalia to
teachers’ acquisition of mathematical knowledge, and being mindful of the cultural
dimension of that knowledge, the possibility is opened for the chapters in this sec-
tion to enhance our understanding of how teachers acquire, or can be supported in
acquiring, mathematical knowledge for teaching.
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Chapter 12
The Knowledge Quartet as an Organising
Framework for Developing and Deepening
Teachers’ Mathematics Knowledge

Fay Turner and Tim Rowland

Introduction

In this chapter, we present some findings from a study which evaluated the
effectiveness of one classroom-based approach to the development of elementary
mathematics teaching. This approach drew on earlier research into teachers’ math-
ematical content knowledge at the University of Cambridge, when a framework for
the analysis of mathematics teaching – the Knowledge Quartet – was developed.
In the work to be reported here, this framework was used to identify and develop
a group of beginning teachers’ mathematics content knowledge for teaching. First,
we shall give a rationale for our focus on teachers’ content knowledge in action in
the classroom and a brief description of the study which led to the development of
the Knowledge Quartet.

Rationale

Education researchers and government agencies have identified limitations in teach-
ers’ mathematical content knowledge (e.g. Ball, 1990; Ma, 1999; Ofsted, 2000).
These limitations have been perceived as a factor in unsatisfactory pupil achieve-
ment (Williams, 2008). Difficulties associated with teachers’ mathematical content
knowledge are particularly apparent in the elementary sector where generalist teach-
ers often lack confidence in their own mathematical ability (Brown, McNamara,
Jones, & Hanley, 1999; Green & Ollerton, 1999). The ‘reform’ movement in
mathematics teaching, and enquiry-based approaches to learning, which have been
influential in curriculum reform in several countries, arguably require teachers to
have a greater depth of mathematical content knowledge than was needed for teach-
ing more ‘traditional’ mathematics (e.g. Borko et al., 1992; Goulding, Rowland,
& Barber, 2002). Identifying, developing and deepening teachers’ mathematical
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content knowledge, has therefore become a priority for policy makers and math-
ematics educators around the world.

There is not a simple relationship between teachers’ formal qualifications in
mathematics and the achievement of their pupils (Askew, Brown, Rhodes, Johnson,
& Wiliam, 1997; Begle, 1979). Several researchers have argued that mathematical
content knowledge needed for teaching is not located in the minds of teachers, but
rather is realised through the practice of teaching (Hegarty, 2000; Mason & Spence,
1999). From this perspective, knowledge for teaching is constructed in the context
of teaching, and can therefore be observed only as ‘in vivo’ knowledge in this con-
text. Teaching requires knowledge in several different domains, and a number of
knowledge taxonomies reflect this multidimensional perspective (see Chapter 2 by
Petrou and Goulding, this volume). Hegarty (2000) argued that the effects of these
different kinds of teacher knowledge can only be understood within the contexts
of dynamic teaching situations. He presented a model which represents the teacher
as having a number of incomplete sets of relevant insights, elements of which come
together in instances of teaching to form a new insight specific to that situation. This
is resonant with the contention of Mason and Spence (1999) that knowing-about
mathematics and mathematics teaching is only realised as knowing-to in the act of
teaching. The perspective on teacher knowledge at the heart of this chapter – the
Knowledge Quartet – provides a framework for analysis of the mathematics content
knowledge that informs teacher insights when they are brought together in prac-
tice, so that the distinction between different kinds of mathematical knowledge is
of lesser significance than the classification of the situations in which mathematical
knowledge surfaces in teaching. In the following section, we outline the fundamen-
tal, observational research that gave rise to the ‘tool’ that lies at the heart of this
chapter.

Developing the Knowledge Quartet

Context and Purpose of the Research

In the UK, the majority of prospective, ‘trainee’ teachers are graduates who fol-
low a one-year course leading to a Postgraduate Certificate in Education (PGCE)
in a university education department. Over half of the PGCE year is spent teaching
in schools under the guidance of a school-based mentor, or ‘cooperating teacher’.
Placement lesson observation is normally followed by a review meeting between the
cooperating teacher and the student-teacher. On occasion, a university-based tutor
will participate in the observation and the review. Thirty years ago, Tabachnick,
Popkewitz, and Zeichner (1979) found that “cooperating teacher/student teacher
interactions were almost always concerned with . . . procedural and management
issues . . . There was little or no evidence of any discussion of substantive issues
in these interactions” (p. 19). The situation has not changed, and more recent stud-
ies also find that mentor/trainee lesson review meetings typically focus heavily on
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organisational features of the lesson, with very little attention to the mathematical
content of mathematics lessons (Borko & Mayfield, 1995; Strong & Baron, 2004).

The purpose of the research from which the Knowledge Quartet emerged was to
develop an empirically-based conceptual framework for lesson review discussions
with a focus on the mathematics content of the lesson and the role of the trainee’s
mathematics subject matter knowledge (SMK) and pedagogical content knowledge
(PCK). In order to be a useful tool for those who would use it in the context of
practicum placements, such a framework would need to capture a number of impor-
tant ideas and factors about mathematics content knowledge in relation to teaching,
within a small number of conceptual categories, with a set of easily-remembered
labels for those categories.

The focus of this particular research was therefore to identify ways that teachers’
mathematics content knowledge – both SMK and PCK – can be observed to ‘play
out’ in practical teaching. The teacher-participants in this study were novice, trainee
elementary school teachers, and the observations were made during their school-
based placements. Whilst we believe certain kinds of knowledge to be desirable
for elementary mathematics teaching, we are convinced of the futility of assert-
ing what a beginning teacher, or a more experienced one for that matter, ought to
know. Our interest is in what a teacher does know and believe, and how opportu-
nities to enhance knowledge can be identified. We have found that the Knowledge
Quartet, the framework that arose from this research, provides a means of reflecting
on teaching and teacher knowledge, with a view to developing both.

Method

The participants in the study were enrolled on a 1-year PGCE course in which each
of the 149 trainees specialised either on the Early Years (pupil ages 3–8) or the
Primary Years (ages 7–11). Six trainees from each of these groups were chosen for
observation during their final school placement. The six were chosen to reflect a
range of outcomes of a subject-knowledge audit administered 3 months earlier. Two
mathematics lessons taught by each of these trainees were observed and videotaped,
i.e. 24 lessons in total. The trainees were asked to provide a copy of their planning
for the observed lesson. As soon as possible after the lesson, the observer/researcher
wrote a succinct account of what had happened in the lesson, so that a reader might
immediately be able to contextualise subsequent discussion of any events within it.
These ‘descriptive synopses’ were typically written from memory and field notes,
with occasional reference to the videotape if necessary.

From that point, we took a grounded approach to the data for the purpose of gen-
erating theory (Glaser & Strauss, 1967). In particular, we identified in the videotaped
lessons aspects of trainees’ actions in the classroom that seemed to be significant in
the limited sense that it could be construed to be informed by a trainee’s mathe-
matics subject matter knowledge or their mathematical pedagogical knowledge. We
realised later that most of these significant actions related to choices made by the
trainee, in their planning or more spontaneously. Each was provisionally assigned
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an ‘invented’ code. These were grounded in particular moments or episodes in the
tapes. This provisional set of codes was rationalised and reduced (e.g. eliminating
duplicate codes and marginal events) by negotiation and agreement in the research
team. The 18 codes generated by this inductive process are itemised later in this
chapter. The name assigned to each code is intended to be indicative of the type of
issue identified by it: for example, the code adheres to textbook (AT) was applied
when a lesson followed a textbook script with little or no deviation, or when a set
of exercises was ‘lifted’ from a textbook, or other published resource, sometimes
with problematic consequences. By way of illustration of the coding process, we
give here a brief account of an episode that we labelled with the code responding
to children’s ideas (RCI). It will be seen that the contribution of a child was unex-
pected. Within the research team, this code name was understood to be potentially
ironic, since the observed response of the teacher to a child’s insight or suggestion
was often to put it to one side rather than to deviate from the planned lesson script,
even when the child offered further insight on the topic at hand.

Code RCI: an illustrative episode. Jason was teaching elementary fraction con-
cepts to a Year 3 class (pupil age 7–8). Each pupil held a small oblong whiteboard
and a dry-wipe pen. Jason asked them to “split” their individual whiteboards into
two. Most of the children predictably drew a line through the centre of the oblong,
parallel to one of the sides, but one boy, Elliot, drew a diagonal line. Jason praised
him for his originality, and then asked the class to split their boards “into four”.
Again, most children drew two lines parallel to the sides, but Elliot drew the two
diagonals. Jason’s response was to bring Elliot’s solution to the attention of the
class, but to leave them to decide whether it was correct. He asked them:

Jason: What has Elliot done that is different to what Rebecca has done?
Sophie: Because he’s done the lines diagonally.
Jason: Which one of these two has been split equally? [...] Sam, has Elliot split

his board into quarters?
Sam: Um. . . yes. . . no. . .

Jason: Your challenge for this lesson is to think about what Elliot’s done, and
think if Elliot has split this into equal quarters. There you go Elliot.

At that point, Jason returned the whiteboard to Elliot, and the question of whether
it had been partitioned into quarters was not mentioned again. What makes this
interesting mathematically is the fact that (i) the four parts of Elliot’s board are
not congruent, but (ii) they have equal areas; and (iii) this is not at all obvious.
Furthermore, (iv) an elementary demonstration of (ii) is arguably even less obvious.
This seemed to us a situation that posed very direct demands on Jason’s SMK and
arguably his PCK too. It is not possible to infer whether Jason’s “challenge” is
motivated by a strategic decision to give the children some thinking time, or because
he needs some himself.

Equipped with this set of codes, we revisited each lesson in turn and, after further
intensive study of the tapes, elaborated each descriptive synopsis into an analytical
account of the lesson. In these accounts, the agreed codes were associated with rel-
evant moments and episodes, with appropriate justification and analysis concerning
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the role of the trainee’s content knowledge in the identified passages, with links to
relevant literature.

The identification of these fine categories was a stepping stone with regard to
our intention to offer a practical framework for use by ourselves, our colleagues and
teacher-mentors, for reviewing mathematics teaching with trainees following lesson
observation. An 18-point tick-list (like an annual car safety check) was not quite
what was needed. Rather, the intended purpose demanded a more compact, read-
ily understood scheme, which would serve to frame a coherent, content-focused
discussion between teacher and observer. The key to the solution of our dilemma
was the recognition of an association between elements of subsets of the 18 codes,
enabling us to group them (again by negotiation in the team) into four broad, super-
ordinate categories, which we have named (I) foundation (II) transformation (III)
connection (IV) contingency. These four units are the dimensions of what we call
the ‘Knowledge Quartet’.

Each of the four units is composed of a small number of subcategories that
we judged, after extended discussions, to be of the same or a similar nature. An
extended account to the research pathway described above is given in Rowland
(2008). Naturally, we are immersed in the process from which the codes emerged.
We believe, however, that our names for the codes are less important to other users of
the ‘quartet’ than a broad sense of the general character and distinguishing features
of each of broad units, which we shall outline in a moment. The Knowledge Quartet
has now been extensively ‘road tested’ as a descriptive and analytical tool. As well
as being re-applied to analytical accounts of the original data (the 24 lessons), it has
been exposed to extensive ‘theoretical sampling’ (Glaser & Strauss, 1967) in the
analysis of other mathematics lessons, in England and beyond. As a consequence,
two additional codes1 have been added to the original 18, but in its broad concep-
tion, we have found the quartet to be comprehensive as a tool for thinking about the
ways that content knowledge comes into play in the classroom. We have found that
many moments or episodes within a lesson can be understood in terms of two or
more of the four units; for example, a contingent response to a pupil’s suggestion
might helpfully connect with ideas considered earlier. Furthermore, the application
of content knowledge in the classroom always rests on foundational knowledge.

Conceptualising the Knowledge Quartet

The concise conceptualisation of the Knowledge Quartet which now follows draws
on the extensive range of data referred to above. As we observed earlier, the prac-
tical application of the Knowledge Quartet depends more on teachers and teacher
educators understanding the broad characteristics of each of the four dimensions
than on their recall of the contributory codes.

1These new codes, derived from applications of the KQ to classrooms in Ireland and Cyprus, are
teacher insight (Contingency) and use of instructional materials (Transformation) respectively.
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Foundation

Contributory codes: awareness of purpose; identifying errors; overt subject knowledge;
theoretical underpinning of pedagogy; use of terminology; use of textbook; reliance on
procedures.

The first member of the quartet is rooted in the foundation of the teacher’s the-
oretical background and beliefs. It concerns their knowledge, understanding and
ready recourse to what was learned at school, and at college/university, including
initial teacher preparation, in preparation (intentionally or otherwise) for their role
in the classroom. It differs from the other three units in the sense that it is about
knowledge ‘possessed’,2 irrespective of whether it is being put to purposeful use.
For example, we could claim to have knowledge about division by zero, or about
some probability misconceptions – or indeed to know where we could seek advice
on these topics – irrespective of whether we had had to call upon them in our work
as teachers. Both empirical and theoretical considerations have led us to the view
that the other three units flow from a foundational underpinning.

A key feature of this category is its propositional form (Shulman, 1986). It is
what teachers learn in their ‘personal’ education and in their ‘training’ (pre-service
in this instance). We take the view that the possession of such knowledge has the
potential to inform pedagogical choices and strategies in a fundamental way. By
‘fundamental’ we have in mind a rational, reasoned approach to decision-making
that rests on something other than imitation or habit. The key components of this
theoretical background are: knowledge and understanding of mathematics per se;
knowledge of significant tracts of the literature and thinking which has resulted from
systematic enquiry into the teaching and learning of mathematics; and espoused
beliefs about mathematics, including beliefs about why and how it is learnt.

In summary, this category that we call ‘foundation’ coincides to a significant
degree with what Shulman (1987) calls ‘comprehension’, being the first stage of his
six-point cycle of pedagogical reasoning.

Transformation

Contributory codes: teacher demonstration; use of instructional materials; choice of repre-
sentation; choice of examples.

The remaining three categories, unlike the first, refer to ways and contexts in
which knowledge is brought to bear on the preparation and conduct of teaching.
They focus on knowledge-in-action as demonstrated both in planning to teach and
in the act of teaching itself. At the heart of the second member of the quartet,
and acknowledged in the particular way that we name it, is Shulman’s observa-
tion that the knowledge base for teaching is distinguished by “ . . . the capacity of a

2The use of this acquisition metaphor for knowing suggests an individualist perspective on
Foundation knowledge, but we suggest that this ‘fount’ of knowledge can also be envisaged
and accommodated within more distributed accounts of knowledge resources (see Chapter 3 by
Hodgen, this volume).
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teacher to transform the content knowledge he or she possesses into forms that are
pedagogically powerful” (1987, p. 15, emphasis added). This characterisation has
been echoed in the writing of Ball (1988), for example, who distinguishes between
knowing some mathematics ‘for yourself’ and knowing in order to be able to help
someone else learn it. As Shulman indicates, the presentation of ideas to learn-
ers entails their re-presentation (our hyphen) in the form of analogies, illustrations,
examples, explanations and demonstrations (Shulman, 1986, p. 9). Our second cat-
egory, unlike the first, picks out behaviour that is directed towards a pupil (or a
group of pupils), and which follows from deliberation and judgement informed by
foundation knowledge. This category, as well as the first, is informed by partic-
ular kinds of literature, such as the teachers’ handbooks of textbook series or in
the articles and ‘resources’ pages of professional journals. Increasingly, in the UK,
teachers look to the internet for bright ideas, and even for readymade lesson plans.
The trainees’ choice and use of examples has emerged as a rich vein for reflec-
tion and critique. This includes the use of examples to assist concept formation, to
demonstrate procedures, and the selection of exercise examples for student activity.

Connection

Contributory codes: making connections between procedures; making connections between
concepts; anticipation of complexity; decisions about sequencing; recognition of conceptual
appropriateness.

The next category binds together certain choices and decisions that are made
for the more or less discrete parts of mathematical content – the learning, perhaps,
of a concept or procedure. It concerns the coherence of the planning or teaching
displayed across an episode, lesson or series of lessons. Mathematics is notable for
its coherence as a body of knowledge and as a field of enquiry. Indeed, a great deal of
mathematics is held together by deductive reasoning. The pursuit of coherence and
mathematical connections in mathematics pedagogy has been stimulated recently
by the work of Askew et al. (1997): of six case study teachers found to be highly
effective, all but one gave evidence of a ‘connectionist’ orientation. The association
between teaching effectiveness and a set of articulated beliefs of this kind lends a
different perspective to the work of Ball (1990) who also strenuously argued for the
importance of connected knowledge for teaching.

Related to the integrity of mathematical content in the mind of the teacher and
his/her management of mathematical discourse in the classroom, our conception
of coherence includes the sequencing of topics of instruction within and between
lessons, including the ordering of tasks and exercises. To a significant extent, these
reflect deliberations and choices entailing not only knowledge of structural connec-
tions within mathematics itself, but also awareness of the relative cognitive demands
of different topics and tasks.

Contingency

Contributory codes: responding to children’s ideas; use of opportunities; deviation from
agenda; teacher insight.
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Our final category concerns the teacher’s response to classroom events that were
not anticipated in the planning. In some cases, it is difficult to see how they could
have been planned for, although that is a matter for debate. In commonplace lan-
guage this dimension of the quartet is about the ability to ‘think on one’s feet’:
it is about contingent action. Shulman (1987) proposes that most teaching begins
from some form of ‘text’ – a textbook, a syllabus, ultimately a sequence of planned,
intended actions to be carried out by the teacher and/or the students within a lesson
or unit of some kind. Whilst the stimulus – the teacher’s intended actions – can be
planned, the students’ responses can not.

Brown and Wragg (1993) suggest that ‘responding’ moves are the lynch pins
of a lesson, important in the sequencing and structuring of a lesson, and observe
that such interventions are some of the most difficult tactics for novice teachers to
master. The quality of such responses is undoubtedly determined, at least in part,
by the knowledge resource available to the teacher, as the earlier illustrative episode
with Jason demonstrates.

Having now set out the conceptual apparatus underpinning the tool in focus in
this chapter, we now proceed to an account of its use by a group of teachers in their
professional development over a 4-year period.

The Knowledge Quartet and Mathematics
Teaching Development

The Knowledge Quartet was developed to identify, describe and analyse mathemat-
ics content knowledge revealed in teaching, in order to provide a framework for
reflection and discussion of lessons. We were then motivated to investigate whether,
and in what ways, the framework could be used to develop and deepen mathemat-
ical content knowledge. In a study begun in 2004, the first author evaluated the
Knowledge Quartet as a tool for the identification and development of teachers’
SMK and PCK (see e.g. Turner, 2008).

This longitudinal study took place over 4 years, during which the participants
could be regarded as ‘beginning teachers’. Each of these years was considered a
different phase of the study. It began with 12 participants in their PGCE graduate
teacher preparation year. As expected, this cohort reduced to nine in the second year,
to six in the third year and finally to four in the fourth and final year of the study. This
attrition was predicted, and a consequence of the participants’ relocation, changes
in commitment to and participation in the project. Four case studies, of Amy, Jess,
Kate and Lisa, were built using data from lesson observations, post-lesson reflective
interviews, participants’ reflective written accounts, group interviews and individual
interviews over the 4 years.

The study was based on a model of teacher professional development through
reflection both in and on teaching action (Schön, 1983). The Knowledge Quartet
was used to focus the teachers’ reflections on the mathematics content knowledge
realised in their teaching. The teachers used the framework as a tool to support their
reflections on and discussions about their mathematics teaching over the course of
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the study. Videotapes of the participants’ lessons were used to aid recall and to allow
in-depth analysis and reflection on, their teaching.

The participants were initially introduced to, and familiarised with, the
Knowledge Quartet in their training year. One lesson taught by each of them was
videotaped and analysed during their final practicum placement. These videotapes
were used in one-to-one stimulated recall interviews with the participants, using the
Knowledge Quartet to focus on the mathematical content of each lesson. During
their first year of teaching, the participants were given focused feedback, struc-
tured by the Knowledge Quartet framework, on three videotaped lessons. This was
intended to support and develop their own use of the framework. They then watched
the videotapes and wrote reflective accounts of these lessons. In the second year
of their teaching, the most intensive period of data collection, participants used the
framework more independently, supported by discussions with the researcher and
by group meetings. Interviews and observations in the third year of their teach-
ing gave final indications of the development in participants’ mathematical content
knowledge as it was evidenced in their teaching.

Lesson observations were analysed by the first author using the dimensions and
constituent codes of the Knowledge Quartet. Transcripts of one–one interviews and
group meetings, and the participants’ written reflective accounts, were analysed
using the computer-aided qualitative analysis software NVivo. This gave rise to a
hierarchy of emergent codes and themes, which informed the final analysis of the
data. As we will demonstrate below, there was evidence from the study that use
of the Knowledge Quartet as a framework for reflection had a positive influence
on the development of the participants’ content knowledge for teaching by focus-
ing reflection on the mathematical content of their teaching, as opposed to the more
managerial and generic aspects that tend, as we remarked earlier, to dominate lesson
review.

The analysis brought out two overarching aspects in the development of the
participants. The first of these related to their conceptions of mathematics teach-
ing – an aspect of Foundation knowledge coded in the longitudinal study under the
themes of ‘beliefs’ and ‘confidence’. The second related more broadly to develop-
ments in mathematical content knowledge in relation to the four dimensions of the
Knowledge Quartet.

Development in Conceptions of Mathematics Teaching

From a comprehensive review of literature across several disciplines, Kuhs and Ball
(1986) identified four dominant views of the way mathematics should be taught:

• a classroom-focused view;
• a content-focused with an emphasis on performance view;
• a content-focused with an emphasis on conceptual understanding view;
• a learner-focused view.
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Kuhs and Ball (1986) give detailed accounts of these four views, making them
accessible as a framework for analysis. These models were not seen as exclusive:
teachers would be expected to hold elements of more than one view simultane-
ously, and over time. Ernest (1989) subsequently included two additional models
of conceptions which combined characteristics of these views. However, these
combinations could be accounted for within Kuhs and Ball’s simpler four-model
framework.

Evidence from the different data sources combined to reveal that each of the par-
ticipants held complex views of mathematics teaching incorporating elements from
all four of Kuhs and Ball’s dominant views. Though the initial balance of these ele-
ments varied, the NVivo analysis indicated a pattern in the direction of change in the
four case studies. Jess, Lisa and Kate began the study with predominantly content-
focused views of teaching and Amy with a predominantly learner-focused view.
There was evidence that the teachers moved towards views with greater emphasis on
developing conceptual understanding in pupils rather than on developing procedu-
ral performance. There was also a pattern of change in conceptions of mathematics
teaching towards a learner-focused view. In the following section, selected data from
the study are used to substantiate the claims made above. Inevitably, only a small
selection of representative data can be presented here.

Jess began her career with a content-focused view of mathematics teaching which
emphasised performance. In her first year of teaching, she commented:

The thing is, if it [using written algorithms] works for them what’s the problem? I have
found some of the less able children have been shown how to do carrying, and they’ve got
it and they use that all the time. (Jess, group interview, Phase 2)

Over the course of the study, she moved towards a view which emphasised
conceptual understanding though she continued to consider performance to be
important.

I think teaching procedures are important, especially for low ability children who need to
have a strategy to rely on. However, I have made a conscious effort to make my teach-
ing more conceptual so it becomes much more real than just practicing something and it
probably means it is much easier to apply in a new situation as it means something. (Jess,
individual interview, Phase 4)

Like Jess, Lisa focused on procedures at the beginning of her career.

The children can often do what I want them to do when it is like that because it is in small
steps. (Lisa, post-lesson interview, Phase 1)

By her third year of teaching, there was evidence that Lisa had become more
concerned with conceptual understanding. Commenting on a lesson she had taught
at the beginning of the year, she wrote;

It might have helped if I had been more encouraging of them to use jottings as well as to
write the number sentence. They didn’t need them for the numbers involved but it probably
would have helped them with what the concept was. (Lisa, post-lesson reflective interview,
Phase 3)
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In her first year of teaching, Amy focused on both the performance (ability to
count accurately) and conceptual understanding of individual children:

I had planned which children I would ask to count which box of items so that I could
differentiate the counting task or assess individual skills. I deliberately chose Katie so I
could assess whether she had the cardinal principle. (Amy, post-lesson reflective interview,
Phase 2)

In addition to being interested in whether the children could count accurately,
Amy used their ‘performance’ to assess whether they understood the concept of
cardinality. By her second year of teaching, Amy appeared to move further towards
a learner-focused view:

Teachers often talk too much, including me; more focus should be given to the children
rather than the teacher. I have learned to really watch children. It is great to be able to see
from the other side and see how they are responding. (Amy, group interview, Phase 3)

There was some evidence in Jess’ second year of teaching that she was trying to
understand the thinking of individuals as well as of groups of children and use this
to inform her teaching.

I have started to get children to explain in more detail what they have said so I understand
where they are coming from, and also so some of the other children start to realise some of
these things too. (Jess, reflective account, Phase 3)

Kuhs and Ball (1986) suggest that teachers with a learner-focused view of math-
ematics teaching would adopt a problem solving or enquiry approach in their
teaching. There was some evidence in Jess’ third year of teaching that she was see-
ing the advantages of such an approach for understanding and developing children’s
mathematical thinking.

When it gets around to working out what they know, it proves more if they have done
problem solving. Like really, like hands on, like thinking and trying to think about the
calculations they are doing really helps, rather than paper methods. (Jess, group interview,
Phase 4)

Lisa also moved towards a problem solving approach to her mathematics teach-
ing. This was apparent when she taught a similar lesson in her third year of teaching
to one she had taught in her first year, about the complements in ten. In the earlier
lesson, Lisa systematically demonstrated finding each of the complements in ten by
dividing ten objects between two sets. In the later lesson, Lisa asked the children to
investigate how many different ways the ten objects might be divided between the
two sets.

There was evidence that the conceptions of the four teachers moved in similar
directions, although from different starting points and to different degrees. Research
shows that such movement does not occur through teaching experience alone (e.g.
Wilson and Cooney, 2002). It was evident that Lisa’s use of the Knowledge Quartet
influenced the move towards focusing on conceptual understanding and towards a
learner-focused view of mathematics teaching.
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It [the Knowledge Quartet] certainly gets me thinking a lot more about what I know and
how I am going to teach them, like watching how they’ve learned. (Lisa, Group interview,
Phase 2)

There was also evidence that Amy’s use of the Knowledge Quartet both
supported and developed her learner-focused view of mathematics teaching.

I think the Knowledge Quartet has pushed me to think from the other side and see more
clearly how the children see and what they need. It makes me try to put myself in their
heads. (Amy, group interview, Phase 2)

A comment made by Kate in her second year of teaching suggested that use
of the framework helped her to focus less on organisational matters, and more on
conceptual understanding and on the learner.

The first few things I would be thinking of are the organisational things, and then I try to
think ‘did they learn anything’ and ‘was the learning alright’ even if the organisation wasn’t
kind of thing. So, I think it is useful to have some kind of structure to help you know what
you need to know and what they need to know and how to learn it. I think what I have said
and how I have explained things, I am more aware than I would be if I didn’t have such a
clear idea of what I was looking for. (Kate, interview, Phase 2)

There is less clear evidence from Jess’s data that her use of the Knowledge
Quartet was instrumental in moving her conceptions in a specific direction.
However, she clearly saw the Knowledge Quartet as instrumental in improving her
mathematics teaching.

I think it is the only subject we have feedback on our teaching really . . . it is the only thing
that actually comes close to constructive. What you’ve really thought about and tried to
improve things and get in the right order . . . I think it has probably increased our maths
teaching a lot more. (Jess, group interview, Phase 4)

In focusing and framing reflection on the mathematical content of teaching, the
Knowledge Quartet appears to have been influential in confronting the conceptions
of the teachers in the study. These conceptions generally shifted towards a view of
mathematics teaching that was concerned with conceptual understanding and which
focused on the learner. An increasingly learner-focused view was reflected in the
adoption of more problem solving and enquiry approached to teaching mathematics.

Development of Content Knowledge

Use of the Knowledge Quartet was also found to be instrumental in developing
the participants’ mathematical content knowledge for teaching. There was evidence
that reflection, focused by the Knowledge Quartet on the mathematical content of
their mathematics teaching, enhanced the development of SMK, and particularly of
PCK, in the teachers over the 4 years of the study. Developments in mathematical
content knowledge were particularly evident in observations of teaching when two
lessons taught by the same participant on similar topics were observed. For exam-
ple, Amy was observed teaching lessons on counting in her training year and again
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in her first year of teaching. In the first lesson, Amy made use of a number of count-
ing activities which involved the understanding of one or more of the principles
of counting (Gelman and Gallistel, 1978) to which she had been introduced in her
pre-service training. However, post-lesson discussions revealed that Amy was not
aware of how these activities might help develop children’s understanding of the
principles. Amy’s knowledge and use of the principles of counting was much more
explicit in the second lesson.

When I was planning this lesson, I drew on my knowledge of the pre-requisites for counting:
knowing the number names in order, one to one correspondence, the cardinal principle,
being able to count objects that cannot be moved/touched and counting objects that cannot
be seen e.g. sounds or beats. (Amy, post-lesson interview, Phase 1)

This pedagogical content knowledge informed Amy’s teaching in a way that it
had not in the earlier lesson on counting. Her reflections on the previous lesson,
mediated by the Knowledge Quartet, had prompted her to recall the classic Gelman
and Gellistel work and seemed to have influenced Amy towards making the pre-
requisites for counting more explicit in a similar lesson the following year.

Participants’ written reflective accounts also suggested developments in their
content knowledge, in relation to all four dimensions of the Knowledge Quartet.
In relation to the foundation dimension, reflecting on their teaching using the
Knowledge Quartet helped participants to recognise limitations in their SMK, which
they then attempted to rectify. For example, Jess recognised the difficulty she had in
distinguishing between the partition and quotition structures of division.

Explaining dividing in terms of grouping and sharing still gets me mixed up. It is something
I need to work on myself. The aim was to explain in terms of grouping. In future I am going
to sort this out before the lesson so my physical representations don’t get mixed up. (Jess,
reflective account, Phase 2)

Through reflecting on her teaching, another of the participants, Kate, realised that
she had not understood the difference between two subtraction structures (Rowland,
2006) and that this had affected her teaching.

Because I had not really thought of ‘find the difference’ as a different sort of subtraction
operation, but had thought of it just as different vocabulary for asking the question, I didn’t
really think about my choice of example in terms of looking for examples for which it would
be sensible to do a ‘difference’ operation rather than a take away. (Kate, reflective account,
Phase 2)

There was also evidence of developments in the teachers’ content knowledge in
relation to the transformation dimension of the Knowledge Quartet. All the partic-
ipants were critical of their own teaching and the Knowledge Quartet framework
channelled these criticisms in a constructive way onto the mathematical content of
their lessons and onto how their pedagogy might be improved in relation to this
content, e.g.

When they were counting sounds it would have been helpful to match each sound to a held
up finger . . . When I asked are there more frogs or more snakes I could have asked a child
to come up and show these on the number line. (Amy, reflective account, Phase 1)



208 F. Turner and T. Rowland

I chose some quite big numbers to illustrate that drawing cubes and crossing them off may
not always be reliable. It might have been better if I had chosen large numbers but with a
small difference between them. (Kate, reflective accounts, Phase 2)

Amy’s reflection led her to make suggestions for improvements to her teaching
which focused on the use of demonstrations and representations. Kate suggested
improvements to her teaching which related to her use of examples. These are all
key aspects of the transformation dimension of the Knowledge Quartet.

There was also evidence that when reflecting on their teaching the participants
were guided by the connection dimension of the Knowledge Quartet. The partic-
ipants’ reflection on their teaching focused on the connections they made, or had
missed, and on how these might be further developed to enhance learning. Amy con-
sidered ways in which she could have made further connections in her lesson and
clearly recognized the importance of making connections to aid children’s learning.

I could have linked the lesson to earlier work on counting or the OMS3 (on counting and
sharing fruit) earlier in the morning. I could have made reference to the good counting
strategies one of the children used earlier when counting the fruit which would have enabled
the children to make a connection and see their learning in context. (Amy, reflective account,
Phase 2)

The sequencing of teaching is one aspect of the connection dimension of
the Knowledge Quartet and in reflecting on her teaching Kate considered the
appropriateness of the sequence she had used.

Most of the children appeared to find measuring much easier than estimating making me
think I should have done the activities in the opposite order. (Kate, reflective account,
Phase 2)

Finally, there was evidence that the participants’ reflection on their teaching
focused on aspects of their content knowledge from within the contingency dimen-
sion of the Knowledge Quartet. For instance, Kate reflected on a teaching episode
in which she had acted contingently.

When estimating how many cubes long a book was Harriet-Mae said “eighty” and then
corrected herself to say “eighteen”. I used this as an example to question the children about
which of these was a sensible estimate and we discussed why 80 was not. (Kate, reflective
account, Phase 3)

Amy clearly felt that she became more able to act contingently over the course
of the study.

I am [more] aware of children’s common misconceptions, and can therefore adapt in
response contingently, or plan for these. Generally I think there is more contingent teaching
going on and I am more confident to be flexible. I can respond quickly to a child by setting
up an activity I know will extend from what they are doing. (Amy, group interview, Phase 3)

3Oral and Mental Starter (OMS) was the term used in government guidance in the early 2000s
for the beginning part of a mathematics lesson, in which children were expected to rehearse their
knowledge of number bonds, calculation facts, etc.
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It is likely that these teachers would have developed their practice in any case
through systematic reflection. However, the instances discussed above suggest that
the participants’ reflection was focused on the mathematical content of their teach-
ing by their use of the Knowledge Quartet. Our claim is that the Knowledge Quartet
is an effective tool in this crucial respect. The teachers were alerted to issues relating
to their mathematical content knowledge and they thought about ways to improve
their teaching by addressing these issues. Kate explained how the Knowledge
Quartet framework directed her reflection.

If I think about my teaching in the car on the way home and I think, if it wasn’t very
good, why wasn’t it very good? Was it the concept behind what I told them to do or was
it the resources they had to do it with? So, that would be the Transformation and the first
one would be Foundation. What would have enabled them to understand that better than
they did? . . . I try and think, did they learn anything and, was the learning alright, even if
the organisation wasn’t. So, I think it is useful to have some kind of a framework. (Kate,
interview, Phase 3)

Jess was convinced that her use of the Knowledge Quartet had been a positive
influence on her teaching.

I think the KQ has definitely improved my teaching. When I am planning I draw on the four
areas unconsciously criticising what I plan to do, often asking myself questions – does that
show what I want it to etc. (Jess, interview, Phase 3)

Amy explained why she found the framework useful and suggested that she saw
the Foundation dimension as having ‘overriding’ importance in her teaching.

I think it is good to be able to think about how you are putting different elements of your
lesson into the different parts of the Quartet and also seeing how they link up. You feel
like the Foundation theme is a kind of overriding one that comes into everything. (Amy,
interview, Phase 3)

There was considerable evidence from observations of teaching, interviews and
written reflective accounts that the participants’ content knowledge for teaching
developed over the course of the study and that this development was catalysed
by reflection on their teaching supported by the Knowledge Quartet framework.
Much evidence for the developments in mathematical content knowledge for teach-
ing related to the PCK of the participants. However, there was also some evidence
that the Knowledge Quartet supported development of the participants’ SMK.

Conclusion

This study shows that the Knowledge Quartet can be an effective tool in develop-
ing teachers’ mathematical content knowledge through focused reflections on their
mathematics teaching. All of the teachers who participated in the study reported
above testified that they had found the Knowledge Quartet helpful when planning
and evaluating their teaching and intended to continue using it after their participa-
tion in the project ceased. Participants particularly valued feedback on their teaching
which focused on mathematical content, and found that the framework helped them
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to focus more effectively on mathematical content themselves. Analysis of the four
case study participants suggested that the framework was influential both in develop-
ing their conceptions of mathematics teaching and in developing their mathematical
content knowledge. Use of the Knowledge Quartet helped the participants move
from a view of teaching which focused on children being able to carry out proce-
dures, to one in which conceptual understanding was more important. There was
also evidence that the case study participants developed more learner-focused views
of mathematics teaching through their use of the framework. In focusing reflections
on mathematical content, the framework was seen to be an effective tool to support
development of the teachers’ PCK and to identify and strengthen aspects of SMK.

Participants in the study found the four dimensions both helpful and easy to use.
Those who worked with the framework for 4 years suggested that it had become part
of their way of thinking, so that they automatically referred to the four dimensions
when planning and evaluating their teaching.

I think the KQ has definitely improved my teaching. When I am planning, I draw on the
four areas unconsciously criticising what I plan to do, often asking myself questions – does
that show what I want it to etc. (Jess, interview, Phase 3)

Evidence from this study strongly suggests that in addition to being a useful
tool for analysis of mathematical content knowledge revealed in the practice of
teaching, the Knowledge Quartet can support beginning teachers in developing their
mathematical content knowledge.

Modes of initial teacher education in England are now very diverse, and include
workplace ‘apprenticeship’ versions located in schools, such as School-Centred
Initial Teacher Training (SCITT). Given the widespread concerns about the resource
of mathematics knowledge in primary school staff (Williams, 2008), the develop-
ment of trainees’ content knowledge is a challenging issue for such programmes.
The Knowledge Quartet therefore has particular relevance to these modes of teacher
education, and we have taken up opportunities to promote it as a tool for content-
focused lesson observation in these contexts. SCITT programme leaders have
indicated that the framework is being found to be relevant and useful in such ITT
schemes. One of them commented:

It is the single most powerful tool I have come across that has enabled me to give effective
feedback on trainees’ subject knowledge for teaching in a focused way.

Mentors of trainee teachers at UK universities (our own, and others) have also
found the framework helpful in identifying issues of content knowledge and in
giving focused feedback to their mentees. Introducing the framework to student
teachers during initial teacher education courses, and use of the framework by men-
tors and university tutors during practicum placements, has supported a focus on
mathematical content knowledge during training. Familiarisation with the frame-
work has helped teachers to continue to develop their conceptions of mathematics
teaching and their mathematical content knowledge after beginning their teaching
careers.
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There remains the question of whether the Knowledge Quartet can be effec-
tively used to develop mathematical content knowledge for teaching without the
support of a ‘more knowledgeable other’, not necessarily a mathematics educa-
tor. A programme of mentor training, involving developing mentors’ understanding
of the Knowledge Quartet, might begin to establish a panel of ‘knowledgeable
others’ in schools who could support colleagues. There might also be a ‘cascade
effect’ as beginning teachers who have been supported in using the Knowledge
Quartet by mathematics educators become the ‘more knowledgeable others’ within
their schools. We recognise that this might lead to ‘dilution’ in the efficacy of
the Knowledge Quartet. It seems likely that the conceptualisations of the four
dimensions developed from the original empirical research would be interpreted
in a number of alternative ways by unsupported teachers or mentors, and a book
(Rowland, Turner, Thwaites, & Huckstep, 2009) has been written to assist in such
a situation. However, there is evidence to show that the framework, even with-
out expert support, would at least encourage teachers and mentors to focus on the
mathematical content of teaching rather than on more managerial issues.
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Chapter 13
Learning to Teach Mathematics
Using Lesson Study

Dolores Corcoran and Sandy Pepperell

Introduction

In this chapter, we consider the use of Japanese lesson study in developing teaching
practices and, in particular, the ways in which it is claimed to enhance mathematical
knowledge for teaching. First, the general lesson study approach will be described
with its key features outlined. The findings of a study carried out by Corcoran (2008)
in Dublin will be reported and discussed, in order to examine the contribution of
such an approach in the particular context of pre-service teacher education. In that
study, engagement with peers in the lesson study enterprise transmuted students’
negative attitudes to mathematics into a more positive, patient willingness to learn,
and an optimism that they can go on learning mathematics in teaching. The report on
the Dublin study will follow an overview of some of the published work reflecting
claims made for the role of lesson study in focusing teachers on the knowledge for,
and in, mathematics teaching.

Enhancement of Teaching Through Lesson Study

The lesson study approach is built on the collective development of teaching effec-
tiveness through collaborative work and reflection on practice and thus appears to
offer a great deal to enhance mathematics teaching. For example, in a National
Research Council report, Kilpatrick, Swafford, and Findell (2001) suggest that
through the lesson study approach to professional development, “. . . teachers
engage in very detailed analyses of mathematics, of students’ mathematical think-
ing and skill, of teaching and learning” (p. 395), thus bringing together subject
and pedagogy in reflecting on and refining practice. Engagement in these analy-
ses is firmly rooted in group responsibility and in particular classroom contexts and
draws on a range of resources both internal and external to the particular context.
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Lesson study is said to be premised on the Confucian saying that, “seeing some-
thing once is better than hearing about it one hundred times” (Yoshida, 2005). Its
ultimate purpose is to gain new ideas about teaching and learning based on a better
understanding of children’s thinking so the observation of actual research lessons
is at the core of the lesson study process. Yet, the lesson study cycle encompasses
much more than studying children’s responses while observing a lesson. It requires
time dedicated to intensive kyozai kenkyu – a process in which teachers collabora-
tively investigate all aspects of the content to be taught and instructional materials
available – and to jyugyo kentuikai – the post-lesson review session (Takahashi,
Watanabe, Yoshida, & Wang-Iverson, 2005). Its main feature is collaborative plan-
ning and reflection that does not shy away from a critique of practice focused on the
results of the group’s work rather than on any individual. In these ways, it appears
to offer teachers an opportunity to pool their collective teaching skills in situ as
they adopt research goals appropriate to a particular school context for their lesson
study. This approach, in general, addresses the situated and social view of teacher
knowledge (see Chapter 3 by Hodgen, this volume), in that the focus for study is the
lessons taught in particular schools with particular local concerns. As teachers plan
and reflect together in groups, knowledge development is social. The ‘research’ les-
son is planned collaboratively and teachers spend time clarifying the mathematics.
The knowledge is drawing on a variety of sources including the teachers themselves,
published curricula, research studies and ‘experts’ such as university teachers in the
role of ‘knowledgeable others’ (Watanabe & Wang-Iverson, 2005).

In Japan, where it is integral to schools, lesson study is often credited with
the success of Japanese students in international comparisons of mathematical
achievement (Stigler & Hiebert, 1999). Internationally, there has been an increase
in cross-cultural study of ways of teaching mathematics, and a growing interest
in using lesson study as a basis for improving teaching in a variety of other con-
texts, most notably in the US. Increasingly, lesson study is being adopted in diverse
school systems as a means of developing innovative classroom teaching and learn-
ing of mathematics (Asia-Pacific Economic Cooperation Education Network, 2008).
For the purpose of this chapter, the discussion will now turn to a brief overview of
how lesson study operates in Japan, the main elements of which have been used in
projects in the US.

While there are various ways in which lesson study is carried out, the model
that has been adopted in the US is mainly focused on individual schools, though
reports of the work are often disseminated more widely. In Japan, this model begins
with a group of teachers in a school identifying a particular teaching problem in
their own school context. They then plan a lesson together where the strong focus
is on the thinking and likely responses of pupils, but great care is taken over aspects
of the teaching such as questions, resources and examples to be used. The focus
in teaching, according to Tall (2008, p. 6), is on the mathematical knowledge of
the teachers, but also on the need for “deep experience of how children think as
they learn mathematics”. Teachers also investigate possible teaching materials in
the process. They then observe children’s responses as one of the group teaches the
(usually videotaped) lesson and they reflect together afterwards on the mathematical
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content of the lesson. The planning involves identifying the relevant mathematical
knowledge and curriculum detail and although the focus is on one lesson, it is part
of a sequence and progression in learning. The aim is not to produce perfect lessons
to be offered as resources for others to use, but to be part of an ongoing process of
deepening understanding of how teachers can bring about the meaningful learning
of mathematics. This may include teaching specific methods (e.g. for calculation) as
well as the solving of non-routine problems (Tall, 2008). The anticipated responses
of pupils are an important aspect for discussion by teachers as are the potential
difficulties that might be encountered. According to Fernandez (2005), the general
approach is as follows. A group of teachers plans the detail of the lesson that one of
the group will carry out in the classroom. The plan is written out in detail and, when
the lesson is taught, other members of the study group (and sometimes invited vis-
itors) observe what occurs. Feedback is then given after the lesson, usually starting
with a reflection by the teacher who taught the lesson. After this, the lesson will be
refined and other teachers may teach it again and follow this up with further anal-
ysis. The focus for reflection will be decided in advance, together with points for
particular observation while the lesson is in progress.

Lesson Study Appraised

In her work in the US, Fernandez (2005) was interested in the potential of the lesson
study approach to support teachers in learning about mathematics for teaching, and
also what the constraints might be for teachers whose own subject knowledge was
limited. She emphasized that her interest was in “what lesson study has to offer, not
on what teachers actually make of it” (p. 268). This is the central question being
addressed in this chapter – what claims can be made for the contribution of les-
son study to the development of mathematics for teaching? Elsewhere, Fernandez,
Cannon, and Chokshi (2003) reviewed an initiative where Japanese teachers worked
with teachers in the US to develop their work through lesson study. They suggest that
through experience of lesson study teachers will draw on three critical lenses used
by Japanese teachers to enhance their teaching of mathematics – the perspectives
of researcher, of curriculum developer and of the pupils. The authors also report
some of the difficulties that US teachers had in adopting these ‘lenses’ as ways of
examining their teaching practice.

The researcher perspective requires teachers to observe the responses of pupils in
a focused way and to gather specific and concrete evidence of those responses. US
teachers’ evaluations, according to Fernandez et al., were general and this might
have resulted from the fact that the teachers appeared to find it difficult to be
observers rather than teachers in this context. In the first lesson observation, the US
teacher group tended to act as an extra pair of hands in the class while the Japanese
teachers acted as an extra pair of eyes. In fact, had it not been for the presence and
intervention of the Japanese teachers, much less would have been learned by the
US teachers and, perhaps, it was their presence that had more influence on teacher
learning than the participation in lesson study itself. There did, however, appear to
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be a potential for the addressing of mathematical teacher knowledge through the
curriculum developer lens. Fernandez et al. suggest that the US teachers were not
accustomed to discussing different ways of organising and sequencing elements of
the curriculum, but rather tended to accept the authority of textbooks. Adopting this
perspective, then, opens up possibilities for discussion and critical evaluation of how
and why mathematical ideas might be arranged in order to maximize pupil under-
standing. It is claimed generally that the dynamic and interactive nature of the lesson
study process offers participants multiple opportunities to deepen their knowledge
of mathematics and of mathematics teaching. However, the work of Fernandez et al.
suggests these will only be taken up in a context where teachers are enabled to posi-
tion themselves as critical reflectors on their practice, who take ownership of their
mathematical learning. In a later study of one school’s lesson study work, Fernandez
(2005) identifies the questions that arise for teachers in planning and implementing
lessons which did result in discussion about mathematical knowledge for teach-
ing, some resulting from children’s difficulties and some from the unexpected ways
children used to tackle activities, thereby giving an example of the ‘opportunities’
lesson study can offer. While she suggests that analysis of issues arising from the
act of teaching can support the development of strategies for future teaching, at the
same time she recognizes that it is not always possible to predict exactly what will
occur next in teaching, so the matter of the development of mathematical knowledge
is more vexed.

The Role of Knowledgeable Other(s)

Fernandez (2005) observes that the US teachers were rather limited, at times, in their
deliberations because of their own understanding about some of the connections
in mathematics, in this case the relationship between fractions and division, and
what ‘whole’ is referred to in fraction problems. However, she suggests positively
that the cycle of planning and reflecting and the related analyses allowed space
for teachers to expose and begin to address areas where they lacked confidence.
Consequently, some teachers identified the need to develop their own understanding
of mathematical ideas in order to discuss them fruitfully with pupils. According to
Fernandez, it is the type of help and the manner in which it is given that will be
crucial, that it “does not ask teachers to relinquish control of their work and [that it]
does not overwhelm, alienate, or discourage teachers” (p. 285). Likewise, a study
of Highlands school, also in the US, by Lewis, Perry, Hurd, and O’Connell (2006)
found that, over time, teachers’ observations became more focused and oriented
to discussion of the detail of the mathematics they taught and the mathematical
learning they analysed. Another change that they observed was the move towards
using external sources of knowledge such as a wider range of texts, for comparison,
and also research articles. Like the teachers in Fernandez’s study, knowledge needs
were identified through the study of local problems in their context.
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While there are many positive commentaries on the potential for developing
mathematical knowledge for teaching through lesson study, there have also been
notes of caution. In particular, questions of the likely success of transferring an
approach from one culture to another have been raised. Tall (2008, p. 1) suggests
that it may be possible to learn from and use practices originating in another culture,
if “we think reflectively about what it is we are trying to do in teaching mathemat-
ics.” Teaching aims are central in decisions about approaches to practice and to
teacher development and, without an examination of whether change in practice is
required or possible, change may simply occur on the fringes of what happens in
classrooms. One key feature of the way in which lesson study is described in the
studies referred to here is that it is a ‘bottom-up’ rather than a ‘top-down’ model
of teacher development. However, there are potential dangers in over-emphasising
a localised, school-based approach. While knowledge can be seen as social and sit-
uated and, in the studies discussed, groups of teachers have been observed learning
and developing confidence in recognizing what else they need to know, access to
knowledge and expertise beyond the local context allows teachers to draw on a wider
range of alternative views and to make informed, critical decisions to support the
development of mathematical teaching in their own context. In relation to this, the
role of knowledgeable other(s) who can provide such support is one which requires
further exploration. In the next part of this chapter, the first author describes some
of the findings from her research into a lesson study approach used with pre-service
student teachers in Dublin.

The Dublin Study

The Dublin study proposed to introduce Japanese lesson study to an Irish context
and had as a primary goal the trialling of lesson study as a means of developing stu-
dent teachers’ mathematical content knowledge for primary teaching. Lewis et al.
(2006, p. 5) offer two conjectures as to how lesson study might work to bring
about the improvement of teaching. Conjecture 1 posits, “lesson study improves
instruction through the refinement of lesson plans”, while conjecture 2 proposes
that “lesson study strengthens three pathways to instructional improvement; teach-
ers’ knowledge, teachers’ commitment and community, and learning resources.”
This study was based on conjecture 2. The research project, therefore, is located
in a theory of social practice, which conceptualises learning as legitimate periph-
eral participation (Lave & Wenger, 1991), and the student participants and I,
as course facilitator/researcher, forming a community of practice (Wenger, 1998),
where “membership [. . .] translates into an identity as a form of competence”
(p. 153). The notion of identity formation as learning in practice and the possibil-
ity of mathematics knowledge for teaching arising from engagement in an enterprise
dedicated to developing good mathematics teaching makes lesson study an attractive
and potentially powerful tool for mathematics teacher development.
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Overview of the Lesson Study Elective Course

The lesson study research spanned the academic year 2006–2007 and took place in
the context of a newly-offered elective module in education – Learning to Teach
Mathematics Using Lesson Study – in an Irish college of education. Student teach-
ers commonly pursue a concurrent model of teacher education there leading to an
honours bachelor’s degree in education (B. Ed) and including a single academic sub-
ject studied to degree level. Six third-year B. Ed student teachers participated. The
lesson study protocols of collaborative lesson preparation and post-lesson collabo-
rative reflection were adopted to further our goal of learning to teach the primary
mathematics curriculum well. Each member of the elective group was involved in
planning, teaching, analysing and revising mathematics lessons intended to pro-
mote children’s mathematical reasoning. The lesson study elective course revolved
around these mathematics lessons and extended over three cycles of lesson study.
Research lessons were taught at two different school sites (see Table 13.1 for
details). Because the student teachers came to the schools to teach the research
lessons only, these are known as ‘dive-in’ lessons. As such, they lacked some of
the rich potential for learning about their pupils available to class teachers work-
ing on lesson study within their own schools, yet the act of teaching and observing
the research lessons for different age groups of children in widely different school
settings constituted a valid and valuable lesson study experience for the student par-
ticipants. A theme was chosen by the group for the research lessons in each cycle
and each student teacher volunteered to teach particular lessons. On the research
lesson days, the group divided into two with some members accompanying each
‘teacher’.

Table 13.1 Lessons taught during each lesson study cycle

Lesson study cycle School Class/ages Topic
Student teacher
pseudonyms

Cycle 1 St Peter’s 4th/9–10 years Weight Treasa
St Paul’s∗ 4th/9–10 years Weight Finola

Cycle 2 St Peter’s∗ 5th/10–11 years Fractions Bríd
St Paul’s 3rd/8–9 years Fractions Ethna

Cycle 3 St Peter’s 3rd/8–9 years Division Róisín
St Paul’s∗ 5th/10–11 years Fractions Nóirín

∗Researcher present.

Three distinct aspects of the lesson study elective course emerged, and these were
used to frame analysis. First, students participated in the course by engaging with
the group in preparing, teaching and reflecting on lessons, i.e. by ‘doing’ lesson
study. Secondly, participants also engaged with the elective course by ‘doing’ math-
ematics together, regularly. This aspect of engagement with interesting mathematics
was for the students themselves and independent of mathematics to be taught in
lessons. Thirdly, students participated in the elective by ‘being’ lesson study elective



13 Learning to Teach Mathematics Using Lesson Study 219

students, where engagement meant pursuing activities related to the elective enter-
prise but not essential to lesson study, for example, watching DVDs about lesson
study and writing reflective journals.

Data Analysis

Each of the six lessons was observed, recorded, transcribed and analysed using
the Knowledge Quartet (KQ) framework (Rowland, Huckstep, & Thwaites, 2005).
The KQ is a four-dimensional, practice-based framework for mathematics les-
son observation and analysis developed inductively from analysis of videotaped
lessons taught by novice teachers. The four dimensions are termed Foundation,
Transformation, Connection and Contingency. Foundation includes teachers’
knowledge, beliefs and understanding of mathematics and mathematics pedagogy,
acquired before and during teacher preparation; this dimension is seen as underpin-
ning the other three. Transformation encompasses the ways in which the teacher’s
own knowledge is transformed to make it accessible to the learner, especially
through the use of representations and examples. Connection pertains to knowl-
edge displayed when teachers make connections between and among mathematical
ideas; it includes issues of sequencing and judgements about conceptual complexity.
Finally, Contingency is manifested in the ways that a teacher responds to unantici-
pated events as they emerge during instruction. This could be described as ‘thinking
on your feet’. For further details of the KQ, see Chapter 12 by Turner and Rowland
(this volume).

Lesson study community members were all encouraged to think of aspects of
their mathematics lessons in terms of the four dimensions of the KQ, and the nego-
tiation of the meaning of the framework as a language to describe mathematics
teaching contributed to the shared repertoire (Wenger, 1998) of the community. As
initially understood by the group, the KQ appeared linear in its exposition of the four
dimensions of the mathematics knowledge required for teaching. Engagement in les-
son study, however, brought about a reordering of the KQ components. By starting
with a focus on children’s learning of mathematics, a strong emphasis was placed
on the Contingency dimension of teachers’ mathematical knowledge in teaching,
followed by the Connection dimension, which when contextualised by studying par-
ticular research lessons gave rise to revisiting the Transformation and Foundation
dimensions. In lesson study cycle one, the lesson preparation and post-lesson reflec-
tion meetings were audio-recorded. In lesson study cycle two, these sessions were
video-recorded. In lesson study cycle three, I was not present at the preparation
meeting and the students’ journals are the only record, although two post-lesson
reflection meetings were audio-recorded and transcribed. For the purpose of coding
these records, at first, I drew on concepts of participation and identity borrowed
from Wenger (1998), but gradually the data analysis became more inductive, as
various fresh indicators of mathematics teacher development were generated from
the data rather than determined by reference to the literature or my own precon-
ceptions. Since two research lessons were taught simultaneously on each occasion,
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I made personal observation notes for the one in which I was present. Students wrote
a reflective journal for seven/eight of the lesson study sessions, and these were also
important data. As well as describing some elements, which arose from analysis of
the entire lesson study elective course, I shall illustrate here the crafting of a math-
ematics teacher identity by one student participant, Bríd, over the three cycles of
lesson study.

‘Doing’ Lesson Study

The dialectical nature of the learning of persons in activity presents a rich tapestry
of interactions and interpretations of how that learning occurs. Rogoff, Matusov,
and White contend, “learning involves transformation of participation in collabora-
tive endeavour” (1996, p. 388). Learning to teach requires participation in and the
collaboration of a group of people, and I sought evidence of this in my analysis of
the lesson study community of practice. An agreed goal of each lesson study cycle
was to establish what mathematical ideas or concepts the student teacher wanted
pupils to engage with as a result of the particular lesson being planned, and to study
children’s responses to the mathematical task(s) during the lesson with a view to
assessing the kind of mathematical thinking in evidence in the class. This became
the shared enterprise of the community of practice.

Preparing the Lessons: Cycle One

When the lesson study group turned to planning the lessons to be taught on weight,
a tension emerged for some group members. What some students perceived as
straying from the objective – “at times we could wander from that and begin includ-
ing less relevant things” (Noirín’s reflective journal entry 2) – was from another
perspective, a process of exploration of the teaching resource materials available,
discussion of the meanings of ‘mass’ and ‘weight’, leading to agreement to focus
on the attribute of ‘weight’. As a group, we engaged in study of resource materials
which is meant to support the teacher of the lesson. I considered that my role as
knowledgeable other (Watanabe & Wang-Iverson, 2005) was to collaborate with the
team in order to enhance content knowledge, guide the thinking about pupil learning
and support the team’s work. A handbook of lesson study protocols advises that:

Discussing the content, scope and sequence of curriculum helps teachers to be clear about
where they are going with the lesson they are preparing and what outcomes they are looking
for from the students. (Yoshida, 2005, p. 7)

As can be expected of student teachers, there was very little experience among
them of 10-year-old children’s current state of mathematics learning, or what
they might be expected to know. Nor was there much evidence of theoretical
underpinnings of pedagogy, which raised issues about these student teachers’
Foundation knowledge for teaching primary mathematics. As a consequence, the
effort expended in deciding which specific learning outcomes we were planning for
extended the student teachers considerably. During this planning session and in later
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sessions, student teachers worked together to align content objectives from the cur-
riculum with suitable contexts in which to base problems and activities designed
to promote children’s reasoning about the mathematical ideas underpinning each
teaching objective chosen.

Research Lessons: Cycle Two

In lesson study cycle two, the student teachers wanted to do something different
and what they perceived as more difficult. They chose fractions as the topic to be
taught. The main goal of these lessons was to provide children with an experience
of exploring fractions in a realistic context while affording the student teachers an
opportunity to study what the children already knew about fractions with a view to
developing that understanding. In this instance, the school textbooks were put aside
and the two lessons were planned as a fractions investigation activity.

Learning Takes Time

Full participation in the community of practice was proving challenging, however,
as this excerpt from one student teachers’ journal attests:

Initially I thought that by working together on a lesson we would work quicker but as we
got more experience at lesson study, we began to spend longer discussing our intentions and
really getting behind the mathematics and what we wanted the children to learn. It was now
not a case of devising fun activities to enhance the lesson but a matter of questioning the
mathematics and how best to teach it. (Nóirín’s journal entry 4)

This spending of time on lesson study was proving to be personally demanding,
yet inherently rewarding. We came back to ‘doing’ mathematics again with renewed
interest and fresh eyes when, for the last hour of the preparation session, the agreed
‘teachers’ for lesson study cycle two took turns to practise their research lessons on
the group.

‘Doing’ Lesson Study: Cycle Three

Student participants conducted the planning for research lessons in cycle three in
the absence of a knowledgeable other. Their success, as evidenced in the research
lessons taught, shows that lesson study belongs to the participants, and that a knowl-
edgeable other, while an integral part of the process, need not be centrally involved
at every stage of the lesson study cycle. Using the Knowledge Quartet frame-
work, there is strong evidence of learning along the Connection dimension in the
data here, prompted by efforts to interpret the primary mathematics curriculum.
Transformation issues were explored by Bríd, who reported:

We also spent a lot of time debating whether or not to supply counters for the children
to work with. Would they hinder or help them in their problem solving and would the
distribution of them take time from the maths? Through our discussion we felt it best not to
use them as they might distract the children from the actual problem. (Brid’s journal entry 6)
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The focus had shifted to actual mathematical details of the lesson and suitability
of context, choice of example (3 as a divisor), whether or not to use counters, et
cetera had become more central in the planning. All six student teachers’ journal
entries corroborate this engagement with the details of planning a successful lesson
on division. However, the group also engaged in planning a lesson on percentages
where the difficulties encountered by the group resulted in their abandoning the task
until they could get ‘expert’ help. After outlining suggestions made to teach a lesson
on percentages, which linked with fractions but was not aligned with what the com-
munity by now considered good practice, the embryonic lesson plan was shelved,
in favour of a variation on Bríd’s lesson. Nóirín balked at teaching the proposed
lesson on percentages, because she did not know how it would relate to the class’s
current understandings of fractions. The student teachers’ connection of the two
mathematical topics raised is indicative of the presence of the second perspective
characteristic of Japanese teachers – the curriculum developer lens (Fernandez et al.,
2003). These students were becoming aware of complexity in the mathematical
connections teachers are required to make in teaching the curriculum well.

‘Doing’ Mathematics

Each of the lesson study sessions included some element of exploring mathematical
ideas by the participants. The mathematical tasks presented in the first session were
intended as an introduction to thinking about primary school mathematics in other
than the traditional algorithmic terms. One illustrative example is offered:

We then worked out some maths problems, in pairs. I was surprised at the simplicity some
children (sic) worked out theirs in comparison to mine. The problem of the bus: 328 people
to be transported in a forty-seater bus. I divided 40 into 328 directly to get my answer. My
partner drew out circles of forty, until she had enough . . . that was how she realised she had
enough buses. We both had the correct answer. This opened my mind and I realised that
there is no right way of solving a maths problem. (Róisín’s journal entry 1)

Reflective journals all referred in emotive terms to this element of the first
session with one theme emerging strongly – the student teachers’ differing rela-
tionships with mathematics were all “both complicated and powerful” (Mendick,
2006, p. 156). Each student reflected on her own responses to the problems in terms
which ranged from comments on emotions like “fear . . . panicked and confused,”
through perceived personal deficiencies, “I always doubt my ability to do it,” to the
more measured “very interesting,” and realisation of “how indoctrinated we are”
(journal entry 1 of Ethna, Bríd, Nóirín and Treasa). Doing mathematics ourselves
became an essential element of the lesson study elective and, while not explicitly
part of the Japanese lesson study protocol, can be subsumed under the “purposeful
learning” of the goal-driven pre-lesson planning phase of each cycle (Fernandez &
Chokshi, 2005, p. 73). If the lesson study community of practice were to direct its
research gaze on how children respond to mathematical tasks, then it had to direct
its research gaze on members’ own doing of mathematics also.
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These student teachers accepted that to pose realistic problems and to focus on
children’s responses were aspects of good mathematics teaching practices that were
challenging for them because of their own fragile relationships with mathematics.

Treasa: That’s what I’m afraid of . . . cos I’m very . . .

I get very, I’m very insecure about maths. If they could say something and
I’m standing there like an idiot saying ‘God I don’t know what to do next’.
(Planning session lesson study cycle 1)

Making the lesson study elective sessions a safe place to question one’s own
and each other’s mathematical ideas became an important element of the process.
The role of the course tutor as knowledgeable other developed in the selection of
interesting mathematics to engage the group, and in drawing pedagogical inferences
from events in the group setting. I also sought to establish communication norms
within the community of practice, which facilitated the expression of mathematical
thinking. When working in community, all members had the responsibility to the
enterprise and knowing when to use Contingent opportunities – by deviating from
the planned agenda, or when to allow the discourse to continue uninterrupted –
presented an occasional dilemma. The different approaches to mathematics were
discussed and celebrated within the group and tended to mask the fact that some
students were quicker and surer in proffering solutions than others. By focusing
on improving pedagogy and constantly making connections between intentions
and actions of the teacher and imagined and actual responses of the children, this
aspect of difference within the group was minimised. Nonetheless, challenges in the
communication of ideas between members emerged as a theme requiring further
exploration.

‘Being’ in the Lesson Study Elective Community of Practice

Each cycle of the lesson study elective course had a component that was not directly
related to the preparation, teaching and reflecting on lessons taught. In cycle two,
the student teachers engaged in watching two DVDs. These were representative of
lesson study as practised by American teachers – How Many Seats? (Mills College
Lesson Study Group, 2005), and as practised by a Japanese teacher – To Open a
Cube (Mills College Lesson Study Group, 2003). The group members overtly iden-
tified with the lesson study process while owning their own practice. Reflections
which followed this session were deeply insightful and focused on the student teach-
ers’ own learning about mathematics teaching from observing the two different set-
tings for learning on the lesson study videos. Bríd’s concluding remarks are salient:

Overall, watching the DVDs gave me more insight into how kids think mathematically and
ideas that I can use and take into account when planning. They also made me consider my
own problem-solving abilities and realise that I am only as effective as my own level of
thinking. This scares me a bit because my mathematical ability may prevent better learning
by hindering rather than helping the pupils. I think that lesson study is vital to do with my
colleagues so that I can both challenge my own thinking and receive support when planning
for maths lessons. (Bríd’s journal entry 6)
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Discussion

The research lessons on weight in the first cycle provided rich examples of the
complexity of enacting the task of teaching for prospective teachers. The research
lessons on fractions in the second cycle appeared to have taken on a research per-
spective, which arose from the goals of the lesson study enterprise. This was akin
to the ‘researcher perspective’ used by Japanese teachers to enhance their teaching
of mathematics (Fernandez et al., 2003). The two research lessons in lesson study
cycle three were characterised by a more ‘improvisational’ approach to children’s
learning of mathematics and were influenced by an attempt to use an interpretation
of the critical lenses applied to student learning and curriculum development. We
will now explore emergent themes suggested by the lesson study process relating to
the development of mathematical knowledge for teaching.

Identity in Terms of Learning to Teach Mathematics

By identity, we mean the learning that occurs while individuals are mutually
engaged in a worthwhile enterprise (Lave, 1996). In this case, the student teach-
ers pursued learning to teach mathematics together. By identity-work, we also
mean the narratives people share while participating in such a community of prac-
tice. Identities are formed through participation and identification with the goals
of the enterprise and as such are socially formed. These students’ “knowing and
knowledgeability” (Roth & Lee, 2006) of and for good mathematics teaching was
exhibited through their belonging to a community of practice dedicated to devel-
oping this very knowing and knowledgeability. Participation in the enterprise of
studying mathematics teaching by engaging in actual teaching, and then reflecting
critically on it as a group of individuals who are all similarly engaged, contributes to
the identity of an individual engaged with learning to teach mathematics and to the
community of practitioners building knowledge of and through the enterprise of les-
son study dedicated to mathematics teaching. By putting the spotlight on the practice
of the lesson study community as a whole, it is possible to illustrate, largely from
the student teachers’ journals, how one participant re-positioned herself, through
identity work as a pre-service primary teacher learning to teach mathematics well,
thereby increasing her mathematical knowledge in teaching.

The Case of Bríd

In lesson study cycle two, Bríd engaged with preparing a mathematically productive
lesson on fractions, which emerged from practice of ‘doing’ fractions work and
reading articles on good practice in teaching fractions. While acknowledging the
contribution of the group, Bríd embraced her role as teacher, despite her feelings of
inadequacy:
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While this session was of huge benefit to me, I am aware that I need to become more
comfortable with fractions and I can only do this by immersing myself in them and engaging
with them in a meaningful manner. I am hesitant about going into classrooms with them,
but I have a funny feeling that it will be the children teaching me about fractions rather than
me teaching them! Perhaps it is better to say it will be a joint sharing of learning. (Bríd’s
journal entry 4)

Descriptive Synopsis of Bríd’s Lesson

Bríd’s lesson was focused on studying children’s understanding of fractions as a
designated number of equal parts of a whole and proposed using a pizza context.
She set the scene by asking the class to imagine that it was one boy’s birthday and
that he had invited seven friends to share six pizzas with him. Children were given
a teacher-made handout showing six identical circles on an A4 page, which they
were invited to think of as pizzas. After some time working in pairs, the class was
called to attend while some pairs were invited to the board to explain what they had
done. Next, the children addressed a second similar problem, involving six pizzas
divided between ten people, and later, other pairs of children were invited to explain
their work, which Bríd illustrated on the board. A whole-class session concluded
the lesson where the teacher talked the children through the process of adding a half
and a quarter and finally elicited why the size of the unit was an important element
in dealing with fractions (Fig. 13.1).

Fig. 13.1 An innovative way
of dividing six pizzas among
10 people?

Learning from Teaching

Bríd’s lesson plan had anticipated alternative answers and her strengthening math-
ematics teacher identity led to an engaging and challenging lesson. While she had
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planned the lesson to be about dividing pizzas, because this was a ‘dive-in’ lesson
she did not know the children. Bríd invited a boy to tell her his name (Cathal)
and then asked the class to imagine it was Cathal’s birthday and that he was hav-
ing a pizza party. This tactic demonstrated strong pedagogical content knowledge
on Bríd’s part. When Bríd’s lesson was analysed by the group, her opening sce-
nario became one of the stories of the practice which was adopted in later lessons.
It illustrates how learning about teaching occurs through engagement with the
enterprise.

Despite the comprehensive planning, which focused on the mathematical content
of the lesson, Bríd was confronted twice, in the act of teaching, with more sophisti-
cated thinking on the part of some pupils than she had anticipated or was prepared
for. In connection with the second problem, a child at the board divided half a pizza
into five equal parts, which Bríd incorrectly called “fifths”. This was remedied on
the spot, when one of her colleagues observing the lesson alerted Bríd to the error.
In the second, two children suggested taking two pizzas together and giving each
person a fifth of one pizza, resulting in 10 people getting a fifth each, from each of
three sets of two pizzas. Bríd appeared confused by this innovative approach and
while the children had articulated their thinking clearly, she wrote (incorrectly) on
the board: 2

5= 1
10 .

Aware of her own confused thinking, but unable to clarify it on the spot, Bríd
quickly erased the ‘solution’ (without acknowledging that the children’s strategy
led to 3

5 of a pizza per person) and moved on with the rest of the lesson. Her knowl-
edge of fractions was inadequate for the teaching activity she had set herself, and
this mismatch between her plan to encourage children’s disparate ways of think-
ing and her ability to recognise the validity of all ideas, caused Bríd to consider
the need to expand her facility with equivalence of fractions further. Her expe-
rience of enactment of the teaching role she had adopted as being less powerful
than she had hoped and planned could have caused Bríd to be less adventurous in
future, and stick to the textbook or to teaching by telling what she knew. However,
such was Bríd’s engagement with the act of learning through teaching and the
strength of her belonging to the collective enterprise that her lapse into mathemat-
ical misinformation on that occasion became a motivational force to learn more
about fractions for teaching. This embarrassing episode also became a story for
the community of practice and gave rise to considerable further mathematical work
on fractions within the group. The meaning of the Knowledge Quartet dimension
of Contingency was expanded for all participants in the community of practice
through this challenge to Bríd’s knowledge of fractions and everyone’s Foundation
mathematical understanding was expanded by her lesson. The case of Bríd is
used here to exemplify how these students’ attitudes to the enterprise of teaching
mathematics changed over the course. From feelings as individuals of inadequacy
and fear, they had moved to a collective research orientation into how mathemat-
ics can be taught well, and into building the mathematical knowledge required
to do so.
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Mathematics Teaching and Matters of Interpretation

Where mathematics is only one of many subjects to be taught by generalist pri-
mary teachers, learning how to teach mathematics can become largely a matter of
interpretation of the language used and the meanings intended by teacher educators.
Evidence from the lessons taught by the student teachers in this study indicates
that they often experience difficulty in interpreting what is meant by contested
terms like ‘problem-based teaching’ or ‘realistic mathematics.’ Mathematical pro-
cess skills, such as ‘communicating and expressing mathematical ideas’, are widely
interpreted in Ireland to mean the more generic notion of [teacher] ‘talk and discus-
sion’. Curricular guidelines on mathematics pedagogy, for example, the optimal use
of materials and mathematical representations, are filtered in the light of past expe-
riences. A community of practice by definition functions as an economy of meaning,
which suggests that some meanings do achieve superior status (Wenger, 1998,
p. 198). The role of a knowledgeable other is crucial in this economy. The lesson
study community of practice became an important site where meanings of mathe-
matical practices and mathematics teaching were negotiated through engagement,
imagination and alignment (Wenger, 1998). Alignment with a reform interpretation
of the mathematics curriculum, with good teaching practices, with recent research
findings was critical to the lesson study enterprise, together with alignment of the
lesson study community of practice with the other communities of practice with
which it interacted. Accountability to the enterprise begets negotiations of mean-
ing in a highly reflexive manner and participation in the lesson study community of
practice involved negotiating and renegotiating meanings for an increasing number
of mathematical ideas and practices.

Findings

Learning to teach mathematics is hard work, and the six young women in the Dublin
study faced the negative aspects of their different relationships with mathematics
and worked collaboratively, with considerably energy to forge a new path for mak-
ing sense of the primary mathematics curriculum and meaningful ways to teach it.
By whole-hearted participation in the lesson study elective course, they validated the
potential of lesson study as a means of learning to teach mathematics. But lesson
study is not a panacea for mathematics teacher education or development. Rather,
it is a process, which by design allows teachers to augment their mathematical and
pedagogical skills for teaching the mathematics curriculum, by refining their goals
and focusing on what and how children learn mathematics as a result of their prac-
tice. These outcomes do not result from individual effort, but from participation in
practice. Japanese teachers have long realised that lesson study is a powerful means
for teacher development and curricular change. Lesson study is, in essence, a road
map for socio-cultural learning about mathematics in teaching. A road map is a
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useful, even necessary, tool with which to get from one place to another in unfamil-
iar territory. But, of itself, lesson study is not enough, no more than a road map is
of use to the person who does not know how to read it, does not know where s/he
is on the map, does not know the landmarks to look out for, and/or is not sure of
the destination s/he is travelling towards. A second more specific set of directions is
also required. The Knowledge Quartet is such a framework of mathematics knowl-
edge in teaching that provides signposts to help answer the intermediate questions.
Where are we now? In what direction are we heading? Why this representation or
that example?

The student teachers in the Dublin study began by focusing on children’s
responses to the mathematics lessons they had planned and taught. From there,
their attention moved in two directions: towards the Connection and Transformation
dimensions of their mathematics teaching. The need for both dimensions – for exam-
ple, the ability to make connections between mathematical ideas and procedures, to
sequence material conducive to learning and to make optimal choices of representa-
tions and examples – becomes obvious when one studies Contingency opportunities
which naturally arise in the course of any lesson. However, mathematics teach-
ing is not a static activity. Rather, like the discipline of mathematics itself and the
art of teaching, it is a dynamic cultural pursuit and the above three dimensions of
the Knowledge Quartet arise from, are informed by and in turn transform the pri-
mary dimension which has been called Foundation knowledge. Findings from this
study indicate that Foundation knowledge for mathematics teaching expands with
participation in lesson study. There were marked changes in how these students
approached planning for, and teaching of, mathematics. There was evidence in them,
of a growing awareness of the depth and connectedness of mathematical ideas. They
have developed a much more focused eye on how children build mathematical think-
ing and have expended considerable energy in designing opportunities for children
to do so. The student participants in this study have all grown in self-confidence, a
self-confidence that recognises personal agency and thrives on communal support.
These student teachers and I have come to view mathematical knowledge for teach-
ing primary mathematics in new ways, and in consequence, think differently about
how mathematical knowledge can be developed or stifled by classroom experiences.

Lesson Study as a Tool for Developing Mathematical
Knowledge in Teaching

Viewing knowledge as situated in social contexts and constructed through social
interaction requires a different view of how the development of mathematics teacher
knowledge may or may not be fostered. The focus shifts from the individual to the
communities in which mathematics teachers are engaged and the extent to which
these communities support teacher learning and induct teachers into teaching prac-
tices. The scope for teachers to have ownership of, and to play an active part in
developing their knowledge and expertise is also central to enabling the production
of critically reflective practitioners who are better able to deal with the challenges
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faced in engaging with new knowledge, or knowledge constructed in the variety of
teaching contexts they will experience. They will be able to deal with the discomfort
that will inevitably be felt in having to revise their own mathematical knowledge in
order to teach if the community in which they are learning to teach mathematics
encourages a more collective responsibility where it is possible to be open about
questions about mathematical subject knowledge as well as ways to teach it. Such
communities of mathematics teachers are identified by Ma (1999) as contributing
to what she calls the ‘profound understanding of fundamental mathematics’ charac-
teristic of Chinese elementary school teachers. Recognising that knowledge is not
simply located in the individual teacher but distributed over people and resources
implies that the responsibility for development of mathematical knowledge for
teaching is not an individual but a collective one, which participation in the practice
of lesson study appears to meet.

Lesson study fosters the collective development of mathematical knowledge.
Engagement with lesson study also enriches the personal knowledge base on which
individual teachers draw in developing his or her own practice. Fernandez’s work
(2005) underlines the need for a knowledgeable other to act as a catalyst and to
properly challenge accustomed ways of working. The Dublin study confirms that
the practice of collectively studying teaching, in the immediacy of a research les-
son, designed for a specific context, can then be extended and tested against an
even wider knowledge and research base through working with a knowledgeable
other. Lesson study, as a practice, accepts that it is always possible to improve one’s
teaching and to continually develop mathematical knowledge in the process. By
recognising the importance of the knowledgeable other role, teachers are reminded
of the importance of investigating multiple sources in preparing for teaching, while
ownership of the practice remains firmly with the teachers themselves. The Dublin
study leads us to conclude that engagement in a lesson study community with
the purpose of learning about mathematics teaching also develops mathematical
knowledge for teaching in the process.
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Chapter 14
Using Theories to Build Kindergarten
Teachers’ Mathematical Knowledge
for Teaching

Dina Tirosh, Pessia Tsamir, and Esther Levenson

Introduction

Around the world, there are moves to strengthen the mathematical development
of children in preschool settings, and to strengthen the preparation of preschool
teachers to support such development. A joint position paper published in the
United States by the National Association for the Education of Young Children
(NAEYC) and the National Council for Teachers of Mathematics (NCTM) stated
that “high quality, challenging, and accessible mathematics education for 3- to 6-
year-old children is a vital foundation for future mathematics learning” (NAEYC &
NCTM, 2002, p. 1). As such, they recommend that “teachers of young children
should learn the mathematics content that is directly relevant to their profes-
sional role” (NAEYC & NCTM, p. 14). Similarly, the Australian Association of
Mathematics Teachers (AAMT) and Early Childhood Australia (ECA) published a
joint position paper calling for the adoption of “pedagogical practices that encour-
age young children to see themselves as mathematicians” (AAMT/ECA, 2006,
p. 2). They too recommended that early childhood staff be provided with “ongo-
ing professional learning that develops their knowledge, skills and confidence in
early childhood mathematics” (AAMT/ECA, 2006, p. 4). In England, the Practice
Guidance for the Early Years Foundation Stage (2008) offers suggestions for practi-
tioners in how to foster children’s knowledge of counting, calculations, shapes and
measures.

All too often, preschool teachers receive little or no preparation for teaching
mathematics to young children (Ginsburg, Lee, & Boyd, 2008). Moreover, research
on preschool teachers’ mathematical knowledge is limited and investigating the
ways in which tools may be used for building kindergarten teachers’ mathematical
knowledge for teaching is critical. Recently, Tsamir (2008) described how theories
of mathematical knowledge may be used as tools in mathematics teacher education.
We extend this idea and describe how combining theories of teachers’ knowledge
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with theories of mathematical knowledge may be used as a tool to build kindergarten
teachers’ mathematical knowledge for teaching.

There is a wide range of theories relevant to the development of mathematical
knowledge. In this chapter we focus on Tall and Vinner’s (1981) concept image-
concept definition (CICD) theory and describe how familiarizing kindergarten
teachers with this theory may be used to build their mathematical knowledge for
teaching. Much of kindergarten children’s knowledge is based on their perceptions
and manipulations of their surrounding. Left unchecked, intuitive interpretations
created at this age often become rigid and difficult to undo at a later stage (Fischbein,
1987). It is therefore relevant to introduce this theory to kindergarten teachers so that
they may plan activities that help young children assimilate concepts of higher com-
plexity and abstraction during the early years, encouraging children to build concept
images which are in line with concept definitions.

In framing the mathematical knowledge kindergarten teachers need for teach-
ing, we draw on the works of Shulman (1986) and of Ball and her colleagues
(Ball, Bass, & Hill, 2004; Ball, Hill, & Bass, 2005; Ball, Thames, & Phelps, 2008).
Clearly, all teachers need to know the mathematics they are teaching. Kindergarten
teachers, for example, need to be able to discriminate between triangles and non-
triangles. Yet, this is not sufficient. Teachers must be able to explain why a figure
is, or is not a triangle. They also need to know effective ways of presenting figures
to their students so that they too will be able to differentiate between triangles and
non-triangles.

In this chapter, we describe how combining theories embedded in the realm of
teacher knowledge with theories embedded in the realm of mathematics knowledge
and familiarizing practicing kindergarten teachers with this combination was used
to build their geometrical knowledge for teaching. The chapter begins by describing
the separate theories and how they may be combined to build a more compre-
hensive and refined tool for building and evaluating mathematical knowledge for
teaching. It then illustrates how this tool was used to build kindergarten teachers’
knowledge for teaching geometrical concepts. We also illustrate how kindergarten
teachers used the combination of theories to inform their practice. Finally, we
address how the combined theories tool described here may be further developed
and used.

Combining Theories of Teacher Knowledge
with Theories of Mathematics Knowledge

Dimensions of Knowledge for Teaching

In his seminal work, Shulman (1986) described and analyzed components of teach-
ers’ knowledge necessary for teaching. As already described in Chapter 2, two
of the major components identified were subject-matter knowledge (SMK) and
pedagogical content knowledge (PCK). Ball and her colleagues further developed
Shulman’s theory, focusing on mathematics, but retaining a basic framework that
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can be generalized to other subject areas. SMK was further divided into common
content knowledge (CCK) and specialized content knowledge (SCK). CCK may
be defined as “the mathematical knowledge and skill used in settings other than
teaching” (Ball et al., 2008, p. 399), whereas SCK is “mathematical knowledge
not typically needed for purposes other than teaching” (Ball et al., 2008, p. 400).
Pedagogical content knowledge may be further differentiated into knowledge of
content and students (KCS) and knowledge of content and teaching (KCT). KCS
is “knowledge that combines knowing about students and knowing about math-
ematics”, whereas KCT “combines knowing about teaching and knowing about
mathematics” (Ball et al., 2008, p. 401).

We illustrate the dimensions of knowledge for teaching within the context of
geometry by offering a few examples taken from Ball et al. (2008). Knowing that the
diagonals of a parallelogram are not necessarily perpendicular may be considered
knowledge typical of anyone who knows mathematics (CCK). Knowing “how the
mathematical meaning of edge is different from the everyday reference to the edge
of a table” (p. 400) is an example of SCK. Knowing which shapes young students
are likely to identify as triangles, and that confusion between area and perimeter
may lead to erroneous answers, are examples of KCS. Knowing how to sequence
the presentation of examples and which examples may deepen students’ conceptual
knowledge is KCT.

Shulman’s and Ball’s theories have been used to explore teachers’ mathematical
knowledge in several specific mathematical contexts such as division of fractions
(Tirosh, 2000) and multiplication and subtraction of whole numbers (Ball et al.,
2008). These theories have not been explicitly combined with the more general
mathematics knowledge CICD theory suggested by David Tall and Shlomo Vinner
in the 1980s. In the next section we review Tall and Vinner’s theory taking into
consideration Fischbein’s theory of intuitive knowledge.

Concept Image-Concept Definition (CICD)

Having precise definitions for mathematical concepts ensures mathematical coher-
ence and provides the foundation for building mathematical theories. However,
these same mathematical concepts may have been encountered by the individual
in other forms prior to being formally defined. Even after they are defined, mathe-
matical concepts often invoke images both at the personal as well as the collective
level. The term concept image is used to describe “the total cognitive structure that
is associated with the concept, which includes all the mental pictures and associ-
ated properties and processes” (Tall & Vinner, 1981, p. 152). The concept definition
refers to “a form of words used to specify that concept” (p. 152). A formal con-
cept definition is a definition accepted by the mathematical community whereas a
personal concept definition may be formed by the individual and change with time
and circumstance. Because the concept image actually contains a conglomerate of
ideas, some of these ideas may coincide with the definition while others may not.
For example, a function may be formally defined as a correspondence between two
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sets which assigns to each element in the first set exactly one element in the second
set. Some students claim that a function is a rule of correspondence (Vinner, 1991).
This image does not contradict the definition. However, it is limited and eliminates
the possibility of an arbitrary correspondence.

When a problem is posed to an individual, there are several cognitive paths that
may be taken which take into account both the concept image and concept defini-
tion. At times, although the individual may have been presented with the definition,
this particular path may be bypassed. According to Vinner (1991), an intuitive
response is one where “everyday life thought habits take over and the respondent
is unaware of the need to consult the formal definition” (p. 73). Intuitive knowledge
is both self-evident and immediate and is often derived from experience (Fischbein,
1987). As such, it does not always promote the logical and deductive reasoning
necessary for developing formal mathematical concepts. “Sometimes, the intuitive
background manipulates and hinders the formal interpretation” (Fischbein, 1993,
p. 14). Fischbein (1993) considered the figural concepts an especially interesting
situation where intuitive and formal aspects interact. The image of the figure pro-
motes an immediate intuitive response. Yet, geometrical concepts are abstract ideas
derived from formal definitions. Thus, as we consider the notions of concept image
and concept definition, we take into account aspects of Fischbein’s theory related to
intuitive and formal knowledge.

Although Tall and Vinner (1991) introduced their theory within the context of
advanced mathematical thinking, the interplay between concept definition and con-
cept image is part of the process of concept formation at any age. Young children
learn about and develop concepts, including geometrical concepts, before they begin
kindergarten. As such, their concept image is often limited to their immediate sur-
roundings and experiences and is based on perceptual similarities of examples, also
known as characteristic features (in line with Smith, Shoben, & Rips, 1974). This
initial discrimination may lead to only partial concept acquisition in that children
may consider some non-examples to be examples and yet may consider some exam-
ples to be non-examples of the concept. Regarding geometrical concept formation,
van Hiele (1958) theorized that students’ geometrical thinking progresses through
a hierarchy of five levels, eventually leading up to formal deductive reasoning. At
the most basic level, students use visual reasoning taking in the whole shape with-
out considering that the shape is made up of separate components. At the second
level, students begin to notice the different attributes of different shapes but the
attributes are not perceived as being related. At the third level, relationships between
attributes are perceived and definitions are meaningful. Kindergarten children begin
to perceive attributes, but need guidance in order to assess which attributes are
critical for identifying a figure and which are not. Familiarizing kindergarten teach-
ers with the CICD theory may enlighten teachers to the tension which may exist
between the concept image and concept definition and inform their instruction
in ways that will promote children’s advancement along the van Hiele levels of
thinking.
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The Combined Framework

Ball’s notions of CCK, SCK, KCS and KCT allow us to differentiate between types
of knowledge necessary for teaching. We suggest that the four dimensions of teach-
ers’ knowledge be combined with theories of mathematics knowledge in order to
provide a finer grain and more focused lens with which to study mathematics teach-
ers’ knowledge for teaching. Such a framework would allow us to investigate, for
example, teachers’ knowledge of the psychological aspects of student’s mathemat-
ical errors. Here we suggest how these four dimensions may be combined with
Tall and Vinner’s CICD theory and illustrate this framework within the context of
geometry focusing on teachers’ knowledge for teaching triangles.

Domains of teachers’ knowledge

Domains of
mathematical
thinking

CCK SCK KCS KCT

Concept image Cell 1 Cell 2 Cell 3 Cell 4
Concept definition Cell 5 Cell 6 Cell 7 Cell 8

Cell 1: CCK-Image. Here we address the common knowledge of a con-
cept’s image. This includes knowing to draw examples and non-examples
of triangles.

Cell 2: SCK-Image. Here we address the specialized knowledge of a concept’s
image necessary for teaching. This includes a rich concept image of triangles
which incorporates scalene and obtuse triangles with different orientations
and not just equilateral and isosceles triangles. It may also include a broad
image of non-examples for triangles beyond circles and squares (Tsamir,
Tirosh, & Levenson, 2008).

Cell 3: KCS-Image. Here we address knowledge related to students and concept
images. This includes knowing that the equilateral triangle is a prototypical
triangle (Hershkowitz, 1990) and that young children may not identify as a
triangle a long and narrow triangle such as the scalene triangle, even when
admitting that it has three points and lines (Shaughnessy & Burger, 1985).
We also include in this cell knowledge of the van Hiele model (e.g., van
Hiele & van Hiele, 1958) for students’ geometrical thinking and being able
to recognize, for example, that a student’s concept image at the most basic
level takes in the whole shape without considering its components. As such,
this cell includes knowing that a rounded ‘triangle’ is often identified as a
triangle (Hasegawa, 1997) because children take in the likeness of the whole
shape, ignoring that the shape is missing vertices.
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Cell 4: KCT-Image. Here we address knowledge related to teaching and concept
images. This includes knowing which examples and non-examples to present
to a student which will broaden his or her concept image of a triangle to
include, for example, triangles with different orientations.

Cell 5: CCK-Definition. Here we address common knowledge related to a con-
cept’s definition. It includes knowing that a triangle may be defined as a
polygon with three straight sides.

Cell 6: SCK-Definition. Here we address the specialized knowledge of a
concept’s definition. In mathematics, definitions are apt to contain only
necessary and sufficient conditions required to identify an example of the
concept. Other critical attributes may be reasoned out from the definition.
Thus, this cell includes knowing that defining the triangle as a three-sided
polygon implies that it must be a closed figure with three vertices. It includes
knowing that the triangle may be defined as a three-sided polygon, or a poly-
gon with three angles, or a polygon with three vertices and that all three
definitions are equivalent.

Cell 7: KCS-Definition. Here we address knowledge related to students and
concept definitions. It includes knowing that a minimalist definition may
not be appropriate for young students at the first or second van Hiele level
because they do not necessarily perceive that a polygon with three sides must
have three vertices. For example, research has suggested that for young chil-
dren, the association between a triangle and the attribute of ‘threeness’ may
be stronger than the necessity for it to be closed or for its vertices to be
pointed (Tsamir et al., 2008).

Cell 8: KCT-Definition. Here we address knowledge related to teaching and
concept definitions. It includes speaking to children with precise language,
calling the vertices of a triangle by their proper name as opposed to referring
to them as corners. It also includes knowing which examples and non-
examples of a triangle to present to children which may encourage children’s
use of concept definitions and promote their advancement along the van Hiele
levels of geometrical thinking. For example, presenting non-examples of a
triangle which are not intuitively recognized as such, may encourage chil-
dren to refer back to the concept definition when identifying the figure as a
non-example of a triangle (Tsamir et al., 2008).

The combined theory suggested above may be used to build teachers’ knowledge
in at least two ways. First, it serves as a tool for teacher educators by allowing
the teacher educator to focus on the specific knowledge being promoted. In much
the same way, when explicitly presented to teachers it may also serve to focus the
teachers on the knowledge they are building and its use in teaching.

Setting

For the past 2 years, we have been providing professional development for groups of
kindergarten teachers. Our program, Starting Right: Mathematics in Kindergartens,
carried out in collaboration with the Rashi Foundation and the Israel Ministry
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of Education, is an integrated program where both kindergarten teachers and the
children learning in the kindergartens are participants. Teachers participate in a pro-
fessional development course. Children participate in a mathematically-enriched
environment created by their kindergarten teachers. A major aim of the profes-
sional development course is to increase the children’s mathematical knowledge
by increasing their teachers’ mathematical and pedagogical content knowledge.

The segments described in this study relate to two different groups of teachers
who participated at different times in our program. The first and second authors were
co-instructors of the course. Teachers met with the instructors on a weekly basis (4 h
per week), either at a local educational center or in one of the kindergartens. The
first two segments report on one group of teachers whereas the third segment reports
on the second group. Each of the segments illustrates how the combined theory
suggested above may be used to build and assess kindergarten teachers’ knowledge
for teaching geometry.

Research Segments

Building Kindergarten Teachers’ SCK Regarding Concept
Images and Concept Definitions of Triangles

What image comes to mind when one thinks about a triangle and what specialized
knowledge must teachers know regarding this concept image? The concept image
of a layperson (i.e. not a teacher) may differ from that of a teacher. Recall that
according to Tall and Vinner (1981), the concept image consists of mental images,
properties, and processes associated with the concept. A concept image may also
change with time and experience. Studies have shown that when asked to draw a tri-
angle, most students will draw either an equilateral triangle or isosceles triangle with
a horizontal base (Hershkowitz, 1990). On the other hand, we would expect teachers
to have a more elaborate and richer image of triangles which would include triangles
whose sides and angles are unequal and triangles with different orientations.

During our first meeting with the kindergarten teachers, we asked the teachers
to draw three examples of triangles and three non-examples of triangles. We began
with triangles for several reasons. First, the preschool curriculum in Israel specifies
that kindergarten children should be able to recognize many different examples of
triangles. Second, we hypothesized that kindergarten teachers would be somewhat
familiar with the definition of a triangle and perhaps less familiar with definitions
for other geometrical figures. For example, although squares and rectangles may
be familiar to many, the hierarchical nature of quadrilaterals makes the square a
complex figure to define (De Villiers, 1994).

First, we note that all of the examples teachers drew were indeed triangles and
all of the non-examples teachers drew were indeed not triangles. In other words,
the teachers demonstrated CCK of the concept image for a triangle. Eight of the
nine teachers drew at least one example of an equilateral triangle with a horizontal
base. The ninth teacher drew a triangle with unequal sides but with a horizontal
base. Five teachers drew only equilateral triangles with horizontal bases for all three
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examples of triangles. Two teachers drew one right triangle each, with horizontal
bases. Only three teachers drew examples of triangles with a different orientation.
Regarding the non-examples, all of the teachers drew geometrical figures such as
circles, squares, and trapezoids. This introductory task afforded us a glimpse into
the teachers’ concept image of a triangle and indicated that their concept image
of a triangle was more closely aligned with common knowledge rather than the
specialized knowledge of a teacher.

Teachers were then asked to write down on a piece of paper the definition of a
triangle. Although no two definitions were exactly alike, each teacher was able to
give a valid definition of a triangle. In other words, the teachers demonstrated what
may be considered CCK of the concept definition. Building teachers’ SCK was done
gradually and began by comparing the different definitions teachers had given for a
triangle. The instructor gave the following instructions:

Look at the definitions (now written on the board) and try to think which are correct and
which are incorrect . . . if there are definitions which are unacceptable, explain why. If there
are definitions which you approve of more than others, explain why. If there are definitions
for which a slight revision may improve the acceptability of that definition, then write it.
Perhaps there is more than one correct definition.

The teachers engaged in the task and then discussed the results together. Pointing
to the first definition, “A triangle is a shape with three sides and three vertices”, the
instructor requested the teachers to raise their hands if they agreed that it was a valid
definition. The following discussion ensued:

I: The question is very simple. Is this a definition of a triangle or not? That means
that you can only vote yes or no. There is nothing in between and everyone has
to vote.

H: How many times can I vote (yes)?
I: For each of the definitions you can either vote yes or no.
E: Is the question then if it’s (the definition written on the board) closer to yes

being a definition or closer to not being a definition?
I: There is no approximation. In mathematics it either is or is not (a valid

definition).

In the above segment, teachers come to realize that definitions must be precise.
On the other hand, different definitions may be equivalent and thus there may be
more than one definition for a particular concept. Although the instructor’s approach
may be considered quite direct, it became the norm with these kindergarten teachers
that the instructor gave the closing argument of each discussion. Discussing the
merits of each of the definitions led to a more general discussion of definitions:

E: Maybe we first need to know what a definition is.
R: A definition must be clear.
Y: That you don’t argue with.
R: In a dictionary.

The teachers have begun to realize that it is important to first ascertain what
is meant by a definition in mathematics before they can discuss if what is written
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may be considered a valid definition of a triangle. Differentiating between everyday
dictionary definitions and mathematical definitions is another aspect of SCK related
to concept definitions and was discussed further in the following lesson as teachers
reviewed various definitions for a triangle found in dictionaries and mathematics
textbooks.

During the next lesson, Tall and Vinner’s CICD theory was presented explicitly
to the teachers. The teachers had been discussing which of the dictionary definitions
would be unacceptable and for what reasons. One teacher quoted the following def-
inition for a triangle, “a closed figure made up of straight lines.” Another teacher
responds, “But that can be like . . . a crown that you make. It doesn’t say how many
sides.” This exchange prompted the instructor to introduce the notions of concept
image and concept definition:

Notice the connection between your thoughts and your knowledge, between your imagi-
nation and your knowledge . . . Vinner investigated mathematical concepts that also have a
visual presentation. However, he also said that in mathematics we have definitions and we
must work according to these definitions. This is the concept definition. The concept image
is what we imagine in our thoughts when we close our eyes and think of the concept.

In the elementary school, concept definitions may be used to differentiate
between critical and non-critical attributes of a concept, in order to identify exam-
ples and non-examples of that concept. After introducing the notion of a concept
definition, the instructor adds, “to define is to simply characterize a group of math-
ematical entities . . . to say what can be called by this (concept) name and what
cannot.” The instructor then refers to the examples and non-examples of trian-
gles the teachers drew during the first lesson pointing out that these illustrate each
teacher’s concept image whereas currently, the discussion at hand has revolved
around the concept definition of a triangle.

In the above segment, the combined framework was essentially used by the
instructor to assess current knowledge and then to direct and focus the knowledge
being built. “From a cognitive point of view, prior knowledge has to be consid-
ered as a possibly influential characteristic” (Blömeke, Felbrich, Müller, Kaiser, &
Lehmann, 2008). Assessing current knowledge is an essential first step to building
new knowledge. The combined framework served to differentiate between CCK of
the concept image, which the teachers exhibited, and SCK of the concept image,
which the teachers seemed to lack. This was true as well for the teachers’ CCK and
SCK of the concept definition. After assessing current knowledge, the instructor
began by focusing on SCK related to concept definitions leading eventually to an
explicit discussion of the CICD theory.

Differentiating Between SCK and KCT

Throughout the program a clear differentiation was made between mathematical
knowledge for the teachers and mathematical knowledge as it is applied in the
classroom. Initially, teachers found it difficult to separate these two domains of
knowledge.
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M: This is very confusing. You started off by talking about kindergarten children
(in the beginning of the lesson) and now you decided to talk about mathematical
thinking.

I: Let’s put things in order. First, we must talk about the mathematics as is. First
we (the teachers) need to know what a triangle is. The kindergarten will wait.
Tomorrow morning we are not going to talk with the children about triangles.

A: I see us as kindergarten teachers, sitting with the students with the classic
square, the classic rectangle, and the classic triangle and then we say, “What
is this?” The child should say it’s a triangle but according to what does he
decide if it’s a triangle or not?

I: Just a second. We’ll get there. We’ll definitely talk about it but for now it’s just
us. Differentiating between the children and us is very important. Part of what
we will learn will be important mathematical knowledge that we will know but
that we won’t necessarily tell it as such to the children because it may not be
appropriate.

The instructor is stressing the difference between KCT and SCK and that they
are two different ways of knowing mathematics. She further explains the necessity
for this differentiation, “My strong belief is that first you need to know what you are
dealing with mathematically because otherwise there will be no basis for how you
answer the child.”

During the second lesson, as teachers discuss various definitions for a triangle,
the difference between SCK and KCT is again brought up:

I: What is the source of this definition?
C: A geometry text book.
I: For which grade?

M: Junior high school.
Y: And you also need to know for what (mathematics) level the textbook is

geared to.
I: Ok. I want to make something clear. In the end, we will bring to the kindergarten

a definition which we feel is appropriate for the kindergarten. But, now we
are talking about definitions which would be acceptable to mathematicians . . .

Now, you need to decide which definition is valid and which is not.
H: Wait a minute. Are you talking about for us or for the kindergarten?
I: For you.

The teachers are beginning to realize that a formal concept definition must be
accepted by the mathematical community. This is part of the SCK being devel-
oped during these first two lessons related to concept definitions. On the other hand,
knowing how to adapt a formal concept definition to the age and level of the students
is an aspect of KCT. Although a triangle may be defined as a three-sided polygon,
the teachers agreed that this definition would be unsuitable for young children for
two reasons. First, it is quite unlikely that young children would comprehend the
meaning of the term polygon. Second, a minimalist definition, although mathemati-
cally acceptable, does not stress all of the critical attributes that all examples share.
As the instructor summarized:
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On the one hand, a definition in the kindergarten should take into considerations all
of the critical attributes that are derived from the mathematical definition. On the other
hand, it should take into consideration psychological aspects. We created a definition that
includes closure, pointed vertices, straight sides, and the number three. Children should
work according to this definition.

It was agreed that in the kindergarten children would be presented with the fol-
lowing definition: A triangle is a closed figure with three straight lines and three
pointed vertices.1

The above segment illustrates how the combined framework was used to focus
teachers’ attention on the types of knowledge being built. In our program we found
that teachers were eager to implement their newly acquired knowledge in the class-
room. While this is, of course, commendable, the teachers needed to sort out the
difference between the mathematical knowledge needed for teaching and the peda-
gogical knowledge needed to convey the mathematics to their students. By making
this difference explicit, teachers were first able to focus on their knowledge of
concept definitions and then focus on the teaching of concept definitions.

In the following section, we describe how the combined theories tool was used to
develop another aspect of kindergarten teachers’ KCT related to the concept image
and concept definition of triangles.

Building Kindergarten Teachers’ KCT Regarding Concept
Definitions and Concept Images of Triangles

The formation of geometrical concepts, as with many mathematical concepts, is
a complex process in which examples play an important role (Watson & Mason,
2005). Initially, the mental construct of a concept includes mostly visual images
based on perceptual similarities of examples, also known as characteristic fea-
tures (Smith et al., 1974). This initial discrimination may lead to only partial
concept acquisition. Later on, examples serve as a basis for both perceptible and
non-perceptible attributes, ultimately leading to a concept based on its defining
features. Visual representations, impressions and experiences make up the initial
concept image. Formal mathematical definitions are usually added at a later stage.
According to the Principles and Standards for School Mathematics (NCTM, 2000),
young children “need to see many examples of shapes that correspond to the same
geometrical concept as well as a variety of shapes that are non-examples of the con-
cept” (p. 98). Thus, another important aspect of KCT is knowing which examples
and non-examples to present to children that will promote the development of an
appropriate concept image as well as encourage children to refer to the concept
definition.

1It is important to note that precise language was used with the teachers as well as with the children.
Terms such as corners and turns were not used. As such, ‘vertices’ is the appropriate translation
from Hebrew.
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Examples Non-examples

Fig. 14.1 A sample of examples and non-examples of triangles used by teachers

In this section, we describe a segment which took place with the second group
of kindergarten teachers during the fifth lesson of their course. The teachers had
been instructed to assess their children’s knowledge regarding the identification of
examples and non-examples of triangles and are now discussing the results. It soon
becomes obvious that the results were largely dependent on the choice of examples
and non-examples the teachers had chosen to use for this assessment. (See Fig. 14.1
for a sample of some of these examples and non-examples.) The instructor explains:

The results do not give us a complete picture of what the children know and what they are
capable of knowing. We have found in our work with children that almost all of the children
correctly identify this (pointing to an equilateral triangle with a horizontal base) as a triangle
and only a third of the children will correctly identify the same triangle if it is turned upside
down. The typical concept image of the triangle is this (pointing to an equilateral triangle
with a horizontal base).

In other words, in order to properly assess children’s knowledge, the teacher
should include examples that are not necessarily part of the child’s intuitive concept
image.

Choosing examples that are not necessarily part of the child’s concept image
may also encourage the child to refer back to the concept definition (Tsamir et al.,
2008). As the instructor claims, “it is important to work with many examples and
non-examples . . . going over the critical attributes and at the same time creating a
world of images.” The teachers are then instructed to think about the figures along
two dimensions: a mathematical dimension and a psycho-didactical dimension.
The mathematical dimension divides the figures into examples and non-examples
of triangles according to the concept definition. The psycho-didactical dimension
divides the figures into what is and is not intuitively identified as examples and
non-examples according to the child’s current concept image.

Knowledge of how to choose appropriate examples and non-examples was evi-
dent later on during the course as teachers discussed pentagons. In order to create
the examples, teachers discussed the concept definition of a pentagon:

S: I want to know if there is an exact definition for a pentagon.
R: A closed figure with five sides.
O: A five-sided polygon.
S: Ok.
I: And what about a definition for the children?
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Fig. 14.2 Teachers’ suggestions of examples and non-examples of pentagons

S: For the children I would say five sides, five vertices, and closed.
O: A closed figure . . . like we did before . . . with five sides and five vertices.

Working together in groups, the teachers came up with the following suggestion
of examples and non-examples to use in various activities (see Fig. 14.2).

It may be surprising that the teachers placed the upside down pentagon in the
section for intuitive pentagons. After all, the teachers had previously experienced
that upside down triangles are not necessarily part of the child’s concept image of
a triangle. However, at this point, the teachers felt that the upside-down pentagon
may be considered intuitive. The children had already been presented with triangles
of various orientations and could successfully identify an upside down triangle as
an example of a triangle. In other words, the children’s concept image of triangles
had changed and the teachers were choosing examples based on the children’s cur-
rent concept image of geometrical figures. On the other hand, triangles cannot be
concave and so concave figures, such as the concave pentagon, may not currently
be part of the child’s concept image. The teachers had gained knowledge of their
students (KCS) and used this knowledge in their teaching (KCT).

The relationship between knowledge of students and knowledge of teaching was
observed several times during the year. Towards the end of the year, the teachers
discussed how to help children who still had difficulties identifying various exam-
ples and non-examples of geometrical figures. Referring to triangles, one teacher
stressed the need to help children recall the concept definition. She suggested the
following:

E: First we need to strengthen the critical attributes. So, we start with the triangle they are
used to (referring to the equilateral triangle) and we put it down in different directions and
ask the child what has changed and what has not and to check again the critical attributes.
Regarding the hostile triangles (referring to those which do not coincide with the child’s
concept image) I would greatly enlarge the triangle so it would be much clearer to the child
and ask him again to check the critical attributes, the sides and vertices.
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Notice that this teacher has identified two possible stumbling blocks for the chil-
dren. The first is children’s difficulty with orientation. She isolates this difficulty
using the triangle most likely to coincide with children’s concept image and focusing
only on the changing orientation. The second is children’s difficulty in identifying
non-intuitive triangles. Her suggestion of enlarging the triangles directs the child to
notice the straight sides and pointed vertices of the triangle. Similarly, when dis-
cussing children’s difficulties in identifying concave pentagons, a different teacher
suggests enlarging the figure and cutting it out so that children can feel the hid-
den vertex. During the next lesson, this teacher described how she carried out this
suggestion and that the enlarged concave pentagon was indeed helpful.

In this segment, we see the results of explicitly introducing kindergarten teachers
to the CICD theory and explicitly discussing with them the difference between the
mathematical knowledge they as teachers need to know and applying this knowl-
edge in the kindergarten. We can see a clear difference between the examples and
non-examples teachers chose for triangles in the beginning of the year to those
they chose for pentagons in the middle of the year. Teachers are cognizant of the
need to present a suitable definition of a pentagon for their children. They are
aware of the tension between the concept image and concept definition and devise
activities that will enrich the children’s concept image while strengthening their
awareness of the concept definition. Using the combined theory as a lens, we may
say that the teachers are accessing their KCS related to concept images and con-
cept definitions in order to build their KCT related to concept images and concept
definitions.

Kindergarten Children’s Knowledge of Pentagons

At the end of the year, 166 kindergarten children were presented with six figures
and asked to identify examples and non-examples of pentagons (see Fig. 14.3).
Of these children, 81 learned in eight kindergartens taught by teachers who par-
ticipated in the program and 85 children were from six other kindergartens. All
14 kindergartens were located in the same low-socioeconomic neighbourhood.
Children were interviewed individually, in a quiet corner of the kindergarten
classroom.

1
23

45

6

Fig. 14.3 Figures presented
to kindergarten children
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Each of the six figures was printed on a separate card. After presenting each
card in the same order to each child, two interview questions were asked: Is this a
pentagon? Why? The first question ascertained if the child identified examples and
non-examples of a pentagon. The second question allowed us to study the child’s
reasoning about identification of a figure.

Results indicated that more program children than non-program children cor-
rectly identified the figures as examples or non-examples of a pentagon (see
Table 14.1). It should be noted that according to the Israeli national preschool math-
ematics curriculum, kindergarten children should be able to identify examples and
non-examples of pentagons. Noticeably, nearly all the program children correctly
identified both pentagons as examples of a pentagon. Although most non-program
children correctly identified the convex pentagon as a pentagon, only 13% correctly
identified the concave pentagon as a pentagon. As one child claimed, “It looks like a
different figure.” Perhaps, the concave pentagon did not coincide with their concept
image of a pentagon. Furthermore, when asked to explain their identifications, only
25% of non-program children gave reasons which pointed to the critical attributes
of a pentagon. This coincides with Clements, Swaminathan, Hannibal, and Sarama
(1999) who found that young children rarely refer to the properties of a figure, rely-
ing more on a holistic, visual approach to identification. On the other hand, 85% of
program children pointed to critical attributes in their reasoning. For example, one
program child correctly identified the triangle as not being a pentagon and added,
“it only has three vertices and three sides”. This child’s reasoning coincides with
the third van Hiele level of geometric reasoning where the definition is meaningful
and the child takes notice of critical attributes. On the other hand, a non-program
child who also correctly identified the triangle as not being a pentagon claimed, “It’s
not like a pentagon. It’s a triangle”. This child first stipulates that the figure at hand
does not coincide with his image of a pentagon. He then correctly claims that this
figure is a triangle. Referring to the name of a shape implies that the child has taken
into consideration the whole shape without regard for its components (Markman,

Table 14.1 Frequency (in %) of correct identifications per figure

Figures

Examples Non-examples

1 6 2 3 4 5

Program
children 

95 94 99 100 93 96 

Non-program
children 

76 13 93 82 73 56 
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1989). This type of reasoning coincides with the first van Hiele level of geometric
reasoning.

Not all program children immediately identified the concave pentagon as a pen-
tagon. For example, one child examined this pentagon and thought out loud, “It’s
not a pentagon. Let’s check. (The child counts the vertices.) It is a pentagon because
it has five sides and five vertices and it’s closed”. Perhaps, this pentagon did not yet
coincide with his concept image. Yet, he was able to correct his identification by
referring to the critical attributes mentioned in the concept definition. This example
illustrates how focusing on promoting different aspects of teachers’ knowledge may
eventually filter down to promoting student’s knowledge.

Summing Up and Looking Ahead

In this chapter we proposed a theoretical framework which combined a theory of
teachers’ knowledge with a theory of mathematical knowledge and illustrated how
it may be used as a tool in promoting teachers’ mathematical knowledge for teach-
ing. “A crucial trait of a valuable framework of teacher knowledge is the extent to
which it identifies that knowledge needed for student learning and understanding”
(Graeber & Tirosh, 2008, p. 124). Other tools conceptualize teachers’ knowledge
based solely on the work teachers do. We add that it is equally important to frame
teachers’ knowledge based on the knowledge we wish our students to gain. Viewing
teachers’ mathematics knowledge through two lenses – one of teachers’ knowl-
edge and one of mathematical knowledge – allows us to pinpoint more precisely
what teachers need to know for teaching mathematics. Of course, teachers need to
know which examples of triangles to present and in what order to present them
(KCT). However, if we recognize that some examples will enhance students’ con-
cept image of a triangle and others will encourage students’ use of the definition,
we may accordingly develop teachers’ mathematical knowledge for teaching each
of these aspects.

The theorized tool we described, combined Ball and her colleagues’ conceptu-
alization of teachers’ knowledge for teaching with Tall and Vinner’s CICD theory
in order to promote kindergarten teachers’ knowledge for teaching geometry. There
are several variables in this proposal. There is the mathematical context used to
illustrate the use of this tool, the grade-level at which the teachers taught, the
action taken with the tool, and the theories we chose to combine. Each of these
variables represents possible directions for further development and wider use of
the tool.

Regarding the mathematical context, we found that for kindergarten teachers,
the context of geometry provided a natural venue for discussing images and defi-
nitions. Beginning with triangles and other two-dimensional polygons, the teachers
could easily discuss the figures they saw and drew and began to understand the
need for concept definitions. They also came to acknowledge that not every con-
cept definition may be adapted for the young children in kindergarten. This came
up when discussing circles and the concept image and concept definition of a circle.
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It was decided that for the circle, a child’s concept image may currently be enough.
These discussions carried on as the teachers discussed three-dimensional solids
such as pyramids, spheres and cylinders. Although this chapter specifically used the
context of geometry to illustrate the combined framework, we believe that the gen-
erality of the CICD theory allows it to be applied to building teacher’s knowledge
of additional mathematical contexts. In the kindergarten, for example, we used the
combined framework for building teachers’ knowledge of equivalent sets (Tirosh,
Tsamir, Levenson, & Tabach, submitted). As with geometry, we used the combined
theory to build teachers’ SCK of the concept image of equivalent sets and differ-
entiated between this knowledge and KCT regarding this concept image. The same
was done for the concept definition. If the use of this tool is to be expanded to other
preschool mathematical contexts (such as patterns and measurement), then perhaps
prior research will be necessary in order to first investigate children’s concept image
and concept definition in these contexts.

Regarding the grade-level at which the teachers taught, this chapter illustrated
promoting knowledge for teaching in kindergarten. We believe that the combined
theory has potential to be used as a tool for promoting teachers’ knowledge for
teaching in other grades as well. In both elementary and secondary schools, studies
have shown that tension exists between students’ concept images and concept defi-
nitions within various mathematical contexts (Bingolbali & Monaghan, 2008; Even
& Tirosh, 1995; Gray, Pinto, Pitta, & Tall, 1999; Levenson, Tsamir, & Tirosh, 2007;
Schwarz & Hershkowitz, 1999; Vinner & Dreyfus, 1989). Perhaps at the high school
level, teachers are more cognizant of the necessity for definitions than preschool
teachers are. On the other hand, they may pay less attention to concept images. This
issue will need to be addressed by perhaps placing extra emphasis on these cells
during professional development.

In this chapter, we illustrated some ways in which the combined framework could
be used to promote teachers’ SCK and KCT related to concept images and con-
cept definitions in the kindergarten. The next step would be to demonstrate how the
combined framework may be used to promote KCS related to concept images and
concept definitions. Another issue that arises from pondering the use of the tool is
the degree of explicitness when presenting the tool to teachers. Upon reflection, the
four dimensions of teachers’ knowledge were not made as explicit to the teachers
as was the concept image-concept definition theory. We believe that it is important
to make both theories equally explicit to teachers. This issue is being addressed in
our current courses where the four dimensions of teachers’ knowledge are explicitly
presented and discussed.

Choosing which theories to combine is a significant issue which needs to be
addressed. Regarding our goals for professional development, it is too simplistic to
say that we aimed to enhance teachers’ knowledge. As the first section of this book
indicates, conceptualizing mathematical knowledge for teaching is complex. Our
choice of using the four domains of knowledge described by Ball and her colleagues
arose mostly from our necessity to use a finer grain than provided by Shulman’s
(1986) often used notions of SMK and PCK. In retrospect, we found that this
choice was well suited for conceptualizing the knowledge needed for teaching some
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mathematical concepts in kindergarten. As noted in the beginning of this paper, most
kindergarten teachers have little training in teaching mathematics. As such, each of
the four domains needed attention.

Tsamir (2008) recognized the complexity of choosing which mathematical
knowledge theories to present to teachers from the vast offering of theories rele-
vant to mathematics teaching. Regarding mathematics teaching, the CICD theory
is a widely recognized mathematics education theory which spans students of all
ages and is relevant to many different mathematical contexts (Hershkowitz, 1989;
Schwarz & Hershkowitz, 1999; Tall & Vinner, 1981; Vinner & Dreyfus, 1989). It
informs our understanding of mathematical concept formation. It allows us to pre-
dict and analyze students’ errors. Another direction for widening the use of the tool
would be to consider combining other theories of mathematical knowledge with
theories of teachers’ knowledge. Tsamir (2008) described how familiarizing sec-
ondary school teachers with Fischbein’s (1993) theory of the three components of
knowledge and Stavy and Tirosh’s (1996) theory of the intuitive rules may promote
secondary teachers’ mathematical and pedagogical knowledge. The choice of theo-
ries may depend on the mathematical context as well as the activities or tasks which
take place in the classroom. For example, parts of the intuitive rules theory are espe-
cially appropriate when engaging in comparison tasks. Combining this theory with
the four dimensions of teachers’ knowledge may then focus us, for example, on
developing teachers’ knowledge of how and when students use these rules (KCS).
Another direction for addressing this issue might be to pool mathematical educa-
tion theories that investigate students’ mathematical learning and possible sources
of errors. For example, Fischbein’s (1993) theory mentioned above, the intuitive
rules theory (Stavy & Tirosh, 1996), and Tall and Vinner’s (1981) CICD theory all
have elements of intuitive thinking. The mathematics education research community
should consider how to combine these theories in order to provide a more compre-
hensive theory for investigating students’ mathematical thinking as well as teachers’
mathematics knowledge for teaching.
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Chapter 15
Teachers’ Stories of Mathematical Subject
Knowledge: Accounting for the Unexpected

Julie Ryan and Julian Williams

Introduction

In this chapter, we report an innovative assessment feedback tool – we call it a
‘mathsmap’ – and describe how two pre-service primary school teachers in England
made sense of such a personalised diagnostic map to reflect on their subject knowl-
edge in mathematics (Ryan & Williams, 2007a, 2007b). The mathsmap provides
both a summative and a diagnostic profile of attainment and errors across a test of
a constructed ‘primary teacher mathematics curriculum’ (Ryan & McCrae, 2005,
2005/2006).

The use of the mathsmap to reflect learning at a personal level is seen to provoke
‘accounts’ or ‘stories’ that might inform pre-service teachers’ pedagogical content
knowledge. In making their mathsmap comprehensible to themselves, the two pre-
service teachers reported here, Lorna and Charlene,1 were provoked to account for
their own knowledge ‘troubles’, that is, to narrate their metacognition. We were
interested, in particular, in their view of themselves as mathematical learners and
how this would impact on their pedagogical content knowledge and teacher identity.

We offer a method for encouraging such reflection by having pre-service teachers
personally confront their patterns of responses as indicated on their mathsmap. This
tool is different from other feedback devices in drawing attention to non-normative
responses of two kinds: unexpected correct and unexpected incorrect responses.
Being told that responses are not ‘expected’ causes dissonance, or ‘trouble’ to
be explained; such troubles generate ‘accounts’ or stories narrated to normalise
them (Bruner, 1996). This also provides the researcher or teacher educator with
some insight into pre-service teacher self-knowledge, indeed their metacognitive
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This chapter draws on our earlier work reported in Ryan and Williams (2007b) extending the
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knowledge, and perhaps their sense of self-efficacy or agency as learners. Such
insights, we suggest, may also inform the design of teacher education courses.

In our earlier work on classifying the mathematical errors that children make on
standardised tests, we concluded that most errors and misconceptions are the result
of intelligent constructions (see for example, Ryan & Williams, 2007a). Similarly,
it is such intelligent constructions that adults make that we sought to explore here
with the pre-service teachers in our study, and to identify any turning points in their
mathematical autobiography as they narrated or ‘storied’ their own learning (Bruner,
1996, pp. 144–149) around their unexpected troubling successes and errors. We
think that such activity may play a significant part in the development of pedagogical
content knowledge – that knowledge that Shulman (1986) referred to as including
“the most useful forms of representation of . . . ideas, the most powerful analogies,
illustrations, examples, explanations, and demonstrations – in a word, the ways of
representing and formulating the subject that make it comprehensible to others”
(p. 9). See Chapter 2 by Petrou and Goulding, this volume, for further discussion of
Shulman’s work. We suggest that knowledge of one’s own methods of making the
subject comprehensible to oneself is a necessary first step for reflective teaching.

Teachers’ Mathematical Knowledge

In the recent political climate of international league tables and government initia-
tives to ‘drive up’ standards in primary schools, the spotlight has been on the teacher
and their teaching: a model of deficiency (Sanders & Morris, 2000, p. 398) in par-
ticular tempts a quick response of measure-and-fix. Yet what is a robust and useful
‘measure’ and what is the ‘fix’? The interplay of subject matter knowledge and
‘effective’ teaching is complex: strong subject knowledge is arguably a central and
necessary condition for more effective mathematics teaching, but it is not sufficient.
We believe that a more productive approach would be to ask what sort of subject
knowledge informs more effective teaching, and how might a novice teacher take
control of their identity as a mathematics learner themselves and use this positively
in their teaching?

In England, initial teacher education providers have been required since the late
1990s to ‘audit’ their pre-service teachers’ mathematical knowledge and to support
its development – ‘gaps’ in knowledge are to be filled, errors and misconceptions
‘fixed’ and ‘connections’ made between key mathematical concepts. Such political
imperatives are set against the reality of the background of pre-service teachers’ own
school experiences – what they bring with them to their education training courses.

Even if we were confident about trainees’ knowledge and understanding of mathematics,
we would need to recognise that the vast majority of trainees have tended to specialise
in non-mathematical subjects after the age of 16, and may need to refresh and deepen
their understanding of mathematics before entering the classroom (Goulding, Rowland, &
Barber, 2002, p. 690).

Of course the affective dimension – beliefs about mathematics and attitudes to
its learning – is also part of the complexity of what pre-service teachers bring to
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their teacher training. We think that reflecting on their own identity as a mathe-
matics learner offers the pre-service teacher an opportunity to seize the power of
metacognition; knowing how one learns and how one breaks through difficulties
in understanding are perhaps potentially liberating. Co-ordinating subject matter
knowledge and pedagogical content knowledge on initial teaching practice is also
a balancing act, and the novice is most vulnerable to expectations – mostly their
own – of classroom management in the first instance.

Goulding, Rowland, and Barber (2002) examined how mathematical subject
knowledge of pre-service teachers has been conceptualised and they reported on
how it has been audited in three institutions in England. The items they used in
their audit instruments explored both the substantive and syntactic knowledge of
the trainees, that is “knowledge of mathematics (meanings underlying procedures)
and knowledge about mathematics (what makes something true or reasonable in
mathematics)” (p. 692).

Their study reported trainees’ difficulties, errors and misconceptions and initial
findings on the complex relationship between subject matter knowledge as assessed
by their audits and actual teaching performance. They hypothesised that subject
knowledge “would influence both students’ planning and their teaching, a cogni-
tive dimension encompassing beliefs about mathematics, and their confidence in
the classroom” (p. 694). They were “persuaded that the relationship involves both
cognitive and affective dimensions” but one of their dilemmas was whether audit
requirements were “creating anxiety and dislike of mathematics or acting as a useful
lever for development” (p. 701).

This study also drew on Ball’s (1990) call to encourage pre-service teachers to
‘revisit’ and perhaps ‘unlearn’ their own school experiences of mathematics. It is
such unlearning that Ball believed provoked a deeper self-awareness and articula-
tion of beliefs about mathematics (as cited in Goulding et al., 2002, p. 692). In
exploring the relationship between audited subject matter knowledge and confi-
dence, Goulding et al. (2002) cautioned that a simple “emphasis on the audit and
the remediation process [may have] had a demotivating effect” on some pre-service
teachers in their study (p. 700), but not for most:

There is stiff competition to gain a place on these courses: most students are resilient, well-
motivated and goal-oriented. Indeed the majority of those who required some remediation,
including some very weak students, appeared to respond positively to the opportunity and
reported in evaluations that they were pleased to address some of their weaknesses before
the main teaching practice (p. 700).

Sanders and Morris (2000) tested the “factual knowledge and central concepts”
of their pre-service teachers but not their “understanding or knowledge of the
organizing principles and ideas of mathematics” (p. 399). Their students were
encouraged to take responsibility for improving their own learning but it was found
that “self-directed study inevitably had a low priority”, and in the first year of
Sanders and Morris’s study this was found not to be a satisfactory approach in
improving performance (p. 400). With another cohort they also examined the effects
on confidence when their pre-service teachers were expected to re-examine their
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own mathematical knowledge and skills. Following an initial test, remediation was
provided and re-sits undertaken on a voluntary basis. The authors were disappointed
that only 40% of the students ‘grasped the nettle’ and took advantage of the sup-
port offered. Some students were “empowered by poor test results to tackle their
knowledge deficits” but others “found ways of ‘excusing’ poor results” as involving
technical terms or non-coverage at school (p. 407). Some students focussed only on
the topics they would be teaching on their upcoming assessed placement (p. 406).

Murphy (2003) suggests that pre-service teachers may not be clear about how
audited subject knowledge relates to the teaching of primary mathematics. Her study
sought to examine trainee teachers’ perceptions of the value of an auditing process.
She found that “only about half of the trainee teachers felt that their improved con-
fidence had come from [the audit process] and only about one third of the trainee
teachers saw that it had made a difference to their ability to teach primary math-
ematics” (p. 86). She found that one group of less confident pre-service teachers
viewed the auditing process as ‘filling in gaps’ and gained confidence in their sub-
ject knowledge and their own teaching as a result. However, a second group of
confident trainees did not see the value of the audit process and may have regarded
the process as ‘jumping hoops’. Murphy suggests that differing views of the audit
process may reflect “differing beliefs in mathematics as a discipline” (p. 89) and
hoped that a larger proportion of trainee teachers would “see the relevance of sub-
ject knowledge to their teaching of primary mathematics” (p. 90) in response to an
improved content and process of audit.

Barber and Heal’s (2003) study focussed on the role of social interaction and
collaboration in learning and the effectiveness of peer tutoring in enhancing primary
trainee mathematical subject knowledge. Peer interaction was used as a teaching
strategy – providing opportunities for both the tutor and the tutee to ‘explain’ their
mathematics. The pairings of high scoring and low scoring trainees were made on
the basis of an initial audit. Generally low-scoring trainees had reported low levels
of confidence and many of them also reported panic when required to ‘do maths’
and needing time to ‘recall’ knowledge. The peer tutors were trained in the art of
explanation and reported “how enlightening it was to hear so many alternative ways
of approaching each problem [on the audit] and how instructive to realise that their
own perspective on the problem was not the only one” (p. 69).

The feedback from the peer tutoring sessions was positive and “pointed to the
mediating influence of emotional factors” and improved confidence (Barber & Heal,
2003, p. 69). The authors suggest further development of peer tutoring with attention
to the nature of ‘ideal’ pairing, tutor training, ‘quality control’ and the different
needs of different ‘bands’ of trainees. The authors cautioned leaving trainees to
organise self-study – they found that “half of those who identified themselves as
having poor subject knowledge at the beginning of the course achieved the lowest
scores in the formal audit” (p. 70).

Rowland, Barber, Heal, and Martyn (2001) are also wary of guided self-study
as an adequate ‘treatment’ for poor subject knowledge. Some of the pre-service
teachers in their study had difficulty in communicating what they could ‘see’ in
mathematical situations and thus faced considerable cognitive obstacles in working
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alone (p. 93). Goulding (2003) reported that the SKIMA (Subject Knowledge in
Mathematics) group – a collaboration of researchers in four UK universities inves-
tigating weaknesses in knowledge, self-assessment and the link between subject
knowledge and teacher competence – had found that peer support groups and peer
tutors “seemed to be successful in boosting the confidence of weak trainees and also
that of the stronger trainees who acted as peer tutors” (p. 76).

Thus far, we have a deficit model of pre-service primary teacher subject matter
knowledge – ‘gaps’ to be filled, errors and misconceptions to be ‘fixed’ and new con-
nections to be made. Tests and audits have traditionally reconstituted the knowledge
base of secondary school as the expected base of subject knowledge for teaching
which then provokes different ‘fixes’ including notions of relearning, ‘unlearning’
and remediation.

Some of the research above prompts further attention to pre-service teacher
awareness of their ‘problems’, the effects of anxiety, motivation for change and
‘tools’ for exploring these. We attempt to go a little further then highlighting
also notions of identity and agency in the personal professional development of
the pre-service teacher. In particular, we look to the pre-service teacher ‘storying’
their mathematical autobiography by accounting for the unexpected: exploring their
learning identity and perhaps bearing fruitful pedagogical content knowledge that
will be played out in their ongoing story of being a teacher of mathematics. See
also Chapter 13 by Corcoran and Pepperell, this volume, for further discussion on
identity and narratives shared by participants in Lesson Study.

Testing Subject Knowledge

We now provide a brief outline of the audit ‘tool’ we have used with pre-service
teachers who were interested in exploring their patterns of response on a written
test. We too have taken the traditional route by starting with the school curricu-
lum. The test we used, the Teacher Education Mathematics Test [TEMT] (Australian
Council for Educational Research, 2004), had been developed by first constructing
a ‘primary teacher curriculum’ using documents based on Australian and United
Kingdom secondary school curricula. Similar tests can be developed using a rea-
sonable sample of the targeted population (see Ryan & McCrae, 2005, 2005/2006
for detail of methodology). The level of attainment targeted Australia’s school
level 5/6 (understood to be ‘functional numeracy level’) – this is the equivalent of
GCSE2 grade C, the minimum mathematics requirement for entry to initial teacher
education courses in England.

Test versions (each of 45 items) were constructed across the six strands of the
constructed ‘primary teacher curriculum’ involving Number (16 items in each test),
Measurement (8), Space and Shape (8), Chance and Data (6), Algebra (5), and

2GCSE is the General Certificate of Secondary Education in England which assesses children’s
attainment at the end of current compulsory schooling, usually at 16 years of age.
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Reasoning and Proof (2). The tests were in a pen-and-paper multiple choice for-
mat and timed for a 45-min period. A Rasch analysis (Bond & Fox, 2001; Rasch,
1980; Wright & Stone, 1979) of the responses of a large sample of students was
undertaken using Quest software (Adams & Khoo, 1996).

Rasch scaling uses one version of item-response modelling: a one-parameter
stochastic model of persons’ responses to items. Here responses are modelled by
a probability function characterised by one parameter – the item ‘difficulty’. The
model “can help transform raw data from the human sciences into abstract, equal-
interval scales. Equality of intervals is achieved through log transformations of
raw data odds, and abstraction is accomplished through probabilistic equations”
(Bond & Fox, 2001, p. 7).

The Rasch model assigns a difficulty parameter to each test item, estimated by
its facility, and a so-called ability parameter to each person, estimated by their raw
score on the test. These parameters are calculated as ‘log-odds’ units called logits.
The logit scale is an interval scale, and the Rasch model “routinely sets at 50% the
probability of success for any person on an item located at the same level on the
item-person logit scale” (Bond & Fox, 2001, p. 29). That is, a person located at an
‘ability’ of x has a 50% probability of correctly answering an item of ‘difficulty’ x,
an increasing probability of answering items below that difficulty and a decreasing
probability of answering items above that difficulty. The sample data builds the
measure by assigning parameters to items and persons (just one each) that minimise
data-model residuals.

The Quest program automatically calculates these item parameters (item diffi-
culty estimates with the default mean difficulty set at zero), and person estimates
(student ability estimates) and the model-fit statistics (how well items and persons
fit the model) from the data. Quest also provides classical statistics. For further
discussion of Rasch modelling and analysis see Williams and Ryan (2000).

The TEMT test items were scaled in terms of their difficulty and each person was
located on the same scale in terms of their ability as measured by the test. The data
were found to be compatible with the Rasch model, and test reliability and goodness
of fit were strong (Ryan & McCrae, 2005, 2005/2006).

We follow the psychometric tradition and use the term ‘ability’ in this chapter
purely in a technical sense, as a measure of the underlying construct that the test is
measuring (called the latent trait in the psychometric literature). In our context, the
measure is of performance or attainment on the items in this test. There is no impu-
tation of meaning attached to the term ‘ability’ other than what one can construe
from the face value of the items themselves.

In the construction of the multiple choice test, distracters were purposefully
chosen from known or suspected errors drawn from research on children’s under-
standing but also from research on teacher knowledge. They were used to mitigate
against guessing in the multiple choice format but also, more interestingly, to pro-
vide a finer-grained detail of pre-service teachers’ knowledge. Guessing/errors were
not specifically penalised in the estimation of student ability.

In a second study, another cohort of pre-service teachers in England (N = 87)
also took a TEMT assessment in the second year of their initial teacher training.
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Their patterns of response were very similar to the larger Australian sample
(N = 426) used to validate the test originally (Ryan & McCrae, 2005/2006). The
pre-service teachers in the England sample included pre-service primary trainees,
non-mathematics specialist secondary trainees and a small group of mathematics
primary/secondary specialist trainees. Participation was on a voluntary basis with
the promise of personalised diagnostic feedback from the test to assist their subject
knowledge development.

The 87 trainees in England were given an individual map of their responses as
diagnostic feedback. A questionnaire gathered information on what sense they made
of their map; in addition, two pre-service teachers from this cohort volunteered to
be interviewed to see what sense they made of this feedback and how they intended
to address their indicated mathematical needs (Ryan & Williams, 2007b).

Personalised Diagnostic Maps of Subject Knowledge

Quest software also produces an output for each individual, called a kidmap (here
called a mathsmap), highlighting their correct and incorrect response patterns. The
map summarises an individual’s performance according to the Rasch model’s expec-
tations. All test items are scaled on a vertical axis from lowest to highest in terms
of the difficulty of each item (from easy to hard). Each individual then is mapped
left or right of the axis in terms of achievement of the item or not (achieved or
not achieved). The overall ability score locates each student on the axis and a fit
statistic (‘fit’) indicates how well the student fits the Rasch model. We show Lorna’s
mathsmap in Fig. 15.1.

In the mathsmap the 45 items of the test are located along the vertical scale
according to their overall difficulty. It can be seen that item 33 was the easiest
and item 30 the hardest. Those items that Lorna answered correctly are located
on the left of the diagram, and those that she answered incorrectly appear on the
right. Lorna answered item 33 correctly and item 30 incorrectly. The mathsmap
also locates Lorna’s ‘ability’ on the same vertical logit scale (centrally marked by
3Xs): her ability measure estimate was 0.913 and she answered 64.44% (29/45) of
the items correctly (see the statistics in the top margin). The dotted lines around the
estimate of Lorna’s ability represent ±1 standard error for the estimate. Additionally
Lorna’s actual option choices (1, 2, 3, 4, 5 or 0), made for each incorrect item on
the right-hand side, are indicated in parentheses; thus 30(4) indicates that Lorna
incorrectly chose option 4 for the hardest item 30. This gives further diagnostic
information (Ryan & McCrae, 2005/2006).

The individual would be expected to achieve all the items at and below their
ability estimate with an increasing probability for those items further below. Lorna

3Lorna’s ‘ability’ is located at 0.91 logits on the scale which indicates that she is nearly one
standard deviation above the mean of the item difficulties. We can therefore compute the prob-
ability of her correctly answering an item of difficulty ‘d’ as being approximately exp(0.91–d)/
[1 + exp(0.91–d)]; thus, for the average item with d = 0, this is approximately 70% for Lorna.
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------------------------------- PERSONAL MAP -----------------------------------
 ability:  0.91 

group: all  fit: 1.14 
scale: numeracy

------------Harder Achieved ---------------------- Harder Not Achieved ----------
truncated
 | | 30(4)
 | |
 | | 23(5)
 | | 36(3)
 | | 40(4)
 | |
 | | 37(4)
 | | 20(2)

38 8  | |
19  | | 14(2)

..........................................
 | |
 | |

16  |XXX| 13(4)
42  | | 39(2)

28 18 3  ........32(1).............................
 | | 29(3)

7 5  | | 11(3)
 | |
 | |

45  43  34 26 15 9  | | 10(1)
4  | |

44 25  | |
 | |

2  | | 41(1)
31 6  | | 12(3)

 | |
17  | |
1  | |

 | |
22  | | 21(5)

 | |
 | |
 | |
 | |
 | |

24  | |
 | |
 | |

35 27  | |
 | |
 | |
 | |

33  | |
------------ Easier Achieved ---------------------- Easier Not Achieved----------

Fig. 15.1 Mathsmap for Lorna

has a 50% probability of answering items at her ability estimate (note that item 16
is correct and item 13 is incorrect – both are located at her ability level). She would
have been expected, with an increasing probability, to have correctly answered items
39, 32, 29, 11, 10 and so on, but she did not. Lorna would not have been expected
to correctly answer items 38, 8 and 19 located above her estimate (on the left), but
she did respond correctly to these items. In a perfect ‘goodness of fit’ to the Rasch
model, the top left and bottom right quadrants would be empty, so items in these
quadrants are particularly engaging for discussion in the first instance.
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Each individual mathsmap indicates the secure and non-secure curriculum areas
of a pre-service teacher: the non-secure items may indicate ‘gaps’ in knowledge,
‘rusty’ or long-forgotten knowledge or faulty conceptions. We found that discussion
of them compelled a ‘storying’ of their mathematical knowledge and history by our
two interviewees.

Bruner (1996) suggests that:

Stories pivot on breached norms. That much is already clear. That places ‘trouble’ at the
hub of narrative realities. Stories worth telling and worth construing are typically born in
trouble. (p. 142)

Thus, the two shadowed quadrants (top left and bottom right) of the mathsmap
in Fig. 15.2 list breached norms, and therefore ‘trouble’ to be explained, perhaps
normalised, at least to be explored and brought to some narrative reality. Narrative
interpretations may be idiosyncratic, but perhaps there are universals in the reali-
ties they construct (Bruner, 1996, p. 131). Bruner suggests also that ‘turning points’
are crucial to the narratives – “pivotal events in time when the ‘new’ replaces the
‘old’” (p. 144), so we think that the stories of unexpected item mapping in the math-
smap may provide both the interviewee and the interviewer with insights into the
subject matter knowledge and personal histories of mathematical learning that the
pre-service teachers bring with them.

The pre-service teacher trainees were given their own mathsmap and guidance
on how to read it. They were also given a list of the descriptors of the test items
rather than the actual test items in order that the curriculum area indicated by the
descriptor was targeted for study by the trainee, in a broad sense, rather than in terms

You got these
questions right
but were not
expected to,
given your
ability as
measured by
this test 

You got these
wrong and
were expected
to get them
wrong given
your ability as
measured by
this test 

You got these
right and you
were expected to,
given your ability 

You got these
wrong but
were expected
to get them
right given
your ability 

Work on
these later  

These are the areas to
work on immediately 

You may have
guessed these or
have an area of
strength not
expected 

Fig. 15.2 Interpreting the mathsmap quadrants
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Table 15.1 Descriptors for Lorna’s unexpected incorrect items in the bottom right quadrant of her
mathsmap

Item Curriculum description of item

29 Algebra: multiplying simple algebraic expressions by a number
11 Chance: likelihood/probability of everyday events (numerical)
10 Shape and Space: identifying Cartesian co-ordinates
41 Algebra: from tables of values to algebraic rule
12 Chance: recognising dependent events (reduced sample)
21 Measures: finding perimeter of a rectangle – words

Table 15.2 Descriptors for Lorna’s unexpected correct items in the top left quadrant of her
mathsmap

Item Curriculum description of item

38 Shape & Space: rotation of a shape about an internal point
8 Shape & Space: interpreting drawings on a grid

19 Shape & Space: finding one missing length for similar shapes

of item-specificity. See for example Table 15.1 for Lorna’s ‘easier not achieved’ item
descriptors – she was expected to get these items correct but did not.

Lorna’s unexpectedly correct items are shown in Table 15.2. They are all Shape
and Space test items.

Narrative Accounts – The Impetus of ‘Troubles’

Our two interviewees had quite different mathsmap profiles. Lorna had an ability
estimate of 0.91 (29 items correct, and located at the 56th percentile) and Charlene
had an ability estimate of 2.00 (36 items correct, and located at the 86th percentile).
Both volunteered to be interviewed on how they interpreted their mathsmap. They
had quite different profiles in terms of mathematical confidence, life experience and
school teaching practice.

Lorna narrated her unexpected correct responses with a story of her growth in
competence and confidence in her capacity to learn. She was very animated and
excited by her ability to have overcome a recent school teaching experience which
had shown up her lack of knowledge in the Shape and Space area of the mathematics
curriculum, and said she now felt confident about tackling her problem area of alge-
bra as a consequence of her success. On the other hand, although (or just possibly
because) Charlene was a higher scorer, her accounts for her unexpected errors told
a story of ‘slips’, tending to marginalise explanations that might invoke her need to
learn or fill knowledge gaps. She said that she often got “carried away” and made
silly errors, but she also thought that she needed to improve her mental maths skills
(Ryan & Williams, 2007b).
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We discuss Lorna’s and Charlene’s interviews and point to the way ‘account-
ing for the unexpected’ in both cases impelled a story of themselves as learners
or mathematicians. The resources these two pre-service teachers drew on in their
story outlined and ‘coloured’ (or perhaps constructed) their metacognitive knowl-
edge of learning. This leads us to propose the mathsmap as a tool for provoking
pre-service teachers to ‘story’ their own learning and knowledge, and hence evoke
cultural models of ‘learning’ in general.

Lorna

Lorna was a ‘mature’ trainee studying on a 4-year BA Primary (Hons) education
degree course, qualifying her to teach in primary schools. She was not confi-
dent about her mathematics ability and said that she had achieved a C grade in
mathematics in school O-levels4 some 20 years before.

Lorna: . . . I always think I am near the bottom ten percent (laughs).

However she had answered 64% of the test items correctly and was highly moti-
vated to address areas of weakness in subject knowledge. She was energised by her
unexpected responses.

Lorna: [The mathsmap] identified areas I thought I was weak in and some I didn’t
. . .. Yeah, there were some surprises! In both what I thought I knew and
in some areas I thought I was rusty. Some areas I didn’t think I was quite
so wonderful on and I got them right, which surprised me. I thought, ‘Oh,
well not too bad at all!’ ‘Cos I was thinking I was sort of, virtually way
down and had mountains to climb and now it shows, ‘No I don’t, I’m sort
of in the middle with having just over half, with 64 percent.’ So I’ve not
got as much climbing to do. I thought maybe with just a few small steps
and I’ll be there.

Lorna was surprised that she had achieved some of the items above her ability
estimate as indicated in the top left quadrant of her mathsmap (these were all Shape
and Space items – see Fig. 15.1 and Table 15.2). Once this curriculum area was
identified she explained her unexpected success by recent targeting while on teach-
ing practice, because she already knew that this was an area of weakness – she had
not guessed here.

Lorna: Well that’s interesting, that! Because on my teaching practice last year
with year 6, I did a unit of work in term 1 for Shape and Space and it
was all about quadrilaterals and rotating shapes and the size of angles
(and) symmetry. So maybe that is where that has come from, that not only
I have taught them but I have learnt as well . . . So I have . . . as well as
teaching children I have learned myself, so I know I have learnt more from

4O-level was the pre-1988 forerunner of the national GCSE examination.
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what I have taught, as well as teaching at the same time . . . (Excited) so
that tells me that maybe with time and practice that this area here [bottom
right quadrant] will come, up . . . over [into the ‘correct’ quadrant].

She told a story of low confidence with a belief of “mountains yet to climb” in
addressing subject knowledge. She had confronted a setback on her recent teaching
practice which had highlighted lack of knowledge and this then became a pivotal
moment, a ‘turning point’ – it is not only a story of directed self-study but one
of a deep connection made with learning as she taught. Her teaching practice had
been the motivating factor and it is clear here that she had been determined not to
‘put it away’ because it confronted her own professional identity as a teacher of
mathematics.

Lorna: I’ve not got as much hard work to do as I thought I did. ‘Cos I was
dreading it. I tend to hide things and put them away and think if I
put it away and can’t see it, it doesn’t matter and won’t bother me
but sometimes you’ve just got to . . . After my teaching practice what
I did, I did flounder with Shape and Space, I did. I had some really
bad lessons. The first lesson I did, the teacher she just said right we’ll
just put that to one side and I think we’ll start again. And she gave
me some help. And I went home and I studied and studied and studied.
And it did, it shows it does help. I wasn’t expected to get them right
and I did.

After her unsuccessful lesson, Lorna’s school mentor had given her time to study
and prepare the lessons for this area again, so Lorna had collected textbooks and
had used the internet to study Shape and Space extensively on her own in order to
feel more confident.

Lorna: (I used the book on) subject knowledge, it’s the one we have here in the
library. And I went out and bought it and I just sat and read and read and
read on Shape and Space . . .. I think it’s by Suggate . . .. It was in the
directed reading notes we were given to do every week. I went to that one
because I’d done the (chapter) on algebra, because I was rusty on algebra.
So I read up on algebra and found it really useful. It worked for me. The
vocabulary was good for me. So I thought, right, I’ll go for it and use it
for Shape and Space. And obviously it did, it helped, it worked. I thought,
now I know what to do and I went out and bought it.

She then referred to the items in the bottom right quadrant – ‘easier not
achieved’ which she now felt she could be successful with using the same study
strategy.

Lorna: It shows me that there are a lot of concepts there that are quite rusty
because I am 39 – (that’s) 20 years after [my own schooling] . . . so that
tells me that maybe through teaching that I, (with) just a little bit of home-
work and practice, that I could move those quite easily up . . . over, to there
[left]. . . . Because I do fear maths, I see maths as a bully. It is my bully.
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And this has shown me that I can overcome this, and become an effective
maths teacher.

Lorna also identified algebra as one of her “rusty” areas and was becoming con-
fident that she could move it ‘over the line’. She asked to discuss an actual test item.
Her discussion of item 41 (see Table 15.1) showed that she could now talk her way
through the item on matching a table to an algebraic rule (see Fig. 15.3) after having
done some personal study on algebra.

Which of the following tables represent the function y = x2 + 3? 

  Table 1 

x 0 1 5 10 

y 3 4 8 13 

Table 2   

x 0 1 2 5 

y 3 4 7 28

Table 3 

x 0 1 2 3 

y 3 5 7 9 

A. Table 1 only    B. Table 2 only    C. Table 3 only    D. Tables 1 and 3    E. Tables 2 and 3 

Fig. 15.3 Item 41: ‘Algebra: from tables of values to algebraic rule’

Lorna: Question 41. (Looking at her test script) I wrote at the side ‘guessed,
no idea!’

Interviewer: Do you want to talk through now what you are thinking perhaps?
Lorna: First thought, ooh, algebra! Right! So, you’ve got to work out – I

can graph this scale, if x is squared plus 3, you are going to have a
plus – you’re going to have it going plus 3 every time but it’s got to
be squared as well. So you’re going to have to take 3 off, and then
you’ve got to have a number that you can get a square root from. This
is after now reading about algebra. Before I would have just thought,
oh, well it must start with a 3. And then I’ve thought, no, hang on,
how am I going to do this? I just didn’t know. And then I thought, oh
x, in the top row in table 1, you’ve got 1, then I felt, well ‘x squared’,
1 times 1 is 1 plus 3 is 4 (pointing to it) . . . And then the next number
along in table 1, x. I’ve thought if x is 5, I’ve not squared it, I’ve just
added 3. And the next one along in table 1 is x is 10, and then the
answer below is 13. I’ve just added 3, I’ve just guessed, panicked and
just gone for number 1 [option A] which was table 1.

Here Lorna constructs an account of her mistake of ‘adding 3’, which she had
originally thought was because she “guessed”. Now ‘after reading about algebra’,
she can see “x is squared plus 3 . . . you’re going to have it going plus 3 every time
but it’s got to be squared as well.” She reinforces this formulation of the function by
inverting it and emphasising the need for a square root.

We note that in talking about her own thinking ‘before’, she switches tenses as
in “I would just have thought” and “I just didn’t know”. Here she constructs her old
thinking to include a squaring of the x, re-working the first x-value in Table 15.1,
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getting the right value of 4; but then “I’ve thought, if x is 5, I’ve not squared it, I’ve
just added 3 . . . I’ve just added 3, I’ve just guessed.”

This is a pivotal event where Lorna replaces the ‘old’ with the ‘new’ (Bruner,
1996. p. 144) in her story of her algebraic understanding. What began with a power-
less statement, “I guessed, no idea” becomes, by the end of her story, a new guess,
“I’ve just added 3” which we pedagogues would conceptualise as a self-diagnosis.
This is an important storying of her self ‘before’ and ‘after’ her learning about alge-
bra, and we think offers insight into her potential metacognitive learning about her
own learning.

Charlene

Charlene was a science specialist trainee on a 3-year BSc (Hons) in primary
and secondary education degree course, qualifying her to teach as a generalist in
England’s Key Stage 2 (middle and upper primary school) or as a science specialist
in Key Stage 3 (lower secondary school) and perhaps Key Stage 4 (upper secondary
school). She was confident with the mathematics in the test – she had answered 80%
of the items correctly and was interested in seeing where she had made mistakes.
She had achieved a B grade on her AS-level5 mathematics two years previously. She
reported that her mathsmap (see Fig. 15.4) was initially a puzzle but once she had
read the detailed instructions it made sense.

Charlene: When I first looked at it, I was like ‘what is this!” I was looking at it
thinking ‘how do you read that?’ But then, once I’d . . . actually looked
at it properly, and then read a few of the instructions, I was like ‘that’s
easy!’, it made sense, and it seemed the best way, probably, to present
the information.

Charlene confirmed that the items in the bottom right quadrant (easier, not
achieved items) (see Table 15.3) made sense as items she should have answered
correctly and seemed to have an understanding of the type of errors she would have
made: silly mistakes rather than knowledge problems.

Charlene: I mean, they looked like the sort of things that I . . . probably would
have had problems with or made a silly mistake on, like the deci-
mal point (question 16) . . . and also probably (question) 5 because it’s
‘measuring, in lengths, mm, cm and metres’ so that will be converting,
which is easy for me to make a mistake in. . . . I just, I don’t know, I
just get carried away. I jump one step ahead, and it all goes pear-shaped
. . . ‘Cos sometimes I try and think too advanced for the questions, ‘cos
I did AS [A- level year 1], not very well, maths, but I do sometimes
think there’s more to it than what’s there.

5AS is the first year of the Advanced level which constitutes the final 2 years (called AS and A2)
of post-compulsory schooling in England.
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------------------------------- PERSONAL MAP -----------------------------------
 ability: 2.00 

group: all  fit: 0.87 
scale: numeracy

------------Harder Achieved ---------------------- Harder Not Achieved ----------
truncated
 | | 30(4)
 | |

.......................................... 23(5)
36  | |

 | | 40(4)
 | |
 |XXX| 37(1)

20  | |
38  8  | |

 ........14(1)...19(2).....................
 | |
 | |
 | |

13  | | 16(3)
42 39  | |

32 18  3  | | 28(3)
29  | |

11  7  | |  5(2)
 | |
 | |

45 43  34 26  15 10  9  | |
 4  | |

44 25  | |
 | |

41  2  | |
31 12  6  | |

 | |
17  | |
 1  | |

 | |
22 21  | |

 | |
 | |
 | |
 | |
 | |

24  | |
 | |
 | |

35 27  | |
 | |
 | |
 | |

33  | |
 | |

------------ Easier Achieved -------------------- --Easier Not Achieved ----------

Fig. 15.4 Mathsmap for Charlene

Charlene suggests that she “get(s) carried away”, or thinks in a “too advanced”
manner rather than having missing knowledge, that may explain her errors.

She said that in converting 0.125 to a fraction on the test (item 16, ‘Number:
decimal to fraction conversion’) she probably ‘misread’ one of the answer options
(C: 125/100) which she had selected thinking it was 125/1,000 (not one of the
options). But she also said that her mental mathematics skills needed improvement
and her processing on this item showed that she was using repeated addition to find
how many 125s in 1,000.
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Table 15.3 Descriptors for Charlene’s unexpected incorrect items in the bottom right quadrant of
her mathsmap

Item Curriculum description of item

16 Number: decimal to fraction conversion
28 Data: graphs – generating rules of the form y = mx+c from

graph points
5 Measures: ordering metric lengths stated in mm, cm, m

Charlene: (Reading the question) ‘0.125 is the same as’ (Pause) It’s . . . not sure
how to do . . . it’s 1, 2, 5 over a thousand. I think I probably went for
C originally. (Checks) Yes . . . Because I just must have missed out,
misread one of the noughts, seeing there was an extra nought on it,
because that was an automatic . . .

Interviewer: What would you go for now?
Charlene: (Long pause) I need to improve my mental maths. I can’t. (Pause)

I’ll have to do it the long way . . .

Interviewer: What’s the long way?
Charlene: (Laughs) I’m doing, how many, I’m working out the multiples of

125, to work out whereabouts (writing) a thousand . . .

Interviewer: You’ve got 125, 250.
Charlene: 375, 500. OK, so 4 is 500, so, 8 would be a thousand. So it’s ‘1 over

8’, which is B.
Interviewer: You’ve gone for B. So why do you think you went for C originally,

again, can you express that?
Charlene: Because I misread the 100 as 1,000, so I just assumed it was 125

over 1,000 when it was 125 over 100. And I think even when we
came out, somebody mentioned that, and I thought, oops, maybe I
did pick the wrong one then.

This account matches Charlene’s first explanation for her ‘mistakes’ as get-
ting “carried away” or “jumping ahead” so that things go “pear-shaped”. She
says she “misread” and ‘saw’ an extra nought in the denominator of the option
C fraction and processed quickly here as a one-step item. Here for item 16, her
thinking does not appear to be “too advanced” or anticipate a two-step item,
but rather suggests a seldom-used mental fact which took her a little time to
re-construct.

One of Charlene’s items located at her ability level (see Fig. 15.4, item 37) was
answered incorrectly. The curriculum description was ‘dissection and tessellation:
understanding Pythagoras’ theorem’ and involved interpreting a classic proof by
area dissection (see Fig. 15.5). It was the fifth hardest item on the test but discrim-
inated well at the top end of the ability range. Charlene said it was an unusual
question because it was asking for a proof.
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An internet animation demonstrates the theorem of Pythagoras  
by dissection and drag-and-drop transformations of the shapes  
shown on the diagram. 

What will the transformations show to demonstrate the theorem? 

A. That D and C will fit exactly into E 
B. That A, B, C, D and E will fit exactly into F 
C. That A, B, C, D and G will fit exactly into F 
D. That A, B and C will fit exactly into G 

F

G
E

C

BA

D

Fig. 15.5 Pythagoras’ Theorem

Charlene: (Laughs while reading the question) No, it’s just, yes, what’s this on
about? I think it could just be the question itself as well, (if) you’ve
not really experienced that sort of thing . . . It’s something that’s got
to prove Pythagoras’ theorem and that . . . Is that ‘a squared plus b
squared equals c squared’? Is that Pythagoras?

Interviewer: Is it?
Charlene: (Pause) I don’t . . ., or is it sohcah . . . No, sohcahtoa is different. It

is ‘a squared plus b squared equals c squared’. (Pauses)
Interviewer: What would that mean in relation to this picture?
Charlene: (Pauses and laughs) I haven’t got a clue! (Pauses) I don’t know what

it means, the diagram . . . ‘a squared plus b squared equals . . .’
Interviewer: What does that mean?
Charlene: It means the length of the two short sides, both squared, and added

together, is the same as the length of the longest side, the hypotenuse,
squared . . . (pauses)

Charlene juggled good-naturedly with the item here saying “what’s this on
about?” and recognised that ‘previous experience’ of something like this would help
as it was an unexpected type of test question. She ‘knew’ the Pythagorean theorem
but appeared not to have a geometrical image of it and did not make any connection
with ‘square’ shapes in this or further discussion – this is not surprising of course if
the theorem is simply represented as a numerical/algebraic formula without visual-
isation. But the point is that she does not consider this as an instance of a missing
conception of ‘square’.

Comparison, Contrast and Limitations

Lorna and Charlene had very different mathematical backgrounds, levels of con-
fidence and motivation to improve their subject knowledge. As a mature student,
Lorna was highly motivated and aware of her “rusty” knowledge and particular areas
of weakness. She had in fact underestimated her mathematical ability as measured
on this test, which was above average for her cohort, whereas she had thought she
had “mountains to climb”. As a result of uncomfortable exposure of poor subject
knowledge on her own school teaching practice, she had already targeted Shape
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and Space for study and was very pleased that her mathsmap indicated that she had
achieved beyond her current expected ability level. It appeared she was also very
motivated by her school mentor who had given her the opportunity to “start again”.
She was very independent and willing to put in a lot of extra time – she commented
that the younger students wanted it all done for them. Lorna had targeted algebra
from her mathsmap for personal study already and demonstrated in discussion that
her confidence in articulating algebraic structure was growing. She seemed to be
very positive about the sort of feedback the mathsmap gave her and considered her
subject knowledge as a ‘work in progress’.

Charlene was a high achieving science student who had recently completed AS-
level. She was very confident about her mathematics ability and had quickly made
sense of her mathsmap. She did not identify any areas of subject knowledge weak-
ness, generally explaining most of her errors as simple processing errors due to her
tendency to rush or to anticipate questions as more complex than they were. This
seemed to be generally the case from discussion of her errors, though she exhibited
some fundamental scale misconceptions related to linear graphing (in item 28, for
example) with prototypical misreading of the scale. She did not appear to be alert
to multi-step questions though she could identify them in discussion afterwards.
Charlene did note that her mental mathematics skills needed further work, but pre-
dominantly diagnosed her errors as ‘slips’, and her narrative leaves little space for
knowledge gaps or misconceptions. However she said she would prefer to have the
actual test questions back to review to see whether she had just made a silly mistake
or whether she did not actually understand something.

In both cases, the limitations of the mathsmap as a tool become apparent.
Firstly, it was fortunate that Lorna was able to identify Shape and Space as an
area of strength but it is not particularly well-designed to profile topic strength
as it is a short, item-focussed diagnostic tool. Secondly, Charlene being a high-
scorer receives less diagnostic feedback than Lorna. In a computer adaptive test
format where items target the ability, Charlene would be presented with more
challenging test items and would thus receive more diagnostic feedback from her
mathsmap. Finally, for the same reason (that the items are generally distant from
the ability), we might expect a particularly weak student to get less value out of the
mapping tool as currently designed.

Subject knowledge is one component – but an important one – in building math-
ematical knowledge in teaching. We have shown here how two pre-service teachers
made use of one subject knowledge audit tool to narrate their metacognition. We
think that such opportunities for personal narration may provoke agency and provide
a basis for further development of pedagogical knowledge.

Conclusion and Discussion

In previous work we and others have shown how teacher errors can provide opportu-
nities for pre-service teachers to examine the basis for their own understandings, as
well as identifying areas for attention by teacher educators (for example, Rowland
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et al., 2001; Ryan & Williams, 2007b). We have offered here one method for
encouraging teacher reflection by having pre-service teachers personally explore
their responses, errors and misconceptions with a mathsmap. We are aware, how-
ever, that with such a focus, the deficit model can be predominant. The mathsmap
is different from other feedback devices in drawing attention to non-normative
responses of the two kinds. The unexpected correct and incorrect responses can
be productively cast as ‘trouble’ to be explained, thus compelling stories to account
for them (Bruner, 1996). Such accounts – it seems to us – provide opportunities
to explore students’ metacognitive knowledge, and even the sense of agency in the
students’ own learning.

Thus, Lorna narrated her unexpectedly correct responses with a story of her
growth in competence and confidence in her capacity to learn. It is difficult not
to interpret this as a very positive indicator. Charlene was a higher scorer and she
narrated her unexpected errors with a story of ‘slips’ rather than considering a need
to fill gaps in her subject knowledge.

We do not want to over-interpret these two limited cases, but rather point to the
way ‘accounting for the unexpected’ in both cases impelled a story of themselves
as learners or mathematicians. The resources they used – for example, whether
they invoked ‘misconceptions’ or not – reflected their metacognitive knowledge of
learning and hence tapped their pedagogical content knowledge. Interestingly, other
work asking primary teachers to account for the unexpected errors of their children
(as produced on the children’s mathsmaps) have similarly provoked accounts from
their teachers, which draw on explanations such as ‘slips’ or ‘we’ve done a lot of
that recently’ (Petridou & Williams, 2007). This leads us to propose the mathsmap
can be a tool for provoking students to ‘story’ their own learning and knowledge,
and hence becomes a diagnostic of the cultural models available to them for nar-
rating stories of ‘learning’ in general, which we argue is an important component
of pedagogical knowledge and might be critical in the formation of professional
identity.

Bruner (1996) suggests that cultural norms are constructed through canonical sto-
ries. One cultural norm identified above draws on the notion of learning as ‘filling
gaps’ in knowledge – a norm that some have argued is dangerously reminiscent of
the ‘empty vessel’ notion. Yet it ‘works’ for Lorna because she is able to see how her
own efforts have ‘filled the gap’, and so the story reinforces her identity as an agen-
tive, active self-improver. Perhaps we can identify other models in the data, or in
others’ stories of learning. If not, we suspect, these students will enter teaching with
a very limited repertoire of models for learning and hence for their role in teaching.

Reconceptualising the stories in the literature about trainees’ learning as ‘canons’
may make other narrative options available. For example, when students tell of the
importance of multiple methods in their own learning of problem solving, might this
be part of another canonical narrative of teaching, one which is more connectionist,
and one which negates traditional teaching of procedures? If this connection can be
firmly established, then we will understand why it is so important for teachers to
experience such problem solving themselves as learners, and how these experiences
can provide the resources for professional development of the connectionist teacher.
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Of course, such stories need to be evaluated and sifted. The cultural model of
‘magical influences’ which is common in many cultures – including our own –
whereby errors are ‘just slips’ may not be a helpful model with which to narrate
pedagogy. But a critical approach to identity formation would ask that even these
intuitive stories need to be written and examined by educational criteria.

The research issue which might arise is how teachers’ identities, dispositions
towards, and knowledge of, learning and teaching may benefit from such reflections
on their own experiences of learning. We argue that the task is to study narratives
of learner identities, and even professional identities, and narratives of learners-
becoming-teachers, and to understand the critical events that mediate this long term
professional identity work.

Chapter 10 by Williams (this volume) argues that Shulman’s ‘propositional
knowledge’ arises from scientific reflection on practice and is largely mediated by
academic, formal conceptual language, but that ‘case knowledge’ is embedded in
practical teaching situations and is typically mediated by conceptual language from
the classroom and staffroom. By extension from this we can argue that ‘case knowl-
edge’ for teaching can be generated from learning experiences too, and that this is
the most obvious and appropriate source of this for pre-service teachers. It is perti-
nent and compelling to note that ‘case study’ knowledge is traditionally told through
narrative accounts, sometimes even biographies, and is as close to a ‘story telling’
genre of research reportage as one finds in social and educational research.

We conclude with some research questions that should help frame the next steps
in this line of research:

• What are the canonical stories of learning and teaching we want our stu-
dents/teachers to be able to tell?

• What experiences do our pre-service teachers need to reflect on to generate this
cultural knowledge?

• There may be many ways of narrating learning and teaching. How might profes-
sional identities result from teachers positioning themselves in relation to these
canons? By what criteria might we best evaluate the canonical stories of learning
and teaching?

These questions reformulate old questions in the conceptual framework of cul-
tural narrative – old wine in new bottles. But it might be helpful to think of teacher
education in this way. Stories, narratives, parables, folk tales and the like have been
the chief means by which cultural knowledge has been shared for many thousands
of years and arguably continues to be so; how better can we explain that the ancient
common sense views of pedagogy continue to thrive in schools despite the volumes
of book-knowledge ‘available’ to educators?
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Chapter 16
Building Mathematical Knowledge
in Teaching by Means of Theorised Tools

José Carrillo

Introduction

The literature on mathematical knowledge in/for teaching demonstrates a concern
in the mathematics education community to deepen understanding of what knowl-
edge a teacher has, or should have, for the teaching of mathematics, and how this
knowledge is acquired or constructed. Recent examples include the work of Ball and
her colleagues (e.g., Ball, Thames, & Phelps, 2008), contributions to the Research
Forum on teacher knowledge1 at the 2009 Conference of the International Group
for the Psychology of Mathematics Education, and various other papers presented
there (e.g., Charalambous, 2009; Gilbert & Gilbert, 2009; Klymchuk & Thomas,
2009; Turner, 2009). Other significant works include volume 1 of The International
Handbook of Mathematics Teacher Education (Sullivan & Wood, 20082); and the
chapters by Llinares and Krainer (2006), and Ponte and Chapman (2006), in the
Handbook of Research on the Psychology of Mathematics Education (Gutiérrez &
Boero, 2006). But in order to make progress from the present state of affairs, this
community concern must be translated into efforts to provide the necessary tools to
further the understanding it aims to achieve.3

J. Carrillo (B)
Faculty of Educational Sciences, University of Huelva, Huelva E21007, Spain
e-mail: carrillo@uhu.es
1Research forum1: Teacher knowledge and teaching: Considering a complex relationship through
three different perspectives. Several authors in Tzekaki, Klardrimidou, & Sakonidis (2009).
2The introduction by Sullivan is titled “Knowledge for Teaching Mathematics: An Introduction”.
Section 1 is headed “Mathematics Discipline Knowledge for Teaching”.
3The application of these tools is typically realised through activities or tasks promoting learning
on the part of the teacher. These tasks are not the object of analysis in this section. A reper-
toire of tasks oriented towards teacher training can be found in Clarke, Grevholm, & Millman
(2008), including Section A, “Tasks as a Tool for Exploring the Cyclical Nature of Learning
and Developing Reflection in the Teaching of Mathematics”, which considers the importance
of reflection in mathematics teaching (to which I shall return), Section B, “Tasks as a Tool
for Developing Mathematical Knowledge for Teaching”, and Section C, “Tasks as a Tool for
Developing Knowledge through and for Practice”, tackling the importance of starting from the
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The chapters comprising this section offer a variety of such tools, with their
corresponding theoretical frameworks and research methods, while showing a high
degree of homogeneity with regard to the objective of building mathematical knowl-
edge. In drawing out the similarities and differences, we can differentiate the tools
or the studies presented in the foregoing chapters in terms of their scope, and in
particular the contexts and the limitations involved. For example, a study might be
focused on the primary system, but the theoretical framework, or the research tools
employed in the study, could be equally applicable to teachers of other age groups.
The participants in the study include both trainee and practising teachers, and range
across all levels from kindergarten to secondary. Likewise the tools employed are
either generic or specific to the study of mathematical knowledge in teaching (or
to the professional knowledge of a mathematics teacher). The teacher’s learning
environment or the context of the study can be individual or collective, and the lat-
ter may, or may not, feature the role of knowledgeable other. To this extent, it is
important to analyse what role is given to teacher reflection in these chapters. We
might also think closely about the potential of a tool to promote professional knowl-
edge and development, in addition to confirming its analytical virtues for research.
Finally, it is important to make evident the theoretical framework involved, and the
extent to which the approach and tools adopted are complementary.

Theorised Tools from Teachers’ Knowledge:
KQ, SMK & PCK, MKT

The theoretical foundations underlying the chapters by Turner and Rowland, Tirosh,
Tsamir and Levenson, and Corcoran and Pepperell derive from the theories concern-
ing the Knowledge Quartet (Rowland, Huckstep, & Thwaites, 2005), Subject-Matter
Knowledge and Pedagogical Content Knowledge (Shulman, 1986, 1987), and
Mathematical Knowledge for Teaching (Ball et al., 2008). All of these draw on
Shulman’s seminal work (also cited in the Chapter 15 by Ryan and Williams),
incorporating adaptations appropriate to the domain of mathematics teaching (see
Section 1).

Analysis of teaching often focuses on management issues, at both primary
and secondary levels, in the contexts of both trainee and practising teachers. The
Knowledge Quartet offers a tool for overcoming such a limited analysis, and
foregrounds mathematical content knowledge within the study of mathematics
teaching.

Turner and Rowland make the case for the need to increase teachers’ math-
ematical content knowledge as limitations in this area bear close relationship to
poor student achievement. To a certain extent, researchers into teachers’ profes-
sional knowledge, and in particular the authors of the other chapters, assume the

practice of teaching in order to construct teachers’ knowledge, including a chapter relating tasks in
groups of practising teachers with tasks in initial teacher training (Carrillo & Climent, 2008).
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need to develop teachers’ knowledge as a means of improving student learning.
What Turner and Rowland bring to the debate, is the notion that this correla-
tion holds not in respect of the teachers’ formal mathematical qualifications, but
in respect of the classroom practice. As a result, one of the distinctive features
of the Knowledge Quartet is the consideration of teachers’ mathematical content
knowledge in teaching.

It is knowledge in action, which has greatest impact on student learning out-
comes, and hence, it is the knowledge that can be observed in the actual practice
of teaching, which forms the starting point for reflection, and the end point in
the improvement process. This approach to the development of elementary math-
ematics teaching is firmly classroom-based, and shuns purely theoretical findings
deriving from scrutiny of the research literature and handing down prescriptions as
to the ideal characteristics and knowledge the teacher should possess/acquire. The
focus on knowledge in teaching is of such significance that Turner and Rowland
adopt the central argument of Mason and Spence (1999) in which “knowing-about
mathematics and mathematics teaching is only realised as knowing-to in the act of
teaching”.

Pursuing this perspective, Rowland et al. (2005) take a grounded approach to
the data with the aim of generating a theory capable of capturing the dimensions of
teachers’ mathematical content knowledge, not in terms of what might be desirable,
but with the intention of developing a framework for reflection on teaching and
teacher knowledge, so as to develop both.

Note that the development of the KQ and Ball’s scheme for mathematical content
knowledge, in the context of a teacher training programme, can be conceptualised
in terms of the notions of ‘theoretical loop’ and ‘practical loop’ (Skott, 2005). Skott
warns us against any kind of idea of linearity between theory and practice in which
the teacher is considered a mere implementer of theoretical constructs (Skott, 2008).
In training contexts such as those described here, practice is both the source of
problems and the space for implementing possible solutions and approaches. A clear
distinction is made between the researcher’s interests and those of the teacher, in
terms of, on the one hand, the theoretical loop (with the emphasis on theory drawing
on practice and thence returning to theory, undertaken by the researcher), and on
the other, the practical loop (with the emphasis on practice illuminated by theory,
undertaken by the teacher).

Similarly, Ball and her colleagues’ work on mathematical knowledge for teach-
ing also starts from analysis of teaching. It is through analysis of the practice
of teaching that these researchers gain insight into the nature and dimensions of
mathematical knowledge for teaching, adapting Shulman’s framework for teach-
ers’ knowledge concerning subject-matter knowledge and pedagogical content
knowledge to the area of mathematics teaching.

In their chapter, Tirosh et al. adopt the domains proposed by Ball and her
colleagues for mathematical content knowledge for teaching: common content
knowledge (CCK), specialized content knowledge (SCK), knowledge of content
and students (KCS) and knowledge of content and teaching (KCT). In their study,
these authors use the most developed part of Ball’s well-known framework on the
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domains of mathematical knowledge for teaching, in which CCK, SCK and horizon
knowledge (HK) are situated within SMK, and KCT, KCS and knowledge of con-
tent and curriculum (KCC) within PCK. Ball and colleagues themselves state that
the scheme is still a work in progress and that HK and KCC have yet to be developed
with greater precision and width (Ball et al., 2008).

Both theoretical frameworks, those of mathematical knowledge for teaching
(MKT, Ball and colleagues) and the Knowledge Quartet (KQ, Rowland and col-
leagues) represent developments of Shulman’s frame. Could they perhaps share
something else in common which might help us explore the complementariness
of the approaches in the chapters by Turner and Rowland, and by Corcoran and
Pepperell on the one hand, and Tirosh, Tsamir and Levenson on the other? And,
what of the differences?

As Turner and Rowland illustrate, the KQ (Foundation, Transformation,
Connection, Contingency) is a useful tool for reflecting on the ways in which con-
tent knowledge is mobilised in the classroom, and indeed, as mentioned above, it is
the classroom which becomes the most typical context of its application. This is not
to say that lesson observation is the only means that the KQ recognises for bring-
ing mathematical content knowledge into focus. Other appropriate sources include
video recordings and written reports of lessons, group or individual interviews, and
seminar sessions involving teachers, mentors and researchers; the essential point
is that analysis begins with the classroom. It is by basing itself on the practice of
teaching that reflection, configured along the dimensions of the KQ, can contribute
to enhancing mathematical content knowledge.

For their part, Tirosh et al. present an analysis of the MKT displayed by teach-
ers participating in a professional development programme, drawing their data from
examples supplied by the teachers at various points during the course. Although in
this respect there is no analysis of classroom practice itself, they do make refer-
ence to how to present activities to children. Furthermore, they make a comparison
between the results of pupils whose teachers participated in the course and those
who did not.

Despite the differences in the backgrounds to the two analyses, it is clear that the
study by Tirosh et al. could be complemented by a consideration of practice in the
same way that Turner and Rowland’s work might be enriched by the incorporation
of concrete examples and how these might translate into activities for the pupils.

Ryan and Williams report on their study into teachers’ reflection about their
results in a diagnostic assessment of mathematics SMK. Their interest lies in the
promotion of pedagogical content knowledge and, in particular, how to mediate the
subject for one’s pupils. They suggest that the first step to becoming a reflective
teacher is to understand the processes involved in one’s own comprehension of the
subject. In this way, the researchers relate the act of making knowledge compre-
hensible to the pupils to that of knowing oneself as a mathematician. To achieve
such metacognitive knowledge demands the development of a reflective capacity
and this, in turn, should extend to the classroom (reflective teaching).

The first dimension of the KQ, Foundation, comprises the teacher’s theoretical
knowledge and beliefs. The authors consider that the other three dimensions stem
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from this, as it is the configuration of their accumulated propositional knowledge
which guides how they set about the task of teaching. One part of this background
is mathematical knowledge, which Ryan and Williams explore. They concur with
Turner and Rowland regarding the influence of this dimension on the development
of pedagogical content knowledge, although their study into this domain of the KQ
is not grounded in practice. Nevertheless, teaching remains their ultimate objective
as their work is guided by the following questions: “What sort of subject knowl-
edge informs more effective teaching . . . how does a novice teacher take control of
their identity as a mathematics learner themselves and use this productively in their
teaching?”

Foundation concerns the knowledge and conceptions that are typically acquired
during initial (and continuing)4 training. The other three dimensions, however,
focus on knowledge-in-action at both the planning stage and in terms of classroom
performance.

There is a parallelism between the way the dimensions Transformation,
Connection and Contingency interface with that of Foundation, and the focus of
the study by Tirosh et al., in which the teacher’s mathematical knowledge is anal-
ysed and promoted in relation to the knowledge that their students are required to
learn and the corresponding approach to its acquisition.

While Foundation is related to Shulman’s (1987) comprehension, the second
dimension, Transformation, refers to the teacher’s ability to reconfigure their knowl-
edge in such a way as to give pupils access to it (Ball, 1988; Shulman, 1987). The
third dimension, Connection, refers to the knowledge which enables connections to
be made between procedures and concepts, anticipate complexities, decide learning
sequences and recognise the cognitive demands of concepts and procedures. The
final dimension, Contingency, refers to the decisions and responses by the teacher
to unexpected events and answers on the part of the pupils.

The Knowledge Quartet was originally developed as a framework for reflection
on mathematics content knowledge, as evidenced by actual classroom practice. Its
scope was later broadened to develop teachers’ SMK and PCK (e.g. Turner, 2008).
It was through reflection on their own teaching, guided by the KQ, that participating
teachers in this latter study illustrated the utility of the KQ and the development of
its conceptions of mathematics teaching and content knowledge, especially PCK,
but also SMK.

Corcoran and Pepperell also make use of the KQ in their work and, following Tall
(2008), do not aim to provide models of ideal lessons to follow, but rather to involve
teachers in a process of deepening understanding of how mathematics is learned.
This might include teaching standard mathematical methods, such as techniques for
calculation, and also non-routine problems, but the focus is always on the pupils,
their anticipated responses and potential obstacles, two aspects at the heart of KCT
and KCS.

4Note that the KQ was originally developed in the context of intial primary teacher training,
although it has subsequently been applied to in-service contexts (Turner, 2008).
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This relationship between the themes under analysis in the chapter by Corcoran
and Pepperell, and the dimensions of MKT is clear and to be expected in any study
into learning to teach mathematics. Furthermore, the authors provide a new perspec-
tive on implementing the KQ. They note how participants felt somewhat constrained
by a perceived linearity of the four dimensions, and so resequenced the components
in a way that was more consistent with their experience of Lesson Study. Hence,
taking the pupils’ learning as their starting point, they first gave prominence to
Contingency. This naturally led on to the Connection dimension as they reflected
on particular cases, and ultimately to the Transformation and Foundation dimen-
sions. The point is not to advocate one particular sequence over another, but to
illustrate the legitimacy of reordering of the KQ dimensions in order to focus on
and improve MKT.

Turner and Rowland highlight how the use of the KQ can challenge teach-
ers’ conceptions and content knowledge. For them, the usefulness of the KQ lies
precisely in the centrality it confers on mathematical content knowledge, beyond
issues of classroom management. The authors concede that the participating teach-
ers would most likely have developed their practice in one form or another without
their intervention. For them, the value of the KQ lay in the focus it directed on math-
ematical content knowledge, bringing to teachers’ attention questions concerning
this knowledge which they were then able to address. And these aspects of mathe-
matical content knowledge can be the object of reflection based on the dimensions
of MKT: CCK, SCK, KCT, KCS.

In summary, the chapters considered so far have presented, in respect of the theo-
retical framework of teacher knowledge, the Knowledge Quartet and the adaptation
of SMK and PCK in terms of MKT, with its dimensions of CCK, SCK, KCT and
KCS, along with the ‘delinearisation’ of the KQ dimensions suggested by Corcoran
and Pepperell.

The CICD – A Theorised Tool from Mathematics Knowledge

Tirosh et al. propose combining theories of teacher knowledge with theories of
mathematics knowledge so as to promote the construction of teachers’ mathemati-
cal knowledge for teaching. As mentioned above, the authors employ the domains
proposed by Ball and her colleagues for mathematical content knowledge for teach-
ing. In addition, they also incorporate Tall and Vinner’s (1981) notions of concept
image and concept definition (CICD), paying special attention to the relationship
between formal and intuitive knowledge. Formal knowledge has been mediated by
an authority, whereas intuitive knowledge is immediate and usually experiential, and
may not always be consistent with the logical reasoning required for comprehending
mathematical concepts.

They claim that this combined theory is useful for teachers and teacher educa-
tors, enabling one to focus on mathematical knowledge and its implementation in
teaching. On the one hand, the framework allows teacher educators to give specific
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attention to areas of knowledge, and on the other, it helps to focus teachers’ atten-
tion on the particular knowledge they are attempting to build in their classrooms.
The unique feature of this study, then, is this – the implementation of a the-
ory of mathematics knowledge which guides reflection on teachers’ mathematical
knowledge.

In the context of an in-service training programme, the authors relate the con-
struction of kindergarten teachers’ SCK regarding concept images and concept
definitions of triangles. The instructor used the combined framework as a means
of probing the teachers’ current knowledge and directing reflection upon it.

The chapter also considers the differences between SCK and KCT and likewise
between KCT and KCS. For example, a formal concept definition is one thing, cor-
responding to SCK, but its adaptation to the age and level of the pupils is quite
another, and in this case corresponds to KCT. The authors show how their frame-
work helped in alerting teachers to the types of knowledge they needed to be able
deploy in the classroom. The relevant mathematical knowledge was necessary, but
not sufficient; the pedagogical knowledge of how to make this comprehensible to
their pupils was also required. Once this difference was made explicit, teachers
could first clarify their own understanding of concept definitions, and then consider
the task of successfully conveying them.

Participating teachers were thus provided with a theoretical tool for focusing on
their mathematical knowledge in relation to the specific topic through which their
MKT5 was being developed. “A crucial trait of a valuable framework of teacher
knowledge is the extent to which it identifies that knowledge needed for student
learning and understanding” (Graeber & Tirosh, 2008, p. 124). In addition to reflect-
ing on what the teacher must know, it is also important to reflect on what the
pupils must achieve. The double viewpoint of this study, mathematics knowledge
and teacher’s knowledge, enabled the authors to pinpoint what types of knowledge
are required by teachers to teach mathematics.

The chapter by Ryan and Williams also analyses the mathematics knowledge
of the participating teachers. Unlike the study by Tirosh et al., the authors do not
approach mathematics knowledge in relation to what the pupils are required to learn,
or the design of teaching activities. In Ball’s terms, we are not talking here of SCK,
but CCK.

It was suggested above that the combined scheme is useful for both instructor
and teacher educators. What is the role of these latter? What is the role of the
‘knowledgeable other’?

5Other theoretical tools can be employed according to the focus of the analysis of mathematical
knowledge, such as: van Hiele levels for geometrical concept formation (Gutiérrez & Jaime, 1998;
Van Hiele, 1986), the APOS theory (Dubinsky, 1994), and Sfard’s stages in the process of acquisi-
tion of mathematical notions (Sfard, 1991). Although not taking a combinatory approach to theory,
as in the chapter by Tirosh et al., see the essay by Carrillo, Climent, Contreras, and Muñoz (2007)
and Muñoz-Catalán, Carrillo, and Climent (2009) on applying Sfard’s work to the professional
development of mathematics teachers.



280 J. Carrillo

The Role of the Researcher/Instructor/Teacher Educator
in Building Mathematical Knowledge in Teaching

For Turner and Rowland, a key role of the teacher educator/researcher is to provide
beginning teachers with the necessary theoretical tools (the KQ) to be able to reflect
on their teaching. The starting point for such reflection in their study was the viewing
of video recordings of lessons. The researcher guided the joint reflection in group
meetings, conducted individual interviews, and promoted the participants’ reflective
written accounts. In addition, drawing on data from observations, interviews and
reports, the researcher attempted to focus on the mathematical knowledge in teach-
ing displayed by the participants and to consider the theoretical implications in order
to consolidate the KQ. For their part, the participating teachers were interested in
improving their mathematical knowledge in teaching, again underlining the differ-
ence between the theoretical loop and the practical loop (Skott, 2005) noted above.
On the other hand, in Tirosh et al., the instructors explicitly introduced kindergarten
teachers to CICD theory, requiring them to apply CICD theory to examples from
their classes and to distinguish between the mathematical knowledge required of
them as teachers and the pedagogical knowledge required to convey it to their pupils
in the kindergarten. In contrast, Turner and Rowland do not introduce the MKT
frameworks with the intention that teachers apply them for themselves, but rather as
a theoretical tool for the instructors to evaluate the teachers’ knowledge.

Nevertheless, their chapter does give a central role to reflection:

The Knowledge Quartet . . . provides a means of reflecting on teaching and teacher
knowledge, with a view to developing both

The study was based on a model of teacher professional development through reflection
both in and on teaching action (Schön, 1983)

The Knowledge Quartet was used to focus the teachers’ reflections on the mathematics
content knowledge realised in their teaching.

This selection of excerpts illustrates the usefulness of the KQ in focusing teach-
ers’ reflection on mathematical content knowledge and its potential for promoting
professional development, with the researcher acting as guide in this reflective
process.

In the chapter by Tirosh et al., the word reflection appears just once (as a disjunct
in the expression ‘Upon reflection’). Nevertheless, the tasks and instructions given to
the teachers illustrate the aim of the instructors not so much to evaluate the teachers’
knowledge, as to explore it through reflective situations:

Look at the definitions (now written on the board) and try to think which are correct and
which are incorrect . . . if there are definitions which are unacceptable, explain why

In the context of the research presented by Tirosh et al., the instructors take a
more ‘direct’ or ‘closed’ role than the researcher in Turner and Rowland’s study:
“Although the instructor’s approach may be considered quite direct, it became the
norm with these kindergarten teachers that the instructor gave the closing argument
of each discussion.”
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Reflection is also a central notion in the chapter by Corcoran and Pepperell: “The
Lesson Study approach is built on the collective development of teaching effec-
tiveness through collaborative work and reflection on practice . . . bringing together
subject and pedagogy in reflecting on and refining practice.”

Corcoran and Pepperell employ the KQ theoretical framework and present an
experience of learning mathematics based on Lesson Study. The chapter concerns
the use of Japanese Lesson Study (JLS) to improve mathematical knowledge for
teaching in pre-service teacher education. It starts from the idea that JLS allows
teachers to focus their attention on knowledge for, and in, mathematics teaching.
However, for this to happen the participating teachers are required to develop a crit-
ical approach to their own practice and to take responsibility for their mathematics
learning (Fernandez, Cannon, & Chokshi, 2003).

The Lesson Study cycle goes beyond critical consideration of the pupils’
responses during an observation. It is characterised (Chapter 13 by Corcoran &
Pepperell, this volume) by two processes: “kyozai kenkyu, – a process in which
teachers collaboratively investigate all aspects of the content to be taught and
instructional materials available – and jyugyo kentuikai – the post-lesson review
session (Takahashi, Watanabe, Yoshida, & Wang-Iverson, 2005)”. In preparing
these lessons, prominence was given to the specific characteristics of the school
where they were to be imparted. The participating teachers set aside time to clarify
the mathematics involved in planning the lessons, relying on their own knowl-
edge, published resources and research documents, and drawing on the expertise
of ‘knowledgeable others’ such as university teachers.

The role of ‘knowledgeable other’ is of great importance in the research of
Corcoran and Pepperell and bears similarities with the researcher, instructor or
teacher educator in the other chapters. As the name suggests, a ‘knowledgeable
other’ is a person in possession of a greater degree of expertise than the teachers
participating in the research project, who is able to stimulate discussion and reflec-
tion on mathematics knowledge and the participants’ classroom practice. In short,
he or she represents a vital resource in the process, although they do not necessarily
participate in each stage of the Lesson Study cycle.

The study stems from the conjecture made by Lewis, Perry, and Murata (2006),
by which “Lesson study strengthens three pathways to instructional improve-
ment: teachers’ knowledge, teachers’ commitment and community, and learning
resources” (p. 5). Corcoran and Pepperell place their research within in a theory of
social practice, employing the notion of legitimate peripheral participation (Lave
& Wenger, 1991), and considering the group formed by the trainee teacher par-
ticipants and one of the researchers a community of practice (Wenger, 1998). As
such, the collective building of knowledge, and the role of the knowledgeable other
as catalyst within the group are especially important. Chapter 13 by Corcoran and
Pepperell (this volume) write: “Each member of the elective group was involved in
planning, teaching, analysing and revising mathematics lessons that would promote
children’s mathematical reasoning . . . Fernandez’s work (2005) underlines the need
for a knowledgeable other to act as catalyst and to properly challenge accustomed
ways of working ”. The chief benefit of participation in a Lesson Study community
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was seen to be that in the process of learning about mathematics teaching, members
also developed their mathematical knowledge for teaching at the same time. The
knowledgeable other helped participants to adopt a “researcher perspective”, akin
to the role of the Knowledge Quartet as a theoretical tool for promoting teachers’
reflection on (non-management) aspects of their practice.

In Ryan and Williams, a central role is taken by the teacher educator, who
gathers information on the mathematical knowledge of the pre-service teachers
participating in the study via a diagnostic assessment instrument along with the
trainees’ reflections upon feedback about their responses to the test items. The role
of teacher educator, as they see it, is to supply the tools and create the opportuni-
ties for pre-service teachers to reflect on their mistakes and set about bridging the
perceived gaps.

The other three chapters report on studies in which participating teachers are
offered tools for analysing, reflecting on and improving their practice, in conso-
nance with Sullivan’s (2009) perception of the need for “offering prospective and
practising teachers experiences that can enrich their subsequent teaching” (p. 231).
Among the key elements identified by Sullivan as most significant when using inno-
vative teaching approaches with pupils are mathematical knowledge and knowledge
of what it means to teach mathematics, consistent with the central role accorded
to mathematical knowledge (including beliefs) in this collection. The experiences
Sullivan refers to can derive from the teacher’s own class, that of a colleague, or
indeed from a simulation. One noteworthy context for providing teachers with expe-
riences is that of Lesson Study: “lesson study improves instruction by developing
teachers’ knowledge (of content, pedagogy, and student thinking)” (Lewis, Perry, &
Hurd, 2009, p. 302).6

The Role of the Mathsmaps in Building
Mathematical Knowledge and PCK

Responding to unforeseen circumstances is a common concern for many teachers
and researchers: for example, Ribeiro, Carillo, and Monteiro (2010) focus on pro-
fessional knowledge at moments of improvisation, when the teacher is forced to
react to unexpected responses or suggestions from his or her pupils. Among the
chapters in this section, Turner and Rowland establish the Contingency dimension
to cater for this in the KQ, while Corcoran and Pepperell highlight, in their discus-
sion of Lesson Study, the opportunities to discuss the unexpected ways children can
go about activities.

The perspective offered by Ryan and Williams in their chapter is different. Here,
the unexpected refers to the correct answers given by participating student teachers
to questions they were expected to get wrong, as much as it does to incorrect answers

6Concern for student learning and for promoting the teacher’s learning from this is also a feature
of Learning Study, a combination of Lesson Study and design experiment: “In a learning study
teachers get the opportunity to observe colleagues teach the same thing. This is one of the features
of a learning study that makes it appropriate to mathematics teacher education” (Runesson, 2008,
p. 170).
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they were expected to get right. The authors present the use of an assessment feed-
back tool (mathsmap) on the part of two pre-service primary school teachers in
England as a means to reflect on their subject knowledge in mathematics (Ryan &
Williams, 2007a, 2007b).

Ryan and Williams place considerable emphasis on metacognitive reflection, and
use the unexpected results in the tests to encourage trainees to consider their own
identity as mathematics learners. They recognise the difficulties many trainees expe-
rience in marrying subject matter knowledge to pedagogical content knowledge, and
consider that reflecting on their own systems of learning, and in particular the way
they overcome difficulties, is a useful aid to achieving this difficult balance.

The authors present the case of a student teacher who can be seen as representa-
tive of a process of improving one’s practice. Starting from her own experience on
teaching practice, this trainee realised her lack of knowledge in certain areas, and
decided to take the appropriate steps to remedy the situation, which in turn bolstered
her confidence and improved her teaching: teaching practice awareness of lack of
knowledge improvement in subject knowledge self-confidence improved teaching
practice. The authors locate one’s identity as a mathematics learner at the heart of
teacher training. It is not just a matter of being in possession of subject knowledge,
but of being aware of one’s own characteristics as a mathematics learner. For this
purpose, the authors provide the pre-service teachers with a tool (mathsmap) and
ask them to give an account of why they felt they made mistakes or responded cor-
rectly when they were not expected to. This metacognitive awareness of one’s own
knowledge and learning is fundamental to pedagogical knowledge and quite possi-
bly instrumental in the formation of one’s professional identity. Ryan and Williams,
and Corcoran and Pepperell both talk about identity and narratives, sharing a recog-
nition of the need to promote the building of a professional identity. Corcoran and
Pepperell summarise identity as the learning of individuals within a joint enterprise.
In such a community of practice, work is characterised by the narratives shared by
the individuals. Hence, for these authors, learning has a clear social component:
(“the responsibility for development of mathematical knowledge for teaching is not
an individual but a collective one, which participation in the practice of lesson study
appears to meet”), while Ryan and Williams present the use of narrative accounts as
a kind of report which the teacher undertakes in an individual learning process.

The process is neither linear nor simple; references to knowledge distinct from
subject knowledge are lacking, but as stated above, Ryan and Williams consider
the process a first step towards developing other kinds of knowledge and a more
reflective teaching.

Final Remarks

In the introduction I presented various dimensions which it is worth reflecting on
and which provide material for future research.

First, it is useful to reflect on the scope of the tools and the research presented
in these chapters. The KQ was presented in the context of pre-service primary
mathematics teaching, the MKT was developed basically in the context of in-
service primary mathematics teaching, the CICD was applied to the context of
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in-service kindergarten teachers, the JLS was applied to the context of pre-service
primary mathematics teaching, and mathsmaps were implemented in the context
of pre-service primary mathematics teaching. But we must distinguish between the
contexts and limitations expounded in these chapters and the potential of these tools.
The KQ has been applied to the context of in-service education (Turner, 2008, see
note to p. 4), and could likewise be applied to mathematics teachers at secondary
level, albeit with significant adaptations to the foundation dimension (Rowland,
2010).

In the same way, the theoretical framework of SMK, PCK and MKT represents a
useful tool for secondary teachers, and within the context of pre-service education,
both for researchers wishing to study teachers’ knowledge, and teachers themselves
aiming to develop their reflective capacity. This theoretical framework offers dimen-
sions which orient the trainee teacher with respect to the aspects and characteristics
which should configure his or her professional knowledge and which should there-
fore be taken into account in the process of becoming a teacher. The secondary
mathematics teacher, with their greater store of mathematical knowledge, yet needs
to develop this knowledge in relation to their role as a teacher (SCK).

Although applied to basic concepts by Tirosh et al., the CICD was origi-
nally developed for advanced mathematical thinking, and, as a tool for facilitating
reflection on learning mathematics notions, is likewise applicable to pre-service
education.

The Lesson Study cycle was conceived with practising teachers in mind.
Nevertheless, Corcoran and Pepperell have shown its utility in building
Mathematical Knowledge in Teaching in a pre-service context, at the same time
as noting certain limitations concerning the lesson given by the student teachers.
Essentially, these lessons were ‘one-offs’, provided for the purpose of the research,
rather than snapshots of a prolonged relationship with the same class. As such, the
student teachers enjoyed limited potential to learn about their pupils. Nevertheless,
the researchers were able to emphasise the overall positive aspects of experiencing
the act of teaching and of observing colleagues across a range of ages and different
school settings. The intrinsic nature of the JLS means that it could be applied to any
level of education.

With respect to mathsmaps, because this is essentially a tool for assessing the
mathematical performance of an individual, it is context independent, whether pre-
or in-service education and whatever the level. Nevertheless, it is as well to note the
reluctance of many practising teachers, especially at secondary level, to undergo a
questionnaire specifically designed to question their mathematics knowledge.

Regarding the specificity and potential of the tools, the KQ and MKT are spe-
cific to the mathematics teacher’s professional knowledge, and provide a set of
dimensions for its study and development. That is, they have much to offer both
researchers and teachers. The JLS, for its part, is a system of teacher training, based
on a principle of collective effort, and promoting reflection on the pupils’ learn-
ing. One advantage in its favour is that, through participation as a ‘knowledgeable
other’, the researcher can take an active part in the training process at the same time
as studying it. The CICD is not a tool for Mathematical Knowledge in Teaching,
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but for mathematics knowledge, as noted above. Tirosh et al. highlight its poten-
tial for use by both the researcher and teacher. The mathsmap and the concomitant
reflection generated by it, have also been seen to offer both researchers and teachers
advantages in the study of mathematics knowledge.

I have also commented on individual versus collective learning on the part of
the teacher, and on the role of reflection and the knowledgeable other. Although,
as mentioned above, the studies are grounded in different learning contexts, col-
lective actions and reflection on one’s own practice and knowledge are given
prominence in the chapters making up this section. Various roles are available for
the researcher/instructor, from that focusing particularly on evaluating the student
teachers’ learning to promoting reflection amongst student teachers and teachers,
including that of knowledgeable other encouraging discussion and reflection by
teachers on their mathematics knowledge and the practice of teaching.

Finally, regarding the extent to which these theoretical frameworks are com-
plementary, if our aim is to focus on and promote the mathematics knowledge of
the teacher(s), then we can deploy the KQ to promote their reflection upon CCK,
SCK, KCT and KCS (dimensions of MKT). To do so, we can start with our own
experiences in the field of education, or those of other teachers, or indeed scenar-
ios involving the pupils’ learning, which might imply a non-linear treatment of the
KQ dimensions. The analysis of these experiences, and even their design could be
undertaken using the JLS model, although it would be necessary to shift the focus
of analysis from the JLS pupils’ learning to the teacher’s learning. Consideration of
the pupils’ learning could be effected via the CICD. This could be complemented
by evaluation of the mathematics knowledge of the teacher(s) using mathsmap.

It is not my intention in the above paragraph on the complementariness of per-
spectives, nor indeed in any preceding sections, to suggest that it would be desirable
to undertake research using all the theoretical tools presented in this section. The
idea is simply to present a multi-faceted view of the building of mathematical knowl-
edge in teaching. Full consideration of the compatibility of the different approaches
would require a far more extensive discussion.
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Chapter 17
Conclusion

Kenneth Ruthven and Tim Rowland

An important goal of this book has been to highlight how our understanding of
mathematical knowledge in teaching has progressed over recent years, and with it
the means for supporting the development of such knowledge.

The first section of the book has outlined important advances in understanding
how mathematical knowledge is expressed in teaching, and how it is functionally
adapted to the teaching role. There has been particular progress in differentiating
facets of subject knowledge that support teachers in planning and enacting mathe-
matics teaching, and a start has been made to mapping out these various facets in
greater detail.

Likewise, progress has been made in understanding the complex reciprocal rela-
tionship between teaching and learning, particularly in classroom approaches that
are organised around the collective (re)construction of mathematical knowledge.
This has brought out previously hidden aspects of the mathematical knowledge on
which such teaching approaches depend, notably the epistemic and interactional
competences that teachers employ in animating and supporting active negotiation
of knowledge within more authentic modes of communal mathematical enquiry.

Such research, then, has shown that there are important variations in the range
and depth of mathematical knowledge required by different types of teaching
approach. For example, forms of practice in which classroom interaction focuses
on students’ mathematical thinking depend on teachers being proficient in support-
ing, eliciting, analysing and responding to such thinking. Moreover, the intelligent
use of such forms of practice calls for teachers to understand (and identify with) the
models of mathematical activity and thought, teaching and learning, that lie behind
them.

While the personal knowledge of individual teachers remains a central focus of
work in this field, a broadening of perspective has recognised significant ways in
which mathematical knowledge is situated within teaching practices and distributed
across pedagogical resources and professional networks. This perspective has drawn
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attention to how the mediation of classroom activity and teacher action by curricular
materials and pedagogical forms affects the mathematical knowledge that comes
into play. Likewise, it has shown how development of knowledgeable teaching and
teacher knowledge can be scaffolded by educative use of such cultural tools and
reflective membership of practitioner communities.

If teaching practices are, to some significant degree, contextually embedded
and culturally shaped, then this is likely to extend to the mathematical knowl-
edge expressed within them. Recognising that current thinking about mathematical
knowledge in teaching has developed primarily in certain quarters of the English-
speaking world, the second section of the book has sought to take a broader view,
examining how particular facets of mathematical knowledge are expressed within
teaching practices in specific systems and institutions.

Comparison has revealed noteworthy differences in practice and knowledge,
shaped by the contexts and cultures not just of national education systems but of
particular types of school (and teacher education) institution. Equally, attention has
been drawn to the way in which ideas (and policies) relating to mathematical knowl-
edge in teaching are formulated within the overweening discourse of a particular
society and historical period, through analysing how the contemporary discourse of
professional audit and individual accountability has shaped operative conceptions of
mathematical knowledge in teaching and the operational tools through which such
knowledge is made visible.

The third section of the book has shown a range of ways in which the evolving
system of ideas about mathematical knowledge in teaching that was examined in
the first part can be brought to bear on the development of such knowledge within
teacher education and professional development. Each of the chosen examples pre-
sented a theorised tool system in which some conceptual framework for analysing
mathematical knowledge was coupled with some pedagogical organisation of joint
activity involving prospective or serving teachers and a ‘knowledgeable other’.

Thus, in one of the examples presented, the Knowledge Quartet provides the
central conceptual framework for analysing mathematical knowledge in teaching
within a form of lesson study adapted to the conditions of initial teacher education.
In another example, this same framework guides a process of personal reflection on
teaching, initially scaffolded by feedback from a supervisor. In both these exam-
ples, the grounded framework of the Knowledge Quartet provides a detailed and
explicit model of the facets of mathematical knowledge in teaching to be attended
to by the participants. Another of the examples crosses two simple taxonomies
to provide a similarly detailed and explicit framework for analysing mathematical
knowledge for teaching, introduced and applied within a taught course for serving
teachers. In the final example, the ‘mathsmap’ is employed to generate personalised
discrepancies between a teacher’s actual performance and an idealised model of
mathematical capability, providing a stimulus for self-diagnosis and reflection by
prospective teachers, organised around their construction of personal narratives on
learning mathematics.

The growing attention to the educative use of theorised tools in developing math-
ematical knowledge for and in teaching appears to be a promising development,
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creating the potential to marry practical action and innovation more closely to the
development and refinement of theory. Equally, exploring variation in the coupling
of analytic frameworks and pedagogical structures within teacher education shows
promise in providing a more systematic basis for synthesising studies with a view
to developing more robust and transposable understanding of how particular aspects
of mathematical knowledge in teaching can be developed effectively.

This book has sought to contribute to the development of a more programmatic
approach to research on mathematical knowledge in teaching. In each section, a
cognate range of conceptual frameworks and developmental tools have been pre-
sented, and then triangulated in the syntheses which look back over each section. We
intend that the critical reflection and speculative integration offered there will con-
tribute to developing a more systematic and reflexive research programme, capable
of building a stronger knowledge base for designing teacher education and profes-
sional development provision. Equally, we have already noted how research has
only started to map out the detail of mathematical knowledge in teaching. There
is scope for a more comprehensive research programme to extend scrutiny beyond
the particular phases, systems and topics that have received most attention to date:
to examine mathematical knowledge in secondary and tertiary teaching as much as
primary, beyond a small group of anglophone cultures, and in relation to areas and
aspects of mathematics other than arithmetic.
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