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Abstract
This chapter contains a collection of reliable, efficient, robust, and adaptive
control methods for aerial vehicles. It begins with a brief overview of flight dy-
namics models suitable for flight control design. The first control design method
represents the well-understood and now-classical linear quadratic regulator
(LQR) command tracker, with proportional-integral (PI) feedback connections.
Such a system is the backbone of all other methods presented in this chapter.
The main intent here is to demonstrate the design of predictable, formally
justified, yet numerically efficient flight controllers, with an LQR PI baseline
and with a direct model reference adaptive control (MRAC), as an augmentation
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to the baseline. Through extensive simulation, analysis, and actual flight testing,
it has been found that (LQR PI + adaptive) – controllers provide robust stability
and maintain tracking performance, when operated in the presence of “unknown
unknowns” in the vehicle dynamics and in often “unfriendly” operational
environment. Finally, a note is in order: All control methods described in this
chapter were successfully flight tested and validated on a wide range of aerial
vehicles.

30.1 Introduction

Robust control is an online policy capable of regulating systems (such as aerial
vehicles) with bounded uncertainties in their dynamics. A robust controller would
work satisfactorily for a set of plants, whether linear or nonlinear, while assuming
the worst case conditions on uncertainties in the vehicle dynamics. Excluding ad
hoc designs, all reliable control methods are model based. One often starts with a
mathematical model of the vehicle. Such a model would be valid in a preset domain.
The model may or may not be accurate in capturing significant effects in the vehicle
dynamics. In order to overcome modeling deficiencies, one should seek a robust
solution, designed based on the model, yet capable of controlling the real vehicle,
and not just the model. It would also be highly desirable to have a controller whose
performance “gracefully degrades” in the presence of uncertainties so that it would
not abruptly break down when unprecedented events occur.

Embedding robustness properties into a control solution must be treated as one of
the main criteria in any control design. For example, achieving closed-loop stability
and tracking performance, while providing adequate stability margins, are the main
goals, especially when dealing with linear system approximations of real processes.
Methods and techniques to achieve this goal will be provided. Once a robust control
solution is found, its robustness properties can be further extended to cover a wider
class of uncertainties in the system dynamics. Such a problem could be addressed
within the framework of adaptive control. It may allow the designer to cope with
unbounded state-dependent nonlinear uncertainties that may exist in the vehicle
dynamics.

What is the difference between robust and adaptive controllers? A robust
controller is designed to operate under the worst case condition assumption. Such a
controller may use excessive actions to accomplish the goal. In contrast, an adaptive
controller would try to perform an online estimation of the process uncertainty, and
then produce a control input to anticipate, overcome, or minimize the undesirable
deviations from the prescribed closed-loop plant behavior. In addition to their
adaptive properties, these controllers can be constructed to “learn” or equivalently
to remember prior events. In this context, the notion of learning refers to remem-
bering certain patterns, and then acting based on prior knowledge or “memory.”
For instance, a tracking error integrator in a feedback loop is a learning controller.
It accumulates and integrates regulation errors based on previous and current data.
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It will be shown that an adaptive controller represents a nonlinear extension of
a linear feedback integrator. In other words, adaptive loops form their output by
integrating nonlinear functions of the system tracking errors.

A discussion of whether adaptive controllers outperform robust systems or vice
versa is of no merit. One can argue that it is rather a seamless combination of
both controllers that works best, in the sense of maintaining closed-loop stability,
enforcing robustness to uncertainties, and delivering target performance, all and all
while operating in the presence of unanticipated events.

30.2 Aircraft Flight Dynamics Equations of Motion

Six-degrees-of-freedom (6-DoF) rigid aircraft equations of motion can be derived
based on Newton’s second law of motion. These dynamics are often expressed in the
aircraft-fixed body axes coordinate system (Etkin 1982; McRuer et al. 1990; Stevens
and Lewis 1992). In general, the 6-DoF equations of motion represent a continuous
dynamical multi-input–multi-output system in the standard state-space form,

Px D f .x; u/; y D h.x; u/ (30.1)

with the state x, the control input u, and the measured/regulated output y.
An attempt to use the fully coupled model (30.1) for control design would most
likely result in an impractical control solution of unnecessary complexity and with a
highly undesirable sensitivity due to model data. This phenomenon immediately
presents a modeling-for-control challenge: How detailed does a control-oriented
model need to be, so that the resulting control solution is simple, robust, effective,
and works per design specifications, when applied to a real vehicle? The answer to
this question of course depends on the application of interest. In the next section,
simplified flight dynamics models for control design purposes will be constructed.

30.3 Simplified Flight Dynamics for Control Design

The 6-DoF motion of an aerial vehicle can be decomposed into a mean or a steady-
state motion near an operating point (called “trim”) and perturbation dynamics
around the trim conditions. Such a decomposition allows one to reduce the overall
nonlinear fully coupled 6-DoF aircraft dynamics into a tractable form, suitable for
control design and analysis. The notion of “trimming an aircraft” refers to finding a
balance, or equilibrium, between aerodynamic, propulsive, and gravitational forces
and moments that are constantly acting on the vehicle. In flight, an aircraft is
trimmed by setting its primary controls to values that would result in the desired
steady-state flight conditions. The trim function would be performed by a pilot or
by an automatic flight control system.
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Fig. 30.1 Aircraft
operational flight envelope, as
a function of altitude and
airspeed

In mathematical terms, one is looking for a system equilibrium pair
�Exeq; Eueq

�
in

(30.1) such that the translational and angular accelerations are zeroed out:

0 D f .xeq; ueq/ (30.2)

These are steady-state flight conditions. Accelerated flight equilibrium is also
possible.

An aircraft would have many distinct equilibrium points throughout the vehicle
flight operational envelope (Fig. 30.1).

These trim points depend first hand on altitude and airspeed. Based on available
trim flight conditions, the main idea behind constructing control-oriented models
and then performing flight control design consists of several distinct steps. They are:
1. Cover the flight envelope with a dense set of trim points.
2. Write simplified linear models around each of the trim point.
3. Use these dynamics to design fixed-point flight controllers per point.
4. Interpolate (i.e., gain schedule based on flight conditions) to combine linear

controllers.
The result is a gain-scheduled flight control system that would be valid for the entire
operational envelope. In what follows, only Step 2 will be discussed, and linear
simplified models (deviation dynamics from equilibrium) for a selected trim point
will be defined.

When a conventional aircraft is trimmed wings level, at selected flight conditions,
the vehicle dynamics naturally decouples into longitudinal and lateral-directional
modes. Each of these modes is presented separately.

30.3.1 Longitudinal Dynamics

The aircraft longitudinal dynamics describe changes in forward, vertical, and
pitching motion of the vehicle. These dynamics can be further decomposed into
fast and slow components, or modes. The former is called the short-period and the
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latter is the phugoid. Typically, there would be a time-scale separation between the
two modes. The short-period describes fast coupling between the aircraft angle of
attack and the pitch rate. The phugoid represents a much slower (when compared to
the short-period) dynamic interchange between the vehicle altitude and airspeed, or,
equivalently, between the aircraft potential and kinetic energy levels.

The short-period and the phugoid modes can be revealed after the aircraft model
is linearized around a trim point (an equilibrium). For clarity of presentation, it is
assumed that the thrust line is aligned with the vehicle x-axis. Then, the aircraft
longitudinal equations of motion are
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where V0 is the trimmed airspeed and ˛0 is trimmed angle of attack, �0 D �0 � ˛0

is the trimmed flight path angle, �0 is the trimmed pitch angle, ıth is the throttle
position, and ıe is the elevator position. The model states .vT ; ˛; q; �/ and
the control inputs .ıth; ıe/ are incremental due to their trimmed values. Also
in (30.3), the matrix components represent constant (for fixed flight conditions)
stability and control derivatives of the aircraft forces and moments, with respect
to the longitudinal states and control inputs. When aircraft-specific values of these
derivatives are substituted into model (30.3), most often the open-loop system
eigenvalues will consist of a fast (short-period) and a slow (phugoid) pair of complex
conjugate numbers. Such a decomposition explains the time-scale separation in the
longitudinal dynamics of an aircraft.

The short-period mode is defined by the dynamics of ˛ and q. Extracting those
from model (30.3) yields
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These dynamics describe aircraft motion on a short interval of time, due to elevator
input. In aerospace applications, the short-period system is utilized quite often to
support the development of robust and adaptive control technologies.

30.3.2 Lateral-Directional Dynamics

Assuming constant thrust, airspeed, and angle of attack, lateral-directional dynamics
of an aircraft can be derived by linearization of the 6-DoF system (30.2), around a
selected trim point. The resulting dynamics are
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When the airspeed is sufficiently high, the gravity term in (30.5) becomes negligible:
g cos �0

V0
� 0. In this case, the bank dynamics can be eliminated:
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The resulting third-order lateral-directional linear model would be suitable for a
control design where the goal is to regulate the vehicle roll and yaw rates, as well as
the angle of sideslip.

30.3.3 Model Generalizations for Adaptive Control Design

The aircraft short-period dynamics (30.4), as well as the lateral-directional models
(30.5) and (30.6), belong to a class of linear time-invariant controllable systems in
the form

Px D Ax C Bu (30.7)

with the n-dimensional state x, the m-dimensional control u, the p-dimensional
output:

y D Cx C Du (30.8)

and with the matrices .A; B; C; D/ of the corresponding dimensions.
In the next section, methods to construct and analyze robust linear LQR-optimal

controllers are presented. The focus is on adaptive control techniques, with the goal
of maintaining closed-loop stability and robustness in the presence of unexpected
events. Specifically, inserting uncertainties into (30.7) and (30.8) results in the
dynamical system

Px D A x C B ƒ .u C f .x// (30.9)

where the .m � m/-matrix ƒ represents control actuation failures and the m-
dimensional state-dependent vector function f .x/ denotes all other “unknown
unknowns” in the system dynamics. The uncertain model (30.9) constitutes an
attempt to embed extra realism into the “ideal” system (30.7). The uncertainties
in (30.9) are called “matched,” in the sense that they enter the system dynamics
through control channels. So, as long as ƒ is invertible, the system controllability
property is preserved. It so happens that the matched uncertainty assumption implies
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existence of at least one control solution, capable of steering the system state along
the desired trajectories.

Of interest are command tracking problems with nonmatched but bounded
uncertainties, such as time-dependent noise and environmental disturbances, rep-
resented by an n-dimensional uniformly bounded piece-wise continuous vector
function �.t/:

Px D Ax C Bƒ.u C f .x// C �.t/ (30.10)

Care must be taken in specifying conditions on �.t/ that preserve controllability
of the system. So as long as the system remains controllable, the unwanted effects
caused by bounded noise and disturbances can be mitigated through proper control
synthesis. The forthcoming sections explore robust and adaptive methods to control
uncertain systems, such as (30.9) and (30.10).

Readers may find the matched uncertainty assumption to be restrictive. Some
may even argue that there are many dynamical systems, stemming from realistic
applications, that do not satisfy the matching conditions. This is a true statement
indeed. However, in aerospace applications, matched uncertainties are of primary
concern. They represent unknown aerodynamic and thrust effects that may exist in
the vehicle moments. These uncertainties are “matched” by available controls (such
as elevator, aileron, rudder, etc.), in the sense that the moments explicitly depend on
the control inputs, and the latter can be selected to counter (i.e., cancel or dominate)
the matched uncertainties. In essence, moment regulation for an aircraft implies total
control of the vehicle, and uncertain dynamical systems in the form of (30.10) can
be utilized to achieve that goal. Finally, it is worth noting that the adaptive control
methods presented in this chapter can be extended to handle systems with nonlinear-
in-control matched uncertainties and with nonmatched uncertain dynamics, but
these extensions are outside of the present scope.

30.4 Model Following LQR PI Command Tracking

For a linear time-invariant (LTI) system, such as (30.7), a model following command
tracking control design can be defined to represent an LQR-optimal controller, with
PI feedback connections. Overall, this design method generalizes the well-known
servomechanism approach to a model following design.

Consider an LTI system in the form

Pxp D Ap xp C Bp u
yp D Cp xp C Dp u

(30.11)

where xp 2 Rnp is the np-dimensional state vector, u 2 Rmp is the mp-
dimensional vector of controls, yp 2 Rpp is the system pp-dimensional vector of
regulated outputs with pp � mp, and plant matrices

�
Ap; Bp; Cp; Dp

�
are of the

corresponding dimensions. Moreover, it is assumed that matrix pair
�
Ap; Bp

�
is



682 E. Lavretsky

stabilizable and the entire state vector xp is available online as the system output
measurement.

The control task of interest is command tracking, that is, one needs to find u such
that the regulated output yp tracks its target yref 2 Rpp , while all other signals in
the system remain bounded.

Desired dynamics of the target output yref is defined via the reference model:

Pxref D Aref xref C Bref r .t/

yref D Cref xref C Dref r .t/
(30.12)

where xref 2 Rnref is the state of the reference dynamics, r .t/ represents a bounded
external command, and matrices .Aref; Bref; Cref; Dref/ are of the corresponding
dimensions, with Aref being Hurwitz. Furthermore, it is assumed that the system
DC gain matrix is unity, that is

DC ref
gain D �Cref A�1

ref Bref C Dref D Imp�mp (30.13)

Note that the dimension of the reference model nref � pp , and it does not have to
be the same as the dimension of the plant np .

Extended open-loop dynamics is formed as a combination of the plant and the
reference model:

� Pxp
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(30.14)
Its regulated output can be written as

y D yp � yref D Cp xp C Dp u � Cref xref � Dref r .t/ (30.15)

or, equivalently in matrix form as

y D �
Cp �Cref

�

„ ƒ‚ …
C

�
xp

xref

�

„ ƒ‚ …
x

C Dp„ƒ‚…
D

u C .�Dref/„ ƒ‚ …
Dr

r .t/ (30.16)

Combining (30.14) and (30.16) yields extended open-loop dynamics in matrix form:

Px D A x C B u C Br r .t/

y D C x C D u C Dr r .t/
(30.17)

Note the explicit presence of the command r .t/ in the plant formulation (30.17).
This is one way to embed a reference model tracking into the control problem



30 Robust and Adaptive Control Methods for Aerial Vehicles 683

formulation. Once again, one must choose the reference model data such that the
extended system (30.17) remains controllable.

In terms of (30.17), the control task consists of finding u such that the system
output y asymptotically tends to the origin. In other words, the control design task
is output stabilization in the presence of any known, bounded, and possibly time-
varying external command signal r .t/.

In order to track a step-input command with zero errors (type-1 response),
integral control will be employed. A convenient technique for designing a practical
tracker is the command-generator tracker (CGT) method, where the tracking
problem is converted into a regulator problem (Franklin et al. 1986). Toward that
end, integrated tracking error vector ey I is introduced into the system dynamics
(30.17):

Pey I D y

Px D A x C B u C Br r

y D C x C D u C Dr r

(30.18)

Rewriting the dynamics in matrix form gives

� Pey I
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�
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with the regulated output defined as

y D �
0pp�pp C

�

„ ƒ‚ …
QC

�
ey I

x

�

„ ƒ‚ …
Qx

C D„ƒ‚…
QD

u C Dr„ƒ‚…
QDr

r .t/ (30.20)

Assuming that the matrix pair
� QA; QB� is controllable, control design for the open-

loop dynamics in (30.19) can now be performed using LQR servomechanism
approach. Toward that end, assume constant external command r .t/ D r , utilize
matrices as defined in (30.19) and (30.20):

QA D
�

0pp�pp C

0n�pp A

�
; QB D

�
D

B

�
; QD D D; QDr D Dr (30.21)

and consider stabilization of
Pz D QA z C QB v (30.22)

where

z D
� Pey I

Px
�

; v D Pu (30.23)

It is easy to see that dynamics (30.22) are obtained by differentiating (30.19) while
assuming constant external command r .t/ D r . Next, the newly introduced control
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input v in (30.22) is chosen to minimize the LQR performance index (cost):

J D
1Z

0

�
zT Q z C vT R v

�
dt (30.24)

where Q D QT � 0 and R D RT > 0 are the LQR weight matrices. Then, the
algebraic Riccati equation

QAT P C P QA C Q � P QB R�1 QBT P D 0 (30.25)

has a unique positive definite symmetric solution P D P T > 0. Based on the latter,
the corresponding LQR-optimal control strategy is given in feedback form:

Pu D v D � R�1 QBT P„ ƒ‚ …
K

z D �K z D � �KI KP

� � Pey I

Px
�

(30.26)

Integrating both sides and ignoring constants of integration yields the LQR-optimal
control solution in PI feedback form:

u D �KI ey I � KP x D KI

.yref � y/

s
� KP x D KI

.yref � y/

s
� Kx

P x � K
xref
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(30.27)
where proportional gains Kx

P and K
xref
P are defined below

KP D �
Kx

P K
xref
P

�
(30.28)

Using LQR feedback (30.27) to control plant dynamics (30.11) will force the
system-regulated output yp to track its command target yref, which in turn tracks a
step-input external command r with zero steady-state error. As a result, the system
output yp will converge to r exponentially fast (for a step input and in steady state).
The model following command tracking problem is solved. Figure 30.2 shows the
corresponding closed-loop system block-diagram.
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+–
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Fig. 30.2 Model following LQR PI control block-diagram



30 Robust and Adaptive Control Methods for Aerial Vehicles 685

Plant
r (t) u

KP
x

Cp

Dp

yp

xp+

+ +

+

–

–

KI

s

Fig. 30.3 Servomechanism
LQR PI control
block-diagram

The plant and the model shown in the figure are defined by (30.11) and (30.12),
respectively. The reference model dynamics in (30.12) should not be confused
with the assumed dynamics of the external command r . Most often, the assumed
dynamics is defined as Pr D 0, that is, the system is required to track step inputs with
zero error. On the other hand, the reference model can be viewed as the command
prefilter, that is the system will track the output of the reference model rather than
the command itself. Thus, the main purpose of the reference model is to smooth
out the command r before it goes into the system, and the model following state
feedback LQR PI controller is designed to do precisely that.

If .Aref; Bref; Cref/ are set to zero and Dref is the identity matrix, then according
to (30.12), yref D r .t/ and the model following architecture from Fig. 30.2 reduces
to the standard servomechanism control block-diagram (Fig. 30.3).

Note that in this case, the extended system remains controllable as long as

rank

�
Ap Bp

Cp Dp

�
D np C m

which places restrictions on the regulated output selection.

30.4.1 Design Example: Lateral-Directional LQR PI Control with
Explicit Model Following

In order to gain insights into the design, consider the aircraft lateral-directional
dynamics (30.6), with the regulated output, whose components are the vehicle roll
rate ps and the angle of sideslip (AOS) ˇ:
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where .ps; rs/ are the aircraft roll and yaw angular rates in stability axes, .ıail; ırud/

are the control inputs (aileron and rudder deflections), and V0 is the aircraft true
airspeed (trimmed). The rest of the parameters in the model represent the vehicle
stability and control derivatives. In (30.29), np D 3; mp D pp D 2.

The control task is to construct aileron ıail and rudder ırud such that the aircraft
roll rate ps and AOS ˇ track their step-input commands, pcmd and ˇcmd, respectively,
while all other signals in the system remain bounded.

Desired roll rate and AOS dynamics are defined by the LTI reference model:

� PprefP̌
ref

�

„ ƒ‚ …
Pxref

D
 � 1

�p
0

0 � 1
�ˇ

!

„ ƒ‚ …
Aref

�
pref

ˇref

�

„ ƒ‚ …
xref

C
 

1
�p

0

0 1
�ˇ

!

„ ƒ‚ …
Bref

�
pcmd

ˇcmd

�

„ ƒ‚ …
r.t/

yref D
�

1 0

0 1

�

„ ƒ‚ …
Cref

xref C 02�2„ƒ‚…
Dref

r .t/

(30.30)

where �p and �ˇ are small positive time constants that define the desired roll rate
and the AOS dynamics, correspondingly. It is easy to check that the DC gain of the
reference model is unity.

From (30.29) and (30.30) it follows that

np D 3; pp D mp D 2; nref D 2 (30.31)

Using (30.14) gives extended open-loop dynamics:

� Pxp

Pxref

�

„ ƒ‚ …
Px

D
�

Ap 03�2

02�3 Aref

�

„ ƒ‚ …
A

�
xp

xref

�

„ ƒ‚ …
x

C
�

Bp

02�2

�

„ ƒ‚ …
B

�
ıail

ırud

�

„ ƒ‚ …
u

C
�

03�2

Bref

�

„ ƒ‚ …
Br

�
pcmd

ˇcmd

�

„ ƒ‚ …
r.t/

(30.32)

where matrix pairs
�
Ap; Bp

�
and .Aref; Bref/ are as in (30.29) and (30.30).

According to (30.15), the system-regulated output is

y D yp � yref D Cp xp � Cref xref D �
Cp � Cref

�

„ ƒ‚ …
C

x C 02�2„ƒ‚…
D

u C 02�2„ƒ‚…
Dr

r .t/

(30.33)

Per (30.18), the extended dynamics (30.32) are augmented with the roll rate and
AOS integrated tracking errors:

Pep I D p � pref

Peˇ I D ˇ � ˇref

Px D A x C B u C Br r .t/

y D C x

(30.34)
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The integrated tracking error vector ey I has two components: integrated roll rate
error ep I and integrated AOS error eˇ I . Similar to (30.19), one gets

� Pey I

Px
�

„ ƒ‚ …
PQx

D
�

02�2 C

05�2 A

�

„ ƒ‚ …
QA

�
ey I

x

�

„ ƒ‚ …
Qx

C
�

02�2

B

�

„ ƒ‚ …
QB

u C
�

02�2

Br

�

„ ƒ‚ …
QBr

r .t/ (30.35)

with the regulated output as in (30.20).

y D
�

p � pref

ˇ � ˇref

�
D �

02�2 C
�

„ ƒ‚ …
QC

Qx C 0mp�mp„ ƒ‚ …
QD

u C 0mp�mp„ ƒ‚ …
QDr

r .t/ (30.36)

Using matrices
� QA; QB� from (30.35), choosing LQR weights .Q; R/ appropriately,

and solving the algebraic Riccati equation (30.25), yields the LQR PI matrix of
optimal gains (see (30.26)):

K D R�1 QBT P (30.37)

Partitioning the gains as in (30.28), the LQR-optimal control solution can be written
in the form of (30.27):

u D KI

.yref � y/

s
� Kx

P x � K
xref
P xref (30.38)

where
K D �

KI Kx
P K

xref
P

�
(30.39)

In terms of the original notation, the model following LQR PI controller can be
expressed as

8
<

:
ıail D Kail

p I

.pref�p/
s

C Kail
ˇ I

.ˇref�ˇ/
s

� Kail
ˇ ˇ � Kail

p ps � Kail
r rs � Kail

pref
pref � Kail

ˇref
ˇref

ırud D K rud
p I

.pref�p/
s

C K rud
ˇ I

.ˇref�ˇ/
s

� K rud
ˇ ˇ � K rud

p ps � K rud
r rs � K rud

pref
pref � K rud

ˇref
ˇref

(30.40)

Comparing (30.39) and (30.40), yields the LQR PI optimal matrix gains:

KI D
 

Kail
p I Kail

ˇ I

K rud
p I K rud

ˇ I

!

; Kx
P D

 
Kail

ˇ Kail
p Kail

r

K rud
ˇ K rud

p K rud
r

!

; K
xref
P D

 
Kail

pref
Kail

ˇref

K rud
pref

K rud
ˇref

!

(30.41)

The reader is encouraged to test this technique on a specific system of choice.
Although the controller was designed to track step-input commands, its command
following performance will be excellent for any bounded command, whose rate of
change is within the closed-loop system bandwidth. In addition, one can and should
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compute stability margins, at the plant input and output break points. These margins
will be excessive, which is to be expected for any LQR-based design. In addition, the
closed-loop system will be robust due to a large class of state-dependent nonlinear
uncertainties (matched), confined within a sector, that may exist at the plant input.
All these features make the LQR PI feedback design highly efficient in controlling
aerial platforms. The next section introduces adaptive augmentation algorithms to
extend robustness of an LQR PI controller, with respect to a wide class of matched
uncertainties and beyond.

30.5 Model Reference Adaptive Control

The concept of model reference adaptive control (MRAC) was originally proposed
in 1958 by Whitaker et al., at MIT (Whitaker et al. 1958), and later extended in
(Butchart and Shackcloth 1965; Parks 1966). Current state of the art in adaptive con-
trol is well documented and can be found in textbooks (Narendra and Annaswamy
2005; Ioannou and Fidan 2006). The original intent of adaptive control was to
specify the desired command-to-output performance of a servo-tracking system
using a reference model that would define the ideal response of the system due
to external commands. A generic block-diagram of the MRAC system is shown in
Fig. 30.4.

As seen from the diagram, the controller parameter adjustments (the adaptive
law) are made based on the tracking error (the difference between the system actual
response and its target specified by the reference model output), an output feedback
from the process, and the external command. For the sake of clarity and in order to
motivate further discussions, consider MRAC design equations for a scalar system
shown below:

Process W Px D ax C bu
Ref: Model W Pxref D arefxref C brefr

Controller W u D Okxx C Okrr

Adaptive Law W
( Okx D ��xx.x � xref/

Okr D ��rr.x � xref/

(30.42)

where a and b are unknown constant parameters in the process dynamics with the
known sgnb > 0. The control input u is selected such that the system state x

follows the reference model state xref, driven by any bounded external command
r D r .t/. Also in (30.42), the reference model data aref < 0 and bref are chosen to
yield the desired speed of response and a DC gain (unity in most applications) from
the reference model output yref D xref to the system-regulated output y D x.

In this case, closed-loop system stability and global asymptotic tracking are
achieved via a specific choice of the adaptive law in (30.42), with the adaptive
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Process

Reference
Model

Controller

Adaptive
Law

External 
Command

System
Response

Control
Command

Ref. Model
Output – +

System
Response

Fig. 30.4 MRAC block-diagram

gains
� Okx; Okr

�
, whose dynamics are influenced by two positive constant rates of

adaptation .�x; �r/. As seen from (30.42), the state tracking error

e D x � xref (30.43)

drives the adaptive laws. Existence of a servo-control solution for this particular
scalar dynamics is provided by the matching conditions:

aref D a C b kx

bref D b kr

(30.44)

where kx and kr denote the ideal unknown constant parameters (gains of the ideal
controller). For scalar dynamics, such as the process in (30.42), it is clear that the
matching relations (30.44) always have a solution. Let,

�kx D Okx � kx; �kr D Okr � kr (30.45)

represent the parameter estimation errors. Substituting the matching conditions
(30.44) into (30.42), one can derive the tracking error dynamics:

Pe D aref e C b .�kx x C �kr r/ (30.46)

which indeed define transients in the corresponding closed-loop system. The
tracking error dynamics and the transient dynamics are equivalent notions. If and
when e becomes small (asymptotically), the system output tracks the reference
model with diminishing errors. On the other hand, the transient dynamics define
what happens between the start of a maneuver and the time when the error gets
small. Both questions will be addressed next.
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Going back to (30.46), one can employ Lyapunov arguments (Khalil 1996) to
prove global asymptotic stability of the tracking error dynamics. In fact, using a
radially unbounded quadratic Lyapunov function candidate in the form

V .e; �kx; �kr/ D e2 C
�

�k2
x

�x

C �k2
r

�r

�
� b (30.47)

it is not difficult to show that with the adaptive law (30.42), the time derivative of V ,
evaluated along the trajectories of the error dynamics (30.46), becomes nonpositive.
This argument constitutes the inverse Lyapunov-based design. It provides (a) the
adaptive law and (b) the required proof of closed-loop global asymptotic stability.
As a result, one can formally show that for any initial condition, any bounded time-
varying external command, and any positive rates of adaptation, the tracking error
dynamics (30.46) are globally asymptotically stable:

lim
t!1 je .t/j D lim

t!1 jx .t/ � xref .t/j D 0 (30.48)

and all signals in the corresponding closed-loop dynamics remain uniformly
bounded, forward in time.

30.5.1 MRAC Design for MIMO Dynamics

The scalar MRAC design methodology generalizes to multi-input-multi-output
(MIMO) systems with matched parametric uncertainties in the form

Px D A x C B ƒ .u C f .x// (30.49)

where x 2 Rn is the system state, u 2 Rm is the control input, and B 2 Rn�m is
the known control matrix, while A 2 Rn�n and ƒ 2 Rm�m are unknown constant
matrices. In addition, it is assumed that ƒ is diagonal, its elements �i are strictly
positive, and the pair .A; B ƒ/ is controllable. The uncertainty in ƒ is introduced
to model control effectiveness failures or modeling errors. In (30.49), the unknown
possibly nonlinear vector function f .x/ W Rn ! Rm represents the system-
matched uncertainty. It is assumed that each individual component fi .x/ of f .x/

can be written as a linear combination of N known locally Lipschitz-continuous
basis functions �i .x/, with unknown constant coefficients. So,

f .x/ D ‚T ˆ .x/ (30.50)

where ‚ 2 RN �m is a constant matrix of the unknown coefficients and

ˆ .x/ D �
'1 .x/ : : : 'N .x/

�T 2 RN
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is the known regressor vector. Of interest is the design of a MIMO state feedback
adaptive control law such that the system state x globally uniformly asymptotically
tracks the state xref 2 Rn of the reference model

Pxref D Aref xref C Bref r .t/ (30.51)

where Aref 2 Rn�n is Hurwitz, Bref 2 Rn�m, and r .t/ 2 Rm is the external bounded
command vector.

It is also required that during tracking, all signals in the closed-loop system
remain uniformly bounded. Thus, given any bounded command r .t/, the control
input u needs to be chosen such that the state tracking error

e .t/ D x .t/ � xref .t/ (30.52)

globally uniformly asymptotically tends to zero, that is,

lim
t!1 kx .t/ � xref .t/k D 0 (30.53)

If matrices A and ƒ were known, one could have calculated and applied the ideal
fixed-gain control law:

u D KT
x x C KT

r r � ‚T ˆ .x/ (30.54)

and obtain the closed-loop system:

Px D �
A C B ƒ KT

x

�
x C B ƒ KT

r r (30.55)

Comparing (30.55) with the desired reference dynamics (30.51), it follows that for
the existence of a controller in the form of (30.54), the ideal unknown control gains,
Kx and Kr , must satisfy the matching conditions:

A C B ƒ KT
x D Aref

B ƒ KT
r D Bref

(30.56)

Assuming that these matching conditions hold, it is easy to see that using (30.54)
yields the closed-loop system which is exactly the same as the reference model.
Consequently, for any bounded reference input signal r .t/, the fixed-gain controller
(30.54) provides global uniform asymptotic tracking performance. Note that given
a set of matrices .A; B; ƒ; Aref; Bref/, in general there is no guarantee that ideal
gains Kx; Kr exist to enforce the matching conditions (30.56). In other words, the
control law (30.54) may not be able to meet the design objective. However often in
practice, the structure of A is known, and the reference model matrices Aref; Bref
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are chosen so that the system (30.56) has at least one ideal solution pair .Kx; Kr/.
Assuming that Kx; Kr in (30.56) do exist, consider the following control law:

u D OKT
x x C OKT

r r � O‚T ˆ .x/ (30.57)

where OKx 2 Rn�m; OKr 2 Rm�m; O‚ 2 RN �n are the estimates of the ideal
unknown matrices Kx; Kr ; ‚, respectively. These estimated parameters will be
generated online through the inverse Lyapunov analysis. Substituting (30.57) into
(30.49), the closed-loop system dynamics can be written as

Px D
�
A C B ƒ OKT

x

�
x C Bƒ

�
OKT

r r �
� O‚ � ‚

�T

ˆ .x/

�
(30.58)

Subtracting (30.51) from (30.58), it is possible to compute the closed-loop dynamics
of the n-dimensional tracking error vector e .t/ D x .t/ � xref .t/:

Pe D
�
A C B ƒ OKT

x

�
x C B ƒ

�
OKT

r r �
� O‚ � ‚

�T

ˆ .x/

�
� Aref xref � Bref r

(30.59)
With the matching conditions (30.56) in place, one further gets

Pe D
�
Aref C B ƒ

� OKx � Kx

��
x � Aref xref C B ƒ

� OKr � Kr

�
r � B ƒ

� O‚ � ‚
�T

ˆ .x/

D Aref e C B ƒ

�� OKx � Kx

�T

x C
� OKr � Kr

�T

r �
� O‚ � ‚

�T

ˆ .x/

	

(30.60)

Let �Kx D OKx � Kx , �Kr D OKr � Kr , and �‚ D O‚ � ‚ represent the parameter
estimation errors. In terms of the latter, the tracking error dynamics become

Pe D Aref e C B ƒ


�KT

x x C �KT
r r � �‚T ˆ .x/

�
(30.61)

Introduce rates of adaptation: 	x D 	T
x > 0; 	r D 	T

r > 0; 	‚ D 	T
‚ > 0.

Going back to analyzing stability of the tracking error dynamics (30.61), consider a
globally radially unbounded quadratic Lyapunov function candidate in the form

V .e; �Kx; �Kr; �‚/ D eT P e C tr
�


�KT
x 	�1

x �Kx C �KT
r 	�1

r �Kr

C�‚T 	�1
‚ �‚

�
ƒ
�

(30.62)

where P D P T > 0 satisfies the algebraic Lyapunov equation

P Aref C AT
ref P D �Q (30.63)
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for some Q D QT > 0. Then the time derivative of V , evaluated along the
trajectories of (30.61), can be calculated:

PV D PeT P e C eT P Pe C 2 tr
�h

�KT
x 	�1

x
POKx C �KT

r 	�1
r

POKr C �‚T 	�1
‚

PO‚
i

ƒ
�

D �
Aref e C B ƒ

�
�KT

x x C �KT
r r � �‚T ˆ .x/

��T
P e

CeT P
�
Aref e C B ƒ

�
�KT

x x C �KT
r r � �‚T ˆ .x/

��

C2 tr
�h

�KT
x 	�1

x
POKx C �KT

r 	�1
r

POKr C �‚T 	�1
‚

PO‚
i

ƒ
�

D eT .Aref P C P Aref/ e C 2 eT P B ƒ
�
�KT

x x C �KT
r r � �‚T ˆ .x/

�

C2 tr
�h

�KT
x 	�1

x
POKx C �KT

r 	�1
r

POKr C �‚T 	�1
‚

PO‚
i

ƒ
�

(30.64)

Using (30.63) further yields

PV D �eT Q e C
h
2 eT P B ƒ �KT

x x C 2 tr
�
�KT

x 	�1
x

POKx ƒ
�i

C
h
2 eT P B ƒ �KT

r r C 2 tr
�
�KT

r 	�1
r

POKr ƒ
�i

C
h
�2 eT P B ƒ �‚T ˆ .x/ C 2 tr

�
�‚T 	�1

‚
PO‚ ƒ

�i
(30.65)

Via the well-known trace identity

eT P B ƒ„ ƒ‚ …
aT

�KT
x x

„ ƒ‚ …
b

D tr

0

B
@�KT

x x
„ ƒ‚ …

b

eT P B ƒ„ ƒ‚ …
aT

1

C
A

eT P B ƒ„ ƒ‚ …
aT

�KT
r r

„ ƒ‚ …
b

D tr

0

B
@�KT

r r
„ ƒ‚ …

b

eT P B ƒ„ ƒ‚ …
aT

1

C
A

eT P B ƒ„ ƒ‚ …
aT

�‚T ˆ .x/
„ ƒ‚ …

b

D tr

0

@�‚T ˆ .x/
„ ƒ‚ …

b

eT P B ƒ„ ƒ‚ …
aT

1

A

(30.66)

Substituting (30.66) into (30.65) results in

PV D �eT Q e C 2 tr
�
�KT

x

h
	�1

x
POKx C x eT P B

i
ƒ
�

C2tr
�
�KT

r

h
	�1

r
POKr C r eT P B

i
ƒ
�

C 2 tr
�
�‚T

h
	�1

‚
PO‚ � ˆ .x/ eT P B

i
ƒ
�

(30.67)
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If the adaptive laws are selected as

POKx D �	x x eT P B
POKr D �	r r .t/ eT P B
PO‚ D 	‚ ˆ .x/ eT P B

(30.68)

then the time derivative of V in (30.67) becomes globally negative semidefinite:

PV D �eT Q e � 0 (30.69)

Therefore, the closed-loop error dynamics are uniformly stable. Hence, the tracking
error e .t/ as well as the parameter estimation errors �Kx .t/, �Kr .t/, and �‚ .t/

are uniformly bounded and so are the parameter estimates OKx .t/, OKr .t/, and O‚ .t/.
Since r .t/ is bounded and Aref is Hurwitz, then xref .t/ and Pxref .t/ are bounded.
Consequently, the system state x .t/ is uniformly bounded, and the control input
u .t/ in (30.57) is bounded as well. The latter implies that Px .t/ is bounded, and thus
Pe .t/ is bounded. Furthermore, the second time derivative of V .t/

RV D �eT Q e D �2 eT Q Pe (30.70)

is bounded, and so PV .t/ is uniformly continuous. Since in addition, V .t/ is
lower bounded and PV .t/ � 0, then using Barbalat’s lemma (Khalil 1996) gives
lim

t!1
PV .t/ D 0, which implies (via (30.69))

h
lim

t!1 eT Qe D 0
i

,
h

lim
t!1 jjejj D 0

i
,
h

lim
t!1 jjx.t/ � xref.t/jj D 0

i
(30.71)

It has been formally proven that the state tracking error e .t/ tends to the origin
globally, uniformly, and asymptotically. The MIMO command tracking problem
is solved, and a summary of the derived MRAC design equations is given in
Table 30.1.

30.5.2 MRAC Design Modifications for Robustness

Shown in Table 30.1, the design is valid for MIMO dynamics (30.9), with a
positive definite diagonal matrix ƒ (control uncertainty) and a matched unknown-
in-parameters function f .x/ D ‚T ˆ .x/, where ‚ 2 RN �m represents a constant
matrix of unknown parameters, ˆ .x/ 2 RN is the known regressor vector,
and N is an integer. If components of the regressor are chosen from a certain
class of approximation-capable maps (such as splines, trigonometric functions,
polynomials, Gaussians, radial basis functions, sigmoidal/ridge functions), then
the MIMO adaptive laws will provide semiglobal stability and command tracking
for a wide class of matched uncertain functions f .x/ and bounded noise � .t/.
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Table 30.1 MIMO MRAC laws

Open-loop plant Px D A x C B ƒ
�
u C ‚T ˆ .x/

�

Reference model Pxref D Aref xref C Bref r

Model matching conditions A C B ƒ KT
x D Aref; B ƒ KT

r D Bref

Tracking error e D x � xref

Control input u D OKT
x x C OKT

r r � O‚T ˆ .x/

Algebraic Lyapunov equation P Aref C AT
ref P D �Q

MIMO MRAC laws POKx D �	x x eT P B
POKr D �	r r .t/ eT P B
PO‚ D 	‚ ˆ .x/ eT P B

Table 30.2 Robustness
modifications in MRAC
design

Dead-zone PO‚ D 	‚ ˆ .x/ 
 .kek/ eT P B

� -mod PO‚ D 	‚

�
ˆ .x/ eT P B � � O‚

�

e mod PO‚ D 	‚

�
ˆ .x/ eT P B � �

��eT P B
�� O‚

�

Projection
operator

PO‚ D Proj
� O‚; 	‚ ˆ eT P B

�

These are nonparametric uncertainties. In order to mitigate the latter, the adaptive
laws must be modified to become robust (Ioannou and Fidan 2006; Narendra and
Annaswamy 2005). Table 30.2 shows four robustness modifications for adaptive
control of MIMO uncertain systems, with their dynamics extended to include
integrated tracking errors.

Overall, an MRAC controller enforces global uniform asymptotic tracking
performance of the preselected reference model dynamics, driven by a bounded
time-varying command while keeping the rest of the signals in the corresponding
closed-loop system uniformly bounded. Such a controller adapts to matched
uncertainties, and it remains robust to nonparametric nonmatched time-varying
process noise � .t/. The key feature that enables robustness of MRAC to process
noise is the dead-zone modification (Fig. 30.5):


 .kek/ D max

�
0; min

�
1;

kek � ı e0

.1 � ı/ e0

��
(30.72)

where 0 < ı < 1 is a constant.
The dead zone freezes the MRAC laws if and when the magnitude (2-norm) of

the tracking error vector
e D x � xref

becomes smaller than a preset tolerance e0. Any realistic adaptive system must
have a continuous dead-zone modification, such as (30.72), to avoid potential
discontinuities in feedback connections. The “must-have” dead-zone modification
will prevent adaptive parameters from drifting away due to persisting noise or other
nonparametric uncertainties in the system dynamics.
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1

0

m (||e||)

||e||
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Fig. 30.5 The dead-zone function

Table 30.3 The projection operator

Max parameter bounds k�k � �max

Convex function f
� O�
�

D .1C"/
k�k

2
�

.�max/2

" .�max/2

Two convex sets ˝0 D f� W f .�/ � 0g D
n
� W k�k � �max

p

1C"

o

˝1 D f� W f .�/ � 1g D f� W k�k � �maxg
Projection operator

Proj .�; y/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

y � 	 rf .�/ .rf .�//
T

.rf .�//
T

	 rf .�/
y f .�/ ;

if


f .�/ > 0 ^ �

yT rf .�/
�

> 0
�

y; if not

Convex inequality
for proof of stability

.� � ��/T
�
	�1 Proj .�; 	 y/ � y

� � 0;

8�� 2 ˝0; � 2 ˝1; y 2 Rn

Uniform boundedness
of parameters

P� D Proj .�; 	 y/

Œ� .0/ 2 ˝0� ) Œ � .t/ 2 ˝1; 8t � 0�

Also of key importance is the projection operator modification (Ioannou and
Fidan 2006), shown in Table 30.3.

As defined, this modification acts on two column vectors .�; 	 y/. For matrices,
the projection operator is applied column-wise. By design, projection-based MRAC
laws will force the tracking error to become small while keeping the adaptive
parameters within their prespecified bounds.

Without robustness modifications, the adaptive law dynamics are defined by in-
tegrating a nonlinear function, represented by the regressor vector ˆ .x/, multiplied
by a linear combination of the state tracking errors

�
eT P B

�
. This product is further

multiplied by a constant matrix 	‚ (the integral gain), and finally it is integrated to
yield the adaptive parameters O‚ .t/ (see Fig. 30.6).

As seen from the block-diagram, there is a chain of nonlinear integrators in a
feedback loop, whose output constitute the adaptive parameters. In all practical
applications, feedback integrators must be “managed” in the sense that their
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Fig. 30.6 MRAC system viewed as a nonlinear integral feedback controller

output signals (i.e., the adaptive parameters) need to be constrained. This prevents
integrators against “winding up” due to nonlinear saturation functions in the control
channels, where the system achievable control limits are defined and enforced.
Control techniques that prevent the integrator windup problems are called the “anti-
windup” methods, and the projection operator is one of them. So in practice, an
MRAC architecture would consist of the smoothed dead-zone modification coupled
with the projection operator. These are the two must-have modifications for enabling
MRAC systems to efficiently operate in unknown environment.

30.5.3 Observer-Based MRAC Design with Transient Guarantees

Even though an adaptive controller enables command tracking asymptotically in
time (as t ! 1/, it provides no uniformly guaranteed bounds on how large the
transients might become prior to acquiring the command. In order to yield fast
tracking and thus shorten transients, one needs to increase the rates of adaptation
and, thus, to speed up MRAC laws. However, experience shows that if these rates
grow large, unwanted transient oscillations will appear during the initial few seconds
(the transient time) of operation. The balance between achieving fast tracking and
avoiding undesired transients constitutes the MRAC design trade-off phenomenon.
In essence, the rates of adaptation must be chosen large enough for fast tracking but
not too large so that unwanted transients are precluded.

To understand the intricacies in MRAC design, reconsider the scalar design
(30.42). What complicates the MRAC tuning process is the direct dependence of
the transient dynamics (30.46) on (a) the external command and (b) the initial
conditions for the system and the adaptive controller. These dependencies may too
lead to undesirable transients. Consider the error dynamics (30.46). Using Lyapunov
arguments, one can prove that the time-varying signal

' .t/ D b .�kx .t/ x .t/ C �kr .t/ r .t// (30.73)
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is uniformly bounded in time and that the tracking error e .t/ globally asymptot-
ically tends to zero, as shown in (30.48). Still, the time constant of the transient
dynamics (30.46) �e D 1

jarefj is exactly the same as in the reference model (30.42).
Although having the same time constant in both systems is theoretically correct, any
control practitioner would want to have the transient dynamics (30.46) evolve faster
than the desired reference model. In other words, the transients must die out quickly,
relative to the dynamics of the reference model trajectories. This design requirement
is identical to the one that takes place during the construction of asymptotic state
observers, originally developed by Luenberger in his PhD thesis at Stanford (1963).
Per Luenberger, the reference model in (30.42) represents an open-loop observer.
So, just like in choosing the closed-loop observer dynamics, one can add an error
feedback term to the reference model and arrive at the observer-like reference
model:

Pxref D aref xref C bref r C ke.x � xref/

Error Feedback Term

(30.74)

where ke > 0 is the reference model feedback gain. The newly introduced error
feedback term in (30.74) is equivalent to the output innovation feedback in a state
observer. It is easy to see that in this case, the corresponding error dynamics become
faster than the open-loop reference model from (30.42):

Pe D .aref � ke/ e C b .�kx x C �kr r/ (30.75)

Once again, Lyapunov-based arguments can be easily repeated to prove (a) global
asymptotic stability of the modified error dynamics (30.74) and (b) uniform
boundedness of all signals in the related closed-loop system. Readers familiar with
the MRAC stability proof concept should recognize that using the same Lyapunov
function candidate (30.47), one needs to compute its time derivative along the
trajectories of (30.75), substitute the adaptive law from (30.42), and then show
that the resulting time derivative is globally nonpositive. This will prove uniform
boundedness of the tracking error e and of the parameter estimation errors (30.45).
Furthermore, since in the observer-like reference model (30.74), aref < 0 and the
error feedback term is bounded, then the model state xref is bounded as well. The
rest of the proof follows standard (in MRAC) stability arguments, finally arriving
at (30.48).

Revised block-diagram with the observer-like reference model (30.74) is shown
in Fig. 30.7.

As the reference model error feedback gain ke is increased, the system transient
dynamics become less oscillatory. In order to gain further insights into the transient
behavior, choose k0 > 0, a small positive parameter ", and redefine the reference
model feedback gain:

ke D k0

"
(30.76)
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Fig. 30.7 MRAC block-diagram with observer-like reference model

Then the modified error dynamics (30.75) become

" Pe D ." aref � k0/ e C " Œb .�kx x C �kr r/�
„ ƒ‚ …

'.t/

(30.77)

Since all signals in the closed-loop system are uniformly bounded, it is not difficult
to show that there exists a strictly positive finite constant 0 < 'max < 1 such
that for any " > 0, the upper bound j' .t/j � 'max holds uniformly in time and ".
Furthermore, starting from an initial condition e .0/ D e0, the solution of (30.77)
can be written explicitly:

e .t/ D e

�
aref� k0

"

�
t
e .0/ C

tZ

0

e

�
aref� k0

"

�
.t��/

' .�/ d� (30.78)

and one can compute an upper bound for this signal:

je .t/j � e�k0
t
" je0j C 'max

k0

" (30.79)

This relation is valid for any fixed " > 0 uniformly in time. So, the system state x .t/

converges within
�
˙'max

k0
"
�

of the reference model state xref .t/ exponentially fast

and at the rate no slower than e�k0
t
" . This term gives an upper-bound quantification

for the decay rate of the MRAC transient dynamics due to initial conditions
mismatch x .0/ ¤ xref .0/. Otherwise, the system transients would remain within
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"-dependent bounds
�
˙'max

k0
"
�

. Consequently, the system transients are reduced by

decreasing ", which according to (30.76) corresponds to increasing the reference
model feedback gain ke . Being able to influence and shape the MRAC transient
dynamics constitutes the essential benefit of the Luenberger-like reference model
modification (30.74)–(30.76). Relation (30.79) can also be written as

x .t/ D xref .t/ C C e�ke t C o .1/ (30.80)

where C > 0 is a constant independent of ke and o .1/ is the “small-O” signal
(a function of time that decays to zero asymptotically, as t ! 1/. The second term
in (30.80) defines the transient dynamics due to initial conditions. Consequently,
with a large enough feedback gain ke , MRAC transient dynamics can be quantified
and forced to decay as fast as needed. Note that since ke is inversely proportional to
", then the obvious trade-off in the modified MRAC design would be to avoid high
gain effects in the reference model.

As for standard MRAC, it is also possible to generalize the observer-based
MRAC to a broad class of nonlinear MIMO uncertain dynamical systems in the form

� Pey I

Pxp

�

„ ƒ‚ …
Px

D
�

0m�m Cp

0np�m Ap

�

„ ƒ‚ …
A

�
ey I

xp

�

„ ƒ‚ …
x

C
�

0m�m

Bp

�

„ ƒ‚ …
B

ƒ

0

B
B
@u C

d.xp/
‚ …„ ƒ
‚T

d ˆd

�
xp

�

1

C
C
AC

��Im�m

0np�m

�

„ ƒ‚ …
Bref

ycmd

y D �
0m�m Cp

�

„ ƒ‚ …
C

x

(30.81)

These dynamics incorporate an np-dimensional open-loop system with m control
inputs u- and m- regulated outputs y. This is the original plant, whose state is
xp 2 Rnp . The plant is augmented by the m-dimensional integrated output tracking
error dynamics Pey I D Cp xp �ycmd, where Cp 2 Rm�np is a known constant matrix.
The order of the complete system (30.81) is n D np C m. In addition, x 2 Rn is
the system state vector, u 2 Rm is the control input, y 2 Rp is the regulated output,
ycmd 2 Rm is the commanded signal for y to follow, d

�
xp

� D ‚T
d ˆd

�
xp

� 2 Rm

is a nonlinear state-dependent matched parametric uncertainty, ‚d 2 RN �m is the
matrix of unknown constant “true” parameters, and ˆd

�
xp

� 2 RN is the known
N -dimensional regressor vector, whose components are locally Lipschitz continu-
ous in x, that is, there exists a finite positive known constant 0 < Lˆd

< 1 such that
for any .x1; x2/ 2 Rnp from a bounded neighborhood of the origin, the following
inequality holds

kˆd .x1/ � ˆd .x2/k � Lˆd kx1 � x2k (30.82)

Also in (30.81), A 2 Rn�n, B 2 Rn�m, Bref 2 Rn�m, and C 2 Rm�n are constant
known matrices, while ƒ 2 Rm�m is a constant diagonal unknown matrix with
strictly positive diagonal elements.
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Consideration of the process dynamics (30.81) is largely motivated by aerospace
applications, where xp models the 6-DoF motion of an airborne platform and d

�
xp

�

represents uncertainties in the vehicle aerodynamic moments: By definition, the
moment uncertainties appear together with the system control inputs, thus enforcing
the matching conditions needed to justify mere existence of a control solution.
Moreover, control actuator uncertainties, control effectiveness reduction, and other
control failures are modeled by an unknown constant matrix ƒ. Finally, inclusion
of the integrated output tracking error Pey I D Cp xp � ycmd into the open-loop
system leads to the extended system formulation (30.81). This inclusion is optional,
yet it allows the designer to explicitly account for baseline controllers with integral
feedback, and it also allows to avoid feedforward terms in a control solution. Other
dynamics, such as structural notch filters, sensors, and actuators, can also be added
in the formulation of the extended open-loop system.

In order to control a dynamical system such as (30.81), one needs the nominal
system (no uncertainties) to be controllable. It is well known that controllability of�
Ap; Bp

�
, coupled with the rank condition,

rank

�
Ap Bp

Cp 0p�m

�
D np C m D n (30.83)

ensures controllability of the extended pair .A; B/. Disregarding the system
uncertainties, it is straightforward to form the ideal reference model dynamics:

Pxref ideal D Aref xref ideal C Bref ycmd (30.84)

where
Aref D A � B

�
R�1

ref BT Pref
�

„ ƒ‚ …
KT

lqr

(30.85)

is Hurwitz, Klqr is the baseline LQR feedback gain, Pref is the unique symmetric
positive definite solution of the ARE,

Pref A C AT Pref � Pref B R�1
ref BT Pref C Qref D 0 (30.86)

and .Qref; Rref/ are some appropriately chosen symmetric positive definite ma-
trices. Using the LQR design is the preferred way to formulate reference model
dynamics and to embed basic performance of an LQR PI controller into system
specifications. Due to inclusion of the integrated tracking error in (30.81), the DC
gain of the reference model (30.84) is unity. Consequently, if ƒ D Im�m and
d .x/ D 0m�1, then the baseline LQR PI linear state feedback control ulqr D �KT

lqr x

enforces global exponential stability of the reference model (30.84), and it makes
the regulated output y .t/ track any bounded command ycmd .t/, with bounded
errors. For a step-input command, the LQR PI controller provides global exponential
tracking with zero steady-state errors. Also, it is easy to see that such a choice
of the reference model enforces the model matching conditions, whereby given a
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Hurwitz matrix Aref and an unknown constant positive definite diagonal matrix ƒ,
there exists a constant possibly unknown gain matrix Kx such that

Aref D A � B ƒ KT
x (30.87)

It is important to understand that in this case, existence of Kx is guaranteed for any
controllable pair .A; B/ and for any nonsingular matrix ƒ. In particular, relations
(30.85) and (30.87) imply

Kx D Klqr ƒ�1 (30.88)

Using (30.87), it is convenient to rewrite the system dynamics (30.81) in the form

Px D Aref x C B ƒ .u C 

KT

x x C ‚T
d ˆd

�
xp

��

„ ƒ‚ …
�
KT

x ‚T
d

�

„ ƒ‚ …
‚T

�
x

ˆd

�
xp

�
�

„ ƒ‚ …
ˆ.x/

/ C Bref ycmd (30.89)

and then get
Px D Aref x C B ƒ

�
u C ‚T ˆ .x/

�C Bref ycmd (30.90)

The control goal of interest is bounded tracking of ycmd in the presence of the system
parametric uncertainties fƒ; ‚g. Specifically, one needs to find a control input u
such that the regulated output y D C x 2 Rm tracks any bounded time-varying
command ycmd .t/ 2 Rm with bounded errors, while the rest of the signals in the
corresponding closed-loop system remain bounded. In addition, it is desirable to
have smooth and quantifiable transient characteristics in the closed-loop dynamics.
Using Lyapunov-based arguments (Khalil 1996), coupled with asymptotic analysis
(Kevorkian and Cole 1996), one can derive MRAC systems with quantifiable
transient performance.

Similar to (30.74) and for the system dynamics (30.90), consider a Luenberger-
like reference model in the form

Pxref D Aref xref C Lv.x � xref/

Error Feedback Term

CBref ycmd (30.91)

where Ox 2 Rn is the reference model state and Lv 2 Rn�n is the error feedback
gain, parameterized by a positive scalar v > 0 (to be defined). The system control
input u is selected as

u D � O‚T ˆ .x/ (30.92)

Substituting (30.92) into the system dynamics (30.90) gives

Px D Aref x � B ƒ
� O‚ � ‚T

�

„ ƒ‚ …
�‚

ˆ .x/ C Bref ycmd (30.93)

where �‚ 2 RN �m denotes the matrix of parameter estimation errors.
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In what follows, the pair
�
Lv; O‚

�
will be selected such that the system state x

globally asymptotically tracks xref – the state of the observer-like reference model
(30.91), and so y !

t!1 yref. Also, one can show that xref tracks xref ideal, which in turn

implies that yref !
t!1 yref ideal. Furthermore, since the output of the ideal reference

model (30.84) follows its command yref ideal ! ycmd, with bounded errors, and
y !

t!1 yref !
t!1 yref ideal, then the system-regulated output y will also track ycmd with

bounded errors. This argument constitutes the proposed design strategy.
Begin by choosing adaptive laws for O‚ so that x globally asymptotically tracks

xref, in the presence of the system uncertainties. Let,

e D x � xref (30.94)

denote the state tracking error. Subtracting (30.91) from (30.93), gives the system
transient dynamics:

Pe D .Aref � Lv/ e � B ƒ �‚T ˆ .x/ (30.95)

Choose the error feedback gain Lv as

Lv D Pv R�1
v (30.96)

where Pv D P T
v > 0 is the unique solution of the following ARE,

Pv AT
ref C Aref Pv � Pv R�1

v Pv C Qv D 0 (30.97)

with the ARE weight matrices .Qv; Rv/ selected as

Qv D Q0 C
�

v C 1

v

�
In�n; Rv D v

v C 1
In�n (30.98)

using a constant parameter v > 0. This constant will eventually become the design
“tuning knob,” where small values of v yield better MRAC transients. However, the
corresponding feedback gain Lv will increase at the rate of 1

v . In fact, as v tends to
zero, the error feedback gain tends to infinity:

Lv D
�

1 C 1

v

�
Pv D O

�
1

v

�
(30.99)

while the solution Pv of the ARE (30.97) tends to a constant positive definite
symmetric matrix P0. It is easy to verify that the ARE (30.97) possesses the
unique symmetric positive definite solution Pv. Furthermore, because of (30.97),
the observer closed-loop matrix
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Av D Aref � Lv D Aref � Pv R�1
v D Aref � Pv

�
1 C 1

v

�
(30.100)

satisfies

Pv

0

B
@Aref � Pv R�1

v„ ƒ‚ …
Lv

1

C
A

„ ƒ‚ …
Av

T

C

0

B
@Aref � Pv R�1

v„ ƒ‚ …
Lv

1

C
A

„ ƒ‚ …
Av

Pv C Pv R�1
v Pv C Qv D 0 (30.101)

or equivalently
Pv AT

v C Av Pv D �Pv R�1
v Pv � Qv < 0 (30.102)

and therefore, Av is Hurwitz for any v > 0.
Since Pv is the unique symmetric positive definite solution of the ARE (30.97),

then the matrix inverse QPv D P �1
v exists for any v � 0 and the following relation

takes place:
AT

v
QPv C QPv Av D �R�1

v � QPv Qv QPv < 0 (30.103)

The design task is to choose adaptive laws for O‚ so that the tracking error e

globally asymptotically tends to the origin. Toward that end, consider the following
Lyapunov function candidate:

V .e; �‚/ D eT QPv e C trace
�
ƒ �‚T 	�1

‚ �‚
�

(30.104)

where 	‚ D 	T
‚ > 0 is the adaptation rate. The time derivative of V , along the

trajectories of the error dynamics (30.95), can be computed as

PV .e; �‚/ D eT QPv Pe C PeT QPv Pe C 2 trace
�
ƒ �‚T 	�1

‚
PO‚
�

D eT QPv
�
Av e � B ƒ �‚T ˆ .x/

�C �
Av e � B ƒ�‚T ˆ .x/

�T QPv Pe
C2trace

�
ƒ�‚T 	�1

‚
PO‚
�

D eT
� QPv Av C AT

v
QPv
�

e � 2eT QPv B ƒ �‚T ˆ .x/

C2 trace
�
ƒ �‚T 	�1

‚
PO‚
�

(30.105)
Because of (30.102) and using the properties of the matrix trace operator,

PV .e; �‚/ D �eT
�
R�1

v C QPvQv QPv

�
e C 2 trace

�
ƒ �‚T

�
	�1

‚
PO‚ � ˆ .x/ eT QPv B

��

(30.106)
If the adaptive laws are chosen as

PO‚ D 	‚ˆ .x/ eT QPv B (30.107)
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then
PV .e; �‚/ D �eT

�
R�1

v C QPv Qv QPv
�

e � 0 (30.108)

and, hence, V .e; �‚/ is the Lyapunov function for the error dynamics (30.95).
For this reason, the tracking error signal e as well as the parameter error matrix �‚

are uniformly bounded in time, that is, .e; �‚/ 2 L1. Since Aref in (30.91) is
Hurwitz by design and .e; ycmd/ 2 L1, then .xref; Pxref/ 2 L1 and consequently
x 2 L1. Since the unknown parameters ‚ are constant and �‚ 2 L1 then
O‚ 2 L1. The regressor vector ˆ

�
xp

�
is Lipschitz continuous and

�
x; O‚

�
2 L1.

Therefore, from definition (30.92) it follows that u 2 L1 and consequently
Px 2 L1. Also, since Pxref 2 L1, then Pe 2 L1. Using (30.108) yields

RV .e; �‚/ D �2 eT
�
R�1

v C QPv Qv QPv
� Pe 2 L1 (30.109)

The function V from (30.104) is lower bounded and has a nonincreasing
time derivative as in (30.108). Thus, V tends to a limit, as t ! 1. Also the
function’s second time derivative is uniformly bounded. Therefore, PV is a uniformly
continuous function of time. Using Barbalat’s lemma (Khalil 1996) implies that
PV .t/ tends to zero, as t ! 1. Finally, and due to (30.108),

lim
t!1 ke .t/k D 0 (30.110)

which proves global asymptotic stability of the tracking error, attained by the
adaptive controller (30.92), the adaptive laws (30.107), and the observer-like
reference model (30.91).

In order to show that xref asymptotically tracks xref ideal, it is sufficient to subtract
(30.84) from (30.91) and write the dynamics of the reference model error eref D
xref � xref ideal:

Peref D Aref eref C Lv e .t/
„ƒ‚…

o.1/

(30.111)

Then,

eref .t/ D exp .Aref t/ eref .0/ C
tZ

0

exp .Aref .t � �// Lv e .�/
„ƒ‚…

o.1/

d� D o .1/ !
t!1 0

(30.112)

So x !
t!1 xref !

t!1 xref ideal, and hence,

.y D C x/ !
t!1 .yref D C xref/ !

t!1 .yref ideal D C xref ideal/ ! ycmd .t/ (30.113)

In other words, the system-regulated output y asymptotically tracks its ideal
reference command yref ideal, and y also tracks its original command ycmd with
bounded errors.
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Table 30.4 Observer-based MRAC design summary

Open-loop plant Px D Aref x C B ƒ
�
u C ‚T ˆ .x/

�C Bref ycmd

Observer-like reference model Pxref D Aref xref C Lv .x � xref/ C Bref ycmd

State tracking error e D x � xref

Riccati equation for adaptive laws Pv AT
ref C Aref Pv � Pv R�1

v Pv C Qv D 0

ARE weight matrices Qv D Q0 C
�

vC1
v

�
In�n; Rv D v

vC1
In�n

Observer gain Lv D Pv R�1
v

Total control input u D � O‚T ˆ .x/

MRAC laws PO‚ D 	‚ˆ .x/ eT P �1
v B

The design summary is given in Table 30.4.
In order to analyze the transient dynamics (30.95), substitute (30.96) into (30.95)

and write the transient error dynamics as

Pe D �
Aref � Pv R�1

v

�

„ ƒ‚ …
Hurwitz Matrix

e � B ƒ �‚ .t/T ˆ .x .t//
„ ƒ‚ …

'.t/ D Uniformly Bounded Function of Time

(30.114)

Using (30.98) gives

Pe D
�

Aref �
�

1 C 1

v

�
Pv

�
e � ' .t/ (30.115)

In (Lavretsky 2011), it is shown that the asymptotic relation

Pv D P0 C O .v/ ; as v ! 0 (30.116)

holds with a constant positive definite symmetric matrix P0. Then,

Pe D
�

Aref �
�

1 C 1

v

�
.P0 C O .v//

�
e � ' .t/ (30.117)

or equivalently

v Pe D .v Aref � .v C 1/ .P0 C O .v/// e � v ' .t/ (30.118)

Rewrite (30.118) as

v Pe D .v Aref � .v C 1/ .P0 C O .v/// e � v ' .t/

D

0

B
@�P0 C .v Aref � v .P0 C O .v// � O .v//

„ ƒ‚ …
O.v/

1

C
A e C v ' .t/

D .�P0 C O .v// e C v ' .t/

(30.119)
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or, equivalently,

Pe D 1

v
.�P0 C O .v// e C ' .t/ (30.120)

It is not difficult to show (by direct integration), that solutions of (30.120) satisfy
the following asymptotics

e .t/ D O
�
e�� t

v

�
C O .v/ ; .v ! 0/ (30.121)

uniformly in time, with a positive constant � and for all sufficiently small v > 0.
So, the transient dynamics exponentially decay to a neighborhood of the origin,

no slower than O
�
e�� t

v

�
. Moreover, the “diameter” of the convergence set can

be made arbitrarily small, by choosing v to be sufficiently small. This argument
formally proves and quantifies transient dynamics improvements in MIMO MRAC
systems with observer-like reference models.

There is also an alternative way to analyze the transient dynamics in (30.118).
This system can be viewed as singularly perturbed, where v plays the role of a small
parameter. To understand the intricacies of the system behavior, one can employ the
singular perturbation arguments (Khalil 1996; Kevorkian and Cole 1996). Setting
v D 0 gives the isolated root e D 0 for the corresponding reduced system, which
describes asymptotic behavior as t ! 1, that is, for a sufficiently small v > 0,
the error trajectories converge to a small neighborhood of the manifold e � 0 and
will evolve near this manifold thereafter. Next, the boundary-layer system is formed
to quantify and characterize the transient dynamics. These dynamics are derived by
“stretching” the time

� D t

v
(30.122)

rewriting (30.118) in the “fast” time scale � , and then setting v D 0. The resulting
boundary-layer dynamics

d e

d �
D �P0 e (30.123)

are globally exponentially stable, since P0 is symmetric and positive definite
(Kevorkian and Cole 1996). In this case, one can claim (Khalil 1996) that for a
sufficiently small v > 0, while starting from an initial time t0 � 0, the singular
perturbation system (30.118) has a unique solution e .t; v/, defined on an infinite
interval Œt0; 1/, and the asymptotic relation

e .t; v/ D Ne
�

t

v

�
C O .v/ (30.124)

holds uniformly on Œt0; 1/, where Ne � t
v

�
is the solution of the boundary-layer

system (30.123) and t0 > 0 is the initial time instant. Since,

Ne
�

t

v

�
D exp .�P0 .t � t0// Ne .0/ (30.125)
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then substituting (30.125) into (30.124) results in

e .t; v/ D exp

�
�P0

�
t � t0

v

��
.x .t0/ � xref .t0// C O .v/ (30.126)

This asymptotic relation is conservative. In fact, it has been already proven that
the tracking error e .t; v/ asymptotically converges to the origin, starting from any
initial condition. Consequently,

' .t/ D B ƒ
h
�‚ .t/T ˆ .x .t//

i

„ ƒ‚ …
o.1/

D o .1/ ; .t ! 1/ (30.127)

and so, (30.126) can be rewritten as

x .t; v/ D exp

�
�P0

�
t � t0

v

��
.x.t0/ � xref.t0//

Transient Dynamics

C xref.t/ C O.v/o.1/

Global Asymptotic Stability

(30.128)

where P0 is a constant symmetric positive definite matrix, o .1/ is a function of time
with lim

t!1 o .1/ D 0, and O .v/ decays to zero no slower than v. Design details and

stability proofs can be found in (Lavretsky 2011).
The asymptotic expansion (30.128) quantifies the MRAC transient dynamics.

Indeed, for a sufficiently small v > 0, the transients, described by the first term
in (30.128), decay exponentially fast, while the second term defines asymptotic
behavior of the tracking error, as t ! 1. This constitutes the main benefit of
using the error feedback in an observer-based reference model. Essentially, with a
sufficiently small parameter v > 0, one ensures quantifiable transient characteristics,
and the latter are given by the first term in (30.128). The observer-based MRAC
design method represents a numerically efficient technique of reducing unwanted
transient oscillations in state feedback/feedforward MRAC systems.

The plant dynamics (30.81) and the corresponding control problem formulations
can be modified to include nonparametric uncertainties, such as matched uncertainty
approximation errors and bounded possibly nonmatched process noise. In that case,
one can use known robustification techniques (i.e., �-modification, e-modification,
and the projection operator) to prove bounded tracking performance and then
establish transient characteristics. Also, the state feedback MRAC design, with
an observer-like reference model, can be extended to adaptive output feedback
controllers (Lavretsky 2012).
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Specifies desired closed-loop dynamics

Reference Model

Command

Desired Response

Tracking Error

Actual
Response

Robust Baseline Autopilot

Nonlinear Adaptive
Augmentation

Adaptive Flight Control System = Robust Baseline Autopilot + Nonlinear Adaptive Augmentation

Adaptive/Learning
Process

Fig. 30.8 (Robust + adaptive) flight control system

30.6 Conclusion

Robust and adaptive methods can be seamlessly combined to construct resilient
controllers, applicable to a wide range of systems, including aerial platforms.
A notional block-diagram is shown in Fig. 30.8.

This system is designed to track and execute external commands, provided by a
pilot, a guidance logic, or an autonomous mission planner. The architecture embeds
a robust baseline controller (LQR PI feedback). The reference model represents the
baseline closed-loop dynamics that would be achieved under the baseline controller
and without uncertainties. The adaptive control acts as an augmentation to the
baseline. Its purpose is to recover the desired baseline performance while operating
in the presence of “unknown unknowns” in the system dynamics and operational
environment. As depicted in the figure, this control architecture was designed and
flown on various vehicles at the Boeing Company. Some are in production today,
and yet others were designed to test and verify extreme capabilities and resilience
of aerial platforms equipped with robust and adaptive flight controllers.
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