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Abstract
This chapter provides an overview of algorithms for inertial sensor-based Si-
multaneous Localization and Mapping (SLAM) within the context of Unmanned
Aerial Vehicles (UAVs). The presentation in this chapter is based on the use of
the Extended Kalman Filter (EKF) and the Extended Information Filter (EIF)
due to their ease of understanding, applicability to online implementation, and
prevalence in airborne localization applications outside of SLAM (such as aided
inertial localization). The discussion here includes an examination of SLAM for
both small- and large-scale operation over the surface of the Earth, inertial SLAM
using both range-bearing and bearing-only observations of the terrain, and a look
at several different centralized and decentralized architectures for performing
multi-vehicle SLAM.

21.1 Introduction

Simultaneous Localization and Mapping (SLAM) is the process of determining the
position and orientation of a moving platform within an environment, while also
building a map of the environment, primarily using observations of environmental
features measured from and with respect to the moving platform. Since the seminal
work by Smith et al. (1990), there have been several demonstrated implementations
of SLAM using land (Bosse et al. 2003; Gutmann and Konolige 1999; Dissanayake
et al. 2001; Guivant and Nebot 2001; Thrun and Lui 2003b) and underwater
vehicles (Williams et al. 2001; Olson et al. 2004) where two-dimensional, horizontal
localization and mapping is performed. In each of these implementations, SLAM
involves the fusion of two particular sets of information usually coming from
sensors onboard the vehicle; firstly the vehicle uses exteroceptive sensors to sense
the terrain/landmarks relative to the vehicle (such as vision, laser, and radar
sensors), and secondly the vehicle uses proprioceptive sensors and information to
sense its own motion (such as wheel encoders, inertial sensors, and vehicle model
information such as holonomic/nonholonomic constraints).

In the context of Unmanned Aerial Vehicles (UAVs), where the platform
undergoes rapid six degree-of-freedom (6-DoF) motion, inertial sensors are a
logical choice for the proprioceptive core of a SLAM implementation, due to
their high frequency of information and ability to track platform motion in
6-DoF without relying on external information such as a vehicle dynamic model.
Exteroceptive sensors (i.e., terrain sensors) come in a variety of forms depending
on the application, including RAdio Detection And Ranging (RADAR), LIght
Detection And Ranging (LIDAR), and electro-optical sensors such as cameras. Such
sensors provide a variety of different observations of the terrain including range and
bearing to features and bearing-only observations of features (i.e., camera images),
necessitating SLAM algorithms that account for this variability.

The utility of SLAM in the context of UAV operations can be considered
from both a localization and a mapping perspective. Traditionally, airborne local-
ization has relied on external navigation aids such as satellite/radio positioning
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systems (i.e., the Global Positioning System (GPS)) or terrain/landmark maps
(i.e., in terrain-aided navigation systems (TANS)). SLAM allows for intermittent
localization when external navigation aids fail due to, for example, satellite signal
occlusion/jamming or when operating over unknown terrain, thus improving local-
ization system robustness. During mapping and surveying tasks, a UAV uses terrain
observations (e.g., aerial photography) along with information about the UAV’s own
position and orientation at the time of the observation to construct a map. Consistent
and accurate mapping relies on accounting for the correlation between the errors
in multiple features in the map, induced by a common error in the estimate of the
platform’s position and orientation; SLAM maintains these relationships, computing
a joint estimate of the localization and mapping states, improving accuracy in the
platform’s localization estimates and thus in the final map. Large-scale mapping
tasks may also necessitate the use of multiple aerial platforms; algorithms for multi-
vehicle inertial SLAM are a natural extension of the single-vehicle case where
shared map information can be used to assist in localization across platforms and
to build more accurate maps than achievable with a single UAV.

This chapter provides an overview of algorithms for inertial sensor-based SLAM
within the context of UAVs. The presentation in this chapter is based on the use
of the Extended Kalman Filter (EKF) and the Extended Information Filter (EIF)
due to their ease of understanding, applicability to online implementation, and
prevalence in airborne localization applications outside of SLAM (i.e., aided inertial
localization, see Giovanni 1979; Bar-Itzhack et al. 1982; Meyer-Hilberg and Jacob
1994). The discussion here includes an examination of SLAM for both small- and
large-scale operation over the surface of the Earth, inertial SLAM using both range-
bearing and bearing-only observations of the terrain and a look at several different
centralized and decentralized architectures for performing multi-vehicle SLAM.
Section 21.2 provides an overview of the equations of motion and sensor models
used in inertial SLAM with an examination of the issue of SLAM in both global
and local coordinate systems and how this affects the way in which inertial SLAM
is implemented. Section 21.3 examines the structure of the inertial SLAM algorithm
when terrain observations are made using a range/bearing sensor. Section 21.4
examines a special case of inertial SLAM when only bearing observations of the
terrain are available, such as in the case of electro-optical sensing. Section 21.5
examines the inertial SLAM algorithm when applied to multiple vehicles where
vehicles share map information with each other.

21.2 Inertial SLAM Sensor Equations

The inertial SLAM algorithm is formulated using an EKF and uses information from
inertial sensors and from feature observations from onboard terrain sensors in order
to estimate the vehicle’s position, velocity, attitude, inertial sensor biases, and map
feature locations. The algorithm works on a two-stage process of state prediction
(where equations for predicting the vehicle states from inertial sensor data are used)
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Fig. 21.1 Vectors and frames of reference in the inertial SLAM algorithm. The Earth-Centered,
Earth-Fixed (ECEF) frame (e), local-level navigation frame (n), body-fixed frame (b), and sensor-
fixed frame (s) and the relationship between the vehicle position (pn,pe), feature position (mn,me),
and sensor observation are shown. Also shown is the observation of a terrain feature coming from
an example terrain sensor (in this case a vision camera)

and state observation/update (where equations describing the geometry of terrain
feature observations are used).

This section describes the background equations behind inertial sensor-based
SLAM algorithms, including equations of motion for inertial localization and
sensor equations for terrain-observing sensors. Figure 21.1 illustrates the relevant
relationships between the frames of reference and vectors used in the SLAM
algorithm. The structure of the process and observation model equations for both
global and local SLAM is discussed in the following subsections.

21.2.1 Global Vs. Local SLAM

Localization and mapping tasks vary in environmental scale depending on the
application. Some tasks require knowledge of the location of each feature in the
map with respect to global co-ordinates (such as an ECEF coordinate system (see
Fig. 21.1)). This form of localization and mapping requires external information
either in the form of global position information (such as from GPS) or global map
information (i.e., the global position of one or more features in the map). Other
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tasks may only require a map of the environment in which the positions of features
are known only with respect to one another or with respect to the starting location
of the vehicle, a task which when using SLAM does not require external map or
navigation aids.

These two forms of SLAM are referred to as “global SLAM” or “local SLAM”
depending on whether map and location information must be referenced to a global
coordinate system or merely and local arbitrary coordinate system (such as the
starting position of the UAV). This issue is particularly important when using inertial
sensors as inertial localization relies to some degree on global information about the
local coordinate system’s motion with the rotation of the Earth. Local SLAM using
inertial sensors is therefore only possible when certain assumptions are made which
treat the local map coordinates as an inertial frame of reference by ignoring the
effect of the Earth’s rotation.

21.2.2 Inertial Localization and SLAM Process Model Equations

The presentation here begins by considering the process model equations from a
global SLAM perspective. In this case, the location of the vehicle and the terrain is
estimated with respect to the center of the Earth. The estimated state vector Ox.k/ at
time step k in this case contains the three-dimensional vehicle position .pe/, velocity
.ve/ and Euler angles .‰n D Œ�; �;  �T /, IMU sensor biases (ıfb and ı!bib), and the
N three-dimensional feature locations .me

i / in the environment:

Ox.k/ D Œpe.k/; ve.k/;‰n.k/; ıfb.k/; ı!bib.k/;m
e
1.k/;m

e
2.k/; : : : ;m

e
N .k/�

T

(21.1)

where i D 1; : : : ; N , the superscript e indicates Earth-Centered, Earth-Fixed
(ECEF) frame referenced vectors, the superscript b indicates body-fixed frame
referenced vectors and the superscript n indicates the Euler angles ‰n parame-
terize the body-fixed to local navigation frame Direction Cosine Matrix (DCM)
transformation Cn

b (see Chapter 3 of this book for details on frames of reference).
Figure 21.1 illustrates the relevant relationships between the frames of reference and
vectors used in the SLAM algorithm.

Euler angles are used to represent the attitude of the platform rather than
quaternions in order to reduce the number of parameters in the estimator. It is
assumed that the vehicle’s pitch angle is constrained so as to avoid the Euler angle
singularity at � D 90ı; however, the process model could be adapted to implement
quaternions for the parameterization of Cn

b in the event that the platform motion is
not constrained in such a way.

The state estimate Ox is predicted forward in time by integrating the first-order
nonlinear dynamic equation:

POx.t/ D FcŒOx.t/;u.t/�C GcŒw.t/� (21.2)
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where FcŒ:; :� is the continuous-time process model function, GcŒ:� is the continuous-
time input function, u.t/ is the system input (which is comprised of inertial sensor
readings), and w.t/ is uncorrelated, zero-mean vehicle process noise vector of
covariance Q (which is comprised of inertial sensor noise errors). The process model
equations for the vehicle position, velocity, and attitude are based on the 6-DoF
inertial localization equations in which an Earth-frame mechanization (Titterton and
Weston 1997) is applied:

Ppe D ve (21.3)

Pve D Ce
b
Ofb � Ce

bıf
b � Ce

bwaccel � 2.!eie � ve/C gel (21.4)

P‰n D Enb. O!bib � ı!bib � wgyro � Cb
n!

n
ie/ (21.5)

where !eie and !nie are the Earth’s rotation rate vectors measured in the ECEF and
local navigation frames, respectively:

!eie D
2
4

0

0

!Earth

3
5 (21.6)

!nie D
2
4
!Earth cos.�/

0

�!Earth sin.�/

3
5 (21.7)

where � is the latitude angle of the vehicle and !Earth D 7:292115 � 10�5 rad/s
is the rotation rate of the Earth. Enb is the body to navigation frame rotation rate
transformation matrix:

Enb D
2
4
1 sin � tan � cos� tan �
0 cos� � sin �
0 sin � sec � cos� sec �

3
5 (21.8)

gel is the local gravity term:

gel D ge � !eie � .!eie � pe/ (21.9)

D �g

2
664

pexjpe j
pey
jpe j
pez

jpe j

3
775 � Œ�!eie�2pe (21.10)

where g is the acceleration acting on the vehicle due to gravity, referenced in ECEF
coordinates and Œ�!eie� is the skew symmetric matrix of the Earth’s rotation rate
vector. Cn

b is the DCM transformation from the body to local navigation frame, and
Ce
b is the DCM transformation from the body to ECEF frame which are related via
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Ce
b D Ce

nC
n
b (21.11)

Ce
n D

2
4

� sin.�/ cos.l/ � sin.l/ � cos.�/ cos.l/
� sin.�/ sin.l/ cos.l/ � cos.�/ sin.l/

cos.�/ 0 � sin.�/

3
5 (21.12)

where l is the longitude angle of the vehicle’s position. The vectors Ofb and O!bib are
the accelerometer specific force vector reading and gyroscope rotation rate reading,
respectively (where u.t/ D ŒOfb.t/; O!bib.t/�T ), ıfb and ı!bib are the accelerometer and
gyro biases, respectively, and waccel and wgyro are the accelerometer and gyro noise
values. The true acceleration and rotation rates, fb and !bib , are defined:

fb D Ofb � ıfb � waccel (21.13)

!bib D O!bib � ı!bib � wgyro (21.14)

Accelerometer and gyro biases are known to fluctuate by very small amounts
due to temperature changes and bias wander, particularly in low-cost IMUs. The
accelerometer and gyro bias process models are given by

ıPfb D wb;accel (21.15)

ı P!bib D wb;accel (21.16)

where wb;accel and wb;gyro are bias drift noises for the accelerometers and gyros,
respectively. The complete noise vector w.t/ for the process model based on errors
from the IMU is composed:

w.t/ D Œwaccel.t/;wgyro.t/;wb;accel.t/;wb;gyro.t/�
T (21.17)

Finally, map feature locations are estimated in the ECEF frame and are also assumed
to be constant as the state of the terrain is stationary and the process model of the
i th feature is given by

Pme
i D 0 (21.18)

Equations 21.3–21.5, 21.15, 21.16, and 21.18 can also be expressed in discrete-
time, recursive form by assuming a first-order Euler integration step:

Ox.k/ D FŒOx.k � 1/;u.k/; k�C GŒw.k/� (21.19)

where FŒ:; :; k� is the nonlinear state transition function at time k and GŒ:; k� is the
input model transition function at time k. The discrete process model thus becomes
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pe.k/ D pe.k � 1/C ve�t (21.20)

ve.k/ D ve.k � 1/C ŒCe
b
Ofb � Ce

bıf
b � Ce

bwaccel � 2.!eie � ve/C gel ��t
(21.21)

‰n.k/ D ‰n.k � 1/C ŒEnb. O!bib � ı!bib � wgyro � Cb
n!

n
ie/��t (21.22)

ıfb.k/ D ıfb.k � 1/C wb;accel.k/ (21.23)

ı!bib.k/ D ı!bib.k � 1/C wb;gyro.k/ (21.24)

me
i .k/ D me

i .k � 1/ (21.25)

where�t is the time difference between the k and k � 1 discrete-time segments.

21.2.2.1 Process Model Equation Approximations for Local SLAM
When performing SLAM with respect to a local coordinate system where no
global information is available, several approximations must be made in the inertial
SLAM equations. In local SLAM, the position and orientation of the vehicle is
maintained with respect to a local navigation frame which is fixed to an arbitrary
and unknown location on the Earth’s surface rather than the ECEF frame. The
local SLAM equations are thus derived under the assumption that local navigation
frame is an inertial frame of reference by ignoring the small Coriolis and centripetal
accelerations which are incurred by the Earth’s rotation.

In local SLAM, the estimated state vector is Oxlocal.k/, in which the vehicle
position and velocity and the position of map features are now reference in local
navigation frame coordinates:

Oxlocal.k/ D Œpn.k/; vn.k/;‰n.k/; ıfb.k/; ı!bib.k/;m
n
1.k/;m

n
2.k/; : : : ;m

n
N .k/�

T

(21.26)

The continuous-time and discrete-time process models for local SLAM are thus
given by

POxlocal.t/ D Fc;localŒOxlocal.t/;u.t/�C Gc;localŒw.t/� (21.27)

Oxlocal.k/ D FlocalŒOxlocal.k � 1/;u.k/; k�C GlocalŒw.k/� (21.28)

The vehicle process model equations in continuous-time form are the following:

Ppn D vn (21.29)

Pvn D Cn
b
Ofb � Cn

bıf
b � Cn

bwaccel C gn (21.30)

P‰n D Enb. O!bib � ı!bib � wgyro/ (21.31)
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where gn D Œ0; 0; g�T is the vector of acceleration due to gravity in the local
navigation frame and g D 9:81m/s2. Terrain map features are now referenced in
local navigation frame coordinates, and their process model is given by

Pmn
i D 0 (21.32)

The complete form of the discrete-time process model equations in local SLAM are
thus

pn.k/ D pn.k � 1/C vn�t (21.33)

vn.k/ D vn.k � 1/C ŒCn
b
Ofb � Cn

bıf
b � Cn

bwaccel C gn��t (21.34)

‰n.k/ D ‰n.k � 1/C ŒEnb. O!bib � ı!bib � wgyro/��t (21.35)

ıfb.k/ D ıfb.k � 1/C wb;accel.k/ (21.36)

ı!bib.k/ D ı!bib.k � 1/C wb;gyro.k/ (21.37)

mn
i .k/ D mn

i .k � 1/ (21.38)

21.2.3 Landmark/Terrain Sensor Equations

The observation model equations describe the relationship between the sensor
observation of a map feature in the sensor coordinates of the terrain sensor to
the estimated states in SLAM. Figure 21.1 illustrates the relevant relationships
between the sensor frame, sensor observation and map, and vehicle positions. The
observation zi .k/ is related to the estimated states using Eq. 21.39 for global SLAM
and Eq. 21.40 for local SLAM:

zi .k/ D Hi .pe.k/;‰n.k/;me
i .k/; k/C v.k/ (21.39)

zi .k/ D Hi;local.pn.k/;‰n.k/;mn
i .k/; k/C v.k/ (21.40)

where Hi .:; :; :; k/ and Hi;local.:; :; :; k/ are functions of the feature location, vehicle
position, and Euler angles and v.k/ is uncorrelated, zero-mean observation noise
errors of covariance R.

Terrain observations could come from a variety of different sensors such as
RADAR, LIDAR, or an electro-optical camera. The SLAM algorithm requires that
point features can be extracted from the observation sensor data which go on to
be mapped terrain features. In the case of large objects that do not show up as a
“point” in sensor data, the centroid of the object is found or else several points
can be used to represent a single object. Example feature extraction algorithms for
vision include Scale-Invarient Feature Transform (SIFT) features (Lowe 2004) or
model-based feature matching (Nixon and Aguado 2001). Features in this sense are
points in the sensor data that are distinct and easily recognizable or else points in



410 M. Bryson and S. Sukkarieh

the sensor data that appear to correlate well with a given feature model or template
that is specified offline.

Sensor observations can be broken up into two types: firstly range/bearing
observations (as might be available from RADAR or a LIDAR) and secondly
bearing-only observations (as might be available from an electro-optical sensor such
as a camera). When both range and bearing observations are made, the observation
model is given by

zi .k/ D
2
4
�i
'i
#i

3
5 D

2
6664

p
.xsi /

2 C .ysi /
2 C .zsi /

2

tan�1
�
ysi
xsi

�

tan�1
�

zsip
.xsi /

2C.ysi /2

�

3
7775 (21.41)

where �i , 'i , and #i are the observed range, azimuth, and elevation angles to the
feature and xsi , y

s
i , and zsi are the Cartesian coordinates of psms;i , the relative position

of the i th feature with respect to the sensor, measured in the sensor frame.
There are two forms that can be used to represent a bearing-only observation.

The observation zi .k/ can be represented by azimuth ('i ) and elevation angles (#i ):

zi;ang.k/ D
�
'i
#i

�
D

2
64

tan�1
�
ysi
xsi

�

tan�1
�

zsip
.xsi /

2C.ysi /2

�
3
75 (21.42)

where Rang is the angular noise covariance. For vision camera, the observation is
better represented as pixels in the image of the camera, using a pinhole camera
model:

zi;pix.k/ D
�

u
v

�
D

"
fu.

ysi
xsi
/C u0

fv.
zsi
xsi
/C v0

#
(21.43)

where u0, v0, fu, and fv are calibration parameters for the camera and the pixel noise
covariance is Rpix. The relationship between the pixel coordinates and the azimuth
and elevation angles is given by Eq. 21.44

�
'

#

�
D

2
4 tan�1 .u�u0/

fu

tan�1. .v�v0/
fv

cos'/

3
5 (21.44)

psms;i , the relative position of the i th feature with respect to the sensor, measured in
the sensor frame is given by:

psms;i D Cs
bC

b
nŒm

n
i � pn � Cn

bp
b
sb� (21.45)

D Cs
bC

b
e Œm

e
i � pe � Ce

bp
b
sb�
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where Cs
b is the transformation matrix from the body frame to the sensor frame and

pbsb is the sensor offset from the vehicle center of mass, measured in the body frame,
otherwise known as the “lever arm” and Cb

e D .Ce
b/
T .

21.3 Inertial SLAM with Range and Bearing Sensors

When both range and bearing observations to features are available, the inertial
SLAM algorithm is broken up into the following processes:
1. State Prediction. The process model equations in Sect. 21.2.2 are used to

“predict” forward in time the estimated state vector and state covariance matrix
in an EKF prediction step.

2. Data Association. Every time a new feature observation is made, the data
association step is used to determine whether the observation is of a new feature
or a known feature, and which feature it is of.

3. Feature Initialization. When a feature is observed by the terrain sensor for the
first time, its position is computed and augmented into the estimated state vector
and its initial position uncertainty augmented into the state covariance matrix.

4. State Update. Each time an observation is made of a previously seen feature, it is
used in an EKF update step to correct the value of the estimated state and update
the state covariance matrix.
Figure 21.2 provides an overview of the range/bearing inertial SLAM algorithm.

At each time step, inertial sensor data is used for the prediction stage. When features
are extracted from the sensor data, they are run through a data association stage.
New features are augmented into the state vector and state covariance matrix, and
observations of existing features are used to update the estimated state vector and
state covariance matrix. The following subsections summarize the equations and
methods in each step of the algorithm. For further details of inertial SLAM with
range and bearing sensors and an implementation example, the reader is referred to
Kim and Sukkarieh (2003).

21.3.1 State Prediction

The state prediction stage is run recursively each time a new reading is taken from
the inertial sensors. In the case of global SLAM, the estimated state vector Ox.k C 1/

is predicted from the previous time step state estimate using Eqs. 21.20–21.25.
The state covariance P�.k C 1/, which is the state covariance at time step k after
prediction, is computed as

P�.k C 1/ D rFP.k/rFT C rGQ.k/rGT (21.46)

where rF and rG are the Jacobians of the state transition function FŒ:; :; k� with
respect to the state vector Ox.k C 1/ and input model transition function GŒ:; k� with
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Fig. 21.2 Overview of the range/bearing inertial SLAM algorithm. the algorithm is recursive;
EKF state prediction (1) is performed when inertial sensor data is available. Data association (2),
feature initialization (3), and EKF state update (4) are performed when terrain sensor observations
are made

respect to the noise input w.k C 1/, respectively. In the case of local SLAM, the
estimated state vector Oxlocal.k/ is predicted forward using Eqs. 21.33–21.38. The
state covariance P�.k C 1/ is computed as

P�.k C 1/ D rFlocalP.k/rFTlocal C rGlocalQ.k/rGT
local (21.47)

where rFlocal and rGlocal are the Jacobians of the state transition function
FlocalŒ:; :; k� with respect to the state vector Oxlocal.k C 1/ and input model transition
function GlocalŒ:; k� with respect to the noise input w.k C 1/, respectively.

21.3.2 Feature Initialization

When the first range/bearing observation of a particular feature is obtained, its
position is calculated using the initialization function J1ŒOx.k/; J2.zi .k//� which is
given as

J1ŒOx.k/; J2.zi .k//� �! me
i D pe C Ce

nC
n
bpbsb C Ce

nCn
bCb

sp
s
ms (21.48)

for the case of global SLAM and

J1;localŒOxlocal.k/; J2.zi .k//� �! mn
i D pn C Cn

bpbsb C Cn
bCb

sp
s
ms (21.49)
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for the case of local SLAM, where

J2.zi .k// �! psms;i D

2
64
�i cos.'i / cos.#i /

�i sin.'i / cos.#i /

�i sin.#i /

3
75 (21.50)

for both the global and local SLAM cases. The state vector and covariance are then
augmented to include the new feature position:

Oxaug.k/ D
� Ox.k/

me
i .k/

�
(21.51)

Paug.k/ D
�

I 0
rJx rJz

� �
P.k/ 0

0 Rk

� �
I 0

rJx rJz

�T
(21.52)

for the case of global SLAM and

Oxlocal;aug.k/ D
� Oxlocal.k/

mn
i .k/

�
(21.53)

Plocal;aug.k/ D
�

I 0
rJx rJz

� �
Plocal.k/ 0

0 Rk

� �
I 0

rJx rJz

�T
(21.54)

for the case of local SLAM where rJx and rJz are the Jacobians of the initialization
function J1 with respect to the state estimate Ox.k/ and the observation zi .k/,
respectively. The position of this feature becomes correlated to all of the vehicle
states including position, velocity, and attitude along with inertial sensor biases and
also to the position of other features in the map.

21.3.3 Data Association

Data association is the process of matching observations of features from the terrain
sensor with the estimated 3D position of the feature within the map. The validity
of potential associations between observations and features is assessed using the
Mahalanobis distance (� ) (Neira and Tardos 2001) in the sensor space (range,
azimuth, and elevation):

�i D 	i .k/
T Si .k/�1	i .k/ (21.55)

where 	i .k/ and Si .k/ are the innovation and innovation covariance (see Sect.21.3.4)
for an observation of the i th feature in the map at time segment k.

When checking the association of a given observation with the initialized features
in the map, �i is calculated for each initialized feature. Matchings that fall within a
defined threshold of �i corresponding to a 95 % level of confidence are considered
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acceptable, in which case the observation is associated to a known feature in the map
and an EKF state update is performed (see Sect. 21.3.4 below). If the observation
does not fall within the threshold of an existing map feature, it is assumed that the
feature has not been seen before, and thus the observation data is used to initialize
the feature into the map as is shown in Sect. 21.3.2.

This method of data association works well when feature observations are well
spaced in the sensor coordinates with respect to the uncertainty of the vehicle
position and orientation. In the case of very dense feature observations, it may
be necessary to consider not only matches of individual features to individual
sensor observations but also the joint compatibility of several features to several
observations simultaneously as to overcome association ambiguity. For efficient
techniques for joint compatibility data association based on the innovation gate in
Eq. 21.55, the reader is referred to Neira and Tardos (2001).

21.3.4 State Update

Once a feature has been initialized into the state vector, subsequent observations of
this feature are used to update the entire state vector consisting of the vehicle pose,
velocity, inertial sensor biases, and the position of this feature and other features
in the environment. The state estimate is updated in an EKF update step where the
updated state estimate and state covariance matrix after the update are as follows:

OxC.k C 1/ D Ox�.k C 1/C W.k C 1/	.k C 1/ (21.56)

PC.k C 1/ D P�.k C 1/� W.k C 1/Si .k C 1/W.k C 1/T (21.57)

	i .k C 1/ D zi � Hi .Ox�.k C 1// (21.58)

Si .k C 1/ D rHiP�.k C 1/rHT
i C R.k C 1/ (21.59)

W.k C 1/ D P�.k C 1/rHT
i S�1

i .k C 1/ (21.60)

for the case of global SLAM and

OxC
local.k C 1/ D Ox�

local.k C 1/C W.k C 1/	.k C 1/ (21.61)

PC
local.k C 1/ D P�

local.k C 1/� W.k C 1/Si .k C 1/W.k C 1/T (21.62)

	i .k C 1/ D zi � Hi;local.Ox�
local.k C 1// (21.63)

Si .k C 1/ D rHi;localP�
local.k C 1/rHT

i;local C R.k C 1/ (21.64)

W.k C 1/ D P�
local.k C 1/rHT

i;localS
�1
i .k C 1/ (21.65)

for the case of local SLAM where Hi .Ox�.k C 1// or Hi;local.Ox�
local.k C 1// is

the predicted feature observation which is computed from the estimated vehicle
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position and attitude and estimate map location using Eqs.21.41 and 21.45. rHi and
rHi;local are the Jacobians of the observation function with respect to the predicted
state vector. Once a feature leaves the field of view of the sensor, its position remains
in the state vector and continues to be updated via its correlations to other visible
features in the state vector.

21.4 Inertial SLAM with Bearing-Only Sensors

When bearing-only observations are made using a terrain sensor such as in
the case of a vision system, additional elements must be added to the SLAM
algorithm. Performing SLAM with bearing-only observations poses two main
additional challenges to the range and bearing case. Firstly, a single bearing-only
observation provides insufficient information alone to localize a feature in 3D.
Instead observations from two sufficiently different poses are required. Secondly,
data association is complicated by bearing-only observations. Since the 3D position
of the feature is not known from a single observation, the Mahalanobis distance
(Neira and Tardos 2001), commonly used for validation gating in tracking tasks,
and as shown for the range-bearing case in Sect. 21.3.3, cannot be calculated in the
standard way.

This section details variations to the inertial SLAM algorithms that account for
complications arising from the use of bearing-only terrain sensors. The bearing-only
inertial SLAM algorithm is broken up into the following processes:
1. State Prediction. The prediction step in the bearing-only case is performed in a

similar manner as in the range/bearing case.
2. Data Association. Data association for initialized features follows the same

methods as shown in the range/bearing case. Data association of uninitialized
features is tackled by creating multi-hypothesis distributions of the possible fea-
ture locations in 3D (i.e., along the line of sight of an observation). Subsequent
observations of the same feature can be associated by matching the most likely
hypotheses and culling the hypotheses that do not match.

3. Feature Initialization. A delayed initialization technique is used to store infor-
mation from bearing-only observations until there exists two observations with
a sufficient baseline from which to initialize the 3D position of the feature.
Once this is available, all of the information contained in stored observations
is recovered.

4. State Update. The update step in the bearing-only case is performed in a similar
manner as in the range/bearing case where bearing-only observations are used
to update the estimated state which includes vehicle states, stored pose data, and
features whose 3D positions have been initialized into the map.
Figure 21.3 provides an overview of the bearing-only inertial SLAM algorithm.

The following subsections summarize the equations and methods in each step of the
algorithm. For further details of inertial SLAM with bearing-only sensors and an
implementation example, the reader is referred to Bryson and Sukkarieh (2007).
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Fig. 21.3 Overview of the bearing-only inertial SLAM algorithm. The algorithm is recursive;
EKF state prediction (1) is performed when inertial sensor data is available. Data association (3)
and EKF state update (4) are performed when terrain sensor observations are made of features that
have been already initialized into the map. Observations of new features are stored until enough
observations exist to initialize the position of the feature into the state vector (2)

21.4.1 State Prediction and Update

The bearing-only SLAM equations rely on the storing of vehicle pose data into
the estimated state vector. The methods for storing pose data is shown below
in Sect. 21.4.2. The state prediction for the bearing-only case follows the same
equations and methods as shown in the range/bearing observation case as shown
in Sect. 21.3.1 except that stored pose data is predicted forward in the predict step
in the same way as stored map features. The only difference in the state update
between the bearing-only case and range/bearing case (shown in Sect. 21.3.4) is
that now no range information is available in the observation. Equations 21.56–
21.65 are used for the update where Eqs. 21.42 or 21.43 is used to compute
Hi .Ox�.kC1// or Hi;local.Ox�

local.kC1//, the predicted feature observation, depending
on the exact form of bearing observation from the terrain sensor (i.e., bearing angles
or pixels).
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21.4.2 Feature Initialization

A single bearing-only observation is insufficient to initialize the 3D position of a
feature into the SLAM filter with Gaussian uncertainty. The following subsection
outlines a method for delayed initialization of a feature into the filter by using stored
observations and vehicle pose information. For simplification, the feature position
is always initialized into the local navigation frame first before being transformed
into the ECEF frame if global SLAM is performed. Otherwise, the feature position
remains in the local navigation frame.

21.4.2.1 Storing Feature Observations and Vehicle Pose Information
When an observation of an uninitialized feature is made, the current bearing-only
observation is stored, and the SLAM state vector is augmented to include the current
vehicle pose (three position states and three Euler angle states):

Oxv D

2
666664

pe.k/
ve.k/
‰n.k/

ıfb.k/
ı!bib.k/

3
777775
; Oxp D

�
Cn
epe.k/

‰n.k/

�
D

�
pn.k/
‰n.k/

�
(21.66)

Oxaug D
2
4

Oxv.k/

mn.k/

Oxp.k/

3
5 (21.67)

The state covariance matrix is then augmented with the stored vehicle pose:

Paug.k/ D
2
4

Pvv Pvm Pvp

Pmv Pmm Pmp
Ppv Ppm Ppp

3
5 (21.68)

Oxv is the concatenation of the vehicle position, velocity, attitude, and inertial sensor
bias states where Oxp is the concatenation of the vehicle position and attitude (i.e., the
vehicle pose states) at the time of the observation. Oxaug is the augmented state vector
which is comprised of the vehicle states (Oxv), the 3D positions of all of the map
features (mn), and the added vehicle pose states (Oxp). The observation (coordinates
of the feature in the image plane) is stored separately from the EKF state vector.

In local SLAM, the covariance term Ppp (covariance of the pose states) is derived
by taking the position and attitude covariance matrix subblocks from within Pvv

(since these states have the same value and the same covariance as the current
vehicle position and attitude). Similarly the covariance subblock Ppm is taken from
the existing cross correlations between the current vehicle states and map states
(i.e., subblocks of Pvm corresponding just to position and attitude). Ppv is the cross
correlation between all of the current vehicle states (i.e., position, attitude, velocity,
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and inertial sensor biases) and the current pose states. This is thus taken from
subblocks of Pvv itself since there are states in common (position and attitude),
and thus parts of the added vehicle pose states (Oxp) are completely correlated to
the current vehicle state (Oxv). In the case of global SLAM, a Cn

e transformation is
applied to the vehicle position covariances in order to represent the stored pose in
the local navigation frame.

As the process model of the vehicle comes into play and the filter moves forward
in time, the correlations between the stored pose and the new time vehicle states
(i.e., Oxv.k C 1/) will decrease (due to the process noise on Oxv.k C 1/).

21.4.2.2 Deciding When to Initialize a Feature
Eventually enough feature observations will be made from varying vehicle poses to
initialize the position of the feature. Initializing a feature too early (i.e., by not using
enough observations or observations with insufficient separating angle) can result in
inconsistency as the true probability distribution of the feature location is not well
represented by a Gaussian. The disadvantage with overdelaying the initialization is
that the uncertainty in the vehicle states continues to grow before the initialization.
As the uncertainty in the current vehicle state grows, linearization errors can affect
the consistency of the filter. The information should be initialized and recovered as
quickly as possible to limit the effect the inconsistency can have. Additionally, it
may be desired to quickly recover the stored information which contributes toward
the accuracy of the vehicle localization estimates which may be used as feedback
for the control of the vehicle. Another upper limit on deciding how long to delay the
initialization is driven by reducing the increased computational burden imposed by
adding stored observations to the state vector.

In Bailey (2003), the author discusses a method for testing the conditioning
of the initialization by using a Kullback-Leibler distance measure between the
linearized update and an approximation of the update using particles to represent
the final probability distribution of the feature position. This method however is very
computationally intensive; instead, a more practical approach is to set a conservative
threshold for the minimum angle between observations necessary to initialize a
feature.

21.4.2.3 Initializing a 3D Feature Position Estimate
When it is decided to initialize the 3D position of a feature into the map, the two
stored observations of the feature which are separated by the largest angle are used
to create an initial estimate of the feature position. Each bearing-only observation
can be represented by a 3D point in space yn from where the observation was made
(at the origin of the sensor) along with a unit vector Nun pointing along the line of
sight of the observation; thus,

yn D pn C Cn
b pbsb (21.69)

Nun D Cn
b C

b
s Npsms (21.70)
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where Nx indicates the unit vector of a vector x. pn and Cn
b are determined from the

stored pose data associated to each observation, and Npsms is determined from the
observation data itself using Eq. 21.44 to convert the pixel observation to azimuth
and elevation angles and Eq. 21.71 to convert to a unit vector:

Npsms D

2
64

cos.'i / cos.#i /

sin.'i / cos.#i /

sin.#i /

3
75 (21.71)

The lines of sight generated by each observation should intersect at one point in
3D space corresponding to the feature location. Since the observations and stored
vehicle pose information is noisy, the lines of sight will generally not intersect
perfectly. Instead, the initial feature position is computed as the closest point
between the two lines for each observation:

mn
i D G.pn1;p

n
2;‰

n
1;‰

n
2; z1; z2/

D 1

2
.yn1 C yn2 C p1: Nun1 C p2: Nun2/ (21.72)

p1 D ..yn2 � yn1/ � Nun2/ � . Nun1 � Nun2/
j Nun1 � Nun2 j2

(21.73)

p2 D ..yn1 � yn2/ � Nun1/ � . Nun2 � Nun1/
j Nun2 � Nun1 j2

(21.74)

In the event that there is a large discrepancy between the two lines (i.e., the
minimum distance between the closest two points, one on each line, is larger than a
threshold), the observations may be incorrect. This could be due to a misassociation
of one of the observations or if the feature is moving for some reason. In this case,
the observations are discarded, and the feature is not initialized. Provided there is
no large discrepancy between the lines, the state vector and covariance matrix in the
SLAM filter are then augmented to include the estimate of the new feature:

Oxaug.k/ D
� Ox.k/
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i .k/

�
(21.75)
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where rGp and rGz are the Jacobians of the initialization function G.:/ with
respect to the pose states (pn1;p

n
2;‰

n
1;‰

n
2) and the observations (z1; z2), respectively,
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21.4.2.4 Recovering the Information from Remaining Stored
Observations

Once two observations have been used to initialize the 3D position of the feature
into the filter, the remaining stored observations (z1; z2; : : : ; zj ) are run through a
batch EKF update. The update corrects not only the current feature being initialized
but also the other features in the map and the current vehicle state estimates. The
updated state vector and state covariance is calculated using EKF update equations
described above for the range-bearing algorithm (i.e., Eqs. 21.56 and 21.57) where
the innovation 	.k/ is composed using all of the stored observations for the feature:

	.k/ D

2
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Once the update has been completed, pose states that no longer have any
associated stored observations been removed from the state vector and their
corresponding rows and columns removed from the covariance matrix. Finally, in
the case of global SLAM, the newly initialized feature position is transformed from
the local navigation frame into the ECEF frame. If local SLAM is performed, the
feature position remains in the local navigation frame.

21.4.3 Data Association

When performing data association for features that have already been initialized into
the map, the same methods are used as in the range/bearing SLAM case shown in
Sect. 21.3.3. Issues arise when attempting to find a data association test that can be
performed for uninitialized features. Since the exact 3D position of the feature is not
known, one cannot consistently calculate the innovation or innovation covariance of
the feature. Instead, from only one or a small number of observations with a small
baseline, the observation could lie anywhere in 3D space along the line-of-sight of
the observation.

In order to associate observations of features that have not yet been initialized
into the 3D map, a multi-hypothesis of Gaussian distributions is created for the
possible 3D locations of the feature along the line of sight vector for the first
observation of the feature.

21.4.3.1 Starting a New Feature
When an observation is made in the image that cannot be associated to any
other previously seen feature, initialized or uninitialized, it is assumed that this
observation has come from a new feature that has not been seen before. The process
begins by storing the observation and augmenting the EKF state vector with the
current vehicle pose (see Sect. 21.4.2.1).
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From the single observation, a set of equally weighted hypotheses are created
for where the feature could lie in 3D space along the line of sight. The mean (Oxj )
and covariance (Pj ) for each hypothesis are calculated for several different values
of range (rj ) in equal increments from an expected minimum and maximum sensor
range as shown in the left of Fig. 21.4 using Eqs. 21.79 and 21.80:

Oxj D G.pn.k/;‰n.k/; zi .k/; rj /

D pn C Cn
b pbsb C rj :.C

n
b C

b
s psms/ (21.79)

Pj D rGvPvvrGT
v C rGzRangrGT

z (21.80)

where psms is calculated from the observation data using Eq.21.71 and rGv;rGz are
the Jacobians of the function G.:/ with respect to vehicle states and the observation
and range data, respectively. The number of hypotheses used and the maximum and
minimum range and thus the spacing between the hypotheses depend on the desired
accuracy in the initial feature position with more hypotheses resulting in a better
initialization. A record of the multi-hypothesis distribution is maintained separately
from the state vector and is used only to assist in associating future observations of
the feature.

21.4.3.2 Associating Future Observations and Maintaining Feature
Hypotheses

Since each hypothesis is Gaussian with a mean defined in 3D space, the innovation
and innovation covariance can be calculated for each hypotheses for each uninitial-
ized feature using

	.k/ D zi;ang.k/� H.pn.k/;‰n.k/; Oxj / (21.81)

S.k/ D rHx.k/Phyp.k/rHT
x .k/C Rang (21.82)
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�

Ppp 0

0 Pj

�
(21.83)

where Ppp is the covariance subblock of the current vehicle position and attitude
states. An approximation is made that the current vehicle state and the hypothesis are
uncorrelated in order to simplify the data association process; to account for these
correlations in the data association process would require a large computational
resource. The result of this approximation is that during large SLAM loop closures,
the EKF may not associate observations of a new feature and some observations
may be discarded. It may thus take longer for new features at this time to be
integrated into the map. For a given observation and for each hypothesis for a given
uninitialized feature, � is calculated using Eqs. 21.55, 21.81, and 21.82. If the value
of � is below the threshold corresponding to a 95 % confidence for at least one of
the hypotheses, then the observation is matched to this uninitialized feature.
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Fig. 21.4 Data association of observations to uninitialized features. When a feature is seen for
the first time, a set of hypotheses for the 3D position of the feature is generated at equal range
increments along the line of sight (top). Future observations are checked for matches to any of the
hypotheses. When a match is made to one of the hypotheses, the remaining hypotheses that do not
match are culled (bottom)

In order to simplify the association of uninitialized features, when an association
is made between an observation and one of the hypotheses for a given feature, all
other hypotheses of this feature for which the observation does not match are culled
from the set of hypotheses from which to associate future observations. As the
vehicle moves around an uninitialized feature, the number of hypotheses gradually
drops until only one hypothesis matches, the one that is closest to the true 3D feature
location. The bottom sub-figure of Fig. 21.4 illustrates this process.

21.4.3.3 Data Association Procedure
Each time observations from the feature extraction process are received, the
procedure begins by using Eq. 21.55 to evaluate the potential matching between
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each observation and each of the 3D initialized features. Observations that match
3D initialized features are associated and sent on to the SLAM filter to be updated.
In the event of multiple features matching a single observation, the matching with
the lowest value of � will be accepted.

The remaining observations are tested for matches with each of the hypotheses
for each uninitialized feature. Observations that match with at least one hypothesis
of an uninitialized feature are associated to this feature. The observation itself is
stored, and the vehicle pose at the current time is then added to the state vector
(see Sect. 21.4.2.1). In the event of multiple uninitialized features matching a single
observation, all matchings to this observation are rejected.

For each remaining observation not matched to an initialized or un-initialized
feature, a new set of hypotheses is created (see Sect. 21.4.3.1).

The proposed multi-hypothesis method for data association could also potentially
be used for initializing the feature position, as has been demonstrated in Kwok
and Dissanayake (2004), where hypotheses are pruned until only one is left, which
then becomes the initialized feature. In this approach, the line-of-sight intersection
method is used for calculating the initial feature position; in order to achieve the
same accuracy with the multi-hypothesis method, one would require a prohibitively
large number of hypotheses (i.e., 1-m resolution for a feature at a range of 200 m
would require 200 hypotheses).

21.5 Multi-vehicle Inertial SLAM Algorithm

In multi-vehicle SLAM, several vehicles move over a common section of terrain
where the task is to build a common map of the environment while providing
localization estimates to each platform. The use of multiple cooperating vehicles
has many advantages over SLAM on a single vehicle. Multiple vehicles provide
wider sensor coverage and thus can be used to build more extensive terrain maps
in less time. The accuracy of the constructed terrain map is greater than in the
single-vehicle case as multiple vehicles contribute information toward a given
feature location. This increased terrain map accuracy also creates an increase in
the accuracy of the localization estimates for each vehicle.

The work by Fenwick et al. (2002), Mourikis and Roumeliotis (2005), Walter
and Leonard (2004), and Thrun and Lui (2003a) provides examples of multi-
vehicle SLAM where all vehicles send their sensor data to a central Kalman filter.
These approaches are fully centralized, involving the communication of raw sensor
data from each vehicle to a central source and thus requiring a large amount of
communication bandwidth. In Nettleton et al. (2003) and Ong et al. (2003), the
authors demonstrate a decentralized architecture for multi-vehicle SLAM using a
mathematically equivalent form of the EKF known as the Extended Information
Filter (EIF). The use of the EIF in these approaches avoids the need to communicate
raw sensor data, where instead this raw data is used in SLAM by each vehicle locally
before communicating the map information.
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In this section, data fusion architectures are considered for sharing map in-
formation built by each vehicle using the inertial SLAM algorithms discussed in
Sects. 21.3 and 21.4. The core principle behind the data fusion schemes is the
use of the EIF which allows for the map data contributions from each platform
to be summed together where the processes of the combined estimation task are
distributed among the vehicles. Both centralized and decentralized architectures are
discussed in Sects. 21.5.2 and 21.5.3.

21.5.1 Global Vs. Local SLAM for Multiple Vehicles

When global SLAM is performed by each of the vehicles in the data fusion network,
each vehicle uses the ECEF frame for referencing the position of terrain features
in the environment. In the case of local SLAM, however, each vehicle may use
its own independent local navigation frame in which it builds its local map. In
order to fuse information from multiple maps, the relative transformations between
each local navigation frame must be known. In the case where no localization or
prior terrain reference information is available, the vehicles can compute a relative
transformation by matching at least two features from each local map (for an
example of this process, the reader is referred to Fox et al. (2006)). Once the
transformation is known, a common representation of the environment can be built
with respect to each vehicle’s local navigation frame.

21.5.2 Centralized Architectures for Multi-vehicle Inertial SLAM

This section presents a centralized, distributed data fusion architecture for multi-
vehicle inertial SLAM. The architecture is centralized, where some part of the data
fusion process is performed at a central node. The architecture is also distributed;
rather than communicate all of the raw sensor data from both the inertial and
terrain sensors to a central data fusion source, each vehicle firstly performs single-
vehicle inertial SLAM as shown in Sects. 21.3 and 21.4. The local terrain map built
on each vehicle is then communicated in information form to a central source at
regular intervals where data fusion is performed. Finally, the central data fusion
node communicates the fused map information back to each vehicle, where this
information is fused back into the local map. The following subsections describe
the process in more detail.

21.5.2.1 Centralized, Distributed Data Fusion
The centralized, distributed data fusion is based on the independent opinion pool
architecture shown in Manyika and Durrant-Whyte (1994). At regular intervals,
each vehicle takes its current state estimate relating to the map estimates only, that
is, xm.k/ and Pmm.k/, where
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xm.k/ D

2
6664

me
1.k/

me
2.k/
:::

me
N .k/

3
7775 (21.84)

for the case of global SLAM and

xm.k/ D

2
6664

mn
1.k/

mn
2.k/
:::

mn
N .k/

3
7775 (21.85)

for the case of local SLAM. Pmm.k/ is a 3N � 3N matrix of the elements of
Pk relating to the map feature estimates. Each vehicle then calculates its posterior
information:

Yj .k/ D P�1
mm.k/ (21.86)

yj .k/ D Yj .k/xm.k/ (21.87)

for the j th vehicle where j D 1; : : : ;M , where M is the number of vehicles,
and communicates this to the central map filter. The information that is sent will
obviously be correlated to the information that was sent in the previous commu-
nication (since each vehicle’s posterior information is based on the entire history
of observations it has made). To overcome this, the central data filter maintains
a record of the information that it has been sent in the previous communication
(Yj .k � 1/,yj .k � 1/) by each vehicle. When the new information arrives, the old
information is subtracted from it before adding it to the central map information, in
order to remove the correlations and only count new information. The central map
information update at the central data filter is thus

Ycentral.k/ D Ycentral.k � 1/C
MX
jD1

.Yj .k/ � Yj .k � 1// (21.88)

ycentral.k/ D ycentral.k � 1/C
MX
jD1

.yj .k/ � yj .k � 1// (21.89)

Once the information is combined in the central filter, a state-space estimate of the
map feature locations and covariance can be recovered using Eqs. 21.98 and 21.99:

Pmm;central.k/ D Y�1
central.k/ (21.90)

xm;central.k/ D Pmm;central.k/ycentral.k/ (21.91)
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21.5.2.2 Applying Local Node Feedback to the Independent Opinion
Pool

So that each vehicle’s localization estimates can benefit from the observations of
features made by other vehicles, information about the central map should be fed
back to each of the local nodes. In the same way that was done on the central data
filter, each vehicle must store the last information update that it received from the
central filter (Ycentral.k�1/,ycentral.k�1/) so as not to double count the information
that has been sent to it. Thus, when each vehicle receives the communicated central
information, it firstly computes its posterior information over the entire state space
consisting of local vehicle estimate and map features using Eqs. 21.86 and 21.87
and updates this information using Eqs. 21.92 and 21.93:

Ylocal.k/ D Ylocal.k/C .Ycentral.k/� Ycentral.k � 1// (21.92)

ylocal.k/ D ylocal.k/C .ycentral.k/ � ycentral.k � 1// (21.93)

The local information is then transformed back into state-space and covariance
form to provide the updated estimate of the vehicle localization and map features,
which is substituted back into the EKF in the single-vehicle SLAM architec-
ture. The operation of the central filter with local node feedback is illustrated
in Fig. 21.5.

This centralized, distributed architecture has several advantages over a com-
pletely centralized filter such as a reduction in the required communication band-
width (as only local estimates must be communicated, not observations and process
model inputs) and the ability to deal with intermittent communications and delays
as the information is maintained on the local vehicle.

21.5.3 Decentralized Architectures for Multi-vehicle Inertial SLAM

The multi-vehicle inertial SLAM algorithm can be decentralized by removing
the central filter, where each vehicle now communicates directly to each other
vehicle in the network. This type of architecture was demonstrated for feature
tracking tasks and SLAM in Nettleton (2003). At regular intervals each UAV takes
its current state estimate relating to the map estimates only, that is, xm.k/ and
Pmm.k/, and calculates its posterior information using Eqs. 21.86 and 21.87. Each
UAV maintains a record of the information sent during the last communication
(i.e., Yj .k� 1/,yj .k� 1/) which is subtracted from the current information to form
the new information that UAV has about the feature map:

Yj;new.k/ D Yj .k/ � Yj .k � 1/ (21.94)

yj;new.k/ D yj .k/� yj .k � 1/ (21.95)
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This new information is then communicated to each of the other UAVs. When each
UAV receives all of the information updates from each of the other UAVs, this
information is summed together along with the current UAV information to form
the updated estimate of the map features in information form:

Yj;update.k/ D Yj .k/C
MX
iD1

Yi;new.k/ (21.96)

yj;update.k/ D yj .k/C
MX
iD1

yi;new.k/ (21.97)

Once all of the information from other UAVs is combined in the update, a state-
space estimate of the map feature locations and covariance can be recovered back
into the EKF using Eqs. 21.98 and 21.99:

Pj;mm;update.k/ D Y�1
j;update.k/ (21.98)

xj;m;update.k/ D Pj;mm;update.k/yj;update.k/ (21.99)

The operation of the decentralized SLAM filter is illustrated in Fig. 21.6.

21.5.4 Delayed Observations, Network Outages, and
Communication Bandwidth Constraints

Realistic communication networks between the vehicles will not be able to provide
continuous and instantaneous communication of information. Instead, real networks
will contain significant delays and outages between different nodes when vehicles
move out of range of one another and will not always be able to communicate all of
the map information when the map becomes very large.

Delayed observations are not a significant issue in multi-vehicle SLAM as
features are considered stationary, and thus information about a feature’s location
is independent of time and can be added in a delayed fashion and out of order.
When there are outages in the network communications, this can cause the vehicles
to lose track of the common information they possess. This can be overcome
by constraining the structure of the communications network to tree structures
(Nettleton 2003). When communication bandwidth constraints apply across the
network, the vehicles may only communicate information representing a subset
of the features contained in their map. In this case, information must be fused
together using the covariance intersect algorithm (Julier and Uhlmann 2001) due
to correlations between the submap and the rest of the map features, which is not
accounted for in further communications. These concepts are all discussed further
in Nettleton (2003).
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21.6 Conclusion

This chapter has developed the basic equations and methods for inertial sensor-
based SLAM. The fundamental equations that model inertial sensors and inertial
localization were analyzed; two different applications were examined for when
localization and mapping is performed in either a global frame of reference or in
an arbitrary local frame of reference. The inertial SLAM algorithms were examined
for the case of range and bearing observations from a terrain sensor and also
when terrain observations were made from a bearing-only sensor. Finally, the
problem of multi-vehicle inertial SLAM was examined. Two different types of data
fusion architecture were considered: firstly, centralized architectures in which map
information is shared among vehicles via a central communications source and,
secondly, decentralized architectures where the vehicles communicate and share
data with each other directly.
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