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Abstract
A well-known path-planning technique for mobile robots or planar aerial vehicles
is to use Dubins paths, which are minimum-distance paths between two con-
figurations subject to the constraints of the Dubins car model. An extension
of this method to a three-dimensional Dubins airplane model has recently been
proposed. This chapter builds on that work showing a complete architecture for
implementing Dubins airplane paths on small fixed-wing UAVs. The existing
Dubins airplane model is modified to be more consistent with the kinematics
of a fixed-wing aircraft. The chapter then shows how a recently proposed
vector-field method can be used to design a guidance law that causes the Dubins
airplane model to follow straight-line and helical paths. Dubins airplane paths
are more complicated than Dubins car paths because of the altitude component.
Based on the difference between the altitude of the start and end configurations,
Dubins airplane paths can be classified as low, medium, or high altitude gain.
While for medium and high altitude gain there are many different Dubins airplane
paths, this chapter proposes selecting the path that maximizes the average
altitude throughout the maneuver. The proposed architecture is implemented on
a six degree-of-freedom Matlab/Simulink simulation of an Aerosonde UAV, and
results from this simulation demonstrate the effectiveness of the technique.

68.1 Introduction

Unmanned aerial vehicles (UAVs) are used for a wide variety of tasks that require
the UAV to be flown from one particular pose (position and attitude) to another. Most
commonly, UAVs are flown from their current position and heading angle to a new
desired position and heading angle. The ability to fly from one pose (or waypoint)
to another is the fundamental building block upon which more sophisticated UAV
navigation capabilities are built. For UAV missions involving sensors, the ability to
position and orient the sensor over time is critically important. Example applications
include wildlife observation and tracking, infrastructure monitoring (Rathinam et al.
2005; Frew et al. 2004; Egbert and Beard 2011), communication relays (Frew
et al. 2009), meteorological measurements (Elston et al. 2010), and aerial surveil-
lance (Rahmani et al. 2010; Elston and Frew 2008; Spry et al. 2005). Positioning
and orienting the sensor is accomplished in part by planning and following paths
through or above the sensing domain. Two-dimensional (2D) path planning and
following at a constant altitude through unobstructed airspace is common, but as
mission scenarios become increasingly sophisticated by requiring flight in three-
dimensional (3D) terrain, the need for full 3D planning and guidance algorithms is
becoming increasingly important.

For a vehicle that moves in a 2D plane at constant forward speed with a
finite turn-rate constraint, the minimum-distance path between two configurations
is termed a Dubins path. The initial and final configurations are defined by a
2D position in the plane of motion and an orientation. It has been shown that
the optimal Dubins path in the absence of wind is composed of a constant
radius turn, followed by a straight-line path, followed by another constant radius
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turn (Dubins 1957). A vehicle that follows Dubins paths is often termed a Dubins
car. There have been a wide variety of path-planning techniques proposed for mobile
robots based on the Dubins car model (e.g., Hanson et al. 2011; Balluchi et al.
1996; Anderson and Milutinovic 2011; Karaman and Frazzoli 2011; Cowlagi and
Tsiotras 2009; Yong and Barth 2006). The Dubins car model has also been used
extensively for UAV applications by constraining the air vehicle to fly at a constant
altitude (e.g., Yu and Beard 2013; Sujit et al. 2007; Yang and Kapila 2002; Shima
et al. 2007).

The Dubins car model was recently extended to three dimensions to create the
Dubins airplane model, where in addition to turn-rate constraints, a climb-rate
constraint was added (Hosak and Ghose 2010; Chitsaz and LaValle 2007; Rahmani
et al. 2010). Minimum-distance paths for the Dubins airplane were also derived
in Chitsaz and LaValle (2007), using the Pontryagin minimum principle (Lewis
1986). However, in Chitsaz and LaValle (2007) some practical issues were not
considered, leaving a gap between the theory and implementation on actual UAVs.
The purpose of this chapter is to fill that gap. In particular, alternative equations of
motion for the Dubins airplane model that include airspeed, flight-path angle, and
bank angle are given. The kinematic equations of motion presented in this chapter
are standard in the aerospace literature. The chapter also describes how to implement
Dubins airplane paths using low-level autopilot loops, vector-field guidance laws for
following straight lines and helices, and mode switching between the guidance laws.

In addition to the complexity of a third dimension of motion, Dubins airplane
paths are more complicated than Dubins car paths. In particular, when the altitude
component of the path falls within a specific range, there are an infinite number
of paths that satisfy the minimum-distance objective. This chapter also proposes
specific choices for paths that make practical sense for many UAV mission
scenarios. Specifically, the path that also maximizes the average altitude of the path
is selected.

The software architecture proposed in this chapter is similar to that discussed
in Beard and McLain (2012) and is shown in Fig. 68.1. At the lowest level is the
fixed-wing UAV. A state estimator processes sensors and produces the estimates
of the state required for each of the higher levels. A low-level autopilot accepts
airspeed, flight-path angle, and bank angle commands. The commands for the low-
level autopilot are produced by a vector-field guidance law for following either
straight-line paths or helical paths. The minimum-distance Dubins airplane path
between two configurations is computed by the path manager, which also switches
between commanding straight-line paths and helical paths.

This chapter will not discuss state estimation using the available sensors, but
the interested reader is referred to Beard and McLain (2012) and other publications
on state estimation for UAVs (see, e.g., Mahony et al. 2008; Misawa and Hedrick
1989; Brunke and Campbell 2004). Section 68.2 briefly describes assumptions on
the unmanned aircraft and how the low-level autopilot is configured to produce the
Dubins airplane kinematic model. Section 68.3 describes the vector-field guidance
strategy used in this chapter for following both straight lines and helices. The Dubins
airplane paths and the path manager used to follow them are discussed in Sect. 68.4.
Section 68.5 offers concluding remarks.
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Dubins Path Manager

Vector Field Guidance

Unmanned Aircraft

Configuration Waypoints:
(position, heading)

Sensors 

Position error 

Tracking error 

Throttle 
Control Surfaces 

State Estimator
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straight-line, or 

helix 

Airspeed 
Flight path angle 

Bank angle 
Low Level Autopilot

Fig. 68.1 Flight control architecture proposed in this chapter

68.2 Equations of Motion for the Dubins Airplane

Unmanned aircraft, particularly smaller systems, fly at relatively low airspeeds
causing wind to have a significant effect on their performance. Since wind effects
are not known prior to the moment they act on an aircraft, they are typically treated
as a disturbance to be rejected in real time by the flight control system, rather than
being considered during the path planning. It has been shown that vector-field-based
path following methods, such as those employed in this chapter, are particularly
effective at rejecting wind disturbances (Nelson et al. 2007). Treating wind as a
disturbance also allows paths to be planned relative to the inertial environment,
which is important as UAVs are flown in complex 3D terrain. Accordingly, when
the Dubins airplane model is used for path planning, the effects of wind are not
accounted for when formulating the equations of motion. In this case, the airspeed
V is the same as the groundspeed, the heading angle  is the same as the course
angle (assuming zero sideslip angle), and the flight-path angle � is the same as the
air-mass-referenced flight-path angle (Beard and McLain 2012).

Figure 68.2 depicts a UAV flying with airspeed V , heading angle  , and
flight-path angle � . Denoting the inertial position of the UAV as .rn; re; rd />, the
kinematic relationship between the inertial velocity, v D .Prn; Pre; Prd />, and the
airspeed, heading angle, and flight-path angle can be easily visualized as

0
@

Prn
Pre
Prd

1
A D

0
@
V cos cos �
V sin cos �

�V sin �

1
A ;

where V D kvk.
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Flight path projected onto ground

horizontal component
of airspeed vector

ki (down)

ji (east)

ii (north)

ii

V cosγ

ṙn = V cosψ cosγ ṙe = V sinψ cosγ

−rd = V sinγ˙

ψ

γ

v

Fig. 68.2 Graphical representation of aircraft kinematic model

This chapter assumes that a low-level autopilot regulates the airspeed V to a
constant commanded value V c , the flight-path angle � to the commanded flight-path
angle �c , and the bank angle � to the commanded bank angle �c . In addition, the
dynamics of the flight-path angle and bank angle loops are assumed to be sufficiently
fast that they can be ignored for the purpose of path following. The relationship
between the heading angle  and the bank angle � is given by the coordinated turn
condition (Beard and McLain 2012)

P D g

V
tan�;

where g is the acceleration due to gravity.
Under the assumption that the autopilot is well tuned and the airspeed, flight-path

angle, and bank angle states converge with the desired response to their commanded
values, then the following kinematic model is a good description of the UAV
motion:
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Prn D V cos cos �c

Pre D V sin cos �c (68.1)

Prd D �V sin �c

P D g

V
tan�c:

Physical capabilities of the aircraft place limits on the achievable bank and
flight-path angles that can be commanded. These physical limits on the aircraft are
represented by the following constraints:

j�cj � N� (68.2)

j�cj � N�: (68.3)

The kinematic model given by (68.1) with the input constraints (68.2) and (68.3)
will be referred to as the Dubins airplane. This model builds upon the model
originally proposed for the Dubins airplane in Chitsaz and LaValle (2007), which is
given by

Prn D V cos 

Pre D V sin (68.4)

Prd D u1 ju1j � 1

P D u2 ju2j � 1:

Although (68.1) is similar to (68.4), it captures the aircraft kinematics with
greater accuracy and provides greater insight into the aircraft behavior and is more
consistent with commonly used aircraft guidance models. Note, however, that (68.1)
is only a kinematic model that does not include aerodynamics, wind effects, or
engine/thrust limits. While it is not sufficiently accurate for low-level autopilot
design, it is well suited for high-level path-planning and path-following control
design. In-depth discussions of aircraft dynamic models can be found in Phillips
(2010), Stevens and Lewis (2003), Nelson (1998) and Yechout et al. (2003).

68.3 3D Vector-Field Path Following

This section shows how to develop guidance laws to ensure that the kinematic
model (68.1) follows straight-line and helical paths. Section 68.4 shows how
straight-line and helical paths are combined to produce minimum-distance paths
between start and end configurations.
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68.3.1 Vector-Field Methodology

The guidance strategy will use the vector-field methodology proposed in Gonçalves
et al. (2010), and this section provides a brief overview. The path to be followed
in R

3 is specified as the intersection of two two-dimensional manifolds given
by ˛1.r/ D 0 and ˛2.r/ D 0 where ˛1 and ˛2 have bounded second partial
derivatives, and where r 2 R

3. An underlying assumption is that the path given
by the intersection is connected and one-dimensional. Defining the function

V.r/ D 1

2
˛21.r/C 1

2
˛22.r/

gives
@V

@r
D ˛1.r/

@˛1

@r
.r/C ˛2.r/

@˛2

@r
.r/:

Note that � @V
@r is a vector that points toward the path. Therefore following � @V

@r
will transition the Dubins airplane onto the path. However, simply following � @V

@r
is insufficient since the gradient is zero on the path. When the Dubins airplane is
on the path, its direction of motion should be perpendicular to both @˛1

@r and @˛2
@r .

Following Gonçalves et al. (2010) the desired velocity vector u0 2 R
3 can be

chosen as

u0 D �K1

@V

@r
CK2

@˛1

@r
� @˛2

@r
; (68.5)

where K1 and K2 are symmetric tuning matrices. It is shown in Gonçalves et al.
(2010) that the dynamics Pr D u0, where u0 is given by Eq. (68.5), results in r
asymptotically converging to a trajectory that follows the intersection of ˛1 and ˛2
if K1 is positive definite, and where the definiteness of K2 determines the direction
of travel along the trajectory.

The problem with Eq. (68.5) is that the magnitude of the desired velocity u0 may
not equal V , the velocity of the Dubins airplane. Therefore u0 is normalized as

u D V
u0

ku0k : (68.6)

Fortunately, the stability proof in Gonçalves et al. (2010) is still valid when u0 is
normalized as in Eq. (68.6).

Setting the NED components of the velocity of the Dubins airplane model given
in Eq. (68.1) to u D .u1; u2; u3/> gives

V cos d cos �c D u1

V sin d cos �c D u2

�V sin �c D u3:
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Solving for the commanded flight-path angle �c and the desired heading angle
 d results in the expressions

�c D �sat N�
h
sin�1 �u3

V

�i
(68.7)

 d D atan2.u2; u1/;

where atan2 is the four quadrant inverse tangent and where the saturation function
is defined as

sataŒx� D

8̂
<̂
ˆ̂:

a if x � a

�a if x � �a
x otherwise

:

Assuming the inner-loop lateral-directional dynamics are accurately modeled
by the coordinated-turn equation, roll-angle commands yielding desirable turn
performance can be obtained from the expression

�c D sat N�
�
k�. 

d �  /� ; (68.8)

where k� is a positive constant.
Sections 68.3.2 and 68.3.3 apply the framework described in this section to

straight-line following and helix following, respectively.

68.3.2 Straight-Line Paths

A straight-line path is described by the direction of the line and a point on the line.
Let c` D .cn; ce; cd /

> be an arbitrary point on the line, and let the direction of the
line be given by the desired heading angle from north  ` and the desired flight-path
angle �` measured from the inertial north-east plane. Therefore,

q` D
0
@
qn

qe
qd

1
A 4D

0
@

cos ` cos �`
sin ` cos �`

� sin �`

1
A

is a unit vector that points in the direction of the desired line. The straight-line path
is given by

Pline.c`;  `; �`/ D ˚
r 2 R

3 W r D c` C �q`; � 2 R
�
: (68.9)

A unit vector that is perpendicular to the longitudinal plane defined by q` is
given by
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nlon

nlat

c� q�

αlon(r) = 0

αlat(r) = 0

Pline(r; q�)

Fig. 68.3 This figure shows how the straight-line path Pline.c`;  `; �`/ is defined by the intersec-
tion of the two surfaces given by ˛lon.r/ D 0 and ˛lat.r/ D 0

nlon
4D

0
@

� sin `
cos `
0

1
A :

Similarly, a unit vector that is perpendicular to the lateral plane defined by q` is
given by

nlat
4D nlon � q` D

0
@

� cos ` sin �`
� sin ` sin �`

� cos �`

1
A :

It follows that Pline is given by the intersection of the surfaces defined by

˛lon.r/
4D n>

lon.r � c`/ D 0 (68.10)

˛lat.r/
4D n>

lat.r � c`/ D 0: (68.11)

Figure 68.3 shows q`, c`, and the surfaces defined by ˛lon.r/ D 0 and ˛lat.r/ D 0.
The gradients of ˛lon and ˛lat are given by

@˛lon

@r
D nlon

@˛lat

@r
D nlat:

Therefore, before normalization, the desired velocity vector is given by

u0
line D K1

�
nlonn>

lon C nlatn>
lat

�
.r � c`/CK2 .nlon � nlat/ : (68.12)
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68.3.3 Helical Paths

A time-parameterized helical path is given by

r.t/ D ch C
0
@
Rh cos.�ht C  h/

Rh sin.�ht C  h/

�tRh tan �h

1
A ; (68.13)

where r.t/ D
0
@
rn

re
rd

1
A .t/ is the position along the path, ch D .cn; ce; cd /

> is the

center of the helix, and the initial position of the helix is

r.0/ D ch C
0
@
Rh cos h
Rh sin h

0

1
A

and where Rh is the radius, �h D C1 denotes a clockwise helix (N!E!S!W),
and �h D �1 denotes a counterclockwise helix (N!W!S!E), and where �h is
the desired flight-path angle along the helix.

To find two surfaces that define the helical path, the time parameterization in
(68.13) needs to be eliminated. Equation (68.13) gives

.rn � cn/2 C .re � ce/
2 D R2h:

In addition, divide the east component of r � ch by the north component to get

tan.�ht C  h/ D re � ce
rn � cn

Solving for t and plugging into the third component of (68.13) gives

rd � cd D �Rh tan �h
�h

	
tan�1

	
re � ce
rn � cn



�  h



:

Therefore, normalizing these equations by Rh results in

˛cyl.r/ D
	
rn � cn
Rh


2
C

	
re � ce

Rh


2
� 1

˛pl.r/ D
	
rd � cd

Rh



C tan �h

�h

	
tan�1

	
re � ce

rn � cn



�  h



:

Normalization by Rh makes the gains on the resulting control strategy invariant to
the size of the orbit.
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Fig. 68.4 A helical path for
parameters ch D .0; 0; 0/>,
Rh D 30m, �h D 15�

180
rad,

and �h D C1

A helical path is then defined as

Phelix.ch;  h; �h; Rh; �h/ D fr 2 R
3 W ˛cyl.r/ D 0 and ˛pl.r/ D 0g: (68.14)

The two surfaces ˛cyl.r/ D 0 and ˛pl.r/ D 0 are shown in Fig. 68.4 for parameters
ch D .0; 0; 0/>, Rh D 30m, �h D 15�

180
rad, and �h D C1. The associated helical

path is the intersection of the two surfaces.
The gradients of ˛cyl and ˛pl are given by

@˛cyl

@r
D

�
2 rn�cn

Rh
; 2 re�ce

Rh
; 0

�>

@˛pl

@r
D

�
tan �h
�h

�.re�ce/
.rn�cn/2C.re�ce/2 ;

tan �h
�h

.rn�ce/
.rn�cn/2C.re�ce/2 ;

1
Rh

�>
:

Before normalization, the desired velocity vector is given by

u0
helix D K1

	
˛cyl

@˛cyl

@r
C ˛pl

@˛pl

@r



C �K2

	
@˛cyl

@r
� @˛pl

@r



; (68.15)

where
@˛cyl

@r
� @˛pl

@r
D 2

Rh

�
re�ce
Rh

; � rn�cn
Rh

; �h tan �h
�>
:

68.4 Minimum-Distance Airplane Paths

This section describes how to concatenate straight-line and helix paths to produce
minimum-distance paths between two configurations for the Dubins airplane model.
A configuration is defined as the tuple .zn; ze; zd ;  /, where .zn; ze; zd /> is a
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north-east-down position referenced to an inertial frame, and  is a heading
angle measured from north. Given the kinematic model (68.1) subject to the
constraints (68.2) and (68.3), a Dubins airplane path refers to a minimum-distance
path between a start configuration .zns; zes ; zds ;  s/ and an end configuration
.zne; zee ; zde;  e/. Minimum-distance paths for the Dubins airplane are derived
in Chitsaz and LaValle (2007) using the Pontryagin Maximum Principle for the
dynamics given in (68.4) with constraints N� D 1 and N� D 1. This section recasts the
results from Chitsaz and LaValle (2007) using the standard aircraft kinematic model
given in (68.1) using the constraints (68.2) and (68.3).

68.4.1 Dubins Car Paths

Minimum-distance paths for the Dubins airplane are closely related to minimum-
distance paths for the Dubins car. This section briefly reviews Dubins car paths,
which were originally developed in Dubins (1957) using the notation and methods
defined in Beard and McLain (2012).

The Dubins car model is a subset of (68.4) given by

Prn D V cos 

Pre D V sin (68.16)

P D u;

where juj � Nu. For the Dubins car, the minimum turn radius is given by

Rmin D V=Nu: (68.17)

The Dubins car path is defined as the minimum-distance path from the start con-
figuration .zns; zes ;  s/ to the end configuration .zne; zee ;  e/. As shown in Dubins
(1957), the minimum-distance path between two different configurations consists
of a circular arc of radius Rmin that starts at the initial configuration, followed by a
straight line, and concluding with another circular arc of radiusRmin that ends at the
final configuration.

As shown in Fig. 68.5, for any given start and end configurations, there are four
possible paths consisting of an arc, followed by a straight line, followed by an arc.
RSR is a right-handed arc followed by a straight line followed by another right-
handed arc. RSL is a right-handed arc followed by a straight line followed by a
left-handed arc. LSR is a left-handed arc followed by a straight line followed by a
right-handed arc. LSL is a left-handed arc followed by a straight line followed by
another left-handed arc. The Dubins path is defined as the case with the shortest
path length.

As explained in Beard and McLain (2012), the guidance algorithm for following
a Dubins car path consists of switching between orbit following and straight-line
following. Figure 68.6 shows the parameters that are required by the guidance
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Fig. 68.5 Given a start configuration .zns ; zes ;  s/, an end configuration .zne; zee ;  e/, and a radius
R, there are four possible paths consisting of an arc, a straight line, and an arc. The Dubins path is
defined as the case that results in the shortest path length, which for this scenario is RSR

zs

ws

w�

q�

qe

qs
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He

H�

ze = we

λs = −1

cs

ce

λe = 1

R

ψe

ψs

Fig. 68.6 The parameters that are required by the guidance algorithm to follow a Dubins car path
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algorithm to follow a Dubins car path. Given that the vehicle configuration is close
to the start configuration .zs;  s/, the vehicle is initially commanded to follow an
orbit with center cs and orbit direction �s . The orbit is followed until the vehicle
crosses half-plane Hs.ws;qs/, or in other words until its position r satisfies

.r � ws/
>qs � 0;

where ws is a position on the half-plane and qs is a unit vector orthogonal to the half-
plane. The vehicle then follows the straight line defined by .ws;qs/ until it crosses
half-plane H`.w`;q`/. It then follows the orbit with center ce and direction �e until
it crosses half-plane He.we;qe/ and completes the Dubins car path. Accordingly
the parameters that define a Dubins car path are given by

Dcar D .R; cs; �s;ws;qs;w`;q`; ce; �e;we;qe/: (68.18)

The length of the Dubins car path depends explicitly on the turning radius R
and will be denoted as Lcar.R/. Details of how to compute Lcar.R/ as well as the
parameters Dcar are given in Beard and McLain (2012).

68.4.2 Dubins Airplane Paths

Dubins airplane paths are more complicated than Dubins car paths because of the
altitude component. As described in Chitsaz and LaValle (2007) there are three
different cases for Dubins airplane paths that depend on the altitude difference
between the start and end configuration, the length of the Dubins car path, and the
flight-path limit N� . The three cases are defined to be low altitude, medium altitude,
and high altitude. In contrast to (68.17), the minimum turn radius for a Dubins
airplane is given by

Rmin D V 2

g
tan N�: (68.19)

The altitude gain between the start and end configuration is said to be low altitude if

jzde � zds j � Lcar.Rmin/ tan N�;

where the term on the right is the maximum altitude gain that can be obtained by
flying at flight-path angle ˙ N� for a distance of Lcar.Rmin/. The altitude gain is said
to be medium altitude if

Lcar.Rmin/ tan N� < jzde � zds j � ŒLcar.Rmin/C 2�Rmin� tan N�;

where the addition of the term 2�Rmin accounts for adding one orbit at radius Rmin

to the path length. The altitude gain is said to be high altitude if

jzde � zds j > ŒLcar.Rmin/C 2�Rmin� tan N�:
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The following three sections describe how Dubins car paths are modified to produce
Dubins airplane paths for low, high, and medium-altitude cases.

68.4.2.1 Low-Altitude Dubins Paths
In the low-altitude case, the altitude gain between the start and end configurations
can be achieved by flying the Dubins car path with a flight-path angle satisfying
constraint (68.3). Therefore, the optimal flight-path angle can be computed by

�� D tan�1
	 jzde � zds j
Lcar.Rmin/



:

The length of the Dubins airplane path is given by

Lair.Rmin; �
�/ D Lcar.Rmin/

cos �� :

The parameters required to define a low-altitude Dubins airplane path are the same
parameters for the Dubins car given in (68.18) with the addition of the optimal
flight-path angle �� and the angles of the start and end helices  s and  e . Note that
for the Dubins car path  s and  e are not required since the orbit is flat and does
not have a starting location. However, as described in Sect. 68.3.3, to follow a helix,
the start angle is required. Figure 68.7 shows several Dubins airplane paths for the
low-altitude case where the altitude difference is 25 m over a typical Dubins car path
length of 180 m.

68.4.2.2 High-Altitude Dubins Paths
In the high-altitude case, the altitude gain cannot be achieved by flying the Dubins
car path within the flight-path angle constraints. As shown in Chitsaz and LaValle
(2007), the minimum-distance path is achieved when the flight-path angle is set
at its limit of ˙ N� , and the Dubins car path is extended to facilitate the altitude
gain. While there are many different ways to extend the Dubins car path, this
chapter extends the path by spiraling a certain number of turns at the beginning
or end of the path and then by increasing the turn radius by the appropriate
amount.

For UAV scenarios, the most judicious strategy is typically to spend most of the
trajectory at as high an altitude as possible. Therefore, if the altitude at the end
configuration is higher than the altitude at the start configuration, then the path will
be extended by a climbing helix at the beginning of the path, as shown in the RSR
and RSL cases in Fig.68.8. If on the other hand, the altitude at the start configuration
is higher than the end configuration, then the path will be extended by a descending
helix at the end of the path, as shown in the LSR and LSL cases in Fig. 68.8. If
multiple turns around the helix are required, then the turns could be split between
the start and end helices and still result in the same path length. For high-altitude
Dubins paths, the required number of turns in the helix will be the smallest integer
k such that
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Fig. 68.7 Dubins airplane paths for the low-altitude case

.Lcar.Rmin/C2�kRmin/ tan N� � jzde�zds j<.Lcar.Rmin/C2�.k C 1/Rmin/ tan N�;

or in other words

k D
�

1

2�Rmin

	 jzde � zds j
tan N� � Lcar.Rmin/


�
;

where bxc is the floor function that rounds x down to the nearest integer. The radius
of the start and end helices is then increased to R� so that

�
Lcar.R

�/C 2�kR��
tan N� D jzde � zds j: (68.20)

A bisection search is used to find R� satisfying (68.20). The resulting path is a
minimum-distance Dubins airplane path with path length

Lair.R
�; N�/ D Lcar.R

�/
cos N� :
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Fig. 68.8 Dubins airplane paths for the high-altitude case

The parameters required to define a high-altitude Dubins airplane path are the same
parameters for the Dubins car given in (68.18) with Rmin replaced by R�, the
addition of the optimal flight-path angle ˙ N� , the additions of the start and end angles
 s and  e , and the addition of the required number of turns at the start helix ks and
the required number of turns at the end helix ke . Figure 68.8 shows several Dubins
airplane paths for the high-altitude case where the altitude difference is 300 m over
a typical Dubins car path length of 180 m.

68.4.2.3 Medium-Altitude Dubins Paths
In the medium-altitude case, the altitude difference between the start and end
configurations is too large to obtain by flying the Dubins car path at the flight-path
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ϕ

Fig. 68.9 The start position
of the intermediate arc is
found by varying '

angle constraint, but small enough that adding a full turn on the helix at the
beginning or end of the path and flying so that � D ˙ N� results in more altitude
gain than is needed. As shown in Chitsaz and LaValle (2007), the minimum-distance
path is achieved by setting � D sign .zde � zds/ N� and inserting an extra maneuver
in the Dubins car path that extends the path length so that the altitude gain when
� D ˙ N� is exactly zde � zds . While there are numerous possible ways to extend the
path length, the method proposed in this chapter is to add an additional intermediate
arc to the start or end of the path, as shown in Fig. 68.9. If the start altitude is lower
than the end altitude, then the intermediate arc is inserted immediately after the
start helix, as shown for cases RLSR and RLSL in Fig. 68.11. If on the other hand,
the start altitude is higher than the end altitude, then the intermediate arc is inserted
immediately before the end helix, as shown for cases LSLR and LSRL in Fig. 68.11.

To find the Dubins path in the medium-altitude case, the position of the
intermediate arc is parameterized by ' as shown in Fig. 68.9, where

zi D cs CR.'/.zs � cs/:

A standard Dubins car path is planned from configuration .zi ;  s C '/ to the end
configuration, and the new path length is given by

L.'/ D 'Rmin C Lcar.zi ;  s C '; ze;  e/:
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Fig. 68.10 Parameters that
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A bisection search algorithm is used to find the angle '� so that

L.'�/ tan N� D jzde � zds j:

The length of the corresponding Dubins airplane path is given by

Lair D L.'�/
cos N� :

The parameters needed to describe the Dubins airplane path for the medium-
altitude case are shown in Fig. 68.10. The introduction of an intermediate arc
requires the additional parameters ci ,  i , �i , wi , and qi . Therefore, in analogy
to (68.18), the parameters that define a Dubins airplane path are

Dair D .R; �; cs ;  s; �s;ws ;qs; ci ;  i ; �i ;wi ;qi ;w`;q`; ce;  e; �e;we;qe/:
(68.21)

Figure 68.11 shows several Dubins airplane paths for the medium-altitude case
where the altitude difference is 100 m over a typical Dubins car path length
of 180 m.
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Fig. 68.11 Dubins airplane paths for the medium-altitude case

68.4.3 Path Manager for Dubins Airplane

The path manager for the Dubins airplane is shown in Fig. 68.12. With reference
to (68.14), the start helix is defined as Phelix.cs;  s; �s; R; �/. Similarly, the
intermediate arc, if it exists, is defined by Phelix.ci ;  i ; �i ; R; �/, and the end helix
is given by Phelix.ce;  e; �e; R; �/. With reference to (68.9), the straight-line path is
given by Pline.w`;q`/.

68.4.4 Simulation Results

This section provides some simulation results where Dubins airplane paths are
flown on a full six-degree-of-freedom UAV simulator. The aircraft used for the
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Fig. 68.12 Flow chart for the path manager for following a Dubins airplane path

simulation is the Aerosonde model described in Beard and McLain (2012). A low-
level autopilot is implemented to regulate the commanded airspeed, bank angle, and
flight-path angle. The windspeed in the simulation is set to zero. The simulation is
implemented in Matlab/Simulink.

The simulation results for a low altitude gain maneuver are shown in Fig. 68.13,
where the planned trajectory is shown in green and the actual trajectory is shown in
black. The difference between the actual and planned trajectories is due to fact that
the actual dynamics are much more complicated than the kinematic model given
in (68.1). Simulation results for a medium altitude gain maneuver are shown in
Fig. 68.14, and simulation results for a high altitude gain maneuver are shown in
Fig. 68.15.

68.5 Conclusion

This chapter describes how to plan and implement Dubins airplane paths for small
fixed-wing UAVs. In particular, the Dubins airplane model has been refined to
be more consistent with standard aeronautics notation. A complete architecture
for following Dubins airplane paths has been defined and implemented and is
shown in Fig. 68.1. Dubins airplane paths consist of switching between helical and
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Fig. 68.13 Simulation results for Dubins path with low altitude gain
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Fig. 68.14 Simulation results for Dubins path with medium altitude gain

straight-line paths. The vector-field method described in Gonçalves et al. (2010)
has been used to develop guidance laws that regulate the Dubins airplane to follow
the associated helical and straight-line paths. For medium and high altitude gain
scenarios, there are many possible Dubins paths. This chapter suggests selecting the
path that maximizes the average altitude of the aircraft during the maneuver.

There are many possible extensions that warrant future work. First, there is a
need to extend these methods to windy environments, including both constant wind
and heavy gusts. Second, the assumed fast inner loops on airspeed, roll angle, and
flight-path angle are often violated, especially for flight-path angle. There may be
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Fig. 68.15 Simulation results for Dubins path with high altitude gain

some advantage, for path optimality in particular, to factoring the time constants
of the inner loops into the planning procedure. Third, this chapter assumes a
decoupling between flight-path angle and airspeed. Except for highly overpowered
vehicles, however, achieving a positive flight-path angle will reduce the airspeed,
and achieving a negative flight-path angle will increase the airspeed. Taking these
effects into account will obviously change the optimality of the paths. Finally,
there are a variety of methods that have been proposed for achieving vector-field
following (see Lawrence et al. 2008; Park et al. 2007; Nelson et al. 2007). The
method used in this chapter is only one possibility, that, in fact, proved challenging
to tune. One of the issues is that the method assumes single integrator dynamics
in each direction of motion. More robust 3D vector-field following techniques that
account for the nonholonomic kinematic model of the Dubins airplane need to be
developed.
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V.M. Gonçalves, L.C.A. Pimenta, C.A. Maia, B.C.O. Durtra, G.A.S. Pereira, Vector fields for robot
navigation along time-varying curves in n-dimensions. IEEE Trans. Robot. 26(4), 647–659
(2010)

C. Hanson, J. Richardson, A. Girard, Path planning of a Dubins vehicle for sequential target
observation with ranged sensors, in Proceedings of the American Control Conference, San
Francisco, June 2011, pp. 1698–1703

S. Hosak, D. Ghose, Optimal geometrical path in 3D with curvature constraint, in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
113–118, Taipei, Oct 2010

S. Karaman, E. Frazzoli, Incremental sampling-based algorithms for optimal motion planning. Int.
J. Robot. Res. 30(7), 846–894 June 2011

D.A. Lawrence, E.W. Frew, W.J. Pisano, Lyapunov vector fields for autonomous unmanned aircraft
flight control. AIAA J. Guid. Control Dyn. 31, 1220–12229 (2008)

F.L. Lewis, Optimal Control (Wiley, New York, 1986)
R. Mahony, T. Hamel, J.-M. Pflimlin, Nonlinear complementary filters on special orthogonal

group. IEEE Trans. Autom. Control 53(5), 1203–1218 (2008)
E.A. Misawa, J.K. Hedrick, Nonlinear observers – state-of-the-art survey. Trans. ASME J. Dyn.

Syst. Meas. Control 111, 344–352 (1989)
R.C. Nelson, Flight Stability and Automatic Control, 2nd edn. (McGraw-Hill, Boston, 1998)
D.R. Nelson, D.B. Barber, T.W. McLain, R.W. Beard, Vector field path following for miniature air

vehicles. IEEE Trans. Robot. 37(3), 519–529, (2007)
S. Park, J. Deyst, J.P. How, Performance and Lyapunov stability of a nonlinear path-following

guidance method. AIAA J. Guid. Control Dyn. 30(6), 1718–1728 (2007)
W.F. Phillips, Mechanics of Flight, 2nd ed. (Wiley, Hoboken, 2010)
A. Rahmani, X.C. Ding, M. Egerstedt, Optimal motion primitives for multi-UAV convoy protec-

tion, in Proceedings of the International Conference on Robotics and Automation, Anchorage,
May 2010, pp. 4469–4474

S. Rathinam, Z. Kim, A. Soghikian, R. Sengupta, Vision based following of locally linear structure
using an unmanned aerial vehicle, in Proceedings of the 44th IEEE Conference on Decision
and Control and the European Control Conference, Seville, Dec 2005, pp. 6085–6090

T. Shima, S. Rasmussen, D. Gross, Assigning micro UAVs to task tours in an urban terrain. IEEE
Trans. Control Syst. Technol. 15(4), 601–612 (2007)

S.C. Spry, A.R. Girard, J.K. Hedrick, Convoy protection using multiple unmanned aerial vehicles:
organization and coordination, in Proceedings of the American Control Conference, Portland,
June 2005, pp. 3524–3529



68 Implementing Dubins Airplane Paths on Fixed-Wing UAVs 1701

B.L. Stevens, F.L. Lewis, Aircraft Control and Simulation, 2nd ed. (Wiley, Hoboken, 2003)
P.B. Sujit, J.M. George, R.W. Beard, Multiple UAV coalition formation, in Proceedings of the

American Control Conference, Seattle, June 2007, pp. 2010–2015
G. Yang, V. Kapila, Optimal path planning for unmanned air vehicles with kinematic and tactical

constraints, in Proceedings of the IEEE Conference on Decision and Control, Las Vegas, 2002,
pp. 1301–1306

T.R. Yechout, S.L. Morris, D.E. Bossert, W.F. Hallgren, Introduction to Aircraft Flight Mechanics.
AIAA Education Series (American Institute of Aeronautics and Astronautics, Reston, 2003)

C. Yong, E.J. Barth, Real-time dynamic path planning for Dubins’ nonholonomic robot, in
Proceedings of the IEEE Conference on Decision and Control, San Diego, Dec 2006,
pp. 2418–2423

H. Yu, R.W. Beard, A vision-based collision avoidance technique for micro air vehicles using
local-level frame mapping and path planning. Auton. Robots 34(1–2), 93–109 (2013)


	68 Implementing Dubins Airplane Paths on Fixed-Wing UAVs**Contributed Chapter to the Springer Handbook for Unmanned Aerial Vehicles
	68.1 Introduction
	68.2 Equations of Motion for the Dubins Airplane
	68.3 3D Vector-Field Path Following
	68.3.1 Vector-Field Methodology
	68.3.2 Straight-Line Paths
	68.3.3 Helical Paths

	68.4 Minimum-Distance Airplane Paths
	68.4.1 Dubins Car Paths
	68.4.2 Dubins Airplane Paths
	68.4.2.1 Low-Altitude Dubins Paths
	68.4.2.2 High-Altitude Dubins Paths
	68.4.2.3 Medium-Altitude Dubins Paths

	68.4.3 Path Manager for Dubins Airplane
	68.4.4 Simulation Results

	68.5 Conclusion
	References


