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Preface

The 1st International Conference on Cognitive Neurodynamics (ICCN’07) was held
in Shanghai in 2007. About 300 hundred experts from more than 30 countries and
areas attended that conference and made a great success. Thus, in the editorial board
meeting of the journal Cognitive Neurodynamics held during the conference, we
decided to develop it to be a series conference holding every two years. Now the
second one was just held in the beautiful city of Hangzhou, China, November 15–19,
2009.

As what we claimed in the editorial of the journal Cognitive Neurodynamics,
cognitive neurodynamics is a fast growing new scientific front combining dynamic
analysis with cognitive science and neuroscience experiments, which spans the
entire range of brain cognition from ionic channels to whole brain activities, and
which is combined by the conceptions of nonlinear neurodynamics operating simul-
taneously at and across all levels. The developments in these two years seem to
verify our statement. Many important progresses have been made, and the 2nd con-
ference offered us a wonderful opportunity to review the progress and discuss its
problems.

As what we expected, the 2nd conference was also successful as the 1st one.
There were 8 plenary talks given by the leading scientists in this field and 20 oral
sessions and one poster session. The topics of the contributions cover almost all the
branches of cognitive neurodynamics, from micro-, meso- to macroscopic cogni-
tive neurodyanmics, their applications and some related topics, especially including
neural coding, realistic neural networks, oscillation and synchronization, neural
population dynamics, sensory and motor dynamics, EEG, fMRI and brain imag-
ing, global cognitive function, multiscalar neurodynamics, neural computing, brain
computer interface, and cognition disorder. It’s also our great pleasure to notice the
high quality of the contributions.

We are glad that we have a wonderful cooperation with Tamagawa Dynamic
Brain Forums (DBF) organized by the Japanese “Gang of Five” on nonlinear
dynamics. They gave generous support to this conference. They and RIKEN BSI
organized a symposium for the conference and invited many speakers to give won-
derful talks. These two series meetings focus almost on the same field, but with
different scales and depth of discussion, now they support each other. We do believe
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that these meetings will promote the progress in this field. And the 3rd conference
will be organized by them in Sapporo, Japan in June, 2011. The papers invited
by DBF are published as the second section of this volume. We also would like
to express our gratitude to Profs. Francois-Benoit Vialatte, Justin Dauwels, and
Jianting Cao for organizing a mini-symposium on Neural dynamics of brain dis-
orders; Profs. Liqing Zhang, Tomasz M. Rutkowski, Toshihisa Tanaka, Jianting Cao
for organizing one on Emerging Technologies for Brain Computer Interfaces; Profs.
Qishao Lu, Jianzhong Su, Jianxue Xu for organizing one on Firing Oscillations
and Patterns in Neuronal Networks; and Profs. Hans Liljenström and Hans Braun
for organizing one on Multiscalar Neurodynamics – from Physiology to Systems
Theory.

Taking this opportunity, we would also like to thank all the sponsors, especially
our university – East China University of Science & Technology, the host univer-
sity of ICCN’09 – Zhejiang University, our journal “Cognitive Neurodynamics”
published by Springer, The National Natural Science Foundation of China, Brain
Science Center of Tamagawa University, Chinese Society for Neuroscience, Chinese
Society of Theoretical and Applied Mechanics, IEEE Singapore Computational
Intelligence Chapter, International Neural Network Society, Japanese Neural
Network Society, RIKEN Brain Science Institute, and many other universities in
China.

Shanghai Rubin Wang
1st December, 2009 Fanji Gu
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Dynamics of Learning In Hierarchical Models –
Singularity and Milnor Attractor

Shun-ichi Amari, Tomoko Ozeki, Florent Cousseau, and Haikun Wei

Abstract We study the dynamics of learning in a hierarchical model such as
multilayer perceptron. Such a model includes singularities, which affects its dynam-
ics seriously. The Milnor type attractors appear, because of the singularity. We will
show its trajectories explicitly, and present the topological nature of the singularities.

Keywords Dynamics of learning · On-line learning · Multilayer-perceptron ·
Singularity ·Milnor attractor

1 Introduction

Neural learning takes place in the parameter space of a model network. A model
has often a hierarchical structure of which typical examples are the multilayer per-
ceptron and the Gaussian mixture radial basis network. Since the behavior of a
network is subject to noise and training examples are given randomly, the dynamics
of learning is a stochastic process, and a trajectory of learning fluctuates randomly.

The parameter space of a hierarchical network has singularities due to the permu-
tation invariance of elements of hidden layers. The behavior of networks becomes
the same in some region of the parameter space. Such regions form singularities of
the parameter space and a network loses identifiability at singularities. The metrical
structure of the space is given by the Fisher information matrix, but it degenerates
at singularities, because of the non-identifiability. Singularities in a statistical model
and the dynamical behaviors of learning have been studied in a number of papers
[1–6]. We summarize these results, and give a new idea on the topological aspects
related to singularities.

There arise lots of strange behaviors when a statistical model is singular [3]. The
Cramer-Rao paradigm of estimation does not holds, and Bayesian priors become

S.-i. Amari (B)
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singular. Singularities have strong effects on the behaviors of dynamics of learn-
ing. The natural gradient learning method [2] is known to have good performances
even at singularities. The present paper studies dynamics of learning near singular-
ities. We give explicit solutions of trajectories of the average learning equations in
a neighborhood of singularities. This proves that singularities become the Milnor
type attractors [7], and this is the reason why learning behaviors are retarded, called
the plateau phenomena.

We further study the topological structure of singularities, and give a new coordi-
nate system by the blow-down technique of algebraic geometry. Such a coordinate
system is useful for studying the behavior of the dynamics of natural gradient
learning.

2 Dynamics of On-Line Learning

Let us assume that the input-output behavior of a network is given by y = f (x, θ )+ε,
where x = (x1, · · · , xn) is an input vector, y is a scalar output, ε is a standard
Gaussian noise subject to N(0, 1), and θ = (θ1, · · · , θm) is parameters which are
modifiable. In our case of supervised learning, the network modifies its parame-
ter θ by receiving a series of input examples x1, · · · , xt and corresponding outputs
y1, · · · , yt which a teacher gives,

yi = f0 (xi)+ ε, i = 1, · · · , t. (1)

The standard gradient learning algorithm is written as

θ t+1 = θ t − η∇l (xt, yt, θ t) , (2)

where

l(x, y, θ ) = 1

2
{y− f (x, θ )}2 (3)

is the squared error function, ∇ = ∂/∂θ and η is a learning constant. This is a
stochastic difference equation, because xi is randomly generated and yi includes
noise. By introducing the error function

e (x, y, θ) = f (x, θ )− f0(x)− ε, (4)

and using the continuous time version neglecting the fluctuation term, we have the
average learning equation,

d

dt
θ(t) = θ̇ t = η〈e (x, y, θ t)∇f (x, θ t)〉. (5)

The actual trajectory fluctuates around the average one. The fluctuations do not
accumulate, when the dynamics is stable.
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3 Singularities of Hierarchical Networks

We consider a multilayer perceptron and a simple Gaussian mixture network. A
multilayer perceptron has the input–output behavior,

f (x, θ ) =
k∑

i=1

wiϕ (Ji · x)+ ε. (6)

where ϕ is a sigmoid function.
The parameter of a perceptron is specified by parameters θ =

(J1, w1, · · · , Jk, wk). A network does no have identifiability for some regions
of the parameter space S in the above hierarchical networks. We explain this by two
typical examples:

(1) When wi = 0, the term wiϕ (Ji · π) vanishes. Hence Ji does not affect the
behavior f (x, θ ) and is not identifiable on the subspace wi = 0.

(2) When Ji = Jj, the sum of two terms, wiϕ (Ji · x)+wjϕ
(
Jj · x

)
depends only on(

wi + wj
)
. Hence, each of wi and wj is not identifiable on the subspace Ji = Jj.

Hence, some parameters are not identifiable on the singular region

Rij =
{
θ
∣∣wiwj

(
Ji − Jj

) = 0
}

. (7)

4 Critical Singular Region

We consider a typical situation of two hidden neurons, k = 2. Only one neuron
suffices in the singular region R = R12, where J1 = J2 or one of w1 and w2 is 0. In
this case, its input–output function is written by using a single neuron,

f (x, θ ) = wϕ (J · x) . (8)

We introduce a new coordinate system ξ = (v, w, u, z), which uses

u = J2 − J1, (9)

z = w1 − w2

w1 + w2
, (10)

and the other parameters v and w are fixed. Then, the singular region is represented
by u = 0 or z = ±1. A singular region R12 includes three parts, one given by
u = 0, that is, J1 = J2, which we call the overlapping singular region, and the other
is z = ±1, that is w1 = 0 or w2 = 0, in which one neuron is eliminated. We have
R12 = R1 ∪ R2,
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u

z = −1 z = 0 z = 1
z

R2

D(t0)

R1

Fig. 1 Singular region and its neighborhood

R1 (v, w) = {ξ |u = 0, z : arbitrary; v and w fixed } , (11)

R2 (v, w) = {ξ |u : arbitrary; z = ±1, v and w fixed } . (12)

In the subspace in which v and w are fixed constants, R1 is a line in which z
changes, and R2 consists of two n-dimensional surfaces. The singular region R12
is a composite of one line and two surfaces, see Fig. 1.

5 Dynamical Flow Near Singularities

We study the dynamical flow near the singularity R1 (v, w), by using the Taylor
expansion with respect to u. From this, we have the average learning equation is
written as

u̇ = ηw

2
(1− z2)

〈
eϕ′′(v · x)(u · x)x

〉+ O(|u|2), (13)

ż = −1+ z2

w
η
〈
ϕ′(v · x)(u · x)

〉+ O(|u|2). (14)

We can integrate (13) and (14) in S∗ where v and w take the optimal values, giving
the flows or trajectories of dynamics in the neighborhood of u = 0 of S∗. They are
given by

Fig. 2 Trajectories
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1

2
uT · u = 2w∗2

3
log

[
(z2 + 3)2

|z|
]
+ c (15)

where c is an arbitrary constant. See Fig. 2 for the trajectories.

6 Milnor Attractor

The line R1 (v∗, w∗) in S∗ is a critical line of the dynamics of learning. Under a
certain condition we show that the line is divided into two parts such that one part
is stable and the other is unstable. In such a case, there are trajectories attracted to
the stable part, and the basin of attraction has a finite measure. This is a Milnor type
attractor, different from a saddle. More strongly the basin of attraction includes a
neighborhood of this part, implying all the points near this part are once attracted to
it. After being attracted to it, the parameters still move randomly in R1 (v∗, w∗) by
stochastic fluctuations until they reach the unstable part. Then, the parameters leave
R1 eventually.

We can prove that R∗1 is unstable (saddle) when A = (
Aij
)
, Aij = 〈eφij〉, includes

both positive and negative eigenvalues. When w∗A is positive-semi-definite, the
interval 1 < z2 is attractive, and the remaining part 1 > z2 is repulsive. Hence,
the interval 1 < z2 behaves like a Milnor attractor. This is the plateau phenomenon,
taking long time before getting rid of it. When w∗A is negative-semi-definite, the
part 1 > z2 is attractive and the other part is repulsive.

7 Topology of Singularity

We have shown that the singular region R consists of the three parts. One is the line
specified by u = 0, and the others are two submanifolds given by z = 1 and z = −1
(see Fig. 1). All the functions f (x, ξ ) in R(v, w) are equal, having a common one
behavioral function.

In order to see the topological structure of the singularity, we fix a pair (v, w)
and consider the subspace S(v, w) where v and w are fixed and u and z are free.
We map it to the space of input-output functions F = {f (x)}. Here, all the points
in R are mapped to one point given by (8). By this mapping, the singularity region
R(v, w) is reduced to one point and is “resolved” except for one point. This is the
blowing-down of singularity.

In order to demonstrate the image of S(v, w) in F , let us introduce a new param-
eter t, which represents how far a function f (x, ξ ) is from the singular region R(v, w)
given by (8). We introduce a new parameter

t =
(

1− z2
)

u2, (16)
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which is 0 at the singularity R, and represents the Riemannian distance
√

g11t
between R and f (x, ξ ) when t is small, where g11 is the Fisher information in the
direction of t.

Let us consider the set of points in S which are located within distance less than
t0 from R,

D (t0) =
{
ξ |
(

1− z2
)

u2 ≤ t0
}

. (17)

This is a level surface (Fig. 1), where t0 denotes the distance form the singularity.
When t0 = 0, D(0) = R which is the union of one line u = 0 and two subspaces
z = ±1. Likewise, D (t0) consists of three parts; one in the region |z| < 1 and the
others in the regions z > 1 and z < −1. In each part, the boundary ∂D (t0) of D (t0)
is a cylinder, which is obtained by rotating a curve

(
1− z2

)
u2 = t0 along the z-axis.

Let us visualize the image of the cylinder D (t0) in the middle part |z| < 1. The
boundary ∂D (t0) is a cylinder having two coordinates e ∈ Sn and z ∈ [−1, 1]. The
two open sides of the cylinder, that is, the left and right sides corresponding to z → 1
and z →−1 approach the apex as t → 0, touch R.

8 Conclusions

The dynamics of learning suffers from the plateau phenomenon ubiquitously, and it
has gradually been understood that this is caused by the symmetry of its structure.
The symmetry is caused by the permutation group of hidden units, and it gives
rise to non-identifiability of the parameters in the region on which the permutation
group acts invariantly. The Fisher information degenerates on such a region, and the
residue class divided by the group has topological singularities.

We have elucidated the structure of the singularities. Moreover, we gave detailed
mathematical analysis of the dynamics of learning near singularities by using a sim-
ple model, and obtained the trajectories explicitly. We proved that the singularity
forms a Milnor attractor, which is not a stable equilibrium but has a finite measure
of the basin of attraction. Hence a trajectory of learning has once attracted in the
line, fluctuating around the line until it reaches unstable region, and eventually gets
rid of it. This is the plateau phenomenon.
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Chaotic Dynamics, Episodic Memory,
and Self-identity

Ichiro Tsuda

Abstract The hippocampus has been considered responsible for the formation of
episodic memory. It has also been pointed out that the hippocampus plays an impor-
tant role in imagination, which is related to future events. The fact that atrophy of the
hippocampus could lead to Alzheimer’s disease implies that the network structure of
the hippocampus may provide fields for the creation of internal time corresponding
to the past, present, and future. We present a hypothesis that the hippocampus plays
a role in the formation of self-identity via interactions with the lateral prefrontal
cortex.

Keywords Chaotic dynamics · Episodic memory · Self-identity · Internal time

1 Introduction

Memory and inference processes form the core cognitive functions. The neural
mechanisms that underlie these functions have recently been highlighted. In partic-
ular, studies have focused on neural correlates of dynamic memory such as episodic
memory. Tulving defined episodic memory as a memory that involves information
acquired from individual experience [1]. Thus, remembering could depend on indi-
vidual recollections, as we apprehend a fraction of the episode that we actually
experienced, according to our ability to attend selectively. Many experimental facts
have shown that the hippocampal networks are responsible for the formation of
episodic memory. Here, we would like to highlight the specific facts that we think
are most closely related to the contents of this article.

Fact 1. Damage to the hippocampus causes both retrograde and anterograde
amnesia [2, 3].

I. Tsuda (B)
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Fact 2. Place cells observed in the rat hippocampus respond sensitively to the actual
spatial locations occupied by the rat [4].

Fact 3. Atrophy of the hippocampus may cause Alzheimer’s disease [5].

In addition, clinical studies of patients with a hippocampal lesion revealed that
damage to the hippocampus can cause the inability to imagine new things [6].

Fact 4. The hippocampus is responsible for imagining new (future) experiences [6].

As this process is akin to composing a story, it is closely related to the formation
of episodic memories. Furthermore, Maguire et al. stated that “episodic memory and
imagining or constructing events share striking similarities such as imagery, sense
of presence, retrieval of semantic information and multimodal details, and narrative
structure”. This finding is crucial for constructing a theory for self-identity, in which
past, present and future events are connected.

In this article, we briefly review our recent study on information representation
of episodic events in the model hippocampus, and show that the prediction of Cantor
coding was verified by experiments using rat hippocampal slices. We also present a
new theory of self-identity. Finally, we propose a hypothesis that the hippocampus
forms self-identity via the interactions with the lateral prefrontal cortex.

2 Chaotic Itinerancy in CA3

The overall CA3 network possesses massively recurrent connections among exci-
tatory pyramidal cells, and also inhibitory cells, which may locally inhibit the
excitatory cells. These inhibitory cells may be inhibited by inhibitory cells in a dif-
ferent area of the brain; i.e., the septum. According to experimental observations
[7], the septum’s inhibitory cells are excited almost periodically, and this excita-
tion is synchronized with the θ -rhythms, which is a brain wave with a 5–8 Hz
frequency range. Thus, these inhibitory cells inhibit the inhibitory cells in almost
periodic fashion.

Since Marr’s pioneering work [8], many researchers have proposed hypothe-
ses on the operation of episodic memory in terms of associative memory [9, 10].
However, an association dynamics with the same initial pattern input simply shows
a relaxation process to an attractor, which may represent a memory associated with
the input pattern. Thus, classical theory does not account for a sequence of episodic
events. This can also be justified by the fact that the CA3 metric space concerned
defines a measure of the similarity of patterns themselves but not of a sequence of
patterns. We have proposed another hypothesis on the operation of episodic memory
that extends the classical theory of associative memory to capture the dynamic and
successive association of memory [11, 12]; this hypothesis is based on the dynamic
associative memory models [13–15].

A key to the dynamics of memory is suggested by the following. In the phase
during which the disinhibition signal from the septum is on, the main dynamics of
CA3 arises from the recurrent network of pyramidal cells that is responsible for a
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single association in memory. Then, the input signal triggers attractor dynamics,
whereby a pattern associated with the input pattern is formed. Such an attractor pat-
tern becomes a representation of the memory associated with that input. During this
phase, a memory may be represented by a geometric attractor. On the other hand,
in the phase during which the disinhibition signal from the septum is off, the direct
inhibition of the recurrent network produces instability in the dynamics of memory.
A geometric attractor becomes a quasi-attractor [11, 16], which is associated with
the appearance of unstable direction; however, most dynamical orbits are attracted
to this type of quasi-attractor. This instability generates a dynamic link among quasi-
attractors, so that successive associations in memory can be produced. During this
phase, a quasi-attractor is an attractor-ruin of the original attractor.

One can also describe this type of transitory dynamics in terms of chaotic itiner-
ancy [17–19], as the transition process can be described by chaotic dynamics, which
is high dimensional in some cases and low dimensional in others. We extracted
a transition law in the latter phase of disinhibitory inputs, according to the corre-
lations of memory patterns defined by the critical circle map that possesses fixed
point attractors in a Milnor’s sense [20]. For a detailed description of the mech-
anism of chaotic itinerancy, see reference [21]. Recently, both aperiodic and noisy
transitions between several definite states of neural activity of the hippocampal CA3
were observed in the laboratory [22]. The computational results of our model CA3
revealed that CA3 may represent the dynamic association of memories via chaotic
itinerancy and that episodic events may be represented by the chaotic itinerancy that
occurs in CA3 as episodic memories.

3 Iterated Function Systems and Cantor Coding in CA1

CA1 networks include fewer recurrent connections than CA3 networks; instead
they include mainly local negative feedback connections via inhibitory cells. The
septum’s inhibitory cells also inhibit the inhibitory cells of CA1, which are syn-
chronized with the θ -rhythm. The connections between CA3 and CA1 within the
hippocampus are almost unidirectional. The CA1 is considered a contracting system
by tuning the control parameters, which can be derived from the absence of recur-
rent connections, and the presence of negative feedback connections by inhibitory
neurons. Thus, in this case, the whole hippocampus can be viewed as a chaos-driven
contracting system.

We investigated a biology-oriented model that represents the physiological neu-
ral networks of CA1. To make a single neuron model, we used the two-compartment
model proposed by Pinsky and Rinzel [23]. In the CA1 model [24], an input to CA1
is a temporal sequence of spatial patterns, which is considered as an output of CA3.
We investigated the dynamic behavior of membrane potentials produced by the
model CA1 neurons. We found finite subsets of Cantor sets in both subthreshold and
superthreshold dynamics. The resulting set has several elements, each of which rep-
resents finite fractions of the input temporal sequence. Because the input temporal



14 I. Tsuda

sequence is chaotic (i.e., ordered but aperiodic), as its length increases, the tempo-
ral sequence contains a great variety of finite sample paths starting from different
initial patterns, because the input temporal sequence is chaotic, that is, ordered but
aperiodic. Thus, when the length becomes infinite, the set becomes a mathematical
Cantor set. Furthermore, the distribution of membrane potentials in the model CA1
neurons follows a bimodal distribution whose minimum corresponds to the single-
neuron threshold. This result suggests the possibility of decoding the information
embedded in Cantor sets via a pulse train output from pyramidal cells. However, we
do not possess a concrete method for extracting it, therefore, the decoding problem
still remains unsolved.

We also investigated the “rule dynamics” that creates the Cantor sets and found a
set of contracting affine transformations. We found a set of contacting affine trans-
formations. This finding suggests that a similar rule dynamics emerges to the one
in Iterated Function System (IFS). Therefore, one can predict that the CA1 net-
work creates a set of contracting affine transformations, by which Cantor sets are
produced, where Cantor sets encode input temporal sequences [24].

We further developed an experimental system using rat hippocampal slices. For
the input temporal sequences of patterns, we found a set of contracting affine trans-
formations in the return maps of membrane potentials of CA1 neurons [25]. We also
found a hierarchically classified pattern of membrane potentials, which seems to be
yielded by IFS dynamics [26]. Here, a hierarchy of membrane potentials means a
hierarchy of compression of the temporal sequence. Therefore, our theoretical pre-
dictions were demonstrated experimentally. The CA1 network transforms temporal
sequences into spatial patterns, where the similarity between temporal sequences
can be measured by a Hausdorff metric. In contrast, in CA3, as stated previously,
we can only measure the similarity between patterns.

4 Rhythm and Simultaneity

In this section, we discuss the simultaneity in human perception and cognition,
based on the works of Ernst Peppel [27]. This subject is crucial for a theory that con-
nects the oscillatory behaviors of neural activity with self-identity. Peppel defined a
“time window of simultaneity” as the input time width of sensory stimuli of the same
kind during which we receive these stimuli as a single sensation. For instance, an
increase in the input time width between successive click sounds given to the right
and left ears (where the duration of one click is 1 ms) allows the discrimination of
these sounds as two inputs provided at an interval greater than 4 ms. This kind of
time window of simultaneity is around 10 ms for touch, and around 20–30 ms for
vision. Thus, the time window varies according to the type of sensory stimulus. It
should be noted that this time window corresponds to the time width that allows the
perception of two successive stimuli, and differs from the time width necessary to
discriminate the specific sequence of the stimuli. The latter was estimated by Peppel
et al. as 30–40 ms, which applies to all kinds of sensory stimuli. As this time width
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corresponds to the time window necessary for identification of each stimulus, here
we call it a “time window of identity”.

Another time width necessary to identify the kind of sensory stimulus given
varies from 240 to 340 ms for auditory or visual perception, during which the
response frequency becomes a local maximum at each 30–40 ms interval. From
these observations, Peppel proposed the following hypothesis.

Hypothesis 1 (Peppel). Relaxation oscillations of ∼30 Hz in the brain synchro-
nize each other and function as the neural mechanism that underlies the judgment
of sensory stimuli.

These frequencies of oscillation corresponds to a range of slow γ -waves, which
correlate with attention, judgment, and determination of behavior [28]. This fact
suggests that γ -waves are the basis for the judgment of sensory stimuli. This kind
of function is a prerequisite for the formation of episodic memory.

5 Logic for Self-identity

What is self-identity? Identifying a matter A means differentiating A from a dis-
tinct B matter. We conceived an inference process that may underlie this act. A
possible inference process is as follows: “A is not B other than A”. According to
classical logic, the statement “A is not B other than A” is equivalent to “A is not
¬A”, where the symbol ¬ indicates negation. Thus, the statement “A is not B other
than A” is equivalent to the statement “A is A”, which can represent simultaneity
in a time domain. In other words, self-identity can be replaced by simultaneity
in a time domain, within the framework of classical logic. On the other hand,
in our context, self-identity should differ from simultaneity. In order to justify
this difference, we explicitly introduced a unit time to logic, whereby the infer-
ence process underlying logic can be represented in terms of dynamical systems
[29–31]. Here, we termed this inference process a step inference. A step infer-
ence consists of two processes: the logical process from premise to consequence,
and the substitution process of the obtained consequence with the premise; in
either or both processes, a unit time is assumed. Here, a variable is a truth value
of the statement, which takes 0 or 1; 1 for “true” and 0 for “false”. It can be
extended to take a real value in the unit interval [0, 1]. For a while, we assume
dichotomy.

Let us write down the equations of motion for simultaneity and self-identity. The
equation of motion for simultaneity is derived from the successive inference of the
statement “A is A”. The equations of motion for self-identity are derived from the
successive inference of the statement “A is not B, and B is not A”. Let A and B be
the truth values for the statements A and B, respectively. The subscript n denotes a
discrete time that represents the succession of inference.
Simultaneity

An+1 = An (1)
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Self-identity

An+1 = 1− Bn (2)

Bn+1 = 1− An (3)

or, equivalently;
An+1 = An−1 (4)

Thus, simultaneity is a special case of self-identity in the sense that Eq. (4) contains
Eq. (1). Moreover, the solution of the dynamical system for simultaneity is only
fixed points, while the solution of the dynamical system for self-identity consists of
fixed points, i.e., (A, B)= (1, 0) and (0, 1), and a period-two periodic orbit, i.e., (1, 1)
↔ (0, 0), the latter of which indicates recurrence of “true” and “false”. This means
the following. Finding a fixed point of inference is sufficient for recognition of a
matter as itself (i.e., simultaneity). On the other hand, two inference processes, such
as deriving “false” from “true” and then deriving “true” from “false” are necessary
for the recognition of a matter as itself, while discriminating from others (i.e., self-
identity).

We now proceed to a case of continuous time in a real axis and a continuous
variable representing a continuous truth value defined in a unit interval [0, 1].
Let the derived discrete dynamical systems, i.e., maps, be viewed as an Euler’s
discretization of the underlying differential equation. We assume 	t = 1.

From Eq. (1), the supposed original differential equation for simultaneity will be
as follows.

dA

dt
= 0 (5)

The solution is constant. This means that “true” is derived from the initial condition
“true” or that “false” is derived from the initial condition “false”.

In contrast, we obtained similar differential equations for self-identity.

d(A+ B)

dt
= 1− (A+ B) (6)

The asymptotic solution of A + B is unity. This means that the consequence from
classical logic A = 1 and B = 0 or A = 0 and B = 1 holds. This result coincides
with the result derived from the differentiation of Eq. (4). Therefore, we obtain the
fixed points that are equivalent to the logical consequence derived using classical
logic. In other words, the truth values in classical logic are recovered in this asymp-
totic limit of a step inference. These differential equations do not yield any periodic
orbits. It is known that classical logic does not contain “time”. From our present
consideration, this characteristic of classical logic stems from the dynamical behav-
ior in an infinite time limit in an infinitesimal time interval. In this limit, one cannot
distinguish between “simultaneity” and “self-identity”. However, one can discrimi-
nate “self-identity” from “simultaneity” by introducing a finite width of time during
which one can infer the truth of statements.
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This logical inference of differential type, which is equivalent to an inference
in classical logic, may be processed in the lateral prefrontal cortex, based on the
input sensory stimulations [32]. According to Maguire’s hypothesis, the hippocam-
pus is responsible for integrating the past, present and future. On the other hand,
in our present theory, we state that the formation of self-identity is necessary for
the sense of the present, which can be a basis of a sense of presence, where a finite
time window is prerequisite, which can be around 30 ms. Thus, the information con-
tents that are transferred from the lateral prefrontal cortex to the hippocampus will
include information on the step inference. In conclusion, we propose the following
hypothesis.

Hypothesis 2. A neural process used to correctly identify sensory stimuli requires
a finite time window of approximately 30 ms and uses an internal step-inference
process embedded in the interactive neural systems of the hippocampus, sensory
cortices, and lateral prefrontal cortex.
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Stochastic Modeling of Neuronal Responses

Barry J. Richmond

Abstract The sequence of spikes in a train is considered to be a neuronal code.
We have shown that a simple model in which the spikes are stochastically thrown
down with the probabilities governed by a rate function over time estimated from
the spike density over time. The numbers of spikes is determined by measuring the
number of spikes over the interval of interest, usually several hundred milliseconds.
By analyzing data from this model, which is instantiated by order statistics, neuronal
spike trains can be decoded instant-by-instant as they unfold over time.

Keywords Neural code · Spike trains ·Monkey cortex · Single neurons

1 Introduction

Even though fluctuations in membrane potential are the fundamental signal of single
neurons, the action potentials have been and remain a focus of attention in studies
into the neural basis of behavior because the action potentials provide the means to
transmit a signal over distances of millimeters and further (even meters from brain to
spinal cord in tall or long mammals). The sequence of action potentials is a sampling
of the membrane potential, with spikes being closer together when the membrane
potential is near the firing threshold and further apart when the membrane is farther
from the firing threshold. The membrane potential is driven by summing over the
neuron’s inputs, which themselves are most generally the consequence of action
potentials arriving at the input axonal terminals.

By accepting that the spike train represents long distance transmission of the
information encoded by the membrane potential, it is possible to simplify the com-
parison of behavior to the information encoded in spike trains, so as to overlook a
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detailed consideration of the biophysics. As a disclaimer, it must be understood that
this is not meant in any way to minimize the critical importance of the biophysics,
but rather represents a simplification that provides a tractable means for correlating
single neuronal signals and behavior.

This approach provides a simple information channel model for evaluating neu-
ronal responses. The spike train is the carrier, and the modulations of it represent
the information carried by the channel. To evaluate the information it is necessary
to learn what the code elements in the channel are and how they are modulated by
the channel inputs. Despite a considerable amount of work, the “code” is not certain.

2 Results and Discussion

It is generally agreed that the number of action potentials is a critical feature of the
code, i.e., the number of action potentials varies as a function of the conditions.
It is straightforward to establish that pattern of the spikes over time also varies as
a function of the number of spikes. The number of spikes varies across trials, and
the spikes are distributed differently through time. This difference is best illustrated
when the shapes of spike densities (a version of the peristimulus time histogram that
is well-behaved in the frequency domain) have the same number of spikes but are
different in their temporal patterns, with, for example, a burst-pause pattern for one
stimulus or condition, and a more steady firing rate for another. Nonetheless, all of
the spike trains elicited in one condition are different from the others. This suggests
a model in which the spikes are stochastic but the underlying drive is deterministic.

Our estimate of the deterministic pattern of excitation and inhibition arises using
the spike density estimated over trials. Through this procedure we make a varying
rate estimate or the probability of a spike as a function of time. In this view there is
always a stochastic aspect of spike generation. This time-varying estimate improves
with larger numbers of trials and spikes.

If we then take the spike train as an ordered set of points sampling the spike
density, we end up with a simple statistical model of spike generation. This is the
simple model described by order statistics:

hs,n,k(t) =
(

n
k

)
kFk−1(t)f (t)[1− F(t)]n−k

where hs,n,k(t) is the unconditional probability of the kth spike out of n spikes at
time t for stimulus s, f (t) is the probability of a spike at time t (i.e., the spike density
normalized to total 1), and F(t) is the cumulative probability of a spike occurring by

time t.

(
n
k

)
, that is, n!

k!(n−k)! or n choose k, is needed to make the order statistic a

properly normalized probability function summing to 1.
For the order statistic model to be manageable, we assume that rate function

over time, that is, the normalized spike density function, is deterministic. It must
arise from the interplay between excitatory and inhibitory inputs, and, for any given
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condition, we assume that this is constant. So, for example, in the primary visual
cortex, V1, it is will be related to the stimulus that is presented. In this model the
bandwidth used to construct the spike density function plays a substantial role in the
precision with which spike times are determined (after all, we are just sampling this
density function). If spikes occur with little time uncertainty from one trial to the
next, the spike density will reflect this with a steep rise. The steepness of the rise also
clearly depends on the bandwidth of the smoothing function for the spike density.
This leads to the conclusion that a smoothing function that adapts its bandwidth
locally is desirable to capture reproducible spike events.

In this model the stochastic elements are completely captured in the variability
of the spike counts across trials or episodes. This can be measured and we can use
our model to generate spike trains with the needed number of spikes (so that we
get stochastically generated spike trains). This arises by assuming that the needed
number of spikes comes from a binary process with the probabilities given by the
spike density function multiplied by the number of spikes needed in the sampling
epoch. This model can also be implemented as a spike count matched model. In
this model we take advantage of the time-rescaling theorem. We construct the spike
density function so that it maps equi-probability steps into time steps. Thus on the
probability scale all steps are equal, and generating random numbers from a uniform
distribution can be placed in the appropriate bin, that is, at the appropriate time. This
relation makes it possible to generate random numbers from a uniform process, a
straightforward procedure, and remap them into an arbitrary stochastic rate varying
point process.

With a small bit of algebra, the approach can be used to define a simple decoder,
that works millisecond-by-millisecond, whether there are spikes at any time point
or not. The fundamental equation of order statistics above gives the unconditional
probability of the kth spike in a train with n spikes. It is desirable to have the con-
ditional probability of each spike given the history of the spike train at time t, taken
over all spike trains no matter how many spikes. The probability of a spike train with
n spikes is p(n) = f (n)/

∑
n′ f (n′) where f(n) is the number of times that n spikes

occurred in the sample, and p(n) is the probability that a train with n spikes occurs.
Using this, the probability of kth spike for stimulus s across all spike counts,

hk,s(t) = ∑

n′
p(n)hk,n′,s(t). Given this, p(s|t) = p(s)h1,s(t)

∑
s
′ p(s′)h

1,s
′ (t)

is the probability of

stimulus s given the first spike at time t. This can all be done again after the first
spike, with the p(s |t ) becoming the new prior probabilities, p(s). For times with no
spikes, the probability is (1 − p(s |t)) . This, then, is a complete decoder for spikes
as they arrive or don’t, millisecond-by-millisecond. It straightforward to extend this
model to sets of neurons, but their utility is limited by the difficulty in measuring
joint spike count probability functions across neurons in experimental data. From
this approach we gain the opportunity to compare neural responses to behavioral
performance.
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Phase Transitions in Mesoscopic Brain
Dynamics – Implications for Cognition
and Consciousness

Hans Liljenström

Abstract Mesoscopic brain dynamics, typically studied with electro- and
magnetoencephalography (EEG and MEG) display a rich complexity of oscilla-
tory and chaotic-like states, including many different frequencies, amplitudes and
phases. Presumably, these different dynamical states correspond to different mental
states and functions, and to study transitions between such states could give us valu-
able insight in brain-mind relations that should also be of clinical interest. We use
computational methods to address these problems, with an objective to find relations
between structure, dynamics and function. In particular, we have developed models
of paleo- and neocortical structures, in order to study their mesoscopic neurody-
namics, as a link between the microscopic neuronal and macroscopic mental events
and processes. In this presentation, I will describe different types of models, where
the emphasis is on network connectivity and structure, but also including molecular
and cellular properties at varying detail, depending on the particular problem and
experimental data available. We use these models to study how phase transitions
can be induced in the mesoscopic neurodynamics of cortical networks by internal
(natural) and external (artificial) factors. We relate and discuss the models and sim-
ulation results to macroscopic phenomena, such as arousal, attention, anaesthesia,
learning, and mental disorders.

Keywords Cortical network models · Mesoscopic neurodynamcis ·
Oscillations · Chaos · Noise · EEG · Neuromodulation · Electrical stimulation ·
Anaesthetics · Cognition · Consciousness
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1 Introduction

Brain structures are characterized by their complexity in terms of organization and
dynamics. This complexity appears at many different spatial and temporal scales,
which in relative terms can be considered micro, meso, and macro scales. The cor-
responding dynamics may range from ion channel kinetics, to spike trains of single
neurons, to the neurodynamics of cortical networks and areas [1, 2]. The high com-
plexity of neural systems is partly a result of the web of non-linear interrelations
between levels and parts, with positive and negative feedback loops. This in turn
introduces thresholds, lags and discontinuities in the dynamics, and opens up for
unpredictable and non-intuitive behaviours of the system [3].

Typical for complex systems in general, and for the nervous system in particu-
lar, is that different phenomena appear at different levels of aggregation and spatial
(and temporal) scale. New and unpredictable qualities emerge at every level, qual-
ities that cannot be reduced to the properties of the components at the underlying
level. In some cases, there is a hierarchical structure of a simple kind, where higher
macro levels “control” lower ones (c.f. the so-called enslaving principle of Haken
[4]). However, there could also be a more “bottom-up” interpretation of systems,
where indeed the micro phenomena, through various mechanisms, set the frame for
phenomena at higher structural levels. This interplay between micro and macro lev-
els is part of what frames the dynamics of systems. Of special interest is the meso
level, i.e. the level in between the micro and the macro, as this is where bottom-up
meets top-down [3, 5].

The activity of neural systems often seems to depend on non-linear threshold
effects, where microscopic fluctuations may cause rapid and large effects at a macro-
scopic level. There is a dynamical region between order and pure randomness that
involves a high degree of complexity and which seems characteristic for neural pro-
cesses. This dynamics is very unstable and shifts from one state to another within a
few hundred milliseconds or less, typical for chaotic (or pseudo-chaotic) systems.

Despite at least a century of study, the functional significance of the neural
dynamics at the different levels is still not clear. Very little is also known about the
relation between activities at the different levels. However, it is reasonable to assume
that different dynamical states correlate with different functional or mental states.
This is also guiding our research and will be discussed more in this presentation.

By studying various kinds of transitions in the brain dynamics, we may be able
to reveal fundamental properties of the brain and its constituents, also relating to
mental processes and transitions. Such transitions could, for example, involve var-
ious cognitive levels and conscious states, which could be of interest, not only to
neuroscience, but to psychology, psychiatry and medicine.

2 Mesoscopic Brain Dynamics

The main focus here is on phase transitions at the mesoscopic level of neural sys-
tems, as it constitutes a well-studied bridge between neural and mental processes
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[5]. In our description, mesoscopic brain dynamics refers to the neural activity or
dynamics at intermediate scales of the nervous system, at levels between neurons
and the entire brain. It relates to the dynamics of cortical neural networks, typi-
cally on the spatial order of a few millimetres to centimetres, and temporally on the
order of milliseconds to seconds. This type of dynamics can be measured by meth-
ods, such as ECoG (electrocorticography), EEG (electroencephalography) or MEG
(magnetoence-phalography).

We consider processes and structures studied with a microscope or microelec-
trodes as a microscopic scale of the nervous system. It could, for example, refer to
ion channels or single neurons. The macroscopic scale, in this picture, corresponds
to the largest scale possible to measure with regard to brain activity. Typically, this
could concern the dynamics of maps and areas, usually measured with PET or fMRI,
or other brain imaging techniques.

Mesoscopic brain dynamics with its transitions, is partly a result of thresholds
and the summed activity of a large number of elements interconnected with positive
and negative feedback. It is also a result of the dynamic balance between opposing
processes, influx and efflux of ions, inhibition and excitation etc. Such interplay
between opposing processes often results in (transient or continuous) oscillatory
and chaotic-like behaviour [2, 6–8].

The mesoscopic neurodynamics is naturally influenced by the activity at other
scales. For example, it is often mixed with noise, generated at a microscopic level by
spontaneous activity of neurons and ion channels. It is also affected by macroscopic
activity, such as slow rhythms generated by cortico-thalamic circuits or neuromod-
ulatory influx from different brain regions. Effects of arousal, attention, or mood,
through neuromodulation or other means, could be seen as a top-down interaction
from macroscopic activity to mesoscopic neurodynamics.

3 Computational Methods

A computational approach can be seen as a complement to experimental methods
in understanding the complexity of neural systems and processes. Computational
methods have since long been used in neuroscience, perhaps most successfully for
the description of action potentials [9]. When investigating interactions between dif-
ferent neural levels, computational models are essential, and may, in some cases, be
the only method we have. In recent years, there is also a growing interest in applying
computational methods to problems in clinical neuroscience, with implications for
psychology and psychiatry [5, 10–14].

In our research, we use a computational approach to address questions regard-
ing relations between structure, dynamics, and function of neural systems. Here, the
focus is on understanding how transitions between different dynamical states can be
implemented and interpreted. For this purpose, I present different kinds of compu-
tational models, at different scales and levels of detail, depending on the particular
issues addressed. The aim is to use a level of description appropriate for the problem
addressed.
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4 Neural Network Models with Phase Transitions

In this presentation, I will give a few examples of how computational models can
be used to study phase transitions in mesoscopic brain dynamics. As examples of
internally/naturally induced phase transitions, I present some models with intrinsic
noise, neuromodulation, and attention, which in fact, all may be related. In particu-
lar, neuromodulation seems to be closely linked to the level of arousal and attention.
As examples of externally/artificially induced phase transitions, I discuss electrical
stimulation. Both as electric shocks applied directly onto the olfactory bulb and cor-
tex in an experimental setting with animals, and as electroconvulsive therapy applied
in a clinical situation in treatment of psychiatric disorders. The final example is
a network model testing how certain anaesthetics may act on the brain dynamics
through the selective blocking of ion channels.

In all cases, the mesoscopic scale of cortical networks is in focus, with an empha-
sis on network connectivity. The objective is to investigate how structure is related
to dynamics, and how the dynamics at one scale is related to that of another. I will
also discuss how structure and dynamics are related to function, with the general
notion being that mesoscopic brain dynamics reflects mental states and processes.

Our model systems are paleocortical structures, the olfactory cortex and hip-
pocampus, as well as neocortical structures, exemplified by the visual cortex. These
structures display a complex dynamics with prominent oscillations in certain fre-
quency bands, often interrupted by irregular, chaotic-like activity. In many cases, it
seems that the collective dynamics of the cortex after external stimulation is a kind
of “resonance” between network connectivity (with negative and positive feedback
loops), neuronal oscillators and external input.

5 Discussion

Models should always be adapted to the problem they are supposed to address,
with an appropriate level of detail at the spatial and temporal scales considered. In
general, it could be wise to apply Occam’s razor in the modelling process, aiming
at a model as simple as possible, and with few (unspecified) parameters. For the
brain, due to its great complexity and our still rather fragmented knowledge, it is
difficult to find an appropriate level of description and which details to include. Even
though the emphasis may be put at different levels, the different models can often
be regarded as complementary descriptions, rather than mutually exclusive. At this
stage, it is in general not possible to say which models give the best description, for
example when trying to link neural and mental processes, in particular with regard
to the significance of phase transitions.

While our models are often aimed at mimicking specific cortical structures and
network circuitry at a mesoscopic level, in some cases there is less realism in
the connectivity than in the microscopic level of single neurons. The reason for
this is that the aim in those cases has been to link the neuronal spiking activity
with the collective activity of inter-connected neurons, irrespective of the detailed
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network structure. Model simulations then need to be compared with spike trains
of single neurons, as captured with microelectrodes or patch clamp techniques. In
cases, where the network connectivity is in focus, the network nodes may represent
large populations of neurons, and their spiking activity is represented by a collective
continuous output, more related to LFP or EEG activity.

Even though attempts have been made, it is a struggle to include several levels
of descriptions in a single model, relating the activity at the different levels to each
other, [5, 10, 12, 14]. In fact, relating different spatial and temporal scales in the
nervous system, and linking them to mental processes can be seen as the greatest
challenges to modern neuroscience.

In this presentation, I have focused on how to model phase transitions in meso-
scopic brain dynamics, relating it to structural and physiological properties, also
trying to relate to some functional aspects.

The main question concerns the functional significance of the complex cortical
neurodynamics described and simulated above, and in particular, the significance of
the phase transitions between various oscillatory states and chaotic or noisy states.
I challenge the rather common view that the electrical activity of the brain, as cap-
tured with EEG is an epiphenomenon, without any information content or functional
significance.

Instead, our computer simulations support the view that the complex dynamics
makes the neural information processing more efficient, providing a fast and accu-
rate response to external situations. For example, with an initial chaotic-like state,
sensitive to the input signal, the system can rapidly converge to a limit cycle attrac-
tor memory state [16, 17, 19]. Perhaps the most direct effect of cortical oscillations
could be to enhance weak signals and speed up information processing, but it may
also reflect various cognitive functions, including segmentation of sensory input,
learning, perception, and attention.

In addition, a “recruitment” of neurons in oscillatory activity can eliminate the
negative effects of noise in the input, by cancelling out the fluctuations of individual
neurons. However, noise can also have a positive effect, as will be discussed briefly
below. Finally, from an energy point of view, oscillations in the neuronal activity
should be more efficient than if a static neuronal output (from large populations of
neurons) was required.

The intrinsic noise found in all neural systems seems inevitable, but it may also
have a functional role, being advantageous to the system. What, then, could be the
functional role of the microscopic noise on the meso- and macroscopic dynamics?
What, if any, could be the role of spontaneous activity in the brain? A traditional
answer is that it generates base line activity necessary for neural survival, and that it
perhaps also brings the system closer to threshold for transitions between different
neurodynamical states. It has also been suggested that spontaneous activity shapes
synaptic plasticity during ontogeny, and it has even been argued that spontaneous
activity plays a role for conscious processes [18, 19].

Internal, system generated fluctuations can apparently create state transitions,
break down one kind of order to make place for and replacing it with a new
kind of order. Externally generated fluctuations can cause increased sensitivity in
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certain (receptor) cells through the phenomenon of stochastic resonance (SR)
[1, 17, 20, 21]. The typical example of this is when a signal with the addition of
noise overcomes a threshold, which results in an increased signal to noise relation.

Indeed, simulations with our paleocortical model demonstrate that an increased
neuronal noise level can reduce recall time in associative memory tasks, i.e. the
time it takes for the system to recognize a distorted input pattern as any of the stored
patterns. Consonant with SR theory, we have found optimal noise values for which
the recall time reached a minimum [16, 17].

In addition, our simulations also show that neuromodulatory control can be used
in regulating the accuracy or rate of the recognition process, depending on current
demands. Apparently, the complex dynamics of the brain can be regulated by neu-
romodulators, and perhaps also by noise. By this flexible control the neural system
could be put in an appropriate state for the right response-action dependent on the
environmental demand.

The kind of phase transitions discussed here may reflect transitions between dif-
ferent cognitive and mental levels or states, for example corresponding to various
stages of sleep, anaesthesia or wake states with different levels of arousal, which in
turn may affect the efficiency and rate of information processing.

I believe a combination of computational analysis and modeling methods of the
kind discussed here can serve as an essential complement to clinical and experi-
mental methods in furthering our understanding of neural and mental processes.
In particular, when concerning the inter-relation between structure, dynamics and
function of the brain and its cognitive functions, this method may be the best way
to make progress. The study of phase transitions in the brain dynamics seems to be
one of the most fruitful approaches in this respect.
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Anatomical and Topological Foundations of
Cognitive Neurodynamics in Cerebral Cortex

Walter J. Freeman

Abstract Perception requires action of the body into the environment in search of
information that the brain needs to optimize engagement of its body with the world.
Actions to achieve maximum grip are implemented in sequential motor command
transmitted by the limbic system into the brain stem. Simultaneously preaffer-
ence sends efference copies to the sensory cortices that activate landscapes of
chaotic attractors, which serve to predict the sensory consequences of the impending
actions. The microscopic sensory impact delivers trains of action potentials to the
primary sensory areas. The trains select relevant basins of attraction; selected attrac-
tors send wave packets into the limbic system, where they are integrated in time and
space into a multisensory percept that is re-transmitted to all sensory areas as effer-
ence copies. The action-perception cycle is conceived topologically as a helix for
predictive hypothesis-testing and knowledge-accrual. The cycle categorizes sensory
inputs, which then choose appropriate actions.

Keywords Action-perception cycle · Chaotic dynamics · Electrocorticogram
(ECoG) · Intentionality · Knowledge · Preafference · Phase transition · Topology

1 Introduction

It is instructive to ask why plants have no brains. With rare exceptions plants stay
where their seeds fell; animals browse. Their search for food and shelter requires
musculoskeletal apparatus, which in turn requires a fast-acting communication net-
work to coordinate the parts. The network is useless without centralized direction
and control, which is provided by a brain. The roles of the brain are to sense and
assess the current state of its surround that includes its body; to project current trends
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and assess multiple future probabilities of states of deprivation or satiety; to select
that state which is most desirable; to construct a hierarchy of proposed actions con-
stituting a plan to achieve that state; to predict the changes in sensory stimuli that
will be consequences of the actions; and to formulate commands to the motor sys-
tems and corollary discharges to the sensory systems in sequences as the selected
course of actions unfolds. This is what brains do. The question that neurobiologists
try to answer is, how do they do it?

Fortunately the same basic mechanisms hold for both simple behaviors, such as
a rat pressing a bar for food, and complex behaviors, such as a farmer negotiating
a bank loan and a statesman negotiating a treaty for world peace. All goal-oriented
behaviors involve perception and action in cycles, so that each perception becomes
the basis for the next action, and each action leads to new perception (Fig. 1).
Cognitivists commonly break the loop outside the body in order to study stimulus-
response relations in the paradigms of classical and operant conditioning, because
they afford efficient behavioral control [1] Philosophers open the loop inside the
brain by conceiving action as leading to perception, because the primacy of inten-
tion captures the spontaneity and inner-directedness of self-organized behavior [2].
Neurobiologists combine both perspectives in their efforts to learn how popula-
tions of brain neurons coordinate their activities to produce behaviors that engage
brain, body, and environment. These behaviors are intentional in one of three senses:
the psychological sense that behavior is goal-directed, or the cognitivist sense that
brains connect symbols with the objects they represent (aboutness [3]), or the
phenomenological sense that an organism brings its life history to each task [4].

These three meanings of the word intentional are the product of three differ-
ing paradigms [5] that comprise current neuroscience: physiological psychology,
which is dominated by stimulus-response determinism; computational neuro-
science, which relies on explanations using rule-driven symbol manipulation by
neurons in networks; and dissipative brain dynamics [6] which conceives brain
activity in terms of chaotic patterns constructed by self-organized populations of
neurons [4, 7, 8]. The paradigms differ in classic experiments, rules of proof and evi-
dence, and the meanings of shared terminology, so they cannot disprove one another,
but they can and do complement each other. None is wholly true or false; each is
useful in one or another area of neuroscience. The question is: which paradigm is
applicable to which dynamics?

My aim here is to describe the flows of neural activity through the vertebrate
brain in the most general terms, which is the topology of neurodynamics based on
functional anatomy. Barrett [9] wrote: “ . . . the answer to the question of what is
the most fundamental physical description is that it is a description of the topol-
ogy of the situation. With the topology known, the group theory description is
justified and equations of motion can then be justified and defined in specific
differential equation form. If there is a requirement for an understanding more
basic than the topology of the situation, then all that is left is verbal description
of visual images” (p. 3). By stepping back from the bench work of collecting
and modeling data one can ask, what are the irreducible differences among alter-
nate descriptions of the neurodynamics of cognition? In particular I will contrast
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environmental determinism as posited by the reflexive and computational paradigms
with the paradigm of self-determinism by chaotic brain dynamics [8] and describe
topological differences.

2 Anatomy and Topology Among Sensory and Limbic Cortices

There is no serious doubt that the forebrain is the organ of intentionality. Reflex
responses to sensory input persist after severance of the forebrain from the brain
stem, and while the decerebrate animal can walk, trot, gallop and run when placed on
a treadmill, it cannot go anywhere intentionally and will starve to death unless food
is placed in its mouth triggers reflex chewing. The disconnected cerebrum above the
cut usually sleeps. Analyses of the brains of the simplest vertebrates show that three
cortical areas in each cerebral hemisphere (Fig. 1) suffice for the simplest intentional
behaviors: sensory (mainly olfactory), motor (mainly control of locomotion and the
jaws), and associational (the hippocampal formation providing spatial and tempo-
ral orientation). The global interaction of these three cortices in conjunction with
groups of neurons comprising the basal ganglia in the interior of the hemisphere
form the limbic lobe, which generates an evolving attentive state that constructs the
latent possibilities of future behaviors, from which a decisive selection is made by
the dynamics of the interactions of brain, body and environment. Humans and other
mammals have more complex brains; however, the newly added parts – the neocor-
tex, neostriatum, and neothalamus – are in crucial respects mere elaborations on the
topology of flows within the limbic system.

A topological representation of the forebrain (Fig. 2) is derived by showing that
the sensory and motor systems operate in parallel in controlling the body and in
sensing the world, so the systems are grouped into a motor module and a sensory
module. The multisensory integration in mammals is performed in the entorhinal

Fig. 1 Each cerebral hemisphere of the simplest brain of vertebrates has a sensory lobe (mainly
olfactory), a motor lobe controlling the jaws and body (pyriform), and a hippocampal formation
doing spatiotemporal integration of intentional behaviors. From [5]
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Fig. 2 A schematic shows the topology of the flow of neural activity in the construction of inten-
tional behavior as a collection of nested circles. The modalities of sensation and motor output are in
parallel and collapsed each in a single node. The two main components of the limbic system form
the “space-time loop” that provides orientation in space and sequencing of episodic memories.
Closure of the action-perception cycle is through the body and the environment. In engineering
models these loops are treated as feedback control loops; physiologically they are homeostatic
loops; topologically they are circles. From [5]

cortex, which provides the main input to the hippocampus. It also relays hip-
pocampal output to all sensory and motor areas in preafference, which differs from
proprioception that operates through the body and from exteroception that operates
through the world. All of these loops can be described topologically as circles. This
description is based on studies of the electrocorticogram (ECoG) that document the
wide distribution of neural activity in the brain preceding and accompanying inten-
tional actions [4], and on the necessity for integration of brain activity and behavior
over time and space. For example, when a hungry organism searches for food, it
does so in a sequence of moves. At each move it samples the world by sniffing,
listening and looking so as to detect and classify stimuli in all modalities, evalu-
ate their strengths, and hold these values in short-term memory. At the next move,
it takes new samples that must be processed and compared with previous sample
strengths stored in memory. The organism must also remember where it was at the
last sample, what motor command was issued, whether the action commanded actu-
ally took place, and where the action was intended to bring the body in respect to
past locations and notable landmarks.

These operations are the well-known functions of the hippocampus that provide
spatial orientation and temporal sequencing by its cognitive map and short-term
memory. The organism needs all this information in integrated form in order to
determine what to do next: continue, go left, go right, or reverse. This example is
about as simple as one can conceive for a goal-directed action, so it is useful as a
basis for diagramming the topology before getting deeper into the technical details
of how brains use their bodies to perform searches so rapidly and effectively.
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3 The anatomy and Topology of Information Flows in Sensation

Full understanding of the issues that surround the foundations of computational and
intentional neurodynamics requires a still deeper level of description of the stage at
which sensory input is processed by sensory cortex, leading to perception. Again
the simplest model is provided by the olfactory system, in which the receptor axons
synapse on the olfactory bulbar projection neurons; the axons of those neurons
synapse on the pyramidal cells in the pyriform cortex. Only two synapses inter-
vene between odorant receptors and the pyriform output to the brain stem, but with
a major topological difference in connections between the two synaptic layers. The
connection from receptors to bulb provides topographic mapping (Fig. 3), like that
in all other exteroceptor systems. The connection from bulb to pyriform is through
a divergent-convergent projection that enacts a spatiotemporal integral transform.
Every bulbar neuron projects broadly to the cortex; every receiving neuron gets
input from a broad distribution of bulbar neurons. While input to the bulb is carried
by axons conveying amplitudes by pulse frequencies, bulbar output is expressed in
distributions of pulse densities. The only activity that does not undergo smoothing
and attenuation by this transform is that which has approximately the same instan-
taneous frequency and phase in the entire bulb. That activity is restricted to what the
bulb constructs within itself. Sensory evoked activity lacks this spatial coherence in
response to reception of input by the cortex, so it is attenuated by smoothing in the
transmission of cortical output.

Fig. 3 The geometry is schematized of the transition from sensation to perception. The anatomical
projection of the olfactory receptors to the bulb provides the basis for topographic mapping of input
onto the bulbar surface. The bulbar projection neurons broadcast their output to widely distributed
cortical neurons, which integrate pulses from widely distributed bulbar neurons. This pathway
performs a continuous spatiotemporal integral transformation resembling that of a holograph but
without an inverse and with irretrievable loss of information through many-to-one convergence
and smoothing, which are necessary for abstraction. Neocortical pathways have multiple relays
intervening between receptor and cortex, but with preservation of topographic mapping to and
to some extend beyond the first cortical synapse, but with divergence-convergence there and
thereafter
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Fig. 4 Left: The topology is shown of the transition from sensation to perception. Two models
for neural information processing are compared: NIP and IBD. The key operation in NIP is time-
locked averaging (∗) of sequential patterns. Each sampling is initiated by an input CS; transmission
is feedforward. The topological representation is a line segment. Right: The key operation in IBD
is the phase transition (#), through which a selected pattern is created from knowledge Kn-1” and
modified by incorporation of the new sensory information In3 that up-dates the knowledge of the
stimulus and its meaning [1] to Kn”. The action-perception cycle is determined to be an open, feed-
forward cycle in time and neither an arc nor a homeostatic feedback loop. The topology is a helix
with time along the axis. Convergence to an attractor is many-to-one, irreversible, information-
destroying; hence the convergence constitutes a topological obstruction. There is no going back in
time

The premise for both stimulus-response and computational models of cogni-
tion is that sensory stimuli provide information that is extracted by the specialized
sensory receptors and is injected through relays into cortex by trains of action
potentials. There it is postulated to be further processed, stored, and retrieved
for comparison with fresh information as the basis for stimulus classification and
decision-making. The information in sensory cortical output is thought to be deliv-
ered to motor cortices, from which it is relayed to the musculoskeletal system for a
response, which may or may not invoke reinforcement. The topology of the flow is
a line segment (Fig. 4, NIP); in this sense these are linear models.

The evidence comes largely from action potentials that have been recorded from
neurons along pathways from receptors to the sensory cortices and within the cor-
tices. The evidence is commonly interpreted as showing that the features of stimuli
are represented by neural firings of feature detector neurons, which are combined by
averaging after phase locking of the trains of action potentials (feature binding) that
represent objects [10] This model requires the assumption of stationarity and fixity
of the firing frequency at which the phases are defined, so that responses can be aver-
aged (∗ in Fig. 4, NIP) over multiple presentations. Averaging reduces the variance
caused by the on-going background activity of cortex, which is treated as ‘noise’.
However, the background activity is not stationary [11]. Furthermore sensory cor-
tices do not have the neural machinery required to accumulate multiple responses



Anatomy and Topology of Cognition 37

over repeated trials and average them. The ergodic hypothesis, that the output of
a population of neurons at any one moment can be represented by the output of
any neuron observed sufficiently often, does not apply to feature detector neurons.
They are not identical like molecules, nor do they function in autonomous isolation.
Thus stimulus-dependent information processing works well to model information
from receptors (Ino) to cerebral cortex (In3), but they leave a large gap (∗ – ∗ in
Fig. 4,) between the cortical activity of single cells driven by stimuli (Inx) and the
information in conditioned responses to conditioned stimuli (Inz).

4 The Anatomy and Topology of Flows in Perception

That gap can be filled by a model that has been derived using intentional brain
dynamics (Fig. 4, IBD) based on recordings of the patterns of dendritic field
potentials (the electrocorticogram, ECoG [12, 13]) in sensory cortical responses
to conditioned stimuli. These patterns lack the invariance with respect to stimuli
that the feature-binding hypothesis requires. Instead the observed patterns change
with the history of reinforcement and the context in which the stimuli are received
[11, 13–15]; their information content is defined not solely by the information in
the stimulus but by context and experience with reinforcements. The memory of
the experience is embedded in the rich texture of modified synapses distributed
broadly in each sensory cortex. Two synaptic connectivity patterns are inferred
from measurement and classification of spatial patterns of amplitude modulation
(AM) of carrier waves in the gamma range [7]. An immediate change in pattern is
observed during acquisition of a conditioned response (CR) to a reinforced condi-
tioned stimulus (CS). That early change manifests the construction in sensory cortex
of a Hebbian nerve cell assembly by strengthening the connections of co-activated
neurons on each CS presentation and building a correlation map over multiple trials.
The assembly thereafter provides for generalization to the class of the CS over any
combination of activated receptors. A delayed change appears one or more days later
by consolidation, as revealed by the further evolution of the AM pattern to a new
and more stable classifiable form, in which all cortical neurons participate, either by
reducing or increasing their firing rates in the construction and maintenance of the
AM pattern covering the entire sensory cortex.

The delayed change manifests the construction by synaptic modification of a
chaotic attractor in the state space of cortical dynamics [7, 8]. The Hebbian assembly
defines the basin of attraction and provides the synaptic connection path to access
the attractor. The widely distributed modified synapses embody the knowledge
(Kn”, Fig. 4) that the cortex holds in memory about the stimulus. The observation
On” of the AM patterns provides access to the neural activity in which the knowl-
edge is expressed. Measurement of the AM patterns gives the numbers by which
the information (In”) used for classification is derived. The important point here
is that sensory information (Ino to In3) is absorbed by cortex into its knowledge
base, so that the information (In”) that emerges from cortex is unique to each sub-
ject and cannot be derived logically from the information (Ino) that was introduced
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through the sensory receptors. Each understanding (Kn”) results from the construc-
tion of new information from prior knowledge (Kn – 1) by expenditure of metabolic
energy in cortex, so that the quantity of information in In” can greatly exceed that
in In despite losses from generalization, abstraction, and smoothing.

Each CS that a subject can discriminate accesses a chaotic attractor and its cor-
responding AM pattern [8]. When the subject searches for information by an act of
observation, a landscape of attractors is pre-activated by the limbic system through
preafference (Fig. 2). The landscape embodies the set of predicted outcomes of the
act. The CS selects the basin of the appropriate attractor by exciting its Hebbian
assembly, which initiates the construction of an AM pattern using the stored knowl-
edge about the CS (Kn – 1”) that is up-dated by the incoming information (In3)
to the latest knowledge (Kn”). The next input In3 that up-dates Kn” advances the
knowledge to Kn + 1”, with accompanying changes from On − 1” through On” to
On + 1” and from In − 1” through In” to In + 1”. This topological representation
shows that the action-perception cycle is not a closed feedback loop. It is a predic-
tive, open, feedforward cycle in the form of a helix with advancement along its axis
in time.

The linear models suffice to describe the feedforward dynamics of the sensory
input from receptors (Ino) to cortex (In3), and also to describe the feedforward
transmission of motor output, but they must be complemented by the homeostatic
feedback loops shown in Fig. 2. The most complex and crucial step in the model of
intentional dynamics is the transition that takes place upon the injection of recep-
tor axon input pulses into the olfactory bulb (Fig. 3). At this point the flow of
microscopic activity that is measured by pulse frequencies on axons selected by
the CS is organized by the formation of the mesoscopic AM pattern. That con-
struction is initiated by a break, a discontinuity in the ECoG caused by the flow
of dendritic current observed in brain waves, which is labeled phase transition
[11] in Fig. 3 and signified by (#) in Fig. 4. The flow diagram there highlights
serial processing in steps, which are sequences of temporally discrete AM patterns
in frames. In this respect the information processing can be described as “cine-
matographic” [16] in contrast to the common assumption in models based on unit
recording and the statistics of point processes that brain dynamics is continuous in
time. Each frame is introduced by an abrupt change in cortex by which an orderly
pattern emerges from disorganized, chaotic activity [8]. The change is compara-
ble to the phase transition in a physical medium, by which a vapor condenses into
a liquid with reduction in degrees of freedom upon the emergence of order from
chaos [7, 11].
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Metastability of Mean Field Neuropercolation –
The Role of Inhibitory Populations

Robert Kozma and Marko Puljic

Abstract Critical properties of dynamic models of neural populations are studied.
Based on the classical work of Erdős-Rényi on the evolution of random graphs and
motivated by the properties of the cortical tissue, a new class of random cellular
automata called neuropercolation has been introduced recently. This work analyzes
the role of inhibitory populations in generating multistable dynamics near criticality.
The results are interpreted in the context of experimentally observed meta-stable
behavior in the cortex.

Keywords Random graphs · Cellular automata · Neuropercolation ·
Cortex ·Multistability

1 Introduction

Experimental studies indicate that intermittent synchronization across large corti-
cal areas provides the window for the emergence of meaningful cognitive activity
in animals and humans [1–3]. In neural tissues, populations of neurons send elec-
tric currents to each other and produce activation potentials observed in EEG
experiments. While single unit activations have large variability and do not seem
synchronous, the activations of neural groups often exhibit synchrony. Various stud-
ies have been aimed at the development of models that interpret these experimental
findings. Successful approaches include ordinary differential equations with dis-
tributed parameters and partial differential equations; see, e.g., [4, 5]. Alternative
models are based on neuropercolation, which is the objective of this work. Our work
is based on the mathematical theory of random graphs, where the process noise and
connectivity density are order parameters instantiating state transitions [6, 7]. Earlier
works showed the critical role noise plays in the generation of phase transitions in
neuropercolation models [8, 9]. Neuropercolation models improve understanding

R. Kozma (B)
Department of Mathematical Sciences, The University of Memphis, Memphis, TN 38152, USA
e-mail: rkozma@memphis.edu

41R. Wang, F. Gu (eds.), Advances in Cognitive Neurodynamics (II),
DOI 10.1007/978-90-481-9695-1_6, C© Springer Science+Business Media B.V. 2011



42 R. Kozma and M. Puljic

of the relationship between the system’s stochastic components and its emergent
collective behavior. In this work we study neuropercolation with populations of
excitatory and inhibitory units. Various configurations are used to derive conditions
for the onset of phase transitions and multistable oscillations near criticality. The
conclusions are beneficial for the interpretation of multichannel EEG data obtained
in human cognitive experiments.

2 Overview of Mean-Field Neuropercolation

Standard percolation theory has been an active area of research at the interface
of probability theory, combinatorics and physics [10]. Many percolation problems
exhibit phase transitions with critical probability pcrit. Phase transitions indicate that
for p less than pcrit only finite clusters exist, and for p > pcrit infinite clusters almost
surely exist. Here we focus on mean field neuropercolation models following [11].
Let Λ denote the neighborhood of the point of origin 0 = (0, . . . , 0), which is finite
subset of Z

d. Let p : 2Λ→ [0, 1] be a function that assigns for each subset S ⊆ Λ a
probability pS. Assume pS depends only on the cardinality of S and whether or not
the site itself is active (z ∈ S), which are called isotropic models. We write p(0)

r in
place of pS when |S| = r and z /∈ S and p(1)

r when |S| = r and z ∈ S. The model
is fully isotropic if p(0)

r = p(1)
r = pr for all r. In this case, the site itself is treated

on the same basis as its neighbors. Finally, we call an isotropic model symmetric if
p(1)

r = 1− p(0)
|Λ|−r for all r.

In the mean field model, instead of taking |Λ| − 1 specified neighbors, we take
|Λ| − 1 elements of the grid at random (with replacement). It is clear that the mean
field model does not depend on the topology of the grid, and the only information
of relevance in Xt is given by its cardinality |Xt|. We define xt to be |Xt|/N where
N is the size of the finite grid or torus. Thus xt ∈ [0, 1] gives the density of points in
Xt. If there are N points in the d-dimensional torus then in the mean field model xt

is given as a random process [11]:

Nxt+1 = |Xt+1| = B(Nxt, f (1)
m (xt))+ B(N(1− xt), f (0)

m (xt)) (1)

Here B(k, p) is a binomial random variable giving the sum of k independent
Bernoulli random variables, each of which is 1 with probability p. Depending on
the actual form of functions f 0/1

m (x), the stochastic process x(t) can have various
dynamics. It has been shown in [11] that the mean field model gives at least one
fixed fixed point, and can have other fixed points, limit cycles and strange attractors.
For sufficiently large lattices xt is normally distributed. The mean value is given by:

fm(x) = x f (1)
m (x)+ (1− x) f (0)

m (x) =
∑

r

(|Λ|
r

)
prxr(1− x)|Λ|−r, (2)
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where pr = (rp1
r + (|Λ| − r)p0

r )/|Λ|. Let us consider the symmetric fully isotropic
mean field model on the 2-dimensional lattice. It can be shown that there is a stable
fixed point for pc < p ≤ 0.5, while there are two stable and an unstable fixed
points for p < pc. Here pc is the critical value of probability p. The fixed point is
determined by the condition that xt+1 = fm(xt). Using the majority update rule in
evaluating Eq. (2), we readily arrive at the condition:

x = (1−p)(
�|Λ|/2�∑

r=0

(|Λ|
r

)
x|Λ|−r(1− x)r)+p(

|Λ|∑

r=�|Λ|/2�+1

(|Λ|
r

)
x|Λ|−r(1− x)r). (3)

On the 2-dimensional lattice, the condition for stable solution is readily obtained as
p = 0.5− 2|Λ|−2/(|Λ|( |Λ|−1

(|Λ|−1)/2

)
). After substituting the value x = 0.5 at criticality,

considering |Λ| = 5, we get pc = 7
30 . Near the critical point, the density versus p

relationship approximates the following power law behavior with very good accu-
racy: |x − 0.5| ∝ (pc − p)β , where β ≈ 0.5. Figure 1 illustrates the stable density
values as solid lines according to Eq. (3). Density level 0.5 is the unique stable
fixed point of the process above the critical point pc ≤ p, while it becomes unstable
below pc.
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Fig. 1 Activation density x of the mean field model as the function of noise level p. Solid line:
stable fixed point, dash – unstable fixed point; critical probability pc = 7/30
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3 Inhibition in Mean Field Approximation

Inhibition is modeled by replacing a connection of an excitatory node by a link
from a node from the inhibitory layer. In the case of inhibition, the majority rule is
modified as follows. If the inhibitory node is inactive at a certain time instant, its
effect gives zero input to the excitatory node into which it has a projection. On the
other hand, if the inhibitory node is active, it reduces by one unit the total activation
calculated by the summation of the excitatory neighbors of the given node. In the
presence of inhibition, the maximum value of sum of neighbors activation is reduced
by 1, so the chance that the majority rule produces active site at the next iteration in
the excitatory layer is reduced.

First it is assumed that the inhibitory layer is active or inactive independently
of the condition of the excitatory layer. This assumption allows to derive analytical
expressions for the fixed points. Later this assumption will be relaxed in numerical
studies. Using the independence assumption, we modify the condition of fixed point
in mean field approximation without inhibition, as given by Eq. (3). The modified
equation for the fixed points of the mean field model, in the presence of inhibition
writes:

x = (1− β)[(1− p)(
∑�|Λ|/2�

r=0

(|Λ|
r

)
x|Λ|−r(1− x)r)

+p(
∑|Λ|

r=�|Λ|/2�+1

(|Λ|
r

)
x|Λ|−r(1− x)r)]

β[(1− p)(
∑�|Λ|/2−1�

r=0

(|Λ|−1
r

)
x|Λ|−r−1(1− x)r)

+p(
∑|Λ|−1

r=�|Λ|/2�
(|Λ|−1

r

)
x|Λ|−r−1(1− x)r)].

(4)

The term with factor 1 − β describes the contribution of sites without inhibition,
while the term with β is the modified contribution in the presence of inhibition
[12]. Eq. (4) gives the fixed point value of x as the function of p and β. Results
of numeric analysis are illustrated on Fig. 2. One can see the drastic change of
the solutions near criticality as compared to Fig. 1. In the absence of inhibition
β = 0 we observe 2 stable and one unstable fixed points, while the behavior is
more complex when β > 0 and the stable and unstable fixed points are intertwined.
Evaluations with more detailed inhibitory models show the occurrence of additional
fixed points leading to multistability and to the onset of oscillatory behaviors.

4 Discussion and Conclusions

Random cellular automata have been proven to be very useful tools for modeling
cortical neurodynamics. Using the concept of Freeman K models, the implemen-
tation of K0 and KI sets has been successfully completed in recent years using
neuropercolation models [8, 11]. In a single layer KI set, mutual excitation of
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Fig. 2 Activation density x of the mean field model as the function of noise level p. Different
curves correspond to increasing beta from 0 to 1 with increments 0.1

excitatory nodes provides the sustained broad-band activity. The activity of a sin-
gle excitatory layer is self-stabilized by a non-zero point attractor, giving rise to
very broad band noise. Neuropercolation models display complex behaviors which
are difficult to analyze rigorously. Computer simulations of large-scale lattices have
been used successfully to study lattice dynamics in this case.

As a next step, the effect of inhibitory populations has been analyzed using com-
puter simulation of KII sets [12]. The results demonstrate the presence of two-step
transition to criticality, which has been thoroughly analyzed using finite size scal-
ing theory. In the coupled layers with appropriate topology and noise level, the
inhibitory layer contributes negative feedback, leading to narrow-band oscillations.

The present work gives a theoretical approach to study narrow-band oscillations
in neuropercolation models of KII sets. It is shown that the system can exhibit
multistable behavior leading to the onset of narrow-band oscillations. Quantitative
evaluation of the critical probability and other dynamical properties of neural pop-
ulations indicate the advantages of the introduced neuropercolation model in the
interpretation of phase transitions in cortical tissues.
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Spontaneous Low-Frequency Fluctuation
Observed with Functional Magnetic Resonance
Imaging as a Potential Biomarker
in Neuropsychiatric Disorders

Yuan Zhou, Kun Wang, Yong Liu, Ming Song, Sonya W. Song,
and Tianzi Jiang

Abstract As functional magnetic resonance imaging (fMRI) studies have yielded
increasing amounts of information about the brain’s spontaneous activity, they have
revealed fMRI’s potential to locate changes in brain hemodynamics in neuropsychi-
atric disorders. In this paper, we review studies that support the notion that changes
in spontaneous low-frequency fluctuation (SLFF) observed by fMRI can be used
as potential biomarkers for diagnosis and treatment evaluation in neuropsychiatric
disorders. In this paper, we review the methods used to study SLFF from individual
region of interest analysis, to local network analysis, to whole brain network anal-
ysis. We also summarize the major findings associated with major neurological and
psychiatric disorders obtained using these methods.

Keywords Resting-state fMRI · Low frequency fluctuation · Functional
connectivity · ICA · Alzheimer’s disease · Schizophrenia

1 Introduction

Accurate diagnosis of neuropsychiatric disorders presents a major challenge for psy-
chiatrists and clinicians. The current situation, in which neuropsychiatric disorders
are diagnosed mainly based on clinical symptoms and medical history, has spurred
the search for objective biomarkers, such as neuroimaging markers.

Spontaneous brain activity, as observed by functional magnetic resonance imag-
ing (fMRI), is termed spontaneous low-frequency fluctuation (SLFF) in blood
oxygen level dependence (BOLD) signal and has recently attracted the attention
of researchers as a potential biomarker for locating changes in brain hemodynamics
associated with diseases because of its clinical advantages, such as non-invasive,
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easily performed [1, 2]. Findings of the physiological origin of spontaneous brain
activity further strengthen the possibility that detected changes in spontaneous brain
activity can be used as potential biomarkers (for reviews, see [1, 3]). This has
inspired more and more researchers to explore whether endogenous fMRI mark-
ers can characterize the neurophysiological changes associated with disease or drug
treatments. To date many studies have been performed involving nearly all of the
major neurological and psychiatric disorders. Various methods for detecting sponta-
neous activity have been used to investigate biomarkers that can be related to specific
neuropsychiatric disorders. In this paper, we review the methods used to study SLFF
from individual region of interest (ROI) analysis, to local network analysis, to whole
brain network analysis. We take two representative neuropsychiatric disorders, i.e.,
Alzheimer’s disease (AD) and schizophrenia, as examples to instantiate how the
findings obtained using these methods would be helpful to find the biomarkers as
diagnosis, therapy evaluation and prognosis of major neurological and psychiatric
disorders.

2 Methods and Progress in Understanding Neuropsychiatric
Disorders

Correlation or coherence of brain region activity is often thought to reflect func-
tional integration, one of the fundamental principles of functional organization of
the brain [4, 5]. Resting-state functional connectivity (rsFC) analysis and indepen-
dent component analysis (ICA) are two main methods of analysis that can be used
to investigate the spatial pattern of spontaneous activity during rest.

Conventional FC measures correlations between a reference time series and
another time series [6]. Using this method, fMRI studies have demonstrated that
spontaneous BOLD fluctuations are coherent within specific neuro-anatomical sys-
tems, such as primary motor auditory, visual cortices, language and limbic systems
in healthy subjects (for a review, please see [1]). The rsFC analysis can be divided
into three categories: rsFC based on individual regions of interest (ROI), rsFC based
on multiple ROIs, and rsFC based on whole brain regions.

The ICA is another commonly used method for identifying spatial patterns in
resting-state fMRI data [7–11], This method, like the rsFC based on multiple ROIs,
can provide specific information on local brain network. Unlike traditional FC
analysis, ICA is a model-free method that decomposes the data into statistically
independent components. Such decompositions are very useful because they allow
for separation into different coherent resting networks and separate these networks
from other effects such as head motion or other physiological confounds (such as
cardiac pulsation or the respiratory cycle). The conventional ICA method can only
be used for a single subject. Recently, a method for investigating coherent signals at
a group level, tensor probabilistic ICA (tensor-PICA), has been proposed [12–14].
This method simultaneously decomposes group fMRI data into modes describ-
ing variations across space, time, and subjects. It has been demonstrated that the
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Table 1 Methods for investigating spatial patterns of SLFFs and progress in understanding
neuropsychiatric disorders

Authors Disorders Patient/control Methods

Greicius et al. [35] AD, mild 14/14 ICA
Wang et al. [21] AD, early 13/13 Correlation analysis of

individual ROIs
Wang et al. [19] AD, early 14/14 Correlation analysis of the

whole brain and of
individual ROIs

Allen et al. [20] AD, probable 8/8 Correlation analysis of
individual ROIs

Sorg et al. [36] aMCI 24/16 ICA, correlation analysis of
individual ROIs,
structure

Liang et al. [42] Schizophrenia 15/15 Correlation analysis of the
whole brain

Bluhm et al. [26] Schizophrenia, chronic
and medicated

17/17 Correlation analysis of
individual ROIs

Garrity et al. [37] Schizophrenia 21/22 ICA
Zhou et al. [25] Schizophrenia,

first-episode
17/17 Correlation analysis of

individual ROIs
Zhou et al. [39] Schizophrenia, paranoid 18/18 Correlation analysis of

multiple ROIs
Calhoun et al. [38] Schizophrenia, chronic 20/20 ICA
Zhou et al. [27] Schizophrenia, paranoid 17/14 Correlation analysis of

individual ROIs

tensor-PICA approach can provide useful representations of group fMRI data in
resting-state studies [15, 16].

Although the two methods each have their pros and cons [17], both of
them are widely used in resting-state fMRI studies of neuropsychiatric disorders.
Additionally, some findings using the two methods have yielded consistent results.
But some inconsistent results have been reported. In the following section, we will
comprehensively review the progress obtained by using each of the two methods
from individual ROI analysis, to local network analysis, to whole brain network
analysis (Table 1).

2.1 Individual ROI Analysis and Progress in Understanding
Neuropsychiatric Disorders

RsFC based on a single ROI is the most common method for investigating resting-
state functionality in neuropsychiatric disorders. The key point of this method is
to select an appropriate region as ROI. An ideal ROI should satisfy the following
criteria: (1) implicated in a pathological lesion or cognitive dysfunction associated
with the brain disorder to be investigated; (2) demonstrated as a local abnormality
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in anatomy or function in a previous study. Using rsFCs based on an individual ROI
has led to some interesting findings for AD and schizophrenia as reviewed below.

AD: Two regions in the default mode network (DMN), the hippocampus and the
posterior cingulate cortex (PCC), have attracted the most attention due to their roles
in memory and their morphologic and metabolic abnormalities in AD patients [18].
As a core region in the DMN (this network is also called the task-negative net-
work, TNN), the PCC showed decreased correlations with other regions in the same
network and decreased anti-correlations with regions in the task-positive network
(TPN), which is anti-correlated with the TNN, in early AD compared to healthy
controls [19]. Two other recent studies [20, 21] independently investigated the hip-
pocampal rsFC pattern in AD. Both of the studies found that the hippocampus
exhibited disrupted rsFCs with extensive regions, including the PCC/PCu. However,
Wang and coworkers [21] also found increased rsFCs between the left hippocampus
and the right lateral prefrontal cortex, which was absent in Allen’s study [20]. The
differences in results between the two studies likely arose from differences in the
ROIs that were selected, from differences in disease severity [20] and from differ-
ences between the sample subjects (for a review, see [22]. In a recent study, healthy
subjects exhibited differences in rsFC patterns between the anterior hippocampus
and the posterior portion, including the body of the hippocampus and the poste-
rior parahippocampus [23]. Subtle differences in anterior–posterior hippocampal
rsFCs may account for the differences in the two studies, which selected different
subregions of the hippocampus as ROIs.

Schizophrenia: The dorsolateral prefrontal cortex (DLPFC), because of its local
abnormalities in anatomy and function [24] and its role in various neural circuits
relevant to the anatomical and physiological mechanisms of cognitive dysfunction
in schizophrenia, has attracted the attention of Zhou et al. [25]. By examining the
FC pattern of DLPFC in patients with first-episode schizophrenia and matched
controls, these researchers from our laboratory found that the DLPFC exhibited
decreased rsFC with the PCC, among other regions [25]. Because the regions and
functions of the default mode network have been linked with schizophrenia, the
PCC, as a core region in this network, was selected as the ROI to compare the
SLFF pattern of chronic, medicated schizophrenic patients with that of control sub-
jects [26]. The PCC was found to show decreased rsFCs in regions associated with
the DMN including the PCC, lateral parietal, medial prefrontal cortex (MPFC) and
cerebellar regions in chronic, medicated schizophrenic patients [26]. Considering
that the hippocampus has been implicated as participating in the pathophysiology
of schizophrenia, the FC pattern of the anterior hippocampus was also investigated.
In patients with schizophrenia, the bilateral hippocampi showed reduced rsFCs to
some regions which have been reported to be involved in episodic memory, such
as the PCC, the extrastriate cortex, the MPFC, and the parahippocampal gyrus,
which may reflect the disconnectivity within a neural network related to the anterior
hippocampus in schizophrenia [27].

Comments on this method: rsFC based on an individual ROI can easily be
performed and can provide distinct information on specific regions implicated in
neuropsychiatric disorders. However, limitations of this method need to be kept in
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mind. The method strongly depends on prior knowledge about the related disorders.
In published studies, the ROI was selected according to the researchers’ interest and
outlined by hand [20, 21, 27] selected by software [19, 25] or identified by known
coordinates [26, 28] This subjectivity in ROI selection has lead to slight differences
in the anatomical location of the ROIs, which led to differences in the ROI FC pat-
terns, as we noted in the case of the discrepancy in the hippocampal FC in AD [20,
21]. In addition, information outside the functional connectivity pattern of a specific
ROI cannot be obtained by this method.

2.2 Local Network Analyses and Progress in Understanding
Neuropsychiatric Disorders

Brain circuits or networks have often been implicated in major neuropsychiatric
disorders, such as AD and schizophrenia [29–31], thus the investigation of rsFC
within a specific network may improve our understanding of the neural basis of
these disorders. This is supported by findings that have revealed the presence of a
number of resting-state brain networks, such as the DMN (e.g. TNN) [8, 32, 33], the
TPN [32, 33], and the dorsal and ventral attention networks [34] in healthy subjects.
Additionally, these networks are known to be related to emotion, memory, attention,
and other high brain functions, which have often been observed to be impaired in
neuropsychiatric disorders.

AD: Using ICA to isolate the DMN during a simple sensory-motor task, Greicius
et al. [35] found decreased connectivity within the DMN in an AD group [35], which
is consistent with findings from rsFC based on individual ROIs [19–21]. By apply-
ing ICA and ROI-based FC analysis, Sorg et al. further found that the patients with
amnestic mild cognitive impairment (aMCI), a syndrome that carries a high risk for
developing AD, demonstrated reduced network-related activity in selected areas of
the DMN (left PCC and right MPFC) [36]. These studies consistently show that
disconnection in the DMN is a distinctive characteristic of AD (Fig. 1). In addi-
tion to the DMN, Sorg et al. found the executive attention network to be affected,
but the remaining resting networks to be intact, in individuals at high risk for AD.
The reduced network-related activity in the executive attention network is in line
with observed attentional deficits in MCI and AD, indicating impaired interac-
tion between the two anti-correlated networks (TPN and TNN) that prominently
organize intrinsic brain activity [36].

Schizophrenia: Aberrant FC within the DMN has been observed in schizophrenia
using ICA [37], demonstrating increased activity in the ACC/MPFC, the parahip-
pocampus and the PCC in patients. These researchers also found that patients with
schizophrenia showed significantly more high-frequency fluctuations and controls
showed significantly more low-frequency fluctuations in the DMN [37]. This pat-
tern was validated and extended to the rest of the resting-state networks in a later
study [38]. By directly investigating the interregional rsFCs among the regions
constituting the DMN, increased rsFCs within this network were also observed in
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Fig. 1 Altered functional connectivities in the default mode network in Alzheimer’s disease.
a The core brain regions in the default mode network in healthy subjects are illustrated schemati-
cally. Prominent components of this network include medial prefrontal regions, posterior regions
in the medial and lateral parietal cortex, the lateral temporal cortex and the medial temporal
lobe (including the hippocampus and parahippocampal gyrus). Regions within this core brain
system are functionally correlated with each other and, prominently, with the hippocampal for-
mation. The solid line represents the correlations between the core regions. b The functional
connectivity between the hippocampal formation and the medial posterior regions were con-
sistently found to be decreased or absent in patients with Alzheimer’s disease (for references,
please see the main text). The dashed line represents decreased or absent correlations between the
hippocampus/parahippocampal gyrus and the posterior cingulate area

schizophrenia [39]. The FCs, that primarily increased within the TPN, as well as
increased anti-correlations between the two networks were also found in this dis-
ease [39]. These findings suggest that these abnormalities related to the DMN could
be a possible source for the abnormalities in information processing activities that
are characteristic of patients with schizophrenia.

In addition to the TPN and TNN, the frontostriatal system has also attracted the
attention of researchers. Salvador et al. used the mutual information measure to
compare the resting-state connections among three main components of the fron-
tostriatal system (DLPFC, the basal ganglia, and the thalami) in schizophrenia
and in healthy controls. Increased connectivity between the DLPFC and the basal
ganglia in schizophrenia were consistently found across low, medium and high fre-
quency bands [40]. These increased connectivities could potentially be responsible
for dysfunctions in the frontostriatal loop in patients with schizophrenia.

Comments on this method: Identification of the affected regions is the pri-
mary prerequisite for investigations into the rsFC within a disease-related network.
However, determining which regions should be recruited for this purpose is limited
by the prior knowledge of the researchers. Although some methods, such as ICA,
can greatly reduce the researcher’s subjectivity, some key steps, such as deciding
on the number of components and determining how to classify each component
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into noise or physiologically meaningful signals, still depends on the subjective
opinions of researchers. This subjectivity leads to differences in the regions that
are determined to constitute a network and thus leads to difficulty in comparing
results across studies. Furthermore, the functionality and physiological meaning of
these resting-state networks need to be further clarified. With this in mind, caution
must be exercised in interpreting the findings obtained by comparing the rsFC in the
resting-state networks of patients with that of controls.

2.3 Whole Brain Network Analyses and Progress in Understanding
Neuropsychiatric Disorders

In contrast to local network-based interregional FC, which focuses on the FCs asso-
ciated with a few preselected seed regions within a specific network or circuit
while ignoring other potentially interesting patterns of connectivity, whole brain
network-based FC analysis can objectively and comprehensively detect altered FCs
throughout an entire brain level by automatically dividing the entire brain into mul-
tiple regions and performing correlation or partial correlation analysis on each pair
of these regions. This method was first used in a single patient who was minimally
conscious following a brainstem lesion [41] and then was developed and used in AD
and schizophrenia [19, 42] (Fig. 2).

AD: Wang et al. [19] found that AD patients show many decreased rsFCs, which
are mainly between the prefrontal and parietal lobes, but these patients also show
increased rsFCs mainly between regions within lobes, such as within the prefrontal
lobe, within the parietal lobe, or within the occipital lobe [19]. These findings

Fig. 2 Altered resting-state functional connectivity in schizophrenia and Alzheimer’s disease.
a Schizophrenia patients mainly showed decreased functional connectivities and such abnormal-
ities were widely distributed throughout the entire brain rather than restricted to a few specific
brain regions. b Alzheimer’s disease mainly showed decreased functional connectivities between
the prefrontal and parietal lobes, but increased functional connectivities within the prefrontal lobe,
parietal lobe and occipital lobe
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are compatible with the anterior–posterior disconnection phenomenon and com-
pensatory effect within lobes observed previously in AD patients (for review, see
[22]. More interestingly, by using whole brain network analysis, the authors also
found decreased anti-correlations between the two abovementioned intrinsically
anti-correlated networks (TPN and TNN), again suggesting that disturbance of the
balance between the intrinsically anti-correlated networks may be associated with
attention deficits in AD patients.

Schizophrenia: Liang et al. [42] found that in patients with schizophrenia the
decreased FCs were widely distributed throughout the entire brain, although most
of them were related to the insula, the temporal lobe (including the medial tem-
poral structures), the prefrontal lobe and the corpus striatum. Increased FCs were
mainly related to the cerebellum in patients. Although in this preliminary study,
interregional anti-correlation was not considered, which made it difficult to directly
compare the distribution of these altered FCs with that in other disorders, this study
provides further support for the hypothesis that schizophrenia may arise from the
disrupted functional integration of widespread brain areas [42].

Comments on this method: By comparing the global distribution of these altered
FCs in different disorders, it is possible to find various disease-related character-
istics and thus to differentiate different disorders. However, some issues need to
be addressed. First, the findings obtained by this method are affected by anatomi-
cal parcellation. Therefore, it is necessary to pay attention to the fact that mapping
the resulting whole brain network using different templates may induce different
findings [43]. Secondly, current automatic registration techniques make it difficult
to guarantee the exact match of some small gyri/sulci, especially in the cerebel-
lar lobes, across subjects. Finally, inter-subject variability in the anatomical regions
must also be considered carefully in future studies.

3 Conclusions

By analyzing the spatial pattern of spontaneous BOLD activity, some disease-related
abnormalities can be obtained. Disrupted rsFCs within the DMN, especially those
associated with the hippocampus and the PCC, may be a distinctive characteristic
of AD (Fig. 1). The regions showing disrupted rsFCs are highly similar to those
that show pathology in the early stages of the disease, as measured by molecular
imaging of amyloid plaques using PET, and those that are affected by structural atro-
phy, as measured by longitudinal MRI [18]. Decreased rsFCs within the attention
related-networks is another consistent finding in AD and is consistent with observed
attention deficits in MCI and AD. In schizophrenia, aberrant rsFCs within the DMN
are found, but the main difference is that the strength of the rsFCs are abnormally
increased in patients. By analyzing the clinical correlates of the strength of the rsFC,
the rsFCs associated with the component regions of the DMN are found to vary with
positive symptoms measured by different clinical scales [26, 27, 37]. The positive
symptom-dependent correlation of the component region in the DMN suggests that
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functional dysconnectivity in the DMN may be a reflection of an impaired self-
monitoring function in schizophrenia, which could lead to positive symptoms such
as hallucinations and delusions [44].

In conclusion, altered activity patterns of SLFFs have been found in the major
neuropsychiatric disorders, whether at a local level or a global level. These studies
highlight the usefulness of resting-state fMRI for studying the brain in neuropsy-
chiatric disorders. More importantly, these studies suggest the possibility that
the altered SLFFs in neuropsychiatric disorders could be valuable brain imaging
biomarkers for diagnosis, therapy evaluation and prognosis.
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Dynamical Systems and Accurate Temporal
Information Transmission in Neural Networks

Alessandro E.P. Villa, Yoshiyuki Asai, Javier Iglesias, Olga K. Chibirova,
Jérémie Cabessa, Pierre Dutoit, and Vladyslav Shaposhnyk

Abstract We simulated the activity of hierarchically organized spiking neural
networks characterized by an initial developmental phase featuring cell death fol-
lowed by spike timing dependent synaptic plasticity in presence of background
noise. Upstream networks receiving spatiotemporally organized external inputs pro-
jected to downstream networks disconnected from external inputs. The observation
of precise firing sequences, formed by recurrent patterns of spikes intervals above
chance levels, suggested the build-up of an unsupervised connectivity able to sustain
and preserve temporal information processing.

1 Introduction

The embryonic nervous system is initially driven by genetic programs that control
neural stem cell proliferation, differentiation and migration through the actions of
a limited set of trophic factors and guidance cues. After a relatively short period of
stable synaptic density, a pruning process begins: synapses are constantly removed,
yielding a marked decrease in synaptic density due to apoptosis – genetically pro-
grammed cell death – and selective axon pruning [1]. Overproduction of a critical
mass of synapses in each cortical area may be essential for their parallel emer-
gence through competitive interactions between extrinsic afferent projections [2].
Furthermore, background activity and selected patterns of afferent activity are likely
to shape deeply the emergent circuit wiring [3]. Synapses can change their strength
in response to the activity of both pre-, and post-synaptic cells following spike tim-
ing dependent plasticity (STDP) rules [4]. This property is assumed to be associated
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with learning, synapse formation and pruning. In cell assemblies interconnected
in this way some ordered and precise – in the order of few ms – interspike inter-
val relationships, referred to as “spatio-temporal firing patterns” or “precise firing
sequences”, may recur within spike trains of individual neurons and across spike
trains recorded from different neurons [5].

In this study we assume the existence of functional correlates of spatio-temporal
neural coding, such that one would expect that the same temporal pattern of firing
would be observed whenever the same information is processed in a network [6].
The relationship between the input and output spike trains is characterized by highly
nonlinear transfer functions [7] and we investigate to which extent precise temporal
information may be preserved assuming that each afference can carry only part of
the overall information.

2 Methods

In the present study we simulate the activity of interconnected neural networks
undergoing neural developmental phases. The output spike trains of the networks
were scanned to detect precise firing sequences, simply referred below as “patterns”,
using the Pattern Grouping Algorithm (PGA) [8]. The structure and dynamics of
the detected patterns were analyzed and compared with the results obtained for the
single simulated networks in presence and in absence of stimuli. An underlying
dynamical system attractor, if any, was searched following a technique of “denois-
ing” the spike trains using the detected patterns [9]. The overall description of the
simulation framework and parameters cannot be inserted here due to editorial space
limitation and has been published elsewhere [10]. These characteristics naturally
geared the modeling framework towards the analysis of spike trains recorded in a
network of hierarchically organized neural networks.

3 Results

Appearance and disappearance of patterns was due to developmental changes
shaped by STDP in the network connectivity underlying the process of temporally
organized input activity. In absence of an external input more units survived at the
end of the simulation run but less patterns were found in proportion to the number of
active cells. Moreover, the ratio of detected patterns vs. active cells was larger in the
downstream than in the upstream network. Figure 1 shows extreme cases of onset
dynamics of a single-unit pattern: in one case a triplet appeared early in the network
maturation and disappeared after t ≈ 35, 000 ms (Fig. 1a, b). The single-unit pattern
<148C, 148C, 148C; 191±0.9, 698±1.0> was composed by spikes produced by
unit #148C. This notation means that a precise firing sequence started with a spike
of unit #148C, followed 191±0.9 ms later by a second spike of the same unit, and
followed by a third spike 698±1.0 ms after the first. In the opposite case another pat-
tern (a quadruplet in this example) appeared only at a later stage of maturation after
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Fig. 1 Firing pattern < 148C, 148C, 148C; 191± 0.9, 698± 1.0 > that repeated 11 times (mean
firing rate= 4.0 spikes/s). a Raster plot of the patterns aligned on the pattern start. b Raster plot of
pattern onsets: each vertical tick corresponds to the onset time of each pattern occurrence; Firing
pattern< 554, 554, 554, 554; 236±0.7, 301±0.8, 358±0.6 > (mean firing rate= 13.1 spikes/s).
c Raster plot showing 13 repetitions; d Raster plot of pattern onsets

t≈65, 000 ms (Fig. 1c, d). The nonlinear dynamic deterministic structure (attrac-
tor) embedded in the upstream afferent spike train was retrieved in the downstream
spike train depending on the level of noise and also on parameters of the neuron
model. We consider here the filtering effect produced by a cell assembly. Each neu-
ron received only a fraction of a temporal information generated by a deterministic
nonlinear dynamical system (Fig. 2). We used an input time series derived from
the Zaslavskii map [9] and we observed that a distributed activity was much more
efficient in transmitting the precise afferent temporal structure through the neural
networks.

4 Discussion

Despite the fact that in downstream networks fewer cells were surviving at the end
of the simulation run we found more firing patterns [11]. Downstream networks
took more time to build-up the internal dynamics underlying the emergence of
the patterns particularly in case of divergent and stronger connectivity towards the
downstream network [12]. It is particularly interesting to note that when the external
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Fig. 2 The precise temporal information distributed in a cell assembly

input fed into the upstream network has en embedded complex temporally organized
structure the temporally organized activity is distributed across the network and pre-
served throughout the downstream network and can be recovered by the analysis of
reconstructed spike trains [13]. We suggest that specific neuronal dynamics char-
acteristic of certain brain areas or associated to specific functional neuronal states
play an essential role in the efficacy of transmitting a temporal pattern in a neuronal
network. This feature is critical to determine the encoding and decoding processing
that might be carried out by a single neuron and by the network and the extent of a
distributed population coding scheme.
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Next Generation Large-Scale Chronically
Implantable Precision Motorized Microdrive
Arrays for Freely Behaving Animals

Jun Yamamoto

Abstract Multiple single-unit recording has become one of the most powerful in
vivo electro-physiological techniques for investigating neural circuits. The demand
for small and lightweight chronic recording devices with large number of electrodes
has been increasing. However, conventional techniques do not allow fine adjust-
ments to be made over large number of electrodes across multiple brain regions
without disturbing the recording subject. Here, we have developed a large-scale
motorized microdrive array to record from freely behaving animals. It has design
flexibility and allows for remote adjustment of a large number of electrodes at a
very fine resolution. Versions of the microdrive array were chronically implanted
on both rats (21 microdrives) and mice (7 microdrives) and relatively long term
recordings were taken. In this talk, current status of the new technology and future
directions will be presented.

Keywords Motorized microdrive array · Large-scale · Chronically implantable
microdrive · Freely behaving animals · Rats ·Mice

1 Introduction

Electrophysiological recordings taken from freely behaving animals with chroni-
cally implanted multiple electrodes have played a critical role in our understanding
of neuronal activity at the population level [1]. The recording devices used in these
experiments employ various kinds of manually adjustable microdrives, which rely
on miniature screws or threaded rods to advance electrodes [2, 3]. These microdrives
must be small and light in weight, due to the physical limitations of the animal.
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Here we sought to develop microdrive arrays for smaller animals that allow flex-
ibility with regard to the number and location of the recording sites and the number
of microdrives themselves, while minimizing electrical wire connections and overall
weight. We developed a new type of motorized microdrive array that satisfies these
requirements for both rats and mice. These microdrives have been extensively tested
on multiple animals over the past four years. Long-term stable recording of multiple
single units from multiple brain regions has been successfully achieved using these
devices.

2 Methods

First, we briefly describe the key components of the electro-mechanical system used
to achieve precision control in the large-scale microdrive array for freely behaving
animals. (see Yamamoto and Wilson [4] for details)

2.1 Individual Motorized Microdrives

For one of the key devices of the project, we employed the smallest com-
mercially available DC brushless servomotor with three stage 47:1 planetary
gearbox (0206H05B+02/1 47:1, Faulhaber, Germany). Our motorized microdrive
(Fig. 1a) has five basic components: the micromotor, threaded rod, slotted PEEK
(polyetheretherketone) tube (PKT-062077, Small Parts, FL), shuttle lock, and a shut-
tle made with brass nuts. The entire microdrive weighs 300 mg, including 50 mg of
magnetic shielding for the rat microdrive array. We designed two different scales of
motorized microdrive arrays, one with twenty-one micromotors (weighing 29 g) for
rats (Fig. 1b, c), and seven micromotors (weighing 4.8 g) for mice (Fig. 1d).

2.2 DC Servomotor Multiplexing Headstage

In order to manage dozens of motor wirings, we developed a lightweight
High current capacity DC Servomotor Multiplexing Headstage with Serial Data
Communication Technology (Fig. 2a). This headstage consists of numbers of multi-
channel analog switches (PI5V331Q, Pericom, CA) and multi-stage bus registers
(CD4094B, Texas Instruments, TX). The analog switches are controlled by the out-
puts of multi-stage bus registers. The outputs of the bus register are encoded into
serial bit stream. This technical solution allowed us to reduce numbers of motor
connections to only nine wires (three analog sine waves plus six digital control
lines including two power lines) regardless of the number of motors. The num-
bers of motors, which are supported by these headstages, are twenty-four and eight
individual microdrives respectively.



Chronically Implantable Precision Motorized Microdrive Arrays 69

Fig. 1

Fig. 2
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2.3 Headstage Control Board and Control GUI Software

The headstage controller consists of three-channel sine wave generator
(MCBL05002, Faulhaber, Germany) and embedded microprocessor (BS2SX,
Parallax, CA) with USB UART/FIFO client interface LSI (FT2232C, Future
Technologies Device International, UK) (Fig. 2b). The embedded microprocessor
interfaces between the host computer and the sine wave generator through USB
interface. It receives desired motor identification number, motor rotation speed and
the amount of turn from the host computer program and returns current rotation
speed and positional information to the host computer. The host PC controlling
software is developed on Microsoft Visual C# 2005 (Microsoft, WA) that commu-
nicates the headstage control board through USB interface (Fig. 2c). The software
has GUI based interface to control microdrives such as motor identification number,
output power, rotation speed, direction and amount of turn etc. The information is
updated every 250 ms through continuous communication between the software and
the interface board.

3 Results

3.1 Chronically Implanted Microdrive Arrays

A total of seven male mice (30–35 g, Fig. 3a), and nine male rats (450–500 g,
Fig. 3b) were tested. During these tests, two sets of rat microdrive arrays and another
two sets of mouse microdrive arrays were used to test the electromechanical reliabil-
ity as well as the reusability of the microdrive array. The duration of the experiments
ranged from 2 to 5 months in both rat and mouse. On average, we took at least
2–3 weeks to reach desired recording target before we started neuronal recordings
(example: mouse hippocampus CA1 area: Fig. 3c).

3.2 Fine Step Adjustments

One key advantage of the motorized microdrive array is ability to adjust electrodes
at finer displacement steps to optimize unit isolation. To examine the potential effect

Fig. 3
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Fig. 4

of finer positional control, we tried to find a minimum adjusting step in which a sys-
tematic change could be seen in spike cluster distributions. Each panel in Fig. 4
illustrates the recording of spikes from multiple neurons on a single tetrode. Each
data point represents a single spike event. These points are plotted at the peak ampli-
tude of that spike on the first vs. the second channels of a four-channel tetrode. The
figures (Fig. 4b–d) demonstrate that tetrodes advanced in small steps (8 μm/step)
at the slowest speed (1.3 μm/s) showed systematic cluster movement. We also tried
much finer displacement steps such as 4 or 2 μm, which had produced observable
movement on the test bench. However, we could not confirm systematic cluster
changes with these smaller displacements.

3.3 Stability Across Multiple Days

In addition to number of isolated units, the stability of isolated units across multiple
days is an important issue. Figure 5 demonstrates a total of eleven individual units
in rat somatosensory cortex that were stable across four consecutive days. These
isolated units were obtained from deep layers (about 1,350 μm from the start) of
the somatosensory cortex. Based upon the tests, we concluded that smaller steps
and slower movements are essential factors for high quality recording. Overall, our
experience suggests that the motorized microdrive array has advantages in the preci-
sion of the electrode positioning as well as isolation, yield, and stability of recorded
units compared to conventional manual microdrive arrays.

Fig. 5
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4 Conclusion

Here, we have designed and tested two versions of large-scale motorized micro-
drive arrays for chronic recording in smaller animals, based on a modular and
flexible design concept. The results demonstrated that our novel motorized micro-
drive array allowed us to obtain long-term recordings with quality comparable to,
or exceeding that of conventional manual microdrive arrays [3]. The drive design is
relatively simple and flexible allowing it to support recordings from brain structures
at a variety of locations and depths. The major advantage of our new motorized
microdrive array over existing techniques is the ability to remotely control a large
number of microdrives slowly and precisely while maintaining the overall size and
weight of conventional microdrive arrays [3]. Smaller steps and slower speed in the
adjustments appear to enhance quality and stability of chronic recordings.
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Dynamic Receptive Fields in Auditory Cortex:
Feature Selectivity and Organizational
Principles

Christoph E. Schreiner and Craig A. Atencio

Abstract Spectrotemporal receptive fields (STRFs) capture the time-dependent
behavior of spectral profile processing in auditory neurons. Here we review recent
advances in utilizing these functional descriptors in exploring organizational princi-
ples of primary auditory cortex, such as cellular and laminar differences. In addition,
we discuss an extension of the classical spectrotemporal filter approach that provides
additional, independent spectrotemporal features that, combined with nonlinearities,
allows a more complete characterization of cortical processing.

1 Modulation Differences Between Excitatory and Inhibitory
Neurons

Excitatory pyramidal neurons and inhibitory interneurons have distinctive mor-
phologic and electrophysiological properties and constitute the main elements of
the cortical circuitry. The shape of action potentials can be used to differentiate
between pyramidal neurons that often have longer action potentials and are classi-
fied as Regular-Spiking Units (RSUs), and chandelier and basket inhibitory neurons
that have shorter action potentials and are classified as Fast-Spiking Units (FSUs).
Potential physiological distinctions between these neuronal classes can be deter-
mined by stimulating primary auditory cortex neurons in the cat with a dynamic
moving ripple stimulus and construct linear STRFs and their associated nonlinear-
ities. Comparison of the two cell classes reveals distinct differences between the
two cell classes in primary auditory cortex. FSUs generally have shorter laten-
cies, greater stimulus selectivity, and higher temporal precision than RSUs. The
STRF structure of FSUs is more separable than for RSUs, suggesting a relative
independence between spectral and temporal processing aspects of the FSUs. The
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nonlinearities associated with the two cell classes have a stronger asymmetry for
FSUs, indicative of higher feature selectivity [1].

Temporal and spectral modulations are prominent aspects of communication
sounds. Tuning to particular modulation frequencies is essential for correct speech
identification, and speech can be correctly identified when only temporal mod-
ulation information and sparse carrier structure is retained. Likewise, spectral
modulation information is important for communication sound processing since it is
challenging for listeners to discriminate speech with a degraded spectral envelope.
The importance of modulation processing prompted us to examine if modulation
preferences operate as principles guiding receptive field properties. The finding that
FSUs and RSUs receptive field share similar best temporal and spectral modula-
tion frequency preferences indicates that they perform similar transformations of
their thalamic modulation input for some properties, e.g., preferred modulation fre-
quency, and different transformation for others, such as the shape of the MTFs.
These distinctive functional differences between RSUs and FSUs provide a broader
basis for unraveling the interactions between putative excitatory and inhibitory
neurons that shape auditory cortical processing.

2 Laminar Organization of Spectral and Temporal Modulation
Properties

Previous work in AI showed that modulation information can undergo a transforma-
tion between thalamus and cortex [2]. In comparison to thalamic output, neurons in
the thalamocortical recipient layers 3b/4 follow slower modulations. Additionally,
layers 3b/4 contain spatial topographies or local organization for characteristic fre-
quency, latency, threshold, as well as spectral and binaural integration [3], [4].
However, after this initial stage of processing, little is known how the vertical
AI microcircuit further shapes and transforms elemental acoustic information [5].
In particular, there is little evidence of functional layer-specificity despite clearly
expressed cellular and connectional differences. Natural sounds are dominated by
dynamic temporal and spectral modulations, and we used these properties to evalu-
ate functional differences across cortical laminae. We examined the layer-specificity
to acoustic modulation information by simultaneously recording from multiple AI
laminae in the anesthetized cat. Neurons were challenged with dynamic moving
ripple stimuli to compute spectrotemporal receptive fields (STRFs). From STRFs
temporal and spectral modulation transfer functions (tMTFs, sMTFs) were calcu-
lated and compared across layers. Temporal and spectral modulation properties
often differed between layers. On average, neurons in layer 2/3 and 6 respond to
lower temporal modulations than those in layer 4. tMTFs were mainly bandpass
in granular layer 4 and become more lowpass in infragranular layers. Compared to
layer 4, spectral MTFs are broader and their upper modulation cut-off frequency are
higher in layers 5, and 6. In individual penetrations, temporal modulation prefer-
ence is similar across layers for ~70% of the penetrations, suggestive of a common,
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columnar functional characteristic of temporal modulation preferences. By con-
trast, only ~30% of penetrations show consistent spectral modulation preferences
across layers indicative of functional laminar diversity or specialization. AI layers
that express differing modulation properties may sub-serve particular roles in the
extraction of dynamic sound information specific to their targeted stations [6].

We have demonstrated that spectral and temporal modulation parameters, unlike
CF, can vary significantly across AI layers. The behavior of temporal and spec-
tral modulation processing is dissimilar in that temporal modulation has a stronger
tendency for a columnar, layer-independent behavior. The direction of parameter
changes is not tightly linked to a simple interlaminar flow pattern from thala-
mic input layers to supra- and infra-granular output layers. This constrains models
of the laminar processing sequence of auditory cortex. Differences in modulation
properties captured in STRFs make it more feasible to dissect laminar-specific,
module-specific, and fieldspecific variations in the cortical processing regime and
can help to determine whether common functional patterns pertain to cortical or sub-
cortical inputs, and, combined with cell-type specific properties, reveal fundamental
aspects of the local, lamina specific circuitry.

3 Joint Encoding of Multiple Auditory Features

STRFs, calculated through the spike-triggered average, have been used success-
fully to determine the modulation preferences and stimulus selectivity properties
of auditory cortex neurons. While informative, STRFs may be biased by stimu-
lus correlations and they do not characterize neural sensitivity to multiple stimulus
dimensions. We explored ways to overcome these limitations by using a model
in which a neuron is selective for two dimensions in a high dimensional stimulus
space. To derive the model, single neuron responses were recorded in response to
a dynamic moving ripple stimulus in the primary auditory cortex of the cat. Each
relevant dimension was then reconstructed by finding those stimulus dimensions
that maximized the mutual information between the neural response and a moving
ripple stimulus [7]. This process removes the effects of stimulus correlations from
the estimates of the dimensions. After the relevant dimensions were determined
we calculated the nonlinear, memory-less input-output function that relates spiking
probability to the stimulus projection onto the most informative dimensions (MIDs).
For all analyzed neurons from cat primary auditory cortex we could establish two
independent MIDs. For all neurons we found that the conventional spike-triggered
averaged STRF was a good model of the first relevant dimension (MID1) but not
for the other. The presence of a second spectrotemporal feature dimension (MID2)
indicates that AI neurons are sensitive to multiple stimulus dimensions. For the
majority of neurons the nonlinear input-output function for the first MID gener-
ally was asymmetric and often monotonic in shape. By contrast, the symmetric for
the MID2 nonlinearity was symmetric and nonmonotonic. We determined the coop-
erativity between the first and second dimensions in spike-generation by mapping
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the two-dimensional input-output function. By constructing a joint two-dimensional
nonlinearity we found that the interactions between the two MIDs were synergistic
(jointly accounting for a higher mutual information than the sum of the two MIDs)
indicating that the relevant dimensions must be considered together, as opposed
to independently estimating receptive field models. These results indicate that this
approach promises to be useful in primary auditory cortex and in secondary areas
for which complex sounds may be more appropriate stimuli. The striking difference
between the nonlinearities of the two MIDs suggests the concurrent and coopera-
tive implementation of different tasks by each neuron, such as feature detection and
context evaluation.

Analysis of the contribution of each feature filter to the stimulus information
in the spike train showed that the relative contributions fell along a continuum.
An implication from this is that for some neurons the first dimension, or even the
spiketriggered average, is a sufficient approximation to the overall processing taking
place. For most neurons, however, a greater diversity of computation is evident. For
these neurons one feature dimension is not an adequate description and the stan-
dard spiketriggered average model is not sufficient. Coupled with the understanding
that the multiple stimulus dimensions of many AI neurons operate synergistically it
becomes clear that an extended linear-nonlinear model allows us to recover a much
more complete picture of the neuronal coding strategies employed by AI neurons.
The application of the linear-nonlinear model to AI using information maximization
represents a significant advance over previous approaches, since it permits quan-
tification of several stimulus features that influence a neuron’s firing, how feature
selective a neuron is, and how this feature selectivity interacts synergistically to
influence a neuron’s response.

A functional interpretation of the components of the two-filter model remains
speculative, especially in light of the strong interaction between the two nonlinear-
ities. Based on insights from the simple and complex cells in the visual system it is
not unreasonable to postulate that the first filter in combination with the asymmetric
nonlinearity is a feature or foreground-structure detector tuned to a narrow range
of stimulus constellations. The closer the match between stimulus and filter, the
stronger is the response. By contrast, the second filter with its associated symmetric
nonlinearity more likely corresponds to an envelope-phase insensitive feature detec-
tor tuned to a broad range of stimulus constellations. The main purpose of the second
filter may be a gain control for feature sensitivity in a context-dependent manner to
improve the relevant auditory foreground features in various acoustic environments.

4 Conclusions

Auditory processing by cortical neurons shows specificity to the cell types
(excitatory/inhibitory) as well as to the laminar position of the cells in the columnar
circuit. Single- or multi-feature linear spectrotemporal receptive fields allow a more
complete description than most other approaches of the stimulus-based response
properties of central auditory neurons. The expandability of this approach to
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multiple feature filters with the addition of associated nonlinearities provides clear
advantages in distinguishing different neuronal classes.

Acknowledgments Supported by NIH grant DC02260.

References

1. Atencio, C.A., Schreiner, C.E.: Spectrotemporal processing differences between auditory
cortical fastspiking and regular-spiking neurons. J. Neurosci. 28 (2008) 3897–3910.

2. Miller, L.M., Escabí, M.A., Read, H.L., Schreiner, C.E.: Spectrotemporal receptive fields in the
lemniscal auditory thalamus and cortex. J. Neurophysiol. 87 (2002) 516–527.

3. Middlebrooks, J.C., Dykes, R.W., Merzenich, M.M.: Binaural response-specific bands in pri-
mary auditory cortex (AI) of the cat: topographical organization orthogonal to isofrequency
contours. Brain Res. 181 (1980, 1981) 31–48.

4. Schreiner, C.E., Read, H.L., Sutter, M.L.: Modular organization of frequency integration in
primary auditory cortex. Annu. Rev. Neurosci. 23 (2000) 501–529.

5. Linden, J.F., Schreiner, C.E.: Columnar transformations in auditory cortex? A comparison to
visual and somatosensory cortices. Cereb. Cortex. 13 (2003) 83–89.

6. Atencio, C.A., Schreiner, C.E.: Laminar diversity of dynamic sound processing in cat auditory
cortex. J. Neurophysiol. 103 (2009, 2010) 195–205.

7. Atencio, C.A., Sharpee, T.O., Schreiner, C.E.: Cooperative nonlinearities in auditory cortical
neurons. Neuron. 58 (2008) 956–966.



Top-Down Mechanism of Perception: A Scenario
on the Role for Layer 1 and 2/3 Projections
Viewed from Dynamical Systems Theory

Hiroshi Fujii, Kazuyuki Aihara, and Ichiro Tsuda

Abstract Cortical layer 1 is the main entrance of top-down signals from other
higher cortices and subcortical nuclei. Recent findings challenge the view that
top-down signals play just a modulatory role. However, how top-down signals
are implemented to help reconstruct the internal representations of images, or an
episode of events is poorly understood. Recent experimental data suggest that the
“ongoing” brain state without external inputs into layer 4 and attentional top-down
signals continually fluctuates among the intrinsic patterns of activity. Viewed from a
dynamical systems standpoint, the transitory intrinsic states could be an expression
of “attractor ruins”, observed in a mesoscopic dynamical system. We hypothesize
that when top-down signals arrive as attention(s), contexts, or indices, the local brain
state is temporarily stabilized to be an attractor(-like) state. In view of the anatom-
ical and physiological configurations of neuronal systems in the superficial layers,
we propose a hypothetical scenario for such non-classical dynamics in the brain.

Keywords Cortical layer 1 · Superficial layers · Top-down mechanism
of perception · Internal representations of images · Attentional
top-down signal · Attractor ruin · Milnor attractor · Presynaptic
inhibition of GABA release · Muscarinic acetylcholine · Glutamatergic
spike volley · Parvalubmin-positive fast spiking neuron · Nicotinic
depolarization · Carletinin-positive interneuron

1 Cortical Layer 1: The Crowning Mystery

Cortical layer 1 s receive projections from a number of other cortical areas together
with the subcortical nuclei, the thalamic matrix elements (including pulvinar), and
the hippocampal CA1 region (via the enthorhinal cortex). As Hubel noted in 1982
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[1], layer 1 provides the crowning mystery in understanding neocortical functions:
in turn understanding layer 1 functions may provide a clue for resolving questions
related to cortical organization and dynamics.

One thing has long been established about layer 1: it is where top-down signals
enter as attention, contexts, and modulating inputs. This fact is in sharp contrast with
layer 4, which specializes in receiving specific bottom-up signals from the thalamic
core elements and from layer 2/3 of the other lower cortical areas [2].

The following is the typical, classical statement about the role of top-down pro-
jections onto layer 1: “Feedback projections (via layer 1) have modulatory effects
while activity is mainly driven by the bottom-up pathway via layer 4.” However,
recent experimental data pose difficulties in understanding layer 1 functions along
such a standpoint. Two counter-examples include the recent experimental observa-
tion of Kenet et al. [3], and “mental imagery” [4].

An implication of the Kenet et al. data is that, a number of local internal states
are built-in with hierarchical structures in the cortical circuits. The ‘ongoing’ brain
state in the absence of external inputs into layer 4 is not random, but continually
fluctuating among those intrinsic patterns of activity if, because of anesthesia, no or
at least reduced attentional top-down signals are projected onto layer 1.

The mental imagery poses a further question: how top-down signals are imple-
mented to help reconstruct internal representations of images, or an episode of
recent events1 in the absence of external stimuli?

1.1 Top-Down Projections: Two Concurrent Flows

Associated with top-down attentions, whether overt or covert [5], or even in mental
imagery [6], we may postulate that two concurrent flows are projected onto the
cortex. The first one is glutamatergic (Glu) spike volleys projecting onto layer 1
from “higher” cortical areas and the thalamic matrix elements, and the second is
cholinergic (and GABAergic) projections on all six layers from the nucleus basalis
of Meinert (NBM), which are triggered by Glu spikes from the medial prefrontal
cortex [7]. These two concurrent flows, which we call simply as “attentional flows”,
are the main players of the top-down mechanism.

2 A Dynamical Systems-Theoretic Scenario

How can the brain dynamics described as “continually fluctuating among intrinsic
patterns of activity” be characterized from a dynamical systems standpoint?

1In “mental imagery”, no external stimuli play a role. When one is asked a question such as “which
is longer – a donkey’s ears or an ear of corn?”, one may visualize the objects, and “see” the
necessary properties, as most people report [4]. As Kosslyn pointed out, this sort of introspection
suggests that visual mental images reconstruct the spatial geometry of objects [4].
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The first key is that an “intrinsic state” could be regarded as an “attractor ruin”
in the dynamical systems term, which Tsuda first formulated in [8]. An attractor
ruin must have a mechanism of allowing both transition and reinjection to and
from a state. A typical example of an attractor ruin is a perturbed structure of the
non-classical Milnor attractor [9], which possesses a positive measure of attracting
orbits, but simultaneously may possess repelling orbits from itself.2

The second key we propose is the notion that inhibition may destabilize attractors
under certain conditions [10]. Default inhibitions on potentially existing attractors
may transform them into fragmentary “ruins”. Such a destabilizing mechanism has
been described by theoretical and numerical works with a variety of contexts [8,
11, 12]. In other words, we claim that, in the absence of external stimuli the inter-
nal states potentially exist only in the form of attractor ruins before the arrival of
attentional flows, and hence the cortical dynamics exhibits continual transitions
among ruins. This may characterize the default cortical dynamics. We hypothesize
that attentional flows temporarily reverse this process, and restore an attractor state
making ruins as its building blocks.

How do attentional flows make such state transitions of cortical dynamics?
We propose a hypothetical scenario in view of the anatomical and physiological
configurations of the neuronal system in the superficial layers.

2.1 FS γ Hypothesis

We postulate that the local emergence of the gamma band rhythm is carried by layer
2/3 parvalbumin-positive (PV+) fast spiking (FS) neurons, driven by Glu spikes from
layer 4 (and, possibly layer 6 [13]). The FS γ rhythm may lightly entrain layer 2/3
pyramidal neurons (PYRs). See, Cardin et al., 2009 [14]. The FS γ rhythm may
provide a narrow temporal window to PYRs for effective excitation, resulting in the
local synchrony of neuronal ensembles [14].

We postpone discussion of the global γ synchrony over multiple cortices as the
prerequisite for perception until the last paragraph.

2.2 Attentional ACh Releases PYRs from the Ongoing Inhibitions
by the Presynaptic Disinhibition: Its Consequence

In layer 2/3 both PYRs and PV+ FS cells are unresponsive postsynaptically to
acetylcholine (ACh) [15]. This poses the question: what kind of roles may ACh
projections in fact carry onto layer 2/3?

2The concept of attractor ruins may include a wider class of non-classical attractors than the Milnor
attractor. By this reason, we may use the term “attractor ruins” in this paper to include possible but
unknown classes of ruins.
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Evidence exists that ACh release onto layer 2/3 may function in a presynap-
tic mechanism with muscarinic ACh receptor (mAChR) [16]. Release of ACh in
layer 2/3 activates the m2 subtype of mAChR at synapses of GABA+ INs, which
presynaptically inhibits GABAA release onto PYRs. (See, Fig. S5 in Supplement
of [16].) This dynamical strengthening of network connectivity transforms attrac-
tor landscape3 from Milnor-like attractor ruins to a “relevant” stable attractor(-like)
state making ruins as its building blocks [10, 11, 17, 18].

However, collaboration with the second top-down flow, i.e., Glu spike volleys
projected onto layer 1 might be essential making the binding of fragmentary ruins.

2.3 Top-Down Glu Spike Volleys in Layer 1 – As Indexing Signals
for Designating and Binding “Internal States”

The top-down Glu spike volleys project on distal apical dendrites of layer 2/3 (and
layer 5) PYRs at layer 1. We hypothesize that, at least some of, these Glu spike
volleys function as indexing signals for designating and locally binding the internal
states to form hierarchically organized attractor states.

Two remarks follow. First, such a view on layer 1 projections has been repeatedly
expressed in the literature with various contexts. (See, e.g., for “index theory” [19],
or “tag” [20].) The second remark concerns dynamic pattern completion, or chaotic
associative memory. As Nara et al. reported [12, 21], a strike of spike volleys as a
memory fragment was enough to recover the corresponding attractor state, and to
move the orbit to the vicinity of the assigned attractor in their chaotically transitory
networks [21]. Note that such a property is commonly observed and characterizes
dynamics itinerant among attractor ruins. (See, also Freeman [22].)

2.4 Top-Down Mechanism of Perception Viewed from Dynamical
Systems Theory

The role of ACh projection onto layer 1 constitutes one of the main mysteries
proposed by Hubel [1]. It works only via a nicotinic ACh receptor (nAChR) acti-
vation, and that produces a rapid depolarization of layer 1 calretinin-positive (CR+)
interneurons (INs) [23]. The main targets of the CR+ IN axons in layer 2/3 are
GABA+ INs [23], but the exact subtypes of target GABA+ INs remain unclarified.
As suggested in Gabott [24], an initial candidate could be PV+ FS cells that inhibit
PYRs peri-somatically receiving feed forward excitations from layer 4. Another
possibility is some other PV− INs, that are probably fed by PYRs, and in turn inhibit
PYRs at distal apical dendrites. The two possibilities are not exclusive.

3“Attractor landscape” is usually used for potential systems. We may use the term here to mean
the spatial structure of basins of attractors.
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Focusing on the PV+ FS cell target story, we may have two alternatives. The
inhibitory actions on layer 2/3 PV+ FS cells due to rapid nicotinic depolarization of
layer 1 CR+ INs bring about instantaneous inhibitions of PV+ FS cells. In view of
its global nature, top-down attentions with cholinergic projections via NBM might
function for resetting the phase and starting up the synchrony in the gamma band
over multiple cortices. Alternatively, this hypothetical phase resetting might be done
within local areas. In such a case, the interareal phase synchrony could be a result
of entrainment by the hippocampal theta rhythm [25].

3 Concluding Remarks

The aim of this paper was, inspired by recent experimental observations of cortical
dynamics, to draw a possible theoretical and hypothetical picture of the top-down
mechanism for perception based on the physiological and anatomical data with the
emphasis on dynamical systems viewpoints. We hope that it may motivate further
studies on this subject from both experimental and theoretical standpoints.
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Beyond Sensory Coding: The Cognitive Context
of Olfactory Neurodynamics

Leslie M. Kay

Abstract The local field potential from the mammalian olfactory system displays
several oscillatory modes. Gamma oscillations (40–100 Hz) are associated with odor
stimulation in the olfactory bulb (OB) and are enhanced with odor discrimination
learning in a 2-alternative choice task when odors are very similar. Beta oscillations
(15–30 Hz) are associated with learning in a go/no-go task. These two oscillatory
modes represent different cognitive states, and different networks appear to support
them. Gamma oscillations are produced locally within the OB, while beta oscil-
lations rely on bidirectional connections with the rest of the olfactory and limbic
systems. These results help elucidate the context-dependent sensory representation
seen at every neurophysiological level in the OB.

Keywords Gamma oscillations · Beta oscillations · Operant behavior · Olfaction

1 The Primary Olfactory System: Anatomy and Physiology

The mammalian olfactory system displays a rich array of oscillations, which can
be seen in the cortical local field potential (LFP). These signals represent the
summed synaptic activity from many neurons (100s to 1,000s). When combined
with behavioral tasks, analysis of the LFP signal from multiple brain regions pro-
duces a dynamic picture of cognitive processing within early sensory areas normally
assumed to be objective feature detectors. Neurons that receive sensory input from
the nasal epithelium respond in complex ways to odors, and their odor selectivity
changes as stimulus associations change [1–3]. In addition, the amplitude pattern
of a common LFP waveform over the olfactory bulb (OB) depends strongly on
experience [4].
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Fig. 1 a Schematic of the olfactory system and connections with the hippocampal system. The
olfactory bulb receives input from all parts of this system. b Sensory input from olfactory receptor
neurons (ORN) reaches mitral cells (MC) in glomeruli at the OB periphery. Juxta-glomerular cells
(JG) modify the input signal. Excitatory MCs make reciprocal synapses with inhibitory granule
cells (GC). There are also inhibitory and excitatory inputs to GCs from other brain areas. Pyriform
cortex neurons receive inputs from the OB onto excitatory pyramidal cells (Pyr) and inhibitory
interneurons (Int). Pyramidal cells project back to OB GCs

Olfactory sensory receptors in the nasal epithelium project directly to the cortical
olfactory bulb (OB). The neurons that receive this input project to many parts of
the olfactory and limbic systems (Fig. 1). Within the OB, excitatory and inhibitory
connections serve to sharpen or otherwise modify the signal (Fig. 1b).

Three characteristic oscillations have been associated with specific behaviors
(reviewed in [5]). Theta oscillations (2–12 Hz; Fig. 2a) follow the respiratory drive.
Olfactory bulb (OB) gamma oscillations (40–100 Hz; Fig. 2a, c), first described
by Adrian, have since been examined by scores of researchers [6]. These oscilla-
tions initiate at the transition from inhalation to exhalation and have been associated
with odor stimulation. Gamma oscillations are further subdivided into gamma1
(60–100 Hz; Fig. 2a, c), the sensory-evoked oscillations, and gamma2 (~50–60 Hz;
Fig. 2b), which are associated with alert states and occur between breaths during
periods of slow respiratory rates (< 5 Hz). Beta oscillations (15–30 Hz; Fig. 2d)
are produced during odor stimulation in some tasks when a rat has learned to
discriminate odors.

2 Two Behavioral Tasks and Two Oscillatory Modes

The behavioral context in which an individual samples an odor can strongly
affect perception [7], the spatial pattern of the olfactory EEG [4, 8], and neuronal
responses to odors [1–3]. Thus, it is reasonable to assume that in addition to the
associative context of an odor (positive vs. negative reinforcement), the cognitive
structure of the task itself should have consequences on the neural representations in
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Fig. 2 LFP oscillations in OB and aPC. a Gamma1 initiates at the inhalation peak. The lower
frequency wave shows two inhalation cycles. Gamma1 and theta coherence (gray dots to right)
is strong. b Gamma2 during alert immobility is seen in both structures between inhalations. c
Gamma1 is strong in the OB and absent in the aPC during high overlap odor discrimination in a
2AC task. d beta during odor exposure in a GNG task. (Figure from Kay et al. [5], with permission)

the OB and other parts of the olfactory system. It is known that rodents can identify
odors very quickly, but their performance and the amount of time they spend sam-
pling the odor is influenced by the difficulty of the discrimination (amount of overlap
of the input patterns) and the type of task they use to make the discrimination,
respectively [9].

We used two different tasks to evaluate discrimination ability and neurophysio-
logical networks in rats: the Go/No-Go (GNG) and 2-alternative choice (2AC) tasks.
In the GNG task, the rat responds to one odor with a lever press and refrains from
pressing the lever for the other odor. In the 2AC task, there are two response levers,
and the rat presses one lever in response to one odor and the other in response to the
second odor. Correct lever presses are rewarded with a sucrose pellet, and incorrect
lever presses result in an immediate end to the trial (lights out) and an extra delay
before the next trial. In our laboratory, rats easily learn the GNG task and new odor
sets, responding with >90% accuracy [10, 11]. The 2AC task is more difficult to
learn and transfer to new odors requires longer [12].

In the 2AC task, when odorants are very different there is no enhancement of
beta or gamma1 with increases in performance, but when the odorants are very sim-
ilar, there is a significant increase in gamma1 for both odors (Fig. 2c; [12]). In the
GNG task, gamma1 oscillations are depressed, and when the rats reach criterion
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performance oscillations in the beta band are significantly enhanced (Fig. 2d;
[11, 13]). There is no increase in beta power during discrimination of highly over-
lapping input patterns. Beta oscillations are present in the 2AC task, but beta power
is not related to performance. This task-dependence of the oscillatory mode is not
just a difference in frequency. During the GNG task, beta oscillations show strong
coherence with beta oscillations in the aPC (Fig. 2d, gray dots to the right of the
graph), but during the 2AC task, gamma1 oscillations show almost no coherence
with gamma band activity in the aPC (Fig. 2c). Previous studies have shown that
decreasing feedback to the OB from other brain regions increases gamma oscil-
lations and cooperative firing patterns among MCs, but this same manipulation
destroys the beta oscillation mode [14]. These data suggest that different brain
networks support gamma1 and beta oscillatory modes.

3 Cognitive and Possible Circuit Differences

Differences in oscillatory modes dependent on the cognitive task may not be as
surprising when psychological studies are taken into consideration. GNG tasks are
generally considered to be easier to learn, but these tasks also require inhibiting a
learned, almost rote, motor response. Response inhibition requires circuits includ-
ing the basal ganglia and frontal cortex [15]. 2AC tasks also require some form of
inhibition, as a common strategy for a rat is to favor one lever over the other for
a large block of trials, performing at near 100% for one odor and at much lower
levels for the other odor. However, the overwhelming cognitive mode in the 2AC
task is a binary decision, which likely involves either different brain regions or the
same regions in a different mode than for the GNG task [16]. Future studies should
uncover both common and divergent networks associated with these two tasks, and
these networks should differentially influence the type and degree of oscillatory
activity via feedback mechanisms to the OB and neuronal firing patterns.
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Temporo-Parietal Network Model for 3D Mental
Rotation

Toshio Inui and Mitsuru Ashizawa

Abstract The ability to rotate objects mentally has been suggested to be related to
recognition of visual objects presented from non-canonical viewpoints. However,
the neural mechanism underlying this ability is still unclear. In this paper, a global
neural network model is proposed. This model consists of two subsystems, a parietal
network for mental rotation, and inferior temporal network for object recognition.
In this model, it is assumed that mental rotation is realized by a process in which the
egocentric representation of objects in the intraparietal sulcus is rotated by motor
signals that are internally generated in the premotor cortex. The rotated informa-
tion is sent downward to the visual cortex as a rotated visual image; meanwhile,
object recognition is achieved by a matching process with target object images in the
inferior temporal cortex. The parallel distributed processing of this model achieves
robust object recognition from various viewpoints including the non-canonical view.

Keywords Mental rotation · Object recognition · Neural network model

1 Introduction

It has been reported that right parietal cortex is involved in the object recognition
from the non-canonical view [1, 2]. Schendan and Stern [3] identified the brain
network for object recognition according to an object recognition theory called
“multiple view plus transformation (MVPT)” [4].

They found that the left occipital and temporal cortex were activated for object
categorization, whereas the CIP (caudal intra-parietal), TOS (transverse occipital
sulcus), and right posterior ventro-lateral prefrontal cortex (BA44/6) were activated
for mental rotation.
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According to Kveraga et al. [5], for the object recognition, the candidate of
categories would be extracted in the left posterior ventro-lateral prefrontal cortex
through the magno-cellular pathway. This candidate information is in turn transmit-
ted to the left ITS (inferior temporal sulcus) and LOS (lateral occipital cortex) as
a top-down signal, and then the object is identified. Processes of mental rotation
and object recognition were also examined psychologically and physiologically in
details and the responsible regions in the cortex were identified. However it remains
unclear how these functions are realized and integrated in the brain at the level of
the neural network.

2 Structure of the Model

The parietal network is a bi-directional network consisting of three layers, the CIP
layer, the AIP (anterior intra-parietal area) layer and the PM (premotor cortex) layer.
The temporal network is an RBF (Radial Basis Function) network [6] (see Fig. 1).
Binocular image information of a stick pattern from the visual cortex is input into
these two networks. Once this signal from the visual cortex is received, it is matched
with a shape in memory (target object), and then the angular difference ϕ of rotation
from the target object is estimated by the RBF network of the temporal cortex.
When the degree of matching is high enough, it is instantly identified. However,
when the degree of matching is low, the angular difference ϕ from the target object
is estimated, which is then transmitted to the PM layer. This information triggers the
rotation command, which is transmitted from PM layer as a top-down signal, down
to the visual cortex via CIP, and rotated image representation is internally generated
in the visual cortex. Then this information of rotated image is transmitted again to
RBF network. In this way, the rotated image generated by the top-down signal is
checked by the RBF network for a match between the rotated shape and the target
object. As the image in the visual cortex is rotated gradually over a number of time

Visual
Cortex

L        R
Visual Image

Temporal Network

ADU

OSU

PM AIP CIP

Parietal Network

gating

RBF

Fig. 1 Proposed scheme of
the network model
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steps, the matching level rises. When it is above threshold τ, the gating network
comes into operation, and the mental rotation stops because of inhibition of signals
from the temporal cortex (the output of the RBF network) to the PM layer.

3 Training Procedure of the Network

The parietal network is an extension of that presented by Ashizawa and Inui [7, 8].
This network was trained as follows: at time t, the parietal network is given both a
stick pattern viewed from a certain direction to the input layer (visual cortex) and a
rotation command to PM layer. Then the network is trained to generate the image
rotated by a certain angle in the visual cortex at time t + 1. The angle is specified by
the rotation command.

Images of the target object, viewed from various directions, are then presented
to the temporal network (RBF network) and it is trained using a back-propagation
learning algorithm. The output becomes 1.0 if we present the image of the target
object; otherwise, it is 0.0. In this simulation, the number of images of the target
object from various viewpoints was limited. As a result, the temporal network learns
to output an intermediate value between 0 and 1 for any novel view of the target
object.

4 Results and Discussion

First, we examined whether the parietal network can reproduce a precise mental
rotation for a single bar; that is, whether the bar can be mentally rotated based on
the rotation command from the PM. The results are shown in Fig. 2. Continuous
curves in Fig. 2a represent the physical rotation in tilt-slant space for 8 different
slopes in 3D space. Figure 2b–d show the mental rotation in 3D space of the bar
(cross) for three different angular velocities ω with physical rotation (continuous
curve).

(a) (b) (c) (d)

Fig. 2 Physical and reproduced rotation for different slopes of a bar in tilt-slant space. ω is the
angular velocity
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Fig. 3 Schematic response for the left monocular image in the visual cortex during mental rotation

Figure 2 indicates that the network correctly reproduces mental rotation of the
bar in accordance with the rotation command. A schematic response of the visual
cortex during mental rotation is also shown in Fig. 3.

After this learning, neurons in the CIP layer of the parietal network exhibit
localized response selectivity in tilt-slant space that is similar to the physiological
characteristics of the real CIP neurons [9]. In our model, movement of the activation
pattern in tilt-slant space caused by the rotation command of PM layer corresponds
to mental rotation.

In addition, the output of the neurons of the AIP layer is modulated by a motor
command from PM layer, which is similar to the properties of neurons in the mon-
key parietal cortex. Furthermore, the model predicts that activation of the CIP is
dependent on the rotation angle, which was also reported in a functional imaging
study of mental rotation [3].
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Representation of Time-Series by a Self-Similar
Set in a Model of Hippocampal CA1

Yutaka Yamaguti, Shigeru Kuroda, and Ichiro Tsuda

Abstract Because episodic memory includes a time series of events, an underlying
dynamics for the formation of episodic memory is considered to employ a mech-
anism of encoding sequences of events. The “Cantor coding” hypothesis in hip-
pocampal CA1 has been proposed, which provides a scheme for encoding temporal
sequences of events. Here, in order for investigating the Cantor coding in detail,
we constructed a model for the CA1 network which consists of conductance-based
model neurons. It was assumed that the CA3 outputs temporal sequences of spatial
patterns to CA1. It was shown that the output patterns of CA1 were hierarchi-
cally clustered in a self-similar manner according to the similarity of input time
series. The dependency of the efficacy of encoding on the input time interval and its
robustness against noise was investigated.

Keywords Hippocampus · Cantor coding · Iterated function system

1 Introduction

A consensus has emerged that the hippocampal formation is crucial for episodic
memory. For episodic memory, representing a temporal sequence of events is one
of important factors. The hippocampal CA3 region has dense recurrent connections
between pyramidal neurons. Since the seminal work of D. Marr [1], the CA3 has
been considered to be an associative memory [2, 3]. Recently, several experimental
supports for this idea appeared [4, 5]. On the other hand, some researchers suggest
that the CA1 region is tuned for the processing of temporal information [6].

Here we investigate the information representation in CA1 neurons when the
CA1 network receives time-dependent activity from CA3. Various kinds of rhythmic
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activity have been observed in the hippocampus and its neighborhood [7, 8].
Especially, theta and gamma oscillations have been observed in episodic context.
Thereby, continuously input stimuli may synchronize with these rhythms. From
these considerations, in this study, we assume that the input time-series from CA3
to CA1 is discrete, but not continuous one. In other words, we assume that the
input time-series consists of several elementary spatial patterns of activities of neu-
rons. The hypothesis of “Cantor coding” in CA1 has been proposed by Tsuda and
Kuroda [9]. Cantor coding provides the scheme for encoding temporal sequences
of events. It forms a fractal-like hierarchical structure in the state space of neural
dynamics. Tsuda and Kuroda propose a simple CA3–CA1 model in which CA1
encodes sequences. In physiological experiments by Fukushima et al. [10], hier-
archical representations of input time-serieses in the membrane potential of CA1
neuron were actually observed. This finding suggests the presence of Cantor cod-
ing in the actual hippocampus. Therefore, here we try to develop a biology-oriented
model of CA1 in order to study the possibility of Cantor coding in CA1. Then
we investigate the physiologically-plausible condition in which Cantor coding can
emerge and provide some predictions on possibility of observation of Cantor coding
in experimental studies.

2 Model

We propose a model of the CA1 network for Cantor coding. Figure 1 shows a
schematic drawing of our CA1 network receiving sequential inputs from CA3. As a
first step, in order to clarify the role of excitatory pyramidal neurons, here we neglect
interneurons. Because the fact that there are much less recurrent synaptic connec-
tions in CA1 compared with CA3, we neglect such recurrent connections. The CA3
network is supposed to store M spatial firing patterns {X0, X1, ..., XM−1}, which we
call elementary patterns. The model CA1 consists of N pyramidal neurons. These
neurons receive temporal series of spatial patterns via AMPA- and NMDA-receptor
mediated synaptic activity. We consider the situation that rhythmically switching
sequential pattern is delivered to the CA1 network. One of m(< M) elementary
input patterns defined above is randomly chosen every T-ms (Fig. 1b). We used two-
compartment model proposed by Pinsky and Rinzel [11] for a model of a pyramidal
neuron in the hippocampus.

3 Cantor Coding

We investigated the dynamic behavior of membrane potentials and output spike
patterns produced by the model CA1 neurons. In both distribution of membrane
potentials and spike patterns, we found Cantor sets. In order to understand how the
distribution of output spike patterns is formed in the high-dimensional space, we
utilize principal component analysis (PCA), transforming high-dimensional vectors
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to a lower-dimensional space. Figure 2 is a typical example of self-similar structure
emerging in a space of output vectors.

Furthermore, using linear discriminant analysis, we clarified that the network
shows good performance for discriminating input sequences with the length of at
least five, and that the performance of coding sensitively depends on the input
strength and the interval of input sequence. Coding efficacy is quite good when
the interval T is 80–200 ms, which is a characteristic time window of this system
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(Fig. 3a). These results indicate the possibility of decoding from a pulse train output
of CA1 pyramidal neurons. The encoding scheme has a certain degree of tolerance
against noise (Fig. 3b).

4 Summary

In this study, we clarified the presence of Cantor coding for the randomly input
spatio-temporal patterns in the CA1 network consisting of neurons described by the
two-compartment model. The distribution of spatial firing patterns shows fractal-
like clustering with hierarchical structure, which reflects the similarity of input time
series. The coding performance and its dependence on control parameters were
systematically investigated. We found time windows for Cantor coding.
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Emergence of Iterated Function Systems
in the Hippocampal CA1

Shigeru Kuroda, Yasuhiro Fukushima, Yutaka Yamaguti, Minoru Tsukada,
and Ichiro Tsuda

Abstract In rat CA1 pyramidal cells, we previously observed hierarchical clusters
of the distribution of membrane potentials, arranged according to the history of
input sequences. In this study, we deal with the dynamical mechanism generat-
ing such a hierarchical distribution. The recording data were investigated using
return map analysis. Each of the obtained return maps was well approximated by
a set of contractive affine transformations. These findings provide direct evidence
that the information of temporal sequences generated in CA3 can be self-similarly
represented in the membrane potentials of CA1 pyramidal cells.

1 Introduction

By the clinical studies, it is established that the hippocampus is a necessary organ of
the formation of episodic and semantic memories, especially for episodic memory.
The hippocampus receives all kinds of sensory information via entorhinal cortex.
One of the main components of hippocampus, CA3, is considered to function as
a network for autoassociative memories via the framework of attractor dynamics,
where memories can be stably stored as corresponding neuronal patterns and can be
retrieved by partial cues. Since pyramidal cells in CA1 area have less recurrent con-
nections compared with CA3, it may be thought that CA1 has different functional
roles form CA3. One hypothesis is that CA1 would be involved in the information
processing of spatiotemporal sequence from CA3. We have propose a scheme for
encoding the temporal sequence of events in CA1, which we refer to as “Cantor cod-
ing” [1] and have discussed its significance for the formation of episodic memory in
the hippocampus-cortex system [2, 3]. Cantor coding enables the temporal pattern
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sequences generated in CA3 to be represented hierarchically in fractal subsets in
state space of CA1. How can we verify the hypothesis of Cantor coding in CA1?

We conducted experiments using rat hippocampal slices to clarify how the spa-
tiotemporal sequence delivered via Schaffer collaterals affects the postsynaptic
membrane potentials of individual hippocampal CA1 pyramidal cells. We found
that the membrane potentials of CA1 pyramidal cells were hierarchically clustered
according to the histories of input sequences up to two or three length [4]. However,
the finding of such hierarchical clusters is still only indirect evidence of the presence
of Cantor sets, because these sets are essentially infinite objects; observed sets are
finite. A direct evidence of Cantor sets may be obtained by showing the existence of
emergent rules such as iterated function systems (IFSs) which provide a determin-
istic framework for generating self-similar fractal patterns as their attractors. From
this point of view, the experimental data was investigated using return map analysis
[5]. We also deal with a collective behavior at population level, using a reconstructed
multi-cell recording data set.

2 Materials and Methods

Patch-clamp recordings were made from pyramidal cells of CA1 area in rat
hippocampal slices (Fig. 1a). In order to generate spatiotemporal inputs to the pyra-
midal cell in CA1, two stimulus electrodes were set to the Schaffer collaterals, in
sites proximal and distal to the soma, respectively. For each cell, a recording ses-
sion consisted of 122 stimulus periods with an intervening rest period of 10 s. In a
stimulus period, ten successive inputs were applied with 30 ms intervals. Each input
pattern was randomly selected among the four spatial input patterns of electrical
stimulations: both electrodes (“4”), a electrode placed in the proximal site (“3”), or
the distal site (“2”), and neither electrode placed (“1”).

We recorded from 11 cells in 6 slices. One cell was excluded from analysis
because the cell exceeded a criterion for variation of resting potential during the
recording session. The ten cells were classified into two groups, sub-threshold
(cell1, ..., cell5) and supra-threshold (cell6, . . ., cell10), according to whether or not
the continual stimulations induced spikes. For each stimulus-period, the baseline
membrane potential was determined as mean amplitude during 2 s before the stimu-
lus period. Hereafter, we express membrane potential as the difference between the
measured voltage and the baseline membrane potential at each stimulus period.

A response at 	t to nth input was defined as the membrane potential at a fixed
elapsed time 	t after the input, which is denoted by V	t(n) (Fig. 1b). In particular,
Vlast(n) denotes the value at 	t = 28 ms taken as the timing just before the next
input. Responses for analysis were gathered from all stimulus periods for each cell
using the same procedure. Return map analysis was used to examine the dynamics
underlying the generation of responses to a spatiotemporal input sequence. For a
response sequence {Vlast(n)}n, a return map was generated by plotting each response
Vlast(n) against the previous response, Vlast(n− 1).
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Fig. 1 Experimental procedure and sample traces. a Schematic diagram of the experimental pro-
cedure. In each stimulus period, input patterns were randomly selected among four spatial input
patterns of electrical stimulations: “1” (red), “2” (green), “3” (blue) and “4” (magenta). In the
figures in this article, these input patterns are color-coded in the same way throughout. b Sample
traces of membrane potentials and the neuronal responses in a stimulus period. The upper two sam-
ples show the timing of electrical stimulation and the lower sample shows the timing of responsive
membrane potentials recorded from a cell in supra-threshold group, smoothed using a median filter
to remove electrical stimulus artifacts. The membrane potentials are color-coded according to the
kinds of their most recent input patterns (Colors will be viewed in online version)

3 Results and Conclusions

At individual cell and population levels, a return map of the response sequence of
CA1 pyramidal cells was well approximated by a set of contractive affine trans-
formations (Fig. 2). These finding strongly suggest that CA1 dynamics receiving
spatiotemporal input from CA3 has a mode that is characterized by input-driven
IFS consisting of a self-organized response rule for each spatial input pattern. This
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Fig. 2 Return map of response sequence Vlast at individual cell level. An example of a cell in
supra-threshold group. Vlast := V	t = 28[ms] The return map consists of four parts, called
branches, corresponding to four n + 1st input patterns. The colors of the points indicate the kinds
of n + 1st input patterns. The points Vlast(n), Vlast(n+ 1) such that spikes occur in the n + 1st input
interval are enclosed by open circles. Superimposed on the branches are the fitting lines using
major axis regression and the diagonal line Vlast(n + 1) = Vlast(n). Successive responses, Vlast(n)
and Vlast(n+1), in each branch had a decent correlation coefficient, and all slopes of fitting lines for
the branches were smaller than 1. These indicate the presence of contractive affine transformations
(Colors will be viewed in online version)

dynamics ensures that the distribution of response is hierarchically clustered accord-
ing to input histories, and also ensures that a spatial and retrospective code table can
be automatically formed. Hence we obtain Cantor coding.
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Frontal Theta for Executive Functions
and Parietal Alpha for Storage Buffers
in Visual Working Memory

Masahiro Kawasaki and Yoko Yamaguchi

Abstract Theta and alpha brain rhythms play an important role in visual working
memory (VWM), while their individual functions are not certain. This study con-
ducted the EEG experiments for a mental manipulation task. The frontal theta and
parietal alpha activity increased for manipulation and maintenance of visual infor-
mation in minds, respectively. Furthermore, phase synchronization between the
frontal and parietal areas was significantly increased. These results suggested that
the communication between the frontal theta activity for central executive and the
parietal alpha activity for storage buffers would mediate the VWM.

Keywords Working memory · Frontal · Parietal · Theta · Alpha · Synchronization

1 Introduction

In everyday life, we can temporarily retain visual information from the external
world and manipulate the mental representation in our mind. Such a high-level brain
function is executed by visual working memory (VWM), which includes the aspect
of not only passive short-term maintenance (“storage buffer”) but also active manip-
ulation (“central executive”) such as control of the allocation of attention, selection
of relevant information, and transformation of the mental representations.

To investigate the neural substrate for VWM, previous electrophysiological stud-
ies on primates and neuroimaging studies on humans have shown that a vast network
of brain regions including frontal, parietal, and visual cortices exhibit sustained
activity during the retention interval of delayed-matching tasks [1]. Especially,
the posterior parietal cortex is proposed to play a general role in maintaining the
actual contents of representations, since the delay-period activity correlated with the
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number of various items held in VWM (i.e., VWM load) [2]. On the other hand, the
prefrontal cortex is thought to act as an attentional filter – determining which infor-
mation within the visual scene will be maintained and updating them in VWM,
and not participating in the actual maintenance of that information [1]. Indeed,
the frontal cortex shows the transient activity during selection period and not any
sustained activity during the retention interval [3], and further the frontal delayed
activity is sensitive to VWM load only when selection of relevant information is
required [4].

Thus, although there are rich neurological evidences for VWM, the impor-
tant question remains as to how the central executive accesses the storage buffer
for manipulation of VWM. To approach the issue, the temporal relationship of
electroencephalograph (EEG) oscillations between the specific brain areas is of
particular useful. Previous EEG studies have shown the modulated theta and alpha
rhythms during VWM tasks [5], but have not yet clearly identified these functional
roles and relationships. Here, we investigated the dynamic links between the cen-
tral executive and storage buffers, by using time-frequency analyses of EEG data
recorded during a mental manipulation task.

2 Material and Methods

Fourteen healthy volunteers (4 females; mean age = 27.9 ± 6.8 years) took part in
the EEG experiment, after providing informed consent. At the beginning of each
trial, 5 × 5 gridded squares and a red circle included within one of those squares
presented on the computer screen for 1 s (sample display, Fig. 1). In one trial, par-
ticipants were first required to memorize, and then maintained the circle position
in the gridded squares. After that, a white arrow designating a direction (upward,
downward, rightward, or leftward) to which the participants should move the red
circle by one square in their minds was presented for 1 s. Participants must repeat
the arrow based mental manipulation for four times, and then determine via button
press whether the position of the circle which they mentally moved matched a probe
visual stimulus (test display). The duration of the inter-trial interval (ITI) was 2 s.
All participants completed 24 trials. They trained the task before the EEG sessions.

EEG was recorded using the 64 scalp electrodes (sampling rate: 500 Hz), ampli-
fied by using the NeuroScan equipment, and filtered in the band-pass range from 0.1
to 50 Hz. Reference electrodes were placed on the right and left ears. We segmented
EEG data for the correct trials to 3 s-epochs for manipulation period from the
onset of the instruction. The independent components analyses components which

Fig. 1 Schematic
illustrations of one trial
sequence for the mental
manipulation task
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were significantly correlated with the EOG were eliminated from the data as the
artifact involved in eye blinks and movements. And further, to reduce the effect of
the spreading cortical currents due to volume conductance producing voltage maps
covering large scalp areas, current source density conversion was performed.

Time-frequency (TF) amplitudes and phases were calculated by wavelet trans-
forms implementing the convolution of the original EEG signals with complex
Morlet’s wavelet function of 7-cycles length, with frequency ranging from 1 to
20 Hz (0.5-Hz steps). The TF amplitudes for manipulation were corrected by
subtracting the ITI amplitudes and averaged across trials.

To identify the phase relations between any two electrodes, the phase syn-
chronization index (PSI) for each electrode-pair was defined by the equation:

PSIjk (t, f ) =

√√√√√
(

N∑

i=1

cos(	φjk (i, f )/N)

)2

+
(

N∑

i=1

sin(	φjk (i, f )/N)

)2

(1)

where Δjk(t, f ) is the phase differences between jth and kth electrodes, and
N is number of time points. We applied the bootstrap to the PSIs of the individ-
ual subjects and compared the virtual PSI data during the manipulation and ITI
periods [6].

3 Results

All participants achieved high accuracy rate for the tasks (mean rate = 97.1 ±
4.7%). The averaged TF amplitudes for the manipulation periods relative to those
of ITI showed that the theta (4–6 Hz) amplitudes increased in the frontal and pari-
etal areas whereas the alpha ones (10–12 Hz) were enhanced in only the parietal
areas (Fig. 2a, b). Furthermore, according to the duration period of theta and alpha
in manipulation period, we could find that early active manipulation is followed
by a maintenance period. The increased parietal theta and alpha activity was also
survived but the frontal theta activity disappeared during the maintenance period
(data not shown). The theta (6 Hz) and alpha (12 Hz) PSIs between the frontal and
parietal electrodes were significant (Z = 3.70, p < 0.01), indicating that phase
synchronization during manipulation period was higher than the ITI.

4 Discussion

Our results of the TF amplitudes demonstrated a clear dissociation within a dis-
tributed VWM network between the functions; the central executive and storage
buffers. The frontal theta activity was observed in the manipulation not in the
maintenance period. On the other hand, the parietal alpha activity was enhanced
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Fig. 2 EEG results. a
Topographical maps of theta
and alpha amplitudes during
manipulation. b
Time-frequency graphs of the
frontal (AF3) and parietal
(Pz) electrodes

in both the manipulation and maintenance periods. These results support the idea
that the frontal cortex is associated with active manipulation and the parietal cortex
is involved in maintenance [1–4]. In addition, these results also clarified differ-
ent roles of different local synchronization within the specific cell assemblies, in
VWM function. The frontal and parietal theta can predict active manipulation pos-
sibly including interplay between the two regions. The parietal alpha can predict
maintenance that continues in the manipulation period.

Both the theta and alpha phase synchronizations between the frontal and pari-
etal areas during manipulation periods were higher than the ITI. A few studies have
independently reported the increased theta and alpha phase synchronization during
working memory tasks [5, 6]. In this study, the co-occurrence of theta and alpha
phase synchronization, which reflects co-activation of two functional systems, pro-
vides the neurological evidence that the central executive would access the storage
buffers by the global synchronization.

In summary, our findings about oscillatory amplitude of the theta and alpha
rhythms and the phase synchronization between the two distinct areas have clearly
shown that the dynamic linking between the theta and alpha oscillations would
mediate communication between the central executive and storage buffers in VWM.
Future studies should clarify a cross-frequency coupling between the theta phases
and alpha phases among the frontal and parietal areas.
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Associative Latching Dynamics vs. Syntax

Eleonora Russo, Sahar Pirmoradian, and Alessandro Treves

Abstract We model the cortical dynamics underlying a free association between
two memories. Computationally, this process may be realized as the spontaneous
retrieval of a second memory after the recall of the first one by an external cue, what
we call a latching transition. As a global cortical model, we study an associative
memory Potts network with adaptive threshold, showing latching transitions. With
many correlated stored patterns this unstable dynamics can proceed indefinitely,
producing a sequence of spontaneously retrieved patterns. This paper describes the
informational properties of latching sequences expressed by the Potts network, and
compares them with those of the sentences comprising the corpus of a simple arti-
ficial language we are developing, BLISS. Potts network dynamics, unlike BLISS
sentences, appear to have the memory properties of a second-order Markov chain.

Keywords Memory · Attractor dynamics · Information · Artificial language

1 Introduction

Cortical networks have been thought to retrieve memories associatively [1], both
at the local and global level [2]. The simple Hopfield neural network model [3]
has stimulated the study of content-addressed, auto-associative retrieval in terms of
attractor dynamics. Once a memory has been retrieved by an external cue, however,
if the corresponding attractor state is made unstable, it may serve itself as an inter-
nal cue for a second memory. Based on this simple observation, many authors have
explored recurrent networks that model processes of the free association between
two memories. These proposals differ in the ingredients introduced in order to desta-
bilize the first attractor state, so as to produce a spontaneous sequential retrieval of
several stored memories.
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In 1986 Sompolinsky and Kanter [4] proposed a simple network that, with a
specific set of connection weights, could retrieve an equally specific sequence of
memories. In 1987 Tsuda [5, 6] proposed a model with two coupled networks, a
stable and an unstable one, interacting with each other and generating oscillating
retrieval. Hermann et al. [7], in 1993, obtained “episodic” and “semantic” transitions
among memories with a dynamic threshold influencing active neurons.

Similarly to the work of Hermann, we study here a network where transitions
among patterns are due to an adaptive threshold, but with a different kind of units.

2 Potts Model

The network, described in detail in [8], is a recurrent network with Potts units.
Instead of a single neuron each unit represents a local cortical network, and can take
S different uncorrelated active states (plus one inactive state). The active states rep-
resent memories at the local network level, realized as local attractor states through
a process the model does not describe, as it focuses on the global cortical level.
Within each active state the activation rate is taken to be threshold-linear. We study
the global attractor dynamics, after storing on the tensor connections among Potts
units p global activity patterns. Each unit receives C connections.

To have spontaneous transitions among attractors we introduce a fatigue model:
both an overall and a state-specific adaptive threshold which, with a characteristic
time constant, tracks the mean activation value of each Potts unit in that state. After
retrieving a global pattern the system is in a quasi-stable attractor, as the threshold
continues to increase and to weaken each active state, until the unit changes state or
becomes inactive. The free-energy landscape of configurations is then dynamically
modified, leading the system to abruptly jump to a new attractor, often nearby.

In order to have structured latching transitions, however, the introduction of
a dynamic threshold is not enough: correlations among patterns are also needed.
In [9] we have studied the detailed dynamics of transitions between two corre-
lated patterns. In this simplified condition we have identified three types of latching
transition, each characterized by a range of correlations: quasi-random transitions
between weakly correlated attractors, history-dependent transitions between attrac-
tors with stronger correlations, oscillatory transitions between pairs of closely
overlapping attractors.

3 Extended Potts Dynamics

With a generative algorithm, as explained in [8], we produce a set of correlated
patterns and we store them into the network. In this more natural and complex condi-
tion, transitions among all pairs of patterns may occur, and they still seem to cluster
in the three types above. Starting with an external cue, that induces the retrieval of
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Ahriman takes Zarathustra

New lions build the house

The cow dances

The knife assumes that the worm
sees AhuraMazda

Yasmin knows that Magi don't
believe that the ox doesn't need the 
dog

Great black stones give the stone 
to Yasmin

Fig. 1 (left) Example of Potts dynamics: different colors show the overlap of the network with
different patterns; (right) Examples of sentences generated by the artificial language BLISS (Colors
will be viewed in online version)

a pattern, a series of transitions follows, as in Fig. 1, until activity dies out or we
stop the simulation. Its duration increases with the correlation among patterns and
with p, the total number of patterns. Latching dynamics can be quite disorderly, but
we can extract the sequence of patterns that, at each time t, have the highest over-
lap with the activity of the Potts network. We can then study the properties of such
discrete sequences, neglecting the originally continuous nature of the dynamics.

4 BLISS Sentences

In a separate project, we have designed an artificial Basic Language Incorporating
Syntax and Semantics, BLISS, in order to test the language acquisition capability of
the Potts and of other networks. BLISS is intended to be of intermediate complexity,
and in its current provisional form it includes a stochastic regular grammar with 30
production rules but no semantics yet. The associated probabilities (e.g. for tran-
sitive vs. intransitive verbs) are fine-tuned to the statistics of the one-million-word
Wall Street Journal (WSJ) corpus. The 170 terminal symbols belong to different lex-
ical categories such as verb, noun, adjective, determiner, demonstrative, . . ., whose
relative frequencies are also tuned to the WSJ corpus. With a Perl code we have
generated 50,000 BLISS sentences, of length between 5 and 12 words and with
maximum 3 levels of embedding.

• Ahriman takes Zarathustra
• New lions build the house
• The cow dances
• The knife assumes that the worm sees AhuraMazda
• Yasmin knows that Magi don’t believe that the ox doesn’t need the dog
• Great black stones give the stone to Yasmin
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5 Entropy and Information

We may now focus on the memory properties of both processes, Potts latching
dynamics and BLISS sentences, described as discrete sequences of “symbols”
picked from among p = 80 memory patterns and p = 170 words, respectively.

In the Potts case, we have run p × p latching sequences stopping each sequence
after 30 transitions, of which we have analysed the last 20. Averaging across all tran-
sitions, we count the occurrence of all possible single patterns, consecutive pairs and
triplets of patterns, and compute e.g. the entropy H(xn) and the information among
the symbols (= patterns) in position n and the ones in position n+i, I(xn; xn+i). We
proceed similarly with BLISS, using sentences with at least 7 symbols ( = words).

Results show that both systems span an entropy lower than log2p, naturally for
BLISS and in the Potts case due to finite size effects. Both have favourite pairs
and triplets: while many among all the possible combinations never occur, oth-
ers are frequently present. Comparing the frequency of each pair with that of its
inverse, BLISS is seen to be almost fully asymmetric (either one never occurs),
while Potts dynamics are substantially symmetric, as expected. The most frequent
Potts pairs are comprised of strongly correlated patterns. For BLISS, in Fig. 2 (right)
each color denotes the entropy at a specific position and the information which that
position conveys to the next positions. Over half of the total variability at each posi-
tion is seen to be independent of the words in previous positions, while the rest is
determined by a long history of all preceding words, pointing at extended syntactic
dependences.

In order to better characterize information propagation along the Potts latching
sequence, in Fig. 2 (left) we have compared our sequences with Markov chains of
first and second order. To equalize the noise present in a finite sample, we have also
produced p × p Markov chains of 20 steps, with the two transition matrices of the

Fig. 2 (left) Information flow in the Potts latching sequence (blue), in a first-order Markov chain
(gray) and in a second-order Markov chain (black); (right) Information flow in BLISS sentences,
each color denoting the decaying influence of the word chosen at each position. Note the different
y-scales (both in bits) (Colors will be viewed in online version)
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first and second order chains extracted from the original Potts latching sequences.
We can see in Fig. 2 that, whereas in a first order Markov process information decays
faster than in BLISS, but also monotonically, the surprising trend of the latching
information is similar to the one of a second-order Markov chain.
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Category Inference and Prefrontal Cortex

Xiaochuan Pan and Masamichi Sakagami

Abstract We hypothesize that the prefrontal cortex is involved in category
inference. To test this hypothesis, we recorded single-unit activity from the lat-
eral prefrontal cortex (LPFC) of two monkeys performing a sequential paired-
association task with an asymmetric reward schedule. We found that a group of
LPFC neurons encoded reward value specific to a category of visual stimuli defined
by relevant behavioral responses. And these neurons predicted the amount of reward
based on new category members that had never been used in the asymmetric reward
task, when a member from the same category was paired with a large (or small)
amount of reward. The results suggest that LPFC neurons encode category-based
reward information, and transfer this information to category members including
new ones, which could be the neural basis of category inference.

Keywords Category · Inference · Prefrontal cortex · Neuron ·Monkey

1 Introduction

Category inference is a fundamental cognitive function that allows animals to relay
information associated with one category member to others in the same group, even
to novel ones solely on the basis of category membership. Behavioral studies have
demonstrated that animals are capable of category inference [1, 2]. For instance,
rats can transfer reward information associated with a particular stimulus-sequence
(e.g. ABA, BAB) to new stimulus-sequences (e.g. CDC or DCD), because these
sequences share the same temporal structure [2]. But little is known about neural
mechanisms underlying category inference.

Several lines of evidence suggest the LPFC may be involved in category infer-
ence. First, the LPFC anatomically connects with the inferotemporal cortex, the
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parietal cortex [3, 4], and brain areas involved in motivation and emotion, such as
the orbitofrontal cortex, the amygdala [5]. The LPFC sends outputs to motor-related
areas [6]. The widely distributed connections allow the LPFC to integrate sensory
information from various sources and emotional information to generate behav-
ioral meaning of external stimuli. Second, electrophysiological studies in monkeys
demonstrate that LPFC neurons encode category information for a group of stimuli
with perceptual or functional similarity [7, 8]. Third, fMRI studies reported that the
human prefrontal cortex responds to category learning and judgment [9, 10]. Taking
together, we hypothesize that the LPFC may contribute to category inference.

To test this hypothesis, we recorded single-unit activity from the LPFC of two
monkeys in a sequential paired-association task with an asymmetric reward sched-
ule. We found that a group of LPFC neurons simultaneously encoded both the
category information of a group of stimuli and reward information, and predicted
reward for category members on the basis of category membership. These LPFC
neurons might reflect a neural mechanism of category inference.

2 Results

We trained two monkeys to learn two association sequences (e.g. A1→B1→C1
and A2→B2→C2, Fig. 1a) in a sequential paired-association task [11]. After the
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Fig. 1 The scheme of the task and the monkeys’ behavioral performance. a Two associative
sequences (ABC sequence) learned by monkeys. b An asymmetric stimulus-reward contingency
was introduced in reward instruction trials, and used in the following SPATs in one block. c The
correct rates of the first saccadic choice in SPATs for two monkeys (H and T). The horizontal axis
indicates the SPAT order after reward instruction in one block. The black curves represent the cor-
rect rate in large reward trials, while the gray curves indicate the correct rate in small reward trials.
∗∗p < 0.01 (two-tailed t-test). Error bars: s.e.m.
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completion of learning, the monkeys were taught the asymmetric reward rule using
reward instruction trials, in which one stimulus (C1 or C2) was paired with a
large reward (0.4 ml) and the another stimulus (C2 or C1) with a small reward
(0.1 ml). We arranged reward instruction trials and sequential paired-association
trials (SPATs) in one block (Fig. 1b). At the beginning of each block, reward instruc-
tion trials were presented; then followed by SPATs with the same asymmetric reward
rule. The stimulus-reward contingency was pseudo-randomized between blocks.
Our question is whether the monkeys transfer the reward information associated
with C1 and C2 to the first visual stimuli A1 and A2 in the SPATs.

The behavior of two monkeys was systematically influenced by the amount of
reward. The correct rate of the first choice (selection of B on the basis of A) in the
SPATs is significantly higher in large reward trials than in small ones from the first
SPATs after reward instruction (Fig. 1c), indicating the monkeys transferred reward
information associated with C1 and C2 to the stimuli A1 and A2.

We observed that a subpopulation of LPFC neurons predict reward informa-
tion specific to a group of relevant visual stimuli (e.g. A1-group includes A1, B1,
C1 and A2-group includes A2, B2 and C2) (Fig. 2). These neurons responded
to each stimulus from the preferred group (A1-or A2-group) in the preferred
reward condition (large or small), and showed no response to the stimuli from
the non-preferred group irrespective of the reward condition. Thus, these neurons
(category-reward neurons) likely encode both the category information of visual
stimuli and reward information. The population activity of these neurons discrimi-
nated between preferred reward condition and non-preferred reward condition from
the first SPATs in the condition of the preferred group of stimuli, but not of the
non-preferred group of stimuli. The results suggest that LPFC neurons represent
category-based reward information, and relay this information from one category
member to others mediated by the common activity pattern of category-reward neu-
rons to stimuli in the same category, which could be the neural basis of category
inference.

One prediction from category inference is that LPFC neurons should transfer
reward information from C1 or C2 not only to those well experienced stimuli (A1,
A2, B1 and B2, Fig. 2c), but also to new category members that have never been
used in the asymmetric reward task. To test this prediction, the monkeys were trained
to learn associations between new visual stimuli and B1 or B2 (e.g. one pair of new
stimuli (N1 and N2), N1→B1 and N2→B2). During the learning of new associa-
tions, the monkeys received the same amount of reward for all new stimuli. After
completion of training, the monkeys acquired the new associations, but no asym-
metric reward information paired with new stimuli. In the process of learning new
associations, the monkeys categorized new stimuli into the current A1-group (or
A2-group) through the association with common stimulus B1 (or B2). During the
asymmetric reward task, these new stimuli were presented as the first visual cues in
SPATs, instead of A1 and A2. We hypothesized that category-reward neurons sim-
ilarly represent the category information for both the original (old) stimuli and the
new stimuli in the same group, and transfer reward information to new stimuli even
before these new stimuli have been associated directly with the asymmetric reward.
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a Single-unit activity of a CR neuron for three sequences: ABC (first cue: A1 or A2), BCA (first
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to the preferred stimuli for this neuron. And the small reward condition in which the neuron pro-
duced higher activity is referred to the preferred reward condition. b The population histogram of
CR neurons for three sequences. The activity for the preferred stimulus in the preferred reward
condition was maintained across three sequences. c The normalized population activity of CR neu-
rons for preferred stimuli in three sequences. Statistical significance was checked by two tailed
t-test (∗p < 0.05, ∗∗p < 0.01). Error bars: s.e.m.

Behaviorally, the correct rate of the first choice for new stimuli in the first presenta-
tion was significantly higher in large reward trials than in small ones. Category-
reward neurons showed similar response patterns to both the old and the new
stimuli, and predicted the reward information for the first presentation of new stim-
uli. These results suggest that LPCF neurons use category membership to transfer
reward information to new members, consistent with the prediction from category
inference.
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3 Discussion

We observed category-reward neurons in the LPFC encoded the category informa-
tion for the relevant stimuli, including old and new ones, in the preferred reward
condition. We also found another group of neurons (called reward neurons) that
showed reward modulated activity independent of visual stimuli, which could be a
type of neurons observed in previous studies [12, 13]. Both types of neurons dis-
criminated between the two reward conditions based on old or new stimuli from
the first SPATs after reward instruction of C1 and C2, indicating these neurons can
transfer reward information associated with C1 and C2 to old or new stimuli. The
monkeys could not simply used mnemonic representations to predict reward for new
stimuli. Effectively they had to integrate several independently acquired associations
in order to infer reward value to new stimuli.

Category-reward neurons preferred one group of stimuli over the other. At the
same time, they showed higher activity in the preferred reward condition than in the
non-preferred one for the preferred stimuli, indicating that category-reward neurons
encode both the category and reward information simultaneously. Category-reward
neurons can predict reward information on the basis of the first presentation of new
stimuli, once another stimulus from the same group was paired with large (or small)
reward. Together, the current data suggest that category-reward neurons encode
category-based reward information and propagate this information among stimuli
in the same group, which would be the neural basis for category inference.

References

1. Jitsumori, M., Shimada, N., Inoue, S.: Family resemblances facilitate formation and expansion
of functional equivalence classes in pigeons. Learn Behav. 34 (2006) 162–175.

2. Murphy, R.A., Mondragón, E., Murphy, V.A.: Rule learning by rats. Science. 319 (2008)
1849–1851.

3. Petrides, M., Pandya, D.N.: Dorsolateral prefrontal cortex: comparative cytoarchitectonic
analysis in the human and the macaque brain and corticocortical connection patterns. Eur.
J. Neurosci. 11 (1999) 1011–1036.

4. Petrides, M., Pandya, D.N.: Comparative cytoarchitectonic analysis of the human and the
macaque ventrolateral prefrontal cortex and corticocortical connection patterns in the monkey.
Eur. J. Neurosci. 16 (2002) 291–310.

5. Amaral, D.G., Price, J.L.: Amygdalo-cortical projections in the monkey (Macaca fascicularis).
J. Comp. Neurol. 230 (1984) 465–496.

6. Miyachi, S., Lu, X., Inoue, S., Iwasaki, T., Koike, S., Nambu, A., Takada, M.: Organization of
multisynaptic inputs from prefrontal cortex to primary motor cortex as revealed by retrograde
transneuronal transport of rabies virus. J. Neurosci. 25 (2005) 2547–2556.

7. Freedman, D.J., Riesenhuber, M., Poggio, T., Miller, E.K.: Categorical representation of visual
stimuli in the primate prefrontal cortex. Science. 291 (2001) 312–316.

8. Shima, K., Isoda, M., Mushiake, H., Tanji, J.: Categorization of behavioural sequences in the
prefrontal cortex. Nature. 445 (2007) 315–318.

9. Vogels, R., Sary, G., Dupont, P., Orban, G.A.: Human brain regions involved in visual
categorization. Neuroimage. 16 (2002) 401–414.

10. Jiang, X., et al.: Categorization training results in shape and category-selective human neural
plasticity. Neuron. 53 (2007) 891–903.



122 X. Pan and M. Sakagami

11. Pan, X., Sawa, K., Tsuda, I., Tsukada, M., Sakagami, M.: Reward prediction based on stimulus
categorization in primate lateral prefrontal cortex. Nat. Neurosci. 11 (2008) 703–712.

12. Watanabe, M.: Reward expectancy in primate prefrontal neurons. Nature. 382 (1996)
629–632.

13. Kobayashi, S., Lauwereyns, J., Koizumi, M., Sakagami, M., Hikosaka, O.: Influence of reward
expectation on visuospatial processing in macaque lateral prefrontal cortex. J. Neurophysiol.
87 (2002) 1488–1498.



Is Mu Rhythm an Index of the Human Mirror
Neuron System? A Study of Simultaneous fMRI
and EEG

Hiroaki Mizuhara and Toshio Inui

Abstract EEG mu rhythm is one of the prominent oscillatory patterns for
investigating the dynamics of the human mirror system. However, because of the
blurring effect caused by the volume conduction in EEG measures, the origin of this
rhythm remains an open question. Here we propose a novel method to identify the
EEG distribution on the scalp by using the simultaneous fMRI and EEG recording.
The results indicate that the mu rhythm appeared on the lateral central sites indexes
as activities in the sensorimotor cortex, while the contamination from activities in
other cortices also appears as the mu rhythm.

Keywords fMRI · EEG · Mirror neuron system · Mu rhythm · Brain computer
interface

1 Introduction

The mirror neuron system is one of the prominent neuronal correlates for emerg-
ing action understandings in human–human interaction. This system has often been
investigated by using functional magnetic resonance imaging (fMRI), while the first
report originally showed the existence of the mirror neuron to be in the motor
cortex using a non-human primate study [1]. However, in order to investigate the
dynamic property of the mirror neuron system during the human-human interaction,
fMRI fundamentally lacks the ability to describe it because of the temporal resolu-
tion limits of the hemodynamic measures [2]. Therefore, the neuronal dynamics of
the mirror neuron system in humans has sometimes been investigated by human
electrophysiology (e.g., scalp electroencephalography: EEG). In the human scalp
EEG, the mu rhythm (8–12 Hz, sometimes referred to as the rolandic alpha/beta
rhythm) is used as an index of activation in the mirror neuron system [3, 4]. This is
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experimental evidence that the mu rhythm suppression appears at the lateral central
sites on the scalp, which corresponds to the location just above the sensorimotor cor-
tex, when humans are performing motor execution or motor imagery [5]. However,
because of the blurring effects caused by the volume conduction when only by using
the human scalp EEG, it is hard to identify the exact origin of this rhythm in the
human brain. Therefore, it raises a question as to whether the scalp EEG mu rhythm
truly originates from the sensorimotor cortex, or if it is the result of contamination
from activities in other cortices.

In order to investigate if when the mu rhythm appeared on the scalp is an indica-
tion of the activity in the sensorimotor cortex, we measured the simultaneous fMRI
and EEG during a motor execution task. The fMRI can provide detailed information
of the location of activation. Therefore, the combination of the scalp EEG and fMRI
could be a promising method to uncover the dynamics of the mirror neuron system.
In the previous studies of the simultaneous fMRI and EEG recording, the cortical
areas showing the significant correlation to the EEG time series have been identified
by using the time series of the scalp EEG power or other indices as an event for the
analyses [6, 7]. In the previous studies, since the blurring effect still remains in the
EEG indices, it did not directly indicate if the EEG originated from a specific cor-
tical area. To overcome this problem, we propose a new method for integrating the
fMRI and EEG. The results directly show the cortical origin of the EEG activities
observed on the scalp. Based on this new method, we further show that the scalp
EEG mu rhythm reflects the activity in the sensorimotor cortex.

2 Materials and Methods

In the current study, 15 healthy males participated in the experiments with after
giving written informed consent. The experimental procedure was approved by the
ethics committee at Kyoto University. The task was the right/left hand grasping in
accordance with a visually presented cue. Prior to the cues for hand grasping, a short
pre-cue was presented for the purpose of shifting the participant’s attention to the
spatial location of the cue appearance. The cue for the right or left hand grasping
appeared at almost the same frequency. During this hand grasping task, fMRI and
EEG were simultaneously measured. For the fMRI data acquisition, a 1.5T MR
scanner (Shimadzu-Marconi) was used with the following scan parameters: TR =
3 s, TE = 49 ms, FA = 90◦, FOV = 192 mm, in-plane resolution = 64 × 64, and
slice thickness = 5 mm without gap. The scalp EEG was acquired with 64ch EEG
amplifier (Brainproducts) with the following parameters: sampling rate = 5 kHz,
Highpass filter = 1 Hz, Lowpass filter = 250 Hz, Ref. Ch. = FPz, and Grd. Ch. =
inion.

Figure 1 shows the flowchart of the proposed method to identify the scalp EEG
topography regarding the cortical activity. The EEG data simultaneously measured
with fMRI were contaminated by the scan and pulse artifacts caused by the high
magnetic field. In the current study, these artifacts were removed by using the
methods proposed by Allen et al. [8, 9]. The artifact removed EEG time series were
then decomposed into time-frequency representation of EEG power by using the
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Fig. 1 Flowchart for identifying the scalp EEG topography related to the cortical activity based
on the simultaneous fMRI and EEG

Morlet wavelet transformation, where the frequency ranged from 1 to 50 Hz with
30 steps in log-scale, and the sampling rate was down-sampled into 200 Hz prior to
the wavelet transformation.

In the fMRI analysis, we used the SPM5 software (Wellcome Trust Centre for
Neuroimaging). In this analysis, the fMRI data was preprocessed in the following
order: motion correction to the first volume, slice timing correction to the middle
slice of the entire scans, realignment to the 3D structure image, normalization to the
MNI standard brain, and smoothing with the 10 mm FWHM Gaussian kernel. The
event design was decided by the convolution of the hemodynamic response function
(HRF) and the timing of the cue presentation. The voxel by voxel linear regres-
sion analysis among the preprocessed fMRI data and the event design was then
performed to identify the cortical areas corresponding to the hand grasping. Based
on the fMRI results, the regions of interest (ROIs) were then decided. It should
be noted that the individual coordinate of the ROIs was decided by the individual
fMRI results and structure MRI, and a sphere with a 5 mm radius surrounding the
coordinate was decided for each individual participant.

For combining the fMRI and EEG data, we used the multiple regression anal-
ysis among the fMRI time series of ROIs and the temporal representation of EEG
power. The fMRI time series were used for the multiple regressors, and the EEG
power at each electrode and frequency was used as a regressand. Thus, the regres-
sion coefficient for the EEG power at each electrode represents the electric field
from the neuronal activity in the ROI. Since the fMRI is based on the blood oxy-
genation level dependent signal, the fMRI signals respond with a time delay defined
by the HRF [2]. Then, in the actual computation of multiple regression analysis,
the regressand was transformed by the convolution of the EEG power time series
and HRF.

3 Results and Discussion

Figure 2 shows the results of the EEG distributions corresponding to the activities
in the left sensorimotor cortex, the left visual cortex and the left putamen during the
hand grasping task. The EEG power (11.8 Hz) at the left lateral central electrodes
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Fig. 2 Results of scalp EEG which correlated to the fMRI BOLD signal in the left sensorimotor
cortex (a), the left visual cortex (b) and the left putamen (c). The figures appearing in the left col-
umn represent the EEG topography and the figures in the right column represent the corresponded
cortices in each panel

showed the negative correlation to the BOLD signals in the left sensorimotor cortex.
This indicates that the mu rhythm suppression occurs in association with the sen-
sorimotor cortical activation [5]. In addition to this EEG suppression, EEG power
at the left occipital electrode sites (9.5 Hz) and the left fronto-central sites (9.5 Hz)
also showed negative correlation to the activation in the left visual cortex and in the
left putamen, respectively. Previous studies reported that the hemodynamic response
in the visual cortex negatively correlated to the EEG alpha power at the scalp occip-
ital sites [10]. Furthermore, the mu rhythm was also found in the putamen during
motor execution task [11]. These indicate that a part of mu rhythm can be inter-
preted as contamination from the activities in the visual cortex and putamen, while
the mu rhythm also indexes the sensorimotor cortical activation in line with previous
studies. Thus, our results strongly claim that one must carefully note the contamina-
tion from the activities in other cortices, when investigating the dynamics of mirror
neuron system by using the scalp EEG.
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Decoding Action Selectivity of Observed Images
Using fMRI Pattern Analysis

Kenji Ogawa and Toshio Inui

Abstract Previous research indicates that mirror neuron system (MNS),
comprising posterior parietal (PPC) and ventral premotor (PMv) cortices, has a
role in action understanding. However, action selectivity within these regions has
not been elucidated. We investigated whether the MNS contains information about
observed actions. Participants observed object-directed hand actions. We indepen-
dently manipulated five dimensions of observed images: action (grasp/touch), object
(cup/bottle), perspective (egocentric/allocentric), hand (right/left), and image size
(large/small), and investigated whether this information could be decoded from
multi-voxel pattern activity. The early visual area showed significant above-chance
classification accuracy consistent with dissimilarity of input images. In contrast,
significant decoding accuracy was observed for action, object, and mirror-image of
hand in the PPC and for action and object in the PMv. Our study indicates that the
MNS processes observed actions in a hierarchical manner, where the PPC represents
action together with hand, and the PMv encodes more abstracted representations of
transitive action.

Keywords Action observation · Posterior parietal cortex · Premotor cortex · fMRI

1 Introduction

Humans can recognize observed actions despite variations in retinal inputs such as
viewpoint and distance from others as well as the hand used, which requires invari-
ant representations of observed actions. Recent research indicates that the human
mirror neuron system (MNS), or action observation network, mainly comprising
the posterior parietal cortex (PPC) and the ventral premotor region (PMv), has a
role in the understanding of action [1]. However, most previous fMRI studies have
failed to reveal action selectivity within these regions due to its limited spatial
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resolution, which is most critical for action understanding. In this study, we used
recently-developed multi-voxel pattern analysis (MVPA) over fMRI data [2, 3] to
investigate neural representations of observed actions in the parieto-premotor area,
regarding whether these areas contain specific information about observed actions.

2 Materials and Methods

Nine participants (5 males and 4 females; mean 29.0-year old; one left-handed)
observed grayscale photos of object-directed hand actions. We independently
manipulated the following five properties of the observed images: action (grasp or
touch), manipulated object (cup or bottle), perspective (egocentric or allocentric),
hand (right or left), and image size (large or small), resulting in a total of 32 types of
stimuli (Fig. 1). These were presented in separate blocks per run. This manipulation
enabled us to investigate distinct neural representations encoded in different brain
regions, as well as to dissociate low-level visual dissimilarity with action selectivity.
Ten images of the same properties were presented every 1,200 ms, with 800 ms for
image presentation and 400 ms for a fixation display during each 12-s block. Every
block was interleaved with a 12-s rest period. To ensure the subject’s attention dur-
ing scanning, we introduced subtle variations into the images, in which the hand’s
shape or orientation was slightly changed across images. Participants performed a
one-back task, simultaneously pressing buttons with index fingers of both hands
whenever the same stimulus appeared twice in a row, which occurred once or twice
per block.

A 3-T scanner (Simens, Trio) was used to acquire T2∗-weighted echo planar
imaging with resolution of a 3 mm-cube. Image preprocessing was performed
with SPM5, and classification analysis was performed with a linear support vector
machine (SVM). The 32 blocks (trials) were modeled as separate box-car regressors
that were convolved with a canonical hemodynamic response function. Parameter
estimates of each trial of voxels within regions of interest (ROIs) were used as inputs
to the classifier. Voxels in each ROI were selected in the order of highest t-value of
training runs until the number of voxels reached 300 for each subject. The ROIs
included the anterior part of intraparietal sulcus (aIPS) and the ventral premotor

Fig. 1 The sample stimuli used in the experiment. (Left) Grasp the cup with right hand in ego-
centric perspective displayed in small size. (Right) Touch the bottle with left hand in allocentric
perspective displayed in large size
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cortex (PMv) bilaterally. These were defined as 15 mm-radius spheres centered at
the mean coordinates from previous literature of hand-action execution and observa-
tion studies listed in [4, 5]. We also chose the right early visual area (BA17/18, Vis)
defined with the SPM Anatomy toolbox, as well as the white matter (WM) as a con-
trol ROI. We then evaluated selectivity as well as invariance to different properties
(dimensions) of the observed images, focusing on whether this information could
be correctly decoded from multi-voxel pattern activity of the region (information-
based analysis proposed in [6]). Hand was labeled in two ways: either as anatomical-
(right hand in allocentric corresponds to right hand in egocentric perspective) or
mirror- (right-hand in allocentric corresponds to left-hand in egocentric perspective)
correspondence. Decoding accuracy was measured with 4fourfold “leave-one-out”
cross-validation based on independent runs, and statistical significance was assessed
with a t test (df = 8).

3 Results

The conventional univariate analysis of fMRI data showed bilateral large activa-
tions during task blocks, compared with rest periods, collapsed over all conditions,
which encompassed parieto-premotor region including the aIPS and PMv, as well
as the early visual areas and medial motor areas including supplementary and pre-
supplementary motor areas (Fig. 2). This result is generally congruent with previous
studies of action observation. MVPA revealed that the early visual area showed sig-
nificant above-chance classification accuracy in all dimensions, with particularly
high accuracy in image size, hand, and perspective. These patterns of decoding accu-
racy were mostly consistent with the dissimilarity of the low-level stimulus images,
which was measured with pixel-wise correlations as well as decoding accuracies
using a stimulus image itself as input. In contrast, significant above-chance decod-
ing accuracy was observed in the bilateral aIPS, showing highest accuracy in action
as well as object and mirror-image hand, with no significant accuracy for size and
anatomical-hand. The bilateral PMv showed significant accuracy for action, together
with object selectivity in the right PMv, without significant accuracy for size, hand,
and perspective (Fig. 3).

Fig. 2 Overall activated regions in an action observation period compared with a rest period
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Fig. 3 Decoding accuracies
of regions of interests (ROIs)
for six different properties of
observed images. Error bars
denote SEMs across subjects.
∗, p < 0.05; ∗∗, p < 0.005

4 Discussion

Our results revealed that while the early visual areas process low-level visual
information of input stimulus, the parieto-premotor areas that comprise the MNS
encode action-dominant information regarding observed images. The MNS appears
to processes observed actions in a hierarchical manner, where aIPS represents
object-directed action together with hand used, and PMv encodes a more abstracted
representation of transitive actions invariant to the effector. The current results are
consistent with those of previous studies that indicated action-related activity of the
PMv that was invariant to effectors and responded to actions made with tools as well
as hand and mouth [7], or to action-related sound [8]. In contrast, the PPC encodes
effector selectivity of observed action [9]. These different neural representations of
observed actions within the parieto-premotor cortex, as well as early visual areas,
may be responsible for different levels of action understanding as well as different
capacities for imitation.

Finally, higher decoding accuracy for action was shown in the parietal cortex
(aIPS) than in the early visual areas (Fig. 3), despite the fact that we used only
visual stimuli. Previous decoding studies mostly targeted the primary visual areas
to decode observed images (e.g. [3]). In contrast, our study suggests the merit of
using activation patterns of the higher brain regions, rather than the primary visual
areas, to decode invariant information (e.g. action selectivity in the current study)
that is distinct from low-level visual similarity of input images.
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A Developmental Model of Infant Reaching
Movement: Acquisition of Internal Visuomotor
Transformations

Naohiro Takemura and Toshio Inui

Abstract The online control mechanisms of human goal-directed movements
include two functions: predicting sensory feedback resulting from motor commands
(forward transformation) and generating motor commands based on sensory inputs
(inverse transformation). Infants acquire these transformations without implicit
instructions from caregivers. In this paper, a neural network model is proposed that
learns the forward and inverse transformations in reaching movement by observing
the randomly moving hand. The forward pathway of the model is a Jordan network
that is input with motor commands, and that is trained to output a visual hand posi-
tion. The inverse pathway has the input of the visual hand position and a connection
from the hidden layer of the forward pathway. It is trained to output the motor com-
mand, which makes the hand move to the input hand position. The network learned
correct transformations, which suggests that continuous observation of the hand is
the basis for motor development.

Keywords Infant development · Reaching · Neural network model

1 Introduction

The internal model has been suggested to have an important role in the control of
goal-directed human movements. In order to achieve the online control of reaching
towards a visually presented target, the central nervous system has to compensate
for the intervention of biological delay and noise in motor and sensory pathways.
To this end, the internal forward model of the arm predicts the body state, as well as
the sensory feedback that is the consequence of the motor command. On the other
hand, the inverse model computes the required motor command from the predicted
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body state. An optimal feedback control model based on these forward and inverse
transformations has been suggested as a framework for online motor control [1].

These motor control mechanisms are typically acquired during infancy. Infants
acquire the capacity of motor prediction using the forward model by 7 months after
birth [2]. However, it is still not clear how infants learn the forward and inverse
transformations without implicit instructions from their caregivers. On the other
hand, infants have tendency to keep their hands within their field of view [3]. In
this paper, a neural network model is presented that learns the forward and inverse
transformations by observing a hand that moves randomly within the visual range.

2 The Model

The model learns the forward and inverse transformations of a hand that moves in
2 dimensional space, through the visual feedback of the hand position. In the current
study, the motor command is the hand displacement from current position, which is,
during learning, issued by random sampling from an uniform distribution ranging
from −2 to 2 for each dimension. The visual feedback is the hand position in that
space, ranging from −5 to 5 for each dimension. Following an infant’s tendency to
keep the hand within view, the hand position is assumed to be always within the
visual range. When a motor command that moves the hand out of the visual range
is issued, the hand stops at the end of the visual range.

The model consists of two pathways, the forward transformation pathway and
the inverse transformation pathway (Fig. 1). The forward transformation pathway is
a Jordan network, where motor commands are input, and is trained with a backprop-
agation algorithm. The teacher signal is the visual feedback of the hand position as
a consequence of the issued motor command. On the other hand, the inverse trans-
formation pathway is a network where the input is the visual feedback of the hand
position. It also has connection from the output of the hidden layer of the forward
pathway from 1 time step previous. The network is trained with the backpropaga-
tion. The motor command that causes the hand position input through the visual
feedback is the teacher for training.

Fig. 1 Schematic diagram of the model
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Fig. 2 Examples of the population activity of the motor and visual units. Given that the current
hand position is at the center of the visual range (a: circle), and that the motor command (b:
arrow) is issued to make the hand displacement of (1,−1), the resultant hand position is (1,−1) (c:
circle). The hand positions and the hand displacement are encoded in the population activity (d, f,
and e), where the gray scale color of each cell denotes the activity level (the more white, the higher
the activity), and the position of each cell in the population denotes the unit’s preference for the
corresponding hand positions and hand displacement

The motor command and the visual feedback are encoded by a population of units
that have broad selectivity for hand displacement and hand position, respectively.
The selectivity of each unit is cosine tuned; that is, given that the hand displacement
or hand position to encode is x, the activation ai of a unit i, which has preferential
hand displacement or hand position pi, is defined as follows:

ai =
{

0.5 cos(|x− pi|/2W)+ 0.5 if |x− pi| < W

0 otherwise
(1)

Note that | · | denotes norm, and W is half the size of the motor and visual range
(i.e. 2 and 5 for the hand displacement and the hand position, respectively). The
number of the motor units (i.e. the input to the forward pathway and the output of
the inverse pathway), the vision units (i.e. the output of the forward pathway and
the input to the inverse pathway), and the hidden units are 5 × 5, 20 × 20, and 500,
respectively. Examples of representations of the visual feedback and hand position
are shown in Fig. 2.

3 Simulation and Discussion

The network is trained in 300,000 steps with the pseudo-random motor com-
mand. After learning, 25 motor commands are input to the forward transformation
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A B

Fig. 3 Results of a network test. a Population Activities (gray scale maps: the more white, the
higher the activity) of output units in the forward pathway when 25 motor commands (arrows) are
input to the network, with the initial hand position being the center of the visual range. b Decoded
hand displacements (arrows) from the population activities of output units in the inverse pathway
when 25 new virtual hand positions (circle) are input to the network, with the initial hand position
being the center of the visual range

pathway, with the initial hand position being the center of the visual range. The
activities of output visual units are shown in Fig. 3a. The center of activation is
almost the hand position after movement. On the other hand, 25 new virtual hand
positions (ranging from (−2,−2) to (2,2)) are input to the inverse transformation
pathway, with the initial hand position being the center of the visual range. The
population activities of motor output units represent the motor commands that make
the hand move to the input virtual hand position (Fig. 3b).

These results suggest that the forward and inverse transformations can be learned
only by making random movement and by continuously looking at the moving hand.
The correct inverse transformation indicates that the hidden layer units in the for-
ward transformation contain the internal representation of the hand position. With
these learned representations and transformations, infants may have the ability to
acquire the online control mechanisms. In other words, an infant’s tendency to keep
the hand in the field of view is a behavior that makes motor development easier.
One of the remaining problems is whether this tendency is an innate property or an
acquired performance.
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Interacting Humans and the Dynamics of Their
Social Brains

Emmanuelle Tognoli, Gonzalo C. de Guzman, and J.A. Scott Kelso

Abstract Social behavior rests on a complex spatio-temporal organization of brain
processes in the interacting humans. We present a theoretical and methodological
framework for the systematic study of brains and behaviors during social inter-
actions. We draw an overview of results from our laboratory that describe human
tendencies for coupled behaviors, the dynamics of their characteristic neuromark-
ers, and neuro-social phenomena in which one human can drive the brain dynamics
of others or several humans can see their brain dynamics coupled, presumably by
way of shared-attention to salient features of their joint-behavior.

Keywords Social behavior · EEG · Brain Coordination dynamics · 4D
spatio-temporal analysis

1 Introduction

Two complementary forces of integration and segregation are at play in social
behavior. Too much segregation and meaningful social interactions cannot emerge.
On the other hand, too much integration prevents complex interactions – distinct yet
coordinated behavior between partners –from arising. In between the two poles of
integration and segregation lies meaningful social behaviors, the temporal unfold-
ing of which requires a dynamical framework [1]. The overarching goal of Social
Coordination Dynamics is to understand the mechanisms through which the behav-
iors and brains of people couple and decouple dynamically during the course of
social interaction.

The basic experimental paradigm of Social Coordination Dynamics sets up
subjects in reciprocal behavioral interactions [2] and continuously records state vari-
ables of their behavior along with simultaneous brain measures such as EEG [3].
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Brain processes associated with social interactions change at a fast sub-second time
scale. Therefore, experimental paradigms are designed with the goal of knowing at
every moment in time if the partners’ behavior is coordinated or not. In coordination
dynamics, the coordination states of a system evolve over time, as observed through
special quantities called collective variables. In order to answer questions regarding
the neural mechanisms responsible for establishment or loss of social coordination,
it is crucial to understand how the continuous collective variables of behavior are
related to the continuous dynamics of brains, when subjects are acting singly and
together. To investigate the dynamics of coordination at behavioral and brain levels,
a novel EEG approach was developed [4, 5]. This method reveals how patterns of
brain activity within and between brains are associated with salient features of social
behavior.

1.1 The Theoretical Framework of Coordination Dynamics

Human social systems are composed of people, their behaviors and their brains, a
shared environment and information flowing between all these parts. Coordination
Dynamics [6] aims to describe how such a complex system functions. It does so
by studying how the parts’ coordination evolves over time. An example of coordi-
nation dynamics is the dynamical coupling and uncoupling observed between the
behavior of one person and brain activity in another person. Distinctive from other
frameworks, Coordination Dynamics does not require that the parts that it studies
be of the same nature (e.g. only brain regions or only people). Sufficient conditions
are that the parts exchange information and can be described quantitatively over
time. Relevant heterogeneous parts of systems are not isolated in separate scientific
approaches or disciplines, thereby insight is enhanced.

1.2 Dynamics: Challenge for Social Neuroscience

The neural bases of social behavior are increasingly well-known [7, 8] especially in
the wake of Rizzolatti and colleagues’ discovery of specialized neurons of the motor
cortex that share the dual property of acting for the self and perceiving social others.
However, less is known about the dynamics of the brain during social interactions:
how those networks of brain regions couple, decouple and re-arrange in new self-
organized patterns of social interaction.

EEG and MEG are excellent techniques to study the large-scale coordination
dynamics of the brain because of their wide coverage of the cortical areas and their
fast temporal resolution. We recently developed specific methods to deal with con-
tinuous EEG activity that comes along spontaneously occurring events in the social
coordination behavior [3–5]. One milestone in the development of this methodolog-
ical framework was to get away from averaging techniques and address continuous
brain activity [4]. Another was to design a visualization technique that simultane-
ously displays 4 dimensions of EEG data (2D of space, magnitude of the signal
and time) [3, 5], thereby exposing the dynamic patterning of the brain [5]. Using
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this method, it was possible to integrate the dynamics of behavioral and brain vari-
ables in a single analytical framework. In the following, we will first describe social
behavior and then examine its associated brain coordination dynamics.

2 Self-organizing Coordination Tendencies in Human Behavior

2.1 Spontaneous Coordinative Tendencies

A basic model for self-organized behavior in a single person is the coordination
between body parts: an essential property of human locomotion and action. Stable
patterns of coordination have been comprehensively explored and modeled with
the basic HKB equations of coordination dynamics and its many extensions [9].
As Rizzolatti and colleague showed [7], basic building blocks serving individual
behaviors are also employed to acquire and use information about others’ behav-
ior. We studied the coordination of rhythmic movements between pairs of people
who exchanged information about each others’ behavior through visual percep-
tion. Coordination spontaneously occurred [2, 3]: the same attractors in the system
dynamics that exist within subjects were observed between subjects (see also [10]).

2.2 Symmetry Breaking and the Notion of Roles

In spontaneous [3] and intentional social coordination tasks [11], close examination
of the transition to synchronized behavior revealed that subjects are not identically
involved in setting the collective behavior. Asymmetries emerge in the mecha-
nisms and extent to which individual behaviors are modified. For instance, a subject
may show little or no modification of his ongoing behavior and the partner may
carry all the burden of establishing an instructed coordination pattern. Both sub-
jects may adopt different roles, altering distinct parameters of their movements.
Qualitatively, asymmetry is revealed by a detailed behavioral analysis of the dynam-
ics of frequency, amplitude, and velocity of the interacting subjects’ behavioral
trajectories. Quantitatively, asymmetry may be analyzed through the directionality
in the informational flows between the behaviors [12].

3 Brain Dynamics of Interacting Human

3.1 Neuromarkers of Social Coordination

During spontaneous social behaviors, EEG spectra revealed a neuromarker of social
coordination, maximal above right centro-parietal electrodes, which we called phi
[3]. Phi belongs to the 10 Hz frequency range and is composed of two components:
a lower frequency component that increases during uncoordinated behavior and a
higher frequency one that increases during sustained coordination.
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3.2 Dynamics of Social Coordination

A time-frequency analysis showed that phi was not sustained or amplitude modu-
lated. Rather, phi appeared intermittently, suggesting that much information about
its specific function was hidden in its temporal distribution in relation with behav-
ioral descriptors of the subjects’ roles and circumstances. To study the temporal
distribution of phi and other neuromarkers, EEG recorded during social interaction
was filtered in the band of interest and spatio-temporal patterns were analyzed using
a 4D method [5].

3.3 Brain Patterns of Coordination, Patterns of Intrinsic Behavior

Informationally, transitions are key episodes in the behavior of a system. With the
aim of identifying dynamics of phi and other neuromarkers during social behav-
ior, we focused on the transition to coordinated or uncoordinated behavior in a task
of intentional social coordination. That is, on seeing the other’s hand movements,
subjects were instructed to intentionally coordinate in-phase or anti-phase with one
another or to try to move independently by retaining their own intrinsically pre-
ferred behavior. In addition to the coordination or lack thereof, each transition was
described with the roles taken by the subject in the outcome behaviors: intention to
coordinate, mechanisms of change, congruency with the instructions and kinematic
descriptors. The analysis identified the temporal distribution of phi and of other
neuromarkers involved in social or intrinsic behavior. Phase of movement (flexion,
extension) was an important determinant in the brain dynamics. Independently from
the particular brain patterns occurring, there was a tendency for these brain patterns
to change coincidently with switches in the behavioral phase of one of the partners
(sometimes the self, sometimes the other). Perhaps as a result of saliency of one
of the two behaviors, there was also a tendency for the transitions in brain patterns
to be synchronized between the two partners that simultaneously engaged in the
production of a collective behavior.

4 Discussion and Outlook

Study of continuous brain dynamics reveals a subtle interplay of integration and
segregation during social behavior. Social coordination and other brain mechanisms
such as social attention that may not have revealed their task-dependency in tem-
porally coarse studies of average spectra have been clarified. Examination of the
interaction between multiple neuromarkers has begun such as the coupling between
phi and mu neuromarkers during behavioral changes aimed at coordination or apart-
ness. Mechanisms of coupling between the brains of interacting partners have also
been sketched.

Further insight will be gained in full parametric studies of relevant system
variables. This aim will be assisted by a novel framework called Virtual Partner
Interaction [13]. In this hybrid framework at the edge between modeling and
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experiment, one of the human partners is replaced by a machine modeled after
him/her, and the interaction can be set up to explore extended regions of the param-
eter space, with the intention to expose more fully the brain dynamics of the human
partner.
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State-Dependent Cortical Synchronization
Networks Revealed by TMS-EEG Recordings

Keiichi Kitajo, Ryohei Miyota, Masanori Shimono, Kentaro Yamanaka,
and Yoko Yamaguchi

Abstract Transcranial magnetic stimulation (TMS) can noninvasively modulate
cortical ongoing activity in the human brain. We investigated frequency-specific and
state-dependent cortical network by analyzing how modulation of cortical ongoing
activity at one cortical area is propagated to the rest of the brain by TMS-EEG
recordings. We found frequency-specific and state-dependent changes in propaga-
tion of TMS-evoked phase resetting of cortical ongoing activity in the open eye
condition and closed eye condition. We discussed the functional significance of
state-dependent synchronization networks observed.

1 Introduction

Synchronization of oscillatory neural activity has been proposed as a fundamen-
tal mechanism underlying transient functional coupling of neural assemblies [1, 2].
Growing body of experimental evidence indicates that synchronization of neuronal
oscillations plays an important role in dynamically linking multiple brain regions
establishing information transfer and integrating distributed neural activity in the
brain during cognitive and perceptual processing [3, 4]. In humans, brain-wide
frequency-specific neural synchrony has been associated with perception of com-
plex visual stimuli such as faces [5], perceptual awareness [6, 7], attention [8], and
central executive function [9].

Transcranial magnetic stimulation (TMS) can transiently perturb and modu-
late cortical ongoing activity in the human brain. A previous study demonstrated
evidence for a breakdown of long-range effective connectivity during NREM
sleep by TMS–EEG (electroencephalography) recordings [10]. No study, how-
ever, has shown frequency-specific, state-dependent changes in large-scale corti-
cal synchronous network connectivity by TMS–EEG. We therefore demonstrate
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frequency-specific and state-dependent cortical network connectivity by analyzing
how TMS-evoked modulation of ongoing activity at one cortical area measured by
EEG is propagated to the rest of the brain at different frequencies. Specifically, we
investigated frequency-specific changes in propagation of TMS modulated ongoing
activity in the open eye condition and closed eye condition.

2 Methods

Using a TMS-compatible 19 ch EEG amplifier (Neuroprax, neuroConn GmbH,
Germany), we recorded EEG of ten participants (20–44 year, 7 males and 3 females)
at a sampling rate of 4,096 Hz off line resampled at 1,024 Hz. Participants gave
informed consent and sit on a chair with their eyes closed or eyes open fixating a
cross on a display. Using a figure-of-eight coil connected to a biphasic stimulator
(Magstim Rapid, Magstim Company Ltd, UK) single-pulse TMS were delivered to
the left primary motor cortex at random intervals with intensity at the 95% motor
threshold. The amount of auditory noise associated with each TMS pulse was mini-
mized by ear plugs. Participants were given 50 TMS pulses for open eye and closed
eye conditions.

We computed instantaneous phase and amplitude of the filtered EEG signals and
calculated the phase locking values PLV as a measure for TMS-evoked phase reset-
ting at each electrode at different frequencies. We first band-pass filtered the EEG
recordings using the Morlet wavelet around central frequencies (cf) from 2 to 35 Hz
in 0.2-Hz steps. Next, we defined the instantaneous phase of the filtered signal by
constructing an analytic signal [11]. The analytic signal ζ (t) of an arbitrary signal
f (t) can be calculated as

ζ (t) = f (t)+ if̃ (t) = A(t)eiφ(t), (1)

where the function f̃ (t) is the Hilbert transform of f (t),

f̃ (t) = π−1P.V.
∫ ∞

−∞
f (τ )

t − τ dτ , (2)

and P.V. means that the integral is taken in the sense of Cauchy principal value.
The instantaneous amplitude A(t) and the instantaneous phase φ(t) of f (t) are thus
uniquely obtained from Eq. (1). We calculated the PLV between the instantaneous
phases of filtered EEG records from different epochs as

PLV(t) = 1

N

∣∣∣∣∣

N∑

n= 1

eiφ(t, n)

∣∣∣∣∣ , (3)

where φ is the instantaneous phases of EEG records from an electrode, and N is the
number of EEG epochs included in the calculation. PLV is a real value between 1
(maximum phase locking) and 0 (no phase locking). To detect TMS-related phase
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resetting, standardized PLV values, PLVz(t), were computed from

PLVz(t) = (PLV(t)− PLVBmean)/PLVBsd, (4)

where PLVBmean and PLVBsd are the mean and standard deviation of PLVs computed
from the 400-ms pre-TMS baseline at each frequency. The resulting index, PLVz,
indicates standardized changes in phase locking across epochs. To assess statistical
reliability of the PLVz, the threshold was set as a function of the distribution of PLVz

during the resting baseline period.

3 Results and Discussion

Figure 1 shows averaged time-frequency diagrams of PLVz for open eye, closed
eye conditions and difference between them. TMS-evoked strong phase resetting
of ongoing activity was observed at around 2–5 Hz in the open eye and closed
eye conditions. We found differences in spatio-temporal patterns of propagation of
phase resetting in open eye and closed eye conditions most prominently at 2–5 Hz.
The phase resetting propagated from the left primary motor area to posterior and
contralateral areas more prominently in the open eye condition than in the closed
eye condition (Fig. 2).

The results indicate that state-dependent TMS-evoked neural transmission occurs
across the distant brain regions in a frequency-specific way across coupled neu-
ral oscillators. The state-dependent changes in large-scale synchronization network
connectivity in open eye and closed eye conditions might be related to changes
in baseline network activity such as visual network activity in the posterior areas
between the open eye and closed eye conditions. The state-dependent changes might
be functionally associated with differences in perceptual set and/or attentional state
between two conditions. Our study suggests we can investigate the dynamics of
frequency-specific cortical and/or thalamocortical synchronization networks in the
human brain by TMS-EEG recordings.
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Fig. 1 Time-frequency diagrams of PLVz for open eye, closed eye conditions and difference
between them; average across all 19 ch from 10 participants. TMS shots were delivered at
0 ms, although TMS-evoked phase resetting precedes the TMS shots because of the limit of time
resolution of the time frequency analysis
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Open eye

Closed eye

Open eye - Closed eye

Fig. 2 Spherical-spline-interpolated PLVz at various times before and after TMS at 4 Hz. PLVz
is significant (p < 0.05) if σ > 3.01 or < −3.01 (Bonferroni corrected) for open eye and closed
eye. PLVz is significant (p < 0.05) if σ > 4.25 or < −4.25 (Bonferroni corrected) for difference
headmaps (open–closed)
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Stimulation Induced Transitions in Spontaneous
Firing Rates in Cultured Neuronal Networks
also Occur in the Presence of Synaptic Plasticity
Blocker KN93

Linda van der Heiden, Ildiko Vajda, Jaap van Pelt, and Arjen van Ooyen

Abstract Spontaneous firing activity in dissociated rat cortical tissue cultured
in vitro shows highly stable firing rates over periods of hours. Recently, it was
shown that a short period of low-frequency electrical stimulation induces signifi-
cant and lasting changes in these firing rates. Now, it is shown that these changes
also occur in the presence of the synaptic plasticity blocker KN93 in the culture
medium. Apparently, the changes in firing rates after a short period of low-frequency
stimulation do not depend on CaMK-II mediated synaptic plasticity.

Keywords Cultured networks · Spontaneous firing · Stable firing rates · Attractor
dynamics · State transitions

1 Introduction

When dissociated rat cortical tissue is brought into culture, neurons readily grow
out by forming axonal and dendritic arborizations and synaptic connections, and
display spontaneous firing activity from about the end of the first week in vitro. This
activity typically consists of alternating periods of synchronized (network bursts)
and of largely uncorrelated activity. Mean firing rates at the individual sites of a
multi-electrode array appear to be stable over periods of hours, changing only on
developmental time scales, [1–4]. Recently, Vajda et al. [5] showed that a short
period of low frequency (LF) electrical stimulation induces significant and lasting
changes in these mean firing rates. The possible role of synaptic plasticity in these
activity changes has now been investigated by repeating the experiments in [5] in the
presence of the plasticity blocker KN93 in the culture medium. KN-93 prevents both
pre- and postsynaptic CaMK-II activation, necessary for LTD and LTP induction,
respectively [6–8]. The present experiments confirm the results of [5], also in the
presence of KN93.
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2 Methods

Cell cultures on multielectrode arrays – Dissociated E18 rat neocortical neurons
were cultured on planar multi-electrode arrays (MEAs) from MultiChannel Systems
e.g., [1]. The preparation of the cultures was similar as in [5]. MEAs had either a so-
called Hexagonal configuration with mixed 30, 20 and 10 μm electrode diameters
or an 8× 8 configuration with 10 μm micrometer diameter.

Pattern of electrical stimulation – The low-frequency (LF) electrical stimula-
tion protocol, as shown and explained in Fig. 1, was derived from [5]. During
the present experiments the culturing medium has been replaced by the recording
medium Hepes (N = 16) or by Hepes + 10 μM KN93 (N= 11).

Comparison of mean firing rates at individual sites between two periods - Mean
firing rates at individual sites in two periods were compared using a scatter plot as
shown in Fig. 2 [5]. Data points at the diagonal indicate sites with equal firing rates
for both periods. Dashed lines indicate 3 standard deviation (3σ ) boundaries assum-
ing a Poisson distributed spike train. The relative deviation rd of a data point from
the diagonal is expressed by the ratio of its distance from the diagonal and the 3σ
distance. The mean relative deviation mrd, of all data points in the scatterplot, thus
provides a measure for the amount of scatter around the diagonal. The expected mrd
value for a Poisson distributed spike train is equal to 0.27 [5]. For each experiment,
the following periods of spontaneous activity were compared: (a) the 1st and 2nd
half of the period before stimulation (Fig. 2, first column), b the 2nd half of the
period before stimulation and the 1st half of the period after stimulation (Fig. 2,
central column), and c the 1st and 2nd second half of the period after stimulation
(Fig. 2, right column).

A

40 x

5 sec

1.6 V
time

stimulus train (0.2 Hz)
0.2

msec

B

200 sec 375 sec

Site A
stim SA

Site B
stim SA

C

>1hr

Pre stim Post stimStim
A FEDCB

SA

~1hr

SA

Hepes
(KN-93)

~1hr

SAAcc

~0.4hr

Acc

~0.4hr

Fig. 1 a Pattern of low-frequency stimulation, consisting of a train of 40 bipolar pulses of 1.6 V
(peak–peak) of 0.2 ms width (single phase), delivered with 5 s intervals (0.2 Hz). b Each pulse
train is followed by a period of 375 s for recording spontaneous activity (SA) in the network.
c Pulse trains are successively applied to six different electrodes in the multielectrode array. At the
start of the experiment and after replacing culturing medium by recording medium Hepes (without
or with KN93) a period of accommodation (Acc) is included. Both before and after the period of
stimulation spontaneous activity is recorded for a period of at least 1 h



Stimulation Induced Transitions in Spontaneous Firing Rates 153

LF
cn

ts
/m

in
-p

re
st

im
-2

nd
 h

al
f

10

1

0.1

1001010.1

cnts/min - pestim - 1st half

mrd=0.51

cn
ts

/m
in

-p
os

ts
tim

-1
st

 h
al

f 100

10

1

0.1

1001010.1

cnts/min - prestim - 2nd half

mrd=1.16

cn
ts

/m
in

-p
os

ts
tim

-2
nd

 h
al

f 100

10

1

0.1

1001010.1

cnts/min - poststim - 1st half

mrd=0.37

LF+KN93

cn
ts

/m
in

-p
os

ts
tim

- 2
nd

 h
al

f 100

10

1

0.1

1001010.1

cnts/min - poststim - 1st half

mrd=0.3

cn
ts

/m
in

-p
re

st
im

-2
nd

 h
al

f

cnts/min - prestim - 1st half

mrd=0.43

100

10

1

0.1

1000

1001010.1 1000

cn
ts

/m
in

-p
os

ts
tim

-1
st

 h
al

f

cnts/min - prestim - 2nd half

mrd=0.93

100

10

1

0.1

1000

1001010.1 1000

100

Fig. 2 Scatter plots comparing mean firing rates at individual sites between two periods.
Compared are the 1st and 2nd half of the pre-stimulus (prestim) period (left column), the 2nd
half of the prestim period with the 1st half of the post-stimulus (poststim) period (central column),
and the 1st and 2nd half of the poststim period (right column). Data points at the diagonal indicate
sites with equal firing rates in both periods. Dashed lines indicate 3σ (standard deviation) bound-
aries assuming a Poisson distributed spike train. The relative deviation rd of a data point from the
diagonal is the ratio of its distance from the diagonal and the 3σ distance. The mean of all rd values
in a scatterplot (mrd) is displayed in the upper left corner of each panel

3 Results

Scatterplots of low frequency (LF) stimulation experiments – Fig. 2 shows and
describes examples of scatterplots for the three types of comparisons (columns) of
firing rates (pre–pre, pre–post, post–post) in the absence (top row – LF) and in the
presence of KN93 (bottom row - LF+KN93).

Analysis of mrd values. A summary of the mrd values is shown in Fig. 3, as well
as the statistical comparisons between the different groups, as labeled by “a”, “b”,
and “c”, indicating the different periods in the firing rate comparisons (see scheme
in Fig. 3). In both the LF and the LF+KN93 experiments, the “b” group of mrd data
has significantly higher mean values than the “a” or “c” groups. This is not the case
in the right panel of control experiments, in which group “b” compares firing rates
in periods separated by a control period of the same duration as a stimulation period
(data from experiments without or with KN93). The LF-results confirm the find-
ing in [5], that low-frequency stimulation induces significant and lasting changes in
the spontaneous firing rates in the network. Importantly, the LF+KN93 experiments
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of the plasticity blocker KN93, and for the control experiments (Cntrl). Individual mrd values
are shown along with their median and quartiles, as well as the mean, the SD intervals and the
standard error in the mean intervals. The p-values are obtained from using the Kruskal Wallis test.
The dashed lines indicate the mrd value of 0.27 as expected from fluctuations in firing rates in a
Poisson distributed spike train

show that the plasticity blocker KN93 does not prevent these changes to occur. The
dashed lines in Fig. 3 indicate the mrd value of 0.27 for the fluctuations in firing rates
as expected for a Poisson distributed spike train. The mrd values of the test compar-
isons “a” and “c” appear to be close to this theoretical expectation, underscoring the
stability in firing rates during a period of spontaneous activity.

4 Discussion

The present results confirm the findings of [5], that a period of low-frequency electri-
cal stimulation induces significant and lasting changes in the pattern of spontaneous
firing rates, and also demonstrate them in the presence of the plasticity blocker
KN93. Apparently, these activity changes do not depend on CaMK-II mediated
synaptic plasticity, suggesting that they are not caused by changes in synaptic effica-
cies. Other intrinsic network properties may have changed as well by low-frequency
stimulation. However, the activity changes may also be of a dynamical nature, i.e.,
caused by state transitions in the firing dynamics state space, without structural
changes in the neuronal network. Further research is needed to substantiate this
interesting hypothesis.
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Attractors in Neurodynamical Systems

Włodzisław Duch and Krzysztof Dobosz

Abstract Analysis of the number, type and properties of attractors in complex
neurodynamical systems is quite difficult. Fuzzy Symbolic Dynamics (FSD) creates
visualization of trajectories that are easier to interpret than recurrence plots, show-
ing basins of attractors. The variance of the trajectory within the attraction basin
plotted against the variance of the synaptic noise provides some information about
sizes and shapes of their basins. Semantic layer of dyslexia model implemented in
the Emergent neural simulator is analyzed.

Keywords Neurodynamics · Attractor networks · Symbolic dynamics ·
Multidimensional time series visualization

1 Introduction

A general method for analysis of dynamical systems is based on recurrence plots [1].
A trajectory xi = x(ti) returns to almost the same area (within ε distance) at some
other point in time, creating non-zero elements (or black dots in the plot) of the
recurrence matrix Rij(ε) = �(ε−||xi−xj||). With some experience such plots allow
for identification of many interesting behaviors of the system. However, these plots
depend strongly on the choice of ε and the choice of the time step 	t = ti+1 − ti.
They may become irregular, the patterns in the plot may wash out, show spurious
correlations or tangential motions [1], especially if steps along the trajectory x(ti)
are not constant for consecutive ti.

Complex dynamics is frequently modeled using attractor networks, but precise
characterization of attractor basins and possible transitions between them is rarely
attempted. Another point of view on global analysis is quite fruitful. Recurrence
plots use as the reference previous points xi on the trajectory. This is analogous to
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the use of the single-nearest neighbor method in classification [2]. Description of
the density of the trajectories may be simplified and improved by selecting lower
number of reference points and associating basis functions with these points. The
recurrence rule Ri(x; ε) = �(ε − ||xi − x||) may then be reinterpreted as the return
of the trajectory x(t) into the neighborhood of the vector xi associated with some
metric function || · || and some parameters ε. In particular if L∞ (Chebyshev) metric
is used the neighborhoods are hyperboxes and positive Ri(x; ε) entry is marked by a
symbol si, changing the vector trajectory into a sequence of symbols. This approach,
known as the symbolic dynamics [3] (SD), has been used to simplify description
of relatively simple dynamical systems, providing very rough approximation to the
description of the trajectory. However, such discretization may be too rough for most
applications. The Fuzzy Symbolic Dynamics (FSD) introduced by us recently [4]
replaces hyperboxes by membership functions that estimate how far is the trajectory
from the reference points. This is in fact a projection of the trajectory on a set of k
basis functions G(x;μi, σi), i = 1..k, localized around μi with some parameters σ i,
strategically placed in important points of the phase space.

FSD provides a non-linear reduction of dimensionality suitable for visualization
of trajectories, showing many important properties of neurodynamics, such as the
size and the relative position of attractors. To analyze more precisely properties of
individual attractors response of the system to different type of noise with increasing
variance is studied. A model of word recognition implemented in the Emergent sim-
ulator [5] is used for illustrative purpose. Conclusions about the relations between
properties of attractors for different words are drawn.

2 Visualization of Attractors

For FSD visualization two Gaussian membership functions G(x;μi, σi), i = 1, 2
are placed in different parts of the phase space [4]. These functions are activated
each time system trajectories pass near their centers, providing a sequence of fuzzy
symbols along the trajectory.

As an example of what one can learn from such mapping visualization of a large
semantic layer in the model of dyslexia implemented in the Emergent simulator
is presented (see [5], chapter 10). This model has full bidirectional connectiv-
ity between orthography (6×8 units), phonology (14×14), and semantic layers
(10×14), with recurrent self-connections within each of these layers, and additional
hidden layers of neurons between each of these 3 layers. The model has been trained
on 40 words, half of them concrete and half abstract. Semantics has been captured by
using 67 features for concrete words (with average of 18 active features per word)
and 31 for the abstract ones (about 5 active features on average), with half of the
semantic layer devoted to abstract and half to concrete features. Correlation dendro-
gram between all 40 words is presented in [5], Chapter 10, Fig. 10.7. In the model
all lesion parameters were off because the goal was to show attractors which have
evolved in the learning process for different words (effects of lesions are reflected
in visualizations, but are not shown here).
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Fig. 1 FSD mapping showing trajectories and attractors of all 40 words used in the model (left);
abstract words are plotted in the right lower, concrete words are in the left-middle area. Selected 8
words with the variance of the noise increased from 0.02 to 0.09

Two Gaussian functions with rather large dispersions have been placed in the 140
dimensional space of semantic layer activations. Parameters of these functions are
given in Fig. 1, where trajectories for all 40 words are shown. The division between
abstract and concrete words leads to quite different representations. Abstract words
reach much faster their final configurations due to the significantly lower number of
active units, while the meaning of concrete words is established only after a long
trajectory, with more complex configurations.

Plots in Fig. 1 also show different shapes of attractor basins. The dyslexia model
with default parameters (e.g. without any noise) is deterministic and converges
to the point attractor, because the model has already been trained and starts from
zero activity except for the input layer. To show attraction basins for a given word
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Gaussian synaptic noise with zero mean and progressively growing variance has
been introduced. In Fig. 1 (center, right) trajectories and attractor basins of 4 pairs
of correlated words are displayed, with concrete words in the first two pairs (flag,
coat, hind, deer) and abstract words (wage, coat, loss, gain) as the last two pairs.
The variance of the noise has been increased from 0.02 to 0.09.

From such plots (due to the lack of space only a few are shown here) a number
of interesting observations is made:

– convergence to sparse, simple representations (abstract words) is much faster than
to more complex ones;

– some attractors may be difficult to reach – this is indicated by chaotic trajectories
that lead to them;

– semantic representations from pairs of similar words are usually quite close to
each other, with (coat, flag) being the most distinct pair;

– shapes of attraction basins differ for different words and noise levels – this is seen
when trajectories explore larger areas with increasing noise levels;

– noise with a small variance explores only the bottom of attraction basin, for
stronger noise the system may still show distinct attractors although patterns of
semantic activity are severely distorted.

– for very strong synaptic noise (> 0.14) plots of all basins of attractors shrink.

The last observation has been quite surprising, but this is the result of quite
complex dynamics of the model, with strong random saturation of the units and
inhibition of most of them. Plot shown in Fig. 2 of the variance of trajectory near
the attractor basin center as a function of increasing noise variance can serve as a
measure of the basin depth. Initially there is little change in the trajectory variance,
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Fig. 2 Variance of the trajectory in the basin center as a function of increasing noise variance
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showing that these basins are quite deep near the center, but for larger noise level
there is sharp increase, as is also seen in Fig. 2, showing that the upper parts of
the basin are much larger and additional energy helps to explore them. A sudden
decrease of the trajectory variance is observed in all cases when synaptic noise is
very strong.

3 Discussion

Cognitive science has reached the point where moving from finite automata models
of behavior to continuous cognitive dynamics becomes essential [6]. Recurrent plots
and symbolic dynamics may not be sufficient to show various important features of
neurodynamics in complex systems. In this paper two new techniques have been
explored: first, a fuzzy version of symbolic dynamics, that may also be treated as
smoothed version of recurrent plot technique with large neighborhood, and second,
analysis of variance of trajectories around point attractor as a function of noise. FSD
depends on the choice of membership functions, and thus has more parameters than
recurrent plots or the discrete symbolic dynamics [3] that may be obtained from the
fuzzy version by thresholding the activations of membership functions. However,
FSD retains more information about dynamics and creates plots that are easier to
interpret than recurrence plots, less dependent on the sampling step.

For quasi-periodic attractors variance in the direction perpendicular to the tra-
jectory may be estimated. Perhaps for the first time these techniques may show
how attractor basins created by various learning procedures depend on the simi-
larity of stimuli, their context, but also on the properties of neurons. For example,
reducing the leaky ion channel currents creates basins attracting trajectories strongly
and preventing attention shifts, a phenomenon that is of fundamental importance in
autism.
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Combining Supervised, Unsupervised,
and Reinforcement Learning in a Network
of Spiking Neurons

Sebastian Handrich, Andreas Herzog, Andreas Wolf,
and Christoph S. Herrmann

Abstract The human brain constantly learns via mutiple different learning
strategies. It can learn by simply having stimuli being presented to its sensory
organs which is considered unsupervised learning. In addition, it can learn asso-
ciations between inputs and outputs when a teacher provides the output which is
considered as supervised learning. Most importantly, it can learn very efficiently
if correct behaviour is followed by reward and/or incorrect behaviour is followed
by punishment which is considered reinforcement learning. So far, most artificial
neural architectures implement only one of the three learning mechanisms — even
though the brain integrates all three. Here, we have implemented unsupervised,
supervised, and reinforcement learning within a network of spiking neurons. In
order to achieve this ambitious goal, the existing learning rule called spike-timing-
dependent plasticity had to be extended such that it is modulated by the reward
signal dopamine.

1 Introduction

The human brain is able to establish memory representation on the basis of dynam-
ical changes of synaptic connections between neurons. Such synaptic memory
representations can be built up by multiple ways of learning. On the one hand, it
is possible that repeated presentation of stimuli leads to stronger synaptic connec-
tions. Hebb already postulated this form of learning in 1949 and suggested a learning
rule which said that synaptic connections between two neurons increase, when both
neurons are firing at the same time (neurons that fire together, wire together) [1].
This form of learning requires no feedback from the environment telling the organ-
ism whether the changed synaptic connection leads to a behavioural advantage or
a reward (pain minimization or pleasure maximization). Therefore, this form of
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learning is referred to as “unsupervised learning” in the domain of artificial neu-
ral networks. On the other hand, there is a form of learning requiring the organism
to learn a specific task, e.g. a categorization that was previously unknown. Here,
the correct classification of each stimulus must be provided. Thus, this form of
learning is referred to as “supervised learning”. In Psychology, implicit memory
with effects of repetition priming result from this type of learning. The last and
most frequent form of learning is “reinforcement learning”. Here, feedback from
the environment is given that can either be appetitive (reward) or aversive (punish-
ment). Classical conditioning belongs to this class of learning [2]. In supervised
learning, the feedback provides the correct response (e.g. category) that the learner
(e.g. network) should give. In reinforcement learning, the feedback merely indi-
cates the correctness (right or wrong via reward or punishment) but not the correct
response.

The human brain integrates frequently and without effort all three learning strate-
gies. However, most neural implementations focus on only one out of the three,
since each strategy requires specific features to be present in the neural architecture.
The aim in the present paper is to create a network architecture which can learn via
supervised, unsupervised, and reinforcement learning.

For our simulations, we will use biologically plausible, spiking neurons based
on the model of Izhikevich [3]. The basic learning mechanisms at the synapse level
will be spike timing dependent plasticity (STDP) [4, 5]. STDP is a refinement of
Hebb’s learning rule. Only if a pre-synaptic action potential leads to a post-synaptic
potential, a causal relationship can be assumed and the synapse is strengthened.
If, however, the post-synaptic potential precedes the pre-synaptic action potential
this must be considered as acausal and the synapse will be weakened. It has been
demonstrated that STDP can be used in networks of spiking neurons to implement
unsupervised learning [6].

In an architecture that is able to learn via unsupervised learning, it should be
easy to implement also supervised learning by simply activating the correct neuron
of the output layer at the same time as the input arrives in the input layer. However,
the temporal delay between pre-synaptic and post-synaptic activity must be positive
in order to result in a strengthening of the synapse. Thus, it is more advantageous
to inhibit the wrong output neurons. As a consequence it is assured that the correct
neurons only fire due to preceding activity of input neurons.

Reinforcement learning requires three prerequisites within the neural architecture
which are described in the following subsections. The first two have been solved by
us recently and we now focus on the third.

1.1 Determining the Reward or Punishment

If the learning rule is supposed to depend upon the correctness of the network’s
output, it should be possible to unambiguously translate the output into a reward
or punishment signal. However, while winner-take-all (WTA) architectures can
achieve this goal in artificial neural networks [7], for spiking neurons WTA
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implementations are not trivial. We have therefore developed a biologically plau-
sible WTA algorithm (bpWTA) [8]. This bpWTA algorithm assures that only one
neuron within the output layer of a spiking neural network fires while the others
remain silent. For a classification problem the correctness of the network output
can easily be determined and as a result decided whether to apply a reward or
punishment signal to the network.

1.2 Solving the Distal Reward Problem

A further problem of reinforcement learning lies in the fact that the output might
become active only after the input neurons have already stopped to fire. The tempo-
ral gap between input and output is especially relevant if hidden layers exist in the
network. Therefore, the STDP rule can no longer determine the temporal relation-
ship between pre- and post-synaptic activity. This temporal discrepancy has been
termed the problem of delayed or distal reward [2, 9]. The problem has previously
been solved by inserting a variable in a network of spiking neurons that stores the
computed change of synaptic weights and decays over time [10]. However, we have
developed a different approach [11]. We implemented a feedback layer that keeps
the input layer active after the input has stopped. Our solution is well in line with
electrophysiological data. Neurons in the inferior temporal cortex fire for a few hun-
dred milliseconds after the end of external stimulation [12] and neurons in entorhinal
cortex even longer [13]. However, in the current network, we did not need a feed-
back layer, since we had have no hidden layer and the input was active long enough
for the output to be evaluated.

1.3 Switching from LTP to LTD Depending on Reward
or Punishment

If an output neuron fires resulting in a correct solution or classification, a reward
signal should be generated and the synapses from those neurons of preceding layers
that led to the firing of the output neuron should be strengthened, i.e. long-term
potentiation (LTP) should have taken place. If, however, an output neuron fires
resulting in an erroneous solution or classification, a punishment signal should be
generated and the synapses from those neurons that led to the firing of this output
neurons should be weakened, i.e. long-term depression (LTD) should take place.
When using the STDP learning rule, LTP would need to be inverted to LTD in case
of punishment. This seems physiologically unplausible at first glance. However,
electrophysiologists were recently able to demonstrate that dopamine, which plays
a key role in reward signaling [14], also modulates STDP [15]. This finding was
subsequently transformed into a revised STDP learning rule, called spike-timing-
dependent eligibility (STDE) [16]. We have applied this new STDE and have used
it in combination with the above-mentioned bpWTA to implement reinforcement
learning in a network of spiking neurons.
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2 Methods

2.1 Network Configuration

Our network architecture consists of two different layers, an input- and a WTA-
layer. The input layer is used to receive the external stimuli as described below. It is
composed of 64 excitatory neurons, that are not laterally connected. The WTA layer
consists of two excitatory neurons, which (a) integrate their inputs received from
the input layer and (b) inhibit each other via two inhibitory neurons. This leads to
a binary categorization of the presented input patterns and allows to compute an
error signal, needed for reinforcement learning. Each input neuron i is connected to
each excitatory WTA neuron j with initial synaptic weights cij = r2/64, where r is
randomly chosen from the uniform distribution within the interval of [0, 0.5]. In the
WTA layer all synaptic weights are set to cWTA = cMAX = 1.

There are two types of input to our network. The first one is the stimulation of the
input layer defined by a grid of 8-by-8 sensitive areas that can be stimulated by the
input patterns. Those patterns, if considered as images, show randomly distributed
noise superimposed onto vertical or horizontal bars. Each sensitive area excites the
corresponding input neuron by a Poisson distributed spike train (firing rate λext =
25 Hz). The two patterns were presented alternately for one second with an inter-
stimulus-interval (ISI) of one second. Additionally, each neuron receives thalamic
background activity, generated by a Poisson-point process with a mean firing rate of
λint = 0.1 Hz.

2.2 Neuron Model

We used the neuron model by Izhikevich [3], which reduces the biophysically accu-
rate Hodgkin-Huxley model to a two-dimensional system of ordinary differential
equations. The advantages of this model are the fast computation and the configura-
tion of different behaviors via a few parameters. So, it is widely used e.g. to apply
simulations of network development [17].

The neurons of the input layer and the inhibitory ones of the WTA-layer were
modelled by:

v̇ = 0.04v2 + 5v+ 140− u− Isyn,
u̇ = a (bv− u)

(1)

where v is the membrane potential, u the recovery variable and Isyn is the total
synaptic current. For further details see [8].

2.3 Neuron Types

In our study, we used three different types of neurons:

1. Glutamate (excitatory) neurons with, according to the simulations in [6]:
(a, b) = (0.02, 0.2) and (c, d) = (−65, 8) + (15,−6) r2, where r is randomly
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selected from the uniform distribution in the interval [0, 0.5] to obtain a behavior
between regular spiking (RS, r = 0) and intrinsically bursting (IB, r = 0.5). The
square of r biases the distribution towards the RS cells.

2. GABAergic (inhibitory) neurons:
(a, b) = (0.02, 0.25) and (c, d) = (−65, 2), to get low-threshold spiking (LTS)
neurons.

3. Input-integrating (excitatory) neurons:
(a, b) = (0.02,−0.1) and (c, d) = (−55, 6), used in the WTA-layer.

2.4 Synapse Model

The synaptic input current in a neuron is calculated in each time step by:

Isyn = gAMPA (v− 0)

+gNMDA
[(v+80)/60]2

1+[(v+80)/60]2 (v− 0)

+gGABAA (v+ 70)

+gGABAB (v+ 90) ,

(2)

where gk is the time dependent synaptic conductance and v the actual membrane
potential. The conductances change by first-order linear kinetics

ġk = −gk

τk
(3)

with time constants τk = 5, 150, 6 and 150 ms for the simulated AMPA, NMDA,
GABAA and GABAB receptors, respectively [6]. The rise time of currents is typically
short and neglected.

If a spike is transmitted from presynaptic neuron i to postsynaptic neuron j, after a
delay-time δsyn, the conductances are updated depending on the type of presynaptic
neuron, the synaptic efficiency Riwi and the synaptic weight cij:

gk ← gk + cij, (4)

The transmission-delay δsyn results from the Euclidean distance between the neurons
with an additional latency of 0.5 ms.

2.5 Synaptic Plasticity

There are two types of plasticity in our model: short-term and long-term. The former
is achieved by modelling the synaptic efficiency Riwi, which describes the frac-
tional amount of available neurotransmitter at each synapse. The used model was
developed by Markram [4]:

Ri, n+1 = Ri, n(1− wi, n+1) exp

(−	t

τrec

)
+ 1− exp

(−	t

τrec

)
, (5)



168 S. Handrich et al.

wi, n+1 = wi, n exp

(−	t

τfac

)
+ U

(
1− wi, n exp

(−	t

τfac

))
(6)

with τrec = 400 ms and τfac = 1, 200 ms.
To enable learning in our model, which is considered as a change of the synaptic

weights, we used a well known form of hebbian learning, the STDP [5]. Therefore
we implement a model by Redgrave and Gurney [14], which assumes based on
experimental data [15], that STDP is not only describable by the temporal order
of presynaptic and postsynaptic spikes, but also that the level of dopamine and the
corresponding receptor type (D1,D2) have to be taken into account. Gurney pro-
poses the use of two different STDP-kernels (no dopamine and high dopamine),
which are superimposed linearly in dependence of the actual level of dopamine (see
Fig. 1). We combined this approach with the STDP-model by Morrison et al. [18] ,
who used STDP traces, so that not only the nearest-neighbour, but every preceding
spike influences the change of the synaptic weight.

The use of plastic synapses may end in an unconstrained feedback-cycle due
to the fact, that correlated pre- and postsynaptic firing leads to LTP which in turn
increases that correlation [19]. In biological neural networks this stability problem

Fig. 1 Dopamine modulated STDP. The upper pictures show the two STDP kernel templates.
The higher the level of dopamine, the higher the percentage of the high-dopamine-template on the
resulting STDP function (lower pictures)
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is avoided by a mechanism called homeostatic-synaptic-scaling, which changes the
number of AMPA and NMDA receptors of the postsynaptic neuron in dependence
of its activity [20]. This leads to a competitive scaling of the afferent synapses. In our
model we achieved this competitive scaling by preventing the cumulative weights
cκ = ∑n

j cij of the synapses leading onto the same neuron to exceed a maximum
weight of cmax = 1:

cij ← cij

cκ
, if cκ ≥ cmax. (7)

In a further implementation, synaptic-scaling will be implemented as a neuron
excitability adapted to its activity (firing rate).

2.6 Experiments

To apply three different learning mechanisms, we carried out three different
experiments, i.e. simulations of our network architecture:

1. Unsupervised learning: We used a classification task, i.e. the network received no
information about the category of the presented stimulus pattern. We expected,
that similar inputs are mapped to the same excitatory output neuron, whereas
different stimuli will excite different output neurons.

2. Supervised learning: The network had to learn to assign the presented stimulus
pattern to a predefinded category. We considered two different ways to specify
the correct category to the network: One can either excite the output neuron
representing the desired category or inhibit all neurons representing the incorrect
one. As mentioned above, we decided to chose the second way to avoid timing
problems. We expected that the network learns to classify the stimuli correctly,
because the STDP will strengthen only those synapses, that connect the input
neurons, that were excited by the stimulus, and the desired, i.e. not inhibited,
output neurons.

3. Reinforcement learning: In the case of a reward or punishment, the level of
dopamine is set to dHigh = 0.6 or dNone = 0.0, respectively. Then, the dopamine
level decays to an equilibrium level dequ = 0.3. The higher or lower level of
dopamine results in a higher synaptic potentiation (LTP) or depression (LTD),
respectively. If a stimulus is classified correctly or not, depends on which output
neuron fires first.

In all three simulations we used exactly the same network architecture and
the same initial synaptic weights as described above. There were two different
basic stimulus patterns (vertical and horizontal bar). In every trial one of the basic
patterns, randomly modified by 20% was presented to the network for 1 s. The inter-
stimulus-interval (ISI) was also one second. There were 1,000 trials per simulation,
so every experiment took 2,000 s (simulation time).
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3 Results

The goal of our work was to develop a network architecture, that is able to perform
three different learning mechanisms: unsupervised, supervised and reinforcement
learning. First, we show the results of each learning method and then compare them
with each other.

3.1 Unsupervised Learning

In Fig. 2, the result of the unsupervised learning is shown. One can see the mem-
brane voltage of both the two excitatory output neurons vA(t), vB(t) and the two
inhibitory WTA neurons vAI(t), vAI(t), driven by the excitatory ones. Also, the
stimuli presented in each trial are depicted.

Due to the different weights and different stimulation, there are different input
currents to the two excitatory WTA neurons, A and B. The excitatory WTA neuron
with the highest input fires first, the related inhibitory neuron is activated with a
short transmission delay and inhibits the opposite excitatory neuron. In an earlier
work, we could show, that if the input contrast exceeds a threshold Cth = 1.015, in
each trial only one of the excitatory WTA neurons is activated (see [8] for details).

The weights of the synaptic connections cij are initialized randomly, but normal-
ized, so that no output neuron is initially prefered (

∑
j cA, j =∑

j cB, j). Thus, at the
beginning of the learning phase (trial 0–4) the contrast of the input received by the
output neurons is very low, so only a small difference may determine which neuron
is the winning one. This may lead to a wrong classification as depicted in Fig. 2:
Although the stimulus in trial 3 was similiar to the one in trial 1, the wrong output
neuron had won the WTA competition. However, as we could show in [8], even if

Fig. 2 Time course of the membrane potential of the excitatory neurons vA(t), vB(t) and inhibitory
neurons vAI(t), vBI(t) of the WTA output layer during unsupervised learning. In the beginning of
the learning phase (left part), there is no clear assignment between the presented stimulus and the
activated output neuron, i.e. horizonzal and vertical input patterns both activate neuron B (trial 2
and 3). At the end of the learning phase (right part) this assignment is achieved
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there is a low input contrast, there is a preference to the correct output neuron. Thus,
if STDP is applied, the synapses between the input neurons, excited by the stimulus,
and the correct output neuron are strengthened. This in turn leads to a higher input
contrast, so a wrong classification becomes more unlikely. At the end of the learning
phase (trial 100–104) always the neuron associated with the presented stimulus fires
with a firing rate between 40 and 50 Hz.

3.2 Supervised Learning

To implement supervised learning we initially considered two different ways. First,
one can excite the output neuron, representing the desired category. Thus, there is
a simultaneous activation of the input and the desired output neuron, so that STDP
will potentiate the connections between them. However, there is an error in this
consideration: Since an input neuron does not fire only once, but with a poisson rate
of λi = 25 Hz, an output spike may precede the input neuron spike, which leads to
LTD and the corresponding synapse gets weakened. A solution of this problem is to
excite the desired output neuron not with a fixed frequency, but time-delayed to the
firing of the input neuron, but this is not biologically plausible. To circumvent this
problem, we chose a second way: Instead of exciting the desired output neuron, we
inhibited the incorrect ones.

In Fig. 3 the synaptic weights of the connections between the input layer and
the two output neurons A and B are shown. At the beginning of the supervised
learning (trial 0), the weights are randomly initialized. During the learning (trial
150), STDP potentiates only those synapses that connect the stimulus-driven input

Fig. 3 Weight matrices of the connections from input- to output layer. Left: Random initializa-
tion. Middle: During supervised learning. The synapses representing the stimuli are potentiated.
Right: End of learning phase. Weights of those synapses used for the stimuli representations remain
constant on a high level. Unused synaptic connections are depressed
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neurons and the firing (not inhibited) output neuron. At the end of the supervised
learning (trial 300), the strength of the synapses that represent the stimuli is high.
Due to the competitive synaptic scaling (see methods), all synapses, that are not
used for a representation of the stimulis are weakened.

3.3 Reinforcement Learning

During the reinforcement learning, the network receives information, if it has cat-
egorized the presented stimulus correctly through a reward- or punishment signal,
respectively. The decision, whether the categorization is correct is determined by
the first spike of an output neuron in each trial. If the desired output neuron fires
first, the network output is rewarded or punished, conversely. Here, the following
problem occurs: Since the correctness of the output is not known until the first out-
put neuron fires, a subsequent reward or punishment signal can not influence the
synaptic weight, because the STDP has already applied. But there is no need to
do this. Because the output neuron do not fire only once, but with a frequency ffire

(40–50 Hz at the end of the learning phase), the reward modulated STDP will influ-
ence the subsequent input-output spike pairings. Figure 4 shows the different net-
work behavior at the beginning (trial 0–4) and at the end of the learning phase (trial
200–204). If the correct output neuron fires first in the respective trial, i.e. a hori-
zontal pattern activates neuron A or a vertical pattern activates neuron B, we set the
level of dopamine (DA-level in figure) to dHigh = 0.6. This leads to a strong potenti-
ation (LTP) of the synaptic connections between the stimulus-driven input neurons
and the active output neuron. In trial 1 of the example shown in Fig. 4, the incorrect

Fig. 4 Reinforcement learning: Time course of the membrane potential of the excitatory output
neurons vA(t), vB(t) and the level of dopamine (DA-level) are shown. Correct, i.e. horizontal pat-
terns activate neuron A, or incorrect, i.e.vertical patterns activate neuron B, categorization leads to
an increased (reward) or decreased (punishment) level of dopamine, respectively. At the begin-
ning of the learning phase (left part) wrong categorizations may occur. When the training is
completed (right part), presented stimuli are categorized correctly and the firing frequency of the
corresponding desired output neuron has increased to 40–50 Hz
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output neuron fired, so the level of dopamine is decreased to dNone = 0.0. This leads
to a synaptic depression (LTD). After applying the reward or punishment signal the
level of dopamine decays to an equilibrium level, that produces an standard STDP
course.

3.4 Comparison

To compare the three learning mechanisms with each other we considered the fir-
ing rate of the desired and the incorrect output neuron in each trial according to
the presented stimulus (see Fig. 5). Due to the small synaptic weights the output
neurons initially fire with a low frequency (about 3 Hz). During the learning phase
the firing rate of the respective correct output neuron increases until it remains con-
stant in the range between 40 Hz and 50 Hz (gamma band). However, the firing
frequency does not converge with an equal rate in each learning method. In the case
of unsupervised learning the firing frequency remains constant after 250 presenta-
tions of stimulus A or B, respectivly. When supervised learning is applied, it took
150 trials and during reinforcement learning the final output frequency is already
achieved after only 50 stimulus presentations. This is an expected result since (a)
during supervised learning the incorrect synapses are not as often potentiated by

Fig. 5 Comparison of the three learning mechanisms. The firing frequencies of the correct and
incorrect output neuron respective to the presented stimuli are shown. In the case of reinforce-
ment learning the final fire rate is archieved after only 50 stimulus presentations (bottom row).
Supervised learning works slower (150 trials, middle row) and in the case of unsupervised learning
it took more than 250 trials to archieve the final state (top row). In every experiment the final firing
rate was in the range of 40–50 Hz
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STDP as during unsupervised and (b) during reinforcement learning the change of
the synaptic weights is, much higher compared to unsupervised learning due to the
dopamine modulated STDP.

4 Discussion and Conclusion

We have implemented a spiking network architecture with a biologically plausible
neuron model and conductance based synaptic connections which is able to perform
different types of learning.

The output layer represents a bpWTA architecture. It processes the data from the
input layer and assigns the different input patters to result categories. Depending on
the correct categorization, dopamine acts as a reward signal to adjust the STDP rule.
This enables us to adjust the weights of the connections between input layer and
output layer according to three different types of learning (supervised, unsupervised,
and reinforcement).

Many other models have used the mean firing rate of a population or of single
cells as input to other cells, e.g. so-called mean field models [21–23]. Such models
would have to determine the category via the neuron or population with the highest
mean firing rate. However, for time intervals in the order of the inter-spike interval a
mean firing rate can not be defined. We have designed a biologically plausible model
with spiking neurons for two reasons. First, we wanted to apply a learning rule at
the synapse level which is only possible when single neurons are modelled instead
of mean fields. Second, we plan to compare the network activity with biological
EEG experiments in future studies. Interestingly, this has also been achieved for
networks of single neurons [24,25]. The selected integrator characteristic of our
output neurons is biologically plausible and combines the mean firing rate of earlier
spikes with a fast computation of present spikes. Thus, the computed category of an
input pattern is represented by the excitatory output neuron which receives the most
input from many input neurons within a specific integration time. The integration
time depends on synaptic components (NMDA time constant) and parameters of
the integrator neuron.

As we had demonstrated previously, the bpWTA architecture in combination with
the STDP learning rule provides the possibility for unsupervised learning [8].

For supervised learning, the categories of the training examples are known and
will be used as a teaching signal. We implemented the teaching signal by an
inhibition of the wrong output neuron. This inhibition prevents the wrong output
neuron from firing. Hence, only the correct output neuron has a chance to become
active by the integration of its input and only the synapses of the firing neuron can
undergo dynamical changes via STDP.

In order to implement also reinforcement learning within the same architecture,
a reward signal has to be generated. Dopamine is commonly considered as a reward
signal [26] and experiments suggest that a reduction of dopamine secretion may also
serve as a punishment signal, e.g. [27]. Recent investigations [15] show, that the
STDP curves depend on the level of dopamine. This behavior can be modelled as
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different STDP kernels [16]. In the network model presented here, these dopamine
sensitive STDP kernels successfully implement reinforcement learning.
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Concerted Activities in Frog Retinal Ganglion
Cells

Wei Jing, Hai-Qing Gong, and Pei-Ji Liang

Abstract In the present study, the spike discharges of frog retinal ganglion cells
in response to repetitive full field white light flashes were recorded using multi-
electrode array. Cross-correlation analysis showed that two different types of
concerted activities could be distinguished according to the peak width of the cross-
correlation function. Further analysis revealed that the concerted activity pattern
of ganglion cells was dependent on the distance between the neurons being exam-
ined: nearby cells often fired in precise synchrony, while correlated activities with
distributed time lags were mainly observed from remote cell pairs.

Keywords Multi-electrode recording · Population activity · Cross-correlation

1 Introduction

All of our visual experience is dependent on the spike activities of retinal ganglion
cells (RGCs). However, the number of RGCs is the fewest among all kinds of neu-
rons in the visual pathway [1]. This anatomy limitation makes it necessary that the
visual information is efficiently organized in the RGC layer before it is transferred
to the central visual part. Concerted population activity is one of the important ways
for the retina to organize visual information, it was suggested that concerted activ-
ity of RGCs was able to represent finer details of spatial information [2] or encode
motion visual stimuli more faithfully than single neuron’s activity [3].

It was previously reported that there are two different types of concerted firings
in RGCs, with each type dependent on a particular structure of the neural circuitry –
the formation of precise synchronization and correlated activity with distributed
time lags were attributed to gap junctions between RGCs and common input from
other neurons (amacrine/bipolar cells), respectively [4, 5].
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In the present study, the concerted pattern and its dependence on inter-cellular
distance were investigated. It was observed that precisely synchronized activities
and correlated activities with distributed time lags both existed among frog RGCs.
Nearby cells often fired in synchrony, while remote cells were mainly occupied in
correlated activities.

2 Methods

2.1 Electrophysiology Recording

Spikes from bullfrog RGCs were recorded by MEA electrodes (8 × 8, MMEP-4,
CNNS UNT, USA) using a commercial multiplexed data acquisition system with
a sampling rate of 40 kHz (MEA workstation, Plexon Inc. Texas, USA). A small
piece (4 × 4 mm2) of isolated retina was placed on the MEA and superfused with
oxygenated (95% O2 and 5% CO2) standard solution, which contained (in mM):
NaCl 100.0, KCl 2.5, MgCl2 1.6, CaCl2 2.0, NaHCO3 25.0, glucose 10.0.

The stimulation protocols were: (1) Pseudo-random checker-board which con-
sisted of 16 × 16 sub-squares was displayed on the computer monitor at a frame
refresh rate of 20 Hz. Each sub-square covered an area of 66 × 66 μm2 on the
retinal piece and was assigned a value either “1” (white light, 77.7 nW/cm2) or “0”
(dark) following a pseudo-random binary sequence; (2) Full-field sustained white
light (38.9 nW/cm2) was given for 30 s before the stimulation protocol was applied,
the purpose of which was to adjust the sensitivity of the RGCs to similar levels.
Stimuli consisting of full-field white light (77.7 nW/cm2) with duration of 1 s and
dark interval of 9 s were given repeatedly for 30 times.

2.2 Data Analysis

Generally, the cross-correlation function is defined as:

cxy (m) =

⎧
⎪⎪⎨

⎪⎪⎩

N−|m|−1∑
n=0

xnyn+m

R m ≥ 0

cyx (−m) m < 0

, R =
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N∑

i=1

x2
i

N∑

i=1

y2
i , (1)

where xn denotes the value of sequence x at moment n; yn+m is the value of sequence
y at moment n + m; cxy(m), by definition, represents the correlation between
sequences x and y with a time lag of m, which reflects the effect of signal x exerts
on signal y with a time delay m; R is the normalizing factor.

To map the receptive fields of multiple retinal ganglion cells, spike triggered
average (STA) algorithm was applied [6].
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3 Results

Receptive field properties of the RGCs were estimated by STA method by applying
pseudo-random checker-board stimulation, and distances between any two RGCs’
receptive field centers were calculated. Figure 1a, b demonstrate an example show-
ing the receptive field spatial profiles of two RGCs recorded from one piece of
retina. The distance between the receptive field centers was measured 334.57 μm.

Figure 2 illustrates two types of concerted pattern among frog RGCs in response
to full-field white light flashes. Figure 2a shows the example of precisely synchro-
nized activities (peak width = 1 ms) between two adjacent RGCs (distance =
61.82 μm); Figure 2b shows the example of correlated activities with distributed
time lags (peak width = 40.67 ms) between two remote RGCs (distance =
365.02 μm).

Further analysis performed on 253 pairs of neurons showed that the concerted
pattern varied with the distance between the two neurons’ receptive field cen-
ters. Figure 3 gives the summarized results. At short distance (< 250 μm), precise
synchronization was the major component. Over longer distance (> 250 μm), cor-
relation with distributed time lags was generated more often. These results suggest
that nearby neurons tended to fire in precise synchrony, while remote cells were
occupied in correlation with distributed time lags more often.

Fig. 1 The receptive field profiles of two RGCs. a and b Receptive field map of two neurons
respectively. The crosses indicate the receptive field center of each neuron, the distance between
which was measured 334.57 μm; 1-s.d. boundary is also indicated (scale bar, 200 μm)

Fig. 2 Examples of two different concerted patterns among bullfrog RGCs in response to full-field
white light flashes. a Sychronized activities. b Correlated activities
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Fig. 3 Concerted pattern varied with the distance between the two neurons’ receptive fields

4 Discussion

In our experiments, two types of concerted activities – synchronized activities and
correlated activities with distributed time lags – were observed. Concerted activity
pattern of RGCs varied with the distance between the neurons, which is related to
the anatomy characters of retina. Adjacent RGCs are more likely to be connected
by gap junction and generate precise synchronization more often. Correlated activity
between two remote RGCs was more likely to involve the activity of amacrine cells
or bipolar cells. Thus, remote cells often fired in correlation with distributed time
lags.
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Gamma-Frequency Synaptic Input Enhances
Gain Modulation of the Layer V Pyramidal
Neuron Model

Xiumin Li, Kenji Morita, Hugh P.C. Robinson, and Michael Small

Abstract Cortical gamma frequency (30–80 Hz) oscillations have been suggested
to underlie many aspects of cognitive functions. In this paper we compare the f − I
curves modulated by gamma-frequency-modulated stimulus and Poisson synaptic
input at distal dendrites of a layer V pyramidal neuron model. The results show that
gamma-frequency distal input amplifies the sensitivity of neural response to basal
input, and enhances gain modulation of the neuron.

1 Introduction

Gamma frequency oscillation, which is thought to be an emergent phenomenon
generated by the synchronization of inhibitory fast spiking interneuron networks
[1–4], plays a role in sensory binding, attentional selection, and consciousness.
Particularly, this rhythmic inhibitory synchronization entails rhythmic gain modu-
lation [5]. Gain modulation is defined as the change of the tuning curve of a neuron
to one input as a second input is modified. Gain control has been studied by turning
the membrane depolarization, noise intensity [6] and network properties [7]. The
effect of gamma frequency inhibitory synchrony on gain modulation in a simple
Hodgkin-Huxley neuron model was investigated in [8].

In this paper, the f − I curve of a detailed layer V pyramidal neuron model is
studied, where synaptic inputs are received from both basal and distal dendrites of
the neuron. We examined how the relationship between the basal input and output
firing rates is affected by the distal input. Results show that gain modulation occurs
and gamma-frequency distal input has a stronger gain modulation than the Poisson
distal input. Meanwhile the output firing becomes gamma-modulated and its spike
phase distribution closely matches the experimentally-obtained spike timing density
curve [1].
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2 Methods

Simulations were performed using NEURON version 7.0 [9]. The layer V neo-
cortical pyramidal neuron model was obtained from the ModelDB section of the
Senselab database (http://senselab.med.yale.edu). This realistic cell model includes
five voltage-dependent currents: fast Na+(INa), fast K+(IKv), slow, non-inactivating
K+(IKm), and high-threshold Ca2+(ICa), as well as one Ca2+-dependent potassium
current (IKCa). The time step was 50 μs. Values of channel densities are given
in Table 1. Each pre-synaptic input was modeled by using AMPA and NMDA
conductances for excitation, GABA conductance for inhibition. The AMPA and
GABA conductance was implemented using the built-in function of NEURON
(Exp2Syn()). The NMDA conductance was implemented based on the asymmetric
trapping block model of NMDA receptors [10]. All activated synapses were uni-
formly distributed at the distal and basal dendrites. Data was recorded from the last
7,000 ms of the simulations.

3 Results

Figure 1 shows the structure of the neuron model and its stimulus: (1) distal modula-
tive input, which is composed of Poisson excitatory current and inhibitory (GABA)
current; (2) basal driving input, which is composed of only Poisson excitatory cur-
rent. The ratio between excitation and inhibition is fixed to be 4:1. The mean firing
frequency of each pre-synaptic neuron is 10 Hz for the excitatory regular spiking
(RS) pyramidal neurons and 40 Hz for the fast spiking (FS) inhibitory interneurons.
The gamma GABA current was generated by the partially synchronized FS neurons,
whose spiking times follow the observed in vivo phase distribution of FS cellular
spikes (Fig. 3a, c: blue dotted line) [1, 2].

Figure 2a shows that both gamma and Poisson distal input can give an obvious
change in the shape of the f − I curve. The general firing rate to gamma input is
higher than the Poisson input especially when the basal input is weak. With the
increase of the number of distal synapses, the difference of corresponding firing fre-
quency between gamma and Poisson input is enlarged due to the rapid increase of
the variance of gamma input (Fig. 2b). From Fig. 3a, c we can see that the gamma
rhythm of the membrane potential for gamma input can be transferred to the soma.
This periodic inhibitory input produces more fluctuations at the distal dendrites than
the random input (Fig. 3b, d). Thus it gives more opportunities for the neuron to gen-
erate action potentials and results in a higher firing frequency than the random input.
Due to the large variance of periodic current, the large fluctuations at distal dendrites
could prevent the neuron from reaching saturation. Hence, the gamma distal input
generated by synchronized FS cells can give a wider range of modulation for the
basal input-output relationship than the random input. Further, the spike phase dis-
tribution of this RS pyramidal cell is consistent with the experimentally observed
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Fig. 1 Left: structure of the layer V pyramidal neuron model; Right: poisson (a) and gamma (b)
GABA input current (outward) which is respectively generated by non-synchronized and partially
synchronized FS inhibitory neurons (Colors will be viewed in online version)

0

5

10

15

20

25

30

35

40

45

number of basal synapses

fir
in

g 
fr

eq
ue

nc
y 

(H
z)

(a)
basal input only

distal Poisson input

distal γ input

0 200 400 600 800 1000 0 500 1000 1500 2000
0

2

4

6

8

10

12

14

16

18

20

number of distal synapses

fir
in

g 
fr

eq
ue

nc
y 

(H
z)

(b)

Poisson GABA

γ GABA

Fig. 2 a Gain modulation of distal stimulus for three cases: only basal input (black), Poisson
GABA distal input (blue) and gamma GABA distal input (red); b Firing rate at soma with the
increase of total number of distal synapses (excitation + inhibition); here the number of basal
synapses is 200 (Colors will be viewed in online version)

spike density of gamma-modulated RS cells [1]. This result further confirms that
RS cells are likely to receive strong gamma-modulated inhibition from FS cells and
excitation with little or no gamma modulation from other RS cells [2].
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Fig. 3 Comparing the responsiveness to poisson (a) (b) and gamma (c) (d) distal input. In both
cases, the number of excitatory and inhibitory synapses is 1,000 and 250 respectively. (a) (c)
Histograms of the spike phases for this neuron with poisson GABA input (left) or gamma GABA
input (right). Red line: gamma-modulated spike density for RS cells; blue line: gamma-modulated
spike density for FS cells; (b) (d) Recordings of membrane potentials at soma and dendrites

4 Conclusion

In this paper we investigate how the gamma-frequency inhibitory stimulus at distal
dendrites (modulative input) together with Poisson stimulus at basal dendrites (driv-
ing input) affect the somatic firing frequency of a layer V pyramidal neuron model.
Results show that gamma-frequency distal input can give a stronger gain modu-
lation than the Poisson distal input, and make the somatic output firing become
gamma-modulated.
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Zinc Modulation of Calcium-Permeable AMPA
Receptors on Carp Retinal Horizontal Cells

Yan Sun, Xiao-Dong Jiang, Lei Xiao, Hai-Qing Gong, and Pei-Ji Liang

Abstract Calcium-permeable AMPA receptors are proved to be expressed on carp
retinal horizontal cells. However, the synaptic contribution and modulatory charac-
teristics of these receptors in the synapses between cones and horizontal cells are
not fully understood. In the present study, we used whole-cell patch clamp tech-
nique to test the functional contribution of calcium-permeable AMPA receptors and
relevant zinc modulatory effect on these receptors. It is shown that application of
100 μM pentobarbital (a selective blocker of calcium-impermeable AMPA recep-
tors) slightly but significantly suppressed the current elicited by 3 mM glutamate.
Furthermore, the co-application of 300 μM zinc apparently inhibited the remaining
calcium-permeable AMPA receptors. These results suggest that calcium-permeable
AMPA receptors contribute a large portion to the cell’s glutamate-current and zinc
can down-regulate the function of these receptors.

Keywords Glutamate current · Patch-clamp recording · Pentobarbital · Zinc

1 Introduction

AMPA receptors (AMPARs) mediate the majority of fast excitatory neurotransmis-
sion at glutamatergic synapses in the central nervous system, and can be divided
into calcium-permeable and calcium-impermeable subtypes [1].

Horizontal cells (HCs) are second-order interneurons in the inner nuclear
layer of vertebrate retina and respond to glutamate released from photoreceptors.
Their activities regulate the visual signals laterally and determine the antagonistic
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receptive field structure of bipolar and ganglion cells. It is well accepted that
ionotropic glutamate receptors expressed on carp retinal HCs are AMPA-preferring
and our previous work revealed that they are partly of calcium-permeable subtype
(CP-AMPARs) [1].

In vertebrate retina, zinc is co-localized with presynaptic glutamate vesicles and
released from photoreceptor terminals, which suggests that zinc may play a modula-
tory role in the outer retina [2]. Moreover, experimental results show that the effects
that zinc exerts on glutamate receptors in vertebrate HCs are diversified [3].

Here, we examined the functional contribution of CP-AMPARs expressed on
carp retinal HCs and the zinc modulatory effect on these AMPARs. The applica-
tion of specific calcium-impermeable AMPAR (CIP-AMPAR) inhibitor, 100 μM
pentobarbital, effectively but moderately suppressed the glutamate-elicited current,
suggesting that CP-AMPARs mediate the majority of the total glutamate current.
Furthermore, co-application of zinc (300 μM) attenuated CP-AMPAR-mediated
current. This implies that zinc down-regulates the glutamate-response through
CP-AMPAR in carp retinal HCs.

2 Methods

2.1 Preparation

The experiments were performed on H1 HCs isolated from adult carp (Carassius
Auratus, 15–20 cm body length) retinas, following the method previously described
[4]. H1 cell was easily distinguished by its characteristic morphology under
microscope.

2.2 Whole-Cell Recording and Drug Application

Cells were voltage-clamped at −60 mV and whole-cell recordings were achieved
by 5–8 M� patch pipette pulled from borosilicate glass (Sutter Instrument Inc.,
USA) using a horizontal puller (P87, Sutter Instrument Inc., USA). The pipette
was filled with intracellular solution, mounted on a motor-driven micromanipula-
tor (MC1000e, SD Instrument Inc., USA), and was connected to a patch amplifier
(Axopatch 200B, Axon Instrument Inc., USA). Data acquisition was performed
using AxoScope software (Axon Instrument Inc., USA), with sample rate being
1 kHz. The recorded data were analyzed by Clampfit 9.2 software (Axon Instrument
Inc., USA). All the drugs were briefly applied using the superfusion system
(DAD-12, ALA Scientific Instruments, USA). The statistical data are all presented
in the form of mean ± SD in the text and mean ± SE in the figure illustrations.
Paired t-test was performed for statistical analysis.
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3 Results

3.1 The CP-AMPARs Mediated the Majority of the Glutamatergic
Response

Pentobarbital (PB), at a concentration of 100 μM, has been reported to be a selective
antagonist of CIP-AMPARs [5]. So we used 100 μM PB to isolate the CP-AMPAR-
mediated response (Fig. 1). During control, the application of 3 mM glutamate
elicited an inward current in an H1 cell with peak value of 515.6 pA. After 10 s
pre-superfusion of 100 μM PB, the peak value was reduced to 380.1 pA. The
glutamate-response was almost completely recovered (peak current 494.3 pA) when
PB was washed out for 15 s. The statistical results given in Fig. 1 show that the peak
value of the glutamate-response was reduced to 73.2 ± 3.1% of the control level
after application of 100 μM PB (n = 5, p < 0.05).

3.2 Zinc Inhibitory Effect on CP-AMPAR-Mediated Current

To investigate the zinc modulatory effect on glutamate-response mediated by CP-
AMPARs, 100 μM PB was used. In the presence of 100 μM PB, application of
3 mM glutamate elicited a peak current of 427.9 pA (Fig. 2). After pre-superfusion
of 300 μM zinc for 10 s, co-application of 3 mM glutamate elicited a peak current
of 214.6 pA. This current was mostly recovered after zinc was washed away for
more than 1 min (peak current 408.8 pA). Statistical data show that the application
of 300 μM zinc reduced the CP-AMPAR-mediated peak current to 53.4 ± 3.8% of
the control level (p < 0.05, n = 5).

Fig. 1 Inward current elicited by 3 mM glutamate recorded from an H1 cell was slightly reduced
by 100 μM PB and recovered on washout. Normalized data of PB inhibition (Mean ± SE) are
plotted in the right panel (n = 5, ∗p < 0.05, paired t-test)
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Fig. 2 An inward current evoked by 3 mM glutamate in the presence of 100 μM PB recorded
from one H1 cell was suppressed by 300 μM zinc and mostly recovered on washout. Normalized
zinc inhibitory effect (Mean ± SE) on currents mediated by CP-AMPARs (∗p < 0.05, paired t-test,
n = 5)

4 Summary

The main results of this study are: (1) in isolated carp retinal H1s, CP-AMPARs
mediate the majority (about 70%) of the cell’s glutamate-response; (2) zinc, at a
concentration of 300 μM, effectively down-regulates the CP-AMPAR-current.

The expression of CP-AMPARs in HCs is important to the regulation of synap-
tic plasticity between photoreceptors and HCs [6]. During dark, the activation of
CP-AMPARs depolarizes the membrane potential and motivates GABA release.
However, calcium influx into the cell through CP-AMPARs also triggers the intra-
cellular calcium pathways and the increasing of intracellular calcium would inhibit
the GABA transports [4]. The zinc effect of CP-AMPARs therefore mediates the
local fine modulation for the reciprocal synapse between photoreceptors and HCs
(Fig. 3). In addition, CP-AMPARs also play a pathological role in excitotoxicity
caused by retina ischemia due to their high calcium permeability; therefore the

Fig. 3 The retina structure (left panel) and the synaptic connection between cone photoreceptors
and horizontal cells (right panel). The right panel briefly illustrates the possible involvement of
CP-AMPARs in the modulation of synaptic activities between cone and horizontal cell
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inhibitory effect that zinc exerts on CP-AMPARs may probably protect the neurons
from cell death [3].
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Spectral Characteristics of Firing Pattern
in Retinal Ganglion Cells

Hao Li and Pei-Ji Liang

Abstract This paper studies the firing patterns of retinal ganglion cells (RGCs)
with frequency-domain approach based on partial directed coherence (PDC) which
reflects a frequency-domain representation of Granger causality. The results sug-
gest that the PDC of the RGCs’ spike trains in response to natural movie has
significant frequency dependence; while it doesn’t change much across neighbor-
ing frequency band under the pseudo-random checker-board stimulus. Possible
mechanisms underlying these distinct features are discussed.

Keywords Checker board · Natural movie · Granger causality · Partial directed
coherence

1 Introduction

Neural codes for visual information have probably evolved to maximize their effi-
ciency of metabolic activity or information transmission [1]. Thus it is reasonable to
assume that the early stage of visual information processing is to encode incoming
stimuli to improve efficiency [1, 2].

Retina is the first stage of visual neural information processing. We are interested
in the population coding scheme that RGCs adopt to ensure their coding efficiency.
By using multi-electrode array system, activities of RGCs in response to different
stimuli were recorded and analyzed.

H. Li (B)
Biomedical Engineering Department, Shanghai Jiao Tong University, Shanghai 200240, China
e-mail: livio.sjtu@gmail.com

195R. Wang, F. Gu (eds.), Advances in Cognitive Neurodynamics (II),
DOI 10.1007/978-90-481-9695-1_30, C© Springer Science+Business Media B.V. 2011



196 H. Li and P.-J. Liang

2 Methods

2.1 Electrophysiology Recording

Experiments followed the procedures described by Liu et al. [3]. Briefly, retina was
isolated from bullfrog under dim red illumination and perfused using oxygenated
Ringer’s solution. The retina was dissected into 3 × 3 mm2 squares. One small
piece of retina was placed with the ganglion cell side down in a perfusion chamber
the bottom of which contained a microelectrode array (MEA). The MEA consisted
of 60 electrodes arranged in an 8× 8 matrix (leaving the 4 corners void). The tissue
and perfusate were kept at room temperature.

2.2 Stimulus

Visual stimulation included (1) natural movies and (2) pseudo-random checker-
board. The stimuli were displayed at a rate of 20 frames per second. A 5-s
segment of stimuli was repeated 20 times with interleaving 5-s full-field gray screen
(grayscale = 128).

2.3 Power Spectral Density (PSD)

Peri-stimulus time histogram was accumulated from 20 trials of spike trains. The
power spectral density (PSD) function of the PSTH was calculated using the
standard fast Fourier transform algorithm.

2.4 Partial Directed Coherence (PDC)

The concept of Granger-causality, originated from econometrics [4], is a fundamen-
tal tool for the description of directed dynamic relationships among the components
of a multivariate process and has been applied recently to problems in neuroscience.
Based on the common sense conception that causes precede their effects in time,
this probabilistic concept of causality exploits the temporal structure of signals and
defines causal relationships in terms of predictability. In a linear framework, the
notion of Granger-causality is closely related to multivariate autoregressions. In this
paper, we considered the PSTHs from n RGCs as an n-dimensional time series,
which was used to construct a multi-variant auto-regressive (MVAR) model.

Let X = X(t), t ∈ Z with X(t) = (x1(t), . . . , xn(t))′ be the PSTHs of n RGCs.
Then an MVAR model of order p for X is given by

X(t) =
p∑

r=1

a(r)X(t − r)+ ε(t) (1)
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where a(r) are the n × n coefficient matrices of model and ε(t) is a multivariate
Gaussian white noise process.

In order to provide a frequency domain description of Granger-causality, Baccalá
and Sameshima [5] introduced the concept of partial directed coherence (PDC). Let

A(f ) = I −
p∑

r=1

a(r)e−i2π fr (2)

denote the difference between the n-dimensional identity matrix I and the Fourier
transform of the coefficient series. Then the partial directed coherence

∣∣πi←j(f )
∣∣ is

defined as

∣∣πi←j(f )
∣∣ =

∣∣Aij( f )
∣∣

√∑
k

∣∣Akj( f )
∣∣2

(3)

where
∣∣πi←j(f )

∣∣ denotes the causal influence from the past of time series xj(t) to the
present of xi(t).

3 Results

3.1 Power Spectral Density of Responses of RGCs

In the present study, we first calculated the PSD of PSTH in response to checker-
board and natural movie respectively. Figure 1 shows the power spectra of 36 RGCs’
(the positions of which are marked with circles in Fig. 2) firing activities.

It is shown that the power of low frequency components in movie-responses was
stronger than that of checker-board-responses with a slower decay.

b a

Fig. 1 Visual stimuli used: a Example movie frame (http://hlab.phys.rug.nl/vidlib/index.html),
mean grayscale ranging from 99 to 117 in grayscale. b Example checker-board frame (8 × 8 grid,
grayscale: black = 0, white = 255)
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Fig. 2 Locations of the 36
RGCs recorded from a retina,
and the 3 selected ones

3.2 Partial Directed Coherence Analysis

RGCs together with their presynaptic neurons form a complicated retinal circuit.
Outputs of different RGCs exhibit more or less interactive influences probably
caused by the presynaptic input. We therefore analyze the spike trains fired by RGCs
and expect to acquire interactive relationship of spike trains.

Figure 3 illustrates the PDC calculated for 3 RGCs (open circles in Fig. 2).
It is shown that the PDC of the movie-responses oscillated significantly and
presented sharp peaks in different frequencies, while the PDC of the checker-board-
response was less changeable. This might indicate that the relationships between
the RGCs’ activities during the natural movie are more complicated than that dur-
ing the checker-board, and suggests that influence between outputs of RGCs is more
intensive in response to the natural movie.
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Fig. 3 Summary of power spectral density of the 36 RGCs (circles in Fig. 2) in response to natural
movie (a) and checker-board (b)
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Fig. 4 PDC analysis: a PDC of 3 RGCs (marked by open circles in Fig. 2) in response to natural
movie. b PDC of the same RGCs in response to checker-board. (i, j = 1, 2, 3)

4 Discussion

The PSD analysis results described here suggest that firing patterns of RGCs in
response to natural movie and checker-board have distinct characteristics, and the
distinction may attributes to the different presynaptic inputs.

The causal influence between neurons, indicated by the PDC analysis, are prob-
ably not caused by direct interactions between the neurons being investigated (the
distance between the adjacent microelectrodes is 100 μm), but modulated by the
presynaptic inputs. Retinal neurons, especially bipolar cells and amacrine cells,
form a neural circuit to provide presynaptic signals to RGCs. Presynaptic signals
conducted through different pathways will combine with different synaptic delays.
These delays might cause spike trains from different RGCs show the feature of
causality.
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The Firing Pattern Properties in Retinal
Ganglion Cells

Han-Yan Gong, Ying-Ying Zhang, Pei-Ji Liang, and Pu-Ming Zhang

Abstract The correlation between spike trains of chicken retinal ganglion cells
recorded by the multi-electrode recording system are calculated by cross-correlation
function and Lempel-Ziv distance. Cross-correlation evaluates the degree of neu-
ral synchronization while Lempel-Ziv distance measures the similarity of firing
patterns. The results indicate that compared with synchronization, firing patterns
show stronger coordination in neuron groups and reflect the stimuli property more
accurately. Thus the measurement of spike train patterns by Lempel-Ziv distance
can give us more comprehensive cognition and additional insights in neural coding
analysis.

Keywords Firing pattern · Synchronization · Cross-correlation · Lempel-Ziv
distance

1 Introduction

It is already known that information is reflected with various rules in neuron spike
trains called neural coding, whose characters can be measured by different compu-
tational methods [1]. Most of algorithms addressing the correlation between spike
trains to identify how neurons code information focus on comparing the precise time
of coincident neural firing. Cross-correlation we used here is also one of the widely-
used methods in measuring firing synchrony. However, sometimes the information
carried by spike trains can not be totally reflected by concerted timing property.
Lempel-Ziv distance (LZ distance) is an algorithm based on Lempel-Ziv complexity
which is used to estimate the amount of information increasing along the trains [2].
LZ distance considers spike trains with similar but possibly not synchronized firing
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patterns as close [3]. Generally speaking, if two spike trains are highly synchro-
nized, their patterns will be similar as well. On the contrary, if two spike trains have
similar patterns, they are not necessarily synchronized in firing time. LZ distance
has been proved effective in measuring neural firing reliability and neuron classifi-
cation [3, 4]. Here we use LZ distance to examine whether there is any information
that can’t be reflected by synchronization in neural firing activities.

2 Meterial and Methods

2.1 Experimental Procedure

Spikes from ganglion cells were recorded by a multi-electrode array using a com-
mercial multiplexed data acquisition system (MEA, Multi Channel Systems MCS
GmbH, Germany) with a sampling rate of 20 kHz. The stimulation protocols
were: (1) Three pieces of digitized segments of grayscale video recording (1920
frames, 128 × 128 pixels, refresh rate being 10 Hz) of natural outdoor scenes. (2)
Checkerboard (8 × 8). The images were projected onto the retina piece via an opti-
cal lens system and covered the whole area of the multi-electrode array. Each visual
stimuli lasted 50 s and signals recorded by electrodes were transformed to spike
trains of each individual neuron after sorting using principal component analysis
and K-means clustering.

2.2 Cross-Correlation Function and LZ Distance

The normalized cross-correlation function for calculating the degree of firing
correlation is defined as follows:

cxy(m) =
⎧
⎨

⎩

N−|m|−1∑
n=0

xnyn+m

R m ≥ 0
cyx(−m) m < 0.

R =
√√√√

N∑

i=1

x2
i

N∑

i=1

y2
i . (1)

The result stands for the spike firing consistency of sequence x and y at the time
delay m. The peak value represents the degree of correlation between two spike
trains at the corresponding time which we choose as the evaluation value compared
with LZ distance.

LZ distance is calculated as follows: The spike trains are translated into bitstrings
Xn of length n using a bin size of 1 ms, such that the symbols ‘0’ and ‘1’ denote
the absence or presence of a spike respectively. These bitstrings are coded using a
parser that partitions the string into nonoverlapping substrings. As an illustration,
the string 0011001010100111 is parsed as 0 |01 |1 |00 |10 |101 |001|11 . Then the
Lempel-Ziv complexity K(Xn) is calculated by:
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K(Xn) = c(Xn) log c(Xn)

n
. (2)

where c(Xn) is the number of phrases that results from the partition of Xn. The
amount of information Yn provides about Xn is given as K(Xn) − K(Xn |Yn ), where
c(Xn |Yn ) is the size of difference of the phrases parsed from two spike trains. The
LZ distance is:

d(Xn, Yn) = 1−min

{
K(Xn)− K(Xn|Yn)

K(Xn)
,

K(Yn)− K(Yn|Xn)

K(Yn)

}
. (3)

A large number of similar patterns appearing in both spike trains leads to a large
overlap of the sets of phrases. Thus, distances between spike trains with similar
patterns are small, whereas distances between spike trains with different patterns
are large [3].

3 Results

Cross-correlation and LZ distance calculation are performed on 5 pieces of retina,
recording 24, 20, 50, 55, 44 ganglion cells respectively, and reach the similar con-
clusion. In Fig. 1, the result of one piece of retina is shown for example. Under

Fig. 1 The synchronized correlation between neurons measured by cross-correlation function.
a Neurons’ location where each element stands for one neuron’s number (in this retina 24 neu-
rons are recorded). b Cross-correlation result between two highly synchronized neurons (No.15
and No.4). c Synchronized correlation of neural responses under 4 stimuli. Each block stands for
the cross-correlation peak value between neurons with number in x and y axis. The brighter the
grayscale is, the more synchronized two neurons are
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the stimuli of natural movies and checkerboard, overall synchronized correlation
between neurons remains similar and some pairs are always highly synchronized.

Similarly, LZ distances are calculated and different collaborative features of neu-
rons are shown in Fig. 2. Compared with the cross-correlation results, neurons show
correlation in a wider range in firing patterns. Some neuron pairs which are weak in
synchrony appear to be strong in firing pattern similarity, which reflect the different
aspects the two algorithms focus.

The curves of cross-correlation results and LZ distance between all the neural
pairs are shown in Fig. 3. Natural movies contains stronger correlation than random
checkerboard whose distribution is almost the same as white noise, thus theoreti-
cally, neural response should cooperate more actively under the stimuli of movies.
Both the results of cross-correlation and LZ distance meet the assumption, but the
LZ distance shows more obvious difference under 4 stimuli.

In conclusion, the correlation of firing patterns between spike trains can bet-
ter reflect the stimuli information coded in neural firing activities in the overall
performance. Here different results are shown in measuring synchronization and
firing pattern similarity, implying that firing patterns express something beyond
what spike timing correlation can reflect, which will give us deeper insight in neural
information coding.

Fig. 2 The firing pattern correlation between neurons measured by LZ distance. Each block stands
for the value of 1 − d(Xn, Yn) between neurons with number in x and y axis. The brighter the
grayscale is, the more similar two neurons’ spike trains are

Fig. 3 The overall synchronization and firing pattern correlation of all neuron pairs
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The Spatiotemporal Structure of Receptive Field
of Ganglion Cells in Bullfrog Retina

Yao Li, Hai-Qing Gong, Pei-Ji Liang, and Pu-Ming Zhang

Abstract The traditional spike-triggered average method is always used to
calculate the receptive fields. According to the improved spike-triggered average
method, we calculated the receptive fields of ganglion cells in the bullfrog retina.
The results showed that the receptive fields have dynamic spatiotemporal structure,
both the response delay in the time domain and the receptive field size in the space
domain possess the time-variant properties.

Keywords Receptive field · Spike-triggered average · Spatiotemporal
structure · Retinal ganglion cell

1 Introduction

Retina plays an important role in processing the visual information within the early
visual pathway [1]. To understand the coding mechanism that takes place in the
retina, it is necessary to have a detailed understanding of the receptive field (RF)
structure of the retinal ganglion cells (RGCs) [2]. The RF is classically defined as the
area of visual space which can influence the discharge of a neuron. Previous studies
have shown that the RF is inherently a function of both space and time [3]. Thus,
to adequately describe how a neuron processes the visual image, one must charac-
terize its RF in the space-time domain. Based on the white noise analysis [4], we
can obtain the RF of the RGCs. Recent study has made improvements on the tradi-
tional spike-triggered average (STA) method [5]. Thus the spatiotemporal structure
of RFs with higher time resolution can be calculated, which help define the time-
variant size of the RF as well as the time-variant response delay. Physiologically,
the understanding of such spatiotemporal structure of RF will be beneficial to the
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explanations of the time-varying response properties of the RGCs and facilitate the
analysis of the coding mechanism.

2 Material and Methods

2.1 Experimental Procedure

The bullfrog RGCs activities were recorded simultaneously by a multi-electrode
array with 60 electrodes arranged in an 8 × 8 matrix and the commercial mul-
tiplexed data acquisition system (MEA, Multi Channel Systems MCS GmbH,
Germany) with a sampling rate of 20 kHz. The RGCs were stimulated with two
kinds of stimuli: (1) a 24× 24 checkerboard updated every 30 ms, lasting for 200 s;
(2) a 16 × 16 checkerboard updated every 30 ms, lasting for 60 s. The spikes of
the RGCs were detected by the threshold in the software MC Rack (MCS GmbH,
Germany) and classified by the principal component analysis in the software Offline
Sorter (Plexon Inc. Texas, USA).

2.2 Spike-Triggered Average (STA)

The spike-triggered average method is a statistical method based on the white noise
analysis [4]. The checkerboard images in certain time interval before the occurrence
of each spike are summed and averaged. Due to the statistical property, the stimulus
patterns that elicit the spikes are strengthened and therefore reflect the RF of the
neuron. The RF could be mapped according to this method, but the resolution of
the RF time-variant curve is limited by the frequency of the stimulus. Recent study
has made some improvements to obtain a higher time resolution [5]. Here we take
into account all the checkerboard images within the 500 ms interval before each
spike. The bin, which determines the resolution of the time-variance curve, is set as
10 ms. The images located in the same bin are summed and averaged. Thus there are
50 sampling points in the curve. The statistical result of each bin could efficiently
describe the spatial RF structure in the corresponding time interval. By identifying
the spatial coordinates of the minimum value (OFF-center ganglion cells) or maxi-
mum value (ON-center ganglion cells) in those RF maps and combining the values
from all the maps in the same position together into one curve, the temporal RF
structure could be calculated.

3 Results

The experiments were implemented in the bullfrog retinas and 68 ganglion cells
activities in two pieces of retina were recorded. According to the improved STA
method, the spatiotemporal RF structure of the RGCs with higher resolution were
calculated and illustrated in Fig. 1. There are three ganglion cells with different spa-
tiotemporal structure of RFs. The results suggest that the STA intensity reached the
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(a)                     (b)

(c)                     (d)

(e)                     (f)

200 µm

Fig. 1 The spatiotemporal RFs of different RGCs. a and b are the RF structure of the same RGC
under the 24 × 24 checkerboard stimulus in the space and time domain, respectively. The spatial
RF structure is corresponding to the minimum value moment of the curve in (b). The intensity of
the area in (a) within the thick lines is below half of the minimum value in (b). (c) and (d), (e) and
(f) are from another two ganglion cells

peak value at about 150 ms in both (b) and (d) while 140 ms in (f) before the occur-
rence of the spikes. The corresponding ganglion cells are all OFF-center neurons.

The RGC response delay, i.e., the time corresponding to the minimum value
(OFF-center ganglion cells) or maximum value (ON-center ganglion cells) in the
RF time-variant curve, as well as the size of the RF are two crucial parameters in
the spatiotemporal structure. We calculated the response delay within a 60 s mov-
ing window with 10 s step resolution throughout the 200 s duration of stimulus.
The results illustrated that there were two types RF of RGCs, whose response delay
increased or decreased with the time respectively (Fig. 2). The numbers correspond-
ing to the two types of RGCs were 8 and 5. Furthermore, the comparation of RF
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Fig. 2 The schematic of the calculation method and the time-variant RGC response delay. a shows
the calculation method of delay curve. b shows the different RGCs with increasing and decreasing
delay under the 24 × 24 checkerboard stimulus, respectively

200 µm

Fig. 3 The time-variant RF size. a–c illustrate the spatial RF calculated from total 60 s, preceding
30 s and following 30 s stimulus, respectively. The first row shows that the RF size of the RGC
was shrinking with the time under the 16 × 16 checkerboard stimulus while the second one was
reverse

size between the preceding 30 s and following 30 s during the 60 s checkerboard
stimulus showed that the RF size was also time-variant, both expanding and shrink-
ing phenomena were existed (Fig. 3). The numbers of the RGCs that possess such
properties were 6 and 4, respectively.

In conclusion, the spatiotemporal structure of the RF of retinal ganglion cells
with higher time resolution was obtained by using the improved STA method, which
reveals the dynamic RF of the RGCs. Especially, both the response delay in the time
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domain and the RF size in the space domain possess the time-variant characteristics.
The future study will concentrate on how the RF dynamics makes an impact on the
RGC response property as well as the coding mechanism.
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Neural Population Dynamics



Dynamics of Hierarchical Neural Networks

Claus C. Hilgetag, Mark Müller-Linow, and Marc-Thorsten Hütt

Abstract Neural networks are organized hierarchically across many scales of
dimension, from cellular neuronal circuits via mesoscopic networks at the level
of columns, layers and areas to large-scale brain systems. However, the structural
organization and dynamic capabilities of hierarchical networks are still poorly char-
acterized. We investigated the contribution of different features of network topology
to the dynamic behavior of hierarchically organized neural networks. Prototypical
representatives of different types of hierarchical networks as well as two biological
neural networks were explored with a three-state model of node activation for sys-
tematically varying levels of random background network stimulation. The results
demonstrated that two principal topological aspects of hierarchical networks, node
centrality and network modularity, correlate with the network activity patterns at
different levels of spontaneous network activation. The approach further showed
that the dynamic behavior of the cortical systems network in the cat is dominated
by the network’s modular organization, while the activation behavior of the cellular
neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes.
Generally, our results demonstrate the interaction of multiple topological features
and dynamic states in the function of complex neural networks.

Keywords Complex networks · Neural topology · Modularity · Betweenness
centrality · Cat · Caenorhabditis elegans

1 Introduction

Neural networks are organized hierarchically across many scales of dimension, from
cellular neuronal circuits via mesoscopic networks at the level of columns, layers
and areas to large-scale brain systems. However, the structural organization and
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dynamic capabilities of hierarchical networks are so far poorly characterized. For
instance, hierarchical organization in networks can be described by several differ-
ent characteristics, such as (i) the existence of network hubs with a large number
of connections, (ii) repeated encapsulation of sets of nodes in increasingly larger
sets, as well as (iii) the self-similarity of the network across dimensional scales.
Moreover, the combination of modular and hub features can produce various types
of network topologies. Classical Erdös-Rényi (ER) random graphs do not contain
hubs or modules and may thus serve as a general null model. Scale-free Barabási-
Albert (BA) graphs [1], on the other hand, contain only hubs and no modules. Within
such graphs, projections from the hubs can reach many network regions, and the
hub nodes thus have a more privileged role than nodes with fewer connections and
a more local reach. Further, networks that do not contain hubs, but are modular,
may arise from linking many distributed, dense clusters with a small number of
inter-cluster connections. Such clusters can exist at different levels (representing
clusters of sub-clusters of sub-sub-clusters [2]), resulting in a hierarchical network
organization, which has recently been termed “fractal” [3]. Finally, networks may
be modular and also contain hubs, which are either contained within the modules
serving as local hubs, or may form global hubs that integrated network modules
at different scales of organization. The two latter networks combine features of
scale-free and modular networks. Currently, it is not clear how the combination of
these different topological aspects may shape the dynamic behavior of hierarchical
neural networks. In order to investigate this question, we modeled the propaga-
tion of spontaneous activity in different prototypes of hierarchical neural networks,
as well as for two examples of biological neural networks, the cellular neuronal
network of C. elegans and the global network of cortical systems connections in
the cat.

2 Methods

In order to study dynamic patterns on different types of hierarchical excitable net-
works, we modeled the propagation of excitation across these networks using a
discrete excitable “forest-fire” model [4], which reflects the principal neural cycle of
excitation and deactivation followed by a refractory phase. This simple model (com-
pared to, e.g., integrate-and-fire models) was chosen for two main reasons. First, it
is currently unclear how much detail is required to realistically describe the interac-
tion of excitable elements in complex networks, so it is best to start with a simple
model. Second, the dynamic model should be general enough to be applicable to
networks of individual neurons as well as neural populations. In the simulation,
we considered the individual time series of all nodes, and for each pair of nodes
computed the number of simultaneous firing events. When applied to the whole
network, the resulting co-activation matrix represented the distribution pattern of
excitations, which could be compared with a corresponding distribution pattern of
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different topological properties, using the “dynamic modularity”, Qdyn. This mea-
sure expressed the agreement between the dynamic grouping by node co-activation
and the topological grouping of nodes by distance to a central node (CN) or topolog-
ical modularity (TM). For different hierarchical prototypes as well as two biological
networks, the cortical systems connectivity in the cat and cellular neuronal connec-
tivity of C. elegans, we then investigated which topological feature best explained
the observed patterns of simultaneous firing events.

3 Results

We found that in different parameter regimes (characterized by the rate of spon-
taneous node excitations) different topological properties determined the observed
synchronization patterns. Moreover, we showed that small systematic changes in the
graph architecture, designed to enhance or decrease the selected topological prop-
erty, were reflected in the dynamics. In a second step, we extended our study to
hierarchically structured artificial graphs and then to biological networks, in order
to demonstrate that the distribution patterns of excitations change dramatically when
both properties are represented to different degrees in the respective graphs (Fig. 1).
We also found that the dynamic behavior of the cerebral cortical systems network
in the cat is dominated by the network’s modular organization, while the activation
behavior of the cellular neuronal network of C. elegans is strongly influenced by
hub nodes (Fig. 2).

Fig. 1 Left: Hierarchical (scale-free modular) network combining different topological features.
Right: Correlation of distance to central node (CN) or topological modularity (TM) with the
dynamic grouping of nodes at different levels of spontaneous network activation. The dynamic
modularity Qdyn for both the TM reference (� marks) and the CN reference (◦ marks) is depicted
as a function of the rate of spontaneous excitations f. The hierarchical scale-free graph displays
properties of both, the modular and the BA graph. Thus, the two levels of dynamic integration are
visible within the same network for the respective values of f. The transition between these two
levels corresponds to the transition from spike to burst dynamics



218 C.C. Hilgetag et al.

Fig. 2 Organization of dynamic behavior in two biological neuronal networks, the cortical systems
network of the cat (a) and the cellular neuronal network of C. elegans (b). a The dominance of the
modular topology of the cat cortical network is reflected in a distinct increase of Qdyn for the
TM-dependent correlation in the high-f regime (� marks), while distance from central hub nodes
appears to play only a marginal role (see slight superelevation in the low-f regime, ◦ marks). b By
contrast, the cellular network of C. elegans displays a strong dependency on two adjoining central
nodes which dominate the dynamics in a wide range of f. Particularly pronounced is the drastic
increase of the CN-dependent correlations for Qdyn in the low-f region (◦ marks). Even so, there
exists a noticeable but comparatively subordinate influence of the module-based excitation patterns
(� marks). Adapted from [5]

4 Discussion

The current work presents aspects of a pattern-based computational approach for
linking network topology and dynamics. This approach proved useful in probing
the functional organization of complex neural networks. The comparison of topo-
logical features and simulated network dynamics demonstrated that features such
as central hub nodes and network modularity can strongly and systematically shape
a network’s dynamic behavior. Moreover, in hierarchical modular networks, where
multiple of these features were present, the network dynamics exhibited a functional
switch for different levels of spontaneous network activation between the dynamic
organization through a central node or through modular features.

The method also revealed the dynamic impact of different topological charac-
teristics in biological neural networks. In particular, the dynamics in the cellular
neuronal network of C. elegans appeared organized by the topological distance to
a central hub node, whereas the dynamic behavior of the cat cerebral cortical net-
work appeared more strongly influenced by network modularity. Both topological
features, however, contribute to the organization of the networks synchronization
dynamics. These results demonstrate the interaction of multiple topological features
and dynamic states in the function of complex neural networks.
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Effects of Additive Gaussian Noise on Neuronal
Firings in a Heterogeneous Neuronal Network

Xiaojuan Sun, Shujuan Lü, and Qishao Lu

Abstract The effects of additive Gaussian white noise on neuronal firings of a
heterogeneous neuronal network are discussed in this paper. Heterogeneity is intro-
duced through a multiplicative noise term. We show that the mean firing rate and
spatiotemporal order of the studied network can attach to a maximum value at some
intermediate noise intensities of the additive noise. Furthermore, we find that the
optimal noise intensity needed increases with the coupling strength of the neuronal
network. And we also give some comparisons with other works.

Keywords Spatiotemporal order ·Mean firing rate · Neuronal network

1 Introduction

Neurons are usually subject to random fluctuations on different scales, ranging from
channel noise created by random ion flow across the plasma membrane to synaptic
noise created by the activity of other neurons. Based on some research results, it has
been shown that noise can also play a constructive role in neuronal systems [1, 2].
Meanwhile, diversities in parameters are also very important in neuronal systems
as shown in [3, 4]. It has been shown that the coherence of the studied neuronal
systems can be enhanced at some intermediate diversity level, which is named as
diversity-induced coherence resonance. In this paper, we will discuss the effects of
additive Gaussian white noise on firing synchronization and spatiotemporal order of
a neuronal network which is coupled by N × N heterogeneous Rulkov maps.
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2 Equations of the Network

The Rulkov map [5, 6] is employed to model the dynamical behavior of neurons
constituting the examined neuronal network. We consider a diffusively coupled
N × N network with Rulkov map as local unit, the equations are shown as:

⎧
⎪⎨

⎪⎩

un+1(i, j) = α0+ξn(i, j)
1+u2

n(i, j)
+ vn(i, j)+ D[un(i+ 1, j)+ un(i− 1, j)

un(i, j+ 1)+ un(i, j− 1)− 4un(i, j)]+ ηn(i, j)
vn+1(i, j) = vn(i, j)− βun(i, j)− γ

(1)

where un(i, j)is the membrane potential of neuron (i, j)and vn(i, j)is the correspond-
ing ion concentration at the discrete time n. The system parameters are α0, β and
γ , whereby the latter two determine the time scale associated with the dynamics of
the slow variable vn(i, j) and α0 is the main bifurcation parameter in the absence
of ξn(i, j). If not stated otherwise, we set α0 = 1.99 and β = γ = 0.001. Each
neuron is coupled diffusively with its four nearest neighbors with periodic bound-
ary conditions given by u(0, j) = u(N, j), u(N + 1, j) = u(1, j), u(i, 0) = u(i, N),
u(i, N+1) = u(i, 1). D is the coupling strength between neurons on the N×N spatial
grid. Here N is taken as 128. ξ (i, j) and η(i, j) are noise terms, with the properties:

{ 〈ξn(i, j)〉 = 0,〈
ξn(i, j)ξm(i

′
, j
′
)
〉
= 2σmδ

i,i
′ δ

j, j
′ δn,m

(2)

and

{ 〈ηn(i, j)〉 = 0,〈
ηn(i, j)ηm(i

′
, j
′
)
〉
= 2σaδ

i,i
′ δ

j, j
′ δn,m

(3)

where σ a is the noise intensity of additive Gaussian white η(i, j). And σm denotes
the heterogeneities of the network, the larger the ξn(i, j) is, the more heterogeneous
the network is.

3 Measurement

As stated above, we will study the effects of additive Gaussian white noise on firing
synchronization and spatiotemporal order of the N × N neuronal network. Thus,
we will introduce two measurements, one is the mean firing rate � [7] and the
other is the linear spatial cross-correlation measure S [8]. They can quantify the two
properties, respectively. The mean firing rate is defined as

� = 〈π (n)〉T =
〈

1

N2

∑
ij
θ [un(i, j)− uth]

〉

T
(4)
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where uth = −0.2 is the firing threshold determined by the action potential of the
Rulkov neuron. Notably, θ (x) = 1 if x ≥ 0 and θ (x) = 0 if x < 0. The bracket 〈〉
indicates the average over the whole iteration time T. The larger the � is, the more
synchrony the network is. The linear spatial cross-correlation measure S is defined
as

S =
〈

Cov(n)

Var(n)

〉

T
(5)

where the bracket 〈〉T denotes averaging over the total iterated time T. Var(n) is the
spatial variance at the iterated time n given as

Var(n) = 1

N2

∑

ij

(ui, j − ū)2 (6)

where ū = N−2 ∑
ij ui, j; Cov(n) is the purely spatial auto-covariance of nearest

neighbors, and is defined as

Cov(n) = 1

N2

∑

ij

1∣∣Ni, j
∣∣
∑

b∈Nij

(uij − ū)(b− ū) (7)

with b consisting of all
∣∣Nij

∣∣ = 4 elements of a von Neumann neighborhood Nij

at each lattice site uij. Obviously, the quantity S is efficient in analyzing nearest-
neighbor relationships in space and time. Neuronal networks with larger S possess
more ordered firing behavior.

4 Results

In this section, we will study the effects of additive Gaussian white on the mean
firing rate� and spatiotemporal order S of the two-dimensional heterogeneous neu-
ronal network. Here, we take σm as 1×10−6. From Fig. 1, we can see that there exist
some intermediate noise intensities of η(i, j), such that �and S can reach to a max-
imum value. Moreover, with the coupling strength D increasing, the optimal noise
intensity corresponds to maximum value of � and S also increases. It is different
from the phenomenon observed in homogeneous neuronal network [9], where they
found that the optimal noise intensity is robust to the coupling strength D. Because
α0 = 1.99, the neuronal network will be a mixture of excitable and oscillatory neu-
rons [5, 6]. The excitable neurons inside the network will act as inhibitory ones, and
its inhibitory ability will enhance with increasing of the coupling strength D. Thus,
with D increasing, the neuronal network becomes harder and harder to be excited. It
will result in that noise intensity needed to excite the network and the corresponding
optimal noise intensity both increases with D, as shown in Fig. 1.
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Fig. 1 Variations of the mean firing rate� (a) and spatiotemporal order S (b) with respect to noise
intensity of the additive noise η(i, j) for various coupling strength D. Here σm = 1× 10−6

Fig. 2 Variations of the mean
firing rate � with respect to
the coupling strength D for
various noise intensity σ a of
the additive noise η(i, j)

Wang et al. [10] have shown that the mean firing rate of neuronal network, which
are mixed by excitable and oscillatory neurons, is robust to the additive Gaussian
white noise. In other words, the additive Gaussian white noise has no effects on
the mean firing rate of heterogeneous neuronal network. But for the heterogeneous
neuronal network discussed here, this robustness will disappear. In order to show
it clearly, we take σm as 1 × 10−4 in Fig. 2. From this figure, we can obviously
see � increases with the noise intensity σ a for various D. Namely, additive noise
can enhance the mean firing rate of the studied heterogeneous neuronal network,
which is different from the results obtained in [10]. This difference indicates that
the heterogeneities introduced by noise term and uniform distribution have some
inherent distinctness.

5 Conclusions

To be summarized, the effects of additive Gaussian white noise on neuronal fir-
ings in a heterogeneous neuronal network are studied in this article. The obtained
numerical results have shown that there exist some intermediate noise intensities,
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which can make the firing synchronization and the spatiotemporal order of the net-
work become optimal. And the dependence of firing synchronization on additive
Gaussian white noise in heterogeneous networks is different from the ones in homo-
geneous networks. In addition, we find that neuronal networks with different kinds
of heterogeneities may show different level of firing synchronization.
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Stochastic Evolution Model of Neuronal
Oscillator Population Under the Condition
of the Variable Higher Order Coupling

Xiaodan Zhang, Rubin Wang, Zhikang Zhang, Xianfa Jiao, and Jianting Cao

Abstract In the premise of analysis on the dynamic characteristics of the
transmission mechanism among the synapses, this paper modified the coupling
term in the P.A. Tass’s stochastic evolution model of neuronal oscillator population,
introducing the variable higher order coupling term. Then, we performed the numer-
ical simulation on the modified model. The simulation results show that without
the external stimulation, the variable coupling mechanism can induce the transi-
tion between different clustering states of the neuronal oscillator population. And
a full desynchronization state can exist in the middle of the transition between two
different synchronization states induced by the variable coupling mechanism.

Keywords Neuronal oscillator population · Synchronization ·Variable higher order
coupling · Clustering · Full desynchronization

1 Introduction

Since 1989, Gary et al. [1] discovered the stimulation-induced γ synchronous
oscillation (the frequency is 35–70 Hz) on the cat’s primary visual cortex, the syn-
chronous oscillation of the neuronal population attracts more and more attention
in the neuroscience community. Abundant animal experiments indicated that syn-
chronous oscillation may be the important mechanism of the information integration
in the particular cortical area or between different cortical areas [1, 2]. It is approved
by experiments that synchronous oscillation of the nervous activity is closely related
with the cognitive function [3, 4]. In order to quantitatively describe the synchronous
oscillation activity of the neuronal population, based on the fundamental charac-
teristics of the activity of the neuron, the method that simulating the neuron as a
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periodic oscillator, simulating the neuronal oscillator population as the globally cou-
pling neuronal oscillator network, and using the nonlinear vibration theory to study
the synchronous oscillation of the nervous system and neural encoding is always
been considered as a simple and effective method. In the 1960s, Winfree [5] began
to apply his famous phase resetting theory to the study of physiological rhythm.
Kuramoto et al. [6] advanced this theory, and began to use the concept of num-
ber density to describe the dynamical evolution of the phase oscillator population.
Since the presence of the background noise in the brain, Tass [7] brought forward
the stochastic phase resetting dynamical model on a basis of the former studies, and
successfully applied it to the scientific fields such as biology and medicine. But for
the sake of the convenience of the analysis process, the models using in the former
experiments are set to be relatively simple, they only chose the lower order coupling
among the neuronal oscillators to do the study. This paper modified the coupling
term in the P.A. Tass’s stochastic evolution model of neuronal oscillator population,
introducing the variable higher order coupling term and studied the neural encoding
of neuronal oscillator population on the modified model.

2 Stochastic Evolution Model of Neuronal Oscillator Population
Under the Condition of the Variable Higher Order Coupling

Under the condition of stochastic noise, the dynamic equation [7] of the neuronal
oscillator population which consists of N globally coupling neuronal oscillators
takes the form as follow:

ψ̇j = �+ 1

N

N∑

k=1

M(ψj − ψk)+ Fj(t) (1)

In this case, for the sake of simplicity let us assume that all oscillators have the
same eigenfrequency given by �. The oscillators’ mutual interactions are modeled
by a mean-field-coupling, i.e. every oscillator is coupled to all others with equal
strength M(ψj − ψk) which refers to the interaction between the kth oscillator with
the jth oscillator. ψj−ψk is the phase difference between the two. Fj(t) refers to the
random forces. The coupling interaction among the neuronal oscillators takes the
form:

M(ψj − ψk) = −
4∑

m=1

{Km(t) sin[m(ψj − ψk)]+ Cm(t) cos[m(ψj − ψk)]} (2)

For the sake of simplicity the random forces are modeled by Gaussian white
noise which is delta-correlated with zero mean value:

< Fj(t) >= 0 ,< Fj(t)Fk(t′) >= Qδjkδ(t − t′) (3)
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The dynamics of the Langevin Eq. (1) can be investigated by means of the
corresponding Fokker-Planck equation:

∂f ({ψl}, t)

∂t
+

N∑

k=1

∂

∂ψk
{ 1

N

N∑

j=1

[�+M(ψj − ψk)]f ({ψl}, t)}−Q

2

N∑

k=1

∂2f ({ψl}, t)

∂ψ2
k

= 0

(4)
In this case, f ({ψl}, t) refers to probability density, where {ψl} denotes the vector

(ψ1, · · · ,ψN). f ({ψl}, t)dψ1 · · · dψN provides us with the probability of finding the
phases of the oscillators at time t in the intervals ψj · · ·ψj + dψj(j = 1, · · · , N).

Instead of analyzing the phase of every single oscillator, we restrict ourselves to
the question of how many oscillators most probably have phase ψ at time t. In this
way we introduce the number density ñ of the oscillators which have phase ψ

ñ({ψl};ψ) = 1

N

N∑

k=1

δ(ψ − ψk) (5)

The stochastic aspect of the dynamics is taken into account by introducing the
average number density n of the oscillators which have phase ψ according to

n(ψ , t) =< ñ{ψl};ψ >t=
∫ 2π

0
· · ·

∫ 2π

0
ñ({ψl};ψ)f ({ψl}; t)dψ1 · · · dψN (6)

with (4), (5) and (6) one obtains

∂n(ψ , t)

∂t
= − ∂

∂ψ
{n(ψ , t)

∫ 2π

0
M(ψ − ψ ′)n(ψ ′, t)dψ ′}−� ∂

∂ψ
n(ψ , t)+Q

2

∂2n(ψ , t)

∂ψ2

(7)

In order to investigate the partial differential Eq. (7) one has to take into account
two boundary conditions:

1. n(0, t) = n(2π , t) (8)

2.
∫ 2π

0
n(ψ , t)dψ = 1 (9)

For the convenience of observation, we adopt the firing density as p(t) = n(0, t).

3 Analysis of the Numerical Calculation Results

All the simulations in this paper adopt the same frequency � = 2π , i.e. the period
is given as T = 1. In the Fig. 1 the coupling term is given as



230 X. Zhang et al.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time(sec)

fir
in

g 
de

ns
ity

 p

Fig. 1 The evolution of the
firing density under the
condition of first-order
exponential decay coupling
and third-order
constant-coefficient coupling

M(ψj−ψk) = −K1e−t/τ sin(ψj−ψk)−K3 sin[3(ψj−ψk)] (τ = 1, K1=1, K3 = 3)

The initial condition of the average number density is given as n(ψ , 0) = (1/2π )×
(1+ 0.2 sinψ).

From Fig. 1 we can see that in the earlier period of the evolution of the neuronal
oscillator population, the firing density only has one peak in one period, i.e. the neu-
ronal oscillator population is in the one-clustering state in this process. Whereas,
with the decay of the first-order coupling term, the firing density arises three peaks
in one period, i.e. the neuronal oscillator population transits from the one-clustering
state into the three-clustering state. The effect of the third-order constant-coefficient
coupling gradually appears. What is worthy of note is that without the variable
first-order coupling, only the first-order initial condition of the average number
density and the third-order constant-coefficient coupling can not turn the neuronal
oscillation population into the three-cluster synchronization state [8]. So we can
see that although the variable coupling almost decayed to 0 in the later period of
the evolution, it still played an important role in the transition of making the new
synchronization.

From more simulation results we know that, the above transition not only
emerges in the transition from one-cluster to three-cluster, but also emerges in
transitions between other kinds of clustering state.

Figure 2 shows transition of the neuronal oscillator population from three-cluster
state to one-cluster state. In the Fig. 2 the coupling terms is given as

M(ψj−ψk) = −K3e−t/τ sin[3(ψj−ψk)]−K1 sin(ψj−ψk) (τ = 1, K3 = 5 K1 = 5)

The initial condition of the average number density is given as

n(ψ , 0) = 1

2π
× [1+ 0.2 sin(3ψ)]
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Fig. 2 The evolution of the
firing density under the
condition of third-order
exponential decay coupling
and first-order
constant-coefficient coupling

In the evolution process in Fig. 2, the synchronization state induced by the expo-
nential decay higher-order coupling will trail off according to the damping of its
coupling strength. While in this process, the initial condition of average number den-
sity doesn’t contain the same order term with the constant-coefficient coupling term,
so the effect of the constant-coefficient coupling term doesn’t exhibit in the earlier
period of the evolution, but after a special time point the effect of the constant-
coefficient coupling term will specially manifest. This time point is closely related
with the strengths of the exponential decay higher-order coupling term and the
constant-coefficient coupling term and the initial condition of the model.

From Fig. 2 we can draw another conclusion that a full desynchronization state
can exist in the middle of the transition between two different synchronization states
induced by the variable coupling terms. With the bating of the variable coupling
term, the neuronal oscillator population can not retain the stable synchronization
state and turn into a full desynchronization state. In this full desynchronization
period the value of the firing density is unconverted, i.e. the neuronal oscillator
population is totally scattered during this period. Whereas, after a period of full
desynchronization state, the neuronal oscillator population can be turn into a new
synchronization state by the effect of another coupling term which has different
order with the initial condition of the average number density.

4 Conclusion

According to the numerical calculation and result analysis, we can draw the
conclusions as follow:

(1) Without the external stimulation, transition of the clustering state of the neu-
ronal oscillator population induced by variable coupling mechanism not only
emerges in the transitions from the lower-order clustering state to the higher-
order clustering state, but also emerges in the transitions from the higher-order
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clustering state to the lower-order clustering state. Only if the neuronal oscil-
lator population has the appropriate variable coupling structure, the neuronal
oscillator population can turn from any clustering state into any another
clustering state.

(2) In the neuronal oscillation population which contains the variable coupling,
a full desynchronization state can exist in the middle of the transition between
two different synchronization states induced by the variable coupling terms.
Whereas, after a period of full desynchronization state, the neuronal oscillator
population still can be turn into a new synchronization state by the effect of
another coupling term which has different order with the initial condition of the
average number density.
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Qualitative Analysis in Locally Coupled Neural
Oscillator Network

Yong Meng, Yuanhua Qiao, Jun Miao, Lijuan Duan, and Faming Fang

Abstract The paper investigates a locally coupled neural oscillator autonomous
system qualitatively. To obtain analytical results, we choose an approximation
method and obtain the set of parameter values for which an asymptotically stable
limit cycle exists, and then give sufficient conditions on the coupling parameters
which can guarantee asymptotically global synchronization of oscillators given
the same external input. The above results are potentially useful to analytical
and numerical work on the binding problem in perceptual grouping and pattern
segmentation.

Keywords Neural network · Limit cycle · Synchronization · Dynamic system

1 Introduction

A fundamental aspect of perception is to bind spatially separate sensory features
to form coherent objects. There is also wide experiment evidence that perception
of a single object (especially in the visual scene) involves distributed in a highly
fragmented over a large spatial region. The problem thus arise of how the constituent
features are correctly integrated together to represent a single object.

Some authors [1–3] assume that these features of an object are grouped based
on the temporal correlation of neural activities. Thus neurons that fire in synchro-
nization would signal features of the same object, and groups desynchronized from
each other represent different objects. Experimental observations of the visual cor-
tex of animals show that synchronization indeed exists in spatially remote columns
and phase-locking can also occur between the striate cortex and extratriate cortex,
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between the two striate cortices of the two brain hemisphere, and across the senso-
rimotor cortex. These findings have concentrated the attention of many researchers
on the use of neural oscillators such as Wilson–Cowan oscillators and so on. In
this scheme, neural oscillators that are in phase would represent a single object
(binding), while neural groups with no phase lock would represent different objects.
Though there are some analysis results [3–7] on Wilson–Cowan neural network,
the results on autonomous Wilson–Cowan network system are still less. To make
use of oscillation in phase, it is necessary to study the autonomous Wilson–Cowan
network system. In this paper, we use a neural network based on locally coupled
Wilson–Cowan oscillators to analyse the binding problem. To solve the binding
problem, it is necessary to determine the conditions under which neural oscillators
would exhibit periodical behavior and synchronize asymptotically.

2 Mathematical Model

In the model each oscillator is described by means of simplified Wilson–Cowan
equations. Such a model consists of two nonlinear ordinary differential equations
representing the interactions between two populations of neurons that are distin-
guished by the fact that their synapses are either excitatory or inhibitory. Thus, each
oscillator consists of a feedback loop between an excitatory unit xi and inhibitory
unit yi that obey the equations:

dxi
dt = −r1xi + r1H(axi − cyi + Ii − φx)+ α[γi−1,i(xi−1 − xi)+ γi+1,i(xi+1 − xi)]

dyi
dt = −r2yi + r2H(bxi − dyi − φy)+ β[γi−1,i(yi−1 − yi)+ γi+1,i(yi+1 − yi)]

(1)

Both xi and yi variables are interpreted as the proportion of active excitatory and
inhibitory neurons respectively, which are supposed to be continuous variables and
their values may code the information processed by these populations. Especially,
the state xi = 0 and yi = 0 represents a background activity. The parameters have
the following meanings: a is the strength of the self-excitatory connection, d is the
strength of the self-inhibitory connection, b is the strength of the coupling from x
to y, c is the strength of the coupling from y to x. Both φx and φy are thresholds,
r1 and r2 modify the rate of change of the x and y unit respectively. Figure 1 shows
the connections for single oscillator and the structure of an open chain of coupled
oscillators. All these parameters have nonnegative values, Ii is external input to the
oscillator in position i which corresponds to a pixel in object. H(·) is a sigmoid
activation function defined as: H(z) = 1/(1 + e−z/T ), T is a parameter that sets
the central slope of the sigmoid relationship, α and β represent the strength of the
connection between neurons.
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Fig. 1 A single oscillator
and an open chain of coupled
oscillators

3 Model analysis

3.1 Oscillating Conditions for Single Oscillator

Consider the following system of a single oscillator:

τ1
dxi
dt = −xi + H(axi − cyi + Ii − φx)

τ2
dyi
dt = −yi + H(bxi − dyi − φy)

(2)

where τ1 = 1/r1, τ2 = 1/r2. In order to study the equation of the model, we choose
the following piece-wise linear function to approximate the sigmoid function in (2):

G(z) =
⎧
⎨

⎩

0, z < −2T
z

4T + 1
2 , −2T ≤ z ≤ 2T

1, z > 2T
(3)

Thus, the system (2) may be described as:

τ1ẋi = −xi + η
τ2ẏi = −yi + γ (4)

where η, γ ∈
{

0, 1, axi− cyi+ Ii+ 2T −φx
4T , bxi− dyi+ 2T −φy

4T

}
.

In order to solve the binding problem, we aim to find the conditions under which
the oscillators keep silent when Ii equal to zero and the system will exist an asymp-
totic stable limit cycle when Ii adopts proper value. Through analysis, it is easy to
find the necessary conditions for the above result.

(1)φy + 2T<b; (2)Ii−φx−2T>0; (3)a− φx + 2T + Ii < c; (4)d + φy − 2T > 0;

(5)φx − 2T > 0; (6)(a− 4T)r1 > (d + 4T)r2; (7)bc+ (4T − a)(4T + d) > 0;

(8) |ax∗ − cy∗ + Ii − φx| ≤ 2T; (9)
∣∣bx∗ − dy∗ − φy

∣∣ ≤ 2T
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Fig. 2 Two phase diagrams (an asymptotically stable zero solution and an asymptotically stable
limit cycle). The parameters are: a = 1, b = 1, c = 2, d = 0.5, Ii = 0, Ii = 0.65 and T =
0.025, r1 = r2 = 1, φx = 0.2,φy = 0.15

where

x∗ = d + 4T

b
y∗ + φy − 2T

b
; y∗ = b(φx − Ii − 2T)− (a− 4T)(φy − 2T)

(a− 4T)(d + 4T)− bc
.

On the base of the obtained conditions, it is easy to verify the fact that the above
conditions satisfy Poincare–Bendixon Theorem. So an asymptotic stable limit cycle
must exist. If you run the MatLab simulation, you will see that an asymptotic stable
limit cycle does indeed exist and it is plotted in Fig. 2.

3.2 Synchronization of Locally Coupled Wilson–Cowan Oscillators

The boundary conditions of the coupled system (1) are as follows:

x0 = x1, xN+1 = xN ; y0 = y1 , yN+1 = yN

rij =
{

1, if
∣∣Ii − Ij

∣∣ < φ
0, otherwise

where φ is a threshold. Based on the above restrictions, we will give the synchro-
nization conditions of the coupled system in (1).

Theorem 1 Consider an open chain coupled oscillators receiving the same input
Ii = I, i = 1, 2, . . .N in (1), the synchronization state is asymptotically stable if the
following conditions hold: 0 < r2 ≤ r1, β ≤ α,

α >
(2a+ c)r1 + (b− 8T)r2

16T(1− cos πN )
, β >

(2a+ c)r1 + (b− 8T)r2

16T
+ α cos

π

N
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4 Conclusions

The paper presented a qualitative analysis on locally coupled autonomous Wilson–
Cowan neural network, and gave the conditions under which the oscillator can
oscillate and synchronize asymptotically. Note they are only sufficient conditions to
achieve oscillation and synchronization. Some authors [5, 7, 8, 9] give some analysis
results on chaotic synchronization in Wilson–Cowan neural network and put these
into image segmentation. And some results [10] lack of the generality and effective-
ness in application more or less. In contrast to them, the obtained results in the paper
are more convenient to solve the binding problem. In the future research, the authors
will apply the proposed model to image segmentation and test its performance.
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Determination of the Number Ratio Between
Excitation Neurons and Inhibitory Neurons
in Activities of Neural Networks

Yan Liu, Rubin Wang, Zhikang Zhang, Xianfa Jiao, and Jianting Cao

Abstract In this paper we found parameter regions to exhibit those different
population states, called dividing zones including flat fading zone, rapid fading zone
and critical zone. Based on the dividing zones we can choose the number ratio
between inhibitory neurons and excitatory neurons and establish the couplings in
a neural network. Our researches also show that the balance value, enabling the fir-
ing density to reach the dynamic balance, does not depend on initial conditions. In
additions, the critical value is only related to the number ratio under the same initial
conditions.

Keywords Inhibitory neural population · Excitatory neural population · Average
number density · Critical state

1 Introduction

Since the 1960s, the theory of phase resetting was applied to the studying of
physiological rhythm by Winfree [1], subsequently the theory was extended to study
the synergistic effect of brain [2]. The theory was triumphantly used to neurologic
disease such as Parkinson’s disease in Medicine and Biology [3]. Furthermore,
recent years the theory of the phase dynamics has been successfully used for
studying neural networks and cognitive neurodynamics [4, 5]. The applications of
stochastic phase dynamics in cognitive neurodynamics mainly emphasize on the
studying of collective activities in neural oscillator population [6–8]. Furthermore,
the studies on neural oscillator population lean to the studying of excitatory neural
population. In our former studies, we proposed a stochastic nonlinear phase dynamic
model in the presence of inhibitory neurons [9]. In this paper, we further analyze the
stability on phase neural coding through computer stimulation.
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2 Dynamic Model in Spontaneous Behavior

The phase of every oscillator obeys the following phase dynamic equation:

•
ψj = �1 + 1

N

[
N1∑

k=1
M1

(
ψj − ψk

)+
N∑

k=N1+1
M21

(
ψj − ψk

)
]
+ Fj (t) j = 1...N1

•
ψj = �2 + 1

N

[
N1∑

k=1
M12

(
ψj − ψk

)+
N∑

k=N1+1
M2

(
ψj − ψk

)
]
+ Fj (t) j = N1 + 1...N

(1)

The dynamic model in spontaneous behavior is given by

∂n
∂t = − ∂

∂θ1

{
n1 (θ1, t)

2π∫

0
dψ

′ [
M1

(
θ1 − ψ

′)
n1

(
ψ
′
, t
)
+M21

(
θ1 − ψ

′)
n2

(
ψ
′
, t
)]}

− ∂
∂θ2

{
n2 (θ2, t)

2π∫

0
dψ ,

[
M12

(
θ2 − ψ

′)
n1

(
ψ
′
, t
)
+M2

(
θ2 − ψ

′)
n2

(
ψ
′
, t
)]}

−
(
�1

∂
∂θ1

n1 (θ1, t) + �2
∂
∂θ2

n2 (θ2, t)
)
+ Q

2

(
∂2n1(θ1,t)
∂θ2

1
+ ∂2n2(θ2,t)

∂θ2
2

)

(2)

Where n1(θ1, t) and n2(θ2, t) represent the average number of excitatory neural
oscillator population and inhibitory neural oscillator population respectively. �1
and �2 are the eigenfrequencies of excitatory population and inhibitory population
respectively. Q is the constant noise amplitude. The mutual coupling interactions
are given by,

M1
(
ψj − ψk

) = −K1 sin
(
ψj − ψk

)
M12

(
ψj − ψk

) = −K11 sin
(
ψj − ψk

)

M2
(
ψj − ψk

) = −L1 sin
(
ψj − ψk

)
M21

(
ψj − ψk

) = −L11 sin
(
ψj − ψk

) (3)

Where, L1, L11 are the coefficients of inhibitory coupling. K1, K11 are the coeffi-
cients of excitatory coupling. K1 > 0, K11 > 0, L1 < 0, L11 < 0.

3 Analysis on Stability

3.1 Critical State

Figure 1 display the evolution processing of average number density of excitatory
neural oscillator population. We can see that With increasing the coupling coeffi-
cients of inhibitory neural oscillators, the average number density shows a uptrend
firstly, and then goes through a critical state, finally will be in downtrend. When
coupling intensity of inhibitory population increases to a appropriate value, average
number density will tend to a fixed value. It describes a critical case in Fig. 1b, when
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Fig. 1 Evolution of average number density with time

decreasing the inhibitory coupling, the firing density will rise and arrive dynamic
balance (Fig. 1a), and when increasing the inhibitory coupling, the firing density
will decline and reach to dynamic balance (Fig. 1c) or tend to a fixed value (Fig. 1d).
Here, this state of Fig. 1b is defined as critical state. And the balance value under
this state is named as critical value.

In this paper, the initial conditions are chose as sinusoidal form which was
given by

nk (ψ , 0) = η∗ 1

2π
∗(1+ a∗ sin (ψ)) k = 1,2

0 < |a| ≤ 1

Where η is a normalization factor, a is a parameter and holds. For a = 0, the firing
density is in perfectly desynchronized state. Here, we name the critical line corre-
sponding to a = 0 as totally inhibited critical line. In this paper zero was replaced
by a small value 0.00001. Firing densities are approximately in uniform distribution
when a = 0.00001.

All firing densities trend to uniform distribution beyond the totally inhibited crit-
ical line (the zoneIII) (Fig. 2). And in the zoneI the firing density rises firstly and
goes into balance state. There may be the case that the firing density declines firstly
and goes into balance state in the zoneII.

Figure 3 clearly shows that the size of zoneI increases with increasing excitatory
coupling, but the size of zoneII is changeless. And, we can speculate that when the
excitatory coupling is less than a certain value, the size of zoneI maybe reduce to
zero. Because, there also is a critical value in the absence of inhibitory neurons [5].



242 Y. Liu et al.

Fig. 2 Zone map when
K1 = 3

Fig. 3 Critical states in
different excitatory couplings

Fig. 4 Relationship between
critical value and number
ratio

In Fig. 4, there is only one set of curves. And this fact also conform that critical
values are the same under the same initial condition. It can be seen that critical
values are only related to number ratio under the same initial condition.

The equations of three lines are given by, “o” line: y = −0.1590∗x+ 0.1591, “∗”
line: y = −0.3750∗x+0.3837, “+” line: y = −0.2496∗x+0.2502. If we neglect the
errors, the three lines are approximately parallel. Thus the critical value and number
ratio meet certain linear relationship.
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Fig. 5 Firing density (a) a = 1, (b) a = 0.05

Fig. 6 Change of balance
values in subarea
N2/N = 0.2, K1 = 3

3.2 Balance Value Changes in Subarea

We can see that the critical state is related to initial conditions. We address a question
of whether balance values in subarea are related to initial conditions or not.

Comparison with Fig. 5a, b, although initial conditions are different, balance
values are the same. This fact shows initial conditions don’t influence balance value.

The plane in Fig. 6 is divided into two parts by the dashed line. The above part
corresponds to zoneI in Fig. 2. The below part correspond to zoneII and zoneIII. It
can be seen that the change of balance values located in above part is flatter. But
in below part balance values change rapidly. So corresponding to balance values,
zoneI is named as flat fading zone. And zoneII is considered as rapid fading zone.

4 Conclusion

In this paper, we further analyze the stability on phase neural coding. And we study
different states which are divided into three zones. The study on the dividing zones
is considered as the reference basis of choosing the number ratio in neural network.

The results also show initial conditions don’t influence balance values of firing
density. And the values in critical state meet a certain linear relationship.
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Transition Mechanisms Between Periodic
and Chaotic Bursting Neurons

Feng Zhang, Wei Zhang, Qishao Lu, and Jianzhong Su

Abstract In this chapter, we analyze the transition mechanisms between periodic
and chaotic behavior in a synaptically coupled system, which consists of burst-
ing neurons (Hindmarsh-Rose model). We observe that chaotic bursting neurons
can turn to periodic neurons or vice versa, by changes in coupling strength. The
Lyaponov exponent calculations show the fine structure of a pathway to chaotic
behavior when the synaptic coupling of neurons gets weaken in strength. Further
we use Poincaré maps to gain more insights of the transitions.

Keywords Bifurcation · Chaos · Nonliear · Bursting neurons

1 Introduction

Neurons often exhibit bursting oscillations, as a mechanism to modulate and set
pace for other brain functionalities. These bursting oscillations are distinctly char-
acterized by a silent phase of slowly evolving steady states and an active phase of
rapid firings. Based upon different bifurcation structures, one can classify bursting
oscillations into several categories [1]. The mathematical analysis of bursting was
studied by many authors, for example Rinzel [1], Terman [2] and Pedersen [3] more
recently.

To study chaotic properties in a neuronal network, synaptically coupled bursting
has also been investigated recently by several authors [4–6]. Abarbanel et al [4] has
noticed the chaotic property can be regularized by coupling and that fact was further
confirmed by calculating Lyaponov exponents in [4]. In an earlier paper, Su et al. [5]
gave a rigorous proof that bursting solutions can be synchronized and regularized
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to become periodic when the coupling strength is large enough to alter bifurcation
diagram topologically.

In this paper, we start with two identical square bursting neurons that exhibit
chaotic behavior, using Hindmarsh-Rose model as a example. We show that as the
coupling strength increases, the chaotic behavior will be gradually replaced by syn-
chronized regular bursting solutions. The mechanism is due to topological changes
of underlying bifurcations. The bifurcation analysis and numerical evidence are
in Section 2. In Section 3, we present some preliminary analysis on the transi-
tion through study of flow-induced Poincaré Maps, which provide fine detail of the
dynamics structure.

2 Dynamics Behavior of Bursting Neurons

We study first the numerical solutions of coupled HR model:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1
′ = z1 + φ(x1)− y1 + I − α(x1 + 1.4)H(x2 + 0.85),

z1
′ = ψ(x1)− z1,

y1
′ = −εy1 + εS(x1 − c),

x2
′ = z2 + φ(x2)− y2 + I − α(x2 + 1.4)H(x1 + 0.85),

z2
′ = ψ(x2)− z2,

y2
′ = −εy2 + εS(x2 − c).

(1)

where I = 3.281, ε = 0.0021, c = −1.6, S = 4.0,α = 0.2, φ(s) = 3.0s2 − s3,
ψ(s) = 1.0 − 5.0s2, the initial values are set at x1 = 0, z1 = 0, y1 = −2 and
x2 = 0, z2 = 0.2, y2 = −3.02. The parameter α > 0 represents the strength of the
coupling, and we restrict our discussion to excitatory coupling. The function H(·)
is the Heaviside function used by Somers et al. [7] to model the synapse action.
Although the discontinuous Heaviside function is used, systems with smoothed ver-
sion of H yield to similar results. In Eq. (1), when x1 and x2 are below −0.85, two
neurons are not effected by synapses at all.

The sub-system containing the two equations of x′i and z′i are called fast system
(FS). The equations on y′i are called slow equations. Through numerical verification
via XPP [8], we observe that the system has the following property(Fig. 1a): the set
of steady states of (FS) consists of an S-shaped curve of y in (x, y)-plan denoted by
S. Pλ and Pρ are fold bifurcation points. We denote the upper, middle and lower
branches of S by U, M, L. Two homoclinic points on middle branch are at y = yh

and y = yH .
When the coupling strength α is small, two neurons have chaotic oscillations.

With parameter α increasing, we find that the solutions will quickly synchronize
into a bursting solution that is regular and attracting, as shown in Fig. 1b.

The numerical calculation of bifurcations of fast system of Eq. (1) indicated that
when α > α−0 , the family of periodic solutions P1 and P2 will be detached from the
middle branch and will merge into a continuous branch Pα . The periodic family Pα
will start from one Hopf bifurcation and terminate at another Hopf-bifurcation at
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Fig. 1 (a) Illustration of bifurcation and phase portrait of a chaotic neuron. The dynamics near
homoclinic points on the middle branch is the main reason for chaotic behavior. (b) Two neurons
solutions in Eq. (1) quickly converge to a periodic regular bursting solution when the coupling is
large enough to alter the bifurcation

upper branch at y = yb and at y = yB. This finding was summerized in a rigorously
proven result in [5].

3 Poincaré Maps

The remaining open question is the transition process from periodic bursting to
chaotic bursting. This is the main focus for this current paper. We will address the
issue through study of the flow-induced Poincaré maps and understand its route to
chaos.

This chaotic square bursting was mathematically studied by Terman [2]. The
chaotic trajectory are characterized by varying spike number (winding number) dur-
ing each burst, for complete understanding of its Smale horses how formation, we
refer the readers to two papers [2, 3].

From first Lyapunov exponent bifurcation diagram of Eq. (1) (shown in Fig. 2a),
we obtain the transition from chaos to regular as α increases. Once the parameter
α > α0, two periodic branches connect to become one originated from two Hopf
bifurcation points, chaotic character vanishes completely.

We next define a rectangular neighborhood Bh = {(x, z, y) : |x| ≤ ε, |z| ≤ ε, y1 ≤
y ≤ y2}. where we take y1 = yh − Kε and y2 = yH + Kε and covers of the
middle branch {(0, 0, y), y1 ≤ y ≤ y2} between the homoclinic points between two
homoclinic orbits.

We define a Poincaré section as

�0 = �BK{(x, z, y) ∈ Bh : x = ε}.
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(a) (b)

Fig. 2 (a) The first lyapunov exponent bifurcation diagrem of the full system (Eq. 1). (b) The
Poincaré sectionΣ0 is divided into regions of different winding numbers. Any two bursting trajec-
tories will cross Σ0 in such a small distance that they cannot be located in regions with a winding
number difference lager than 2

Through analysis of both fast and slow manifold, we obtain the Poincaré map :

p : �0 −→ �0
p(ε, z, y) = (ε, D, y+ mε + εln(ε/z)/λ2).

(2)

where D = aε(z/ε)λ1/λ2 − b(y+ εln(ε/z)/λ2 − y1)(y2 − y− εln(ε/z)/λ2).
The family of middle branch with slow variable y as parameter, which have one

positive eigenvalue and one negative eigenvalue −λ1 and λ2. Using the Poincaré
map we constructed, we now summarize our theoretical finding in our key theorem
of this paper. We show the narrowing of the gap between two homoclinic points
yh and yH will force the vanishing of Smale Horseshoe by restricting the possible
winding number (or spike number) during each burst episode. Our results as well as
a complete proof are omitted here and will be submitted in a separate paper.

Theorem 1 We assume in equation (1) all parameters are fixed except for ε and α.
There exists ε0 > 0 such that the fast-slow analysis becomes valid for the system
if ε < ε0. There exist δ > 0 such that When yH − yh < δ, any two trajectories
entering Bh will have the difference of winding numbers ≤ 2, i.e., there will be no
Smale Horseshoe.

4 Conclusions and Discussion

We are interested in dynamic patterns that arise during the transaction from unsyn-
chronized chaotic actions of neurons to ultimately synchronized regular neuronal
activities as we increase the strength of synaptic coupling. We observe the dynamics
near two homoclinic points played important roles at the transition.
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When the slow nullcline intersects the middle branch between two homoclinic
points [6], there is a different mechanism to generate chaos. We have also studied
the mechanism of the transitions using a similar method.
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Dynamical Characteristics
of the Fractional-Order FitzHugh-Nagumo
Model Neuron

Yong Liu, Yong Xie, Yanmei Kang, Ning Tan, Jun Jiang, and Jian-Xue Xu

Abstract Through the research on the fractional-order FitzHugh-Nagumo model,
it is found that the Hopf bifurcation point in such a model, where the state of the
model neuron changes from the quiescence into periodic spiking, is different from
that of the corresponding integer-order model when the externally applied current
is considered to be the bifurcation parameter. Moreover, we demonstrate that the
range of periodic spiking of the fractional-order model neuron is clearly smaller than
that of the corresponding integer-order model neuron, that is, the range of periodic
spiking of the former is just embedded in that of the latter. In addition, we show
that the firing frequency of the fractional-order model neuron is evidently larger
than that of the integer-order counterpart. The Adomian decomposition method is
used to calculate fractional-order differential equations numerically due to its rapid
convergence and high accuracy.

Keywords Fractional-order · Hopf bifurcation · FitzHugh-Nagumo model · Firing
frequency

1 Introduction

In the 1950s Hodgkin and Huxley did their landmark work in electrophysiology
and proposed the famous Hodgkin-Huxley (HH) model, which is the first math-
ematical model that describes how action potentials in neurons are initiated and
propagated [1]. The HH model makes us possible to study the neuronal behavior
from the viewpoint of dynamical systems theory. Unexpectedly, the HH theory and
its model can not describe the rapid initiation and variable onset potential in cortical
neurons [2]. The HH model, therefore, is not perfect. Actually it is demonstrated
in [3] that the electrical properties of nerve cell membranes and the propagation of
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electrical signals are well characterized by differential equations of fractional order.
Brainstem vestibule oculomotor neurons, for example, exhibit the fractional-order
dynamics, and the physiological basis of fractional differentiation is analyzed in
detail [4]. Besides, it was reported most recently that neocortical pyramidal neu-
rons show fractional differentiation in Nature Neuroscience [5], where the author
finds that single rat neocortical pyramidal neurons adapt with a time scale that
depends on the time scale of changes in stimulus statistics. This multiple time scale
adaptation is consistent with fractional differentiation, such that the neuron’s firing
rate is a fractional derivative of slowly varying stimulus parameters. Therefore it
seems that fractional-order differential equations are more suitable for description
of the electrical properties of certain nerve cell membranes. Now the research on
the dynamical behavior of neurons modeled by integer-order differential equations
can be found everywhere, to the best of our knowledge, however, the corresponding
dynamical characteristics of fractional-order model neurons are not discussed yet.
Consequently, we devote ourselves to exploring the dynamical characteristics of the
fractional-order FitzHugh-Nagumo (FHN) neuron in this paper.

This paper is organized as follows. Section 2 is dedicated to describing the bifur-
cation behavior of the Fractional-Order FHN model neuron. In Section 3 we show
that the firing frequency of the fractional-order model neuron is larger than that of
the integer-order counterpart. Conclusions are drawn in Section 4.

2 Bifurcation Behavior of the Fractional-Order Model Neuron

The fractional-order FHN model reads as follows:
⎧
⎨

⎩
Dq∗x = x− x3

3 − y+ I,

Dq∗y = r(x+ a− by).
1 (1)

Here x denotes the membranes voltage and the recovery variable y represents acti-
vation of an outward current. Parameter I is the injected current. Dq∗ is a fractional
derivative operator in the sense of the Caputo definition, where q is the order of the
fractional derivative. a, b and r are parameters. All of the variables in the model are
dimensionless.

For q = 1, the model degenerates into the classical FHN model, which is
investigated in detail in [6]. When r = 1

/
13, a = 0.7 and b = 0.8, the neu-

ron shows type-II excitability if the injected current I is regarded as the control
parameter. Specifically, the neuron undergoes Subcritical Adronov-Hopf bifurca-
tion at I = 0.3297 where the state of the neuron changes from quiescence into
periodic spiking. At I = 1.4203 the neuron goes through Subcritical Adronov-Hopf
bifurcation again, and the state of the neuron changes from periodic spiking into
quiescence.

Let (x∗, y∗) be the equilibrium point of System (1), then the linear topological
equivalence of System (1) in the sufficient small neighborhood of (x∗, y∗) has the
following form:
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{
Dq∗x = (1− x∗2)x− y,

Dq∗y = rx− rby.
(2)

The eigenvalues of the Jacobian matrix are:

λ1,2 = 1− x∗2 − br ±√
(x∗2 + br − 1)2 − 4r[1− b(1− x∗2)]

2
. (3)

We can obtain the condition of stability of the equilibrium point in System (1)
from [7]:

1. If |arg(λ)| > qπ
2 , then equilibrium point (x∗, y∗) is stable.

2. If |arg(λ)| < qπ
2 , then equilibrium point (x∗, y∗) is unstable.

Under a set of parameter values, namely, r = 1
/

13, a = 0.7, b = 0.8 and I =
0.37, the equilibrium point of System (1) is (−0.9339,−0.2924). The corresponding
eigenvalues of the linearization system (2) are λ1,2 = 0.0331 ± 0.2607i in which∣∣arg(λ1,2)

∣∣ = 1.4445 in radian. Let
∣∣arg(λ1,2)

∣∣ = qcrπ
2 , then we can get the critical

fractional order qcr = 0.9196. If q > qcr, the equilibrium point (−0.9339,−0.2924)
is unstable, and the neuron is under the state of periodic spiking. If q < qcr, the
equilibrium point is stable, and the state of the neuron is quiescent. Based on the
stability criteria mentioned above, we can conclude that:

1. For q = 1, the equilibrium (−0.9339,−0.2924) is unstable because of q > qcr =
0.9196, and thus the neuron exhibits periodic spiking.

2. For q = 0.5, since q < qcr = 0.9196, the equilibrium (−0.9339, −0.2924) is
stable, and the neuron is quiescent.

Thus it can be seen that under the set of parameter values of r = 1/13, a = 0.7,
b = 0.8 and I = 0.37, the integer-order FHN model neuron exhibits periodic spik-
ing while the fractional-order counterpart of order 0.5 is quiescent. Therefore the
strength of the injected current making the integer-order model neuron begin to fire
periodically is smaller than that making the fractional-order model neuron begin to
fire periodically.

In the same way, we can check that the injected current makes the model neuron
terminate periodic spiking for the two cases of the integer-order and the fractional-
order, respectively, and find that the injected current in the integer-order model
neuron is larger than the corresponding current in the fractional-order counterpart.

To demonstrate the relationship of the range of the injected current, where the
model neuron exhibits periodic spiking, between the two cases of the integer-order
and the fractional-order, we calculate their size numerically. Let xmax and xmin be the
maximum and the minimum of the membrane voltage respectively when the model
neuron displays periodic spiking. Figure 1 shows the curves of xmax − xmin as the
strength of injected current changes from 0 to 1.5. The solid line denotes the curve
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Fig. 1 Curve of xmax − xmin as the strength of injected current changes from 0 to 1.5

of the integer-order model neuron, and the dotted line is the curve of the fractional-
order counterpart. We can find that the range of the strength of the injected current
making the model neuron exhibit periodic spiking in the case of the fractional-order
is clearly narrower than that in the case of the integer-order from the Fig. 1. In
other words, the range of the injected current of the fractional-order model neuron
is embedded in the corresponding range of the integer-order model neuron. This
surprising phenomenon can be explained by the stability of the equilibrium point.
As we know, the state of the FHN model neuron is determined by the stability of
the equilibrium point, namely, if the equilibrium is stable, then the neuron is qui-
escent; otherwise, the neuron exhibits periodic spiking. Furthermore, we can learn
from [7] that the region of stability of the equilibrium point is extended for linear
fractional-order systems, and is evidently wider than the corresponding region for
linear integer-order systems. As a result, the region of instability becomes narrow,
which causes the range of the strength of the injected current with periodic spiking
in the fractional-order model neuron becomes smaller than that in the corresponding
integer-order model neuron.

3 Firing Frequency of the Fractional-Order Model Neuron

Although the range of the strength of the injected current in the fractional-order
model neuron, which can make the model neuron exhibit periodic spiking, is smaller
than that in the corresponding integer-order model neuron, the firing frequency of
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Fig. 2 The curve of the firing
frequency versus the
fractional order of the model
neuron

the fractional-order model neuron is clearly higher than that of the integer-order
counterpart for a certain injected current. Under a set of parameter values of r =
1/13, a = 0.7, b = 0.8 and I = 0.6, the curve of the firing frequency f versus
the fractional order q shows adequately the properties of the firing frequency of the
model neuron, as shown in Fig. 2.

4 Conclusion

As a generalization of the integer-order calculus, the fractional calculus provides
a more powerful tool for the science and engineering. The fractional calculus has
the potential to accomplish what integer-order calculus can not do. It is widely
considered that a good many of the great future developments come from the appli-
cation calculus in different fields. In this study, the bifurcation behavior of the
fractional-order model neuron has been investigated. It is found that the range of
the strength of the injected current that makes the fractional-order FHN model
neuron fire periodically is embedded into the corresponding range where the integer-
order counterpart exhibits periodic spiking. Furthermore, we have studied the firing
frequency of the fractional-order model neuron. Additionally, the Adomian decom-
position method has been used to calculate fractional-order differential equations
numerically because of its rapid convergence and high accuracy.
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Dynamics Analysis of the Hyperpolarized Model
for Bursting Calcium Oscillations
in Non-excitable Cells

Pan Meng and Qishao Lu

Abstract In this paper the hyperpolarized model for bursting calcium oscillations
in non-excitable cells is considered. Compared with the model without hyperpolar-
izing current, different bursting types of oscillation are presented. Fast-slow analysis
is used to study the mechanism of oscillations. The results are instructive for fur-
ther understanding the dynamical behavior and mechanism of complete intracellular
and intercellular calcium signaling and information processing in biological nervous
systems.

Keywords Non-excitable cell · Calcium oscillation · Bursting

Bursting is a relatively slow rhythmic alternation between an active phase of
rapid spiking and a quiescent phase without spiking. It occurs in many nerve and
endocrine cells, including thalamic neurons, hypothalamic cells, pyramidal neurons
etc. Recently, bursting oscillations were also observed during the intra-cellular cal-
cium signaling processing. In excitable and non-excitable cells, a significant part of
signal transduction, controlling the complex behavior of biological systems, is per-
formed by the oscillatory changing of free cytosolic calcium oscillation. Borghans
et al. proposed calcium-induced calcium release based on model focusing on the
effect of cytosolic calcium on the degradation of inositol trisphosphate [1]. There
are three variables in the model, that is, the free calcium concentration in the
cytosol (Ccacyt ), the free calcium concentration in the endoplasmic reticulum (Ccaer ),
and the inositol trisphosphate concentration in the cytosol (CIP3 ). A few types of
bursting calcium oscillations have been reported in this model, including simple
periodic oscillation, quasi-periodic oscillation, point-cycle bursting of subHopf–
subHopf type, and pint-point bursting of subHopf–subHopf type [2]. Now we add
a hyperpolarizinig current I in this model and see how the dynamical behavior
changes.
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Consider the following hyperpolarized-model:

dccacyt

dt
= Jin + Jleak − Jpump + Jer − Jout + I, (1)

dCIP3

dt
= r · kp − JD − JC, (2)

dccaer

dt
= Jpump − Jleak − Jer (3)

where

Jin = kin1 · r + kin2,

Jleak = r · kleak · C4
IP3

C4
IP3
+K4

a
· C2

caer
C2

caer+K2
y
· C4

cacyt

C4
cacyt+K4

z
,

Jpump = kpump · C2
cacyt

C2
cacyt+K2

z
,

Jout = kout · Ccacyt , Jer = kf · Ccaer , JA = r · kp,

JD = kd · C2
IP3

C2
IP3
+K2

p

C4
cacyt

C4
cacyt+K4

z
,

JC = ε · CIP3 ·
We choose I = −0.3, and other parameters used here can be found in [2]. In what
follows, we study this model by hanging the parameter r, similar to [3]. Eqs. (1)–(3)
is a system with both slow and fast scales [4]. The fast subsystem is composed of
(1) and (2), in which the slow variable Ccaer

is considered as a control parameter.
The bifurcation diagrams of the fast subsystem and the phase trajectories of the
whole system for different values of r are plotted in Fig. 1. Fast-slow dynamics
analysis is used to study the generation mechanism of bursting oscillations of the
model.

When r = 1.08, there is a quasi-periodic bursting due to a supercritical Neimark–
Sacker (NS) bifurcation in the whole system, which is similar to that of the original
model at r = 0.99, but there is a difference between them. In the former case, the
torus does not surround the subHopf bifurcation point (see Fig. 1b), but the latter
case does (see Fig. 1d).

When r = 1.081, there is a point-cycle bursting. Its main character is that the
active and silent phases of bursting depend on a stable steady state (that is, a stable
focus point) and a stable limit cycle. From Fig. 2b it is seen that the trajectory of the
whole system only surround the fold limit cycles bifurcation point and there are five
spikes per burst.

When r = 1.2, there is a point–point bursting of fold-subHopf type. The main
character of point–point bursting is that the silent as well as the active phases of
bursting is associated to a steady state in the fast subsystem. From Fig. 3b it is seen
that the silent phase disappears due to the fold bifurcation, and the active phase
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Fig. 1 a Time series of the hyperpolarized-model with r = 1.08, b the bifurcation diagram of
the fast subsystem of the hyperpolarized-model ,where H refers to the subHopf bifurcation point,
c time series of the original model with r = 0.99 ([3]), d the bifurcation diagram of the fast-
subsystem of the original model

Fig. 2 a Time series of the hyperpolarized-model with r = 1.081, b the bifurcation diagram of
the fast subsystem

ends at the subcritical Hopf bifurcation. Moreover, the slow passage effect is not so
apparent as that in the original model.

When r = 1.3, there is a point-point bursting of subHopf–subHopf type in
the hyperpolarized model. This phenomenon is similar to the original model when
r = 1.13. As comparison, the saddle homoclinic bifurcation of the fast subsystem is
far away from the fold bifurcation points in the hyperpolarized model (see Fig. 4b),
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Fig. 3 a Time series of the hyperpolarized-model with r = 1.2, b the bifurcation diagram of the
fast subsystem

Fig. 4 a Time series of the hyperpolarized-model with r = 1.3, b the bifurcation diagrams of the
fast subsystem of the hyperpolarized-model , where F is the fold bifurcation, c time series of the
original model with r = 1.13 ([3]), d the bifurcation diagrams of the fast-subsystem of the original
model

but the saddle homoclinic bifurcation arises when the fold bifurcation collides with
the unstable periodic branch originating from the subHopf bifurcation in the origin
model (see Fig. 4d). Another difference is the slow passage effect is also not so
apparent as that in the original model.
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Effect of Temperature on Synchronization
Phenomena in Coupled Spiking Neuron Models

Yasuomi D. Sato

Abstract Thermal effects on synchronization in a pair system of the Morris-Lecar
type with excitatory synaptic couplings is studied. In the system, two parameters of
temperature on ionic mechanisms (μ) and a relaxation rate of the synaptic couplings
(α) are introduced. (α,μ)-modulated synchronization transition are systematically
investigated by their stability analysis derived from a phase reduction method. A
phase response curve (PRC) is also obtained as one of important spiking properties.
The PRC is very temperature sensitive. In addition, The μ-dependent duration and
firing frequency of the spikes are founded.

1 Introduction

Temperature is one of the most significant physical variables in neuronal dynam-
ics. In particular, neuronal activities as representatives of oscillatory or nonlin-
ear dynamics are very sensitive for temperature on ionic channel mechanisms.
Thermally sensitive neurons, which mimics all spike train patterns observed in elec-
troreceptors of dogfish, exhibits various bursting behaviors as the temperature is
varied [1].

The past experiments using pacemaker showed that temperature increases cause
a regular and reproducible increase in the firing frequency [2], and remarkable
increase of the duration of rising and falling phases of the action potential [3].
Cocherová studied temperature relationships of the modified Hodgkin-Huxley
model to the duration of an action potential [4]. However, it is not well-known about
synchronization transition influenced by a temperature-modulated firing property
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measure such as a firing rate. To our knowledge, Prior and Grega showed increased
synchrony of activity between two bursting neurons at low temperature [5].

A phase response curve (PRC), which is regarded as another important firing
property measure, describes the transient change in the cycle period induced by a
small stimulus [6]. The PRC can be classified into two neuron types, type-I and
type-II. Two excitatory type-I neurons become synchronized more smoothly than
the type-II neurons [7]. But, effects of temperature on the PRC, neuron type and
its related synchronous behavior are still unclear. Effects of temperature on, firing
duration, PRCs and synchrony in a pair of neuron models via excitatory chemical
synapses are addressed.

2 A Pair of Coupled Neurons

The paired system is based on the Morris-Lecar (ML) model [8], while the chemical
synapses are modeling α-function [9]:

Cm
dVi
dt = −gL(Vi − VL)− gCam∞(Vi)(Vi − VCa)− gKWi(Vi − VK)+ Iapp

+εsī,
(1)

dWi

dt
= μ {w∞(Vi)−Wi} τw(Vi), (2)

dsi

dt
= μα(−si + hi), (3)

dhi

dt
= μα(−hi + H(Vi)), H(Vi) =

{
1, Vi > θ

0, Vi � θ . (4)

V [mV] is the voltage difference across the membrane potential. W is a gating vari-
able of the channel activation. Iapp is the applied current stimulus in which the ML
model exhibits a periodic and spontaneously firing of the type-I neuron[Fig. 1(a)].
μ is a timescale parameter that can be used to tune the temperature [10]. Cm = 1.0,
gL = 0.5, gK = 2.0, gCa = 1.33, VL = −0.5, VK = −0.7 and VCa = 1.0. The
remaining terms, m∞(V), w∞(V) and τw(V) are referred to [11].

In the synaptic coupling term, ī is a counterpart of i. s is a slow variable of the
post synaptic conductance. ε is synaptic weight where 0 < ε � 1. α is a synaptic
relaxation rate. θ is a threshold with V = 0[mV]. Once Vi is over the threshold,
synaptic conductance si influences the partner’s membrane potential dynamics.

3 Effects of Temperature on Firing Duration, PRC
and Synchrony

The phase reduction method [12] is employed here. Two ML type oscillators with
weakly mutual excitation are reduced to equations consisting of the phase degrees
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Fig. 2 μ-dependent PRCs for the Morris-Lecar type. a Most of PRCs are the type-I. b The type-II

of freedom. Simultaneously, the time evolution of the membrane potential is calcu-
lated on one cycle (Fig. 1b). Decreasing μ, a periodic firing cycle is much longer
with extension of a duration of an action potential. A PRC is also obtained. The so-
called type-I PRC, which has almost only positive values (Fig. 2a), is transformed
in a change of μ, to reach type-II PRC taking both the positive and negative values
(Fig. 2b). Interesting enough, we have shown that the ML model parameterized Iapp

as the type-I neuron takes the type-II RPC, dependent of μ. In linear stability analy-
sis for obtained phase equations, a systematic scheme of synchronization transition
is given in terms of μ and α. The synchronization here are defined as φ (where
0 � φ < 1) (Fig. 3).
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(a) (b)

Fig. 3 α-φ bifurcations diagram for a μ = 1.0 and b μ = 0.1. Light green and red lines respec-
tively represent stable and unstable synchronous states (Colors will be viewed in online version)

4 Conclusion

In a pair system of ML models via excitatory chemical synapses, effects of the
temperature μ and the synaptic relaxation rate α on synchrony have been explained.
Thermally dependent PRCs were obtained within a theoretical framework of phase
reduction analysis. In this analysis, it has also been shown that a duration as well
as a firing frequency of the spike are varying in a change of μ. In the past, some
researchers suggested that Iapp or spiking neuron types as well are key factors on
synchronization mechanism. However in this work, the dynamical relationship of
the temperature on ionic channel mechanisms has been revealed inclusively.
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Synchronization Transitions of Small-World
Neuronal Networks

Wen-Ji Cao and Qing-Yun Wang

Abstract We examine synchronization transitions and patter formation in depen-
dence on the information transmission delay on small-world networks of Morris-
Lecar excitable neurons. For the gap junctional coupling, we show that short delays
can induce zigzag fronts of excitations, whereas long delays can further detriment
synchrony in the network due to a dynamic clustering anti-phase synchronization
transition. On the other hand, within the large delay region, which is characterized
by anti-phase synchronization and clustering, differences in the network topology
do not notably affect the synchrony of neuronal activity.

Keywords Synchronization · Neuronal networks

1 Introduction

Synchronization is an important paradigm in numerous situations that constitute
everyday life, and it is only natural that it is in the focus of attention throughout natu-
ral as well as social sciences. Since neurons are known to be linked through complex
networks [1], extending these findings to specific models of neuronal dynamics [2]
seems justified and currently of substantial interest.

At present, we aim to extend the subject by studying pattern formation and
synchronization transitions on small-world Morris-Lecar neuronal networks with
gap junction, that is characterized with information transmission delay and noise.
We report several non-trivial effects induced by finite delay lengths and small-
world topology, such as the emergence of zigzag fronts and clustering anti-phase
synchronization transition.
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2 Model Description

The spatiotemporal evolution of the studied neuronal networks, along with additive
Gaussian noise and information transmission delay, is governed by the following
system [3]:

dVi
dt = 1

Cm
(Iapp

i − Iion
i − Isyn

i )+ wξi(t),

dWi
dt = φΛ(Vi) [W∞(Vi)−Wi]

(1)

where i = 1, . . . , N index the neurons, and Vi and Wi represent the membrane poten-
tial and the fraction of open potassium channels, respectively. ξ i is the Gaussian

white noise in the ith neuron with <ξi>= 0, and <ξi(t)ξj(t
′
)>= δi, jδ(t− t

′
). w is

the noise intensity. Isyn
i is the synaptic current, by which, small-world neuronal net-

works are formed. The values of all parameters and variable that appear in the above
equations are given in [3]. We choose parameters such that the Morris-Lecar neu-
ron exhibits the subcritical Hopf bifurcation. Underlying interaction networks for

(b)(a)

Fig. 1 Examples of considered network topologies. For clarity regarding k and p only 25 ver-
tices are displayed in each panel. a Regular ring characterized by p = 0 with periodic boundary
conditions. Each vertex is connected to its k = 4 nearest neighbors. b Realization of small-world
topology via random rewiring of a certain fraction p of links (in this case 4 out of all 100 were
rewired, hence p = 0.04)

the ML neurons are obtained by starting from a regular ring with periodic boundary
conditions comprising of N = 300 vertices, each having k = 4 nearest neighbors as
shown in Fig. 1a. The parameter p determines the probability of rewiring a link and
can occupy any value from the unit interval, whereby p = 0 constitutes a regular
graph while p = 1 results in a random network. For 0 < p < 1, as exemplified in
Fig. 1b.

3 Impact of Delay on Synchronization

The coupling term with delays can be described as follows:

Isyn
i = gsyn

∑

j

εi, j
[
Vi(t)− Vj(t − τ)

]
. (2)
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The coupling strength in this case is set to gsyn = 0.5 throughout this work, whereby
εi, j = 1 if neuron i is coupled to neuron j and εi, j = 0 otherwise. τ is the infor-
mation transmission delay, which will be main parameter on which we focus within
this work.

In what follows, the effects of information transmission delay τ and rewiring
probability p on patterns formation and synchronization in the examined neuronal
networks with gap junction are presented. First, results presented in Fig. 2 illus-
trate the spatiotemporal dynamics of neurons evoked by different τ on a typical
realization of small-world topology given by p = 0.1. Initially, in the absence of
information transmission delay, neurons can synchronize their spiking as illustrated
in Fig. 2a. By short delays, zigzag fronts of excitations can appear as shown in
Fig. 2b, which leads to the loss of spiking synchronization. In Fig. 2c, however, it is
illustrated that further increases of the delay τ can induce alternative layer patterns,
at which excitatory spikes appear alternatively among nearby clusters in space as
the temporal dynamics evolves. Hence, this phenomenon can be termed appropri-
ately as a clustering anti-phase synchronization transition induced by an appropriate
information transmission delay. Moreover, for larger τ , clustering anti-phase syn-
chronization can also be observed [see Fig. 2d], and it looks like more consistent
clustering anti-phase synchronization.

To quantitatively study the degree of spatial synchronization and thus support
above visual assessments, we introduce, by means of the standard deviation, a syn-
chronization parameter σ as used earlier in [4], which can be calculated effectively
according to

σ = 1

T

T∫

0

σ (t)dt, σ (t) = 1

N

N∑

j= 1

[Vj(t)]2 −
⎡

⎣ 1

N

N∑

j= 1

Vj(t)

⎤

⎦
2

(3)

Fig. 2 Space-time plots
obtained for different
information transmission
delays. From left to right τ
equals 0, 4.8, 10 and 12,
respectively. Other parameter
values are p = 0.1 and
w = 2.5
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Fig. 3 Dependence of the
synchronization parameter σ
on τ by different p. Where
applicable, other parameters
are the same as in Fig. 3

As shown in Fig. 3, we plot σ versus τ for different p. It can be seen that, as the
delay increases, σ initially decreases. However, this can not imply the enhancement
of spiking synchronization. On the contrary, spiking synchronization is destroyed
from the above observations. In fact, it can be seen that for short delays, zig-zag
fronts can appear, which destroys synchronization. Decreasing of spiking frequency
results in smaller synchronization parameter δ. With delays being increased further,
clustering anti-phase synchronization can be found since σ becomes large. We have
conducted detailed investigations and found zigzag fronts for the small delays and
anti-phase synchronization of nearby clusters for the large values of τ .

4 Conclusion

Character of gap junction is explored in terms of pattern formation and synchro-
nization of the neuronal network as the information transmission delay is varied. It
is found that, if the delay is short, neurons within the network can exhibit transitions
from zigzag fronts to clustering anti-phase synchronization. Moreover, we show
that spatial zigzag fronts can transit to increasingly regular in-phase synchrony as
p closes in on the limit constituting random networks. For large delays, however,
clustering anti-phase synchronization is independent from the network topology.
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Bursting Regularity in Complex Networks
of Neurons with Chemical Synapses

Xia Shi and Qishao Lu

Abstract In this, we study the bursting dynamics of the complex neural networks
with chemical synapses. A quantitative characteristics, width factor, is introduced to
describe the bursting dynamics of the neuron. Then we study the effects of the cou-
pling schemes and the network topology on the rhythmic dynamics of the networks.
It is concluded that the coupling scheme plays the key role in shaping the bursting
types of the neurons. As for the network topology, more links can only change the
bursting type of the long bursting neurons, and the short bursting neurons are robust
to the link numbers.

Keywords Bursting · Complex networks · Chemical synapses · Neuron

1 Introduction

After the famous papers by Watts and Strogatz [1] and by Barabáasi and Albert [2],
much attention has been attracted to the dynamical processes in complex networks
in recent years. In biology, neural networks have always been an important subject
of research. It is well known that a single neuron in the vertebrate cortex connects
to more than 10,000 postsynaptic neurons via synapses forming a complex network
[3]. The emergent property of this dynamical system is that a set of neurons will
synchronize and fire impulses simultaneously.

Ordering spatiotemporal chaos of small world neural networks with electrical
synaptic coupling have been studied extensively [4–7] in recent years. In these stud-
ies, they gave some quantitative characteristics to evaluate the spatiotemporal order
degree of the neuronal networks. However, they didn’t consider the change of the
rhythmic dynamics. In this paper, we mainly concentrate on how the properties of
the synaptic coupling and the intrinsic properties of the network unit would affect
the rhythmic dynamics of the system.
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An outline of this paper is given as follows. Some characteristics to evaluate
the rhythm dynamics of an isolated bursting neuron are introduced in Section 2. In
Section 3, a small world neural network is presented and the effects of the synaptic
coupling and the intrinsic properties of the neurons on the rhythm dynamics of the
network is studied. Finally, a conclusion is given in Section 4.

2 Rhythm Dynamics of the Bursting Neurons

Bursting neurons present multiple time scales, that is, fast variables relating to the
action-potential firing (spiking) and slow processes modulating the fast ones to
generate bursting. The discrete time system proposed by Rulkov [8] is

xn+1 = Fα(xn, yn),
yn+1 = yn − μ(xn + 1)+ μσ ,

(1)

where x represents the transmembrane voltage of the neuron and y the slow gating
precess. The difference of the time scales between the two subsystems is determined
by a sufficiently small value of the parameter μ with 0 < μ � 1. The nonlinear
function Fα(x, y) is responsible for the generation and reset of spikes, and is given
by

Fα(x, y) =
⎧
⎨

⎩

α
1−x + y, if x < 0,
α + y, if 0 ≤ x < α + y,
−1, if x ≥ α + y.

(2)

Depending on the values of the parameters α and σ , the map system reproduces a
variety of neural spiking-bursting activities. In this study, we fix α = 5.0, μ = 0.001
and control the value of σ to generate various firing patterns.

A burst of spikes is defined as a series of two or more consecutive spikes that
have interspike intervals less than a given threshold Tthresh. Then the average ratio
between the duration of a burst Tb and the subsequent period of refractory time
Tr, which is called as width factor and denoted by f = Tb/Tr, is introduced to
describe the rhythm dynamics of the neuron. If the width factor f = Tb/Tr > 1,
we call this type of bursts long bursts. Oppositely, the bursts with the width factor
f = Tb/Tr < 1 are called short ones.

3 Rhythm Dynamics of the Complex Neural Networks

The system of map-based neural network is described as follows

xi, n+1 = Fα(xi, n, yi, n + βi, n),
yi, n+1 = yi, n − μ(xi, n + 1)+ μσi,

where i = 1, 2, · · · , M and n = 1, 2, · · · , N represent the neuron index and the
discrete time series, respectively. The coupling term is modeled by
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βi, n = −gc

M∑

j=1

aijH(xj, n − θ )(xi, n − ν), i, j = 1, 2, i �= j (3)

through reciprocal excitatory or inhibitory chemical synapses. gc is the coupling
strength and H(·) is the Heaviside step function. The parameter θ is the presynaptic
threshold for chemical synaptic interaction and we choose θ = 0 throughout this
paper. The constant ν denotes the reversal potential associated with the synapses,
which is defined by the nature of the postsynaptic ionic channels. The synapse will
be excitatory if ν is higher and inhibitory if ν is lower than the range of xi,n. We
choose ν = 2 in (3) for excitatory coupling and ν = −2 for inhibitory one. The
matrix (aij) specifies the connection topology: aij = aji = 1 when a connection
exists between neuron i and j, otherwise aij = aji = 0 and aii = 0 for all i. The small
world network is constructed as follows: it starts with a one-dimensional regular ring
which comprises M = 100 nonidentical neurons and each neuron is connected to
its two nearest neighbors. Then the links are randomly added between non-nearest
vertices with probability p.

The structural properties of complex networks vary together with the vertices
randomly adding probability p. The intrinsic properties of the individual neurons
and properties of the synaptic coupling are also important factors in shaping the
rhythm dynamics of the network. In the following we choose the parameter value
of σi ∈ [0, 0.1] for short bursting neurons and σi ∈ [0.16, 0.26] for long bursting
neurons.

We calculate the average width factor of the network with the change of the
coupling strength and p being fixed for two coupling schemes to find the effect of
the synaptic coupling on the rhythmic dynamics of the networks. The results are
shown in Fig. 1. It is obvious that the evolutions of the width factor are same for
different values of adding probability. The neurons in the network will generate long
bursts with excitatory coupling and short bursts with inhibitory one, which means
that coupling scheme plays the key role in shaping the bursting types of the neurons.
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Fig. 1 The evolution of the width factor of the network with the change of the coupling strength
gc. a The excitatory coupling and b the inhibitory coupling. Solid and dashed line represent the
situations when p = 0.05 and p = 0.1. (◦) and (�) represent the long bursting and short bursting
neuronal networks
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Fig. 2 The evolution of the width factor of the network with the change of the adding probability
p. a The excitatory coupling and b the inhibitory coupling. Solid and dashed line represent the
situations when gc = 0.01 and gc = 0.05. (◦) and (�) represent the long bursting and short bursting
neuronal networks

Furthermore, we fix the value of gc and change the value of p to evaluate the
effect of the network topology on the rhythmic dynamics of the networks. It is clear
from Fig. 2 that for lower coupling strength, adding links cannot modify the bursting
types of the network neurons, while adding links transform the long bursting neu-
rons to short ones for higher coupling whatever the coupling scheme is excitatory
or inhibitory. In addition, it is concluded that the short bursting type is robust to the
network topology.

4 Conclusion

In summary, we have studied the rhythm dynamics of the complex neuronal
networks with chemical synapses. We introduced a quantity, width factor, to char-
acterize the bursting dynamics of a single neuron. According to the experimental
result, we constructed the small world neuronal network to study the rhythm dynam-
ics of the networks. It is concluded that the coupling scheme plays the key role in
shaping the bursting types of the network neurons. As for the network topology,
more links can only change the bursting type of the long bursting neurons, and the
short bursting neurons are robust to the link numbers.
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Burst Synchronization in a Small-World
Neuronal Network with Coupling Delays

Jiaoyan Wang, Qishao Lu, Fang Han, and Zhuoqin Yang

Abstract In this paper, burst synchronization is studied in a heterogeneous
small-world neuronal network of non-identical Hindmarsh-Rose (HR) neurons with
coupling delays. We study the effect of time delays and coupling strength. It is
observed that the network with optimal delay can achieve both burst synchronization
and phase synchronization much easily when the coupling strength is sufficiently
large. On the contrary, the network cannot achieve burst synchronization or phase
synchronization even with sufficiently large coupling strength and some delays. It
is also found that the network can achieve burst synchronization but not phase syn-
chronization with some delays and coupling strength. Moreover, we study the effect
of noise on burst synchronization.

Keywords Burst sycnronization · Small-world neuronal network · Coupling delays

1 Introduction

The observation of synchronous neural activities in the central nervous system
suggests that neural activity is a cooperative process of neurons and synchronization
plays a vital role in mechanisms of information processing and information preface
within different brain area [1]. Controlling chaos and synchronization has been well
studied during the last two decades, and a variety of approaches have been presented
to implant this task, ranging from dissipative systems to conservative systems.

Although the real structure of the neuronal network of human brain is not clear
yet, small-world properties, such as dense clustering and short average path length,
have been found in some neuronal networks. Thus small-world structure may be
instructive for the essence of neuronal networks of human brain. Considering the

J. Wang (B)
Department of Dynamics and Control, Beihang University, Beijing 100191, China

283R. Wang, F. Gu (eds.), Advances in Cognitive Neurodynamics (II),
DOI 10.1007/978-90-481-9695-1_44, C© Springer Science+Business Media B.V. 2011



284 J. Wang et al.

fact that the signal will take some time to pass through a finite distance to arrive
at its destination due to limited speed and then induce a time-delay in receiving
signals. In neural networks, the transmission delay is a sum of axonal, synaptic,
and dendritic delays. Moreover, it is reported that axons can generate time delays as
large as 300 ms [2].

In this paper, we study the influence of network topology and parameters on
burst synchronization in a small-world neuronal network of nonidentical chaotic
HR neurons with delays. This article is organized as follows. Section 2 introduces a
model of small-world HR neuronal network. Section 3 presents the main results of
burst synchronization and spatiotemporal patterns in detail.

2 Model

The single HR neuron model proposed by [3] can be written in the form:
A neuronal network composed of electrically coupled HR neurons is given by

dxi

dt
= yi − ax3

i + bx2
i − zi + Ii − g

N∑

j=1

aij∑N
k=1 aik

f (xi, xτj ),

dyi

dt
= c− dx2

i − yi,

dzi

dt
= r[s(xi − χ )− zi],

f (xi, xτj ) = xi(t)− xj(t − τ )

(1)

i = 1, 2 . . .N, a = 1, b = 3, c = 1, d = 5, s = 4, r = 0.006 and χ = −1.6,
where N is the overall number of neurons. We set the external current of the i-th
neuron Ii = 3.1 + 0.001∗i. The coupling matrix A is determined by the network
structure and the element aij takes the value 1 or 0, depending on whether or not
there exists electrical coupling between neurons. Here, we use the Newman–Watts
small world structure in system (1). We start with a regular ring of N = 20 neu-
rons, each coupled diffusively to its two nearest neighbors. Then we add shortcuts
between pairs of nodes with probability p.

3 Main Results and Discussion

3.1 Phase Synchronization and Burst Synchronization

Phase synchronization of neurons is actually spike synchronization, which means
all neurons emit spikes within fixed phase differences while the amplitudes stay
uncorrelated. The phase of the i-th neuron can be defined by the Hilbert transfor-
mation of the membrane potential xi. The Hilbert transformation of signal x(t) can
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be expressed as xh(t) = (1/π )
+∞∫
−∞

(x(τ )/(t − τ ))dτ , and the instantaneous phase of

signal x(t) is defined as φ(t) = arctan
(

xh (t)
x(t)

)
.

According to this definition, whenever a neuron fires a spike, the phase of the
neuron increases 2π . Then the average phase difference over time for all neu-
rons is used to indicate the phase synchronization of network, that is, 	φ(t) =

1
N−1

N∑
i=2
|φi(t) − φ1(t)|. When max |	φ(t)| < 2π , phase synchronization of the

small-world neuronal network is thought to happen.
Similarly, the burst phase of the i-th neuron can be defined as [4]

φi(t) = 2πk + 2π (t − tk)

tk+1 − tk
, tk < t < tk+1, (2)

where tk is the time at which the k-th burst starts. Let

	φ(t) = 1
N−1

∑N
i=2 |φi(t)− φ1(t)|.

When max |	φ(t)|<2π , burst synchronization of the small-world neuronal network
is thought to happen.

It is observed that the network with optimal delay e.g. τ = 30 can achieve phase
synchronization (see Fig. 1a) and burst synchronization (see Fig. 1b) easily when the
coupling strength is sufficiently large. On the contrary, the network cannot achieve
phase synchronization (see Fig. 1c) or burst synchronization (see Fig. 1d) with some
sufficiently large coupling strength with some delays, e.g. τ = 51. It seems that the
network can achieve burst synchronization more easily with some smaller coupling
strength than with some large coupling strength when τ = 51. It is found that the
network can achieve burst synchronization (see Fig. 1b, d) but cannot achieve phase
synchronization (see Fig. 1a, c) when τ = 1 and τ = 0. Moreover, burst synchro-
nization is enhanced when τ = 1 compared with τ = 0. So the network can achieve
global burst synchronization much easier than phase synchronization. Furthermore,
we can see that time delays can enhance or destroy synchronization from Figs. 1
and 2.

3.2 The Effect of Noise on Phase Synchronization and Burst
Synchronization

To make the model more realistic, we add Gaussian white noise ξi to the i-th neuron

with < ξi >= 0 and < ξiξj(t
′
) >= Dδi, jδ(t − t

′
), where D represents the noise

intensity. Arbitrary small noise can destroy the exact synchrony of neurons [5].
From Figs. 3 and 4, phase synchronization and burst synchronization survives at
small noise. It is clear that burst synchronization survives at bigger noise than phase
synchronization.
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Fig. 1 a and c Phase synchronization; b and d Burst synchronization with different coupling
strength at p = 0.08, N = 20
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Fig. 2 Spatial patterns of the network for τ = 0, 1, 30, 51 at p = 0.08, g = 1, N = 20
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Correlation-Induced Phase Synchronization
in Bursting Neurons

Xiufeng Lang and Qishao Lu

Abstract We investigate phase synchronization of uncoupled bursting neurons,
caused by spatially correlated noise. It is found that the degree of synchronization
between non-identical neurons decreases monotonously when increasing partially
correlated noise intensity, but undergoes a minimum with the common noise
intensity increasing.

Keywords Neuron · Phase synchronization · Noise · Bursting

1 Introduction

In the past decades, bursting behavior has been found in many neurobiological
systems [1]. Recently, bursting synchronization and its role in the neurobiological
system has attracted more and more attention. Especially, noise-induced synchro-
nization of chaotic systems was demonstrated [2]. In spite of these studies, it remains
unclear that how noise influences the synchronization in uncoupled neurons with
the dynamics of chaotic bursting. In addition, some experiments have observed that
noise could have significant effects on the dynamics of neural systems [3]. Herein,
we intensively study the effects of spatially correlated noise on phase synchroniza-
tion (PS) in two non-identical bursting neurons. It is found that the degree of PS
monotonously decreases with the partially correlated noise, while the degree non-
monotonously varies with the common noise. The variety might be attributed to the
interplay between noise correlation and parameter mismatch.
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2 Model

The dynamics of the i-th Hindmarsh-Rose neuron [4] (i = 1, 2) is described by the
following differential equations:

dxi

dt
= yi − ax3

i + bx2
i − zi + Ii + Dξi (1)

dyi

dt
= c− dx2

i − yi (2)

dzi

dt
= r[s(xi − x0)− zi] (3)

where xi is the membrane potential, yi is associated with the fast current, and zi with
the slow current. Here a = 1.0, b = 3.0, c = 1.0, d = 5.0, s = 4.0, r = 0.006,
x0 = −1.6, and Ii is the external current input. The spatially correlated noise with the
intensity D consists of two components, that is, ξi(t) =

√
Re(t)+√1− Rηi(t), where

e(t), a common Guassian noise, and ηi(t) is a local Guassian noise. The control
parameter R measures the noise correlation between the neurons.

3 Results and Discussion

To investigate the effect of correlated noise on PS, a phase variable for spike trains
of the variable x is defined as follows [5]:

ϕ(t) = 2π

(
k + (t − τk)

(τk+1 − τk)

)
(4)

where τk < t < τk+1, and τk the k-th firing time of neuron. The most com-
mon approach to study phase synchronization behavior in stochastic systems is
to compute the distribution of cyclic phase difference P(	cϕ) on [−π , π ], where
	cϕ = 	ϕ mod(2π ).

To quantify the degree of PS, we introduce the entropy of distribution of cyclic
phase difference as follows [6]:

H = −
M∑

i=1

Pi ln Pi (5)

where M is the number of bins and Pi is the probability when the cyclic phase
difference 	cϕ is in the i-th bin. Normalizing H in [0, 1] by the maximal entropy
Hm = ln M of the uniform distribution, the synchronization index is calculated by:

ρps = Hm − H

Hm
(6)
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Here ρps = 0 corresponds to a uniform distribution (no synchronization) and
ρps = 1 corresponds to a Dirac-like distribution (perfect synchronization).

In the absence of noise, we introduce a mismatch into the external currents of
two neurons I1 = 3.1 and I2 = 3.12, where the two neurons both exhibit chaotic
bursting. Figure 1a, c show the distribution of cycle phase difference P(	cϕ) for
D = 0, 1 and 10 with R = 1 (i.e., the common noise), respectively. In Fig. 1a, high
peaks of P(	cϕ) (e.g., P(	cϕ) > 0.05) appear in many bins of 	cϕ in the deter-
ministic limit (D = 0), which indicates that phase locking between the bursting
neurons occurs at multiple phase differences, characterizing imperfect phase syn-
chronization in multiple-time-scaled system discussed in [6]. As the noise intensity
D increases to 1 (Fig. 1b), high peaks of P(	cϕ) appears only at less bins of 	cϕ

and height of the highest peak is close to that in which demonstrates that compared
with those in Fig. 1a, less phase differences could be locked between the neurons,
and moreover, the strength of stochastic phase locking hardly changes at the phase
difference for the highest peak. When D increases to 10 (Fig. 1c), high peaks occurs
in the least bins of	cϕ, but the highest peak are much higher than those in Fig. 1a, b.
This illustrates that compared with the case of weak noise, strong noise makes the
neurons stochastically phase locking at less phase differences, but the strength of
phase locking is improved significantly at the phase difference for the highest peak.
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Fig. 1 Distributions of cyclic phase difference for (a) D= 0, (b) D=1 and (c) D=10 with R= 1;
(d) phase synchronization index ρps as a function of D for R = 1
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Fig. 2 a Phase synchronization index ρps as a function of D for R= 0.8, 0.998 and 1. b ρps versus
D for I1 − I2 = 0, 0.02 and 1

Aforementioned results imply that when the common noise intensity increases, the
degree of PS might first decrease at low noise level and then increase at higher
noise level, which is further demonstrated by curves of ρps versus D in Fig. 1d. It is
clearly seen from the figure that ρps undergoes a minimum with D increasing, indi-
cating that the degree of PS between the two neurons become the weakest at certain
common noise intensity.

However, the situation for the partially correlated noise (0 < R < 1) is quite differ-
ent. As shown in Fig. 2a, ρps increases slightly for R = 0.998, and descends greatly
with noise intensity for R= 0.8, which indicates that the degree of PS monotonously
decreases with the noise intensity increasing. The various effects of partially corre-
lated noise and common noise on PS might be attributed to the interplay between
noise correlation and parameter mismatch. Figure 2b plots ρps versus D for three
values of difference between the external currents of two neurons. It is found that
for certain noise intensity and correlation, the ρps hardly changes with the param-
eter heterogeneity, demonstrating that parameter mismatch has little effect on the
degree of PS between two non-identical neurons. It should be noted that these phe-
nomena also holds for other values of R (the data are not shown here). Therefore,
it is possible that the noise correlation changes the mean external inputs, especially
for the strong noise, which leads to the enhancement of PS for the common noise
and decrease of PS for the partially correlated noise.

4 Summary

In this paper we investigated the nontrivial effects of spatially correlated noise, con-
sisting of a common Guassian noise and a local one, on phase synchronization of
two unconnected and non-identical bursting neurons. It is found that the degree of
synchronization is minimized at some common noise intensity, while is decreased
monotonously with the partially correlated noise intensity increasing. It is further
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demonstrated that for strong noise, noise correlation could change the degree of
synchronization more greatly than parameter mismatch.
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Synchronization of Small-World Neuronal
Networks with Synapse Plasticity

Fang Han, Qishao Lu, Xiangying Meng, and Jiaoyan Wang

Abstract Synchronization of small-world neuronal network with synapse plasticity
is explored in this paper. The variation properties of synapse weights are stud-
ied first, and then the effects of synapse learning coefficient, the coupling strength
and the adding probability on synchronization of the neuronal network are studied
respectively. It is shown that appropriate learning coefficient is helpful for improv-
ing synchronization, and complete synchronization can be obtained by increasing
the coupling strength and the adding probability.

Keywords Neuronal network · Small-world · Synchronization · Synapse plasticity

1 Introduction

Synchronization is thought to play a key role in intercommunications among neu-
rons. With the developing of the theories of complex networks, people pay more
attention on the synchronization of complex neuronal networks, especially small-
world ones. Most of the research focuses on non-weighted or constant-weighted
neuronal networks, however, the weights of synapses among neurons keep chang-
ing in the growth of neurons and in the studying and memorizing processes. In
other words, synapse can learn, which is also called synapse plasticity. In this paper,
the synchronization of small-world neuronal networks with synapse plasticity is
explored numerically.
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2 The Mathematical Model

By using the Hindmarsh-Rose neuronal model [1] and the Newman-Watts small-
world strategy [2], we can set up electrically coupled neuronal network. The number
of neurons is set as N = 100.

As for the synapse plasticity, we define the variation equation for the weight wij

between neuron i and neuron j as following [3]:

	wij = L ∗ arctan[xi(xj − xiwij)] (1)

where L is a positive synapse learning coefficient and xi is the membrane potential
of neuron i.

Then the neuronal network with synapse plasticity can be expressed as:

ẋi = yi − ax3
i + bx2

i − zi + I + σ
N∑

j=1, j �=i
gijwij(xj − xi),

ẏi = c− dx2
i − yi,

żi = r[s(xi + χ )− zi],
	wij = L arctan[xi(xj − xiwij)], i = 1, 2, · · · , N.

(2)

where σ is the coupling strength, G = {gij}N×N is the connectivity matrix of the
network, I is the external current. The parameters in the system are set as a = 1,
b = 3, c = 1, d = 5, s = 4, r = 0.006,χ = 1.6, I = 3. As ions in channels are
transmitted mutually, bi-directional non-equal connections are adopted here. That
is, if there is a connection between neuron i and neuron j (i �= j), then there exists
a weight wij �= wji, if not, then wij = wji = 0. And let wii = 0, which means that
there is no self-connection for all the neurons in the network.

3 Simulation Results

The variation properties of synapse weights under the influence of the synapse learn-
ing coefficient is studied first. Figure 1 shows the variations of membrane potentials,
connection weights and connection strengths between two arbitrarily chosen con-
nected neurons in the network. The connection strength of neuron i is defined as
si(t) =∑N

j=1 wij(t).
It can be seen from Fig. 1 that, if both of the two neurons are in rest, the connec-

tion weights and the connection strengths between them do not change; if neuron i
is excited and neuron j is in rest, the connection weight from neuron i to neuron j
is strengthened, and the connection weight from neuron j to neuron i is weakened.
That means, when ion currents conduct from one neuron to another by the connec-
tion channels between them, the positive connection weight would be strengthened
and the negative connection weight would be weakened. These phenomena con-
form with actual variations of synapses during the excitement transmission process
among real neurons.
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Fig. 1 The variations of membrane potentials, connection weights and connection strengths
between two arbitrarily chosen connected neurons (L = 8, σ = 0.05, p = 0.1): a xi and xj are
the membrane potentials of neuron i and neuron j respectively; b wij and wji are the positive and
negative weights between neuron i and neuron j respectively; c si and sj are the connection strengths
of neuron i and neuron j respectively

Then we discuss synchronization properties of the network under the influence of
synapse plasticity. We use average synchronization error as characteristic measure,
which can be represented as

emean = mean(〈ei〉), 〈ei〉 = 〈
√

(xi − x1)2 + (yi − y1)2 + (zi − z1)2〉

where 〈·〉 represents average on time, i = 2, 3, · · · , N.
By numerical simulation, the relationship of the average synchronization error

and the synapse learning coefficient can be obtained as in Fig. 2.
It can be seen that, the average synchronization error decreases sharply first,

then oscillates around 0.5 finally, which means that the increase of synapse learning
coefficient is helpful for synchronization, but can not make the network achieve syn-
chronization. It implies that in neuronal networks, the learning function of electric
synapses must be neither too strong nor too weak, but be appropriate to maintain the
synchronizability.

The variations of the average synchronization error with the increasing coupling
strength and the adding probability are shown in Fig. 3a, b respectively.
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Fig. 3 a The relationship of the average synchronization error emean and the coupling strength
σ (L = 2, p = 0.1); b The relationship of the average synchronization error emean and the adding
probability p(L = 2, σ = 0.01)

It can be seen from Fig. 3a that, when the coupling strength increases to σ =
0.06, the average synchronization error decreases to zero, which means the net-
work achieves complete synchronization. Hence, increasing the coupling strengths
among neurons can finally make the network synchronize completely. It also can be
seen from Fig. 3b that, when the adding probability increases to p ≈ 0.7, the average
synchronization error decreases to zero. So, in neuronal networks with synapse plas-
ticity, the introduction of shortcuts also can improve synchronizability of neuronal
networks.
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4 Conclusion

Based on that actual biological neuronal networks have the properties of small-
world connectivity and the connection strengths among neurons change dynami-
cally, we study the synchronization of electrically coupled neuronal networks with
synapse plasticity. The variation properties of connection weights are studied first.
Then the effects of the synapse learning coefficient, the coupling strength and the
adding probability on synchronization are studied respectively. It is shown that
appropriate learning coefficient is helpful for improving the synchronizability of
the network, and increasing the coupling strength and the adding probability can
finally make the neuronal network synchronize completely.
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A Modeling Study of Glutamate Release
of NMDA Receptors

Justin Blackwell, Jianzhong Su, and Ege Kavalali

Abstract In this chapter we will use a mathematical model to simulate spontaneous
and evoked neurotransmission to determine how receptor location on presynaptic
density can activate distinct sets of NMDA receptors and signal independently to the
postsynaptic side. We will also examine how the release rate of the neurotransmitter
Glutamate will affect post-synaptic currents by varying the fusion pore size at the
presynaptic side.

Keywords Synapse modeling · Neurotransmission · Independent signaling ·
NMDA receptors · Diffusion equation · Chemical synapses

1 Introduction

Spontaneous synaptic vesicle fusion is a salient feature of all synapses [1, 2].
These random release events typically activate receptors within a single postsynap-
tic site and give rise to miniature postsynaptic currents, and therefore, they have
been extremely instrumental in analysis of unitary properties of neurotransmission.
Spontaneous release typically occurs with a rate of 1–2 vesicles per minute per
release site [3–5], whereas evoked release at individual synapses can occur at an
extremely high rate (>100 vesicles per second) [6].

To determine how neurons distinguish evoked and spontaneous neurotransmis-
sion we examine the possibility that spontaneous and evoked neurotransmission
activate non-overlapping NMDA receptor populations.
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2 Model

Our glutamate diffusion model followed the approach previously used by Nielsen
et al. [7] and first simulated isotropic diffusion of 4,000 glutamate molecules [8]
released from a point source. We then simulated release of the glutamate molecules
through a vesicle by addition of two compartments [9] that one modeled the vesicle
(40 nm by 40 nm) and the other represented the fusion pore (width of 2 and 10 nm’s).

The standard thermodiffusion equation is applicable for the glutamate concen-
tration Ci,j,k = C

(
xi, yj, zk

)
, in both the synaptic cleft and synapse, as follows:

∂C

∂t
= Dglut

(
∂2C

∂x2
+ ∂

2C2

∂y2
+ ∂

2C

∂z2

)
. (1)

The diffusion constant Dglut takes different values depending on the location.
When simulating the vesicular diffusion the value of Dglut is 0.15 μm2/ms and
0.0375 μm2/ms within the fusion pore. Once the molecules leave the vesicle the
value of Dglut takes a value of 0.4 μm2/ms inside the cleft and 0.75 μm2/ms outside
the cleft.

To determine the opening probability, Popen, of an individual receptor a model
consisting of three closed and two open states (3C2O) is used [10]. The gluta-
mate concentrations across the cleft are included by adding two coupled states, CM

and CU.

On the post synaptic cleft there are 16 receptors, arranged in a 4 by 4 array using
row-major ordering. The concentration time-course and Popen are calculated at each
receptor. Two receptors are used as release sites, R6 for central release and R16 for
release at the boundary.

3 Results

From the results we conclude that peak open value is not as sensitive to the pore
sizes as is distance from release site. Thus, factors such as varying the diffusion
constant and the distance from receptor to release site is more relevant in determin-
ing spontaneous versus evoked transmission. By varying the release rates, there is a
noticeable difference in max concentrations of glutamate, as shown in Fig. 1. Instant
release assumes instantaneous release of 4,000 molecules from a point source. We
then compared release from a 10 nm and 2 nm fusion pore.
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Fig. 1 The charts depict maximum concentrations of neurotransmitters (glutamate) at receptor
locations, where the square represents a scenario of instantaneous release at cleft, the circle is for
releasing through a 10 nm fusion pore, and the triangle is for releasing through a 2 nm fusion pore.
a Release of neurotransmitter near center of synapse at receptor 6. b Release of neurotransmitter
near edge of synapse at receptor 16

When estimating the open probabilities of all receptors in response to glutamate
release onto R6, the site of evoked release as shown in Fig. 2, if all receptors are
in the same mode, then R6 has a 4.5 fold increase to that of R16. However, this
difference decreases to a 1.9 fold difference if R16 is in M-mode and R6 is in
L-mode. This difference is compatible with experimental results in which block-
ing evoked NMDA responses results in a small reduction of spontaneous NMDA
activity [11].
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Fig. 2 The charts depict maximum channel opening probability at receptor locations. a Central
instantaneous release. b Boundary instantaneous release. Square is M-mode and triangle is L-mode
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Fig. 3 The charts represent maximum channel opening probability by peak values for M-mode
kinetics at receptor locations. a Release of neurotransmitter near center of synapse. b Release of
neurotransmitter near edge of synapse. The square represents instantaneous release, the circle is
for 10 nm, and the triangle is for 2 nm vesicular release

This illustrates that a large synapse of 0.36 μm2 (with R6 near the center
for evoked neurotransmission, and R16 for spontaneous neurotransmission) can
accommodate two non-overlapping domains that give rise to independent signaling.

Figure 3 compares the max values of Popen with various release rates. The peak
value increases as the size of the fusion pore decreases due to prolonged exposure
to the neurotransmitter
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Experimental Discovery of a Complex
Bifurcation Scenario from Period 1 Bursting
to Period 1 Spiking

Minghao Yang, Qiaohua Zheng, Chunling Wei, Huaguang Gu, and Wei Ren

Abstract A complex bifurcation scenario from period 1 bursting to period 1
spiking containing period increment bifurcation scenario in bursting patterns, simu-
lated in theoretical model in previous studies, awaited experimental demonstration.
In this Letter, the bifurcation scenario was discovered in an experimental neural
pacemaker. The characteristics of the bifurcation scenario, the period increment
bifurcation scenario and the transition from bursting to spiking pattern were also
identified. The results demonstrate the reality of the theoretical prediction of firing
pattern transition regularity.

Keywords Firing pattern · Bifurcation scenarios · Period increment
bifurcation · Bursting · Spiking

1 Introduction

In recent years, nonlinear dynamics in neural firing rhythm have attracted more and
more attention. The dynamics of neural firing patterns and firing pattern transitions
are of fundamental importance to elucidate neural coding mechanism. In the last two
decades, various firing patterns including bursting and spiking pattern, and various
firing pattern bifurcation scenario from bursting to spiking pattern were simulated
in a series of neuronal models, such as Chay model and Hindmarsh-Rose (HR)
model [1–6]. For example, many different kinds of bifurcation scenarios from period
1 bursting to period 1 spiking via simple procedure and complex procedure were
simulated.
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Guided by the previous theoretical studies simulated in Chay model and HR
model, we discovered various bifurcation scenarios of firing patterns in the exper-
imental neural pacemaker [4–6]. Most of the bifurcation scenarios from period 1
bursting to period 1 spiking were discovered in the experiment [6]. Unfortunately,
only a part of the bifurcation scenario from period 1 bursting to period 1 spik-
ing containing period increment bifurcation scenario in bursting patterns, such as
from period 1 bursting to period 7 bursting [5] were observed in the experimen-
tal neural pacemaker, but the complete procedure of the bifurcation scenario from
period 1 bursting to period 1 spiking, suggested to be the universality in biological
rhythm [2], have been not discovered in the experiments for a long time [5, 6]. In this
Letter, we report the recent discovery of this bifurcation scenario in the experimental
neural pacemaker.

2 Theoretical Model and Simulation Results

Chay model [1, 2] contains the H–H type ionic channel dynamics, verified to be
closely relevant to our experimental neural pacemaker, shown as follows:

dV

dt
= gIm

3∞h∞(vI − V)+ gkv(vk − V)n4 + gkc
C

1+ C
(vk − V)+ gI(vI − V) (1)

dn

dt
= n∞ − n

λn(αn + βn)
(2)

dC

dt
= ρ

[
m3∞h∞(vC − V)− kCC

]
(3)

where t is the time. V is the membrane potential. n is the activation probability of
potassium channel. C is the intracellular concentration of calcium ion. The explicit
interpretation of Chay model was given in previous study [1]. In this Letter, the
parameter values are vI = 100 mV, vk = −75 mV, v1 = −40 mV, g1 = 7 mS/cm2,
1, 800 mS/cm2, gkc = 10 mS/cm2, gkv = 1, 700 mS/cm2, ρ = 0.27 and λn = 235.
vc is the reversal potential of calcium ion, chosen as bifurcation parameter.

A Gaussian white noise, ξ (t), reflecting fluctuation of environments, is directly
added to the right hand of Eq. (1) to form the stochastic Chay model. ξ (t) possesses
the statistical properties as 〈ξ (t)〉 = 0 and

〈
ξ (t)ξ (t′)

〉 = 2Dδ(t − t′), where D is the
noise density and δ(·) is the Dirac δ-function. The Chay model is solved by mannella
numerical integrate method with integration time step being 10−3 s. Upstrokes of
the voltage reached the amplitude of –25.0 mV were counted as spikes.

To be compared to the experimental results, the bifurcation scenario from period
1 bursting to period 1 spiking is also simulated. The deterministic and stochastic
dynamics of the bifurcation scenario were particularly shown in previous studies [5]
and introduced simply as follows. When λn = 235 and vc is decreased, a bifurca-
tion scenario from period 1 bursting to period 1 spiking containing period increment
bifurcation scenario in bursting pattern is simulated. When vc is larger than 101, the
firing pattern is bursting. When vc is less than 101, the firing pattern is spiking. The
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“shrink” phenomenon induced by the transition from bursting pattern to spiking can
be seen from the bifurcation scenario when vc is about 101. When vc is decreased
from 485 to 101, a period increment bifurcation scenario is exhibited in the burst-
ing pattern. The corresponding bifurcation scenario in the stochastic Chay model,
exhibiting an overlap near each bifurcation point of bursting pattern. The overlap is
the noise induced stochastic bursting. For each bifurcation point, the period k burst-
ing is changed into period k + 1 bursting via the stochastic bursting whose behavior
is stochastic transition between period k burst and period k + 1 burst (k = 1, 2, 3, 4,
5, 6, 7, 8, 9).

3 Experimental Model and Results

Experiments were performed on an experimental neural pacemaker, formed at the
injured site of adult male SD rat sciatic nerve subjected to chronic ligature [4–6].
After surgical operation and a survival time of 6–12 days, the previously injured
site was exposed and perfused with 34◦C Kreb’s solution. The spontaneous firing
of a single individual fiber was recorded with a Powerlab system (Australia) with
sampling frequency being 10.0 kHz. The time intervals between the maximal values
of the successive spikes were recorded seriatim as interspike interval (ISI) series.

Extracellular calcium concentration ([Ca2+]o) was as bifurcation parameter and
was changed from 1.2 mmol/L to zero. The bifurcation scenario from period 1 burst-
ing to period 1 spiking containing period increment bifurcation scenario in bursting
pattern was discovered in 7 experimental neural pacemakers when [Ca2+]o was
decreased. In this Letter, one of 7 bifurcation scenarios was studied as a represen-
tative. Period increment bifurcation scenario in bursting pattern was period adding
bifurcation scenario with stochastic bursting near each bifurcation point, similar to
those of the stochastic Chay model. The procedure was from period 1 bursting to
stochastic bursting, to period 2 bursting, to stochastic bursting, to period 3 burst-
ing, to stochastic bursting, to period 4 bursting, to stochastic bursting, to period 5
bursting, to firing pattern with multiple spikes in a burst (the number of spikes in
a burst was not fixed because noise or the fluctuation of [Ca2+]o), and finally to
period 1 spiking. Near each period increment bifurcation point, the behavior of the
stochastic bursting lying between period k bursting and period k + 1 bursting was
stochastic transition between period k burst and period k + 1 burst (k= 1, 2, 3, 4, 5).
The stochastic firing pattern was studied particularly in previous studies. The most
important characteristic of this bifurcation scenario was the “shrink” phenomenon
corresponding to the transition from bursting to spiking pattern. In the bifurcation
scenario, the bursting pattern was changed into spiking pattern via a procedure that
the long quiescence between bursts in the bursting pattern disappear, and then the
firing pattern became tonic spiking. The disappearance of the long quiescence looks
like a “shrink” in ISI series. The frequency of period 1 spiking is much higher than
that of the period 1 bursting.
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4 Discussion and Conclusion

Based on the results of this Letter and our previous studies [6], various bifurcation
scenarios from period 1 bursting to period 1 spiking via simple or complex proce-
dure, were presented in the experiment. The various bifurcation scenarios provide
framework to recognize the relationship between different firing patterns.
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Exploring the Asymmetrical Cortical Activity
in Motor Areas Using Support Vector Machines

Guangxin Huang, Huafu Chen, Weishuai Lv, and Qian Dai

Abstract A linear SVM with different inputs, i.e., the average volume within a
task block and a single volume of a task block was used to explore the asymmetrical
cortical activity in motor areas based on a vivo fMRI data of hand-grip experiment.
Our results showed that a SVM with different inputs could get the discriminative
activations between the left and right hand grips.

Keywords Functional magnetic resonance imaging · Support vector
machine · Pattern recognition methods ·Maximum-margin hyperplane

1 Introduction

Support vector machines (SVMs) [1, 2] are a set of multivariate methods. SVM had
been applied to fMRI data processing previously [3–5]. SVM can extract a unique
brain discrepancy map which is directly related to the measured effect difference
between different experimental brain conditions [3–5]. Mourão-Miranda et al. [3, 4]
used individual time points of whole brain as input to SVM to obtain the brain dis-
crepancy maps. Wang et al. [5] have shown that the statistical test of discrimination
maps may be carried out using random effects analysis (RFX) [6] and permuta-
tion testing (PMU) [7]. In the present study, SVM with different inputs was used to
explore the asymmetrical cortical activity in motor areas between the left and right
hand grip from individual time points of whole brain of single-subject functional
magnetic resonance imaging (fMRI) data.
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2 Methods

2.1 SVM

Support vector machine (SVM) [1, 2] is a data classification algorithm. In the linear
case the method consists of maximizing the margin between the support vectors and
the hyperplane. Let the training data, a set of points of the form:

D = {
(xi, yi)|xi ∈ RM , yi ∈ {−1, 1}, i = 1, ..., N

}
,

where yi is either 1 or –1, indicating the classes A and B to which the point
xi belongs. Each xi is an M-dimensional real vector, corresponding to an indi-
vidual time point of whole brain scan). The main idea of SVM is to find the
maximum-margin hyperplane dividing the points having yi = −1 from those having
yi = 1.

In the general case of overlapping classes, the problem of finding the optimal
separating hyperplane that maximizes the distance to the nearest training points of
the two classes is defined as the following optimization problem:

Minimize 1
2

∥∥∥W
∥∥∥

2 + C
∑

i

ξi (1)

subject to yi(w · xi − b) ≥ 1− ξi, 1 ≤ i ≤ N (2)

and ξi ≥ 0, 1 ≤ i ≤ N. (3)

where ξi ≥ 0, 1 ≤ i ≤ N are slack variables that account for training errors and C is
a positive real constant appearing only as an additional constraint on the Lagrange
multipliers. Eqs. (1–3) can be translated into their unconstrained dual form. By using
Lagrangian multiplier method, the solution can be found as [2]:

w =
N∑

i=1

αiyixi (4)

where αi ≥ 0 is the Lagrangian multiplier, which is constrained by αiyi = 0.
The points with αi > 0 are called “support vectors”, which lie in the supporting
hyperplane. For any other points, αi = 0.

The weight vector w describes the importance of each feature in discriminating
between the two classes. In the study, w represents a map of the most discriminating
regions, we call it as a spatial discrimination map to differ the previous researches
[3–5]. Given two classes, task 1 and task 2, with the labels +1 and –1, a positive
value in the map w means that this voxel had higher activity during task 1 than task
2 in the training examples that contributed most to the overall classification, i.e., the
support vectors; negative value indicates lower activation during task 1 than task 2.
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2.2 Permutation Test, Dimensionality Reduction
and Pre-processing

As a nonparametric technique, the permutation test [7] has been previously applied
to fMRI data analysis [5]. Here, this technology was used to determine the thresh-
old of the spatial discrimination map. Under the null hypothesis of no relationship
between the class labels and the global structure of the observations in data space,
the class labels were permuted 2,000 times randomly to get all the p-values. All
significant voxels with p-values <0.001 were displayed by the values in the weight
vectorwin the spatial discrimination map. PCA was used for the purpose of data
compression without losing any information. A detailed description of PCA we refer
to [3, 4]. Before the dimensionality reduction, experimental data the experimental
data were preprocessed using SPM2. Reconstructed images were corrected for slice
timing effects and motion artifacts, as well as transformed to a standard space at 3×
3 × 3 mm3. Spatial smoothing with an isotropic Gaussian kernel of 8 mm FWHM
was also performed.

3 Applying SVM with Different Inputs to fMRI Data

3.1 Material

The experiment, stimuli and fMRI data were detailed in our early work [8].

3.2 SVM with the Input of the Average Volume

Let xi be the average volume of the ith task (the left or right hand grip) block, yi

is the task label, i.e., yi = 1 for the right hand grip, yi = −1 for the left hand
grip. Let < xi, yi > be the input to SVM, then we can get the weight vector w.
Figure 1a presents the discrimination maps of a single subject on the left and right
hand grips with the average volume as input to a SVM, all voxels with p-value <
0.001 are shown in a color scale corresponding to the values in the weight vector

Fig. 1 Spatial discrimination maps of a single subject on the left and right hand grips with the
average input (a) and a single input (b) to SVM. All voxels with p-value < 0.001 are shown in
color scale (Colors will be viewed in online version)
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w. The color scale identifies the most discriminating regions for each time point
(light/dark blue for negative values, i.e., relatively more activation for the left hand
grip, and red/orange for positive values, i.e., relatively more activation for the right
hand grip).

3.3 SVM with the Input of a Single Volume

Let xi be a single volume within a task (right or left hand grip) block, yi is the task
label, i.e., yi = 1 for right hand grip, yi = −1 for left hand grip. Let< xi, yi > be the
input to SVM, we can get the weight vector w. Figure 1b shows the discrimination
maps of a single subject on left and right hand grips with the average volume as input
to a SVM, all voxels with p-value < 0.001 are shown in a color scale corresponding
to the values in the weight vector w.

4 Conclusion

This paper mainly applied SVM with different inputs, i.e., the average volume of
the left or right hand grip task block and a single volume within the left or right
hand grip task block to explore the asymmetrical cortical activity in motor areas.
The SPM t-contrast (right hand grip > left hand grip) was also done.
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Strange Non-chaotic Attractors in Noisy
FitzHugh-Nagumo Neuron Model

Guang-Jun Zhang, Jue Wang, Jian-Xue Xu, Hong Yao, and Xiang-Bo Wang

Abstract Strange Non-chaotic attractors in noisy FHN neuron model
periodically driven are researched in this paper. Here we show, based on a
nonlinear dynamical analysis and numerical evidence, that under the perturbation
of weak noise strange non-chaotic attractor can be induced in FHN neuron model.
And the mechanism of strange non-chaotic attractor is related to transitions among
chaotic attractor, periodic-3 attractor and chaotic saddle in two sides of crisis point
of system respectively.

Keywords Strange non-chaotic attractor · Chaotic saddle · Periodic-3
attractor · Chaotic attractor

1 Introduction

It is well known that neurons work in a noisy environment, and it is therefore of
great interest to study how information is encoded and transmitted when neurons
work in such a noisy environment [1]. The subject of strange non-chaotic attrac-
tors (SNAs) has attracted continuous interest in the nonlinear and statistical physics
community [2, 3]. Here “strange” refers to the nontrivial, complicated geometry
of the attractor, and “nonchaotic” indicates that the maximum Lyapunov exponent
of the attractor is non-positive and there is thus no sensitive dependence on initial
conditions [2, 3]. In principle, strange non-chaotic attractors occur in all dissipa-
tive dynamical systems that exhibit the period-doubling route to chaos, where the
attractors formed at the accumulation points of period-doubling cascades are frac-
tal sets with zero Lyapunov exponent [3]. In some neuron model which leads to
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chaos by the route of periodic-doubling bifurcation, such as autonomous, periodi-
cally driven and quasiperiodically driven dynamical system, as typical dissipative
dynamical systems, there should exist robust strange non-chaotic attractors. But this
has not attracted interest of researchers. The results of neurophysiology experiment
show that non-periodic firing neurons are more sensitive to stimulis than periodic
firing neurons [4]. For some chaotic spike neuron model, the strange non-chaotic
attractor is of particular importance in the research of encoding and transmission
of neural information in noisy environment. There probably are some relations
between some phenomena in neuron spike, such as chaotic synchronization, and
strange non-chaotic attractors. So in the paper, strange non-chaotic attractors in
periodically driven FHN neuron model under the perturbation of weak noise are
researched.

2 The Bifurcation Characteristic of the Periodically Driven FHN
Neuron Model

We consider the periodically driven FitzHugh-Nagumo neuron model in the follow-
ing form Ref. [5]:

{
ε dv

dt = v(v− a)(1− v)− w
dw
dt = v− dw− b+ r sinβt

(1)

The variable v is the fast voltagelike variable and w is the slow recovery variable.
Throughout the paper we fix the values of the constants to ε = 0.02, d = 0.78, a =
0.5, r = 0.27, β = 14.0. And parameter b is as controlling parameter. A fir-
ing or spike is considered to occur if the variable v has a positive-going crossing
of the firing threshold vth, chosen as vth = 0.5. According to Ref. [6], by modi-
fied generalized cell mapping, the nonlinear dynamics global characteristic of FHN
neuron model is obtained. The bifurcation figure of system is shown in Fig. 1. As
shown in Fig. 1, it can be seen that with the change of b system leads to chaos
by the route of periodic-doubling bifurcation. When b is some certain value cri-
sis in FHN neuron model occurs. And when b = 0.2404, boundary crisis occurs.
A chaotic saddle in FHN neuron model appears after boundary crisis occurs. In
a certain parameter region before boundary crisis there coexist a chaotic attractor
and a period-3 attractor. But after boundary crisis chaotic attractor disappears, the
system displays a period-3 spiking, and a chaotic saddle remains.

3 The Strange Non-chaotic Attractor in FHN Neuron

In this paper, the Gaussian distributed white noise ξ (t) is used for perturbing the
system. The mean and autocorrelation function are as follows respectively:
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Fig. 1 The bifurcation characteristic of FHN neuron model

{
< ξ (t) >= 0
< ξ (t)ξ (s) >= 2Dδ(t − s)

(2)

where D is the noise intensity.
After the noise is added to Eq. (2), the equation becomes:

{
ε dv

dt = v(v− a)(1− v)− w
dw
dt = v− dw− b+ r sinβt + D · ξ (t)

(3)

Ref. [2] researched the strange non-chaotic attractor in logistic map and kicked
duffing oscillator when the system bifurcation parameter is in the right of bound-
ary crisis. In this case, a periodic attractor and a non-attracting chaotic invariant
set (chaotic saddle) coexist, and the asymptotic attractor of system is periodic at the
absence of noise. Under the perturbation of appropriate noise, the transition between
periodic attractor and chaotic saddle will occur. Then strange non-chaotic attrac-
tor is induced. The attractor appears to be geomertrically strange, but its nontrivial
maximum Lyapunov exponent is negative. There are fluctuations of the finite-time
Lyapunov exponent into the positive side.

According to the Section 2, a boundary crisis occurs in FHN neuron model when
b is 0.2404. When the b is in the right of boundary crisis point, a periodic-3 attrac-
tor and a non-attracting chaotic invariant set (chaotic saddle) coexist, and system
displays periodic-3 spiking at the absence of noise. At the presence of appropriate
noise, the same transition between periodic attractor and chaotic saddle will occur.
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Then strange non-chaotic attractor should be induced to occur. The mechanism of
strange non-chaotic attractor in this case is the same as the case in Ref. [2].

When the b is in the left of boundary crisis, the asymptotic attractor of system
is a chaotic attractor. Then, the Lyapunov exponent of system response is posi-
tive. According to Ref. [7], at the presence of weak noise, the system motion may
be in transition between attractors in two sides of continuous bifurcation point.
Appropriate noise can induce the system motion to move towards attractors in the
right of crisis point. Trajectory from a random initial condition typically moves
toward the chaotic attractor, stays near the attractor for a finite time, and noise
induced it to transit to the periodic attractor or chaotic saddle. If the system motion
transit to periodic attractor, it will stay finite time in periodic attractor until noise
enough to induce it to transit to chaotic saddle or chaotic attractor in the left of cri-
sis point. If the system motion transit to chaotic saddle, there is thus transient chaos.
Trajectory typically moves toward the chaotic saddle along its stable manifold, stays
near the saddle for a finite time, and leaves the saddle along its unstable manifold
before finally approaching the periodic attractor. After finite time, the appropriate
noise also moves the system motion to the chaotic attractor in the left of bound-
ary crisis point. Then strange non-chaotic attractor should be also induced to occur.
The mechanism of strange non-chaotic attractor is related to the random transitions
between chaotic attractor in the left of boundary crisis point and the periodic attrac-
tor in the right of crisis point. Because in the right of crisis point there coexist chaotic
saddle and periodic attractor, the system motion also transits probably between peri-
odic attractor and chaotic saddle. Because chaotic spike neurons are more sensitive
to stimulis than periodic firing neurons [4], strange non-chaotic attractor in this case
is of much more significance to reveal some phenomena in life science.

To verify the theoretical analysis above, the Eq. (3) is integrated using the fourth-
order Runge-Kutta method with time step 	 t = 0.01 second. And the Poincare
maps of several cases are obtained respectively by section t = n∗2π/β(n =
1, 2, 3, . . .). The Lyapunov exponent λ1 of system in several cases are calculated
respectively. The results of calculation are shown in Figs. 2, 3, 4, and 5. From the

(a) (b)

Fig. 2 The attractors of FHN neuron model (Eq. 3) in the right of crisis point when b =
0.241, ε = 0.02, d = 0.78, a = 0.5, r = 0.27, β = 14.0. (a) D = 0.0, (b) D = 0.005
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(a) (b)

Fig. 3 The evolution of the finite-time Lyapunov exponent in two cases of noise in the right of
crisis point when b = 0.241, ε = 0.02, d = 0.78, a = 0.5, r = 0.27, β = 14.0. (a) D=0.00,
(b) D = 0.005

(a) (b)

Fig. 4 The attractors of FHN neuron model (Eq. 3) in the left of crisis point when b = 0.240, ε =
0.02, d = 0.78, a = 0.5, r = 0.27, β = 14.0. (a) D = 0.0, (b) D = 0.03
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Fig. 5 The evolution of the finite-time Lyapunov exponent in two cases of noise in the left of
crisis point when b = 0.240, ε = 0.02, d = 0.78, a = 0.5, r = 0.27, β = 14.0. (a) D = 0.00,
(b) D = 0.03
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Figs. 2 and 3, it can be seen that when b is in the right of crisis point the asymptotic
attractor is a period-3 attractor without noise, the Lyapunov exponent λ1 is negative.
And at the presence of weak noise the asymptotic attractor is a strange attractor, but
it is not chaotic because its Lyapunov exponent is non positive at the most time.
From the Fig. 4 and 5, it can be seen that when b is in the left of crisis point the
asymptotic attractor is a chaotic attractor without noise, the Lyapunov exponent λ1
is positive. And at the presence of weak noise the asymptotic attractor is a strange
attractor, but it also is not chaotic because its Lyapunov exponent is non positive at
the most time.

4 Conclusions

In summary, we have shown that strange non-chaotic attractor can occur in periodi-
cally driven FHN neuron. With the change of b system leads to chaos by the route of
periodic-doubling bifurcation. When b is some certain value crisis occurs. And when
b= 0.2404, boundary crisis occurs. A chaotic saddle in FHN neuron model appears
after boundary crisis occurs. In a certain parameter region before boundary crisis
there coexist a chaotic attractor and a period-3 attractor. But after boundary crisis
chaotic attractor disappears, the system displays a period-3 spiking, and a chaotic
saddle remains. Not only can strange non-chaotic attractor appear at the appropriate
noise when there coexist periodic attractor and chaotic saddle in nonlinear dynam-
ical system just like Ref. [3], but also when the asymptotic attractor of system is a
chaotic attractor in the neighborhood of left of crisis point.
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Pattern Discrimination on Deterministic
and Noise-Induced Impulses in Neural
Spike Trains

Ying Du and Qi-Shao Lu

Abstract There are considerable contrasts in between the interval distribution of
firing responses caused by purely deterministic simulations and noisy ones. We use
ISI-distance to calculate the distance between the deterministic and noise-induced
impulse patterns of the cold receptor model. This result is instructive to understand
how noise interacts with non-linear dynamics in encoding mechanisms of neuronal
stimulus by using data analysis on spike trains extracted from the model.

Keywords Spike train · Noise · ISI-distance

1 Introduction

Noise introduced to nonlinear systems can have a profound effect on their dynam-
ics [1]. Neuronal models are among the most widely used dynamics to study the
phenomenology of excitable systems under the influence of noise. When these
models are driven by noise, a variety of excitation phenomena including stochastic
resonance and coherence resonance has been observed. Especially, signal encod-
ing in temperature sensitive skin receptors is attributed to modulation of intrinsic
membrane potential oscillations with contribution of noise [2].

For further examination of the principle encoding properties and the effects of
noise, Braun et al. used a minimal Hodgkin-Huxley type computer model to sim-
ulates stationary temperature dependencies of peripheral cold receptors [3]. This
model shows bifurcations from tonic firing to burst discharges, modulation of burst
discharges and transitions from subthreshold oscillations to skipping and regular
firing [4]. In this paper, we study the noise effects in the temperature encoding
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of neuronal spike trains in this cold receptor model by using data analysis of ISI-
distances of firing patterns caused by purely deterministic simulations and noisy
ones.

2 The ISI-Distance Method and Analysis

The corresponding data analysis suggest that addition of noise can considerably
extend the dynamical behavior of the system [4]. First, we use the return maps of
inter-spike interval(ISI), that is ISI(n+1) versus ISI(n), to reflect the influence of
noise shown as Fig. 1.

From the Fig. 1, we can see that there are additional clusters which include both
longer intervals indicating the occurrence of skippings as well as very short intervals
indicating burst discharges. The noisy return map elucidates obvious different fluc-
tuations with the different noise density. We can see from the figure that the effect
of the noise become greater with increasing the noise intensity.

Except traditional methods for analyzing the data, measuring the overall degree
of synchrony between different spike trains is also an important tool. In this paper,
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Fig. 1 Return maps of simulation runs for the same temperature T = 20◦C but different levels of
the noise intensity
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we also use ISI-distance [5] to compare dissimilarity between the deterministic and
noisy simulations at different temperatures. The distance between two spike trains
is defined by the following procedure: the value of the current interspike interval of
the spike train is defined according to each time instant

xisi(t) = min(txi |txi > t)− max(ti|txi < t), tx1 < t < txM (1)

and accordingly for the other spike train tyj . Then the second step the ratio between
two spike trains xisi and yisi is taken

I(t) =
{

xisi(t)
yisi(t)

− 1, if if xisi(t) < yisi(t)

−( yisi(t)
xisi(t)

− 1), else
(2)

Finally, the absolute ISI-distance is integrated over time,

DI =
∫ T

t=0
dt|I(t)|, (3)

Then we use this ISI-distance to characterize the distances between deterministic
and noised spike trains. The Fig. 2 presents the firing regimes at T = 20◦C. The
middle row shows the two recorded time series where the spike train x is determin-
istic data (marked in blue) and y is a stochastic spike train with varying noise level
(marked in red).

The ISI-values according to Eq. (1) are shown in each top row, and the corre-
sponding normalized ISI-distance Eq. (2) are shown in the bottom row. The value
of the ISI-distance sum appears as a label in the title of each subfigure. Each sub-
figure shows the distance between the deterministic spike train and the stochastic
one at varying levels of the noise intensity. We find as the noise density increases
from d = 0.005 to d = 0.5 in each row, the fluctuations of the spike times in y(t)
become stronger. The ISI-distance between the spike train x(t) and y(t) increases
form 0.178(d = 0.0005) to 0.389(d = 0.05), and then to 0.446(d = 0.5). That is,
the ISI-distance will increase for stronger noise intensity.

3 Conclusion

In conclusion, we found that the effect of the noise will become stronger with
increasing the noise intensity, that is, spike trains can be more strongly affected
by greater noise than lower one in cold receptors. This again indicates that addi-
tion of noise can considerably extend the dynamical behavior of the system with
coexistence of different dynamical situations at deterministically fixed parameter.
This effect between low- and high-dimensional dynamics have to be considered as
qualitatively important factors in neuronal encoding.
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Fig. 2 The ISI-distance between the deterministic and stochastic spike trains at T = 20◦C with
different noise
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Desynchrony in Two Chaotic Neurons
with Uncertain Couple and Mix-Adaptive
Feedback

Yong Zhao and Qishao Lu

Abstract In this Chapter, desynchrony in two chaotic neurons with uncertain
couple and adaptive feedback is discussed. A new adaptive feedback scheme is
proposed to realize desynchrony in two chaotic neurons. At last, numerical simu-
lations for two Hindmarsh-Rose neurons model. Maybe there is a theoretical guide
to understand information processing and coding, even treating some diseases.

Keywords desynchrony · Adaptive delay feedback · Neural activity · The synaptic
coupling strengths · Neuronal network · The feedback strength

1 Introduction

Neural activity is a cooperative process of neurons [1]. Collective behaviour of neu-
ral activity plays an important role in the transmission of the neural information.
Synchronization as a Collective behaviour plays a vital role in information process-
ing in the brain. However, physiological studies have shown some diseases have
been caused by too much synchronization, such as Parkinsons disease. Therefore,
for seeking controlling method of synchronous neurons, maybe there is a theoretical
guide to understand information processing and coding, even treating some diseases.
Hence, as an example, the uncertain coupled Hindmarsh-Rose neurons model is
discussed by the given scheme in Section 3. Furthermore, we find small mismatch
parameters on the effects of the desynchrony are robust.
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2 Main Result

In this section, based on the invariance principle of differential equations [2] and
matrix inequality, desynchrony in two uncertain coupled chaotic neurons with
adaptive delay feedback is investigated,and general theory is given. Consider the
following two uncertain coupled chaotic neurons system:

ẋ1 = f (x1)+ εH(x1, x2), dotx2 = f (x2)+ εH(x2, x1) (1)

where xi = (xi1, xi2, · · · , xin)T ∈ Rn, f (xi) = (fi1(xi), fi2(xi), · · · , fin(xi))T is a non-
linear vector function, H is unknown, and can be linear or nonlinear. Let Ω ⊂ Rn

be a chaotic bounded set of (1), which is globally attractive. Generally, we assume:

(1) the nonlinear vector function f (xi) is globally Lipschitz with positive constants
ki > 0 such that |fi(x)− fi(y)| ≤ ki|x− y| for any x(t), y(t) ∈ Rn.

(2) H(xi, xj) is Lipschitz with positive constants mi > 0 and nj such that |H(xi, xj)−
H(yi, yj)| ≤ mi|xi − yi| + nj|xj − yj|.

In what follows, two uncertain coupled chaotic neurons with mix-adaptive
feedback is described by the following equation.

{
ẏ1 = f (y1)+ εH(y1, y2)+ k1(x1 − y1),

ẏ2 = f (y2)+ εH(y2, y1)+ k2(x2(t − τ )− y2)
(2)

where y is the response state, τ is the delay for the feedback control. The feedback
strength ki = (ki1, ki2, · · · , kin)T is adapted according to the following scheme:

k̇1 = γ1(x1 − y1)2, k̇2 = γ2(x2(t − τ )− y2)2 (3)

Let ei = xi − yi, eτi = xi(t − τ ) − yi, xi(t − τ ) = xτi (t), then we can obtain from
(2.1) and (2.2)

{
ė1 = f (x1(t))− f (y1)+ ε(H(x1(t), xτ2(t))− H(y1, y2))+ k1e1,

ėτ2 = f (xτ2(t))− f (y1)+ ε(H(xτ2(t), xτ1(t))− H(y2, y1))+ k2eτ2,
(4)

Definition 1 For the two systems described by Eqs. (1) and (2), we say they possess
the property of desynchrony if there exists ei → 0 and eτj → 0, i �= j, i, j = 1, 2 ,
as t →+∞.

Theorem Assume (1) and (2) holds, furthermore, Eqs. (1) and (2) satisfy the adap-
tive scheme (3). Then desynchrony in two uncertain coupled chaotic neurons can be
achieved, that is, lim

t→∞ ei = 0 and lim
t→∞ eτj = 0, i �= j, i, j = 1, 2.
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According to above proposed desynchrony scheme, we obtain desynchrony in
two uncertain coupled chaotic neurons effectively. The above results are rather gen-
eral. In what follows, the numerical example may be helpful to understand the above
analytical results.

3 Numerical Simulation

In this section, we consider a model Hindmarsh-Rose neuron described by the
following equations :

⎧
⎪⎨

⎪⎩

ẋi1 = xi2 − ax3
i1 + bx2

i1 − xi3 + Ix,

ẋi2 = c− dx2
i1 − xi2,

ẋi3 = r[s(xi1 − x̄)− xi3]

(5)

where xi = (xi1, xi2, xi3), i = 1, 2, xi1 is the membrane potential, xi2 is a recov-
ery variable associated with fast current, z is a slow ionic current. Here a = 1.0,
b = 3.0, c = 1.0, d = 5.0, s = 4.0, x̄ = −1.60, r = 0.005. I as a control param-
eter. The change of the value of I causes rich firing behaviour. System(5) exhibits
multiple time-scale chaotic bursting behavior for 1.47 < I < 3.45.

Consider the following two uncertain coupled HR chaotic neurons system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ11 = x12 − ax3
11 + bx2

11 − x13 + Ix + εH(x21, x11),

ẋ12 = c− dx2
11 − x12 + εH(x22, x12),

ẋ13 = r[s(x11 − x̄)− x13]+ εH(x23, x13),

ẋ21 = x22 − ax3
21 + bx2

21 − x23 + Ix + εH(x11, x21),

ẋ22 = c− dx2
21 − x22 + εH(x12, x22),

ẋ23 = r[s(x21 − x̄)− x23]+ εH(x13, x23),

(6)

where relevant parameter values are the same of system (5), when ε = 1.4, syn-
chronization has been achieved, the corresponding numerical results are shown in
Fig. 1.

As real coupled neurons are concerned, information from the presynaptic neu-
ron is transmitted to the postsynaptic one with certain time delay. Time delays are
inherent in neuronal transmissions. Thus it is important to seek controlling method
of synchronous neurons.

In what follows, the corresponding systems with adaptive feedback can be
described by the following equation:
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Fig. 1 The portrait of system
(3.2) for ε = 1.4

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ11 = y12 − ay3
11 + by2

11 − y13 + Iy + εH(y21, y11)+ k11e11,

ẏ12 = c− dy2
11 − y12 + εH(y22, y12)+ k12e12,

ẏ13 = r[s(y11 − ȳ)− y13]+ εH(y23, y13)+ k13e13,

ẏ21 = y22 − ay3
21 + by2

21 − y23 + Iy + εH(y11, y21)+ k21eτ21,

ẏ22 = c− dy2
21 − y22 + εH(y12, y22)+ k22eτ22,

ẏ23 = r[s(y21 − ȳ)− y23]+ εH(y13, y23)+ k23eτ23,

(7)

with the law (3) for the adaptive feedback strength, τ represents the time delay.
We take the synaptic coupling strength as ki1 and let ki2 = ki3 = 0, i = 1, 2.

Furthermore, we take the parameters γ1 = γ2 = 0.1, Ix = 3.2 and the ini-
tial feedback strength 0.01 to investigate desynchrony in two uncertain coupled
chaotic neurons. This coupled system obviously satisfies the theoretical conditions
of the theorem in Section 2 [3]. The corresponding numerical results are shown in
Fig. 2. It is seen from Fig. 2a, as τ = 0.3, the coupled system achieves desyn-
chrony. Furthermore, from Fig. 2b, the feedback strength k11 = k21 asymptotically
converges to a local fixed value.

Nonidentity is common in nature. Thus it is important to investigate desynchrony
in two uncertain coupled chaotic neurons with small mismatch of parameters. We
take Ix = 3.2, Iy = 3.18, respectively. We can observe the robustness of feedback
strength of deynchrony with respect to the feedback strength, compared Fig. 2. This
paper proposes a general method for determining desynchrony condition of neuronal
networks.
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Fig. 2 a Desynchrony for two uncertain coupled chaotic neurons with delay τ = 0.3. b The
temporal evolution of k11, k21 for Ix = 3.2
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Outer Synchronization of Coupled
Discrete-Time Networks with Time Delay

Weigang Sun, Rubin Wang, Weixiang Wang, and Jianting Cao

Abstract In this Chapter, we study the outer synchronization between two
discrete-time networks with time delay. Firstly we introduce time delay into our
models and discuss the delay effects. The synchronization conditions are derived.
Finally a numerical example is shown to illustrate our theoretical results.

Keywords Complex network · Inner synchronization · Outer synchronization

1 Introduction

For recent ten years, complex networks have attracted much attention. Network
model and network dynamics are two important topics in the studying complex
networks. For network models, the small-world network [1] and scale-free net-
work [2] are the most known models. While network synchronization, robustness
and fragility of network, virus spreading etc are main research contents in network
dynamics.

While studying the dynamics of networks, synchronizing all the nodes is an inter-
esting thing and has attracted wide attention. From the existing papers, we find that
synchronization also happens inside a network, strictly speaking, we call it as inner
synchronization [3, 4]. A nature question: does synchronization between two cou-
pled networks also happen? In the literature [3], the authors used the master-slave
method to realize the synchronization between two coupled networks, proposing
the outer synchronization concept. In Ref. [5], the authors study the synchronization
between two groups, aiming at the connection between two groups. In natural world,
the inner and outer synchronization may be happen at the same time. For example,
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in Shanghai subway, when the train reaches the station, the outer and inner doors
opened and closed simultaneously.

In the present paper, we study the synchronization between two discrete-time
networks with time delay. Due to the distance between two networks, the introduc-
tion of time-delay is meaningful. The rest of this paper is organized as follows. In
Section 2, the model presentation and synchronization analysis is given, numerical
example is shown in Section 3, finally the conclusion is presented.

2 Model Presentation and Synchronization Analysis

We consider the following network models, the node dynamical equation is xi(t +
1) = f (xi(t)), i = 1, · · · , Nx and yj(t + 1) = g(yj(t)), j = 1, · · · , Ny, respectively,
where f (·) : Rnx → Rnx , g(·) : Rny → Rny are continuously differential functions,
xi(yj) is an nx-dimensional (ny-dimensional) state vector. The dynamical equations
of the network systems are as follows:

xi(t + 1) = f (xi(t))+
Ny∑
j=1

aijΓ1yj(t − τ ), i = 1, 2, · · · , Nx,

yj(t + 1) = g(yj(t))+
Nx∑
i=1

bjiΓ2xi(t − τ ), j = 1, 2, · · · , Ny,

(1)

where A is an Nx×Ny dimensional coupling matrix, whose entries (aij) represent the
intensity of the direct interaction from i in network X to j in network Y, analogously
the entries of (bji) are same defined as (aij). Matrix Γ1(Γ2) ∈ Rnx×ny(Rny×nx ) is the
inner-coupling matrix. τ is time delay between networks.

Let’s now consider the possibility whether the individual network achieve syn-
chronization, i.e., x1(t) = · · · = xNx (t) = xs(t) and y1(t) = · · · = yNy (t) = ys(t). If
there exist such synchronous states, satisfying

Ny∑

j=1

aij = μ1,∀i ∈ X,
Nx∑

i=1

bji = μ2,∀j ∈ Y .

without loss of generality, we set μ1 = μ2 = 1.
Thus the synchronized state equations are

xs(t + 1) = f (xs)+ Γ1ys(t − τ ),
ys(t + 1) = g(ys)+ Γ2xs(t − τ ).

(2)

Linerizing the synchronous state around xs and ys, we get

δxi(t + 1) = Df (xs)δxi(t)+
Ny∑
j=1

aijΓ1δyj(t − τ ), i = 1, 2, · · · , Nx,

δyj(t + 1) = Dg(ys)δyj(t)+
Nx∑
i=1

bjiΓ2δxi(t − τ ), j = 1, 2, · · · , Ny.

(3)



Outer Synchronization of Coupled Discrete-Time Networks with Time Delay 335

Applying the algebraic knowledge, we derive the following equations,

δx(t + 1) = Df (xs)δx(t)+ λΓ1δy(t − τ ),
δy(t + 1) = Dg(ys)δy(t)+ λΓ2δx(t − τ ),

(4)

where λ is the eigenvalues of matrix

(
0 A
B 0

)
.

In the sequel, we utilize the linear matrix equality to drive a synchronous
theorem.

Theorem 1 Consider network model (1). If there exist two positive matrices
P, Q > 0, satisfying Θ =

⎛

⎜⎜⎜⎝

1 0 0 λDf (xs)TPΓ1

0 2 λDg(ys)TQΓ2 0

0 λΓ T
2 QDg(ys) λ2Γ T

2 QΓ2 − Inx 0

λΓ T
1 PDf (xs) 0 0 λ2Γ T

1 PΓ1 − Iny

⎞

⎟⎟⎟⎠ < 0,

where 1 = Df (xs)TPDf (xs) − P + Inx ,2 = Dg(ys)TQDg(ys) − Q + Iny , and
I denotes the identity matrix, then the network (1) asymptotically synchronizes to
xs, ys defined by the equation (2) for the fixed delay τ > 0, respectively.

Proof Consider the Eq. (4). Choose the Lyapunov function as

V(t) = δx(t)TPδx(t)+ δy(t)TQδy(t)

+∑t−1
σ=t−τ δx(σ )Tδx(σ )+∑t−1

σ=t−τ δy(σ )Tδy(σ ).
(5)

Therefore,

ΔV(t) = V(t + 1)− V(t) =

⎛

⎜⎜⎝

δx(t)
δy(t)

δx(t − τ )
δy(t − τ )

⎞

⎟⎟⎠

T

#

⎛

⎜⎜⎝

δx(t)
δy(t)

δx(t − τ )
δy(t − τ )

⎞

⎟⎟⎠ . (6)

From the above condition, we know the zero solution of (4) is asymptotically stable,
which shows that the networks achieve individual synchronization.

3 Numerical Example

In the networks considered below, the node dynamics are taken as the Logistic map,
i.e., f (x) = ρ1x(1− x) and g(y) = ρ2y(1− y).

The coupling matrices are chosen as,

A =
⎛

⎝
0 1/2 1/2
0 1 0

1/2 1/4 1/4

⎞

⎠ and B =
⎛

⎝
1 0 0

1/2 1/4 1/4
1/4 3/4 0

⎞

⎠ .
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Fig. 1 Synchronization errors of network (1) with ρ1 = 2.6, ρ2 = 2.3, τ = 1

We take Γ1,Γ2 as identity matrices of dimension one. Set Ex = ‖xi − xs||, i =
1, · · · , 3, and Ey = ‖yj − ys||, j = 1, · · · , 3, and Eouter = ‖xi − yi||, i = 1, · · · , 3.
Figure 1 plots the synchronization errors.

Taking some fit parameters, we find the networks achieve the individual syn-
chronization, and outer synchronization also exists. This is interesting. Especially
the delay influences the outer synchronization more.

4 Conclusion

In this paper, we study the synchronization between two discrete-time networks
with time delay. From the numerical example we can see the delay affects their
inner network synchronization less, while the delay has greater influence on outer
synchronization. How to give the domain of time delay will be the scope of our
future research work.

References

1. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393 (1998)
440–442.

2. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286 (1999)
509–512.

3. Li, C.P., Sun, W.G., Kurths, J.: Synchronization between two coupled complex networks. Phys.
Rev. E. 76 (2007) 046204.

4. Li, C.P., Sun, W.G., Kurths, J.: Synchronization of complex dynamical networks with time
delays. Physica. A. 361 (2006) 24–34.

5. Sorrentino, F., Ott, E.: Network synchronization of groups. Phys. Rev. E. 76 (2007) 056114.



Part VI
Brain Imaging, EEG, MEG



Phase Resetting on Scalp EEG, Study on Its
Synchrony and Distribution

Yusely Ruiz, Susan Pockett, Walter J. Freeman, Eduardo González,
and Guang Li

Abstract A 64 electrode cap was used to record the EEG from 6 subjects. The
Hilbert transform was used to estimate the analytic amplitude and analytic fre-
quency. Phase resetting were identified by spikes on the temporal differences of
successive unwrapped analytic phase value. Evidence was acquired of global phase
resetting and re-synchronization that is necessary for the spatial-temporal pattern
emergence. Phase resetting were clustered in time and this is evidence that the chan-
nels are not completely independent. The repetition rates of the phase resetting were
proportional to the filter bandwidth by a factor close to 0.641 as predicted by Rice.

Keywords Scalp EEG · Hilbert transform · Phase resetting

1 Introduction

The brain is a complex system, integrated by a variety of functional entities
connected at numerous levels: microscopic, mesoscopic and macroscopic. The
techniques used to record brain activity at microscopic (local field potentials)
and mesoscopic (ECoG) scales are invasive procedures commonly used with ani-
mals and occasionally with humans who have brain diseases that require surgery
or are victims of global paralysis. However the techniques used at macroscopic
scales (EEG, MEG, fMRI), are completely non-invasive procedures. Thus, it is a
research interest to study the brain activity at macroscopic scales, taking advantage
of the cognitive and phenomenological awareness of a normal healthy subject by
non-invasive procedures.

Well-defined behavioral states require sequential epochs of cortical activity, in
which the neural activity in multiple cortical areas is formed by cooperation and
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expressed in spatial-temporal patterns [1, 2]. Thus far there is some experimental
evidence that supports the idea that the sequence formation of spatial–temporal pat-
terns begins with the abrupt resetting of phase values on every channel, followed
by re-synchronization and spatial pattern stabilization [3, 4]. Freeman and cowork-
ers had found in the Hilbert Transform (HT) a useful tool to study these patterns,
mainly in ECoG signals [3–7]. They have also demonstrated that in human and ani-
mal ECoG the distribution and rate of the phase resetting showed properties similar
to a “Rice distribution” [8, 9]. In this work the HT is applied to EEG signals and
phase resetting synchrony and its distribution is studied.

2 Materials and Methods

Data were collected in the Psychology Department of the University of California
Berkeley and the study was approved by the UC Berkeley Institutional Review
Board. Data from six healthy male subjects between 23 to 44 years old were
recorded and all subjects gave informed consent. The EEG was recorded using
BioSemiTM amplifiers with a 64-electrode cap using Ag/AgCl electrodes; the sam-
pling rate was 512 Hz and the analog filter was set from DC to 134 Hz. Continuous
records were taken, with the times of various sorts of stimuli and responses marked
in a 65th recording channel, more detail about signal recording can by found in [10].

Specific data epochs, surrounding the stimulus mark, were extracted from the
recording. The offset of each channel was removed and each epoch was normalized
by dividing by the global standard deviation. Temporal band pass filters were then
applied to extract beta (12–25 Hz) and gamma (25–50 Hz) and finally the HT was
applied to decompose the EEG into the analytic amplitude and analytic phase [5, 7].

Synchrony of phase resetting across the all array was explored by naked eye using
the CAPD raster plot (Coordinate Analytic Phase Differences defined as the tempo-
ral differences between the unwrapped analytic phases) [6, 7]. Upward or downward
deviation from the mean differences corresponds to phase resetting and they were
visualized as spikes. In order to avoid common reference artifactual synchrony, data
were re-referenced to the average signal of each hemisphere [10, 11].

The distribution and rate of the phase resetting were also studied using 8 differ-
ent temporal filters with bandwidth varying from 4 to 32 Hz and centered at two
frequencies. Histogram of the time lapse between phase resetting were constructed
and the modal frequency, in Hz, was estimated as the inverse of the modal interval,
in ms, which was determined from the histogram maxima [9].

3 Results

Abrupt phase resetting were observed involving groups of channel clustered in time
but not simultaneous in the original signal and the re-referenced signal in all subject,
epoch and frequency bands. Figure 1 show an example of the CAPD raster plot. The
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Fig. 1 Raster plot of CAPD for the signal at the original reference and the signal reference to
mean signal of each hemisphere. Spikes on CAPD (black ) formed cluster of electrode that happen
at similar times for both references. Zero time present the stimulus onset, Beta band

clustering is evidence that the channels are not independent. Also, phase resetting
indicates the possibility of phase discontinuities that are necessary for the emergence
of spatial patterns that might be related to cognition.

Histogram and modal frequencies of the time between phase resetting in the
EEG signal are showed in Fig. 2 for two central frequencies fixed at 16 or 64. The

Fig. 2 Histograms of time intervals between phase resetting. The number of spikes and modal
frequency is highly dependent of the pass band width. “∗” central frequency at 16 Hz, “�” central
frequency at 64 Hz. The numbers on the top of the histograms represent the width of the pass band
used
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histograms were likewise invariant in accordance with the center frequencies of the
pass bands. On the EEG signals the repetition rates of the phase resetting were also
proportional to the filter bandwidth, whit small deviations from the 0.641 value at
bandwidth wider than 20 Hz. Thus far, it had been argued that these deviations could
be introduced by the non-ideal frequency response of the FIR filters [9].

4 Conclusions

Evidence was acquired of global phase resettings and re-synchronization that is nec-
essary for the spatial–temporal pattern emergence. Phase resetting were clustered in
time and this is evidence that the channels are not completely independent. Even so
referencing to the average signal has the inconvenient consequence of removing a
part of the genuine synchrony common to all channels, clusters of phase resetting
were also observed in this signal.

The phase resetting rate of EEG signals was proportional to the width of the
pass band used as predicted by Rice [8] and demonstrated by Freeman [9] in ECoG
signals. This is important because the Rice statistics may provide parameters with
which to search for and identify behaviorally related spatial-temporal patterns and
also help to understand the mechanisms by which the spontaneous background
activity of the brain is generated and reorganized in patterns.
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The Interaction Between the Parietal and Motor
Areas in Dynamic Imagery Manipulation:
An fMRI Study

Takafumi Sasaoka, Hiroaki Mizuhara, and Toshio Inui

Abstract Mental imagery is a cognitive function that includes sub-functions such
as generation, transformation, and matching. However, the neural substrates for each
sub-function are not yet clear. In the present study, we used event-related functional
MRI during a modified version of a mental clock task to investigate these neural
substrates. While participants were mentally transforming the clock hands, we found
activations in the left inferior parietal lobule, left motor related regions (premotor
area and supplementary motor area), and left insula, which were contra-lateral to
the right hand used to manipulate a 3-D mouse in the learning phase. These results
suggest that motor imagery was utilized for transformation of mental imagery.

Keywords Mental imagery · Embodied cognition ·Mental rotation · fMRI

1 Introduction

Mental imagery is a fundamental function used for various cognitive processes,
such as visual recognition, language processing, and reasoning. This function com-
prises sub-functions including generation, transformation, and matching. However,
the neural substrates corresponding to each sub-function are currently unclear.

The task most frequently used to investigate mental imagery is the mental rota-
tion task. A number of functional imaging studies on mental rotation have reported
activation in the posterior parietal cortex (PPC) and in motor related areas. The PPC
is suggested to be involved in spatial processing (e.g. [1]). On the other hand, acti-
vation in motor related areas is suggested to reflect the use of motor imagery, that
is, participants rotate objects mentally using their hands [2]. However, the exact role

T. Sasaoka (B)
Department of Intelligence Science and Technology, Graduate School of Informatics,
Kyoto University, Kyoto 606-8501, Japan
e-mail: sasaoka@i.kyoto-u.ac.jp

345R. Wang, F. Gu (eds.), Advances in Cognitive Neurodynamics (II),
DOI 10.1007/978-90-481-9695-1_55, C© Springer Science+Business Media B.V. 2011



346 T. Sasaoka et al.

of the left and right PPC and the degree of interaction between the PPC and motor
related areas in mental rotation tasks are still under debate.

Sack et al. used a mental clock task in which participants generated visual images
of two clock faces from auditory presented times (e.g. “2:00” and “5:00”) and com-
pared them [3]. These researchers showed that the left PPC is involved in generation
of mental imagery, whereas the right PPC is involved in matching. However, the pos-
sibility that other brain regions, e.g. motor cortex, were activated in their task was
not discounted.

In the present study, we employed a modified version of the mental clock task
and added a component of transformation, in order to clarify the neural substrates
for each function involved in mental imagery.

2 Materials and Methods

Twenty-three healthy males, aged 20–37 and all right-handed, participated in the
experiment. A written informed consent was obtained from each participant in
accordance with the Declaration of Helsinki. The experimental procedure was
approved by the ethics committee at Kyoto University.

The experiment consisted of practice and fMRI sessions. In the practice session,
participants actively learned the rotation speed of the clock hands (learning phase),
and subsequently performed the practice trials (practice phase) outside the MRI
scanner.

In the learning phase, one clock face was presented on the CRT display for
5 min. Participants could rotate the clock hands by manipulating a 3-D mouse
(3Dconnexion SpaceExplorer) using their right hand, and learned the rotation speed
of the clock hands. The clock hands rotated at a constant speed (60◦/s) irrespective
of the extent of rotation of the 3-D mouse.

In the practice phase, one clock face (1st stimulus) was presented for 1.5 s.
Participants were asked to memorize the position of the clock hands. A fixation
cross, colored white or red, was presented for 2 s. The color of the fixation cross
was used as a cue to indicate the direction of rotation: white denoted clockwise,
whereas red denoted counter-clockwise. Following the fixation cross, a dot of the
same color as the fixation cross was presented. Participants were asked to imagine
rotating the clock hands from the initial position toward the cued direction at the
learned speed until the dot disappeared. The duration of the presentation of the dot
was varied at 1, 3, or 5 s; that is, the degrees of rotation were 60◦, 180◦, or 300◦,
respectively. Following a 1.5 s blank screen, a second clock face (2nd stimulus)
was presented. Participants were asked to indicate whether the 2nd stimulus was
identical to the imagined position of the clock hands, by pressing the correspond-
ing key using their left forefinger or middle finger. They were asked to respond as
quickly and accurately as possible. A beep sound was presented when the response
was incorrect. One practice session consisted of 24 trials. Participants completed the
learning and practice phases 5 times.
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In the fMRI session, participants performed the same task as in the practice ses-
sions. Participants each completed two fMRI sessions. Each session consisted of 72
trials. The fMRI data were collected with a 1.5T MRI scanner (Shimadzu-Marconi)
with following scan parameters: TR= 3 s, TE= 49 ms, FA= 90◦, FOV= 192 mm,
in-plane resolution = 64 × 64, and slice thickness = 5 mm without gap. Image
processing and statistical analyses were performed using SPM5.

In order to dissociate the sub-processes in mental imagery, we created regressors
for each task event. These were: (1) the period from the onset of the first stimu-
lus until the fixation cross disappeared (Encoding); (2) the presentation of a dot
(Transformation); (3) the period from the presentation of the second stimulus until
the key response (Matching); and (4) the period from 1 s after the key response
until the onset of the 1st stimulus (Baseline). The fMRI data for each event were
compared with the baseline.

3 Results

The data from seven participants were excluded because the hit rate was below
chance even in the final training session. The rest of the participants self-reported
that they did not adopt any alternative strategy without making visual images to per-
form the task. Figure 1 shows the mean hit rates. Three-way analysis of variance
(ANOVA) with factors of angle of rotation, direction, and session revealed signif-
icant main effects of angle (F(2, 30) = 24.39, p<0.001) and direction (F(2, 30) =
6.99, p<0.05). There were no significant interactions. A post hoc comparison by
Tukey’s HSD revealed significant differences between all conditions of rotation
angle (p<0.05).

Figure 2a shows the brain activation during transformation (uncorrected
p < 0.005, cluster size > 20 voxels). We found significant activation in the left
dorsal premotor cortex (PMd) (BA6), the left supplementary motor area (SMA)
(BA6), the left insula (BA13), and the left inferior parietal lobule (IPL) (BA40).
Moreover, we found activation that was dependent on the angle of rotation during
transformation in the visual areas (BA18), the right fusiform gyrus, and the right
occipito-parietal junction (BA7/19) including the right transverse occipital sulcus

Fig. 1 Hit rate
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(a) (b)

Fig. 2 fMRI results (uncorrected p < 0.005, cluster size > 20 voxels) a Activation during
transformation, b angle-dependent activation during transformation

(Fig. 2b). During matching, the pre-SMA (BA6/8), the right ventral premortor cor-
tex (PMv) (BA6/9/44), the right postcentral gyrus (BA2/5), and the right IPL (BA40)
were activated. During encoding, the left PM (BA6) and the left superior parietal
lobule (SPL) (BA7) were activated.

4 Discussion

During transformation, motor related regions were activated only in the left hemi-
sphere, which is the hemisphere that is contra-lateral to the right hand used to
manipulate the 3-D mouse in the learning phase. Kosslyn et al. [2] reported that left
motor related regions were activated when participants performed a mental rotation
task that involved imagining rotation as a consequence of a motor activity performed
by their right hand [2]. This is consistent with our results.

The left PPC is suggested to be involved in generating mental images [3].
Moreover, it has been suggested that the left PPC has an important role in pre-
diction of movement of an object that is caused by self-generated movements [4].
Therefore, the brain activation during the transformation reflects the updating of the
position of imagined clock hands in the left IPL by utilizing motor commands from
the motor related regions. In addition, during encoding, the left PM was activated.
This may reflect the possibility that participants had already started to rotate the
clock hands prior to the presentation of the dot.

We found an angle-dependent activation in the right parieto-occipital region.
Spatial relationships of visual features are most likely processed in this region,
including the right transverse occipital sulcus [5]. The activations in these areas
can therefore be interpreted as reflecting processes involved in the calculation of the
difference between the first stimulus and the imagined clock face. These activations
in the right hemisphere were observed during matching. Activation in the right PPC
is consistent with the results of Sack et al. [3]. Ogawa et al. also showed that the
right PPC is involved in evaluating visuo-motor prediction error [6]. Therefore, the
activations in the right hemisphere during matching might reflect a comparison pro-
cess between the second clock face and the prediction of a clock face generated in
the left parietal and motor areas.
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An fMRI Investigation of the Mental Perspective
Shift in Language Comprehension

Toshiki Iwabuchi, Masato Ohba, Toshio Inui, and Kenji Ogawa

Abstract It has been hypothesized that the subject, at the onset of a sentence,
usually determines the perspective of the reader in sentence comprehension. We
used functional magnetic resonance imaging (fMRI) to investigate the neural basis
underlying the mental perspective shift in sentence comprehension. Participants
observed an event consisting of two objects, immediately after their perspective
was guided to one particular object by a spatial cue. The participants then judged
whether the displayed sentence correctly described the previous event. If the subject
of the sentence did not match the reader’s predetermined perspective, then a men-
tal perspective shift should occur. We found that the right dorsolateral prefrontal
cortex (dlPFC) showed greater activation under the invalid-cue conditions requiring
the mental perspective shift. The right dlPFC might therefore subserve the mental
perspective shift in sentence comprehension.

Keywords Sentence comprehension ·Mental perspective shift · functional MRI

1 Introduction

It has been hypothesized that the subject, at the onset of a sentence, usually deter-
mines the perspective of the reader or listener in sentence comprehension [1].
Furthermore, from a perspective of Cognitive Linguistics, a subject is a nominal ele-
ment that elaborates the trajector of the relationship profiled, which is characterized
as the initial focus of attention in a chain representing the order in which elements
are accessed [2]. According to these ideas, when the subject of the presented sen-
tence does not match the reader’s or the listener’s predetermined perspective, a kind
of mental perspective shift should occur.
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This mental perspective shift requires a greater processing cost in sentence com-
prehension [3]. The present study investigated the neural basis underlying the mental
perspective shift using fMRI. Our experiment consisted of two tasks. In Task 1,
we tried to measure the brain activity when a presented subject differed from the
reader’s predetermined perspective. Task 2 was designed to exclude the possibil-
ity that the brain activity recorded in Task 1 reflected eye movements or attention
switching.

2 Materials and Methods

2.1 Participants

Seventeen healthy native Japanese-speaking subjects participated in this study
(9 male, mean age 26 years, right-handed). Due to technical problems, four of 17
participants had to be excluded from the analysis.

2.2 Task Procedures

Our experiment consisted of two sessions. In both sessions, a spatial cue, an event
picture, a visual masking picture, and a simple Japanese sentence were sequentially
presented on the screen (Fig. 1). First, a spatial cue (crosshair) was displayed to
guide the participants’ perspective to one particular object. Then, the event was pre-
sented, which was a movie where a red and a blue object moved to the left or the
right together on the screen. These objects were a circle or a triangle. Finally, a
Japanese sentence was presented, comprised of two nominal phrases. Each phrase
concerned one particular object that had been represented as a colored circle or
triangle, together with a case particle (-ga, -wo or -ni corresponding to “nomi-
native”, “accusative”, and “dative” designations, respectively). Verbs were chosen
from “osu” or “hiku” (“push” and “pull”, respectively). If the subject of this sentence
did not match the participants’ predetermined perspective – in other words, if the cue
was invalid – a kind of mental perspective shift should occur. Furthermore, we used

Fig. 1 Schematic illustration
of the experiment. After a
fixation cross disappeared, a
cue, an event of moving
picture, a visual masking, and
a sentence describing the
previous event were
sequentially presented
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not only active sentences (e.g., “AKA-ga AO-wo oshiteru: The red circle is pushing
the blue triangle”) but also passive sentences (e.g., “AKA-ga AO-ni hikareru: The
red circle is pulled by the blue triangle”). Therefore, the experiment consisted of
four conditions: the valid cue and the active sentence (VA), the invalid cue and the
active sentence (IA), the valid cue and the passive sentence (VP), and the invalid
cue and the passive sentence (IP).

Participants performed Task 1 and Task 2, respectively, in the first or second
session. The order of tasks was counterbalanced across participants. In Task 1, par-
ticipants were required to judge whether the displayed sentence correctly described
the event shown in the previously presented event, by pressing a button during sen-
tence presentation (3 s). In Task 2, participants were required to judge whether
the subject of the sentence had appeared in the previous event during sentence
presentation.

2.3 Functional MRI and Image Analysis

A 1.5-T MRI scanner was used to obtain images. Image processing and statistical
analysis were performed using SPM5. Activation was thresholded at p < 0.001,
uncorrected for multiple comparisons for the voxel level and the extent threshold
was set at 20 contiguous voxels.

3 Results and Discussion

To investigate the performance in tasks (shown in Table 1), Analyses of variance
(ANOVAs) on the accuracy and the reaction time (RT) were conducted. These
included the within-subject factors TASK (Task 1, Task 2), CUE (valid, invalid),
and VOICE (active, passive). Regarding RTs, a significant effect of VOICE and a
significant interaction between TASK and VOICE were found (F(1, 12) = 39.0,
p < .001, F(1, 12) = 15.9, p < 0.005). A simple main effect of VOICE within
Task 1 was significant (F(1, 24) = 52.1, p < .001), indicating that passive sen-
tences are more difficult to process than are active sentences. Furthermore, a main
effect of CUE and an interaction between CUE and TASK were marginally signifi-
cant (F(1, 12) = 3.769, F(1, 12) = 3.470, p < .10). Within Task 1, a simple main
effect of CUE was significant (F(1, 24) − 7.219, p < .05). This analysis indicates

Table 1 Mean reaction time (RT) and mean percent of correct responses for each condition

Condition VA IA VP IP

Task 1 RT (s) 1.57 (0.37) 1.61 (0.40) 1.76 (0.44) 1.84 (0.48)
Accuracy (%) 93.7 (7.64) 90.4 (10.5) 89.4 (9.68) 88.7 (11.6)

Task 2 RT (s) 1.01 (0.23) 1.04 (0.27) 1.09 (0.30) 1.06 (0.26)

Standard deviations are given in parentheses
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Fig. 2 a Greater activation in the invalid-cue conditions compared with the valid-cue conditions.
b Greater activation in the passive conditions compared with the active conditions (p < 0.001
uncorrected, cluster size ≥ 20 voxels)

that the sentence comprehension cost for participants was greater when the cue was
invalid than when it was valid, irrespective of voice of the sentence.

In Task 1, during sentence comprehension (for 1 s from the sentence presen-
tation), the right dorsolateral prefrontal cortex (dlPFC) was more activated when
the cue was invalid than when it was valid (Fig. 2a). Additionally, in Task 1, the
pars opercularis, the pars triangularis, and the pars orbitalis of the left inferior
frontal gyrus showed greater activation in the passive conditions than in the active
conditions (Fig. 2b).

We then defined the activated cluster in the right dlPFC as a functional region
of interest (ROI), and performed a ROI analysis. Percent signal changes within the
ROI were calculated, then submitted to an ANOVA with the factors TASK, CUE
and VOICE. A significant main effect of TASK and a significant interaction between
CUE and TASK were found (F(1, 12) = 11.5, p < .01, F(1, 12) = 4.87, p < .05).
Within Task 1, a simple main effect of CUE was significant (F(1, 24) = 6.88,
p < .05). This analysis revealed that the activation of the right dlPFC was specific
for Task 1.

In Japanese passive sentences, verbs are obligatorily marked with a passive mor-
pheme –rare. Moreover, it has been considered that syntactic movements take place
in passive sentences. Because of these processes, the passive sentences were more
difficult to process than were the active sentences. The activations of the left infe-
rior frontal gyrus observed in the present study probably reflect processing of verbal
inflection [4], or processing of syntactic movements [5].

In conclusion, our study suggests that the dlPFC subserves the mental perspec-
tive shift in sentence comprehension. By comparing Task 1 with Task 2, we could
exclude the possibility that the activity in the dlPFC recorded in Task 1 reflected eye
movements or attention switching, which are common in the two tasks.
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Neural Representation of Space
for Sound-Source Localization: An fMRI Study

Takafumi Sato, Toshio Inui, Hiroshi Shibata, and Kenji Ogawa

Abstract Auditory perception is important in human spatial recognition as well as
in visual perception. This is especially true for the space behind the body, where
visual cues are not available. This study used functional magnetic resonance imag-
ing (fMRI) to investigate brain areas involved in processing of sound coming from
different directions, including this back space. We positioned speakers at seven loca-
tions in the MRI scanner, and the subjects performed a sound localization task.
Greater activation in the right superior parietal lobule (Broadmann area [BA] 7) and
inferior parietal lobule (BA40) were observed when the sound was delivered from
the right space compared with the left, indicating the involvement of these regions
for sound localization of the right space. Activation in the right precentral gyrus
(BA6) was also seen in the interaction of right/left and front/back, indicating the
role of this region for sound processing of the right-front and left-back space.

Keywords Spatial cognition · Auditory localization · fMRI

1 Introduction

The location of various objects relative to one’s own body need to be represented
topographically in the brain in order to make smooth and successful orienting or
defensive responses in a complex environment [1]. In this study, we investigated
how the 3-D world around the body is represented in the brain, especially the space
behind the body, where visual cues are not available. We were able to identify the
brain region involved in the representation of the peripersonal space using a sound
localization task [2].
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Recently, neural substrates underlying human auditory space perception has been
investigated with fMRI experiments. Virtual sound sources were presented in the
frontal space over headphones using sound stimuli convolved with individual head-
related transfer functions (HRTFs) [3, 4]. Although sound sources can be presented
virtually over headphones, the perceived object is not the sound source but a sound
image. Furthermore, properties of extrapersonal space behind the back of the subject
have not yet been investigated. In the present experiment, the sound stimulus was
presented directly from differently-located speakers arranged around subject’s head,
including the space out of view.

2 Materials and Methods

A total of 22 healthy volunteers (15 males and 7 females; mean age 26 years old)
participated in this study. Of these, we analyzed ten (7 males and 3 females) subjects
whose accuracy rate was over 85%.

In the experiment, an auditory stimulus rotating 360◦ around subject’s head was
presented (6 s), followed by a period of silence (1 s). The starting and fading location
of the rotating sound was the same, which was pseudo-randomly chosen among four
possible locations (combination of left/right by front/back). A stationary sound (3 s)
was then presented where the previous rotating sound had faded. Subjects were
required to locate the sound by pressing buttons immediately after the sound had
ended (Fig. 1). The MRI-compatible speakers were placed on the head coil of the
MRI scanner at 7 orientations around subject’s head except for a back position. We
used white noise as an auditory stimulus with a real sound source. Each orientation
was presented 12 times per session, and each subject underwent 3 sessions with the
same task.

Fig. 1 The time-course with
sample orientation used in the
experiment
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A 1.5-T scanner (Magnex, Shimadzu) was used to acquire T2∗-weighted echo
planar imaging with resolution of 4 × 4 × 5 mm. fMRI data analysis was per-
formed with SPM5. We modeled the periods of stationary sound presentation (3 s) of
four conditions (right-front, right-back, left-front, and left-back) as separate box-car
regressors that were convolved with a canonical hemodynamic response function.
Error and no-response trials were excluded from the regressors. We then compared
brain activities within this period among four conditions. A second-level random-
effects group analysis was conducted. Activations were thresholded at p < 0.001,
uncorrected for multiple comparisons for the voxel level, together with an extent
threshold of 20 voxels.

3 Results and Discussion

The right superior parietal lobule (BA7) and right inferior parietal lobule (BA40)
were significantly more activated when the sound was presented from right direc-
tions than from left directions (the main effect of right-left direction) (Fig. 2a). These
brain regions are related to the processing of right space. In addition, no signifi-
cant activation was observed during the stimulus presentation from left directions
compared with right. The right space predominance in human spatial recognition is
consistent with the results of a previous study [6]. We also tested the interaction of
right-left direction × front-back direction ([right-front > right-back] > [left-front >
left-back]) and found a significant increase in the signal in the right precentral gyrus
(BA6) (Fig. 2b). We then calculated percentage signal changes, defining the whole
group of activated clusters in this region as a region of interest (ROI). Two-way
repeated measures analysis of variance (ANOVA) of the percentage signal changes
indicated a significant interaction (p < 0.001) (Fig. 3). The simple main effect of
the right–left direction was significant in the front direction (p < 0.001) and was
marginally significant in the back direction (p < 0.1). The simple main effect of
the front-back direction was marginally significant in the left direction (p < 0.06).
These results suggest that this region is related to the spatial processing of right-front
and left-back spaces. This is congruent with the previous study, which indicates that
the right precentral gyrus merges oculomotor and somatomotor space coding [6].

Fig. 2 Brain activity
observed in the current study
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Fig. 3 The percentage signal
changes in the right
precentral gyrus (BA6)

In conclusion, we investigated the recognition of the space close to the head,
including the back space, using the auditory space localization task and showed
activation in the brain regions related to spatial processing. In particular, we found
greater activation in the right superior parietal lobule and inferior parietal lobule
during the sound presentation of right space, and in the right precentral gyrus during
the sound presentation of right-front and left-back spaces. These regions therefore
appear to play essential roles in spatial recognition.
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Investigating Causality Between Interacting
Brain Areas with Multivariate Autoregressive
Models of MEG Sensor Data

George Michalareas, Jan Mathijs Schoffelen, and Joachim Gross

Abstract In this work we investigate the feasibility of building a MAR model
directly on MEG sensor measurements and projecting the model in brain loca-
tions where causality is calculated through Partial Directed Coherence (PDC). This
method overcomes the problems of model non-robustness and large computation
times encountered during causality analysis by existing methods, which first project
entire MEG sensor time-series into a large number of brain locations and then the
MAR model is built on this large number of time-series.

1 Introduction

In recent years there has been significant effort in developing methods for identi-
fying causality in information flow between brain areas. A family of such methods
study the frequency characteristics of Multivariate Autoregressive Models (MAR)
built on time-series of activated brain sources [1], with the most widely used being
Partial Directed Coherence [2]. These time-series are reconstructed from MEG sen-
sor data through spatial filters derived commonly by beamforming algorithms [3].
The large number of potential activation sources produced by such algorithms cor-
responds to a large number of activation time-series, which is prohibitive for the
derivation of robust MAR models. In this work we investigate the derivation of
MAR model directly on MEG sensor data and its projection in the source space.
By this method the modelling process is performed on the sensor space which
has moderate dimensionality as compared to the high-dimensional source space.
This leads to greater model robustness as well as significantly reduced computation
times. Feasibility of a similar approach for EEG data has already been shown by
Gómez-Herrero et al. [4].
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2 Multivariate Modelling of MEG Data

If ψ(t) are the activation signals in brain space and x(t) the sensor measurements
in the sensor space corresponding to the activation signals then the following
relationship holds:

x(t) = Λψ(t)+ ν(t) (1)

where Λ: Leadfield Matrix (Depends on brain geometry and volume conductor
model) and ν: Measurement noise at sensor space, assumed to be White Gaussian.
Biological noise representing processes not related to brain activity (i.e. fields from
muscle activity) is assumed negligible (already filtered out) here and is thus omitted.
For an arbitrarily large number of potential activation sources and their corre-
sponding time series described by ψ , a multivariate model can be described as:

ψ(t) =
p∑

r=1

Bψ (τ )ψ(t − τ )+ ε(t) (2)

where p: model order, τ : delay step, Bψ (τ ): model coefficients matrix for delay step
τ and ε:multivariate residual. Combining (1) and (2) gives the following expression
for the multivariate model in the Sensor Space:

x(t) =
p∑

r=1

ΛBψ (τ )Λ+x(t − τ )+Λε(t) (3)

where + denotes the Moore-Penrose pseudoinverse. By applying Principal
Component Analysis (PCA), collinearity can be eliminated and insignificant
Principal Components can be omitted. Then the model in eqref(modeleq3) becomes:

xPCA(t) =
p∑

r=1
ΦΛBψ (τ )(ΦΛ)−1xPCA(t − τ )+ΦΛε(t) (4)

where Φ: Matrix of Significant Feature Vectors for Principal Components.
If a multivariate model is developed directly on the Principal Components of the

MEG sensor measured time-series,it is evident from (4) that if the Leadfield Matrix
Λ and the Feature Vectors Matrix Φ are known, then the coefficient matrix Bψ and
the residual ε(t) in the brain source space can be estimated.

The Feature Vectors Matrix is based on the selection of the eigenvectors cor-
responding to the highest eigenvalues. Commonly the eigenvectors selected can
explain 95% of the variance. The Leadfield Matrix Λ can be estimated in two differ-
ent ways. Beamforming algorithms applied on the MEG sensor measurements and a
predefined grid of voxels in the brain provide an estimation of the dipole orientation
vector for each voxel and a Spatial Filter, mapping a measurement of each MEG
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sensor to the 3 orthogonal components of the activation signal in each voxel. For
the same predefined voxel grid, the reverse map from the 3 orthogonal components
of the activation signal to each MEG sensor measurement can be precomputed by
running the forward problem. The inverse of the Beamformer’s Spatial Filter should
approximate this 3-dimentional Leadfield for each MEG sensor. The 1-dimentional
Leadfield Matrix Λ for each voxel can then be estimated in two ways, by com-
bining the estimated orientation vector with either the 3-dimentional precomputed
Leadfield or with the inverse of the Spatial Filter.

After choosing the Feature Vector Matrix and computing the Leadfield Matrix,
the coefficient matrix Bψ and the residual ε(t) in the brain source space are esti-
mated. Directionality analysis is based on analysing the coefficients of the estimated
Bψ in the frequency domain. The most widely used method for such analysis is
Partial Directed Coherence.

Partial Directed Coherence is a method used in multivariate systems to identify
directionality in Coherence between pairs of variables. It operates on the coefficients
of multivariate models derived on corresponding multivariate data. For a given Voxel
Pair ij and a given frequency f PDC is effectively the FFT of the series of model
coefficients forecasting i from j for various time lags, normalized by the norm of
the FFT of the model coefficients for all pairs with j as the causal pair. PDC thus in
normalized with respect to the transmitting voxel j and takes values between 0 and 1,
the latter describing high causality.

3 Simulated Brain Dipole

MEG sensor data was simulated. Five activation signals inside the brain vol-
ume were generated from MAR equations approximating damped oscillators [1].
Activation signals have predefined causality (Fig. 1). The overall Brain dipole field
was simulated through Fieldtrip Toolbox in MATLAB and White Gaussian Noise
representing noisy environment processes was added. The activation signals were
designed with nominal frequency 10 Hz (Alpha band) and sampling frequency
100 Hz. Time-Series were organized in 20 Trials with each trial generated from
a random impulse. Figure 2 shows the impulse response of the signal generators.

Fig. 1 Predefined causality of simulated activation signals
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Fig. 2 Impulse response of
the system of activation
signals

4 Confidence Intervals of PDC

As PDC depends on the spectrum of the estimated MAR model coefficients for
each pair, it is necessary to be accompanied by confidence intervals. Three different
methods were used.

– Shuffling all data points [5]: All data points in the time-series were randomly shuf-
fled. This process destroys completely causal information. The shuffling process
was repeated 200 times. This process in effect provides the range of PDC for a
random signal with the same distribution as the analyzed time-series.

– Shuffling Trials [5]: Data within each Trial remains fixed. Trials are randomly
shuffled separately for each time-series. The process was repeated 200 times. This
process in effect examines the boundaries of PDC when phase between time-series
is randomized while causality structure is preserved.

– Jackknife across Trials [6]: One trial was removed from all time-series (the same
across time-series) and PDC was estimated. The process was repeated 20 times
(the number of trials). This process in effect examines if causality is dominantly
affected by a single trial.

5 Stationarity Assessment

In order to investigate the level of determinism in the MEG data (simulated and real)
to be used for the MAR models, we assesed its stationarity through the criterion of
second-order weak stationarity. As MEG data is primarily obtained in trials with
each trial typically including a single occurence of the process under investigation,
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the epoch bin selection criterion was applied on a per trial basis. The mean and vari-
ance were calculated for each trial and for the entire time-series. Next, we compared
the statistical parameters of the total time series with those of each segment. If these
differences were significant with probability ¡0.05.the segment would be discarded
but this did not happen in any of the 20 trials unlike what normally happens with real
data. Intra-trial stationarity has not been addressed in this work as the linear system
of dumped oscillators had a definite deterministic nature. The sampling frequency
of the data is 100 Hz and such low sampling rates could cause uncertainty regard-
ing stationiarity assessment, especially when small time intervals are recording per
trial. For intra-trial stationarity assessment, the best approach is to acquire data with
a high sampling rate, typically 2 Khz for MEG nowdays.

6 Results

6.1 PDC from Projected MAR Model Is Close to Ideal

Ideal reference PDC was calculated directly from the 5 simulated activation signals.
It is shown in Fig. 3a for all possible pair combinations between signals. The pairs
that show distinct PDC are in agreement with the expected causal pairs from the
configuration of the simulated activation signals. These pairs are: 21, 31, 41, 54, 45.
Then the PDC was calculated from MEG sensor data. After the MAR model was
built on the Principal Components of MEG Sensors Time-series, it was projected in
5 locations close to the points of the 5 simulated activation signals with (i): Inverse
Leadfield and (ii): Spatial Filter estimated by a Beamformer. PDC calculated for
case (i) is shown in Fig. 3b and for case (ii) in Fig. 3c. PDC calculated from the
Projected MAR Model in approximating the Ideal reference PDC from the activa-
tion signals. This means that a MAR model built from MEG data in the Sensor Space
and projected in the Source Space preserves causality information for the underly-
ing generating activation processes. Examination of the levels of PDC shows that
it is distinguishably high for the Causal Pairs compared to all the rest non-causal
pairs. Maxima occur around 10 Hz, the nominal frequency of the activation signals.

6.2 PDC Deviation from Ideal w.r.t Environment Noise,
N of Samples and Model Order

We investigated the deviation of PDC from the “ideal” for different values of the
following parameters:

– Environment Noise: White Gaussian Noise added to simulated Dipole. Amplitude
is relative to Dipole Amplitude. Investigated Range: 1–20. This number is the
rate of power of the noise dipole, superimposed on the dipole generated from the
simulated signals and measured and the locations of the MEG sensors. The above
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type of noise was chosen because it was attempted to simulate real MEG lab noise
which usually follows such a distribution due to the superposition of multiple
individual noise sources. Testing of different types of noise could provide a good
insight in investigation of mainly single noise source senarios either of biological
or artificial origin.

– N Samples/Trial: 20 Trials were used. Investigated range: 500–4,000
– MAR Model Order: Number of time-lags used in the model. Investigated Range:

5–100

The objective here was to investigate average PDC deviation from Ideal for the
above parameters, around the frequency of the activation signals (10 Hz) and
separately for Causal and Non-Causal Pairs. For this purpose two metrics were
used

– Metric 1: mean(PDC of Proj. MAR Model Ideal PDC) for freq. 7–12 Hz averaged
for the Causal Pairs 21, 31, 41, 54, 45.

– Metric 2: same as Metric 1 but for the rest, Non-Causal Pairs.

In Fig. 4a the above 2 metrics are shown in a comprehensive way describing the vari-
ation of all three investigated parameters. Each subplot presents the 2 metrics vs N
Samples/Trial. Each suplot corresponds to a different combination of Environment
Noise Level and MAR Model Order. Up to Noise Levels 4 times the strength of
the dipole the deviation of the PDC for the Causal Pairs remains low. In the pres-
ence of higher noise, PDC is deviating significantly from the ideal. When a small N
of Samples is used and high Model Order, PDC for both Causal and Non-Causal
pairs is inconsistent relative to the ideal. In such cases one cannot distinguish
between Causal and Non-causal pairs. Each subplot presents the 2 metrics vs N
Samples/Trial. Each suplot corresponds to a different combination of Environment
Noise Level and MAR Model Order. Up to Noise Levels 4 times the strength of the
dipole the deviation of the PDC for the Causal Pairs remains low. In the presence
of higher noise, PDC is deviating significantly from the ideal. When a small N of
Samples is used and high Model Order, PDC for both Causal and Non-Causal pairs
is inconsistent relative to the ideal. In such cases one cannot distinguish between
Causal and Non-causal pairs.

6.3 More Principal Components Do Not Improve PDC

PCA was applied to the 248 MEG sensor time-series. The first 5 Principal
Components explained 95% of the variance. We investigated the average devia-
tion of PDC from the Ideal for Causal and Non-Causal Pairs with respect to the
number of Principal Components used in the MAR Model. Investigated Range:
5–248 Principal Components. Figure 4b presents the results for Causal (green) and
Non-Causal Pairs(red). PDC was not improved by the inclusion of more Principal
Components.
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6.4 Confidence Intervals for PDC

Shuffling all data points provides the layer of random PDC close to 0. Shuffling
Trials provides the PDC distorted by Phase Noise. In these 2 cases significant PDC
should be outside these boundaries. Jackknife provides a layer around PDC which
should not include 0 if PDC is to be significant. As it can be seen from Fig. 5 the

Fig. 5 Confidence intervals of PDC by 3 methods: shuffling all data points, by shuffling trials, by
Jackknife across trials
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PDC for the causal pairs can be clearly distinguished when confidence intervals are
examined. For the non-causal pairs, the PDC and the confidence intervals overlap
and in these cases PDC can be characterized as “insignificant”.

7 Conclusions

Building a MAR model directly on MEG sensor data and projecting it in Brain
locations is, in terms of causality content, identical to building the model in Brain
space from projected time-series. Causality, as measured by PDC, estimated from
projected MAR model is approximating the Ideal, evaluated directly from simu-
lated activation signals in the Brain. This fact created the advantage of building the
MAR Model directly on the MEG sensor time-series and then have the flexibility to
project only the MAR model coefficients in an arbitrary number of locations inside
the brain. Due to the low dimensionality of the MAR Model coefficient series as
compared to the entire time-series, the computational load for this projection is far
smaller than existing methods which first project the MEG sensor time-series and
then estimate the MAR Model.

Estimation of Causality through PDC, is tolerant of Environment Noise, but suf-
fers from small number of samples is combined with large Model Order. Using
only the significant Principal Components of MEG sensor data in the MAR model,
is adequate. Inclusion of more Principal Components does not improve PDC.
Confidence Intervals calculated by Shuffling All Data Points, Shuffling Trials and
Jackknife on Trials show that Causal Pairs and Non-Causal Pairs can be confidently
distinguished.
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EEG Feature Extraction During Mental Fatigue
and Relaxation by Principal Component
Analysis

Lan-Lan Chen, Jun-Zhong Zou, Jian Zhang, Chun-Mei Wang, and Min Wang

Abstract EEG is one of the most predictive and reliable measurements for mental
fatigue and relaxation evaluation. The aim of this study is to transform a number of
EEG spectrum variables into few principal components using PCA method. After
transformation, EEG multivariate dataset can be visualized in a lower-dimensional
space where different mental states are clearly discriminated from each other.

Keywords Mental fatigue · Relaxation · EEG · feature extraction · PCA

1 Introduction

Mental fatigue is a curial issue of modern everyday life [1]. EEG variables can be
viewed as reliable tools for mental evaluation. It is important to transform a number
of possibly correlated variables into a smaller number of uncorrelated variables to
provide comprehensive evaluation. PCA method supplies us a lower-dimensional
description of a multivariate dataset from the most informative viewpoint [2, 3].

The flow chart for this study is illustrated in Fig. 1. EEG data was recorded at
two mental states: mental fatigue caused from two 2-digit integer mental addition
and mental relaxation in a classical music environment. EEG time series was trans-
formed into power spectrum by fast Fourier transform (FFT). PCA method was
applied to obtain principal components from a variety of EEG spectrum variables.
After then, support machine vector was utilized to classify two mental states.
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Fig. 1 The flowchart of the proposed method

2 Methods

2.1 Subjects and Recording Condition

Seven male participants, aged 22–25 years old (M = 23) were recruited from East
China University of Science and Technology. EEG signals were recorded using
Ag/AgCl electrodes. The electrical impedance was under 10 kOhms for all elec-
trodes. EEG electrodes were placed according to the international 10–20 system
and put at the following areas: Fp1, Fp2, F3, F4, Fz, Cz, O1, and O2 against ipsi-
lateral earlobe electrode (A1, A2 or Aav). EEG signals were amplified by a digital
EEG machine (Nihon-Koden EEG2110) with the sampling frequency of 200 Hz, a
low-frequency cut-off of 0.5 Hz and a high-frequency cut-off of 30 Hz.

2.2 EEG Spectrum Variables

EEG data were stored by segments. Each segment contained 1,024 samples (5.12 s).
The digital data of EEG time segments are transformed into the Fourier components
by the fast Fourier transform (FFT) algorithm. The periodogram of each segment
was obtained as the squares of the magnitude of the Fourier components divided
by the data length for each resolving frequency of 0.2 Hz. EEG variables can be
expressed by the periodogram components as in (1) and (2).

Amplitude Az(c) = 4
√

Sz(c), (1)

Percentage Pz(c) = Sz(c)

ST(c)
× 100. (2)

Where c represented each channel; z denoted the respective EEG frequency bands:
delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–25 Hz) and total
band T (0.5–25 Hz). Sz (c) was the summation of periodogram components within
the frequency band of z at channel c. ST (c) was the summation of periodogram
components within the frequency band of T at channel c.

Nine variables highly related to mental fatigue, drowsy and concentration were
selected for the next principal component analysis. They were:
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Delta components at Fz: Aδ (Fz) and Pδ (Fz);
Theta components at Fz: Aθ (Fz) and Pθ (Fz);
Alpha components at O1: Aα (O1) and Pα (O1);
Beta components at O1: Aβ (O1) and Pβ (O1);
Total periodogram components at O1: AT (O1).

2.3 Principal Component Analysis

PCA is eigenvector-based multivariate analysis. The goal is to transform a given data
set X of dimension p to an alternative data set Y of smaller dimension q. Original
data X is denoted by the eigen vector αi (i = 1, 2, · · · , p) and the eigen value λ as in
Eq. (3).

Xαi = λαi, (3)

The accumulative contribution rate C is calculated by all eigen vector λ as in Eq. (4).

C =
∑q

i=1 λi∑p
i=1 λi

(4)

Usually, q should ensure C is over 70–90% [3].
Subsequently, classification methods such as support vector machine (SVM) can

be used to discriminate data set in the new q-dimension space.

3 Results

In this study, original data set X included nine EEG spectrum variables. Using PCA,
X was transformed into a new coordinate system by projection of the data comes to
lie on the principal components. The accumulative contribution rate of the first three
principal components was 85%. Therefore, original dataset X was projected into the
first three dimensions. The values in the remaining dimensions were dropped with
minimal loss of information.

The data distribution in the first three principal components is illustrated in Fig. 2.
Data were recorded from seven subjects under two mental states.

Training sets included 39 EEG segments, 21 segments of which were recorded
at mental calculation and the left 18 segments were recorded at music relaxation.

Test sets included 26 EEG segments, 17 segments of which were recorded at
mental calculation and the left 9 segments were recorded at music relaxation.

From Fig. 2, training sets and test sets were visualized in the three-dimension
space. And two mental states can be clearly discriminated from one another. Using
support vector machine (SVM), test sets were correctly classified.
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Fig. 2 The data distribution in the first three principal components. f1, f2, and f3 represent the
coordinate of the first three principal components, respectively

4 Conclusions

EEG spectrum variables can be viewed as reliable estimators for mental fatigue and
relaxation states. Principal components analysis helps to transform multivariable
data set into a smaller number of principal components. After transformation, EEG
can be visualized in a lower-dimension space where different mental states are easy
to discriminate by classification methods such as support vector machine (SVM). In
the future work, the methods proposed in this paper can be extended to visualization
and discrimination of even more mental states.
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Kernel Granger Causality Mapping Effective
Connectivity: A Resting fMRI Study

Wei Liao, Daniele Marinazzo, Zhengyong Pan, and Huafu Chen

Abstract The human brain is a complex, dynamic, nonlinear system and operates
far from equilibrium. The functionally connected of human brain being potentially
dynamic and directional, may not be adequately captured by simple correlation,
or anti-correlation. To evaluate the possible effective connectivity as well as the
nonlinear effective connectivity within human brain, we applied kernel Granger
causality (KGC) to the 90 cortical and subcortical regions of interest (ROIs) of rest-
ing state fMRI data. Our analysis also found the hub node that was characterized by
much number of Granger causal efferent connections to this given node from any
other node at different level of nonlinearity. Overall, our results revealed the causal
influences and hubs among these ROI at different order of nonlinearity.

Keywords Kernel Granger causality · Resting state · Effective connectivity

1 Introduction

The human brain is a complex, dynamic, nonlinear system and operates far from
equilibrium [1]. The functionally connected of human brain be usually captured by
simple correlation, or anti-correlation particularly in resting state functional mag-
netic resonance imaging (fMRI) data [2, 3]. However, the functionally connected of
human brain being potentially dynamic and directional that refers to the effective
connectivity, which refers explicitly to the influence that one neuronal system exerts
over another, either at a synaptic or population level, either directly or indirectly [4].
Granger causality analysis can provide information about the dynamics and direc-
tionality of fMRI signal in cortical circuits [5–7]. Alternatively, Granger causality
analysis is likely to be an appropriate approach to study the directional interactions
of these resting state networks [8]. This Granger causality analysis that that based on
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Geweke’s dependence measure [9] indeed only considered the linear influence and
hitherto ignored the nonlinear connectivity. In the present study, aimed to investi-
gate the nonlinear connectivity of the brain, we use kernel Granger causality (KGC)
method [10, 11] to explore effective connectivity during resting state fMRI data.

2 Methods

2.1 Subjects and Data Acquisition

One right-handed subject participated in this study. The present study was approved
by the local ethical committee in West China Hospital of Sichuan University, and
informed written consent was obtained prior to the experiment. For the resting state
scans, subjects were instructed simply to rest with their eyes closed, not to think of
anything in particular, and not to fall asleep. Experiments were performed on a 3.0-
T GE-Signa MRI scanner. Functional images were acquired using EPI sequence
(TR = 1000 ms, TE = 30 ms and flip angle = 90◦). Sixteen transverse slices
(FOV = 24 cm, in-plane matrix = 64 × 64, slice thickness = 6 mm, without gap)
were acquired.

2.2 Data Processing

Data preprocessing was partly carried out using the Statistical Parametric Mapping
software. The 200 volumes were first corrected for the temporal difference in acqui-
sition among different slices, and then the images were realigned to the first volume
for head-motion correction. The fMRI images were realigned with the correspond-
ing T1-volume and warped into a standard stereotaxic space at a resolution of
3× 3× 3 mm3, using the Montreal Neurological Institute (MNI) echo-planar imag-
ing template. Then, they were spatially smoothed (FWHM = 8 mm). For details
step see Fig. 1. The more details of the model can be found in our previous studies
[10, 11], and the application in fMRI data was described in our previous study [12].

3 Results

Considering KGC can control the order of nonlinearity of the fMRI time series,
the linear Granger influence network (Fig. 2a) and the nonlinear Granger influence
network (Fig. 2b) were gain using by KGC. After creating the brain network using
the given threshold, we then determined which nodes were connected to the largest
number of other nodes (using in-degree), i.e. which nodes are “hubs”. Specifically,
we define a hub as a node whose in-degree is larger than the average in-degree of
the network (see Fig. 2 node size). In linear Granger influence network (Fig. 2a),
many hub located in the frontal lobe, while in nonlinear Granger influence network
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Fig. 1 Schematic illustration of the KGC analysis on resting state fMRI data. The first step
(panel 1) the images were segmented into 90 anatomical ROI. The averaged time series of each
ROI had been regression against six head motion parameters, signal in cerebrospinal fluid and in
the white matter and had been temporal band-pass filtered (0.01 < f < 0.008 Hz) (panel 2). Granger
influence values of each pairwise ROI were calculated using by KGC (panel 3). Granger influ-
ence values were entered an asymmetric directed matrix (panel 4). An asymmetric binary directed
matrix gain after using thresholded along with FDR correction (panel 5). The regional centroid
of each ROI (node) and was the arcs (effective connectivity) laid out in line with its anatomical
location in MNI stereotaxic space (panel 6)

(Fig. 2b), the hub node not only in the frontal lobe, but also the distribution of hub
node were widespread, such as, in parietal-(pre)Motor, in medial temporal lobe and
subcortical regions.

4 Discussion and Conclusions

The functionally connected of human brain be usually captured by simple corre-
lation, or anti-correlation particularly in resting state. Granger causality analysis is
likely to be an appropriate approach to study the directional interactions of these
resting state networks [8]. In the current study, aimed to investigate the nonlin-
ear connectivity of the brain in the resting state, we use KGC method [10, 11]
to explore effective connectivity. Our analysis provided evidence either linear or
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nonlinear causal influences in brain. Our analysis also found the hub node that char-
acterize by much number of Granger causal efferent connections to this given node
from any other node at different level of nonlinearity. Overall, our results revealed
the causal influences and hubs among these ROI at different order of nonlinear-
ity. Further work, however, will be needed to explore and explain the physiological
significance of this effective connectivity networks.
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EEG Source Localization Based on Multiple
fMRI Spatial Patterns

Xu Lei and Dezhong Yao

Abstract EEG source localization is an ill-posed problem, and constraints are
required to ensure the uniqueness of the solution. In this paper, using indepen-
dent component analysis (ICA), multiple fMRI spatial patterns are employed as
the covariance priors of the EEG source distribution. With the empirical Bayes
(EB) framework, spatial patterns are automatically selected and EEG sources are
estimated with Restricted Maximum Likelihood (ReML). The computer simulation
suggests that, in contrast to the previous methods of EB in EEG source imaging, our
approach is distinctly valuable in improvement of distributed source localization.

Keywords EEG · fMRI · Network EEG source imaging · Restricted maximum
likelihood · Source reconstruction · Distributed solution

1 Introduction

Existing literatures have established a few potential protocols to employ fMRI
information in EEG source localization [1]. The fMRI weighting EEG source local-
ization [2] used the active map obtained from statistic analysis of fMRI to improve
the localization accuracy. Phillips et al. [3] proposed an empirical Bayes (EB)
framework to combine fMRI active map as the covariance priors controlled by
hyperparameters in EEG source localization.

The statistic analysis of fMRI generally needs a proper hemodynamic response
function (HRF). The difference between the actual HRF and the assumed HRF may
reduce the feasibility of this method [4]. In contrast, independent component anal-
ysis (ICA) can simultaneously extract diverse spatial patterns with similar function.
In addition, by relying upon an assumption of independence, ICA is intrinsically a
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multivariate approach, and it allows the user to be agnostic with the exact form of
the response.

In this paper, using spatial patterns derived from fMRI, we proposed the Network
EEG Source Imaging (NESOI). With NESOI, the automatic selection of multi-
ple spatial patterns is attainable. Comparing with other method with anatomical
smoothness or sparseness constraints, NESOI can produce a solution that combines
information of the high temporal resolution EEG and the high spatial resolution
fMRI.

2 Methods

An EB [2, 5] model used for EEG source location is,

Y = Lθ + ξ1 ξ1 ∼ N(0, C1)
θ = 0+ ξ2 ξ2 ∼ N(0, C2)

, (1)

where Y ∈ Rn×s is the EEG recording with n channels and s samples. L� Rn×d

is the lead-field matrix, and θ ∈ Rd×s is the unknown source activity for d
dipoles. N(μ, C) denotes a multivariate Gaussian distribution with mean μ and
covariance C. The terms ξ1 and ξ2 represent random fluctuations in channel and
source spaces respectively. The spatial covariances of ξ1 and ξ2 are mixtures of
covariance components at each level. In sensor space, we assume C1 = α−1In

to encode the covariance of sensor noise, where In is a n-by-n identity matrix. In
sources space, we express it as a covariance basis form,

C2 =
k∑

i=1

γiVi, (2)

where γ ≡ [γ1, γ2, . . . , γk]T is a vector of k non-negative hyperparameters that con-
trol the relative contribution of each covariance basis matrix, Vi. Various candidate
covariance basis can be adopted. For example, Minimum norm model (MNM) [6]
has only one component V= I. LORETA [7], a very popular method in EEG source
localization, has two covariance components V = {I, G} [8], where G = 2 exp(A)
models anatomic coherent sources, and G is the Green function of an adjacency
matrix, A, with Aij�[0, 1] encoding the neighboring relationships among nodes
of the cortical mesh defining the solution space [8]. Multiple sparse prior (MSP)
employed components, V = {q1qT

1 , q2qT
2 , . . . , qkqT

k } to describe activities in k
patterns, where qj is evenly sampled column of matrix G [5].

All of the above priors are based on spatial adjacent relation of sources. The
spatial patterns extracted from fMRI have never been considered in EEG source
localization. Here, we employed ICA to decompose fMRI data to get the different
spatial patterns. The intensity values in each pattern are scaled to z scores and voxels
with absolute z scores >3 were considered to be activated. Vi for ith pattern is:
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Vi = ∑
j∈U qjqT

j , where U is a set of activated voxels for ith pattern. The educed
NESOI utilizes the patterns to improve localization accuracy. Based on the priors,
NESOI is solved by restricted maximum likelihood (ReML) [5].

3 Result

In our simulation, the temporal and spatial patterns were generated by perform-
ing ICA decomposition on simultaneous EEG/fMRI recordings of a patient with
epilepsy. These 20 spatial patterns are presented in Fig. 1. In each simulation, five
spatial patterns θS were selected at random and each has an independent temporal
pattern θT to generate the simulated signal in sensor space, Y = LθSθT . The signal
and white noise were mixed to simulate actual data. We repeated the simulation 256
times.

We employed two metrics to compare NESOI with MNM, LORETA and MSP.
Spatial accuracy measures the distance between the most active dipole and the
dipole with the largest conditional expectation. Temporal accuracy is the squared
correlation between the true time course of the most active dipole and the con-
ditional estimate from the dipole used to assess spatial accuracy [5] (Fig. 2).

Fig. 1 The 20 spatial patterns. Five of these patterns were selected at random with temporal
patterns to generate the simulated signal in sensor space (not shown)
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Fig. 2 Spatial accuracy (left
panel) and temporal accuracy
(right panel) measures for the
four models under each of the
256 realizations. The bars
represent the mean value and
the dot is the result of each
realization

It is clear that, both in terms of spatial and temporal accuracy, the NESOI model
is substantially better than any one of the others. It is also interesting to note that
MSP is better than the classical MNM or LORETA, and this difference is much
bigger. This result is consistent with the previous report [5]. We should emphasize
that only three covariance components in NESOI are derived from the patterns used
in the simulation step and the others are inaccurate priors. However, with automatic
selection the reverence prior, the solution was not influenced by the inaccurate prior
when accurate and inaccurate location priors were used simultaneously.

4 Discussions

In this paper, we have described a new approach, NESOI, to employ fMRI to
the distributed source reconstruction problem in EEG. Our key contribution is
the employment of multiply fMRI spatial patterns in the EB model. With ReML
algorithm, the reverence spatial patterns are automatically selected and localiza-
tion accuracy is distinctly improved. Our computer simulation has demonstrated the
validity and effectiveness of the method.

Comparing with traditional fMRI-constrained EEG inversion, NESOI allows the
user to be agnostic with the exact form of the fMRI response and to link the fMRI
coherent fluctuation networks with EEG feature. As brain networks established from
fMRI are always disturbed by low temporal resolution, NESOI can be applied to
provide more temporal details of these networks.
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ICA Analysis for Decision-Making Task
on fMRI

Xujun Duan, Huafu Chen, Zhengyong Pan, Wei Liao, Danhui Wang,
and Jurong Ding

Abstract Brain functional activation of decision-making on fMRI experiment is
seldom analyzed by data driven method to reveal the distinct brain functional net-
work of decision-making. In this paper, a spatial independent component analysis
(sICA) is presented to detect the functional network underlying decision-making
by analyzing the unmixing matrices temporal components corresponding to spatial
separated pattern. Our results show that ICA could separate various sub-functional
activation networks to understand the neural mechanisms underlying decision-
making, which mainly include functional network of conflict detection, cognitive
and emotion.

Keywords fMRI · Decision-making · Iterated Prisoner’s Dilemma game · sICA

1 Introduction

In recent years, there has been increasing interest in understanding the neural
mechanisms underlying decision-making [1–3]. It is key issue that to gain brain
functional network for different decision-making pattern by fMRI data process.

Among all the multivariate approaches, independent component analysis (ICA)
is the predominance recently and is a valuable tool for the multivariate data-driven
analysis of fMRI data [4, 5] for cognitive experiment or resting state networks [6].
However, ICA is not applied to analyze decision-making task. In the present study,
sICA method is presented to separate the different activation patterns of the complex
decision-making process by analyzing the temporal information of unmixing matrix
corresponding to spatial component patterns.
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2 Material and Methods

2.1 Spatial ICA Model

In sICA, fMRI data sets were assumed to be a linear mixture of spatially inde-
pendent component patterns, including background noise and patterns of brain
activation signals [4], thus, the signal model of the sICA is presented as:

X = AS (1)

where, X is a T-by-M (T is the number of time points and M is the number of voxels
of the volume) observed fMRI signal, S is an N-by-M matrix whose rows Si (i =
1, ..., N) contain the spatial process (N ≤ T) and A is a T-by-N unknown time-
invariant mixing whose columns Aj (j = 1, ..., N) contain the time course of the N
processes. The separated spatial pattern matrix estimated is then written as:

S = A−1X = WX (2)

where, W is an N-by-T unmixing matrix. The aim of the sICA is to find the linear
unmixing matrix, W and the separated source matrix, S, and then to get the original
mutually independent signals or patterns S. In this study, the fast-fixed ICA algo-
rithm was used for the sICA to estimate the matrix, W and matrix, S [7]. In the
present work, the pre-processed of fMRI data were first reduced to 40 dimensions
using PCA, in which > 90% of the variability in the data was retained [8]. Using
the sICA, data can be decomposed into 40 spatially independent components and
corresponding temporally independent components (IC). For each IC, the wave-
form corresponds to the time course (TC) of a specific pattern of brain activity, and
the intensity with which this activity is found across the voxels is expressed in the
associated spatial map.

2.2 Decision-Making Task

We investigated event-related neural activations with fMRI as one subject played
the iterated Prisoner’s Dilemma Game [9] in the scanner with his partner outside
the scanner. In this game, two players independently choose to either cooperate
with each other or not, and each is awarded a sum of money that depends upon the
interaction of both players’ choices in that round. There are four possible outcomes
of each around: player A (scanned) and player B (outside) cooperate (CC), player
A cooperates and B defects (CD), A defects and B cooperates (DC), A and B defect
(DD). These outcomes would be revealed to both players in the end of each round.
Each cell of the payoff matrix (Fig. 1) corresponds to a different outcome of a social
interaction [9]. This Prisoner’s Dilemma game was consisted of 20 rounds, with
each round lasting 19 s.
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Fig. 1 The payoff matrix.
Dollar amounts in
parentheses are awarded to
player B

2.3 Data Acquisition and Analysis

Functional imaging data was acquired on a 3.0 T scanner, GE-Signa (Huaxi MR
Research Center, Chengdu, China). The gradient echo EPI sequence parameters
were as follows: 30 transverse slices, TR = 2000 ms, TE = 30 ms, FOV =
24 cm, matrix = 64 × 64, voxel size = 3.75 × 3.75 × 4 mm3 (without gap),
flip angle = 90◦. We collected 164 volumes per subject. The first 4 volumes for
scanner calibration and for the subjects to get used to the circumstances were dis-
carded before data processing, and left 160 volumes for analysis. The functional
image data were preprocessed, and analyzed using the SPM2 software package
(www.fil.iom.ucl.uk/spm).

3 Results

sICA was conducted for fMRI data using the fast ICA algorithm in GIFT software
(http://icatb.sourceforge.net/, version 1.3b). Data were decomposed into 40 compo-
nents. The voxels with Z values (|Z| > 5.0, p < 0.001) [4, 5] were in the light of the
active voxels and overlaid the anatomical image. Figure 2 showed a separated spa-
tial component patterns and its corresponding time course under the experimental

Fig. 2 a–c) Brain activated functional network of three spatial components for CC outcomes.
(a∗–c∗) IC time course and reference function of experiment paradigm
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Fig. 3 SPM results for CC
outcomes

paradigm, Fig. 2a–c are the three spatial separated components, while Fig. 2a∗–c∗
are IC time course (red solid line) which highly correlated with the experiment
paradigm’s reference time course (yellow dotted line). As shown in Fig. 2, the first
component represents functional network of conflict detection which include ACC;
the second component represents functional network of cognitive process which
include middle frontal gyrus, superior frontal gyrus and medial frontal gyrus; and
the third component represents functional network of emotion which include insula,
caudate nuleus and thalamus [10].

To test the effect of sICA method for detecting the brain functional network
of decision-making, we compared our sICA results to SPM results. SPM imaging
results for CC condition was shown in Fig. 3. The activation areas included pre-
cuneus, middle OFC, ACC, caudate, putamen and the deactivation areas included
superior frontal gyrus and medial frontal gyrus. These areas were composite of a
functional network which was almost the same as the combination of the three sep-
arated component in Fig. 2 decomposed by ICA, indicating that ICA method can
detect brain functional activation of decision-making as same as SPM.

4 Conclusion

In sum, in this study, we focused on the ICA application in the decision-making
fMRI data processing. Our result shows that ICA can provide more brain functional
network information to understand the neural mechanisms underlying decision-
making, and it’s a reasonable method to reveal the complex cognitive process of
decision-making.
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Single Trial Extraction of Cognitive Evoked
Potential by Using EMD Based Method

Cailin Tao, Ling Zou, Yunfeng Li, and Zhenghua Ma

Abstract Empirical mode decomposition (EMD) is a new signal decomposition
method, which could decompose the non-stationary signal into several single-
component intrinsic mode functions (IMFs) and each IMF has some physical
meaning. This paper studied the single trial extraction of cognitive evoked poten-
tial by combining EMD and wavelet threshold filter. Experimental results showed
that the EMD based method can separate the noise out of the event related poten-
tials (ERPs) and effectively extract the weak ERPs in strong background noise. It
manifested as the waveform characteristics and root mean square error (RMSE).

Keywords EMD ·Wavelet threshold · ERP · Single trial extraction

1 Introduction

Evoked related potentials (ERPs) have become very useful for cognitive study. The
most common way to visualize the ERPs is to take an average over time locked
single-trial measurements. But this method ignores the variation from trial to trial in
the task-related cognitive process. Thus, the goal in the analysis of ERPs is the esti-
mation of the single potentials that we call single-trial extraction. Several techniques
have been proposed to improve the visualization of the ERPs from the background
EEG with various successes [1–2].

Empirical mode decomposition (EMD) is a promising one for non-linear and
non-stationary time series [3]. The fluctuations in different scales are stepwise dis-
aggregated and a series of data sequence with different characteristic scales are
produced. Each sequence is known as the intrinsic mode functions (IMFs). The
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local zero-means of IMFs are symmetric and IMFs contain the same numbers of
zero-crossing point and the extreme values. The lowest frequency component of the
IMFs is on behalf of the signal trend. In this paper, ERPs were decomposed by the
EMD and the IMFs were chose by energy distributions after filtered by the wavelet
threshold filter, the single trial ERPs was reconstructed finally.

2 EMD-Based Method

EMD decomposition method can effectively extract the trend of a data sequence
from the data sequence. It works like an adaptive high pass filter. It sifts out the
fastest changing component of a composite signal first [4]. The sifting process is:

(1) For ERPs signal x(t); m(t) is the envelopes mean.
(2) Extract the detail h(t)=x(t)–m(t) and regard h(t) as new x1(t)=h(t);

h1(t)=x1(t)–m1(t);. . .;hk(t)=xk(t)–mk(t), until two consecutive sifting results
between 0.2 and 0.3 [5], then imf1(t)=h(t), r1(t)=x(t)–h(t).

(3) Let the residual r1(t) be a new signal, x(t)=r1(t).
(4) Repeat (2), (3), until there are no more than two extremes of the residual, obtain

imf2, . . . ,imfj, . . . ,imfn.
(5) x(t) is finally written as the sum of mode time series imfj(t) and the residual

rn(t):

x(t) =
n∑

j=1

imfj(t)+ rn(t). (1)

(6) The IMF components were filtered by wavelet threshold method with an
improved semi-soft threshold function, which could overcome the shortcomings
of hard and soft threshold function [6].

η(w, T) =
⎧
⎨

⎩

w+ T − T/(2 k + 1) w < −T
w2 k+1/

[
(2 k + 1)T2 k

] |w| ≤ T
w− T + t/ (2 k + 1) w > T

. (2)

Where w=imfj is taken as the wavelet coefficient. m = 1, ..., 2j−1, σ =
median

(∣∣imfj−1,m
∣∣)/0.6745; T = σ

√
2 log N

/
log(j+ 1)

′
is the threshold. When

k tends to infinity, it is the standard soft threshold function. And there defines k= 5.
Suitable wavelet basis and decomposition scale should be selected according

to the IMF signals. By testing, we chose “db4” with 7 levels. IMFs’ selection
was according to the practical energy distributions (refer to the following discuss).
Finally the signal was reconstructed [7].



Single Trial Extraction of Cognitive Evoked Potential 395

3 Discuss

EEG data were obtained from online free EEG/ERP database [8]. In this experi-
ment, the subject covertly attended to the selected location on the computer screen
responded with a quick thumb button press only when a square was presented at this
location. This dataset contained only targets stimuli presented at the two left-visual-
field attended locations for a single subject of 80 trials. EEG activity were recorded
by 32 electrodes on the scalp and digitized at 128 Hz. For each trial, 3 s of data was
saved from the pre-stimulated –1,000 to 2,000 ms.

We selected 10 trials of FZ, F3 and F4 electrodes randomly and analyzed them
by EMD-based method. The major energy of ERPs in this experiment was at 300 ms
which was the basic principle for the IMFs selection. Statistics showed that the sig-
nal energy of P300 in the experimental was mainly focused on the imf4. Figure 1a
showed the results at F3 randomly selected from some trail (here, we chose trial 6).
Figure (1)–(6) was the energy distributions of imf1 to imf6. After rejecting imf1,
imf2, imf5, imf6, the reconstructed signal (8) rejected huge fluctuation, kept
characteristics and was more smoothness compared to without rejection (7).

Statistical analysis of the 10 trials at the three electrodes showed that the latency
(F(2, 27)= 0.232, P= 0.794 > 0.05) and amplitude (F(2, 27)= 0.610, P= 0.550 >
0.05) of N100, the latency (F(2, 27)= 1.665, P= 0.208 > 0.05) and amplitude
(F(2, 27)= 1.795, P= 0.186 > 0.05) of P300 were no significant difference. Single
trial of extracted ERPs at the point of FZ, F3 and F4 were shown in Fig. 1b. The
waveforms by using EMD method (bold lines) and superposed average were nearly
superimposed.

The differences between EMD based and averaged method were not significant,
see Table 1. The superposed average of 80 trials was taken as standard ERPs for
calculating the RMSE of extracted ERP. And the averages of RMSE of extracted
ERPs are shown in Table 1.

Fig. 1 (a) The energy distributions and choice of IMFs; (b) Results comparison of EMD method
and superposed average
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Table 1 Differences of features between the single trial data by EMD and superposed averaged

Point Feature Method Latency (ms) Amplitude (μV) Average of RMSE

FZ N1 EMD 125 16.8686 4.219
Averaged 109 12.7630

P3 EMD 383 13.6489
Averaged 359 15.9479

F3 N1 EMD 148 12.7821 4.212
Averaged 50 11.4212

P3 EMD 383 15.3447
Averaged 359 14.7568

F4 N1 EMD 125 10.1450 2.474
Averaged 133 12.2223

P3 EMD 320 9.0932
Averaged 367 13.8710

4 Concluding Remarks

After decomposition by EMD method, the instantaneous frequency is from high to
low. But for the same component, the instantaneous frequency at different time can
be varied considerably. In this paper, the de-noising effects of EMD based method
are the same with the superposed average. It is mainly manifested as the RMSE and
the characteristics of waveforms. Statistical analysis showed that the there was no
significant difference among the 10 trials data. EMD could be further researched in
the application of biological signal analysis.
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Multiple Neural Networks Involved in Chewing
Gum: A Functional MRI Study Using
Group-ICA

Fan Li, Hui Shen, Baojuan Li, Xiaoling Zhou, and Dewen Hu

Abstract Mastication is an essential physiological function of the human neural
system. Previous studies using univariate approach have found significant increases
associated with chewing in the BOLD signal in the widespread brain regions.
However, mechanism of functional organization across these regions and any
relationship to cognitive processing are not clear at present. In this paper, we hypoth-
esized that there exist multiple functional networks underpinning a chewing gum
task, these networks being engaged in different brain function, such as sensorimotor
and cognition. We used group independent component analysis (Group-ICA) to sep-
arate these networks based on functional magnetic resonance imaging (fMRI) data
acquired during a chew-gum block task. Our results demonstrated that three signifi-
cant neural networks identified by independent components (ICs), corresponding to
sensorimotor, cognitive and emotional, and syntax function, involved in the chew-
ing gum task. This study also provides further evidence for the hypothesis that
there exist neural circuits associated with higher cognitive information processing
in chewing-gum movement.

Keywords Functional network · Group independent component analysis
(Group-ICA) · Chewing gum · Neuroimaging

1 Introduction

Mastication is an essential physiological function of the human neural system. In
the early literature, PET studies reported increased blood flow in the primary senso-
rimotor cortex (SMC), supplementary motor areas (SMA), cerebellum and striatum
during chewing task [1]. Recent fMRI study found chewing-related brain regions
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include the SMC (extending down into the upper bank of the operculum and insula),
SMA (extending down into the cingulated gyrus), thalamus, and cerebellum [2]. In
the present work, we concern the mechanism of functional organization and infor-
mation processing in the large-scale level of whole brain in mastication. Our goal is
to apply Group-ICA into identifying the salient large-scale networks of the human
brain during chewing gum and to search possible positive effects of chewing. We
hypothesized that there are several functional networks underpinning the chewing
gum process, one of them involved in sensorimotor function and others responsible
for some different cognitive activities. We also expected to give some physiological
explanation for cognitive effects of chewing gum based on these separated multiple
functional networks during chewing gum tasks.

2 Materials and Method

2.1 Subjects and Task Paradigm

Sixty neurologically healthy college volunteers between the ages of 18 and 35 years
were recruited by advertisement on BBS of the college. Twenty eight females and
32 males participated in this study. All the subjects had normal mastication func-
tion, and none were taking medication, abusing alcohol or illicit drugs. The subjects
were instructed to minimize head movements during jaw movement, and data from
participants where the heads were evaluated to have moved more than 0.75 mm
would be discarded. Finally, the data of 38 participants were included in the analy-
sis. Research consent form was obtained from each subject before the experiment.
This study was approved by the Institutional Review Board of Beijing MRI Center
for Brain Research.

Each participant performed the following two tasks: chewing gum and rest. The
experiment were designed in a block manner (eight task blocks and eight rest blocks,
each block of 25 s duration, alternated for a total scanning times of 400 s). The scan-
ner was in the acquisition mode for 8 s before each series to achieve steady-state
transverse magnetization. All performed in both parts of the experiment, having
been instructed and given practice out of the scanner. In the gum chewing task,
all participants selected their favorite chewing gum prior to the test. The partici-
pants were instructed to chew naturally and constantly throughout the chewing gum
session.

2.2 Data Acquisition

The fMRI experiments were performed on a 3.0T Siemens Trio system in Beijing
MRI Center for Brain Research. The head was positioned in a standard head-coil and
fixed with cushions. All participants were instructed to minimize head movements
and follow the instruction word (chew/rest) on the project screen. Earplugs were
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provided to avoid auditory discomfort noises during the measurements. Prior to the
fMRI examination, high-resolution, sagittal T1-weighted magnetic resonance (MR)
images were obtained to determine the imaging plane parallel to the AC (anterior
commissures)-PC (posterior commissures) line. The functional MR image data were
acquired by the gradient-echo echo-planar imaging (EPI) sequence. An EPI pulse
sequence was used with parameters as follows: Repetition time (TR)=3,000 ms,
Echo time (TE)=30 ms, Flip angle(FA)=90◦, Field of view (FOV)=240 mm,
matrix=64 × 64, slice thickness=3.8 mm, gap=0.2 mm. Thirty two transver-
sal slices of functional images covered the whole cortices and the cerebellum. It
has been considered difficult to obtain sufficient fMRI data during jaw movement
because the associated head motion creates artifacts on images. To avoid these arti-
facts, larger voxels (3.75 × 3.75 × 4 mm3) were used, allowing some head motion
of the participants. Functional images with 135 volumes were acquired for this
experiment.

2.3 Data Analysis

The procedure of data analysis mainly included two steps. The first step was data
pre-processing including realignment, normalization, and smoothing, implemented
by using SPM2 software. The second step was implemented by the Group-ICA
program.

As a data-driven method, ICA has been used to separate fMRI data in spatial
independent components together with their associated time courses [3]. Group-ICA
is extended for multi-subject analysis from individual ICA and can be used to gen-
erate random-effect statistical inferences across subjects [4]. There are three main
stages to Group-ICA: data compression, ICA separation and back-reconstruction.
The outputs from these stages are multiple time courses. Each time course has an
image map associated with it. The purpose of data compression is to reduce the
size of the subject’s data. In Group-ICA, Principal Components Analysis is used
to reduce the dimensions. The fist PCA is used to reduce the individual data. Then
the subjects are concatenated into groups and perform the second PCA. The next
step is to use ICA to find independent components in the reduced data-set. Group-
ICA includes some ICA algorithms such as Infomax, FastICA, Jade. Here we chose
Infomax since it maximizes the information transfer from the input to the output of
a network using a non-linear function. The components resulting from ICA repre-
sent group components, so the back-reconstruction uses the aggregate components
of ICA and the results from data reduction step to compute the individual subject
components [5].

In the Group-ICA processing, the preprocessed data were input into GIFT. The
optimal number of components was estimated by the Akaike’s information criterion
coefficient, and set to be 20 in our study. After performing PCA, the data were
separated by ICA using the Infomax algorithm. The components resulting from ICA
represented group components, and through the back-reconstruction step it could
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find the individual subject components. We used the correlation coefficient between
the mean time course of each IC and the task paradigm to determine the task-related
ICs. Only the ICs with positive correlation coefficients above a designated threshold
(p < 0.0001) were included in next analyses. Then one sample t-test (threshold:
uncorrected, p < 0.001, k = 20 voxels) was used to ascertain each group result of
task-related IC.

3 Results

We found that there were three task-related ICs, IC1, IC2 and IC3, separated from
Group-ICA analysis. The correlation coefficients between the task paradigm and the
time course of each of the three networks were, respectively, 0.876, 0.74, and 0.668.

Our results showed that the IC1 involved the following areas: the anterior lobe of
bilateral cerebellum, midbrain, thalamus, the precentral gyrus (BA4/6), lentiform
nucleus (putamen), insula, the medial frontal gyrus (BA6), claustrum and post-
central gyrus (BA2). The IC2 included these regions: the bilateral cerebellum,
the subcallosal gyrus (BA34), the anterior cingulated (BA25), caudate, the middle
frontal gyrus (BA10), the superior frontal gyrus (BA9), the inferior parietal lobule
(BA40), angular gyrus (BA39) and cingulate gyrus (BA24). The IC3’s correspond-
ing activated brain regions consisted of inferior frontal gyrus (BA47), claustrum,
caudate and thalamus.

4 Discussions

As we predict, the functional network component IC1 mainly represented senso-
rimotor network of chewing-gum. The IC1 mainly involved BA4 and BA6 which
played an important role in integrating sensory information and planning and exe-
cuting movements [6]. The IC1 also involved the sensorimotor cerebellum, which
distributed across the anterior lobe of the cerebellar hemispheres [7]. Other areas,
such as putamen, thalamus, played an important role in assorting with movements
[8]. In a conclusion, the distributed brain regions involved in the IC1 network were
associated with sensorimotor function of chewing gum, and consistent with the
results from many previous studies using univariate approaches.

It’s interesting and significant that the second functional network belongs to a
cognitive and emotional network. The IC2 involved the lateral cerebellar hemi-
spheres, also called “cognitive cerebellum” [7]. For the anterior cingulate cortex
(ACC), it seems to be especially involved when effort is needed to carry out a task
such as in early learning and problem solving [9]. Many studies attribute func-
tions such as error detection , anticipation of tasks, motivation, and modulation
of emotional responses to the ACC [10]. The ACC area is also associated with
many functions that require conscious experience, and better emotional awareness
has a relationship with improved recognition of emotional cues or targets which
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is reflected by ACC activation [11]. The caudate has been demonstrated that it
is highly involved in learning and memory, particularly regarding feedback pro-
cessing [12]. As for the angular gyrus, it is a region of the brain in the parietal
lobe, and involved in a number of processes related to language and cognition [13].
Furthermore, the executive functions of the medial frontal gyrus involve the ability
to recognize future consequences resulting from current actions, to choose between
good and bad actions, therefore, it is involved in higher mental functions [14]. In
fMRI experiments, Goldberg et al. have found evidence that the superior frontal
gyrus is involved in self-awareness, in coordination with the action of the sensory
system [15]. The inferior parietal lobule is suggested to be associated with decision
making under uncertainty [16]. These results support recent finding of the fronto-
parietal cognitive network involved in mastication [17]. On the other hand, as a part
of the limbic system, the subcallosal gyrus and cingulate gyrus are involved with
emotion formation and processing. This result might give some physiological expla-
nation for current hypothesis that chewing-gum can make people relax and alleviate
negative mood [18]. Chewing-gum significantly activated many brain regions asso-
ciated with the cognition and emotion, indicating that people can benefit from this
simple action. In this study, the significant cognitive component of functional net-
work was detected by Group-ICA, which strongly supported the hypothesis that the
neural circuit of higher cognitive information processing involved in gum-chewing
movement.

By chance, we found the third functional network associated with a syntax func-
tion identifying by IC3. It included BA47, claustrum, caudate and thalamus. These
areas have been suggested to have a relationship with syntax. This network may
be caused by Chinese characters (subjects needed to follow the instruction word
(chew/rest) on the project screen), and it was irrelevant to gum-chewing. The result
suggested that ICA is a sensitive data-driven approach for the segregation of the
relevant components.

Fig. 1 The task-related ICs separated from Group-ICA analysis of gum-chewing (one sample
t-test, height threshold: uncorrected, p < 0.001, k = 20 voxels)
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5 Conclusions

To sum up, the results strongly support that multiple neural networks are involved
in chewing gum. Besides the predicted sensorimotor functional network, a signifi-
cant cognitive network is separated from fMRI data of chewing gum tasks, which
provides further physiological evidence for recent hypothesis that chewing gum
improves mood and reduces anxiety and stress.
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Dynamic Form Templates Determine Sensitivity
to Biological Motion

Joachim Lange and Markus Lappe

Abstract Visual perception of biological motion shows a remarkable robustness
against noise, fundamentally different from sensitivity to other moving stimuli.
This is evidence for especialized mechanisms for biological motion perception that
are more sensitive to biological motion than to other stimuli. Yet, the specifics of
biological motion stimuli or the mechanisms which might explain the qualitative
discrepancy between coherent motion and biological motion in terms of sensitivity
remain elusive. In a combination of neurocomputational modeling and psychophys-
ical experiments we investigated how form and motion signals influence sensitivity
to biological motion in noise. With stimuli that vary in the amount of motion sig-
nals we tested the ability to detect and discriminate biological motion in human
observers and in a dynamic neuro-cognitive model of biological motion perception.
These results suggest that the sensitivity to human movements is caused by a spe-
cialization to the dynamic and complex pattern of the changing form of the body
over time.

Keywords Vision · Visual motion · Visual form · Biological motion

1 Motion Integration for Simple and Biological Motion

Global motion perception is achieved by spatio-temporal integration of local motion
signals. The sensitivity to simple translational motion is influenced by noise in such
a way that the tolerance to the noise increases linearly with the number of stimulus
dots [1, 2]. Point light displays of biological motion consist of stimulus dots that
move smoothly during a walking sequence. For short time intervals the dot motion
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is approximately linear and provides a brief local motion signal. Theoretically, inte-
gration of these local motion signals over space and time might therefore result
in a global impression of the stimulus, similar to the integration mechanisms pro-
posed for simple translational motion. Unlike for simple coherent motion, however,
the limited lifetime-technique, in which point motion is confined only to a limited
number of succesive frames, showed that sensitivity to discriminate the walking
direction of biological motion increased in a non-linear way, much stronger than
expected from simple mechanisms that integrate motion over space and time [2].

2 Template Model for Biological Motion Perception

Our model uses a template-matching algorithm based on distance measures between
stimulus dots and stick-figure templates [3, 4]. When tested with stimuli that were
identical to the stimuli used experimentally, i.e. a limited lifetime-technique that
lead to local motion signals in the stimuli [2], the increase in sensitivity in the model
matched that of the published experimental data [3]. However, the model operates
by simply analyzing the sparse form information in the point-light stimuli while
ignoring the local motion signals. It predicts, therefore, that sensitivity to direction
discrimination of biological motion should be independent of local motion signals.
Confirmation of this prediction would corroborate the exceptionality of biological
motion perception, and demonstrate that human perception of biological motion is
not necessarily an adaptive mechanism but could be explained by simple template
matching mechanisms.

A detailed description of the model can be found in [3]. Here, we give a short
qualitative description of the two stages of the model. The first stage uses an algo-
rithm that matches each stimulus frame independently to a set of stored static
templates extracted from the walking sequences of nine persons. Half of the tem-
plates face to the left the others face to the right. By computing a distance measure
between a specific stimulus frame and each of the template frames, the model
extracts the template frame that matches best to the stimulus frame. This template
is then used for a decision whether the stimulus frame shows a walker oriented
to the left or to the right. Subsequently, this procedure is repeated for all stimulus
frames and the model achieves an overall decision by averaging over all decisions
obtained for the single frames. This stage, therefore, analyzes only the global form
information available in the single stimulus frames. Subsequently, the information is
forwarded to a second stage that analyzes the temporal order of the single stimulus
frames, i.e. this stage analyzes the global motion information. We have shown that
the output of the first stage correlates with behavioral results of human observers in
discrimination task like the one presented in this study [3, 4]. Since we applied in
the present study a direction discrimination task, only the first stage of the model is
used.
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3 Human Experiments and Model Simulations

The stimulus used for combined model simulation and experimental studies
depicted a human body viewed from the side walking in place as on a treadmill
[5]. It contained of a fixed number of dots that varied from 2 to 8. The positions of
the dots were chosen randomly on the limbs [6]. The dots were either relocated to
a new, again random position on the limbs after each frame (“lifetime 1”) or they
moved on this position with the limb for two frames before being relocated on a new
location on the limbs (“lifetime 2”). The “lifetime 2” condition contained apparent
motion signals, the “lifetime 1” condition did not. The stimulus was walking for-
wards and oriented either to the right or to the left, presented embedded in a field
of random noise dots. The noise dots changed their position each frame to a new,
randomly chosen position.

Four subjects (age 25–30) participated in the experiment. Their task was to indi-
cate the orientation (left or right) of the stimulus. The stimulus was presented on
a computer screen (refresh rate 100 Hz), covered a field of 5 × 10◦, and consisted
of white dots (5 × 5 pixels) on a black background. A single stimulus frame lasted
50 ms (five monitor frames). Stimulus velocity was 0.67 walking cycles/s. Stimuli
lasted up to three walking cycles. The experiment was split into blocks of a constant
number of stimulus dots and constant lifetime of the stimulus dots (1 or 2). In each
block, a 2-up 1-down staircase determined the 70.7% correct noise threshold for
discriminating the walking direction. Thresholds were plotted in a log-log-plot and
fitted by linear regression.

The model simulations started by determining the recognition rate of 100 stimu-
lus sequences with 2 dots per stimulus frame and a dot lifetime of 1. Subsequently,
we added in a window (6.5 × 4 times the stimulus size) a fixed number of noise
dots and again determined the recognition rate. We repeated the procedure until the
recognition rates dropped to chance level. Then we plotted the recognition rates as a
function of number of noise dots and fitted these data points with a sigmoid function
in order to determine the noise thresholds for 70.7% correct responses. We repeated
this procedure for all combinations of number of stimulus dots and lifetimes. The
results were plotted in log-log-diagrams and fitted by linear regression.

Fig. 1 shows the noise thresholds measured for the four subjects (a–d) and the
model (e) for both dot lifetimes. The model results are characterized by a linear
increase in the log-log-plots for the noise thresholds for both lifetimes. The slopes
of the linear regression are steeper than (1). Moreover, slopes for both conditions are
virtually identical, i.e. the slopes did not show significant differences. In agreement
with the model, all subjects revealed slopes that are steeper than 1 for dot lifetime
(2). Furthermore, the data from the subjects confirmed the model predictions for
lifetime 1: all slopes are steeper than 1 and all slopes are virtually identical to slopes
obtained for dot lifetime 2, i.e. there are no significant differences in terms of slope
steepness. All slopes are in the same range as the published data [2] for a walker
with a dot lifetime of 2.
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Fig. 1 Noise thresholds for 70.7% correct identification of the walking direction of the stimulus as
a function of number of stimulus dots per stimulus frame. Filled dots represent data for conditions
with a dot lifetime of 1, open dots for a lifetime of 2. Data are plotted in a Log–Log-diagram and
fitted by linear regression (solid line for dot lifetime of 1, dashed lines for dot lifetime of 2). a–d
show the psychophysical results for four subjects, e shows the data for the model simulations

4 Discussion and Conclusion

We tested our model prediction that local motion signals are irrelevant for sensitivity
to direction discrimination of biological motion. First, we reproduced prior experi-
mental results [2] in simulations of the form-based model. The linear regression for
stimuli with a dot lifetime 2 revealed a slope of 3.18, thus confirming the nonlin-
ear increase of sensitivity to biological motion stimuli. Second, the model predicted
the same results for dot lifetimes of 1 as for dot lifetime 2 (slope of 2.53), i.e. that
sensitivity to direction discrimination of biological motion should be unaffected by
local motion signals. We confirm this prediction by showing that our subjects noise
thresholds were virtually identical in both lifetime conditions. We conclude that our
form-based model well describes the direction discrimination of biological motion.

In contrast to the direction discrimination tasks, for the task of detection in noise
a linear relationship between number of stimulus dots and detection thresholds was
shown for translational motion as well as for biological motion [2]. We suggest that
detecting biological motion and discriminating its walking direction are two distinct
processes which are not necessarily coupled. To detect biological motion in noise
local motion signals may be important to segregate the stimulus from the noise [7,
3]. This process is linearly dependent on local motion signals but unspecific for bio-
logical motion. Our results suggest that a template-matching process is sufficient to
achieve the second step of the recognition process, i.e. the discrimination of walking
direction, which is specific for biological motion stimuli.
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Bistable Alternation of Point-Light
Biological Motion

Marc H. E. de Lussanet and Markus Lappe

Abstract The facing-in-depth of point-light biological motion is ambiguous: the
frontal and back view look the same. However, since earlier studies found a very
strong perceptual bias in point-light biological motion, it is unknown whether
it evokes an alternating (bistable) percept. In the present study, naive, untrained
observers viewed point-light stimuli in half-profile view. All participants experi-
enced spontaneous flipping of the orientation-in-depth, both for biological motion
and necker cube displays. The number of perceptual flips was lower for the rock-
ing cube than for the static one; and higher for biological motion than for rocking
cubes. Contrary to earlier findings the participants did not have a perceptual bias.
We conclude that ambiguous biological motion does evoke a bistable percept.

Keywords Biological motion · Depth perception · Perceptual bistability ·
Psychophysics

1 Introduction

Ambiguous visual stimuli are highly interesting for studying brain dynamics,
because the brain is forced to arrive at a consistent interpretation, on the basis of the
dynamical interaction of neuronal populations. Ambiguity may, e.g. lead to a simul-
taneous, conflicting percept (e.g. motion transparency), or to spontaneous spatial
and temporal alternation of the conflicting percepts (e.g. necker cube or binocular
rivalry). Biological motion displays human movements as moving point lights [1].
For a non-profile view, the facing-in-depth is ambiguous, i.e. there is no way to
tell whether one sees the front or the backside. Biological motion is a particularly
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interesting ambiguous stimulus, because it is a complex stimulus with very little
information, and requires high-level visual processing [9].

Ambiguous displays of 3-D objects often evoke a bistable percept. The well-
known necker-cube displays the ribbons of a cube without perspective deformation
nor occlusion. If one looks at a necker cube for some time, the percept will be
bistable or even multistable. That means that the percept will spontaneously change
to a different possible percept, such as two possible 3-D interpretations, or even a flat
wireframe [2]. Alternating percepts are thought to arise from the dynamical compe-
tition between neuronal cell populations that each represent possible, but mutually
exclusive, percepts [3].

One could expect that the percept of point-light biological motion is bistable, like
the necker cube. However, biological motion differs from the necker cube because
it moves, and it differs from dynamic displays such as the rotating drum [4] in that
its form changes dynamically. Thus, rhythmic biological motion might be special
in that the perceptual dynamics interfere with the cyclic change in form. Moreover,
observers have strong perceptual bias to see the frontal view [5, 6]. We investi-
gate whether biological motion displays are bistable.1 Since perceptual changes are
linked to the amount of conflict in the stimulus [4], a strong perceptual bias could
abolish the bistable percept of biological motion.

2 Methods

Stimuli were computed, using in-house developed programs, and were presented on
a CRT monitor, 40 × 30 cm, 640 × 480 pixels, 180 Hz vertical refresh. Participants
wore CrystalEyes-3 stereo goggles so the effective refresh rate was 90 Hz per eye.
All stimuli consisted of 14′ red dots on a dark background.

Stimuli represented a repeated walking cycle without net displacement [7], or
a cube (Fig. 1). The walker consisted of 14 dots, and was oriented 45◦ about the
vertical. The cube consisted of 8 dots located on the corners. The cube was oriented
45◦ about the vertical and tilted 25◦. When rocking, a sinusoidal tilt was applied
with an amplitude of 10◦. All stimuli were 3◦ wide. The movement period was
always 1.4 s.

The experiment consisted of three 5-min sessions, respectively presenting biolog-
ical motion, rocking cubes, and stationary cubes, repeated on 2 days. During each
experimental session, the stimulus was continuously displayed. Every 30 s, an invis-
ible, smooth transition to a different condition occurred (each condition occurred
twice in each session). The condition of interest displayed an orthographic projec-
tion. Four other conditions that were not analyzed here, applied different depth cues
to the stimulus. Each condition occurred twice during a session.

The nine participants did not know our goal, and were inexperienced with psy-
chophysical experiments. The task was to report the current percept by a key-press

1Notice that we use bistability in the usual sense [3, 4], which is different from [2].
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Fig. 1 The walking stimulus (a) and the Necker cube (b). c A 30-s interval of presentation. Upper
trace: the presented condition with a transitional period on the first 2 s. Triangles depict the auditory
cue to respond (arrows). In this example, there are three perceptual intervals: p1, p2, p3

on hearing a brief bell sound, on average every other second with a random jitter of
0.5 s (Fig. 1c; [8]). Valid responses were “Toward”, “Flat”, or “Away” for a walker
or “From Above”, “Flat”, or “From Below” for a cube.

The perceptual intervals were selected from each 30-s presentation period. Only
intervals were selected that started and ended with a perceptual change within
this period. If no such interval was present, a 29-s interval was assumed. The
cumulative distributions of response intervals were statistically compared using a
bootstrap-version of the Kolmogorov-Smirnov test (ks.boot, R version 2.8), with
105 bootstraps.

3 Results

Figure 2 shows the cumulative perceptual intervals over all participants. The sat-
uration of the distributions above 10 s shows that most intervals lasted less than
10 s. The jump at the last bin reflects that a number of 30-s periods consisted of
just a single long perceptual interval that was interrupted at the end of the trial.
This occurred most frequently in the rocking cube condition. All participants expe-
rienced at least one interval of 15 s or shorter in each condition. Thus, spontaneous
perceptual changes occurred in all three conditions.

The cumulative distribution for biological motion lies in between those for the
static and rocking Necker-cubes (Fig. 2). There were more short intervals for static
cubes than for biomotion (ks.boot-P < 0.0001), and more short intervals for the lat-
ter than for rocking cubes (ks.boot-P = 0.0001). This shows that periodic motion
reduces the number of short perceptual intervals, and thus the number of sponta-
neous perceptual changes. Importantly however, the result shows that the percept
of point-light biological motion is bistable. The number of perceptual changes



418 M.H.E. de Lussanet and M. Lappe

static cube
rocking cube
biological motion

0 5 10 15 20 25 30

0

interval length (s)

m
ea

n 
cu

m
ul

at
iv

e 
N

 in
te

rv
al

s

1
2Fig. 2 Mean cumulative

distributions of perceptual
intervals. The last bin
includes intervals that were
interrupted by the end of the
presentation period

was considerably lower than for static necker cubes, but more than in a rock-
ing Necker-cube, which had a comparable amount of movement as the walking
stimulus.

A “Flat” response was given just once for biological motion, but were frequent
with static and moving cubes (10% of the intervals of <15 s). Remarkably, none
of the participants showed a strong perceptual bias either for biological motion or
for the static or rocking cube. Of the <15 s intervals 55% were “towards” and 43%
were “away” responses for biological motion (43–49% for the necker cube). The
same was found for the total viewing time: 53% of all responses were “towards” to
47% “away” for biological motion (49–45% for the necker cube).

4 Discussion

The present results show that point-light biological motion is a bistable stimulus,
in the sense that the two possible percepts (frontal versus back view) alternate
spontaneously when one looks at it for some time.

A remarkable finding of the present study is that the perceptual bias for a toward-
percept was hardly present in our data, in contrast to published results [2, 6]. This
apparent discrepancy probably is not due differences between the displays. We
asked a number of naive observers, and orally they reported almost invariably a
“toward” view of the walker. A possible explanation is that the perceptual bias is
weak, and therefore easily suppressed; for example by depth cues such as linear
perspective deformation, or occlusion. In the present study the participants did not
have a forced choice but reported the depth percept over a longer period, which
probably strongly reduced the bias.

Since ambiguous stimuli have multiple interpretations, the brain needs to arrive at
a consistent interpretation. The cyclic motion that imposes the brain with a gradual
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form change might interfere with this dynamic process. Indeed, the spontaneous
perceptual changes in necker cubes were almost abolished by rocking motion in our
population of inexperienced observers.

In biological motion the gradual, cyclic form change did not abolish spontaneous
perceptual changes, but compared to the static necker cube, did reduce them. Since
there was no perceptual bias, we find it unlikely that the biological motion stimulus
suffered from reduced perceptual conflict [4]. Also, the form change did not abolish
the bistability as in the necker cube. Instead, we propose that there is a neuronal
conflict at a neuronal level that integrates the complete walking cycle, which is
consistent with cell recordings in monkeys [9].
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Influence of Feedback Signals from Cat’s Area
21a on Contrast Response Function of Area 17
Neurons

C. Wang, W. Burke, and B. Dreher

Abstract Feedback signals originating from cat’s extrastriate visual cortices exert
mostly excitatory influence on neuronal responses in area 17 (A17). In the present
study we found that feedback signals from one of the “form-processing” extrastri-
ate cortical areas, area 21a (A21a), modulate the contrast response function of A17
neurons. Thus, in a majority (13/18) of A17 cells examined there was a significant
change in contrast response function during inactivation of A21a. While the magni-
tude of the responses to stimulus contrasts tends to decrease during inactivation of
A21a there was no systematic change in the mid-contrast, i.e. the contrast at which
the response of individual neurons reached 50% of its maximum response. Further
analysis indicated that the effect on the magnitude of responses was stronger at
high contrast. These results suggest that an overall excitatory feedback from A21a
may play a role in enhancing contrast response in A17 neurons, especially at high
contrast.

Keywords Contrast response function · Neurons · Feedback · Visual cortex · Cats

1 Introduction

Despite abundant feedback projections from “higher-order” to “lower-order” visual
cortices little is known about their functional roles (see for reviews, [1, 2]). Previous
studies based on single neuron recordings indicate that feedback connections exert
primarily excitatory influence on responses of neurons in primary visual cortex
[3–8]. Such an influence can also be detected by performing intrinsic signal opti-
cal imaging on primary visual cortices (areas 17 and/or 18, V1 and/or V2 [9, 10])
during transient inactivation of extrastriate visual cortical area, area 21a (A21a) or
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the postero-medial and postero-lateral suprasylvian areas of the cat. We postulated
that the excitatory influence of feedback projections might also modulate some
fundamental receptive field properties of neurons in primary visual cortex.

The dependence of the magnitude of response on stimulus contrast and con-
trast adaptation processes is a fundamental feature of vertebrate visual system and
has been found already in “pre-cortical” stages of the mammalian visual path-
ways (retina: [11]; dorsal lateral geniculate nucleus (LGNd): [12, 13]). Although
the contribution of the visual cortex to processing of contrast-related information
is not yet fully understood the orientation-selective contrast adaptation observed
in a substantial proportion of V1 and V2 cells in anaesthetised cats [14] and the
attention-dependent increase in contrast sensitivity in area V4 neurons of awake
macaque monkeys [15] suggests further modulation of contrast response function
(CRF) in visual cortices. In the present study we examined in detail the influence
of feedback projections from one of the “form-processing” higher-order cortical
areas, A21a on contrast response function of area 17 (A17) neurons by reversibly
inactivating ipsilateral A21a (by cooling it to 10◦C). Our analysis suggests that feed-
back signals originating from A21a not only exert a significant, primarily excitatory,
influence on the magnitude of the responses of A17 neurons but also in many cases
induce substantial changes in CRF.

2 Results and Discussion

In the present study a total of 25 cells recorded extracellularly in the part of A17
visuotopically corresponding to the part of the visual field represented in A21a,
abbreviated as A17(c21a) [5] were examined for CRF prior to, during and after
reversible inactivation of A21a. Due to a significant variation between the control
runs or non-monophasic CRF profiles, seven cells had to be excluded from further
analysis. After determining the optimal stimulus orientation, direction and velocity
we then examined CRF by presenting a series of optimally oriented light bars of
various contrasts in interleaving fashion.

In a majority of A17 cells (13/18, 72%) inactivation of A21a resulted in signifi-
cant changes to their CRFs (0.001 < P < 0.016, n = 13, F test). Figure 1 shows
the model functions (Fig. 1a, d) used and examples of five A17 cells (Fig. 1b, c,
e–g) whose CRFs were significantly affected by reversible inactivation of A21a.
As illustrated in Fig. 1b, c the CRFs of both cells were well fitted to hyperbolic
ratio functions. However, the effects observed in these two cells were very differ-
ent. Thus, during inactivation of A21a the cell whose CRF functions are illustrated
in Fig. 1b showed a profound reduction (51%) in the magnitude of its maximum
response with almost no change (<4%) in the C50, therefore mimicking a change in
response gain control. On the other hand, during cooling of A21a the CRF of the
other cell (Fig. 1c) shifted substantially to the right along the axis of stimulus con-
trasts and the C50 increased nearly 5-fold from 1.65 prior to cooling to 9.74. When
compared to the scale of the change in the C50, the increase in the magnitude of
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Fig. 1 Examples of model functions for contrast response functions (CRFs) and the effect of
inactivation of A21a on CRFs of five A17 cells. (a) Variations of the sigmoid model functions are
shown with dotted and dashed lines indicating an exclusive change in Rmax (response-gain) and in
C50 (contrast-gain) respectively in relation to an original function (solid line). (b, c) Two A17 cells
showed a 51% reduction in response (b) and a predominant shift in the C50 (c) during inactivation
of A21a. (d) A model function based on polynomial ratio. (c) An A17 cell whose CRF well fitted
to a polynomial ratio function showed a substantial reduction (51%) in the maximal response and a
small change (20%) in C50 during inactivation. (f) An A17 cell showing a clear response reduction
at high contrasts exhibited clear facilitation at a number of low contrasts and the responses saturated
much earlier during inactivation. (g) An example of a reduction in the dynamic range of contrast
response function during inactivation of A21a. Contrast (c) = (Lo − Lb)/Lb, where Lo is the
luminance of object bars and Lb is the background luminance, which was 1.0 cd/m2 in the present
study

the maximum response for this cell was relatively small (23%, from 49.8 to 61.6
spikes/s), thus indicating a prominent effect on a contrast gain control (cf. Fig. 1a).

In some cells we found, however, that the magnitude of the responses was consid-
erably reduced at high contrasts, i.e. a bell-shaped CRF. A polynomial ratio function
was used to fit those CRFs (Fig. 1d, see also examples in Fig. 1e, f). In most cases,
the maximum response of the CRF was substantially reduced with a minor change in
the C50 and the bell-shaped CRF was retained during inactivation of A21a as shown
in Fig. 1e. On the other hand, the shape of the CRF may also be altered in addi-
tion to the magnitude of response and C50 during cooling as illustrated in Fig. 1f, g.
Thus, these results suggest that the feedback signals from A21a can exert a strong
influence on the CRFs of A17 cells (Fig. 1b, c, e–g) and, as a result, the maximum
response and/or the C50 are affected.

An average reduction of 31% (range 11–59%) in the maximum response was
observed for twelve out of eighteen cells (67%) while three cells showed a mean
29% increase in the maximum response during cooling. The remaining three cells
showed no change (<5%) in their maximum responses during cooling of A21a. This
again indicates a primarily excitatory influence of feedback projections from A21a
onto A17 cells (P = 0.04, n = 18). It was also apparent that the CRFs of some
A17 cells were shifted considerably along the contrast axis, indicating a change in
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the contrast sensitivity during inactivation of A21a. Of eighteen cells, nine showed
a decrease, i.e. leftward-shift of the C50 ≥ 20% (range 26–81%) and seven cells
showed an increase, i.e. rightward-shift of the C50 ≥ 20% (range 47–490%). Two
cells were not affected, i.e. with a change less than 5%. There was no statistically
significant difference between the C50 before and during cooling (P = 0.68, n =
18). Furthermore, the change in the maximum responses and that in the C50 was not
correlated (r = –0.03, P = 0.9, n = 18). It was noted that in some cells during inac-
tivation, the period of the rising phase or the dynamic range of the CRFs was also
affected (Fig. 1f, g). However, when the dynamic contrast ranges were measured on
a log scale between the contrasts that gave 20% (C20) and 80% (C80) of the maximal
response, we did not find a significant difference (P = 0.64, n = 18) between the
dynamic range before (1.22 ± 0.13 log unit) and during cooling of A21a (1.06 ±
0.12 log unit).

In the present study we compared also responses at low contrasts, C10 and C20,
which elicited 10 and 20% of the maximum responses respectively (Fig. 2a, filled
and open diamonds), before and during cooling of A21a. During cooling the median
response of 8.5 spikes/s before cooling was slightly reduced to 7.2 spikes/s (P =
0.71, n = 36). Thus, unlike the changes during attention [15] or concurrent stim-
ulation of collinear flanks [16], the feedback from A21a did not systematically
affect neuron’ responses to low contrasts. This is probably due to the occurrence
of both leftwards- and rightwards-shift of CRFs along the contrast axis during the
inactivation. However, as shown earlier the magnitude of maximum responses was
substantially reduced. Likewise, the responses at high contrasts, C80 and C90, at
which 80 and 90% of the maximum responses were elicited respectively (Fig. 2b,

Fig. 2 Responses examined at both low (a) and high (b) contrasts before and during cooling.
(a) Responses at low contrasts (C10 and C20) were affected by inactivation of A21a. However,
the change was not consistent for the 18 cells tested. (b) There was a systematic reduction in the
responses at high contrasts (C80 and C90) during inactivation.
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filled and open circles), showed a significant difference between the responses
before (57.2 ± 8.4; median: 46.4 spikes/s) and during (49.2 ± 9.5; median: 33.4
spikes/s) inactivation of A21a (P < 0.006, n = 36). Thus, the excitatory influence
from A21a on CRFs of A17 cells was primarily at the top-end of the dynamic range.
The increase in the magnitude of the maximum response without an expansion of
dynamic range in stimulus contrasts would lead to a steeper slope on the rising part
of CRF, that is, an increase in the magnitude of the responses per contrast unit. This,
in turn, suggests an enhanced sensitivity to stimulus contrasts. Except for three cells
showing a substantial change of more than two-fold in the slope (one decreased
and two increased) we did not find a significant change in the slope during inacti-
vation of A21a (control, median: 47.9 spikes/s/log unit of contrast; cool, median:
45.3 spikes/s/log unit of contrast; P = 0.27, n = 18). Lack of a noticeable change
in the slope was probably due to changes (mostly a reduction) in the dynamic range
observed during inactivation of A21a.

As reported here, in a substantial proportion (72%, 13/18) of A17 cells their
CRFs were significantly affected during inactivation of A21a. The main effect was
a reduction of the magnitude of responses at high contrast with a left- or right-ward
shift of the CRFs and in some instances a narrowing in the contrast dynamic range,
suggesting that the feedback from A21a influences the gain control mechanisms for
both response and contrast.

Previous studies on the CRFs of A17 cells suggested that contrast responses
can be modulated by simultaneously stimulating the classical RF and the surround
region [17, 18]. The effect was generally a reduction in the magnitude of response.
As suggested by Cavanaugh and colleagues [18], part of the surround suppression
observed in their study may come from higher-order areas. In the present study, how-
ever, although we used long bars extending well into the surround region only two
cells (2/18) showed an increase in the magnitude of maximum responses, implying a
normally suppressive influence from A21a. This result is consistent with the findings
in our previous study [5] where only a small proportion of end-stopped (hypercom-
plex) cells (2/10) became less suppressive during inactivation of A21a. Thus, the
prevalent reduction in responses observed in the present study is more likely to be
due to reduced excitatory inputs to these cells from A21a. On the other hand, a weak
suppressive influence may also be present but masked by a predominantly excitatory
feedback input.

Cortical cells are capable of adjusting contrast gain following adaptation to stim-
ulus contrast, a mechanism which allows them to code an extremely wide range
of environmental contrasts into a limited frequency range of neuronal discharges.
A previous study comparing the monocular and binocular mechanisms of cortical
contrast gain control, suggested that contrast adaptation occurs primarily before
convergence of inputs from the two eyes [19]. More importantly, Solomon and
colleagues [13] found direct evidence of contrast adaptation in virtually all mag-
nocellular cells of the macaque dorsal lateral geniculate nucleus (LGNd; see also
[12] in both X and Y cells of cat’s LGNd), that, in turn, rely on the contrast adap-
tation of their retinal inputs [11]. While there is no clear consensus concerning
the contribution made at each stage of visual information processing to contrast
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adaptation, it appears that some of the effect observed in the cortex is generated
intrinsically within cortical neurons [14, 20]. A profound change in contrast gain for
some of our cells during inactivation of A21a (e.g. Fig. 1c, f) indicates that contrast
gain control in A17 can be further modified by feedback projections. Presumably,
due to a prevailing excitatory influence of A21a, we found that a change in contrast
gain was very often associated with a change in response gain. Our current finding
of a reduction in the dynamic range of CRF during inactivation of A21a (e.g. Fig. 1c,
e–g) suggests an influence of A21a on the effective range of contrast detection of
A17 cells. An extended dynamic range with increased neuronal responses would
enhance the consistency of contrast discrimination over a wider range of contrasts.
However, as indicated in Fig. 1f this enhancement was somehow achieved at the
expense of detection at low contrasts. It is not clear how the visual cortex reg-
ulates the competing needs for detection sensitivity at low contrasts and contrast
discrimination over a wide range of contrasts. It is, nevertheless, important to note
that an excitatory influence of feedback projections on the magnitude of response
could improve the quality, i.e. “signal-to-noise ratio” of the responses of A17 neu-
rons wherever an increase in the magnitude of response is not at the expense of the
deterioration in the relationship between the response and its variance [6].
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Compensating Neural Transmission Delays
by Dynamical Routing

Si Wu and Libo Ma

Abstract Neural delays are pervasive in the computations associated with brain
functions. For adaptive behaviors, these delays must be compensated. The present
study investigates a dynamical routing scheme which compensates the transmission
delay of neural signals from retina to visual cortex. The scheme utilizes prior infor-
mation of a moving stimulus and predicts the future position the stimulus will travel
to after the delay period. We find that over a large range of speed, the routing scheme
can compensate neural delays successfully.

Keywords Delay compensation · Dynamical routing · Neural computation · Visual
information processing

1 Introduction

Neural delays are a general property of computations carried out by neural circuits.
Given the visual system as an example, an external stimulus in the form of light
intensity is first encoded into electrical signal by photo receptors in retina. This sig-
nal is further converted into action potentials by retinal ganglion cells. Subsequently,
the neural signal is transmitted to LGN and finally reaches the primary visual cor-
tex, where visual awareness of the stimulus is established. This whole process takes
about 60–80 ms, which is a significant amount of delay in real-time computation.
A fast moving object can travel a significant distance over the retinal surface during
this period, implying that if this delay is not compensated properly, our perception
of the location of a fast moving object will trail largely behind its true position.
Thus, neural systems must have mechanisms to compensate neural delays.
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A possible strategy for a neural system achieving compensation is to predict the
future position of a stimulus based on the prior knowledge it has on the motion speed
of the stimulus. In a recent study, Nijhawan and Wu proposed a dynamical routing
scheme which implements the compensation of the visual transmission delay [1].
Their idea is as follows: For a static stimulus, neural signal is transmitted along a
straight line from retina to V1. Since V1 has the retinotopic map, the spatial posi-
tion of the stimulus is properly registered. For a moving stimulus, on the other hand,
neural signal is sent along a diagonal pathway to the visual cortex. The slope of the
pathway is determined by the motion speed of the stimulus, so that the cortical posi-
tion the neural signal is sent to corresponds to the future location the stimulus will
travel to after the delay period. Hence, the transmission delay is compensated. An
evidence supporting the dynamical routing scheme is the flash-lag effect observed
in human psychophysical experiments [2].

Do the neural system has computational resources to achieve dynamical routing?
Nijhawan and Wu found that this is possible [1]. They showed that at the regime of
low speed, the asymmetric inhibitory interactions from amacrine starburst cells to
ganglion cells is sufficient to implement dynamical routing. In this paper, we further
study the dynamical routing scheme in the regime of high speed. In this case, the
effect of asymmetrical inhibition from amacrine cells becomes negligible. Rather,
it is the property that the time constant of inhibitory inputs is larger than that of
excitatory ones contributes to routing behaviors. We demonstrate that over a large
range of speed values, the dynamical routing scheme can compensate the visual
transmission delay successfully.

2 Dynamical Routing in Visual Information Processing

We consider a neural circuit formed by retinal ganglion cells. The real network is
two dimensional. Here, for simplicity, we consider a stimulus is moving in a straight
line and only study a one-dimensional network.

Let us denote r(x, t) the activity of ganglion cells at the retinal position x and at the
time t. The ganglion cells receive excitatory inputs from bipolar cells and inhibitory
ones from amacrine cells, which are denoted as Ib(x, t) and Ia(x, t), respectively. The
activity of ganglion cells is determined by

r(x, t) = Ib(x, t)

ρ + Ia(x, t)
, (1)

where ρ is a small positive number, and the division operation represents the effect
of multiplicative inhibition from amacrine cells to ganglion cells.

The stimulus position is encoded in the population activity of ganglion cells [3].
We use Center of Mass strategy to read-out this information, which is given by the
center of {r(x, t)}, for all x values, i.e.,
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Cr =
∫∞
−∞ xr(x, 0)dx
∫∞
−∞ r(x, 0)dx

. (2)

The inputs from bipolar cells to ganglion cells are given by

Ib(x, t) =
∫ ∞

−∞
dx′

∫ t

−∞
dt′Kb(x− x′, t − t′)Sb(x′, t′), (3)

where Sb(x′, t′) is the responses of bipolar cells to a moving stimulus. Kb(x−x′, t−t′)
is the receptive field of ganglion cells with respect to bipolar cells,

Kb(x− x′, t − t′) = hbe
− (x−x

′
)2

2a2
b e

− t−t
′

τb , (4)

where hb is a constant, ab the width of receptive field, and τ b the time constant of
excitatory inputs.

The inputs from amacrine cells to ganglion cells are

Ia(x, t) =
∫ ∞

−∞
dx′

∫ t

−∞
dt′Ka(x− x′, t − t′)Sa(x′, t′), (5)

where

Ka(x− x′, t − t′) = hae
− (x−x

′
)2

2a2
a e−

t−t
′

τa , (6)

and all variables are similarly defined as in Eq. (4).
We consider a stimulus is moving at a constant speed v, and its position at time t

is z. Hence, x(t′) = z− v(t − t′).
In the previous study [1], the authors considered the situation when the speed of

the stimulus is sufficiently slow, in term of that vτa is in the order of the size of a
single amacrine cell. In this case, the asymmetric inhibitions from amacrine cells to
ganglion cells contribute to dynamical routing. Here, we are interested in the regime
when the speed of the stimulus is sufficiently large, so that the stimulus crosses
a single amacrine cell very quickly, and ganglion cells are unable to differentiate
asymmetric inhibitory interactions. For the convenience of analysis, we consider
the instant responses of amacrine and bipolar cells to the stimulus are the same, i.e.,

Sb(x′, t′) = Sa(x′, t′) = δ(x′ − z+ v(t − t′)), (7)

where the symbol δ(x) denotes the delta function.
Without loss of generality, we calculate the population activity of ganglion cells

at time t = 0 and assume z = 0 at t = 0. We get
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Fig. 1 (a) The population activities of ganglion, bipolar and amacrine cells; (b) The predicted
stimulus position vs. the motion speed of the stimulus

Ib(x, 0) =
∫ ∞

0
hbe

− (x+vt)2

2a2
b e

− t
τb dt, (8)

Ia(x, 0) =
∫ ∞

0
hae

− (x+vt)2

2a2
a e−

t
τa dt. (9)

As shown in Fig. 1a, both {Ib(x, 0)} and {Ia(x, 0)} have a bump shape tilted to the
opposite direction of the stimulus moving. Their centers are given by Cb = −τbv
and Ca = −τav, respectively. From Eq. (2), we see that if the inhibitory bump
is tilted more towards the opposite direction of stimulus moving than the excitatory
bump, then the bump of ganglion cell activities is tilted towards the moving direction
of the stimulus (Fig. 1a), implying that the network predicts the future position of
the stimulus. A proper compensation requires that the center of the bump {r(x, 0)},
i.e., Cr, is proportional to the speed of the stimulus.

Let us consider an analytically solvable case when τ1v << a1 and τ2v << a2.
Under this condition, the distortions of the bumps Ib and Ia from a Gaussian function
are small, we may write down

Ib(x, 0) ≈ hbτbe−x2/2a2
b (1− τbvx

a2
b

), (10)

Ia(x, 0) ≈ haτae−x2/2a2
a (1− τavx

a2
a

). (11)

Thus,

r(x, 0) ≈ hbτb

haτa
e−x2/2a2

b+x2/2a2
a(1+ τaa2

b − τba2
a

a2
aa2

b

vx), (12)
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whose center is calculated to be Cr = (τaa2
b− τba2

a)/(a2
a− a2

b)v. Thus, we see that if
aa > ab and τaa2

b > τba2
a, i.e., the time constant of inhibitory inputs is sufficiently

larger than that of excitatory ones, Cr is proportional to v.
Figure 1b shows that with proper parameters, the stimulus position predicted by

the network increases linearly with the speed of the stimulus over a large range of
speed values, implying the compensation of the delay is achieved.

3 Conclusions

To conclude, we have investigated a dynamical routing scheme for compensating
the visual transmission delay. The scheme utilizes prior information of a moving
stimulus and dynamically selects a route to send neural signal from retina to the
visual cortex. The scheme works well over a large range of speed values.
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Retinotopic Sparse Representation
of Natural Images

Libo Ma

Abstract Independent component analysis and sparse coding have provided a
functional explanations of simple cells in primary visual cortex (V1). The learned
components(corresponding to the responses of neurons) of these models are ran-
domly scattered and have no particular order. In practice, however, the arrangement
of neurons in V1 are ordered in a very specific manner. In this paper, we propose
a sparse coding of natural images under a retinotopic map constraint. We inves-
tigate the spatial specifically connections between retinal input and v1 neurons.
Some simulations on natural images demonstrate that the proposed model can learn
a retinotopic sparse representation efficiently.

1 Introduction

Efficient coding hypothesis has been considered as a general computational criteria
for the modeling of early visual system. Over the last decade, a variety of methods
approach the computational modeling of primary visual cortex based on statistical
modeling of natural images. Independent component analysis [1] and sparse coding
[2] have shown that the statistically optimal linear features of natural images are
very similar to the receptive fields (RFs) of simple cells in primary visual cortex
[2–5].

Algorithms for learning efficient coding commonly divide natural images into
small patches as the input because the computational costs become heavier for large
scale images. And the learned basis functions or coefficients have no particular
order, or other relationships. This lack of an intrinsic order of basis functions is
correlated with the assumption of complete statistical independence.
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However, in the most visual areas of brain, especially in the primary visual
cortex, there is a prevalent feature that the visual world is mapped onto the cor-
tical surface in a topographic manner. The neurons in primary visual cortex are
arranged orderly according to the retinotopic map. This retinotopic map refers to
the transformation from the coordinates of the visual world to the corresponding
locations on the cortical surface. Namely, neighboring points in a retinal visual
image arouse activity in adjacent neurons of primary visual cortex. Furthermore,
neighboring neurons have RFs that include overlapping portions of the visual
field. The position of the center of these RFs forms an orderly sampling mosaic
that covers a part of the visual field. Thus, it is important in the modeling of
primary visual cortex that the retinotopy is utilized during estimating the basis func-
tions(corresponding to receptive fields), so that the estimated components can be
ordered in a meaningful way.

In this paper, we propose a modification of sparse coding that explicitly formal-
izes a retinotopic map representation on the basis functions. This gives a retinotopic
map where the position of the receptive field of V1 neurons emerge from the spatial
specificity of connections between retinal input images and V1 neurons. This gives a
new principle for retinotopic organization. Moreover, we derive a new learning algo-
rithm for the evaluation of the method. We demonstrate that over a comparatively
large natural images, the retinotopic map representation are learned successfully.

2 Retinotopic Sparse Representation Method

Now we define a generative model that implies retinotopic map for visual neurons
that have local receptive field and overlapping between adjacent neurons. A simple
form of coding strategy is a linear factor model, in which a static monochrome
image I(x, y) is assumed to be generated as a linear superposition of basis functions
ai(x, y) with additive noise ε(x, y) as:

I(x, y) =
n∑

i=1

ai(x, y)si + ε(x, y) (1)

where si are neuronal activities when presented with a given image I. This is a
classical sparse coding [2].

In order to formalize a retinotopic representation in the model, we apply a
retinotopic map function Ci, j(x, y) to be multiplied on each basis function as:

I(x, y) =
N∑

i=1

N∑

j=1

Ci, j(x, y)ai, j(x, y)si, j + ε(x, y) (2)

A piece of cortex is modeled by a two-dimensional grid of N × N neural units
(“neurons”). The units should be interpreted as populations of neighboring cortical
neurons, not as a single neuron.
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Fig. 1 An illustration of
retinotopic representation
model network

Let the size of a given natural image I is M × M. We define a retinotopic map
function, Ci, j(x, y), as a projection constraint on the connections from retinal image
of position (x, y) to the (i, j) visual neuron. The center of receptive field of the (i, j)
neuron is located at (x, y) and its size is m × m, and m << M. This means that
the (i, j) neuron can only receive small local field from input retinal image with
specific position and size. Moreover, we assign adjacent neurons have receptive
fields that include overlapping portions of the input retinal image field. That is, the
neighboring patch size of m×m at position (x, y+1) are projected onto neighboring
neuron (i, j+1) correspondingly. As a result, the centering position of these receptive
fields form an orderly sampling mosaic that covers the whole input retinal image.
See Fig. 1. Furthermore, all the N × N neighboring patches which surround the
center (x, y) are projected onto N × N neurons in succession. So, we can obtain
M = N + m− 1.

The estimation of the model is similar to classical sparse coding, see [2]. Now,
in this model, the objective function can be written as:

L =
∑

x,y

[I(x, y)−
∑

i, j

Ci, j(x, y)ai, j(x, y)si, j]
2 + λ

∑

i, j

S(si, j) (3)

where λ is a constant. The minimization of objective function L with respect to ai, j

and si, j can be divided into two stages. First, to estimate basis functions ai, j to find a
retinotopic representation of natural images with fixed si, j. Second, to infer the coef-
ficients si, j for a given image I, holding the basis functions ai, j fixed. Thus, by using
gadient descent algorithm, the learning rule for basis functions and coefficients can
be accomplished. Note that, we set the norm of basis function to be unity after each
updating on the basis functions.

3 Simulations

In this section, we test retinotopic sparse representation on natural images that is
distributed by Olshausen [2]. The size of receptive field of each neuron is set to be
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Fig. 2 Part of synaptic weights W by local independent factorization algorithm. The enlarged
synaptic weights that is shown by dashed square

m = 16. The number of neurons denoted as N = 16. So the size of input image
is M = 31. These images are prewhitened to equalize large variances in all direc-
tions in frequency domain. We apply batch mode to train the model, in which three
hundred image patches are extracted in each batch.

The learned basis functions or receptive fields by retinotopic sparse representa-
tion are shown in Fig. 2. The local region shown by solid square is enlarged to show
the details of basis functions. We can see that the proposed model can learn Gabor-
like classical receptive fields (CRFs) of simple cells. A distinct feature of the model
is that the receptive field of neuron is enclosed in a local area around the center of
neuron approximately.

4 Conclusions

We have introduced a new sparse coding method that we embed a retinotopic map
on the basis function to model the mapping relationship between retinal image and
visual neurons. We derived a Learning algorithm for training the model by using
gradient descent algorithm. Simulations demonstrate that the learned basis functions
are similar to the Gabor-like classical receptive fields of simple cells.
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A Neural Network Model for Image Formation
of the Face Through Double-Touch Without
Visual Information

Wei Song, Toshio Inui, and Naohiro Takemura

Abstract The fact that neonates only 9 min old preferentially look at faces suggests
that they have already acquired the visual schema of a face. However, the mecha-
nism for learning the schema of “face” during the fetal period is still unknown. In
this paper, a neural network model that can acquire visual schema without visual
input is proposed, which is based on the fact that fetuses frequently touch their own
faces. This model consists of three major functions: (1) transmission of topological
information about touched area on the face to visual area through VIP, which is real-
ized by a 2-layered SOM with Gaussian-like local connections, (2) coding of shape
information with Gabor filters by finger-touching, and (3) integration of two kinds
of information (i.e., topological and shape information) using Hebbian connection.
The sum of Hebbian activation appears to be similar to the representation of face in
polar-coordinates.

Keywords Neonate face preference · Neural network model · Double touch

1 Introduction

From various studies on infant facial imitation, it is apparent that neonates have the
body scheme of their faces. Fuke and her colleagues suggested that neonates acquire
their visual facial schema from ego-centric visual information of their hand-position
[1, 2]. However, newborn infants of only 9 min age already have a preference for
human facial patterns, suggesting that they acquire visual facial schema during their
fetal period [3]. In this paper, we propose a new model for acquisition of a visual
facial image without visual information.
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2 Outline of the Model

Fetuses often touch their faces with their hands (double-touch). We assume that a
visual facial schema is acquired through double-touch, and propose a model of facial
image formation without vision. When a part of a fetus’s face is touched by his/her
hand, the tactile receptors on the facial skin are activated. Topological information
about touched area on the face is transmitted to, and represented in, the VIP (ventral
intraparietal area) via an onion-like map in the primary somatosensory cortex (SI)
[4]. In this model, a somatotopic face map in the VIP, which was found in phys-
iological experiments on the macaque monkey, is learned through face touching.
Here, we assumed that there are topological connections from the VIP to the visual
cortex, so that somatotopic information regarding the touched area on the face is
transmitted to the visual cortex via the VIP. On the other hand, touching the face
with his/her finger generates tactile information of surface properties of the touched
facial area, and this is encoded by Gabor filters in the SI. The positional information
about the touched area of the face and the shape information of the face from finger
are integrated with a Hebbian learning algorithm. (see Fig. 1)

Fig. 1 Schematic diagram of the model
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3 Detail of the Model

3.1 Location Pathway

When a certain part of the face is touched by the finger, tactile sensors within the
area of the finger size are activated. Each tactile receptor projects to a corresponding
SI unit. The locations of the units in the SI map represent onion-like topology of face
(Fig. 2). In the model, connections between SI and VIP as well as VIP and visual
cortex are learned with the self-organizing map (SOM). The structures of the SOM
are assumed to be local Gaussian-like local connections (Fig. 3). This assumption is
similar to the self-organizing model of the retino-cortical pathway [5].

Fig. 2 Corresponding areas for finger on face and SI map

Fig. 3 Structure of 2-layered
SOM
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3.2 Shape Pathway

In this model, concavo-convex information of the face within the finger surface is
encoded by Gabor filters in SI according to the physiological findings [6]. There are
16 kinds of filters with different orientation selectivity (Fig. 4). The population of
finger SI units codes shape information for each location within this filter bank.

Fig. 4 Gabor filters and
shape coding

3.3 Integration of Two Kinds of Information

When a certain area of the face is touched, the information for location and surface
of the touched area of the face are encoded in the location pathway and the shape
pathway, respectively. As shown in Fig. 1, these two types of information are inte-
grated by a Hebbian learning algorithm between the shape pathway and the visual
cortex.

4 Results and Discussion

After unsupervised learning of the SOM, VIP units acquired facial somatotopic
mapping (Fig. 5) similar to that seen in human fMRI data [7]. Figure 6 shows the
acquired facial image in the visual cortex. This image appears when all the SI (fin-
ger) units are activated. In other words, it is a potential image formed by a number
of finger tactile inputs.

Retino-cortical mapping is well known as a log-polar transformation of the reti-
nal image (e.g., Shwartz [8]; Fig. 6 right). It appears that the acquired facial image
is similar to the visual representation in a log-polar transformation of the face.
The visual facial schema can be acquired in the fetal period through double-touch
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Fig. 5 Comparison between
learning result and the fMRI
data [7] of VIP map

Fig. 6 Learning result of
Hebb and the face
representation in polar
coordinates

between the finger and face. This schema may be the basis for the preferential
looking for faces and for facial imitation.
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Population Responses of Aδ-Fiber Nociceptors
with Hypothetical Spatial Distributions
on Human Forearm

Jiyong Hu, Yi Li, Xin Ding, and Rubin Wang

Abstract This paper studied the effect of innervation patterns of cutaneous
mechanosensitive Aδ-nociceptors with myelinated axons on the evoked neural
responses while the skin was mechanically stimulated using quantitative indenta-
tion (compression). By reconstructing the neural response of nociceptors under a
punctate stimulus, the peak firing rate and the number of recruited nociceptors are
calculated for different innervation patterns. And then, these two measures are used
to discuss the effect of external stimulus features on the neuronal activity. The results
demonstrate that there are large differences between the active level of cutaneous Aδ

nociceptors with Gaussian and other distribution patterns (i.e. rectangular and uni-
form). When the innervation density distribution is Gaussian, the stimulus intensity
and contactor size can be well encoded by the proposed two measures.

Keywords Nociceptors · Innervation · Distribution · Sensitivity · Forearm

1 Introduction

Cutaneous nociceptors are one of the common tactile receptors. It is traditionally
believed that the cutaneous myelinated Aδ-fiber nociceptors are responsible for
fabric-evoked prickle, and the mean firing rates are the principle response feature
that the central nervous system (CNS) uses to interpret a mechanical stimulus as
prickling and painful [1]. Meanwhile, Garell et al. shown that the psychophysical
magnitude estimation of mechanical stimulus intensity is consistent with popula-
tion responses of nociceptors, not those of single Aδ-fiber nociceptors. Population
activities depend on the distribution density and the mechanical sensitivity of noci-
ceptors [1–3], and on the stimulus intensity and the contactor size which delivers the
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stimulus to human skin. In terms of the limitation of the present multi-unit recording
techniques, these parameters have rarely been analyzed in detail and also systematic
measurements have been not made to examine how they affect neuronal population
responses.

The alternative method is to reconstruct the neural response of populations of
nociceptors. Khalsa et al. represented the uniform population responses of nocicep-
tors with the same threshold and the same mechanosensitivity in the rat hind thigh
[2]. However, anatomical data are showing that Aδ-nociceptors can be randomly [3]
or normally [4] distributed in epidermis. Furthermore, the assumption of the same
threshold and the same sensitivity is not consistent with physiological property of
nociceptors [1, 3]. Considering these factors, in this paper, the effect of innervation
patterns of cutaneous Aδ nociceptors on the neural activity will be discussed by a
punctate probe delivering the indentation vertical to human forearm skin.

2 Methods

The reconstruction is made by using Güçlü’s technique [5], and the following
relationships describing the response of single nociceptive endings are defined:

(1) A punctate stimulus deforms the extensive skin including contact sites. The
effective deformation (D) under a flat-tip stylus is defined [6] as

D(r) =

⎧
⎪⎪⎨

⎪⎪⎩

p

2rf

1− v2

E
r ≤ rf

p

πrf

1− v2

E
sin−1(rf /r) r > rf

(1)

Where p and rf is the force on skin by the probe and its radius; E and v is the
Young modulus and Poisson’s ratio of forearm skin.

(2) According to previous work [2–4], three hypothetical innervation distributions
are used to represent the receptive-field organization: rectangular, uniformly
random and Mid-lateral Gaussian. The corresponding x- and y-coordinates
of the receptive field centers are randomly determined by using the classical
independent probability density functions. For Gaussian random distribution:

fX(x) = α

σ
√

2π
e−(x−xc)2/2σ 2 + β (2)

and

fX(xc) = α

σ
√

2π
+ β = dmax, lim

x→∞ fX(x) = dmin,
1

w

∫ w

0
fX(x)dx = d (3)

Where d-average density per mm2, dmin and dmax-the minimum and maximum
density, respectively, w-the width of forearm skin, σ is the standard deviation,
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α and β are the two other parameters. Note that the x-axis refers to the medial-
lateral, the y-axis to the distal-proximal axis. Meanwhile, individual Aδ-fibers
branch into many terminals which innervate many nociceptive cells, and each
fiber allows for a uniform random number of sensitive spots within a receptive
field.

The statistical distribution density of cutaneous Aδ-nociceptors can just be
estimated by the proportion of single type of afferents in human skin. The
average SAI units in the human forearm are 4 fibers per cm2 [7], which approx-
imately represent 38% of the myelinated afferent population, probably with
equal numbers of Aβ and Aδ fibers [6]. Twenty percent of all Aδ receptors
are nociceptors and 50% of these are mechanically sensitive. Allowing for each
Aδ fiber in 3–11 spots (say an average of 7.8 for a single Aδ fiber) [2], there
are averaging 0.675 Aδ-nociceptive afferents and 5.265 nerve ending organs
per cm2. Thus, all the parameters in Eq. (3) can be solved in real-time with
MATLAB during each simulation run.

(3) The stimulus (force F) – response (evoked firing rates, f) relationship of Aδ-fiber
nociceptors is described by Khalsa et al. as

f (F) = a(1− e−bF)+ c (4)

Where a, b and c were parameters to be fit during nonlinear regression [1]. The
result is a=–11.32, b=0.04 and c= 13.22.

3 Results and Discussion

The probability of recording one or more Aδ-fiber nociceptors at an individual
recording site strongly depends on innervation density of Aδ-fiber endings. To quan-
titatively compare the effect of innervations pattern on the evoked neural responses
and the recruited number of nociceptive units in the same stimulus condition, they
are potted as the function of loading force in Fig. 1, respectively. Here, the acti-
vated fiber number under single mechanical stimulus is counted if its firing rate is
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Fig. 1 Neural responses of nociceptors under different stimulus intensity and innervations pat-
terns. Left: peak action potentials per second; right: Recruited numbers of nociceptive fibers
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not less than 1.0 Hz. In Fig. 1, the absolute firing rate of single punctate stimulus is
highest for the nociceptive units with Gaussian peak distribution, especially when
the stimulus intensity is not much stronger than Von Frey filament threshold. With
the increasing stimulus intensity less than pain threshold, the effect of innervation
pattern on the evoked firing rates become minute, and the recruited numbers of noci-
ceptive units increase monotonically, especially for Gaussian distribution. When the
stimulus intensity is weak, there are no significant differences of the recruited num-
bers among three innervation patterns. In compare with the peak neural response of
populations of nociceptive units, the more numbers of recruited nociceptive units do
not change the peak response magnitude. This trend is consistent with the results by
Garell et al. [1]. Greenspan observed that the perception of sharpness show no sig-
nificant spatial summation and is commonly perceived by near mechanothreshold
activity of single Aδ-fiber nociceptors.

Figure 2 shows that the peak action potentials of populations of nociceptive affer-
ents increase with an increase of probe size, and the number of recruited nociceptive
afferents increases monotonically. Especially, the activity of nociceptors in Gaussian
peak distribution is dramatically different from that in either uniform or rectangular
distribution. Meanwhile, the probe size less than 0.05 mm in Gaussian distribution,
and less than 0.5 mm in either uniform or rectangular distribution has nearly no
effect on the neural activity of nociceptors. Especially, the increasing peak response
rather than the number of recruited afferents implies the spatial summation across
single RFs for probe less than 0.5 mm. Garell et al. observed that the peak response
is higher for probe with little radius than that with large radius [1].
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Fig. 2 Effect of probe radius on neuronal responses of populations of nociceptors with different
innervation patterns. Left: peak action potentials; right: recruited numbers of nociceptive fibers

4 Conclusion

This study concluded that innervation pattern of nerve endings have significant
effect on peak neural responses of populations of nociceptors. The recruited num-
bers of nociceptive units potentially encode the external stimulus intensity and
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contactor size, and the location of peak neural response occurrence potentially
encodes the stimulus site. Meanwhile, the probe radius delivering stimulus has
significant effect on nociceptors with Gaussian innervation patterns in a limited
range.
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Optimal Model for Selecting Human Arm
Posture During Reaching Movement

Jiaole Wang and Masazumi Katayama

Abstract In this research, we investigated the optimization principles for human
arm posture selection during the reaching movement in a horizontal plane. Because
the human arm has infinite possible postures at a same hand position, we evalu-
ated three optimization models for arm posture selection: the minimum angular jerk
model, the minimum torque change model, and the minimum commanded torque
change model. After quantitatively comparing measured arm postures with the opti-
mal ones calculated by each optimization model, we found that the minimum com-
manded torque change model is more plausible for human arm posture selection.

Keywords Arm posture selection · Optimal model · Reaching movement

1 Introduction

When we are doing reaching movement by using our upper limbs, we are supposed
to solve three kinds of computational problems: trajectory formation, coordinates
transformation, and control [1]. Although all these three ill-posed problems have
infinite possible solutions, humans show highly stereotyped motor behaviour and
these common invariant spatiotemporal features of planar reaching movements have
been reported by many researchers [2, 3].

For the trajectory formation problem of the human arm regarded as a 2-link
manipulator, from the computational point of view, the hand trajectory should be
planed based on an optimal principle so that only one hand trajectory is determined
from the infinite ones. Many researchers have proposed and evaluated lots of princi-
ples such as the minimum hand jerk model [3], the minimum angular jerk model [4],
the minimum torque change model [5], the minimum commanded torque change
model [6], and the minimum variance model [7]. As a result, some researchers have
reported that the minimum commanded torque change model and the minimum
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variance model are more plausible. Thus, the trajectory formation problem has been
successfully elucidated.

While the problem of coordinates transformation for the human arm has not been
investigated well, although in the robotics field it has been investigated adequately.
As we all know, because the human arm can be seen as a redundant manipulator,
there are infinite possible postures during a movement. However, we only do one
posture at one hand position during our movements, there must be a principle for
us to select one posture from infinite possible ones. Tsuyuki et al. [8] have investi-
gated this problem for 2-link arm in the 3D space and reported that the minimum
commanded torque change model is more plausible.

In this research, we focus on the coordinates transformation problem for the
human arm regarded as a 3-link manipulator in the horizontal plane, that is an arm
posture selection problem for the reaching movement. We respectively compare the
measured arm posture with each optimal posture predicted by three optimization
models which are thought to be plausible: the minimum angular jerk model, the
minimum torque change model and the minimum commanded torque change model.

2 Optimization Models for Arm Posture Selection

In this research, we evaluated the below three optimization models that select the
optimal arm posture by minimizing the value of each objective function.

Minimum angular jerk model (AJ): Rosenbaum et al. [4] proposed the minimum
angular jerk model for solving the trajectory formation problem. The angular jerk
is defined as differentiating the joint angle θ three times with respect to time t. θ i

stands for the angle of ith joint out of n joints, tf is the movement duration.

CAJ = 1

2

∫ tf

0

n∑

i=1

(
d3θi

dt3

)2

dt. (1)

Minimum torque change model (TC): Because the minimum jerk model has only
taken the kinematics into account, Uno et al. [5] proposed the following alternative
optimization model: movements are organized such that the time integral of the
squared sum of torque changes is minimal. τ i stands for the joint torque of the ith
joint.

CTC = 1

2

∫ tf

0

n∑

i=1

(
dτi
dt

)2

dt. (2)

Minimum commanded torque change model (CTC): By extending TC, Nakano
et al. [6] proposed the minimum commanded torque change model which is
expressed as below:

CCTC = 1

2

∫ tf

0

n∑

i=1

(
dτCi

dt

)2

dt, (3)



Optimal Model for Selecting Human Arm Posture During Reaching Movement 455

τCi is the commanded torque defined as τC = τ+ θ̇B(τ ) [6], by employing motor
commands at the peripheral level. B stands for viscous coefficient matrix around
joint which depends on the actual torque τ . Here, the diagonal components of B
which are B11, B22 and B33 are the viscous coefficient of mono-articular muscles
around shoulder, elbow and wrist joints, respectively. The values of B11, B22 and
the off-diagonal components are determined by the measurement results (e.g., [9]).
However, B33 which depends on the torque of wrist has never been measured. In
this research, the value of B33 is empirically set to the mean of B11 and B22.

B =
⎡

⎣
B11 B21 0
B12 B22 0
0 0 B33

⎤

⎦ =
⎡

⎣
0.63+ 0.095|τs| 0.175+ 0.0375|τe| 0

0.175+ 0.0375|τe| 0.76+ 0.185|τe| 0
0 0 0.695+ 0.14|τw|

⎤

⎦

Here, τ s, τ e, and τw stand for torque of shoulder, elbow and wrist, respectively.
In order to evaluate the dependence of the model on the wrist viscosity, we also
compare the result by varying B33 in the range of ±20%.

3 Method

In order to analyze arm postures during reaching movement, we set up the exper-
iment environment as shown in Fig. 1. All the subjects were 22–26 years old
right-handed males. Subject’s arm was floated by two air-pucks to balance frica-
tion and gravity. All the subjects were asked to move their right arms from start
position to target, and all motions were measured by OPTOTRAK 3020(Northern
Digital Inc.) at 200 Hz. Figure 2 shows one example of measured postures.
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Fig. 1 Experimental setup
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3.1 Measurement Conditions

Subjects were divided into two groups (Groups A and B) to carry out two kinds of
experiments as shown in Fig. 3. For a random nature movement condition(RN), the
start and target positions were randomly selected and the distance of the movement
was set to 45% of the arm length. The subjects were asked to move their arm from
start position to target naturally just like them did in their daily life. For a speci-
fied quick movement condition(SQ), the start and target positions of the movements
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were specified into two kinds. Then the movement distance was fixed to 30 cm, and
the movement duration was limited within a range from 550 to 650 ms.

3.2 Filtering and Analysis

The position data of the four makers were digitally filtered by a fourth-order
Butterworth filter with a cutoff frequency of 10 Hz. The actual beginning and end
positions of each movement were detected using a two-dimensional curvature with
a 3 mm−1 threshold. Outliers of measured data were also removed.

3.3 Real-Coded Genetic Algorithms (RCGA)

We built a real-coded genetic algorithm (RCGA) to calculate the optimal postures
based on the above models. The movement duration was divided into six parts, such
as the optimization method of Harris et al. [7], and the set of the wrist joint angles
at every divided time was used as the representation of the individual of RCGA. In
the calculation of the optimal solution, the hand tip trajectory was always set to be
the same as the measured data, so that the optimal calculation would only focus on
coordinates transformation problem.

4 Results and Discussion

Figure 4 shows a typical subject’s the results of the measured postures and the opti-
mal postures for each model. Figure 4b shows the relationship of three joints for
the movement; Fig. 4a shows the elbow angular change during the movement time.
Table 1 shows the average of the RMS deviations between the measured postures
and the optimal ones for a whole movement duration. From these quantitatively
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Table 1 Comparison of RMS deviations between measured postures and the optimal postures.[rad.]
Here, α is a coefficient that B33

′ = αB33, B33
′ stands for the B33 after variation

Models Group A Group B All subjects

AJ 0.1388 0.1254 0.1321
TC 0.1147 0.3577 0.2362

α = 0.8 0.0550 0.1403 0.0976
CTC α = 1.0 0.0377 0.0539 0.0458

α = 1.2 0.0359 0.0713 0.0536

comparison, we found that the optimal arm postures that are predicted by CTC
are closest to the measured arm postures. This result consists with the result of
Tsuyuki et al. [8] that investigated for a 2-link arm in the three-dimensional space.
Meanwhile, in order to evaluate the dependence of CTC on the viscosity, we com-
pare the result by varying B33 in the range of ±20%. As shown in Table 1, although
the wrist viscosity is altered, the RMS deviations of CTC still keep lower than AJ
and TC.

5 Conclusion

According to the analysis above, we note that CTC can predict the best optimal
posture, and is also less dependent on the viscosity of arm. Finally, we conclude
that the minimum commanded torque change model (CTC) is more plausible for
the human arm posture selection during reaching movements.
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Decoding the Grid Cells for Metric Navigation
Using the Residue Numeral System

Cécile Masson and Benoît Girard

Abstract Knowing that the grid cells in the dorso-lateral band of the medial
entorhinal cortex are a necessary component of rat’s ability to perform path inte-
gration and homing, we explore the idea proposed by Fiete et al. (2008, J. Neurosci.
28(27):6858) that they might encode the coordinates of the rat in a Residue Number
System. We show that the decoding network based on a gradient descent they pro-
pose to use for that purpose does not operate satisfactorily, and thus propose a
network using a direct approach derived from the Chinese Remainder Theorem.

Keywords Grid cells · Entorhinal cortex

1 Introduction

Rodents are able to directly come back to their departure point after having explored
an unknown environment, even in the absence of visual or other allocentric cues,
exhibiting the so-called homing navigation strategy [1]. They achieve this using path
integration (or dead-reckoning), i.e. the integration of self-movement information
derived from proprioceptive inputs, efferent copy of movement orders and vestibular
information, so as to continuously estimate their position relative to their departure
point.

The neural substrate of this integration mechanism is thought to be the recently
discovered grid cells (GC) [2] in the dorso-lateral band of the medial entorhinal cor-
tex (dMEC). These cells fire according to a repeating equilateral triangular pattern
(Fig. 1, left) in the locomotion plane, characterized by a given period (the distance
between two maximal response sites) and a given orientation (of one of the triangle
sides with regard to an allocentric reference). Nearby cells in the dMEC have the
same period and orientation but a different phase and are thus thought to belong to
the same grid, while increasing grid sizes have been observed when recording cells
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Fig. 1 Left: Grid cell firing pattern schema. A grid cell recorded while the rat locomotes (here
in a circular arena) fires with an equilateral triangular pattern characterized by a period and an
orientation. Right: Grid cells as a modulo operator. Considering the 1D case, with a grid of period
3, the current rat position is encoded (plain arrow) by neuron 2, but neuron 2 represents all positions
2 modulo 3 (hashed arrows), adapted from [8]

along a dorsal to ventral axis. This spatial pattern of activity takes into account self-
movement information, as it has been shown that it is preserved in absence of any
visual cue, despite a spreading of the bumps of activity, caused by accumulation of
errors by the integration process.

The dMEC is an essential part of the path integration/homing system, as it has
been shown that animals with an entorhinal lesion are unable to perform homing
[3]. Interestingly, the hippocampus does not seem to be an essential component
of path integration, as hippocampectomized rats can still perform homing [4].
Consequently, the intrinsically metric homing navigation strategy does not require
functional place cells – that are a topological code of the rat position rather than
a metric one – to operate. How to perform homing using the GC activity solely
is a yet unanswered question, as most existing models of navigation including the
GCs (like the very first one [5]) use them to generate place cells, which can then be
exploited to navigate with topographical strategies, like place recognition triggered
response or path planning (see [6, 7] for reviews on this matter). A computational
model of homing should be able to extract directly from the grid cells the current
position with regard to the departure point, so as to be able to generate the opposite
locomotor command.

In the following, we propose a computational model able to extract directly from
the activity of a set of grid cells the current coordinates of the animal, that can be
used to control the homing behavior.

2 Model

2.1 The Initial Idea

In a recent paper, Fiete et al. [8] proposed a new way to interpret the GC activity:
they could be considered as performing the 2D equivalent of modulo operator. When
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considering one axis of a given grid, the currently most active neuron in this grid
provides the residue of the division of the current coordinate of the rat on this axis
by the grid period (Fig. 1, right). The information from one grid allows to locate
the animal modulo this grid’s period, but the information provided by a set of N
grids of periods (λ1, ..., λN) corresponds to a well known number encoding system,
the Residue Number System (RNS). The RNS is based on the Chinese Remainder
Theorem (CRT) which states that given a set of residues (r1, ..., rN) and a set of
pairwise coprimes (λ1, ..., λN) (with $ = ∏N

i=1 λi), there exist a unique integer x
modulo Λ so that ∀i ∈ [1, N], x ≡ ri (mod λi). Thus, given the N aforementioned
λi any number in [0,$[ can be encoded as the set of residues ri. Note that this can
be generalized to non coprime pairwise periods, in which case the Λ is the least
common multiple (l cm) of the periods. If we consider a set of grids of identical
orientation and different periods, and use them as modulo operators, one should
be able to extract the coordinate x of the animal on one of their axes. Doing this
operation on two axes of these grids provides a coordinate system sufficient to locate
the animal in space, as long as it does not travel distances exceeding the periods’
l cm.

Fiete et al. did not provide a computational implementation of their idea, but
suggested to decode the activity of a set of grids using a neural network model
proposed by Sun and Yao [9]. However, this model computes x by performing a
gradient descent on an discontinuous energy function with multiple local minima:

E(r) =
N∑

i=1

1

2
|x mod λi − ri|2 + 1

2AR
x2 (1)

Such a function being inadequate for a gradient descent, it work quite poorly as it
easily get stuck in local minima. For example, with a set of periods 2, 3, 5, 7, Fig. 2
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Fig. 2 Left: The Sun and Yao [9] model fails to decode correctly all the encoded values, errors,
away from the diagonal, are highlighted by hashed ellipses. Right: Decoding errors (in cm)
generated by our model on a 100× 100 m surface
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(left) shows the decoding of all the positions in [0,$ = 210[, where numerous
values are not correctly decoded.

2.2 TRC-Based Model

We propose a decoding scheme based on an explicit use of the basic mathematics
associated to the CRT. Consider the λ̂i = $

λi
=∏

j �=i λj: they are pairwise coprimes,
and according to Bezout’s theorem, ui and vi exist such that uiλi + viλi = 1. If we
define ei = viλ̂i, x can be computed as the following weighted sum:

x =
N∑

i=0

eiri (2)

A similar solution holds when using non-pairwise coprime periods.
We built a computational model to show the efficiency of the Fiete et al. RNS

idea, using the direct RNS computation (Eq. 2). This model (Fig. 3) operates in
2D and uses real residue values extracted from grid cells. It uses velocity inputs
provided to 4 grids , based on the model proposed in [10]. These grids have realistic
periods of 38, 50, 62 and 74 cm, theoretically allowing the unique decoding of
values over more than 5 km; they all have the same orientation, which also seems to
be realistic [11]. The position of the maximum activity on two of the three axes of
the grids is obtained by summing the activity of all cells projected on these axes and
computing the circular barycenters of the resulting vectors. These values correspond
the residues ri, which are then sent to two neurons, whose synaptic weights were set
to ei.

The simulations performed with this model show that a simulated rat is able to
compute its position in 2D. The errors, caused by the discretization of the grids, have
an average of 0.39 cm (std = 0.19) (Fig. 2, right), a value which seems acceptable
with regards to the size of a rodent.

3 Discussion and Conclusion

Based on the idea – proposed by Fiete et al. [8] – that the grid cells could be con-
sidered as an encoder of the position of animal using a residue number system,
we propose a computational model performing the decoding of this position, to be
used as a command for the locomotor system in a homing navigation strategy. We
also establish that the residue-to-decimal decoder proposed in [9] does not operate
efficiently.

Our simulations were conducted without noise in the speed measurements. In
reality, such noise affects the grid updating and is fought with resets of the grid
activity in places identified by learnt allocentric cues [2]. Such stabilization mech-
anisms are present in most GC models, and are either based on direct visual inputs
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or on interactions with the multi-modal place cells [12]. This does not affect the
validity of proposed decoding scheme, which should of course be connected to a
grid cell model including a stabilization mechanism.

Finally, a computational model – anterior to the discovery of the grid cells [13] –
proposed to learn the coordinates corresponding to each place cell of a hippocam-
pus model, so as to thereafter enable metric navigation. We showed here that the
grid cells, providing inputs to the place cells, are sufficient to perform metric nav-
igation, with the advantage that no prior associative learning phase is necessary, in
accordance with observations of homing behavior performed by rodents in new and
unexplored environments.
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Discussion on Rhythmic Gait Movement
Affected by Cerebral Cortex Signal

Wei Dong, Rubin Wang, Zhikang Zhang, and Jianting Cao

Abstract The gait movement on humans is a typical mode of the rhythmic
movement. Proved by experiment, there is a neural circuit existing in the body of
creatures, which controls various rhythmic movements. It is called as central pattern
generator. The researchers study the gait movement in the basis of establishing the
CPG model now. For the rhythmic movement, the neurobiologists believe that it is
a lower neural activity, which is a spontaneous behavior without the control of the
cerebral cortex signal. However, the gait movement on human has some different
modes. Every mode of the gait movement is not directly controlled by cerebral cor-
tex signal, but the instruction signal generated by cerebral cortex can regulate the
interchange between the gait modes. In this paper, in the basis of thinking about
the instruction regulation of cerebral cortex to gait movement on humans, the CPG
model is revised. The revised model can reflect that the cerebral cortex signal can
regulate the mode and frequency of gait, and can realize the interchange between
gaits.

Keywords CPG · Gait movement · Rhythmic movement · Cerebral cortex
signal · Conversion function

1 Introduction

The essential purpose of neuroscience is to explain how the nervous system brings
movement. Neurobiologists generally believe that the rhythmic movement is noth-
ing to do with brain awareness, but self-excided action of lower neural center,
a space-time motion mode produced and controlled by central pattern generator
(CPG).
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In order to study the various functions of CPG, the researchers have established
some related mathematical models. These mathematics models are useful and con-
venient for the engineering application. Some researchers also further studied some
important properties of CPG, such as the effect of tonic input and sensory feedback,
robustness, stable oscillation and coupling relationship. Through the simulation
study, we can well understand the CPG with a comprehensive point of view, and
provide firm foundation for CPG application in engineering and medicine rehabili-
tation. In this paper, in basis of the fact in Biology, the CPG model was modified so
as to make the simulation results of model closer to the fact [1, 2].

2 Biology CPG Model

In human, the walking movement is a typical rhythmic one. In engineering, CPG
neural circuits can be taken as a distribution system composed of a group of
non-linear oscillators mutually coupled, generating rhythmic signals through phase
coupling, and the change of coupling relationship between oscillators can generate
space-time sequence signals with different phase relationship so as to achieve dif-
ferent movement modes. In this paper, it is shown to set up a network model of
the CPG based on the neural oscillator theory, depending upon the simplified leg
muscles model, so as to simulate the rhythmic movement mode generated when gait
movement [3].

In Fig. 1, the two groups of CPG meaning two legs are connected each other. In
one leg, there are three couples of neural oscillator units, meaning three joint-hip,

Fig. 1 The leg CPG model (a. the relationship between CPG model and leg structure; b. the CPG
network)
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knee and ankle. There are two neuron groups in one couple of oscillator unit,
meaning two kinds of muscle groups-flexor and extensor [4].

3 Modified CPG Model

Our research focuses on the variety property of rhythmic gait movement. For the the-
oretic analysis on “variety” property, it has been introduced in the previous research
[2]. Nowadays, simulation study on the output modes of legs CPG model only lim-
ited to study movement state with the single mode, it cannot realize the interchange
between the different modes, meaning it cannot show the instruction regulation
function of cerebral cortex to rhythmic movement. The other papers have intro-
duced different modes of the output of rhythmic movement. There are two examples
in Fig. 2.

In Fig. 2, it indicates that, in the simulation of CPG model the different gait
movement states can correspondingly generate different rhythmic output modes.
We modified and improved the previous CPG model to realize gait conversion, the
equation is as follows:

Fig. 2 (a) muscle skeleton structure model when walking; (b) the output of CPG model in sim-
ulation when walking; (c) muscle skeleton structure model when cycling; (d) the output of CPG
model in simulation when cycling
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τ Ẋi = −Xi − βνi + r +∑
i �=j
ωijYi + Le i, j = 1, 2, · · · , 12

∗r =
{

r0
r0 + rbrain (t ∈ [tstart, tend])

∗rbrain = A sin

(
2π

Tr
t

)

∗τ = bTr

∫
rbraindt + τ0

T ν̇i = −νi + Yi
∗T =

(
c/

Tr

) ∫
rbraindt + T0

Yi = f (Xi) = max(Xi, 0)

(1)

Here, i, j mean the 1th–12th neuron; Xi means the two states of neuronal groups
in the ith joint – flexor and extensor; vi, the adaptability parameter; ωij, intercon-
nection weight between the 12 neuronal groups of both legs; τ is status constant;
T is fitness constant. As for the parameters in detail, please refer to literature [5].

For our modified model, it is emphasized to the regulation function and the effect
of tonic input r to other parameters in the CPG network, so as to realize that the CPG
output modes can transform between two modes only depending on regulating the
tonic input r without changing the other parameters, making it closer to the stimulus
regulation in the fact.

4 Simulation Results

In the simulation, we take the constant signal as the stimulus when self-oscillation,
and take the sine wave as the instruction stimulus of cerebral cortex [6]. When the
cerebral cortex send out the instantaneous instruction signal, the CPG output modes
can occur to change, so as to realize the regulation function of cerebral cortex.

(1) Interchange between different modes: Here, we only give two examples,
which respect two kinds of different CPG output modes. It is shown to the inter-
change between these two modes in Fig. 3. There are three interchange relationships
on CPG output mode.

Condition I: When the sine wave meaning the instruction signal from cere-
bral cortex only is the state of positive semi-period, CPG output mode can
transform from type I to type II (Fig. 3).

Condition II: When the sine wave meaning the instruction signal from cere-
bral cortex only is the state of negative semi-period, CPG output mode can
transform from type II to type I (Fig. 3).

Condition III: When the sine wave meaning the instruction signal from cerebral
cortex is the state of a whole period, CPG output mode cannot transform.

(2) Interchange between different frequencies in the same mode: As for the reg-
ulation signal from cerebral cortex rbrain, it not only can make the different CPG
modes interchange, but also can make the different frequencies in the same CPG
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Fig. 3 Interchange between modes

mode interchange. There is a close relationship between the cycle Tr of the regula-
tion signal from cerebral cortex rbrain and the time parameter τ and T in the CPG
network, adjusting to the effect parameter b, c, the interchange between the different
frequencies in the same mode can be realized in the simulation. Accordingly, there
are three conditions:

Condition I: When the sine wave meaning the instruction signal from cerebral
cortex only is the state of positive semi-period, CPG output frequency in the
same mode can transform from fast to slow (Fig. 4).
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Fig. 4 Interchange between frequencies in the same mode

Condition II: When the sine wave meaning the instruction signal from cerebral
cortex only is the state of negative semi-period, CPG output frequency in the
same mode can transform from slow to fast (Fig. 4).

Condition III: When the sine wave meaning the instruction signal from cerebral
cortex is the state of a whole period, CPG output frequency in the same mode
cannot transform.

The modified model can better show the behavior transformation function, it not
only can interchange different frequencies in the same mode but also can inter-
change different modes. This modifiability better improves the theoretic meanings
of CPG model itself, and makes simulation study theoretically closer to the fact.
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Re-optimization Contributes to the Adaption
of External VF Field

Chunjiang Fu, Rubin Wang, and Jianting Cao

Abstract The computational model of Franklin et al. (J. Neurosci., 28(44) 2008,
11165–11173) describes the adaptation of human arm movement to the external
force field with lower-level feed-forward module for compensation. While this paper
proposes another possible option that when the environment can be expressed in
the internal model, the upper-level optimal control module can directly play the
role of feedforward compensation merely via tuning two corresponding param-
eters: the co-contraction level r between a pair of antagonistic muscles and the
parameter reflecting the force field during optimal calculation. To verify this idea,
this paper imposes velocity-dependent force field in the simulation on the neruo-
musculo-skeletal biomechanical model using optimal control method. Qualitatively,
the outcome is consistent with the experimental references.

Keywords Motor adaption · Velocity-dependent force field · Feedfoward compen-
sation · Neuro-musculo-skeletal biomechanical model · Optimal control

1 Introduction

Voluntary movement, known for its complexity, flexibility, stability and
adaptability, has been extensively researched and will still be on the cutting edge in
future. The exploration for its bio-control mechanism would undoubtedly benefits
related subjects like robotic technology, medical rehabilitation and sports train-
ing. Recently, numerous studies focus on the motor learning and adaptation with
reaching paradigm, which needs movement plan [1–3] and stability maintenance
[4–6].
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Franklin et al. [6] proposes a concise and effective model. However, its planned
movement is derived from experimental data fitting which implicitly excludes that
the feedforward learning and adaptation process may happen in the upper-level dur-
ing movement planning calculation through optimal control algorithm. In contrast,
this paper revises Franklin et al. [6] model and attributes the external force field
compensation to the upper-level optimal control module. In addition, some other
revision contains nonlinear biomechanical arm model instead of linear model in
Franklin et al. [6] and adjusting only two upper-level parameters rather than many
fitting parameters without obvious biological meaning in Franklin et al. [6].

2 Materials and Model

In order to compare with the original paper, this paper follows the experimental
setup in Franklin et al. [6]. The hand of subjects who receives tests is fixed with
the PFM robotic device on the horizontal plane, doing outward reaching movement
toward the target ahead within a span of time about 0.6 s. At the same time, the
PFM exerts a velocity-dependent force field according to the hand movement speed
v and the exact expression is Fe= –[13–18; 18 13]×v. Furthermore, the scale of
the amplitude is set to 2/3Fe because of different individual. Motion range is from
(0, 0.3) m to (0,0.55) m taking the right shoulder as the origin.

With the description in introduction, the whole simulation model of this paper
is presented in Fig. 1. The internal model with the form of optimal control carries
out internal simulation before the real execution by arm. During this process, the
internal model revise the muscle co-activation level r for human limb and identify
the external environment through the parameter f, simply in this paper, the presenta-
tion of external force field is multiplying a coefficient f to Fe and apply the product

Fig. 1 Control diagram of this paper
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in the optimal calculation using Tomlab software. However, the other parts of the
simulation are operated by Matlab/Simulink.

Except the most feature of moving the adaptation module to the upper-level of
optimal control block, the muscle-skeletal biomechanical model is also changed to
nonlinear one from Kashima et al. [7].

The minimum criterion for optimal control is minimal motor neural signal.
Finally, Physiological parameters is chosen in line with Franklin experiment and

the impedance module detail can be found in Fu et al. [8].

3 Results

Figure 2 is the comparison chart. On the left is Franklin et al. [6] experimental results
and on the right are the simulation outcomes of this paper. Dotted line represents the
hand trajectory, three phases consists arm movement under no external force field
(NF, see A), adaptation when exposed to external velocity-dependent force field
(VF, see B) and consequent straight trajectory after trained (see C).

The most obvious feature of the adaptive process is that the extent of bending
to left is gradually decreasing. In this paper, we adopt two parameters involved
in the optimal calculation in the upper-level internal model. The tuning process
is first increase co-contraction level r from 0.1 to 0.4, which means increase the
co-activation level thus augment the overall impedance of all pair of muscles, the
effect is slightly reduce the trajectory curve; Secondly, hold r in constant and raise
f parameter from 0 to 0.4, the intuitive impact is the plan movement trajectory first
bend to left and then to right, which could compensate the influence of VF exerting
on hand shaping the trajectory first bending to right and then to left. Thus the larger
f is, the more compensation could be made and appropriate compensation would
bring about straighter actual trajectory ; the third phase is somewhat interesting that
larger f only does not provide finer outcome, at the same time, we should lower
the value of co-activation r, or we may obtain over-compensated consequences, the

Fig. 2 Experimental results vs. simulation outcomes
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Fig. 3 Stiffness ellipse after
adaption

trajectory with the adaptive parameters r= 0.4, f= 0.4 is over-compensated and
a little bit jittering, not so good as another group of parameters f= 0.5, r= 0.2.
The adaptive process described above is coincident with the experience of Franklin
et al. [5].

The above argument is mainly focus on the movement plan aspect, on the other
hand, impedance control and adaption also plays an irreplaceable role in overcom-
ing external interference, time delay and internal nerve multiplicative noise. In this
paper, the value of feedback delay is set to 60 ms; noise parameters are the same
as Harris and Wolpert [9]. Corresponding ellipse of adapted impedance (stiffness
mainly) is shown on the right of Fig. 3, comparable to the experimental drawing on
the left (only compare to the dotted ellipse under velocity-dependant force field).

4 Conclusion

This paper recognizes that feedforward compensation may be realized by adjusting
only few upper-level parameters. Furthermore, the traditional belief of the existence
of reference trajectory is exactly the result of open-loop optimal control under cer-
tain situation that does not require feedback. After exerted external force field, any
curve trajectory is also optimal just under the current upper-level parameter while
straight trajectory should not be a must.

Applying optimal control to solve human movement problem is quite a mature
method, however, the mechanism of motor learning and adaption under this frame
remains unclear. Various theories have been put forward, waiting for further
experiments to test and update them.
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Vector Sum of Two Eyes’ Images Might Be
an Important Cue in Human Visual System

Qin Wang and Lei Wang

Abstract In this paper, we inferred that vector sum of two eyes’ images acts as an
important cue in the mechanism of human vision. In our recent report on the percep-
tual properties of an approaching object in periphery visual field, it was found that
the perceptual performance was remarkably worse for the object moving toward the
middle point of two eyes even moving distance was several times longer and it takes
V curve for the orientation change. Surprisingly, when the approaching object was
occluded for one eye or fell on the blind spot of one eye, visibility of an approach-
ing object was increased even though the case when the object moving toward the
middle point of two eyes; it coincided with Tyler’s result but that was found in
central visual field. Considering these results and the several observations in con-
nection with Tyler’s results, we inferred that the vector sum of two eyes’ image
motion might be an important factor for detecting the approaching object even in
fully visual field; furthermore, we inferred that vector sum of two eyes’ images
might be one of important cues in the mechanism of human vision.

Keywords Vector sum of two eyes’ images · Approaching object · Visual
field · Periphery visual field · Fully visual field

1 Introduction

Perceiving an approaching object, as an indispensable function in human vision,
has been studied in concerning many fields such as vision science, traffic, and sport
science and so on. Many studies have reported that changing disparity (CD) and
interocular velocity difference (IOVD) cues play roles in motion-in-depth percep-
tion in central visual field; changing disparity is a change in binocular disparity over
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time, interocular velocity difference refers to a difference in velocity between the
two eyes’ images [1–3]. In this paper, we inferred that the vector sum of two eyes’
image motion might be an important factor for detecting the approaching object
even in fully visual field, furthermore, we inferred that vector sum of two eyes’
image might be one of important cues in human visual system.

In our recent report on the perception of an approaching motion in periphery
visual field [4], it was reported that the perceptual performance was remarkably
worse for the object moving toward the middle point of two eyes even moving dis-
tance was several times longer and it takes V curve for the orientation change.
Surprisingly, when the approaching object was occluded for one eye or fell on
the blind spot of one eye, visibility of the approaching object was increased even
though the case when the object moving toward the middle point of two eyes. This
phenomenon can not be given convincing interpretation according to conventional
studies. In our recent reported, it was suggested that vector sum of two eyes’ motion
might be used to detect the approaching motion in periphery visual field. The phe-
nomenon found in periphery visual field coincided with Tyler’s result but that was
found in central visual field.

What are the perceptual properties of the approaching object in central visual
field? We observed the approaching object in central visual field for different mov-
ing orientations. The results were coincident with those findings in periphery visual
field. According to these evidences, we inferred that the vector sum of two eyes’
image motion might be an important factor for detecting the approaching object
even in fully visual field. We believed that these evidences could provide one clue
for clarifying the mechanism of curious phenomena such as cross-traffic accidents at
intersection without any obstacles and difficulty in playing catch for a ball approach-
ing toward the middle point of two eyes. Furthermore, we believed that vector sum
of two eyes’ image might be one of important cues in human visual system.

2 Perceptual Performance of an Approaching Object

2.1 Perceptual Performance of an Approaching Object
in Periphery Visual Field

In the recent report on the perceptual properties of the approaching object in
periphery visual field, it was viewed stereoscopically to subjects with a 3D model
consisting of a number of stationary bright dots, a fixation point and optionally a sin-
gle moving object. It was investigated the perceptual properties of the approaching
object with the object visible for both eyes. Figure 1a shows the results of perceptual
performance for different moving orientation. Percentage of correct (correct-rate)
was plotted as a function of object motion direction factor (Df = C/D). The percep-
tual performance took V curve for different moving orientation: the performance
was decreased when Df changed from Df < 1 to Df= 1, while it was increased when
Df changed from Df= 1 to Df > 1; and the performance became remarkably worse
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(a)

(b) (c)

(d) (e) (f)

Fig. 1 Experiments of visibility of object in approaching motion for periphery visual field.
(S: starting point of target stimulus. T: terminal point of target stimulus. F: fixation point. SD:
stationary dots. P: distance between the fixation point and the target stimulus. D: observation dis-
tance. C: the distance between the fixation point and the intersection point which was between
the extension trajectory of target motion and the mid-perpendicular of two eyes. Dm: moving dis-
tance. Df: motion direction factor of object (Df = C/D). Pf: object position factor (Pf = P/D).
	l: the resultant angular motion of the object image on the left retina. 	r: the resultant angular
motion of the object image on the right retina. Df = 1: direction toward the middle point of two
eyes. MTLE: direction toward left eye. MTRE: direction toward right eye.) (a) is the results with
binocular viewing. (b) is the results with the object’s information occluded for the right eye. (c)
is the results with the object’s information occluded for the left eye. (d) is for the case when the
objects were inside the blind spot of on eye. (e) is absolute value of the summation of retinal image
motions with sign (|	l + 	r|) and the absolute value of each retinal image motions (|	l | and
|	r|). (f) is the parameters of the stimuli

when Df= 1. Correct-rate depended on the orientation of object, and it became low-
est in the direction toward the middle point of two eyes. That is, the motion of the
object was not perceived well when the object was moving toward the middle point
of two eyes.

It was investigated the perceptual properties of the approaching object with the
object absent of one eye’s image. Figure 1b, c show the results for the experiment in
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which the stationary stimuli were visible for both eyes, but the approaching object
was occluded for one eye. Figure 1d shows the results for the experiment in which
the object image was falling on the blind spot of one eye. It was reported that the
motion of the approaching object could be clearly perceived even in the orientation
of object toward the middle point of two eyes (Df = 1) in the absent condition of
one eye’s image, while it could not be perceived with both eyes’ images.

Figure 1e shows the absolute value of the vector summation of the image motions
on the left and right retinas (|	1+	r|) and the absolute values of image motion on
both eyes (|	l| and |	r|). The vector sum is nearly zero when the object approaches
toward the middle point of two eyes, which indicates having a strong correlation
with the perceptual performance (Fig. 1a). In addition, |	l| and |	r| imply the cor-
relation with the perceptual characteristics when one eye’s information was absent
(Figs. 1b, c). That is, the visibility of the approaching object dropped down worst
for the approaching object towards the mid point of the two eyes, and it strength-
ened when the motion direction of the approaching object was towards one eye or
not towards the midpoint of the two eyes even towards one eye.

2.2 Perceptual Performance of an Approaching Object in Central
Visual Field

Tyler reported that two eyes are less sensitive than one to motion perception in the
condition of the approaching object motion to the midpoint of the two eyes under
the central visual field: it was corresponding to the object moving to right in front
of two eyes. This phenomenon was identical with that for the special condition
(Df = 1) of the approaching motion to the midpoint of the two eyes in periphery
visual field in the recent report.

We observed the approaching object directing in different orientations for differ-
ent visual field. The results were identical with the recently report on the perceptual
properties of the approaching object in periphery visual field. That is, the visibility
of the approaching object changed as V curve even in whole visual field; the vis-
ibility was worst when the approaching object moved towards the midpoint of the
two eyes, and it became strengthened as direction depart from towards one eye or
not towards the midpoint of the two eyes. Based these evidences, we inferred that
vector sum of two eyes’ image motion might be an important factor for detecting
the approaching object in the fully visual field.

3 Conclusion

In this paper, we introduced the recent report on the perception of the approach-
ing object in periphery visual field. Comparing with our observation in different
visual field and Tyler’s results for the special condition, we inferred that the vector
sum of two eyes’ image might be an important factor for detecting the approaching
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object in the whole visual field. We believed that these evidences could be used for
clarifying the mechanism of curious phenomena and reducing the cross traffic acci-
dent. In addition, it is expected to apply in sport science. Furthermore, we inferred
that vector sum of two eyes’ images acts as one of important cues in human visual
system.
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A Spatial Temporal Integration Model
of Primary Visual Cortex Concerning
Directional Selectivity

Jianpeng Zhang, Rubin Wang, Zhikang Zhang, and Jianting Cao

Abstract Vision is the most crucial function with which human beings interact
with the environment, and visual information accounts for more than 80% of the
total information that human receive from the outside world. The investigation of
the mechanism of visual processing is closely correlate with brain′s other functions
like learning, associate memory, abstract thinking and so on. The research on the
receptive field (RF) is an important component of exploring the brain mechanism of
processing visual information. Recently, more and more interests have being put into
the modulating effect exerted beyond classical RF. It is assumed that the modulating
effect based on horizontal connectivities and higher cortex feedback might involve
with contextual processing of visual representation. In this article, we proposed a
simplified spatial temporal integrating model of primary visual cortex concerning
directional selectivity, via simulation on the sequences of continuously changing
gray scale images, we assumed the plausible contribution of the spatial temporal
integration in suppressing noises and correctly representing the motion information
of moving scenes.

Keywords Visual model · Motion perception · Receptive field · Primary visual
cortex

1 Introduction

Visual motion perception is not only one of the most important functions for human
beings, but also a breakthrough point for the investigation on the mechanisms of
brain recognition, which closely associates with other brain functions like perceiv-
ing and decision making ,and provides a framework and platform for the researches
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of psychology, neurophysiology, artificial intelligence and image processing. It is
widely believed that the brain contains specific mechanisms for visual motion pro-
cessing [1, 2], and primary visual cortex (v1 area) constitutes the first stage for the
detecting of local motion information.

The research on the classic receptive field with feedforward dominated affer-
ent is extensive. However, the phenomenon of surrounding effect was raised up
by physiological study, and the mechanism underlying this phenomenon is now an
appealing subject to more and more researchers [3, 4], this interaction is hypothe-
sized to be mediated by horizontal connectivities and feed back from higher cortex
[5]. The precise function of this configuration is not clear, it is assumed the infor-
mation is globally integrated and salient image features are “highlighted” in this
manner [6]. This interaction seems to be related with low and mid-level tasks as
contour linking and texture segmentation as well as higher level processes like
perceptual organization, attention, and visual awareness [7]. Hansen and Neuman
[8] proposed a recurrent model which enhanced the contour and suppressed the
noise. The temporal interaction besides spatial configuration also drawing attention
from researchers, e.g., Motoyoshi [9] investigated the temporal dynamics of mutual
interactions between local detectors, and attribute this effect to the speed limitation
of propagating activities, and proposed a model based on this idea. Peggy Series
et.al also noticed the temporal property of mutual interaction between v1 neurons
[10], and established a model on the basis of feedforward afferent and horizontal
connectivities, the response under different model and stimulus configurations are
studied.

We proposed a spatial-temporal integrating model v1 cortex model concerning
directional selectivity of visual apparent motion in this article. This model employs
two stages of processing: short-range competition and long-range integration. In the
short-range competition, the max activated neuron suppresses the rest neurons in
the neighborhood. As for long-range stage, the winner of the first stage modulates
the neurons from a certain distance, facilitating the neurons with similar direction
selectivity and inhibiting those with different preferred direction, while the temporal
delay is concerned due to the finite speed of propagation of activity, which also
induced the temporal integration of previous information.

2 Model Description

We proposed a plausible model for visual motion perception in primary visual
cortex. This model includes local motion detectors constructed with feedforward
afferent selective for specific speed and direction of moving stimulus, short-range
inhibition that maxim activated neuron inhibited the rest in the neighborhood, and
long-range interaction with respect to the distance, alignment and similarity, which
also concerned the temporal delay due to finite propagating speed.



A Spatial Temporal Integration Model 487

2.1 Feedforward Afferent

We can describe a moving scene in x-y-t space [11]. Thus we can use a spatial-
temporal-direction selective unit to describe a local motion speed. Simoncelli and
Heeger established a linear model which is actually an array of filters selective for
different temporal, spatial frequencies and directions [12]

Ln(t) =
∫∫∫

sn(x, y, T)A(x, y, t − T)dxdydT + α (1)

Sn(t) = k �Ln(t)�2

∑
m
�Lm(t)�2 + σ 2

(2)

Where Ln(t) is the response of the nth simple cell, the weighting functions sn(x, y, t)
are a set of directional third derivatives of Gaussian with different space-time ori-
entations, A(x, y, t) is the local contrast of the stimulus images. α represents the
spontaneous firing rate, �L(t)�2 ≡ max[0, L(t)]2 is the half-squaring operation.
Equation (2) represents a normalization operation, where k is the maximum attain-
able response, and σ is the semi-saturation constant of normalization. V1 complex
cell responses are computed as local averages of simple cell response:

C(t) =
∑

m

cnmsm(t) (3)

For the neuron at a certain point and time whose preferred direction θ was
implied in the weighting functions sn(x, y, t), the response can be rewritten as
C(x, y, t, θ ).

2.2 Short-Range Competition

In this stage, the winner of the local cell suppress the responses of rest cells, and rep-
resents the motion information at corresponding points, for simplicity this operation
can be descript as:

C(x, y, t) = max[C(x, y, t, θ )] (4)

2.3 Long-Range Interaction

The localized neuron pools the signal from neurons in the relatively remote sur-
rounding area, these interactions are correlate with the distances, the alignments
and the differences of preferred direction between neurons. The net effect mediates
the feedforward afferent, and eventually the response:
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R(x, y, t, θ ) = C(x, y, t, θ )

(
1+

∑

n∈D

Cn(t − r

c
)B(r,ϕ)

)
(5)

Where D is the surrounding area, r is the distance, c is the propagating speed, B(r,ϕ)
represents the strength of the connectivity, which is a function of distance and the
difference of preferred directions between neurons.

B(r,ϕ) = η∗ cos(θ − ϕ)∗ exp(−r2/2σ ) (6)

Thus the responses of neurons are not only spatially but also temporally inte-
grated with respect to local configuration of the neuron alignments, in this manner,
a contextual perception of moving visual stimulus is attained.

3 Results

We used different sequences of gray-scale images as model inputs, and the responses
of different stimulus were derived. In our model, we employed a set of local motion
energy detectors with different preferred directions to simulate v1 complex cells.
The preferred directions of these detectors are distributed with an interval of 30◦,
and 12 of them share one location to cover 360◦.

We first used a moving sin grating with spatial frequency of 0.05 cycles/pixel,
temporal frequency of 0.05 cycles/frame. As shown in Fig. 1, the arrow indicates
the moving direction, which is 45◦.

Figure 2 shows the responses to sinusoidal gratings inputs. The left panel shows
the responses of model with only feed-forward afferents, and the right panel is

Fig. 1 A moving sinusoidal
grating. with SF of 0.05
cycles/picel and TF of 0.05
cycles/frame. The arrow
indicates the direction of
motion
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Fig. 2 The responses to sinusoidal grating input. The left panel is the responses of model with
only feed-forward afferents, and the right panel is the responses with horizontal connectivities, the
arrows indicate the preferred direction of most activated neurons

the responses of model with spatial-temporal integration due to horizontal inter-
actions. For feed-forward model, most of the responses are in accordance with
the input direction, with a portion deviate from the most likely direction. But for
the model with horizontal interactions, because the right response dominates the
site, those responses that don’t agree with stimulus direction are inhibited due
to spatial-temporal integration, which exhibits the ability of inhibition of noisy
responses.

We also used a rectangular moving rightward as model input, which consists of
40 frames and moving at a speed of 1 pixel/frame, as shown in Fig. 3

While given input of moving rectangular, the neuron activations with different
preferred direction exhibit significant disparity. As shown in Fig. 4, the neurons with
preferred direction in accordance with the stimulus direction shows the maximum
activation, especially at the two ends of rectangular, for the moving of luminance
gradient in the left and right ends are most significant but none in the center of the
rectangular. At the layer of neurons with preferred direction at 90◦, the activation

Fig. 3 Stimulus of a
rectangular moving
rightwards
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Fig. 4 Responses of v1
neurons with preferred
direction of 0,90,180 (reverse
from stimulus direction)deg
respectively
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Fig. 5 The responses of model with only feed-forward afferent and model with horizontal
connectivities

is less significant than that of 0◦, and for the layer with opponent direction, the
activation is totally inhibited by horizontal interactions.

For the model without horizontal interactions, as the left panel of Fig. 5 shows,
the responding directions deviate from the input direction of stimulus image
sequences, and intricately distributed over large direction range. But for model
with horizontal interactions, the responding directions are consistent with the input
direction, and concentrate in a small direction range. It can be explained like this:
although the neurons with most alike directions with input don’t necessary get the
maximum activation, but they can most facilitated from surrounding neurons and
previous “memory” via spatial and temporal integration, and contextual presentation
of visual motion is attained in this manner.

4 Conclusion

The investigation of receptive field is a crucial component to reveal the mecha-
nism of brain processing of visual information. Recently the surrounding mediating
effect beyond classical RF is drawing researchers’ attention, it is hypothesized
that this mechanism involved in the global processing of visual information. An
spatial-temporal integrating model concerning horizontal interactions was proposed
to process the visual motion stimulus on the basis of the notion referred previously,
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and good performances are attained in representing the directions of the moving
images
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Periodic Motion Control of Human Arm
Movement Based on CPG model

Jiong Wu, Rubin Wang, Zhikang Zhang, and Jianting Cao

Abstract In this paper, a Central Pattern Generator (CPG) model of a flexor and an
extensor is developed, according to the experiments implemented in a crank-rotation
task. The drive torque which achieved the arm movement is obtained by six muscles
models consisted of outputs of the CPG model. The parameters of CPG model is
optimized by minimum torque-change criterion and genetic algorithm. Finally, the
simulation results are compared with to the experimental data and the CPG model
of six muscles are discussed.

Keywords Central pattern generator · Periodic motion control · Six muscles
models ·Minimum torque change criterion · Genetic algorithm

1 Introduction

EMG signal is a potential change while the central nervous system planned muscle
activity, which is related to the structure of muscles, mechanical properties of the
movement and chemical changes during the muscle contraction. Therefore, changes
in EMG signals are used to study how the central nervous system control and coor-
dinate human arm movements. Since the results of signal identification could not
only used as control signals of mechanical hand and the artificial limb, but also
served as stimulation signals of neural prosthetic for the rehabilitation therapy of
the human body, it is more and more important to identify the status of the human
arm movement in the field of biomechanical research through the EMG signals.

In animal motions generation, a number of brain-nervous subsystems, such
as cerebral cortex, cerebellum, basal ganglia, brain stem, spinal cord etc., are

J. Wu (B)
School of Information Science and Engineering, Institute of Cognitive Neurodynamics, East China
University of Science and Technology, Shanghai 200237, China
e-mail: iamwujiong@mail.ecust.edu.cn

The copyright of Figs. 1, 2, 4(b, d) and all the experiment data belongs to Ken Ohta et al. [5]

493R. Wang, F. Gu (eds.), Advances in Cognitive Neurodynamics (II),
DOI 10.1007/978-90-481-9695-1_78, C© Springer Science+Business Media B.V. 2011



494 J. Wu et al.

interdependently concerned, and the generated motions can be categorized into vol-
untary movement, automatic movement or reflex according to the concerned brain
regions and the latent time. Among them, the automatic movement, such as walk-
ing, swimming, breathing etc. is a fundamental motion for life-sustaining, and has a
periodic characteristic in common.

Based on the idea that trajectory planning must take arm dynamics into account,
Uno et al. [1] suggested a minimum joint torque change criterion implying that the
CNS plans the point-to-point reaching movements in the joint space based on the
dynamic formulation. The criterion is given by

J =
∫ T

0
τ̇T τ̇dt (1)

Where τ is the combined vector of the joint torques.
Later on, Tadashi et al. [2] had confirmed that movement of human limbs is

achieved by joint torques and each torque is specified as the sum of torques gener-
ated by muscle forces. As a result, it is verified that both a flexor and an extensor
are activated throughout the entire movement and that the activation of muscles is
controlled above a specific limit independent of the hand-held load. The minimum
limit is reflected in the following criterion as a constraint of the neural input.

J = 1

2

∫ tf

0

2∑

i=1

(ui − fi)
2dt (2)

The neural input is associated with muscle force by EMG signals and six-muscle
model of human arm is developed firstly according to the anatomy theory which had
played a major role in promoting the research of human arm movement.

In the previous work, it is proved that we can gain muscle force from EMG and
the simulation results are pretty well matched to the experiment data [3]. The driving
torque for motion control can be generated in proportion to the difference of the
outputs of the extensor and flexor neurons [4]. For this reason, this paper proposed a
CPG model based on the biarticular muscles of upper limb and built up a six-muscle
model with other four muscle force function, then check this six-muscle model in
Ken’s dynamic model.

2 Rotate Crank Device and CPG Model

2.1 Rotate Crank Device

According to the crank experiment [5], it is supposed to compare the simulated
results with the experiment results referred in ken’s paper. (All the original data
could be referred to in the paper mentioned above.)

Since the crank model had been well analyzed,
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Fig. 1 The crank-rotation
task

Fig. 2 Model of
crank-rotation task.
(a) Kinematic model of crank
and arm. (b) Six muscle
model

Iθ̈ + Bθ̇ = reTF, (3)

M(q)q̈+ h(q, q̇) = τ ∗ − J(q)TF (4)

τ ∗ ≡ τ − bq̇, (5)

J(q)q̈+ J̇(q, q̇)q̇ = r(θ̈e− θ̇2n), (6)

Where F = [
Fx, Fy

]T is the hand contact force, τ = [τ1, τ2]T is the joint torque
vector, e and n are the unit vectors of rotating contact frame, b stands for joint
viscosity matrix.

2.2 CPG Model of Human Arm

The Matsuoka oscillator is the most frequently used, nonlinear oscillator model
which constitute of CPG model. Two artificial neurons, connected by mutual inhi-
bition, constitute the CPG model, and each neuron denotes flexor and extensor,
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Fig. 3 CPG model of upper
limb

respectively. The output of CPG is the difference of the outputs of the extensor
and flexor neurons. The best feature of Matsuoka oscillator is that it could imitate
the biological characteristics of organisms very well with or without external stim-
ulus. As long as there is a stable constant stimulus, the output would be a stable
oscillation wave. This output can be used as the control signal of muscle force, joint
angle or driving torque.

According to the physiological structure of human arm, the biceps (extensor) and
triceps (flexor) of upper limb mainly decide the rotation of elbow. Since it is so, the
CPG of extensor and flexor is developed (Fig. 3) [6] and a muscle force vector is
composed of the output and other four muscle function. Finally, the driving torque
at the elbow is obtained.

τ1u̇1 = −u1 − βv1 + ω12y2 + u0;
τ2v̇1 = −v1 + y1;
τ1u̇2 = −u2 − βv2 + ω12y1 + u0;
τ2v̇2 = −v2 + y2;
yi = f (ui) = max(ui, 0), i = 1, 2

(7)

Here, the black bullets and hollow bullets denote inhibitory connections and exci-
tatory connections, respectively. ui and vi correspond to internal state variables,
membrane potential and membrane current. β is a fatigue constant, u0 is a bias
input, and ωij is a mutual inhibition weight between oscillators. For the sake of con-
venience, make ω12 = ω21 = 0 to simplify the mutual interaction of flexor and
extensor. The rest parameters of CPG can be obtained through genetic algorithm.
Take the rest parameters as initial sample of GA and minimum torque criterion as
its Termination condition, program the whole model in the Mat Lab.
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(a) (b)

(c) (d)

Fig. 4 (a, c) Obtained by CPG simulation. (b, d) Experimental data. Solid lines mean the
experiment data and dotted lines mean the results from Ken et al. [5]

3 Comparison

Here, the parameters of CPG model are chosen to be the initial samples and mini-
mum torque change criterion to be the termination conditions. The simulation results
are as follows:

As we can see, the results obtained from CPG model show a great consistency
and coherence than the simulation results in Ken’s paper. It is also verified that the
idea of applying CPG to period motion on the human arm is successful.

4 Conclusion

There are 7◦ of freedom in human upper limbs (excluding hands) and each one
corresponds to the relative muscles. There would involve more muscles which many
of them cannot be detected by a surface electrode, if the freedom of the human upper
limb is not limited. In this paper, it would be just one degree of freedom at the elbow
while the arm is restricted to make period motion in a plane. Since the elbow rotation
of human arm movement mainly depend on biceps (flexor) and triceps (extensor),
this paper has developed a CPG model of flexor and extensor of upper limb based on
the neural oscillator of mutual inhibition and characteristics of extensor and flexor.
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The simulation results are compared with to the experimental data and the CPG
model of six muscles are discussed.
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A Neurodynamical Approach to Visual
Affordances: The Selective Attention for Action
Model (SAAM)

Christoph Böhme and Dietmar Heinke

Abstract Classically, visual attention is assumed to be influenced by visual
properties of objects. However, recent experimental evidence suggests that visual
attention is also guided by action-related properties of objects (“affordances” [1]).
In our model we use a neurodynamical approach to soft-constraint satisfaction. The
model implements two sets of constraints: the first set accounts for anatomical con-
straints of hand postures; the second set considers suitable contact points on objects.
We will demonstrate here that the model can successfully mimic human grasping
and affordance-guided attentional behaviour.

Keywords Visual attention · Object affordance · Computational modelling ·
Human grasping

1 Introduction

Actions need to be tightly guided by vision in our daily interactions with our envi-
ronment. To maintain such a direct guidance, Gibson postulated that the visual
system automatically extract “affordances” of objects [1]. According to Gibson,
affordances refer to parts or properties of visual objects that are directly linked to
actions or motor performances. For instance, a handle of a cup affords directly a
reaching and grasping action. Recently experimental studies have produced empiri-
cal evidence in support for this theory (e.g. [2–4]). Interestingly, recent experimental
evidence also suggests that selective attention is guided towards action-relevant
locations (e.g. [5]).

This paper aims to lay the foundations for a computational model of such
affordance-based guidance of attention. We designed a neurodynamical model
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Fig. 1 Overview of the
model structure

which determines contact points for a stable grasp of an object (see Fig. 1). The
model extracts these contact points directly from the input image. Hence, such a
model could be construed as an implementation of an automatic detection of object
affordances for grasping. To realise the attentional guidance through affordances,
we integrated the selection mechanisms employed in the Selective Attention for
Identification Model (SAIM [6]). Since this new model performs selection for action
rather than identification, we termed the new model Selective Attention for Action
Model (SAAM).

2 The Selective Attention for Action Model (SAAM)

Figure 1 gives an overview of SAAM. The input consists of black&white images.
The output of the model is generated in five “finger maps” of a “hand network”.
The finger maps encode the finger positions which are required for producing a sta-
ble grasp of the object in the input image. At the heart of SAAM’s operation is
the assumption that stable grasps are generated by taking into account two types of
constraints: geometrical constraints imposed from the object shape and anatomical
constraints given by the hand. In a soft-constraint satisfaction approach [7] con-
straints define activity patterns in the finger maps that are permissible and others
that are not. An energy function was defined which generates minimal values by just
these permissible activity values. To find these minima, a gradient descent proce-
dure is applied resulting in a differential equation system. The differential equation
system defines the topology of a biologically plausible network.
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The geometrical constraints are extracted from the shape of the object in the
visual feature extraction stage. To begin with, obviously, only edges constitute suit-
able contact points for grasps. Furthermore, edges have to be perpendicular to the
direction of the forces exerted by the fingers. Hence only edges with a horizontal
orientation make up good contact points, since we only consider a horizontal hand
orientation in this first version of the model (see Fig. 1). To exert a stable grasp,
thumb and fingers need to be located at opposing sides of an object. This require-
ment was realised by separating the edge-filtered input according to the direction
of the gradient change at the edge to indicate appropriate locations for the fingers
and the thumb (see Fig. 1). The results of the separation feed into the corresponding
finger maps providing the hand network with the geometrical constraints.

The anatomical constraints implemented in the hand network take into account
that the human hand cannot form every arbitrary finger configuration to perform
grasps. For instance, the maximum grasp width is limited by the size of the hand
and the arrangement of the fingers on the hand makes it impossible to place the
index, middle, ring, and little finger in another order than this one. After applying
the energy minimisation approach, these anatomical constraints are implemented by
excitatory connections between the finger layers in the hand network (see Fig. 1).
Each weight matrix defines how every single neuron of one finger map projects onto
another finger map. Each neuron in the target map sums up all activation fed through
the weight matrices. Finally, since a finger can be positioned at only one location, a
winner-takes-all mechanism was implemented in all finger maps. In the simulation
section we will show that this selection mechanism also implements global selection
mimicking selective attention.

3 Studies: Single-Object Inputs and Two-Object Inputs

The first study tested whether SAAM can generate expedient grasps in general and
whether these grasps mimic human grasps. To accomplish this, simulations with
single objects in the visual field were compared with experimental data on grasping
these objects.

Figure 2 shows an example of the simulation results. This illustration also include
the mean finger positions from the experimental data for a comparison with the sim-
ulation data. The ellipses around the mean finger positions illustrate the variations

Fig. 2 Simulation and
experimental data
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Fig. 3 Simulation of
selective attention

in the data. The comparison shows that most finger positions lie within the ellipses.
Hence the theoretical assumptions behind SAAM that geometrical and anatomical
constraints are sufficient to mimic human behaviour have been confirmed.

The second set of simulations investigated SAAM’s ability to simulate attentional
processes by using input images with two objects. Figure 3 shows the simulation
results. The simulations are successful in the sense that contact points for only one
object were selected and the second object was ignored (see Conclusion for fur-
ther discussions). Note that this is an emergent property of the interplay between
all constraints. The geometrical and anatomical constraints ensure that only contact
points around the object were selected and the WTA-mechanism restricts the contact
points to one object. In addition, the weight matrices (anatomical constraints) deter-
mine the selection priorities of SAAM. At present we do not have reference data
from humans. It would be especially interesting to see whether SAAM and humans
have the same select preference.

4 Conclusion and Outlook

This paper set out to develop a model of affordance-based guidance of selective
attention. To detect the parts of an object which afford a stable grasp, SAAM per-
forms a soft-constraint satisfaction approach. The constraints were derived from
the geometrical properties of the input object and the anatomical properties of the
human hand. In a comparison between simulation results and experimental data
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from human participants we could show that these constraints are sufficient to
simulate human grasps. Note that an alternative approach would have been a com-
plex torque and forces analysis. However, our simulations suggest that anatomical
constraints render such an analysis obsolete. In a second set of simulations we tested
whether SAAM cannot only extract object affordances but also implements the
guidance of attention through affordances. Indeed, SAAM was able to select one of
two objects based on their affordances. The interesting aspect here is that SAAM’s
performance is an emergent property from the interplay between the anatomical
constraints. Especially, the competitive mechanism implemented in the finger maps
is crucial for SAAM’s attentional behaviour. This mechanism already proved impor-
tant in the Selective Attention for Identification Model (SAIM [6]) for simulating
attentional effects of human object recognition. Despite differences in the imple-
mentation of both models this similarity makes it conceivable that both models can
be combined into one. In such a model SAIM’s selection mechanism of whole
objects can be guided by the SAAM’s selection of contact points. Hence, this
new model could integrate both mechanisms, selection by visual-properties and by
action-related properties, forming a more complete model of selective attention.

Despite the successes reported here, this work is still in its early stages. First,
we will need to verify the priorities of object selection predicted by SAAM in the
second study. Also, there is a large amount of experimental data on the interaction
between action knowledge and attention (see [8] for a summary). Therefore, we aim
to integrate action knowledge into SAAM, e.g. grasping a knife for cutting or stab-
bing. With these extensions SAAM will sufficiently contribute to the understanding
of how humans determine object affordances and how these lead to a guidance of
attention.

References

1. Gibson, J.J.: The ecological approach to visual perception. Boston, MA: Houghton-Mifflin,
(1979)

2. Grèzes, J., Decety, J.: Does visual perception of objects afford action? evidence from a
neuroimaging study. Neuropsychologia 40(2) (2002) 212–222.

3. Tucker, M., Ellis, R.: On the relations between seen objects and components of potential
actions. J. Exp. Psychol. 24(3) (1998) 830–846.

4. Borghi, A.M., Bonfiglioli, C., Lugli, L., Ricciardelli, P., Rubichi, S., Nicoletti, R.: Are visual
stimuli sufficient to evoke motor information? studies with hand primes. Neurosci. Lett. 411(1)
(2007) 17–21.

5. Handy, T.C., Grafton, S.T., Shroff, N.M., Ketay, S., Gazzaniga, M.S.: Graspable objects grab
attention when the potential for action is recognized. Nat. Neurosci. 6(4) (2003) 421–427.

6. Heinke, D., Humphreys, G.W.: Attention, spatial representation and visual neglect: Simulating
emergent attention and spatial memory in the selective attention for identication model (SAIM).
Psychol. Rev. 110(1) (2003) 29–87.

7. Hopfield, J.J., Tank, D.W.: “Neural” computation of decisions in optimization problems. Biol.
Cybern. 52(3) (1985) 141–152.

8. Humphreys, G.W., Riddoch, M.J.: From vision to action and action to vision: a convergent
route approach to vision, action, and attention. Psychol. Learn. Motiv. 42 (2003) 225–264.



A Comparative Analysis on Adaptive Modelling
of Induced Feelings

Zulfiqar A. Memon, Jan Treur, and Muhammad Umair

Abstract Stimuli and activations of mental states usually induce emotional
responses that are experienced by their associated feelings. This paper concen-
trates on how the strengths, by which such emotional responses are induced, depend
on previous experiences. It presents a comparative analysis of three adaptive mod-
elling approaches addressing how these induction strengths are adapted over time:
Hebbian learning, temporal discounting and memory traces. Example simulation
results are shown and commonalities and differences between the models are
analysed.

Keywords Induced feelings · Adaptive · Memory traces · Temporal
discounting · Hebbian learning

1 Introduction

For many responses to certain (external or internal) circumstances, an important role
is played by experiences for similar circumstances in the past. How such circum-
stances are experienced does not only depend on the circumstances themselves but
also on the extent to which emotional responses are induced and felt. For this paper
it is assumed that such an induction process of experienced emotional responses
takes the form of triggered preparations for body states that are in a recursive as-if
body loop with certain feelings; e.g. [1–3]. The strengths by which stimuli or activa-
tions of mental states induce certain preparations for body states or (other) actions
occurring as emotional responses, might be innate, but are often considered to be
acquired, strengthened and/or adapted during lifetime; e.g. [4, 5]. These induction
strengths of responses based on experiences from the past are assumed to play an
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important role in a variety of behaviors, for example, involving decision making
according to the Somatic Marker Hypothesis e.g. [4, 6].

To explain or model such a development of induction strength of a response,
in the literature different perspectives can be found. In this paper three different
alternatives for modelling approaches are considered. One of them is a Hebbian
learning approach e.g. [7–9]. A second alternative is based on a temporal discount-
ing approach as often is used in modelling intertemporal decision making or in
modelling trust dynamics e.g. [10, 11]. The third alternative considered is a case-
based memory modelling approach based on memory traces e.g. [12, 13]. Each of
the three approaches is briefly presented and some simulation results for a com-
mon case study are discussed and compared to each other to find out under which
circumstances the approaches coincide, and when they differ.

As a starting point, in Section 2 it is shown how elements from neurological
theories on generation of emotion and feeling were adopted, and based on them first
a computational model was set up that models the effect of stimuli on emotional
responses and feelings. In accordance with such literature a converging recursive
as-if body loop to generate a feeling is taken as a point of departure. Next, as the
main step, in Section 3 the three different adaptation models for the strength of the
emotional response were integrated in this model. In Section 4 simulation results
are presented. Section 5 shows how the three resulting models were evaluated and
compared based on simulation experiments. Finally, Section 6 is a discussion.

2 Dynamics of Emotional Responses and Feelings

As any mental state in a person, a sensory representation state induces emotions felt
within this person, as described by [2, 6]; for example: “. . .Through either innate
design or by learning, we react to most, perhaps all, objects with emotions, how-
ever weak, and subsequent feelings, however feeble.” [6, p. 93]. In some more
detail, emotion generation via an as-if body loop roughly proceeds according to
the following causal chain; see Damasio [2, 6]: sensory representation of stimulus
→ preparation for body state → sensory representation of body state → feeling.
The as-if body loop is extended to a recursive as-if body loop by assuming that the
preparation of the bodily response is also affected by the state of feeling the emo-
tion: feeling → preparation for body state as an additional causal relation. Such
recursiveness is also assumed by Damasio [6], as he notices that what is felt by
sensing is actually a preparation for a body state which is an internal object, under
control of the person: “The object at the origin on the one hand, and the brain map
of that object on the other, can influence each other in a sort of reverberative process
that is not to be found, for example, in the perception of an external object.” [6]
p. 91. Thus the obtained model for emotion generation is based on reciprocal cau-
sation relations between emotion felt and preparations for body states. Within the
model presented in this paper both the preparation for the bodily response and the
feeling are assigned an (activation) level or gradation, expressed by a number. The
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cycle is modelled as a positive feedback loop, triggered by a sensory representation
and converging to a level of feeling and preparation for body state.

Informally described theories in scientific disciplines, for example, in biological
or neurological contexts, often are formulated in terms of causal relationships or
in terms of dynamical systems. To adequately formalise such a theory the hybrid
dynamic modelling language LEADSTO has been developed that subsumes qual-
itative and quantitative causal relationships, and dynamical systems; cf. [14]. This
language has been proven successful in a number of contexts, varying from bio-
chemical processes that make up the dynamics of cell behaviour to neurological and
cognitive processes e.g. [1, 15]. Within LEADSTO the dynamic property or tempo-
ral relation a �D b denotes that when a state property a occurs, then after a certain
time delay (which for each relation instance can be specified as any positive real
number D), state property b will occur. Below, this D will be taken as the time step
	t, and usually not be mentioned explicitly. In LEADSTO both logical and numer-
ical calculations can be specified in an integrated manner, and a dedicated software
environment is available to support specification and simulation.

An overview of the basic model for the generation of emotional responses and
feelings is depicted in Fig. 1. This picture also shows representations from the
detailed specifications explained below. However, note that the precise numerical
relations between the indicated variables V shown are not expressed in this picture,
but in the detailed specifications below, labeled by LP1 to LP5 in the picture.

Note that the sensor and effector state for body states and the dashed arrows
connecting them to internal states are not used in the model considered here. In
the dynamic properties below capitals are used for variables (assumed universally
quantified). First the part is presented that describes the basic mechanisms to gen-
erate a belief state and the associated feeling, starting with how the world state is
sensed.

ω2

ω1

LP4

LP5
srs(b, V) feeling(b, V)sensor_state(b,V)

world_state(w, V) srs(w, V)

LP1 LP2 LP3

preparation_state(b, V)sensor_state(w, V) effector_state(b, V)

Fig. 1 Overview of the connections in the model for induced emotional responses and feelings
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LP1 Sensing a world state
If world state property W occurs of strength V
then the sensor state for W will have strength V.

world_state(W, V)→ sensor_state(W, V)

From the sensor states, sensory representations are generated according to the
dynamic property LP2.

LP2 Generating a sensory representation for a sensed world state
If the sensor state for world state property W has strength V,
then the sensory representation for W with have strength V.

sensor_state(W, V)→ srs(W, V)

Dynamic property LP3 describes the emotional response a sensory representation
of a stimulus in the form of the preparation for a specific bodily reaction.

LP3 From sensory representation and feeling to preparation of a body state
If a sensory representation for w with strength V1 occurs

and feeling the associated body state b has strength V2
and the preparation state for b has strength V3
and the connection from sensory representation of w to preparation for b has strength ω1
and the connection from feeling to preparation for b has strength ω2
and β is the person’s orientation for emotional response
and γ is the person’s flexibility for bodily responses

then after 	t the preparation state for body state b will have strength
V3 + γ (h(β,ω1, ω2, V1, V2)− V3) 	t.

srs(w, V1) & feeling(b, V2) & preparation_state(b, V3) &
has_connection_strength(srs(w), preparation(b), ω1) &
has_connection_strength(feeling(b), preparation(b), ω2)
� preparation (b, V3 + γ (h(β, ω1, ω2, V1, V2) − V3) 	t)

The resulting level for the preparation is calculated based on a function
h(β, ω1, ω2, V1, V2) of the original levels. For the function h(β, ω1, ω2, V1, V2)
the following was taken:

h(β, ω1, ω2, V1, V2) = β(1− (1− ω1V1)(1− ω2V2))+ (1− β) ω1ω2V1V2

Note that this formula describes a weighted sum of two cases. The most positive
case considers the two source values as strengthening each other, thereby staying
under 1: combining the imperfection rates 1− ω1V1 and 1− ω2V2 of them provides
a decreased rate of imperfection expressed by 1− (1− ω1V1)(1− ω2V2). The most
negative case considers the two source values in a negative combination: combining
the imperfections of them provides an increased imperfection. This is expressed by
ω1ω2V1V2. The parameter β can be used to model a characteristic that expresses
the person’s orientation for emotional response (from 0 as weakest response to 1
as strongest response). Dynamic properties LP4 and LP5 describe the as-if body
loop.

LP4 From preparation to sensory representation of a body state
If preparation state for body state B occurs with strength V,
then the sensory representation for body state B with have strength V.

preparation(B, V) � srs(B, V)



A Comparative Analysis on Adaptive Modelling of Induced Feelings 511

LP5 From sensory representation of body state to feeling
If a sensory representation for body state B with strength V occurs,
then B will be felt with strength V.

srs(B, V)← feeling(B, V)

3 Integrating Adaptation Models for the Induction Strengths

Three adaptation models for the induction strength ω1 of the connection from sen-
sory representation to preparation have been integrated. As a scenario it is assumed
that over time different sensory representations occur in a repeated fashion. The first
adaptation model presented follows a Hebbian approach. By this model the induc-
tion strength ω1 of the connection from sensory representation to preparation is
adapted using the following Hebbian learning rule. It takes into account a maximal
connection strength 1, a learning rate η, and an extinction rate ζ .

LP6 Hebbian learning rule for connection from sensory representation of stimulus to
preparation
If the connection from sensory representation of w to preparation of b has strength ω1

and the sensory representation for w has strength V1
and the preparation of b has strength V2
and the learning rate from sensory representation of w to preparation of b is η
and the extinction rate from sensory representation of w to preparation of b is ζ

then after 	t the connection from sensory representation of w to preparation of b
will have strength ω1 + (ηV1V2(1− ω1)− ζω1) 	t.

has_connection_strength(srs(w), preparation(b), ω1) & srs(w, V1) & preparation(b, V2) &
has_learning_rate(srs(w), preparation(b), η) & has_extinction_rate(srs(w), preparation(b), ζ)
� has_connection_strength(b, w, ω1 + (ηV1V2(1− ω1)− ζω1) 	t)

A similar Hebbian learning rule can be found in [8, p. 406]. As a next model
a temporal discounting principle is used to adapt the induction strength ω1 of the
connection from sensory representation to preparation.

LP7a Temporal discounting learning rule for sensory representation of stimulus
If the connection from sensory representation of w to preparation of b has strength ω1

and the sensory representation for w has strength V and V>0
and the discounting rate from sensory representation of w to preparation of b is α
and the extinction rate from sensory representation of w to preparation of b is ζ

then after 	t the connection from sensory representation of w to preparation of b
will have strength ω1 + (α(V − ω1)− ζω1) 	t.

has_connection_strength(srs(w), preparation(b), ω1) & srs(w, V) & V>0 &
has_discounting_rate(srs(w), preparation(b), α) & has_extinction_rate(srs(w), preparation(b), ζ)
� has_connection_strength(srs(w), preparation(b), ω1 + (α(V− ω1)− ζω1) 	t)

LP7b Temporal discounting learning rule for sensory representation of stimulus
If the connection from sensory representation of w to preparation of b has strength ω1

and the sensory representation for w has strength 0
and the extinction rate from sensory representation of w to preparation of b is ζ

then after 	t the connection from sensory representation of w to preparation of b
will have strength ω1(α(V − ω1)− ζω1) 	t.

has_connection_strength(srs(w), preparation(b), ω1) & srs(w, 0) &
has_extinction_rate(srs(w), preparation(b), ζ)
� has_connection_strength(srs(w), preparation(b), ω1 − ζω1 	t)
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The third model integrated is based on memory traces. Suppose
is_followed_by(γ, a, b) indicates that within memory trace with identification
label γ state a is followed by state b. The states addressed are the sensory represen-
tation state and the subsequent preparation state. It is assumed that each new pair of
events <sensory representation, preparation> gets a new unique identification label
γ, for example, based on a time stamp. The idea is then that for given states a and
b, the strength of the induction from a to b is extracted in a case-based manner by
the fraction of all represented traces in which a occurs with b as a next state from
all traces in which a occurs:

#{γ | is_followed_by(γ, a, b)} / #{γ | ∃c is_followed_by(γ, a, c)}

A temporal element can be incorporated by giving more weight to more
recently represented memory traces. This was modelled by using temporal discount-
ing when extracting the induction strength from the represented memory traces.
Moreover, also levels of activations of both states were taken into account. In this
approach traces get weights depending on their time label where traces that occurred
further back in time have lower weights. The following rules represent how informa-
tion is extracted from the time-labeled representations by counting the discounted
numbers of occurrences.

LP8 Discounting memory traces
If the sensory representation for w has strength V1

and the preparation of b has strength V2
and the discounted number of memory traces with state srs(w) is X
and the discounted number of memory traces with state srs(w) and successor state preparation(b) is Y
and the discounting rate from sensory representation of w to preparation of b is α

then the discounted number of memory traces with state srs(w) is αX + (1− α) V1
and the discounted number of memory traces with state srs(w) and

successor state preparation(b) is αY + (1− α)V1V2
srs(w, V1) & preparation(b, V2) & has_discounting_rate(srs(w), preparation(b), α) &
memory_traces_including(srs(w), X) & memory_traces_including_both(srs(w), preparation(b), Y)
� memory_traces_including(srs(w), αX+ (1−α) V1) &

memory_traces_including_both(srs(w), preparation(b), αY+ (1−α)V1V2)

Given these numbers the induction strength of the connection from sensory
representation to preparation state is determined as Y/X.

LP9 Generation of preparations based on discounted memory traces
zzIf the discounted number of memory traces with state srs(w) is X

and the discounted number of memory traces with state srs(w) and successor state preparation(b) is Y
then the connection strength from srs(w) to preparation(b) is Y/X

memory_traces_including(srs(w), X) & memory_traces_including_both(srs(w), preparation(b), Y)
� has_connection_strength(srs(w), preparation(b), Y/X)

4 Example Simulation Results

Based on the computational model described in the previous section, a number of
simulations have been performed. Some example simulation traces were included in
this section as an illustration; see Figs. 2, 3 and 4, for the Hebbian learning, temporal
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Fig. 2 Adaptation by hebbian learning (V1=0.6, β=0.9, γ=0.3, η=0.01, ζ=0.0005)
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Fig. 3 Adaptation by temporal discounting (V=0.6, β=0.9, γ=0.3, α=0.01, ζ=0.0005)
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Fig. 4 Adaptation by memory traces (V1=0.6, β=0.9, γ=0.3, α=0.5, ζ=0.0005)
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discounting and memory traces approach, respectively (here the time delays within
the temporal LEADSTO relations were taken 1 time unit). Note that only a selec-
tion of the relevant nodes (represented as state properties in LEADSTO) is shown.
In all of these figures, where time is on the horizontal axis, and the activation lev-
els of the different state properties are on the vertical axis, quantitative information
for state properties values for the different time periods are shown (by the dark
lines). The activation levels of the state properties gradually increase while the sen-
sory representation of the stimulus occurs, following the recursive feedback loop
discussed in Section 2. These levels sharply decrease after the sensory representa-
tion of the stimulus stops occurring, as described by the temporal relationship LP3
in Section 2. Moreover, except for some decrease due to extinction, the induction
strength of the connection from sensory representation to preparation state keeps its
value in the phases without stimulus, until the sensory representation of the stimulus
(again) occurs, as described by temporal relationship LP6 in case of Hebbian learn-
ing, LP7a and LP7b in case of temporal discounting and by LP8a and LP8b in case
of memory traces. Further comparison of the three adaptation models are discussed
in Section 5.

Figure 2 shows the adaptation model following the Hebbian approach. As can
be seen in this figure, for sensory representation activation level 0.6 and initial level
of preparation state 0, during the phases of the stimulus the activation levels of the
preparation and feeling states progressively increase over time until they reach levels
close to 0.9.

The induction strength which initially was set to 0.01, gradually increases to
attain a strength around 0.8. The occurrence of this pattern is in line with the
mathematical analysis which is discussed in the next section.

Figure 3 shows the temporal discounting approach. For sensory representation
activation level 0.6 and initial level of preparation state 0, the activation levels of the
preparation and feeling states gradually increase over the time until they reach val-
ues close to 0.8. The induction strength state initially set at 0.01, gradually increases
to attain a strength around 0.55. Also the occurrence of this pattern is in line with
the mathematical analysis discussed in the next section.

Figure 4 shows the adaptation model following the memory traces approach. As
can be seen in the figure, for the sensory representation activation level 0.6 and initial
level of preparation 0, the activation levels of preparation and feeling states gradu-
ally increases over time until levels close to 0.9 are reached. The induction strength
gradually increases from initial value 0.01 to values around 0.7. The occurrence of
this pattern also is in line with results from the next section.

5 Comparative Analysis of the Three Adaptation Models

This section compares the results of simulation for the three adaptive dynamic mod-
eling approaches and presents some of the results of a mathematical analysis of the
model that has been undertaken.
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5.1 Comparison of Simulation Results

For a brief overview of a comparison of simulation results, see Table 1. The adap-
tation speed of the induction strength in the temporal discounting approach is faster
as compared to other two approaches (see Figs. 2–4), even though the discounting
rate for memory traces approach was set at a higher value. Notice also that the pat-
tern of the learning curves differs: Hebbian learning shows a slow start, but later
on gets more speed, while the other cases show a more or less opposite pattern.
Moreover, the activation levels of the preparation and feeling states in the temporal
discounting and memory traces approach increase faster as compared to the Hebbian
approach.

The memory traces approach persist the strength more as compared to the tempo-
ral discounting approach, and the temporal discounting approach persist the strength
more as compared to the Hebbian approach.

Below, some of the results of a mathematical analysis of possible equilibria of
the model that has been undertaken are discussed. For an overview see also Table 2.
Note that an equilibrium of the model involves constant values both for activation
levels and connection strengths and it is also assumed that the stimulus is constant.
Moreover, to avoid too many exceptional cases, it is assumed that the values for
parameters γ , η,ζ are nonzero.

Table 1 Overview of outcomes of the example simulations for the three approaches

Hebbian learning Temporal discounting Memory traces

Maximal induction
strength reached

0.8 0.55 0.7

Adaptation speed Lowest Highest Middle
Adaptation pattern Slow start – fast finish Fast start – slow finish Fast start – slow finish
Extinction speed Highest Middle Lowest
Maximal preparation

and feeling levels
0.9 0.8 0.9

Speed in preparation
and feeling levels

Lowest Highest Middle

Table 2 Overview of expressions for a number of possible equilibria

General case Case V1 = 1 & ω2 = 1

Hebbian
Learning

V2 = βω1V1/(1− βω2 + (2β − 1)ω1ω2V1)
ω1 = ηV1V2/(ζ + ηV1V2
= 1/(ζ/ηV1V2)+ 1)

ω1 = (((η−(1/β − 1)ζ )/
(2ζ + (η−)(1/β)ζ ))

V2 = 1−(1− β)ζ/βη
= 1−(1/β − 1)ζ/η

Temporal
Discounting

V2 = βω1V1/(1− βω2 + (2β − 1)ω1ω2V1)
ω1 = V1/(ζ/α + 1) ≤ V1

ω1 = 1/(ζ/α + 1)
V2 = 1/(ζ/α(1/β − 1)+ 1)

Memory
Traces

ω1 = V2 = (βV1 − 1+ βω2_/(2β − 1)ω2V1 ω1 = V2 = 1
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5.2 Equilibrium for Activation Level of Preparation State

First the equilibrium for the activation level of the preparation state has been inves-
tigated, expressed in the following relation derived from LP3 (note that due to LP4
the feeling level V2 and preparation level V3 are equal in an equilibrium; see):

γ (β(1− (1− ω1V1)(1− ω2V2))+ (1− β) ω1ω2V1V2 − V2) = 0

Assuming γ �= 0, this equation can be solved by expressing V2 into the
other variables among which V1 that denotes the activation level of the sensory
representation.

β(1− (1− ω1V1)(1− ω2V2))+ (1− β)ω1ω2V1V2−V2 = 0 ⇔
β(ω1V1 + ω2V2 − ω1ω2V1V2) = V2 − ω1ω2V1V2 + β ω1ω2V1V2 ⇔
βω1V1 = V2 − ω1ω2V1V2 + β ω1ω2V1V2− βω2V2 + βω1ω2V1V2 ⇔
βω1V1 = V2 − βω2V2 + (2β − 1)ω1ω2V1V2 ⇔
βω1V1 = (1− βω2 + (2β − 1)ω1ω2V1)V2 ⇔
V2 = βω1V1/(1− βω2 + (2β − 1)ω1ω2V1)

(1)

For 3 example values of βω1V1 = (1− βω2 + (2β − 1)ω1ω2V1)V2 reduces to

β = 0 0 = (1− ω1ω2V1)V2 ⇔ V2 = 0 OR ω1 = ω2 = V1 = 1
β = 0.5 0.5 ω1V1 = (1− 0.5 ω2)V2 ⇔ ω1V1 = (2− ω2)V2 ⇔

V2 = ω1V1/(2− ω2)
β = 1 ω1V1 = (1− ω2 + ω1ω2V1)V2 ⇔ V2 = ω1V1/(1− ω2 + ω1ω2V1)

For V1 = 1 Eq. (1) is reduced to

V2 = βω1/(1− βω2 + (2β − 1)ω1ω2)

For ω2 = 1 this is

V2 = βω1V1/(1− β + (2β − 1)ω1V1)

For ω2 = 1 this is for the three values of β

β = 0 V2 = 0 OR ω1 = ω2 = V1 = 1
β = 0.5 V2 = ω1V1
β = 1 V2 = ω1V1/(ω1V1) = 1

For both V1 = 1 and ω2 = 1 the equation is

V2 = βω1/(1− β + (2β − 1)ω1) ⇔ V2 = β/((1− β)/ω1 + 2β − 1) (2)
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5.3 Hebbian Approach

Next the equilibrium for the connection strength ω1 from sensory representation to
preparation is analyzed for the Hebbian approach; this is expressed in the following
relation derived from LP6:

ηV1V2(1− ω1)− ζω1 = 0

For cases that V1 and V2 are nonzero, this can be used to express ω1 as follows

ηV1V2 = (ζ + ηV1V2)ω1 ⇔ ω1 = ηV1V2/(ζ + ηV1V2) ⇔
ω1 = 1/(ζ (ηV1V2)+ 1)

(3)

In principle the two Eqs. (1) and (3) in ω1 and V2 can be explicitly solved, but for
the general case this provides rather complex expressions for ω1 and V2. Therefore
only the specific case V1 = 1 and ω2 = 1 is pursued further.

Case V1 = 1 and ω2 = 1 for the Hebbian approach
For V1 = 1 Eq. (3) can be rewritten into

ω1 = 1/(ζ (ηV2)+ 1) ⇔ 1/ω1 = (ζ/ηV2)+ 1)

Substituting the above equation in the expression (2) for V2 provides:

V2 = β/((1− β)/ω1 + 2β − 1) ⇔ ((1− β)/ω1 + 2β − 1)V2 = β ⇔
((1− β)(ζ/(ηV2)+ 1)+ 2β − 1)V2 = β ⇔
(1− β)(ζ/η + V2)+ 2β V2 − V2 = β ⇔
(ζ/η + V2)− β(ζ/η + V2)+ 2β V2 − V2 = β ⇔
ζ/η − β(ζ/η + V2)+ 2β V2 = β ⇔
ζ/η − β ζ/η + βV2 = β ⇔ β V2 = β ⇔ β V2 = β−ζ/η + β ζ/η⇔
V2 = 1−(1− β)ξ/βη = 1−(1/β − 1)ζ/η

From this an expression for ω1 can be determined:

ω1 = 1/(ζ (ηV2)+ 1) ⇔ ω1 = 1/(ζ (η(1−(1/β − 1)ζ/η + 1) ⇔
ω1 = 1/(ζ ((η−(1/β − 1)ζ )+ 1) ⇔ ω1 = (η−(1/β − 1)ζ )/(ζ + (η−(1/β − 1)ζ ))
⇔
ω1 = (η−(1/β − 1)ζ )/(2ζ + (η−(1/β)ζ ))

For the three example values of β the equation β V2 = β−ζ/η + β ζ/η

reduces to

β = 0 This is impossible for nonzero ζ , V1 and V2
β = 0.5 0.5 V2 = 0.5−ζ/η + 0.5 ζ/η

V2 = 1−ζ/η
β = 1 V2 = 1−ζ/η ζ/η = 1



520 Z.A. Memon et al.

5.4 Temporal Discounting Approach

For the temporal discounting approach the variable V2 does not play a role in the
adaptation method. Temporal relation LP7a implies that for an equilibrium it holds:

α(V1 − ω1)− ζω1 = 0 ⇔ α(V1 − ω1) = ζω1 ⇔
αV1 = ζω1 + αω1 = (ζ + α) ω1 ⇔
ω1 = αV1/(ζ + α) = V1/(ζ/α + 1)

(4)

Note that since (ζ/α + 1) ≥ 1 it follows that always ω1 ≤ V1 which indeed was
observed in the simulations.

Case V1 = 1 and ω2 = 1 for the temporal discounting approach
For V1 = 1 expression (4) becomes ω1 = 1(ζ/α+1). By Eq. (2) for V2 it follows

V2 = β/((1− β)/ω1 + 2β − 1) ⇔ V2 = β/((1− β) (ζ/α+ 1)+ 2β − 1) ⇔
V2 = β/((ζ/α+ 1) - β(ζ/α+ 1)+ 2β − 1) ⇔
V2 = β/(ζ/α−β(ζ/α+ 1)+ 2β) ⇔
V2 = β/(ζ/α− β(ζ/α)+ β) ⇔ V2 = β/(ζ/α(1− β)+ β) ⇔
V2 = 1/(ζ/α(1/β − 1)+ 1)

For the three example values of β the equation V2 = β/(ζ/α(1 − β) + β)
reduces to

β = 0 V2 = 0
β = 0.5 V2 = 0.5/(ζ/α 0.5+ 0.5) = 1(ζ/α+ 1)
β = 1 V2 = 1

5.5 Memory Traces Approach

For the memory traces approach in an equilibrium the expression ω1 = Y/X should
remain the same, although in principle X and Y still may change. So the criterion is

Y +	Y/X +	X = Y/X

which can be rewritten as

(Y +	Y)X = (X +	X)Y ⇔ YX +	Y X = XY +	X Y ⇔ X	Y = Y 	X ⇔
	Y/	X = Y/X

Therefore according to temporal relation LP8a for an equilibrium it holds:

(α V1 V2 − ζY)/(α V1 − ζX) = Y/X

This can be rewritten as:

(a V1 V2 − ζY)X = (α V1 − ζX)Y ⇔ α V1 V2XζYX = αV1Y − ζXY ⇔
α V1 V2X = α V1 Y ⇔
V2X = Y OR V1 = 0 ⇔
ω1 = Y/X = V2 OR V1 = 0
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This can be used to obtain a value for both ω1 and V2 as follows:

βω1V1 = (1− βω2 + (2β − 1)ω1ω2V1)V2 ⇔
β V2V1 = (1− βω2 + (2β − 1) V2ω2V1)V2 ⇔
β V1 = 1− βω2 + (2β − 1) V2ω2V1 OR V2 = 0 ⇔
β V1 = 1+ βω2 = (2β − 1) V2ω2V1 OR V2 = 0 ⇔
ω1 = V2 = (βV1 − 1+ βω2)/2(β − 1)ω2V2 OR V2 = 0 OR

β = 0.5 & V1 = 2− ω2 ⇔
ω1 = V2 = (β V1 − 1+ βω2)/(2β − 1)ω2V1 OR V2 = 0 OR

β = 0.5&V1 = ω2 = 1

For the three specific example values of β the following is obtained.

β = 0 ω1 = V2 = 0 OR ω1 = ω2 = V1 = V2 = 1
β = 0.5 ω1 = V2 = ω1V1/(2− ω2) ⇔

ω1 = V2 = 0 OR 1 = V1/(2− ω2) ⇔
ω1 = V2 = 0 OR V1 = 2− ω2 ⇔
ω1 = V2 = 0 OR V1 = ω2 = 1 ω1 = V2

β = 1 ω1 = V2 = ω1V1/(1− ω2 + ω1ω2V1) ⇔
ω1 = V2 = 0 OR 1− V1(1− ω2 + ω1ω2V1) ⇔
ω1 = V2 = 0 OR V1 = 1− ω2 + ω1ω2V1 ⇔
ω1 = V2 = 0 OR (1− ω1ω2)V1 = 1− ω2 ⇔
ω1 = V2 = 0 OR V1 = (1− ω2)/(1− ω1ω2)&ω1

= V2 ⇔
ω1 = V2 = 0 OR V1 = (1− ω1ω2 + ω1ω2 − ω2)/

(1− ω1ω2)&ω1 = V2
ω1 = V2 = 0 OR V1 = 1− (1− ω1)

×ω2/(1− ω1ω2)&ω1
= V2

Case V1 = 1 and ω2 = 1 for the memory traces approach
For ω2 = 1 this can be simplified as

ω1 = V2 = (βV1 − 1+ β)/2β − 1)V1 OR V2 = 0 OR β = 0.5 & V1 = 1

and when also V1 = 1 it becomes:

ω1 = V2 = (β − 1+ β)/(2β − 1) = 1 OR V2 = 0 OR β = 0.5 & V1 = 1

6 Discussion

In this paper a number of learning models for the induction strength of an emotional
response on a stimulus were analysed and compared. The introduced models on the
one hand describe more specifically how a stimulus generates an emotional response
that is felt, and on the other hand how the induction strength of the experienced
emotional response is adapted over time. For feeling the emotion, a converging
recursive body loop was used, based on elements taken from [1, 2, 6]. One of the
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adaptation models was based on a Hebbian learning rule cf. [7–9, 16]. Another one
was based on temporal discounting, and the third one was based on memory traces.
The models were specified in the hybrid dynamic modelling language LEADSTO,
and simulations were performed in its software environment; cf. [14]. Moreover, a
mathematical analysis was made to determine possible equilibria. In the compari-
son differences in adaptation speed and pattern have been found, and in the maximal
value of the induction strength.
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Modelling Trust Dynamics from a Neurological
Perspective

Mark Hoogendoorn, S. Waqar Jaffry, and Jan Treur

Abstract Trust dynamics is often modelled in relation to experiences and usually
from a cognitive perspective, leaving affective aspects out of consideration. Inspired
by neurological findings that show more and more how in mental processes cogni-
tive and affective aspects are intertwined, in this paper, a model for trust dynamics
is introduced incorporating the relation between trust and feeling. The model makes
use of a Hebbian learning principle and describes how trust depends on experi-
ences viewed as information obtained over time, but also as emotional responses
and feelings.

Keywords Trust dynamics · Hebbian learning · Cognitive and affective

1 Introduction

For a human performing certain task, an important aspect is the trust in various
information sources that can potentially aid in performing the task. For instance, the
person may have experienced in the past that the manual for the task contains a lot of
flaws, whereas it was experienced that a knowledgeable colleague can immediately
aid in an adequate fashion. As a result the trust level for the manual will be much
lower than the trust level for the colleague, and a support system offering the manual
will most likely be ignored. This illustrates two main functional properties of trust
states as cognitive states that are often considered [1]:

(1) A trust state accumulates experiences over time
(2) Trust states are used in decision making by choosing more trusted options above

less trusted options
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In trust research, a variety of computational models have been proposed for
human trust, see e.g. [1–4]. Such models often assume that trust values over time
depend on the experiences of the human with the specific object of trust. In [4]
an additional factor is taken into account, namely how the object of trust performs
relative to its competitors. Most of such models consider experiences and trust as
cognitive concepts and exclude affective factors. This contrasts with how persons in
general experience trust and trust-affecting experiences, which, for example, may
go hand in hand with strong feelings of disappointment or insecurity. Much work
reports interactions between cognitive and affective aspects for a variety of cases
[5–10], without relating this explicitly to neurological findings or theories. In the
current paper, neurological theories on emotion and feeling are adopted as a basis
of inspiration for a computational model for trust dynamics that models such inter-
actions. The computational model, which is inspired by neurological theories on
the embodiement of emotions as described, for example, in [10–14], describes how
trust dynamics relates to experiences with (external) sources, both from a cognitive
and affective perspective. More specifically, in accordance with, for example [13]
and [14], for feeling the emotion associated to a mental state, a converging recur-
sive body loop is assumed. In addition, based on Hebbian learning (cf. [15–17]) for
the strength of the connections to the emotional responses an adaptation process is
introduced, inspired by the Somatic Marker Hypothesis [11, 12]. Compared to more
detailed neural models, the model presented here abstracts from more fine-grained
descriptions of neurons, and, for example, their biochemistry and spiking patterns.
States in the presented model may be viewed as abstract descriptions of states of
neurons or rather of groups of neurons. Such a more abstract representation pro-
vides a less complex and more manageable model, while the assumption is that it
can still show the essential dynamics from a higher level perspective.

In this paper, first in Section 2 Damasio’s theory on the generation of feelings is
briefly introduced. In Sections 3 and 4 the model is described in detail, including the
adaptation based on Hebbian learning. Section 5 presents some simulation results.
In Section 6 it is discussed how functional properties of trust states as cognitive
states were formulated and automatically verified. Finally, Section 7 is a discussion.

2 On the Interaction Between Affective and Cognitive Aspects

Cognitive states of a person, such as sensory or other representations often induce
emotions felt within this person, as described by neurologist Damasio [13] and [14];
for example: “Through either innate design or by learning, we react to most, perhaps
all, objects with emotions, however weak, and subsequent feelings, however fee-
ble.” [14, p. 93]. In some more detail, emotion generation via a body loop roughly
proceeds according to the following causal chain; see [13, 14]:

cognitive state→ preparation for bodily response→ bodily response→
sensing the bodily response→ sensory representation of the bodily response→ feeling

The body loop (or as if body loop) is extended to a recursive body loop (or
recursive as if body loop) by assuming that the preparation of the bodily response
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is also affected by the state of feeling the emotion as an additional causal relation:
feeling → preparation for the bodily response. Such recursiveness is also assumed
by Damasio [14], as he notices that what is felt by sensing is actually a body state
which is an internal object, under control of the person:

The brain has a direct means to respond to the object as feelings unfold because the object
at the origin is inside the body, rather than external to it. (. . .) The object at the origin on the
one hand, and the brain map of that object on the other, can influence each other in a sort of
reverberative process that is not to be found, for example, in the perception of an external
object. [14, p. 91]

Within the model presented in this paper, both the bodily response and the feel-
ing are assigned a level or gradation, expressed by a number. The causal cycle is
modelled as a positive feedback loop, triggered by a mental state and converging to
a certain level of feeling and body state.

Another neurological theory addressing the interaction between cognitive and
affective aspects can be found in Damasio’s Somatic Marker Hypothesis; cf. [11,
12, 14, 18]. This is a theory on decision making which provides a central role to
emotions felt. Within a given context, each represented decision option induces (via
an emotional response) a feeling which is used to mark the option. For example, a
strongly negative somatic marker linked to a particular option occurs as a strongly
negative feeling for that option. Similarly, a positive somatic marker occurs as a
positive feeling for that option. Damasio describes the use of somatic markers in the
following way:

the somatic marker (. . .) forces attention on the negative outcome to which a given action
may lead, and functions as an automated alarm signal which says: beware of danger ahead
if you choose the option which leads to this outcome. The signal may lead you to reject,
immediately, the negative course of action and thus make you choose among other alterna-
tives. (. . .) When a positive somatic marker is juxtaposed instead, it becomes a beacon of
incentive. . . ([11], pp. 173–174)

Somatic markers may be innate, but may also by adaptive, related to experiences:

Somatic markers are thus acquired through experience, under the control of an internal
preference system and under the influence of an external set of circumstances . . . ([11]
p. 179)

In the model introduced below, this adaptive aspect will be modelled as Hebbian
learning; cf. [15–17]. Viewed informally, in the first place it results in a dynami-
cal connection strength obtained as an accumulation of experiences over time (1).
Secondly, in decision making this connection plays a crucial role as it determines the
emotion felt for this option, which is used as a main decision criterion (2). As dis-
cussed in the introduction, these two properties (1) and (2) are considered two main
functional, cognitive properties of a trust state. Therefore they give support to the
assumption that the strength of this connection can be interpreted as a representation
of the trust in the option considered.
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3 Incorporating Affective Aspects in a Trust Model

Informally described theories in scientific disciplines, for example, in biological
or neurological contexts, often are formulated in terms of causal relationships or
in terms of dynamical systems. To adequately formalise such a theory the hybrid
dynamic modelling language LEADSTO has been developed that subsumes qual-
itative and quantitative causal relationships, and dynamical systems; cf. [19]. This
language has been proven successful in a number of contexts, varying from bio-
chemical processes that make up the dynamics of cell behaviour [20] to neurological
and cognitive processes [21–23]. Within LEADSTO a temporal relation a → b
denotes that when a state property a occurs, then after a certain time delay (which for
each relation instance can be specified as any positive real number), state property
b will occur. In LEADSTO both logical and numerical calculations can be specified
in an integrated manner; a dedicated software environment is available to support
specification and simulation.

An overview of the model for how trust dynamics emerges from the experiences
is depicted in Fig. 1. How decisions are made, given these trust states is depicted
in Fig. 2. These pictures also show representations from the detailed specifications
explained below. However, note that the precise numerical relations between the
indicated variables V shown are not expressed in this picture, but in the detailed
specifications of properties below, which are labeled by LP1 to LP11 as also shown
in the pictures. The detailed specification (both informally and formally) of the
model is presented below. Here capitals are used for (assumed universally quan-
tified) variables. First the part is presented that describes the basic mechanisms
to generate a belief state and the associated feeling. The first dynamic property
addresses how properties of the world state can be sensed.
LP1 Sensing a world state
If world state property W occurs of strength V
then a sensor state for W of strength V will occur.
world_state(W, V) → sensor_state(W, V)

Note that this generic dynamic property is used for a specific world state, for
experiences with the different options and for body states; to this end the vari-
able W is instantiated respectively by w, exp1 and exp2, b1 and b2. From the
sensor states, sensory representations are generated according to the dynamic prop-
erty LP2. Note that also here for the example the variable P is instantiated as
indicated.
LP2 Generating a sensory representation for a sensed world or body state
If a sensor state for world state or body state property P with level V occurs,
then a sensory representation for P with level V will occur.
sensor_state(P, V) → srs(P, V)

For a given world state representations for a number of options are activated:
LP3 Generating an option for a sensory representation of a world state
If a sensory representation for w with level V occurs
then a representation for optinon o with level V will occur
srs(w, V) → rep(o, V)
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sensor_state(exp1, V)

Fig. 1 Overview of the model for trust dynamics

Dynamic property LP4 describes the emotional response to the person’s mental
state in the form of the preparation for a specific bodily reaction. Here the men-
tal state comprises a number of cognitive and affective aspects: options activated,
experienced results of options and feelings. This specifies part of the loop between
feeling and body state. This property uses a combination model based on a function
g(β1, β2, V1, V2, ω1, ω2, ω3) including a threshold function. For example,

g(β1, β2, V1, V2, V3, ω1, ω2, ω3) = th(β1, β2, ω1V1 + ω2V2 + ω3V3)

with V1, V2, V3 activation levels and ω1, ω2, ω3 weights of the connections, and
threshold function th(β1, β2, V) = 1/(1 + e−β2(V−β1)) with threshold β1 and
steepness β2.
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preparation_
state(b2,V)

LP11

LP11

Fig. 2 Overview of the model for trust-based decision making

LP4a From option activation and experience to preparation of a body state (non-competitive
case)
If option o with level V1 occurs

and feeling the associated body state b has level V2
and an experience for o occurs with level V3
and the preparation state for b has level V4

then a preparation state for body state b will occur with level V4 + γ (g(β1, β2, V1, V2,
V3, ω1, ω2, ω3)− V4) 	t

rep(o, V1) & feeling(b, V2) & srs(exp, V3) & preparation_state(b, V4)

→ preparation_state(b, V4 + γ (g(β1, β2, V1, V2, V3, ω1, ω2, ω3)− V4)	t)

For the competitive case also the inhibiting cross connections from one repre-
sented option to the body state induced by another represented option are used. A
function involving these cross connections was defined, for example

h(β1, β2, V1, V2, V3, V21, ω1, ω2, ω3, ω21) = th(β1, β2, ω1V1 + ω2V2 + ω3V3
−ω21V21)

for two considered options, with ω21 the weight of the suppressing connection from
represented option 2 to the preparation state induced by option 1.

LP4b From option activation and experience to preparation of a body state (competitive case)
If option o1 with level V1 occurs

and option o2 with level V21 occurs
and feeling the associated body state b1 has level V2
and an experience for o1 occurs with level V3
and the preparation state for b1 has level V4

then a preparation state for body state b1 will occur with
level V4 + γ (h(β1, β2, V1, V2, V3, V21, ω1, ω2, ω3, ω21)− V4)	t.

rep(o1, V1) & rep(o2, V21) & feeling(b1, V2) & srs(exp1, V3) &

preparation_state(b1, V4)

→ preparation_state(b1, V4 + y(h(β1, β2, V1, V2, V3, V21,ω1, ω2, ω3, ω21
)− V4)	t)

Dynamic properties LP5, LP6, and LP7 together with LP2 describe the body
loop.
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LP5 From preparation to effector state for body modification
If preparation state for body state B occurs with level V,
then the effector state for body state B with level V will occur.

preparation_state(B, V) → effector_state(B, V)
LP6 From effector state to modified body state
If the effector state for body state B with level V occurs,
then the body state B with level V will occur.

effector_state(B, V) → body_state(B, V)
LP7 Sensing a body state
If body state B with level V occurs,
then this body state B with level V will be sensed.

body_state(B, V) → sensor_state(B, V)
LP8 From sensory representation of body state to feeling
If a sensory representation for body state B with level V occurs,
then B is felt with level V.

srs(B, V) → feeling(B, V)

Alternatively, dynamic properties LP5 to LP7 can also be replaced by one
dynamic property LP9 describing an as if body loop as follows.

LP9 From preparation to sensed body state
If preparation state for body state B occurs with level V,
then the effector state for body state B with level V will occur.
preparation_state(B, V) → srs(B, V)

For the decision process on which option Oi to choose, represented by action
Ai, a winner-takes-it-all model is used based on the feeling levels associated to the
options; for an overview, see Fig. 2. This has been realised by combining the option
representations Oi with their related emotional responses Bi in such a way that for
each i the level of the emotional response Bi has a strongly positive effect on prepa-
ration of the action Ai related to option Oi itself, but a strongly suppressing effect on
the preparations for actions Aj related to the other options Oj for j �= i. As before,
this is described by a function

h(β1, β2, V1, . . . , Vm, U1, . . . , Um, ω11, . . . , ωmm)

with Vi levels for representations of options Oi and Ui levels of preparation states
for body state Bi related to options Oi and ωij the strength of the connection between
preparation states for body state Bi and preparation states for action Aj.

LP10 Decisions based on felt emotions induced by the options
If options Oi with levels Vi occur,

and preparation states for body state Bi related to options Oi occur with level Ui,
and the preparation state for action Ai for option Oi has level Wi

then the preparation state for action Ai for option Oi will occur
with level Wi + γ (h(β1, β2, V1, . . . , Vm, U1, . . . , Um,ω11, .. ωm)−Wi) 	t
rep(O1, V1) & . . . & rep(Om, Vm) &

preparation_state(B1, U1) & . . . & preparation_state(Bm, Um) &

preparation_state(Ai, Wi)

→ preparation_state(Ai, Wi + γ (h(β1, β2, V1, . . . , Vm, U1, . . . , Um,ω11, .. ωmm)−Wi) 	t)
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LP11 From preparation to effector state for an action
If preparation state for action A occurs with level V,
then the effector state for action A with level V will occur.
preparation_state(A, V) → effector_state(A, V)

4 The Hebbian Adaptation Process

From a neurological perspective the strength of a connection from an option to an
emotional response may depend on how experiences are felt emotionally, as neurons
involved in the option, the preparation for the body state, and in the associated feel-
ing will often be activated simultaneously. Therefore such a connection from option
to emotional response may be strengthened based on a general Hebbian learning
mechanism [15–17] that states that connections between neurons that are activated
simultaneously are strengthened, similar to what has been proposed for the emer-
gence of mirror neurons; e.g. [24, 25]. This principle is applied to the strength ω1
of the connection from option 1 to the emotional response expressed by body state
b1. The following learning rule takes into account a maximal connection strength 1,
a learning rate η, and an extinction rate ζ .

LP12 Hebbian learning rule for the connection from option to preparation
If the connection from option o1 to preparation of b1 has strength ω1

and the option o1 has strength V1
and the preparation of b1 has strength V2
and the learning rate from option o1 to preparation of b1 is η
and the extinction rate from option o1 to preparation of b1 is ζ

then after 	t the connection from option o1 to preparation state b1 will have
strength ω1 + (ηV1V2(1− ω1)− ζω1) 	t.

has_connection_strength(rep(o1), preparation(b1), ω1) & rep(o1, V1) &

preparation(b1, V2) &

has_learning_rate(rep(o1), preparation(b1), η) & has_extinction_rate(rep(o1),

preparation(b1), ζ)

→ has_connection_strength(rep(o1), preparation(b1), (b1), ω1+(ηV1V2(1−ω1)−ζω1)	t)

By this rule through their affective aspects, the experiences are accumulated in
the connection strength from option o1 to preparation of body state b1, and thus
serves as a representation of trust in this option o1. A similar Hebbian learning rule
can be found in ([17] p. 406).

5 Example Simulation Results

The model described in Section 3 has been used to generate a number of simulation
experiments for non-competitive and competitive cases (see Fig. 3 for some example
results). To ease the comparison between these cases the same model parameter val-
ues were used for these examples (see Table 1). In Fig. 3a example simulation results
are shown for the non-competitive case. Here the subject is exposed to an informa-
tion source that provides experience values 0 respectively 1 alternating periodically
in a period of 200 time steps each. In this figure it can be observed that change in
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Fig. 3 Simulation results: experience, connection representing trust, and action effector state for
a non-competitive case in (a) and a competitive case in (b), (c) and (d) respectively

Table 1 Parameter values used in the example simulations

Parameter Value Meaning

β1 0.95 Threshold value for preparation state and action effector state
β2 10, 100 Steepness value for preparation state, action effector state
γ 0.90 Activation change rate
η 0.80 Learning rate of connection from option representation to

preparation
ζ 0.10 Extinction rate of connection from option representation to

preparation
�t 0.90 Time step
ωs, ωa 0.50 Suppressing weight from option representation to preparation

state and from preparation state to the action state
(competitive case)

experience leads to changes in the connection strengths (representing trust) as well
as the action effector states. Furthermore, the decrease in the connection strengths
representing trust due to a bad experience (0) takes longer than the increase due to
a good experience (1), which can be explained by the higher value of the learning
rate than of the extinction rate.

In Figs. 3b–d, the simulation results are shown for the competitive case with
two competitive options having suppression weight 0.5 from option representation
to preparation state and from preparation state to the action state. In this case the
subject is exposed to two information sources that provides experience values 0
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respectively 1 alternating periodically in a period of 200 time steps each, in a reverse
cycle with respect to each other (see Fig. 3b). Here change in experience changes
the connections representing trust as well as the action effector states. Moreover,
in comparison to the non-competitive case, the learning is slow while decay is fast,
which is due to the presence of competition. Finally Fig. 3 shows that the connection
strengths in the presented model exhibit the two fundamental functional properties
of trust discussed in Section 1, namely that trust is based on accumulation of expe-
riences over time (see Fig. 3c) and that trust states are used in decision making by
choosing more trusted options above less trusted ones (see Fig. 3d).

6 Verification of Functional Properties of Trust

The two functional properties of trust states formulated in the introduction are:
(1) A trust state accumulates experiences over time, and (2) Trust states are
used in decision making by choosing more trusted above less trusted options.
These properties characterise trust states from a functional, cognitive perspective.
Therefore any model or computational or physical realisation claimed to describe
trust dynamics has to (at least) satisfy these properties. Such properties can be
formalized in a temporal logical language, and can be automatically verified for
the traces that have been generated using the proposed model. In this section this
verification of properties is discussed. First, the language used to verify these prop-
erties is explained. Thereafter the properties and the results of the verification are
discussed.

The verification of properties has been performed using a language called TTL
(Temporal Trace Language), that features a dedicated editor and an automated
checker; cf. [26]. This predicate logical temporal language supports formal specifi-
cation and analysis of dynamic properties, covering both qualitative and quantitative
aspects. TTL is built on atoms referring to states of the world, time points and traces,
i.e. trajectories of states over time. In addition, dynamic properties are temporal
statements that can be formulated with respect to traces based on the state ontology
Ont in the following manner. Given a trace γ over state ontology Ont, the state in γ

at time point t is denoted by state(γ, t). These states can be related to state properties
via the infix predicate |=, where state(γ, t) |= p denotes that state property p holds
in trace γ at time t. Based on these statements, dynamic properties can be formulated
using quantifiers over time and traces and the usual first-order logical connectives
such as ¬, ∧, ∨,⇒, ∀, ∃. For more details, see [26].

In order to be able to automatically verify the properties upon the simulation
traces, they have been formalised. From the computational verification process it
was found that indeed they are satisfied by the simulation traces of the model
for which they were verified. The first functional property (1), specifying that a
trust state accumulates experiences over time, is split up into a number of prop-
erties. First, two properties are specified which express trust accumulation for the
non-competitive case, whereby the connections for the respective trustees are not
influenced by experiences with competitors.
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P1.1 Connection strength increases with more positive experience (non-competitive case)
If a sensor state indicates a particular value V1 of an experience E, and E is an experience for
trustee T, and the current strength of the connection for trustee T is V2, and V1 is higher than V2,
then the connection strength will remain the same or increase.

∀γ:TRACE, t:TIME, E:EXPERIENCE, T:TRUSTEE, V1,V2,V3:VALUE

[ state(γ, t) |= sensor_state(E, V1) & state(γ, t) |= connection(T, V2) &

state(γ, t) |= matches(E, T) & V1 > V2

⇒ ∃V3:VALUE [ state(γ, t+1) |= connection(T, V3) & V3 ≥ V2 ] ]

P1.2 Connection strength decreases with more negative experience (non-competitive case)
If a sensor state indicates a particular value V1 of an experience E, and E is an experience for
trustee T, and the current strength of the connection for trustee T is V2, and V1 is lower than V2,
then the connection strength will remain the same or decrease.

∀γ:TRACE, t:TIME, E:EXPERIENCE, T:TRUSTEE, V1,V2,V3:VALUE

[ state(γ, t) |= sensor_state(E, V1) & state(γ, t) |= connection(T, V2) &

state(γ, t) |= matches(E, T) & V1 < V2

⇒ ∃V3:VALUE [ state(γ, t+1) |= connection(T, V3) & V3 ≤ V2 ] ]

Besides the non-competitive case, also properties have been specified for the
competitive case. Hereby, the experiences with other competitive information
sources are also taken into account.

P2.1 Connection strength increases with more positive experience (competitive case)
If a sensor state indicates a particular value V1 of an experience E, and E is an experience for
trustee T, and the current strength of the connection for trustee T is V2, and V1 is higher than V2,
and all other experiences are lower compared to V1, then the connection strength will remain the
same or increase.

∀γ:TRACE, t:TIME, E:EXPERIENCE, T:TRUSTEE, V1,V2,V3:VALUE

[ state(γ, t) |= sensor_state(E, V1) &

∀E’ �= E [ ∃V’:VALUE state(γ, t) |= sensor_state(E’, V’) & V’ < V1 ] &

state(γ, t) |= connection(T, V2) & state(γ, t) |= matches(E, T) & V1 > V2

⇒ ∃V3:VALUE [ state(γ, t+1) |= connection(T, V3) & V3 ≥ V2 ] ]

P2.2 Connection strength decreases with more negative experience (competitive case)
If a sensor state indicates a particular value V1 of an experience E, and E is an experience for
trustee T, and the current strength of the connection for trustee T is V2, and V1 is lower than V2,
and all other experiences are higher compared to V1, then the connection strength will remain the
same or decrease.

∀γ:TRACE, t:TIME, E:EXPERIENCE, T:TRUSTEE, V1,V2,V3:VALUE

[ state(γ, t) |= sensor_state(E, V1) &

∀E’ �= E [ ∃V’:VALUE state(γ, t) |= sensor_state(E’, V’) & V’ >V1 ] &

state(γ, t) |= connection(T, V2) & state(γ, t) |= matches(E, T) & V1 < V2

⇒ ∃V3:VALUE [ state(γ, t+1) |= connection(T, V3) & V3 ≤ V2 ] ]

Finally, property P3 is specified which compares different traces, as shown below.

P3.1 Higher experiences lead to higher connection strengths (non-competitive case)
If within one trace the experiences for a trustee are always higher compared to the experiences for
a trustee in another trace, then in that trace the connection strengths will always be higher.

∀γ1, γ2:TRACE, E:EXPERIENCE, T:TRUSTEE

[γ1 �= γ2 & state(γ1, 0) |= matches(E, T) &

∀t:TIME [ ∃V1, V2:VALUE [ state(γ1, t) |= sensor_state(E, V1) &

state(γ2, t) |= sensor_state(E, V2) & V1>V2 ] ]
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⇒ ∀t:TIME [ ∃V1, V2:VALUE [ state(γ1, t) |= connection(T, V1) &

state(γ2, t) |= connection(T, V2) & V1>V2 ] ] ]

P3.2 Higher experiences lead to higher connection strengths (competitive case)
If within one trace the experiences for a trustee are always higher compared to the experiences for
a trustee in another trace, and there are no other experiences with a higher value at that time point,
then in that trace the connection strengths will always be higher.

∀γ1, γ2:TRACE, E:EXPERIENCE, T:TRUSTEE

[γ1 �= γ2 & state(γ1, 0) |= matches(E, T) &

∀t:TIME [ ∃V1, V2:VALUE [ state(γ1, t) |= sensor_state(E, V1) &

∀E’ �= E [ ∃V’:VALUE state(γ1, t) |= sensor_state(E’, V’) & V’ ≤ V1 ] &

state(γ2, t) |= sensor_state(E, V2) &

∀E’’ �= E [ ∃V’’:VALUE state(γ2, t) |= sensor_state(E’’, V’’) & V’’ ≤ V2 ]

& V1>V2 ] ]

⇒ ∀t:TIME [ ∃V1, V2:VALUE [ state(γ1, t) |= connection(T, V1) &

state(γ2, t) |= connection(T, V2) & V1 > V2 ] ] ]

The formalization of the second functional property (2), i.e., trust states are used
in decision making by choosing more trusted options above less trusted options, is
expressed as follows.

P4 The trustee with the strongest connection is selected
If for trustee T the connection strength is the highest, then this trustee will be selected.

∀γ:TRACE, t1:TIME, T:TRUSTEE, V1:VALUE

[[ state(γ, t1) |= connection(T, V1) & state(γ, t1) |= sensor_state(w, 1) &

∀T’, V’ [ [ T’ �= T & state(γ, t1) |= connection(T’, V’) ] ⇒ V’ < V1 ] ]

⇒ ∃t2:TIME < t1 + 10 [ state(γ, t2) |= effector_state(T) ]

Note that in the property, the effector state merely has one argument, namely the
trustee with the highest effector state value.

7 Discussion

In this paper a computational model for trust dynamics was introduced incorpo-
rating the reciprocal interaction between cognitive and affective aspects based on
neurological theories that address the role of emotions and feelings. The introduced
model describes more specifically how considered options and experiences generate
an emotional response that is felt. For feeling the emotion, based on elements taken
from [13, 14, 23], a converging recursive body loop is included in the model. An
adaptation process based on Hebbian learning [15–17], was incorporated, inspired
by the Somatic Marker Hypothesis described in [11, 12, 18], and as also has been
proposed for the functioning of mirror neurons; e.g. [24, 25]. The model was spec-
ified in the hybrid dynamic modelling language LEADSTO, and simulations were
performed in its software environment; cf. [19].

It has been shown that within the model the strength of the connection between a
considered option and the emotional response induced by it, satisfies two properties
that are considered as two central functional properties of a trust state as a cognitive
state [1]: (1) it accumulates experiences, and (2) it is a crucial factor used in deciding
for the option. This provides support for the assumption that the strength of this
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connection can be interpreted as a representation of the trust level in the considered
option.

Models of neural processes can be specified at different levels of abstraction. The
model presented here can be viewed as a model at a higher abstraction level, com-
pared to more detailed models that take into account more fine-grained descriptions
of neurons and their biochemical and/or spiking patterns. States in the presented
model can be viewed as abstract descriptions of states of neurons or as representing
states of groups of neurons. An advantage of a more abstract representation is that
such a model is less complex and therefore may be less difficult to handle, while it
still shows the essential dynamics. An interesting issue for further research is how
such a more abstract model can be related to more detailed models, and in how
far patterns observed in more specific models also are represented in such a more
abstract model.
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Novel Bionic Model for Pattern Recognition

Eduardo González, Yusely Ruiz, and Guang Li

Abstract In this paper, a novel bionic model and it performance to pattern recog-
nition is researched. The model consists of a bulb model and a 3-layered cortical
model; mimicking the main features of the olfactory system. The bulb and cortical
models are connected by feed forward and feedback fibers with distributed delays.
The Iris dataset from UCI repository contains 3 classes of 50 instances each, where
each class refers to a type of iris plant was classified. The performance of the novel
model was compared with previously published methods.

Keywords Olfactory system · Bionic model · Pattern recognition

1 Introduction

The olfactory system is a relatively simple and well known sensory system that pro-
vides an interesting tool for understanding the process of recognition, classification,
learning and recall [1, 2]. Mammalian odor information is treated by olfactory cir-
cuits developed during millions of years. It could be divided in three main parts:
the olfactory epithelium, the olfactory bulb and the olfactory cortex. The odorous
molecules are detected by the odor receptors in the epithelium and transduced into
neural activation that is sent to the bulb and from there to the olfactory cortex. In this
paper, a mathematical bionic model is shown and its capacity to recognize patterns
from a multiclass dataset is studied. The Iris dataset from UCI repository, widely
used by other researchers, was selected to carry on the experiments. In the next sec-
tions a description of the model and the classification results for the Iris dataset are
shown.
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2 Model Description

On one hand, for comparisons between experiments and theory of the olfactory sys-
tem, it is always essential to model with realism. On the other hand, to carry out
the mathematical analysis and simulation necessary to understand collective and
statistical properties, it is required to disregard unnecessary details. Our model orga-
nization is a tradeoff between these two considerations. The full model is constituted
by a bulbar model which emulate the excitatory mitral and inhibitory granule cells,
and of a 3-layered cortical model, which mimics the structure and behavior of the
piriform cortex. In our bionic model the feedforward and feedback channel numbers
between bulb model and cortical model are equal.

2.1 Network Dynamics

The olfactory bulb can be viewed as the first central olfactory relay station extracting
specific stimulus features [3]. In this work, the olfactory bulb was modeled using a
simple approximation of excitatory mitral and inhibitory granule cells. The dynam-
ics of each neural ensemble is described using a second order differential equation,
based on physiological experiments of the olfactory system [2]:

For mitral and granule layers:

dmt

dt
= −ami +

∑
N
j=1HoijQj

[
gj(t − δij)

]+
∑

N
j=1MoijQj

[
mj(t − δij)

]+ Iei(t)+ r

(1)

dgi

dt
= −bgi +

∑
N
j=1WoijQj

[
mj(t − δij)

]+ clci(t)+ r (2)

and:

Qj(x) = S′x
[
tanh

(
x−Th

S′x

)]
, if x ≤ Th then S′x = 10Sx

Qj(x) = S′x
[
tanh

(
x−Th

S′x

)]
, if x > Th then S′x = 7Sx

(3)

where a, b and c represent rate constants. The external input to the mitral layer
is symbolized by Ie and Ic represent the cortical feedback input to granule layer.
mi(t) and gj(t) symbolize the dynamic state of the ith and jth neural ensemble in
the mitral and granule layer, respectively. The positive, negative or zero value of
the connection strength, Moij, Hoij, and Woij, represents connection weights into
mitral layer and between mitral and granule layers from neural population j to i;
therefore, these matrix values define the system topology. Q(x) is the asymmetric
sigmoidal input/output transformation function used for mitral and granule cells,
which was derived from the Hodgkin-Huxley equations and Sx represents the max-
imum asymptote of the sigmoid function [4]. δ correspond to the specific axonal
transmission delay and r represent the noise or spontaneous neural activity.
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In the cortical model, based on the 3-layered structure [5], all connections were
modeled with distance dependent time delays for signal propagation, corresponding
to the geometry and fiber characteristics of the real cortex. The dynamics of a net-
work unit is denoted by the mean membrane potential, u, and is given by a set of
coupled nonlinear first-order differential delay equations:

dui

dt
= −ui

τi
+
∑

N
j=1wijgj[uj(t − δij)]+ Ii(t)+ r (4)

where τ characterizes the spontaneous decay, wij is the connection weight and δ
correspond to the specific axonal transmission delay. The external input to the upper
and middle cortical layer from mitral layer is represented by I and r is noise or neural
spontaneous activity. The input-output relationship of a neuron populations in the
piriform cortex, gj(uj), is a continuous sigmoid function, determined by recording
evoked potentials, and essentially similar shape to Eq. (3) for the bulb model:

gj = CQi

{
1− exp

[− exp(uj)− 1

Qi

]}
(5)

where Qi is the gain parameter and C is a normalization constant.

2.2 Network Learning

For our bionic model, two learning processes are used: Hebbian associative learning
and habituation. Hebbian learning under reinforcement set up the memory basins
and attractors, while habituation reduces the impact of environment noise. The
learning processes are applied in our model to the bulb model and to cortical model.

By the input of the features of each class, the model is trained to discriminate
between different classes of patterns. During the training stage the model output,
taken from the cortical middle layer energy, determine a cluster for each class and it
gravity center. When a test pattern is given, the Euclidian distance from the model
output to each gravity center is calculated and the minimum distance determines the
cluster to which the pattern belongs.

3 Results

In order to demonstrate the pattern classification performance of the bionic model,
the Iris dataset, available from the UCI Machine Learning Data Repository [6], was
selected. The data set contains 3 classes of 50 instances each, where each class refers
to a type of iris plant (Iris Setosa, Iris Versicolour and Iris Virginica). The main rea-
son for choosing this specific dataset is that it is available for public download and
it has been studied by other researchers making the results comfortably comparable.
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Table 1 Summary of the best classifications for Iris dataset

Methods Correct classification (%)

Wu and Chen’s method [7] 96.210
Castro’s method [8] 96.600
Hsu and Lin’s method [9] 97.333
Brunzell and Eriksson’s method [10] 98.000
Bionic model 98.088

In order to find the optimal number of feedforward channels arriving with signal
information from the bulb to the cortex, the number of channels was varied from a
minimum of 2.5% of the cortical surface to a maximum of 100% of cortical area.
Furthermore, the channels were placed equidistantly into the cortical layers and each
configuration was tested fifteen times. The best classification rate was used as indi-
cator of the optimal channel number (88 channels in our computer simulation). The
results achieved by our bionic model are compared with previous reported methods
which also used the Iris dataset during the validation processes (Table 1).

4 Conclusions

In this work, a novel model mimicking the main features of the olfactory system
has been presented. Also the improved performance of the model on the Iris dataset
classification, with respect to the results obtained by other researcher’s methods dur-
ing the last decade, was demonstrated. The high classification rate gathered after the
computational simulation showed the capacity of our bionic model to learn and clas-
sify patterns. Our conclusion is therefore that our bionic model can achieves good
results as a pattern classifier on the basis of the structure of mammalian olfactory
system.
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Local Self-Adaptation Mechanisms
for Large-Scale Neural System Building

M. Garcia Ortiz and A. Gepperth

Abstract For integrating neural networks into large systems, dynamical stability
and parameter settings are key issues, especially for popular recurrent network mod-
els such as dynamic neural fields. In neural circuits, homeostatic plasticity seems
to counter these problems. Here we present a set of gradient adaptation rules that
autonomously regulate the strength of synaptic input and the parameters of the trans-
fer function for each neuron individually. By doing this, we actively maintain the
average membrane potentials and firing rates as well as the variances of the firing
rate at specified levels. A focus of this contribution lies on clarifying at which time
scales these mechanisms should work. The benefit of such self-adaptation is a sig-
nificant reduction of free parameters as well as the possibility to connect a neural
field to almost arbitrary inputs since dynamical stability is actively maintained. We
consider these two properties to be crucial since they will facilitate the construction
of large neural systems significantly.

Keywords Neural fields · Self-adaptation · Dynamic stability

1 Introduction

It is well known that even single neurons are complex, nonlinear dynamical sys-
tems (see, e.g. [1]). Furthermore, neurons are massively interconnected with other
neurons by (possibly recurrent) synaptic connections, with their own nonlinear
behavior. To maintain dynamical stability under such circumstances, there exist
a multitude of activity control mechanisms [2, 1, 3], which autonomously adapt
the processing parameters of each neuron according to local rules. These mecha-
nisms are collectively denoted as “homeostatic plasticity”. Popular neuron models
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are facing similar stability problems, especially when researchers construct large-
scale neural systems [4–7]. In addition, most neuron models contain a multitude of
free parameters which cannot always be related to experimental findings.

For both reasons and based on our previous experiences with large-scale neural
systems [4], this contribution focuses on local activity control mechanisms for a
well-known network model, the dynamic neural field model [8–10]. As a first step,
we show how the membrane potentials (related to synaptic scaling [3]) and the firing
rates (related to intrinsic plasticity [11, 12]) can be autonomously regulated in face
of variable afferent input, thereby maintaining the temporal mean and variance of
individual membrane potentials or firing rates at specified target values. Due to the
nonlinear dynamic character of the neural field model, it is important to determine
time scales such as to minimize interference between adaptation mechanisms.

Several mechanisms of homeostatic plasticity have been previously modeled:
on the one hand, intrinsic plasticity, the adaptation of the intrinsic excitability of
a neuron’s membrane, has been modeled as an adaptation of neural transfer func-
tions in [13, 14] and applied to a number of problems such as reservoir computing
[15] or self-organization of sensory representations [16]. On the other hand, authors
have modeled synaptic scaling [17], the activity-dependent modification of synaptic
strengths [2].

Overall, our work differs from related work in two respects. Firstly, in addition to
modeling synaptic scaling and intrinsic plasticity, we demonstrate the operation of
these mechanisms concurrently with each other and secondly, we present a strategy
of decoupled time scales to prevent interference.

More precisely, the main difference between our work and [13, 16, 14] is the use
of recurrent neural networks with a dynamic state instead of input–output encoding
neurons. Not needing to address stability problems, these articles strongly focus on
achieving a certain output distribution for each neuron. In contrast, we emphasize
the reduction in the number of free parameters as well as the dynamic stability. In
this respect, our work is related to [17] which also employs the dynamic neural field
model, although the focus of our work is on the effects of activity control rather than
on self-organization processes.

2 Dynamic Neural Fields

The dynamic neural field model [8] has been proposed to describe pattern forma-
tion in the visual cortex. Essentially, dynamic neural fields are a class of recurrent
neural network models that have been extensively used for modeling cognitive phe-
nomena like decision making [10], motor planning [9], spatial cognition [18], eye
movement preparation [19, 20] and object recognition [21, 22]. Basic elements are
simple dynamic-state neurons, a fixed lateral connectivity, and a (usually sigmoid)
nonlinearity.

In the neural field model described in [8], natural candidates for self-adaptation
are the strengths of afferent inputs and the transfer function parameters, which need
to be made position and time dependent for this purpose. We thus formulate a gen-
eralized version of the original model suitable for local adaptation mechanisms:
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τ u̇(x, t) =− u(x, t)+ α(x, t)S(x, t)

+ β
∫

w(x− x′)′f [u(x′, t)]dx′ + γ σ (x, t)+ h

where f [u(x, t)] = 1

1+ exp(−2(u(x,t)−θ(x,t))
ν(x,t) )

(1)

Here, the quantity u(x, t) represents the membrane potential of the field at time t and
position x, S(x, t) the afferent input, w(x − x′) the fixed lateral interaction kernel,
f [u] the nonlinearity or transfer function, and σ (x, t) the noise. τ determines the time
scale of field evolution, and h is the resting potential, i.e., the equilibrium potential
in case of no input. We choose a sigmoid transfer function, parameterized for each
neuron by a threshold and a gain value θ (x, t), ν(x, t). In addition to the original
model equation [8], we introduce time and position dependent coefficients α(x, t),
θ (x, t), ν(x, t), as well as the coefficients β, γ which will not be subject to adaption
for now. The coefficients α(x, t),β and γ respectively determine the contribution of
the afferent input, the lateral recurrent interactions and the noise. The interaction
kernel w(x − x′) is usually chosen to be symmetric: w(x − x′) = a0Gμ=0,σon (x −
x′)−b0Gμ=0,σoff (x−x′)−c0, where Gμ=0,σ (x) denotes a Gaussian with mean μ and
standard deviation σ , and σon < σoff. The constants a0, b0, c0 are chosen suitably
to achieve the desired level of local excitation/inhibition (a0, b0) as well as global
inhibition (c0).

3 Experimental Setup

The configuration used for simulation experiments consists of a single neural
field discretized to 128x128 neurons. Constant parameters are chosen to τ = 12,
a0 = 0.3, b0 = 1.5, σon = 10, σoff = 20,β = 1, γ = 0, h = −0.15. Input patterns
stay constant for one pattern cycle consisting of 800 iteration steps. For clearing
activity from previous pattern cycles, a value of h = −20.0 is used in the first 150
steps of a pattern cycle. Afferent input S(x, t) is additively composed of uniform
noise with amplitudes between 0.14 and 0.16 and Gaussians (random peak values
between 0.5 and 0.7, random variances between 4.0 and 6.0) that appear, at the start
of each pattern cycle, at random positions in two distinct 30x30 areas (see Fig. 1).

Fig. 1 Left: Example input stimulus. Middle,right: Temporal mean and variance of membrane
potentials u(x, t) resulting from input stimuli, without adaptation
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One area always contains two Gaussians whereas an other area contains only one.
Thus, we can distinguish three activity levels in the afferent input. Using fixed values
of α(x, t) = 1.0, ν(x, t) = 0.3 and θ (x, t) = 0.5, the mean and variance distribution
resulting from this input can be seen in Fig. 1.

4 Dynamic Adaptation of Membrane Potential

In order to regulate the temporal mean value of the membrane potential ūλ(x, t) to a
target value ūtarget, we use a gradient adaptation rule for the input strength α(x, t) of
each neuron:

α(x, t + 1) = α(x, t)− εα(ūλ(x, t)− ū target). (2)

ūλ(x, t + 1) = (1− λ)ūλ(x, t)+ λu(x, t). (3)

Here, λ and εα denote the timescales at which mean calculation and adaptation take
place. Importantly, λ and εα have to be properly chosen. If the adaptation is too
fast, i.e. εα is too large, it has an immediate effect on the field potential, but α(x, t)
will vary constantly and not stabilize. If the adaptation is slow, α(x, t) will converge
slowly without oscillating. An aim of this section is to find a suitable combination
(εα ,λ) that guarantees stable convergence of α(x, t).

4.1 Experiments and Results

Considering the distribution of the mean potential without adaptation (Fig. 1), we
set the target mean potential ūtarget to 0.1 and study the convergence of the mean
potential depending on εα and on λ.

The results in Fig. 2 show that we can successfully adapt the mean potential
using the gradient adaptation rule. If the adaptation is on a faster time scale than the
mean calculation, the input strength will oscillate, as can be observed in Fig. 2d with
λ=0.0001. Therefore, a general rule for input strength adaptation is to set different
time scales satisfying λ( εα .

5 Dynamic Adaptation of Firing Rates

This section describes how to adapt the parameters θ (x, t) and ν(x, t) of the transfer
function in order to control the mean and the standard deviation �ρf (x, t) of each
neuron’s firing rate. Mathematically, we can express a running estimate on time
scale ρ of the firing rate’s mean and standard deviation as:

f̄ ρ(x, t + 1) = (1− ρ)f̄ ρ(x, t)+ ρf (x, t) (4)



Local Self-Adaptation Mechanisms 547

(b) Average convergence of ūλ(x, t)(a) ūλ(x,t) ( α=0.0005, λ=0.01)uλ( ) ( α=0.0005, λ=0.01)

(c) α depending on α (λ=1) (d) α depending on λ ( α=0.0005)

Fig. 2 Mean potential adaptation. (a) shows the convergence of the mean potential ūλ(x, t).
(b) shows the average convergence of ūλ(x, t) for a set of 10 experiments, with the same parameters
as in (a). Fig. (c) and (d) show the convergence of α(x, t) depending on εα and λ, in region with 2
gaussian inputs

�
ρ
f (x, t + 1) = (1− ρ)�ρf (x, t)+ ρ

√
(f [u(x, t)]− f̄ ρ(x, t))2 (5)

For the dynamic firing rate adaptation, we adapt the threshold θ (x, t) to the mean
value of the potential:

θ (x, t + 1) = θ (x, t)− εθ (θ (x, t)− ūλ(x, t)) (6)

By doing so, we center the transfer function on the mean value of the potential dis-
tribution. This is essential if we want to adapt the gain efficiently. Next, as illustrated
in Fig. 3, we adjust the gain in order to adapt �ρf (x, t):

ν(x, t + 1) = ν(x, t)− εν(�ρf (x, t)−�target) (7)
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Fig. 3 Mechanisms of gain adaptation. Red solid curves indicate the distribution of membrane
potential values, blue solid and dashed curves indicate the current and the optimal transfer func-
tion. As the gain is inversely proportial to the slope of the sigmoid function, increasing (left) or
decreasing (right) the gain will both decrease or increase the firing rate variance and adapt the
transfer function (blue arrows) so that it maps most potential values linearly (Colors will be viewed
in online version)

5.1 Experiments and Results

For simulations, we use the following values: �target = 0.015, ρ = 0.01, εθ =
0.0001 and εν = 0.00001. As one can see in Fig. 4b, the transfer function adap-
tation is efficient for areas with strong input (2 gaussian inputs). However, for the
case of a region with a weak input (only noise), the activity may die out due to
lateral interactions (see Fig. 4a) . This can be avoided by combining the firing rate
adaptation with the mean potential adaptation (see Section 6)

6 Combination of Dynamic Adaptation Methods

In this section, it will be described how the self-adaptation of the potentials and the
firing rates is performed simultaneously. In order to avoid interferences, attention
must be given to the time scales of the adaptation mechanisms ρ and λ, and to the
adaptation constants εα , εν and εθ .

We require that all statistical quantities should operate on a similar time scale
(λ ≈ ρ), and that adaptation mechanisms should be significantly slower. Threshold
adaptation is coupled to input strength adaptation, then εα ≈ εθ . Gain adaptation
depends critically on centering of the threshold, therefore εν < εθ :

1/τ > 1/800 > λ ≈ ρ > εα ≈ εθ > εν (8)

Using target values of ūtarget=0.1, �target=0.015, time constants λ=0.01 and
ρ=0.01, and adaptation coefficients εα=0.0005, εθ=0.0001, and εν=0.00001, one
can see in Fig. 5 that the joint adaptation is indeed successful. We do not observe
the previous problem with weak input strength anymore.
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(a) θ(x, t) (region with only noise) (b) θ(x, t) (2 gaussian inputs)

(c) ν(x, t) (region with only noise) (d) ν(x, t) (2 gaussian inputs)

Fig. 4 Transfer function adaptation. The gain and the threshold both converge and lead to a stable
system in the case of a strong input (b, d). The mean potential converge to 0 for a low input (a, c).
Variance plots are obtained by averaging a set of 10 experiments

7 Discussion

This contribution introduced several adaptation rules for actively maintaining neu-
rons in a desired dynamic state by suitably modifying their internal processing
parameters. An important outcome of our experiments is the fact that such adap-
tation mechanisms must work on appropriate time scales w.r.t. each other in order
to avoid instabilities and divergences. The benefit of the work presented here can be
summarized as follows: First of all, the number of free parameters that have to be set
by a system designer is reduced. Secondly, neural fields can now be used in a “plug
and play” manner, connecting them without having to explicitly consider parameter
settings for dynamical stability. This will facilitate the construction of large neural
systems as envisioned in [23, 7]

However, there still remains a significant number of parameters that are not sub-
ject to adaptation. Many of these parameters may be eliminated by further adaptation
mechanisms, which will be part of our future work. However, there must remain a
set of parameters describing some high-level function of a neuron (e.g., accumula-
tion, decision making, integration, discrimination) that are determined by a designer.
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(a) θ(x, t) (region with only noise) (b) θ(x, t) (2 gaussian inputs)

(c) ν(x, t) (region with only noise) (d) ν(x, t) (2 gaussian inputs)

Fig. 5 Result with both mean potential adaptation and transfer function adaptation. Variance plots
are obtained by averaging a set of 10 experiments

Therefore it should be clear that self-adaptation can eliminate several but not all free
parameters in a system.

8 Conclusion

As was mentioned before, there exists a number of parameters that is not con-
sidered for adaptation in this contribution. In the future, it should be investigated
how to extend self-adaptation mechanisms to these parameters (which are treated
as constants right now), most notably the lateral interaction strength β and the time
constant τ .
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Functions of Shallow vs. Deep Theta-Nested
Gamma in Object Recognition

Xuejuan Zhang, Yang Zhan, and Keith M. Kendrick

Abstract Using a network of excitatory pyramidal cells and inhibitory interneurons
with fast and slow GABAA kinetics, we have successfully reproduced our recent
experimental observations from local field potential and multiunit activity record-
ings from the sheep’s inferior temporal cortex during learning of visual discrim-
ination tasks. Both experimental and numerical results showed that following
learning, theta wave amplitude is significantly increased and its phase is more
highly correlated with the amplitude of gamma wave during stimulus presenta-
tion. The increased correlation between the theta phase and the gamma amplitude
is a consequence of theta-nested gamma. Importantly, we have used the model
to show that learning effects can be reproduced simply by altering the sensitiv-
ity of NMDA receptors and that the resultant shallowing of theta-nested gamma
potentiates responses made by downstream neurons.

Keywords Integrate-and-fire neural network · Theta-nested gamma
rhythm · AMPA receptors · GABAA receptors · Time-frequency spectrum

1 Introduction

Rhythmic, oscillatory activity in the brain is believed to play an important role in
the control of a number of different behavioral states in humans and other animal
species. In the literature, the most frequently studied brain regions are the hippocam-
pus and neocortex, where different frequency activities are associated with higher
cognitive functions such as perception, categorization and memory formation, and
slow and frequency waves usually occur simultaneously in brain information pro-
cessing [1]. With the progress of new recording techniques and the development
of mathematical tools such as wavelet analysis and causal analysis [2–4], several
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cross-frequency interactions were revealed, e.g., n: m amplitude-independent phase
coupling [5], and the modulation of the amplitude of fast rhythm by the phase of
the slow frequency wave [6–8], etc. Recently, it was proposed that the most read-
ily observable form of cross-frequency interaction is that of “nesting” of the higher
frequency oscillation on the lower frequency one [7]. Though there is extensive
experimental support for this form of “nesting” from the hippocampus and neocor-
tex, the exact neuronal mechanism and the functional role of such nested oscillations
in brain information processing still remains unclear.

In the present work, we first analyzed 64-channel multi-electrode data recorded
in sheep’s inferior temporal (IT) cortex while it performed visual discriminations
between pairs of faces or other objects. It was found that there was significant
coupling between theta (4–8 Hz) and gamma (30–80 Hz) waves in >75% of
electrodes and that the strength of this coupling increased during stimulus presen-
tation as a function of learning. To understand the mechanism of the theta-nested
gamma rhythm in object recognition, we then constructed a network composed
of three populations of integrate-and-fire neurons based on two kinetically distinct
GABAA receptor-mediated currents [9–11] to reproduce corresponding phenom-
ena observed in the experiment. Our model suggests that to perform discrimination
task successfully, gamma rhythm should be shallowly but not deeply nested in
theta wave.

2 Material and Methods

2.1 Subject and Experimental Recordings

In the experiment, after operant visual discrimination training, three sheep were
implanted with chronic 64-channel multi-electrode arrays (MEAs – tungsten wires
with 250 μm spacing) in the right (n= 3) and left (n= 2) IT cortices under gen-
eral (fluothane) anaesthesia and with full sterile precautions. Following recovery,
recordings were made from the unanaesthetised sheep while they performed oper-
ant discriminations between different pairs of sheep faces or object. A correct
panel-press choice response elicited a food reward (see Fig. 1a). For the record-
ings the MEAs were connected to a 128 channel recording system (Black Rock
Microsystems, USA). All experimental procedures involving animals were con-
ducted in strict accordance with The Animals Scientific Procedures Act 1986, UK.

Local field potentials (LFPs) were recorded simultaneously from 128 chronically
implanted electrodes. The LFPs were sampled at 2,000 Hz and digitized for storage
from around 3 s prior to the stimulus onset to 3 s after the stimulus onset. The data
was from 4 to 10 different stimulus pairs in each animal with recording sessions
being carried out on repeated occasions where the animals were given 20–40 trial
blocks for each stimulus pair.

2.2 Model

We constructed a network consisting of three populations of neurons: 100 excitatory
(pyramidal) neurons, 50 inhibitory fast (inter) neurons and 50 inhibitory slow (inter)
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Fig. 1 a–d Experimental results: a Examples of different pairs of sheep faces or objects the
sheep were required to discriminate between to obtain a food reward. b Trial-averaged wavelet
power. Time-dependent mean powers in the theta band (red curve) and in the gamma band (black
curve) are shown in the bottom panel. c Cross-frequency coupling between gamma amplitude
and theta phase for the pre-stimulus epoch (the upper panel) and during-stimulus epoch (the bot-
tom panel) following learning. d Theta/gamma ratio across IT electrodes before (the upper panel)
and after learning (the bottom panel). There is an increase during the stimulus after learning. e–g
Computational results: e A network of 100 excitatory neurons (EX) and 50 fast inhibitory neurons
(INf) and 50 slow inhibitory neurons (Ins). Only three of each type of neuron are plotted here to
show connections. f–h are from model simulations corresponding to b–d in the IT experiments
respectively

neurons with all-to-all connections (see Fig. 1 g). Each set of neurons obeys an
integrate-and-fire equation:

C
dV(t)

dt
= −gL(V − EL)− Isyn + Iapp, (1)

where C is the capacitance for the neuron, gL is the leaky conductance, Isyn is the
synaptic input from other neurons and Iapp is the external input. When V reaches
a firing threshold Vth a spike is discharged and Vis reset to Vrest and stays there
for an absolute refractory periodτref . For excitatory neurons, we set C = 0.5nF,
gL = 0.025 μs, EL = −70mV, Vth = −52 mV, Vrest= –59 mV£, τref = 2 ms £
while for inhibitory neurons, we set C = 0.2nF, gL = 0.02 μs, EL = −65 mV £,
Vth = −52 mV, Vrest = −60 mV, τref = 1 ms.

Each neuron receives AMPA and NMDA receptor-mediated currents from exci-
tatory (EX) cells, GABAA receptor mediated currents from fast inhibitory (INf)
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neurons as well as slow inhibitory (INs) neurons. The gating variable s for AMPA
and NMDA receptors is described by two first-order kinetics [12]:

dx

dt
= αx

∑

j

δ(t − tj)− x/τx,
ds

dt
= αsx(1− s)− s/τs, (2)

where tj is the presynaptic spike time. We used αx = 1(in dimensionless), τx =
0.05 ms£, αs = 1.0 ms−1£, τs = 2.0 ms for AMPA receptors, and αx = 1 (in dimen-
sionless), τx = 2 ms£, αs = 1.0 ms−1£, τs = 80 ms for NMDA receptors. The
gating variable sGABA for GABAA receptors obeys a simple first-order kinetics [13]:

dsGABA

dt
= αI

∑

j

δ(t − t−j )(1− sGABA)− sGABA/τI , (3)

where t−j indicates the time immediately before the spike at time tj. We used

τI = 9 ms, αI = 1 ms−1 for the fast GABAA channels, and τI = 50 ms,αI =
0.2 ms−1 for the slow GABAA channels. Thus the AMPA and NMDA receptors-
mediated currents are given by: IAMPA = gAMPAsAMPA(V − VE), and INMDA =
gNMDAsNMDA(V − VE), respectively, and the GABAA receptor-mediated current is
given by IGABA = gGABAsGABA(V − VI). Here VE = 0 mV, VI = −70 mV.

We assumed that all neurons receive background currents all of the time. These
were set as: 0.7(1±10%) nA for EX neurons, 0.85 nA for INf neurons and 0.6
nA for INs neurons. The stimulus was assumed to be added only to the EX neu-
rons. Other parameters are set as: gAMee = 0.02, gAMef = 0.08, gAMes = 0.0005,
gGAfe = 0.01, gGAff = 0.08, gGAfs = 0.0, gGAss = 0.08, gGAse = 0.06, gGAsf = 0.03,
gNMee = 0.002, gNMes = 0.0001, gNMef = 0.001, except gGAfe = 0.007 for
shallow nested gamma and gGAfe = 0.02 for deep nested gamma in Fig. 2; and
gNMee = 0.0035, gNMes = 0.00055in the bottom panel of Fig. 1 h. Here AM refers
to AMPA receptors, NM refers to NMDA receptors, and GA refers to GABAA
receptors, ee refers to recurrent connection among excitatory neurons, ef refers to
EX→INf connection, es refers to EX→INs connection, and so on. The amplitude
of the stimulus was set as IAmp = 0.8 nA except Fig. 2d, e.

3 Results

3.1 Computational vs. Experimental Results

To test how reliable the constructed neuronal network is, we have to implement
the model to reproduce the phenomena observed in the experiment. Let us first
briefly summarize the sheep IT data, for detailed analysis, see [14]. Using local
field potential and multi-unit neuronal activity (MUA) recording from 64-electrode
arrays in sheep IT cortex, it was found that an evoked response in both MUA and
visual evoked potential occurred at about 300 ms after the presentation of stimulus
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Fig. 2 Functional significance of shallow theta-nested gamma a Shallow (top) and deep (bottom)
theta-nested gamma oscillations typical of what is seen in IT after and during learning respectively.
b–c Time-dependent power spectra and the cross-frequency coherence corresponding oscillations
in a. d The firing rates of a downstream neuron at different stimulus intensities for shallow (red)
and deep (blue) theta-nested gamma rhythms. e The firing rate of a downstream neuron vs. the
theta/gamma ratio. f Cross-frequency coherence vs. the theta/gamma ratio

(Fig. 1b), and that following learning the amplitude of theta, but not gamma band
oscillations increased at this same time point (data not shown here, see [14]). There
was coupling between theta phase and gamma amplitude across >75% of electrodes,
but following learning such a cross-frequency coupling was much stronger in during
the stimulus period than in pre-stimulus period (Fig. 1c) and the ratio of theta ampli-
tude vs. gamma amplitude was also increased (Fig. 1d). Furthermore, the magnitude
of such changes correlated significantly with discrimination performance. There was
no learning evoked change in the MUA however which is consistent with the lack
of change in gamma amplitude.

To compare the model with experimental results, Fig. 1e–h gave the correspond-
ing computational results. The LFP averaged over 100 Excitatory (EX) neurons in
response to a square-shaped stimulus was plotted in the bottom panel of Fig. 1e,
where the averaged LFP exhibits theta-nested gamma rhythm and there is increased
theta, but not gamma amplitude at around 300 ms after stimulus onset. Figure 1f is
the averaged time-dependent power spectrum over the 100 EX neurons. To provide a
quantitative comparison, the time-dependent power in both theta and gamma bands
were averaged. In Fig. 1f it can be seen that at around 300–350 ms theta power
reaches its maximum and is about 10 times higher than that of gamma. This result
is consistent with the experimental observations in IT shown in Fig. 1b.
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What about the cross-frequency coupling between the gamma amplitude and
theta phase in the modeling network? The patterns of coherence between these
two frequencies before and during stimulus presentation were shown in Fig. 1 g.
It is known that altered NMDA receptor sensitivity underlies many forms of
neural plasticity changes associated with learning. Our computational result also
showed that by properly strengthening the EX→EX and EX→INs connections
mediated via NMDA receptors, the changes in theta-nested gamma seen fol-
lowing learning in the IT could be produced, i.e., the theta/gamma ratio is
increased (see Fig. 1 h). This is also consistent with the experimental recordings
in IT.

3.2 Functions of Shallow Theta-Nested Gamma Rhythm

We next used the model to investigate in more detail the functional consequences
of the shift from deep to shallow nested gamma seen following learning in the IT.
When we look at the power spectrum and the coherence of the coupling between
theta phase and gamma amplitude for the shallow and deep gamma, respectively,
Fig. 2a–c show that when the gamma wave is deeply nested in the theta wave, the
power spectrum in the presence of stimulus does not concentrate in the theta band,
also the cross-frequency coupling between the theta phase and the gamma amplitude
only has a weak coherence. However, for shallow theta-nested gamma oscillation,
the power spectrum in the theta band is significantly increased when the stimulus
is turned on. Moreover, the coherence between the gamma magnitude and the theta
phase is greatly increased. This implies that the shallow theta-nested gamma is nec-
essary for enhancing the cross-frequency coupling between the theta and gamma
oscillations.

Next we explored how the depth of the nested gamma oscillation affects the firing
behavior of a downstream neuron to which the EX neurons project. In Fig. 2d it can
be seen that, for the shallow-nested gamma, the firing rate monotonically increases
with the increase of stimulus strength; while for the deep-nested gamma, the curves
are more flat with the firing rates below 30 Hz. This shows that the presence of
shallow theta-nested gamma can act to potentiate the firing of a downstream neuron.
To quantify the effect of the shape of theta-nested gamma rhythm, we calculated
the average gamma and theta amplitudes and plotted the firing of the downstream
neuron as a function of the size of theta/gamma ratio. In Fig. 2e it can be seen that
with the increase of theta/gamma ratio the firing rate of the downstream neuron
increases correspondingly.

Finally we explored if the learning-evoked change in the cross-frequency cou-
pling is also the functional consequence of an increased proportion of theta to
gamma (Fig. 1 h), i.e., shallow theta-nested gamma. Figure 2f confirms that with
the increase of theta/gamma ratio, the coherence of the cross-frequency coupling
between the two rhythms increases correspondingly.
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4 Discussion

From our model, we have observed widespread increased theta activity during an
applied stimulus, similar to that observed from the LFP data in sheep IT cortex
during performance of a discrimination task [14]. Furthermore, the phase of the
theta wave has been shown to be correlated with the amplitude of the low gamma
wave (30–70 Hz), as a consequence of the theta nested-gamma activity. Our compu-
tational results together with the experimental observation in IT cortex [14], as well
as previous evidence from studies in the hippocampus [6–8]), suggest that shallow-
ing of theta-nested gamma following learning may serve as an effective mechanism
for modulating neuronal outputs so that they produce potentiated responses in
downstream neurons.

In the current computational study, we only incorporated classic
neurotransmitter-mediated currents to illustrate functions of rhythmic oscilla-
tions in object recognition and learning. It is known that in all brain areas, neurons
also use a huge diversity of slower analog signaling mechanisms, these chemical
signaling pathways, acting in a more global spatial scale and on a longer temporal
scale, are closely related with coherent behavior including learning and memory
[15, 16]. How do these parallel signaling systems interact with neurotransmitter
signals to give rise to long last coherent change in behavior is our next goal of
study.
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Modelling the Hypothalamic Control
of Thalamic Synchronization Along
the Sleep-Wake Cycles

Svetlana Postnova, Karlheinz Voigt, and Hans Albert Braun

Abstract Thalamic activity significantly changes at the transitions form conscious
wake to unconscious sleep states, going from an unsynchronized single-spike firing
to synchronized discharges of impulse groups. These transitions can be simulated
with a conductance-based model of neurons and synapses which assumes that alter-
ations of thalamic synchronizations results from the neurons′ intrinsic dynamics
which, however, are externally tuned by synaptic input from sleep-wake control-
ling areas in the hypothalamus. The crucial role is assigned to activity dependent
changes of the synaptic efficacy of the neuropeptide hypocretin/orexin.

Keywords Neuronal synchronization · Burst discharges · Sleep-wake
cycles · Hypocretin/orexin · Synaptic plasticity

1 Introduction

Conscious perception seems to be intimately related to the activity state of the
thalamus which is considered to be a gate of sensory information transmission to
the cortex [1, 2]. The most significant changes of the gating properties appear at the
transitions from wakefulness to sleep when conscious perception is switched off and
sensory information transmission is almost blocked. During sleep, only comparably
strong stimuli can pass.

Sleep-wake transitions are clearly correlated with distinct changes of thalamic
impulse patterns and synchronization states, see e.g. [3, 4]. During sleep, thalamic
neurons exhibit synchronized discharges of impulse groups (bursts) while they are in
an unsynchronized state of single spike activity (tonic firing) during wakefulness. It
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can be expected that individual neurons which are strongly synchronized with each
other cannot react as sensitive on external stimuli as those in an unsynchronized
state.

Despite the physiological consequences of thalamic synchronization and its obvi-
ous relation to the sleep-wake states, the underlying mechanisms are still under
debate. The origin is often assumed in the thalamocortical interactions with ongoing
discussions of whether the cortical or the thalamic neurons or their interconnections
play the major role, e.g. [1, 2]. Several large-scale models have been presented to
simulate the dynamics of these brain areas during the states of sleep and/or wakeful-
ness [5–7]. We are focusing on the transitions between sleep and wake states which
seem to be under control of subthalamic, specifically hypothalamic nuclei [8].

According to the generally accepted concept of Borbély, the sleep-wake transi-
tions are determined by the interaction of a circadian and a homeostatic process [9].
An endogenous circadian process has undoubtedly been identified in the genetic
clocks of suprachiasmatic hypothalamic neurons (SCN) [10] while the neuronal
basis of the homeostatic sleep mechanisms is still purely understood. Nevertheless,
it can be expected that the homeostatic mechanisms are related to the activ-
ity of hypothalamic nuclei, as hypothalamus is a major centre for regulation of
sleep [8, 11].

In our approach, the wake-active neurons in the lateral hypothalamic area (LHA)
play the major role. They have excitatory projections to almost all brain areas with
glutamate as the main transmitter and the neuropeptide hypocretin (also called
orexin) as an obviously most relevant co-transmitter [12–14]. Lack of hypocretin
(HCRT) neurons as well as reduced availability of the co-transmitter hypocretin
(hcrt) or its postsynaptic receptors leads to the sleep disorder narcolepsy which is
characterized by unpredictable transitions between wakefulness and sleep [15, 16].

According to these experimental and clinical data, we have developed a novel
concept of homeostatic sleep-wake regulation and have transferred it into a
mechanism-based mathematical model which, in connection with a circadian input,
can account for periodic transitions between sleep and wakefulness [17]. For
the present study, we have combined the model of sleep-wake regulation with a
previously developed model of neuronal synchronization which is related to the
alterations of impulse pattern [18].

2 Model Structure and Equations

The focus of this modeling study of hypothalamic sleep-wake control of thalamic
synchronization is laid on the physiological mechanisms of voltage- and transmitter-
gated ion channels. Therefore, a minimal approach of only four neurons is used, as
schematically illustrated in Fig. 1. The two hypothalamic neurons have reciprocal
excitatory connections. One is representing the hypocretin (HCRT) neurons and the
other one local glutamate (GLU) interneurons. Thalamic activity is represented by
two gap junction coupled neurons, receiving synaptic input from the hypothalamic
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Fig. 1 Schematic
representation of the model.
The abbreviations are:
HCRT – hypocretin neuron,
GLU – glutamate neuron,
TH – thalamic neurons,
SCN – input from the
suprachiasmatic nucleus of
the hypothalamus glu –
glutamate, hcrt –hypocretin,
glu+hcrt indicates co-release
of the transmitters. For details
see text

HCRT neuron. All external influences are comprised in a compound current input
to the HCRT neuron. An additional noise current is added to the thalamic neurons
to allow de-synchronization out of a synchronized state.

Accordingly, the general form of the membrane equations is given by:

CdV/dt = Il +
∑

IV +
∑

IS + Iext + Inoise (1)

The changes of the membrane potential dV per time step dt depends on the charge
of the membrane capacitance C by a diversity of ion currents I. In all neurons, there
is the leak current Il and there are the fast, voltage dependent Na+ and K+ cur-
rents for spike generation INa and IK. The thalamic neurons additionally include two
slowly activating, subthreshold currents INa,p and IK,Ca for the generation of slow
wave potential oscillations and burst discharges. All synaptic currents are modeled
with a glutamate term. The synaptic projections from the HCRT neuron include an
additional term which accounts for the release of the co-transmitter hcrt.

The gap junction currents between the two neighbored thalamic neurons depend
on the conductance of the gap junction ggap and the voltage difference between the
neurons:

Igap = ggap(V − Vneighbor) (2)

All other currents I are determined by their maximum conductance gmax multiplied
by an activation variable a and the driving force (V−VE) with VE as the equilibrium
potential:

I = gmaxa(V − VE) (3)

with a = 1 for the leak current with constant conductance.
Voltage-dependent steady state activation a∞ is modeled in a sigmoid form:

a∞ = 1/(1+ exp(−s(V − VH))) (4)

with s as the slope and VH as the half-activation potential.
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Activation additionally includes a time delay τ :

da/dt = (a− a∞)/τ (5)

There are several exceptions for the voltage-dependent currents. For example, the
fast sodium current INa is considered to activate instantaneously with a = a∞. The
slow repolarizing current of thalamic neurons is directly connected to the slow depo-
larizing current in form of a simplified version of a calcium-dependent potassium
current:

daK,Ca/dt = (−ηIK,Ca + kaNa,p)/τK,Ca (6)

where η is the coupling factor and k scales the relaxation.
It is important to note that in case of synaptic currents, although the equations are

formally identical with the voltage-dependent currents, the physiological meaning
of the parameters and variables can be quite different.

For synaptic currents, the equilibrium potential in Eq. (3) is determined by the
ions which the postsynaptic transmitter-gated channels allow to pass. For simplicity,
here the VE is set for both glu- and hcrt-gated ion channels to the Na equilibrium
potential.

The steady state voltage dependencies of Eq. 4, in contrast, are exclusively deter-
mined by presynaptic events. They represent an almost threshold-like curve for
transmitter release due to the occurrence of presynaptic spikes.

The connections between presynaptic spikes and postsynaptic currents are pro-
vided by the differential equations of the activation variables (Eq. 5). The time
constants τ determine the amplitude and delay of postsynaptic currents activations
a in response to the presynaptic transmitter release a∞. With appropriate adjust-
ment, a presynaptic spike can introduce strong but only short postsynaptic currents
via ionotropic glu receptors in parallel with weaker but longer lasting currents via
metabotropic hcrt receptors.

The superposition of these two synaptic currents plays a major role for the exci-
tation of thalamic neurons and especially for the activity state in the reciprocally
connected neurons of the hypothalamus. The functionally most important com-
ponent, thereby, is the activity-dependent change of the synaptic efficacy of hcrt
transmission. This is considered by a modulation function M as an additional factor
in scaling the parameter a of hcrt activation:

dahcrt/dt = (ahcrtM − ahcrt∞)/τhcrt (7)

The synaptic efficacy, as represented by M, depends on the availability of presy-
naptic hcrt and/or postsynaptic receptors. It tends to achieve a maximum value Mmax
with time constant τinc while it is attenuated with each spike, by a certain amount
which is scaled by the time constant τdec. Both decrease and recovery of the synaptic
efficacy depend on its actual value M. This leads to the following equation:
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Table 1 The parameters values for the model. For details see text and references [17, 18]

dM/dt = (Mmax −M)/τdec − a∞M/τdec (8)

The numerical values of the model parameters are given below. A detailed
description of the equations of the hypothalamic model and their physiological
meaning can be found in [14], and the details about the thalamic model in [15].

3 Simulation Results

In the above described model, the relevant mechanisms of sleep-wake transitions
appear at the hypothalamic level and are related to the activity state of the HCRT
neuron. According to the experimental data, firing of the HCRT neuron indicates
a wake state and silence indicates sleep. The corresponding transitions and the
associated changes of thalamic activity patterns are illustrated in Fig. 2.

The reciprocal feedback loop of the HCRT and the GLU neuron can be activated
by an external stimulus which here is the circadian current input. Once the HCRT
neuron fires strong enough to activate the GLU neuron, firing will be sustained
due to the reciprocal excitation, also when the stimulus decreases or is completely
eliminated.

The transition to a silent (sleep) state appears because of the decreasing synaptic
efficacy (M) of hcrt transmission which leads to a decreasing firing rate. The fir-
ing rate is additionally decreased when the circadian input is simultaneously going
down. Firing rate and synaptic efficacy, together, determine the activation variable
ahcrt. At the certain point, hcrt transmission is too weak to activate the GLU neuron
and firing in the hypothalamic circuit stops. The activation ahcrt drops to zero, while
the synaptic efficacy starts to recover.
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Fig. 2 Changes of the
neuronal firing pattern in the
hypothalamic and thalamic
neurons according to
sleep-wake cycles (a).
Voltage potentials of the
thalamic neurons, indicating
their synchronization states
(b). synchronized in bursting,
asynchronous in tonic firing

When the circadian input reaches a certain value, firing can be reinstalled.
Providing that the synaptic efficacy has sufficiently recovered, firing in both neu-
rons can be sustained until it stops again due the decreasing synaptic efficacy as
described above.

These transitions have significant influence on the activity patterns and syn-
chronization states of the thalamic neurons. The excitatory synaptic input from the
HCRT neuron keeps the thalamic neurons in a depolarized state with high frequent
tonic firing activity, which is only slightly changed by the decreasing activation
variable. When this input is missing, the thalamic neurons do not switch into a
silent state. They are still active due to their intrinsic dynamics but the activity pat-
tern changes to impulse groups (bursts). Alone these transitions from tonic firing
to bursts are sufficient to bring the thalamic neurons from an unsynchronized to
a synchronized state (Fig. 2b). These transitions correspond to the experimentally
observed changes at the transitions from wakefulness to sleep.

4 Discussion

We have presented a mechanism-based model with neurons and synapses that con-
nects hypothalamic mechanisms of sleep regulation with thalamic alterations of
activity pattern and synchronization states at the transitions between sleep and wake-
fulness. These changes of thalamic activity seem to be closely associated with the
control of conscious perceptions. Our model offers a simple but physiologically
justified explanation how these transitions can appear. We propose that they are
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introduced by the wake-active hypocretin neurons in the hypothalamus that project
to the thalamic neurons where hcrt induces excitatory effects [12]. That is sufficient
to introduce the typical sleep-wake-transitions related activity changes in the thala-
mic neurons. Everything else is the result of their intrinsic dynamics. No change of
connectivity is required.

Without external current input the thalamic neurons are in a bursting mode while
a depolarizing current can tune them into a tonic firing regime. In the bursting mode,
the gap-junction coupled neurons easily synchronize, whereas they preferably stay
in a desynchronized state in the tonic firing mode. Hence, while synchronization
and de-synchronization is a question of the intrinsic dynamics of thalamic neurons,
the transitions are introduced from outside, i.e. by synaptic input from sleep-wake
controlling neurons in the hypothalamus.

In summary, we have illustrated a concept of functional interdependencies
between thalamic gating mechanism and sleep-wake control by means of a
mechanism-based neuronal model. In this way, we also have provided an example
how the macroscopic level of systemic functions can be related to the microscopic
level of cellular mechanisms, namely via a mesoscopic level of neuronal firing and
activity pattern.

Acknowledgments This work was supported by the European Union through the Network of
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Stochastic Resonance and Stochastic Encoding:
Cooperative Effects of Noise and Intrinsic
Dynamics in a Model Neuron with Subthreshold
Oscillations

Wuyin Jin, Svetlana Postnova, and Hans Albert Braun

Abstract It is well established that noise, despite its mostly detrimental effects,
can play a constructive role for information transfer. The best known example is
stochastic resonance (SR) phenomena. SR means that there is an optimal level of
noise for the detection of weak signals. In this study, a Hodgkin-Huxley type model
neuron with subthreshold oscillations has been used to demonstrate that the noise
effects essentially depend on the neuron′s activity state. These data shall emphasize
more general aspects of stochastic encoding (SE) which, beyond tuning of noise,
can be achieved with appropriate adjustment of physiological control parameters.

Keywords Nonlinear dynamics · Spiking neuron · Information transmission ·
Neuromodulation · Cross correlation · Subthreshold/suprathreshold stochastic
resonance

1 Introduction

Neuronal information transmission is generally contaminated by noise which can
come from numerous external and internal sources [1]. Although noise is usually
considered as a disturbance of precise information transfer there are physiological
situations where noise can play a constructive role. One of the best known examples
is stochastic resonance (SR) that is an enhancement of signal encoding by an optimal
level of noise (for review see [2].) SR effects have been observed in diverse physical
and biological systems and also have been used to improve technical sensors [3, 4].
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However, while technical sensors, as well as computer models, can artificially be
tuned to optimal noise intensity, noise is not necessarily among the major neuronal
control parameters which rather are ionic currents and conductances.

To examine the interdependencies between noise and neuronal dynamics for
stimulus encoding we have used a Hodgkin-Huxley type model neuron with sub-
threshold oscillations [5]. Although the occurrence of SR in such model neurons has
been denied [6], it has theoretically [7] and also experimentally [8] been demon-
strated that noise, specifically in combination with subthreshold oscillations, can
play a crucial role for stimulus encoding.

2 Methods: Model Equations

The simulations were made with a Hodgkin-Huxley type neuron which was origi-
nally developed for the examination of "stimulus sensitivity and neuromodulatory
properties of noisy neuronal oscillators" [5]. The voltage changes dV/dt across the
membrane capacitance C are calculated as the sum of specific ion currents:

CMdV/dt =
∑

I = −Il − INa − IK − INa,p − IKs − Iext − Inoise (1)

Apart from the leak current Il = gl(V − Vl), with leak conductance gl and the
driving force (V − Vl), there is a term for external current injection (Iext) and for
noise application (Inoise). The physiologically relevant dynamics are introduced by
voltage-dependent currents. Two of them, INa and IK, determine the shape of the
action potentials. Two others, INa,p and IKs, are for slow subthreshold oscillations.

All voltage-dependent currents are modelled in the same form with

Ii = giai(V − Vi), i = Na; K; Na, p; Ks (2)

The currents Ii are calculated as the product of the driving force V −Vi (Vi is the
equilibrium potential) and the maximum conductance gi multiplied by a voltage-
and time-dependent activation variable ai. For simplicity, inactivation is neglected.

Time-dependent activation is modelled in form of first order differential equa-
tions

dai/dt = (ai∞ − ai)/τi (3)

with time constants τ i and steady state activation values ai∞ of sigmoid voltage
dependencies, determined by the slopes si and half activation potentials V0i:

ai∞ = 1/(1+ exp(−si(V − V0i))) (4)
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3 Results

The model neuron has been tuned from constant membrane potential to subthreshold
oscillations and to regular spiking by external current injection (Fig. 1a) The phys-
iologically most relevant patterns, a mixture of subthreshold and spike generating
oscillations, however, only develops with contribution of noise, thereby smoothing
the deterministically step-like transfer function (Fig. 1b).

For systematic examination of stochastic resonance effects we have calculated
the cross correlation coefficients (CCC) between a small sinusoidal current stim-
ulus (Iext = 0.1sin(t/30), with I in μA/cm2 and time in seconds) and the thereby
induced alterations of the firing rate as a function of noise intensity (Fig. 2). For
these simulations the neuron has been adjusted by constant base-line currents to dif-
ferent subthreshold (Fig. 2a) and suprathreshold (Fig. 2b) activity states. In this way,
a series of typical SR curves with optimal noise levels could be obtained – with two
exceptions. In each diagram there is one curve with highest CCC values for deter-
ministic simulations. This is the case when the neuron the subthreshold stimulus can

Fig. 1 Deterministic and noisy simulations in response to constant current injection illustrated by
voltage traces (a) and frequency-stimulus curves (b)

Fig. 2 Cross-correlation coefficients (CCC) between a sinusoidal current stimulus and the neu-
ronal firing rate as a function of noise intensity D under deterministically subthreshold (a) and
suprathreshold (b) conditions, adjusted by constant currents I
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cross the deterministic threshold of spike generation without the help of noise. At
lower base-line currents, noise is ultimately needed for stimulus encoding because
otherwise the neurons would remain silent. At higher base-line currents, slight alter-
ation of a deterministically ongoing firing rate can be enhanced by noise as long as
it allows a modulation of the spiking probability

In comparison of the SR curves, it can clearly be recognized that the noise effects
essentially depend on the base-line current: (1) the less noise intensity is required for
optimal stimulus-response correlations the closer the neuron operates to the deter-
ministic threshold for spike generation; (2) the efficacy of noise, as indicated by the
peaks in the cross-correlation curves, is becoming less pronounced the further away
the neurons operate from the deterministic threshold.

Nevertheless, at all subthreshold base-line current (Fig. 2a), noise of sufficiently
high intensity still can improve stimulus encoding simply because the neuron oth-
erwise would be completely silent. However, the SR effects, i.e. the maxima in the
CCC curve, are more and more diminished. With suprathreshold currents (Fig. 2b),
noise finally will become irrelevant as indicated by the completely flat CCC curve
with I=2.50.

4 Discussion

We have illustrated stochastic resonance (SR) in a model neuron with subthreshold
oscillations, for both sub- and suprathreshold conditions, and have demonstrated
that optimal noise intensity essentially depends on the neuron′s operating point with
regard to the deterministic threshold of spike generation.

Subthreshold oscillations can endow the neurons with particular tuning proper-
ties [7] which, in combination with noise, can lead to exquisite stimulus sensitivity
[8]. The highest sensitivity is achieved at around 50% spiking probability of the
subthreshold oscillations. The maximum sensitivity is reduced with increasing noise
while the range of stochastic encoding (SE) is broadened. Likewise, the SR effects
are becoming smaller the higher noise intensities are required for optimal stimulus-
response correlation. Accordingly, it is the adjustment of the neuronal dynamics
which decides about the neurons′ stochastic encoding properties including the
eventual appearance of stochastic resonance phenomena.
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Attention Modulation of Sensory Systems

Hans Liljenström and Yuqiao Gu

Abstract Attention and arousal seems to enhance the efficiency of neural
information processing. We use computer simulations of various sensory systems
in order to investigate how the neurodynamics of these systems can be modulated
for optimal performance in an unknown and changing environment. Using an inter-
scale model of the insect antennal lobe, we demonstrate how attention modulation
can change the sensitivity for sex pheromones. We also study how neural oscilla-
tions in mammalian olfactory cortex can serve to amplify weak signals and sustain
an input pattern for more accurate information processing, and how chaotic-like
behaviour could increase the sensitivity in initial, exploratory states. Finally, we
use a neural network model of visual cortex area V4, in order to investigate poten-
tial cellular and network mechanisms for visual attention, reproducing experimental
findings of attention induced gamma-frequency synchronization.

Keywords Attention · Neuromodulation · Acetylcholine · Olfaction · Vision ·
Neural network models · Inter-scale interactions

1 Introduction

Sensory systems need to adapt to various environmental conditions and internal
states. Attention and arousal seems to enhance the efficiency of the neural infor-
mation processing in sensory systems of all kinds of animals, invertebrates as well
as vertebrates. This efficiency enhancement is mediated by modulation of the neu-
ral activity at the cellular, network, and systems levels, thus involving interactions
between micro-, meso-, and macro-scales. Important neuromodulators associated
with attention are acetylcholine (ACh) and serotonin (5-HT), which may affect
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the excitability of a large number of neurons simultaneously and the synaptic
transmission between them [1, 2].

At least in mammals, attention plays a key role in perception, action selection,
object recognition and memory. It is associated with primarily gamma frequency
oscillations in cortical structures, for example in the visual cortex during visual
attention [3, 4]. Data suggest that gamma rhythms are associated with relatively
local computations, whereas beta rhythms are associated with higher level interac-
tions. Generally, it is believed that lower frequency bands are generated by global
circuits, while higher frequency bands are derived from local connections [4].

We study attention modulation of the neural activity in different sensory sys-
tems and use different types of models, depending on available data and the specific
problem addressed.

2 Models

In order to study attention modulation in sensory systems, primarily for olfaction
and vision, we use various types of neural network models: (1) of the insect antennal
lobe, (2) of mammalian olfactory cortex, and (3) of visual cortex, area V4.

2.1 Neural Network of Insect Antennal Lobe

Natural odours are multidimensional and noisy signals, which in insects are pro-
cessed in the antennal lobe (AL), the primary odour information processing centre
that is organized into several glomeruli. All synaptic contacts between the three
main types of AL neurons (olfactory receptor neurons, ORN, local inhibitory
neurons, LN, and projection neurons, PN) take place within the glomeruli. The
membrane potentials of PNs and LNs are described by the following dynamical
equations, based on the standard Hodgkin-Huxley equations, with variables and
parameters given in [5, 6]:

Cm
dVPN

dt
= −gL(VPN−EL)−INa−IK−IA−gKL(VPN−EKL)−IGABAA−Islow−inh−Istim

(1)

Cm
dVLN

dt
= −gL(VLN−EL)−ICa−IK(Ca)−IK−gKL(VPN−EKL)−IGABAA−InACh−Istim

(2)
These equations take into account the ORN input (excitatory Istim), the LN

input (fast IGABA , and slow Islow - inh inhibition), the PN input to LN (InACh) and
the various other non-synaptic currents. Each model glomerulus has six PNs and
two LNs.
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2.2 Population Model of Olfactory Cortex

Our model of the olfactory cortex has network units with a continuous input-output
function, corresponding to the average firing frequency of neural populations, which
we compare with EEG and LFP data [7]. There are three cortical layers, with net-
work units corresponding to populations of feedforward inhibitory interneurons,
pyramidal cells, and feedback inhibitory interneurons, respectively. All connections
are modeled with distance dependant time delays.

The time evolution for a network of N neural units is given by a set of coupled
nonlinear first order differential delay equations for all the N internal states, u. With
odour signal, I(t), noise ξ (t), characteristic time constant, τ i, and connection weight
wij between units i and j, separated by a time delay δij, we have for each unit activity:

dui

dt
= −ui

τi
+

N∑

j �=i

wijgj[uj(t − δij)]+ Ii(t)+ ξ (t) (3)

The input-output function, gi(ui), is a continuous sigmoid function:

gi = C · Qi

{
1− exp

[
exp(ui)− 1

Qi

]}
(4)

The gain parameter Qi determines the slope, threshold and amplitude of the curve
for unit i. This gain parameter is associated with the level of arousal/attention as
expressed through the level of acetylcholine. C is a normalization constant [7].

2.3 Network Model of Visual Cortex

In our model of visual cortex, we use spiking model neurons, since we want to
compare our results with observed data, as spike triggered averages of local field
potentials. All model neurons satisfy the following Hodgkin-Huxley equation:

CV ′ = −gL(V + 67)− gNam3 h(V − 50)− gKn4(V + 100)

−gAHPw(V + 100)− Isyn + Iappl
(5)

where V is the membrane potential and C is the membrane capacitance. gL is the
leak conductance, gNa and gK are the maximal sodium and potassium conductances,
respectively. gAHP is the maximal slow potassium conductance of the afterhyperpo-
larization (AHP) current, which varies, depending on the attentional state: in an idle
state, gAHP = 1.0 ms, with attention, gAHP ≤ 1.0 ms. Isyn is the synaptic input cur-
rent, and Iappl is the applied current. The variables m, h, n and w are calculated in a
conventional way, and described more thoroughly in [8].
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In each of the three (lumped) layers of the local area network, there are four
types of interactions: (1) lateral excitatory–excitatory, (2) excitatory–inhibitory, (3)
inhibitory–excitatory, and (4) inhibitory–inhibitory, with corresponding connection
strengths, which vary with distance between neurons.

3 Simulation Results

3.1 Attention Modulation Enhances System Sensitivity

We connect four model glomeruli in a circle, to represent the male-specific sex
pheromone processing system of the antennal lobe – the macroglomerular com-
plex (MGC). In each simulation, we use a pulse as the pheromone input signal to
stimulate one or two of the four glomeruli, depending on the problem addressed.
The input to the four glomeruli in MGC during stimulation is represented by a four
dimensional input vector, (P1, P2, P3, P4).

At the micro-scale, the PNs employ different ionic channels for coding. One
of the features of the micro-scale circuit is that the potassium channels can be
modulated by neuromodulators. We regard 5-HT as an attention modulation sig-
nal delivered from higher processing levels through a feedback pathway to the PNs
in glomerulus 1, G1, which processes the major pheromone component.

Our simulation results show that the threshold in response to a weak stimulus
decreases and the excitability increases, when the maximal conductance of the IA

of the PNs in G1 is decreased. This suggests that attention increases the sensitivity
of PNs in G1. We also find that attention to the major pheromone component can
suppress the stimuli to the other glomeruli, due to the local attention modulation and
lateral global inhibition of the network. Figure 1 shows that the system can increase
the response excitability to the major pheromone stimulus, while decreasing the
response excitability to stimulus input with the same dose to G2.

Fig. 1 Attention modulation of G1 increases the response excitability to the major pheromone
component stimulus (left), and decreases the response excitability to the stimulus of G2 (right).
The stimulus vector is here (300, 300, 0, 0)
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3.2 Neuromodulation Enhances Learning and Memory

In the case of mammalian olfactory cortex, we simulate neuromodulatory control
by varying the gain parameter Q, and by varying excitatory and inhibitory synap-
tic transmission (reducing wex and win). In the first case, neuronal excitability is
affected, corresponding to the level of arousal or attention of the animal, chemically
linked to a neuromodulator. The second effect is characteristic of ACh [2].

Different values of these parameters can result in different dynamical states:
static, oscillatory or chaotic. For example, by changing the parameter Q (in Eqn.
(4)) from 1 to 15, the dynamics changes from static to oscillatory to chaotic states.
At an intermediate value of Q, the system may have a long transient chaotic phase,
which converges to an oscillatory state, corresponding to a limit cycle memory state.
This behaviour seems advantageous in allowing for an initial sensitivity to input sig-
nals, a quick search of state space, until an eventual convergence to one of the stored
memories most closely resembling the input data. In Fig. 2, such a process is illus-
trated by the trajectories in state space, following the time evolution of two arbitrary
network units, u1 and u2, plotted against each other. Note the initial irregularity,
which slowly converges into regular cycles [9].

The frequencies of the network oscillations depend primarily upon intrinsic time
constants and delays, whereas the amplitudes depend predominantly upon connec-
tion weights and gains, which are under neuromodulatory control. Implementation
of these neuromodulatory effects in the model caused changes analogous to those
seen in physiological experiments [10]. In particular, the increase in excitability and
the suppression of synaptic transmission can induce theta and/or gamma oscillations
within the model, even when starting from an initially quiescent state. The increase
in excitability could also result in an enhancement of gamma frequency oscillations
in the response to an external input.

Fig. 2 Transient chaos
obtained for Q = 14.0. The
activity of two excitatory
units is plotted against each
other for 1 simulated second.
After the initial chaotic-like
phase (approximately
500 ms), the activity
converges to a near limit
cycle state, corresponding to
an approximately 40 Hz
oscillation
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3.3 Attention Effects During Visual Stimulation

To mimic the situation in a visual attention experiment [4], we have groups of
“attended-in” neurons, Ain (where attention is directed to a stimulus location inside
the receptive field (RF) of these neurons) and groups of “attended-out” neurons, Aout

(where attention is directed to a stimulus location outside the RF these neurons).
During a stimulus period, two identical stimuli are presented; one appears at a loca-
tion inside the RF of Ain and the other appears at a location inside the RF of Aout.
To simulate the dynamics during a stimulus period, we apply bottom-up sensory
stimulation currents, as well as top-down attention (cholinergic) modulation.

Figure 3 shows the simulated spikes of one pyramidal neuron in Ain and of one
pyramidal neuron in Aout, as well as the LFP, STA and STA power of the Ain and
Aout neurons in layer 2/3. In comparison with an idle state, the dominant frequency
of the STA power spectrum of both Ain and Aout neurons shifts to gamma band, due
to the stimulation inputs. Also, gamma synchronization in Ain is always stronger
than in Aout neurons. This result agrees with the experimental findings that gamma
synchronization increases in Ain during a stimulus period [4].

Fig. 3 Attention modulation effects during a stimulus period. LFP, spikes, STA and STA power
of attended-in and attended-out group calculated for the superficial layer, when the excitatory
connections and inhibitory connections to each pyramidal neuron in the attended-in group within
Rmodu in layer 2/3 and layer 5/6 are reduced to zero. Note the different scales in the y axes, and see
text for further details
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4 Discussion

We have used different types of neural network models of sensory systems to investi-
gate how attention, by means of various neuromodulators, may affect the efficiency
of neural information processing. Our model simulations show that many factors
play important roles in the network neurodynamics. These include (1) the interplay
of ion channel dynamics and neuromodulation at a micro-scale, (2) the local net-
work connectivity pattern, (3) the feedforward and feedback connections between
different network structures at a meso-scale, and (4) the top-down and bottom-up
circuitries at a macro-scale.

In conclusion, the dynamical state of a neural system determines its global prop-
erties and functions. Neurodynamic control, or modulation should thus be crucial
for the survival of an animal, or for an efficient functioning of any autonomous sys-
tem. It could result in a shift in the balance between sensitivity and stability of the
system. While the functional role and control of the neurodynamics is still largely an
open question, computer models can provide a useful tool to address these problems.
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Evidence for a Spatiotemporal Singularity
in Percept Formation by Cerebral Cortex

Walter J. Freeman

Abstract Perception proceeds by cinematic frames that are separated by an
endogenous shutter, which is intrinsic to the background spontaneous activity of
cerebral cortex. Cinematic displays of spatiotemporal electrocorticograms (ECoG)
show turbulence, from which stable spatial patterns emerge that are correlated with
perception of conditioned stimuli (CS). Extracting invariant properties of the per-
ceptual patterns requires high-resolution measurements by high-density electrode
arrays, high-order FIR filters, and the Hilbert transform giving analytic signals
(instantaneous amplitudes and frequencies). Each pattern is preceded by a null spike,
which is postulated to reveal a singularity in cortical dynamics that operates the
shutter. A piecewise linear model is used to solve the nonlinear differential equations
of mesoscopic cortical dynamics. Solutions point to the existence of a limit cycle
attractor. The behavioral and physiological circumstances are described by which
the trajectory of cortical dynamics may converge to the attractor and precipitate a
phase transition, which destroys an existing pattern and initiates a new one.

Keywords AM pattern · Electrocorticogram (ECoG) · Null spike · Perceptual
frame · Phase transition · PM pattern (cone) · Singularity · Vortex

1 Introduction

Sensory cortices in brains sustain the embedding of the self in the environment by
organizing sensory information into perceptions that express the meaning and sig-
nificance of the sensory input. Each batch of sensory input from a saccade, whisk
or sniff of a conditioned stimulus (CS) delivers a volley of action potentials to the
appropriate sensory cortex. That burst of input helps to trigger a phase transition
[1, 2] that condenses a disorderly receiving phase into a widely synchronized,
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orderly transmitting phase. The order is expressed in a narrow band carrier wave
that is modulated in amplitude (AM) and phase (PM) [3–5]. The AM and PM pat-
terns are fixed within frames between phase transitions [6]. The spatial AM pattern
is governed by an attractor that is selected by the CS from a landscape of basins of
attraction. Its detailed shape is determined by the synaptic connections among corti-
cal neurons in a nerve cell assembly that stores the memory of the CS as a category.
That recalled memory is transmitted by the sensory cortex to other parts of the brain
in the form of the AM pattern. The sensory information updates the synaptic con-
nections in the assembly and is then discarded. The spatial PM pattern in the form
of a phase cone defines the spatial location and temporal duration of the synchrony.

The hypothesis is proposed [7, 1] that the initiation of a phase transition requires
the approach of cortical dynamics to a singularity [8] that is manifested by an
extreme event [7, 9, 10] at a point in time and space. This extreme event called
a null spike [7] has been identified as a sudden decrease in the background activ-
ity that occupies the spectral band of the induced carrier wave. New data confirm
the extreme space-time localization of null spikes that precede the onsets of AM and
PM patterns (phase cones). The spatial location of null spike and the apex of the fol-
lowing cone often coincide, but only after optimization of the search parameters and
avoidance of overlapping wave bursts. The singularity is explained as a limit cycle
attractor [11], which the cortical dynamics approaches in the conjunction of sev-
eral conditions: high behavioral arousal, an increase in amplitude of cortical activity
from a CS, and the approach toward zero in the power of the background filtered
ECoG: the null spike. The conjunction increases the signal-to-noise ratio without
limit. By the crossing of an as yet ill-defined threshold, a disorderly “gaseous”
receiving phase condenses into an ordered “liquid” transmitting phase by a phase
transition [12].

2 Methods

2.1 Experimental Methods

ECoG data were recorded from the olfactory bulb and cortex and the visual, auditory
and somatic cortices of rabbits that were trained to respond to olfactory, visual, audi-
tory or somatic CS [13]. High resolution was required for measurement of ECoG
signals in the spatial, spectral, and temporal dimensions. High spatial resolution
was optimized by use of spatial spectral analysis to minimize the distance between
electrodes (0.79 mm) in square electrode arrays with optimal aperture (6×6 mm) on
the cortical surface (Chapter 4 in [11, 14]). High spectral resolution was by a FIR
filter with order 1,000–4,000 to optimize a pass band of 5 Hz in the beta and gamma
ranges [7, 15]. High temporal resolution was optimized by sampling at 500/s over
time segments lasting 6 s, which was the duration of individual trials (3 s control
period with no CS followed by 3 s with CS) and by use of the Hilbert transform [16].
The instantaneous analytic signal was calculated and decomposed into the analytic
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Table 1 Filter settings based on Nyquist frequency (Nf)

Band Band pass (Hz) 2 ms step 5 ms step Display, s

High gamma 50–100 1/2.5–1.5 Nf 1/2–1 Nf 1
Low gamma 25–50 1/10–1/5 Nf 1/4–1/2 Nf 2
Beta 12.5–25 1/20–1/10 Nf 1/8–1/4 Nf 4
Alpha 6.25–12.5 1/40–1/20 Nf 1/16–1/8 Nf 8
Theta 3.125–6.25 1/80–1/40 Nf 1/32–1/16 Nf 16

power (amplitude squared) and the unwrapped analytic phase [3, 4]. The analytic
frequency was calculated as a time series by dividing successive analytic phase dif-
ference (in radians) by the duration of the digitizing step (here 0.002 s) and by 2π

radians/cycle to express the values in Hz.
The power spectral density was calculated with the multitaper window [17]

(MATLAB pmtm) and displayed in log-log coordinates. The choice of the order
of the filter depended on the digitizing step of 2 ms and the pass band. Empirically
order 500 gave invariance of the distribution of minimal amplitudes in null spikes
over the relevant pass bands (Table 1) [15]. The pass bands were calculated in
multiples of the Nyquist frequency (100 and 250 Hz) in order to approximate the
conventional pass bands, and in order to show the scale-invariance of the oscilla-
tions in each pass band, when the duration of display was changed inversely with
the frequency range [15].

2.2 Theoretical Methods

The simplest mesoscopic cortical circuit that suffices to model cortical dynamics
contains two neural populations that form a KII set [18]: one is an excitatory KIe
set; the other is an inhibitory KIi set. The minimal connections require that each KI
set be modeled by a positive feedback loop between respectively 2 KOe sets and
two KOi sets. The linear part of the KO cortical dynamics is revealed by the non-
oscillatory impulse response (averaged evoked potential) under deep anesthesia. It
can be fitted with the solution of a 2nd order ordinary differential equation (ODE),
which is the sum of two exponentials. One term gives the initial rise rate, a= 220/s,
and the other term gives the decay rate, b= 720/s, to the pre-stimulus baseline [11].

In the waking, behaving state the impulse response is oscillatory; it is measured
by fitting to it the sum of two damped cosines [11, 18]. The power-law distribution
of connection density with distance of transmission [19] endows the cortex with the
property that, when a phase transition begins, it extends from a site of nucleation
over the entire sensory cortex irrespective of its size. The resulting long correlation
length makes it feasible to model the transition dynamics with a lumped approx-
imation of the 2-D system. The linear part of the KII set is modeled by four 2nd
order ODE [18]. The two rate constants, a and b, are the same for all four KO sets.
The nonlinear part of the KII set is modeled by a time-invariant asymmetric sigmoid
function at the output of each of the four populations.
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The system is piece-wise linearized by replacing the sigmoid curve of each KO
set with 1 of 4 fixed gain coefficients that are equal to the slope of the tangent to the
sigmoid curve at a given operating point. That point is determined by measurement
of the closed loop impulse response. It has the form of the sum of 2 damped cosines.
The four interactions of the KII set are expressed in four nonlinear gain parameters:
excitation of excitatory or inhibitory, inhibition of excitatory or inhibitory.

The important parameters from fitting damped cosines to the impulse responses
are the amplitude, frequency, ω, and decay rate, α, of the cosine with ω in the gamma
range and the value of α that is closest to the jω axis. The 4 gain coefficients in the
model predict the values of ω, α, amplitude, v, and phase, φ, of the impulse response.
Conversely, the experimental values of ω, α, v, and φ serve to evaluate the 4 gain
coefficients in the model.

Sets of solutions are generated to calculate the changes in the impulse responses
with changes in the state of the cortex that are expressed in the closed loop poles
and zeroes of the linear solutions. The state dependence of cortical dynamics is
displayed by the paths of the closed loop poles and zeroes that are generated by
changing the cortical state with anesthetics or changing the intensity of the input
impulse, δ(t). These paths are root loci. Owing to the symmetry of the upper and
lower halves of the complex plane, only the upper half need be displayed. Full
details of methods are available on-line [11].

3 Results

3.1 Experimental Results

The temporal ECoG power spectral density (PSDT) in coordinates of log power
vs. log frequency was calculated over segments relatively long in duration (1–6 s).
Typically the PSDT conformed to a power-law (1/f) distribution in three frequency
ranges having different slopes (Fig. 1A, black curve). In the range of delta, theta and
alpha (<12.5 Hz) the slope tended toward zero (1/f0) but with peaks above the trend
line in segments having narrow band oscillations (Fig. 1A, dark curve). In the range
of high beta and most of gamma (12–80 Hz) the slope varied between the limits
of −1 to −3 (1/f1 to 1/f3) depending on the behavioral state (especially waking vs.
sleeping [20]). Above 80 Hz the slope was close to−4 (1/f4) in the absence of noise
[21] and to 0 (1/f0) in the presence of noise [22].

The PSDT of short segments (80–120 ms) extracted with a non-overlapping
window stepped across the ECoG revealed multiple peaks coexisting at each step
(Fig. 1A, gray curve), which varied in center frequency from each step to the next.
The PSDT was used to decompose the ECoG by centering a narrow band pass filter
(5 Hz width) on each peak. The output was an oscillation that waxed and waned in
amplitude in correspondence with the formation of bursts in the ECoG at different
carrier frequencies. The example shown in Fig. 1C, was from the peak in power in
the high gamma range (50–55 Hz). During high power (Fig. 1B) the spatial pattern
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Fig. 1 A PSDT. Finding the carrier band to within ± 2.5 Hz was crucial [20]. B Gamma ECoG,
62 superimposed signals. C Log10 analytic power from the Hilbert transform of band pass filtered
signals [16]. D Analytic frequency. Phase resolution needed to demonstrate spatial coincidence of
the null spike and the apex of the following conic phase gradient holds only for non-overlapping
down spikes (as at a) and not when other bursts superimpose (as at j and k)

of amplitude and the frequency (Fig. 1D) both were relatively fixed [3] but they both
changed from each frame to the next.

Evidence for the mechanism of the change was sought in the amplitude trough of
between frames. The trough was visualized by superimposing all available signals
(62 channels in Fig. 1). The display worked because all the signals had the same
instantaneous frequency with minimal phase dispersion (within±π rad = ±45◦).
At one or more time steps the analytic power (B, a) decreased to very near zero
at or near one channel, and the analytic frequency (D, a) was indeterminate (as
manifested by the very high spatiotemporal variance). At that moment there was
a discontinuity in the ECoG signal in this pass band that was expressed in phase
slip from one pre-existing carrier frequency in a preceding frame to a new car-
rier frequency in the next succeeding frame on all signals. This event (downward
spike in poser, maximum spatial SDX of the analytic frequency, and analytic phase
discontinuity) was inferred to serve as a temporal marker for the phase transition.

A spatial marker for the phase transition was revealed by plotting the analytic
power as a function of spatial location (Fig. 2). Serial spatial maps of the log10
analytic power in the filtered ECoG (the time series in Fig. 1C), when displayed as
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Fig. 2 Co-localization was found of the null spike, cone apex, and center of rotation in bursts in
which one frequency dominated (Fig. 1, C). a The spatiotemporally localized null spike at a in
Fig. 1 emerged between AM patterns. b The invariant AM pattern of the burst from b–b′ in Fig. 1
was determined by learning. c The invariant PM pattern in b–c in Fig. 1 conformed to an inverted
cone. d–i Half cycle ECoG amplitudes at 52 Hz revealed rotation [1, 2]

movies [23], revealed a surface that flapped and rolled like an ocean in storms [1, 2].
Intermittently the power decreased in a brief spike (Fig. 2A). The shape and width of
the spike (Fig. 2A) conformed to the point spread function of a point dipole located
at a depth of 1–1.5 mm below the recording array on the cortex, which corresponded
to the depth of the generating layer of cortical dendrites (Chapter 4 in [11, 6]).

Another type of spatial marker had previously been found by mapping the 64
phase values of the carrier wave at its center frequency with respect to the spatial
average phase at each time step [13, 14]. The phase surface formed by the 8×8
array of phase values was fitted with a cone. In roughly half of the cones the apex
had phase lead corresponding to an explosive radiation, whereas half had phase lag
at the apex (implosion). The location of the apex of a cone was postulated to corre-
spond to the maximum or minimum of phase and to coincide with the location of the
preceding null spike. It did so (Fig. 2C) if there was only one dominant frequency
in the oscillatory burst (time segment a to b′ in Fig. 1C) but not if the segment con-
tained two components or more (preceding a and segment j to k). It was postulated
that two or more superimposed bursts distorted the phase distribution from a cone
[4]. Attempts to fit the sum of two cones failed, owing to insufficient information
for convergence of nonlinear regression [14].
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A third source of evidence for a critical spatial point in the phase transition came
from the cinematic display [23] of the filtered ECoG amplitude (Frames d–i in
Fig. 2). The spatial pattern of the ECoG amplitude in a single half-cycle was sam-
pled from minimum to maximum at 2 ms time steps at the arrow d–i in Fig. 1C). The
center frequency was 52 Hz; the wavelength was 19 ms, so each half cycle had six
2-ms steps. The successive cinematic frames [23] in this example revealed counter-
clockwise rotation of the field of ECoG potential around a center point close to the
site of the preceding null spike. The field resembled the appearance of a vortex in a
satellite image of a hurricane [24, 1]. Other examples revealed clockwise rotation,
irrespective of the sign of the phase gradient (negative: explosion: positive: implo-
sion). In contrast, the normalized spatial pattern of the analytic power (Fig. 2b) was
constant across the half cycle and in fact across the time segment b to c in Fig. 1b.
Collocation of the center of rotation with the null spike preceding the frame was
not observed unless there was only one dominant frequency of oscillation carrying
a spatial AM pattern.

3.2 Theoretical Results

The solutions to the piece-wise linear approximation of cortical dynamics by four
2nd order ODE generated 8 poles. Of the 8 poles the only pair of importance was the
complex conjugate pole pair closest to the imaginary axis of the complex plane, and
then only if the root loci crossed the imaginary jω axis. Owing to the symmetry of
the complex pole pair,−α±jω, the display of the root locus plot was restricted to the
upper half of the complex plane in the frequency range of ω = 0–400 rad/s (64 Hz)
and decay rate α = −200/s to +100/s. The graph showed a family of root loci.
Each locus running mainly down and rightward showed the decreases in (ω, α) with
increasing response amplitude (shown by the tick marks). The increase in ampli-
tude imposed a concomitant increase in negative feedback gain, as predicted from
the sigmoid nonlinearity (Chapter 3 in [11, 18]). The group of root loci (stacked
from left to right) showed the increase in frequency and amplitude with increase in
the steepness of the sigmoid curve with the degree of arousal (Chapter 5 in [11]),
resulting in increased forward gain.

The conditional instability of the cortex indicating the possibility of a phase tran-
sition was predicted by the crossing of the group of root loci over the imaginary
axis. The upper crossing was from left to right (conversion of the sign of the real
part, α, of the root was from − to +) with increasing forward gain and negative
feedback gain. The crossing predicted that response amplitude would continue to
increase and carry the system into an exponential increase in oscillatory amplitude:
a burst. However, the root loci turned to the left and crossed back into the left of the
jw axis. The convergence indicated an approach to a limit cycle attractor, because
further increase in amplitude would increase the decay rate, a, and thereby decrease
the feedback gain. This piecewise linear analysis provided a scaffold for using the
impulse response to demonstrate the relation between degree of stability of the cor-
tex modeled by the KII set in relation to arousal, sensitization by learning forming
Hebbian assemblies for CS [5], and the predicted frequencies of bursts.
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What remained to be explained sorted out was the sources of the spontaneous
variation. The group of root loci could be explained by fluctuations in arousal,
including the trend in each experimental data set for reduced arousal from sati-
ety and fatigue. The orthogonal variation along each root locus in the group was
replicated by giving sufficient anesthetic to reduce the background activity to a low
level and then augmenting it by tetanic stimulation (high-frequency electrical stim-
ulation, e.g., 200 Hz) of the incoming axons to the sensory cortex. This artificial
noise temporarily reversed the effect of the anesthetic by increasing the frequency
of oscillation and the decay rate over the physiological beta and gamma ranges
(Fig. 4). Therefore the spontaneous variation was at least in part attributed to the
fluctuations in the background Rayleigh noise in the filtered ECoG, including the
down spikes. In brief, the location of the operating point of the cortex as revealed by
the frequency and decay rate of the impulse response was dependent on arousal and
on the signal-to-noise ratio of the CS-induced signal to the intrinsic, self-organized
background spontaneous noise.

4 Discussion

The proposed hypothesis is that the phase transition that initiates each new frame in
perception is dependent on a singularity in cortical dynamics. The key experimental
evidence is the null spike, which has been discovered by pushing to the limits of the
spatial, temporal and spectral resolution of ECoG. Experimentally the singularity
resides in a spatiotemporal point, which does not conform to a pontifical neuron or to
a cortical column but to a unique point in a vector field of mesoscopic activity [24]:
the null spike; the conic apex; the center of rotation. The key theoretical evidence
comes from the group of root loci fin the piecewise linear analysis of the KII set.
The onset of instability is marked by the sign reversal (− to +) of the real part,
a, of the complex pole pair, −α±jω, with increasing amplitude. The singularity is
modeled by the convergence of the root loci where they converge to the jω axis
and α = 0. It occurs when the operating point approaches the limit cycle attractor,
where the amplitude predicted from linear approximation increases exponentially,
the background noise approaches 0, and the signal-to-noise ratio approaches∞.

4.1 A Proposed Neural Mechanism of the Null Spike

The first question for discussion is how the null spike is generated. The answer is
found in conceiving the background activity in the rest state as band-limited noise
that generates beats: Rayleigh noise. The background ECoG has been shown to be
close to brown noise, for which the PSDT is power-law with a slope = −2 (1/fε , ε

= 2). That would hold only for the output of an ideal random source that was free of
other kinds of noise. The power-law PSDT of ECoG was found to have slopes that
were closer to −3 (black noise). That deviation from the ideal was shown to be due
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to the intrinsic stabilization of the level of the background by the refractory periods
[20] that decreased power in the PSDT in proportion to the square of the frequency.

The form of the impulse response (the damped cosine) implied that in the awake
cortex showed that the negative feedback interactions between the excitatory and
inhibitory populations operated as a band pass filter, which revealed the charac-
teristic frequencies in the beta and gamma ranges, because that perturbation, δ(t),
contained all frequencies. The action of this intrinsic filter on the background activ-
ity in active states was seen in the oscillatory bursts and peaks in the PSDT at high
temporal resolution of the spectrum (Fig. 1, A). In the absence of input the endoge-
nous oscillations were indistinguishable from the broad spectrum of black noise.
The filtering action of the KII negative feedback that was simulated by applying
band pass filters to the ECoG gave Rayleigh noise. The action of the negative feed-
back on the intrinsic oscillations evoked by sensory input was to give Rice noise
[25], for which the intervals between beats were up to twice as long as those for
Rayleigh noise. The null spikes occur as beats between the bursts [7].

By experiment [7] and theory [25] the modal interval between down spikes was
a function solely of the bandwidth at all center frequencies. The modal interval that
conformed to the repetition rate of bursts in the theta range (3–7 Hz) predicted the
optimal pass band of 5 Hz. This value was confirmed experimentally. The band-
width of the KII negative feedback was estimated from the minimal spatial standard
deviation (SD) of the analytic frequency in each frame [7].

The distribution of the magnitudes of the down spikes in the rest state was ran-
dom, because it conformed to that of spikes in filtered black noise [15]. Deviations
from randomness in distribution from the active state appeared as excesses and
deficits from values predicted for random noise [15, 9]. The modal interval between
bursts that had classifiable AM patterns suggested that the threshold for reduction
in power in the null spikes that would incur phase transitions was ˜10−4 below the
modal power [15].

4.2 Interpretation of the Role of the Null Spike in Perception

These diverse findings give a testable hypothesis of how the enormous neural pop-
ulation in a sensory cortex might transform itself from each frame to the next in an
eye blink, destroying a pre-existing pattern, and initiating a new one that conveys a
meaningful perception based on current sensory information. The key to interpreta-
tion is to consider the ECoG not as an electric potential but as an order parameter
[26], that is, as an index of the strength of mesoscopic interactions among a cortical
population. That interaction enables a sensory cortex to integrate its sensory infor-
mation with its past experience and create an active memory that drives behavior.
The ECoG order parameter is a vector that is evaluated by the AM pattern in each
frame [24, 8].

The mass action that results from interaction must be sufficiently powerful to
exert its influence on large populations elsewhere in the brain. This is ensured by
the global synchrony of simultaneous transmission by virtually all of the projection
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Fig. 3 The plot symbols 	 show the frequency, ω, and decay rate, α, of the damped cosine fitted
to the impulse response of the olfactory cortex. The cluster of points came from a set of responses
at fixed input intensity; the variation reflects the fluctuations in the level of the background activity.
The curves represent a family of root loci, which show the direction of decrease in frequency and
decay rate (arrow downward to the right) with increase in response amplitude. The two attractors
are inferred to govern the cortical dynamics. From [11, p. 374, Fig. 6.21(a)]

Fig. 4 On the left are examples of impulse responses (averaged evoked potentials) from the cat
olfactory cortex. The background was suppressed by anesthesia and then replaced by tetanizing
the axons. The frequency, w, and decay rate, a, increased in proportion to the intensity of the
background activity, showing that the stability of cortex was reduced (decrease in decay rate) by
the decrease in the background level, putatively resulting from the spontaneous occurrence of down
spikes. From [11, p. 365, Fig. 6.13–14]
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neurons in the cortex and by a spatial integral transformation that is performed by a
divergent-convergent topology in the pathway carrying cortical output [19]. Further
evidence for the repetitive framing of brain activity patterns has been found recently
through extension of the search for synchronized amplitude and phase patterns from
the intracranial ECoG to the scalp EEG [10, 27, 28].

Pursuit of this speculative hypothesis will require both experimental and theoret-
ical advances. The main experimental deficiency is that the null spike usually fails
to coincide with two other singular values: the apex of a conic phase distribution
and the center of rotation of a vector field. The failure can be ascribed to several
factors, including undersampling the spatial and temporal data streams, inadequate
and inaccurate spatial and temporal decomposition of the AM and PM patterns, and
lack of robust descriptions of null spikes, which often appear to move in their brief
lifespan, which occur in clusters that are analogous to tornado vortices in weather
systems [24, 1], and which are too brief to detect rotation at existing digitizing
rates.

The main theoretical deficiency is the lack of mathematical structure linking the
basic physics of singularities in vector fields with the electrophysiological data, with
linear control systems in electrical engineering, and with the theory of behavior.
Three behavioral factors determine the approach of the operating point along a root
locus to the attractor that expresses the dynamic of phase transition. One is arousal
contributing to the signal amplitude (Fig. 3) and the background noise level (Fig. 4).
The second is the input-dependent amplification of the impulse response by the
sigmoid nonlinearity. The third is the selective sensitivity to a CS that depends on
formation of a Hebbian cell assembly through learning. The concept of singularity
is proposed here to indicate a fruitful direction [29] in which to explore a major
question in contemporary neuroscience: how do we perceive?
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Nonequilibrium Behavior in Neural Networks:
Criticality and Optimal Performance

J.J. Torres, S. Johnson, J.F. Mejias, S. de Franciscis, and J. Marro

Abstract We present a general theory which allows one to study the effects on
emergent, cooperative behavior of a complex interplay between different dynamic
processes that occur in actual systems at the neuron, synapse and network levels.
We consider synaptic changes at different time scales from less than the millisecond
to the scale of learning, and the possibility of finding a fraction of silent neurons.
For some limits of interest, the fixed-point solutions or memories then loose stability
and the system shows enhancement of its response to changing external stimuli for
particular network topologies and dynamical memories. We observe at the edge
of chaos that the network activity becomes critical in the sense that the relevant
quantities show non-trivial, power–law distributions. We also describe the effect of
activity–dependent synaptic processes on the network storage capacity.

Keywords Unstable dynamics · Activity-dependent synaptic processes ·
Dynamical memories · Optimum network topology · Criticality

1 Introduction

Recent research in neuroscience including both in vivo and in vitro experiments
have demonstrated that synapses are more than simple communication lines among
neurons, and that many different dynamic processes taking place in the synapses can
influence and even determine different type of information processing in the brain
[1]. Some of these mechanisms can occur on different time scales. For instance, on
a time scale longer than the second (say days or years), synapses can be modified
due to learning. This has been widely studied within a general theory of learning
in attractor neural networks [2]. In addition to this, it has been described that
fast synaptic fluctuations coupled with other mechanisms during the transmission
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of information seem to determine a large variety of computations in the brain
[3, 4]. These fluctuations occur on very short (less than the millisecond) temporal
scales, and they seem to have different causes. For instance, the stochasticity of the
opening and closing of the neurotransmitter vesicles, variation in the postsynaptic
response along the dendritic tree, which in turn has several sources (e.g., variations
of the glutamate concentration in the synaptic cleft) and differences in the power
released from different locations on the active zone of the synapses [5]. Together
with these fast synaptic changes, it has been reported that the postsynaptic response
is also affected by short-time activity-dependent mechanisms which can decrease or
increase the amount of available neurotransmitter and, consequently, the postsynap-
tic response is either depressed or facilitated [1, 6]. This type of synaptic plasticity
is believed to be fundamental for the development and adaptation of the nervous
system, and to be at the base of higher brain functions such as learning and memor.

In this paper we present an attempt towards a theoretical framework to study
systematically the influence of synaptic changes on the collective properties of a
neural network, where the network topology itself is also a variable to be considered.
In particular, of special interest is to understand how these synaptic mechanisms
for different network topologies affect the fixed points of the neural activity and
their stability, which concerns memory, recall processes and sensibility to external
stimuli.

2 Model and Results

Let us consider N neurons – for simplicity assumed binary so that configurations
are S ≡ {si = ±1; i = 1, . . . , N} – connected by synapses of intensity wij =
wijzj ∀i, j. Here, wij ≡ 1/N

∑M
μ=1Ξ

μ
i Ξ

μ
j are fixed and determined in a previous

learning process in which the M patterns of neural activity Ξμ ≡ {'μi = ±1; i =
1, . . . , N}, μ = 1 . . .M, are stored. wij represents the maximal averaged synaptic
conductance between the presynaptic neuron j and the postsynaptic neuron i, while,
zj ∈ R is a stochastic variable that influences these conductances and accounts for
other synaptic dynamics than those associated to learning. For fixed W ≡{wij}, the
network state A = (S, Z ≡ {zi}) follows the probabilistic dynamics

∂Pt(A)

∂t
=
∑

A′

[
Pt(A′)c(A′ → A)− Pt(A)c(A → A′)

]
, (1)

where c(A → A′) = p cZ(S → S′) δZ,Z′ + (1 − p) cS(Z → Z′) δS,S′ [7]. This
amounts to assume that neurons (S) change stochastically in time competing with
a noisy dynamics of synapses (Z), the latter with an a priory relative weight of
(1− p)/p [8].

For p = 1, the model reduces to the Hopfield case, in which synapses are
quenched, i.e., zi is constant and independent of i, e.g., z = 1. This limit has been
widely studied in the last decades [2]. More interesting is the case of p → 0, which
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describes fast synaptic fluctuations. In this limit, one can uncouple the stochastic
dynamics for neurons (S) and the synaptic noise (Z) using standard techniques [8].
It follows that neurons evolve as in the presence of a steady distribution for the noise
Z: If we write Pt(A) = Pt(Z|S)Pt(S), where Pt(Z|S) stands for the conditional prob-
ability of Z given S, one obtains from (1), after rescaling time tp → t and summing
over Z, that

∂Pt(S)

∂t
=
∑

S′

{
Pt(S′)c̄[S′ → S]− Pt(S)c̄[S → S′]

}
. (2)

Here, c̄[S → S′] ≡∑
Z Pst(Z|S) cZ[S → S′], and the stationary distribution for the

noise is

Pst(Z|S) =
∑

Z cS[Z′ → Z] Pst(Z′|S)∑
Z cS[Z → Z′]

. (3)

This expression involves an assumption on how synaptic noise depends on the over-
all neural activity. An interesting particular situation is to assume activity-dependent
synaptic noise consistent with short-term synaptic depression and/or facilitation [6,
9]. That is, let us assume that Pst(Z|S) =∏

j P(zj|S) with

P(zj|S) = ζ (m) δ(zj −Φ)+ [1− ζ (m)] δ(zj − 1). (4)

Here, m = m(S) ≡ (
m1(S), . . . , mM(S)

)
is the M-dimensional overlap vector,

mμ = N−1 ∑
iΞisi, and ζ (m) stands for a function of m to be determined.

With this choice, the average over the distribution (4) of the noise variable is
zj ≡

∫
zjP(zj|S)dzj = 1 − (1 − Φ)ζ (m) and the variance is σ 2

z = (1 − Φ)2ζ (m)
[1 − ζ (m)]. Note that these two quantities depend on time for Φ �= 1 through
the overlap vector m, which is a measure of the activity of the network. Moreover,
the depression/facilitation effect in (4), namely zj = Φ > 0 (Φ �= 1), depends
through the probability ζ (m) on the overlap vector, which is related to the net
current arriving to postsynaptic neurons. Consequently, the non–local choice (4)
introduces non–trivial correlations between synaptic noise and neural activity. One
has a depressing (facilitating) effect for Φ < (>)1, and the trivial case Φ = 1
corresponds to the Hopfield model with quenched synapses. It is remarkable that,
although the fast noise dynamics occurs at a very small time scale, the depressing
or facilitating mechanism occurs on the time scale of the neural activity –via the
coupling with the overlap vector through the function ζ (m).

The general model described by Eqs. (1–4) can be easily generalized to other
cases of interest such as the possibility of having silent nodes in the network (every
time the activity is updated). For instance, one may assume that the transition
probabilities have the form

cZ[S → S′] =
∑

x

pn(x)
∏

i|xi=1

τn(si → s′i; Z)
∏

i|xi=0

δsi,s′i . (5)
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Here, x is an operational set of binary indexes fixed to 1 at n sites chosen at each
time according to distribution pn(x), and fixed to zero at the other N – n sites. The
choice (5) simply states that one (only) updates simultaneously the selected n nodes.
We also assume that the elementary rate τn(si → s′i; Z) depends on the factor βsihi

where β = T−1 is the inverse of the temperature and hi(S, Z) ≡ ∑
j εijwijzjsj is

the local field or synaptic current a particular neuron is receiving from its neigh-
bors. Here εij = {1, 0} is the adjacency or connectivity matrix, which describes the
existence or not of interaction between i and j. This allows for the consideration of
different network topologies. For any non-trivial topology, is convenient to consider
the local overlap mμj = 〈k〉−1 ∑

iΞisi, where 〈k〉 is the mean neuron degree or num-
ber of neighbors, which equals the global one only when all neurons are connected
to each other.

A main result is that the system shows quite qualitatively different behavior
depending on the value of T and ρ ≡ n/N. In particular, one easily observes the
familiar Hopfield phases of complete disorder and one in which the system may
recover one of the stored patterns. More intriguing are cases such as those in Fig. 1,
namely, dynamic phases in which the network activity chaotically switches among
the stored patterns and antipatterns (i.e., negatives of the stored patterns).

Concerning topology, a given neuron i in biological networks is seldom or never
connected to the rest, but rather only to a relatively small subset of neighbors – of
cardinal ki = ∑

j εij, which is i’s degree. Even in the case of the worm C. elegans,
with only about 300 neurons, it turns out that there is great disparity in the values
of k, ranging from just one or two to a large portion of the network. Although little
is yet known about the precise architecture of animal brains, a first approximation
we can consider for neural systems – as is often done in other networks – is to
assume that the synapses are placed randomly between the neurons, and focus only
on the degree distribution, p(k). In this approximation, known as the configurations
ensemble, the expected value of ε ij, given ki and kj, is εij = kikj/(〈k〉N). We will
be particularly interested in scale-free distributions, p(k) ∼ k−γ , which appear to be
quite ubiquitous in nature.

Fig. 1 Two of the different types of dynamic behaviour exhibited by the nonequilibrium neural
network showing chaotic switching from one attractor to the other. Parameters are N = 1, 600,
M = 5, T = 0.01, Φ = −0.8 and ρ = 0.45(0.5) for the left (right) simulation
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Standard mean-field analysis for M = 1 (a single stored pattern and its antipat-
tern) [10] shows that there is a second order phase transition, from the memory
phase to the chaotic one, with increasing temperature. The critical value for ρ = 1 is
Tc = 〈k2〉/(〈k〉N), where the averages 〈·〉 are over p(k). Setting T = 0, we find there
is also a transition, with decreasingΦ, from the memory phase in which either of the
fixed points m = ±1 is stable, to one in which the system jumps chaotically between
the two. The critical value of Φ at which this occurs is Φ0 = 1 − 〈k〉3〈k3〉−1. MC
simulations show that, for non-zero T, chaotic windows open forΦ � Φ0. They also
tell us that these results are robust for larger values of M and qualitatively similar
for ρ < 1.

This edge of chaos is particularly interesting, since it has been shown that this
kind of transition can be optimal for certain magnitudes such as computational
capacity [11] and dynamic range of sensitivity to stimuli [12]. To illustrate how
this is also the case here, we store a set of M patterns and then show the system a
randomly chosen one every certain number of time steps. This is done by changing
the field at each node for just one MCS: hi → hi + δξνi , as if a signal of intensity
δ had been received. In general, when in the ordered phase, a high δ is required to
destabilize the current pattern. However, close to the transition to chaos, the sys-
tem becomes more sensitive and reacts appropriately. Within the chaotic regime,
however, it does not then retain the pattern shown. We quantify performance as the
temporal average 〈mν〉time, where ν is the pattern last shown. This is displayed in
Fig. 2a. The figure shows that the performance exhibits a peak corresponding to
the optimal scale-free topology, that for the case of low depression (Φ → 1) occurs
around p(k) ∼ k−2. This is a consequence of the particular dependence of the critical
parameters Tc and Φc with the moments of the degree distribution: the more het-
erogeneous the network, the more robust the system will be to thermal fluctuations,
and yet the less synaptic depression will be required to place the system at the edge
of chaos. This optimization effect also is reflected by the emergence of power-law
distributions of permanence times around the attractors, when the system in near the
edge of chaos, as is depicted in Fig. 2b. Here, P(	τ ) is the probability that, through-
out the time interval (t′, t′ + 	τ ), a local field hi(t) is fluctuating above a baseline
h0 = 0.1 or below h0 = −0.1, and averaged over all sites in the network. Optimal
scale-free network topologies with exponent −2 could be related to the existence of
a functional scale-free topology of the human brain during cognitive tasks with the
same exponent [13]. It seems plausible, therefore, that the brain may acquire this
kind of distribution – either structurally or functionally – in order to maximize its
performance.

Finally we also report on the effect of synaptic processes coupled with network
activity on maximum storage capacity of the network [14] via a phenomenological
model of activity-dependent synapses (see [15] for details) which involves a compe-
tition between facilitating and depressing synaptic mechanisms. This model can be
studied using our general theoretical framework assuming P(zj/S) = δ(zj − Φj(S))
with Φj(S)) = Dj(t, sj)Fj(t, sj) and Dj(t, sj), Fj(t, sj) representing dynamic vari-
ables for the depression and facilitation mechanisms varying in time-scales τ rec and
τ fac, respectively. Maximum storage capacity is computed at T = 0 and in the
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Fig. 2 (a) Network performance against γ for scale-free random topologies, withΦ = 1.0 (static-
synapses limit). Averages over 20 realisations, with stimulation every 50 MCS for 2,000 MCS.
Other parameters are δ = 5, M = 4, T = 2/N, 〈k〉 = 20, N = 1, 600, ρ = 1. Inset: sections of
typical time series of mν , with ν = 1, ..., 4 represented as different colours, for γ = 4 and Φ (top)
and Φ = 0.6 (bottom). (b) Emergence of criticality in the model near the edge of chaos. Other
parameter were N = 800, M = 10, T = 0, Φ = −0.75 and	 = 0.1. (c) Critical storage capacity
αc as a function of τ rec, for different values of τ fac. (d) Critical storage capacity αc as a function of
τ fac, for different values of τ rec. In both panels, the results from numerical simulations (symbols)
with (N = 3, 000) are supported by mean field predictions (lines)

memory phase. In practice, this implies considering only the steady state of Dj and
Fj as a function of sj and including them in the local field hi. When the number of
stored patterns is increased, the interference between patterns makes the attractors
associated with these patterns loose their stability. Then, the maximum number of
patterns, relative to the network size, namely αc = Mc/N, that the network can store
and retrieve without interference is the maximum storage capacity. The behaviour
of αc as a function of the relevant synaptic parameters is depicted in Fig. 2c, d. In
general, one has a non-monotonic dependence of storage capacity as a consequence
of the competition of different synaptic processes with, a priori, opposite effects on
the stability of attractors (e. g., depression tries to destabilize the memories whereas
facilitation tries to keep the activity of the network in one particular attractor). This
fact implies that activity-dependent synaptic changes are not only convenient for
dynamic processing of information in actual neurons, as we have seen above, but
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an optimal balance between depression and facilitation effects is also necessary to
have neural networks with good retrieval properties.
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A Hierarchial Model for Visual Perception

Bolei Zhou and Liqing Zhang

Abstract This paper proposes a computational model for visual perception: the
visual pathway is considered as a functional process of dimensionality reduction
for input data, that is, to search for the intrinsic dimensionality of natural scene
images. This model is hierarchically constructed, and final leads to the formation of
a low-dimensional space called perceptual manifold. Further analysis of the percep-
tual manifold reveals that scene images which share similar perceptual similarities
stay nearby in the manifold space, and the dimensions of the space could describe
the spatial layout of scenes, which are like the degree of naturalness, openness
supervised trained in (Oliva, A., and Torralba, A. Int. J. Comput. Vis. 42 (2001) 145–
175). Moreover, the implementation of scene retrieval task validates the topographic
property of the perceptual manifold space.

Keywords Sparse coding · Hierarchical model · Computational vision

1 Introduction

From photoreceptor of retina to the unified scene perception in higher level cortex,
the transformations of input signal in visual cortex are very complicated. The
neurophysiological studies [1] indicate that through the hierarchical processing of
information flow in visual cortex, the extremely high-dimensional input signal is
gradually represented by fewer active neurons, which is believed to achieve a sparse
coding [2] or efficient coding [3].

Meanwhile, the efficient coding theory proposed by Horace Barlow in 1961 grad-
ually becomes the theoretical principles for nervous system and explain away much
neuronal behaviors. One of the key predictions of efficient coding theory is that
the visual cortex relies on the environmental statistics to encode and represent the
signal [4], that is to say, the neuronal representation is closely related to the intrinsic
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properties of the input signal. Moreover, studies on the natural image statistics show
that the natural images are usually embedded in a relatively low dimensional man-
ifold of pixel space [5], and there is a large amount of information redundancy
within the natural images. According to the efficient coding theory, it is assumed
that the structure of neural computations should fully adapt to extract the intrinsic
low dimensionality of natural image to form the unified scene perception, in spite
of the extremely high-dimensional raw sensory input from the retina [1].

Under the efficient coding theory and natural image statistics, we propose a
computational model for visual perception: the visual pathway is considered as a
functional process of dimensionality reduction for input signal, that is, to remove
the information redundancy and to search for the intrinsic dimensionality of natural
scene images. By pooling together the activity of local low-level feature detectors
across large regions of the visual field, we build the population feature representa-
tion which is the statistical summary of the input scene image. Then, thousands of
population feature representations of scene images are extracted, and to be mapped
unsupervised to a low-dimensional space called perceptual manifold. Further anal-
ysis of this manifold reveal that scene images which share similar perceptual
similarity stay nearby in the manifold space, and the dimensions of the manifold
could describe continuous changes within the spatial layout of scenes, which are
similar to the degree of naturalness and openness supervised trained in [6]. In addi-
tion, the implementation of scene retrieval task validates the topographic property
of the perceptual manifold space. In the following section, the Perceptual Manifold
model is extended in detail.

2 The Hierarchical Model

One of the fundamental properties of visual cortex concerns the ability to integrate
the local components of a visual image into a unified perception [1]. Based on
the neurobiological mechanism of hierarchical signal processing in visual system,
we build a computational architecture called Perceptual Manifold. The architecture
includes three hierarchical layers: (1) local feature encoding, (2) population feature
encoding and (3) perceptual manifold embedding (refer to Fig. 1a).

2.1 Local Sparse Feature Encoding

Experimental studies have shown that the receptive fields of simple cells in the pri-
mary visual cortex produce a sparse representation of input signal [4]. The standard
efficient coding method [7] assumes that the image patch is transformed by a set of
linear filters wi to output response si. In matrix form,

s = Wx (1)

Or equivalently in terms of a basis set, x=As=W−1s. Then, the filter response si are
assumed to be statistically independent,
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Fig. 1 (a) Schematic diagram of the Perceptual Manifold model. There are three hierarchical
layers of sensory computation before the final formation of the perceptual space. (b) A subset of
filter basis W trained from natural image patches, they resemble receptive fields of the simple cells
in V1

p(s) =
∏

i

p(si) ∝ exp(−
∑

i

|si|) (2)

Specifically, 150,000 20 × 20 gray image patches from natural scenes are used
in training. A set of 384 20×20 basis function is obtained. These basis functions
resemble the receptive field properties of simple cells, i.e., they are spatially local-
ized, oriented, and band-pass in different spatial frequency bands (Fig. 1b). Let
W = [w1, w2, ..., w384] be the filter function. A vectorized image patch x can be
decomposed into those statistically independent bases, in which only a small por-
tion of bases are activated at one time. They are used as the first layer of local feature
extraction in the architecture.

2.2 Population Feature Encoding

Higher processing stages are not influenced by single V1 neuron alone but by the
activity of a larger population [8]. The neurophysiological study [1] implies that
on the population level, a linear pooling mechanism might be used by the visual
cortex to extract the global response of the stimulus. In view of this evidence, our
computational model includes a second layer of population encoding to sum up
feature’s response over the local visual fields.
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Let X = [x1, x2, ..., xn, ...] denote the sample matrix, where xn is the vectorized
image patch sampled from scene image. The population feature component for the
ith feature is:

pi =
∑

n |w)i xn|∑
i
∑

n |w)i xn|
(3)

Thus, p = [p1, p2, ..., p384]) is the population response of scene image.

2.3 Perceptual Space Embedding

Furthermore, neurophysiological studies have often found that the firing rate of
each neuron in a population can be written as a smooth function of a small num-
ber of variables [8], which supports the idea that the population activity might be
constrained to lie on a low-dimensional manifold. To search for the underlying
meaningful dimensionality of percept, the Local Linear Embedding [9] is applied
as the nonlinear dimensionality reduction method for thousands of the population
feature responses of scene images:

First step: compute the weight Wij that best linearly reconstructs pi from its
neighbor pj, minimizing:

ε(W) =
∑

i

|pi −
∑

j

Wijpj|2 (4)

Second step: compute the low-dimensional embedding vectors yi best recon-
structed by Wij, minimizing:

φ(y) =
∑

i

|yi −
∑

j

Wijyj|2 (5)

The resulting embedding space R
M is called perceptual space, where vector y =

[y1, y2, ..., yM]) ∈ R
M . The topographic properties of this space would be analyzed

in the following experiment section.

3 The Experiment

The dataset of natural images implemented here is from [10], which contains 3,890
images from 13 semantic categories of natural scenes, like coast, forest, etc. And
image size is normalized as 128×128 pixels.

All 3,890 images are used in the embedding process. The dimensionality of man-
ifold space M is tuned as 20, so that the space embedding is R

384 → R
20. Figure 2

shows the embedded sample points described by first three coordinates of the per-
ceptual space, in which points of images from four categories are visualized, and
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Fig. 2 (a) Colored points of scene images from four categories are visualized by the first three
coordinates of the perceptual space, the geometric structure among those points of scene images
is clearly nonlinear. (b) Some examples of target images with the sets of retrieved images. Despite
the simplicity of the similarity metric used in the experiment, these pairs share close perceptual
similarity (Colors will be viewed in online version)
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are colored according to the images’ scene category. We can clearly see the cluster-
ing and nonlinear geometric property of the data points in the space. Moreover, the
image retrieval task as follows validates its property.

3.1 Image Retrieval

Image retrieval task is to retrieve the perceptually similar sets of images when given
a target image. This task is implemented in our embedded perceptual space and
achieves impressive results.

To show the topographic property of the perceptual space, image similarity
metric is approximated simply as the Euclidean distance between the target i and
retrieved ones j in the perceptual space, that is,

D2(i, j) =
M∑

h=1

(yih − yjh)2 (6)

Fig. 2 shows examples of target images and retrieved sets of K least metric images,
here K is 6. Despite the simplicity of the similarity metric used in the experiment,
the set of retrieved images are very similar to the target image.

4 Discussion and Conclusion

The efficiency of the neural code depends both on the transformation that maps the
input to the neural responses and on the statistics of the input signal [4].

In this paper, under the theory of efficient coding, a hierarchical framework
is developed to explore the intrinsic dimensions of visual perception. By pooling
together the activity of local low-level feature detectors across large region of the
visual field, we build the population feature representation which is the statistical
summary of the input scene image. Then, thousands of population feature rep-
resentations of scene images are extracted, and mapped unsupervised to the low
dimensional perceptual space. Analysis of the perceptual space reveals the topo-
graphic property that scene images with similar perceptual similarity stay nearby in
the embedded space. Moreover, the implementation of scene retrieval task validates
the topographic property of the perceptual space.

In addition, it is noteworthy that in the image retrieval task, most of the retrieved
images belong to the same scene category of the target image hand-labored in [10].
This would imply the topographic property of the embedded perceptual space corre-
sponds to the semantic concept of scene image, and this interesting property would
be discussed in our further work.
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An Orientational Sensitive Vision Model Based
on Biological Retina

Hui Wei and Yuxiang Jiang

Abstract This paper described a novel approach to construct a space-variant cell
distribution according to biological retina. The model designed in this paper sam-
ples pictures with pseudo-random “photoreceptor cells” rather than with pixels. And
such a sub-pixel sampling method radically differs from uniform pixel array version
used in conventional computational vision. Moreover, a simple type of ganglion
cells was also modeled to represent orientational stimulus in the visual field.

Keywords Space-variant · Sub-pixel sampling · Orientation sensitive

1 Introduction

As we known, a bunch of preeminent advantages of retina have been evolved for
human to survive. Retina, as an outstretched part of central neural system, con-
tributes a lot to image processing, especially to integration and segmentation [1–3].
On one hand, The photoreceptor cells highly packed in central foveal region pro-
vide a fine resolution of the object we focused. On the other hand, visual accuracy
decreases on the large periphery, which probably results in reducing the energy con-
sumption. Despite the ganglion cells enlarge their receptive fields along with the
eccentricity, vision fields do not seem to be blurred. In addition, it even ensures the
capacity of keeping alert the danger in the surroundings.

Pictures used in conventional digital image processing are usually sampled by
a matrix-like pixel array, which is uniformly distributed. The output produced by
these methods (involving Fourier Transformation and filter operations in most cases)
would always be represented on the same scale as the original picture, which does
not conduce to understanding the contents of pictures.

H. Wei (B)
Cognitive Algorithm Model Laboratory, School of Computer Science, Fudan University,
200433, Shanghai P.R. China
e-mail: weihui@fudan.edu.cn

615R. Wang, F. Gu (eds.), Advances in Cognitive Neurodynamics (II),
DOI 10.1007/978-90-481-9695-1_91, C© Springer Science+Business Media B.V. 2011



616 H. Wei and Y. Jiang

Some attempts have been made to transform from the orthogonal coordinates to
the log-polar [4, 5]. And the foveal region has to be considered separately since the
serious problem of singularity at center. Another alternative is to divide the entire
retina to several rings around center with different cell densities [6]. On the other
hand, [7] presented a self-organized version of retina to calculate the position of each
cell, which simulated the gradually change of density successfully. But it cannot be
so adapted for various kinds of distributions (e.g. rods density distribution) easily,
due to such restricts as complicated parameter adjustment and numerous iterations.

2 Retina Cells

Although a digital image consists of pixels, the model in this paper doesn’t regard
these pixels as the minimum sample units. Each pixel with [R, G, B] values is con-
sidered as a continuous color block. The whole picture, thus, should be interpreted
as an assemblage of many rectangle color blocks. Each photoreceptor cell has a
coordinate for its position on the retina. This enables the photoreceptor cells to sam-
ple an input picture in definite position, while the picture is being mapped onto
retina model. Therefore, not all the pixels – color blocks – around the periphery are
necessarily sampled by photoreceptor cells. However, the pixels inside the foveal
region may be over sampled by more than one photoreceptor cell.

In order to reduce the internal representation of the cells’ position, this paper
restricts these coordinates to locate on a large grid, see Fig. 1. In addition, small
grids (8 × 8) – called patterns – are defined as the minimum units making up the
entire grid. Each one of the 64 positions on the pattern either has or has not an

Fig. 1 Generate the cells using pattern pool. Each black spot on the 8 × 8 pattern represents a
single cell. The model just generates multitudes of indices, each of which consists of a required
bucket-index and a random inner-bucket-index, according to the density mosaic
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existing cell, and the more cells on a pattern, the higher density the relative region
has. Since the entire grid looks like a collage consisting of a lot of pattern “pieces”,
it is efficient to obtain a grid after adequate patterns being predefined – Patterns with
the same number of existing cells are collected together into a bucket.

3 Receptive Fields

The ganglions (output layer) collect the responses of photoreceptors, and each cell
holds a rectangular receptive field with the size depending on its eccentricity from
the fovea (Fig. 3(a)). Ganglions receive inputs within this rectangular field and sum-
mate them with the weights, where positive values for excitations and negative ones
for inhibitions. Eight types of receptive fields are used to form 8 orientation sensitive
types of ganglions. And these kinds of ganglions contribute to the Magnocellular
pathway and only receive rods’ inputs in this simple model. The response of a
ganglion is given by

Resp(n) = S(n)
∑

i

rodiWi − E(n− 1) (1)

E(n) = (n− 1)E(n− 1)+ Resp(n)

n
(2)

Here, Wi is the weight of each rod input, either excitation or inhibition, and
E(n − 1) is the expectation of the response of n − 1 pictures, which could be pro-
duced after dealing with n − 1 training pictures by recursion, while E(0) = 0. S(n)
is the standardize scaler used to adjust the raw response.

(a) (b)

Fig. 2 Right-down quadrant of the rods generated, and in comparison with the real data [8]
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(a) various RF size (b) 8 orientations

Fig. 3 (a) The receptive field size of ganglions’ varies from fovea to periphery, and bright regions
in (b) represent the excitations while dark regions for inhibitions

4 Results

Here is an example picture processed using the orientation sensitive model. The pos-
itive response of each ganglion has been rescaled to [0, 100], therefore, the response
gives 100 only if all the positive weight inputs reach their maximum value and the
negative region inside the receptive field receive no input.

For a nature picture, most ganglions are not “fired” sice the low response
(Table 1). In other words, the artificial retina doesn’t need to represent most of the
ganglions, which effectively reduce the complexity and work load of the system.

Table 1 Statistics of the ganglion responses of the example above

Response intensity 1–2 2–3 3–4 4–5 5–6 >6
Number of ganglions 1189 523 264 146 112 473
Percentage (%) 4.47 2.00 0.99 0.62 0.42 1.78

Fig. 4 (b) is the response image of rods layer after sample the source picture. Each small red bar
in (c) shows a single “fired” ganglion whose response exceeds the threshold, which was set as 5
in the case, and the longer a bar is displayed, the larger size its receptive field has (Colors will be
viewed in online version)
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The grass region in the picture can only trigger a few ganglions (Fig. 4(c)) to fire
with a threshold fixed on 5.

5 Discussions

This paper shows an implementation of the orientation sensitive vision pathway
based on space-variant foveated retina. As the main idea of this model, nonuniform
sampling aims to reduce the fire number of ganglions, therefore, reduce the energy
consumption. Yet, other cells, like cones, also contribute in the orientation sensitive
pathway, and we have to take them into account in our further research works. It
is important to notice that the imprecisely sampled information on periphery helps,
indeed, a lot to understand the picture on a global scale. However, the Parvocellular
and Magnocellular pathway of human vision, which account for over 80% of the
ganglion outputs [9], function efficiently in classifying information according to
colors, shapes, orientations and motions etc. [10]. The author believe that the study
on such parallel pathway provide us a novel way to look into how does the retina
represent the light information and why does this representation work so well.
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Recurrent Neural Networks for Local Model
Prediction

Aymen Cherif and Romuald Boné

Abstract “Local models” (Walter, J., et al. International Joint Conference on
Neural Networks, vol. 1. (1990) 589–594), consists on dividing the data into homo-
geneous clusters by Vector Quantization (VQ (Gray, R. M., and Neuhoff, D.L. IEEE
Trans. Inf. Theory 44(6) (1998) 2325–2383)) to simplify the prediction task on
each cluster and mostly inspired from the Self-Organizing Maps algorithm (SOM
(Kohonen, T. Self-Organization and associative memory, 3rd edn. (1989))). Since
recurrent neural networks have demonstrated in many times a better results and spe-
cially for chaotic time series (Boné, R. Recurrent Neural Networks for Time Series
Forecasting. (2000)), we propose in this paper a method to use the Recurrent Neural
Networks in the local approach.

Keywords Time series prediction · Recurrent neural network · Self organizing
map · Back propagation through time · Local approaches

1 Introduction

Time series forecasting is a widely treated problem which can be found in many
disciplines. Researchers coming from various fields have addressed this question,
for example in finance, mathematics, physics or machine learning. With this empha-
sis, many models and algorithms have been proposed. Starting by statistical methods
[1], Multi-Layer Perceptron (MLP [2]) and Recurrent Neural Networks (RNN [2]).
In addition to these methods, many researchers have proposed methods and tech-
niques to push the limits of prediction error. A used technique in this last decade is
the “local models” [3]. It consists on dividing the data into homogeneous clusters
by Vector Quantization (VQ [4]) to simplify the prediction task on each cluster and
mostly inspired from the Self-Organizing Maps algorithm (SOM [5]).

Since recurrent neural networks have demonstrated in many times a better results
and specially for chaotic time series [6], we propose in this paper a method to use
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the Recurrent Neural Networks in the local approach. In the first section, a brief
description of the previous work on the local approach is presented. In the second
section, we will describe the used method in this paper. Then some tests will be
presented and discussed. At last we will conclude with perspectives.

2 Vector Quantization and Forecasting

The Vector Quantization is the first step used in the local approach in order to divide
data into clusters. The most popular and used algorithm is the SOM [5]. When used
in local approach, the output layer can be changed from a 2D Layer to a linear Layer
or even a circular one [7]. However, the original SOM algorithm does not take into
account the temporal propriety (sequentiality) of the time series. A first variant is
the Temporal Kohonen Map (TKM [8]), which performs a leaky integration in each
output neuron. with these “leaky integrators”, TKM takes into account the history
of the presented vectors in the activation value Ui(n, d) for the neuron i at step t and
with d a time constant. The activation value is defined as a recursive sum defined by
the the equation1 (for further detail see [8]).

Ui(t, d) = dUi(t − 1, d)− 1

2
‖x(t)− wi(t)‖2 (1)

where x(t) is the input vector a time t and wi(t) the weight vector on the neuron i at
time t. Then the best matching units is determined by the neuron maximal activation
value.

An amelioration of this algorithm is the Recurrent Self-Organizing Map (RSOM
[9]), it consists of a “generalization” of the leaky integrator to the whole vector, the
activation Ui(.) is so replaced by a vector yi(.) as described in the equation 2, for the
remaining details RSOM is similar to TKM [10].

yi(t,α) = (1− α)yi(t − 1,α)+ α(x(t)− wi(t)) (2)

With α the analogous value of (1− d) in the TKM. Also using the leaky integrators,
the SOM with Temporal Activity Diffusion (SOMTAD [11]), which is based on
biological model of activity diffusion. In this algorithm the SOM structure is used
to memorize the activity diffusion.

Another algorithm with a different approach is the Recursive SOM (RecSOM
[12]). In this algorithm, each output neuron has a weight vector wi(t) representing its
position in the distribution and a context vector ci(t) containing map activations from
the previous time step y(t). wi(t) is updated as in the SOM algorithm [5], whereas the
context vector is updated by the learning rule 3. So the best matching unit is based
on a distance measure d depending on the weight vector and the context vector (for
more details see [12]).

	ci(t) = γ hik(y(t − 1)− ci(t)), (3)
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where hik(t) is the neighborhood function as in the SOM algorithm.
Inspired from the RecSOM, the Merge SOM (MSOM [13]). The principal differ-

ence consists in the context vector. It represents here a recursive sum between the
weight vector and the context vector from the previous iteration initially set to zero
(Eq. 4).

c(t) = γ c(I(t − 1))+ (1− γ )w(I(t − 1)) (4)

with I (t) the best matching unit at time t and γ a time constant (for more details see
[13]).

All the presented methods and many others (Neural Gaz [14], SOM for
Structured Data SOMSD [15], Hyperbolic SOM [16]. . .) have in common that they
are inspired from the SOM algorithm initially proposed by Kohonen in the 1980s.
As we said, the quantization is just the first step, after this step a predictor should
be used. In the beginning, the idea were to use a very simple models such as the
AR predictors since the time series supposed to be locally stationary [3]. Then with
more complex and chaotic data, these models were replaced by Neural Networks [6]
(such as MLP). However, the RNNs was not introduced with this kind of approach
despite of the good results obtained by these n. In neural networks as predictors next
section we will discuss how RNN’s could be used after a the Vector Quantization
phase.

3 RNN with Local Approach

The first (globally) RNN was proposed by Jordan [17], in which we have four type
of layer : Input layer, hidden layer, output layer and context layer. Globally, the net-
work is like a MLP one, except the context layer which contains also a loop back
in each neuron (see Fig. 1. This networks was improved by Elman [17] by adding
a feedback connection between the hidden layer and the context layer. It’s possi-
ble also to use a feedback connection between output layer and the context layer 2.
Although, many other types of RNN’s are possible such as a fully connected neural

Fig. 1 Jordan recurrent
neural network
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Fig. 2 Elman recurrent
neural network

network [6], a fully connected hidden layer[] or the Long-Short Term Memory
networks (LSTM [18]).

In feed forward Neural Networks (i.e MLP) the information is forwarded from
layer to layer with the Back Propagation(BP [2]) algorithm. However the prediction
value depends only on the k past values of the temporal window. However, with
Recurrent Neural Networks the information feedback is allowed. Which means that
in addition to the input data coming from the temporal window, an other type of
information is a combination of the old values coming from the internal loop in
the network. This can be one of the reasons that RNN’ have demonstrated a good
performances and special robustness face to long term dependencies.

In consequence the BP algorithm has to include the temporal notion, explained
by the information propagation into a simple connection between two neurons
and which should take one time step. One algorithm used for RNN’s is the Back
Propagation Trough Time (BPTT [2]). The BPTT is based on a gradient descent of
the error for the weight modifications 	wij(t1, tl − 1) described in the Eq. (5):

	wij(t1, tl − 1) = −η
tl−1∑

τ=t1

∂E(t1, tl)

∂neti(τ )
sj(τ ) (5)

The gradient error
∂E(t1, tl)

∂neti(τ )
is calculated depending on value of τ :

• for τ = tl − 1

∂E(t1, tl)

∂neti(τ )
=
{

(si(t)− di(t))f
′
i (neti(τ )) if i is an output neuron

0 otherwise,
(6)

• for t1 ≤ τ ≤ tl − 1

∂E(t1, tl)

∂neti(τ )
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(si(t)− di(t)+∑
j∈succ(i)

∂E(t1,tl)
∂netj(τ+1) wij(τ + 1)f

′
i (neti(τ ))

if i is an output neuron
∑

j∈succ(i)
∂E(t1,tl)
∂netj(τ+1) wij(τ + 1)f

′
i (neti(τ ))

otherwise,

(7)
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The internal feedback in the network requires that the data should be presented
in the learning algorithm sequentially and with a constant time step between entries.
However after the Vector Quantization phase the temporal information between vec-
tors is lost as the time step is no longer be constant for each RNN associated to a
specific cluster. In order to keep a constant time step, we propose to present all the
vectors to each RNN and to add a supplementary information δi,k defined by:

δi,k =
{

1 if vector i ∈ clusterk

0 otherwise,
(8)

For each RNN of a cluster i, all the data of the learning step will be presented. So
the learning rule (Eqs. 6 and 7) of BPTT algorithm should be updated in order to
take into account only the vectors belonging to their appropriate clusters. The δi,k is
added in Eqs. (9) and (10) in order to indicate when a gradient descent should be
calculated for a vector.

• for τ = tl − 1

∂E(t1, tl)

∂neti(τ )
=
{

(si(t)− di(t))δi,k f
′
i (neti(τ )) if i is an output neuron

0 otherwise,
(9)

• for t1 ≤ τ ≤ tl − 1

∂E(t1, tl)

∂neti(τ )
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
(si(t)− di(t))+∑

j∈succ(i)
∂E(t1,tl)
∂netj(τ+1) wij(τ + 1)

]
δi,k f

′
i (neti(τ ))

if i is an output neuron
∑

j∈succ(i)
∂E(t1,tl)
∂netj(τ+1) wij(τ + 1)δi,k f

′
i (neti(τ ))

otherwise,
(10)

This modification in Eqs. (9) and (10) can be interpreted by a double dependence
of the target function. If we consider ĝ(.) the function to approximate in specific to
a cluster of data, this function depends not only on the vector X(t) belonging to this
cluster, but also on the other data presented to neural network in the previous steps.
Let x̂(t) be the predicted value, we can say 11:

x̂(t) = ĝ(X(t), h̃(t)), (11)
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4 Experimental Results

In this section we have applied the algorithm proposed in two different times series.
The first experiments are with the Mackey-Glass Times series (MG). The second
experiments are with the Laser data.

The MG chaotic time series can be generated from the MG delay-differential
Eq. (12) [19]:

ẋ(t) = αx(t − τ )

1+ xc(t − τ )
− βx(t), (12)

the benchmark sets can be generated using a four-point Runge-Kutta method and
with initial condition x(t) = x0 f ort < 0, a, b and c are equation parameters. For
MG-17 the τ is set to 17. The Laser data is a set from the Santa Fe time series
prediction competition [20]. It consists of one-dimensional data recorded from a
far-Infrared (FIR) laser in a chaotic state.

For the evaluation of the forecasting techniques, we have used the mean square
error (MSE). It is a quadratic error function that gives more weight to large error.
This can be defined by the Eq. (13).

MSE =
∑i=1

n (s(i)− d(i))2

n
, (13)

with s(i) and d(i) respectively the predicted and desired value for the input i.
Table 1 compares the performance of the proposed algorithm with three well

known techniques. The first one is an MLP neural networks with five hidden neu-
rons, methods predicting a value by observing T past values (temporal window). The
same MLP neural networks is used with a SOM algorithm, composed of four unit
(2×2) in the output grid. Then a RNN with a fully hidden layer of eight neurons and
with a temporal windows of a T past values is used . This same RNN is also tested
with a SOM algorithm defined also by (2x2) units in the output grid.

The input pattern of the SOM is defined as:

Table 1 Prediction error

Method Laser MSE MG-17 MSE

MLP (T= 4) 1.65 · 10−1 7.15 · 10−2

MLP (T= 6) 2.68 · 10−1 1.43 · 10−1

RNN (T= 4) 3.18 · 10−1 5.89 · 10−2

RNN (T= 6) 1.99 · 10−1 1.07
SOM+MLP (T= 4) 3.45 · 10−2 3.94 · 10−2

SOM+MLP (T= 6) 3.22 · 10−2 5.32 · 10−2

SOM+RNN (T= 4) 1.67 · 10−1 2.36 · 10−2

SOM+RNN (T= 6) 1.39 · 10−1 4.94 · 10−1
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x(t) = (x(t), x(t − 1), ..., x(t − τ )), (14)

with τ the value of the temporal window. The same vector is then passed to the
recurrent neural network with the value of δi,k. The table 1 shows that a Vector
Quantization improve considerably the prediction error, first the MLP neural net-
works all ready proved in the literature, but also for the Recurrent Neural Networks.
The experiments shows that despite the varying time step, the RNN can be improved
with the SOM algorithm, also true when the RNN outperforms the MLP.

5 Conclusion

In this paper we have proposed to use a RNN with a vector quantization (SOM in
our case). Then this algorithm was tested on two type on data (Laser and MG-17).
The proposed methods was compared to well known techniques.

The empirical results suggests that the RNN can perform a good results. This is
encouraging to employ more complex RNNs used by the past [6] that have showed
a very hight performance. Future research will focus on the prediction on specific
clustering algorithm to be applied with RNNs.
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Single-Trial Electrical Perception Recognition
via Single-Channel Electroencephalogram

Yi Qiu, Guiping Dai, Yuping Miao, Ruifen Hu, and Guang Li

Abstract Single-trial classification of electroencephalogram (EEG) has received
increasing attention for psychological and engineering research, particular the brain
computer interface (BCI). A novel method to recognize the EEG pattern induced by
an electrical current stimulus was studied. Experimental results showed the electri-
cal stimulating pattern can be recognized via single-trial and single-channel EEG
using artificial neural networks. For a BP neural network, the correction ratio was
better than 90%. The method has potential to use for the objective study on human
perception.

Keywords EEG · Single-trial · Artificial neural network · Perception

1 Introduction

The study of the relationship between EEG patterns and stimuli is promising for
understanding the mechanism of neural information processing, and has potential
for the human sensory function estimation and BCI applications. Single-trial and
single-channel EEG pattern recognition is a challenge for signal processing and
machine learning [1]. Based on well known event related potentials (ERPs) [2], we
developed a method to classify electrical perception pattern via single-trial single-
channel EEG. This method can assess and quantify sensory function in patients with
neurologic symptoms or in those at risk of developing neurologic disease.
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2 Methods

The procedure to recognize the EEG pattern evoked by electrical current is
illustrated in Fig. 1. According to spectrum analysis, principal energy of ERPs
evoked by electrical stimuli is concentrated on the frequency band of 0–3 Hz. So
the single-channel EEG was firstly filtered with a low-pass filter of 0–3 Hz, and
then segmented properly. The Euclidean distances between the segmented EEG and
the EEG templets with and without stimulus, which are indicated as X1 and X2
respectively, were calculated to form a feature vector of the single-trial and single-
channel EEG signal. Classified by a BP neural network, the EEG with or without
electrical perception can be discriminated.

Fig. 1 The procedure of EEG signal processing for electrical perception recognition

2.1 Data Acquisition

Three male students, age of 20, 21 and 26, volunteered as subjects. All subjects were
free of neurological or psychiatric disorders. The subject seated on a comfortable
chair with his eyes closing and arms resting on a table during the experiments. After
the current perception threshold (CPT) of the subject was estimated [3], a stimulat-
ing electrode of 10 mm diameter was applied at the index finger’s end joint of the
subject’s left hand to provide an electrical current stimulus. 250 Hz sine wave lasting
2 s and about 3 times as the subject’s CPT was applied on the finger of the subject,
while the CPz channel EEG was recorded with the reference linked mastoids and a
forehead ground. The EEG amplifier used was NuAmps Digital Amplifier (Model
7181) purchased from the Neuroscan Compumedics Limited, Texas, USA. The sam-
pling rate is 500 Hz. A 0.5–70 Hz pass-band filter was applied. All impedances were
kept below 5 K� during EEG recording and the time when the electrical stimulus
started was recorded synchronously as time reference.

2.2 Templet Set-Up and EEG Segment

It is difficult to distinguish whether ERP existing within original EEG as shown in
Fig. 2a, c. After 20-times average of EEG without stimulating and with stimulat-
ing, the average filtered EEGs were obtained and to be used as the non-stimulating
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Fig. 2 EEG waveforms, where 0 ms on x-axis indicates the time when stimulus started for (c) and
(d). (a) Original EEG without stimulus, (b) Averaged EEG without stimulus, (c) Original EEG
with stimulus, (b) Averaged EEG with stimulus (ERP)

(Fig. 2b) and stimulating (Fig. 2d) templets, respectively. After 20-times average,
the electrical stimulus induced ERP can be clearly seen about 600 ms after the stim-
ulus started (shown as in Fig. 2d). 128 samples of EEG signal around the peak of
ERP were segmented for further analysis.

2.3 Feature Extraction

For each subject, 20 times EEG with stimuli were recorded and averaged as the
stimulating EEG templet, while 20 segments of EEG without stimulus were aver-
aged as the non-stimulating EEG templet. These EEG segments were also utilized
later to form training data set for pattern classification.

For each EEG segment to be estimated, the means of the Euclidean distances
to stimulating and non-stimulating EEG templets were respectively calculated to
construct a 2-dimensional feature vector. So the dimension of the EEG segment con-
sisting of 128 points was reduced. The 2-dimensional project of the feature vectors
as shown in Fig. 3.
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Fig. 3 Distribution of feature
vectors (star – stimulating
EEG, circle – non-stimulating
EEG)

2.4 Single-Trial Estimation Based on BP Neural Network

The back-propagation algorithm with adaptive learning parameters for feed-forward
neural network learning [4], which consists of two neurons in the input layer, one
neuron in the output layer and six neurons in the single hidden layer, was used to
classify the EEG segments with or without electrical perception. For each subject,
40 EEG segments used to form the templets (20 for each EEG templet) were used as
the training set. EEG segments obtained from different trials were used for test. For
all these subjects, the correction ratios of classification are 90.0, 95.8 and 93.3%,
respectively.

3 Conclusion

Efficient features of single-trial electrical perception can be extracted based on
single-channel EEG using subject’s ERP obtained in advance as the templet.
Utilizing BP neural network as classifier, the correction ratio better than 90% can be
achieved. This method can be utilized to judge whether an electrical stimulus is per-
ceived, so that the current perception threshold can be tested objective. Furthermore,
this method is promising for understanding the mechanism of neural information
processing of perception.
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Sleep Quality Analysis Based on HHT

Lengshi Dai, Guiping Dai, Wuming Zhang, Haigang Zhu, and Guang Li

Abstract This paper introduces a method to estimate sleep quality via EEG
analysis based on HHT. Sleep stages were classified throughout the method where
instantaneous frequencies of sleep EEG with physical meaning and energy fre-
quency distribution are used as feature parameters for each stage computed with
the HHT. Meanwhile, the well known psychological test called PSQI was carried
out for comparison. The experimental results showed that the EEG analysis based
on HHT is promising for objective evaluation of sleep quality comparable to PSQI.

Keywords Sleep stage · Hilbert-Huang transform · PSQI · EEG · EOG

1 Introduction

Although the international standard entitled with R&K Rules that classifies sleep
stage based on electroencephalogram (EEG), electrooculogram (EOG) and elec-
tromyogram (EMG) analysis has been established since 1968. Together with the
thriving of computer science and IT industry, many methods to extract the features
of the electrophysiological signals leading to final judgment of sleep stages includ-
ing frequency analysis method, data complexity, entropy analysis etc. have been
studied. In this paper, the Hilbert-Huang transform (HHT) was utilized to analyze
EEG signal for sleep quality estimation. Introducting the `intrinsic mode functions′
based on local properties of the signal, it makes the instantaneous frequency mean-
ingful to eliminate the need for spurious harmonics to represent nonlinear and
non-stationary signals for complicated data sets [1].

According to the R&K rules, which is a world-wide criterion for sleep stages
classification published in 1968, human sleep can be divided into six phases: waking
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(Stage W), the rapid eye movement (REM) stage and four non-REM stages (from
the lightest Stage 1 to Stage 4. The scoring of sleep quality, usually accomplished
by well-trained personnel, consists in classifying all 30 s pieces of a sleep recording
into one of six stages [2]. The stage is defined according to the EEG waveform
and eye movement [3]. In order to identify REM from non-REM efficiently, the
angular departure from the baseline in EEG is selected as an extra criterion [4].
Each stage has its own distinctive features in need of obtaining from EEG, EOG
and EMG, for example, stage I abounds with larger amount of Alpha wave, the
feature of Stage II is the appearance of spindle wave, stage III and stage IV are
mainly defined as delta wave with relatively large amplitude. Therefore, the key to
the sleep stage classification is to choose a proper algorithm that is able to collect
the specific energy composition of instantaneous frequency.

PSQI is a well known psychological test designed by Pittsburgh University, USA,
for the sake of measuring the sleep quality in the recent 1 month. This currently
used index includes 19 questions towards oneself and five ones answered by others
(among these questions, only eighteen of those will be taken into use for scoring),
covering all sleep respects, such as “time to fall into asleep”, “times wake up at
night” and so on.

Overall, the index is made up of seven ingredients divided to be A to G alphabet-
ically, where each ingredient is supported by one or more questions in the raw index
answers replied objectively by the participator. While the final score is the cord to
ultimately answer how the sleep quality is, this score has reverse ratio to the real
sleep quality: that means the higher the score is, the worse the sleep quality is.

2 Experiment and Results

Nine volunteers, 5 males and 4 females, age from 28 to 68, were recruited as sub-
jects. The EEG recording was executed at night during the sleep duration from the
regular time for bed till the sleeper’s natural wake up.

In order to test the efficiency of the method, the mattresses specially designed for
improving sleep quality were used to try to make sleep quality different for same
person. The mattresses were provided to the subjects free of charge for 60 days.
No sleeping pill was used. To check the veracity of the HHT based EEG analysis
method, the subject was interviewed to complete the PSQI for comparison.

The EEG amplifier used was NuAmps Digital Amplifier (Model 7181) purchased
from the Neuroscan Compumedics Limited, Texas, USA. The sampling rate was
250 Hz. A 0.5–30 Hz band pass filter was applied for the EEG channel, and 40 Hz
low pass filter for EOG. Due to the fact that the noise mainly exists in the delta band
where the amplitude but not the frequency is the dominant factor for the discrim-
ination of sleeping stages, there is no need for approaches to eliminate the noise
other than the band pass filter. The artificial rejection was done by the Neuroscan
software.

The Hilbert–Huang transform (HHT) is utilized to analyze the EEG recordings.
HHT is an algorithm to decompose a signal into so-called intrinsic mode functions
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(IMF), and obtain instantaneous frequency data [1, 5]. It is especially effective
to describe nonlinear and non-stationary distorted waves in details. In contrast to
conventional Fourier transform, HHT performs better when the signal is nonlinear.
Further on, for users, the problem that the resolution for time and frequency could
not be achieved simultaneously which had greatly weakened the effect of FFT would
no longer happen to HHT. It means we are able to insure the resolution in time scale
without sacrifice the precision of frequency.

The EEG was firstly divided into epochs of 30 s which were then classified
into one of sleep stages [6]. For each segment, following features were extracted
to staging the epochs (the total power equals to 0–30 Hz):

(1) Amplitude: the average of the absolute value of the signal and the peak to peak
value for each second.

(2) Spindles: presence is assessed using the ratio of power in the sigma band (11.5–
15 Hz) and the total power, relative to a similar ratio of background EEG [6].

(3) Alpha: the ratio of power in the alpha band (8.0–11 Hz) to the total power.
(4) Delta: the ratio of power in the alpha band (0.5–4 Hz) to the total power.
(5) The REM activity: During REMs the EOG signal shows a steep rising and a

flat falling edge with its peak surpass 40 μV and the slope with a 45◦or greater
departure from the base line.

Thus, the final image, which representing the entire process of sleep, was com-
pleted after the combination of consecutive segments labeled with sleep stages.

In order to describe sleep efficiency, the indices including the ratio of time asleep
to the whole-night sleep duration (T), deep sleep ( Stage III+stage IV

T ×100%), the sleep
latency period which indicating the time for a subject falling into sleep, sleep inter-
ruption were calculated. The results are given in Table 1. And some main indices of
one subject during 2-month are shown in Fig. 1.

Table 1 The sleep quality for volunteers before (B) and after (A) using the mattress, where Stages
III and IV were combined to collaborate to represent the deep sleep

Sleep
efficiency
(%)

Deep sleep
(%)

Sleep latency
(min)

Sleep
interruption
time(s)

PSQI
(points)

No. Gender Age B A B A B A B A B A

1 M 42 89.0 91.4 14.7 16.6 14.7 14.3 3.0 1.3 8 3
2 F 40 94.7 94.5 15.6 21.8 18.7 13.5 2.3 1.0 7 4
3 M 42 86.9 89.7 15.4 21.2 23.0 13.2 2.0 0.7 7 4
4 F 37 89.3 90.6 14.4 15.3 23.8 14.2 2.0 1.7 5 5
5 F 29 81.3 91.3 22.7 22.6 10.8 10.5 1.7 1.0 4 2
6 M 32 97.8 96.2 22.2 22.7 10.3 17.3 1.3 0.3 2 2
7 M 27 86.8 89.6 18.5 25.2 14.5 15.2 2.0 1.0 6 3
8 M 68 85.9 93.7 2.7 4.6 37.8 12.3 5.0 1.3 15 8
9 F 28 88.0 92.1 21.0 22.9 13.8 18.0 3.7 1.0 9 3
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Fig. 1 Track for a subject volunteer (a) sleep efficiency (dotted line); deep sleep (dash dotted
line); REM sleep (dashed line) (b) sleep latency

3 Conclusion and Discussions

The indices relating to sleep quality, which including deep sleep percentage, sleep
latency and sleep interruption time, were calculated mainly according to the HHT
results of sleeping. Based these indices, the sleep efficiency was estimated quantita-
tively. It can be seen from Table 1 that for same subject’s the sleep quality including
the sleep efficiency, deep sleep percentage, sleep latency time and sleep interruption
times changed with PSQI. It is clear from Table 1 that the sleep efficiency does not
exactly match the PSQI though they are approximately coincident with each other.
At same sleep efficiency level, more deep sleep and less sleep latency means better
sleep quality. In order to evaluate sleep quality more accurate, a new sleep index
which combining all those parameters mentioned above should be defined.

Acknowledgment This research is supported by the Natural Science Foundation of China (Grants
No. 60874098 and 60911130129), the National High Technology Research and Development
Program of China (863 Program 2007AA042103) and the National Creative Research Groups
Science Foundation of China (NCRGSFC: 60421002).

References

1. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., et al: The empirical mode decomposition and
the hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond.
A 454 (1998) 903–995.

2. Šušmáková, K., Krakovská, A.: Classification of waking, sleep onset and deep sleep by single
measures. Meas. Sci. Rev. 7(4, Sec 2) (2007) 34–38.

3. Rechtschaffen, A., Kales, A.: A Manual of Standardized Terminology, Techniques and Scoring
System for Sleep Stages of Human Subjects. Washington, DC: Government Printing Office,
Public Health Service (1968).



Sleep Quality Analysis Based on HHT 639

4. Hori, T., Sugita, Y., Koga, E., et al.: Proposed supplements and amendments to ‘a manual of
standardized terminology, techniques and scoring system for sleep stages of human subjects’,
the Rechtschaffen & Kales (1968) standard. Psychiatry Clin. Neurosci. 55 (2001) 305–310.

5. Huang, N.E., et al.: Hilbert-Huang transform. Scholarpedia 3(7) (2008) 2544.
6. Agarwal, R., Gotman, J.: Computer-assisted sleep staging. IEEE Trans. Biomed. Eng. 48(12)

(2001) 1412–1423.



Modelling the Stroop Effect: Dynamics
in Inhibition of Automatic Stimuli Processing

Nooraini Yusoff, André Grüning, and Antony Browne

Abstract In this study, we simulate the dynamics of suppressing an automatic
stimulus processing which interferes with a different non-automatic target task.
The dynamics can be observed in terms of interference and facilitation effects that
influence target response processing time. For this purpose, we use Hopfield neural
network with varying attention modulation in a colour-word Stroop stimuli process-
ing paradigm. With the biologically realistic features of the network, our model is
able to model the Stroop effect in comparison to the human performance.

Keywords Neurodynamics ·Automatic processing · Stroop effect ·Hopfield neural
network

1 Introduction

Distraction in processing of a target response can occur not only due to properties
of irrelevant stimulus, but also through the relationship of the stimulus properties to
the target-finding properties that attract the attention and resulting conflict [1]. Some
environments can create automatic responses to certain classes of stimuli resulting
in distraction from the intended task. This can also lead to priming effects as results
of automatic processing of a stimulus (prime) that would distract or facilitate the
processing of the later stimulus. The prime stimulus can be a cue if it is congruent
with the later stimulus and facilitates its response; otherwise it is a distractor if both
are conflicting, resulting in interference in processing. Having such dynamic effect
will lead to variability in response processing time. Whenever interference occurs,
the unintended automatic response has to be suppressed, using higher attentional
control resources in producing the target response to the intended stimulus. Hence,
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in this study, we attempt to simulate the dynamics of the priming effect through
modulation of attention in a colour-word Stroop paradigm [2].

The Stroop paradigm demonstrates human cognitive processing when one pro-
cess dominates and inhibits the response of another process. Such environment
involves automatic processing of a stimulus, distracting or sometimes facilitating
the response to the intended stimulus. For example, in a colour-word Stroop test,
the stimuli are the coloured colour-words in three conditions; control (e.g. a word
RED written in black or a non colour-word – e.g. CAT written in red), conflicting
(e.g. a word RED written in green) and congruent (e.g. a word RED written in red).
Subjects are asked either to read the colour-words or to name their colours while the
reaction time of performing the task is observed.

The results from Stroop studies show increased reaction time in naming the
colour of the printed colour-word in the conflicting condition, while the subject
could easily read the word without any significant distraction by the colour it is
written in (e.g. [2–4]). The conjectured explanation is that the asymmetric process-
ing is due to automaticity of the word stimulus that is always processed first prior
to the intended task stimulus, the colour. This consequently leads to the priming
effects, whereby to name the colour of the word, one needs to inhibit the prime
processed stimulus (the colour-word). The conflicting stimulus will increase the
response processing time in colour naming; on the other hand the congruence of
both will facilitate the later stimulus reducing the response processing time. For sim-
ulating the interference of the stimuli, we use a Hopfield neural network (HNN) with
asynchronous pattern update procedures [5]. The Hopfield network is chosen for
several reasons; we address the Stroop phenomenon as an association problem, the
competition and cooperation of Stroop stimuli meets the pattern processing nature
of the Hopfield network and the recall algorithm in Hopfield is biologically realistic.

2 Methods

To simulate the dynamics in inhibition of automated responses, we created a HNN
with a memory of four (M= 4) random 56-bit (n= 56) patterns. Each pattern repre-
sents an association of the colour concept consisting of two congruent components,
the colour-word (<WORD>, 16-bit) and the visual colour (<colour>, 16-bit) (based
on findings by Folk et al. [1]), and the attentional resource (<Attention>, 24-bit).
“<Attention>” models how much a subject attends to a task. If the subject is less
attentive less on-bits are inherited from the memory pattern to the test pattern. With
such association, we postulate that, each colour concept has some degree of attention
resource, cooperating among them simultaneously in recalling a target pattern.

There are two main phases involved in our HNN based Stroop simulation; train-
ing phase and testing phase (based on mathematical computation as in [5, 6]).
During the training phase, all memory patterns (a pattern noted as x) are corre-
lated to each other using the equation in (1). The correlation derives a set of weights
(W56×56) as a product of pattern vector associations.
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M
wij = ∑

k=1
xi(k)xj(k), i �= j, wii = 0, i, j = 1, n. (1)

Once a set of association weights is obtained, in the testing phase, a test pat-
tern, xr, is presented to the system. In our model, xrs represent the Stroop stimuli
with an amount of attention depending on the task to recall the target colour con-
cept. For Stroop stimuli representations, from each memory set, 20 test patterns
are generated to observe the recall performance of a Stroop task (word reading or
colour naming). The performances are observed under three conditions of stimuli;
control – absence of irrelevant stimulus to the attended task (e.g. for a word read-
ing; <Attention><RED><minimal noise>, 4 test patterns), conflicting – incongruent
colour concept (e.g. <Attention><RED><green>, 12 test patterns) and congruent –
compatible colour concept (e.g. <Attention><RED><red>, 4 test patterns).

For experimental setup, the initial activation (“on” bits) of a pattern depends on
the task; word reading (WR) or colour naming (CN) is assumed to be signalled by
another external system. For activation of bits in any components of a pattern, it
refers to the percentage of similarity of “on” bits in the correspond memory. For
instance, let a <WORD> component in a test pattern inherits n% random activations
from its memory with 12 bits “on” (out of 16 bits), then there would be n%×12
“on” bits in the component. For a WR task, the <WORD> component (relevant
stimulus) inherits 75% random activation of its memory, while having random acti-
vation of the <colour> component (irrelevant stimulus) (ranging from 0 to 25%
on-bits, with random uniform distribution). In contrast, for a CN task, the <colour>
stimulus inherits 25% random activation from its memory, with random activation
of <WORD> component (irrelevant stimulus) (ranging from 0 to 75% on-bits, with
random uniform distribution). Greater maximum initial activation of word stimulus
in CN is to simulate its automaticity that we predict would cause interference in pro-
cessing the response to the task. For this reason, the colour stimulus can only survive
with higher attention i.e. a test <Attention> that is more similar to the correspond
<Attention> of a memory pattern. The initial activation applies to all conditions
except the control stimuli with maximum of 25% noise in irrelevant stimulus.

In contrast with some other Stroop models (e.g. [3, 4]) emphasizing the influence
of neuron connection pathways (weights) in response processing, ours considers the
influence of attention. In our model, the modulation of attention in a recall process
is simulated through a part-pattern (<Attention> bits) completion. For our simula-
tions, we varied the initial activation of attention from 0% (all off-bits) to 100%
(identical attention component from correspond memory pattern). The dynamics in
HNN asynchronous update would eventually complete the initial random activation
of <Attention> vector corresponding to a target memory.

To recall a target memory pattern, at any given time, each bit (representing a
neuron in biological system) in xr, receives the total activation (net, computed using
(2)) from others through the HNN asynchronous update mechanism:

neti(t) =
∑

i �=j

wji(xrj(t)), (2)
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where neti(t) is the net input to neuron i at time t, wji is the connection strength
between neuron j to neuron i, xrj is the state of neuron j (+1 or −1). In an update
cycle, the state of neuron i is readjusted according to 3.

xri(t + 1) = # (neti(t)) = {+1, neti(t) > 0; −1, neti(t) < 0; xri(t) ,
neti(t) = 0} .

(3)

The number of bit updates in a cycle with maximum of 300 iterations for a
stimulus recalling the closest (measured by Euclidean Distance) target memory
is recorded as the reaction time. This simulates the reaction time taken by a sub-
ject to perform any of the tasks. Graphs and numbers below are the averages for
repetitions of the experiment with 10 different choice of memory sets, and 11 dif-
ferent levels of attention. Asynchronous updates of bits in <Attention>, <WORD>
and <colour> vectors simultaneously, simulate the dynamics of cognitive process in
Stroop phenomenon for active inhibition, facilitation and interference.

3 Results

As shown in Fig. 1, using the Stroop stimuli to recall their target memories through
active inhibition of Hopfield’s algorithm, our model predicts the asymmetric stim-
uli processing in the colour-word Stroop phenomena in comparison to the human
performance.

For our model, we consider the average of the reaction time (RT) in processing
response for both WR and CN at all levels of initial attention activation ranging from
0 to 100%. After running 110 different simulations (10 memory sets for 11 levels
of attention), the model shows that the words are always read faster than colours are
named with no significant difference of RT (ANOVA: p > 0.05) on the stimuli con-
ditions (WR(RT , control) = 7.05, WR(RT , conflict) = 7.26, WR(RT , congruent) = 6.53).
Meanwhile there is a significant difference (ANOVA: p < 0.01) found in CN in all
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(WR) and colour-naming (CN). (Left: Results from empirical study after Dunbar and MacLeod [7],
Right: Results of the model’s simulation)
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conditions (WCN(RT , control) = 13.05, CN(RT , conflict) = 18.32, CN(RT , congruent) =
10.39), except between the control and the congruent stimuli (ANOVA :
p(control, congruent) > 0.05). The interference is obviously observed for CN with
increasing time in the conflicting condition whilst the slight benefit of automatic
word processing is shown with the decreasing reaction time for congruent con-
dition. In addition to the RT, the frequency (freq) of correct recalls to target
responses was also observed. As what we predicted, the same simulations pro-
vide consistent results in frequencies of correct recalls with RT, indicating longer
processing time leads to higher recall error rate. The correct recalls recorded in
WR are as follows; WRfreq(control, correct) = 87.82, WRfreq(conflict, correct) = 87.43,
WRfreq(congruent, correct) = 91.87, whilst for CN we obtained; CNfreq(control, correct) =
70.64, CNfreq(conflict, correct) = 23.25, CNfreq(congruent, correct) = 81.02. However in
this study, without also neglecting the recall frequencies results, we only focus
on the RT as the determinant of the Stroop effect. The results conclude that high
inhibition has occurred in CN especially in the conflicting condition due to the
incompatibility of the prime stimulus (the word) with the intended stimulus (the
colour) having caused the interference, where this has been demonstrated at any
level of pre-selective attention in our simulations. On the other hand, a prime stimu-
lus compatible with the target response of the intended task speeds up the processing
time.

4 Conclusions

In our approach, we have used a HNN to demonstrate the dynamics of inhibition
by an automatic response over an intended stimulus response. The dynamics can be
seen as the influence of priming effects resulting from automatic processing. The
results showed that our model is able to model the reaction times in the colour-word
Stroop paradigm.
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A New Support Vector Machine Algorithm
with Scalable Penalty Coefficients for Training
Samples

Jian Zhang, Jun-Zhong Zou, Lan-Lan Chen, Chunmei Wang, and Min Wang

Abstract In this paper, a new method to determine the penalty coefficients for
different samples for the support vector machine (SVM) algorithm was proposed.
Sequential minimal optimization (SMO) was then used to solve the SVM problem.
Simulation results from applying the proposed method to binary classification prob-
lems show that the generalization error of the proposed method was smaller than
standard SVM algorithm in the cases that the sizes of binary sample training sets
(1) were selected in proportion; (2) were the same; (3) were quite different.

Keywords Support vector machine · Sequential minimal optimization · Structural
risk minimization

1 Introduction

Support vector machine was proposed by Vapnik in the middle of 1990s [1]. It can
be taken as a general machine learning algorithm based on limited samples theory.
SVM is an effective method to avoid the local minimum and over-fitting problems
that occur in conventional classification methods. Besides, it avoids the dimen-
sion disaster effectively by introducing a kernel function to analyze the nonlinear
relationship in a higher dimensional space.

Denote the trainning sample set T as: {(x1, y1) , · · · , (xm, ym)}, where xi ∈ Rn,
yi ∈ {1 ,−1}, i = 1, ..., m. To maximize the margin of the classifier, an optimization
problem is formulated as follows:

min
α

1

2

m∑

i=1

m∑

j=1

yiyjαiαjκ
(
xi, xj

)−
m∑

j=1

αj = min
α

1

2
αTQα − eTα (1)

J. Zhang (B)
School of Information Science and Engineering, East China University of Science
and Technology, Shanghai 200237, China
e-mail: zhjmaster@sina.com

647R. Wang, F. Gu (eds.), Advances in Cognitive Neurodynamics (II),
DOI 10.1007/978-90-481-9695-1_96, C© Springer Science+Business Media B.V. 2011



648 J. Zhang et al.

s.t.
m∑

i=1
yiαi = 0 , (2)

0 ≤ αi ≤ C, i = 1, · · · , m. (3)

Where Qij = yiyjκ
(
xi, xj

)
is the kernel matrix; e = (1, 1, · · · , 1)T; is the penalty

coefficient. Gaussian kernel function κij = exp
(− ∥∥xi − xj

∥∥/2σ 2
)

is used in this
paper. After solving this optimization problem, we get the optimization resolution.
One component from α∗ = (

α∗1 , · · ·α∗m
)T is chosen and denoted as α∗ . The thresh-

old value is calculated as κij = exp
(−∥∥xi − xj

∥∥/2σ 2
)

. and the decision function is

computed as: f (x) = sgn

(
m∑

i=1
α∗i yiκij + b∗

)
.

Conventional convex quadratic programming problems need to store the kernel
matrix Q. This matrix is a two-dimensional m × m array. The size of matrix Q
will grow quadratically with the increase of the sample size m and will saturate the
memory space. Besides, a lot of training time is consumed in the matrix operations
as m grows large. Osuna took the lead in proposing the decomposition strategy to
solve the optimization problem and proved its convergence [2]. Platt introduced
SMO Algorithm which was a particular case of decomposition strategy when the
size of work sets is two [3]. Based on the SMO algorithm, Keerthi modified the
Karush-Kuhn-Tucker (KKT) conditions and proposed two modified algorithms [4].
The convergence for both algorithms has been proved [5].

This paper is organized as follows: firstly, the existing problems of standard
support vector machine are analyzed, and a new method is proposed to determine
the penalty coefficient of different samples for the support vector machine algo-
rithm. Secondly, an SMO algorithm is modified to solve this model. Finally, the
performance of the proposed algorithm is evaluated by experiments.

2 Algorithms Design

2.1 Determination of Ci

In the standard SVM, each sample uses the same penalty coefficient C, and a larger
value of C implies a small error rate. The determination of C is relevant to the
location of samples. As shown in Fig. 1, there are two cases: (1) if a sample is
surrounded by samples of the same class, the samples near this region should also
be of same class, otherwise the error rate will increase, and this situation should
be controlled by a lager value of C; (2) If a sample is surrounded by samples of a
different class, the probability that the neighboring region is of the same class as
the sample under evaluation is small, and the error rate will increase if the region
expands, so this situation should be controlled by a smaller value of C. Each sample
xi has a separate Penalty coefficient. The model of standard support vector machine
is modified as:
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different samples

min
α

1

2

m∑

i=1

m∑

j=1

yiyjαiαjκ
(
xi, xj

)−
m∑

j=1

αj = min
α

1

2
αTQα − eTα (4)

s.t.
m∑

i=1
yiαi = 0 , (5)

0 ≤ αi ≤ Ci, i = 1, · · · , m. (6)

In the feature space, x+i denotes the sample of class +1, x−i denotes the sample of
class −1, φ+s denotes the centroid of class +1, φ−s denotes the centroid of class −1,
and l+ is the number of positive samples, l− is the number of negative samples, then:

φ+s =
1

l+
l+∑

i=1

φ(x+i ), φ−s =
1

l−
l−∑

i=1

φ(x−i ) (7)

The distance from the sample of class +1 to the centroid of class −1 is:

d+(x+) = ∥∥φ(x+)− φ−s
∥∥2 = 〈

φ(x+),φ(x+)
〉+ 〈

φ−s ,φ−s
〉− 2

〈
φ(x+),φ−s

〉

= κ(x+, x+)+ 1
l−2

l−∑
i, j=1

κ(x−i , x−j )− 2
l−

l−∑
i=1
κ(x+, x−i )

(8)

Similarly, the distance from the sample of class −1 to the centroid of class +1 is:

d−(x−) = κ(x−, x−)+ 1

l+2

l+∑

i, j=1

κ(x+i , x+j )− 2

l+
l+∑

i=1

κ(x−, x+i ) (9)

For positive samples, smaller value of d+ implies that probability of the above
case (2) is larger; on the contrary, lager value of d+ implies that probability of the
above case (1) is larger. So we can use following formula to calculate the penalty
coefficient Ci:
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C+i = Cd+(x+i )/d+max , C−i = Cd−(x−i )/d−max (10)

Then 0 ≤ C+i , C−i ≤ C.

2.2 Modification to the SMO Algorithm

To solve optimization problems of two lagrange multipliers, we need to identify
the range of one multiplier first. Set C1 and C2 as the penalty coefficients of two
multipliers α1 and α2, if y1 = y2, then α1+ α2 = γ (γ is a constant). There are two
situations as follows:

C2 < C1 ,

⎧
⎨

⎩

0 < γ ≤ C1 , Min α2 = 0, Max α2 = γ ;
C1 < γ ≤ C2 , Min α2 = γ − C1, Max α2 = γ ;

C2 < γ ≤ C1 + C2 , Min α2 = γ − C1, Max α2 = C2.

C2 < C1 ,

⎧
⎨

⎩

0 < γ ≤ C2 , Min α2 = 0, Max α2 = γ ;
C2 < γ ≤ C1 , Min α2 = 0, Max α2 = C2;

C1 < γ ≤ C1 + C2 , Min α2 = γ − C1, Max α2 = C2.

If y1 �= y2 , then α1 − α2 = γ , there are two similar situations:

C2 < C1 ,

⎧
⎨

⎩

γ ≤ C1 − C2 , Min α2 = −γ , Max α2 = C2;
C1 − C2 < γ ≤ 0 , Min α2 = −γ , Max α2 = C1 − γ ;

0 < γ ≤ C1 , Min α2 = 0, Max α2 = C1 − γ .

C2 < C1 ,

⎧
⎨

⎩

−C2 < γ ≤ 0 , Min α2 = −γ , Max α2 = C2;
0 < γ ≤ C1 − C2 , Min α2 = 0, Max α2 = C2;
C1 − C2 < γ , Min α2 = 0, Max α2 = C1 − γ .

The remainder part of SMO algorithm is unchanged.

3 Experiment and Result Analysis

Take the data set pima-indians-diabetes1 for example. This data set contains 768
samples and 8 characters altogether. In these 768 samples, there are 268 class +1
samples and 500 class −1 samples. Firstly, the sizes of binary sample training sets
are randomly selected in three ways: (1) the sizes are in proportion; (2) the sizes
are the same; (3) the sizes vary greatly. And in each way we select two sets of data.
Secondly, the data set was standardized by xij

′ = (xij − xj)/sj, where xij is the jth
character of the ith sample, Sj is the mean of the jth character, xj is the standard
deviation of the jth character. Gaussian kernel function was adopted. By searching,
the maximum value of test correct rate is shown in the table below.

1http://mlearn.ics.uci.edu/databases/pima-indians-diabetes/
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Table 1 Comparison between standard SVM and proposed SVM

Maximum value of test correct rate

Training sample
number

Test sample
number Standard SVM (%) Proposed SVM (%)

575(200+,375−) 193(68+,125−) 84.46 84.97
300(100+,200−) 468(168+,300−) 76.50 77.56
400(200+,200−) 368(68+,300−) 79.09 81.35
100(50+,50−) 668(218+,450−) 74.70 76.35
450(50+,400−) 318(218+,100−) 48.43 73.90
250(200+,50−) 518(68+,450−) 43.05 88.03

From Table 1, in the case that the sizes of training sample sets are selected in
proportion, the generalization performance of standard SVM is closed to proposed
SVM; in the case that the sizes of training sample sets are same, the generalization
performance of proposed SVM is obviously superior to standard SVM; then in the
case that the sizes of training sample sets are quite different, standard SVM loses
the predictive capability, but proposed SVM still maintains a good generalization
performance.

4 Conclusion

According to the principle of structural risk minimization, the generalization ability
of learning machine is determined by VC dimension of a function set. By using dif-
ferent penalty coefficient 0 ≤ C+i , C−i ≤ C, the diversity of function set is controlled
effectively, we get a lower VC dimension learning machine, it has a better predictive
capability. In this paper, the possibility of samples of different category appearing
around a sample is considered. It is found that the possibility of the appearance of
samples of the other category increases when the distance to the centriod of sam-
ples of the other category decreases. In future research work, the value of Ci will be
calculated by the sample distribution around the sample xi.
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Recognition of Epileptic EEG Using Support
Vector Machines

Chunmei Wang, Jun-Zhong Zou, Jian Zhang, Lan-Lan Chen, and Min Wang

Abstract A new approach based on support vector machine (SVM) is presented
for the recognition of epileptic EEG. Firstly, the original signals of normal and
epileptic EEG are decomposed with multi-resolution wavelet analysis. Secondly,
their approximate entropy (ApEn) is estimated to extract features from raw EEG
data. Finally, a SVM classifier with a Gaussian kernel function of SVM is used
for the classification. Simulation results demonstrated that the SVM combined with
wavelet transform and ApEn achieves high recognition accuracies.

Keywords Support vector machine · Epileptic EEG · Multi-resolution wavelet
analysis · Approximate entropy

1 Introduction

The electroencephalogram (EEG) is one of the most common information sources
used for studying brain function and neurological disorders. Different patterns of
EEG are presented at the different physiological states. Epileptic seizure is the result
of an occasional, sudden and excessive electrical discharge of the brain gray matter.
The presence of epileptic activities (sharp wave, spike wave, spike-slow wave and
sharp-slow wave) in the EEG supports the diagnosis of epilepsy. The International
Federation of Societies for Electroencephalography and Clinical Neurophysiology
(IFSECN) defined “spike” as a transient, with a duration from 20 to 70 ms (i.e.
1/50–1/15 s) and a “sharp wave” as a transient with similar characteristics but a
duration of 70–200 ms (i.e. 1/14–1/5 s). Spike-slow wave and sharp-slow wave are
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Fig. 1 Recognition of
epileptic EEG based on SVM

complex discharges, which consist of a spike or sharp wave followed by a slow
wave, respectively [1].

Recently, the support vector machines (SVM) learning method has become a
very effective method for general purpose pattern recognition [2], which can handle
the classification problems successfully. Classification is profoundly influenced by
feature extraction. Since the EEG is non-stationary in general, it is more appropri-
ate to use the time-frequency domain methods [3]. Then, ApEn values of different
wavelet detailed coefficients are computed to obtain stable and credible values of
ApEn. Figure 1 shows the structure of the recognition method based on SVM.

2 Support Vector Machine

The SVM proposed by Vapnik et al. [2] has been studied extensively for classifica-
tion, regression and density estimation. Study demonstrates that SVM is an effective
method not only avoid the local minimum and over-fitting problems that occur in
conventional classification methods, but also solve the dimension curse by introduc-
ing kernel function, which makes it feasible to analyze the nonlinear relationship in
a higher dimensional space.

Let T = {(x1, y1), · · · , (xm, ym)} ∈ (X × Y)m be training samples set, where
xi ∈ Rm, yi ∈ {1,−1}, i = 1, · · · , m.

By introducing maximal interval method, an optimization problem is formed as
follows:

min
α

1

2

m∑

i, j=1

yiyjαiαjκ(xi, xj)−
m∑

j=1

αj = min
α

1

2
αTQα − eTα (1)

where C ≥ αi ≥ 0, i = 1, · · · , m;
∑m

i=1 yiαi = 0, Qi, j = yiyjκ(xi, xj) is the kernel
matrix, C is a regularization parameter, e = (1, 1, · · · , 1)T . Some typical kernel
functions are polynomial kernel function and Gaussian kernel function.

3 Methods

3.1 Clinical Data

The EEG data required for this study consist of three different sets, which are col-
lected at Changhai Hospital Attached to the Second Military Medical University,
Shanghai, China. The first set includes surface recordings from four healthy
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Table 1 Frequency
distribution of three
sub-bands at sample
frequency of 128 Hz

Decomposed signal Frequency band (Hz)

D1 32–64
D2 16–32
D3 8–16
A3 4–8

subjects. The data for the last two sets are obtained from five epileptic patients,
which consists epileptic sharp wave and epileptic spike wave, respectively. Each
data set consists of 100, 64 and 69 EEG epochs. The EEG data are digitized at
128 Hz sampling rate through 16-bit converter.

3.2 Processing of EEG Using DWT

Because the optimal resolution for analyzing epileptic activity corresponds to the
frequency band 4–32 Hz [4], third level wavelet decomposition is utilized to EEG
data for both normal subjects and epileptic patients. The corresponding frequency
sub-bands of decomposed signals are listed in Table 1. Daubechies 4 (DB4) is
chosen as a basis function.

3.3 Approximate Entropy (ApEn) Estimation

In this step, ApEn values of the detail coefficients (D1, D2 and D3) at each level
of the wavelet decomposition are computed. ApEn has been used to characterize
different biomedical signals [5, 6].

For computing the ApEn, we choose r=0.15∗std and N=1,000, respectively
based on suggestions by Pincus. Significant differences are found between the ApEn
values of the first EEG data set (normal subjects) and the last two sets (patients with
epilepsy). Moreover, another finding is that the ApEn values of different kinds of
epileptic activities will have different distributions.

4 Experimental Results

We perform recognition based on SVM through two means.
Firstly, ApEn values for D1, D2 and D3 of each group are classified with one-

dimensional input vector respectively. In group 1, 32 epileptic sharp samples and
50 normal EEG samples are used for training and the remaining is used for testing.
In group 2, 35 epileptic spike samples and 50 normal EEG samples are used for
training and the remaining is used for testing. Gaussian kernel function is chosen
and classification results of two groups are presented in Table 2. The results indicate
that optimal classification accuracy of epileptic sharp from normal EEG is in D2,
and D1 of group 2 outperforms D2 and D3 in separating epileptic spike EEG from
the normal EEG. The finding is consistent with the result we have got in our research
work using Neyman-Pearson as a classifier.
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Table 2 Classification accuracy of one-dimensional for two groups

Group Sub-band Parameter of SVM Accuracy of training set (%) Accuracy of test set (%)

1 D1 C=50, 2σ2=10 92.68 87.80
1 D2 C=50, 2σ2=10 97.56 95.12
1 D3 C=50, 2σ2=10 92.68 90.24
2 D1 C=20, 2σ2=10 96.43 94.05
2 D2 C=20, 2σ2=10 65.88 96.43
2 D3 C=20, 2σ2=10 76.47 89.29

Table 3 Classification accuracy of three-dimension for two groups

Group Sub-band Parameter of SVM Classification accuracy (%)

1 D1,D2,D3 C=50, 2σ2=10 98.78
2 D1,D2,D3 C=20, 2σ2=10 98.81

Secondly, three-dimensional input vectors are formed by D1, D2 and D3 in
each group. The 32∗3 epileptic samples and 50∗3 normal samples in groups are
trained and the remaining is used for testing. Classification results of two groups are
presented in Table 3.

Classification accuracies of three-dimensional input vectors are higher than the
results of one-dimensional input vectors.

5 Conclusion and Future Work

Compared with clinical EEG data analysis, features related to the time-frequency
and ApEn values distribution are extracted. Then a classifier based on SVM is
applied. The results of EEG signal classification indicate that every different epilep-
tic EEG has optimal classification accuracies in different sub-band. The SVM used
for three-dimensional input vectors demonstrates SVM has strong generalization
ability.

Further work can be performed to improve the classification accuracies by using
different preprocessing and feature extraction methods.
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Image Denoising Using Noisy Chaotic Neural
Networks

Leipo Yan and Lipo Wang

Abstract This paper uses the noisy chaotic neural network (NCNN) that we
proposed earlier for image denoising as a constrained optimization problem. The
experimental results show that the NCNN is able to offer good quality solutions.

Keywords Image processing · Neural networks · Chaos

1 Introduction

The objective of image denoising is to estimate the original image from a noisy
image with some assumptions or knowledge of the image degradation process.
There exist many approaches for image denoising [1, 2]. Here we adopt a Bayesian
framework because it is highly parallel and it can decompound a complex com-
putation into a network of simple local computations [2], which is important in
hardware implementation of neural networks. This approach computes the maxi-
mum a posteriori (MAP) estimation of the original image given a noisy image. The
MAP estimation requires the prior distribution of the original image and the condi-
tional distribution of the data. The prior distribution of the original images imposes
contextual constraints and can be modeled by Markov random field (MRF) or,
equivalently, by Gibbs distribution. The MAP-MRF principle centers on applying
MAP estimation on MRF modeling of images.

Li proposed the augmented Lagrange Hopfield method to solve the optimization
problem [3]. He transformed a combinatorial optimization problem into real con-
strained optimization using the notion of continuous relaxation labeling. The HNN
was then used to solve the real constrained optimization.

The neural network approaches have been shown to be a powerful tool for solv-
ing the optimization problems [4]. The HNN is a typical model of neural network
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with symmetric connection weights. It is capable of solving quadratic optimization
problems. However, it suffers from convergence to local minima. To overcome the
weakness, different simulated annealing techniques have been combined with the
HNN to solve optimization problems [5]. The TCNN showed good performance in
solving traveling salesman problem [6] . However CSA is deterministic and is not
guaranteed to settle down at a global minimum. In view of this, Wang and Tian [7]
proposed a novel algorithm called stochastic chaotic simulated annealing (SCSA)
which combines both stochastic manner of SSA and chaotic manner of CSA. In
this paper the NCNN, which performs SCSA algorithm, is applied to solve the con-
strained optimization in the MAP-MRF formulated image denoising. Experimental
results show that the NCNN outperforms the HNN and the TCNN.

2 The Noisy Chaotic Neural Network for Image Denoising

Let ui(I) denote the internal state of the neuron (i, I) and pi(I) denote the output of
the neuron (i, I). pi(I) ∈ [0, 1] represents the strength that the pixel at location i takes
the value I. The NCNN is formulated as follows [7]:

p(t)
i (I) = 1

1+ e−u(t)
i (I)/ε

(1)

u(t+1)
i (I) = ku(t)

i (I)− z(t)(p(t)
i (I)− Io)+ n(t)+

α(
∑N

i′=1,i′ �=i

∑M
I′=1

TiI;i′I′p
(t)

i′ (I′)+ Ii(I))
(2)

z(t+1) = (1− βz)z
(t) (3)

A[n(t+1)] = (1− βn)A[n(t)] (4)

where

TiI;i′I′ : connection weight from neuron (i′, I′) to neuron (i, I);
Ii(I): input bias of neuron (i, I);
k: damping factor of nerve membrane (0 ≤ k ≤ 1)
α: positive scaling parameter for inputs;
ε: steepness parameter of the output function (ε ≥ 0);
z: self-feedback connection weight or refractory strength (z ≥ 0);
Io: positive parameter;
n: random noise injected into the neurons;
βz : positive parameter (0 < βz < 1);
βn : positive parameter (0 < βn < 1);
A[n] : the noise amplitude.

When n(t) in (2) equals to zero, the NCNN becomes TCNN. When z(t)

equals to zero, the TCNN becomes similar to the HNN with stable fixed point
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(a) (b)

(c) (d)

(e)

Fig. 1 Denoising of the square image with noise level σ = 0.5: (a) Original image. (b) Noisy
image. (c)–(e) Denoised images using the HNN, the TCNN and the NCNN, respectively
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dynamics. The basic difference between the HNN and the TCNN is that a non-
linear term z(t)(p(t)

i (I)− Io) is added to the HNN. Since the “temperature” z(t) tends
toward zero with time evolution, the updating equations of the TCNN eventually
reduce to those of the HNN. In (2) the variable z(t) can be interpreted as the strength
of negative self-feedback connection of each neuron, the damping of z(t) produces
successive bifurcations so that the neurodynamics eventually converge from strange
attractors to a stable equilibrium point [5].

CSA is deterministic and is not guaranteed to settle down to a global minimum.
In view of this, Wang and Tian [7] added a noise term n(t) in (2). The noise term
continues to search for the optimal solution after the chaos of the TCNN disappears.

The dynamics of the NCNN for image denoising is described by (more details
will be discussed elsewhere):

u(t+1)
i (I) = ku(t)

i (I)− z(t)(p(t)
i (I)− Io)+ n(t) + αq(t)

i (I) (5)

where

qi(I) = −∂Lβ (p, γ )

∂pi(I)

Note that the Lagrange multipliers are updated with neural outputs according to
γ

(t+1)
k = γ (t)

k + βCi(p(t)). Experimental results are shown in Fig. 1.

3 Conclusion

We have implemented the noisy chaotic neural network (NCNN) to address the
MAP-MRF formulated image denoising problem. NCNN effectively overcomes the
local minimum problem because of its SCSA characteristics. We have shown that
the NCNN gives better quality solutions compared to the HNN and the TCNN.
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Increase Productivity in Circuit Board
Manufacturing Through Support Vectors

Hai Tuyen Tran and Chia-Jiu Wang

Abstract This paper investigates the possibility of using support vector machines
(SVM) to increase productivity in manufacturing printed circuit boards. The current
method of setting up a machine to place solder pastes on circuit boards is a very
sophisticated and time consuming process, requiring many trial and error steps.
SVMs are used to predict the outcome of a new production run based on support
vectors extracted from machine setup parameters used in previous production runs.
By incorporating a SVM machine in the production line, the amount of solder to
be placed on a circuit board can be effectively monitored and adjusted at the early
stage of the production line, resulting in much higher productivity of a SMT-based
production line.

Keywords Support vectors · Support vector machines · Surface mount
technology · SMT processes

1 Introduction

Manufacturing circuit boards require knowledge, investment and substantial
experience. Due to the demand of shorter time to market, processes that produce
circuit board need to be robust and outcomes need to be predictable. A Support
Vector Machine (SVM) can be used to extract support vectors from data sets of
an existing production line using Surface Mount Technology (SMT) which is trial
and error adjusted by experienced engineers. With a SVM incorporated in a SMT-
based production line, we can predict the results for a particular machine setting
before starting operation of the production line. Support vector machine learning
has been studied and reported by many researchers in many unique applications
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such as character recognition, text classification, underwater object detection and
battery state of charge estimation [1–5]. In Section 2 a short description of surface
mount technology based production line is presented. In Section 3, a modified SMT
production line incorporating a SVM machine is discussed and the features of the
production line are selected as inputs for SVM machines. Experimental results and
discussions are presented in Section 4. The effectiveness of using SVMs in solder
placing in a SMT-based production line has been demonstrated in this paper.

2 Surface Mount Technology Production Line Components

Due to the complexity of the circuit board used today, production lines using surface
mount technology (SMT) is preferable over those using Pin Through Hole (PTH)
technology. SMT processes can not only produce circuit boards at a faster rate, but
also require less human interaction. A typical SMT-based production line contains
a set of machines as depicted in Fig. 1

GSP GL
Sentry
Optic CP IP Oven

Fig. 1 A SMT-based production line containing six machines

A typical SMT based production line has six machines; GSP, CentryOptic, GL,
CP, IP and Oven. GSP is a solder placing machine, applying solder through the
stencil opening onto the circuit board. Each GSP has two blades to apply solder to
the circuit boards. The speed of the blade, pressure of the blade and the table height
of the GSP machine affect the amount of solder to be printed on the board. The
amount of solder can be adjusted by the following settings: the height of the table,
the speed of the blades or the pressure of the blades. Sentry Optic is a high resolution
camera used in measuring the height of the solder paste. The data measured from the
circuit board under test are compared with the pre-set data to determine whether the
board passes the test or not. GL is the glue machine that places glue on heavy parts
to prevent them from falling off in the next process. CP is used to place small devices
on to the circuit board. Resistors, capacitors, inductors, and small ICs are placed on
the circuit board by the CP. The CP has 20 heads and each head contains 6 nozzles.
Depending on the side of the device, a different nozzle is chosen. The IP machine is
also used in placing parts on the circuit board. The major difference between IP and
CP is that IP places larger ICs and BGA-type parts. The last machine used in the
production line is the oven which provides heat to reflow the solder. Each production
line will have a separate heat profile. Then the circuit board is visually inspected by
an operator. Considering all processing steps involved in make the circuit board,
the outcome at the GPS mostly determines the final quality of the board. Since the
output, i.e., the solder, of the GPS is measured by Sentry Optic, the board can be
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GSP GL
Centry
Optic

CP IP Oven

SVM
Adjust

GSP settings

Fig. 2 The SMT-based production line with added a SVM machine

stopped from moving to the next machine if some discrepancies are detected in the
solder.

With the current manufacturing process, engineers have to rely on past experi-
ence to set up the GSP and generally a trial and error method is adopted for a new
production line. Here we propose a modified SMT-based production line as shown
in Fig. 2 to integrate many engineers’ experience into a SVM machine.

3 SVM Used in SMT-Based Production Line

The SVM machine can be used for classification and nonlinear prediction. Using the
support vector learning algorithm, support vectors can be extracted from the data
set collected at the Sentry Optic site. Then the SVM machine can use the support
vectors and the current GSP setting to predict the outcome of the solder in terms
of height which is the output of the GSP machine. The SVM will output a pass/fail
signal to indicate that the board will pass or fail at the end of the production line.
This SVM is used for failure detection on the height of the solder. If the board has a
flag of failure, then it should be removed from the production line. The configuration
of the SVM is shown in Fig. 3.

Hundreds of GSP settings and the corresponding solder height measured by
the Sentry Optic are recorded. A pre-processing program extracts the speed of
the blade, the pressure of the blade and the stencil table height. Another different
pre-processing program is written to extract the height of the solder for a location
specified by user input. Each data entry has three input components from GSP, i.e.,
speed, pressure, and height and one component from Optic Sentry, i.e., pass (1) or
fail (−1). One example of the data entry is {2, 6, 2.6, 1} for a pass, {2, 6, 2.5, −1}
for a fail.

Input data from GSP
Setting

Output data from
Senty Optic results

Height classification SVM

PASS

FAIL

Fig. 3 The SVM configuration



666 H.T. Tran and C.-J. Wang

MySVM written by Stefan Ruping is used in this work [6]. The following table
shows the number of support vectors (SV) versus the capacity C of the SVM. Table 1

In our work we study C=1 as well as C=20. The input function selected is a
polynomial of power 4 which is K(Xi, Xj) = (1 − XT

i Xj)4. Some testing results are
shown in Figs. 4 and 5. It demonstrates that SVM predicts correctly.

Table 1 SVM Capacity versus number of support vectors

C 1 5 20 50 100 200 500

SV 16 16 15 15 15 15 15

New Data/Sentry Optic

–1.5

–1

–0.5

0

0.5

1

1.5

0 5 10 15 20

New Data/Sentry
Optic

Fig. 4 Testing results using new GSP setting data
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0 20 40 60 80 100 120
Training Output

Testing Output

Fig. 5 Some SVM testing results
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4 Discussions

Results shown in Section 3 show that a SVM machine can be used to predict a
pass or fail for a solder placing machine such as a GSP machine. By using SVM,
when using a new GSP setting for a new production line one can predict the solder
height before the actual placement. Using the SVM, it helps engineers to reduce the
machine setup time significantly during preparation of the production line. After the
production is in full operation, a pass or fail signal generated by the SVM machine at
the second stage can alarm engineers any variations occurred during the operation.

The same SVM method used in the SMT-based production line can be applied to
other manufacturing tests or processes. For example, some particular measurements
at Integrated Circuit Test (ICT) can be used to predict output at the functional test.
Or a shorter ICT can be used to predict whether to run a long ICT test. These savings
in time can add up and becomes significant throughout the manufacture process.

Acknowledgement Special thanks to Stefan Ruping, who created the mysvm software. Without
the software this project will not exist. Special thanks to the management team at Sanmina-SCI for
their help getting data for training and predicting for this project.
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Towards Affective BCI/BMI Paradigms –
Analysis of fEEG and fNIRS Brain Responses
to Emotional Speech and Facial Videos

Tomasz M. Rutkowski, Qibin Zhao, Andrzej Cichocki, Toshihisa Tanaka,
and Danilo P. Mandic

Abstract A previous study in the visual domain showed that similar spatial patterns
of electroencephalography (EEG) power can be seen when subjects are visually
presented with short videos of faces expressing emotions. As a corollary study we
examine both the auditory and visual expressions of the same emotions to under-
stand how listeners process auditory-only and visual-only expressions of affec-
tive stimuli in functional EEG (fEEG) and functional near-infrared-spectroscopy
(fNIRS) signals. For this purpose we utilize fEEG directed transfer functions
(DTF) analysis in very short windows of 250 ms which potentially is of interest
of brain-computer/machine-interfacring (BCI/BMI) application with utilization of
affective (limbic) responses from human brains. The preliminary results with affec-
tive paradigms confirm the hypothesis of cortical emotional responses in fEEG and
fNIRS.

Keywords Brain computer interface · Brain emotional responses ·
Neurophysiological signal processing · Functional EEG and NIRS

1 Introduction

Recent advances in brain-computer/machine-interfacing (BCI/BMI) have shown
an urgent necessity to search for new and more user-friendly paradigms which
would allow more natural interaction of humans and machines with utilization of
so revealed new communication channels [1]. BCI/BMI related literature recog-
nizes two general classes of BMI paradigms [2], those which are related to external
environment stimuli, thus utilizing stimuli driven brain responses, and the other
ones which are completely independent from environmental stimulation, thus relay-
ing only on internal (imagery) brain activity managed by the users will. In this
paper we focus on the first class of dependent and stimuli driven paradigms with

T.M. Rutkowski (B)
Brain Science Institute RIKEN, Wako-shi, Saitama, Japan
e-mail: tomek@brain.riken.jp

671R. Wang, F. Gu (eds.), Advances in Cognitive Neurodynamics (II),
DOI 10.1007/978-90-481-9695-1_100, C© Springer Science+Business Media B.V. 2011



672 T.M. Rutkowski et al.

a concept of limbic (affective/emotional) responses involved in order to search for
a new class of BCI/BMI paradigms which would involve very fast human–interface
interaction based on affective responses. A curious question has been what is
happening in the brain when people are perceiving or processing (e.g. imaging)
expressions of emotions. It is known that the amygdala is a control center for emo-
tions in humans [3], however, recent research has suggested that the frontal cortical
areas are also involved in perception of emotions [4, 5]. Also, a recent work suggests
that there is no single cortical brain area specifically involved in emotional process-
ing, but there are neural hubs that process information from different parts of the
brain [3]. Previous research related to emotional responses analysis, confirmed also
by the authors [4], shown an asymmetry in the frontal cortex, depending on the
valence of the emotion perceived. In that study stimuli was presented to listeners in
form of video presentations (short 2–5 s long movies) of emotional facial expres-
sions taken from the multimodal emotional corpus [6]. The emotions were happy,
thinking and angry. Four subjects were asked to view the short movies on the
computer screen, try not to blink, and then answer the question that appeared
on the screen afterward, asking what emotion they thought the actor/actress was
expressing. The results indicated that frontal cortical activity varies according to the
particular emotion – happy and thinking showed asymmetry in cortical activity, with
left cortical activity stronger for happy and right, stronger for thinking.

A question we want to address in this study is what happens when similar
emotional audio and video stimuli are presented to subjects separately with fEEG
electrodes over their temporal and frontal lobes, together with frontal head fNIRS
activity monitoring. In the previous study also longer window power patterns were
analyzed not allowing a simple BCI/BMI application. In the current study only
very short 250 ms windows are analyzed for their fEEG spectral information flow
between electrodes.

2 Methods

The fEEG experiment has been performed at the Advanced Brain Signal Processing
Laboratory, RIKEN Brain Science Institute, using a g.USBamp fEEG data acqui-
sition system with four electrodes placed over temporal lobes in positions C5, C6,
Fp1 and Fp2. Additionally the fNRIS sensor over front head was placed to analyze
cortex’s blood flow activity in response to the stimuli. fEEG was recorded with sam-
pling frequency of 256 Hz with impedance below 5 k�. The fNIRS was sampled
with 6 Hz sampling frequency and only the dynamics of oxygenated hemoglobin
signal (dO2Hb) was analyzed.

Data from four subjects as in Fig. 1 and 2 was analyzed. The subjects observed
and listened five British English professional actors/actresses from the emotional
multimodal corpus [6]. The affective speech and facial expressions examined were
short utterances expressing happy, anger, and thinking. We compare the results
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(a) EEG DTF(Fp2, C6) - facial videos.
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(b) EEG DTF(Fp1,C5) - facial videos.
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(c) EEG DTF(Fp2,C6) - speech.
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(d) EEG DTF(Fp1,C5) - speech.

Fig. 1 DTF patterns for both affective stimuli conditions and two electrodes pairs Fp2, C6 and
Fp1, C5

of the auditory and visual domain with those of the previous results in the visual
domain only [4].

The fEEG signals are first preprocessed with a multichannel EMD extension
as discussed in [7]. Next, directed transfer function (DTF) is calculated, as first
proposed in [8], for the pair of electrodes Fp1/C5 and Fp2/C6, as γ 2

ij (f ) �
|Hij(f )|2

∑m
j=1|Hij(f )|2 ∈ [0, 1], where the frequency-dependent normalization is performed

so that γ 2
ij (f ) quanties the fraction of inflow to channel i stemming from channel

j. DTF allows for evaluation of information transfer in different frequency sub-
bands based on multivariate autoregressive model analysis of fEEG channels as
presented in Fig. 1b, c, where mean values for six experiments for each subjects
are summarized in form of mean values plots together with error bars.



674 T.M. Rutkowski et al.

0 2 4

−0.5

0

0.5

dO
2H

b

happy, s#1

0 2 4
−0.5

0

0.5
happy, s#2

0 2 4
−0.5

0

0.5

happy, s#3

0 2 4

−1

−0.5

0

0.5

1

happy, s#4

0 2 4

−0.4

−0.2

0

0.2

0.4

dO
2H

b

thinking, s#1

0 2 4

−0.4

−0.2

0

0.2

0.4

thinking, s#2

0 2 4

−0.2

0

0.2

thinking, s#3

0 2 4

−0.5

0

0.5

1
thinking, s#4

0 2 4
−0.5

0

0.5

dO
2H

b

angry, s#1

speech, time [s]
0 2 4

−0.4

−0.2

0

0.2

0.4

angry, s#2

speech, time [s]
0 2 4

−0.4

−0.2

0

0.2

0.4

0.6
angry, s#3

speech, time [s]
0 2 4

−0.5

0

0.5

angry, s#4

speech, time [s]

(a) Emotional speech.

0 2 4

−0.5

0

0.5

1

dO
2H

b

happy, s#1

0 2 4
−0.4

−0.2

0

0.2

0.4
happy, s#2

0 2 4

−0.5

0

0.5

happy, s#3

0 2 4
−1

0

1

happy, s#4

0 2 4

−0.5

0

0.5

dO
2H

b

thinking, s#1

0 2 4

−0.5

0

0.5

thinking, s#2

0 2 4

−0.5

0

0.5

thinking, s#3

0 2 4

−0.5

0

0.5

thinking, s#4

0 2 4

−0.5

0

0.5

dO
2H

b

angry, s#1

video, time [s]
0 2 4

−0.4

−0.2

0

0.2

0.4

angry, s#2

video, time [s]
0 2 4

−0.4

−0.2

0

0.2

0.4

angry, s#3

video, time [s]
0 2 4

−1

0

1

angry, s#4

video, time [s]

(b) Emotional facial videos.

Fig. 2 Frontal fNIRS for
speech/audio (a) and
faces/video (b) respectively.
The transition point between
no stimuli and stimuli was at
2 s, where significant changes
in fNIRS mean values as well
much smaller error bars are
present

3 Conclusions

As a result of the presented analysis, we confirm our hypothesis of a possibility to
quantify affective/emotional responses from fEEG as shown mostly for DTF analy-
sis pairs Fp2, C6 for video and speech utterances. The mean DTF spectral responses
together with standard deviation error bars are presented in Fig. 1a, c. The patterns
for fEEG electrodes pairs Fp1, C5 did not show significant difference among the
stimuli conditions as can be seen in Fig. 1b, d. The fNIRS results analysis shown
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only interesting patterns at the pre-stimuli/stimuli transition points, were sudden and
coherent (very small error bars) changes are visualized in Fig. 2a, b. The presented
approach is a step forward in a search for new affective BCI approaches.
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Imagery Movement Paradigm User Adaptation
Improvement with Quasi-movements
Phenomenon

Hiroshi Higashi, Tomasz M. Rutkowski, Yoshikazu Washizawa, Toshihisa
Tanaka, and Andrzej Cichocki

Abstract We discuss a novel movement imagery brain-computer/ma-chine-
interface (BCI/BMI) paradigm learning procedure with utilization of real- and
quasi-movements of subjects’ thumbs. In the proposed procedure volitional move-
ments are slowly minimized by the subjects to a very low level so that finally they
become undetectable by objective measures such as electromyography (EMG). The
procedure allows the subjects to understand motion imagery process, which follows
after the training. The procedure allows also to control the final movement imagery
protocol and to detect any possible movements in case subject would not learn to
suppress them completely. We present also a discussion on electroencephalogra-
phy (EEG) signals pre-processing steps with common spatial pattern (CSP) method
improvements. Promising results were obtained with subjects who could not per-
form the motion imagery paradigm as well with those who never tried it before
conclude the paper.

Keywords Brain computer interface · Movement imagery paradigm · BCI user
adaptation · Quasi movement paradigm

1 Introduction

Movement imagery belongs to a class of independent BCI/BMI paradigms relaying
only on subjects’ conscious control of brain dynamics captured later on scalp level
in form of EEG [1–3]. A process of user learning to perform movement imagery
tasks can sometimes take a long time [4] and this is why a “quasi-movement”
paradigm was first proposed in [5]. Quasi-movement of a muscle is performed in
a condition, when a voluntary movement cannot be detected by objective measures
as EMG electrodes attached to skin over such muscle. Subjects usually train to
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perform such movement in a bio-feedback setup where they can watch amount of
EMG power and minimize it by suppressing the muscle activity. Building on those
reports we propose a substantial improvement of movement imagery paradigm with
utilization of stepwise learning procedure starting from real movements, followed
with quasi-movements with EMG biofeedback and finally with an imagery ses-
sion only. We also propose a substantial reduction of EEG electrodes number to 12
only, comparing to previous reports [4, 5]. In real-, quasi- and imagery-movement
paradigms amplitude dynamics of electroencephalographic alpha oscillations relate
the regional involvements of cortical areas during the experimental task. In all the
above conditions, a significant variations within alpha (so called mu-rythm) oscil-
lations over the sensorimotor and motor areas of the contralateral hemisphere are
usually detected [6].

2 Methods

The experiments are conducted in Advanced Brain Signal Processing Laboratory,
RIKEN Brain Science Institute, Saitama, Japan. The five subjects during the exper-
imental procedures are wearing EEG caps connected to g.USBamp bio-amplifiers
capturing 12 EEG signals from electrodes located at C1, C2, C3, C4, C5, C6, FC1,
FC2, FC3, FC4, FC5, FC6 as in international extended 10/20 system [6], with a
sampling frequency of 256 Hz and impedance not exceeding 10 k�. The two pairs
of bipolar EMG biofeedback electrodes for real- and quasi-movement muscle con-
trol are placed on the both subject hands to monitor activity of an adductor pollicis
muscle.

A classification of left/right real-, quasi and imagery-movements based on EEG
signals is performed in the presented approach. Recorded signals consist of Ne = 12
EEG channels and there are two target classes: Class1 (left hand) and Class2 (right
hand). For each movement only M = 10 trials are performed. The EEG signals are
filtered to fit a range 8 Hz to fuHz frequency bands with a Butterworth filter order
of 4. Let X = {X1, X2, . . . , X2M} where Xi ∈ R

Ne×N denotes the filtered ith trial of
EEG signal and N is the number of samples in the signal (640 samples stand for 2.5 s
in this study). We adopt in the study a common spatial patterns (CSP) classification
method [7]. The main idea of CSP is to determine spatial filters which maximize
difference in variance. The cost function of CSP is expressed as

J[w] = wT�1w

wT (�1 +�2)w
, (1)

where w ∈ R
Ne is the unknown weight vector of the spatial filter. Σ1 is given by

�1 = 1

M

∑

i∈C1

XiXi
T

trace(XiXi
T )

, (2)
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where C1 represents all Class1 of EEG trials, trace(·) takes the sum of the diagonal
elements, and Σ2 is also obtained in the same procedure. This cost function can be
solved by the eigenvalue decomposition. Then we can obtain the two spatial filters,
w1 and w2 by minimizing two cost funtions which have the numerator of w1

T�1w1
and w2

T�2w2 respectively. When a test signal, X is given, we classify the test signal
by the following procedure

{
var(wT

1 X) < var(wT
2 X) ⇒ X ∈ C1,

var(wT
2 X) < var(wT

1 X) ⇒ X ∈ C2,
(3)

where var(·) is a variance.

3 Results and Conclusions

Figure 1a–c present the classification accuracy for each frequency band fu. The clas-
sification accuracy is obtained by a leave-one-out cross validation method. Figure 1a
presents results of EEG classification when users are actually moving their thumbs.
This step is very useful for subjects’ later imagery-movement paradigm execution.
The classification accuracy is already high for most of the subjects. Next step of
quasi-movement, as in Fig. 1b, is based on movement suppression by not exceeding
an EMG detection threshold. EEG classification accuracy shown in this case, for
some subjects, is almost perfect, with some sudden drops in accuracy due to pos-
sible EMG interference is noticeable. Finally the imagery-movement experiment
presents accuracy improvement for all subjects in Fig. 1c. It is interesting to note,
that the accuracy gain is obtained not only in mu-rhythm area.

The presented approach is a step forward in subjects training to perform
movement imagery BCI/BMI experiments.
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Fig. 1 The classification accuracy results
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High Resolution Common Spatial Frequency
Filters for Classifying Multi-class EEG

Qibin Zhao, Tomasz M. Rutkowski, Andrzej Cichocki, and Liqing Zhang

Abstract The Common Spatial Patterns (CSP) algorithm is a highly successful
spatial filtering method for extracting spatial patterns related to specific mental tasks
from electroencephalogram (EEG) signals. The performance of CSP highly depends
on the selection of frequency band in the preprocess. However, the most discrimi-
native frequency band features varies slightly with subjects and mental tasks. In
order to provide high resolution in frequency domain, we propose an common spa-
tial frequency patterns method to learn most discriminative spatial and frequency
filters simultaneously for specific mental task. The results on EEG data during
motor imagery (MI) tasks demonstrate the good performance of our method with
decreased number of EEG channels.

Keywords EEG · BCI · CSP

1 Introduction

Recently, Brain Computer Interface (BCI), which aims to establish a direct
communicate pathway between brain and computer, has been widely researched
over the world [1]. To this end, CSP method [2, 3] has been proven to be very
powerful in determining spatial filters which can extract discriminative brain
rhythms. However the performance will suffer from the frequency band which
is either selected manually or unspecifically set to a broad band filter. In [4, 5],
several algorithms were presented to consider the frequency information during the
optimization. But, the low frequency resolution and the difficulties of choosing the
best parameters still remain a challenging problem. To provide higher frequency
resolution, we propose Common Spatial Frequency Patterns (CSFP) which is able
to find the spatial and frequency combination filters containing the maximum
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discriminative information. Hence the performance outperforms traditional CSP on
average, and in cases when the frequency range of most discriminative rhythm for
mental tasks are different, a considerable improvement of classification accuracy
can be achieved.

2 Method

Time-frequency analysis of event related potentials of EEG and MEG data
has recently attracted increasing attention for BCI [6, 7]. To accommodate
non-stationarity frequency analysis, continuous wavelet transform can obtain an
improved trade off between temporal resolution and frequency resolution through
varying the window length over frequencies.

The continuous wavelet transform (CWT) of the EEG signal xc,k(τ ) is defined as:

Wc,k(a, t) = 1√
a

∫ +∞

−∞
xc,k(τ )ψ(

τ − t

a
)dτ , (1)

where Wc,k(a, t) represents the CWT of the data segment xc,k(τ ), c represents chan-
nel index and k represents EEG trial number. Although many types of wavelets
exists, the Morlet wavelets are appropriate for time-frequency analysis of EEG
signals [8]. Since the scale parameter a is related to frequency f by the relation
a = ω0/(2π f ), we define

pc, f
k = Wc,k

(
Fc

fT
, t

)
, (2)

where pc, f
k represents the time-vary wavelet coefficients of k-th trial EEG at channel

c and frequency f. Then, we can form a spatio-frequency distribution matrix for each
channel and each frequency bin, i.e.,

Yk =
(

pc1, f1
k , . . . , pcn, f1

k , . . . , pc1, fm
k , . . . , pcn, fm

k

)T
(3)

where Yk ∈ RN×M , N is the number of channels × frequency (i.e., n×m) , M is the
number of samples in each trial.

Based on this time-frequency representation, the class-covariance matrices are
given as,

+(i) =
∑

k∈classi

YkYT
k

tr(YkYT
k )

, (4)

where classi refer to the i-th class of the training data. The optimization criterion of
CSFP is to find maximal discriminative spatial and frequency filters described by
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wp ∈ Rd(d = n × m) which maximizes the variance in one class while simultane-
ously minimizes the total variance in all class. In order to find filters for each class,
we can set the two matrices SI and ST as follows:

SI = +(i)|Mi=1, ST = 1

M

M∑

i=1

+(i), (5)

where SI is class-specific covariance matrix and ST is total covariance matrix of
M class. Each filter w is therefore found by solving the following optimisation
problem:

argmax
w

wTSIw
wTSTw

. (6)

The projection vector w can be be shown to be equivalent to solving the generalised
eigenvalue problem SIw = λSTw, where λ is a generalized eigenvalue, and w is a
generalized eigenvector corresponding to λ.

By the optimizing criteria in Eq. (6), we can get projection matrix W(i) i.e., spatial
frequency filters, for each class i. The number of projection vector in W(i) is selected
by cross validation on training data. Finally, combining each W(i)|Mi=1, we obtain
Wcsfp = [W(1)W(2), . . . , W(M)] which can be seen as spatial frequency filters for
multi-class data. Therefore, the Yk of new EEG trials can be projected onto Wcsfp
as:

Zk = WTYk. (7)

Zk denotes the maximal discriminative components for multi-classes data.

3 Results and Discussions

For illustrations of the properties of the proposed method, we focus on classification
of MI tasks, e.g. left hand, right hand and/or foot. The obvious variety of spatial
distribution on different frequency band are observed in Fig. 1. To demonstrate the
suitability of CSFP for small number of channels, only 5 channels (i.e., C3, Cp3, Cz,
Cp4, C4) EEG were recorded from the scalp at a sampling rate of 256 Hz. Figure 2
demonstrates the variety of spectra among subjects and class-dependent spectra for

Fig. 1 Scalp topographies of r2-values of left and right tasks on different frequency band
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the same subject, such as the left class of S1 focuses on 11–13 Hz whereas right
class focuses on 21–25 Hz. Therefore, the different weights on spectra are required
evidently.

The spatial and frequency filters obtained by CSFP are showed in Fig. 3.
Obviously, not only different spatial filters but also spectra filters for each class
are learned from training data. The evident difference of two classes EEG can be
found by both spatial and frequency patterns, which indicates that the frequency
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information are not only subject-dependent but also class-dependent. As expected,
there is a high discrimination in μ and β bands, but the low discrimination in
other frequency band. So instead of having a spatial projection onto a broad band
(8–30 Hz) signal as a solution, the CSFP yields an improved spatio-frequency
resolution of the discriminative signals.

In order to illustrate the robustness of the proposed algorithm and provide the
continuous EEG classification, the preprocess of segmentation has been applied to
the original EEG signals. Each EEG trial has been segmented into several sub-trials
by sliding window with fixed window length. After preprocessing, we can obtain
overlapped EEG trials with duration of each trial varied between 1 to 4 s. By using
linear Support Vector Machine (SVM) as classification model, the 10×10-fold cross
validation error rate and standard deviation for 5 subjects are presented in Fig. 4. The
results suggest that the proposed algorithm outperforms the CSP algorithm, in terms
of an decreased classification error rate.

4 Conclusion

The presented CSFP algorithm successfully classifies EEG signals with fewer
channels by optimizing the spatial and frequency patterns simultaneously. Due to
the better results of CSFP on short MI duration, we can conclude that the CSFP fea-
ture extraction strategy will be more suitable for providing high performance and
fast response for asynchronous BCI.

Acknowledgments The work was supported in part by the Science and Technology Commission
of Shanghai Municipality (Grant No. 08511501701) and the National Natural Science Foundation
of China (Grant No. 60775007).
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Suitable ICA Algorithm for Extracting
Saccade-Related EEG Signals

Arao Funase, Motoaki Mouri, Andrzej Cichocki, and Ichi Takumi

Abstract Our goal is to develop a novel BCI based on saccade-related EEG signals.
It is necessary to analyze raw EEG signals in signal processing methods for BCI. In
order to process raw EEG signals, we used independent component analysis (ICA).
Previous paper presented extraction rate of saccade-related EEG signals by five ICA
algorithms and eight window size. However, three ICA algorithms, the FastICA, the
NG-FICA and the JADE algorithms, are based on 4th order statistic and AMUSE
algorithm has an improved algorithm named the SOBI. Therefore, we must re-select
ICA algorithms. In this paper, Firstly, we add new algorithms; the SOBI and the
MILCA. Using the Fast ICA, the JADE, the AMUSE, the SOBI, and the MILCA, we
extract saccade-related EEG signals and check extracting rates. Secondly, we check
relationship between window sizes of EEG signals to be analyzed and extracting
rates.

1 Introduction

Brain-computer interfaces (BCIs) have been researched as a novel human interface
for a few decades. The capabilities of BCIs allow them to be used in situations
unsuitable for the conventional interfaces. BCIs are used to connect a user and a
computer via an electroencephalogram (EEG).

EEG related to saccadic eye movements have been studied by our group toward
developing a BCI eye-tracking system [1]. In previous research, saccade-related
EEG signals were analyzed using the ensemble averaging method. Ensemble aver-
aging is not suitable for analyzing raw EEG data because the method needs many
repetitive trials.
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Recording EEG data repetitively is a critical problem to develop BCIs. It is essen-
tial to overcome this problem in order to realize practical use of BCIs for single trial
EEG data.

Recently, the independent component analysis (ICA) method has been intro-
duced in the field of bio-signal processing as a promising technique for separating
independent sources. The ICA method can process raw EEG data and find features
related to various one’s activity. Therefore, the ICA algorithm overcomes the prob-
lems associated with ensemble averaging, and the ICA analyzes the waveforms of
the EEG data.

There are many algorithms to compute independent components [2]. In previous
studies [3], we used the FastICA, the NG-FICA, the AMUSE, the JADE to ana-
lyze saccade-related EEG signals. However, we must re-select an ICA algorithm
since three ICA algorithms: the FastICA, the NG-FICA and the JADE algorithms
are based on the 4th order statistic and the AMUSE algorithm has an improved
algorithm named the SOBI [4].

In this research, we add new algorithms: the SOBI and the MILCA [5]. The SOBI
is an improved algorithm based on the AMUSE and uses the independency based
on two covariance matrices at different time steps. The MILCA uses the indepen-
dency based on mutual information. Using the Fast ICA, the JADE, the AMUSE, the
SOBI, and the MILCA, we extract saccade-related EEG signals and check extracting
rates.

Secondly, we focus on window sizes of EEG signals to be analyzed. In order to
analyze EEG signals in on-line system, we must choose an appropriate window size
to extract continuous EEG signals. In this paper, we separate window sizes into two
groups: the windows excluding EEG signals after eye movements and the windows
include EEG signals after eye movements.

2 Experimental Settings

In order to record saccade-related EEG signals, we performed visually guided sac-
cade task. This task was to record the EEG signals during a saccade to a visual target
that is either his/her right side or left side. This experiment was comprised of 50 tri-
als in total: 25 on the right side and 25 on the left side. The number of subjects is 5.
Their age is from 22–24 years old.

The EEG signals were recorded through 19 electrodes (Ag–AgCl), which were
placed on the subject’s head in accord with the international 10–20 electrode posi-
tion system. The Electrooculogram (EOG) signals were simultaneously recorded
through two pairs of electrodes (Ag–AgCl) attached to the top–bottom side and
right-left side of the right eye.

Recorded EEG signals were calculated by five ICA algorithms: FastICA,
AMUSE, JADE, SOBI, MILCA. In order to calculate independent components, we
must decide the window length. In this paper, there were 8 size windows.
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Group 1 Group 2

1. Window A: –999–1000 ms 4. Window D: –999–0 ms
2. Window B: –499–500 ms 5. Window E: –499–0 ms
3. Window C: –349–350 ms 6. Window F: –349–0 ms

7. Window G: –249–0 ms
8. Window H: –99–0 ms

0 [ms] indicates the starting point of saccade. After eye movements, EEG signals
include big noises caused by EOG signals. In order to observe influence of noises
caused by EOG signals, we separated window size into two groups: Window A to
C including EEG signals after saccade and window D to H excluding EEG signals
after saccade.

In using five algorithms and eight windows, we calculated saccade-related
independent components.

3 Experimental Results

First, we define two words: an extracting rate and saccade-related IC. The extraction
rate is defined by the following ratio:

(the number of trials in which saccade-related IC are extracted)/(The total
number of trials)

We make assumption that a saccade-related IC has a positive peak from –50 ms∼
–1 ms. The peak-amplitude n is larger than 3; n = x̄−μ

s ; where x̄ is mean of
EEG potential during 1,000 ms before saccade, μ is maximum amplitude, and s
is standard deviation during 1,000 ms before saccade.

Table 1 represents the rate for extracting saccade-related ICs from the raw EEG
data by each algorithm in the case of window E. From these results, the FastICA and
JADE got good performance in extracting saccade-related independent components.
However, the results of the AMUSE and SOBI and MILCA algorithm were not
good. From these results, in order to extract saccade-related EEG signals, it is not
suitable to use independency of 2nd order statistics and the mutual information.

Next, we focus on extracting rate in each windows (see Table 2). From Table 2,
extracting rates in group 1 were lower than those in group 2. Therefore, we should

Table 1 Extracted rate by four ICA algorithms

AMUSE(%) FICA(%) JADE(%) SOBI(%) MILCA(%)

A 14 98 100 70 50
B 18 82 94 76 46
C 30 94 96 80 62
D 30 98 98 66 50
E 24 94 96 70 46
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Table 2 Extracted rate by eight window size

Group Window size(ms) FastICA(%) JADE(%)

1 –999 ∼ 1000 37.2 38
–499 ∼ 500 29.6 27.2
–349 ∼ 350 22.4 26.4

2 –999 ∼ 0 90 93.6
–499 ∼ 0 93.2 96.4
–349 ∼ 0 99.4 99.2
–249 ∼ 0 93.2 93.6
–99 ∼ 0 99.4 99.2

Fig. 1 Extracted signals for FastICA by each window size

not use EEG signals after saccade. because the signals in group 1 include EOG
noise. In the case of group 2, the results of small window size is better. From these
result, we can get good results in the case of short window size excluding signals
after saccade.

Figure 1 is extracted signals by FastICA and window D,E,F. Each extracted sig-
nals are not the same although input signals are the same. However, each signals
denote the same tendency.

4 Conclusion

This paper presented extraction rates of saccade-related EEG signals by five ICA
algorithms and eight window sizes.

As results of extracting rate focused on ICA algorithms, The JADE and Fast ICA
had good results.

As results of extracting rates focused on window sizes, the window H (–99 ∼
0 ms) had good results. In the case of the window A, B, and C, we could not get
good results because these windows included big EOG noise.

In next step, we must check relationship between extracting rate and the number
of input channels. In order to develop BCI, we must select a few input channels
instead of present input channels; 19 channels.
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EEG Based Brain-Computer Interface System
for Remote Vehicle Controlling

Han Sun, Liqing Zhang, Jie Li, and Qibing Zhao

Abstract Brain Computer Interface (BCI) bridges human brain and computer. In
this paper, we propose a real-time BCI system that enables subject to control remote
vehicle by motor imagery. Multilinear generation of common spatial pattern analy-
sis is introduced to extract high-order tensor EEG features. The general framework
of BCI interfacing paradigm for remote vehicle control is then developed. To vali-
date the performance of the developed model, both offline simulation and real-time
experiment are given. The real-time experiment shows after a proper period of
training, subjects can control the vehicle running along a designated path smoothly.

1 Introduction

As a newly rising computational neuroscience and cognitive neurodynamics
research direction, brain computer interface technology has encouraged incremental
attentions [1]. While BCI technology originally aimed to establish a direct com-
munication channel between brain and computer for paralyzed people, recent BCI
research has expanded to a broader area that may benefits normal people as well, for
instances, remote system controlling, virtual environment exploring, and new gen-
eration game controlling. Meanwhile, among available techniques for brain signal
acquisition, EEG is preferred for real time BCI systems due to its high temporal
resolution, portable size, noninvasive recording and lower cost [2].

Recent studies have discovered human brain can adapt to BCIs that predict motor
imagery EEG patterns and control external devices [3]. In this paper, we use mul-
tilinear generation of common spatial pattern to analyze single trial EEG in motor
(left and right hand) imagery task, and implement a real-time BCI system that enable
subject to control remote vehicle.
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2 Methods

In the signal preprocessing module, we used constrained fast ICA to remove eye
movement artifacts. Before experiment, subjects were required to move the eyeball
of purpose, during which the EOG contribution to the other EEG channels was
approached. Then after restoring the signals by deflation procedure, the artifacts-
corrected EEG signals were obtained.

Common Tensor Discriminant Analysis(CTDA) [4] was employed in the feature
extraction module. The idea of CTDA is to find the most discriminative tensor sub-
space by building K − 1 filters Wi, i = 1. . .M − 1, where different classes have the
most differing power ratios after being projected. And the M-order tensor data X is
projected as follow:

Z = X
M−1∏

d=1

×dWT
d

Then the feature vector F is calculated:

F = log

(
diag(ZMZT

M)

tr(ZMZT
M)

)

ZM is the matrix form of tensor Z where the Mth dimension maps to the rows
of the matrix. In this research, we transformed the original data to channel ×
frequency × time tensor, where M = 3.

3 System Design and Experiments

In this section, we will briefly introduce the integrated system and BCI interfacing
paradigm for remote vehicle control.

3.1 System Architecture

Here we propose a general framework and development platform for developing an
efficient, reliable and extendible BCI system.

Shown in Fig. 1, the entire system is composed of several subsystems and mod-
ules. The console mainly controls all functional processes. After configuring the
parameters and options, it begins to process EEG signals and translate the subject’s
intention to internal commands. Synchronously, signals and data are transmitted
to visualization system, where data are illustrated for experiment operator. Finally,
internal commands are packaged and delivered to control remote vehicle throughout
a transmission interface.

Functionally, our system provides two working modes. Before a subject begins
real-time experiment, several runs of training procedures are taken in training mode,
while a statistical model is trained for the specific subject. Another one is online
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Fig. 1 BCI system framework diagram

processing and real-time control mode, in which EEG signals are processed and
translated to remote control commands with real-time capability.

3.2 Experiments and Data Acquisition

To validate our BCI system, we carried out an experiment with four right-handed
healthy subjects. For each subject, the experiment included a training procedure
consisted of 6 sessions of 60 trials each and an online experiment. Focusing on the
screen where the image captured by a camera on the vehicle was shown in first
person view, subject was required to drive along a designated path.

Twenty one channels of EEG and 2 channels of EOG signals were recorded and
sampled at 250 Hz.

4 Results and Analysis

In the training stage, four subject’s EEG signals were recorded and analyzed. We
use different trail lengths to approach the best model for specific subject. The clas-
sification accuracies are illustrated in Table 1. Three of the subjects’ best accuracies

Table 1 Classification
accuracy for each subject
using different trail lengths

Subject 1.0 s 1.5 s 2.0 s

Sub1 86.1% 93.0% 98.3%
Sub2 78.8% 73.0% 75.0%
Sub3 87.6% 92.5% 95.8%
Sub4 92.0% 90.4% 95.7%
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were greater than 95%, which inferred the EEG patterns for different mental tasks
were predictable for most subjects.

After a proper time of self-adaption and training, three subjects were able to
control the remote vehicle smoothly. Figure 2 illustrate the process of subject1’s
online experiment. He was required to drive the vehicle from one point to another.
Such real navigation could have favorable impact on EEG dynamics, making the
whole procedure easier for general subjects.

5 Discussion

To sum up, the developed BCI system was successfully applied to control remote
vehicle. However the task of developing more robust and universal applicable BCI
device that could be utilized in daily life remains changeling. The main future work
may focus on exploring more efficiency feature selection methods, discovering new
user interaction scheme and introducing advanced control theory to strengthen the
maneuverability of target device.
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Channel Selection for Motor Imagery-Based
BCIs: A Semi-supervised SVM Algorithm

Jinyi Long, Yuanqing Li, and Zhenghui Gu

Abstract Given a frequency band, we propose a semi-supervised SVM algorithm
to select a set of channels for motor imagery-based BCIs in this paper. Both training
data with labels and test data without labels are used for training a classifier in this
approach. Hence, it is suitable for the case of small training data set. To test our algo-
rithm, it is applied to a BCI competition data set. Data analysis results demonstrate
the effectiveness of our algorithm.

Keywords Electroencephalogram (EEG) · Motor imagery · Brain computer inter-
face (BCI) · Channels · Semi-supervised learning

1 Introduction

For a motor imagery-based BCI system, channels and frequency band are two
important parameters for effecting the performance of a BCI system. This paper
discusses channel selection for motor-imagery based BCI systems. Generally, chan-
nels are manually set or selected through cross-validation. The state-of-the-art
approaches for rating the relevance of channels include zero-norm optimization
based-support vector machine (SVM), Recursive Feature Elimination (RFE) and
Fisher ratio [1]. After ranking all channels, the number of selected channels was gen-
erally determined by the average classification accuracy obtained in cross validation
of training data set [1, 2].

The above methods for parameters selection generally need sufficient training
data to obtain reliable channels. However, collecting sufficient training data is often
boring and time consuming. For channel selection, we extend an iterative semi-
supervised SVM algorithm mentioned in [3, 4], where it is proposed for joint feature
re-extraction and classification considering small training data. In our algorithm,
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Fisher ratio is applied to rank channels, while Rayleigh coefficient is applied to
determine the number of channels. The computation of Fisher ratio and Rayleigh
coefficient is based on both training data and test data.

To validate the proposed algorithm, we apply it to the data set IVa of BCI com-
petition III in 2005 [5]. Furthermore, we compare our algorithm with an existing
method (Fisher ratio based cross-validation) mentioned in [1] for channel selec-
tion. Our data analysis results show that our algorithm can effectively perform
channel selection with small training data set and provide satisfactory classification
accuracy.

2 A Semi-supervised SVM Algorithm for Channel Selection

Given two raw EEG data set: A small training data set Dc containing Nc trials of
EEG signals with labels yi ∈ {+1,−1}, (i = 1, . . . , Nc) and a test data set Dt contain-
ing Nt trials of EEG signals. In the following, we present the outline of an iterative
semi-supervised SVM algorithm for channel selection.

Algorithm 1

Step 1 For the first iteration, do the following Steps 1.1–1.4:

1.1 (Feature extraction and classification) Given a frequency band F0, band-pass
filter is applied to the raw EEG data set D = Dc ∪ Dt. We train a spatial trans-
formation matrix with training data set Dc to extract the CSP features. The
extracted feature vectors are denoted as xk, k = 1, . . . , Nc, Nc + 1, . . . , Nc +Nt.
With the feature vectors and the known labels corresponding to training data
Dc, we train a SVM model and predict the class labels {yNc+1, . . . , yNc+Nt } for
the test data set Dt.

1.2 (Channel selection) Using the data setD with the given labels and the predicted
labels, we calculate Fisher ratio FR(1)

l for the lth (l = 1, . . . , n) channel and rank

all channels using FR(1)
l . Define n − 1 subsets of channels Q(1)

j (j = 2, . . . , n)
which contain j channels with the highest Fisher ratio scores and then calculate
the Rayleigh coefficient RC(1)

j for the subset Q(1)
j . A channel subset denoted as

Q(1) is then determined by the maximal difference between Q(1)
j and Q(1)

j+1. In
this step, the superscript 1 represents the first iteration.

1.3 (Data updation) Using the selected channels Q(1), we construct data set D(1)
c

which contains Nc trials of raw EEG signals from Dc. We also construct data
set D(1)

t which contains Nt trials of raw EEG signals from Dt. Denote D(1) =
D(1)

c ∪ D(1)
t .

1.4 (Feature re-extraction and classification) Based on the data set D(1), we re-
extract the CSP feature vectors {x(1)

1 , . . . , x(1)
Nc+Nt

} as Step 1.1, then train a
SVM model and perform classification. The predicted labels are denoted as
y(1)

Nc+1, . . . , y(1)
Nc+Nt

for test data set D(1)
t .
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Step 2 For the kth iteration (k = 2, 3, . . .), do the following Steps 2.1–2.4.

2.1 (Channel selection) Based on the data set D with the labels for Dc and the
labels predicted in the (k − 1)th iteration for Dt in which the labels is the same
as D(k−1)

t , we perform channel selection as in Step 1.2. The subset of selected
channels is denoted as Q(k).

2.2 (Data updation) We construct data set D(k)
c and data set D(k)

t similar to Step 1.3
with Q(k). Denote D(k) = D(k)

c ∪ D(k)
t .

2.3 (Feature re-extraction and classification) This step is similar to Step 1.4 and the
predicted labels are denoted as y(k)

Nc+1, . . . , y(k)
Nc+Nt

.
2.4 (Calculation of termination index) Calculate a ratio which reflects the differ-

ence between the labels predicted in the kth iteration and the labels predicted in
(k − 1)th iteration:

r(k) =
∑Nc+Nt

i=Nc+1 |y(k)
i − y(k−1)

i |
2Nt

(1)

Step 3 (Termination) For a predefined constant δ0, if r(k) < δ0, the algorithm
terminates after k iterations. Q(k) is the set of selected channels, while
y(k)

Nc+1, . . . , y(k)
Nc+Nt

are the predicted labels for test data set Dt.

3 Data Analysis

In this section, we apply Algorithm 1 to data set IVa provided by the BCI com-
petition III to demonstrate its effectiveness [5]. The data set for each subject is
partitioned into two subsets: the first one containing the first 200 trials is used for
8-fold cross-validation and the remainder is used as an independent test data set
which is not involved in the training process. One fold of EEG signals is used for
training, while the other folds of EEG signals are used as the test data set. In this
paper, we present our analysis results for the first 3 subjects “aa”, “al” and “aw”, as
the results for the other two subjects are similar.

Data preprocessing steps include spatial filtering (Common Average Reference,
CAR), band pass filtering in the range of 8–14 Hz corresponding to mu rhythm.
Since ERD generally happens in sensorimotor cortex, we only use 60 channels
located in the center area.

For each subject, we obtain two average accuracy curves over 8-fold cross valida-
tion for the test data set and the independent test set respectively. The three subplots
of Fig. 1 show the iteration curves of averaged classification accuracies obtained
by Algorithm 1 (solid lines) for the first three subjects respectively. From these
subplots, we can see that most of these curves of prediction accuracies obtained
by Algorithm 1 (solid lines) show increasing tendency and Algorithm 1 generally
converges in about 10 iterations.
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Fig. 1 Curves of averaged prediction accuracies for the first three subjects. (The curves with
“o“ correspond to test data sets used in 8-fold cross-validation, while the the curves with “∗“
correspond to independent test sets. The real line is for Algorithm 1, while the dashed line is for
comparison with Fisher ratio.)

For comparison, we now modify Algorithm 1 as follows. The channels are ranked
by Fisher ratio and the number of selected channels is determined by cross validation
(leave-one-out) on the small training data set. When the subset of channels is deter-
mined, an iterative semi-supervised SVM algorithm by removing all steps related to
channel selection in Algorithm 1 is used for joint feature extraction and classifica-
tion. Now we apply this approach to the data set and perform similar data analysis
as above. Figure 1 shows the iterative curves of averaged classification accuracies
(dashed lines) for the first three subjects.

Through Fig. 1, we can see that the performance of Algorithm 1 is better than
that of the modified method. The main reason is that channel selection of the mod-
ified method is based on the small training data set, while the channel selection of
Algorithm 1 is performed by a semi-supervised approach in which both the small
training data set and the test data set are involved.

4 Conclusions

In this paper, we presented an iterative semi-supervised SVM algorithm for chan-
nel selection which is designed for motor-imagery based BCI. Since this algorithm
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is based on semi-supervised learning strategy, it is suitable for the case of small
training data set. Through analyzing the data set IVa in BCI competition III, the
effectiveness of our algorithms were demonstrated.
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On the Early Diagnosis of Alzheimer’s Disease
from EEG Signals: A Mini-Review

Justin Dauwels, François-Benoît Vialatte, and Andrzej Cichocki

Abstract In recent years, various computational approaches have been proposed to
diagnose Alzheimer’s disease (AD) from EEG recordings. In this paper, we review
some of those approaches, and discuss their limitations and potential.

1 Introduction

Alzheimer’s disease (AD) is a common neurodegenerative disorder that affects more
than 10% of Americans over age 65, and nearly 50% of people older than 85; it is
estimated that the prevalence of the disease will triple within the next 50 years [1].
No cure for Alzheimer’s disease has been developed yet, but a number of medi-
cations are believed to delay the symptoms (and perhaps causes) of the disease.
The progression of the disease can be categorized in four different stages. The first
stage is known as Mild Cognitive Impairment (MCI), and corresponds to a vari-
ety of symptoms (most commonly amnesia) which do not significantly alter daily
life. Between 6 and 25% of people affected with MCI progress to AD every year.
The next stages of Alzheimer’s disease (Mild and Moderate AD) are character-
ized by increasing cognitive deficits, and decreasing independence, culminating in
the patient’s complete dependence on caregivers and a complete deterioration of
personality (Severe AD) [2].

Early diagnosis of Alzheimer’s disease, and in particular diagnosis of MCI and
Mild AD, is important, since medications are most effective at an early stage of
the disease. Diagnosis of Alzheimer’s disease is hard, however, and symptoms are
often dismissed as normal consequences of aging. Diagnosis is usually performed
through a combination of extensive testing and eliminations of other possible causes.
Psychological tests such as Mini Mental State Examinations (MMSE), blood tests,
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spinal fluid, neurological examination, and increasingly, imaging techniques are
used to help diagnose the disease [3].

In the last years, several research groups have started investigating the potential
of electroencephalograms (EEGs) for diagnosing AD. Since EEG recording systems
are inexpensive and (potentially) mobile, EEG may potentially be used as a tool to
screen a large population for the risk of AD.

In this paper, we review several state-of-the-art signal processing methods to
detect perturbations in EEG signals caused by AD (Section 2). We assess the poten-
tial and limitation of such computational approaches (Section 3). At the end of the
paper, we briefly address future challenges and open problems (Section 4). This
paper is probably one of the few studies in recent years to provide an overview
and critical assessment of various state-of-the-art signal processing methods for
diagnosing AD from EEG signals.

2 Analysis of EEG of MCI and AD Patients

Studies have shown that AD has (at least) three major effects on EEG (see [4] for
an in-depth review): slowing of the EEG, reduced complexity of the EEG signals,
and perturbations in EEG synchrony. Those effects, however, are not always easily
detectable: there tends to be a large variability among AD patients. As a result, none
of those phenomena allow at present to reliably diagnose AD at an early stage. Many
recent studies have investigated how to improve the sensitivity of EEG for detecting
AD. In the following we briefly review some of these studies; we will treat the three
major effects of AD on EEG separately.

2.1 Slowing of EEG

Many studies have shown that Alzheimer’s disease (AD) causes EEG signals to
slow down (see, e.g., [5–14]): AD is associated with an increase of power in low
frequencies (delta and theta band, 0.5–8 Hz) and a decrease of power in higher
frequencies (alpha and beta, 8–30 Hz, and gamma, 30–100 Hz). To quantify the
changes in spectral power, one has applied Fourier transforms [5–11, 14] and
sparsified time-frequency maps (“bump models”) [12, 13].

2.2 Reduced Complexity of EEG Signals

The EEG of MCI and AD patients seems to be more regular than of age-matched
control subjects [15–17]. The following complexity measures have been used to
quantify this reduction in EEG complexity: approximate entropy [15], auto mutual
information [18], sample entropy [15, 17], multiscale entropy [15], Lempel-Ziv
complexity [15], and fractal dimension [16].
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2.3 Perturbations in EEG Synchrony

Numerous studies have reported decreased EEG synchrony in MCI and AD patients
under resting conditions (“spontaneous EEG”) (see, e.g., [8, 18–32]). More pre-
cisely, the statistical dependence between spontaneous EEG signals recorded from
different channels seems to be generally lower in MCI and AD patients than in age-
matched control subjects. A large variety of measures have been applied to quantify
this loss in statistical dependence, e.g., Pearson correlation coefficient [25], coher-
ence [25, 26, 28], Granger causality [18, 19, 25], information-theoretic [32, 25] and
state space based synchrony measures [8, 20, 25, 29, 30], phase synchrony indices
[8, 25, 27, 28, 31], and stochastic event synchrony [21–25]. In a recent study, the
spatial distribution of EEG phase synchrony in AD patients has been investigated
[33]. By means of closely-related graph-theoretic methods, several studies have
shown that EEG signals of MCI and AD patients have weaker small-world network
characteristics compared to age-matched control subjects [34, 35].

The observed loss in synchrony is often attributed to a functional disconnec-
tion of the neocortex; it is probably not simply due to a loss of cortical neurons.
For example, it may result from anatomical disconnections among different cortical
regions in combination with reduced cholinergic coupling between cortical neu-
rons [32]. In particular, a common hypothesis is that basal forebrain neurons may
be severely affected in AD, resulting in a cerebral cholinergic deficit that leads to
memory loss and other cognitive symptoms [32].

Interestingly, in a few studies that investigate the EEG of MCI and AD patients
recorded during working memory tasks, an increase of EEG synchrony was
observed in those patients [29, 36]. This inverse effect is often interpreted as the
result of a compensatory mechanism in the brain.

One should keep in mind, however, that it is hard to directly interpret results
obtained with synchrony measures. The synchrony of EEG signals may be signif-
icantly affected by brain events other than changes of synchrony, and by choices
(like the reference electrode) that necessary have to be made during the analysis.
Furthermore, as a single active source in the brain may affect the EEG signals across
the entire scalp, changes in synchrony, and especially simultaneity of some events
across channels, may be observed when the activity of one source alone changes,
which is remote from a change in synchrony. As an alternative, one may use inver-
sion methods to reconstruct sources, and next apply synchrony measures to those
sources. However, the inversion problem is known to be notoriously difficult, and
any source reconstruction method relies on certain assumptions, which may not
necessarily hold.

3 Discussion

As pointed out earlier, EEG seems an attractive brain imaging modality for diag-
nosing AD, since EEG recording systems are inexpensive and (potentially) mobile.
Moreover, in contrast to most other non-invasive brain imaging methods, EEG
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has high temporal resolution, and may therefore contain crucial information about
abnormal brain dynamics in AD patients.

Numerous studies have investigated the potential of EEG as a diagnostic tool
for AD. At present, however, it is hard to assess whether EEG is truly useful for
diagnosing AD. First of all, most studies report the results of statistical tests (p-
values) without statistical post-correction. Since typically one conducts multiple
tests simultaneously (sometimes hundreds or even thousands), e.g., individual pairs
of electrodes or frequency bands, it is important to eliminate false positives. To
this end, one may apply Bonferroni post-correction, or more powerful alternatives,
such the false-discovery-rate correction method of Storey [37]. Unfortunately, not
all studies on diagnosing AD from EEG signals apply such post-correction methods,
and therefore, it is not always obvious how to interpret the reported results.

Second, few studies conduct discriminant analysis (linear or non-linear discrim-
inant analysis, using support vector machines, neural networks, etc.); studies that
do conduct discriminant analysis typically only report results for training data. The
reported results are therefore often prone to overfitting, and they may be overop-
timistic. To obtain more reliable classification results, one may for example apply
crossvalidation, as has indeed been done in a handful studies (e.g., [6, 17, 25]).

Third, in most existing studies, a single measure to detect EEG abnormalities
is applied to a single EEG data set. Since almost every study considers a different
measure and a different EEG data set, it is hard to compare existing studies and to
verify whether results are consistent.

Fourth, it is likely that one will need to combine various EEG characteristics in
order to obtain a good diagnostic tool for AD, e.g., based on slowing, loss in EEG
synchrony and complexity, and other features yet to be discovered. However, few
studies systematically investigate large collections of EEG features (e.g., [6, 25]); it
would be of great interest to apply dimensionality reduction methods to hundreds
or even thousands of EEG features, to determine the most discriminative EEG fea-
tures in a disciplined and statistically rigorous fashion. Moreover, it still needs to be
verified whether the effects listed in Sections 2.1, 2.2, and 2.3 are independent. For
example, it may be that EEG slowing and loss of EEG complexity are two sides of
the same coin.

4 Conclusions

To conclude this paper, we point out several remaining challenges and topics for
future research. At present, it is fairly difficult to gain access to EEG data of MCI
or AD patients. Such databases are not publicly available, in contrast to ECG and
other biomedical data (e.g., [38]). As a result, it is hard to systematically benchmark
and assess the existing methods for diagnosing AD from EEG signals. Moreover,
virtually none of those methods incorporate biophysical knowledge about AD (but
see [39]); detailed mathematical models of the pathology of AD, in conjunction
with EEG data analysis, may help us to improve the diagnosis of AD. Along the
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same lines, one may expect further improvement by combining EEG with other
imaging modalities, such as MRI (see, e.g., [40, 41, 18]), dMRI [42], TMS [43],
and SPECT [44].

The correlation between AD risk factors (e.g., high plasma concentration of
homocysteine [45]) and EEG characteristics needs to be investigated in greater
detail. In addition, at present, the precise relation between the decline of cognition
and memory and EEG abnormalities in AD patients remains largely unexplored (but
see [46, 7, 47, 31]). It is also of great importance to investigate whether EEG helps
to distinguish between MCI and different stages of AD (see, e.g., [48]), and between
AD and other dementias (see, e.g., [49–53]).

An important degree of freedom is the EEG recording condition: one may record
EEG: (i) while the subject is at rest (with open or closed eyes); (ii) while the subject
performs working-memory or other tasks; (iii) while the subject is being stimulated
with auditory, visual, tactile, or other signals (see, e.g., [54–58]). Depending on
the recording situation, EEG signals may be more or less discriminative for MCI
and AD; a systematic exploration of different recordings conditions with the aim of
diagnosing MCI and AD needs to be conducted.

One may also analyze the EEG of animal models of AD (see, e.g., [59]), where
the progression of AD can be rigorously assessed and controlled; such studies may
enable us to relate EEG abnormalities to the neuropathology of AD. Another inter-
esting line of research is to investigate the effect of medication and therapy on the
EEG of AD patients (see, e.g., [60–65]).
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Analysis of EEG Time Series Recorded
from Alzheimer Patients Based
on Their Spectral Content

Aurélien Hazart, François-Benoît Vialatte, and Andrzej Cichocki

Abstract In this paper, EEG recordings on each channel are seen as non stationary
time series. We assume a piecewise stationary model for the signal where the
changes affect the power spectrum. Such a model is particularly relevant for analyz-
ing Alzheimer disease (AD) dataset as the disease leads to variation of the frequency
rhythms. Our method is devoted to the estimation of the partition. We define a crite-
rion based on a regularized periodogram to estimate the spectrum and on the power
spectrum on predefined frequency bands to estimate the change points. The method
produces new markers designed to be used for the discrimination between control
and AD patients.

1 Introduction

Studying Alzheimer disease with Electroencephalogram (EEG) recordings has
encountered a lot of interest in the past decades. One advantage of EEG imag-
ing technique is the high resolution in time, that allows also a high resolution
in frequency. Numerous authors take advantage of this characteristic to analyze
Alzheimer dataset. In [1], the author describes the relation between abnormal EEG
dynamics and AD. Briefly, it is generally admitted that AD patients show a slowing
down of the brain activity (shift to lower frequencies) and a decrease of coherence
in the higher frequencies.

An important issue is to classify patients in different groups, namely AD
(Alzheimer Disease), MCI (Mild cognitive impairment) and CTR (age-matched
control). The goal is to achieve detection of Alzheimer disease in early stage (MCI).
Several works propose to discriminate AD, MCI and CTR patients with frequency-
based approaches (see the review [1]). Most of them are based on representation of
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the signal in the frequency domain [2], in the frequency-spatial domain [3] or in the
time-frequency domain [4]. Even if they obtain good classification ratio of AD and
MCI patients and sometimes of MCI and CTR patients, the problem is still open.

In this paper, we base our method on a time-frequency analysis but without
an explicit time-frequency representation. We aim at partitioning the time series
recorded on each channel in segments with similar spectral characteristics. We
estimate the time points of the ruptures between stationary segments. Time seg-
mentation of EEG signal is already applied in the literature but only for partitions
based on spatially stationary map. For instance in [5], the Global Dissimilarity mea-
sures the stability of the spatial maps over time (microstate) and is applied for AD
dataset in [6]. In our approach, we prefer to follow the idea of [4] that does not
use the spatial information. Each channel is partitioned separately according to the
power spectrum in specific frequency bands.

2 Method

2.1 Model

Several methods exist in the literature for the change point detection problem. Our
method belongs to the off-line parametric multiple change point class: All the signal
is used to estimate multiple changes that affect latent parameters.

We note yn, n = 1, . . . , N the signal recorded by one channel. We assume that
K − 1 change points divide the signal into K segments. The sorted change times
are noted tk, k = 1, . . . , K − 1 with the extension t0 = 1 and tK = N. The signal
on segment k corresponds to the vector [ytk−1+1, . . . , ytk ] and the elements are noted
ymk , mk ∈]tk−1, tk]. To model the spectral distribution of each segment, we simply
compute the discrete Fourier transform (DFT) for P discrete frequencies as follow:

ymk =
1

P

P−1∑

p=0

ap,k exp {2jπmkp/P} + emk (1)

where the ap, k denote the unknown DFT of ymk and e = [e1, . . . , en] is the noise
term, assumed to be a vector of i.i.d. zero mean Gaussian samples. Eq. (1) can be
rewrite in vector form as yk = Hak + ek. The vectors yk and ek contain the data and
the noise of segment k respectively, H the exponential terms 1/P exp {2jπmkp/P}
and ak the DFT. Assuming independence of the observations between segments, the
estimation of the ak under the maximum likelihood principle leads to the following
criterion (to be minimized in ak and tk):

J(tk, ak) =
K∑

k=1

Jk(ak) with Jk(tk, ak) = (yk −Hak)†(yk −Hak). (2)

To find the change points tk and eventually the coefficients ak that ensure
homogeneous spectrum within each segment, we consider constraints on the ak.
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First, we add a separable quadratic regularization term a†
kak [7] to avoid irreg-

ular spectrum. Then, following several works on EEG [3, 8], we suppose the
changes affect power spectrum in specific frequency bands, designed by the index
i = 1, . . . , I. To maximize the power spectrum computed per bands and per segment,
we penalize the opposite of the power spectrum in each bands:

Jk(tk, ak) = (yk −Hak)†(yk −Hak)+ λ1a†
kak − λ2

I∑

i=1

⎛

⎝
∑

pi

|ak, pi |2
⎞

⎠
2

(3)

where λ1, λ2 are positive regularization parameters, .† is the hermitian operator (ak

is a vector of complex) and the pi denotes the discrete frequencies of band i.
With the previous criterion (2)–(3), we assume that the number of segments K

is known. The estimation of K requires a model selection procedure. The standard
method is to minimize the criterion J(K) = J(n̂k, âk) + λ3φ(K) where φ(K) penal-
izes the number of segments to avoid over segmentation, for instance φ(K) = 2K
(Bayesian Information Criterion, BIC).

2.2 Computation

Ideally, the minimization of the criterion (2) and (3) in tk, ak would give the esti-
mated time change points as well as the estimated spectral content per segment.
However regarding the difficulty of the joint estimation problem, we decompose the
problem in two steps. We first estimate the coefficients âk by minimizing the two
first terms of (3), leading to the explicit form [7]:

âk = (1/P+ λ1)−1H†yk (4)

which corresponds to the periodogram regularized with a quadratic separable term.
Advantage of the regularized periodogram is a better spectral estimation when the
size of a segment is small. Then we minimize the third term of (3) replacing ak,i
by their previous estimation: −λ2

∑
i(
∑

p |âk,i|2)2. As in [8], the optimization is
achieved with a dynamic programming algorithm [9]. With this approximation, our
method can be seen as a continuation of [8] in the following ways: The spectrum
estimation is done with a regularized periodogram and we apply the method on a
real EEG AD database.

3 Results

The method is applied on real EEG recordings. The database was recorded in Japan
from 83 patients in a eyes-closed rest state. Even without specific stimuli, the sponta-
neous activity of the brain shows a succession of pattern activations, and the analyze
on the signal in the course of time remains relevant. The database consists of 20 s
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Fig. 1 Segmentation and corresponding dominant frequency of the EEG recordings at channel P4
from three patients (MCI, AD, CTR)

continuous artifact-free observations recorded on 21 channels at 200 Hz from three
groups of patients (AD, MCI, CTR). Following [3] which show significant changes
in theta, alpha and beta2 frequency bands, in centro-parietal area, we focus here on
these frequency bands (δ: 4–8 Hz, α: 8–12 Hz, β1: 12–15 Hz, β2: 15–19 Hz) and
location.

Qualitatively, the results obtained on all the database tend to show that segments
with a dominant frequency are more present in MCI patients than in AD or CTR.
Also, the length of the segments is longer for healthy patients than for AD or MCI,
and is usually shorter in θ band (less than 0.2 s) than in β or α (few seconds). We find
that the dominant frequency band for MCI patients are more often θ and β2, which
corroborate previous works on the early stage of AD [1, 3]. Because of space lim-
itation, we present the segmentation result on one channel, the P4 electrodes (right
parietal location, 10–20 system) and for three patients randomly selected (Fig. 1).
For each patient, the algorithm found three or four segments showing a dominant
frequency, with lengths comprising between 200 ms and 2 s. Based on these results,
a potential relevant feature for AD detection is the comparison of the power spec-
trum per frequency band weighted by the length of the corresponding segments.

4 Conclusion

We proposed here a method for partitioning EEG time series according to their
spectral distribution. It is an extension of classic spectral method, as it also consid-
ers time location of frequency. We show that the method is a good candidate for
analyzing AD database. Next steps would be to merge the segmentation of multi-
ple channels and to extract relevant markers for AD classification like temporal and
spatial position of frequency or number and length of segments.
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Modeling Transient Oscillations in the EEG
of Patients with Mild Cognitive Impairment

François-Benoît Vialatte, Jordi Solé-Casals, Aurélien Hazart, David Prvulovic,
Justin Dauwels, Johannes Pantel, Corinna Haenschel, and Andrzej Cichocki

Abstract We explore the potential of transient local synchrony in EEG, as a marker
for MCI (mild cognitive impairment). EEG signals of patients with MCI are trans-
formed to a wavelet time-frequency representation, and afterwards a sparsification
process (bump modeling) extracts time-frequency oscillatory bursts. We observed
that organized oscillatory events contain stronger discriminative signatures than
averaged spectral EEG statistics for patients in a probable early stage of Alzheimer’s
disease. Specifically, bump modeling enhanced the difference between MCI patients
and age-matched control subjects in the θ and high β frequency ranges. This effect
is consistent with previous results obtained on other databases.

1 Introduction

Alzheimer’s disease is a brain disorder, whose prevalence is dramatically increasing
(due to the general increase of life expectancy), threatening our societies. It would
be a great asset if we were able to detect it as early as possible, in particular, before
the onset of AD, a stage called predementia or mild cognitive impairment (MCI).
However, MCI has few, unreliable symptoms. A cost-efficient technique would be
necessary to screen populations at risk, potentially thousands to even millions of
people. Electroencephalography (EEG) is cost-effective, and was suggested as a
tool for diagnosing AD [1]; however its specificity to the disease is low, so that its
reliability is sometimes questioned. Nevertheless, EEG data are not totally exploited
by medical teams, especially its main advantage: a very precise time resolution,
allowing investigations of brain dynamics (see [1] for a review). Our purpose here
is to explore the potential of transient local synchrony in EEG, as a marker for the
MCI stage.
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Brain signals evolve quickly and non-linearly in time. EEG recordings consist of
stable and sustained activities on one hand, and unstable and transitory activities on
the other hand. When these transitory activities become organized in patterns, they
form bursts in EEG signals. Here, we are interested in these bursts, usually charac-
terized as a succession of 4–5 oscillations, within a limited frequency range: they
are hypothesized to be representative of transient synchronies of neural populations
[2, 3]. In the past few years, a lot of attention was devoted to signals evoked or
induced by specific stimulations. The brain responses to stimuli can be observed in
EEG signals, and such oscillatory bursts can be part of this response. But this kind
of activity is not shut down during rest periods. We intend here to study oscillatory
bursts in EEG signals recorded in rest condition, at the single trial level (not using
averaging). For this purpose, we applied bump modeling.

2 Methods

The database was recorded from 22 patients with MCI and 31 age-matched controls.
A 64 channel electrode-cap was fitted to the participants’s head with the ground
electrode at position AFz and the reference electrode at position FCz. An addi-
tional vertical electrooculogram electrode was placed below the right eye. Electrode
impedance was kept below 5 k�. Recording, digitization and preprocessing of
the EEG data were carried out with a BrainAmp amplifier and the BrainVision
Recorder software (Brain Products, Munich, Germany). Recording was done in
the Laboratory for Neurophysiology and Neuroimaging, Department of Psychiatry,
Johann Wolfgang Goethe University, 60590 Frankfurt, Germany in collaboration
with the Max Planck Institute for Brain Research, 60528 Frankfurt, Germany.All
participants provided informed consent prior to the study. Ethical approval was
obtained from the ethics committee of the Medical School, Johann Wolfgang Goethe
University, Frankfurt am Main, Germany.

Sampling rate was 500 Hz, and offline digital filters (Butterworth, zero-phase
forward and reverse) were set with bandpass at 0.5–90 Hz, and notch at 50 Hz. ICA
pre-processing of data was performed using ICAlab ver 3.0, with the IWASOBI
algorithm. Time-frequency sparse modeling was performed using Matlab R© 7.0,
and the ButIf toolbox [3]. Three EEG researchers visually inspected EEGs, and
each recording’s least corrupted continuous 20 s interval (from 1 min recorded in
rest with eyes closed condition) were chosen for the analysis. Each trial was then
decomposed using ICA , and artifacts (drifts, eye blinks, sharp waves, abnormal
amplitude sources) were removed independently using the procedure detailed in
[4]. The bump modeling method is covered in detail in [2, 3]. EEG signals were first
transformed to a time-frequency representation using complex Morlet wavelets. The
wavelet map was computed from 4 to 85 Hz with 1 Hz steps, and afterwards normal-
ized using a z-score normalization (see e.g. [5]). We then modeled the oscillatory
patterns present in the normalized time-frequency map:

E(A, h, w, f , t, y, x) =
W∑

x=1

H∑

y=1

∥∥ωy, x(s, τ )− ξ (A, h, w, f , t, y, x)
∥∥2 . (1)
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Where the sums are computed over a set of windows, ξ (A, h, w, f , t, y, x) are half-
ellipsoid functions, y and x are respectively the time and frequency position of the
adaptation window on the time-frequency map (fixed parameters), f and t are respec-
tively the time and frequency position of the bump on the time-frequency map, h and
w are respectively the height and width of the bump, A is the amplitude of the bump,
and ‖.‖ is a Frobenius norm. Adaptation is performed using a combination of first
and second order gradient descent. The results presented here were obtained with a
pruning threshold Ft = 0.30, and a z-score offset φ = 0.

3 Results and Discussion

We compared the statistics of EEG power before (using the wavelet map before
and after z-score) and after bump modeling (using the amplitude A of the bumps
in the frequency range), in six frequency ranges: θ (4–8 Hz), α1 (8–10 Hz), α2
(10–12 Hz), β1 (12–19 Hz), β2 (19–25 Hz), and γ (25–45 Hz). These results are
computed in relative power (the power in each frequency range is divided by the
total power). First, we compared the general average over all electrodes, for each
of the six frequency ranges, using a Mann-Whitney test1 (Table 1). The difference
between the two groups is increased after modeling, and significant effects can be
observed in the θ and β2 ranges, even after statistical correction.

Second, we located the effect by averaging the amplitude of bumps in nine scalp
zones (in Table 2), as was done in our previous publications (e.g. [6]). Because
we already know that θ and β2 ranges have significant effects (see Table 1), the
effects in these ranges can be interpreted without post-hoc correction (interpreted
as a localization of the significant effect). The difference in the θ range appears to
be independent on location, whereas the effect in the β2 only appears in posterior
locations (central, parietal right and left, and occipital). The differences in the other
frequency ranges were analyzed after post-hoc correction. Significant differences
appear in the α1 range in prefrontal channels, and in the α2 range in several areas,

Table 1 Difference between MCI patients and Control subjects, before and after the wavelet map
is modeled with bumps (relative power)

Frequency range (Hz) Wavelets p-value Bumps p-value

θ (4–8) 0.2014 0.013a

α1 (8–10) 0.439 0.661
α2 (10–12) 0.634 0.054
β1 (12–19) 0.309 0.376
β2 (19–25) 0.702 0.0035a

γ (25–45) 0.356 0.634

a Significant effects. Significant effects after post-hoc correction are shown in
bold.

1Wavelet coefficients are usually not distributed according to a normal distribution, hence a non-
parametric test has to be used.
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Table 2 Difference between MCI patients and Control subjects, after the wavelet map is modeled
with bumps (relative power). The difference between the two groups is shown depending on 9 scalp
zones

Range (Hz)→ θ α1 α2 β1 β2 γ

Area ↓ (4–8) 8–10) (10–12) (12–19) (19–25) (25–45)

Prefrontal 1.1 · 10−8a
1.4 · 10−3a

9.8 · 10−7a
0.23 0.12 0.83

Left frontal 3.7 · 10−7a
0.01a 0.0010a 0.77 0.22 0.83

Right frontal 1.2 · 10−8a
0.023a 0.0063a 0.57 0.032 0.48

Left temporal 2.0 · 10−3a
0.088a 0.018a 0.42 0.70 0.58

Central 1.0 · 10−5a
0.54 0.43 0.13 0.096 0.43

Right temporal 8.7 · 10−9a
0.041a 2.1 · 10−3a

0.87 0.039a 0.44
Left parietal 1.0 · 10−5a

0.010a 0.23 0.25 0.26 0.93
Right parietal 9.1 · 10−8a

0.013a 2.6 · 10−3a
0.76 0.066 0.041a

Occipital 6.7 · 10−7a
0.31 5.1 · 10−6a

0.16 0.054 0.73

a Significant effects after post-hoc correction are shown in bold.

especially over the right hemisphere. As a comparison, power computed directly
from wavelet coefficients did not show any significant effect, even without post-hoc
correction (table not shown due to space limitation).

Classification rate in the θ range was compared, using either the amplitude on
the wavelet map, or from the bump modeling. We used a linear classifier (lin-
ear discriminant analysis) in a leave-one-out scheme. The θ power, computed for
each patient, was used as an input feature. The classification error decreased from
50.0% (wavelets) to 34.6% (bumps). Similarly, using the β2 range, the classifica-
tion error decreased from 50.0% (wavelets) to 36.5% (bumps). Classification using
other frequency ranges remained stable (i.e. inaccurate) after bump modeling. A
better classification rate should be obtained with optimized parameter combinations
(using feature selection) together with a more complex classifier; this is however out
of the scope of the present investigation.

We observed that organized oscillatory events contain stronger discriminative
signatures of MCI than averaged spectral EEG statistics. Similarly to our previous
results on patients with MCI, using another database of patients in MCI stage vs.
Control subjects [6], bump modeling improved the separation between MCI patients
and control subjects, specifically in the θ and β2 ranges. We report that the θ range
activity of transient oscillations increased significantly in temporal areas for patients
with MCI, while β2 range activity decreased. We were thus able to confirm here our
previous observation, using a different database.

Background activity in EEG is mostly attributed to cortical neural events; on the
other hand, the oscillatory bursts, generated by locally synchronous neural popula-
tions, could be related to inter-area interactions, including sub-cortical areas. Indeed,
low-frequency synchrony is probably representative of cortico-subcortical connec-
tivity [7]. Subcortical damages are induced in the early stage of Alzheimer’s disease,
and have been correlated with low-frequency power changes [8, 9]. As a conclu-
sion, using bump modeling allowed us to classify the two groups specifically in the
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θ and β range. We postulate that the observed strong increase of θ range transient
oscillatory activity could be a correlate of sub-cortical damages.
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Discrimination of the Sleeping EEG
by the Adaptive Rhythmic Component
Extraction

Yohei Tomita, Hironobu Fukai, Yasue Mitsukura, Toshihisa Tanaka,
and Jianting Cao

Abstract It is crucial to practically estimate the driver dozing. For this purpose,
the analysis of the frequency components of the electroencephalogram (EEG) is
accepted as the most favorable. Therefore, we propose to extract the frequency com-
ponents of the EEG, by using the rhythmic component extraction (RCE), proposed
by Tanaka et al. First of all, we analyze differences of power spectrum among the
channels. As this result, the recognition accuracy between the sleeping and the wak-
ing when the frontal lobe is used is 76.9%. In addition, we distinct the EEG data
by using weight features of the RCE. As results, the accuracy is up to 94.1%. It is
shown the effectiveness of the weight analysis. Therefore, there is possibility that
we can extract effective electrodes by the RCE weights.

1 Introduction

Driver dozing caused by the lack of the sleeping is partly due to the traffic accidents,
and it has been more serious. The National Highway Traffic Safety Administration
(NHTSA) conservatively estimates that 100,000 police-reported crashes are the
direct results of driver fatigue each year. These crashes result in an estimated 1,550
deaths, 71,000 injuries, and $ 12.5 billion in monetary losses [1]. Therefore, the
accurate and nonintrusive real-time monitoring of driver dozing would be highly
desirable.

In order to judge whether the subject sleeps or not, the electroencephalogram
(EEG) is reported to be suitable [2–4]. In computer simulations, many researchers
analyze the frequency components of the EEG obtained by the frequency analy-
sis (e.g. Fourier transform). The effectiveness of the frequency components were
confirmed in our previous study [5]. Furthermore, Tanaka et al. pointed out if the
frequency of interest is known in advance, it is more natural to directly estimate
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a component with respect to the frequency range [6]. To estimate this component,
the so-called rhythmic component extraction (RCE) method has been proposed. The
extraction is made by combining multi-channel signals with weights that are opti-
mally sought for such that the extracted component maximally contains the power
in the frequency range of interest and suppresses that in unnecessary frequencies.
Therefore, the frequency of interest which cannot be seen in each single chan-
nel is detectable by the RCE signal. In this study, we calculate the discrimination
accuracy of the sleeping and before sleeping by each channel and the RCE signal.
Furthermore, we analyze the RCE performance by changing the time window (the
rectangular, the Hann, and the Blackman).

2 Rhythmic Component Extraction

RCE is a method to extract a certain frequency range of the EEGs. It is expressed as

x̂(n)[k] =
M∑

i=0

wi,(n)xi,(n)[k]. (1)

Observed signal xi,(n)[k](k = 0, ..., N − 1) is based on the channel i(i = 1, ..., M) in
frame n. wi,(n) is the weight determined to maximize the power of specific frequency
component, whereas the power of the other frequency component is minimized.
Ω1 ⊂ [0,π ] is the frequency components we want to extract, and Ω2 ⊂ [0,π ] is
the other frequency components we want to suppress, when the Fourier transform is
computed for xi,(n)[k]. Therefore, the cost function given as

J1,(n)[w] =
∫
Ω1
|X̂(n)(e−jω)|2dω + ε|r(n)|2
∫
Ω2
|X̂(n)(e−jω)|2dω

. (2)

is maximized. Let X̂(n)(e−jω) be the discrete-time Fourier transform (DTFT) of
x̂(n)[n]. r(n) and ε serve as adaptation of the RCE. We take into consideration of
the correlation between the signals extracted in the previous frame n− 1 and that in
the current frame n. That correlation r(n) is given as follows:

r(n) = wT
(n)X(n)X

T
(n−1)w(n−1), (3)

where w(n) = [w1,(n), ..., wM,(n)], and [X(n)]ik = xi,(n)[k].

3 Experimental Procedure

We used the NEUROSCAN system for measurement. There are 32 channels (includ-
ing 2 reference electrodes), and sampling frequency is 1,000 Hz. In the experiment,
we investigate the difference of the EEG between before and just after the sleeping.
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There is not clear definition of the dozing, so that we define just after the sleeping
as following. After the attachment of the electroencephalograph, we measure the
EEG for 1 min. We define the data as before sleeping. After that, the subject keeps
relaxing and sleeps. For determination that the subject sleeps, we drum on the table
softly by a finger every 4 min. If he notices, the subject moves his fingers in small
motions, and it is defined that the subject is not sleeping. If he does not notice that
sound, the subject cannot move fingers. When it happens the EEG is measured for
1 min. We define the data as during the sleeping.

4 Results and Discussions

In the conventional study, the theta and the alpha wave are known to change depend-
ing on the sleeping conditions. Therefore, we detect the theta and the alpha wave
components by the RCE. To extract the theta wave component, Ω1 is set to the
range corresponding to 4–7 Hz, and Ω1 is 8–13 Hz for the alpha wave component.
The RCE signals are extracted from all 30 channels per 1 s. The sampling rate is
down-sampled to 500 Hz.

First of all, for discrimination between before and during the sleeping, we pay
attention to the power spectrum analyzed by the Fourier transform in the signal of
each channel. The Fourier spectrum is calculated per 1 s for each signal. Moreover,
we use distinction analysis using the support vector machine (SVM). Input vectors
are the theta wave power and the alpha wave power. Discrimination by the SVM
is carried out in leave-one-out cross-validation (LOOCV) per 1 s. As the result, the
accuracy in central lobe is 64.2% by C3, CZ, C4, and the accuracy in the frontal
lobe is 76.9% by FP1, FZ, FP2.

Moreover, we pay attention to the weight of each channel from the RCE signal.
First of all, we define the weight of channel i at the time k as wi,(n)[k](theta) when
we extract the theta wave component. On the other hand, we define wi,(n)[k](alpha)
when we extract the alpha wave component. From these variables we define the
weight feature as following.

Wi,(n)[k](alpha/theta) = wi,(n)[k](alpha)/wi,(n)[k](theta) (4)

Next, we calculate the average of Wi,(n)[k](alpha/theta) among 10 s, time shifting
is 1 s. To see time variable of these features easily, we project these features to the
2D space by the principal component analysis (PCA). The variable is the weight
of the channel. The result (rectangular window and ε = 0) is shown in Fig. 1.
These data could be separated. Moreover, we use the SVM for distinction analysis.
Input data is wi,(n)[k](alpha/theta) among channels. Table 1 shows the accuracy
of separation using the different window functions and ε. As the result, the high
accuracy is confirmed by using the rectangular window. Therefore, we can advocate
that the sleeping conditions are also can be detected by the RCE weight.



732 Y. Tomita et al.

–4

–3

–2

–1

0

1

2

3

4

5

6

–2 0 2 4 6 8  10  12

S
co

re
 o

f f
ac

to
r 

2

Score of factor 1

Before sleep
During sleep

Fig. 1 Results of PCA
mapping for the weights of all
the channels

Table 1 The accuracy (%) of estimation of the sleeping conditions

ε / window function Rectangular Hann Blackman

0 50.0 76.5 88.3
250 91.2 64.7 64.7
500 77.5 64.7 82.4
1,000 94.1 61.8 90.2

5 Conclusions

In order to analyze the sleeping EEG, we extract the theta and the alpha wave com-
ponents by the RCE. Moreover, we used the SVM to discriminate the sleeping
conditions. From this analysis, the high accuracy is confirmed using the channels
in frontal lobe. Furthermore, to investigate the effectiveness of the RCE weights,
we try to find the specific electrodes depending on the sleeping conditions. As the
result, the accuracy is up to 94.1%. This shows the effectiveness of the RCE. In
the future works, we analyze the important electrodes for the sleeping conditions
estimation.
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Analyzing EEG of Quasi-brain-death Based
on Approximate Entropy Measures

Kun Yang, Qiwei Shi, Jianting Cao, Rubin Wang, Huili Zhu, and Zhaoshui He

Abstract Significant characteristic differences exist between the group of
comatose patients and brain deaths. Statistical analysis methods have advantages in
analyzing recorded EEG signals. In this paper, we apply a method based on approx-
imate entropy (ApEn) associated with dynamic complexity to analyze a total of
35 patients. The experimental results illustrate effectiveness of the proposed method
in measuring the EEG data and well performance in evaluating the differences
between comatose patients and quasi-brain-deaths.

Keywords Electroencephalography (EEG) · Quasi-brain-death · Approximate
entropy (ApEn) · Dynamic complexity

1 Introduction

The concept of brain death first appeared in 1960s. In clinical practice, brain death
is defined as the absence and permanent loss of all brain and brain stem function
[1]. Based on this definition, for example, the Japanese medical criterion includes
the following items for brain death determination: (i) Coma test, (ii) Pupil test, (iii)
Brain stem reflexes test, (iv) Apnea test, (v) EEG confirmatory test.

Generally, risks occur in the standard process of brain death determination. In
order to develop a reliable, safety and rapid method in the determination of brain
death, the EEG-based preliminary examination has been proposed [2]. To extract
informative features from noisy EEG signals and evaluate their significance, sev-
eral complexity measures are developed for the quantitative EEG analysis in our
previous study [2].

In this paper, we present a complexity measures based method to study
the recorded EEG signals. Approximate entropy is first applied to evaluate the
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differences between comatose patients and quasi-brain-deaths. Furthermore, we
apply a dynamic complexity measure based on ApEn to EEG data in a time period.
Significant statistical difference between the presence and absence of brain activi-
ties is obtained. The experimental results tend to show that the proposed method is
effective in distinguishing from two groups.

2 EEG Analysis with Complexity Measures

The approximate entropy (ApEn) is a quantity that measures the regularity or
predictability of a random signal or time series [3].

To compute the ApEn(m,r) (m: length of the series of vectors, r: tolerance param-
eter) of a time series {x(k)}, (k = 1, . . . , N), v(k) = [x(k),x(k+1], . . . ,x(x+m−1)]T

is first constructed from the signal samples {x(k)}. Let D(i, j) denote the dis-
tance between two vectors v(i) and v(j) (i, j ≤ N − m + 1), which is defined as
the maximum difference in the scalar components of v(i) and v(j), or D(i, j) =
max1=1,...,m |v1(i)− v1(j)|. Then, compute the metric Nm,r(i), which represents the
total number of vectors v(j) whose distance with respect to the generic vector v(i)
is less than r, or D(i, j) ≤ r. Now define Cm,r(i), the probability to find a vector that
differs from v(i) less than the distance r, as follows:

Cm,r(i) = Nm,r(i)

N−m+ 1
, φm,r =

∑ N−m+1
i=1 log Cm,r(i)

N−m+ 1

For m+1, repeat above steps and compute φm+1,r. ApEn statistic is given by

ApEn(m, r) = φm,r − φm+1,r.

The typical values m=2 and r between 10 and 25% of the standard deviation of
the time series {x(k)} are often used in practice [3]. As illustrated in Fig. 1, smaller
ApEn implies a greater likelihood that similar patterns of measurements will be
followed by additional similar measurements like sine wave. If the time series is
highly irregular, the occurrence of similar patterns will not be predictive for the
following measurements, and ApEn will be relatively large.

Fig. 1 ApEn of a sine wave, random sequence and sine with random sequence is 0.1834, 0.9362
and 0.5841, respectively
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3 EEG Data Analysis with Active Complexity

3.1 EEG Signals and Brain Activity

EEG preliminary examination was carried out in the Shanghai Huashan Hospital
affiliated to Fudan University (China). The EEG data were directly recorded at the
bedside of the patients by using the portable NEUROSCAN ESI system in ICU.
Electrodes (Fp1, Fp2, F3, F4, F7, F8, GND, A1, A2) of the international 10–20 system
are chosen. Sampling rate of EEG was 1,000 Hz and the resistances of the electrodes
were less than 8 k�.

From June 2004 to March 2006, a total of 35 coma and quasi-brain-death patients
had been examined. The patients were classified into a coma group (19 cases) and
a quasi-brain-death group (16 cases) after medical diagnosis. One patient behaved
from the coma state to quasi-brain-death. On October 18, 2005, the patient was in
a deep-coma state. With our proposed signal processing procedure, a theta-wave
component was found. However, in the next day, the patient became completely
unresponsive to external visual, auditory, and tactile stimuli. No brain wave activity
was found. By applying the robust ICA algorithm to the 35 patients’ EEG record-
ings, brain activities δ, θ or α that dominate in lower frequency bands have been
extracted from coma cases [2]. The EEG signals of coma cases are brain waves
with interfering noises, while the EEG signals of quasi-brain-deaths are interfering
noises. Therefore, we consider that regular or predictable components exist in EEG
signals of coma. The ApEn measures of coma states may be much lower. Analysis
results from the following aspects will be given.

3.2 ApEn of Patients in Coma and Quasi-brain-death States

The EEG recordings usually lasted hundreds of seconds. Generally, when we calcu-
late ApEn measures, the length of a time series is below 5 s. In this part, the length
of an EEG signal that we choose is 1 s. We used ApEn measures to analyze all EEG
signals that we had recorded. In accordance with the results, we divided them into
two different groups: coma and quasi-brain-death. In order to demonstrate the dif-
ferences between the two types, we present one case from each group, and a patient
who behaved from coma to brain death. We use Apen measure to analyze EEG sig-
nals of the above patients, and the results are shown in Table 1. The ApEn measure
is lower for a coma state than for a quasi-brain-death.

3.3 Dynamic Complexity for Coma and Quasi-brain-death

In this part, along the time-coordinate of EEG signals, we can calculate the ApEn in
each second. The window is set on 1,000 samples. Figure 2 is a result of dynamic
complexity measures for a coma case, a quasi-brain-death case and a case who
behaved from coma to quasi-brain-death. The x-coordinate in Fig. 2 is the time
of each case’s EEG signal.
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Table 1 Summary of ApEn results of two patients in coma state (C) or brain death (D) and a
specific patient in different states. Tolerance parameter r equals 0.15 or 0.25

Two patients A patient has two states

C D C D C D C D

Chan. r = 0.15 r = 0.25 r = 0.15 r = 0.25

Fp1 0.2609 1.0695 0.4582 1.3366 0.1048 1.1345 0.1978 1.3772
Fp2 0.2644 1.1682 0.4459 1.4102 0.1195 1.1041 0.2198 1.3416
F3 0.1979 0.7289 0.3442 1.0049 0.1207 0.9670 0.2199 1.2600
F4 0.2627 0.7917 0.4452 1.1277 0.1524 0.9766 0.2620 1.2555
F7 0.2461 0.8785 0.3853 1.1696 0.2143 1.3082 0.3856 1.4267
F8 0.2909 1.2872 0.5050 1.3948 0.1631 1.1351 0.2834 1.2662

Fig. 2 Dynamic complexity measure for two different cases (a) vs. (b) and a patient has two states
(c). r = 0.25

3.4 Evaluation of All Patients’ EEG ApEn Results

In our research, all recorded EEG signals of 35 patients are analyzed by ApEn.
Except a few patients, we obtained a good classification. In Fig. 3, we give the
distribution of statistical ApEn results from the six channels. C represents coma
cases while D represents quasi-brain-deaths. The maximum, minimum and average
value of ApEn we obtained are displayed. From Fig. 3, the statistical evaluation
confirms the existence of regular or predictable components in the EEG signals of
coma cases as well as the absence of those in quasi-brain-deaths.
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Fig. 3 ApEn statistics (for 6 channels) between coma (C) and quasi-brain-death (D)

4 Conclusion

In this paper, we have applied approximate entropy (ApEn) based dynamic com-
plexity measure to analyze all recorded EEG. For all recorded EEG signals, the
above experiments demonstrate the ApEn measures of coma patients and quasi-
brain-deaths have different distributions. The dynamic complexity measure, as well
as the ApEn measure, is lower for a coma patient than for a quasi-brain-death. Since
EEG recording might be corrupted by strong interfering noise, the ApEn measures
of some coma patients are high. Although a few cases don’t strictly accord with our
expectation, we still obtain statistical significance differences between comatose
patients and quasi-brain-deaths.
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Complexity Analysis of EEG Data
with Multiscale Permutation Entropy

Gaoxiang Ouyang, Chuangyin Dang, and Xiaoli Li

Abstract In this study, we propose a powerful tool, called multiscale permutation
entropy (MPE), to evaluate the dynamical characteristics of electroencephalogram
(EEG) at the duration of epileptic seizure and seizure-free states. Numerical simu-
lation analysis shows that MPE method is able to distinguish between the stochastic
noise and deterministic chaotic data. The real EEG data analysis shows that a high
entropy value is assigned to seizure-free EEG recordings and a low entropy value is
assigned to seizure EEG recordings at the major scales. This result means that EEG
signals are more complex in the seizure-free state than in the seizure state.

Keywords Multiscale permutation entropy · Epileptic EEG · Complexity

1 Introduction

The electroencephalogram (EEG) signal is a measure of the summed activity of
approximately 1–100 million neurons lying in the vicinity of the recording electrode
[1], and often exhibits complex fluctuations that are not simply due to “contam-
inative” noise but contain information about the underlying dynamics. Traditional
entropy algorithms are single-scale based and, therefore fail to account for the multi-
ple scales inherent in brain electrical activities [2]. A new method, called multiscale
entropy (MSE), has recently been proposed by Costa et al. [2] to measure the com-
plexity of a time series. This complexity method is to consider the correlations over
multiple scales of a time series instead of a single scale. In this MSE method, sample
entropy (SampEn) is applied for different scales. SampEn is a measure of regularity
(orderliness) in time series; two parameters: the sequence length m and the tolerance
level r are needed to be determined in advance. SampEn increases with the decrease
of r value because the criterion for sequence matching becomes more stringent [3].
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In general, there are two approaches to select the parameter r in MSE method: (i) r
is fixed for all scales; (ii) r is calculated for each scale separately. Therefore, the
outcome of the MSE algorithm will change with the selection of parameter r [4].

Recently, Bandt and Pompe introduced permutation entropy as a new measure
for the irregularity of a non-stationary time series, which does not require a recon-
struction of an attractor in state space [2]. This method is to consider the order
relations between time series as a result, and it is robust in the presence of obser-
vational and dynamical noise [5]. Comparing with the SampEn, the calculation of
the permutation entropy is very simple and fast [6]. These advantages of the per-
mutation entropy motivate us to explore whether or not the permutation entropy can
replace SampPE to estimate the multiscale entropy of EEG recordings; this method
is denoted as multiscale permutation entropy (MPE).

2 Materials and Methods

2.1 Animal Experiments and EEG Series

All procedures were performed under a British Home Office project license
(UK Animals (Scientific Procedures) Act, 1986). Experiments were performed in
24 male Genetic Absence Epilepsy Rats from Strasbourg (GAERS) of at least 13
weeks of age. Much of the details on the experiments can be found in [7]. The
signal from the EEG electrode was directly visualized on an oscilloscope and was
further amplified (BioAmp ML 136), filtered, digitized (100 Hz) and stored using a
PowerLab 2/20 running Chart v4.2 software (ADInstruments, Hastings, UK). The
EEG data sets were preprocessed by a band-pass filter at 0.5–22 Hz. To investi-
gate the complexity of EEG data during seizure state, EEG signals of epileptic rats
were selected and dissected from seizure-free and seizure states, each containing 50
single-channel EEG signals of 20 s duration.

2.2 Multiscale Permutation Entropy (MPE)

MPE method, similar with MSE method, incorporates two procedures. First, a
“coarse-graining” process is applied to a time series. For a given time series
{x1, x2, · · · , xN}, construct a consecutive coarse-grained time series by averaging
a successively increasing number of data points in non-overlapping windows. Each
element of a multiple coarse-grained time series y(τ )

j is calculated according to the
following equation

y(τ )
j = 1/τ

jτ∑

j=(j−1)τ+1

xi . (1)

where τ represents the scale factor and 1 ≤ j ≤ N/τ . The length of each
coarse-grained time series is the integral part of N

/
τ .
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Next, the permutation entropy [5] is calculated for each coarse-grained time
series, and then plotted as a function of the scale factor τ . To compute the per-
mutation of a coarse-grained time series yj, first the series of vectors of length m,
vm(n) = [yn, yn+1, · · · , y(n+m−1)], 1 ≤ n ≤ N/τ − m + 1 is derived from the
signal samples yj. Then, vm(n) can be arranged in an increasing order: [yn+j1−1 ≤
yn+j2−1 · · · ≤ yn+jn−1]. For m different numbers, there will be m! possible order
patterns π which are also called permutations. For a permutation with number
π , let f (π ) denote its frequency in the time series. Then the relative frequency
is p(π ) = f (π )

/
(N
/
τ − m+ 1). The permutation entropy for the time series is

defined as

H(m) = −
m!∑

π=1

p(π ) ln p(π ). (2)

The largest value of H(m) is log(m!), which means all permutations have equal
probability. The smallest value of H(m) is zero, which means the time series is very
regular. In other words, the smaller the value of H(m), the more regular the time
series is. Permutation entropy refers to the local order structure of the time series,
which can give a quantitative complexity measure for a dynamical time series.
Permutation entropy calculation only depends on the selection of m. When m is
too small (less than 3), the scheme will not work well, since there are only very few
distinct states for EEG recordings. Often, for a long EEG recording a large value of
m is better. In this study, we calculate for all EEG data with the parameters m=4 .

3 Results

3.1 Numerical Simulation Analysis of Chaotic System

To demonstrate the performance of this method, MPE method is firstly applied to
analyze simulated stochastic noise and deterministic chaotic data. We test the MPE
method on simulated white noise, 1/f noises and fractional Brownian noise (with
Hurst exponent 0.5), as well as on the synthetic chaotic data sets: logistic map,
Henon’s map, Lorenz map and Rossler’s oscillator [8]. As can be seen in Fig. 1a,
b, the entropy measures for the deterministic chaotic data increase on small scales
and then trend to relatively constant value; the variation of the permutation entropy
for all chaotic data sets has a similar behavior. Moreover, this trend of the variation
of the permutation entropy with scale is different from the stochastic noise data.
The MPE measures for noise data decrease on small scales and then trend to rel-
atively constant value. This result is consistent with the fact that, unlike stochastic
noise, deterministic chaotic systems contain complex structures across multiple time
scales. It is suggested that the MPE analysis can be used to distinguish between the
stochastic noise and deterministic chaotic data.
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Fig. 1 The result of the MPE analysis on simulated noise date (a) and chaotic data sets (b).
Symbols represent results of simulations for time series of 4,000 points

3.2 MPE Analysis of EEG

Next, MPE method is applied to analyze the EEG recordings. Permutation entropy
is evaluated for 20 scale factors with the dimension m=4. The result of the MPE
analysis on all EEG data is shown in Fig. 2. For scale 1, which is the only scale
considered by traditional single-scale based method, the permutation entropy values
for EEG segments are averaged at 2.44±0.04 in seizure-free state and 2.34±0.10
in seizure state, respectively. The entropy values in seizure-free are significantly
larger than those in seizure state for most scales (P < 0.05), which are consistent
with the hypothesis of loss of complexity with epileptic seizure [9]. The entropy
measures for EEG increase on small scales, then trend to relatively constant value
for larger scales. The MPE curve firstly reaches to constant value about at a scale
factor of 3–4 in seizure-free state. However, the MPE curve for the seizure EEG
data has common features: it has a local maximum entropy value at a scale factor
of 3–4; then it gradually decreases and reaches to local minimum entropy value at a
scale factor of 6–7; after reaching the minimum entropy, it gradually increases and
trends to relatively constant value for larger scales. These patterns of MPE curves
are distinctly different between the seizure-free and seizure state.
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Fig. 2 MPE analysis of EEG
recordings in seizure-free
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Symbols represent the mean
values of entropy for each
group and bars represent the
standard deviation
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4 Conclusions

In this study, MPE method is proposed for analyzing complex time series, including
simulated stochastic noise and deterministic chaotic data, as well as real data. The
entropy measure for the deterministic chaotic data increases on small scales and
then stabilizes to relatively constant value. However, the MPE measure for noise
data decreases on small scales and then stabilizes to relatively constant value. This
result is consistent with the fact that, unlike stochastic noise, deterministic chaotic
systems contain complex structures across multiple time scales. Therefore, the MPE
method can be used to distinguish between the stochastic noise and deterministic
chaotic data.

On the other hand, the entropy measure for EEG increases on small scales and
then stabilizes to relatively constant value for larger scales. The MPE curve firstly
reach to constant value about at a scale factor of 3–4 in seizure-free state. During
the seizure state, the MPE curve has a local minimum entropy value at a scale factor
of 6–7. The variation of the permutation entropy for EEG data and chaotic data sets
showed a similar behavior. Moreover, the entropy values in seizure-free are signif-
icantly larger than those in seizure state for majority of scales (P < 0.05). This is
because epilepsy may relate to their increased regularity (predictability) associated
with the synchronous discharge of large numbers neurons [7]. These results suggest
that the MPE method might be a powerful tool to reveal the hidden characteristics
of the epileptic EEG signals.
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Cueing-Dependent Activity in Bilateral M1
in Parkinson’s Disease

Andreas Daffertshofer, Alistair N. Vardy, and Erwin E.H. van Wegen

Abstract We investigated rhythmic force production during two different types of
cueing; regular and irregular sequences of tactile stimuli. We expected the corre-
sponding movement-related cortical activity to be most distinguishable in the beta
frequency range (13–30 Hz). This accompanying beta activity was expected to show
a differential effect of cueing. Twenty Parkinson patients and fifteen age-matched
healthy controls performed 3×30 s series of rhythmic movements separated by
rest. Each series was performed using (ir-)regular cueing. Using linear beamform-
ers, MEG recordings revealed dominant motor-related activity in bilateral M1s.
As expected, at theses sources the Hilbert amplitude of alpha and beta oscilla-
tions displayed reduced activity during motor performance. We found a sustained
beta rebound during subsequent resting states to a higher level compared to pre-
performance. This rebound lasted 5–10 s in both Parkinson patients and controls
and its strength depended on cueing type. We also found a likewise sustained effect
in the alpha band, where amplitude remained low after movement termination.
Although quality of performance largely agreed for patients and controls, depen-
dent on cueing type both the beta rebound and the alpha after-effect differed. The
latter discriminated between groups which indicates that Parkinson patients used the
same strategy (or attentional load) for mere rhythmic performance (regular cue) or
tracking (irregular cue).

Keywords Parkinson’s disease · Motor performance · MEG activity · Spectral
power

1 Introduction

Most prominent of all dysfunctions in Parkinson’s disease (PD) are movement-
related problems [1], which are suspected to originate in a disturbed functioning
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of the neural circuitry between thalamus, basal ganglia, and primary motor cortices
[2]. In particular, the timing of movements becomes problematic in PD as patients
have difficulties initiating, continuing, and terminating movements alike. In view
of its profound impact on daily functioning, maintaining motor timing has hence
received quite some attention. External cueing has proven very beneficial in PD.
For example, when provided with rhythmic auditory or visual cues, the shuffled,
irregular gait in PD becomes regular and is easier maintained [3–5]. What aspects
of cueing make it beneficial? Cueing provides a patient with a stimulus adding a
temporal reference or a trigger. Is the presence of a cue sufficient and is its regular-
ity essential? To answer this, we compared effects of regular cueing with sequences
of cues that are not equidistance but have a small but noticeable jitter. We hypothe-
sized that the rhythmicity of cues is its key-ingredient for improvement of motor
timing. When comparing PD patients to healthy controls we therefore expected
to find the least differences in performance and its neural correlates by means of
magnetoencephalography (MEG) in the context of rhythmic cues.

2 Methods

Twenty PD patients (PD, five female) and fifteen healthy age-matched controls (CO,
three female) participated in this study. PD patients were recruited from existing
patient databases from the RESCUE project (www.rescueproject.org) and the outpa-
tient clinic for movement disorders of the VU University medical center. PD patients
were 62.3±2.5 years of age, had an Minimal Mental State Examination (MMSE) of
29.2±1.5, Hoeh and Yahr stage (HY) of 2.6±0.5, and a PD duration of 6.3±3.5
years (range refers to mean ±SD).

2.1 Procedure and Data Acquisition

Lying supine with eyes open, subjects received written instructions about conditions
projected onto the ceiling of the magnetically shielded room housing the MEG sys-
tem. Subjects were asked to perform a rhythmic motor task with their right hand
consisting of squeezing an air-filled rubber bulb. The pace for the task was set by
a sensory stimulation delivered by an expandable membrane attached to the ventral
side of the left index finger delivering a 200 ms pulse at 200 kPa.

In a nutshell, we investigated two cued conditions, with regular and irregular
cues (RC and IC, respectively) and two conditions in which subjects performed
self-paced movements (not reported here) framed by extended periods of rest during
which MEG was also recorded; Fig. 1 for a sketch. Each condition was presented
once adding up to a total of a measurement time of 34.5 min. The order of the
conditions was counterbalanced over subjects.

Brain activity was recorded using a 151-channel whole-head MEG system (CTF
Systems Inc., Vancouver, Canada) using 3rd-order synthetic gradiometers. Signals
were low-pass filtered at 200 Hz prior to digitization at a rate of 625 Hz.
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Fig. 1 Experimental protocol: all conditions started with 180 s of rest followed by three 30 s
movement periods consisting of cued squeezing separated by 30 s rest periods, and concluded by
another 180 s of rest

2.2 Data Analysis

Peaks in the pressure signals were determined to quantify performance: the total
error of synchrony was defined as the sum of the absolute difference between the
moments of maximal pressure and the stimulus times.

2.2.1 Source reconstruction

MEG signals were transformed to source space via synthetic aperture magnetometry
(SAM) beamformers [6] using the average of 152 T1-weighted stereotaxic vol-
umes from the ICBM project (www.bic.mni.mcgill.ca). Task-relevant areas in the
beta band are shown in Fig. 2: maximal significant contrasts between power during
3×20 s of movement and 3×20 s rest were found in the bilateral M1s onto which
the MEG were projected yielding the time-dependent activity in M1left/right.

2.2.2 Time-frequency analysis

M1left/right activities were assessed via the power in different time-windows within
distinct frequency bands; Fig. 3. We selected alpha and beta band (7–11 and
13–30 Hz, respectively; we note that the gamma band, 40–70 Hz, did not yield any

Fig. 2 SAM analysis [7]: we compared beta band power during 3×20s of movement with 3×20 s
rest (each 20 s interval centered in the corresponding 30 s block to avoid transients; cf. Fig. 1) for
every voxel and subject. The resulting pseudo-t values were averaged over subjects for each group
and condition yielding maximal significant contrasts
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Fig. 3 Time-frequency analysis: after initial short-time Fourier analysis, data were filtered in dif-
ferent frequency bands prior to computing the time-dependent Hilbert amplitude (upper panel
shows the amplitude in the beta band). Per frequency band signals were normalized by dividing
by the mean amplitude over 120 s of the pre-movement rest period, i.e. these values were set to
100%). As to-be-assessed time-windows we first used the aforementioned 20 s intervals centered
within the three 30 s movement period and averaged the amplitude.

significant difference between groups and conditions). The resulting two values per
subject, condition, and frequency band (alpha and beta) were evaluated statistically.
Here we only report the test for effects in the post-movement period by computing
the mean amplitude over a 5 s interval of rest 2 s after the final movement period.

2.3 Statistics

Performance was assessed using a 2-way mixed design ANOVA (between-subject
variable group: PD patients or controls (PD or CO); and within-subjects variable
cueing type: RC or IC). Comparison between pre- and post-movement resting states
MEG signals was assessed with a 2×2×2 mixed design ANOVA (between-subject
variable group: PD or CO; within-subjects variables source: M1left and M1right, and
cueing type: RC or IC) for each frequency band separately. A significance level of
α = 0.05 was used.

3 Results

There was a significant difference in motor performance between the RC and IC
condition, where the error was larger for the IC condition (F1,15 = 142.8, p <
0.001). Performance was similar for CO and PD.

For the pre- and post-movement power changes, both the alpha and beta fre-
quency bands showed a significant difference. The latter showed a significant
increase in power in the first 5 s after the final movement termination; Fig. 4. This
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Fig. 4 After-effects in the beta band: we found a main effect of source (F1,25 = 20.78, p < 0.001):
changes for M1left were more positive and larger than those for M1right. We also found a cueing
type× source interaction (F1,25 = 7.27, p = 0.012): for M1left, the changes were larger during RC
than for IC; also, for M1right during RC the changes were negative and during IC the changes were
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Fig. 5 After-effects in the alpha band: we found a main effect of source (F1,25 = 7.28, p = 0.012):
the changes for M1left were more positive than for M1right. There was also a cueing type × group
interaction (F1,25 = 4.65, p = 0.041): changes during RC were positive for CO but negative for
PD; during IC, differences for CO were negative whereas there was no such change in sign for PD

effect largely matched for CO and PD. In the alpha band amplitude dropped after the
final movement block as compared to the pre-movement resting state. This differed
between RC and IC conditions for CO but not for PD; Fig. 5.

4 Conclusion

Rhythmic cueing can elicit differential responses in the cortical activity in early
stage PD. We localized the activity in bilateral M1 during an experimental paradigm
involving rhythmic unimanual force production paced by regular and irregular cues.
Task performance matched between PD patients and healthy controls. M1 activity in
the alpha and beta frequency bands, however, differed in particular during an up-to
5 s lasting resting period after movement.
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Following the irregular cue may require more attention because of its unpre-
dictability and this increased attention may cause the performance terminating beta
rebound to disappear. Whether that difference in effect is also reflected in other
parts of the neural axis remains to be seen; we plan to assess the cortico-muscular
synchrony in further detail. Strikingly, however, in the alpha band the effect of cue-
ing type was absent in Parkinson patients, therefore the changes in attention might
have been be less pronounced while performance remained comparable to that of
the healthy subjects. Put differently, in order to achieve proper performance, PD
patients used the same strategy (or attentional load) for both rhythmic performance
(regular cue) or tracking (irregular cue).
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