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Abstract Secretome analysis represents a novel technology for biomarker 
 discovery based on proteome profiling of proteins secreted by both primary tumor 
cells and tumor associated cells. Tumor cells are able to establish a permissive and 
supportive environment for survival and cell growth and to facilitate invasion and 
metastasis by modulating the stromal host compartment. The onset of these charac-
teristic events seems to precede tumor progression. Due to the leaky nature of newly 
formed blood vessels and the increased hydrostatic pressure within tumors, secreted 
proteins are most plausibly shed into the blood. Thus, proteins specifically secreted 
by these cells may serve as early disease biomarkers. Biomarker candidates identified 
by secretome proteomics combined with the application of appropriate bioinformatic 
tools can then be validated in human plasma/sera. Besides biomarker discovery secre-
tome analysis will also shed light on mechanisms of tumor progression offering novel 
targets for therapeutic intervention. The tumor-stroma cell cooperativity is reversible 
and may thus be directly accessible to therapeutic intervention. In conclusion, secre-
tome proteomics offers new insights into the pathophysiology of tumor progression, 
and allows the identification of novel biomarkers and of new drug targets.
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CPL/MUW – database  Database of the Clinical Proteomics Laboratories at the 
Medical University of Vienna

DIGE Differential in-gel electrophoresis
Gpm Global proteome machine organisation
ICAT Isotope coded affinity tag
LMW Low-molecular-weight
MIAPE Minimum information about a proteomics experiment
PRIDE PRoteomics IDEntifications database
PSA Prostate specific antigen
ROC Receiver operating characteristic
SILAC Stable isotope labeling by amino acids in cell culture
SOP Standard operating procedure
SVM Support vector machines
TIF Tissue interstitial fluid

21.1  Introduction

21.1.1  The Proteome

The proteome, first defined by Williams in 1996 [1], is the protein complement of 
genomic functionality and is defined as the set of proteins which are present in a 
cell, tissue or organism. The proteome is highly dynamic and may respond to 
almost any kind of environmental stimuli, most obviously it varies according to cell 
type and functional state of cells. The proteome in a body fluid, cell, tissue, or 
organism represents only a subset of all possible gene products at a certain point of 
time and cannot be directly predicted from gene expression. Proteins may exist in 
multiple varieties due to posttranslational modifications which affect protein struc-
ture, localization, function and turnover. These specific changes may reflect imme-
diate and characteristic changes in response to disease processes. Especially the 
low-molecular-weight (LMW) range proteome is believed to be very useful for 
analysis of disease progression and response to treatment [2].

21.1.2  Clinical Proteomics

The goal of clinical proteomics is to obtain the most comprehensive insight into 
pathophysiological conditions derived from protein expression profiles as they 
occur in vivo. Proteins play a fundamental role in controlling multiple functions 
within a cell’s organization. They serve as building materials, enzymes and biologi-
cal transport machines, as well as sensors processing and transferring information. 
Cells consist of thousands of proteins executing diverse operations, not only highly 
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coordinated, but also dependent upon each other. Cells may newly produce specific 
proteins when they encounter challenges for specific functions. When cells encoun-
ter unusual situations, they try to adjust to it by expressing proteins which may help 
to deal with the new situation. Such proteins, specifically synthesized on demand, 
may indicate characteristic disease states and may thus serve as diagnostic markers. 
Detection of such aberrations in protein expression in diseased tissues may lead to 
a better understanding of the cellular pathology and thereby support the develop-
ment of new therapeutic strategies. Therefore, proteins have attracted attention to 
biomarker discovery: One of the central applications of proteomics has become the 
classic protein biomarker discovery and the uncovering of functional tumor-associated 
systems stages, e.g. inflammation, neoangiogenesis, proliferation behaviour and 
others.

Clinical proteomics focuses on the analytical and clinical implementation and 
validation of novel biomarkers and aims to gain a better understanding of disease 
processes which may support the implementation of novel treatment options. 
Therefore it is critically dependent on high-throughput analysis platforms which 
have to provide reproducible and reliable protein patterns, bioinformatics tools for 
data comprehension and interpretation. Furthermore it has to refer to a well-defined 
patient cohort including all necessary anamnestic and physiologic parameters for 
instance age, sex, hormonal status and treatment. Sample collection and biobank 
organization have to be SOP-driven. The samples should be rapidly analyzed since 
transportation and storage may lead to artifacts like selective damage or aggrega-
tion of specific cell subpopulations or shedding of cell surface markers. To collect 
comprehensive information about sample technical analyses such as genomics, 
metabolomics, lipidomics, glycomics, transcriptomics, flow cytometry with defini-
tion of specific cell populations may be combined [2].

As a matter of fact, despite of intensive efforts in proteomics in the recent years, 
few novel disease biomarkers have been discovered. Since 1998 the rate of intro-
ducing newly approved protein targets has been declining to an average of one per 
year in the USA [3,4]. Therefore, novel analysis models and procedures have to be 
defined for biomarker discovery, which are highlighted in this review.

21.1.3  Metastasis and Tumor Microenvironment

Especially in oncology novel biomarkers are urgently needed. Due to metastasis 
cancer is a major cause of mortality worldwide with ten million new cases and more 
than six million deaths per year [5]. Early detection of incipient remodeling pro-
cesses indicating metastatic progression and the development of appropriate thera-
peutic approaches may substantially improve patient survival.

The tumor microenvironment consists of a multi-facetted spectrum of highly spe-
cialized cell types, e.g. mesenchymal cells, myelomonocytic cells, endothelial cells 
and immune cells. The metastatic process is decisively driven by stromal  processes, 
particularly facilitated by neoangiogenesis, lymphangiogenesis and accompanying 
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inflammatory processes. Growth factors secreted by the stromal cells may serve as 
survival factors for cancer cells [6]. The tumor microenvironment, through the pro-
cess of aberrant cell growth, cellular invasion and altered immune system function, 
contributes a unique sum of proteins secreted, with cytokine and chemokine or enzy-
matic activity (for example, matrix metalloproteinases) [7,8]. This generates an 
unbalanced or altered stoichiometry of agonists and antagonists within the tumor 
profile compared to the ‘normal’ milieu and can provide characteristic fingerprints 
applicable as specific and sensitive biomarkers for various purposes [9].

21.2  Biomarker

21.2.1  Definition

A biomarker is objectively measurable indicator of normal biological processes, 
pathogenic processes, or pharmacologic responses to a therapeutic intervention.

Different types of biomarker can be evaluated: prognostic, which characterize 
the course of disease, predictive to monitor the response to treatment, diagnostic 
which demonstrate the evidence of disease and pharmacodynamic for the purpose 
to show efficacy of treatment.

A surrogate endpoint is a biomarker that is intended to substitute for a clinical 
endpoint, a characteristic or variable that reflects how a patient feels, functions, or 
whether he is going to survive.

A surrogate endpoint is expected to predict clinical benefit such as decreased 
pain, quality of life, DFS (disease free survival), OS (overall survival) and cure.

Cancer biomarkers have to enhance the potential to screen, diagnose, prognosti-
cate, localize and stage tumors, or predict and monitor the therapeutic responses to 
various cancers. Therefore cancer biomarkers have to be correlated with the clinical 
situation and can be classified into four broad categories related to tumor burden, 
cancer risk, tumor-host interaction and function.

21.2.2  Biomarker in Cancer

Metastatic cancer presents a substantial clinical challenge since there is a lack of 
adequate approaches to properly define disease subgroups for rational treatment 
design and selection. In addition the majority of cancers are initially diagnosed in 
advanced stages. Some important markers commonly employed in clinical diagnosis 
include CEA (carcinoembryonic antigen), PSA (prostate specific antigen), AFP 
(alpha-fetoprotein), CA 125, CA 15–3, and CA 19–9. Current diagnostic methods 
are limited in their ability to diagnose early disease and accurately predict  individual 
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risk of disease progression and outcome. None of these markers is known to have 
high specificity and sensitivity or to exhibit prognostic value for neoplasms [10]. 
This may be attributed to the high heterogeneity in cancer patients with a lot of vary-
ing parameters such as tumor size, location, histology, depth, stage, grade, ulcer-
ation, age, sex etc. The emerging pattern of molecular complexity in tumors mirrors 
the clinical diversity of the disease. This highlights that cancer is not a single disease 
but a heterogeneous group of disorders that arise from complex molecular changes 
[11]. Thus, there is a growing consensus that marker panels, which are more sensi-
tive and specific than any individual marker, will increase the accuracy of early-stage 
cancer detection.

21.2.3  Stages of Biomarker Development

The discovery phase represent an ‘unbiased’ experimental setup, here high-
throughput methods are of outstanding relevance. The next phase, ‘qualification,’ 
serves for the confirmation that the differential expression of candidate proteins 
observed in the discovery phase can be verified using alternative, targeted methods. 
In addition the differential expression of candidate biomarkers has to be verified 
human plasma/serum samples. During the discovery and qualification phase the 
consistency of association between marker and disease and the marker sensitivity 
and specificity has to be demonstrated. In the ‘verification’ phase the analysis has 
to be extended to a larger number of human plasma samples, incorporating a 
broader range of cases and controls. Here the environmental, genetic, biological 
and stochastic variation in the population has to be considered. In the verification 
phase the sensitivity of biomarker candidates is affirmed and specificity has to be 
assessed [3].

21.2.4  Proteomic Technology in Biomarker Discovery

Important sources for biomarkers should be represented by proteins in the blood. 
The exact number of proteins in blood is not known. Efforts by different laborato-
ries of the Plasma Proteome Project led to the identification 889 proteins identified 
with a confidence level of at least 95%. It is estimated that the plasma proteome 
may contain up to 10,000 proteins [12]. Proteome analysis is a promising tool for 
the discovery of novel and innovative cancer biomarkers [13]. Over the past decade, 
serum and plasma proteomics aimed to identify potential cancer biomarkers [14]. 
Since these markers are present in low amounts in blood samples, the direct isola-
tion requires a labor-intensive process involving the depletion of abundant proteins 
and extensive protein fractionation.

This classical approach comparing the plasma protein profiles of the healthy 
donor to the patient largely failed during the discovery phase. An inherent problem 
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of blood proteomics is the complexity of the protein composition, comprising an 
enormous diversity of proteins and protein isoforms, the dynamic range of plasma 
and other biofluids and the tremendous extend of human and disease variation. In 
addition the anticipated low relative abundance of many disease-specific biomarkers 
represents a pitfall: the concentration range in human plasma covers ten orders of 
magnitude, which means that certain biomarkers may be ten billion fold less abun-
dant than serum albumin. Due to these pitfalls of blood proteomics it has been 
proposed to rather analyze diseased tissue or biological fluids close to diseased sites 
(for example tissue interstitial fluid (TIF)). Here the relevant proteins are expected 
to occur at higher concentrations which facilitates biomarker discovery.

Alternatively, the secretome of cancer cells [15] and tumor associated cells can 
be analyzed and verified subsequently in human blood by ELISA analyses. 
Following completion of the Human Genome Project, scientists postulated that 
important cancer biomarkers will be secreted proteins, as about 20–25% of all cell 
proteins are secreted [16]. Actually some classical cancer biomarkers (e.g., CEA, 
Her2-neu) are cell-membrane bound, with their extracellular domains eventually 
shed into the circulation [14].

21.3  Secretome as Reservoir for Biomarker Discovery

21.3.1  Definition

The secretome is defined as the set of secreted proteins [17,18]. The term “secre-
tome” was first referred by Tjalsma et al. [17] to secreted proteins of Bacillus 
subtilis in a genome-based global survey. The secretome is composed of proteins 
that are actively secreted, shed from the cell surface and intracellular proteins, 
which are accidentally released into the supernatant. Cell lysis resulting from 
necrosis releases relatively large amounts of protein when compared to secretion. 
The secretome harbors proteins released by a cell, tissue or organism through vari-
ous mechanisms including classical and nonclassical secretion as well as secretion 
via exosomes [19]. Secretion may occur either constitutively (continuously) or be 
regulated and triggered on demand resulting from different functional cell states.

21.3.2  The Cancer Secretome

The cancer secretome, the totality of proteins released by cancer cells, has been 
attracting wide attention as it is a potential reservoir of cancer biomarkers. Secreted 
proteins may determine, control and coordinate many biological processes such as 
growth, cell division and differentiation, invasion, metastasis, angiogenesis and 
lymphangiogenesis via an endocrine, paracrine or autocrine way. In addition it is 
known that the tumor microenvironment contributes to tumor development and 
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 progression via communicative processes, mediated by cytokines, chemokines, 
 hormones and specifically secured communication structures (e.g. gap junctions) [8]. 
Therefore also secreted proteins shed by tumor associated cells need to be consid-
ered [9]. Protein secretion exerts autocrine and paracrine biological functions rather 
than maintenance of basic metabolism. Therefore, specifically secreted proteins may 
much better be related to the exertion of biological functions compared to cytoplas-
mic proteins. These proteins eventually end up in the bloodstream, and thereby may 
have a potential as non-invasive biomarkers [9]. Their biological key roles make 
them good targets and sources for therapeutical and drug-based intervention as well 
as tools for diagnosis and prognosis. Thus, great interest is currently focused on the 
characterization of secreted proteins in order to identify novel biomarkers. The leaky 
nature of newly formed blood vessels and the increased hydrostatic pressure within 
tumors increase the chance to find secreted proteins in the blood stream [9]. A patho-
logical situation thus tends to push molecules from the tumor interstitium into the 
circulation. Therefore it seems to be plausible that proteins produced by the microen-
vironment will be shed into the blood, making ongoing processes of tumor develop-
ment detectable [9]. Combinations of markers that are indicative for the specific 
interactions of the tumor tissue microenvironment will achieve higher specificity and 
higher sensitivity than the application of any single marker. Candidate biomarkers 
are expected to exist at very low concentrations diluted in blood plasma with highly 
abundant proteins such as albumin, which exist in billion-fold excess. At early stages 
of disease, cancer-specific proteins will always constitute an evanescent subfraction 
of the proteome representing a true analytical challenge. Noteworthy, early-stage 
disease lesions such as carcinoma in situ represent tumor cell numbers hardly 
exceeding several thousand cells. However, the affected microenvironment com-
prises many more cells compared to the number of tumor cells. Thus proteins 
derived from tumor associated stroma cells will be produced by more cells and may 
accumulate to higher amounts. Consequently it can be expected that such proteins 
will be better accessible for diagnostic purposes than proteins derived from cancer 
cells themselves. Secretome analysis is applicable to cultured cells as well as tissue 
specimens [9]. The most comprehensive analysis results, however, are obtained in 
case of isolated and cultured cells.

In contrast to secreted proteins as new candidates for blood biomarkers, specific 
proteins identified in the cytoplasm rather represent biomarker candidates accessi-
ble to immunohistochemical analysis. Cytoplasmic proteins also comprise specific 
indicators of functional cell states and cell activities. Combining the information of 
both secreted and cytoplasmic proteins further supports the detailed understanding 
of complex patho-physiological processes.

21.3.3  Development of Rational Therapy Design  
by Secretome Analysis

For many years, the main principle in the treatment of metastatic cancer has been 
the cyclic administration of high-dose chemotherapy, which is a unselective 
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 strategy based on cytotoxic effects [20]. Chemotherapy uses the small window 
between killing of rapidly dividing cancer cells and spearing healthy tissues. All 
tissues with a high proliferation rate are affected by chemotherapy leading to severe 
and dose limiting side effects such as myelosuppression, damage of the intestinal 
mucosa and severe skin reactions. Due to this issue, cycles of therapy have to be 
interrupted by drug-free periods to allow normal tissue to recover. Although the 
initial effects of chemotherapy are often quite impressive in terms of depleting 
tumor mass, the duration of remission is often short and resistance may be induced. 
This risk of selecting chemoresistant cell clones can be linked to the genetic insta-
bility and the high mutational rates and heterogeneity of tumor cells. In order to 
overcome this drug resistance, doses of chemotherapy can either be increased; 
intervals shortened or chemotherapeutic combination strategies can be chosen. All 
these options are subsequently potentiating side effects [9].

For an accurate, individualized assessment of risk of disease progression it was 
suggested to classify disease subgroups and rationally select treatments to substan-
tially affect the outcome of advanced disease. Sekulic et al. [11] discuss that the low 
overall response rates observed in clinical trials that rely on clinical disease features 
for patient selection might simply reflect a relatively low percentage of patients 
with the disease susceptible to a given therapeutic agent or combination. As a con-
sequence, patient selection for clinical trials and selection of therapy on the basis 
of individual molecular attributes might be necessary to improve response rates to 
any kind of therapy. Sekulic et al. propose that the detailed consideration of each 
single patient will overcome the problems of heterogeneity and may lead to a new 
classification by genomic techniques [11]. Newer individual sequencing data, how-
ever, suggest that the heterogeneity of genetic aberrations even within a single 
patient is by far too large to enable patient stratification. Another stratification 
option may be derived from the specificity of protein expression profiles which are 
largely dependent on functional states of cells. Cells make proteins in order to fulfil 
specific tasks. Functional activation, therefore, inevitably results in the expression 
of a protein cluster dedicated to fulfil the newly requested functions. Specific 
pathologic processes may, therefore, be characterized by functional protein signa-
tures. These proteins, here designated as functional protein signatures, may thus 
enable the identification of relevant functional cell states. In contrast to the genomic 
techniques focusing on hereditary predisposition, proteome analysis is able to 
detect when and to what extend the risks have become manifest. For characterisa-
tion of diseases, functional aberrations causative for the disease have to be distin-
guished from aberrations resulting from these primary functional aberrations. To 
give an example, uncontrolled proliferation is a common process characteristic for 
neoplasia. The detection of a common process will not support disease sub-classi-
fication. Different kinds but characteristic stressors such as inflammatory activa-
tion, oxidative stress, DNA damage or ER stress, however, may be causative for 
disease states such as uncontrolled proliferation. Each kind of stressor is specifi-
cally detectable by a defined protein signature providing the basis for functional 
disease classification. Understanding and detecting the variety of mechanisms lead-
ing to a common pathology may serve patient stratification aiding rational therapeutic 
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concepts better than the consideration of downstream consequences of pathological 
processes. As a consequence, protein clusters rather than single  proteins will serve 
as biomarkers. Such application may be more feasible than individual genetic pro-
filing to support optimal therapeutic decisions.

In search for alternative strategies for the treatment of advanced cancer, target-
ing the tumor stroma seems to be a promising tool since this approach is not 
cytotoxic but interferes with the cooperativity of tumor and tumor stroma cells. 
This concept is based on the improving understanding that tumor development is 
associated with the transformation of normal stroma into an “activated” stroma 
phenotype. Tumor cells are able to establish a permissive and supportive environ-
ment for survival and cell growth and to facilitate invasion and metastasis by 
modulating the stromal host compartment. Targeting this interference between 
tumor and tumor stroma may consistently lead to a reduction of tumor growth and 
metastasis. The targets in this approach are genetically normal activated cells 
which will not be able to escape therapy due to genetic instability and clonal selec-
tion. Therefore, targeting these cells should lead to a reduction of development of 
resistance. This strategy is also considered to be less toxic and thus allows sustain-
ing the therapeutic pressure continuously over longer time periods [9]. Considering 
that the stroma provides proteins supporting tumor survival, a blockage of this 
process might chemosensitise the tumor. Therefore, this approach might serve as 
an efficient combination therapy with chemotherapeutic agents. The enhanced 
knowledge generated by secretome analysis of molecular aberrations involving 
important cellular processes, such as cellular signaling networks, regulation of cell 
cycle and cell death, will contribute to better diagnosis, accurate assessment of 
prognosis, patient stratification and rational design of effective therapeutics.

21.3.4  Clinical Application

Secretome analysis aims to address three important features of clinical 
 proteomics [9]:

 1. Tumor cells may recruit stromal cells for the secretion of growth factors which 
serve as powerful survival factors. The onset of these characteristic events seems 
to precede tumor progression. These secreted proteins may have a good chance 
entering the bloodstream, due to the leaky nature of newly formed blood vessels 
and the increased hydrostatic pressure within the tumors. Stroma cell secretion 
of bioactive molecules, which may serve as diagnostic biomarkers, are early 
events in carcinogenesis and may thus enable the early detection of cancer 
progression.

 2. Proteome profiling may identify molecular signatures of processes which 
promote metastasis. Secretome analysis of defined cell populations offers 
the opportunity to identify the contribution of the involved cell types and 
thus the underlying pathomechanisms. These pathways rather than single 
proteins should be monitored and targeted.
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 3. Transformation of cancer cells is an irreversible process which may be corrected 
only by apoptotic cell death. Tumor therapy usually targets cancer cells; modern 
therapy concepts include targeting the stroma in an anti-angiogenic and anti-
inflammatory fashion. Cooperativity contributed by stromal cells is reversible and 
thus directly accessible to therapeutic intervention. Most importantly, stroma 
derived survival factors shall be decreased resulting in a higher chemosensitivity 
of the tumor cells. Detailed understanding of the responsible processes may thus 
enable the design of completely new therapeutic strategies.

21.4  Methods

To gain reliable insights into the cancer secretome it is obligatory to prepare sam-
ples which are clearly defined and as pure as possible. Secreted proteins occur in 
body fluids, the direct analysis of potential marker proteins from such samples is 
hindered by the high complexity and dynamic range of resident plasma proteins.  
A cell is the smallest independent protein synthesis unit, therefore a reduction of 
sample complexity to single cell types greatly improves the chances to identify low 
abundant proteins. It has been observed that proteins secreted by tumor cells 
in vitro may very well reflect the proteins secreted by tumors in vivo [21]. 
Therefore, the routine method used is to analyze the secreted of tumor cells or 
tumor stroma cells in vitro [21]. Mbeunkui et al. [22] performed a comprehensive 
study of the secretome of three metastatic cancer cell lines and demonstrated that 
an incubation time of 24 h and 60–70% cell confluence were considered as optimal 
cell incubation conditions (Fig. 21.1). Due to the low abundance of secreted pro-
teins, the contamination by non-secreted proteins may mask the proteins of interest. 
The discrimination of genuine secreted proteins from non-secreted proteins is a 
major issue that needs to be answered in every single experiment [21].

In addition, secreted proteins present in the culture media usually occur at low 
concentrations, which is often below the ng/mL range. These proteins should be 
concentrated before proteomics analysis [21]. Ultrafiltration can be used for the 
concentration of the secretome [21]. Alternatively, precipitation can be performed 
with acetone or ethanol.

21.4.1  2D-gel Electrophoresis

Zwickl et al. [23] have established a metabolic labeling-based technology with 
[35S]-labelled methionine and cysteine which allows for the sensitive and selective 
detection of secreted proteins. They demonstrated the applicability of this method by 
a study on secretome profiles of a hepatocellular carcinoma-derived cell line. These 
cells were incubated in the presence of [35S]-labelled methionine and cysteine. 
Subsequently, the cell supernatant was filtered, precipitated and subjected to  
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two-dimensional gel electrophoresis. After staining proteins were detected by 
 fluorescence staining and autoradiography. Fluorescence staining detects all pro-
teins, in contrast autoradiography detected only those proteins synthesized and 
secreted by living cells during the metabolic labeling period. All identified 16 pro-
tein spots in autoradiography were found to be authentic secreted proteins.

The disadvantages of 2-DE are the low sensitivity in the detection of proteins in low 
concentrations, the poor representation of hydrophobic membrane proteins in 2D-gels, 
furthermore the technique is time-consuming, labor-intensive and has a relatively low 
efficiency in protein detection due to limited amenability to automation [21]. To cir-
cumvent some of these inherent problems of the standard 2-DE procedure, a modified 
method, differential in-gel electrophoresis (DIGE) has been developed by GE 
Healthcare [24], where three charge and mass-matched fluorescent dyes (Cy2, Cy3 
and Cy5), are utilized. These dyes can primarily combine covalently with lysine. 

Fig. 21.1 Workflow of secretome proteomics. Secretome preparation is performed with well-
characterized tumor or tumor associated cells. Supernatant collection, sterile filtration and pre-
cipitation is performed after 6–24 h incubation of the cells in special formulated serum free media. 
For shot gun proteomics the protein samples are separated by SDS-gel electrophoresis followed 
by tryptic in-gel digestion and peptide separation by nano-flow LC. Peptide identification is 
accomplished by MS/MS fragmentation analysis and the MS/MS data are interpreted by the 
Spectrum Mill MS Proteomics Workbench software and searched using the UniProt Database. 
Biomarker candidates are selected considering own laboratory and public available expert infor-
mation. In the verification and validation phase performing ELISA studies in human blood sam-
ples these candidates are correlated with clinic information. Specificity and clinical relevance is 
increased starting from in vitro to clinic while the number of analytes is decreased
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Different protein samples are differently labeled by these fluorescent dyes, then mixed 
and visualized in one gel. DIGE reduces the experimental variations using one gel for 
three samples [19]. Instead this method is not applicable to those proteins without 
lysine (in case of minimal dyes) or cysteine (in case of saturation dyes).

21.4.2  Mass Spectrometry

A mass spectrometer consists of three components: (a) an ion-producing source, 
(b) a mass analyzer to measure the mass-to-charge ratio (m/z) of the ionized 
molecule, and (c) a detector that registers the number of ions. A typical shotgun 
proteomic experiment generally consists of five stages: (1) proteins present in cell 
lysates, tissue or body fluids are separated by fractionation or affinity selection to 
define the subproteome, (2) enzymatic degradation of proteins to peptides by 
trypsin, (3) peptides are separated by reversed phase nano-flow HPLC and eluted 
into an electrospray ion source where they become charged single molecules in 
the gas phase which may enter the MS. Isotope-labeling methods, such as isotope 
coded affinity tag (ICAT) and stable isotope labeling by amino acids in cell cul-
ture (SILAC), can be used to introduce quantitative aspects in cancer secretome 
analysis [25]. These label based approaches are expensive, time-consuming and 
not always feasible due to the limitation of available tags for primary human 
materials [25]. We have started to systematically analyze secretomes of various 
primary and cultured human cells [9,26]. Therefore we have standardized a pro-
cedure to bioinformatically filter the truly secreted proteins from contaminant 
proteins regarding the known main contaminants, i.e. cytoplasmic proteins and 
serum proteins and as well regarding signal peptides characteristic for secreted 
proteins . Secreted proteins are then classified with respect to cell type specificity 
and their relation to functional cell states which are investigated in vitro by func-
tional activation. The relation of identified proteins to the most plausible cells of 
origin as supported by the CPL/MUW database [27] greatly facilitates the inter-
pretation of complex proteome profiles as derived from human serum samples 
(Figs. 21.1 and 21.2).

The applied standard procedure to analyse secretomes is detailed in the following 
(Fig. 21.1). For the accumulation of secreted proteins cells are incubated in serum-
free specialized media formulations for 6–24 h at 37°C. For isolation of the secreted 
protein fraction, the cell supernatant is collected, sterile filtrated to remove cellular 
debris and precipitated by the addition of ethanol. For the isolation of the corre-
sponding cytoplasmic proteins, all buffers are supplemented with protease inhibi-
tors. Cells are lysed in hypotonic lysis buffer and pressed through a 26 g syringe in 
order to open the cells by rupture. The cytoplasmic fraction is separated from the 
nuclei by centrifugation and precipitated by the addition of ethanol. All protein 
samples are dissolved in sample buffer (7.5 M urea, 1.5 M thiourea, 4% CHAPS, 
0.05% SDS, 100 mM DDT) and separated by SDS-gel electrophoresis followed by 
tryptic in-gel digestion. For shotgun analysis, peptides are separated by nano-flow 
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LC (1100 Series LC system, Agilent, Palo Alto, CA) using the HPLC-Chip technol-
ogy (Agilent) equipped with a 40 nl Zorbax 300SB-C18 trapping column and a 
75 mm × 150 mm Zorbax 300SB-C18 separation column at a flow rate of 400 nl/min, 
using a gradient from 0.2% formic acid and 3% ACN to 0.2% formic acid and 50% 
ACN over 60 min. Peptide identification is accomplished by MS/MS fragmentation 
analysis with an ion trap mass spectrometer (XCT-Ultra, Agilent) equipped with an 
orthogonal nanospray ion source. The MS/MS data are interpreted by the Spectrum 
Mill MS Proteomics Workbench software (Version A.03.03, Agilent) and searched 
against the SwissProt Database (UniProt Version 15.4 containing 20,328 protein 
entries) (Figs. 21.1 and 21.2) allowing for precursor mass deviation of 1.5 Da, a 
product mass tolerance of 0.7 Da and a minimum matched peak intensity (%SPI) of 
70%. Due to previous chemical modification, carbamidomethylation of cysteines is 
set as fixed modification. The reliability of peptide identifications from MS/MS 
spectra relates to spectral quality indicated with specific scores. The scores are 
essentially calculated from sequence tag lengths, but also mass deviations are 

Fig. 21.2 All proteome identification data are based on peptide fragmentation spectra. Blast 
search of each peptide reveal the corresponding proteins. All peptides related to a single protein 
become sorted accordingly. Ambiguity may arise due to partial sequence similarities of different 
proteins, which may not allow to assign a peptide to a single protein only. Uniprot and the CPL/
MUW database assist in the selection of the most plausible candidate. Data of various experiments 
are combined to obtain reference maps of single cell types at specific states. The specificity of any 
single protein expression with respect to cell types may be retrieved using the GPDE. Overlap and 
specificity of proteome maps can be visualized by accurate Venn diagrams. During this process 
specificity is increased while complexity is decreased
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considered. To assess the reliability of the peptide identifications, searches are per-
formed against the corresponding reversed database. Further details are accessible 
via www.meduniwien.ac.at/ proteomics.

A protein fraction may be contaminated with keratins derived from dust and 
comprise identifications with questionable identification quality. To make appropri-
ate decisions, we make use of lists of common contaminants as well as reference 
lists dependent on the kind of sample comprising “expected” proteins. Only those 
putative identifications are included, which are present in the according reference 
list, while all other are discarded. The resulting protein profile is classified using 
the CPL/MUW database to support subsequent data interpretation (Fig. 21.1). 
Classification considers common housekeeping proteins, cell type-specific proteins 
and proteins related to the exertion of specific functions. Furthermore, other public 
available data as the gene ontology (GO) can be included. Protein expression data 
derived from methods other than mass spectrometry such as Protein Atlas and gene 
expression data may support the final decision for expression specificity and thus 
choice of biomarker candidates. Such biomarker candidates have to be verified and 
validated performing ELISA studies with human blood samples and by correlation 
with clinic data. Specificity and clinical relevance is increased starting from in vitro 
to clinic while sample size is decreased (Fig. 21.1).

21.5  Bioinformatics

Proteomes of biological samples typically consist of thousands of different proteins 
with a concentration range spanning nine or more orders of magnitude [28]. Only 
technically demanding high-throughput technologies such as mass spectrometry 
may actually cope with such an analytical challenge [29]. Modern machines 
 produce more than 10,000 peptide fragmentation spectra per hour, piling up to huge 
amounts of data for each experiment. As a consequence, there is no proteome 
 profiling without the assistance of well-performing computers and sophisticated 
bioinformatics tools.

A typical workflow to analyse proteomics data would consist of several indepen-
dent but interrelated steps. These include interpretation of spectra, subsequent protein 
identifications and quantifications as well as the assignment of specifically expressed 
proteins based on comparative analysis. While several different and  powerful soft-
ware packages exist to support these steps such as Mascot [30], SEQUEST [31] and 
Spectrum Mill [32], there is still urgent demand for further improvements. In the fol-
lowing, the implications of each step will be presented in more detail.

To begin with more technical aspects, there is still a broad variety of data 
 formats and protein sequence databases which complicate the exchange and com-
parison of data generated by different laboratories. It was the initiative of the 
European Bioinformatics Institute to establish a common data format, PRIDE-
XML, which can be realized starting from almost any kind of existing data format. 
To support the dissemination of complex proteome data, the public data repository 

http://www.meduniwien.ac.at/
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PRIDE (PRoteomics IDEntifications database, http://www.ebi.ac.uk/pride) was 
installed [33]. The Global Proteome Machine Organisation (gpm) at gpmdb. 
rockefeller.edu was established to improve the quality of proteome analysis data 
relying on tandem mass spectrometry, to make results portable and to provide a 
common platform for testing and validating proteomics results [34]. These impor-
tant tools provide access to thousands of proteome analysis experiments and sup-
ports documentation of published data.

To summarize, clinical proteomics needs standard operating procedures and 
guidelines for data generation, data analysis and validation of datasets [35] since 
the biomarker discovery has suffered in the past from inconsistent data acquisition, 
statistical interpretation and validation [36]. These standards are represented by (1) 
the use of standards in the data format and storage (mzXM/mzData), (2) by public 
data repositories (Peptide Atlas, PRIDE, SwissProt/Uniprot and (3) the integration 
of a complex database including biological information and different bioinformatic 
programs using to link different protein lists for instance to specific pathways [2].

Data mining strategies fall into two categories: unsupervised (analogous to clus-
tering) and supervised (analogous to classification) such as classification and 
regression trees and support vector machines (SVM) [36]. Each algorithm has 
inherent strengths and weaknesses, which must be matched to the different statisti-
cal problems [36]. Some of these softwares are (Fig. 21.1):

 1. ProteinCenter software, a proteomics data mining and management software, 
can be used to predict the function of the identified proteins based on universal 
GO annotation terms. Here a comparison of cell line secretomes with each other 
and a functionally categorization can be performed [36,37].

 2. The SignalP program can be used to determine the presence of secretory signal 
peptide sequences and thus predict potential secretion.

 3. The SecretomeP program offers the possibility to predict non-signal peptide-
triggered protein secretion and to distinguish between protein secretion path-
ways-the classical and non classical pathway [37].

 4. MetaCore (GeneGo, St. Joseph, MI) is used for biological network building and 
describe millions of relationships between proteins, according to publications on 
proteins and small molecules including direct protein interactions, transcrip-
tional regulation, binding or enzyme-substrate interactions [37].

In the process of biomarker discovery, a single biomarker may hardly provide 
sufficient specificity; often several biomarkers have to be combined. Here a two-
step process is required:

 1. Biomarkers have to be identified employing statistics for multiple testing.
 2. They are combined in a predictive model using some of the algorithms [36].

Support Vector Machines (SVMs) offer a cross-validated predictive statement, 
which is an important issue in biomarker combination. In the case of making a 
predictive diagnosis through the combination of biomarker, it is possible to calcu-
late the level of confidence with a classification algorithm. Two basic  considerations 

http://www.ebi.ac.uk/pride
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have to be applied: (1) the number of independent variables should be kept minimal 
and (2) a blinded validation set should be included [2]. Diagnostic accuracy estab-
lishes how accurately the test discriminates between those with and without the 
disease and is determined by calculating the test’s sensitivity, specificity, likelihood 
ratio and receiver operating characteristic (ROC) curve [36].

One inherent problem of the high throughput technology mass spectrometry 
becomes evident upon consideration of statistical aspects [38]. A confidence level 
of 99.5% for the assignment of peptide sequences to fragmentation spectra suggests 
very high validity of data which is currently hardly realised. Modern equipment 
may allow the researcher to identify thousand different peptide sequences per hour. 
A confidence interval of 99% implies that five out of the thousand peptides are not 
correct. A typical experiment consists of around ten injections, summing up to 50 
or more false peptide assignments. Comparative analysis of two groups of experi-
ments summarizing five independent experiments would already sum up to 500 
false peptide assignments. Complex analyses may require the consideration of hun-
dreds of experiments. In such a case, a confidence rate of 99.5% per peptide iden-
tification may result in a chance to receive false results from a database query 
higher than 50%.

The only way out of this dilemma will be the consideration of expert knowledge 
in data analysis [27]. Currently, only quality features of individual spectra are con-
sidered for the assignment of amino acid sequences. Each decision is made inde-
pendent of any other data. Actually, there are chances to make use of other data. We 
know that a given peptide has characteristic and reproducible chromatographic 
mobility as well as ionization and fragmentation characteristics. Therefore, the 
accessible knowledge of successfully identified peptides may facilitate the decision 
of peptide assignments in case of uncertainty. Furthermore, consideration of knowl-
edge of the origin of the sample may greatly improve data consistency. To give an 
example: analysis of a mitochondrial fraction may allow some contaminating pro-
teins derived from the endoplasmatic reticulum, but hardly from the cell nucleus. 
The analysis of a liver sample may include proteins from e.g. immune cells but 
hardly proteins specific for the heart. Although these implications seem trivial, they 
require complex expert system programming in order to be automatically imple-
mented in the high throughput analysis of data. The systematic assessment of 
ontologies may, however, enable the implementation of such strategies.

The processing of data as realized in case of the CPL/MUW-database is outlined 
in the following. Actually, all protein identifications are based on peptide fragmen-
tation spectra (mass spectrometry) (Fig. 21.2). Amino acid sequences are derived 
from the spectra and all related peptides identified during a LC-MS/MS run are 
sorted according to proteins they are derived from (SpectrumMill software). 
Actually, there are peptides which may be allocated to more than one protein, 
which need to be nominated in an easily accessible fashion (Fig. 21.2). In such a 
case, several considerations have to take place. The ambiguity may be solved by 
consideration of gene expression data and previously determined protein expres-
sion data. Consequently, established knowledge made available via the SwissProt-
database needs to be accessed, while laboratory-owned data may as well aid the 
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decision process (Fig. 21.2). On the other hand, known potential contaminants such 
as keratins should be known to avoid misassignments. After the decision process 
resulting in protein lists comprising all relevant experimental and peptide identifi-
cation data as realized via PRIDE XML-files, interpretation of data may be enabled 
by comparative analysis (Fig. 21.2). To provide an example: we have analysed 
secretomes of primary human endothelial cells at normal, angiogenic and inflam-
matory cell states. Accurate Venn diagrams displays the relation between these 
protein fractions (Fig. 21.2). Out of a total of 184 different proteins identified, 75 
were found in all three kinds of cells. 114 proteins were secreted by untreated cells, 
14 of which were not identified at the other two functional states. One twenty-nine 
proteins were identified in IL-1b-treated cells, 33 of those were not identified at the 
other two functional states. Actually, some of them were found as well secreted by 
e.g. inflammatory activated macrophages, leaving 22 proteins apparently specific 
for inflammatory activated endothelial cells. This kind of comprehensive compara-
tive analysis may strongly support the interpretation of complex data.

While data acquisition and protein identification may be considered as relatively 
simple tasks, there is still obvious demand for tools supporting data interpretation. 
These processes organize the data with respect to experiments and cell types, but 
not to functional aspects. Currently there is still obvious demand for further tools 
supporting data interpretation. The application of -omics techniques often leave the 
researcher with very long lists of identified genes and proteins which are impossi-
ble to comprehend. Current strategies try to relate expression data to signaling 
pathways in order to support biological interpretation [39–41]. There are still major 
limitations to these approaches. In many cases, the known involvement of a gene or 
a protein in a specific signaling or metabolic pathway would highlight the protein 
as such. Comparative analyses, however, record up- or down-regulation of proteins. 
Switching on a specific pathway does not necessarily mean that relative amounts of 
proteins involved in the pathway would be regulated. In many cases, however, the 
activation of a specific pathway would result in the up-regulation of proteins which 
are not at all involved in the exertion of the signaling or metabolic event. For the 
identification of the involvement of pathways, which is evidently desirable, data-
bases would be required which exhibit consequences of pathway activation rather 
than involvement in pathways. There is still a demand for such databases.

Another shortcoming of current analysis strategies is the preferential assignment 
of tissue-specific expression patterns rather than cell type-specific expression pat-
terns. Actually it is obvious that tissues are made of different kind of cell types. 
Some cell types such as immune cells occur in all tissue types, other cell types 
specifically occur in a single organ. It is the specific functional characteristics of 
hepatocytes which give raise to liver-specific specific proteins, liver cells other than 
hepatocytes do not express liver-specific proteins. Therefore, it would be more 
accurate to talk about hepatocyte-specific proteins rather than liver-specific pro-
teins. There are databases listing organ-specific protein expression but no databases 
listing cell type-specific protein expression.

For this reason we established the following data analysis strategy. First of all 
the proteome profiles of isolated organelles which commonly occur in cells, such 
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as nuclei, mitochondria , ribosomes and proteasomes were determined. Such analy-
ses obviously allow for the fact that cell type-specific proteins may as well occur in 
organelles such as nuclei but very much account for the fact that the basic protein 
composition of these organelles is highly similar. A proteome profile of a cell may 
thus already be structurally sorted according to the belonging to an organelle. As a 
consequence, a long protein list may already become much easier to be interpreted 
as related groups of proteins are identified.

The next step of systematic analyses focuses on cell types. We have already 
determined proteome profiles of lymphocytes, monocytes, dendritic cells, neutro-
phils, fibroblasts, endothelial cells, various epithelial cells and many others and 
classified both commonly expressed proteins as well as cell type-specific proteins. 
Some of these data have been made available to the public via the CPL/MUW 
database at www.meduniwien.ac.at/proteomics/database [27]. The expression 
specificity of several thousand proteins with respect to cell types can thus be imme-
diately determined.

The SQL database (CPL/MUW – database of the Clinical Proteomics Laboratories 
at the Medical University of Vienna) facilitates (i) quality management of protein 
identification data, which are based on MS, (ii) the detection of cell type-specific 
proteins and (iii) of molecular signatures of specific functional cell states [27].

Proteome analyses of clinical materials constitute a big challenge for investiga-
tors due to its great complexity. Exact planning and documentation of each analysis 
step is crucial to enable meaningful data interpretation. This is why we strictly fol-
low the established rules of the “minimum information about a proteomics experi-
ment” (MIAPE) [35]. According to highest international standards, submit all 
relevant proteome analysis data to the international repository for proteome analy-
sis data, the PRIDE database. We have already successfully implemented a program 
which automatically translates experimental data out of our database to a standard-
ized PRIDE-XML format using international standardized ontology-terms to 
describe all experimental details (http://www.ebi.ac.uk/ontology-lookup/) [41]. 
Furthermore, we have programmed a proteome analysis database referring to the 
investigation of cross-cell type and cross-species comparisons of proteome analysis 
data derived from both, 2D-PAGE and shotgun analysis [27].

Proteins fulfil biological functions. If a cell enters a characteristic functional 
state it may need proteins not expressed under normal conditions. Such proteins 
may be specifically expressed only when the cells enter the functional state. As a 
consequence, the identification of such specifically expressed proteins may identify 
the corresponding cell state. Any disease-related symptom is a consequence of 
aberrant cell activities associated with the disease. Identification of aberrant cell 
activities may thus identify diseases. When investigating disease biomarkers we 
should consider the fact that proteins were designed by evolution to exert functions 
rather than to indicate diseases to medical doctors. Therefore, there are no protein 
biomarkers specific for a disease; there are only, actually plenty of, biomarkers 
specific for biological functions. If such an aberrant function is specifically associ-
ated with a certain disease the corresponding protein may be considered as a dis-
ease biomarker.

http://www.meduniwien.ac.at/proteomics/database
http://www.ebi.ac.uk/ontology-lookup/
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We have started to systematically assess protein expression profiles of cells at 
characteristic functional states. As expected, we were able to identify several spe-
cifically expressed proteins. These include proteins specifically related to func-
tional states such as cell proliferation or inflammatory activation which may be 
entered by different kinds of cells. Actually, there are proteins which we found to 
be exclusively expressed by a single cell type at a specific cell state but not by any 
other cell. Therefore, these proteins are classified into organelle-derived, cell type-
specific, cell state-related and cell type cell state-specific proteins. Comparisons of 
normal and diseased tissue proteome sample therefore result in the consideration of 
alterations in the abundance of organelles (indicative for, e.g. rate of mitochondrial 
respiration compared to glycolysis), the consideration of alterations of the occur-
rence of cell types (indicating e.g. invasion of immune cells or increase in the 
number of fibroblasts), the consideration of cell states (assessment of cell prolifera-
tion, cell stress, apoptosis, inflammatory activation of myofibroblast formation) and 
finally the occurrence of specific cell entities (e.g. type II macrophages). The 
knowledge of disease-associated aberrations in one or several of these aspects may 
thus allow us to design highly specific marker panels.

21.6  Identification of Biomarker Candidates  
by Secretome Analysis

Secretome analysis is an upcoming field of cancer research. This chapter gives a 
brief overview of the latest key secretome studies:

Recently, secretome analysis based on a LC-MS/MS label-free quantitative pro-
teomics approach was used to compare the secretome of a primary cell line SW480 
with its lymph node metastatic cell line SW620 from the same colorectal cancer 
patient [25]. They identified a total of 910 proteins from the conditioned media and 
145 differential proteins between SW480 and SW620 (>1.5-fold change). Among 
them, trefoil factor 3 and growth/differentiation factor 15, two proteins upregulated 
in the metastatic cell line SW620, were analyzed in a large cohort of clinical tissue 
and serum samples and confirmed as biomarker candidates for the prediction of 
colorectal cancer metastasis [25]. Here secretome analysis allowed new insights 
into the pathophysiology of tumor progression.

An important study for a systematic identification of unique markers for col-
orectal cancer was performed by Wu et al. [42]. Secretomes of 21 cancer cell lines 
derived from 12 cancer types (colon cancer, leukemia, bladder cancer, lung cancer, 
NPC, hepatocellular carcinoma, cervical carcinoma, epidermoid carcinoma, ovary 
adenocarcinoma, uterus carcinoma, pancreatic carcinoma and breast cancer) were 
compared. Collapsin response mediator protein-2 (CRMP-2) was only secreted by 
the colorectal cell lines (Colo205 and SW480) but not any other cell lines tested 
and was therefore selected for further evaluation. Initially CRMP-2 was identified 
as a mediator required for semaphoring triggered growth cone collapse and was 
associated with carcinogenesis by p53 regulation. ELISA analyses of plasma 
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 samples from colorectal patients and healthy controls were performed to examine 
the levels of CRMP-2 and CEA revealing that the sensitivities of plasma CRMP-2 
and CEA were found to be 60.5% and 42.9%, respectively. This secretome analysis 
led to a novel marker, CRMP-2, which may be a colorectal marker superior to CEA. 
However, a large cohort study is required to validate the utility of plasma CRMP-2 
levels for CRC screening and diagnosis.

In addition these authors analyzed proteins released by most cancer cell lines 
(pan-cancer marker candidates) and assigned these to specific secretion mecha-
nisms. In the conditioned media of cancer cells proteins may be released via various 
cellular mechanisms, including classical secretion and nonclassical secretion path-
ways, as well as secretion via exosomes. The exocytosis of membranous vesicles 
called exosomes was initially described in antigen-presenting cells such as 
B-lymphocytes and dendritic cells, and was later found to also occur in tumor cell 
lines. The authors assigned some identified proteins to characteristic constituents of 
exosomes including ubiquitously expressed molecules such as intracellular meta-
bolic enzymes (pyruvate kinase and alpha enolase), cytoskeletal proteins (actin, 
cofilin, tubulin, and moesin), and chaperones (HSP90 and HSP70). To determine 
whether some proteins may have been released into the medium by cell death, cell 
viability has to be measured.

To get panels of serum biomarkers for lung cancer, Xiao et al. [43] compared the 
secretome of primary cultures of lung cancer cells and the adjacent normal bron-
chial epithelial cells of six lung cancer patients using one-dimensional PAGE and 
nano-ESI MS/MS . They demonstrated that a panel of four proteins, CD98, fascin, 
polymeric immunoglobulin receptor/secretory component and 14- 3-3 h had a 
higher sensitivity and specificity than any single marker.

To characterize extracellular events such as cell-to-cell interactions and cell- 
to-extracellular matrix interactions associated with breast cancer progression on the 
genomic level, gene profiles of secreted proteins were investigated in a cell line of 
human proliferative breast disease. Differentially expressed genes were searched 
for genes encoding secreted proteins in three public databases. The analysis dis-
played two clusters of secretome genes with expression changes correlating with 
proliferative potential [44].

Celis et al. [45] employed 2-DE and MALDI-TOF-MS to analyze the tumor 
interstitial fluid (TIF), which was collected of freshly dissected invasive breast 
carcinomas. From TIF, which perfuses the breast tumor microenvironment, they 
identified 267 primary translation products, involved in cell proliferation, invasion, 
angiogenesis, metastasis and inflammation.

A novel technology for investigating in vivo cancer secretome was recently 
developed by Huang and colleagues [46]. They collected the samples for further 
secretome analysis by implanting capillary ultrafiltration (CUF) probes into tumor 
masses of a live mouse at the progressive and regressive stages. Five of the detected 
proteins, including cyclophilin-A, S100A4, profilin-1, thymosin beta 4 and 10, 
which previously correlated to tumor progression, were identified at the progressive 
stage. They also identified specifically secreted proteins at the regressive stage 
called fetuin-A, alpha-1-antitrypsin 1–6, and contrapsin.
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Very recently, a secretome analysis of 23 human cancer cell lines derived from 
11 cancer types using one-dimensional SDS-PAGE and nano LC-MS/MS 
(GeLC-MS/MS) was performed on LTQ-Orbitrap MS to generate a comprehensive 
cancer cell secretome [37]. The identified proteins were selected as potential 
marker candidates according to three categories: (i) proteins apparently secreted by 
one cancer type but not by others (cancer-type–specific marker candidates), 
(ii) proteins released by most cancer cell lines (pan-cancer marker candidates), and 
(iii) proteins putatively linked to cancer-relevant pathways [37]. This analysis 
yielded 6–137 marker candidates selective for each tumor type and 94 potential 
pan-cancer markers. Among these, the monocyte differentiation antigen CD14 (for 
liver cancer), stromal cell-derived factor 1 (for lung cancer), cathepsin L1 and 
interferon-induced 17 kDa protein (for NPC) were selected for validation as poten-
tial serological cancer markers.

Immunohistochemistry revealed that bile salt sulfotransferase, ornithine car-
bamoyltransferase, monocyte differentiation antigen CD14, and isoform 1 of asia-
loglycoprotein receptor 2 were less immunoreactive in tissues of other cancer types, 
while multidrug resistance protein 1 and vitamin K-dependent protein C were over-
expressed in hepatocellular carcinoma versus other cancers. Bladder cancer tissues 
reacted more strongly with proteins such as cadherin-6, squalene synthetase, ribo-
phorin II, and 15-hydroxyprostaglandin dehydrogenase while the levels of neuro-
genic locus notch homolog protein 3 and trefoil factor 1 were higher in breast 
cancer tissues versus tissues of other cancers [37]. The stromal cell-derived factor 
1 (CXCL12) reacted more strongly with lung cancer tissues. In addition, Wu et al. 
confirmed the significantly elevated plasma levels of two candidates (CD14 and 
SDF-1/CXCL12) in hepatocellular carcinoma and lung cancer patients [37].

In our recent study, we analyzed the secretomes of primary melanocytes, cul-
tured melanoma cells and representatives of the most prominent stroma cells 
including fibroblasts, endothelial cells and dendritic cells by shotgun proteomics 
[9]. We consider the assessment of cell type-specific secretion characteristics as a 
prerequisite before potential relevant alterations of tumor-associated stroma cells 
can be recognized. In case a tumor-associated fibroblast secretes a protein not 
secreted by normal fibroblasts, but secreted e.g. by normal endothelial cells, such a 
protein would hardly be useful as biomarker. This is why we systematically ana-
lyzed the most important representatives of tumor-associated stroma cells. This 
strategy enables us to identify proteins which are aberrantly expressed by tumor-
associated fibroblasts but not in any normal counterparts isolated from healthy 
background [9]. We performed secretome and proteome profiles generated from 
normal human skin fibroblasts in comparison to melanoma-associated fibroblasts 
isolated from mouse xenografts and fibroblasts from bone marrow of multiple 
myeloma patients. Further mutual comparisons were enabled including proteome 
profiles of melanocytes and M24met melanoma cells. All shotgun proteomics data 
have been made accessible via the PRIDE database. Amongst others, the candidate 
biomarkers GPX5, secreted by melanoma cells, in addition to periostin and stan-
niocalcin-1, which are expressed by melanoma-associated fibroblasts, were identi-
fied. Due to this data we started to investigate tumor associated fibroblasts of 
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primary melanoma and primary melanoma cells in a more systematic fashion by 
rtPCR, comparative genomic hybridization and cytoplasmic proteome and secre-
tome analysis. This information will enable us to better understand cellular pro-
cesses of the tumor and tumor associated cells in order to define new therapeutic 
agents and rational concepts for melanoma treatment and to detect biomarkers.

Secretome analysis is a novel research area offering new opportunities for bio-
marker discovery and drug development. However, despite promising results high-
lighted in this chapter, more systematic and hypothesis driven studies are needed. 
As primary cells are highly sensitive living units, any alteration in culture condition 
may result in aberrant protein secretion. Therefore, for clinical proteomics support-
ing biomarker discovery it is inevitable to refer to a SOP driven data resource of 
secretomes to enable an appropriate correlation of scientific with patient-derived 
information.

21.7  Conclusion

The identification of potential marker proteins is not trivial. Comparative analysis 
of serum samples and tissue specimen is hindered by the natural complexity of 
protein expression. Diseases like cancer mean a variety of de-regulated cell pro-
cesses all of which eventually causing characteristic aberrant protein expression. 
Different kinds of patho-physiological processes may be associated with tumor 
development, such as involvement of the immune system, alterations of the 
microenvironment and characteristic processes in the cancer cells themselves. This 
complexity is further enhanced by the individual heterogeneity in disease in addi-
tion to heterogeneities introduced by the involved experimental procedures. Low 
abundant proteins may be hard to identify as long as they are present in a complex 
protein mixture together with other proteins, several at million fold higher concen-
trations. Dependent on the protein mixture, positive identification of actually pres-
ent, but low abundant proteins may thus fail. Statistical evaluation of comparative 
proteome analysis data may thus not be able to identify the truly relevant proteins. 
One possible concept to overcome this inherent heterogeneity is based on the func-
tional analysis of cell types in advance. It is predicated on the characterization of 
smallest independent units and tries to find a combination of independent units to 
match the molecular profile of an individual sample. This smallest unit capable of 
protein synthesis, the cell, decides whether or not to produce proteins with specific 
activity which may become related to a disease.

In mathematics the strategy to refer to independent functions is called Fourier 
transform which makes a complex function amenable for further analysis. The 
smallest independent and potentially predictable protein synthesis machinery unit 
is a cell. Since every functional cell aberration is associated with aberrations of 
protein expression when compared to normal, the cell is an optimal starting point 
for biomarker discovery. Like Fourier transform in physics, the establishment of 
profiles of the smallest autonomous protein production units in the body, i.e. cells, 
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may greatly facilitate the interpretation of complex proteome profiles as derived 
from human serum or tissue samples (Figs. 21.2 and 21.3). All proteomes, i.e. pro-
tein mixtures, should it be from tissues, blood, plasma or other body fluids can be 
expressed as a function of cellular proteomes. The assignment to cellular proteome 
reference maps will lead to a massive reduction of apparent complexity (Fig. 21.2). 
Therefore possible candidates can be extracted by defining the involved cell sys-
tems such as cancer cells and distinguished cell of the environment including fibro-
blasts and endothelial cells in a first step. With the aid of specialized databases, for 
instance the CPL/MUW-database [27], specificities and commonalities of protein 
expression profiles of such different cells can be quickly assessed. Therefore, early 
teamwork between the clinical level, bioinformatics, medical informatics, and pro-
teomic scientists is needed to overcome the current limitations.

One key question relates to our ability to draw appropriate conclusions for 
(short-, mid-, or long-term) therapeutic approaches and consequences from the 
highly dynamic proteome profiles. Specific cellular systems and subsystems and 

Fig. 21.3 The novel approach detecting biomarkers and defining potential therapeutic targets. 
The basic strategy for biomarker discovery is visualized. As model systems cultured cell lines, 
animal models for melanoma and squamous skin cancer and biopsy specimens of human skin 
cancer are presented. In all cases the secretome of the same isolated cell types (i.e. cancer cells, 
endothelial cells and fibroblasts) is analyzed. In further steps it is envisaged to analyze for specific 
cell-cell interactions mimicking characteristic tissue states for example by applying different co-
cultures starting from in vitro to in vivo models. In a last step these results shall then be evaluated 
in the human background in the tissue and blood profile [9]
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functional components have to be defined prior to the analyses of a complex organ-
ism influenced by various states of disease. Integration of proteomics and cell-
based technologies will allow the description of the molecular setup of normal and 
abnormal cell systems leading to the standardized discrimination of abnormal cell 
states in disease permitting for instance the design of individualized therapies, the 
prediction of further disease course in patients, the identification of new pharma-
ceutical targets, and establishment of a standardized framework of relevant molecu-
lar alterations in disease [2].

We make use of three different model systems (cell culture, tissue in vivo and 
human being), all have their strength and weakness starting from in vitro to human. 
The complexity but also relevance is increased from in vitro to human being. 
Therefore we combine all these systems (Fig. 21.3).

Our strategy is composed of seven independent steps (Fig. 21.3) [9]:

 1. Establishment of relevant model systems mimicking various functional cell 
states including characteristic in vitro cell activation experiments and (non-) 
contact co-cultures

 2. Standardization of protein isolation
 3. Standardization of MS-procedures
 4. Generation of proteome reference maps for human primary cells
 5. Data organization via database
 6. Interpretation of data from diseased tissues by the use of multiple reference 

maps
 7. Verification of biomarkers or possible therapeutic targets by i.e. ELISA, immu-

nhistochemistry, Western blot

In a last step these results shall then be evaluated in the human background in the 
tissue and blood profile (Fig. 21.3). ELISAs for instance the Luminex system [47] 
are to be established for the most promising candidates (including the specifically 
expressed proteins mentioned above). These assays will then be used to assess pro-
tein levels of candidate biomarkers in serum samples of patients. For validation we 
begin with assaying patients whose fibroblasts were found in vitro to secrete large 
amounts of candidate biomarker proteins. These data are then compared to serum 
samples derived from patients whose fibroblasts were found not to secrete these fac-
tors. This step of analysis will allow us to assess whether serum protein levels of 
these marker proteins are indeed related to the in vitro fibroblast expression levels 
as anticipated. The secretion specificity of the cancer associated fibroblasts has to be 
assessed by comparison to the secretomes of fibroblasts, endothelial cells, tumor 
cells and macrophages, which contribute to tissue remodeling and repair [9,26,48]. 
Here, we present a novel technical approach to better understand the mechanisms of 
tumor progression and metastasis by involving the microenvironment. The approach 
is of tremendous importance since it will allow us new insights in the pathophysiol-
ogy of tumor progression, leading to the identification of novel biomarkers for early 
detection and prognosis and may lead to the identification of new therapeutic targets. 
The plethora of data will offer new opportunities to develop biomarker sets for 
ELISA analysis for the clinical routine [9]. The combination of a set of relevant 
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markers will yield an improvement of sensitivity and specificity of the screenings. 
By focusing on secreted proteins which are early shed by the microenvironment into 
the blood, specific information about the actual status of the patient and define a 
fingerprint of the tumor status in the patient can be gained. This strategy may enable 
early diagnosis of metastatic processes and offers an opportunity for a rational 
therapy selection. Candidate biomarkers shall be evaluated in clinical studies by cor-
relation with the progression free and overall survival. This concept may be able to 
establish novel classifications, to define patient subgroups and to consequently allow 
us to enhance the often low overall response rates observed in clinical trials.
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