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Abstract The traditional problem of the poor presentability as well as  diagnostic 
and therapeutic practicability of individual patient care is still unresolved. 
Biomodulatory therapies for metastatic tumors bring transparency into tumor sys-
tems by breaking into a tumor’s holistic communicative world, and by dissecting 
the tumor for practical purposes, such as attenuation of tumor growth, in compre-
hensible evolutionary processes. Biomodulatory therapies show that the holistic 
communicative structures of a tumor are now an experimentally and therapeutically 
accessible entity: Communication within systems―which is self-content to some 
degree―works with the implicit understanding that (1) the validity and denotation 
of particular systems objects (proteins, cells etc.) is always context-dependent, 
(2) the validity and denotation of the systems objects may be therapeutically 
redeemed by systems-immanent communication rules, which are determined by 
descriptively accessible communicative systems textures including intersystemic 
exchange processes. The difference between theory and practice may be decisively 
attenuated (1) by giving reductionistically derived systems features an internal 
communicative context (formal-pragmatic communication theory), (2) by introduc-
ing a novel and scientifically accessible perspective, i.e. the tumor’s ‘living world’, 
which is defined as a tumor’s holistic communicative world, and (3) finally by 
binding the systems features to tumor-immanent evolutionary processes (modular-
ity of biochemical and cellular processes, rationalization of tumor functions).

 The newly discovered tumor-associated systems architectures, which are built 
on the capability of tumor systems to modularly rearrange the validity and denota-
tion of systems objects, clearly differ from the reductionistically derived systems 
comprehension: (1) Communicatively-derived systems structures offer new insights 
into evolutionary processes, promoting tumor development and expansion into the 
‘metabolism’ of tumor evolution. (2) Based on the perception of a systems partici-
pator, we ultimately leave behind typical reductionistically derived teleological 
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systems features. (3) Both, reductionist and holistic understanding are exerted to 
reproduce a situational stage of tumor disease: Differential perspectives of thera-
peutic interaction are entangled with various levels of knowledge and consecutively 
with different therapy strategies.

Keywords Personalized tumor therapy • Communication theory • Metastatic tumor • 
Tumor models

1.1  Introduction

The traditional problem of the poor presentability as well as diagnostic and therapeutic 
practicability of individual patient care is still unresolved. Applied science subsumes 
particular tumor features in general patient models without attending to individual, 
evolutionary-developed systems patterns in metastatic tumor disease.

For a patient as an individual, no difference exists between the patient as a general 
and as a particular person. In the present context, the term ‘general patient’ refers to the 
biochemical, cellular, and organ unity or, in other words, to the empiric patient among 
many other patients with identical reductionistically derived characteristics. The par-
ticular patient, on the other hand, is characterized by distinct individual and even 
particular therapeutically accessible features (e.g. via the tumor’s Achilles’ heel).

When the knowledge about a patient is generalized and projected into a unique 
cohort – meaning that one patient is the representative of an entire patient population, –  
the general oncologic knowledge meets the nude identity of the tumor patient 
as a formal prerequisite of the coherency of the physicians’ conceivability. If the 
knowledge about a disease is empirically derived, i.e. based on the view of clini-
cians, the internal nature of the disease is perceived as foreign as its external nature, 
namely that of a whole patient population with distinct biological stigmata.

If differentiation between the accepted situational notion and the ‘transcendentally’ 
true notion of an individual disease ceases, that means disease perception under ideal-
ized conditions of a ‘homogeneous’ patient cohort, we are unable to explain, why we 
can reflexively learn and improve our own knowledge and standards in patient care.

We may not accept our notions about an individual patient – which are always 
only locally and time-dependently justified – to be true in an objective sense.

The conflict between intelligible, classifiable model diseases and an individually 
emerging disease needs to be overcome by contextualist diagnostic and thera-
peutic approaches. Scientific ambition for objectivity in the comprehension of 
metastatic tumor diseases is marked by the search for intersubjective agreements. 
Scientists present data sets and applied tumor models generated either by sophisti-
cated technologies (e.g. ‘omics’) and mathematically reprocessed data or by the 
pure availability of drugs for combinatory use (combination of ‘historical’ standard 
therapies with novel therapy principles). Subsequently, these data sets are incom-
mensurable, resulting in divergent comprehensions of metastatic tumor diseases 
and finally in the call for novel ‘ontologies’.
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The present book aims at leading the reader away – in a scientifically accessible 
manner – from the daily conflicts between theory and practice and between the 
generalized and individual tumor patient, so that more personalized diagnostic 
and therapeutic strategies can be developed for controlling metastatic tumor 
disease:

First, recording the systems concept of tumor biology based on rather different •	
sciences (biochemistry, cell biology, and medical oncology) in form of the func-
tional world of single tumor-associated cell types (tumor microenvironment and 
tumor cells) and respective biochemical processes (with the main focus on 
inflammation) including their potential contribution to communication
Then, giving reductionistically derived systems features an internal communica-•	
tive context (formal-pragmatic communication theory)
Finally, binding the systems features to tumor-immanent evolutionary processes •	
(modularity of biochemical and cellular processes, rationalization of tumor 
functions)

As shown, the difference between theory and practice may be decisively attenu-
ated by introducing a novel and scientifically accessible perspective, i.e. the tumor’s 
‘living world’, which is defined as a tumor’s holistic communicative world. 
Addressees and receivers of communicative processes are the systems objects of a 
tumor, i.e. molecules, pathways, cellular organelles, cells, and the host’s organs. The 
texture of a tumor’s ‘living world’ consists of structured systems-wide contexts.

Communication within systems – which is self-content to some degree – works 
with the implicit understanding that

The validity and denotation of particular systems objects is always context-•	
dependent (integration of addressees, receivers of communication, including 
their signals) and subjected to contingency programming.
The validity and denotation of the systems objects may be therapeutically •	
redeemed by systems-immanent communication rules, which are determined 
by descriptively accessible communicative systems textures including inter-
systemic exchange processes.

The texture of a tumor’s ‘living world’ allows the implementation of a ‘big 
functional world’ inside small tumor networks, if modular tumor architectures are 
successfully rearranged by biomodulatory tumor therapies (modulators of 
transcription factors, low dose metronomic chemotherapy, Imides, histone deacety-
lase inhibitors, etc.) to attenuate tumor growth with modest toxicity.

That way, the conflict between context-disrupting claims for generalized 
 diseases with their attributed reductionistically derived features and the availa-
bility of situational patient-derived tumor-associated features may be resolved. 
Therapeutically emerging tumor-associated features in form of action- and 
 therapy-relevant yes/no statements mirror the therapeutic facts at an involved 
organ site. Objective tumor response or stable disease resulting from communica-
tive interference with tumor systems is mediated by biomodulatory therapy 
approaches.
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The holistic communicative concept of tumors described in a formal pragmatic 
communication theory does not give in to a generalized, commonly used ‘homo-
geneous’ tumor model (which hardly includes the individuality of a tumor disease, 
despite the general assumption of individually varying tumor evolution). Addi-
tionally, this holistic concept does neither agree with the frequently valueless sub-
jectivity of individual diagnostic and therapeutic decisions nor with a circular 
concluding teleology (e.g. tumor cell selection comprehended as the competitive 
‘survival of the fittest’ in the Darwinian sense).

At first sight, the fact seems rather daunting that all systems processes are sub-
jected to a continuous contingency programming on the basis of tumor-immanent, 
partly autonomous and, therefore, individually evolving processes. However, when 
we therapeutically meet the challenges presented by a tumor’s ‘living world’, we 
may achieve therapy-derived systems interpretation including individual but 
also classifiable processes linked to distinct situational, stage- and tumor type-
associated evolutionary developments.

The newly discovered tumor-associated systems architectures, which are built 
on the capability of tumor systems to modularly rearrange the validity and denota-
tion of systems objects, clearly differ from the reductionistically derived systems 
comprehension:

The holistic communicative structures of a tumor are now an experimentally and •	
therapeutically accessible entity.
Communicatively-derived systems structures offer new but not teleologically •	
preconceived insights into evolutionary processes, promoting tumor develop-
ment and expansion into the ‘metabolism’ of tumor evolution.
The holistic communicative view allows a more abstract systems perspective of •	
tumors.
Based on the perception of a systems participator, we ultimately leave behind typi-•	
cal reductionistically derived teleological systems features (i.e. tumor- associated 
angiogenesis, immunology, inflammation, coagulation etc.).
Both, reductionist and holistic understanding are exerted to reproduce a situa-•	
tional stage of tumor disease: Differential perspectives of interaction are 
entangled with various levels of knowledge and consecutively with different 
therapy strategies.

Tumor-associated evolutionary processes exclusively lie in a communicatively-linked 
molecular and cellular world. Biomodulatory tumor therapies bring transparency 
into the holistic communicative system by breaking into a tumor’s ‘living world’ 
and by dissecting the tumor for practical purposes, such as attenuation of tumor 
growth, in comprehensible evolutionary processes.

Knowledge about these processes may finally bridge theory and practice in a 
novel appreciation of tumor pathophysiology and in novel biomodulatory-based 
study designs (adaptive trial designs). Systems-related read-out parameters derived 
from cellular secretome analytics, molecular imaging techniques, and com-
parative systems analytics of different tumor types and systems stages are 
urgently needed to describe modular, evolutionary developing tumor architectures 
and intersystemic exchange processes.
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At the end of this short introduction, I want to thank all authors for their excellent 
contribution and their willingness to implement their contribution into the concep-
tional context of this book. Ms Schoell, I want to thank for her excellent linguistic 
support.

Biomodulatory therapy approaches, realized in multiple multi-center phase II tri-
als in cooperation with many colleagues, represent the basis for describing tumor 
systems. These studies could only be carried out with the support of others convinced 
of the ‘alternative’ therapy approach in contrast to current emancipatory interests.

The ideas for these novel biomodulatory tumor therapies were based on the 
intent to palliatively treat systemically pre-treated patients with metastatic tumors. 
These studies would have been impossible without the tremendous support of a 
meanwhile retired colleague, Dr. Bross, my colleagues at our and external depart-
ments, and various supporters from the pharmaceutical industry: Thank you very 
much indeed.

I would like to express my gratitude to Dr. Witz for giving me the opportunity 
to publish in his book series focusing on tumor microenvironment.

The book and its contributions have been conceptionally structured to introduce 
the reader to evolutionary tumor systems but also to open up perspectives that may 
be derived from novel systems considerations.
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Abstract A tumor system not only consists of diverse cell types but also comprises 
all  components of action insofar that these components are oriented in terms of 
diverse cell types. Thus, it is necessary to decode paradox situations of cellular ratio-
nalization, deformation, and communication processes or, in other words, to uncover 
inconsistencies within tumor cell compartments or distinct topologies of aggregated 
action effects. Here, a theory may be helpful that discharges into an action-theoretical 
abstraction and simultaneously includes evolutionary tumor developments. In an 
evolutionary process, tumor cells may exploit the whole extent of the rationalization 
features of stroma cells to implement the functional diversity of systems behavior 
aimed at maintaining homeostasis and robustness in tumor systems. The introduction 
of genomic/non-genomic systems-directed therapeutic approaches may allow both, 
the uncovering of systems topologies of aggregated action effects and the broadening 
of therapeutic options via systems-directed approaches. (1) Tumor systems biology 
is now turning into a scientific co-subject. (2) Developing action-theoretical 
systems terms with the corresponding conceptual equipment may contribute to the 
classification of tumor subsystems. (3) Systems-directed therapies may meet new 
therapeutic requirements, which might help to create therapeutic approaches that 
are specifically designed for the demand of tumor stages, corresponding systems 
stages. Therefore, patients would probably not have to be selected according to age 
and/or co-morbidities because of known adverse toxicities of standard therapies 
(maximal tolerable doses). In contrast, therapies may meet the (individual) tumor 
system’s characteristics by a systems-orientated selection of biomodulatory acting 
agents. As shown, toxicities may be modest [56].

Keywords Tumor systems • Modularity • Rationalization • Metastatic tumor 
 • Robustness • Personalized tumor therapy • Biomodulatory therapy • Metronomic 
chemotherapy • Transcriptional modulation

A. Reichle (*) 
Department of Hematology and Oncology, University Hospital Regensburg,  
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2.1  Explorative Considerations  
(The ‘Now’) 

Cancer represents the largest genetic experiment ever conducted: Distinct 
acquired genetic lesions are not distributed at random in tumor cells, despite 
the high variability of cancer causes, the heterogeneity of observed genetic 
aberrations, and the divergence of morphologic characteristics of diverse 
tumor types. The non-random distribution of genetic aberrations might be 
explained by the fact that cancer-associated dysregulated transcription factors 
must still  collude in a life-maintaining manner for cancer (stem) cell self-
renewal, for proliferation, and for the build up of a cellular infrastructure 
suitable for tumor promotion [1]. As a main characteristic, cancer (stem) cells 
must be able to contribute to an evolutionary process. In subsystems, such as 
angiogenesis, inflammation must be activated and coordinated to allow expansive 
tumor growth. Stroma cells in the immediate vicinity are ultimately challenged, 
either functionally within their ‘living world’ (differentiation, trans-differentiation, 
dedifferentiation, apoptosis) or by the newly developing systems context 
characterized by the rationalization or the deformation of cellular functions 
and the acquisition of new cell types [2]. Vice versa, the function as a tumor 
(stem) cell is cooperatively determined by the adjacent microenvironment [3]. 
Many cellular functions associated with invasion and metastasis are often not 
constitutively expressed by carcinoma cells, but rather transiently in response 
to contextual signals that tumor cells receive from their stromal microenviron-
ment [4]. Therefore, the simultaneous modeling of both stroma and tumor cell 
functions may open up new therapeutic perspectives in cancer therapy [5]. The 
communicatively designed tumor microenvironment is integrated into an evo-
lutionary process. Thereby, it acquires cells from blood circulation and sub-
jects cells to rationalization processes to establish new systems behavior: 
stroma cells from a formally organized functional status within the previous 
functional ‘world’. Conversely, experimental data support the assumption that 
stroma cells even impose pressure on tumor cells to change or keep functions. 
Ultimately, stroma cells with molecular aberrations may contribute to malig-
nant conversion [8].

The change in systems complexity induced by a developing tumor interferes 
with the affected organ and may destroy not-regenerative cell inventories. Thus, 
this change not only alters previous ways of interactions among organ-associated 
cells but also considerably affects the communicative infrastructure of rational-
ized forms of communication within an affected organ. It is necessary to 
simultaneously decode paradox situations of cellular rationalization, deforma-
tion, and communication processes, i.e. to uncover inconsistencies within 
tumor cell compartments by means of a theory that includes the evolutionary 
development of a tumor as well as its biologic history in order to increase thera-
peutic options with systems-directed approaches.
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2.2  Methodological Approach

2.2.1  Theory of Communicative Interactions  
in Tumor Compartments

Three competing research approaches are applied regularly. As required by meth-
odology, these approaches have to virtually dissect the coherence of systems and 
the functional ‘world’ of distinct cell systems.

2.2.2  Structural Differentiation

Classic methodology is comparatively classifying. The theoretical core is formed 
by assumptions about the structural differentiation of cells (histopathology) in func-
tionally specialized systems of interaction. These assumptions are sufficient for 
supporting the observation that the structural integrity of tumor compartments 
needs to be maintained to sustain appropriate tumor-stroma-cell communication for 
tumor progression [9]. Thereby, functional considerations are not sufficiently sepa-
rated from structural ones in such a way that the disposed concurrence between 
methodological strategies may unfold.

The likely importance of this conceptual separation was shown by Karnoub: 
Mesenchymal stem cells must pass through an ‘educational’ process to act as cells 
promoting metastatic process [10,11]. Investigations into evolutionary processes of 
tumor development discharge this theory of structural differentiation into a more 
theoretically oriented model that includes systems functions [9].

Considering the functional aspects of morphologic changes, Dvorak [12] devel-
oped the basic principles of this action-theoretical concept by comparatively 
 characterizing similarities between wound healing processes and tumor growth, 
thereby including morphological data (structural differentiation). Although morpho-
logically based, the introduction of an evolutionary view has allowed a systems 
therapeutic approach that recalls the famous remark of Dobzhansky [13]: ‘Nothing 
in biology makes sense except in the light of evolution’.

Tumor-associated changes in cellular structures are currently reconstructed in all 
intersections: More recently, much attention has been drawn to cellular stroma 
components that are suspected of promoting cancer progression, such as the com-
position of lymphocytic tumor infiltrates, fibroblasts, macrophages, and other 
inflammatory cells, immunosuppressive cells called myeloid-derived suppressor 
cells (MDSCs), and mesenchymal stem cells. Analytically attained data about these 
cell types allow a one-dimensional conception of the total process of  structural 
 differentiation: A distinct function is unidirectionally coupled to cellular structure.

Thus, the process of structural differentiation may not be designed as a multidimen-
sional process, i.e. a decoupling of systems and a functional ‘world’ of tumor cell 
systems. Mediated by newly structured mediator-guided subsystems, the decoupling 
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process during tumor development may have a decisive influence on the (still) 
 structured differentiated functional ‘worlds’ of cell systems in an affected organ.

From different methodological viewpoints, the total extensiveness of tumor 
pathology may be highlighted only now and in such a way that would be desirable 
for the development of one (individual) tumor therapy with a broadened basis. 
However, the conceptual equipment is neither available for action-theoretical 
abstractions and systems-associated tumor stages nor for functional classifications 
based on an adequate differentiation between

 1. Synchronous structural differentiations of the functional ‘world’ of tumor- 
associated cell systems

 2. The spin-off of functional systems that are differentiated via chemokines and 
cytokines as well as the interior differentiation of these cell systems (e.g. accu-
mulation of regulatory T-cells, mesenchymal stem cells)

 3. The differentiation processes induced by tumor (stem) cells, which simultane-
ously dedifferentiate differentiated cellular functional areas (rationalization of 
functions) in terms of a colonization of the functional ‘world’ of organ tissues 
(metastatic process), simultaneously facilitating the integration of new cellular 
elements from the peripheral blood (mobilization, trafficking)

2.2.3  Rationalization

A further competitive research approach exclusively investigates the rationalization 
of functional systems in the course of evolutionary growth complexity during tumor 
development and tumor spread under the aspect of different purposes. The aspect 
of rationalization may be elucidated by the analytically defined functional spectrum 
(references) of fibroblasts [14] or macrophages within a cellular system: Macrophages 
and other inflammatory factors do more than just foment angiogenesis in tumors 
[15], i.e. they actively aid cell movements that produce metastases, thereby calling 
tumor cells to the vessels. On the other hand, they may act as tumor-antigen pre-
senting cells for tumor control [16,17]. This out- lined functional ‘world’ of mac-
rophages gives an impression of rather divergent options of rationalizations within 
a systems context [18]. Therefore, ambitious efforts are currently under way to 
retrain tumor-associated macrophages. The higher the involvement of evolutionary 
processes, the higher the accessibility of ‘socialization’ processes of tumor and 
stroma cells by systems-theoretical analyses. This ‘socialization’ may neither be 
intuitively nor exclusively realized by the reconstruction from the tumor cell site, 
as it is commonly the case [6]. Necessary changes of the point of view and method 
should be conducted accurately without the confusion of paradigms. The increas-
ingly higher organization of a tumor cell system during tumor growth results in the 
development of systems perspectives, in which the functional ‘world’ of distinct 
cell types is featured as a component of the respective systems ‘world’ [7]. Systems 
organizations are gaining a kind of autonomy by neutralizing separation towards 
previous cellular functions or by the assignment of new functions. Thus, distinct 
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cell types obtain systems-immanent functions and become indifferent to other 
‘socialization’ processes. This development characterizes the mediator-associated 
separation of developing tumor-adjacent macrophages from immuno-suppressive 
tumor promoting cells to weapons that destruct tumors [19].

Stroma cells are either present in affected organs or develop after the trafficking of 
bone marrow-derived mobilized cells out of circulation [20]. The implementation of 
a new form of integration (rationalization) of these stroma cells allows an evolution-
ary advancement of the systems complexity with the remodeled rationalization of 
cellular functions: The diversified resources of tumor growth-promoting cytokines 
are distributed among rather different stroma-associated cell types (redundancy). 
Thus, different rationalization processes are conceivable without the systems depriva-
tion of an essential growth-promoting mediator if a cell system would functionally 
drop out due to new systems-related differentiation processes [21]. The clue of this 
finding is that distinct systems functions, such as inflammation, may be maintained 
despite the change in cellular composition during tumor development. Furthermore, 
these observations underline the necessity of an action-theoretical abstraction.

2.2.4  Deformation

A third research approach, originally advanced by Loewenstein [22], focused on the 
evolutionary process of tumors with regard to the functional aspects of increasing 
complexity. More recent observations have followed a similar line, i.e. growth fac-
tors make cancer cell cancerous, and otherwise, if carcinoma cells are deprived of 
signals from the stroma compartment, they may revert to an earlier phenotype state, 
in which they do no longer display the traits of high-grade malignancies [23]. The 
question remains, how do they communicate?

With an exclusively functional consideration, the systems-associated constric-
tions of cellular functions, which take place in cell systems during evolution, are 
misplaced from the perspective of an observer on the level of communication by 
tethering inter-systemic exchanges at imbalances in communication. Thereby, the 
importance of the identity-threatening deformation of cell systems is withdrawn, as 
it is appreciated from a participator’s perspective: Tumor-associated stroma cells 
may even be driven into apoptosis by systems characteristics: In a figurative sense, 
they are neutralized by the system [24].

2.2.5  Resulting Observation Levels

Pathologic systems-biological processes in cancer may be reported from different 
observation levels:

 1. In Loewenstein’s view, pathologic cancer processes are predominantly mirrored 
in deficient cell-to-cell communication [22].
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 2. The initial source of observation may also be an altered systems-associated cell 
composition [25].

 3. Distorted functions of single cell systems within the tumor microenvironment 
[24–27]: Deformations.

In tumor systems biology, diverse ‘wound healing’ processes, such as inflammation 
and angiogenetic processes, have been identified as factors independent of the 
viewpoint of observation.

2.2.6  Approach to an Action-Theoretical Systems Term:  
The Scientist as a Subject of the System

Each of the three research approaches and viewpoints described bring about the 
separation of subject and object. In other words, none of the three approaches 
considers it necessary to uncover the object: A tumor’s systems biology is also a 
scientific subject, a co-subject of the scientist that interests not only as an approach 
for observation, description, and explanation of cellular behavior. Even more, it 
serves as a communication partner, for instance via biomodulatory therapies, and 
thus as an approach of hermeneutic comprehension. This approach represents a 
scientifically new aspect for understanding tumor biology, implicating a decisive 
broadening of therapy options that arise from the evolutionary consideration of 
tumor development [5].

2.2.7  Tumor Systems Need to be Rendered Useable  
for a New Action-Theoretical Abstraction

The constitution of this new kind of consideration about the objects of interest an 
action-theoretically derived (therapy-related) systems theory is different from the 
exclusively analytic/empiric systems terms that derive from results generated by 
functional genomics/proteomics in tumor systems biology.

2.2.8  Assignment of Systems-Theoretical  
and Action-Theoretical Inconsistencies

The systems concept in tumor biology is introduced by a systematic recording of 
the functional ‘world’ of single cell types including their potential contribution to 
communication.

The change from the perspective of an observer to that of a participator is justified 
by the action-theoretical description of a system in biomodulatory therapies [5]. 
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Thus, a new frame for action may be launched for new systems-directed  therapies, 
which may affect tumor growth by regulatory activities and thereby modulate func-
tions of subsystems that could be found ubiquitously or in distinct tumor groups 
and different tumor stages. This concept has been outlined especially for metastatic 
stages [5].

2.3  Conceptual Equipment

Behavior dispositions, behavior reactions, behavior releasing stimuli. In a cell 
system, we have to differentiate between the reactions of a cell system on media-
tors, the addressing of reactions to other cell systems, and the addressing of another 
cell system calling out the response. A system of fundamental terms (behavior 
dispositions, behavior reactions, behavior-releasing stimuli) permits the separation 
of cellular behavior from observable events. Thus, tumor systems may be rendered 
usable for a new functional systems classification, the starting point for new thera-
peutic options. Behavior dispositions may have a great impact on tumor growth. 
This assumption is underlined by the claim that attempts at determining metastatic 
tumor properties should focus on genes and proteins that confer the responsiveness 
of a primary tumor cell to stroma cells, rather than on genes and proteins that 
directly mediate the cellular phenotypes of invasive metastasis [10].

Denotation and identity of a cell or a cell system. Intercellular relations 
within the tumor compartment are reconstructed from the perspective of distinct 
cell systems, which represents the most frequently used reconstruction. Here, the 
notion of rules comes into play. The application of a rule induces the assignment 
of symbols (e.g. pathway structures) and the assignation of an identical denotation 
and validity.

For the introduction of functional aspects into tumor pathology, it is important 
to note that the denotation of cell systems does not necessarily derive from the 
identity of the object, for instance morphology, which may be identified as an identical 
cell system by a different observer.

Macrophages, fibroblasts in tumor stroma, and their multifaceted functional 
stages represent an exceptional example: Their identity comprises diverse realiza-
tions of functions within different systems conditions, which means that identity is 
not based on observable invariance but on intercellular validity. Vice versa, the 
identity and validity of rules are related between cell systems (Fig. 2.1).

Role structure between cell systems. Obviously, standardized anticipation of 
distinct behavior seems to exist, considering the constitution of a growth-promoting 
microenvironment based on distinct tumor (stem) cell functions. Nevertheless, new 
communication pathways may be initiated that are related to the new functional 
‘world’ of tumor cells. However, cell system A does not know, whether it adheres 
to a rule, or if is exposed to the susceptibility of cell system B or to the ability to 
reach consensus (educational processes). Educational effects have been observed in 
tumor systems [10].
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Autonomy. A typical feature of the establishment of tumor systems is that their 
formation empirically depends on the specific prerequisites of a host’s organism. 
Also from an empirical viewpoint, subsystems may develop certain autonomy (for 
example, inflammation and cancer-associated autoimmunity). Although tumor systems 
may not exist beyond a social cellular system, just the same as subsystems without 
a tumor system, these subsystems may vary independently to some extent and could 
contribute to border-line histology (Fig. 2.1). Additionally, cell systems may not 
constitutively generate functions, which may also be transiently acquired by ‘edu-
cation’ for a small time frame [10].

Subsystems may be independent to a certain degree, i.e. they do not feature char-
acteristics as invariable references, must steadily advance contingent relations to 
one another, and are not fixed to invariant features of developmental stages. 
Contingency programming may adapt interactions via adhesive interactions with 
stroma cells, stroma proteins, and growth factors [28]. However, relations of subsys-
tems are predetermined by their affiliation to a common action system. Subsystems 
are forming environments for one another, but in a regulated trade-off.

Reproduction. Each action system presents itself as an area of reciprocal inter-
penetration of subsystems. Each of these subsystems is specialized in reproducing 
basic functions facilitating tumor promotion. The distinct reproductive function of 
tumor (stem) cells is underlined by molecular-pathologic data showing that molec-
ular aberrations in the primaries determine tumor biologic behavior, for instance, 
early or late metastatic spread as well as metastatic sites [29,30].

Two presumptions

St t Systems directedStructures Systems-directed
therapy is 
calculable

Functions

Diversity o
tumor systems

f

Diversity may be met
by systems-directed therapies

Uncovering of  tumor
systems biology

Tumor (sub)systems do not obey 
nominal conditions

in an evolutionary process:
‚Autonomous development‘

Systems functions and
functions of normal cell systems

adhere to rules (validity)

Multiple subsystems

Fig. 2.1 Systems-directed therapies may integrate action-theoretical systems terms (theory) and 
biomodulatory therapy-derived comprehension (experimental part) of tumor-associated subsys-
tems (e.g. inflammation, angiogenesis…), thereby uncovering and meeting diversity of tumor 
systems
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Evolutionary processes. Basically, tumor development is comparable with an 
evolutionary process, during which single cell systems acquire to a greater or lesser 
extent (area of application within the communicative exchange) diversified com-
plexity (for example, integration of extensive inflammation during metastatic 
spread). Cell systems experience pathologic deformations in case of inconsistencies 
between the functional ‘world’ and the systems ‘world’ and may even be driven to 
apoptosis. Now, in the mirror of evolutionary processes, the functional ‘world’ of 
cell systems may be recognized under systems-therapeutic conditions and vice 
versa [5,31] (Fig. 2.1).

2.3.1  Sensitive Assessment Tools

Clinical phenomenology, hermeneutic observation of systemic exchange of infor-
mation during evolution, and systems-targeted therapies represent action-orientated 
research approaches (Fig. 2.2). How may systems pathologies be conceptually 
characterized?

Robustness, stability, and homeostasis of a tumor system describe how a sub-
system is controlled during biomodulatory therapies or evolutionary processes [32]. 
By means of biomodulatory therapies, the following observations within phase II 
trials on different metastatic tumor types indicate therapy-related alterations of 
tumor robustness, stability, and homeostasis in a therapeutically relevant way:

Proliferation

Inflammation Metabolism

Angiogenesis

Extracellular
matrix remodeling

Coagluation Immunology

Tumor cell
function

Tumor-associated dysregulation
of functional subsystems

Disease traits
e.g. Cachexia, metastases

Biomarkers characterizingsubsystems
e.g. C-reactive protein for inflammation

Assessment of tumor systems‘

diversity:

Robustness, stability, and homeostasis

Inconsistencies (‚Achilles‘heel‘)

Deformations

Intersystemic exchange processes

Rationalization processes

Topology of aggregated action effects

Impressive diversity of functional subsystems
in the tumor microenvironment

Topologiesof aggregated action effects

Fig. 2.2 Assessment tools of systems biology are rationalization processes, inconsistencies, 
deformations, altered inter-systemic communication, and topology of aggregated action effects. 
The more exact systems biology may account for the objects of interest studied by means of these 
tools, the more it may justify the use of systems-biological research approaches
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 1. Stable shaping of and focusing on the tumor system’s organization (very delayed 
objective response)

 2. Significant modulation of tumor-associated disease traits, for instance, inflam-
mation, ECOG status, paraneoplastic syndromes (biomodulation-derived 
biomarkers)

 3. Biomodulatory activity depending on the metastatic organ site in castrate-resistent 
prostate cancer (tumor-stroma specificity as expected from the known differen-
tial behavior of various cell types within tumor compartments and varying stroma 
cell compositions at different metastatic sites)

 4. The predominant site of progression at the original localization of metastases 
(hints for impact on metastatic processes) [5]

Changes of systems characteristics, cumulative activities (positron emission tomogra-
phy, PET), and biomarkers (e.g. C-reactive protein) were recorded by monitoring func-
tions and components of subsystems (for instance, inflammation, angiogenesis, etc.).

Inconsistencies. Pathologies arising from ‘social’ interactions of cell systems 
may not be matched with nominal conditions. This circumstance has to be met 
from a systems-therapeutic view: Systems-immanent pathologies may emerge as 
inconsistencies, in which communicative networked interactions between cell systems 
may be involved. ‘Fallacies’, ‘self-delusions’, or ‘instigations’ may objectively apply 
force to organisms [8,20–24,33]. Misleading communicative contributions are pro-
voked by an interactive communication praxis (for instance, tumor-associated 
autoimmune phenomena), which depends on the areas of application (conspirative 
behavior of a body’s own normal cells), thereby limiting the operational praxis and 
response repertoire of cell systems. ‘Fallacies’ may occur as communicative pro-
cesses that are to limited extent critically appreciated by neighboring cells. Markert 
phrased the presumption that ‘very little cell differentiation is truly autonomous in 
vertebrate organisms’ [31]. However, tumor cells may exploit the whole extent of 
stroma cell autonomy to implement the functional diversity of systems behavior, 
which is mirrored in highly diversified rationalization, deformation, and communica-
tion processes aimed at maintaining homeostasis, stability, and robustness of tumor 
systems. These systems characteristics may be mapped in  distinct topologies of 
tumor systems- aggregated action effects. A way to uncover these aggregated action 
effects are biomodulatory therapy approaches [5].

‘Fallacies’ are likely to play an important role in cancerogenesis and progression 
as well as in the development of benign tumors. Vice versa, inconsistencies offer an 
operational range for systems-directed therapeutic approaches [5,17,19,23,34,35].

Furthermore, the interference of inconsistencies could also explain the durable 
and sometimes rapid therapeutic responses observed in highly vascularized tumors 
such as angiosarcomas and renal clear cell carcinomas. These responses also occur 
in pronounced inflammatory tumors, for example, in Langerhans’ cell histiocytosis. 
Inconsistencies targeted with genomic/non-genomic biomodulatory therapy 
approaches could bring about a collapse of overstressed hyperactive communica-
tion systems that maintain distinct functional stages [5]. Also self-depictions arising 
as tumor-associated autoimmune phenomena may be controlled by biomodulatory 
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therapy approaches [36]. An impressive example for self-depiction during tumor 
initiation seems to be the autoantigen-triggered evolution of chronic lymphocytic 
leukemia (CLL) [33].

Deformations: Abstractions of inconsistencies in which networked cell sys-
tems may be involved, thereby discharging in paradox pathologies, may arise as 
deformations of cell systems including their functional spectrum. Other paradox 
processes may be uncovered by analyzing rationalization processes. Paradox 
processes can be of such quality that a systematic congestion caused by rational-
ization of the functional ‘world’ of tumor-associated stroma cells may result in 
an overload of communicative infrastructures (for instance, Langerhans’ cell 
histiocytosis). Paradox processes may be monitored by analyzing the diversifica-
tion of rationalization or deformation processes, or, in extreme cases, apoptotic 
cell death [24].

Functional pathologies become evident because of the interactive communica-
tion praxis of cell systems assigned to areas of application: spontaneous tumor 
necrosis may also be understood as functional pathology. Here, the tumor microen-
vironment may not maintain or advance the originally constituted system in an 
evolutionary context. Additionally, no controlled degradation takes place after dam-
age of systems functions. In case of tumor (stem) cells, the identity of the denota-
tion and the object itself is never the same (quiescent, tumor-promoting phase). 
Therefore, ‘deformation’ of a tumor (stem) cell may also result from a neutraliza-
tion process (in contrast to active controlling, for example, immunologically).

As the importance of a tumor cell in the role of a tumor-promoting cell is criti-
cally influenced by the tumor-associated microenvironment, targeting of tumor 
(stem) cells via microenvironment seems to be therapeutically promising [3,5,37]. 
The fact that a cancer (stem) cell must be promoted by a number of inflammatory 
conditions, particularly in the metastatic stage of cancer disease, fits with the 
 successful use of anti-inflammatory therapy components in the systems-targeted 
treatment strategy presented recently [5].

Metastatic spread may be promoted by a series of rather different cell systems 
invading the tumor compartment. Despite the presence of cancer cell dissemination 
in different organ sites, release from dormancy and growth are selective for particu-
lar organ sites and depend on stroma composition but not on one singular cancer 
cell-driven process [29,30].

Intersystemic exchange processes. The complimentary reciprocal activity, 
which subsystems may generate for one another, may be analyzed as currents of 
inter-systemic exchange. Therefore, from a therapeutic point of view, the systems-
biological model does not specify whether a ‘wound healing mechanism’ has to be 
suppressed or stimulated to achieve tumor control: Inflammation control as well as 
stimulation of inflammation may control tumor growth, immuno-suppression, and 
immune stimulation [5,34]. Contradictory decisions could be associated with the 
same capacity to achieve tumor control in a distinct tumor type. Thus, the questions 
arising are: which therapeutic approach would be easier to put into practice, which 
is likely to be more compatible with other therapeutic approaches, and which is the 
most tolerable approach with regard to side effects.
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2.3.2  Action-Oriented Research Approaches: Broadening  
of the Therapeutic Spectrum (Individualized Therapy)

Topology of aggregated action effects. Detection of inconsistencies between 
the action status of a cell type and the systems organization within a tumor 
engross the insights into the pathophysiological organization of important func-
tional elements and constellations discharging into a distinct topology of aggre-
gated action effects [5]. Characteristic constellations may be ubiquitously found 
in rather different tumor types (for example, highly ‘pro-angiogenic’ ‘inflamma-
tory’ tumors) and, therefore, beyond a specific tumor type or its distinct organiza-
tion of subsystems (Fig. 2.3). Consecutively, a broad repertoire of biomodulatory 
therapy approaches targeting the functional status of cell systems or cell com-
munication should be available for targeting functional pathologic (individual) 
constellations at low toxicity levels. Concerted modulation of transcriptional 
networks via peroxisome proliferator-activated receptor (PPAR) alpha/gamma 
agonists, interferon-alpha, glucocorticoids, PPAR-delta antagonists, metronomic 
low dose, angiostatic and immunomodulatory acting chemotherapy have shown a 
wide activity in metastatic tumor control, even the capability for remission induc-
tion [5,38–41]. The cellular microenvironment may even modulate via orphan 
receptors a set of transcription factors characterizing ‘stemness’ of tumor cells, 
e.g. Okt 3/4 genes [42–45]. Do systems complexity and the myriad of reduction-
ist therapeutic approaches targeting tumor or stroma cells precede the simplicity 
of biomodulatory treatment strategies?

Generation of an action-theoretical systems terms
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Fig. 2.3 Practical and emancipatory interests in therapies integrated in the coherence of science 
bring together the constitution of new objects of interest (therapy-derived systems biology) and 
their pragmatic application, here in form of biomodulatory therapy approaches. Biomodulatory 
derived changes in the tumor may demerge individually moving processes within the tumor tissue 
into more easily elusive constellations



212 Tumor Systems Need to be Rendered Usable

The repertoire of drugs abruptly expands with the introduction of systems-
therapeutic concepts, as (1) substances with unintended indication, such as drugs 
modulating the transcriptional networking, may be introduced [46,47]. (2) Contrary 
to the molecular genetic heterogeneity of tumor cells, tumor growth-promoting 
systems promise a high grade of similarities (for example, angiogenesis and 
inflammation). Therefore, a similar repertoire of drugs might be available, which 
target and regulate corresponding tumor-associated subsystems mirrored by bio-
markers [48]. (3) Targeting functionally defined subsystems seems to become of 
increasing interest, as subsystems may be exclusively functionally defined in a 
systems context but simultaneously linked to alternating structural systems [21]. 
Targeting functional systems structures opens up a new therapeutic window favor-
ing concerted biomodulatory strategies. (4) Beyond that, it should be possible to 
abstract traditionally described subsystems: Drugs with biomodulatory activity as 
(nuclear) transcription factors regularly have an activity profile far above the 
capacity of hermeneutic comprehension [5]. Transcriptional  networking may 
have a decisive regulatory impact on tumor promotion, for instance, on the angio-
genic switch or on tumor stem cell behavior [37]. Indeed, the abdication of herme-
neutic comprehension was a prerequisite of modern science. To what extent is 
comprehension necessary for describing tumor biology from an action-theoretical 
view (Fig. 2.4)?
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 1. From a different point of view, subsystems are also action and functional systems 
(genome, transcriptome, proteome [pathways], cellular, extra-cellular microen-
vironment, tumor [stem] cell, tumor-associated disease traits). By no means do 
they accentuate only arbitrary systems. The classification of subsystems has not 
only a theoretical but also a practical impact, as the benchmarks of the systems 
correspond to the components of which functional sequences are composed.

 2. Systems-biological approaches are open for the detection of new networking 
interactions (experimental part). Thereby, the context of discovery (modulation 
of tumor-associated disease traits, biomarkers) has to be consistently separated 
from the context of justification (rational for a biomodulatory therapy 
approach).

 3. Basically, a hermeneutic comprehension of action mechanisms within familiar 
observation levels is no prerequisite in respect of the multi-fold coregulative and 
the cell-specific activities of (nuclear) transcription modulators in different cell 
systems. In contrast, the currently established genomic/non-genomic biomodu-
latory therapies may lead to novel and more abstract perspectives for viewing the 
topology of tumor systems biology [5].

2.4  Discussion: Critical Reflection on Tumor Systems  
Biology (The ‘Then’)

The uncovering of tumor systems requires more than analytical approaches, for 
instance, the use of research approaches, such as phenomenology (including case 
reports, description of therapy-associated side effects), hermeneutic understanding, 
theory of evolutionary processes, and systems-directed therapies.

Assessment tools of systems biology are rationalization processes, inconsistencies, 
deformations, altered intersystemic communication, and topology of aggregated 
action effects. These tools are only now emerging in their constellation during 
tumor development (in different tumor types and stages) as a decoupling of systems 
and the functional ‘world’ of cell systems. The more exact systems biology may 
account for the objects of interest studied (for instance, the topology of aggregated 
action effects) by means of these tools, the more it may justify the use of systems-
biological research approaches (Fig. 2.5).

Currently, the instruments for merging different scientific directions for systems-
theoretical considerations are missing. Basic research is predominantly technology-
oriented, aligning itself with the dichotomy of structure- and function-analytical 
problems. Closer collaboration between academic institutions and biotech and 
pharmaceutical industries will be required to facilitate research on systems-biological 
processes [49].

A tumor system as a system of action consists not only of diverse cell types but 
comprises all components of action insofar that these components are oriented in 
terms of diverse cell types, the system’s objects. Cumulative knowledge, though 
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scientifically acquired, is more specifically a complex of meanings symbolized 
within distinct references to different cell types: References are dissipating from the 
view of a participator (systems biology as a co-subject of the scientist) and cellular 
functions are anticipated as rationalization processes. The diversity of rationaliza-
tion processes is based on the intercellular validity of communication rules and 
might be generally an explanation for the large amount of cases in which cell 
 cultures or animal models cannot be transferred into clinical praxis.

An action-theoretically oriented tumor model diversifies therapeutic instruments 
by uncovering new systems qualities that may be targeted by broadening therapeutic 
options by the introduction of biomodulatory approaches. Now, therapies may be 
guided by monitoring (new) functional pathophysiological processes (biomarkers): 
If biomodulatory therapies remove differential cell or systems functions involved in 
metastatic progression, the metastatic process may be inhibited as shown in our 
systems-directed genomic/non-genomic therapeutic approaches [5] (Fig. 2.6).

Therefore, the most important task is to look for common systems features 
(‘topologies’, inconsistencies) within different tumor types to get action-theoretically 
guided classifications of distinct tumor-associated evolutionary systems processes. 
Furthermore, classification is essential, as classification is the basic language of 
medicine and systems organizations across different tumor types, which need to be 
clearly defined. The uncovering of common features in different tumor types is only 
the beginning: Lymphomas could soon be classified according to their activation of 
inflammatory signaling pathways [50], common stroma gene expression sets may 
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24 A. Reichle

be detected in response to tumor invasion [51], neoplasias may be classified accord-
ing to their responsiveness towards combined modulation of transcriptional net-
working [5], and so on. Another attempt may be the formulation of stroma scores, 
which still seems to neglect functional system aspects [25].

Action-theoretical systems-terms may additionally contribute to the classification 
of tumor subsystems via new biomarkers: The method to uncover action-theoretical 
systems terms is now pioneered from bedside to bench. Clearly defined and distinc-
tive functional systems similarities could be the basis for administering a specific 
repertoire of (biomodulatory) medications during distinct functional tumor systems 
stages. The functional status of different systems constellations may be monitored by 
respective biomarkers. This perspective allows a new comprehension of individualized 
therapy. Especially the time-sensitivity of a therapeutic approach may be addressed.

In the near future, biomodulatory therapy approaches of metastatic tumors could 
be methodological tools of an individualized tumor therapy: In contrast to ‘causal’ 
therapeutic approaches aiming at the blockage of aberrant tumor-associated pathways 
by a restricted repertoire of highly specific drugs, multiple potential modulators 
(activators and deactivators) of transcriptional processes are available for biomodula-
tory therapy approaches. According to our experience, monoactivity of a single 
transcription modulator is no prerequisite for its successful use and the combined 
administration activity of all modulators could be followed by respective biomarkers. 
Close monitoring would further allow us to choose other modulator combinations in 
cases of weak interactivity to facilitate an objective tumor response [5].

The introduction of sophisticated technologies, such as microarray analyses, 
pathway analysis in cancer and stroma cells, and accompanying translational 
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Fig. 2.6 Cellular functions of neighbouring stroma cells are decisively influenced by the tumor 
cells. The stroma cell proportion within the tumor compartment is highly sensitive for biomodula-
tory therapy approaches due to the dynamic character and the context dependent dichotomous 
activities of stroma cells
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research, has caused some fundamental biological understanding of complex cell 
interactions associated with important therapeutic implications [52,53]. 
Analytically and empirically obtained data are important, including the myriad of 
prognostic markers: But the systems perspective offers the opportunity of weigh-
ing constellations as well as pathophysiologically important elements for taping 
new treatment strategies! A striking difference is visible in the pragmatic func-
tion, which generated data in different scientific areas. Here, we can combine 
therapeutically derived information on systems biology to establish systems-
biological models. Information may be generated on three levels: Biomodulatory 
processes, tumor response (traditionally tumor shrinkage), and side effects on the 
level of the whole organism. Systems-biological considerations may pave the way 
via new sources of prognostically relevant biomarkers that are representative for 
subsystems to convey transparency of systems-analytical accessible systems topol-
ogies, which may be targeted by (biomodulatory) genomic/non-genomic systems-
orientated therapies.

Systems-directed therapies could meet rather new therapeutic requirements. 
Studying systems biology may help to create therapeutic approaches specifically 
designed for the demand of tumor stages, corresponding systems stages, and 
involved organ sites. In this context, the clinical discussion about the appropriate 
clinical study endpoint is coiled up again: Chronification of metastatic disease or 
induction of complete remission? Some types of cancer can be held in check by 
means of stroma by causing cancer cells to behave more like normal cells [5,54].

An important consequence may arise from the cumulative knowledge about 
mostly unidirectionally analyzed cellular systems interactions on the one hand and 
the accumulation of results of action-theoretically defined systems terms on the 
other hand: Patients would probably not have to be selected according to age or 
comorbidities or both because of known adverse toxicities of empirically evaluated 
‘standard’ therapies (maximal tolerable doses) as in case of administering systemic 
and exclusively reductionist therapies. On the contrary, therapies may meet the 
(individual) tumor’s systems characteristics by a systems-orientated selection of 
biomodulatory acting agents. As shown, toxicities may be modest [55]. Therefore, 
therapies could ‘come’ to the patient.
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Abstract Nature is interwoven with communication and is represented and 
reproduced through communication acts. The central question is how may mul-
timodal modularly acting and less toxic therapy approaches, defined as modular 
therapies, induce an objective response or even a continuous complete remission, 
although single stimulatory or inhibitingly acting drugs neither exert mono-
activity in the respective metastatic tumor type nor are they directed to potentially 
‘tumor-specific’ targets. Modularity in the present context is a formal pragmatic 
communicative systems concept, describing the degree to which systems objects 
(cells, pathways etc.) may be communicatively separated in a virtual continuum, 
and recombined and rededicated to alter validity and denotation of communication 
processes in the tumor. Intentional knowledge, discharging in reductionist thera-
pies, disregards the risk-absorbing background knowledge of the tumor’s living 
world including the holistic communication processes, which we rely on in every 
therapy. At first, this knowledge constitutes the validity of informative intercellular 
processes, which is the prerequisite for therapeutic success. All communication-
relevant steps, such as intentions, understandings, and the appreciation of mes-
sages, may be modulated simultaneously, even with a high grade of specificity. 
Thus, modular therapy approaches including risk-absorbing and validity-modifying 
background knowledge may overcome reductionist idealizations. Modular thera-
pies show modular events assembled by the tumor’s living world as an additional 
evolution-constituting dimension. This way, modular knowledge may be acquired 
from the environment, either incidentally or constitutionally. The new commu-
nicatively defined modular coherency of environment, i.e. the tumor-associated 
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microenvironment, and tumor cells open novel ways for the scientific community in 
‘translational medicine’ (Reichle A, Hildebrandt GC (2009) Principles of modular 
tumor therapy. Cancer Microenviron 2(Suppl 1):227–37).

Keywords Modularity • Tumor systems biology • Formal-pragmatic communication 
theory • Evolvability • Modular communication • Robustness • Metastatic tumor

3.1  Introduction

Nature is interwoven with communication and is represented and reproduced 
through communication acts. As communication is a process covering all cell com-
munities, also those in tumor tissues, it seems to be difficult to imagine that particularly 
cancer diseases originate from an equipollent cell only. Therefore, considerations 
about communication processes within the tumor compartment have to start with 
the central question whether an equipollent, communicatively structured tumor 
microenvironment is necessary rather than individual cells causing specific cancer 
diseases.

Single molecular changes in cancer cells, as specific as they may be, only lead to 
the development of specific malignancies, when they actively communicate on a 
subcellular level to finally alter cellular behavior and when adjacent cell types 
acknowledge the communicated information in a sense the originator intended. This 
communicative act must allow and must be responsible for the reorganization of well-
established normal tissue. Further, in view of the differential steps of communication, 
the cell community in tumor tissue, which is represented as a holistic communicative 
system, is also a critical part determining the functionality (quiescent, tumor-promoting 
phase) of cancer (stem) cells and the development of cancer disease.

Consecutively, tumor development may be described as pathological communi-
cation processes on the tissue, the cellular, and the molecular level. Complex bio-
chemical networks are mediators of cellular communication and, considering the 
multiplicity of tumor-associated communication processes we should include the 
sub-cellular complexity of biochemical networks as a target into novel concepts of 
therapeutic approaches.

Transcription factors with their concerted activity are central regulators of sub-
cellular communication processes. Their complex integration into the sub-cellular 
context is best characterized by their often chimera-like function, equivalent with 
their communicative integration within networks, which constitute multifold sys-
tems functions within the tumor tissue. Dependent on distinct circumstances (the 
often unconsidered ‘background’), they may exert cell type-dependent opposing 
biological effects. Consequently, a major challenge is to elaborate how single com-
munication processes acquire validity and distinct denotations on the background 
of numerous input signals discharging into specific biological responses that con-
trol tumor evolution.
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Up to now, frequently used tumor therapies aim at blocking distinct communication 
processes involved in tumor promotion, for instance, by changing the denotation of a 
distinct communication-associated pathway in tumor or stroma cells or by directly 
targeting and eliminating the bulk of tumor cells (monoclonal antibodies). Successful 
examples of ‘magic bullets’ (Paul Ehrlich) in standard clinical care in hematology are, 
for instance, tyrosine kinase inhibitors in chronic myelocytic leukemia and monoclo-
nal CD20 antibodies in B-cell lymphomas [1,2]. The underlying idealizations with 
regard to the manner of how to use therapeutically relevant changes in denotations of 
‘tumor-specific’ pathways refer to a well-rehearsed coherency of interactions that 
should fulfil practical and, at best, tumor-specific functions. Therefore, therapeutic 
approaches in tumor therapy are predominantly designed in a reductionist way [1].

Previous modes for therapeutically modifying communication processes in 
metastatic tumors included, for instance, the use of small molecules, monoclonal 
antibodies, or cellular therapies. The modes were based on the intentional compre-
hension of these communication processes [1], presuming what distinct communi-
cating cells generally (i.e. under generalized conditions) insinuate with a signal 
used in a given situation. This way of generalizing validity of an addressed signal 
distracts from the often situatively complex biochemical conditions that make a 
signal valid in the first place. Context-related changed validity of transcription fac-
tors and consecutively altered denotations are exceptional examples.

The dimension validity of a communication process is introduced by formal 
communication theories that are trying to assume circumstances under which 
a communication process is or becomes valid. Although acknowledgement of valid-
ity is a prerequisite of communication processes, the functional and structural 
premises for redeeming validity are commonly discussed to a far lesser extent, if 
not neglected altogether [3–5].

The communication theory developed in this paper is anchored in observations 
derived from controlled clinical trials on the use of a combination of biomodulatory 
acting drugs (= systems-directed therapies) in a broad variety of metastatic tumors 
[6]. Reductionist considerations may not explain how multimodal, less toxic 
systems-directed therapies are able to induce an objective response, even a continu-
ous complete remission, although single stimulatory or inhibitingly acting drugs 
(i.e. modulators of transcription factors) do neither exert mono-activity in the 
respective metastatic tumor type and nor are they directed to potentially ‘tumor-specific’ 
targets [6]. As an explanation for the activity of these biomodulatory therapy 
approaches, we introduced a new communication-technically paraphrased term as 
target for the cumulative functional activity of systems-directed therapies known as 
tumor-specific ‘topologies of aggregated action effects’ [6]: Systems-directed 
therapies may primarily neglect tumor-related activities that seem to be operation-
ally induced by the division of function, such as inflammation, neoangiogenesis, 
Warburg effect, immune response, extra-cellular matrix remodeling, cell prolifera-
tion rate, apoptosis, and coagulation effects. From a systems perspective, these 
differential activities present themselves as an enhancement of complexity [6]. 
Their presenting character turns out to be primarily communicative, as shown in 
the methodological discussion.
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Communication-technical considerations will be helpful to uncover mechanisms 
of action of modularly designed therapy approaches and to conceptualize how 
this novel way of treatment modulates sub-cellular and cellular communication. 
At first, these considerations involve a theory relating to communicative aspects of 
socially linked cell communities, such as the tumor compartment. The theory is 
also supported by observations derived from a unique pattern of modular therapies 
administered in a broad variety of metastatic tumors [6].

This theory leads to the question how communication processes may be initiated 
(therapeutic aspect) in the context of the basic components of the communicative 
‘metabolism’, which foster natural or therapeutically adjoined but implicitly evolu-
tionary-linked tumor development. Induction of novel validity in informative cellular 
or intercellular communication processes by modular events may be an important 
mechanism promoting tumor evolution or treatment.

3.2  Methods: A Formal-Pragmatic Communication Theory

Clinical results used to support the formal-pragmatic communication theory refer 
to recently published data [6].

3.2.1  Definition of the Tumor’s Living World as a Holistic 
Communicative Unit

Exemplarily for cellular transcription factors, their context-dependent and cell 
type-specific transcriptional activity illustrates the meaning of the term modularity. 
The activity is mirrored on a cellular level by the multi-functionality of, for instance, 
macrophages or fibroblasts.

Modularity in the present context is a formal-pragmatic communicative systems 
concept, describing the degree and specificity to which systems’ objects (cells, 
pathways, molecules, e.g. transcription factors, etc.) may be communicatively sepa-
rated in a virtual continuum, reassembled and rededicated (e.g. co-option) to alter 
validity and denotation of communication processes. This concept refers to possible 
interactions between the systems objects in a tumor as well to the degree to which 
the communicative rules of the systems architecture (for establishing validity and 
denotation) enable or prohibit the focus on validity and denotation. Systems objects 
acquire the features of symbols, which are rich in content and which are able to 
acquire novel references by rearranging validity and, consecutively, denotation. 
Tumors consist of modules, which become a scientific object by communicatively 
uncovering the tumor’s living world (defined as the tumor’s holistic communicative 
world) with biomodulatory and therefore modularly designed events (for instance 
biomodulatory therapies).
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Modularity implicitly imparts a certain degree of evolvability to systems by 
allowing specific modular features (i.e. modular communicative networks) to 
undergo changes with regard to validity and denotation of systems objects without 
substantially altering the functionality of the entire communicative system (holism 
of the tumor’s living world): The systems ‘metabolism’ modularly and non-
randomly changes validities and denotations of biochemical and biological processes. 
Modularly induced evolutionary steps advance the classic definition of evolvability 
as the capacity of an organism or a biological system to generate new heritable 
phenotypes [7] by evolvability within the tumor’s living world.

3.2.2  Situative Objectivation of the Tumor’s Living World

We, and the smallest living units, i.e. socially interconnected cell communities, 
are ‘born’ to communicate. To describe intercellular communication features, we are 
constrained to terms borrowed from appraising interpersonal relations: Cell systems 
are getting instigated, educated, reeducated, and attracted, and addressed cells may 
even be subject to fallacies [8–12]. These few samples, describing different modes 
of agreement by an addressee or an addressing cell unit, show communication pro-
cesses that are more than the appreciation of signals independent of the level of 
communication. Prerequisite for the following discussion is that we assign a single 
cell communication competence on the background of its genetic repertoire.

Communication processes with their occasionally complex facets of apprecia-
tion and generation of agreement might be considered constitutive in nature. 
However, the question arises whether differentially designed and therapeutically 
aligned communication procedures, such as modular therapy approaches, have the 
ability to objectify interrelations and communication structures between basically 
communicatively associated and evolutionary developing cell communities, such as 
tumors. If so, a second and now situative objectivation could be generated besides 
the intentionally acquired previous context-dependent knowledge.

Addressing the question which background communication processes may be 
initiated in tumors first, for instance, to alter the validity and denotation of tran-
scriptional processes, requires a clarification of the single steps of communication 
from an intentional point of view (communication theory). In a second step, we 
have to explain the background which principally allows the commonly used 
reductionist therapy approaches to uncover the so far frequently unconsidered 
risk-absorbing background ‘knowledge’. This knowledge reassures systems 
robustness as illustrated by recovery from reductionist therapeutic interventions 
for tumor control. Tumor’s robustness may be specifically responsible for poor 
therapeutic outcome, and robustness may absorb severe therapy-induced toxicities 
in a patient’s organism.

How may the social organization of a tumor be possible? If modular events, simi-
lar to modular therapy approaches, tie the holistic communicative activity of a tumor, 
a ‘social’ action theory could be derived, which may objectify the ‘metabolism’ of 
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evolving evolutionary systems. An analysis of the prerequisites for communicative 
action seems to be necessary to exploit the dimension of the living world’s back-
ground, which cross-links and stabilizes larger cell communities, such as tumors.

3.2.3  Formal-Pragmatic Theory About Denotation  
of a Communication Process

A formal-pragmatic theory about the denotation of a communication process may 
establish an internal interrelation of denotation and validity.

Intention is inherent to all messages, also in those of intercellular communica-
tion. The understanding of a signal or a more complex message by the addressed 
cell is a prerequisite for the requested appreciation of a message.

Appreciation is a normative notion, dominant and rich in content, which 
reaches out to the understanding of, for instance, transcriptional cascades, which 
may be context-dependently assessed as a ‘grammatical’ phrase. The understanding 
of a cellular signal, which has been perceived as valid, is not equivalent with the 
appreciation of an addressed intention (agreement, disagreement, refusal, etc.). 
Signals, which are perceived as valid and valid signals should be differentiated.

If appreciation is established, for example, in an agreement, both sites of an 
intercellular communicative exchange have to accept the respective communication 
process as appropriate. Appreciation assesses the intercellular acknowledgement of 
the validity of a basically criticizable intercellular communication process.

Denotation issues cannot be completely separated from validity issues. The 
denotation-theoretical question ‘what does it mean to understand a communication 
process cannot be isolated from the question under which circumstances a com-
munication process may be considered to be valid.’

3.2.4  Perception of Validity

A cell would not know what it means to understand the denotation of a communication 
process, if it did not know how to help itself to agree on something with other cells. 
The prerequisites for communicative comprehension via transmitters, ligands, 
cytokines, and hormones, etc. may already appreciate that the communicative activ-
ity, which may be established with their help, is directed to the comprehension of a 
transmitted message. That means, as long as a ‘tumor cell’ does not find a compre-
hensive cellular surrounding or may not traffic suitable cell types in its adjacent 
surroundings, it may not function as a tumor cell. Therefore, also disabling com-
prehension within communication pathways may be a therapeutic aim.

The communicative activity of many molecules and communicative structures is 
context-dependent with regard to the validity and denotation within a communication 
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process; for instance, single NF-kappaB signaling pathway can perform multiple 
biological functions even in the same clonal populations. This phenomenon may be 
assessed for many transcriptional processes [13–17]. The communication process 
itself may be hedged by highly variable cellular communication architectures (syn-
apses, gap junctions, receptors, pathways, transcription factors, acetylation modi-
fiers, etc.).

3.2.5  Novel Idealizations: Therapeutically Relevant  
Redemption of Validity

A method for redeeming the therapeutic validity of communication processes by 
administration of modular therapies requires idealizations that are present in the 
living world of a tumor (holistic communicative activity of a tumor). These ideal-
izations exclusively unfold their effectiveness within tumor-associated communi-
cation processes. Cells have access in form of explicit knowledge on the 
background of their (epigenetically modified) genetic repertoire. Thus, as our 
idealizations reach communication competence, the cells’ explicit knowledge, 
which relies on idealizations (theme-dependent context knowledge), and the risk-
absorbing knowledge of the tumor’s living world (mediating robustness and sys-
tems context) compete in the range of the background knowledge about the 
tumor’s living world [18].

At first, this background knowledge about the tumor’s living world represents 
scientifically none-thematized, situative, speculative, horizon-knowledge. We implicitly 
rely on this risk-absorbing knowledge in every therapeutic intervention. The back-
ground knowledge covers the many assumptions we silently make based on a 
speculative horizon.

The background knowledge about the living world is subjected to conditions of 
scientific comprehension: Intentional ways fail to describe risk-absorbing knowl-
edge, in which context-dependent knowledge about commonly administered reduc-
tionist therapy approaches is rooted, and the network of the holistic communicative 
activities turns out to be the medium through which the tumor’s living world is mir-
rored and generated.

In an evolutionary developing tumor system, the idealizing potency lies in the 
therapeutic anticipation of physicians: Communicative actions (modular therapeu-
tic interventions) are now an element of a cycle process, in which the physician is 
likewise a product of current knowledge and tradition. Therefore, tumor systems 
biology may not be generally interpreted in context-free explanations [6].

Holistic character of communication. Each communication initiated activity is 
linked via communication-technical relations with many other communication-
initiated activities. The knowledge about a communication technique (modular 
therapy) is interwoven with the knowledge about the behavior of the communica-
tively uncovered living world of a tumor.
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3.3  Implementation of the Formal-Pragmatic  
Communication Theory

Exploitation of background knowledge about the tumor’s living world: Disrupting 
the holistic communicative thicket.

A formal-pragmatic communication theory is provided to explain the therapeu-
tic efficacy of drug combinations characterized by exclusively combined biomodu-
latory activity and no or poor mono-activity.

3.3.1  Clinical Results Supporting a Formal-Pragmatic 
Communication Theory

If modularly designed therapies particularly target communicatively linked systems, 
i.e. their modularity as represented by a distinct systems response (e.g. attenuation 
of inflammation), modularity should be indicated by unique systems-associated 
biomarkers. Vice versa, identical modular systems should be accessible for different 
biomodulatory designed therapy approaches because of the tumor- or situation-
dependent variation of cellular promoters of modular systems [17,19].

As shown (chapter 12 and 13), modular systems architecture of metastatic 
tumors could be uncovered by a small set of biomodulatory therapies. Differentially 
designed therapy modules were able to uniquely induce a response in serum 
C-reactive protein (CRP) levels of patients across a broad variety of metastatic 
tumors (Fig. 3.1): the observed CRP response preceded or was closely linked to clinical 
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Fig. 3.1 Shaping and focusing systems’ communication: disrupting the holistic thicket (Principles 
of modular tumor therapy)
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tumor response (stable disease >3 months, partial remission, or complete remission). 
This demonstrates that tumor-promoting pro-inflammatory processes are differen-
tially accessible from a communication-technical point of view and differentially 
constituted in their modularity. Nevertheless, CRP may serve as a unique modularly-
linked systems marker to early show the efficacy of these therapies [6].

Most cells within the tumor compartment are constrained to respond to admin-
istered modular therapies: targeted molecules are ubiquitously available and 
partially constitutionally expressed, particularly certain receptors targeted with 
their respective stimulatory ligands, such as the glucocorticoid receptor, and per-
oxisome proliferator-activated receptor alpha/gamma. Consequently, many cell 
systems are included in processes, which may modify modularity and consecutively 
evolvability. Clinically, this kind of activity is supportively reflected by tumor 
responses, which occur within a strongly delayed time frame following biomodu-
latory therapies [6].

Stage-specific and tumor-specific dysregulation of PPARgamma and COX-2 
expression in tumor cells are now well established in a broad variety of tumors [20].

Tumor-associated dysregulation of transcription factors (modular communication-
technical background) in tumor and stroma cells may be addressed by biomodulatory 
therapies, such as low-dose metronomic chemotherapy in combination with or with-
out transcriptional modulators (dexamethasone, interferon-alpha, cyclooxygenase-2 
inhibitor (PPARdelta), and pioglitazone) [6].

High PPARgamma expression was shown to be representative for the possibility 
to achieve modular response (improved survival) with different therapeutic 
approaches (metronomic low-dose chemotherapy plus or minus pioglitazone and 
rofecoxib) [20]. Notably, metronomic chemotherapy does not even directly target 
PPARgamma expression, and clinical response to therapy is not linked to inflam-
mation control [21]: therefore, differential modular systems may be targeted to 
achieve clinical response.

Therapeutic systems-directed interactions mediated by modular therapies may basi-
cally interfere within the horizon of living worlds of organisms constituted elsewhere 
and its organs as well as with tumors. Therapeutic specificity may be achieved by the 
possibility of modifying the tumor’s holistic communication system without signifi-
cant organ-related side effects, as indicated by a large series of clinical trials [6].

3.3.2  Translation of Clinical Results in a Formal 
Communication Theory

Translated into a formal communication theory, administered biomodulatory therapies 
do not directly alter denotations of distinct pathways, such as reductionist designed 
‘targeted’ therapy approaches, but redeem novel validity of modularly induced 
informative communication processes embedded into the tumor’s living world. 
Modularity is shown to be a specific systems feature, which may be operationally 
uncovered and defined by distinct biomodulatory drug combinations.
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At first, from a clinical point of view, the question how validity is redeemed with 
biomodulatory approaches on a molecular or cellular basis seems to be of minor 
importance, whereas particularly the ‘know that’, the normative communication-
linked question is therapeutically critical because of the possibility of bringing 
about therapeutically relevant yes or no statements.

With regard to the ‘know how’, direct blocking of proinflammatory signaling 
pathways by the administered biomodulatory therapies may be excluded as the only 
explanation for the clinically observable effects. Therefore, decisive changes in the 
prerequisites of validity of, for instance, pro-inflammatory processes have to be 
suggested. Changes of validity are implicitly linked with changing denotations of 
communicative processes, such as the attenuation of tumor growth.

One molecular basis could refer to the cell type-specific combinatorially and 
dynamically shaped validity and denotation of protein complexes involved in cel-
lular communication networks: NF-kappaB signal transduction pathways may 
regulate contradictory cellular responses in different cell types and, as recently 
shown, even within the same clonal population (i.e. cell proliferation versus dif-
ferentiation and survival, immunity, and inflammation). Controlling factors of the 
function of NF-kappaB signal transduction pathways involve time, cellular condi-
tions, and external circumstances [17]. However, specifically the latter are insuffi-
ciently understood, and this particular background knowledge could be uncovered 
by biomodulatory therapies on both a cellular and a tissue level.

At this point, the quantitative and qualitative assessment of biochemical pro-
cesses in a systems context comes into play to prove and advance the formal-
pragmatic communication theory on a biochemical level. This way, computational 
models on the whole tumor tissue’s cell-type-specific ‘omics’ data could be rooted 
in direct systems biological observations, which may be derived from modular 
interventions (therapy approaches). Up to now, the direct assignment of communi-
cation-relevant validity and denotation modulating biochemical processes in dis-
tinct cell types is only fragmentarily assessable.

For therapeutical purposes, inflammation is often symbolized by the classical 
pro-inflammatory cytokines IL-6, IL-1, and TNFalpha, irrespectively of the cellular 
sources releasing these cytokines and the cell types calling out for response [22]. 
However, modular therapy approaches, which include the risk-absorbing, validity 
modifying background knowledge into the therapeutic calculus, may overcome 
these reductionist idealizations as all communication relevant steps (intention, 
understanding, appreciation of messages) and the differential tumor-associated 
promoters of communication may be simultaneously modulated (Fig. 3.2) [6].

3.3.3  Explication of a Formal-Pragmatic  
Communication Theory

The claims for redeeming novel therapeutic validity are not only directed towards 
therapeutic success but also tailored on the relation of communication to the objective 
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features of the tumor compartment, the evolutionary developing modularity of a 
tumor, as tumor-associated pro-inflammatory processes, for example, are differen-
tially integrated into the modular architecture (Fig. 3.1).

Modularity may allow the retrospective establishment of spaces for evolutionary 
developments if modular events (therapy) are implemented. Simultaneously, the 
background of the tumor-associated living worlds loses its action-guiding function 
as consensus-warranting evolutionary driven resource. The communicative interac-
tion structures are now the objects of an actor (physician), who brings about distinct 
reactions in tumor processes, characterized by specification of tumor systems’ 
denotations via redeeming novel validity (Fig. 3.1).

Objectivation of the tumors’ living world Modular therapies may be the 
communicative medium for establishing novel validity of communication-driven 
processes within the tumor’s living world by the rearrangement of protein com-
plexes, altered release of mediators, etc. (Fig. 3.1). Modular therapies may supple-
ment propositional aspects of communication, i.e. the presence of the tumor’s 
living world by normative aspects, namely by therapy-derived yes or no statements 
(‘know that’): Assigned to the function of transcription factors, the changing 
‘background’ may critically determine their validity and denotation in a situation-
related manner.

Sustainability of modular therapy. Besides the possibility for redeeming novel 
validity (for instance inflammation control), modular therapy approaches are char-
acterized by sustainability as indicated by frequently observed late objective tumor 
response [6].

Communicative systems architecture. The matter of validity of intercellular 
communication processes may not be considered anymore as a matter detached 
from the objective relation between communication and knowledge about cellular 
behavior. From a therapeutic view, the possibility for redeeming validity marks the 
change from the ‘know how’ to the ‘know that’: Knowledge about the tumor and 

Modular
therapy

Addressing
cell Communication

process

Addressed
cell 

Validity of communication proceses may not be considered as a quality, which is independent of the objective 
relation between communication and perception of the tumor microenvironment.    

Fig. 3.2 Validity of communication processes may not be considered as a quality, which is 
independent of the objective relation between communication and perception of the tumor 
microenvironment
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communicative knowledge (modular systems) are integrated into one another. 
Therefore, therapeutic options about clinically relevant modular communication 
techniques are linked with the knowledge of how the communicatively accessible 
living world really behaves (communicative systems architecture).

Function of modular communication. The therapeutic modulation of validity is 
aimed at achieving novel denotations of communication processes [17]. The dimen-
sions’ denotation and validity are internally tightly related within communication 
processes. The function of modular communication is to configure the coherence 
between validity and denotation. Thereby, novel denotations may be therapeutically 
tailored via modulation of validity processes (e.g. tailoring validity of pro-inflammatory 
processes for tumor control). Mediators of these communication processes are 
communication-related molecules, pathways, protein complexes, etc., whose denotation 
may be situative exchangeable to some degree or is subject to decisive modifica-
tions in a non-random communicative tumor systems context embedded in the 
tumor’s living world.

Specificity of redeemed communicative validity. Specific conditions of compli-
ance for redeeming validity on the site of the tumor’s living world constitute rela-
tions between communication technique (specified modular therapy approaches) 
and distinct tumor-associated situation-engraved systems stages. Modular therapies 
in different metastatic tumor types show a high grade of specificity for redeeming 
novel validity via modular therapy elements [6].

Differentially redeemed validity of modular events (therapy approaches) repre-
sents the convergence point that facilitates (clinically) important yes or no state-
ments. Not until then does the communicative situation allow a second objectivation 
of the tumor by uncovering the tumor’s living world. Modularly changing validity 
and denotation of components of the tumor’s living world represent the dimensions 
fostering evolutionary processes in tumor development, for example, the link 
between tumor-associated inflammation and tumor progression.

Tumors constitute a solitary world with an internal context. This solitary world 
is represented by highly specific topologies of aggregated action effects. As indi-
cated by moderate systemic toxicity profiles of the administered modular therapies, 
these action effects obviously need to be clearly separated from those appearing in 
a normal organ context.

Systems-related biomarkers, such as C-reactive protein in serum or PPARgamma 
expression in tumor cells, may guide modular therapies. Corresponding systems 
changes may be closely linked to clinical response after modular therapy. Therefore, 
the redemption process of a novel therapy-guided validity may be followed early in 
the therapeutic process by indicators specifically associated with functional changes 
in single systems features. Interestingly, the validity of prognostic markers in 
malignant tumors can change with the tumor stage as demonstrated for COX-2 
expression and PPARgamma expression in melanoma cells [20].

Tumors are integrated systems. Randomized trials clearly indicate that 
tumors may be described by communicatively integrated and interwoven systems: 
In melanoma, both metronomic chemotherapy and pioglitazone plus rofecoxib 
independently develop clinical systems-directed activities and even seem to act 
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synergistically [21]: Tumor-specific topologies of aggregated action effects may be 
specifically targeted with differential modular approaches to enhance therapeutic 
efficacy as tumors are composed by various modular elements, which are drawn 
into inter-systemic exchange processes (possible synergism).

The modularity of a tumor is an independent tumor characteristic. As described, 
the modular systems concept does not follow the classic systems perception of 
functional pathophysiology. It is exclusively communication-derived and guided by 
redeeming novel validity through modular therapy approaches. Besides histology 
or molecular pathology, the modularity of a tumor is an independent tumor character-
istic [6]: Tumors are additionally represented in a modular communicative architecture. 
The modular architecture of tumor-associated cell systems is directly embedded in 
the holistic totality of the tumor’s living world.

Modular therapy approaches may be designed tumor-specifically and stage-
specifically (Table 3.2). The advantage of a modular view of therapeutic interven-
tions is the situative reference in topologies of aggregated action effects. The 
therapeutic value of the topologies of aggregated action effects lies in the presenta-
tion character of current communicative circumstances.

Evolutionary reconstruction of tumor-associated systems. Redeeming validity is 
tailored on the relation of modular communication to the objective features of the 
tumor compartment, the reconstructible evolutionary (modular) systems, for exam-
ple, indicated by differential impact of pro-inflammatory processes within the 
tumor system [6]. Modular events (therapies) serve as a prerequisite for the recon-
struction of the tumor’s living world, in which cells are symbolic communicative 
figures with – to some degree – exchangeable references connected by modular 
structures: Consecutively, communicatively derived systems may be described by 
rationalization processes, deformations, and intercellular exchange [6].

‘Metabolism’ of evolution. How may new systems properties emerge? The pos-
sibility for redeeming novel validity shows the modulation of validity as an impor-
tant evolutionary promoter (the ‘metabolism’ of evolution). The formal-pragmatic 
communication theory is able to establish modular coherency between environmental 
tumor cell-associated and microenvironment-associated communication processes 
as well as a modularity-based evolvability of systems.

Reproductive structures. As the most meaningful reproductive structure we com-
monly suggest the genetic repertoire. Modular therapies now show that modular 
events, assembled by the tumor’s living world, seem to present an additional 
evolution-constituting dimension, which primarily lies within the limits of the 
genetic repertoire. Additionally, also the heritable inventory might be evolvable. 

•	 Combined	transcriptional	modulation
•	 Metronomic	chemotherapy
•	 Epigenetically	modulating	drugs
•	 Combine	therapies	including	biomodulatory	acting	drugs	

without or with poor monoactivity (indication discovery)
•	 Combination	with	reductionist	approaches?
•	 Sequential	modular–reductionist	therapies?

Table 3.2 Modular therapies
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This way, modular knowledge may be either incidentally or constitutionally 
acquired from the environment.

Cell communities and cells constitute themselves, alternating in a close modular 
response to informative processes. Therefore, modular communication is usable as 
an internal systems-relevant and environmental communication mode: The evolu-
tionary link between two different ‘worlds’ may be successfully constituted by a 
formal pragmatic communication theory.

3.4  Discussion

The living world of malignant tumors creates the term opposite to those idealizations, 
which originally constitute scientific knowledge.

‘Commonly’, W. Kolch remarked, ‘we try to find out the function of a system 
by disassembling it and measuring the activity of isolated components. This 
approach is very successful in characterizing the individual parts but very limited 
in reconstructing the function of a system as a whole’ [23], suggesting that the 
systems concept as antithesis to reductionist concepts remains fully consistent with 
reductionist scientific approaches.

A holistic communication-based model termed the tumor’s living world now 
opposes reductionist systems approaches. This world is uncovered by redeeming 
validity of communicative tumor processes through the implementation of modular 
knowledge on the cellular and external environment (for instance for therapeutic 
requirements): The tumor’s entire communicative system is subjected to modular 
interventions pursuing the integration of complex biochemical systems processes. In 
the first half of the twentieth century, the biologist Spemann already characterized 
evolutionary systems in a communicative context: ‘Reciprocal interactions may play a 
large role, in general, in the development of harmonious equipotential systems [24].

Modular therapies represent an alternative therapeutic solution compared to reduc-
tionist designed approaches. ‘Systemic’ therapies in a reductionist sense are designed 
by combinations of modifiers of pathways, which are more or less tumor specific, and 
their rationale is usually based on analytics of pathway signatures [25].

In modular therapies, the communicative complexity of tumors, i.e. the multi-
fold divisions in functions and structures, mirrors the modularly structured totality 
of tumor-specific communication processes. The present model, a formal-pragmatic 
communication theory, may now explain the therapeutic efficacy of exclusively 
biomodulatory acting drug combinations (stimulatory or inhibitory acting drugs, 
which do not exert mono-activity in the respective metastatic tumor type and are 
not directed to potentially ‘tumor-specific’ targets) in a modularly and evolutionary 
context. These findings recall the famous remark of Dobzhansky, ‘nothing in biol-
ogy makes sense except in the light of evolution’ [26].

The important new step in our novel concept of understanding tumor biology 
and tumor evolution is the introduction of the tumor’s living world as a holistic and 
therefore self-contained communication process in its idealization, in which external, 
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communication-guiding interferences (modular knowledge) may be implemented to 
differentially focus on the coherency of the communication-technically, all impor-
tant dimensions validity and denotation. Now, mostly generalized tagged references 
derived from context-dependent knowledge about single communication-mediating 
cells, molecules, or pathways may be virtually neglected for communication-tech-
nical purposes [6]. These systems objects may be perceived as symbols in a con-
tinuum, rich in content, whose validity and denotation may be exchangeable but not 
at random.

This way, the tumor’s living world is turning into a scientific object that becomes 
accessible for experimentally or therapeutically designed modular approaches for 
uncovering the tumor’s modularity. This modularity is defined by a distinct 
communicative architecture but also by the way how modularity has been commu-
nicatively uncovered.

Inclusion of prepositions for validity, which are present in the living world, and 
the implicit interplay of validity and denotation, which may be focused on modular 
events, afford transparency, how evolutionary processes may be first induced in the 
range of their molecular-genetically defined backbone. Imposed modular acting 
events, such as modularly designed therapies, may induce significant modular 
response in socially linked cell systems (prerequisite) and may foster space for 
evolutionary development by redeeming novel validity. This space may be bio-
chemically assessable by the multiple varying biological functions of, for example, 
transcription factors [17]. Following modular events, molecular-genetic alterations 
might occur additionally.

As a holistic process, the therapeutically relevant acquisition of the ‘language’ 
of communicative intercellular processes followed by its transformation into a 
hypothesis creating activity on the basis of clinical results (derived from modularly 
designed therapy approaches) may give hints on the ‘metabolism’ of evolutionary 
tumor development. Supported by the possibility of redeeming novel validity of 
communicative processes with modular events, a possible mechanism to promote 
a tumor’s evolutionary development may be simultaneously changing validities of 
communicative processes mediated by the systems objects. The procedure is closely 
linked to the differential development of novel denotations of the systems objects: 
via communication-relevant processes, systems objects are acquiring novel refer-
ences within the holism of the tumor’s living world without first substantially alter-
ing the functionality of the entire communicative system.

In analogy to modular therapy approaches, constitutional and incidental modular 
events from the tumor microenvironment or from the macroenvironment could be 
critically involved in modularly promoting tumor development or growth. Differentially 
designed modular therapy approaches should specifically meet a tumor’s living 
world on corresponding steps of tumor development and should allow situation-
linked insights in modular architecture (comparative uncovering of a tumor’s 
modular architectures) [27].

Commonly used context-dependent knowledge is shown to underestimate the 
impact of risk absorbing prepositional background knowledge for pragmatic thera-
peutic purposes. The combination of modest changes in therapeutic design, i.e. the 
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introduction of biomodulatory therapies, seems to make a major difference in the 
experimental efficacy of evaluating systems on a communication level.

We may retranslate modularly induced functional changes in tumors into inten-
tional knowledge by comparatively reconstructing novel communication-linked 
processes on a biochemical basis to

 1. Prove the formal-pragmatic communication theory by an intentional and compu-
tational idealization [28,29]

 2. Advance reductionist knowledge for novel reductionist therapy approaches, 
which may be used in parallel or subsequentially

Generally, the new communicatively defined modular coherency of the 
macroenvironment, i.e. the tumor-associated microenvironment, and the tumor 
cells open novel ways for the scientific community in ‘translational medicine’.

Acknowledgments: This work was greatly facilitated by the use of previously 
published and publicly accessible research data, also by the systems-theoretical 
considerations of J Habermas. I would like to thank all colleagues who contrib-
uted to the multi-center trials, and Ms M Schoell for the linguistic review of 
the article.

3.4.1  Glossary

3.4.1.1  Co-option

Reuse of existing genetic components, metabolic reactions, or signaling modules in 
diverse biological systems, such as tumors, for instance, discharging in the evolu-
tion of patterns of dysregulated transcription factors.

3.4.1.2  Evolvability

The capacity of an organism or a biological system to generate new heritable 
phenotypes. Therapeutically modularly induced evolutionary steps advance 
this definition: Modularity may allow retrospectively established spaces for 
primarily none heritable evolutionary developments, if modular events (therapy) 
are implemented.

3.4.1.3  Modularity

In the present context, modularity is a formal pragmatic communicative systems 
concept, describing the degree and specificity to which systems objects (cells, path-
ways, etc.) may be communicatively separated in a virtual continuum and recom-
bined and rededicated to alter the validity and denotation of communication 
processes in the tumor.
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3.4.1.4  Modular Communication (Therapies)

The function is to configure the coherence between the validity and denotation of 
communication processes. Modular therapies may supplement prepositional 
aspects of communication, i.e. the presence of the tumor’s living world by norma-
tive aspects, namely by therapy-derived yes or no statements (‘know that’).

3.4.1.5  Risk-Absorbing Background Knowledge

This knowledge constitutes the validity of informative intercellular processes, 
which is the prerequisite for therapeutic success. Background knowledge about the 
tumor’s living world is subjected to other conditions of scientific comprehension: 
Intentional ways fail to describe risk-absorbing knowledge, in which context-dependent 
knowledge about commonly administered reductionist therapy approaches is 
rooted. After this second objectifying step (physicians as operators of tumor systems), 
the network of the holistic communicative activities turns out to be the medium 
through which the tumor’s living world is mirrored and generated.

3.4.1.6  Tumor’s Living World

The living world comprises the tumor’s holistic communication processes, which 
we rely on in every therapy. The living world of morphologically defined tumor cell 
systems creates the term opposite to those idealizations, which originally constitute 
scientific (intentional) knowledge. The living world is uncovered by r deeming the 
validity of communicative tumor processes by implementing the modular knowl-
edge of cellular and external environments (for instance for therapeutic require-
ments). Only with experimental or therapeutic experiences (modular therapies) is 
the tumor’s living world separated into categories of knowledge, for example, into 
modular systems. Specific conditions of compliance for redeeming validity consti-
tute relations between communication technique (specified modular therapy 
approaches) and distinct tumor-associated situation-engraved systems stages.

3.4.1.7  Reconstruction of Tumor-Associated Systems

Redeeming validity is tailored on the relation of modular communication to the 
objective features of the tumor compartment, the reconstructible evolutionary 
(modular) systems.

3.4.1.8  Robustness

The inherent property of a system to maintain normal performance despite external 
and internal perturbations.
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3.4.1.9  Separated or Separating ‘Social’ Tumor Systems

The possibility for redeeming novel validity by modular therapies is indicative for the 
existence of biologically separated or separating ‘social’ systems, i.e. in our context, 
metastatic tumors: Tumors constitute a solitary world with an internal context.
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Abstract Cancer patients have a pro-thrombotic state due to the ability of cancer 
cells to activate the coagulation system and to interact with haemostatic cells, 
thus tilting the balance between pro- and anti-coagulants. Tissue factor (TF), the 
main initiator of blood coagulation, is a transmembrane receptor that is expressed 
constitutively in tumors. TF also plays a role in cellular signalling, contributing 
to tumor growth and metastasis. The only known endogenous modulator of blood 
coagulation initiated by TF is tissue factor pathway inhibitor (TFPI) – a plasma 
Kunitz-type serine protease inhibitor. Growing evidence suggest involvement of 
tumor derived substrates, including heparanase, in activation of the coagulation 
system. Heparanase is an endo-b-D-glucuronidase that cleaves heparan sulfate 
chains on cell surfaces and in the extracellular matrix, activity that closely 
 correlates with cell invasion, angiogenesis and tumor metastasis. Recently we 
demonstrated that heparanase is involved in the regulation of the hemostatic 
 system. Heparanase was found to up-regulate the tissue factor and interact with 
TFPI on the cell surface, leading to dissociation of TFPI from the cell  membrane 
and increased cell surface coagulation activity. Taking into account the prometa-
static and pro-angiogenic functions of heparanase, its overexpression in human 
malignancies and abundance in platelets, its involvement in the coagulation 
machinery is an intriguing novel arena for further research. Thus, inhibition of 
factors participating in blood coagulation may potentially reduce thrombotic 
complications and tumor growth.
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Abbreviations

TF Tissue factor
PC Protein C
PS Protein S
TFPI Tissue factor pathway inhibitor
VEGF Vascular endothelial growth factor
TNF a Tumor necrosis factor alpha
FGF Fibroblast growth factor
PDGF Platelet derived growth factor
EGR1 Early growth response 1
MAPK Mitogen-activated protein kinase
JNK c-jun Terminal NH

2
-kinase

PKC Protein kinase C
NF Nuclear factor
ECM Extracellular matrix
TGF Transforming growth factor
HUVEC Human umbilical vein endothelial cell
MMP Matrix metalloproteinase
HS Heparan sulfate
HSPG Heparan sulfate proteoglycan
TSP-1 Thrombospondin-1
GPI Glycosyl phosphatidylinositol
AML Acute myeloid leukemia
CLL Chronic lymphatic leukemia
CML Chronic myeloid leukemia
ALL Acute lymphoblastic leukemia
LMWH Low molecular weight heparin

4.1  Introduction

Cancer patients have a pro-thrombotic state because of the ability of cancer cells 
to activate the coagulation system and to interact with hemostatic cells, thus 
 tilting the balance between pro- and anticoagulants [1]. Over expression of tissue 
factor (TF), cancer procoagulant – a cysteine protease that activates factor X, and 
acquired activated protein C resistance [2], are thought to be the main factors for 
coagulopathy in malignant disorders. Additionally, drugs used in cancer patients 
are contributing to the hypercoagulable state [3]. The best characterized  substance 
with a direct pro-coagulant activity is TF, a transmembrane receptor that is 
 constitutively expressed in tumors, i.e. human leukemias, lymphomas, adenocar-
cinomas and sarcomas [4]. TF also plays a role in cellular signaling, contributing 
to tumor growth and metastasis [4, 5]. The only known endogenous modulator of 
blood coagulation initiated by TF is tisue factor pathway inhibitor (TFPI) – a 
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plasma Kunitz type serine protease inhibitor [6, 7]. Growing evidence suggest 
involvement of tumor derived substrates, including heparanase, in activation of 
the coagulation system.

4.2  Tissue Factor (TF)

Blood coagulation is a host defense system that maintains the integrity of the 
 high-pressure closed circulatory system. To prevent excessive blood loss, the 
 hemostatic system, which includes platelets, vascular endothelial cells, and plasma 
coagulation proteins, is recruited. The main initiator of blood coagulation is TF.

4.2.1  TF Structure and Expression

TF is a 47-kDa transmembrane protein expressed in both vascular and nonvascular 
cells. The TF gene is located on chromosome 1 and is 12.4 kb in length consisting 
of six exons [8]. The protein is composed of 263 amino acid residues. An N-terminal 
domain of 219 amino acid residues is the dominant component of the protein and 
is oriented extracellularly. In addition, a short hydrophobic domain of 23 amino 
acids represents the transmembrane region and a short 21-residue C-terminus 
 represents the cytoplasmic domain. Although specific glycosylation sites have not 
been established, tissue factor has multiple potential N- and O-linked sites [8]. In the 
vessel wall, TF is constitutively expressed in subendothelial cells such as  vascular 
smooth muscle cells leading to rapid initiation of coagulation when the vessel is 
damaged [3]. In contrast, endothelial cells and monocytes do not express TF under 
physiological conditions; as a consequence, there is no appreciable  contact of cel-
lular TF with the circulating blood. In response to various stimuli, however, TF expres-
sion and activity can be induced in these cells, as well.

4.2.2  TF and the Coagulation System

In vitro the generation of thrombin and the formation of a fibrin clot propagate 
through two separate pathways, the intrinsic pathway and the extrinsic pathway 
(Fig. 4.1). In vivo, the coagulation cascade is usually initiated as soon as TF comes 
into contact with circulating activated factor VII (VIIa), resulting in the formation 
of TF-FVIIa complex. The TF-VIIa complex activates factor IX, which in turn 
activates factor X; alternatively, factor X is directly converted to factor Xa by 
TF-FVIIa. In complex with factor Va and calcium, factor Xa catalyzes the conversion 
of prothrombin to factor II – thrombin, thereby leading to factor I – fibrin formation, 
platelet activation, and, ultimately, generation of a thrombus. Several of these 
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 activated proteases, including factor IXa, factor Xa, thrombin, and the TF-VIIa 
complex itself, can convert factor VII to VIIa in an auto-feedback loop.

The majority of TF resides in various intracellular compartments, predominantly 
in the Golgi. Tissue factor at the cell surface is localized in cholesterol-rich lipid 
rafts and extensively colocalized with caveolin-1 [9]. FVIIa binding to TF induces 
the internalization of TF. Of interest, TF-FVIIa complex formation at the cell surface 
leads to TF mobilization from the Golgi with a resultant increase in TF expression 
at the cell surface. This process is dependent on FVIIa protease activity [9].

The extent of TF protein induction in vascular cells does not always correlate 
well with TF activity [10, 11]. One possible explanation is the concomitant 
 secretion of TFPI, the endogenous inhibitor of TF. Another possible reason is the 
distribution of TF in several cellular compartments [11, 12]. Biologically active 
TF is indeed located at the cell surface, whereas intracellular TF constitutes a pool 
that is only released upon cell damage. A combination of tumor necrosis factor 
alpha (TNF-a) and vascular endothelial growth factor (VEGF) favors cell surface 
over intracellular distribution as compared with stimulation with either agonist alone, 
suggesting a complex regulation of the cellular distribution of TF [11]. Discrepancies 
between TF protein expression and activity can further be accounted for by the 
induction of a functionally inactive form of TF at the cell surface, termed latent 
or encrypted tissue factor. Expression of encrypted TF enables a cell to rapidly 
increase TF activity in response to certain stimuli without the need for de novo 
protein synthesis. De-encryption of TF has been observed secondary to changes 
in intracellular calcium levels, alterations in membrane phosphatidylserine expression, 
or modifications in the quaternary structure of TF [13]. Hence, the relative 

Cell membrane

Intrinsic pathway

Extrinsic pathway

Fig. 4.1 The coagulation system. The intrinsic pathway is initiated with the activation of factor 
XII. The extrinsic pathway is initiated with the formation of the complex tissue factor (TF) and 
factor VIIa. Protein C (PC), protein S (PS), anti-thrombin and tissue factor pathway inhibitor 
(TFPI) are the system inhibitors
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contribution of TF protein induction, cellular  localization, and structural modification 
appears to determine the net procoagulant effect  elicited by a given mediator.

4.2.3  Increased TF Expression in Tumors

Up-regulation of TF gene expression appears to be characteristic of malignant cells 
and normal host cells responding to inflammatory or remodeling signals (e.g., 
endothelial cells, monocytes, macrophages, and fibroblasts). TF shares homology 
with members of the cytokine receptor superfamily [14]. Therefore, it is not  surprising 
that cytokines and growth factors generated by inflammatory and  malignant cells 
induce TF expression. Among these are interferon-g [15], TNF-a [16], interleukin-1b 
[17], CD40 ligand adhesion molecule [18], serotonin [19], histamine [10], thrombin 
[20], oxidized LDL [21], C-reactive protein [22],  angiotensin II [23], fibroblast 
growth factors (FGF) [24], platelet-derived growth factor (PDGF) [25], VEGF [26], 
and also, endotoxin [27] and hypoxic conditions [28]. Inappropriate expression of TF 
alters the behavior of cells. Cancer cells  transfected with TF exhibit a more malignant 
phenotype both in vitro and in vivo compared to the parent cell lines [29, 30]. 
Increased TF expression has been detected in a variety of human tumors, including 
glioma [31], breast cancer [32, 33], non-small cell lung cancer [34, 35], leukemia 
[36a, 36b], colon cancer [37], and pancreatic cancer [38]. Elevated TF expression in 
tumors has been correlated with unfavorable  prognostic indicators, such as increased 
angiogenesis, advanced stages of disease, and the multidrug resistant phenotype [39], 
that contribute to poor  survival rates in cancer patients.

4.2.4  TF and Angiogenesis

TF appears to play a critical role in both physiologic and pathologic angiogenesis. 
It is well established that TF deficiency in transgenic mice causes embryonic 
 lethality by day 10.5 due to impared vascular integrity and abnormal development 
of the yolk sac [40]. A similar histopathology associated with lethality occurs with 
VEGF deficient embryos [41], suggesting that TF and VEGF regulate similar func-
tions. The switch to an angiogenic phenotype requires a shift in balance between 
endogenous proangiogenic and antiangiogenic factors that regulate vessel growth 
and development. In colorectal cancer, for example, increased TF positivity in 
higher grade tumors has been correlated with increased vascular density and VEGF 
expression, as well as the clinical stage of colorectal cancer and  angiogenesis [37]. 
Similar correlations between TF expression, VEGF expression, and  microvessel density 
have also been found in non-small cell lung cancer [35] and breast cancer [32]. 
Tissue factor and VEGF have also been found to be colocalized in tumor cells of 
human lung and breast cancer specimens [42]. Analysis of several human breast 
cancer [42] and melanoma [43] cell lines revealed a significant  correlation between 
the level of synthesis of VEGF and TF in vitro. Subcutaneous inoculation of a high 
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TF and VEGF-producing melanoma cells into mice with severe combined immu-
nodeficiency yielded highly vascular tumors in vivo [43]. A similar experiment 
with a low TF and VEGF-producing cells produced relatively avascular tumors 
in vivo. However, when a low TF and VEGF-producing melanoma cells that had 
been transfected with the full-length TF DNA was used in these experiments, 
 vascular tumors grew and expressed high levels of both TF and VEGF. These 
 studies support the hypothesis that TF regulates VEGF synthesis and contributes to 
tumor angiogenesis [43].

TF and VEGF participate in a vicious cycle of clot formation and tumor growth. 
Not only does TF induce VEGF, but the converse also holds true since VEGF in turn 
up-regulates the expression of TF on endothelial cells by  activating the early growth 
response-1 gene (EGR1) [44]. Decreased phosphatidyl 3-kinase (PI3-K) activity 
concurrent with increased p38 and Erk-1/2 mitogen-activated protein kinase 
(MAPK) activity induce up-regulation of TF expression by VEGF in tumor-related 
endothelial cells [45]. Differential signaling pathways may control TF-induced regu-
lation of VEGF during physiologic and pathologic angiogenesis. Using human 
fibroblasts, it was reported that TF-induced  production of VEGF required the bind-
ing of activated factor VII to TF and subsequent generation of activated factor X and 
thrombin [46]. However, in some malignant melanoma cell lines, TF-mediated regu-
lation of VEGF is regulated independent of clotting via activation of the cytoplasm 
tail of TF, rather than via the ligand-binding extra-cellular domain [43].

4.2.5  TF Signaling

Signal transduction pathways regulating TF induction in endothelial cells involve 
the MAP kinases p38, p44/42 (ERK), c-jun terminal NH

2
-kinase (JNK), and 

 protein kinase C (PKC) [10, 16, 47, 48]. These signal transduction molecules 
stimulate the TF promoter by activating transcription factors such as AP-1, 
nuclear factor (NF)-kB, and EGR-1 [18, 48, 49],ultimately resulting in  upregulation 
of TF mRNA [21, 49–51].

Unlike MAP kinases or protein kinase C, the PI3-kinase pathway negatively 
regulates endothelial TF expression; as a consequence, inhibition of PI3-kinase or 
its downstream mediators increases TF expression [45, 47, 50, 52].

4.2.6  Blood-Borne TF

Tissue factor is not only present in vascular cells or leukocytes but can also be 
detected in the bloodstream, referred to as circulating or blood-borne TF [53]. This 
form of TF is mainly associated with microparticles [54] originating from  endothelial 
cells, vascular smooth muscle cells, leukocytes, or platelets [55, 56]. In addition, TF 
containing microparticles are released from atherosclerotic plaques [54].
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Monocytes and platelets are known to exchange microparticle-bound TF [57]. 
Because megakaryocytes, the bone marrow precursors of platelets, do not express 
TF, it is likely that this exchange represents a mechanism through which platelets 
are loaded with TF. In addition to carrying microparticle-derived TF, activated 
platelets induce tissue factor expression in human endothelial and smooth muscle 
cells, presumably by releasing soluble mediators such as serotonin and PDGF [58]. 
Aggregating platelets thus induce a positive feedback loop that enhances local TF 
concentrations through two mechanisms and may be important for thrombus 
 formation and/or propagation.

Recently, an alternatively spliced form of TF has been discovered, which is 
 soluble, circulates in the blood, and exhibits procoagulant activity [59]. Cytokines 
stimulate its expression and release from endothelial cells [60]. Alternatively spliced 
TF is not bound to microparticles and appears to represent a distinct form of 
 circulating TF; as such, it may have an important role in thrombus propagation [60]. 
Alternatively spliced human TF contains most of the extracellular domain of TF but 
lacks a transmembrane domain and terminates with a unique peptide sequence [59]. 
Studies on blood-borne TF imply that activation of coagulation, contrary to the 
 traditional belief, may be initiated and propagated without contact of the blood with 
the extravascular space. The importance of blood-borne versus vessel  wall-associated 
TF is currently a subject of debate [61–63]. One study described that TF from 
 leukocyte-derived microparticles importantly contributes to thrombus propagation in 
an animal model of thrombosis [61], whereas another study identified vessel 
 wall-derived TF as the primary mediator driving thrombus formation after vascular 
injury [62]. It is also controversial whether physiological concentrations of 
 circulating TF can exhibit clot-forming activity in vivo [63]. Thus, the relative 
 contribution of soluble TF, microparticle-bound TF, and vessel wall-associated TF 
to initiation and propagation of thrombosis requires further studies.

4.3  Thrombin

Thrombin is a multifunctional serine protease that has a crucial role in blood 
coagulation.

Thrombin was reported to be involved in angiogenesis. It enhances VEGF 
 protein synthesis and secretion in normal and malignant cells [64], participates in 
release from subendothelial extracellular matrix (ECM) of biologically active basic 
FGF and transforming growth factor beta (TGF-beta)[65], induces increased 
expression and secretion of angiopoietin-2 from human umbilical vein endothelial 
cells (HUVECs) [66] and induces HUVEC proliferation [67]. Matrix metallopro-
teinases (MMPs) take part in degradation of ECM components. Thrombin was 
shown to be involved in the regulation of various MMPs via the thrombin  proteinase 
activated receptor (PAR) family [68]. Interestingly, the phenotype of mouse 
embryos that lack prothrombin closely resembles the pathology seen in TF 
 knockout mice [69, 70].
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4.4  Tissue Factor Pathway Inhibitor (TFPI)

TFPI is a potent direct inhibitor of factor Xa, and in a factor Xa dependent fashion, 
produces inhibition of the factor VIIa-TF complex. TFPI can also inhibit TF/VIIa 
directly [71]. In addition, TFPI causes internalization and degradation of TF-FVIIa 
complexes on the cell surface [72]. In vivo studies demonstrated that TFPI blockes 
angiogenesis and tumor growth [73, 74].

4.4.1  TFPI Structure and Expression

The TFPI molecule is a ~46 kDa protein consisting of three tandem Kunitz-type 
protease inhibitor domains. Its first Kunitz domain appears to bind factor VIIa in 
the factor VIIa-TF complex and its second Kunitz domain is required for binding 
to factor Xa [75]. Heparan sulfate proteoglycans (HSPGs) on the cell surface are 
directly associated with TFPI and act as the uptake and degradation receptor for 
TFPI-factor Xa complex (Fig. 4.2) [76].

There are three pools of TFPI in vivo: the majority of TFPI is bound to the 
 vascular endothelium, approximately 10% is associated with lipo-proteins in the 
plasma and a smaller portion is present in platelets. In addition to endothelial cells, 
other cells can synthesize TFPI, including mesangial cells, smooth muscle cells, 
monocytes, fibroblasts, and cardiomyocytes [77–79]. Mechanisms that regulate 
TFPI gene expression are largely unknown. Interestingly, PDGF and bFGF, two 
potent angiogenic mediators, have been reported to induce TFPI expression by 
vascular smooth muscle cells, while inflammatory mediators such as IL-1 and 
TNFa had no effect [80, 81].

Fig. 4.2 TFPI structure. TFPI is composed of three kunitz domains. The first binds factor VIIa-
tissue factor complex, the second binds factor Xa, and the third and c-terminal associates with the 
cell surface via heparan sulfate proteoglycan
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4.4.2  TFPI in Blood and Cells

The normal concentration of TFPI in human plasma is approximately 100 ng/mL 
[82]. In the blood stream, TFPI exists in a free form and also in  lipoprotein-assosiated 
form [83]. Stored TFPI is released into the plasma from platelets by activation and 
from endothelial cells by the action of heparin suggesting heparan-sulfate proteo-
glycan cell surface binding sites [84–86]. Proteoglycan receptors that are known to 
bind TFPI are the transmembrane-anchored ryudocan/syndecan 4 [87] and the 
 glycosyl phosphatidylinositol (GPI)-anchored glypican 3 [88]. Thrombospondin-1 
(TSP-1) that accounts for about 25% of the protein within platelets a-granules was 
found to interact with TFPI and acts to localize it “as molecular bridge” to surfaces 
within the extravascular space, where it can efficiently down-regulate TF-initiated 
coagulation after vascular injury [89]. Studies examining the sub-cellular  localization 
of TFPI in HUVEC indicated that TFPI-binding proteoglycans are present in 
 caveolae, a caveolin-coated invaginations that perform transport and signalling 
functions affecting cell growth, apoptosis, and angiogenesis [6].

4.5  Heparanase

Heparanase is an endo-b-d-glucuronidase capable of cleaving heparan sulfate (HS) 
side chains at a limited number of sites, yielding HS fragments of still appreciable 
size (~5–7 kDa) [90, 91]. Heparanase activity has long been detected in a number of 
cell types and tissues. Importantly, heparanase activity correlated with the metastatic 
potential of tumor-derived cells, attributed to enhanced cell dissemination as a 
 consequence of HS cleavage and remodeling of the extracellular matrix (ECM) 
 barrier [92, 93]. Similarly, heparanase activity was implicated in neovascularization, 
inflammation and autoimmunity, involving migration of vascular endothelial cells 
and activated cells of the immune system [92–94]. A single human heparanase cDNA 
sequence was independently reported by several groups [95–98]. Thus, unlike the 
large number of proteases that can degrade polypeptides in the ECM, one major hepa-
ranase appears to be used by cells to degrade the HS side chains of HSPGs. Expression 
of heparanase is restricted primarily to the placenta, keratinocytes, platelets and 
 activated cells of the immune system, with little or no expression in connective tissue 
cells and most normal epithelia [92, 93]. Up-regulated expression of heparanase was 
noted in essentially all human tumors examined, inflammation, wound healing and 
diabetic nephropathy [92–94]. During embryogenesis, the enzyme is preferentially 
expressed in cells of the developing vascular and nervous systems [99].

4.5.1  Heparanase Structure

The heparanase gene (~50 kb) is located on human chromosome 4q21.3 [100]. The 
gene is expressed as 5 and 1.7 kb mRNA species, generated by alternative splicing. 
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The 5 kb form contains 14 exons and 13 introns, whereas in the short form the first 
and 14 exons have been spliced out. Only one gene has been shown to encode for 
a protein with heparanase activity [95–98]. Sequence analysis revealed that 
 heparanase is highly conserved, with similar sequences found in human, rat, mouse, 
cow, chicken, mollusks and zebra fish [92, 99]. The gene has not been identified in 
drosophila and C. elegans. The human heparanase cDNA contains an open reading 
frame that encodes a polypeptide of 543 amino acids with a molecular weight of 
61.2 kDa. The active heparanase purified from placenta, platelets and various cell 
lines was found to lack its N-terminal 156 amino acids, suggesting  post-translational 
proteolysis of the heparanase polypeptide [97, 101]. In fact, active heparanase was 
subsequently reported to be a heterodimer consisting of a 50 kDa subunit (Lys158–Ile543) 
associated non-covalently with an 8 kDa peptide (Gln36–Glu109). The  intervening 
6 kDa peptide (Ser110–Gln157) is excised by proteolysis [102–104]. Based on the 
predicted amino acid sequence, the 50 kDa subunit of human  heparanase contains 
six putative N-glycosylation sites. Although glycosylation was not required for 
enzyme activity, secretion of heparanase was regulated by  glycosylation [105]. The 
sequence also contains a 35-amino acid N-terminal signal sequence (Met1–Ala35), 
and a C-terminal hydrophobic domain (Pro515–Ile534). Heparanase has been shown 
to be related to members of the clan A glycosyl  hydrolyses (GH-A) [106]. Protein 
sequence alignment approaches in combination with secondary structure predic-
tions indicated that heparanase contains sequences that are homologous to families 
10, 39 and 51 of the GH-A, especially in terms of the active-site regions [106]. This 
clan of enzymes uses a general acid catalysis mechanism for the hydrolysis of gly-
cosidic bonds. The mechanism requires two critical residues, a proton donor and a 
nucleophile, both of which appear to be conserved in heparanase at Glu225 and 
Glu343, respectively [106]. Site-directed mutagenesis of these residues completely 
abolished heparanase activity, indicating that heparanase uses a catalytic mecha-
nism characteristic of GH-A glycosyl  hydrolyses [106].

4.5.2  Pro-angiogenic Properties

HSPGs are prominent components of blood vessels, and HSPG degrading enzymes 
have long been implicated in a number of angiogenesis-related cellular processes. 
A critical early event in the angiogenic process is degradation of the subendothelial 
basement membrane (BM), followed by endothelial cell (EC) migration toward the 
angiogenic stimulus. Similar to its involvement in tumor cell dissemination, it is 
conceivable that by degrading HS in the BM, heparanase may directly facilitate EC 
invasion and sprouting. Indeed, heparanase expression by bFGF-stimulated, bone 
marrow-derived EC was demonstrated by RT-PCR [107]. Immunohistochemistry of 
tumor specimens revealed heparanase staining of EC in capillaries, but not mature 
blood vessels [107, 108]. Moreover, by releasing HS-bound angiogenic growth 
 factors (i.e., bFGF, VEGF) from the ECM [109], heparanase may indirectly 
 facilitate EC migration and proliferation [107, 108, 110]. In fact, given the  multitude 



614 Cancer and Coagulation; Focusing on Tissue Factor and Heparanase

of biological mediators that are sequestered by HS in the ECM [111], heparanase 
activity liberates a number of active molecules that may act cooperatively or syner-
gistically to promote neovascularization. Moreover, HS fragments released by 
heparanase from the cell surface stimulate the mitogenic activity of bFGF [107] and 
possibly other pro-angiogenic factors. Heparanase also releases growth factor-HS 
saccharide complexes from cell surfaces, although it has not been demonstrated 
whether such ‘liberated’ complexes are more active than counterparts that remain 
attached to membrane HSPGs.

4.5.3  Pro-metastatic Properties

The clinical significance of the enzyme in tumor progression emerges from a 
 systematic evaluation of heparanase expression in primary human tumors. 
Immunohistochemistry, in situ hybridization, RT-PCR and real time-PCR analyses 
revealed that heparanase is up regulated in essentially all human tumors examined. 
These include carcinomas of the colon [108, 112], thyroid [113], liver [114],  pancreas 
[115, 116], bladder [117, 118], cervix [119], breast [120], gastric [121, 122], prostate 
[123], head and neck [124, 125], as well as multiple myeloma [126], leukemia and 
lymphoma [127]. In most cases, elevated levels of heparanase were detected in about 
50% of the tumor specimens, with a higher incidence in  pancreatic (78%) and gastric 
(80%) carcinomas, and in multiple myloma (86%). In all cases, the normal looking 
tissue adjacent to the malignant lesion expressed little or no detectable levels of hepa-
ranase, suggesting that epithelial cells do not normally express the enzyme. In several 
carcinomas, most intense heparanase staining was localized to the invasive front of 
the tumor [117, 122, 124],  supporting a role for heparanase in cell invasion. 
Furthermore, patients that were diagnosed as  heparanase-positive exhibited a signifi-
cantly higher rate of local and distant metastasis as well as reduced post-operative 
survival, compared with patients that were diagnosed as heparanase-negative [112, 
116, 117, 122, 126]. Collectively, these studies provide a strong clinical support for 
the pro-metastatic function of  heparanase. Interestingly, patient’s survival was noted 
to correlates not only with heparanase levels, but also with its localization. In addition 
to  localization in the cytoplasm, heparanase was also noted to assume nuclear local-
ization,  demonstrated by cell fractionation [128], and by immunostaining of cultured 
cells [128] and tumor biopsies [121, 129]. Interestingly, nuclear localization was 
 correlated with maintained cellular differentiation [129] and favorable outcome of 
patients with gastric [121, 129] and head and neck [130] carcinomas, suggesting that 
heparanase is intimately involved in gene regulation. Whether gene  transcription and 
maintained cellular differentiation is due to direct interaction of heparanase with the 
DNA, or is a consequence of heparanase-mediated nuclear-HS  degradation is yet to 
be demonstrated. In addition, heparanase up regulation in primary human tumors 
correlated in some cases with tumors larger in size [114, 120, 122], and with enhanced 
micro vessel density [112, 114, 118, 126], providing a clinical  support for the pro-
angiogenic function of the enzyme.
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4.5.4  Non-enzymatic Functions

Applying heparanase that lacks enzymatic activity due to point mutations (Glu225, 
Glu343) in its active site, it was noted that heparanase exerts also non-enzymatic 
activities, independent of its involvement in ECM degradation and alterations in the 
extracellular microenvironment associated with angiogenesis, cell survival, and 
migration. For example, cell surface expression of enzymatically inactive  heparanase 
elicits a firm cell adhesion, reflecting an involvement in cell–ECM interaction 
[131]. Moreover, as described below, inactive heparanase enhances Akt signaling 
and stimulates PI3K- and p38-dependent endothelial cell migration and invasion 
[132]. It also promotes VEGF expression via the Src pathway [133]. At present, no 
information is available on protein domains responsible for the non-enzymatic 
functions of the heparanase molecule, nor on the putative heparanase receptor that 
appears to mediate these effects.

4.5.5  Hematopoetic Cells and Heparanase

Heparanase activity has been detected in several types of normal hematopoetic cells, 
including neutrophils, megakaryocytes, and activated lymphocytes, and may  mediate 
their extravasation during inflammatory and immune response [134]. Heparanase 
expression pattern in hematologic proliferative disorders was investigated. In mono-
nuclear cells derived from various leukemia, heparanase RNA was expressed in 14 
of 15 acute myeloid leukemia (AML). In contrast, all 33 chronic lymphatic leukemia 
(CLL), 7 of 8 chronic myeloid leukemia (CML), and six of eight acute  lymophoblastic 
leukemia (ALL) patients showed no detectable expression of heparanase mRNA[127]. 
This study proposes that heparanase expression is associated with the acute myeloid 
leukemias [127]. A recent study indicates that myeloma cells express high levels of 
heparanase detected by immunohistochemistry and activity assay. Expression of 
heparanase in multiple myeloma appears to play a direct role in enhancing bone 
marrow microvessel density, implying that heparanase plays a role in regulating the 
growth and progression of myeloma [126].

4.5.6  Inhibition of Heparanase by Heparins

Anti-coagulant activities of cell surfaces have been predominantly attributed to 
HS [135, 136], which are composed of repeating hexuronic and D-glucosamine 
 sulfated disaccharide units. HS have been shown to exert anticoagulant activities 
on cells, on ECM and in tissues, due to their catalysing function for protease 
inhibition by antithrombin and subsequent complex formation [135–137]. 
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Moreover, cell surface HS can facilitate the catabolism of coagulation factors 
such as factor VIII [138]. Other coagulation inhibitors such as TFPI also  associate 
with the luminal face of endothelial cell plasma membrane via HS [76]. HS are 
also important  constituents of the sub-endothelial basement membrane, where 
they cross-link  various components, e.g. laminin and collagens, thereby contrib-
uting to the  integrity of the blood vessel wall [139]. HS, unfractionated heparin 
and other  heparin derivatives have been investigated as heparanase inhibitors, and 
some of them exerted anti-metastatic activity in animal models [140]. Both the 
type of the polysaccharide backbone and degree of sulfation seem to affect the 
heparanase inhibiting activity of sulfated polysaccharides [141, 142]. However, 
different  heparin preparations display significantly different anti-heparanase 
activity [141, 142] indicating that this activity is also dependent on more subtle 
structural features. Recently, heparanase strong affinity to heparins was utilized 
in vitro to reverse heparins effect. Heparanase was shown to reverse the 
 anti-coagulant activity of unfractionated heparin on the coagulation pathway as 
well as on thrombin activity. In addition, heparanase abrogated the factor X 
inhibitory activity of low-molecular-weight heparin (LMWH). The pro-coagulant 
effects of the non-active heparanase were also exerted by its major functional 
heparin-binding peptide [143].

4.5.7  Heparanase and TF

TF is constitutively expressed in various cell types, including pericytes adjacent to 
the vessel wall, but absent from blood cells and endothelial cells. This localization 
is crucial for hemostasis since it prevents a direct contact between TF and the 
 circulating blood. Immunohistochemical studies revealed that many tumors express 
high levels of TF, raising the possibility of TF role in the pathogenesis of cancer [1]. 
We have demonstrated that heparanase over-expression in human leukemia, glioma, 
and breast carcinoma cells results in a marked increase in TF levels verified by 
immunoblot and real-time PCR analyses [144]. Likewise, TF was induced by exog-
enous addition of recombinant heparanase to tumor cells and primary  endothelial 
cells, induction that was mediated by p38 phosphorylation and  correlated with 
enhanced procoagulant activity. TF induction was further confirmed in heparanase 
over expressing transgenic mice and, moreover, correlated with  heparanase expres-
sion levels in leukemia patients [144]. Recently, heparanase was found to exert also 
non-enzymatic activities, independent of its involvement in ECM degradation and 
alterations in the extracellular microenvironment [145]. For example, inactive 
heparanase enhances Akt signaling and stimulates PI3K- and p38-dependent 
endothelial cell migration and invasion [132]. It also promotes VEGF expression 
via the Src pathway [133]. We added another example for the multiple non-enzymatic 
functions of heparanase, indicating an important  involvment of heparanase in 
haemostasis. We propose that heparanase up-regulation in  leukemias can facilitate 
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disease progression not only by promoting cellular  invasion, traditionally impli-
cated with heparanase activity, but also by enhancing TF expression and blood 
coagulation, positioning heparanase as a valid target for the development of novel 
therapeutics for solid and hematological malignancies.

4.5.8  Heparanase and TFPI

TFPI is a plasma Kunitz-type serine protease inhibitor and the only known 
 endogenous modulator of blood coagulation initiated by TF [6, 7]. TFPI 
 concentration in plasma is increased in patients with acute myocardial infarction 
[146, 147]. There are also reports on the plasma levels of TFPI in relation to 
 disseminated intravascular coagulation [148] and to other diseases, such as diabetes 
mellitus [149], renal diseases [150], and cancer [151, 152]. Recently we demon-
strated that exogenous addition or over expression of heparanase by transfected 
cells results in release of TFPI from the cell surface and its accumulation in the cell 
culture medium [153]. Importantly, the in vitro studies are supported by elevation 
of TFPI levels in the plasma of transgenic mice over-expressing heparanase. 
Moreover, increased levels of TFPI have been noted in the plasma of cancer patients 
[151, 152], reflecting, possibly, induction of heparanase expression and elevation 
of its plasma levels revealed by a newly developed ELISA assay [154]. In HUVEC 
and tumor derived cell lines, release of TFPI from the cell surface correlated with 
enhanced TF-mediated coagulation. This effect was evident already 30 min 
 following heparanase addition, and prior to the induction of TF [144] or TFPI 
expression. Thus, heparanase enhances local coagulation activity by two  independent 
mechanisms: induction of TF expression [144], and TFPI dissociation from the cell 
surface [153]. Both functions require secretion of heparanase, but no enzymatic 
activity. The underlying mechanism is apparently release of TFPI due to its physi-
cal  interaction with the secreted heparanase, as clearly evident by co-IP experi-
ments, reflecting a functional interaction between heparanase and a membrane 
protein. Extracellular accumulation of TFPI upon heparanase addition suggests that 
 following their interaction, the complex TFPI/heparanase dissociates from the 
plasma membrane and accumulates extracellularly.

Elevated levels of heparanase may be generated locally upon degranulation of 
neutrophils, mast cells and platelets [134], further facilitating blood coagulation at the 
site of platelet activation. Heparanase upregulation is noted in essentially all primary 
human tumors examined, correlating with reduced post operative survival and poor 
prognosis [155, 156]. Cancer patients often display a pro-thrombotic state due to the 
ability of tumor cells to activate the coagulation system. Over-expression of TF and 
acquired activated protein C resistance were suggested as main factors for coagulopathy 
conditions in malignant disorders [2]. Hemostatic function of heparanase, executed 
by inducing TF expression and releasing TFPI from the endothelial cell surface, provides 
a mechanism by which heparanase contributes to tumor complication, in addition to 
its established pro-angiogenic and pro-metastatic activities [155, 156].
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4.5.9  A Model for Interaction Between Heparanase,  
TF, and TFPI

Platelets and tumor cells have abundant amount of heparanase [145]. Activation of 
the coagulation system, including platelet activation occurs in malignant and angio-
genic processes [157]. Heparanase released from activated platelets and tumor 
cells, may, according to our findings, interact on the cell surface with TFPI and 
induce up-regulation of TF and TFPI in the cell. Heparanase-mediated release of 
TFPI from the cell surface together with its induction of TF up-regulation, render 
the cell surface highly pro-coagulant. Heparanase may also form complexes with 
TFPI and circulate in the plasma, possibly binding to endothelial cells and other 
intravascular components i.e. platelets and microparticles. As both heparanase and 
TFPI use HS as low-affinity receptors, a competition between these two proteins in 
binding to HS is expected, but was not found in our work to play a significant role 
in TFPI release. These aspects are depicted in Fig. 4.3.

Taken together, data support the notion that heparanase is a modulator of blood 
coagulation, and suggest a novel mechanism by which heparanase regulates TF and 
TFPI levels in endothelial and cancer cells. The elevation of heparanase levels in 
human tumors together with the pro-thrombotic state of most neoplasms, suggest a 

Heparan
sulfate

Hepa

Hepa

Hepa

Fig. 4.3 A model of the interaction between heparanase (Hepa), TF, and TFPI. Heparanase 
 interacts on the cell surface with TFPI and induce up-regulation of TF and TFPI in the cell. 
Heparanase-mediated release of TFPI from the cell surface together with its induction of TF 
 up-regulation, render the cell surface highly pro-coagulant. Heparanase may also form a complex 
with TFPI and circulate in the plasma
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possible clinical relevance of the procoagulant function of heparanase. Targeting 
domains of heparanase that mediate its enzymatic activity-dependent and indepen-
dent functions may prove beneficial for patients with cancer and pro-thrombotic 
conditions.
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Abstract Mesenchymal stromal cells were first isolated from the bone marrow, 
where they serve as a component of the tissue microenvironment. These cells pro-
vide a physical support for the other cells of the tissue; i.e., the hemopoietic cell lin-
eage, and further participate in the formation of bone structures. Most importantly, 
stromal cells regulate the growth and differentiation of hemopoietic stem cells. 
The mesenchyme is not specific to the bone marrow: such cells are found body-
wide, and serve similar regulatory functions. By the same token, the mesenchymal 
stroma contributes to tumor formation by providing regulatory signals. In addition, 
the stromal cells themselves may undergo transformation, and subsequently form 
tumors. This chapter discusses these two major aspects of stromal cell involvement 
in the tumorigenic process.

Keywords Tumor • Tumorigenesis • Stroma • Mesenchyme

5.1  Introduction

The bone marrow is a unique environment, harboring many cell types, which are 
arranged in an elaborate tri-dimensional structure. Originally, this compartment was 
found to be the origin of hemopoietic cells, as shown in the experiments of 
McCulloch and Till [1]. However, other cellular constituents of the bone marrow 
were disregarded until the groundbreaking experiments of Friedenstein et al [2]. In 
this work, fibroblastic cells derived from the bone marrow showed bone-forming 
capacity, and more importantly, were able to create an ectopic bone marrow environ-
ment in vivo. The cells belonging to this fibroblastic population were given many 
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different designations, including osteoprogenitor cells, fibroblastoid cells, stromal 
cells, colony forming unit-fibroblasts (CFU-F), mesenchymal cells and finally, mes-
enchymal stem cells/multipotent stromal cells/mesenchymal stromal cells (MSCs). 
The exact in vivo origin of MSCs is not certain, and their definition is based mainly 
on their in vitro growth properties and capacity to differentiate. The derivation of 
continuously growing stromal cell populations from the bone marrow revealed the 
heterogeneity of this population [3–5]. Among the many different cell types discov-
ered were fibroblasts, adipocytes, endothelial cells, osteogenic cells, and more, all 
with distinct morphologies. Clonal populations of such stromal cells were shown to 
have the potential to differentiate into three cell types: adipocytes, osteocytes and 
chondrocytes [6]. However, this multipotency is not shared by all cultured mesenchy-
mal cells, as they exhibit marked heterogeneity (Fig. 5.1). Although some of these 
cells are multipotent, others have diminished potential. Initially, stromal cells were 
considered to be structural entities, scaffolding the compartment in which hemopoi-
esis occurs. This underestimation is slowly being abandoned, as more functions of 

Fig. 5.1 The heterogeneity of MSC populations: seeding of bone marrow cells and derivation of 
independent MSC cell strains reveals extreme heterogeneity in differentiation potential. While 
some populations are multipotent, others have a decreased number of differentiation options or 
otherwise lack differentiation capacity. 14F1.1: a pre-adipogenic cloned cell line; MBA-15: a 
long-term cultured cell line; MSC-OC: a primary MSC cell strain; MSC-OD: a primary MSC cell 
strain. The cell lines and primary MSCs are all of bone marrow origin
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these cells are discovered. Tissue culture work revealed that these cells are capable 
of creating conditions which allow long-term maintenance of hemopoiesis [7]. The 
molecular mechanism responsible for this stromal function of MSCs has not been 
completely resolved, and to date, it is not possible to induce long-term maintenance 
of hemopoietic stem cells, alongside their differentiation, in the absence of supportive 
descendents of MSCs. It is clear, however, that stromal cells contribute to the pro-
cess by serving as a docking site for stem cells, by expression of adhesion molecules, 
extracellular matrix components, chemotactic signals and differentiation-inducing 
cytokines. Most importantly, these cells restrain differentiation and allow self-
renewal by expressing differentiation antagonists [8–12]. It was also demonstrated 
that MSCs possess immuno- modulatory functions, such as T cell suppression 
[13,14]. Such immunosuppressive properties were found to be independent of MHC 
allogeneity in mice, and dependent on cell-cell contact as well as soluble factors 
released by MSCs. In addition, MSCs carry different immune system-related mol-
ecules such as toll-like receptors (TLRs) [15], T cell receptors (TCRs) [16,17], and 
B cell receptor components [18].

Fig. 5.2 In vivo origin of MSCs in the adult: several cell types have been suggested to be the 
in vivo precursors of cultured MSCs. However, the only well-established definition of these cells 
is based on their capacity to differentiate, at the single clone level, into several cell lineages
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In past years, much knowledge has accumulated regarding MSCs;  however, 
fundamental issues are still left in the dark. Most importantly, these cells are not 
known to possess unique surface markers, which could make it possible to identify 
them in vivo. A plethora of markers have been suggested as possible MSC markers 
(reviewed in [19]). Recent studies suggest a CD146 positive phenotype to human 
MSCs, which were identified in vivo as adventitial reticular cells (ARC) [20] or 
otherwise pericytes [21]. In the mouse, similar cells were identified in vivo as being 
PDGFRa+Sca-1+ cells [22]. Clearly, no consensus exists as to the exact origin and 
nature of the cells grown in culture as MSCs (Fig. 5.2). The standard method for 
deriving MSCs is by negative selection (i.e., removing other cells, such as CD11b 
macrophages). However, certainty regarding the success in derivation of MSCs is 
reached only after these cells are grown in culture and tested for their capacity to 
differentiate into at least three cell types: adipocytes, osteocytes and chondrocytes. 
MSCs are not unique to the bone marrow and actually exist in other body compart-
ments as well, such as adipose tissues, ears, cord blood, placenta and many more. 
They therefore represent a multipotent progenitor population which is tissue non-
specific, and exhibits body-wide distribution [19].

Even though much is left to be explored, MSCs are considered for cell therapy 
for a plethora of human diseases, due to their known beneficial characteristics; i.e., 
their differentiation potential and immunological properties. MSCs were found to 
have homing properties to injured tissues and tumor sites. This homing capacity 
prompted laboratories around the world to look at MSCs as a possible treatment for 
wound healing. In addition, their tumor homing capacity enables their use as  cellular 
vehicles artificially expressing anti-tumor proteins.

5.2  Current Status of Pre-clinical Attempts and Clinical  
Trials Using Isolated MSCs

The only stem cell type which is currently being used successfully in the clinic world-
wide, is the hemopoietic stem cell (HSC). In fact, even this cell type is not used as a 
homogenous population. Rather, a mixture of rare long-term repopulating HSCs is 
transplanted alongside a majority of progenitor cell populations which have a much 
more limited engraftment potential. The use of other stem cell populations in the clinic, 
such as embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs), 
attracts much attention and hope, but to date faces several obstacles, including moral 
issues, immunological incompatibility between the cells and the potential recipient, 
and the threat of possible tumor formation by these cell types. From these viewpoints, 
MSCs are a better candidate cell type since they present no moral difficulties, and are 
abundant and easy to obtain from any individual, irrespective of age. Thus, these cells 
could be used in an autologous manner, circumventing the issue of immune barriers.

Currently there are approximately 100 clinical trials conducted using  mesenchymal 
cells, according to the Clinical Trials website of the United States National Institute 
of Health (http://clinicaltrials.gov). These trials take advantage of the already 

http://clinicaltrials.gov


795 The Role of Mesenchymal Cells in Cancer

known beneficial properties of MSCs, their ability to differentiate into different cell 
types and thus regenerate affected tissues, and their ability to modulate immune 
responses. Autologous and allogeneic transplantation of MSCs is used in trials for 
conditions such as: diabetic foot [23], graft versus host disease (GvHD), multiple 
sclerosis, graft rejections, articular cartilage defects, multiple system atrophy, 
bone fractures, Crohn’s disease, systemic lupus erythematosus (SLE), homozygous 
familial hypercholesterolemia, type 1 diabetes mellitus (T1DM), chronic obstruc-
tive pulmonary disease (COPD), myocardial infarction, liver cirrhosis, osteogenesis 
imperfecta [24], Parkinson’s disease, osteoarthritis and stroke. A recent paper 
reviewed MSCs in clinical applications with the emphasis on renal and cardiovas-
cular applications [25]. An additional study demonstrated the capacity of MSCs to 
restore cardiac function in chronic ischemic cardiomyopathy [26]. This was done 
in female swine injected with male donor MSCs. After engraftment, heart function 
parameters showed improvement. In addition, infarct sizes declined. This study 
showed that MSCs differentiated into cardiomyocytes, vascular smooth muscle and 
endothelial cells. The possibility that cell fusion rather than differentiation accounts 
for the observation, was not explored.

MSC therapy for GvHD is under extensive review by the scientific community, 
as there are high hopes that the immuno-suppressive properties of MSCs could aid 
in this condition. Unfortunately, the use of MSCs for GvHD therapy is not straight-
forward. Pilot studies conducted using injection of MSCs into patients with steroid-
refractory severe acute GvHD showed no or very limited therapeutic effect [27,28]. 
However, one study did show beneficial effect for the use of MSCs in treating 
steroid-resistant severe acute GvHD, as observed by a significant decrease in mor-
tality of treated patients in a 2-year follow-up [29]. In another report, MSCs were 
shown to lose their immunosuppressive potential after allotransplantation [30]. MSC 
immuno suppression is possibly conveyed by inhibiting T cell proliferation; how-
ever, MSCs do not affect T cell effector properties [31].

The participation of MSCs in wound healing was described in several studies. 
One mode of action by which MSCs execute this activity is by releasing paracrine 
factors. Among these factors are specific chemokines which are responsible for the 
recruitment of macrophages and endothelial cells to the wounded site, thus hasten-
ing the healing process [32]. This kind of role played by transplanted cells is referred 
to as a “trophic effect”, implying that the MSCs participate in the process of tissue 
regeneration by supplying signals that modulate tissue organization, but do not ful-
fill a progenitor cell role by differentiating into new tissue cells that correct the 
damage inflicted by the disease. In contrast to this trophic effect, other studies sug-
gest that MSCs aid in wound healing by their ability to transdifferentiate into mul-
tiple skin types. MSCs were shown to migrate to wound sites in a mechanism 
involving the use of the chemokine receptor CCR7. Upon systemic engraftment of 
green fluorescent protein (GFP)-positive MSCs, pan-cytokeratin, CD31 and a-SMA-
positive-GFP cells were detected in the wound, contributing to wound repair [33].

Overall, great effort is put into assessment of the efficiency of MSC use for the 
therapy of human diseases. It is too early to say how prevalent the use of these cells 
will become, in view of conflicting information obtained from both pre-clinical 
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animal models as well as from clinical trials. Nevertheless, the huge effort put into 
this issue promises that sufficient information will be obtained soon, which will 
determine the feasibility of practical use of this cell type.

5.3  Homing and Engraftment of MSCs  
Following Transplantation

In order to use MSCs for targeted cell therapy, they should first be shown to have the 
ability to home into specific compartments and to perform this function at high 
 efficiency. However, many reports show poor MSC engraftment, and only a low 
percentage  of the transplanted cells can be found in the recipients. MSCs have the 
ability to home into the bone marrow, which is one of the sources of these cells in 
an adult. Surprisingly, it was shown that even though MSCs do have such a  property, 
they start losing it as early as 24 h after culturing, and completely lose their homing 
and engraftment capabilities after 48 h of culture ex vivo [34]. A major issue in MSC 
research is therefore to find ways to increase their engraftment potential. An addi-
tional issue would be the targeting of these cells to specific sites. Normally MSCs 
are found scattered all through the organism and any clinical use would require good 
targeting strategies.

Different approaches showed promising potential in re-establishing homing 
capacity in MSCs. It was found that by treating MSCs with a cocktail of five cytok-
ines: IL-6, IL-3, SCF, Flt-3 ligand and HGF, the cells home to the bone marrow 
more significantly. Infusing cytokine-treated MSCs into irradiated mice, resulted in 
faster recovery of hemopoiesis, and a higher degree of chimerism. Apparently, the 
use of the cytokine cocktail resulted in rapid accumulation of internal CXCR4 on 
the cell membrane, which made the cells more sensitive to its ligand SDF-1, thus 
improving migration into the bone marrow [35]. A 1-day exposure of human MSCs 
to a low oxygen concentration (1%) resulted in an increase in expression of 
CX3CR1 and CXCR4, which enhanced their engraftment in vivo. In addition, 
hypoxic conditions cause murine MSCs to express membrane-type (MT)1-MMP, 
which apparently play an important role in their migration and ability to form 
capillary-like structures [36,37]. Growing MSCs in hypoxic conditions resulted in 
lesser differentiation capacity compared to normoxic conditions; however, once 
returned to normoxic conditions, differentiation capacity was restored [37]. Yet 
another approach used to increase mouse MSC homing is by genetically modifying 
them to transiently express a4 integrin (CD49d), which forms a heterodimer with 
endogenous b1 integrin (CD29). Together, these molecules cause the cells to adhere 
to VCAM-1 and fibronectin in vitro. In addition, the modified MSCs were found to 
populate the bone marrow of syngeneic mice more than tenfold 5 weeks after trans-
plant, compared to unmodified MSCs [38]. Human MSCs were successfully 
manipulated and subsequently homed into bone marrow of mice by engineering 
their CD44 membrane protein using sialofucosylation [39]. This enzymatic proce-
dure turned their CD44 into a hematopoietic cell E-selectin/L-selectin ligand 
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(HCELL), which confers tropism on bone compartments. Dynamic real-time 
microscopy showed that sialofucosylated MSCs exhibited tethering and rolling 
interactions, adherence and infiltration into sinusoidal vessels.

These studies show that one may be able in the future to modify MSCs in a 
 manner that will increase their engraftment significantly and direct them to 
 preferred body locales. However, it is still unclear to what extent MSCs migrate 
in vivo and why they lose this capacity so rapidly following culture. A preferable 
research direction would therefore be an attempt to maintain MSCs in culture under 
conditions reminiscent of their in vivo niche and by that, prevent the decline in their 
biological functions, including migratory processes. In addition, much effort is still 
required to unravel the molecular basis of MSC migration, which is still vague. In 
this context, one study showed the potential of untreated human MSCs to adhere to 
endothelial cells by coordinated rolling and adhesion in a P-selectin-dependent 
manner. P-selectin-/- mice showed significantly less MSC rolling and adhesion to 
vessel walls [40].

5.4  MSCs as a Double-Edged Sword: Do They Support  
Tumor Cell Growth or Are They Safe  
for Use in Tumor Ablation?

One of the first studied functions of MSCs was their capacity to support the in vitro 
survival of HSCs. This survival and growth-promoting activity is not restricted to 
HSCs. Rather, MSCs similarly support the growth of tumor cells (Fig. 5.3). Moreover, 
the former section indicated that hypoxia enhances MSC migratory functions. As 
tumor environments are known to be hypoxic, it is suspected that such conditions 
may cause MSCs in tumor sites to promote angiogenesis and enhance tumor growth 

Fig. 5.3 The mesenchyme serves as a docking site and a microenvironment for survival and 
growth: ample evidence shows that in vivo HSC maintenance is dependent on the organ stroma. 
Similarly, tumor development and expansion is mesenchymal stroma-dependent. These in vivo 
phenomena have been reproduced in vitro: HSCs survive in vitro in the presence of stroma, and 
tumor cell survival and proliferation is markedly promoted by cultured stromal cells
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[36]. This phenomenon may be part of the mechanism that tumors use to recruit cells 
that enhance their growth. Cultured stromal cells do indeed enhance the in vitro 
growth of carcinomas [41]. A role of monocyte chemotactic protein-1 (MCP-1) was 
established as a migration stimulator secreted from breast tumors. This molecule was 
shown to increase MSC homing to the tumor site, and blocking this molecule with a 
specific antibody resulted in a 37–42% decrease in homing ability [42].

5.4.1  MSCs in Tumor Promotion

Several lines of evidence demonstrate a role for MSCs in the promotion of tumor 
growth. In a bilateral tumor-bearing mouse model for breast carcinoma, one of the 
tumors was irradiated unilaterally with a low dose of radiation (1–2 Gy). This was 
followed by a transfusion of luciferase-expressing MSCs. After 48 h, luciferase-
labeled MSCs accumulated more significantly in the irradiated tumor, than in its 
contralateral counterpart. The question remains whether this tropism is  beneficial 
for clinical prognosis [43]. Human MSCs secrete VEGF and support endothelial 
differentiation in vitro. This was reproduced in an in vivo study using mice bearing 
human orthotopic pancreatic cancer xenografts. These mice were treated with a 
systemic administration of 4 × 105 lentivirally-marked GFP human MSCs. 
Following treatment, a twofold increase in blood vessel density was observed 
within the tumors [44]. The participation of MSCs in tumor fibrovascular network 
formation is implied by their attributes, which resemble tumor-associated fibro-
blasts (TAFs). It was shown that long-term conditioning of MSCs with tumor 
conditioned media resulted in the secretion of familiar tumor-associated fibroblast 
proteins, such as TGF-b, VEGF and IL-6. Thus, tumor-associated fibroblasts might 
originate from MSCs localized to the tumor tissue. In addition, co-injection of 
human MSCs with Skov-3 tumor cells (50:50) resulted in expedited tumor growth, 
which necessitated the sacrifice of the mice 70 days prior to regular tumor growth 
(Skov-3 alone) [45]. MSCs were shown to localize to breast carcinomas, and pos-
sibly act as tumor-associated stroma [46,47]. Human MSCs were co-injected sub-
cutaneously with weak metastatic breast carcinoma cells MDA-MB-231 and 
MCF-7/Ras. This resulted in an increase in local tumor growth and increased meta-
static potential, as observed by higher metastatic nodules found in the lungs of the 
mice. Apparently, the tumor cells stimulate the secretion of CCL5 from the MSCs, 
which in turn, increase tumor cell motility, invasion and metastasis. Interestingly, this 
effect was reversible: tumor cells were separated from the MSCs after inoculation 
and tumor formation, and re-injected into mice. The new tumors which formed 
showed regular metastatic properties, which indicated that once the MSCs were 
absent, these cells ceased to be “educated” to become motile [48]. Another chemokine 
implicated in breast cancer metastasis is CCL2. MSCs co-cultured with breast cancer 
cells were shown to secrete this chemokine, and blocking this secretion resulted in a 
21–50% decrease in tumor formation. Interestingly, when MSCs were induced to dif-
ferentiate into osteoblasts, the secretion of CCL2 was significantly increased [49].
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Multiple myeloma (MM) models show that MSCs are essential players in the 
development of the disease. Apparently, MSCs secrete IL-6, which is a myeloma 
growth factor, and this results in increased tumor growth, once plasmacytoma cells 
are co-injected together with MSCs. Interestingly, MSCs also secrete activin 
A, which is a tumor suppressor growth agent. However, it appears that in multiple 
myeloma, the basal level of activin A secretion is overwhelmed by the secretion of 
IL-6, which stimulates tumor growth. The inclusion of stromal cells in a mouse 
plasmacytoma inoculum injected subcutaneously resulted in promotion of tumor 
growth. This could be blacked by the co-injection of the IL-6 antogonist, activin 
A [50–53]. Myeloma cells were shown to secrete a Wnt inhibitor, Dickkopf-1, which 
prevents MSCs from differentiating into osteoblasts, thus hastening  osteolytic 
lesion formation. Treatment of MSCs with the Wnt signaling activator 
6- bromoindirubin-3’-monoxime (BIO), rescued these cells from the osteoinhibitory 
state. In addition, such treatment resulted in a decrease in IL-6 secretion from MSCs, 
which in turn resulted in a reduction of myeloma cell proliferation [54]. Recent 
 findings indicate that human MSCs derived from MM patients are abnormal. They 
show diminished capacity to support hemopoiesis, and differentiate into osteoblasts. 
Gene expression profiles of MM-derived MSCs, compared with MSCs derived from 
healthy subjects, revealed already known factors such as IL-6 and DKK1 to be 
 overexpressed. Moreover, new soluble factors were found and one of them, GDF15, 
was found to induce dose-dependant growth of MOLP-6, which is a myeloma cell 
line [55]. Thus, MSCs enhance tumor growth both by serving as stromal support that 
enables tumor expansion and by enhancing angiogenesis, which is again  crucial for 
tumor growth and spread.

5.4.2  MSCs in Tumor Inhibition

The “beneficial” effects that MSCs have on cancer progression, growth and spread 
suggest that one should be very careful when considering the use of MSCs in the 
clinic. Is it possible that these cells would enhance tumor growth or induce the 
appearance of dormant tumors? Yet many experimental attempts point to the oppo-
site: Human MSCs can serve as cellular vehicles for anti-tumor drugs (reviewed in 
[56]). Several publications indicate that these cells have tropism to tumor sites, and 
if genetically modified to secrete anti-tumor agents, are successful in abrogating 
tumor growth. Melanoma cells co-injected with interferon-b overexpressing MSCs 
resulted in formation of significantly smaller tumors, and prolonged life expectancy 
in treated mice [57]. In a mouse myeloma model established by injection of KMS-
12-BM cells, genetically modified MSCs, which express osteoprotegerin, were able 
to reverse osteoclast activation and reduce bone loss caused by the disease [58]. 
Human MSCs also show promising results as cell therapy vehicles for the treatment 
of gliomas. They were shown to home to the glioma site and increase animal sur-
vival when expressing interferon-b [59], S-TRAIL [60] and Delta24-RGD [61]. 
One possible molecule involved in the ability of human MSCs to home to glioma 
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sites is matrix metalloproteinase one (MMP-1) [62]. A strong inhibition of lung 
metastases in a C-26 lung metastasis model was achieved by targeted delivery of 
NK4, an antagonist of hepatocyte growth factor (HGF), using a genetically modi-
fied mouse MSC. These cells were injected via the tail vein, migrated to tumor 
sites, inhibited tumor-associated angiogenesis and induced apoptosis of tumor 
cells, thus significantly prolonging the survival of treated mice [63]. Murine MSCs 
also show potential in fighting melanoma in a mouse model. Direct inoculation of 
MSCs into tumor sites resulted in the abrogation of tumor growth. It is apparent 
that MSCs have cytotoxic effects, as tumors cells underwent apoptosis. Furthermore, 
it was shown that MSCs inhibit angiogenesis in vitro, as well as in vivo, in a con-
centration-dependent manner, thus affecting blood supply to tumor sites and inhib-
iting tumor growth. When as many as 106 MSCs were injected directly into tumor 
sites, tumor growth was inhibited, and histological analysis revealed lower vascular  
density in the tumors [64]. One possible route for inhibition of tumor cell 
 proliferation was demonstrated in vitro by administering human MSC-conditioned 
media to MCF-7 and H7402 human hepatoma cells. Such treatment resulted in a 
significant decrease of tumor cell proliferation, as observed by a decrease of up to 
10% less BrdU incorporation. As the mRNA levels of NF-кB were downregulated, 
it was proposed that this molecule is involved in the depression of tumor cell 
 proliferation mediated by MSCs [65]. A recent study showed that repeated  infusions 
of Lin– CD44hiSca1–cKit+CD34– mouse MSCs were able to significantly reduce 
 progression to low-grade gastric dysplasia in Helicobacter felis-infected mice, 
 possibly by inhibiting Th-17 related pro-inflammatory activity [66].

Apparently, the use of MSCs as a means to suppress tumor growth should be 
carefully examined for each type of malignancy, due to their supportive stroma 
functions. Nevertheless, ample evidence from a variety of experimental systems 
point to the potential of MSC use in the targeting and destruction of tumor 
tissue.

5.5  MSCs as Tumor-Initiating Cells: Does MSC 
Transplantation Pose a Threat in Terms  
of Cancer Formation?

Recent publications show that mouse and human MSCs possibly harbor tumori-
genic potential. However, there is no consensus regarding this issue, and some 
investigators maintain that these cells are safe, particularly following a limited 
 number of passages. Some stromal cell lines, which have been long-term passaged 
in vitro, are still non-tumorigenic [67]. The lack of agreement on the subject of 
MSC tumorigenic potential calls for further investigation. Tumorigenicity of 
MSCs, when detected, is probably due to cell transformation under culture condi-
tions. These conditions impose great stress on cells that experience removal from 
their natural niche and exposure to unfavorable conditions. The latter could 



855 The Role of Mesenchymal Cells in Cancer

potentially drive MSCs into crisis, followed by transformation. Culture is impera-
tive for cell expansion and at this point cannot be avoided, so that sufficient 
amounts could be injected into patients. Therefore, the possibility that MSCs would 
undergo  malignant transformation in vitro is realistic, and should be examined 
carefully. The  following text will discuss the different aspects of MSC 
tumorigenicity.

5.5.1  In Vitro Senescence of MSCs

Cell senescence is a well-known phenomenon that occurs following in vitro cell 
 culture. This process is related to accumulating DNA damage in the cells, possibly 
due to oxidative stress and formation of reactive oxygen species (ROS). In addition, 
factors such as donor age, cell plating density and serum constituents have an impact 
on the evolution of this process. These factors have an impact on telomere length 
and cell cycle dynamics. Possibly, the cells which undergo senescence cease to 
 proliferate, and are slowly outnumbered by transformed cells, which adopt the 
 capability to withstand the different environment present in culture. This might 
account for the reports on MSC tumorigenicity. It appears that murine MSCs undergo 
senescence  at a much earlier stage than their human counterparts. This might be due 
to the fact that DNA damage control is stricter in human cells as compared to mouse 
cells (reviewed in [68]) (Fig. 5.4).

Epigenetic changes might be involved in the development of cell senescence. In 
human MSCs, cell senescence occurs after 2–3 months of culture, although appar-
ently this process starts from the first passage onwards [69]. Overall methylation 
levels seem to be maintained; however, specific CpG methylations change signifi-
cantly especially in genes related to cell differentiation and development (homeo-
box genes). There is a possibility that such epigenetic transitions might be 

Fig. 5.4 Alternative fates of MSCs in culture: Senescence, long-term growth or transformation 
and acquisition of tumorigenic potential
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responsible to transformational events. Thus, chromosomal aberrations might not 
be sufficient for the transformative process, which possibly requires modifications 
in DNA methylations. It should also be taken into account that cells with no 
chromosomal aberrations might be tumorigenic, solely based on their epigenetic 
profile, which changes under in vitro conditions [70].

5.5.2  Aneuploidy and Chromosomal Aberrations  
in Cultured MSCs

Murine MSCs show systematic chromosomal aberrations, independent of mouse 
strain and culturing methods. From early passages (P2), most of the MSCs show 
polyploid DNA, mainly near-tetraploid. Importantly, it was also shown that rat 
MSCs show loss of genomic stability and gain of chromosomal aneuploidy as 
early as following a single passage [71,72]. Clinical use of MSCs necessitates 
their  production in a manner which will maintain their safety. A recent study 
reports that 5/20 human MSC cultures at the first passage, show random aneu-
ploidy. It was  concluded, however, that the aneuploidy did not result from the 
culture process; rather, it was donor dependent. In addition, the research found no 
selective growth advantage for such aneuploid cells. However, this possibility 
was not investigated further since only one more passage was examined. All 
MSCs derived in this study became senescent, and failed to undergo cellular 
transformation [73]. An additional study examining ten different human MSCs in 
long-term cultures (up to 25  passages), revealed no chromosomal aberrations, 
and no telomere-maintaining mechanisms, events that might lead to cell transfor-
mation. Importantly, no genetic instability was diagnosed in human adipose 
stromal cells (up to 35 population  doublings) [74]. However, it was found that 
other cell types, such as primary  chorionic villus cells, gain genomic instability 
in culture in the form of tetraploidy, following eight to ten population doublings 
(PDs). This emphasizes the dependence on cell type when looking at culture-
induced genomic instability [75]. An additional indication for the safety of 
human MSCs was demonstrated in a study comparing them to rhesus MSCs. This 
study showed that human MSCs maintain an intact genome even after 30 popula-
tion doublings, in contrast to rhesus MSCs which acquire aneuploidy and tetra-
ploidy under the same conditions. Interestingly, rhesus MSCs show 70% 
tetraploidy/10% aneuploidy at passage (P)30, and this ratio shifted towards aneu-
ploidy at P90 (40% aneuploidy/40% tetraploidy). Both cells, however, failed to 
form any tumors once injected subcutaneously into immune-deficient mice [76]. 
One important study examined the tumorigenic potential of human MSCs derived 
from children diagnosed with idiopathic thrombocytopenic purpura (ITP) and 
autoimmune neutropenia. In this study, normal levels of p53, RB, p16 and H-RAS 
were detected, as well as undetectable hTERT activity. In addition, these cells 
maintained normal karyotypes, and did not form tumors upon transplantation into 
immnodeficient SCID mice [77].



875 The Role of Mesenchymal Cells in Cancer

5.5.3  MSC Tumorigenicity

Cultured mesenchyme may maintain a normal growth phenotype, including contact 
inhibition and lack of tumor formation even after prolonged culture periods [3]. 
However, ample evidence shows that murine MSCs are able to undergo cellular 
transformation (Fig. 5.4), in contrast to data found in reports on human MSCs. One 
study compared the ability of cells from both origins to generate osteosarcoma 
lesions in the lungs of intravenously injected animals. The authors demonstrated 
that mouse cells rapidly acquire numerical chromosomal abnormalities at P4, as 
 compared to the normal phenotypes of P7 human MSCs. Upon injection into 
immune-deficient mice, only the mouse MSCs formed osteosaroma-like lesions in 
the lungs. It is important to mention, in this context, that the use of human MSCs 
against the background of the mouse model is problematic, and might not disclose 
the true nature of these cells [78]. In a study conducted with murine MSCs, alarm-
ing evidence for their tumorigenicity was brought to light. It appears that murine 
MSCs accumulate chromosomal aberrations as early as on the first passage in 
 culture. Upon systemic delivery of MSCs from passages as early as P29, they 
formed fibrosarcomas in immune-deficient mice. Apparently, MSCs underwent 
cellular senescence at passages 2–5, as they exhibited an enlarged and flattened 
morphology, in addition to a slower proliferation rate. After this stage, the culture 
overcame the crisis and started to show an acquired proliferation capacity. Already 
after one passage, the cells showed only 50% normal karyotype (40, XY), and as 
passage number increased, chromosomal instability in the form of aneuploidy was 
also growing [79]. In an independent study aimed at analyzing the benefits of the 
use of genetically modified mouse MSCs, it was unexpectedly found that the mice 
developed tumors in lungs and extremities following systemic infusion of cells [80]. 
The researchers highlight the fact that the original non-modified MSCs exhibited 
abnormal cytogenetics, and formed sarcomas after systemic administration. The 
sarcomas showed clonal evolution of cytogenetic properties. Additional MSC cul-
tures did not necessarily form tumors, even when containing elaborate cytogenetic 
abnormalities. This indicates that not all aberrations are hazardous. Importantly, 
beside the original MSC culture, which had  confirmed tumorigenic potential, in ten 
more additional cultures, no tumorigenic potential was observed, emphasizing that 
MSC tumorigenicity is a relatively low-frequency event [80]. Murine MSCs which 
formed osteosarcomas were examined, and were found to be aneuploid, harboring 
translocations and homozygous loss of the cdkn2 region. CDKN2A/p16 protein 
expression was identified in 88 osteosarcoma patients, showing a correlation with 
the results obtained from the mouse model, implicating MSCs and cdkn2 expres-
sion in malignant transformation [81]. A model for age-related tumorigenesis in 
mice is suggested, by showing that MSCs spontaneously accumulate point muta-
tions in p53, and express embryonic factors in a fashion resembling naturally 
occurring fibrosarcomas in aged mice [82]. The mechanisms underlying sarcoma 
development are reviewed in [83]. Interestingly, sarcomas are generated in two 
distinct pathways: the first involves specific well-characterized translocations 
which are essential for the pathogenesis of the disease and are used in clinical 
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diagnostics. The second pathway, however, is less straightforward, showing com-
plex random karyotypes with severe genetic and  chromosomal instabilities. The 
cell origin of this cancer is still unknown; however, it is possible that MSC transfor-
mation might account for the random chromosomal instabilities type of sarcoma.

As MSCs are considered for clinical therapy in tissue repair, the tumorigenic 
potential following engraftment of such cells mounted on a bioscaffold was 
assessed. Evidently, tumors formed only in allogeneic or immune-suppressed mice, 
and did not depend on scaffold material. In addition, the expansion of CD4+ 
CD25+ T regulatory cells was observed, which suggests that MSCs are able to sup-
press the host’s anti-tumor immune response [84].

The safety of human MSCs started becoming questionable as accumulating data 
implicated these cells as having tumorigenic potential. The identification of trans-
formed cell populations in human MSCs came to light. These cells exhibited an 
increase in telomerase activity, chromosome aneuploidy and translocations, and 
formed aggressive tumors upon injection into NOD/SCID mice [85]. Apparently, 
human MSCs (from adipose tissue), transform in a spontaneous manner. This 
 process occurred at 4–5 months of culture, after the normal expansion period for 
clinical use (6–8 weeks) of these cells (ten different samples studied). Transformed 
cells had a higher expression of c-myc compared to pre-senescent cells, which 
might be the reason that these cells bypassed senescence. In addition, transformed 
cells exhibited extensive chromosomal abnormalities, and formed tumors upon 
injection i.v. into irradiated mice (38/38 mice with tumors). In contrast, pre senes-
cent cells showed no tumorigenic potential [86]. Human MSCs were shown to 
undergo spontaneous malignant transformation in culture at a transformation rate 
ranging between 40% and 50%. These cells avoided cell senescence via a transfor-
mative event, which allowed their rapid proliferation and formation of epitheloid 
tumors upon engraftment in mice [87]. A two-stage model for the transformation of 
human MSCs is proposed. In the first step, the cells adjust themselves to circum-
vent senescence by overexpression of c-myc and repression of p16. Then, telomere 
shortening causes cell crisis and hastens the process of cell selection, enabling only 
transformed cells to continue growing by stabilizing telomere changes [88]. Of note 
is the finding that human fetal neural stem cells transplanted in an ataxia telangi-
ectasia (AT) patient, led to the formation of tumors, 4 years after the procedure. 
Biopsy revealed that the tumors were glioneuronal and of donor origin. This data 
suggests that all stem cell therapy should be taken with caution [89].

5.6  Possible Mechanisms Underlying MSC Tumorigenicity: 
Chromosomal Instability – Culprit or Savior?

The use of MSCs for therapy requires their expansion ex vivo for a prolonged time, 
thus exposing these cells to environmental stress, which could potentially turn them 
into transformed cells. Current modes of application are using karyotypic analysis 
to ensure that only cells which harbor a normal karyotype are used for therapy. 
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An early model for the genetic evolution of human solid tumors has been sug-
gested. In this model, cells acquire tetraploid DNA content, followed by random 
structural chromosomal abnormalities and aneuploidy. These chromosomal struc-
tural changes might result in activation of growth-promoting genes, which will give 
rise to cell selection [90]. Although the reasons for aneuploidy and polyploidy of 
MSCs in culture and cells in vivo might be different, it appears that these events 
strongly correlate with cancer pathogenesis.

An extensive, recently published review underscores the path by which cells are 
able to acquire aneuploidy, and in turn tumorigenicity [91]. Although it is apparent that 
in some cases aneuploidy has beneficial effects, in most cases, however, aneuploidy 
results in poor prognosis. One way genomic instability can develop, is by the genera-
tion of centrosome amplification. Such an event can result from centrosome fragmen-
tation or overduplication in diploid cells, or alternatively, due to cell  tetraploidization 
(as DNA synthesis is coupled to centrosome doubling). Tetraploid cells can arise in 
three distinct pathways [92]: cell fusion, cytokinesis failure, and mitotic slippage. It is 
arguable whether tetraploid cells should be considered as transformation-prone. 
On the one hand, the aberrations in such cells, which  normally cause diploid cells to 
die, might occur unnoticed, as they have an extra set of  chromosomes. On the other 
hand, the extra set of chromosomes might prove to be beneficial, as tumor suppressor 
genes are also duplicated. Thus, there is a  favorable outcome for near-triploid 
 neuroblastoma patients over diploidy [93], and in Down’s syndrome, extra chromo-
some 21 suppresses tumor prevalence in this population, due to overexpression of the 
chromosome 21-resident gene DSCR1 (calcineurin inhibitor). Thus, polyploidy might 
entail beneficial properties in the appropriate context [94]. It is worth mentioning that 
polyploid cells occur naturally in the living body, in cells such as hepatocytes [95], 
megakaryocytes [96] and myocytes [97].

In the case of centrosome amplification, there is an increasing risk for multipolar 
spindle formation during mitosis. Such an event might lead to unequal distribution of 
maternal DNA in the two or more daughter cells. In most cases, such daughter cells 
will not be able to grow. However, on rare occasions, they might be proliferative and 
presumably tumorigenic. Multipolar spindle formation is a rare event, and thus, cannot 
explain observed rates of chromosomal instability in solid tumors. In addition, cells 
with centrosome amplification use preventative modes to avoid  multipolarity, possibly 
by centrosome clustering [98]. Thus, a mechanism linking extra centrosomes to 
 chromosomal instability was proposed [99]. This mechanism shows that supernumerary  
centrosome numbers cause chromosome lagging during mitosis, even in bipolar 
mitotic spindles, due to formation of an intermediate multipolar spindle.

Tetraploid cancer cells undergo apoptosis, unless p53 is inhibited [100]. Thus, 
changes in p53 expression during MSC culture might partially account for their 
potential tumorigenicity. Evidently, the loss of p53 in p21-deficient mouse MSCs 
leads to tumorigenicity and increased chromosomal content, compared to p53 wild-
type cells [101]. Interestingly, it was found that human epithelial cancer cells are 
able to suppress p53 in neighboring fibroblasts [102]. Another report demonstrated 
that the absence of p53 promotes osteogenesis in MSCs [103]. This piece of 
 information might explain the occurrence of osteosarcoma formation reported after 
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injection of MSCs. There are additional molecules which may convey tetraploidiza-
tion and tumorigenesis in MSCs, one of them is Aurora-B. Several types of cancers 
show increased expression of this protein, and its overexpression in murine epithe-
lial cells makes them tetraploid and enables them to significantly promote mam-
mary epithelial cancers [104]. This might suggest a role for tetraploidy in 
tumorigenic events; however, it is possible that Aurora-B overexpression results in 
other unseen events which in turn lead to tumorigenicity.

5.7  Summary

MSCs may contribute to cancer formation by two general mechanisms. One entails 
the activity of MSCs as tumor stromal cells (often called cancer-associated fibroblasts 
(CAFs) (Fig. 5.5). Human tumors do not develop beyond a few millimeters unless 
supported by a stromal meshwork. This is not different from the requirement of any 
normal tissue and organ for supportive and regulatory stroma. Tumors do not differ 
in this respect from normal tissues. Although it is often suggested that the tumor 
stroma differs markedly from normal stroma, this issue still requires  substantiation. 
Ample amounts of data shows that tumor growth and spread is enhanced by progeny 
of MSCs. In this respect, MSCs should be targeted and eliminated within tumors, in 
order to cause tumor regression. The limited success of anti-angiogenic treatments 
may be due to the presence of MSCs within tumors that could re-initiate angiogenesis . 
In contrast to this supportive effect of MSCs, some investigations point to possible 
inhibitory functions of these cells in their normal, unmanipulated state. Extensive 

Fig. 5.5 MSCs contribute to 
tumor formation in alterna-
tive and basically different 
modes: MSCs may serve as 
stromal components of the 
tumor, essential for its devel-
opment. However, MSCs 
may undergo malignant 
transformation and become 
tumor-initiating cells
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information relates to the capacity of MSCs to serve as vehicles that carry therapeutic 
molecules into tumors. This relates to the tendency of MSCs to home preferentially 
to sites such as the bone marrow and tumor microenvironments. Correct genetic 
modifications of MSCs that would  promote their specific migration and homing 
capacities are needed for further development of this therapeutic modality. It is also 
imperative to find ways to maintain MSCs in culture under conditions that allow the 
maintenance of their original properties, which are often lost upon culture.

The second major way by which MSCs may contribute to tumor formation is by 
gaining tumor-initiating capacities (Fig. 5.5). Although several studies demonstrate 
lack of tumorigenic potential of both mouse and human MSCs, other studies 
 indicate a high propensity of mouse MSCs towards malignancy, and a milder but 
yet significant capacity of human MSCs to form tumors. This is associated to 
genetic instability entailing aneuploidy and chromosomal aberrations. Although it 
might be expected that such occurrences would provide a solid molecular basis for 
MSC malignant transformation, this is not the case. It still has to be determined 
how far such changes are deterministic. Indeed, cells that have undergone extensive 
genetic changes often maintain a non-tumorigenic phenotype.
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Abstract Tumor associated macrophages (TAMs) are known to form a large part 
of many human and murine tumors. These TAMs have been programmed by the 
tumor microenvironment and interact with other cells within the tumor leading to 
increased tumor growth, survival, invasion and metastasis. While TAMs are tumor 
supportive, “classically” activated macrophages are polarized to be tumoricidal. 
Signaling through the transcription factor, nuclear factor kappa B (NF-kB) has been 
shown to regulate many diverse genes and is heavily involved in inflammation and 
immunity and as such it has been shown to play a key role in the determination of 
macrophage function.

Keywords Tumor-associated macrophage • NFkB, • Tumor microenvironment  
• Phenotype • Cytokines

6.1  Introduction

The link between chronic inflammation and cancer is not a recent concept, with the 
original observation of the presence of leukocytes in tumors being made by Virchow 
in 1863 [1]. The implications of this observation were not seized upon at the time and 
it is only relatively recently that this area has attracted significant interest as a target 
for anticancer therapies. It has been demonstrated that the presence of chronic inflam-
mation is associated with a greater cancer risk at the inflammatory site [2]. 
Furthermore malignant cells have been shown to release factors that recruit inflam-
matory cells and promote the generation of an inflammatory environment. In many 
cancers macrophages comprise a large component of this leukocyte infiltrate [3,4].
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6.2  Macrophage Polarisation

Macrophages are plastic cells that play a multitude of roles as determined by their 
physiological environment and anatomical location [5]. They are recruited as 
monocytes from the bloodstream into healthy tissue and upon arrival in the tissue 
they differentiate into macrophages. They can also be recruited by chemoattractants 
released from the site of inflammation, injury, infection or malignancy and differ-
entiate in response to the microenvironment that they encounter. This microenvi-
ronment directs the macrophage towards particular phenotypes ranging between the 
polar extremes of M1 and M2 (Fig. 6.1) [6]. Macrophages of the M1 phenotype are 
referred to as “classically” activated and occur in response to interferon-g and 
microbial products. They are characterized by high major histocompatability com-
plex (MHC) molecule expression and elevated proinflammatory cytokine release 
(such as interleukin-12), inducible nitric oxide synthase (NOS2) upregulation and 
are highly capable of killing pathogens and tumor cells. At the other pole, M2 or 
“alternatively” activated macrophages are responsible for curbing the immune 
response, clearing cell debris and promoting tissue remodeling and angiogenesis 
[7]. The M2 phenotype can be further subdivided according to the activating stimuli 
and function [8]. Stimulation by IL-4 and IL-13 leads to M2a, with M2b arising in 
response to combined exposure of either IL-1R or TLR agonists in conjunction 
with immune complexes. Both M2a and M2b promote Th2 type responses and have 
immunoregulatory roles. Interleukin-10 exposure leads to the M2c phenotype, 
which is concerned with suppression of the immune response and tissue remodeling. 
These M2 macrophages are characterized by low MHC molecule expression, 
increased anti-inflammatory IL-10 release and expression of scavenger receptor 

Fig. 6.1 Macrophage polarisation in response to the microenvironment. Upon recruitment from 
blood stream and entry into the tissue, monocytes differentiate into macrophages in response to 
the local environment. This environment directs the macrophages towards a particular phenotype 
associated with a range of molecular characteristics
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(SR-A) and mannose receptor (MR) [6]. They also demonstrate upregulation of 
arginase-1, Fizz1, Ym1 and macrophage galactose-type C-type lectin-2 (Mgl2) 
transcription [9]. One of the defining phenotypical differences between the M1 and 
M2 phenotypes is the production of IL-12 and IL-10. Interleukin-12 stimulates a 
strong immune response, causing the activation of natural killer (NK) cells and the 
production of interferon-g and interleukin-2 by Th1 cells. Interleukin-10 on the 
other hand stimulates activation of the signal transducer and activator of transcription 
(STAT)3 pathway and inhibits STAT1, suppressing IL-12 production and conse-
quently IFN-g release. It further inhibits the production of other proinflammatory 
cytokines through increased RNA degradation.

6.3  Tumor Associated Macrophages: An Alternative 
Macrophage Phenotype

Solid tumors are comprised not only of malignant cells but also nonmalignant 
stromal cells [10]. These nonmalignant cells are not merely innocent bystanders, 
indeed the interactions between the various stromal cells themselves and the malignant 
compartment has a profound effect on cancer growth, progression, metastasis and 
angiogenesis [11]. Leukocytes account for a large proportion of the nonmalignant 
stroma, comprising up to 50% of the total tumor mass. The composition of the 
leukocyte population is also a key factor in determining the clinical outcome. A high 
proportion of T lymphocytes correlates with better prognosis in a number of tumor 
types [12,13] yet a high macrophage density is indicative of a poor prognosis in the 
majority of tumors [14]. Indeed both pharmacological (through the use of bisphos-
phonates) and transgenic depletion of macrophages has been demonstrated to have 
a potent inhibitory effect on tumor progression in a number of murine tumor mod-
els [15]. Tumor associated macrophages (TAMs) are recruited to the tumor site as 
monocytes by chemokines like CCL2, SDF1 and VEGF and differentiate in 
response to the tumor microenvironment. As such they are more similar to the M2 
phenotype, having low expression of MHC II and IL-12, and elevated production 
of IL-10, VEGF and PGE

2
. This may be an oversimplified view of TAMs however 

and in keeping with their plastic nature there are reports of TAMs with a more 
proinflammatory phenotype during the early stages of tumor initiation, which adopt 
a more immunosuppressive phenotype as the tumor progresses [16]. There have 
been many investigations looking at “re-educating” or targeting TAMs for destruc-
tion. The phosphatase SHIP has been implicated in inhibiting the polarization 
towards an M2 phenotype and experiments using macrophages from ship−/− mice 
showed them to have dimished NO production in response to LPS and be argi-
nase-1 high [17]. Futhermore, tumors in these mice grew much faster [17]. 
Depletion of macrophages through the use of clodronate containing liposomes lead 
to decreased tumor burden and metastasis [15]. Macrophages have also been targeted 
in a mouse model of ovarian cancer through attaching a saporin toxin to a SR-A spe-
cific antibody, resulting in macrophage depletion and reduced tumor burden [18]. 
A similar targeting method was employed using a DNA vaccine against legumain, 
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which is highly expressed on TAMs. This provoked a strong CD8+ T-cell response 
against the TAMs and resulted in decreased tumor burden, angiogenesis and metas-
tasis [19]. Finally, through the use of an IL-10 receptor-specific antibody and CpG 
oligodeoxynucleotides, TAMs were switched from an M2 to an M1 phenotype and 
this resulted in a rapid reduction in tumor size [20]. It can be clearly seen from these 
examples that targeting TAMs and macrophage polarization can potentially be a 
highly successful way of promoting antitumor activity. With this in mind it is 
understandable that a great deal of interest has been shown in investigating the 
pathways that regulate this polarization process as well as pathways that support the 
protumor functions of TAMS. A major pathway in this process has been shown to 
be NF-kB.

6.4  The NF-kB Signaling Pathway

The NF-kB family consists of five proteins: NF-kB1 (p105/p50), NF-kB2 (p100/
p52), Rel A (p65), Rel B and c-Rel [21]. While it is only the Rel proteins that contain 
the transcription activation domains, all NF-kB family members possess a Rel 
Homology Domain (RHD) which contains a nuclear localisation sequence (NLS) 
and is used in dimerisation, association with members of the IkB family and binding 
to the NF-kB DNA target sites. Through numerous combinations of hetero and 
homodimers, the NF-kB family can differentially regulate a large array of biological 
responses. NF-kB dimers are retained in the cytoplasm by association with IkBs 
through RHD binding, preventing nuclear localisation. Activation of NF-kB signal-
ling occurs by stimulation of three main pathways (Fig. 6.2). Inflammatory cytok-
ines and pathogen associated molecular patterns (PAMPs) lead to activation of the 
IKK complex via the Toll-receptor/IL-1 receptor and TNF receptor families. This 
IKK complex is a heterotrimer consisting of two kinases, IKKa, IKKb and a regula-
tory subunit, IKKg (NEMO), which is required to link the IKK complex to upstream 
signals. Activation of this complex leads to the phosphorylation of the IkB (at Ser32 
and Ser36 on IkBa and equivalent sites on other IkBs) by IKKb, causing polyubiq-
uitination (on Lys21 and Lys22 of IkBa or equivalent sites on other IkBs) and deg-
radation by the 26S proteosome [22]. The other catalytic subunit, IKKa, has been 
shown to be dispensible for this process. This frees the NF-kB dimer (most com-
monly p50/p65), which translocates to the nucleus where it can bind to sequence 
specific DNA binding sites leading to the transcription of particular target genes 
[23]. This is known as canonical activation. Alternatively, factors such as lymphoto-
xin B, BAFF, RANKL and CD40L can induce a different NF-kB pathway through 
binding their receptors. This pathway involves the activation of an IKKa homodimer 
in response to the activation of NF-kB inducing kinase (NIK) [24,25]. The activated 
IKKa homodimer phosphorylates NF-kB2 (p100) at the C-terminus. NF-kB2 can 
be viewed as having an inbuilt IkB and upon phosphorylation of the two C-terminus 
sites, ubiquitination and partial degradation, yields p52 leading to nuclear transloca-
tion. This p100/p52 is most commonly found in association with Rel B and its 
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nuclear translocation leads to the activation of a different set of genes from Rel A. 
This is known as alternative activation. The third NF-kB pathway is concerned with 
the nuclear translocation of p50 homodimers and is referred to as the p105 pathway [26]. 
When this pathway is inactive, a p50 homodimer is retained in the cytoplasm associ-
ated with p105. Proteolytic processing of p105 occurs by two separate mechanisms. 
Constitutive processing of p105 leads to the production of p50 monomers that can 
bind RelA and c-Rel and becomes part of the canonical pathway. Agonist induced 
proteolytic processing occurs in response to stimuli such as IL-1, TNF-a and LPS 
and leads to the phosphorylation of p105, at Ser927 and Ser932, by the IKK complex. 
This causes ubiquitination of the p105 and its total degradation by the proteosome. 
The p50 homodimer is then free to translocate to the nucleus. The binding of p50 
homodimers to transactivation sites blocks these sites but does not induce transcrip-
tional activation unless they are associated with BCL-3. BCL-3 is a member of the 

Fig. 6.2 The three pathways of NF-κB activation. In the canonical pathway, the IKK complex is 
activated leading to the phosphorylation and ubiquitination of IκBa, freeing the p50/p65 hetero-
dimer to enter the nucleus and induce gene transcription. The alternative pathway is regulated by 
NIK and the activation of the IKKa homodimer, which targets the p100 partial degradation to p52 
leading to nuclear translocation. The p105 pathway uses the same IKK complex as the canonical 
pathway to induce phosphorylation and complete degradation of the p105 freeing the p50 homodi-
mer to enter the nucleus
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IkB family but distinct from the other family members it contains a transactivation 
domain. Depending on the context it can act as either a transcriptional activator or 
repressor [27]. It is almost exclusively found in the nucleus where it can form com-
plexes with p50 and p52 homodimers. The effect that BCL-3 has on NF-kB activity 
is largely determined by post-translational   modification. Ubiquitylation of BCL-3 is 
a requirement for its nuclear localization and deubiquitylation of BCL-3 displaces 
p50 and p52 homodimers from the promoter regions, allowing transcriptionally 
active NF-kB dimers to bind. The other key post-translational modification of 
BCL-3 is phosphorylation, when BCL-3 is both ubiquitinylated and phosphorylated 
it forms transcriptionally active complexes with p50 and p52 homodimers. However, 
with the exception of cyclin D1, the genes that are regulated by this process have yet 
to be characterized. If the BCL-3 is ubiquitinylated yet unphosphorylated it stabilizes 
the homodimers causing inhibition of NF-kB activity, a process that has been hypoth-
esised to induce tolerance.

The activation of the canonical pathway leads to the increased transcription of 
genes that are important to the innate immune response, such as adhesion molecules, 
proinflammatory cytokines, chemokines and enzymes associated with the production 
of anti-apoptotic and inflammatory mediators. The release of proinflammatory cytok-
ines such as IL-1b and TNF-a generates a positive feedback loop leading to further 
activation of NF-kB. Genetic deletion of NF-kB family members causes a number of 
functional defects. Macrophages derived from Rel B−/− mice overproduce IL-1b, 
produce normal levels of IL-6, IL-10 and IL-12 yet are unable to produce TNF-a [28]. 
TNF-a production is similarly impaired in c-Rel−/− macrophages however IL-12 
levels are also diminished in these cells [29,30]. It should be noted that an element of 
redundancy exists between various NF-kB molecules with various components being 
able to compensate for each other [31]. This has been demonstrated in comparisons 
between RelA knockout mice and RelA, c-Rel double knockout mice, where c-Rel 
was shown to reduce the impact of TNF-a induced apoptosis that occurred in RelA 
deficient mice [23]. While IKKb−/− leads to an embryonic lethal condition in mice as 
a result of liver apoptosis this could be overcome if TNFR1 was also knocked out [32]. 
Furthermore using cell selective IKKb deletion it was shown that IKKb protects mac-
rophages from LPS induced apoptosis [33], with IKKb deleted cells being much more 
susceptible to apoptosis. The use of IKKa mutants, where two point mutations have 
been performed to yield an inactivatable form of IKKa, has shown that IKKa has a 
role in regulating proinflammatory responses in macrophages by phosphorylating p65 
and increasing its rate of nuclear turnover and clearance [34]. The absence of IKKa 
kinase activity results in prolonged inflammatory responses.

In malignant cells themselves, the aberrant activation of the NF-kB pathway is 
associated with numerous effects that promote tumorigenesis. They can become 
independent of exogenous growth factors, resistant to apoptosis, non-responsive to 
growth inhibition, immortalized and capable of inducing angiogenesis [35]. 
Furthermore it can also induce more aggressive tumor types, capable of metastasis 
and invasion. This can occur in response to genetic mutation or microenvironmental 
factors such as hypoxia, reactive oxygen intermediates (ROI) and proinflammatory 
cytokines. Indeed it is believed that cytokines like TNF-a and IL-6 derived from 
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macrophages at sites of chronic inflammation contribute to these processes through 
activation of NF-kB and STAT3 pathways.

While NF-kB is a key player in regulating immune and inflammatory responses, 
it cannot be viewed in isolation from other inflammatory pathways. Indeed maximal 
expression of many inflammatory factors can only be obtained by a combination of 
transcription factors [36]. The Janus kinases/Signal Transducers and Activators of 
Transcription (JAK/STAT) pathway is another family that can coordinate with 
NF-kB in order to optimize the transcription of target genes [9]. Upon activation, 
receptor associated JAKs are tyrosine phosphorylated, this in turn leads to tyrosine 
phosphorylation of receptor associated STAT causing dimerisation and subsequent 
nuclear translocation. Having entered the nucleus, the STATs bind to specific 
regions of the target genes resulting in the activation of gene expression. The level 
of transcriptional activation is regulated by serine phosphorylation of the STAT 
protein under the control of mitogen activated protein kinases (MAPKs) or mTOR 
[37]. Both STAT1 and NF-kB activation, along with some MAPK-dependent AP-1 
binding as well as other transcription factor binding is required for the maximal 
expression of NOS2 and IL-12p40 [38,39], clearly demonstrating the requirement 
for cooperation between the signaling pathways.

6.5  NF-k B and Macrophage Polarization

That NF-kB plays a major role in the determination of macrophage phenotype is 
without doubt. Unsurprisingly however, the precise role it plays in the promotion 
and maintenance of the TAM phenotype is difficult to elucidate, being likely to 
have multiple effects, which will no doubt vary in response to the context. A number 
of studies have been carried out to investigating the role that various components 
of the NF-kB pathway play in regulating the TAM phenotype. These studies have 
used cells with alterations to the NF-kB pathway on a genetic level.

It has been shown that the inhibition of IKKb has a profound effect on tumor num-
ber and size in a mouse model of colitis associated cancer (CAC) [40]. In this model, 
mice are injected with the carcinogen azoxymethane (AOM) and this is followed by oral 
dosing of dextran sodium sulphate (DSS), which disrupts the intestinal barrier bringing 
enteric bacteria into contact with lamina propria macrophages causing chronic colitis. 
The combination of these insults leads to the initiation of tumors. In this study IKKb 
is deleted solely in cells that express LysM (i.e. myeloid cells) using a cre/lox system. 
Deletion of IKKb in the macrophages resulted in a decrease in tumor number and 
tumor size. It was hypothesized that this effect was largely due to a decrease in IL-6 
secretion by the macrophage compartment as IL-6 increases proliferation of trans-
formed epithelial cells. This idea was further strengthened by the observation that 
neutralizing IL-6 receptor antibodies had a similar effect on tumor size and number 
[41]. A similar story was found in a chemically induced hepatocellular cancer (HCC) 
model where HCC is achieved following administration of diethylnitrosamine (DEN) 
[42]. In this model DEN induced necrosis of hepatocytes and these necrotic bodies are 
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then recognised by Kuppfer cells (resident liver macrophages). Necrotic cell death 
stimulates the Kuppfer cells to release proinflammatory cytokines, such as IL-6 and 
promotes a proinflammatory environment. This causes “compensatory proliferation”, 
stimulating hepatocytes to enter the cell cycle and, if those hepatocytes have DEN-
induced oncogenic mutation(s), promotes malignant growth. Loss of IKKb function in 
hepatocytes promotes this process as NF-kB signalling inhibits both necrotic and 
apoptotic cell death. However, the concurrent deletion of IKKb in Kuppfer cells 
decreased the tumor burden 16-fold [42]. The decreased release of proinflammatory 
cytokines was shown to work on two levels: firstly as a direct effect on the “compensa-
tory proliferation” of hepatocytes but it was also apparent that stellate cells responded 
to an unidentified factor produced by the Kuppfer cells causing them to release a pow-
erful hepatocyte growth factor.

The effect of inhibition of IKKb in macrophages has also been investigated using 
the ID8 ovarian cancer model [43]. In this model ID8 ovarian cancer cells are injected 
into the peritoneum representing late stage ovarian cancer where the malignant cells 
have spread to and are engaged in colonizing the peritoneum. During this study, the 
model was established for 7 weeks at which time bone marrow derived macrophages 
were adoptively transferred into the peritoneum. These macrophages were either 
wildtype, had been transfected with an IKKb dominant negative virus to induce 
knockdown of IKKb or mock transfected. In a further 2 weeks the mice injected with 
the IKKbdn macrophages showed a hugely reduced tumor burden compared with all 
other groups. This was repeated using TAMs taken from established tumors and 
yielded the same results. Studies have shown that IKKb inhibits the activation of 
STAT1 leading to a decrease in NOS2 expression [44]. Many studies have shown that 
NO donors induce apoptosis in and are cytotoxic to tumor cells in vitro [45–47]. 
Indeed in vitro studies undertaken demonstrated that IKKbdn macrophages had 
increased tumoricidal capabilities, an effect that could be rescued using the NOS2 
inhibitor 1,400 W [43]. However, this was discounted as an explanation for the 
decreased tumor burden observed in vivo as there was only a transient increase in 
peritoneal NO levels following adoptive transfer of IKKbdn macrophages, with levels 
returning to normal within 24 h, whereas the decrease in tumor burden persisted for 
much longer. Analysis of the TAM phenotype in the ascites showed that the IKKbdn 
macrophages had a M1-like phenotype with an IL-12high, IL-10low, TNF-alow 
profile when compared with their wildtype and mock transfected counterparts. 
Interleukin-12 is a factor with a known ability to recruit natural killer (NK) cells and 
in accordance with this, an increase in the number of NK cells found in the perito-
neum was observed. The use of IL-12p40 neutralizing antibodies in vivo “rescued” 
this effect, demonstrating it to be as a result the elevated ascitic levels of IL-12. These 
experiments were also repeated using the LysM-cre/lox system described above. 
These data clearly show that signaling through NF-kB is vital to maintaining the 
TAM phenotype and for promoting their tumor supporting role. In order to elucidate 
the factor responsible for activating NF-kB signaling, a similar ID8 adoptive transfer 
model was employed, this time using macrophages deficient in receptors and 
adaptor proteins upstream of NF-kB. Adoptive transfer of mice with IL-1R−/− or 
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MyD88−/− macrophages, but not those with TLR2 or TLR4 deletion, resulted in 
markedly less tumor burden. This strongly indicates interleukin-1 to be one of, if not 
the, NF-kB activating factor(s) in the system.

Another approach used to investigate the role of NF-kB signaling in controlling 
macrophage phenotype has been the use of p50−/− mice. It has been found that 
high amounts of p50 NF-kB homodimers are localized in the nucleus of TAMs 
[48]. These p50 NF-kB homodimers are capable of binding to transcription sites 
but they do not contain subunits with transcription activation domains (like the Rel 
proteins). As such, their binding does not induce gene transcription and their presence 
there merely prevents the binding of Rel containing NF-kB dimers resulting in an 
inhibition of NF-kB signaling. The result of this, regarding TAMs, is the promotion 
of the IL-12low IL-10high phenotype [49]. In a model of murine fibrosarcoma, 
p50−/− mice showed a significantly reduced tumor growth [49]. The same result 
was achieved using p50−/− bone marrow chimeras indicating that the cells respon-
sible for this event come from the haematopoietic compartment. When these TAMs 
were isolated from the tumor and treated with LPS/IFNg in vitro, they were shown 
to be of the M1 phenotype, with upregulated expression of genes encoding 
IL-12p40 and downregulation of IL-10. This indicates that the inactivation of 
NF-kB signaling leads to the promotion of TAM phenotype.

While these studies using IKKb knockdown or cell-specific deletion and those 
employing p50−/− both altered the TAM phenotype towards IL-12high IL-10low 
it appears that in mechanistic terms they contradict each other. However, that may 
be a premature conclusion to make and there are a number of factors that must be 
considered. Given the level of redundancy that exists between the members of the 
NF-kB family, the possibility that there may be some level of compensation for 
the permanent loss of p50 by another member of the family cannot be discounted 
and it would be difficult to predict the outcome of such an event. Furthermore, as 
the effect of p50 and p52 homodimers is also under the control of BCL-3 regula-
tion, which can result in NF-kB transactivation inhibition or activation, the 
absence of p50 homodimers is likely to have a profound effect on this system. It 
has also been demonstrated, in a TLR mediated inflammatory system, that p50−/− 
macrophages have elevated expression of IL-12p40 [50]. In this system it was 
shown that this event was not mediated through direct NF-kB signaling rather 
MAPK instead. The induction of c-fos, under the control of ERK1/2, inhibits the 
expression of IL-12p40. The activation of ERK1/2 is the culmination of a MAPK 
signaling cascade initiated by tumor promoting locus 2 (Tpl-2) kinase. These mac-
rophages do not express detectable levels of Tpl-2 kinase because p50/p105 is 
required for its stabilization. As such the absence of p50/p105 prevents c-fos medi-
ated IL-12p40 repression. It is interesting to note that these macrophages also 
demonstrated a requirement for p50/p105 in mounting an immunosuppressive 
effect in response to IL-10 [51]. It is clear to see that the effects of p50 knockout 
are potentially wide ranging and not exclusively limited to traditional NF-kB 
pathways. Also, as previously mentioned, a number of NF-kB dependent genes 
require the binding of other transcription factors as well for maximal expression. 
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Concurrent binding of STAT1 is required for the full transcription of NOS2 and 
IL-12p40. It was proposed by Hagemann et al. [43] that part of the mechanism of 
action of IKKb in maintaining the TAM phenotype was through the repression of 
STAT1 phosphorylation and upon deletion of IKKb this inhibition was blocked 
resulting in greater STAT1 activation. This proposed mechanism for the upregula-
tion of some of the M1 type target genes diminishes the requirement for down-
stream NF-kB signaling meaning that a vestigial amount of IKKb activity 
following viral knockdown may be sufficient to allow target gene transcription in 
conjunction with STAT1.

While TLR2 did not affect the level of tumor burden in the ID8 ovarian cancer 
model used by Hagemann et al. [43], a study by Kim et al. [52] employing a mouse 
model of lung metastasis did demonstrate a role for TLR2 signaling. The extracellular 
matrix proteoglycan, versican activated macrophages through TLR2, inducing 
TNF-a release which lead to greatly increased metastatic growth. Similarly, TLR4 
deletion was shown to have no effect on tumor burden in this system. However, 
following chemotherapy and radiotherapy, patients with a TLR4 loss of function 
allele relapse more quickly than patients with the normal allele [53,54]. This was 
shown to involve recognition of high-mobility-group box 1 (HMGB1) by TLR4 on 
dendritic cells and activation of MyD88. These examples demonstrate the degree of 
contradiction between different systems, further complicating the elucidation of the 
role of individual components of a signaling pathway.

6.6  Crosstalk Between Hypoxia Inducible Factor and NF-k B

TAMs have been shown to accumulate in areas of tumors that are poorly vascularised. 
As such these areas are hypoxic (of low oxygen tension) and lead to the adaption of 
TAMs to hypoxia. This occurs through the upregulation of pro-angiogenic and 
hypoxia inducible genes, such as VEGF, CXCL8, bFGF and glycolytic enzymes 
[10]. The transcription of many of these genes is under the control of HIF-1 and 
HIF-2 [55]. Experiments performed using HIF-1a conditional knockouts showed 
that the absence of HIF-1a leads to a marked decrease in macrophage motility and 
invasiveness. Furthermore, HIF-1a has also been demonstrated to upregulate 
CXCR4 expression and CXCL12 potentially explaining its effect in the function and 
location of TAMs, tumor cells and stromal cells. While hypoxic conditions stabilize 
HIF-1a and protect it from proteosomal degradation, HIF-1a is also found in 
response to certain proinflammatory cytokines, LPS and other stimuli under condi-
tions of normal oxygen tension. It has been suggested that this is due to NF-kB regu-
lating HIF-1a on a transcriptional level, which has been demonstrated under 
hypoxic conditions [56]. Further evidence to support this proposal comes from stud-
ies using macrophages from IKKb−/− mice where hypoxic conditions were shown 
to upregulate NF-kB activity with a consequential upregulation of HIF-1a [57]. The 
absence of NF-kB signaling in IKKb−/− macrophages led to decreased levels of 
HIF-1a protein.
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6.7  Concluding Remarks

As demonstrated here the role that NF-kB plays in the shaping of the macrophage 
response works on many levels and also varies depending on the stage of the tumor. 
This functional plasticity is very apparent when considering the requirement of 
NF-kB target gene transcription in the production of inflammatory cytokines such as 
TNF-a and IL-6 particularly in early stages of tumor initiation, whereas high levels of 
p50 homodimers appear to be important in maintaining the immunosuppressive TAM 
phenotype found in more established tumors. Therapeutic interventions with inhibi-
tors of the NF-kB pathway will also need to take into account this plasticity as well 
as being tailored to the tumor type. The differing effects of IKKb inhibition is clearly 
demonstrated in comparisons between the AOM/DSS colitis associated cancer model 
and the DEN hepatocellular carcinoma model. In both of these models deletion of 
IKKb in the macrophage compartment had an inhibitory effect on tumor progression, 
however in the DEN model inhibtion of IKKb signaling in the hepatocytes led to 
them becoming more susceptible to necrosis, causing the release of more proinflam-
matory cytokines and aiding tumor progression. In the AOM/DSS model IKKb dele-
tion in the enterocytes was shown to decrease the incidence of tumors through the 
induction of apoptosis of pre-neoplastic progenitors. Clearly, effects of this kind 
would need to be taken into account when attempting to modulate NF-kB function 
and potentially methods to target the macrophages specifically would have to be 
employed. It is clear that further investigation into the activity of NF-kB in TAMs at 
different stages in tumor development is necessary and warranted. While investiga-
tions carried out to date have shown a crucial role of NF-kB in TAM function and 
consequent tumor progression, there has been limited research on the interaction 
between members of the NF-kB family and other signaling pathways in TAMs. This 
information could provide greater understanding of how the plasticity of TAMs is 
modulated and lead to new therapeutic interventions.
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Abstract Many years ago Otto Warburg observed that tumor cells exhibit an 
increased glycolysis even in the presence of oxygen and he stated that this metabolic 
shift to glycolysis represents “the origin of cancer cells” [1,2]. His observation has 
gained new attention during the last years and many reports show that there is a 
molecular basis for the so-called “Warburg effect”. Furthermore it is clear right 
now that not only the glucose metabolism but also many other metabolic pathways 
e.g. the amino acid metabolism, the lipid metabolism and the adenosine metabo-
lism, are altered in the tumor cell and that these changes represent possible target 
structures for cancer therapy (Table 7.1). In this article we review recent findings 
and aspects of the metabolic alterations of tumor cells with a special focus on the 
implications for the immune response in the tumor environment.

Keywords Tumor metabolism • Warburg • Immune escape

7.1  Tumor Glucose Metabolism: The Warburg Phenotype

In contrast to normal differentiated cells that mainly rely on oxidative phosphoryla-
tion, most cancer cells primarily use aerobic glycolysis for energy production. The 
link between cell metabolism and cancer was first described many years ago by 
Warburg and is now known as “Warburg effect” [1,2]. This “glycolytic phenotype” of 
solid malignant tumors is characterized by an upregulation of glycolytic enzymes 
such as pyruvate kinase, hexokinase and lactate dehydrogenase (LDH). Tumor cells 
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have been shown to express predominantly the M2 isoform of pyruvat kinase (PKM2) 
[3]. PKM1 and PKM2 are different splicing products of the same mRNA transcript 
[4]. PKM2 exists in dimeric and tetrameric forms and the dimeric form predominates 
in tumors [5]. PKM2 expression seems to be necessary for aerobic glycolysis and 
provides a growth advantage for tumor cells in vivo [3]. In addition, LDH and hexoki-
nase are of crucial importance for tumor cell proliferation as inhibition of LDH results 
in the stimulation of mitochondrial respiration and a reduced proliferation in vitro and 
in vivo [6]. Furthermore tumor tissues show an increased expression of glucose trans-
porters (GLUT). Accordingly, tumor cells are characterized by an increased uptake 
of glucose and the positron emission tomography (PET) exploits this feature of tumor 
cells for tumor diagnosis and staging. Glucose is metabolized via glycolysis and its 
endproduct lactate is secreted in cotransport with protons, which in turn lowers the 
pH of the tumor environment. A low pH is characteristic for the tumor milieu and 
local acidification has positive effects on extracellular matrix degradation and migra-
tion of tumor cells. Therefore Gatenby et al. proposed an “acid-mediated tumor inva-
sion model” where an altered glucose metabolism leads to acidification of the tumor 
milieu which in turn allows tumor cells to form invasive cancers [7]. In addition, work 
by Mueller-Klieser and colleagues has nicely shown that high lactate levels in the 
primary lesion of human head and neck tumors, cervix carcinoma and rectal carcino-
mas correlate with incidence of distant metastases [8–10]. Therefore it seems that the 

Table 7.1 Overview of metabolic changes and their impact in the tumor environment

Dysregulation: 
Gene/Oncogene/ 
tumor suppressor gene Target (genes) Metabolites Effects

Mitochondrial 
mutations, loss p53

Mitochondrial genome
SCO2, NFkB

ROS – Decreased respiration
– Apoptosis resistance

Myc Glucose metabolism
Glutamine metabolism

Lactate
Glutamate

– Tumor proliferation
– Immunosuppression

Hypoxia/HIF 
(VHL)

Glucose metabolism
VEGF, VEGFR,
COX

Lactate,  
VEGF
PGE2

– Tumor proliferation
– Immunosuppression
– Angiogenesis

Raf/Ras NFAT, NFkB,
STAT3 (mitochondria) 
Glucose metabolism

– Tumor proliferation

STAT1/3 IDO Kynurenine
3-HAA

– Immunosuppression

NFkB
NFAT

COX PGE2 – Tumor proliferation
– Myeloid suppressor 

cells/arginase

Cyclooxygenase (COX), hypoxia-inducible factor (HIF), prostaglandin (PGE2), nuclear factor of 
activated T-cells (NFAT), 3-hydroxyanthranilic acid (3-HAA), vascular endothelial growth factor 
receptor (VEGF-R), synthesis of cytochrome c oxidase (SCO2), indoleamine 2,3-dioxygenase 
(IDO), von Hippel-Lindau (VHL), nuclear factor-kappa B (NFkB), Reactive oxygen species 
(ROS)
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glycolytic phenotype of tumor cells represents a growth advantage and may represent 
an important basis for tumor progression and metastatic spread.

In addition to glycolysis, recent research demonstrated that the pentose phos-
phate pathway is augmented in some tumors. It converts glucose to ribose for 
nucleic acid synthesis and also leads to lactate generation. The non-oxidative part 
of the pentose phosphate pathway is controlled by transketolase enzyme reactions 
and the expression of the transketolase TKTL1 predicts cancer patient progression 
and survival [11,12].

Dysfunction of mitochondria is considered to represent a major factor contribut-
ing to the so-called “Warburg effect” in tumor cells. Mitochondria possess their 
own genome which codes for proteins required for oxidative phosphorylation. 
Alterations in mitochondrial DNA have been reported in various types of cancer 
such as breast, ovarian and colorectal cancer but their functional significance for 
tumor development needs to be addressed in further studies [13]. In line with the 
Warburg hypothesis, Cuezva and colleagues have shown that kidney, colon and 
breast carcinomas exhibit a repression of the ß-catalytic subunit of the mitochon-
drial ß-F1-ATPase concurrent with an increase in glyceraldehyde-3-phosphate 
dehydrogenase [14,15]. This is of special importance for colon carcinoma chemo-
therapy as down-regulation of mitochondrial F1F0-ATP synthase is linked to drug 
resistance against 5-Fluorouracil [16].

Mitochondria play an important role not only in energy metabolism but also for 
radical oxygen species generation and apoptosis. As several agents used in clinical 
studies, like paclitaxel or vinblastine, target mitochondria via caspases or other 
regulatory elements in the apoptotic machinery [17] outcome of anticancer therapy 
and drug resistance is linked to the (dys)function of mitochondria [16].

7.2  Amino Acid Metabolism in Cancer: Increased 
Glutaminolysis and Expression of IDO  
and Arginase in the Tumor Environment

Besides the glucose metabolism, the amino acid metabolism is altered in tumors 
because growing tumors require a continuous supply of both essential and non-
essential amino acids for anabolic macromolecule synthesis. Glutamine is the most 
abundant amino acid in the body and serves as “nitrogen shuttle” as it contains two 
nitrogen side chains. It has been proposed that tumors act as “glutamine traps” as 
high rates of glutamine uptake are characteristic for many tumor cells. The increased 
uptake of glutamine and its flow to glutamate or lactate has been termed “glutamino-
lysis” and seems to be an important feature of transformed cells [5,18]. The increased 
turnover of glutamine is in part based on the higher activity and expression of 
glutaminase, the first enzyme in glutamine metabolism [19]. Accordingly, cancer 
patients exhibit lowered plasma glutamine levels but elevated glutamate concentrations 
[20]. Glutamate and lactate are secreted by tumor cells and both metabolites have 
been shown to suppress T cell activity in vitro [21,22].
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Dysregulation of glutamine metabolism is not the only characteristic change in 
amino acid metabolism that impairs the immune system. Alterations in tryptophan 
and arginine metabolism in tumor cells and tumor-infiltrating myeloid cells also 
play a fundamental role in modulating the immune response.

Indolamine 2,3-dioxygenase (IDO) is a tryptophan catabolizing enzyme which is 
overexpressed in many cancers, e.g. melanoma, colon and renal cell carcinoma [23], 
and exists in two isoforms, IDO1 and IDO2 [24]. IDO catalyzes the conversion of 
tryptophan to kynurenine and is the first enzyme in the pathway that leads to the 
de novo generation of nicotinamide adenine nucleotide (NAD). NAD is an important 
cofactor required for several energy-producing catabolic reactions and a cofactor for 
sirtuins, a specific class of deacetylases relevant for transcriptional regulation [25]. 
Deprivation of the essential amino acid tryptophan represents an antimicrobial defense 
mechanism but also suppresses the proliferation of different T cell subsets [26].

Arginine levels are regulated by two enzymes. Arginase (ARG) hydrolyzes arginine 
to ornithine and urea, whereas nitric oxide synthase (NOS) oxidizes arginine to citrulline 
and nitric oxide (NO). Ornithine is the precursor for polyamines (putrecine, spermi-
dine and spermine) synthesis, naturally occurring alylamines that are essential for 
cell growth. Polyamine concentrations and biosynthetic enzyme activities (e.g. 
ornithine carboxylase/ODC) are high in tumor cells compared to their normal coun-
terparts and represent attractive structures for anti-cancer therapy [27]. The expression 
of ARG and NOS and its isoforms seem to differ between man and mice. Contrary to 
mice that express iNOS and ARG-1 in tumor-associated macrophages, this holds not 
true for human macrophages. In humans, ARG-1 is expressed in granulocytes, 
whereas human tumor cells have been reported to express ARG-2, and iNOS [28]. 
Recently it has been shown that human myeloid suppressor cells in renal cell carcinoma 
are a subpopulation of polymorphonuclear cells that deplete arginine by releasing 
ARG-1 from intracellular granules [29]. In mouse lung carcinoma the same authors 
demonstrated that ARG-1 is regulated via Cyclooxygenase 2 (COX-2) expression as 
pharmacological inhibition of COX-2, but not COX-1, blocked ARG-1 induction [30].

7.3  Alterations in Tumor Lipid Metabolism:  
COX Expression and Ganglioside Production

Arachidonic acid metabolites, so called prostanoids, including prostaglandins and 
thromboxanes, are synthesized by COX-1/2 [31]. PGE2 can stimulate cell proliferation 
and motility and suppresses apoptosis of colorectal cancer cells [32]. Cyclooxygenases 
show an altered expression in many cancer entities. While COX-1 is constitutively 
expressed in almost all tissues, its isoenzyme COX-2 is induced by certain inflammatory 
cytokines and oncogenes and is primarily found in tumors [31]. Overexpression of 
COX-2 is associated with a poor prognosis in breast cancer and rapid disease progression 
in ovarian cancer [33,34].

Other lipids synthesized and shedded by tumor cells are gangliosides [35,36]. 
Gangliosides represent a family of complex glycosphingolipids with sialic acid residues 
being responsible for the formation of cell lipid membrane domains [37]. Several 
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tumor entities, such as neuroblastoma, retinoblastoma, melanoma, hepatocellular carci-
noma, squamous cell carcinoma, colon carcinoma and lymphoma are known to 
display an aberrant ganglioside composition [38]. Hypoxia has been shown to induce 
an aberrant expression of gangliosides in cancer cells [39]. Gangliosides can be shedded 
from the membrane and thereby gain access to the circulation [38]. Elevated levels of 
gangliosides are found e.g. in the plasma of patients with neuroblastoma [36] and 
can enhance tumor growth indirectly by protecting tumor cells from host immune 
destruction. They suppress T cell function, induce T cell apoptosis [40,41] and impair 
the antigen-presenting function of human dendritic cells [42].

7.4  Adenosine Accumulation in the Tumor Environment

Multiple cell types release adenine nucleotides in the form of ATP, ADP, and AMP. 
These are rapidly metabolized by surface ectoenzymes like ecto-5’-nucleotidase 
(CD73) to adenosine [43,44]. Adenosine is an endogenous purine nucleoside that is 
constitutively present in the extracellular milieu at low concentrations. A considerable 
increase of the extracellular adenosine concentration has been reported for hypoxic 
tissues, which are found in solid tumors [45]. Accordingly, HIF-1 has been shown to 
regulate the CD73 in intestinal epithelial cells [46]. CD73 is also expressed on the 
surface of tumor and immune cells [47,48] and elevated activity is found in breast 
carcinoma [49], gastric cancer [50], pancreatic cancer [51], and glioblastoma [47]. 
Accelerated metabolism of AMP into adenosine in the tumor environment lowers 
the level of AMP and could contribute to the diminished activity of AMP-activated 
protein kinase (AMPK), an important endogenous inhibitor of the mammalian target 
of rapamycin (mTOR) pathway. Aberrant activation of mTOR is characteristic for 
many tumors and discussed as a possible therapeutic target in cancer [52].

Elevated levels of adenosine could also result from an increased intracellular 
adenosine production by dephosphorylation of AMP by cytosolic 5’-nucleotidase 
[53] or a disturbed degradation of adenosine to inosine, catalyzed by intracellular 
adenosine deaminase (ADA). ADA has been considered as a marker of malignancy 
and decreased ADA activity has been found in several carcinomas, including colon 
carcinoma [54].

Methylthioadenosine phorsphorylase (MTAP) is an enzyme of the polyamine 
metabolism which is expressed constitutively in most normal cells and tissues 
[55]. MTAP catalyzes the degradation of 5’-deoxy-5’methylthioadenosine (MTA), a 
byproduct of the polyamine metabolism, to adenine and methylthioribose-1-phosphate, 
which are thereupon converted to adenosine and methionine. In many different 
tumors like malignant melanoma [56], osteosarcoma [57], leukemia [58], endome-
trial adenocarcinoma [59], non-small cell lung carcinoma [60] and breast cancer [61] 
a decreased expression of MTAP is found compared to the normal tissue. This leads 
to an accumulation of MTA in the tumor environment. In case of malignant mela-
noma the loss of MTAP expression results in a higher invasive potential [62], leading 
to the hypothesis that loss of MTAP expression might contribute to metastasis of 
malignant melanoma [63].



116 E. Gottfried et al.

7.5  Molecular Background of Metabolic Alterations  
in the Tumor Environment

7.5.1  Oncogenic Transformation and Hypoxia Lead  
to Metabolic Alterations

Overexpression of tumor oncogenes and loss of tumor suppressor genes represent 
the molecular basis for the development of cancer. Many of these genetic alterations 
are directly linked to metabolic changes in the tumor cell.

Genetic alteration or loss of p53, one of the most frequently mutated genes in 
cancer, modulates the balance between respiration and glycolytic pathways. P53 
activation leads to increased mitochondrial respiration by inducing the expression of 
synthesis of cytochrom c oxidase 2 (SCO2). Accordingly, p53-deficient cells show a 
decreased oxygen consumption and increased lactate production and SCO2 seems 
to be the one important mediator of this effect [64]. Furthermore loss of p53 leads 
to activation of the NFkB pathway and thereby upregulates GLUT3 expression [65]. 
Loss of p53 also causes mitochondrial DNA depletion and altered mitochondrial 
reactive oxygen homeostasis [66]. Recently, Vander Heiden and coauthors proposed 
that highly proliferating cells switch to glycolysis because mitochondria are needed 
as synthetic organelles to supply components for the generation of nucleotides and 
phospholipids for new cell structures [67]. In the light of this paper, tumor cells 
concomitantly experience a “glycolytic switch” as well as a “mitochondrial switch”. 
Mitochondria take a turn from a catabolic to an anabolic organelle and tumor cells 
rescue their energy metabolism through an accelerated glycolysis for NADH and ATP 
generation.

Oncogenic transformation does not only decrease the mitochondrial activity of 
tumor cells but can directly accelerate glycolysis. Activating mutations in the phos-
phoinositol 3-kinase (PI3-K), or deletion of phosphatase and tensin homolog (PTEN), 
a PI3-K antagonist, lead to the activation of its downstream effector Akt and are com-
monly observed in cancer cells. Constitutive Akt activity induces the transformed cell 
to accelerate their glucose uptake and stimulates aerobic glycolysis [68]. Maintenance 
of the oncogenic Akt kinase activity seems to be required for the aggressive tumor 
cell phenotype as disruption of Akt1 results in delayed tumor growth and reduced 
lung metastasis in a mouse model ErbB2-induced mammary tumorigenesis [69]. In 
addition, Akt-transformed cells are impaired in their ability to use ß-oxidation 
in response to glucose deprivation which results in glucose addiction [70]. Akt is also 
an important downstream effector of other oncogenes like Ras [71].

In human glioblastoma cells, Ras inhibition resulted in downregulation of HIF-1 
and several genes associated with glycolysis like Glut-1 and LDH A. Accordingly, 
glycolysis was inhibited and cell death induced [72]. Yun et al. showed recently that 
tumor cell lines with KRAS or BRAF mutations upregulate the glucose transporter 
GLUT1 and mutant cells exhibited enhanced glucose uptake and glycolysis [73] 
Activating mutations in BRAF are found in many colorectal and pancreatic tumors 
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and also in melanomas. In metastatic melanoma it has been shown recently that 
oncogenic BRAF activates NFAT signaling. As NFAT is an important regulator of 
COX-2 this leads to higher COX-2 expression in metastatic melanoma cells [74]. 
In addition, Ras/Raf-1 activation induces NF-kB activation which in turn induces 
COX-2 [75]. In human lung carcinoma cells triggering of the NF-kB pathway via 
inflammatory mediators like TNF also induced COX-2 [76]. COX-2 in turn can 
induce the expression of arginase 1 in myeloid suppressor cells [30].

Dysregulated expression of the myc oncogene occurs in about 30% of human 
cancers and c-myc overexpression regulates mitochondrial glutaminolysis and triggers 
cellular addiction to glutamine as bioenergetic substrate [77,78]. Furthermore, myc 
leads to an upregulation of glycolytic enzymes, like LDH A [79]. Oncogenic myc also 
collaborates with hypoxia inducible factors, HIF1 and HIF2, to create the metabolic 
phenotype that is described as Warburg effect [80]. HIF transcription factors are dimers 
composed of two subunits, HIF1alpha (or HIF2alpha, respectively) and HIF1beta. HIF 
is stabilized in response to low oxygen tension (hypoxia) which is characteristic for 
the tumor milieu as a result of decreased microcirculation in the tumor tissue [81]. HIF 
induces the transcription of more than 70 genes via hypoxia response elements (HRE) 
in the respective promoters or enhancers, e.g. VEGF, Flt-1 (VEGF-R), Glucose trans-
porter-1 (Glut-1), LDH, monocarboxylate transporter 4 (MCT-4) involved in lactate 
transport, carboanhydrase IX and COX-2 [82,83]. In addition to hypoxia, oncogenic 
transformation can also induce HIF independent of the presence or absence of oxygen 
[84]. In renal cell carcinoma, mutations in the von Hippel Lindau (VHL) gene lead to 
a stabilization of HIF as the VHL protein is important for the degradation of HIF which 
in turn induces the expression of HIF responsive genes.

Myc interacts with HIF but also with a variety of other factors, e.g. BIN1, a possible 
tumor suppressor. Bin1 expression is reduced in many human tumors e.g. melanoma, 
breast cancer and prostate carcinoma [85,86] and loss of Bin1 induces the STAT1 and 
NF-kB-dependent expression of IDO [87]. Recently it has been shown that acetylation 
of STAT3, a transcription factor which is upregulated in many human malignancies, 
promotes the transcription of IDO in dendritic cells [88]. In addition, IDO is regulated 
by IFNg and other inflammatory mediators [89]. Accordingly, human activated T cells 
modulate IDO expression in breast and kidney cell lines via IFNg [90].

These data show that tumor metabolism and metabolism of tumor-infiltrating 
immune cells is under the control of hypoxia as well as oncogenes and tumor 
suppressor genes.

7.6  Impact of Tumor Metabolism on Immune Cell Function

There is increasing evidence that the altered metabolism of tumor cells, e.g. 
increased glycolysis or differences in the amino acid metabolism, modulates immune 
cell function. Tumors are infiltrated by a variety of immune cells including mac-
rophages, dendritic cells, myeloid suppressor cells, regulatory CD4+ T cells and 
other T cell populations. Many studies suggest that tumor progression, metastasis 
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and the clinical outcome of malignancies are regulated based on the composition and 
activation status of the immune cell infiltrate in the tumor.

Lactate accumulation and acidification modulate immune cell function: 
Accelerated glycolysis leads to accumulation of lactate and acidification of the tumor 
environment. It has been reported that extracellular lactate in wounds stimulates mac-
rophages to secrete vascular endothelial growth factor (VEGF) and transforming growth 
factor beta (TGF-beta), both known to be immunosuppressive factors [91]. In addition, 
data from Shime et al. demonstrated recently that lactic acid regulates transcription and 
secretion of IL-23, a tumor-promoting cytokine [92]. Douvdevani et al. described that a 
low pH and high lactate concentration of peritoneal dialysis fluids are inhibitory for 
macrophage/monocyte TNF and IL-1beta release [93]. In contrast, acidosis seems to 
improve antigen presentation by dendritic cells and induces neutrophil activation [94,95]. 
We and others have shown that tumor-derived lactic acid strongly inhibits both the dif-
ferentiation of monocytes to dendritic cells [96,97] and the activation of T cells [22]. 
Recent data indicate that functional inhibition of immune cells may be related to the 
uptake of lactate from the tumor environment which results in an inhibition of immune 
cell glycolysis [98].

Influence of amino acid metabolism on myeloid and lymphoid cells: Lactate is 
also a possible end product of glutaminolysis, another important hallmark of tumor 
cells. In addition, glutaminolysis results in lowered plasma glutamine levels but 
elevated glutamate concentrations in the sera of tumor patients. High glutamate concen-
trations inversely correlate with the proliferative response of cancer patients’ T cells 
in vitro [99]. This effect could be mediated via the Glutamate receptor mGlu5R that is 
constitutively expressed on T cells [100]. Beside an increased level of glutamate in the 
tumor environment, T cell suppression could also be the results of glutamine depletion 
as tumors compete with the host cells for circulating glutamine.

Similarly, it has been described that tumor cells and infiltrating myeloid cells 
express elevated levels of tryptophan (IDO) and L-arginine metabolizing (arginase) 
enzymes that deplete tryptophan and arginine in the tumor environment but also 
in the periphery. Accordingly, patients with infections or malignant disease have 
been reported to have low tryptophan concentrations in serum/plasma [101]. 
Interestingly, decreased serum tryptophan concentrations predict poor prognosis in 
melanoma patients [102]. As melanoma is known as an immunogenic tumor, these 
data suggest immunosuppression by tryptophan deprivation because T cell activation 
results in an increased demand for this amino acid. Several in vitro data show 
indeed that accelerated tryptophan metabolism and the accumulation of metabolites 
like 3-hydroxykynurenine and 3-hydroxyanthranilic acid (3-HAA) lead to 
immunosuppression. Combined effects of tryptophan deprivation and tryptophan 
catabolites result in down-regulation of the TCR zeta-chain in murine CD8+ T cells 
[103] and 3-HAA inhibits the proliferations of human CD8+ T cells in vitro [104]. 
Furthermore, arginine depletion also inhibits T cell activation in the tumor environ-
ment. Myeloid suppressor cells accumulate in many tumors and express arginase 
which depletes arginine from the environment [105,106]. In summary, both, depletion 
of amino acids and accumulation of specific amino acid metabolites locally blocks 
T cell proliferation in the tumor environment.
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7.7  Tumor-Derived Lipids Suppress Immune Cell Activity

Prostaglandins are involved in immunosuppression. High COX-2 expression by 
tumor cells leads to an increased production of prostaglandins which upregulate 
IDO expression in tumor-associated dendritic cells [107,108]. This leads to the 
generation of a specific subtype of immunosuppressive tolerogenic dendritic cell 
and in turn to the expansion of regulatory T cells [89,109].

Other tumor-derived lipids like gangliosides impair the maturation and migratory 
activity of Langerhans cells [42], whereas neuroblastoma-derived gangliosides 
were found to inhibit the differentiation, maturation, and function of DC [110].  
In addition, gangliosides purified from squamous cell carcinoma downregulated the 
expression of components of the antigen-processing machinery of DC [111]. 
Accordingly, Caldwell reported that DC incubated with gangliosides are deficient 
in the expression of costimulatory molecules and were unable to induce a normal 
T cell response [112]. Disruption of NFkB activation may contribute to the inhibition. 
Gangliosides are also found in the supernatant of several tumor cell cultures and are 
able to inhibit the differentiation of hematopoietic cells, as measured by the forma-
tion of erythroid and myeloid colonies from CD34+ precursors [113]. In summary, 
tumor-derived lipid metabolites such as prostaglandins and gangliosides have a 
potent inhibitory capacity on DC, at least in vitro.

7.8  Immunosuppression by Adenosine

Adenosine is known to have a general immunosuppressive effect and anti-inflammatory 
properties on different types of immune cells. It acts by binding to four different 
types of G-protein coupled cell surface molecules, termed the A

1
, A

2a
, A

2b
 and A

3
 

adenosine receptors [114].
Adenosine influences a wide range of T lymphocyte responses. It inhibits T cell 

proliferation as well as expression of cytotoxic effector molecules [115,116] and  
T cells show a reduced secretion of proinflammatory cytokines [117]. Furthermore, 
adenosine modulates the function of dendritic cells dependent on their adenosine 
receptor expression profile [118]. It enhances the secretion of IL-10 but inhibits 
secretion of IL-12 by dendritic cells and also by monocytes and macrophages 
[119–121]. Since the balance between both cytokines regulates the development of 
T helper cells and determines the induction of an effective immune responses 
against tumor cells, adenosine-induced IL-10 and suppression of IL-12 could be 
important for the immune suppression in the tumor environment [122]. In addition, 
the cytotoxic activity as well as the production of inflammatory cytokines by natu-
ral killer cells (NK cells) is decreased [123].

In contrast to adenosine, which has been investigated in several studies, little is 
known about the effects of 5'-methylthioadenosine MTA on immune cells. MTA has 
been described as an inhibitor of inflammation, since MTA inhibits the secretion 
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of TNF and activation of NFkB [124–126]. Inhibition has been attributed to a block 
of LPS induced gene transcription via disturbed histone methylation by MTA [127]. 
The anti-inflammatory effect of MTA has also been observed for T cells, since MTA 
suppresses T cell activation, the expression of proinflammatory cytokines and 
increases the expression of IL-10 [128].

MTA also inhibits lymphocyte proliferation as well as the secretion of IgM and IgG 
by peripheral blood lymphocytes [129,130]. MTA has also been demonstrated to 
inhibit natural killer cell mediated cytotoxicity [131]. As many effects of adenosine and 
MTA overlap this suggests similar signaling mechanisms of both molecules e.g. via 
adenosine receptors.

7.9  Tumor Metabolism as Therapeutic Target

The alterations in tumor cell metabolism, such as accelerated glycolysis, glutaminolysis 
and fatty acid metabolism, represent attractive targets for the development of anti-
cancer drugs.

7.10  Inhibition of Tumor Glycolysis

Early after Warburg’s observation that tumor cells show major differences in glucose 
metabolism, some attempts focused on the inhibition of tumor glucose metab-
olism as cancer treatment [132]. These studies used 2-deoxyglucose (2-DG), 
a non-metabolizable glucose analogue and inhibitor of hexokinase, the enzyme 
that catalyzes the initial step during glycolysis. This approach has gained new 
attention during the last years [133] and in addition new drugs have been devel-
oped such as 3-bromopyruvate (3-BrPA), another hexokinase inhibitor [134]. 
3-BrPA and 2-DG reduced liver tumor growth in a rabbit and a rat model, 
respectively [135–137]. Both drugs increased the efficacy of chemotherapeutics 
(adriamycin, paclitaxel, doxorubicin and vincristine) in vitro and in a non-small 
cell lung carcinoma and osteosarcoma mouse model [138,139]. Inhibition of 
glycolysis by 2-DG or 3-BrPA also sensitizes acute lymphoblastic leukemia 
cells to glucocorticoids [140,141]. Furthermore, 2-DG leads to radiosensitization 
only in tumor cells expressing wild-type p53 but p53 deficient cells were more 
sensitive to 2-DG treatment alone [142]. Similar results were obtained for 
LKB1, another tumor suppressor and an upstream mediator of mTOR. As shown 
recently, loss of LKB1, increases the sensitivity of non-small cell lung cancer to 
2-DG [143].

Clotrimazole, an antifungal azole derivative, induces the dimerization of 6-  
phosphofructo-1-kinase (PFK). Dimers of PFK are less active than tetramers and 
thereby clotrimazole inhibits the enzyme activity which results in a decreases glyco-
lytic flux [150]. Acetylsalicylic acid, a non-specific COX inhibitor and anti- inflammatory 
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drug, also inhibits PFK in vitro [151]. These findings link the mechanism of action 
of non steroidal anti-inflammatory drugs (NSAID) to the altered glucose metabolism 
found during inflammation and in tumors.

7.11  Targeting the Glucose Uptake

Tyrosine kinase inhibitor Imatinib (Gleevec), reverses the Warburg effect in 
BCR-ABL positive chronic myeloid leukemia cells by switching cell metabolism 
from glycolysis to glucose oxidation. It has been proposed that the antiproliferative 
and proaoptotic effect may in part be mediated by reduction of glucose uptake and 
lactate secretion [149]. Another approach to target glucose metabolism are Hsp90 
inhibitors such as 17-allylaminogeldanamycin, which promote HIF-1a degradation 
and thereby have profound effects on tumor growth.

mTOR is a threonine kinase belonging to the phosphoinositide kinase related 
kinase family and common downsteam effector of PI3-K/PTEN/Akt as well as Ras/
Raf pathways. mTOR inhibitors are already established anticancer drugs [144]. Wei 
and colleagues described a decreased glucose uptake in glioblastoma cells of mice 
treated with rapamycin implicating a link between the mTOR pathway and glucose 
metabolism [145]. HIF regulation through mTOR inhibition could be one possible 
explanation as HIF regulates several glucose-metabolism associated genes. 
Accordingly, the mTOR inhibitor temsirolimus, inhibits HIF-1a expression and tran-
scriptional activation of the HIF-target gene VEGF in breast cancer cell lines [146].

7.12  Acceleration of the Mitochondrial Activity

Another drug that modulates glucose metabolism is dichloroacetate (DCA) which 
is used in the treatment of congenital lactic acidosis in children [147]. It targets 
mitochondrial pyruvate dehydrogenase kinase (PDK) [148] which phosphorylates 
and inhibits the pyruvate dehydrogenase complex (PDC). PDC catalyzes the con-
version of pyruvate to acetyl-CoA and is an important control point in glucose and 
pyruvate metabolism. DCA downregulates PDK and thereby leads to activation of 
PDC, which induces a shift from glycolysis to glucose oxidation. The growth inhi-
bition of tumor cells as well as induction of apoptosis was shown in vitro and in a 
nude rat model (148].

7.13  Modulation of Tumor Lipid Metabolism

COX-2 overexpression is found in many tumors and therefore lipid metabolism is 
another potential target for tumor therapy [31]. Already in the 1990s, it was reported 
that regular use of non-specific COX inhibitors like aspirin was associated with a 
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decreased tumor incidence of colon, breast and lung carcinoma indicating a protective 
effect of NSAIDs [152]. Since then, several studies showed a heterogeneous risk 
reduction for the incidence of several tumor entities [152,153]. In one of the first 
randomised studies, treatment with the non-specific COX inhibitor indomethacine 
prolonged survival of patients with metastatic tumors [154]. In addition, indometha-
cine and the selective COX-2 inhibitor celecoxib increase the radiosensitivity of 
tumors [155,156].

Furthermore, clinical studies have demonstrated an effect of combination thera-
pies with COX-2 inhibitors and the PPARg (Peroxisome proliferators-activated 
receptor g)-agonists pioglitazone in combination with low dose chemotherapy in 
glioma [157] and melanoma [158], which is in line with in vitro data showing that 
PPARg -agonists inhibit proliferation and induce apoptosis in several tumor cell lines 
[159,160]. Our own data show that pioglitazone also modulates the mitochondrial 
activity of prostate tumor cells and thereby inhibits tumor cell proliferation [161].

7.14  Rescuing Anti-tumor Immune Response

COX-2 inhibition: COX-2 overexpression leads to an increased production of pros-
taglandins in the tumor environment which has a strong impact on immune cell 
differentiation and activation. Prostaglandins are important for maturation of 
dendritic cells and upregulate IDO mRNA expression in vitro [107]. In line with 
these data, peritumoral dendritic cells in different carcinoma coexpress IDO associated 
with elevated prostaglandin levels [108] suggesting that prostaglandins also influence 
IDO expression in vivo. Recently, Chung and colleagues have nicely shown that 
IDO-expressing dendritic cells expand autologous regulatory T cells (Treg) [109]. 
Treg are known to suppress antitumor response in mouse models and accumulation 
of Treg is described in different cancer tissues, e.g. colorectal cancer or melanoma 
[162,163]. Accordingly, Celecoxib-treated tumor bearing mice show a decreased 
expression of IDO and the accumulation of Tregs was reduced. This was correlated 
to a reduction tumor size and metastasis [164]. Direct targeting of IDO via down-
regulation of IDO2 with siRNA, also generated antitumor immunity in vivo in a 
murine bladder tumor model [165]. Furthermore inhibition of IDO also potentiates 
cancer chemotherapy in breast cancer models [87,166].

Phosphodiesterase-5 inhibitors (sildenafil): Not only IDO but also arginase 
(ARG) has immunosuppressive functions through the depletion of the amino acid 
from the tumor environment. In tumor-bearing mice it was shown, that myeloid 
derived suppressor cells (MDSC) are directly involved in the suppression of 
immune responses in cancer [167]. MCSC express ARG-1 and efficiently deplete 
arginine form the surrounding medium. One strategy for tumor therapy is to target 
the suppressive activity of MDSC by phosphodiesterase-5 inhibitors (sildenafil), 
[168]. Sildenafil is known to downregulate ARG-1 and inducible NOS2 expression 
in MDSC and restored the T-cell proliferation, enhanced in vivo intratumoral T-cell 
infiltration and reduced tumor growth [168].
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Modulation of adenosine metabolism: Another potential target is given by the 
adenosine metabolism. Extracellular adenosine monophosphate (5’AMP) is metabolized 
to adenosine by ecto-5’-nucleotidase CD73 expressed on tumor cells and tumor- 
infiltrating Treg. This results in the accumulation of adenosine which is known to 
suppress T cell proliferation and cytokine production [43,48]. Using adenosine receptor 
antagonists like caffeine, or targeting the A2 receptors by siRNA treatment, can reactivate 
T cell activity and rescue anti-tumor immune responses [169,170].

7.15  Summary and Concluding Remarks

About half a century after Warburg’s observation that the glucose metabolism is 
altered in tumor cells, it is quite clear that these metabolic alterations are indeed 
important for tumor development and progression. But the glucose metabolism is 
only one piece of the tumor metabolome puzzle. Amino acid metabolism, lipid 
metabolism and adenosine metabolism are also adapted to fulfill the tumors needs 
for energy and building blocks for new cell structures. Furthermore there is increasing 
evidence that the altered tumor metabolism is directly linked to tumor cell transfor-
mation and the overexpression of oncogenes or the loss of tumor suppressor genes 
are key regulators of the accelerated glycolysis and glutaminolysis in tumors. The 
complex network of tumor-derived metabolites also leads to local immunosuppression 
and may thereby facilitate tumor progression and metastasis. Targeting tumor cell 
metabolism is therefore not only an approach to kill the tumor cell directly but 
could possibly also overcome some limits of immunotherapy.
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Abstract Glioblastoma bears one of the most severe prognoses of human cancers. 
At this time, the available therapy is directed against specific pathological mecha-
nisms of these tumors, as proliferation, angiogenesis, or immunosuppression. This 
approach neglects systems biology: Several compartments as tumor, local precur-
sor, immuno- and endothelial cells, the extracellular matrix and intratumoral ves-
sels communicatively interact with the host’s organs. The development of a tumor 
is a dynamic process, comparable to a developing organ, and is highly dependent 
on interactions between different structures and compartments within the tumor. 
Large-scale unbiased assays will be needed to investigate the specific molecular 
and cellular patterns of each individual glioblastoma. Most likely, new models 
will be individually compiled in the future work-up of glioblastomas, generating 
information for the setup of a multi-targeted personalized concept approaching the 
systems biology of glioblastoma. These new approaches include advanced in vivo 
models using engineered animals and in silico models based on bioinformatic 
methods. Interventions will influence all levels of tumor biology, including the 
genetic, epigenetic, proteomic, and metabolomic level. First publications aim to 
define targets for treatment using systems biology approaches. In our opinion, a 
clinically meaningful improvement will only be possible with interventions that 
are multi-targeted and consequently inhibit glioma-initiating cells, enhance local 
antitumor immune responses, and target the most relevant molecular mechanisms 
responsible for tumor cell proliferation and invasion. This review will focus on the 
most prevalent and malignant primary brain tumor of men, glioblastoma, which is 
notorious for its therapy resistance to classical treatments.
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8.1  The Target: Glioblastoma

Glioblastoma (GBM) is among the most deleterious diseases of man [1]. Reliable 
epidemiological data are only available for the United States of America (USA). 
Glioblastoma represents about 20% of the estimated 40,000 new cases of primary 
tumors of the central nervous system (CNS) and 65% of glial brain tumors diagnosed 
in the USA each year (Central Brain Tumor Registry of the United States, www.
cbtrus.org). The most relevant prognostic factors are age, WHO Performance Score 
at diagnosis, the methylation status of the O6-methylguanin-DNA-methyltransferase 
(MGMT) promoter, and mutations of isocitrate-dehydrogenase-1 (IDH-1) [2,3].

Therapy comprising debulking surgery, concomitant radio-chemotherapy and 
adjuvant chemotherapy with temozolomide (TMZ) prolongs the median overall 
survival after initial diagnosis to only about 14 months at this time [4,5]. A 5-year 
analysis revealed an overall survival of 27.2% at 2 years, and 9.8% at 5 years for 
patients treated with combined radio-chemotherapy [6]. The molecular evaluation 
of these data has disclosed a subgroup of patients with methylation of the MGMT 
promoter, with a more favorable prognosis [6,7]. Importantly, patients with a 
methylated MGMT promoter and a WHO Performance Score of 0 have a 66% 
probability of survival at 2 years [3]; this is a first step towards a personalized 
therapy in a distinct cohort of glioblastoma patients to severely increase prognosis 
in this genetically characterized subgroup. However, cures are still never reached in 
these patients.

8.2  Therapy Resistance in Glioblastoma

The discussed standard regimens all bear the problem of a 100% relapse rate, usu-
ally within 1 year after start of therapy. This disappointing response pattern is 
caused by several factors including a lacking systems biology view of the disease 
and the failure of newly designed therapies targeting specific molecular events, 
tumor-intrinsic factors or treatment-induced resistances, which are based on the 
robust pathophysiology of GBM.

8.3  Insufficient Activity of Targeted Agents in Monotherapy

Molecular profiling of glioma has revealed crucial signaling pathways driving the 
malignant behavior of glioblastoma. Nodal mutations constituting master drivers of 
glioblastoma initiation and progression have not been described yet, though first 
promising candidates are discussed [8].

Therapeutic approaches targeting a singular disease-associated molecular event 
have been disappointing so far. A classic example of a non-successful targeted 
approach is the resistance of most GBM patients against EGFR-targeted drugs [9]. 

http://www.cbtrus.org
http://www.cbtrus.org


1358 Could Be Systems-Directed Therapy Approaches Promising in Glioblastoma Patients?

EGFR is highly expressed in glioblastoma, partly in its truncated form, but 
 targeting EGFR has produced virtually no value in patients with glioblastoma.

8.4  Glioblastomas’ Intrinsic Resistance

Major tumor-intrinsic reasons for low efficacy of chemo- and targeted therapy 
against glioblastoma are poor blood-brain barrier penetration of cytostatic agents 
especially in the therapeutically relevant periphery of the tumor node [10], expres-
sion of drug efflux pumps (multidrug resistance genes), and the expression of 
resistance-associated enzymes such as O6-methylguanin-DNA-methyltransferase. 
Resistance against classical chemotherapeutics, e.g. alkylating agents, is  pronounced 
in glioma cancer stem cells (G-CSC) [11].

The complex system of tumor-intrinsic resistance aggravates drug delivery 
(immunotherapy, targeted therapies, and cytotoxic drugs) and may consecutively 
modulate tumor sensitivity.

8.5  Resistance Induced by Treatment

Induced (extrinsic) resistance may rapidly occur in glioblastomas. Multidrug resis-
tance proteins such as multiple drug resistance (MDR-1) and multidrug resistance 
protein (MRP) can be induced by chemotherapeutics [12,13–14].

A novel mechanism of resistance against chemotherapeutic agents may develop 
during administration of bevacizumab, an antiangiogenic agent, by consecutively 
decreasing vascular density of the tumor [15,16]. Bevacizumab generates unusual 
 patterns of response, as documented with MR imaging, resembling “pseudo-
responses” by ‘normalization’ of blood vessels and therefore the blood-brain- barrier 
with a decreased penetration of gadolinium into the brain parenchyma [17–23].

8.6  Consequences of Therapy Resistance

Intrinsic and extrinsic therapy resistance leads to a largely unresponsive tumor 
phenotype in the majority of patients with glioblastoma. Therefore, it will be of 
utmost importance to develop markers for early response and resistance to over-
come the robustness of GBM’s tumor system by adaptive trial designs.

Commonly, targeted approaches are aimed at defined solitude tumor cell- 
associated structures. However, it becomes clear that mono-targeted approaches or 
approaches neglecting the ‘conspiratory’ activity of the adjacent stroma remain 
merely ineffective in glioblastoma. Pleiotropic acting drugs with the capacity to 
target simultaneously several cellular compartments of the GBM, sometimes unin-
tendently, are the most efficient and promising ones, as detailed below.
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Understanding systems biology in GBM appears pivotal for the development of 
new combined, in the first place biomodulatory therapeutic strategies with modest 
toxicity [24]. Only then it will be possible to develop personalized multi-targeted treat-
ment approaches leading to long-term disease chronification or even cure in GBM.

8.7  Systems Biology in Glioblastoma

Systems’ robustness: Considering the robustness of GBM’s systems biology that 
translates into a high resistance against any single agent therapeutic approach, 
systems-directed combined therapies might be the most promising strategy to 
perpetuate significant improvement in glioblastoma.

First, systems biological diagnostic approaches have to analyze the factors 
 constituting the ‘intrinsic’ systems robustness of GBM meticulously. Finally, this 
analysis has to be advanced on a personalized basis, as the individual tumor consists 
of an ever distinct array of molecular patterns with critical communicative nodes, 
though systems-derived subgroups may be uncovered [25,26]. From the list of indi-
vidual molecular-physiological changes, the hierarchy of central (nodal) events has 
to be defined for systems-related similar subgroups of GBM as well as for indi-
vidual cases, aimed to systematically address the communicative tumor systems 
architecture as a whole.

The communicative aspect of systems: The knowledge of the complex cross-
talks between the compartments of the pre-tumor and tumor niche is of utmost impor-
tance to understand the complex system of glioblastoma development. A cascade of 
mutations affecting genes that control cell growth, apoptosis, angiogenesis, and inva-
sion, has been described [27,28] (Figs. 8.1 and 8.2). Therefore, the simultaneous 
modeling of tumor cells, microenvironment and their interactions with the tumor host 
may be most promising for the treatment of GBM [29]. This includes the combina-
tion of therapies that inhibit proliferation and invasion of tumor cells, target angio-
genesis, tumor-associated inflammation, or reconstitute the local immune response 
[30]. Targeting of tumors via the adjacent microenvironment seems to have potential 
as well [31,32]. A paradigmatic paper of Hoey et al. [33] using a pair of human anti-
bodies against transplanted human cancer stem cells and mouse antibody against 
mouse intratumoral vessels did show synergistic effects, if they are delivered simul-
taneously. This provides a strong rationale for targeting both the tumor cells and the 
microenvironment in a system biology approach.

8.8  Pathophysiology of Glioblastoma as Therapeutic Target

Main pathophysiological features of glioblastomas, as of most tumor entities, are 
tissue invasion that is enhanced by remodeling of the extracellular matrix, insensi-
tivity to growth inhibition, evasion of apoptosis, self-sufficiency of growth signals, 
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limitless replication, sustained angiogenesis, and an inflammatory environment. 
A theory, based on GBM pathophysiology, including systems biological knowledge 
about glioblastomas, which are allowing direct translation into clinical diagnostic 
and therapeutic approaches does not exist at this time. Further more, it is currently 
not possible to classify these mechanisms in an order of importance within a sys-
tems biological context. Future research from a systems biology point of view will 
have to elucidate the hierarchy of these mechanisms.

8.9  Glioblastoma Cells with Stem Cell Function

Glioblastoma cells with stem cell function (G-CSC), glioblastoma progenitor cells 
or glioblastoma initiating cells, are suggested to be the ancestor of the full-blown 
tumor in patients with glioblastoma due to their self-renewal capacity and limitless 
proliferative potential [34]. Recently, integrated genomic analysis has revealed 

Fig. 8.1 The glioblastoma microenvironment and its development from a normal stem cell niche. 
The development of the tumor niche is not well understood. A possible scenario may be the follow-
ing: The physiological niche consists of several compartments that are well balanced. In early 
development of the tumor niche, a mutation, possibly of a growth factor receptor, leads to unre-
stricted proliferation of a physiological stem cell. Later on, growth factor balance gets deranged, with 
a marked upregulation of several factors including TGF-beta and HIF. This leads to local immuno-
suppression and angiogenesis as the driving events for the development of a full-blown tumor
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 several clinically relevant subtypes of GBM. The described GBM features are 
dependent on the applied methodological approaches. In an approach using the 
database of the cancer genome atlas project, PDGFRA, IDH-1, EGFR, and NF1 
were identified as the driving genes that define the mentioned subtypes [35]. The 
classification divides GBM into a proneural, neural, classical, and mesenchymal 
subtype which each have distinct prognoses. In addition, the respective genetic 
profile can closely be related to normal brain cell types, suggesting a transition of 
normal cells to G-CSC. Others have published similar classifications [25]. We have 
used a 24-gene signature to distinguish two subgroups of GBM with a proneural 
signature resembling fetal neural stem cells and a mesenchymal signature similar to 
adult neural stem cell lines [36]. The GMB subtypes can further be divided by using 
available stem cell markers, and they are characterized by distinct expression pro-
files concerning extracellular matrix molecules and several signaling pathways, e.g. 
that of transforming growth factor-beta2 (TGF-beta2) [36]. Evidence suggests that 
the origin of G-CSC from normal precursor cells may provide a new subclassifica-
tion for GBM. However, the discussed results will have to be integrated, further.

Fig. 8.2 The immunosuppressive network within malignant glioma. Within the tumor, effector cells 
such as cytotoxic T cells (CTL) are exposed to high concentrations of immunosuppressive factors 
including cytokines, such as TGF-beta or IL-10, tumor-cell derived metabolites such as lactic acid, 
and enzymes, such as indoleamin-2,3-dioxygenase (IDO), Arginase, NOS-2 or Reactive Oxygen 
Intermediates (ROI), that are either produced by the tumor cells or different subpopulations of 
immune suppressor cells that are attracted to the tumor site or generated within the tumor microen-
vironment, such as mesenchymal cells, tumor-associated macrophages (TAM), myeloid-derived 
suppressor cells (MDSC), dysfunctional dendritic cells (DC) and regulatory T cells (Treg). In addi-
tion, immuno-inhibitory surface molecules such as HLA-G or HLA-E, PD-L1, galectins and minor 
brain gangliosides (GM2, 3) expressed on tumor cells contribute to the immune escape of malignant 
glioma. Many of these events are orchestrated by TGF-beta that plays a crucial role in setting up the 
immunosuppressive microenvironment in malignant gliomas. Moreover, master transcriptional fac-
tors such as NF-kB, HIF-1 and Stat3 are constitutively expressed in malignant glioma
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As migration is the first apparent step towards differentiation of NSCs, dysregu-
lated migration features may lead to the release of proliferation control and to tumor 
formation [37]. Alternatively, dysregulated extrinsic factors within the niche might 
lead to uncontrolled proliferation of stem cells and tumorgenesis [38]. Histological 
and ex vivo cell culture studies suggest that physiological stem cells lie within a 
vascular niche in which endothelial cells regulate stem cell self-renewal [39–41].

8.10  The Glioblastoma Stem Cell Niche

The tumor niche in glioblastoma can be hypothesized to consist of a disorganized 
microenvironment compiled of cellular (several precursor cells, e.g. mesenchymal, 
endothelial and hematopoetic) and non-cellular components, where glioblastoma 
stem cells (G-CSC) preferentially seed and develop. A series of recent studies has 
brought evidence that blood vessel alterations support G-CSC development [15,42] 
and maintenance [43,44]. Recent data convincingly demonstrate that targeting the 
vascular components of the niche can lead to the eradication of G-CSCs, thereby 
providing comprehensive data on the importance of compartmental interactions 
within these tumors [33,42]. Similar to the normal NSC niches in the subventricular 
zone, the G-CSC niche may provide regulated signals necessary to maintain the 
undifferentiated state of G-CSC, thereby preserving their self-renewing and multi-
functional capacities [45,46].

Tumor cells preferentially home at the vascular basal lamina [47–49]. Recent 
data show that several genes are differentially expressed in vessels of glioblastomas 
in comparison to normal brain vessels [50] and therefore, may be responsible for a 
dysfunctional G-CSC promoting microenvironment. Overwhelming evidence 
 indicates that hypoxia regulates angiogenic properties [51], and that bone 
 marrow-derived precursor cells contribute to the growth of endothelium-lined 
 vessels at the vicinity of tumor masses [52]. These processes are regulated by 
numerous pro-angiogenic and anti-angiogenic growth factors [53]. Vascular 
endothelial growth factor (VEGF), which is induced by hypoxia inducible factor 
(HIF-1) in hypoxic areas and derives from tumor cells as well as endothelial 
 progenitor cells, induces blood vessel formation [54] and directly regulates tumor 
cell invasiveness [55]. These data convincingly suggest that antiangiogenic agents 
should be included in the treatment of GBM. Moreover, G-CSC seems to be depen-
dent on and promoted by an hypoxic niche [56].

The soil of the tumor niche is the extracellular matrix (ECM). GBM have a 
distinct ability to infiltrate the brain parenchyma and, by means of ECM modifica-
tion and expression of proteases [49,57], disrupt the extracellular matrix that inhib-
its motility of normal cells. A number of extracellular matrix proteins as hyaluronic 
acid, chondroitin sulfate proteoglycans [58] and tenascin [59] have been character-
ized for their ability to modulate the migration of glioma cells [60–72], NSC [63] 
and G-CSC [64]. These proteins constitute further possible targets of a systems 
biology approach to GBM.
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8.11  Key Regulators of the Tumor Niche

The tumor niche represents a closely regulated tumor-stroma-interaction, which is 
influenced by several adjacent compartments. Recent data have shown that agonists 
of a nuclear transcription factor, peroxisome proliferator-activated receptor gamma 
(PPARgamma) agonists, induce growth arrest and apoptosis in GBM cells, G-CSC 
cells and spheres [65]. The fate of G-CSC may be influenced driving these cells 
into an oligodendroglial differentiation [66]. This is specifically interesting as the 
role of PPARgamma agonists extends beyond inhibition of proliferation, including 
effects such as induction of apoptosis [67–72]. Furthermore, invasion can be 
reduced by treatment with PPARgamma agonists [68,73]. Several of these effects 
may be transduced by inhibition of TGF-beta mediated effects [74]. The described 
effects may be further enhanced by combination of PPARgamma agonists with 
other targeted approaches as HMG-CoA reductase inhibition [75] or retinoic acid 
receptor antagonism [76]. In a pilot trial combining low-dose metronomic chemo-
therapy with a PPARgamma agonist and an inhibitor of COX-2, a subset of patients 
demonstrated impressing responses with long-term stabilizations of their disease 
[77]. It remains to be elucidated which molecular markers can predict responses to 
such combined biomodulatory regimen.

Soluble factors, e.g. TGF-beta and HIF-1 are among the important regulators of 
the tumor niche. A recent study of human gliomas suggests that bone morphogenic 
proteins that are niche-derived regulators of neural stem cell fate might also regu-
late the differentiation status of G-CSC [78]. It is intriguing to speculate that pro-
teins from the large TGF-beta family regulate neural stem cell self-renewal, and 
that defects in this regulation might induce a transition of neural stem cells to tumor 
stem or progenitor cells [37]. A recent publication describes that TGF-beta and LIF 
regulate the self-renewal capacity of patient-derived tumor stem cells, but not of 
normal human neural progenitors [79]. The induction of LIF is Smad-dependent 
and activates the JAK-STAT pathway. Therefore, TGF-beta and LIF may be 
addressed as attractive therapeutic targets [29,79–81].

8.12  Tumor Metabolism

The tumor metabolism has recently become one of the most intensely investigated 
topics in tumor biology. The Warburg effect describes a phenomenon where glyco-
lysis is performed despite a sufficient level of oxygen (aerobic glycolysis) [89,90]. 
It is known for long that aerobic metabolism provides one of the key events in the 
progression of solid tumors [82]. Persistence of aerobic glycolysis is a characteris-
tic of cancer cells [82] and is strongly regulated by several oncogenic proteins, e.g. 
myc, p53 and HIF-1 [83–86]. HIF-1 induces the expression of several enzymes 
involved in glycolysis, including lactate-dehydrogenase A (LDH-A), the enzyme 
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converting pyruvate to lactate [87]. LDH-A, in turn, also modulates TGF-beta [57], 
a known enhancer of GBM invasion.

The shift toward aerobic glycolysis increases the production of lactic acid with 
a decreased pH of the pericellular space [88], leading to apoptosis of non-tumor 
cells [89,90] and invasion of malignant cells into the parenchyma following a front 
of acidic microenvironment [84]. Lactate activates HIF-1, VEGF-A and VEGF-R1 
[91] as well as proteolytic enzymes [57,92,93], which allow tumor cells to enter 
into the brain as well as to home along the basal lamina of the brain capillaries [94]. 
HIF-1 is a crucial factor controlling neovascularization, glucose metabolism, sur-
vival and tumor invasion [45,87]. Together, these results established a yet underes-
timated link between metabolic and molecular events which may be a major driver 
of tumor progression.

8.13  Tumor-Associated Inflammation in GBM

Tumor-infiltrating leukocytes, in particular tumor-associated macrophages (TAM), 
are prime regulators of cancer inflammation [95]. TAMs accumulate preferentially 
in hypoxic regions of tumors and promote tumor progression by secretion of angio-
genic factors, proteases, growth factors, motility factors and pro-inflammatory 
mediators [96,97]. In GBM, a wide range of TAM have been observed that express 
TREM1 (triggering receptors expressed by myeloid cells-1) [98,99]. Engagement of 
TREM1 stimulates macrophages to secrete pro-inflammatory cytokines and 
chemokines, such as IL-8, MCP-1, TNF-a and IL-1 [100]. TREM1 expression in 
macrophages is regulated by NF-kB at the transcriptional level [101]. These data 
strongly emphasize the contribution of NF-kB pathway activation in bridging 
tumor-associated inflammation and tumor promotion and progression of GBM.

Constitutive NF-kB activation may be either promoted by genetic alterations or 
by microenvironmental signals, including hypoxia, cytokines, and Reactive Oxygen 
Intermediates (ROI) [102,103], and induces several cellular alterations associated 
with tumorgenesis and more aggressive phenotypes, including insensitivity to 
growth inhibition, resistance to apoptotic signals, immortalization, angiogenesis 
and tissue invasion [104]. Constitutive NF-kB activity has been reported from vari-
ous glioma cell lines and primary cultures from tumor tissue [105].

8.14  Proliferation Behavior

The mechanisms responsible for switching tumors from dormancy to proliferation 
are not well understood, but are an example for a systemic coordinated interaction 
of tumor and stroma cells. A recent publication suggests that dormant tumors 
undergo a stable genetic reprogramming during their switch to a fast-growing 
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 phenotype. In a genomic analysis, a consensus signature was found across solid 
tumors including glioblastoma, with angiogenesis being the most significantly 
affected functional gene category. The switch was associated with a down-regulation 
of angiogenesis inhibitors and regulation of several classes of genes connected to 
invasion, establishing a strong correlation between dormancy, angiogenesis and 
proliferation [106].

8.15  Invasion

Clinical recurrence of malignant gliomas is closely associated with a rapid infil-
tration of tumor cells into the surrounding healthy brain parenchyma [107]. The 
overexpression of TGF-beta is associated with upregulation of matrix metallopro-
teinases type 2 and 9 (MMP-2 and MMP-9), of molecules of the extracellular 
matrix [57,108], and of integrins [57], a large family of cell surface receptors that 
connect cells to extracellular matrix proteins and act as signal transducers [48]. 
Integrins facilitate extracellular matrix dependent organization of the cytoskeleton 
and activation of intracellular signaling that is required for the regulation of cell 
adhesion and migration [109].

HIF-1 is an additional crucial factor regulating invasion [87]. A number of 
 proteins involved in detachment and invasion including: vimentin, fibronectin, kera-
tins, matrix metalloproteinase 2 (MMP-2), cathepsin D, and urokinase plasminogen 
activator receptor are HIF-induced [110]. HIF-1 also induces the loss of E-cadherin, 
a key player in cell adhesion and epithelial-mesenchymal transition [45].

8.16  Angiogenesis

The developing vasculature delivers nutrients and provides a vascular niche for 
glioblastoma development and maintenance. Treating CD133+ glioblastoma cells 
with bevacizumab blocks their ability to induce vessel formation in vitro, and to 
induce tumors in a nude mouse model [15].

The formation of new blood vessels by capillary sprouting is governed by 
molecular interactions between vascular cells and components of the extracellular 
matrix. The role of TGF-beta in angiogenesis involves upregulation of angiogenic 
factor expression like VEGF derived from vascular endothelial cells and glioma 
cells and of bFGF, tissue proteases (e.g., MMP-2, MMP-9) and extracellular matrix 
proteins [111,112]. High levels of VEGF provide the tumor with a pro-angiogenic 
and immunosuppressive environment [111]. Hypoxia activates hypoxia-inducible 
transcription factors (HIFs) [45], that function as master switches to induce expres-
sion of angiogenic factors, including VEGF. In hypoxia, the HIF-1 subunits become 
stabilized and activate transcription of target genes [113] including VEGF [114], 
thereby inducing marked angiogenesis.
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8.17  Local Immunosuppression

HIF-1a and TGF-beta have also been identified as key factors in gliomas promoting 
the release of chemoattractants that orchestrate the recruitment of different kinds of 
immune cells to gliomas [115–118]. However, the generation of tumor-specific 
immunity is generally prevented by local immunosuppressive factors, particularly 
TGF-beta which blocks both the innate and adaptive arm of the immune system 
[119,120]. TGF-beta strongly inhibits the generation of cytotoxic T-cells (CTLs) 
and  lymphokine-activated killer (LAK) cells and suppresses the cytolytic activity of 
CTLs and other effector cells such as macrophages, NK cells and LAK cells by 
reducing pore-forming proteins (e.g., perforin and granenzyme B) and by suppress-
ing the release of pro-inflammatory cytokines and cytotoxic mediators (e.g., INF-g, 
TNF-alpha and NO) [121,122]. TGF-beta also inhibits both proliferation and dif-
ferentiation of T-helper type 1 (Th1) cells, important players in antitumor immunity 
[138], and promotes the conversion of naïve CD4+ T cells into immunosuppressive 
CD4+ regulatory cells (Treg) [124,125]. In addition, B cell activation, proliferation 
and  secretion of immunoglobulins are markedly impaired by TGF-beta [126]. Abundant 
evidence further documents that the differentiation, maturation and function of 
dendritic cells (DCs), professional antigen-presenting cells,  is profoundly  suppressed 
by TGF-beta [127–129]. These dysfunctional, tumor-conditioned DCs induce either 
suppressive Treg or T-cell unresponsiveness [130–132]. Similarly, TGF-beta was 
also shown to stimulate the differentiation of myeloid precursor cells to myeloid-
derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) that 
accumulate in gliomas and markedly inhibit DC function, and T cell and NK cell 
responses [133–136] (Fig. 8.2). Altogether, these data clearly indicate that HIF-1a 
and TGF-beta play a central role in glioma-mediated immunosuppression.

8.18  Pathophysiology-Based Therapy in Glioblastoma

8.18.1  Diagnostics Promoting Systems Comprehension

Compiling large-scale molecular knowledge about aberrant transcriptional  networks 
with adequate methods is in its beginnings [8]. High-throughput methods as 
microarrays detecting molecular-genetic aberrations and gene dose [137–139], pro-
tein arrays using several kinds of antibody based methods [140–144], and mass 
spectroscopy for the investigation of metabolism [145], will probably yield the most 
objective results of changes in the systems biology of glioblastomas. Besides these 
methods, imaging methods as magnetic resonance spectroscopy (MRS) can be used 
to cluster several subtypes of glioblastomas, potentially defining distinct groups 
for treatment [146]. At this time, results from large-scale analyses influence the 
molecular- biological classification of GBM [147] and elucidate single promising 
targets.
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To further specify complex systems developments in GBM [148], bioinformatics 
are adducted to create new mathematical models on the basis of results experimen-
tally derived from different observation levels (genetic, epigenetic, proteomic, 
metabolomic) [149,150]. Of importance, the development of a tumor is a dynamic 
process, comparable to a developing organ, and is initially highly dependent on the 
interactions between different structures and compartments within the tumor niche. 
Interventions, either intrinsic (e.g. by the tumor itself or the host) or extrinsic (e.g. 
therapy) will influence all levels of GBM’s tumor biology, including the genetic, 
epigenetic, proteomic, and metabolomic level.

To improve the translation of such screening techniques into the clinical setting, 
and in view of the associated high costs, a panel of the most important pathogenetic 
events of glioblastomas should be defined and evaluated with the most adequate 
techniques. For example, clustered analysis from high-throughput assays could be 
combined with genetic or immunohistochemical analysis of prognostic (e.g.: 
MGMT, IDH-1, EGFR, p53, PTEN) and pathogenetic markers (e.g.: VEGF, bFGF, 
TGF-beta: angiogenesis; Tenascin-C: invasion) to establish personalized diagnostic 
and therapeutic patterns [151].

Recent regimen use shot-gun strategies as cytostatic drugs or targeted 
approaches without a specific pre-screening of target expression in the individual 
patient. First approaches screening for individual genetic, proteomic and metabo-
lomic patterns of each patient in an unbiased way have been published [137–145], 
but are not translated into standard therapy yet. Recent technological approaches 
to detect genetic and molecular-genetic aberrations (high-density oligonucleotide 
arrays, and next-generation sequencing technologies within the human cancer 
genome atlas project) have revealed several potentially therapy-relevant molecules, 
e.g. IDH-1 [152,153]. Similar approaches are now transduced to the proteomic 
[154,155] or metabolomic [156,157] level. Such efforts could be translated into a 
personalized therapeutic concept fusing diagnostic and therapy planning in a sin-
gle step [158].

Genomic screening: The sum of genetic aberrations build up a cellular infra-
structure supporting tumor promotion [159]. Genomic screening analyses are com-
monly used for detection of putative targets [160–161], or screens for miRNAs 
targeting disease-relevant gene expression, on a merely computational basis [162]. 
Most likely, new models will be individually compiled in the future work-up of 
glioblastomas, generating information for the setup of individualized concepts 
[158]. These new models include advanced in vivo models using engineered ani-
mals and in silico models based on bioinformatic methods [163]. This approach 
allows for hypothesis generation and data integration in both the experimental and 
clinical settings.

Molecular imaging could also be used for the follow-up to individualize treat-
ment regimens. 1H (proton)-MRS ratios can discriminate tumor and necrosis [164]. 
The median apparent diffusion coefficient (ADC) is higher in necrosis as compared 
with both tumor and mixed tumor and necrosis [165]. Both O-(2–18F-fluoroethyl)-
L-tyrosine (FET) and 11C-methly-L-methionine (MET)-positron emission tomog-
raphy (PET) have been used to distinguish tumor progression from reactive lesions 
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induced by treatment. In a study in patients with glioma WHO grade II to IV receiv-
ing several treatment modalities, a positive predictive value of 84% was found for 
FET-PET [166].

8.19  Targeting the Invasive Feature

Tumor cells in glioblastomas consist of functionally heterogeneous either prolifera-
tive or invasive cell fractions, as well as core and peripheral tumor cells expressing 
divergent anti-apoptotic mechanisms. Much evidence suggests an inverse correla-
tion between proliferation and invasion both in vitro and in vivo as detected by 
cDNA microarray technology [61,167]. During invasion, glioma cells may be rela-
tively resistant to cytostatic drugs, as these agents are dependent on cell division 
and therefore proliferation. Consequently, it has been shown that invading cells are 
resistant to induction of apoptosis, correlating to a shift in the expression of apop-
tosis-regulating genes [167]. In addition, overexpression of pro-survival genes as 
Bcl-2 promotes the invasion of glioma cells in vitro [168]. The expression of SF/
HGF inhibits apoptosis of migrating GBM cells and confers resistance to cell death 
[169], and EGFR signaling acts anti-apoptotic [170]. Therefore, migration not only 
induces anti-apoptotic effects but also enhances survival pathways as PI3-K/Akt 
[171]. It can be speculated that the inhibition of invasion would enhance the suscep-
tibility to cytostatic agents. However, no specific anti-invasive agents have been 
approved so far; therefore, this hypothesis has only been challenged in vitro at this 
time [171].

Attractive therapeutic strategies to target the tumor microenvironment are inhibi-
tion of aberrant NF-kappa B activation in glioblastoma or inhibition of hypoxia 
inducible factor-1 (HIF-1), especially in combination with cytotoxic drugs or anti-
angiogenic agents [172,173].

8.20  Targeting Angiogenesis

Similar links have been detected between anti-angiogenic treatment and invasion. 
Antiangiogenic therapy seems to increase the invasive properties of glioma cells. 
Early in vitro results [174] have recently been verified by observations from human 
high-grade glioma trials using bevacizumab, where an increased FLAIR-enhancement 
suggesting increased invasion has been observed using magnetic resonance imaging 
(MRI) [17,22,23]. Both the results from in vitro as well as in vivo studies recommend 
a combined use of anti-angiogenic and ant-invasive modalities. Therefore, considering 
the lack of available anti-invasive agents, it seems urgent to develop clinically appli-
cable anti-invasive therapies to allow combinations of these with anti-proliferative 
and/or anti-angiogenic drugs.
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Some agents initially developed for specific cellular targets have been shown to 
have pleiotropic off-target effects that could probably enhance their clinical effi-
cacy. Cilengitide is a selective inhibitor of integrins on endothelial cells with a 
predominant antiangiogenic effect, but has a bi-modal biological effect as it devel-
ops anti-invasive properties on tumor cells as well. The substance is under investiga-
tion within several clinical protocols [18,175–177]. However, its efficacy as a 
monotherapy approach in relapse of glioblastoma is only moderate [177].

The antiangiogenic single-target agent bevacizumab, a humanized antibody 
against VEGF-A (vascular endothelial growth factor A), is the only mono-target 
approach with considerable clinical efficacy and gained approval for relapsed 
 glioblastoma in the USA: The approved regimen combines bevacizumab with 
 irinotecan [178], but several alternative regimen have been tested using bevaci-
zumab as monotherapy [179] or combined with other cytotoxic agents, i.e. temozo-
lomide or nitrosoureas.

8.21  Targeting Immunosuppressive Features

An approach to overcome glioma-induced tolerance mechanisms involves e.g. 
targeting immunosuppressive mediators within the tumor microenvironment [185] 
(see Fig. 8.2).

Many different specific inhibitors have successfully been studied in preclini-
cal models to break immune resistance of malignant gliomas [186,187]. The 
most advanced in clinical application is a phosphorothioate-modified antisense 
oligonucleotide which is complementary to the mRNA encoding TGF-beta2 
(tarbedersen) and is currently tested in a phase III trial vs. systemic standard 
chemotherapy (temozolomide or BCNU) after promising results in phase I/II 
trials [29].

In addition, inhibitory cytokine signaling molecules (e.g., Stat3) are known to 
be constitutively activated in several human glioma cell lines, promoting tumor 
cell growth and survival [189]. Selective inhibitors of Stat3 have been evaluated in 
murine glioma models and were shown to activate intratumoral macrophages and 
microglia, induce apoptosis in glioma cells, and inhibit tumor growth [190,191].

Interestingly, multikinase inhibitors such as sorafenib and sunitinib have been 
shown to promote phospho-STAT3 dephosphorylation. Moreover, both agents 
modulate the tumor immunological microenvironment by reducing the immuno-
suppressive function of myeloid-derived suppressor cells and the development of 
Treg. Therefore, both sorafenib and sunitinib may be used to reverse immune 
suppression and as a potentially useful adjunct for enhancing the efficacy of 
immune-based cancer therapy [191–194]. First promising examples of combina-
tions of peptide vaccination with cytostatic agents have been published 
[195,196].
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8.22  Multi-Targeted Treatment

System oriented therapy in GBM in our opinion necessitates a multi-targeted 
treatment approaching the nodal pathophysiological events of each individual 
tumor. Multi-targeted approaches target several molecular mechanisms in parallel. 
Multi-targeted effects can be induced by a single agent within multiple cell types 
of the tumor compartment, or by a composition of mono-targeted agents. However, 
a multi-targeted approach not automatically targets the nodal pathophysiological 
mechanisms of GBM. Therefore, a multi-targeted approach that is relevant under 
the view of systems biology of GBM should be based on a specific analysis of the 
pathophysiologically relevant communicative components of the respective tumor.

Multi-target inhibitors as sorafenib, cediranib [197,198], and sunitinib (against 
VEGFR1-3, PDGFR-a/b, FLT-3, c-KIT and RET [199]) are in the clinical develop-
ment for GBM to address systems biological considerations. Therapeutic regimen 
integrating several modes of action, as the combination of cilengitide plus temozo-
lomide (EMD 121 974-011, EORTC 26071-22072 [177]), cediranib plus CCNU 
(D8480C00055; recruiting), EGFR-targeted vaccination and temozolomide [195], 
bevacizumab plus irinotecan (Genentech trial; [179]), or imatinib plus hydroxyurea 
[200] have been evaluated or are currently under investigation (Table 8.1).

Other single-target substances as inhibitors of protein kinase Cß [180–183], 
mTOR inhibitors [184], inhibitors of EGFR [201–203], PDGFR [200,204,205] 
and others that demonstrated only marginal effects in patients with relapsed 

Table 8.1 Published glioblastoma clinical trials in adults constituting systemic approaches. Trials 
combining cytostatic with mono- or multi-targeted drugs are emphasized. The efficacy evaluation 
is given for the combination, neglecting possible efficacy of the single-substance comparator arm, 
if applicable. If several studies exist for the same combination, the most recent or most powered 
trial is listed. The degree of efficacy is evaluated using the historical meta-analysis data of Wong 
et al. [210], where PFS-6 was 15% for GBM, whereas the median PFS was 9 weeks

Author Year Targeted agent Target Classical agent Efficacy

[179] 2009 Bevacizumab VEGF Irinotecan Positive (as single 
agent)

[202] 2009 Erlotinib EGF-R Temozolomide Pilot trial
[200] 2009 Imatinib bcr-abl Hydroxyurea Negative
[201] 2008 Erlotinib EGF-R Carboplatin Negative
[211] 2008 Gefitinib EGF-R Temozolomide Phase I
[195] 2008 Peptide Vaccination Immune system Temozolomide Pilot trial
[212] 2008 Thamidomide Angiogenesis Irinotecan Modest
[213] 2007 Thalidomide Angiogenesis Temozolomide Negative
[214] 2005 Celecoxib COX-2 Irinotecan Modest
[215] 2002 Marimastat MMP Temozolomide Negative

VEGF = vascular endothelial growth factor; EGF-R = endothelial growth factor receptor;  
COX-2 = cyclooxygenase 2; MMP = matrix metalloproteinase. The overview shows that multi-
targeted approaches are not automatically relevant modulators of the robust pathophysiological 
therapy resistance of GBM
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glioblastoma should be investigated within adequate combination therapies to 
evaluate their potential for systemic GBM therapy.

The given examples can be extended to other teleological derived treatment 
modalities. In consequence, a combination of cytostatic, anti-invasive and anti-
angiogenic, anti-inflammatory drugs combined with agents which are suggested to 
reconstitute the local immune system [206,207], could further enhance therapy 
efficacy.

8.23  Approaches for Personalizing GBM Therapy

Recent regimen use shot-gun strategies as cytostatic drugs or targeted approaches 
without a specific pre-screening of target expression in the individual patient. First 
approaches screening for individual genetic, proteomic and metabolomic patterns 
of each patient in an unbiased way have been published [137–145], but are not 
translated into standard therapy, yet. Recent technological approaches to detect 
genetic and molecular-genetic aberrations (high-density oligonucleotide arrays, 
and next-generation sequencing technologies) have revealed several potentially 
therapy-relevant molecules, e.g. IDH-1 [152,153]. Similar approaches are now 
transduced to the proteomic [154,155] or metabolomic [156,157] level. Such 
efforts could be translated into a personalized therapeutic concept fusing diagnos-
tic and therapy planning in a single step [158].

8.24  Outlook

The challenge will be to correlate diagnostically compiled informative tumor pat-
terns with specific tumor-associated disease traits or with therapy response depend-
ing on the tumor’s functional systems status. Bioinformatic approaches may be 
helpful that allow defining individual informative tumor patterns based on a possibly 
handy range of methods to select personalized therapies and to predict response.

We have to notice that huge systems biological knowledge based on a reduc-
tionist derived scientific horizon represents only one side of a medal: Redemption 
of the situative identity of systems objects (comprising either proteins, signaling 
pathways, or single cell types) is an interactive communicative process, which 
necessitates redemption of the objects’ validity and denotation by steadily evolv-
ing ‘surroundings’ during tumor progression. Now the tumor system is advancing 
to a holistic communicative system, which is accessible for novel kinds of thera-
pies, so called biomodulatory therapies [208, 209]. That means, the other side of 
the medal opens a second scientific horizon and offers the opportunity to approach 
systems issues from two scientifically completely different sites, as differential 
perspectives of interaction with tumor systems are entangled with various horizons 
of knowledge (chapter 1, 26) [208, 209].
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Abstract Oncogenic mutations of G proteins and G protein-coupled receptors 
(GPCRs) have been identified in various endocrine tumors for almost 20 years. 
Chronic inflammation contributes to tumorigenesis by the induction of cytokine and 
chemokine production and leukocyte infiltration. Many inflammatory mediators and 
chemoattractants elicit their effects by stimulating specific GPCRs. The subsequent 
activation of various G proteins often results in the modulation of transcription factors 
via complex signaling networks. Human herpesviruses can even resort to hijacking 
such control by making their own constitutive GPCRs that eventually lead to the devel-
opment of Kaposi’s sarcoma. Increasing evidence indicates that inflammation-related 
transcription factors such as STAT3 and NFkB are common effectors of converging 
streams of G protein signals, which further signifies the importance of G protein-
mediated regulations of inflammatory actions and tumorigenesis. This chapter aims to 
review the regulations of transcription factors mediated by G proteins and the biologi-
cal relevance of cross-communications between different signaling cascades.

Keywords  G proteins • Signal transduction • Inflammation • Cancer
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NFAT Nuclear factor of activated T-cells
NFkB Nuclear factor kB
NPC Nasopharyngeal carcinoma
p38 p38 mitogen-activated protein kinase
PAF Platelet-activating factor
PAI-1 Plasminogen activator inhibitor-1
PAR Protease-activated receptor
PDK-1 3¢-phosphoinositide-dependent protein kinase-1
PGE2 Prostanglandin E2
PI3K Phosphatidylinositol 3-kinase
PKA Protein kinase A
PKC Protein kinase C
PIP2 Phosphatidylinositol bisphosphate
PLC Phospholipase C
PPAR Peroxisome proliferator-activated receptor
ROS Reactive oxygen species
RyR2 Ryanodine receptor 2
SST

2
R, SST

4
R Types 2 and 4 somatostatin receptors

STAT Signal transducer and activator of transcription
Tac1 Tachykinin 1
TIMP-1 Tissue inhibitor of metalloprotease-1
TNF-a Tumor necrosis factor-a
TRAIL TNF-related apoptosis-inducing ligand
TXA

2
 Thromboxane A

2
 receptor

Tyk2 Tyrosine kinase 2
US28 Viral chemokine receptor US28
VCAM-1 Vascular cell adhesion molecule-1
VEGF Vascular endothelial growth factor
VSMC Vascular smooth muscle cells.
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9.1  Introduction

Chronic inflammation is one of the major pathological bases manifesting the 
 development of gastric cancers, hepatitis and hepatocellular carcinoma, cervical 
cancer, ulcerative colitis and colorectal cancer [1]. Microbial infections, viral 
infections and autoimmune responses can lead to chronic inflammation-associated 
cancer formation. Human herpesviruses, such as human cytomegalovirus (HCMV) 
and Kaposi sarcoma herpesvirus (KSHV) are known to be associated with 
tumorigenesis and tumor progression. HCMV infection potentiates malignancies of 
colon cancer and malignant glioma [2,3]. KSHV was initially discovered from 
Kaposi’s sarcoma lesion of an AIDS patient [4]. It was subsequently discovered 
that KSHV contributed to the pathogenesis of KS, primary effusion lymphoma [5] 
and lymphoproliferative disorder multicentric Castleman’s disease. Emerging 
evidence shows that herpesvirus infection interferes or inhibits host cell immune 
defense and maintains a tumor-promoting microenvironment by expressing virulent 
homologues of host cell proteins that disturb normal cell cycle progression and 
leads to apoptosis of the host cells. For example, cellular growth and transformation 
are induced by viral-encoded homologues of cytokines, chemokines or chemokine 
receptors [6]. The constitutive expression of viral chemokine GPCRs triggers 
prolonged activation of G protein signaling and eventually becomes the major 
inputs for chronic leukocyte infiltration and cancer development. GPCRs can serve 
as proto-oncogenes since overexpression of various wild type GPCRs can transform 
cells in the presence of their specific ligands. Mutations on GPCRs may result in 
constitutive signaling and oncogenesis [7]. Naturally occurring mutations in GPCRs 
have been identified in human tumors [8,9].

Stimulation of GPCRs triggers the activation of Ga and release of Gbg complex, 
with both components capable of regulating downstream effectors. According to 
the amino acid identities and their functional similarity, Ga subunits are classified 
in four major families (Ga

s
, Ga

i
, Ga

q
 and Ga

12
). Ga

s
 and Ga

i
 family members are 

initially known as the activators and inhibitors, respectively, of adenylyl cyclases to 
modulate the intracellular cAMP level. cAMP is important for the regulation of 
protein kinase A (PKA) activity and cAMP-sensitive guanine nucleotide exchange 
factor Epac1 and Epac2 [10]. Ga

q
 family members (Ga

q
, Ga

11
, Ga

14
 and Ga

16
) 

stimulate phospholipase Cb (PLCb) isoforms which hydrolyze the membrane 
phospholipid phosphatidylinositol bisphosphate (PIP

2
) to release diacylglycerol 

(DAG) and inositol trisphosphate (IP
3
). These two secondary messengers subse-

quently stimulate Ca2+ mobilization and protein kinase C (PKC) signaling pathways 
[11]. Rho GTPases have been identified as downstream signaling mediators of 
Ga

12/13
 and regulate cytoskeletal rearrangement as well as gene transcription [12]. The 

Gbg complexes are nowadays recognized as independent functional compartments regu-
lating a whole repertoire of signaling and transcriptional events [13].

Interestingly, all four families of Ga subunits have been identified as proto-
oncogenes with transforming and tumor-promoting properties in vitro and in vivo. 
The expression of constitutive active mutant of different Ga subunits is capable of 
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inducing neoplastic transformation in NIH3T3 cells. Oncogenic mutations have 
been mapped to the genes encoding Ga subunits in various human endocrine 
tumors. GTPase-deficient mutations of Ga

s
 that lead to sustained activation of 

adenylyl cyclases have been found in human pituitary tumors. In human ovarian 
tumors, constitutively active mutants of Ga

s
 and Ga

i2
 were found [14]. Besides, 

expression of a dominant negative Ga
i2
 protein inhibits the growth of murine mela-

noma cell line CL19, this further supports that Ga subunits are involved in tumor 
formation [15]. Mice deficient in Ga

i2
 induce ulcerative colitis, which is a form of 

inflammatory bowel disease, and lead to colon adenocarcinomas development [16]. 
Recently, oncogenic mutations on Ga

q
 have been identified in blue naevi and ocular 

melanoma of the uvea [17]. The mutations are exclusively found in the GTPase 
domain and result in sustained activation of Ga

q
. Ga

12
, also known as the gep onco-

gene, induces neoplastic transformation via STAT3 [18]. Recent findings reveal a 
significant correlation between Ga

12
 transcripts and nasopharyngeal carcinoma 

(NPC) lymph node metastasis. Knockdown of Ga
12

 in NPC cells shows a decrease 
in cell migration, invasion and a reversal in fibroblastoid morphology [19]. G pro-
tein signals often converge at some common downstream molecules such as mito-
gen-activated protein kinases (MAPK), signal transducer and activator of 
transcription (STAT) and nuclear factor kB (NFkB) and these signaling molecules 
are associated with inflammation and oncogenesis (Fig. 9.1). This chapter reviews 
the current knowledge about the regulations of various transcription factors by the 
four families of Ga subunits and their associated Gbg complexes. Different aspects 
of signal integration between G proteins will also be discussed.

9.2  G protein-Mediated NFkB Regulation in Inflammation 
and Cancer

NFkB is one of the major regulatory factors involved in the development of inflam-
matory diseases and cancer and it represents a valuable therapeutic target for drug 
discovery. The NFkB transcription factor family has five members (p65, p50, p52, 
c-Rel and RelB) in the mammalian system. Mice deficient in the p65 subunit is 
embryonic lethal whereas mice that lack other NFkB members show dysfunction 
in immune responses. NFkB activity is highly activated at the sites of inflammation 
and in most human cancers. NFkB induces the expression of pro-inflammatory 
cytokines in immune cells, whereas it appears to control apoptosis in tumorigenic 
cells. Various inflammatory mediators have been shown to signal via different 
GPCRs to stimulate NFkB activation and gene transcription. Therefore, a thorough 
understanding on the molecular mechanisms between GPCR and NFkB may help 
to combat inflammatory diseases and cancer.

The canonical NFkB signaling cascade requires the activation of inhibitor of kB 
kinase (IKK) complex. IKK is composed of two catalytic subunits (IKKa and 
IKKb) and a regulatory subunit (IKKg). Activated IKK phosphorylates inhibitory 
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IkB proteins at Ser32 and Ser36 and promotes polyubiquitination of IkB at Lys21 and 
Lys22 and subsequently leads to its degradation by 26S proteasome [20]. This 
results in the activation and nuclear translocation of NFkB homodimers or heterodi-
mers, which then binds to specific DNA to induce NFkB-dependent gene transcrip-
tion that includes cytokines (interleukin (IL)-1, IL-2, IL-6, IL-10, IL-12, IL-17, 
IL-21, and IL-23), interferon-g, transforming growth factor b, tumor necrosis factor 
(TNF-a) and TNF-related apoptosis-inducing ligand (TRAIL), chemokines (IL-8, 
IP-10, MIP-1a, MCP-1, RANTES, and eotaxin), adhesion molecules (ICAM-1, 
VCAM-1, E-secretin) and inflammatory enzymes (5-lipoxygenase, cyclooxyge-
nase (COX)-2), and inducible nitric oxide synthase (iNOS) [21]. Among these, it has 
been suggested that IL-12, TRAIL and IFN-g are important for anti-tumor immunity 

Chronic inflammation

VEGF
COX-2

IL-6
IL-1β

TNF-α

Proliferation

ICAM-1
VCAM-1 

E-selectin
MMP

TNF-a

Invasion MetastasisAngiogenesisSurvival

Bcl-2
Survivin

Bax
Mcl-1

Phagocytosis VasodilationLeukocyte 
infiltration

Cell adhesion
Cytokine and 

chemokine production
IL-6
IL-1b

TNF-a
IL-8

RANTES
CXCL12

PGE2
iNOS

Cancer Development

Gαs GαiGαq Gα12

Src

Ras

PKC

PKA

Epac

ERK JakJNK

cAMP

Rac Rho

Gβγ

PI3K

p38 Akt

Fig. 9.1 Transcriptional regulation mediated by heterotrimeric G proteins in inflammation and 
cancer development. Activation of G protein-coupled receptors stimulates the activity of proto-
oncoproteins, like Ras and Src, and subsequently activates various MAPKs to modulate transcrip-
tion factors such as CREB, NFkB, STAT3, NFAT and ATF-2. These transcription factors induce 
the gene expressions that promote inflammatory responses. The secreted pro-inflammatory cytok-
ines and chemokines further activates various transcription factors and upregulates gene expres-
sions involved in tumor cell survival, proliferation, invasion, angiogenesis and metastasis
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whereas TNFa, IL-6 and IL-17 promote tumor growth [22]. It has been reported 
that one of the binding site for NFkB is located upstream of H

4
 receptor gene [23]. 

The G
i/o

-coupled histamine H
4
 receptor is predominantly expressed in immune cells 

and its expression fluctuates upon inflammatory stimuli [24]. Mice deficient in 
histamine H

4
 receptor exhibit decreased allergic lung inflammation [25]. Histamine 

H
4
 receptor is induced by sepsis and is transcriptionally controlled by NFkB. 

Activation of H
4
 receptor results in the development of sepsis-induced splenic 

apoptosis by counteracting the anti-apoptotic effect of NFkB [26].
At the sites of inflammation, numerous inflammatory mediators are produced 

exogenously by infection or endogenously by the cells at inflamed sites and leukocytes. 
A number of viral infections can lead to chronic inflammatory events which are 
achieved by hijacking the host machinery of chemokine signaling. For example, the 
Kaposi’s sarcoma herpesvirus (KSHV) encodes a GPCR for chemokines and 
results in constitutive transactivation of NFkB and inflammatory mediator produc-
tion [27]. NFkB activation induced by GPCR agonists, such as bradykinin, thrombin, 
histamine, adenosine, prostaglandins, chemokines and chemoattractants, has been 
documented in various cell types including immune cells and several cancer cell 
lines (Table 9.1). Numerous studies have demonstrated that multiple intermediates 
are involved in regulating GPCR-mediated NFkB activity. Protein kinase C (PKC) 
is one of the important downstream molecules of GPCR-induced NFkB activation 
(Table 9.1). It has been shown that PKC isoforms play critical roles in inflammatory 
responses [28] and cancer development [29]. Aberrant regulation of PKC isoforms 
has been reported in several malignancies and is linked to cancer progression. PKC 
has become a potential therapeutic target for cancer treatment [29]. PKC is known 
to activate ERK signaling cascades via the Ras/Raf/MEK pathway [30]. Ras/Raf/
MEK/ERK is one of the key pathways involved in mitogenic signaling activated by 
GPCRs and GPCR-induced ERK activation is involved in the regulation of NFkB 
activity [31](Table 9.1). Dysregulation of the ERK pathway is commonly found in 
several human cancers and mutations on the upstream kinases can stimulate consti-
tutive ERK activation independent of growth factors and promote tumor formations 
[32]. In addition to PKC and ERK, other signaling molecules such as c-Src, PI3K, 
JNK and p38 have been demonstrated to modulate GPCR-mediated NFkB 
activation.

Various gene expressions induced by GPCRs are dependent on NFkB activity. As 
summarized in Table 9.1 Pro-inflammatory cytokines including IL-1b, TNF-a, and 
IL-6 are upregulated upon stimulation of specific GPCR ligands, such as bradykinin, 
chemokines, chemoattractants, prostacyclin and thrombin, in various cell types. 
TNF-a and IL-1b promote inflammatory responses and stimulate tumor cell growth, 
invasion and angiogenesis [33]. It has also been demonstrated that IL-1b and TNF-a 
induce bradykinin receptor expression through the activation of NFkB and JNK and 
p38 MAPK pathways in osteoblasts and fibroblasts [34]. Expressions of chemokines 
(IL-8, MCP-1, MIP-1), which elicit the cellular responses via GPCRs, are induced by 
angiotensin, bombesin, chemoattractants, histamine, prostacyclin, prostaglandin and 
thromboxane receptors in a NFkB-dependent manner. The production of cytokines and 
chemokines provides a feedforward loop to further activate diverse signaling cascades 
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and induce inflammatory responses. During inflammation, leukocytes migrate to the 
sites of inflammation, roll along the endothelium surface and then adhere firmly to 
the endothelium. Selectins play crucial roles in leukocyte rolling whereas leukocyte 
adhesion to the endothelium is dependent on the expression of cell adhesion molecules 
[35]. It has been shown that activation of GPCRs (AT

1
R, CCR2 and PAR-1) induces 

gene expression of cell adhesion molecules, such as ICAM-1, VCAM-1 and 
E-selectin, through NFkB pathway in endothelial cells, epithelial cells and vascular 
smooth muscle cells (Table 9.1). COX-2 is an important enzyme for the synthesis of 
lipid inflammatory mediators including prostaglandins and prostacyclins from 
arachidonic acid. Dysregulation of COX-2 and prostaglandin expression have been 
found in many cancers such as colon, lung, breast, pancreas, and head and neck 
cancers [36]. Reports have demonstrated that COX-2 expression can be regulated by 
GPCR-mediated NFkB stimulation. Treatment of bradykinin results in an elevation 
in COX-2 and PGE

2
 expression through NFkB dependent pathways [37–39]. In 

vascular smooth muscle cells, thrombin-induced COX-2 production is dependent on 
NFkB activity [40]. Collectively, there is considerable evidence to show that GPCRs 
regulate inflammatory-related gene expressions in part through NFkB signaling.

9.3  The Modulation of STAT Activity by Heterotrimeric  
G Proteins

In mammals, seven family members of signal transducer and activator of transcription 
(STAT) proteins have been cloned: STAT1, STAT2, STAT3, STAT4, STAT5A, 
STAT5B and STAT6. Initially, STAT proteins were discovered by the studies of 
signaling cascades of cytokine receptors for interferons and IL-6. Cytokine receptors 
have no intrinsic tyrosine kinase activity and its tyrosine kinase activity is activated 
by receptor-associated cytosolic Janus kinase (Jak) family kinases. Upon stimulation 
of cytokines or growth factors, their cognate receptors undergo dimerization and 
stimulate Jaks. The activated Jaks subsequently recruit and phosphorylate STAT 
proteins and lead to the homo- or hetero-dimerization of STAT proteins. The 
activated STAT dimers translocate into the nucleus and induce gene transcription. 
The regulation of STAT proteins (particularly STAT3) is linked to inflammation and 
inflammatory-related tumorigenesis. Using genetic modified mice, it was found 
that the intestinal epithelial-cell-specific STAT3 ablation increases the susceptibility 
of the animals to chemically-induced epithelial damage and mucosal inflammation. 
In contrast, STAT3 hyperactivation promotes tumor incidence and growth [41]. 
STAT3 is constitutively active in several human cancer cells and tumor-associated 
leukocytes and it is important for cell proliferation and survival [42]. It has been 
documented that STAT3 activation in tumor cells enhances the ability of the tumors 
to evade the immune system by suppressing immune responses [43]. KSHV-encoded 
G protein-coupled chemokine receptor (KSHV-GPCR) constitutively activates the 
PLC/PKC signaling pathway, leading to constitutive phosphorylation of STAT3 at 
Tyr705 and cell transformation [44].
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The lessons for viral GPCRs suggest that STAT3 can be activated by native 
GPCRs upon ligand binding (Table 9.2). Early studies showed that the activation 
of angiotensin II receptor (AT

1
R) leads to the phosphorylation of STAT1, 2 and 3 

[45,46]. Since then, ample evidence on GPCR-induced STAT3 activation has 
been reported. Stimulation of GPCRs, including adrenergic, bradykinin, chemokines, 
chemoattractants, histamine, prostacyclin, somatostatin and thrombin receptors, 
results in STAT3 phosphorylation and its transcriptional activation (Table 9.2). 
Jaks (Jak2/3 and Tyk) are now known to be involved in GPCR-mediated STAT3 
activation in additional to cytokine receptor-mediated responses. STAT3 activation 
induced by adrenoceptor, BK

2
R, C5aR, H

1
R, hIPR and SST

4
R is mediated 

through MAPK pathways. GPCR-induced STAT3 activation triggers gene 
expressions. Activation of a

1
- or b-adrenoceptor results in the induction of IL-6 

expression in fibroblasts [47–49]. Moreover, treatment of angiotensin II leads to 
the release of IL-18Ra, tissue inhibitor of metalloprotease-1 (TIMP-1), matrix 
metallopeptidase 2 (MMP2) and vascular endothelial growth factor (VEGF) in a 
STAT3-dependent manner in various cell types [46,50–54]. GPCR-induced 
up-regulation of other inflammatory mediators, such as antimicrobial peptide 
human b-defensin-3 (hBD-3), IL-13, TNF-a, iNOS and MMP9, has been reported 
and the production of these mediators are dependent on STAT3 activity 
(Table 9.2).

As the immediate signaling partners of GPCRs, G proteins and their activation 
are essential for the regulation of various STAT isoforms. All four families of Ga 
subunits can activate STAT3 through multiple downstream molecules [18,55–57]. 
MAPKs (ERK, JNK) and Src tyrosine kinases appear to be required for STAT3 
phosphorylation induced by all four families of Ga subunits. Jak is important for 
Ga

s
-, Ga

16
- and Ga

12
-induced STAT3 activation whereas PI3K is involved in Ga

s
 

and Ga
12

-activated STAT3 activity. Other signaling molecules, such as Rap, Ral, 
PKA, Rac1, PLCb, PKC, CaMKII and PDGFa, constitute of a complex signaling 
network for G protein-mediated STAT3 activation [13] (Fig. 9.1).

STAT1 activity is known to oppose STAT3-dependent pro-carcinogenic 
inflammatory responses. The differential regulation of STAT proteins in immunity 
suggests that STAT proteins are potential therapeutic targets for anti-tumor drug 
development. Regulations of STAT1 activity by G protein signaling have been 
observed as well. In the human neuroblastoma SH-SY5Y cell line, IL-6 induces the 
expression of the G

i
-coupled m-opioid receptor and this up-regulation is dependent 

on STAT1 and STAT3, but not NFkB [58]. GPCR activation by specific ligands can 
result in an up-regulation of STAT1 activity. It has been shown that stimulation of 
prostacyclin, histamine and chemokine receptors triggers the activation of STAT1 
[59–61]. In addition, the constitutively active Ga

16
QL stimulates STAT1 

phosphorylation as well as STAT1-dependent c-fos gene transcription in HEK293 
cells [56]. Multiple signaling intermediates are required for Ga

16
QL-mediated 

STAT1 activation including PLCb, c-Src, Jak and ERK. Treatment of lysophosphatidic 
acid (LPA) inhibits epidermal growth factor-mediated STAT1 activation and the 
inhibitory effect is dependent on PKC. GPCR agonists such as bradykinin and ATP 
also elicit similar inhibitory effects on STAT1 activation [62].
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9.4  Interaction Between NF-kB and STAT3  
in Inflammatory Responses

Both NFkB and STAT3 have been shown to play central roles in inflammation 
and inflammation-related tumorigenesis and anti-tumor immunity by regulating 
the expression of an overlapping subset of genes that are involved in 
proliferation, survival, angiogenesis and invasion. Signal integration between 
the two transcription factors has been documented. STAT3 promotes NFkB 
nuclear accumulation by p300-mediated acetylation of RelA in cancer cells 
and tumor-associated hematopoietic cells [63]. Numerous pro-inflammatory 
and oncogenic genes can be induced by both STAT3- and NFkB-dependent 
transcription. Pro-inflammatory mediators which are downstream of NFkB, 
such as COX-2, IL-6, IL-11, IL-17 and IL-23, can lead to activation of Jak/
STAT pathways and feed forward cancer inflammation [64]. STAT3 inhibits 
the expression of NFkB-dependent gene transcription in immune responses 
that regulate the microbial infections and tumor growth [42]. In tumor 
associated macrophages, STAT3 inhibits NFkB-induced anti-carcinogenic 
cytokine (IL-12) expression and induces the production of pro-carcinogenic 
cytokine, IL-23 [43]. STAT3 interacts with NFkB to inhibit NFkB activity 
and suppresses the IL-1b- or LPS/IFN-g-mediated iNOS promoter in mesangial 
cells [65].

9.5  Other Transcription Factors Regulated  
by Heterotrimeric G Proteins

In addition to NFkB and STAT activation, other transcription factors are also 
involved in the regulation of inflammatory responses in various cell types such 
as cyclic AMP-responsive element binding protein (CREB), activator protein-1 
(AP-1) and nuclear factor of activated T-cells (NFAT). CREB has been 
implicated in asthmatic inflammation, ischemic brain inflammation and cancer 
development. CREB activity can be modulated by cAMP and PKA. Activation 
of Ga

s
 stimulates adenylyl cyclases and produces cAMP to activate PKA which 

phosphorylates CREB at Ser133 in the nucleus. Ser133 phosphorylation of CREB 
is critical for its transcriptional activity and can be stimulated by MAPK 
pathways as well [66]. The phosphorylated CREB in turn binds to p300/CREB-
binding protein (CBP) and modulates gene transcription [67]. Ga

s
-mediated 

CREB activation is important for the development of endocrine tumors. In pituitary 
somatotroph cells, transfection of activated Ga

s
 stimulates CREB phosphorylation 

as well as transcriptional activation. In H1299 human lung cancer cells, over-
expression of constitutively active Ga

s
 results in an increase in CREB phosphorylation 

and transcriptional activation, as well as enhancement of g-ray-induced Bak 
expression and modulation of apoptosis induced by H

2
O

2
 and g-rays [68]. 
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In fact, other GPCRs and Ga subfamilies have also been demonstrated to 
trigger CREB activation and regulate the gene transcription (Table 9.3). In rat 
intestinal epithelial cell line, activation of Ga

q
 stimulates COX-2- and CREB-

dependent transcriptional activity via p21-activated kinase/MAPK kinase 
kinase 6/p38 signaling cascade [69]. Stimulation of G

q
-coupled PAF receptor 

induces MMP2 and membrane type 1-MMP release in CREB-dependent 
pathway in metastatic melanoma cells [70]. HCMV encodes four GPCRs 
(US27, US28, UL33 and UL78) that show high homology to human chemokine 
receptors. The viral chemokine receptor US28 exhibits constitutive activity and 
has been shown to induce cell transformation and production of VEGF via Ga

q
, 

Gbg, p38 and ERK in NIH3T3 cells [71]. It has also been found that viral 
chemokine receptors US28 from human cytomegalovirus and ORF74 from 
human herpesvirus 8 are constitutively active. Both receptors stimulate CREB 
and NFAT activation through multiple intermediates including Ga

i
, PLC, PKC, 

calcineurin, p38 and MEK1 [72].
The transcription factor activator protein 1 (AP-1) is a heterodimer composed 

of c-jun, c-fos, and activating transcription factor (ATF) subfamilies. A number of 
GPCR ligands have been reported to activate AP-1 activity and induce release of 
pro-inflammatory mediators (Table 9.3). ATF-2 is activated by inflammatory 
stimuli via JNK and p38 MAPK pathways [73]. In ATF-2 mutant mice, a 
reduction in adhesion molecules and cytokine production is observed upon the 
addition of lipopolysaccharide (LPS), anti-CD3 antibody or coxsackievirus B3 
infection [74]. GPCR-induced ATF-2 activation has been reported. G

s
-coupled 

b
3
-adrenergic receptor-induced IL-6 production is dependent on p38, PKC 

signaling and via activation of transcription factors CREB and ATF-2 in 
adipocytes [75]. Co-treatment of G

i
-coupled neuropeptide Y

1
 and G

q
-linked 

muscarinic acetylcholine M
1
 receptors leads to an additive effect on ATF-2 

phosphorylation in SK-N-MC cells [76].
NFAT, is a family of important transcription factors, which regulates the 

expressions of inflammatory genes. Cytosolic NFAT is activated through dephos-
phorylation by calcineurin and activated NFAT translocates into the nucleus 
[77,78]. Immunosuppressive drugs such as FK506 and cyclosporine A are 
calcineurin inhibitors and they can suppress NFAT activity [79]. Regulation of 
NFAT activity by heterotrimeric G proteins has been documented (Table 9.3). 
Stimulation of G

s
-coupled b

2
-adrenergic receptor induces NFATc activation via 

PKA and calcineurin [80]. In vascular smooth muscle cells, thrombin and 
angiotensin II stimulate NFAT-dependent transcriptional activity. Co-stimulation of 
G

q
-coupled receptor agonists and platelet derived growth factor-BB results in a 

synergism in NFAT activation via Ca2+ [81]. Bacterial superantigens, such as 
Staphylococcal enterotoxin, activate Ga

11
 to trigger activation of PLCb/PKC, Ca2+ 

mobilization, ERK1/2 activation, translocation of NFAT and NFkB and IL-2 
production in human primary T cells [82]. Ga

12/13
-mediated NFAT activation has 

been demonstrated in cardiac fibroblasts [83,84]. The involvement of Gbg complex 
in the regulation of Wnt/Frizzled-mediated NFAT activity has also been reported 
[85,86].
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9.6  Functional Impacts of Signal Integration

At the inflammation sites or tumors, cells are exposed to multiple exogenous 
stimuli. Extensive intracellular signal integrations are expected to occur in response 
to the inflammatory stimuli or during cancer development. Cross-talks between 
signals from different Ga subfamilies are apparently important for the regulations 
of inflammation-related transcriptional activities. An interesting demonstration of 
such signal integration has been performed in COS-7 cells co-expressing G

s
-linked 

dopamine D
1
 receptor (D

1
R) and G

q
-linked gastrin-releasing peptide-preferring 

receptor (GRPR). Despite that D
1
R or GRPR agonist alone induces JNK activity, 

D
1
R activation results in an inhibitory effect on JNK activity triggered by GRPR 

stimulation [87]. In human SK-N-MC neuroepithelioma cells, co-stimulation of 
endogenous G

i
-coupled neuropeptide Y

1
 and G

q
-linked muscarinic acetylcholine 

M
1
 receptors triggers a synergistic activation of ERK and CREB phosphorylation 

[76]. Sphingosine 1-phosphate synergistically potentiates thrombin-activated tissue 
factor expression in endothelial cells via NFkB activation and the induction of 
Egr-1 expression [88]. In Jurkat T cells, activation of G

i
-coupled CXCR4 potenti-

ates the activation of Egr-3 induced by G
s
-coupled b

2
-adrenergic receptor or G

q
-

coupled platelet-activating factor receptor [89]. Cooperative effects between 
receptor tyrosine kinases and GPCRs have also been demonstrated [90]. 
Co-stimulation of EGF and G

i
-coupled receptor results in a synergistic JNK activa-

tion which involve Src, PI3K, Ca2+/calmodulin and Rac [91]. Simultaneous applica-
tions of prostaglandin E2 and TNF-a synergistically triggers the expression of 
amphiregulin and promotes the growth and migration of colon cancer cells [92]. 
In NIH3T3 fibroblast cells, G

i
-coupled somatostatin receptor subtype 2 (SST

2
R) 

potentiates cell apoptosis induced by TNF-a through upregulation of TNF-a recep-
tor expression and enhancing TNF-a-mediated downstream signaling including 
NFkB and caspase activation as well as JNK inhibition [93].

Some GPCRs can in fact couple to multiple G proteins to trigger diverse signal-
ing events. Human monocytic THP-1 cells express CCR1, Ga

14
 and Ga

16
 endoge-

nously. Although CCR1 is known as a G
i/o

-coupled receptor, Lkn-1-induced NFkB 
activation is insensitive to pertussis toxin pretreatment, suggesting that CCR1 may 
couple to Ga

14
 and Ga

16
 to trigger NFkB activation [94]. Stimulation of human 

prostacyclin receptor activates Ga
s
 and Ga

q
 proteins simultaneously to induce 

STAT3 phosphorylation and transcriptional activation in HEL cells [95]. 
In HEK293T cells, BK

2
R-activated ERK2 and transcriptional activity of Elk-1 are 

dependent on Ga
q
-mediated PKC and Ga

i
-driven Ras activation [96].

Receptor cooperativity in inflammatory responses has also been documented. 
Coexpression of protease-activated receptor 2 (PAR2) and Toll-like receptor 4 com-
plex results in a synergistic activation of NFkB-mediated inflammatory response in 
HEK293 cells [97]. In human colon epithelial cell SW620, a synergistic IL-8 pro-
duction is observed upon co-stimulation with PAR2 agonist and LPS [97].  
G

q
-coupled P2Y

6
 receptor activation potentiates LPS-stimulated IkB phosphoryla-

tion and degradation and NFkB activation in murine J774 macrophages [98].
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9.7  Future Perspectives

Regulations of NFkB and STAT signaling pathways clearly play pivotal roles in 
inflammatory diseases and tumor promotion. Recently, several inhibitors targeting 
on IKK/NFkB and STAT3 have been developed to increase the efficacy of conven-
tional anti-tumor therapies and showed promising results in pre-clinical models 
[99,100]. It will be exciting to know whether these inhibitors can usher new avenues 
for treating inflammatory diseases and cancer without inducing severe side effects 
in the clinical trials. A rather unexpected fact is that mutation on the genes encoding 
NFkB and STAT have not been found in tumors, whereas naturally occurring muta-
tions on GPCRs as well as Ga subunits have already been identified in different 
human cancers. Many GPCRs are overexpressed in different cancer cells and may 
facilitate tumor formation upon activation by specific ligands. Infections by a num-
ber of viruses which encode constitutively active GPCRs can propel the develop-
ment of various cancers [101]. Further studies on the transcriptional regulations by 
GPCR-G protein axis of signals will provide invaluable clues to delineate the physi-
ological consequences caused by over-reactive GPCRs or G proteins, or those 
pathogenic viral infections which express cytokines, inflammatory mediators and 
constitutively active GPCRs. Accumulating evidence suggests that the activation of 
GPCRs causes autocrine- or paracrine-based chronic stimulation of various transcription 
factors to promote cancer formation (Fig. 9.1). Thorough investigations on the signal-
ing network between GPCRs and transcription factors will ultimately lead to a better 
understanding on tumor development and facilitate the discovery of target-specific 
anti-inflammatory and anti-cancer drugs.
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Abstract Nuclear receptors can function as ligand-activated transcription factors 
but can even so cross-talk with other transcription factors. In this respect, NF-kB, a 
central regulator of both inflammation and tumorigenesis, can cross-react with and 
is negatively affected by these nuclear receptors. In current medicine, the nuclear 
receptor ligands for the glucocorticoid receptor form still the mainstay for treatment 
of inflammation-based afflictions. However, also other nuclear receptor ligands 
can affect inflammatory processes. In this respect, the cross-talk of various nuclear 
receptors with each other has been given renewed attention in recent literature. We 
will discuss the cross-talk of nuclear receptors with NF-kB and each other in the 
context of the attenuating control of inflammatory and tumor-promoting mecha-
nisms, using the well described glucocorticoid receptor as a focal point.

Keywords Inflammation • NF-kB • Nuclear receptor (NR) • Cross-talk • 
Glucocorticoid receptor (GR) • Peroxisome proliferator-activated receptor (PPAR) 
• Estrogen receptor (ER) • Androgen receptor (AR) • Progesterone receptor (PR)  
• Liver X receptor (LXR) • Vitamin D receptor (VDR) • Orphan receptor

Abbreviations

AF Activation function
AMPK AMP-activated protein kinase
AP-1 Activator protein-1
APOC3 Apolipoprotein C-III
ARE Adenylate-uridylate (AU)-rich element
ATF Activating transcription factor

I.M.E. Beck, G. Haegeman, and K. De Bosscher (*) 
Laboratory of Eukaryotic Gene Expression and Signal Transduction (LEGEST),  
Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium 
e-mail: Karolien.DeBosscher@ugent.be

Chapter 10
Molecular Cross-Talk Between Nuclear 
Receptors and Nuclear Factor-kB

Ilse M.E. Beck, Guy Haegeman, and Karolien De Bosscher 

A. Reichle (ed.), From Molecular to Modular Tumor Therapy,  
The Tumor Microenvironment 3, DOI 10.1007/978-90-481-9531-2_10,  
© Springer Science+Business Media B.V. 2010



192 I.M.E. Beck et al.

Bcl B-cell lymphoma
Brg Brahma-related gene
Brm Brahma
C Carboxy
cAMP Cyclic adenosine monophosphate
CAR Constitutive androstane receptor (NR1I3)
C/EBP CCAAT enhancer-binding protein
CBP CREB-binding protein
CC10 Clara cell secretory 10 kDa protein
cdc37 Cell division cycle 37 protein
Cdk Cyclin-dependent kinase
c-FLIP Cellular-FLICE inhibitory protein
ChIP Chromatin immunoprecipitation
CK2 Casein kinase 2
COUP-TFII Chicken ovalbumin upstream promoter-transcription factor II (NR2F2)
COX-2 Cyclo-oxygenase-2
CREB cAMP-responsive element-binding protein
CRM1 Chromosome region maintenance, synonym: exportin1
Cyp3a4 Cytochrome P450, subfamily IIIA, polypeptide 4
DBD DNA-binding domain
Dexras1 DEX-induced Ras1
Dok-1 Downstream of tyrosine kinase 1
DRIP205 Vitamin D receptor-interacting protein complex component (MED1)
DUSP Dual specificity phosphatase
eNOS Endothelial nitric oxide synthetase
EMSA Electrophoretic mobility shift assay
ER Estrogen receptor (NR3A1, NR3A2)
ERE Estrogen response elemnt
ERK Extracellular signal-regulated kinase
ERR Estrogen-related receptor (NR3B1, NR3B2, NR3B3)
ELKS Protein rich in amino acids E, L, K and S
FKBP FK506-binding protein
FXR Farnesoid X receptor (NR1H4)
GC Glucocorticoid
GILZ GC-induced leucine zipper
GR Glucocorticoid receptor (NR3C1)
GRE Glucocorticoid response element
H3 Histone H3
H4 Histone H4
HAT Histone acetyl transferase
HDAC Histone deacetylase
HNF-4 Hepatocyte nuclear factor-4 (NR2A1, NR2A2)
Hsp Heat shock protein
ICAM Intercellular adhesion molecule
Ifit1 Interferon-induced with tetratricopeptide repeats 1
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IFN Interferon
IkB Inhibitor of NF-kB
IKK IkB kinase
IL Interleukin
iNOS Inducible nitric oxide synthetase
IP-10 Interferon-inducible protein of 10 kDa
IRF Interferon regulatory factor
JNK c-Jun N-terminal kinase
KO Knock-out
LBD Ligand-binding domain
LPS Lipopolysaccharide
LXR Liver X receptor (NR1H2, NR1H3)
MAPK Mitogen-activated protein kinase
MEKK MKK kinase, synonyms: MKKK, MAPKKK, MAP3K
MHC Major histocompatibility complex
MK MAPK-activated protein kinase
MKK MAPK kinase, synonyms: MEK, MAPKK, MAP2K
MMP Matrix metalloproteinase
MMTV Mouse mammary tumor virus
MR Mineralocorticoid receptor (NR3C2)
MSK Mitogen-and stress-activated protein kinase
NCoR Nuclear corepressor
NEMO NF-kB essential modulator, synonym: IKKg
NGFIB Nerve Growth factor IB (NR4A1)
NF-kB Nuclear Factor-kB
NIK NF-kB-inducing kinase
nGRE negative GRE
NLS Nuclear localization signal
NOR1 Neuron-derived orphan receptor 1 (NR4A3)
NR Nuclear receptor
Nurr1 Nuclear receptor related 1 (NR4A2)
PAI-1 Plasminogen activator inhibitor type 1
PGC-1 PPARg coactivator-1
Pin1 Protein NIMA(never in mitosis gene a)-interacting
PKA Protein kinase A
PKC Protein kinase C
PPAR Peroxisome proliferator-activated receptor-a (NR1C1, NR1C2, 

NR1C3)
PR Progesterone receptor (NR3C3)
P-TEFb Positive transcription elongation factor b
PXR Pregnane X receptor (NR1I2)
RA Retinoic acid
RANKL Receptor activator of NF-kB ligand
RANTES Regulated upon activation, normal T-cell expressed and secreted
RIP Receptor-interacting protein
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Rel-HD Rel homology domain
RNA Pol II RNA polymerase II
SGK Serum and glucocorticoid-inducible kinase
SHP Small heterodimer partner (NR0B2)
SLAP Src-like adaptor protein
SLPI Secretory leukocyte protease inhibitor 1
SMRT Silencing mediator for retinoid and thyroid-hormone receptors
SOCS Suppressor of cytokine signalling
SP-A Surfactant protein A
SRC Steroid receptor coactivator
SUMO Small ubiquitin-related modifier
SWI/SNF- Switching of yeast mating type/sucrose non-fermenting
TA Transactivation domain
TAK1 TGF-activated kinase 1
TAB2/3 TAK-binding protein
TANK TRAF family member-associated NF-kB activator
TBK1 TANK-binding kinase 1
TLR Toll-like receptor
TNF Tumor necrosis factor-a
TNF-R TNF-receptor
TR Thyroid hormone receptor (NR1A1, NR1A2)
TRADD TNF-R-associated death domain
TRAF TNF-R-associated factor
Trip6 Thyroid receptor-interacting protein 6
TTP Tristetraprolin
VCAM Vascular cell adhesion molecule
VDR Vitamin D receptor (NR1I1)
ZDF rat Zucker diabetic fatty rat

10.1  Introduction

In ancient times, inflammation was described by its typical characteristics: 
rubor/redness, dolor/pain, calor/heat, tumor/swelling, ultimately leading to loss 
of function of the organ or tissue. Although inflammation serves an inherent 
advantageous purpose, i.e. removing damaging agents and restoring tissue structure 
and function, a rapid clearance of the inflammation is advisable, as the unfavour-
able chronic inflammation harms the body. Furthermore, inflammation has also 
been described to play a role in the ontogenesis of cancer and cardiovascular 
diseases [1–4].

In 1935, Kendall and Reichstein isolated and identified the natural ligand for the 
glucocorticoid receptor (GR), cortisone [5], although the glucocorticoid receptor 
itself was not cloned until 1985 [6]. More than a decade later, steroidal hormones 
were acknowledged for their anti-inflammatory activities, more specifically in 



19510 NR: NF-kB Cross-Talk

rheumatoid arthritis [5]. As such, hydrocortisone and other glucocorticoids (GCs) 
effectively suppress the immune system and halt inflammation-associated symptoms, 
but these exogenously administered GCs also display marked pleiotropic effects in 
the regulation of protein, lipid and carbohydrate metabolism, stress homeostatic 
regulation, reproductive processes, growth and brain functions such as memory and 
behaviour [7–9]. These widespread effects of GCs lie at the basis of the feared and 
detrimental side effect profile of a chronic therapy with GCs,  comprising osteopo-
rosis, diabetes, cataracts, a fat redistribution leading to a typical moon face and 
hunchback, skin thinning and muscle wasting and emotional instability [10, 11].

Despite these adverse effects, GCs still remain the preferred treatment to combat 
acute inflammatory disorders and chronic autoimmune and inflammatory afflic-
tions (e.g. rheumatoid arthritis, asthma, systemic lupus erythematosis, inflamma-
tory bowel disease, …), to suppress the immune system and thus prevent graft 
rejection of transplant patients [12, 13]. Additionally, because of their apoptosis-
modulating abilities, GCs are also applied since a long time in the treatment of 
certain lymphomas [14–18].

10.2  Nuclear Factor-kB (NF-kB): A Central Player

On a molecular level, the transcription factor nuclear factor kB (NF-kB) plays a 
pivotal role in the onset and propagation of inflammation, and also in cancerogen-
esis [19–21, 22–29]. A rigorous knowledge of how this transcription factor can 
affect inflammation and cancer on a molecular level, is thus key to understand the 
windows of opportunity via which nuclear receptors intervene to halt NF-kB acti-
vation and activity.

In an inflammatory context, the heterodimeric transcription factor NF-kB can 
drive the transcription of cytokines, chemokines, growth factors, lipid-derived 
mediators, cell adhesion molecules and peptides. In turn, these targets can fuel the 
inflammatory loop by once again activating NF-kB, and selectively drive inflam-
matory processes such as localized hyperaemia, exudation of plasma, diapedesis or 
leukocyte migration, or containing the inflamed site by fibrosis [30–33]. Moreover, 
NF-kB is also an important player in tumorigenesis [28]. The activation of NF-kB 
can indeed initiate the transcription of genes coding for anti-apoptotic proteins, e.g. 
c-FLIP and Bcl-x

L
; and growth factors; e.g. VEGF [1–4]. Futhermore, NF-kB’s 

ability to activate the promoter of interleukin-6 (IL6) is deemed an essential char-
acteristic for its role in cancerogenesis [34, 35].

The transcription factor family of NF-kB comprises five members and is char-
acterized by a N-terminal Rel-homology domain (Rel-HD), present in all five 
members, which is responsible for the proteins’ DNA binding, dimerization and 
interaction with IkB (inhibitor of NF-kB). The NF-kB p65 (RelA), RelB and c-Rel 
contain a C-terminal transactivation domain, whereas NF-kB1 (p50/p105) and 
NF-kB2 (p52/p100) do not. The latter two can be proteasomally cleaved to yield 
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NF-kB p50 and NF-kB p52, respectively. However, NF-kB1 nor NF-kB2 contains 
a transactivation domain. Of these five NF-kB transcription factors, the heterodimer 
NF-kB p65-p50 is most commonly researched, in particular the transactivation 
domain-containing NF-kB p65 (Fig. 10.1) [33, 36, 37].

The classical activation of NF-kB can be triggered by a wide range of stimuli, 
among which cytokines, viruses, oxidative stress, phorbol esters, lipopolysaccharide 
and B- and T-lymphocyte activation [38–40]. However, these activation pathways 
ultimately all activate the IkB kinase (IKK) complex. The canonical or classical acti-
vation of the NF-kB p65-p50 dimer by tumor necrosis factor-a (TNF) is a widely 
used model for NF-kB activation (Fig. 10.2). Upon binding of TNF to its receptor, 
TNF-R, this receptor trimerizes and attracts adaptor proteins, such as TRADD, 
TRAF2 and MEKK3, which relay the activation signal to the activation of the IKK 
complex and the mitogen-activated protein kinase kinases (MKKs) [36, 37, 41, 42].

The unactivated NF-kB p65-p50 heterodimer, residing in the cytoplasm, is 
bound to the inhibitory IkB molecule, masking the NF-kB’s nuclear localization 
signals (NLSs). The activated, i.e. phosphorylated IKK complex, can phosphorylate 
this IkB and thus target IkB for ubiquitination and 26S proteasomal degradation 
[36, 37, 41]. This IKK complex consists of the catalytically active IKKa and IKKb 
and an IKKg/NEMO scaffold, assisted by the transient complex members Hsp90, 
ELKS and cdc37 [43–46]. In particular, IKKb can phosphorylate IkB [47, 48]. The 
subsequent degradation of IkB frees the NF-kB subunits, unmasking their NLSs 
and thus allowing transport of these proteins into the nucleus. Once activated, 
NF-kB can bind to specific recognition sequences (kB sites) in the DNA and as such 
control the transcriptional activity at the proximal transcription start site [36, 37]. 
As DNA is wound in chromatin, NF-kB-dependent transcription is also regulated 
by chromatin condensation/decondensation processes via either variable  histone 
modifications (phosphorylation, acetylation, methylation,…) or ATP-dependent 
enzymes [33, 49–55].

The activation of the MKKs results in the phosphorylation and downstream activa-
tion of the mitogen-activated protein kinase (MAPKs): extracellular regulated kinase 
(ERK), p38 MAPK and c-Jun N-terminal kinase (JNK); which in turn can activate 
another layer of kinases among which the mitogen- and stress-activated protein 
kinase (MSK) [42]. Interestingly, the MAPK cascade, and especially MSK, is 

Fig. 10.1 Structural properties of NF-kB p65. The posttranslational modification sites for phos-
phorylation and acetylation are indicated. Abbreviations: Rel-HD, Rel-homology domain; TA, 
transactivation domain; P, phosphorylation; Ac, acetylation
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Fig. 10.2 TNF activation pathway: NF-kB and MAPK activation. TNF-R activation by TNF 
leads to the trimerization of the receptor and the subsequent recruitment of TRADD, RIP1 and 
TRAF2. Subsequently, via signaling through MEKK3, TAK1 and/or NIK, the liganded TNF-R 
can activate the IKK complex and various MAPK signaling cascades, culminating in the activation 
and modulation of NF-kB. Abbreviations: TNF, tumor necrosis factor; TNF-R, TNF-receptor; 
TRADD, TNF-receptor-associated death domain; TRAF, TNF-receptor-associated factor; RIP, 
receptor-interacting protein; TAK, TGFb-activated kinase; TAB, TAK-binding protein; NIK, 
NF-kB-inducing kinase; MEKK, MAPK kinase kinase; MKK, MAPK kinase; JNK, c-Jun 
N-terminal kinase; MAPK, Mitogen-activated protein kinase; ERK, Extracellular signal-regulated 
kinase; MSK, Mitogen- and stress-activated protein kinase; NF-kB, Nuclear factor kB; cdc37, cell 
division cycle 37 protein; Hsp90, Heat shock protein 90; ELKS, Protein rich in amino acids E, L, K  
and S; IKK, IkB kinase; IkB, Inhibitor of NF-kB
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involved in the posttranslational control of NF-kB [56–59]. Not only the MAPK 
cascade, but also a vast array of other kinases, such as IKKa, IKKb, TBK1, CK2, 
PKCz, and PKA, can phosphorylate various Ser residues of NF-kB p65 (Fig. 10.1), 
fine-tuning its activity (duration, intensity), location, DNA-binding status, and inter-
actions with cofactors and IkB (reviewed in [60–62]). Furthermore, NF-kB p65 func-
tion can also be regulated by acetylation and SUMOylation [62–66]. Together these 
posttranslational modifications tightly modulate the cellular actions of NF-kB.

A plethora of literature indicates a mutually antagonistic cross-talk between 
NF-kB and nuclear receptors [67, 68]. In the following review article, we will 
 discuss cross-talk mechanisms of several nuclear receptors, with an emphasis on 
the widely researched glucocorticoid receptor, with NF-kB signalling in the above 
discussed context.

10.3  Nuclear Receptors: The Road to Relief

The evolutionary conserved nuclear receptors (NRs) comprise a superfamily of 
ligand-dependent transcription factors, which are divided into subgroups on the 
basis of their ontogeny [69]. These cytoplasmic and nuclear receptors can be acti-
vated by their specific ligands: steroid hormones (such as glucocorticoids, estro-
gens, progesterone, mineralocorticoids, androgens, vitamin D3, ecdysone, 
oxysterols and bile acids), retinoic acids, fatty acids and prostaglandins. Upon 
ligand binding and activation, these NRs form homo- or heterodimers and thus 
regulate specific gene transcription repression and activation via a variety of 
mechanisms. In short, nuclear receptors can either bind specific promoter DNA 
sequences (i.e. response elements), or either bind and affect the activity of other 
DNA-bound factors, such as NF-kB, activator protein-1 (AP-1), cAMP-responsive 
element-binding protein (CREB), interferon regulatory factor 3 (IRF3) or signal 
tranducer and activator of transcription (STAT), without direct binding of the NR 
to the DNA [70]. So far 48 NRs have been identified in man and these can be 
divided according to structure, ligand and ontogeny in seven subfamilies or 
classes. For most NRs, the ligands were identified and usually form an integrated 
part of its name. Interestingly, a subgroup of NRs of which the ligands have not 
yet been found, i.e. orphan NRs, exists, e.g. nerve growth factor IB (NGFIB) and 
nuclear receptor-related 1 (Nurr1). Advances in the ligand search for these orphan 
receptors has identified fatty acids as ligands for PPAR and oxysterols as ligands 
for LXR. However, for some of these orphan receptors, it was hypothesized that 
ligands for these NRs simply do not exist, as structural data showed a lack of 
ligand-binding pockets, and that these NRs thus possibly operate as ligand-inde-
pendent transcription factors.

The research into the control of inflammation and cancer most prominently 
features the glucocorticoid receptor (GR) and some of its subgroup co-members. 
The GR, or NR3C1, belongs to class 3 of the nuclear receptors, together with the 
mineralocorticoid receptor (MR), the estrogen receptor (ER), the estrogen-related 
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receptor (ERR), the progesterone receptor (PR), and the androgen receptor (AR) 
[71]. These NRs can interact with NF-kB and especially GR, AR and ER are 
researched in the combat against inflammation and cancer. Interestingly, also the 
fatty acid receptor peroxisome proliferator-activated receptor (PPAR) and the 
cholesterol sensing liver X receptors (LXR) have been given renewed attention in 
this inflammatory context [72, 73].

Nuclear receptors are characterized by a common structural organization 
(Fig. 10.3). The N-terminal domain contains a transactivation function AF-1, is 
most commonly targeted for posttranslational phosphorylations, and is highly vari-
able among NRs. The adjacent DNA-binding domain (DBD) is implicated in NR 
dimerization and of course DNA binding via its D-loop zinc finger motifs. The 
C-terminal domain of the NRs share NLSs, a ligand-binding domain (LBD), 
 protein binding sites and a second transactivation domain AF-2 [69, 71]. The activ-
ity of all NRs are regulated by posttranslational modifications affecting their local-
ization, activity, half-life and interactions [60, 74–77].

Inactive Type I NRs, such as GR, MR, AR, PR and ER, are withheld in the 
cytoplasm in a ligand-receptive state, by their association with a chaperoning 
complex, which masks their NLSs. These chaperoning complexes can comprise 
Hsp90, Hsp70 and a plethora of immunophilins, such as FKBP51, FKBP52 or 
cyclophilin 40. However, in one cell not all GR-chaperoning complexes are to be 
considered identical, adding yet another layer of complexity onto the NR regula-
tory mechanisms [78]. These cytoplasmic NRs need a ligand stimulus to change 
conformation, shed their chaperoning complex and subsequently travel into the 
nucleus. However, neither the unactivated cytoplasmic state, neither the activated 
nuclear state should be considered as a fixed condition. NRs are highly dynamic 
in space and time and both liganded and unliganded NRs can shuttle rapidly 
between cytoplasm and nucleus [79–85]. Furthermore, the GR is constantly in 
motion even within the nucleus, constantly sensing the changing cellular environ-
ment [86–90]. In the nucleus, these receptors can bind onto their specific hormone 
recognition DNA sequences, affect transcription via binding or tethering onto 
other DNA-bound transcription factors, or affect signalling cascades which oper-
ate upstream in the transcription factor-activating machinery of e.g. NF-kB 
(Fig. 10.4) [60, 70, 91, 92].

Fig. 10.3 Basic structure of nuclear receptors. The nuclear receptors comprise, read from 
N-terminal to C-terminal side, an N-terminal domain, a DNA-binding domain, hinge region and 
finally a ligand-binding domain. Below, the allocated functions are mentioned below the diagram. 
Abbreviations: NTD, N-terminal domain; AF, activation function; DBD, DNA-binding domain; 
HR, hinge region; LBD, ligand-binding domain
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As MR and GR have a close phylogenetic relation, it is not surprising that MR can 
be activated by both GCs and mineralocorticoids. Furthermore, both GR and MR can 
bind to the same response elements [93]. Although GCs can also occupy the ligand-
binding pocket of MR, interference of GCs in MR signalling is limited due to their 
differential binding affinities and MR’s topical restriction. Namely, whereas GR is 
ubiquitously expressed, MR is known to be expressed only in the epithelial cells of 
kidney, salivary glands and colon, and non-epithelial cells of brain and heart [94–96]. 
Furthermore, 11beta-hydroxysteroid dehydrogenase 2, which can metabolize cortisol 
to the inactive metabolite cortisone, is present in these typical mineralocorticoid tar-
get tissues [97]. Overall, activated GRs and MRs target a distinct set of genes [98].

Other nuclear receptors (type II and type III), such as retinoic acid receptors 
RAR/RXR and PPAR, are constitutively nuclear and bound to their DNA response 
element, regardless of the presence of their cognate ligands. In the unactived state, 

Fig. 10.4 Glucocorticoid receptor activation and repression mechanisms. The unliganded, unac-
tivated GR resides in the cytoplasm. Its complexation with chaperone proteins keeps the GR in a 
ligand-receptive state. The GC-acivated GR translocates into the nucleus where it can give rise to 
positive and negative transcriptional effects via a variety of mechanisms. GC-mediated promoter 
activation can originate from the DNA binding of a GR homodimer on a GRE, from a 
GR:transcription factor tethering mechanism or from a coordinated DNA binding of a 
GR:transcription factor complex onto a so-called composite GRE. The latter two mechanisms can 
also mediate GC-regulated negative transcriptional effects. Furthermore, GCs can prevent or halt 
transcription via competition or sequestration mechanisms or possibly also, via direct DNA bind-
ing of a GR monomer on a negative GRE (nGRE). Abbreviations: GR, glucocorticoid receptor; 
GC, glucocorticoid; GRE, GC response element; nGRE, negative GRE, TF, transcription factor
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interaction of these NRs with corepressors, e.g. silencing mediator for retinoid and 
thyroid-hormone receptors (SMRT), nuclear corepressor (NCoR) and histone 
deacetylases (HDACs), negatively controls their activity [99, 100]. Conversely, 
when ligands bind to these NRs, the consequent conformational change of the recep-
tors invoke the derepression of this corepressor:NR complexes [101] and the subse-
quent attraction of coactivators with histone acetyl transferase (HAT) activity, such 
as cAMP-responsive element-binding protein (CBP), p300 and/or steroid receptor 
coactivators, SRC-1. This model in which corepressors are interchanged for coacti-
vators upon receptor activation is denominated as the ‘cofactor exchange’ model 
[102, 103]. PPAR, like LXR and other NRs, can heterodimerize with the RXRs.

In recent years, the presence and regulation of the chromatin environment of 
DNA promoter sequences has been taken into account when researching the effects 
NRs can exert on their target promoters. In this respect, condensed chromatin is 
associated with a low transcription rate, while decondensed/relaxed chromatin con-
stitutes a transcription-facilitating environment. Most often, the latter state also 
features histone phosphorylation, e.g. by MSK1 or IKKa, and acetylation, e.g by 
CBP or p300, in which the modulation of histone tails results in a relaxation of the 
chromatin [51, 104–110]. As such, the interaction of HDACs with the inactive 
PPARs or RAR/RXRs, and the interaction of the HAT-containing CBP with active 
NRs can be understood in this chromatin regulation template [109, 111].

All NRs use the plethora of nuclear corepressors and coactivators to implement 
and co-regulate their transcriptional effects. The corepressors or coactivators can bind 
onto the C-terminal LBD of the NRs via conserved LXXLL (X, any amino acid) 
motifs [112, 113]. The known coactivators which can be recruited by NRs are chro-
matin-modifying proteins (e.g. the ATP-dependent chromatin remodelling SWI/SNF-
complex constisting of Brg-1 or Brm), members of the p160 family (e.g. SRC-1, 
SRC-2) and p300 or CBP, but also molecular scaffolds that allow the assembly of 
cofactor complexes (e.g. PPARg-coactivator-1 (PGC-1)). Coactivator molecules such 
as CBP, p300 and SRC-1 modulate the activity of the transcription apparatus through 
their HAT activity [101, 109, 110, 112, 114]. Specificity in ligands and NRs is reflected 
in a preferred coactivators recruitment profile [115–119]. However, the distinction 
between corepressor and coactivators is in a cellular context not rigidly distinguished 
and thus a coactivator can function as a corepressor, depending on the cellular context 
[120, 121]. Therefore, it is more correct to talk about ‘cofactors’.

Furthermore, multiple activating cofactors can be recruited in a combinatorial or 
cyclic manner [122–124]. For instance, ER recruitment onto the estrogen-stimulated 
pS2 promoter is preceded by p300 and SRC1 promoter association and  histone 
acetylation. When observing longer time frames, a cyclic and dynamic recruit- 
ment of both receptor and coactivators can be observed for this ER-stimulated pro-
moter [124]. In contrast, the AR-mediated PSA promoter stimulation is accompanied 
by a gradual increase and subsequent decrease of receptor and cofactor recruitment 
[122, 125]. The work of Hager et al. showed that GCs implemented a cyclic on/off 
 promoter loading for the GR on a MMTV promoter [126]. The  accessibility of GR 
to its promoter-imbedded binding sites can be GC-inducible or constitutive [90]. 
These cyclic recruitment mechanisms of both steroid hormone receptors and  cofactors, 
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can be seen in the framework of the ‘sensing’ cell. By constantly scanning for 
changes in the presence of ligand, the quantity of receptor or cofactor, the posttrans-
lational modulation of the NRs and cofactors the cell allows changes to be sensed 
rapidly, but also allows these changes to rapidly impact ongoing mechanisms.

In an inflammatory context, this rapid sensing for both the NR and NF-kB status 
can modulate their cross-reactions, as we will discuss below. This cross-talk of NRs 
with NF-kB can result in either a cooperative enhancement or a transrepression of 
gene expression. As ligand-activated NRs and activated transcription factors both 
reside in the nucleus, this cross-talk is deemed to be a nuclear event. However 
cytoplasmic NR-regulated events may also contribute to the NRs’ interference with 
NF-kB function [127–129].

10.3.1  NF-kB and the Glucocorticoid Receptor, GR

The glucocorticoid receptor is transcribed from one gene, but hardly constitutes a 
homogeneous population. Cell cycle regulation of its transcription, alternative 
splicing, different transcription start sites and different translation start sites lie at 
the basis of a heterogeneous population of GRs [130–134]. The GRa is most com-
monly researched, but GR is actually expressed as a cohort of – from long to short – 
GRa-A, GRa-B, GRa-C1, GRa-C2, GRa-C3, GRa-D1, GRa-D2 and GRa-D3, 
which all originate from different translation start sites. The alternatively spliced 
GRb is considered a dominant-negative for GRa function and might play a role in 
GR resistance, in which the patient is refractory to GC therapy. Overall, different 
cells might express a distinct pattern of GR isoforms and these isoforms display 
different characteristics in e.g. localization, transactivation, transrepression and 
apoptosis-inducing capacities,… [74, 134, 135]. Taken together with the heteroge-
nous population of phosphomodulated GRs and the diverse GR chaperoning 
 complexes, these distinct expression patterns for GR might explain cell and tissue 
specificity of particular GR mechanisms and responses.

This ‘diversification’ story continues when contemplating the anti-inflammatory 
mechanisms of the GRs. This mechanism of GR consists of different layers, which 
have most likely not all been characterized at present. Currently, its anti-inflamma-
tory multi-mechanism comprises the transactivation of promoters of inflammation-
repressing proteins, the destabilization of pro-inflammatory mRNAs and the 
transrepression of NF-kB-dependent gene transcription of a variety of genes by 
several mechanisms [60, 67, 91, 92]. These mechanisms can be both target gene- 
and cell type-dependent.

10.3.1.1  Transactivation of Promoters of Inflammation-Repressing Proteins

The GR-mediated transcriptional activation can be regulated via different mecha-
nisms. The binding of a homodimerized GR to an inverted repeat GC response 
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 element (GRE), constitutes the classic paradigm for GR-mediated transactivation 
(Fig. 10.4) [136], but might comprise only a small part of all GC-induced transcriptions 
[92, 137–139]. Other known GR transactivation mechanisms rely on tethering 
mechanisms in which GR binds to another DNA-bound transcription factor, e.g. 
CREB and activating transcription factor 1 (ATF1) for glutamate synthetase gene 
expression [140, 141], without associating with DNA itself, or on composite GREs 
in which DNA-bound GR cooperates with a DNA-bound transcription factor to 
induce promoter activation, e.g. GR association with C/EBP promoting DUSP1 gene 
transcription (Fig. 10.4) [70, 92, 142–144]. Experiments with a GR dimerization 
mutant, GRdim, which is incapable of fuelling the classic GRE-mediated transactiva-
tion has sparked the general belief that GR transactivation mechanisms are predomi-
nantly responsible for the detrimental GC side effect profile, while GR transrepression 
mechanisms form the basis for the anti-inflammatory and NF-kB-repressing effects 
[11, 145, 146]. Recent advances, however, have nuanced this model: GR-invoked 
transrepression can also contribute to certain side effects and GR activation mecha-
nism can also induce anti-inflammatory mechanisms [137, 146]. Yet, this dichoto-
mous model still forms the basis for many investigations [145, 147].

Although many of the GR-transactivated genes, either via non-classical or via 
classical GRE mechanisms, play a role in the plethora of functions of the GR and 
thus possibly the GC-associated side effects, some of these transactivated genes 
have marked anti-inflammatory actions [137]. However, the contribution of these 
GR transactivated anti-inflammatory proteins to the total anti-inflammatory mecha-
nism of GR, remains a matter of debate. Total translation inhibitors could in some 
cases diminish the NF-kB-repressing effects of activated GR, but could not 
 completely abolish its negative interference with NF-kB-driven gene expression 
[148–155]. Most likely, the anti-inflammatory ‘weight’ of each GC-induced anti-
inflammatory protein should be researched individually and cell-specifically.

In this regard, the GC-mediated upregulation of IkBa was discovered almost 
15 years ago. Mechanistically, the TNF-depleted, cellular stock of IkBa is replen-
ished by its GC-induced transcription, and this restocked IkBa should promote 
the  dissociation of DNA-bound NF-kB p65 and expedite its subsequent return to 
the cytoplasm [128, 156, 157]. However, the upregulation of IkBa by GCs, and the 
concomitant sequestration mechanism, appears to occur quite cell-specifically [92, 
148]. Moreover, GCs do not seem to affect the NF-kB occupancy at kB sites in 
ICAM or IL8 promoters [158–161].

Other GC-induced genes with noted anti-inflammatory functions are GILZ, 
DUSP1, lipocortin, SLPI-1, IL10, the IL1 receptor decoy type II, Dexras1, Dok-1, 
SLAP, p11/calpactin binding protein, thymosinb-4-sulfoxide, CC10, b-adrenergic 
receptors, SOCS1, SGK1 and tristetraprolin (TTP) [137, 146, 162–166]. The impli-
cations of the induction of most of these genes, and their anti-inflammatory mecha-
nisms have been recently reviewed in Clark et al. [137].

DUSP1, a dual specificity phosphatase, can dephosphorylate MAPKs at T and Y 
residues [167]. This dephosphorylation of especially p38 and JNK MAPKs and to a 
lesser extent ERK MAPK leads to their deactivation [167–171]. The expected 
decrease of p38 MAPK activity levels in GC-incubated cells, is challenged by the 
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apparently paradoxal finding that prolonged GC exposure of lymphoid cells can on 
the contrary induce p38 MAPK activation [172]. Further research into the cell speci-
ficity and implications of this matter for NF-kB function is warranted. Furthermore, 
also other GR-mediated mechanisms can target these kinases (see below).

As a consequence of the GC-induced DUSP1 production, the actions of this 
phosphatase can contribute to the GC-mediated transrepression of various pro-
inflammatory genes [173, 174]. In that respect, DUSP1 knock-out (KO) mice 
 display a weakened GR transrepression of inflammatory gene transcription. 
However, these mice retain their sensitivity to anti-inflammatory mechanisms, 
confirming that the GR anti-inflammatory mechanism works via multiple factors 
and  pathways [168, 169].

The GC-induced protein GILZ (GC-induced leucine zipper) can also deactivate 
ERK MAPK, via interfering with the phosphorylation and activation of the 
upstream kinase Raf-1, thus compromising the subsequent activations of MKK1/2 
and ERK1/2 MAPK [164, 166, 175, 176]. Furthermore, GCs can dissociate the 
Raf-1:Hsp90 association, thus weakening the activation of Raf-1’s downstream 
targets [177, 178]. However, the role of GILZ in the above mechanism has not yet 
been researched. Additionally, GILZ can target the activity of NF-kB and AP-1 via 
direct binding, and thus attenuate the expression of pro-inflammatory genes [164, 
166, 179–182].

The GC-induced production of SOCS1 [162, 183–186] might play a role in the 
proteasomal degradation of NF-kB p65, as ubiquitination of NF-kB p65, targeting 
it for degradation, is mediated by the E3-ubiquitin ligase SOCS1. As expected, 
clearance of cellular DNA-bound NF-kB p65 causes transcriptional termination 
[187]. However, SOCS1 could possibly compete for binding to NF-kB p65 with the 
nuclear peptidyl-prolyl isomerase Pin1 [188, 189]. The conformational changes in 
NF-kB p65 elicited by binding of Pin1 contributes to stabilization of NF-kB p65’s 
active, nuclear conformation [188]. Because GR stimulates SOCS1 transcription 
and GR can also bind to SOCS1 [190], it would be interesting to investigate the role 
of GCs in the switch between NF-kB:Pin1 and NF-kB:SOCS1 binding and its pos-
sible implications in GR’s anti-inflammatory mechanism.

Interesting to note is the recent finding that in lung epithelial cells, stimulated GR 
can also cooperate with activated NF-kB to induce the transcription of the TLR2 
gene [191, 192]. This Toll-like receptor, TLR2, signalling pathway, eventually initi-
ating pro-inflammatory gene transcription, can even be induced by a synthetic GC. 
Mechanistically, this involves an association of GR with PI3K. Nevertheless, also 
under these conditions, GCs ultimately repress AP-1 and NF-kB transcriptional 
activity [192].

10.3.1.2  Destabilization of Pro-inflammatory Gene mRNA

The GC-mediation induction of DUSP1, GILZ and TTP and the deactivation of p38 
MAPKs, and thus its downstream kinase targets, can contribute to the destabilization 
of pro-inflammatory gene mRNAs. These mRNAs of often cytokines and chemokines, 
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are characterized by adenylate-uridylate (AU)-rich elements (AREs) at the 
3¢-untranslated end [193]. The GC-induced TTP can contribute to this destabiliza-
tion by binding to these ARE-containing mRNAs and thus prompting their exonu-
clease-mediated degradation [194, 195]. In the context of an inflamed cell, TTP 
function is attenuated via its phosphorylation by the p38 MAPK-activated kinase 
MK2, and ARE-containing transcripts such as cyclo-oxygenase-2 (COX-2) mRNA 
and TNF mRNA are thus stabilized [196–202]. Conversely, as GCs can diminish 
p38 MAPK activity levels via different mechanisms, GCs preclude TTP phospho-
rylation. Moreover, GCs can increase the TTP expression and protein  levels [137, 
163, 203, 204]. In support, knockout, knockdown and short hairpin-based studies 
of TTP showed that TTP significantly contributes to the GC-induced decrease in 
TNF mRNA quantities [163, 203]. Combined, GCs can thus contribute to the desta-
bilization of ARE-containing transcripts, such as TNF mRNA [137, 146, 150, 154, 
205–207]. As a feature in the GR negative feedback mechanism of downregulation, 
also the GR mRNAs are subjected to a similar mechanism [208]. In conclusion, the 
GC-induced destabilization of ARE-containing mRNAs, in  combination with the 
GC-mediated transrepression mechanisms, ensures a rapid elimination of cellular 
pro-inflammatory gene transcripts.

10.3.1.3  Transrepression of NF-kB-Dependent Gene Expression

A variety of GR-repressing mechanisms can be discerned (Fig. 10.4) [67, 92]. 
Ligand-activated GR can repress transcription via direct DNA binding onto so-
called negative GREs or nGREs, via competitive DNA binding onto or in close 
proximity of another transcription factor-binding site, or via DNA binding together 
with another transcription factor on a composite GRE. The described sequestration 
model, however, appears to play no distinct role in the GC-mediated repression of 
NF-kB-driven gene expression. Yet, the ‘tethering’ mechanism is considered pro-
totypical in the GR-mediated inhibition of NF-kB-driven transcription. Thus, GR 
can modulate NF-kB-regulated gene expression via a direct GR:NF-kB interaction, 
or additionally via perturbing the signalling cascade of kinases toward NF-kB acti-
vation, and/or via altering the composition of the proinflammatory gene promoter-
bound enhanceosome.

 Direct GR:NF-kB Association

A direct interaction of GR with the transcription factor NF-kB was reported 
already 15 years ago [209]. Mapping of the interacting domains via mutation stud-
ies, revealed GR association with the Rel-HD and the C-terminal transactivation 
domain of NF-kB [148, 210]. The association of these C-terminal domains of 
NF-kB p65 with GR appears to be key to accommodate GR transrepression on 
NF-kB-regulated gene transcription [148, 209, 211]. Conversely, from a GR view-
point, this GR:NF-kB association involves specifically the zinc finger region of 



206 I.M.E. Beck et al.

the GR DBD [159]. Nevertheless, GR DNA binding in itself is not required to 
accommodate this GR:NF-kB interaction [209, 212]. However, chromatin immu-
noprecipitation (ChIP) assays showed that GR binds proximal to DNA-bound 
NF-kB [158, 159, 213, 214]. The latter two arguments combined, point towards a 
‘tethering’mechanism. A last mechanistic item on GR:NF-kB association revolves 
around the NF-kB cofactor thyroid receptor-interacting protein 6 (Trip6). 
Knockdown of this Trip6 and interaction studies suggest that this LIM domain-
containing Trip6 could function as a necessary recruitment platform to accommo-
date GR:NF-kB binding, but also to allow the GR’s repressive effects on NF-kB 
p65-driven gene expression [214].

Typically, this tethering mechanism is mirrored by a reciprocal NF-kB-mediated 
repression of GR/GRE-driven gene transcription [209, 215, 216].

In this respect, protein kinase A (PKA) has a quite controversial role. This 
kinase can contribute to the activational NF-kB S276 phosphorylation, which pro-
motes its association with the coactivator CBP [217, 218]. Conversely, NF-kB S276 
phosphorylation appears to be necessary to accommodate NF-kB-mediated repres-
sion of GRE-regulated promoters and GR can associate with PKAc [127]. 
Surprisingly, NLS-defective NF-kB and GR mutants, which thus localize to the 
cytoplasm, still support GR-mediated NF-kB transrepression and NF-kB-mediated 
GR transrepression, arguing for a mutual antagonistic cross-talk of GR and NF-kB 
in the cytoplasm. However, as both GR and NF-kB extensively shuttle between 
cytoplasm and nucleus [81, 83, 84, 219–221], it cannot be excluded that these 
mutants also shuttle and could thus possibly, as would be expected, relay their 
transrepression mechanisms in a nuclear setting. Although this cytoplasmic mecha-
nism might contribute to the GR-regulated mechanism of NF-kB transrepression, 
experiments using the nuclear Gal4-p65 S276A and S276C mutants confirm the 
involvement of nuclear GR-mediated transrepression events aimed at halting 
NF-kB-dependent transcription [216].

 Modulation of Activational NF-kB Signalling Cascades

The activated GR can modulate the activity of several kinases involved in signalling 
toward pro-inflammatory gene transcription and NF-kB activation or modulation 
(recently reviewed in [60]). As mentioned above, NF-kB is extensively regulated 
via posttranslational modifications, and of these the phosphomodulation of NF-kB 
is particularly well researched.

First the GR can negatively affect MAPK function via DUSP1 and GILZ upreg-
ulation (see Section 10.3.1.1). Activated GRs can additionally cross-talk with JNK 
and its upstream regulators, ultimately inhibiting the function of downstream 
 targets c-Jun, ATF-2 and Elk-1 [222, 223]. Possible mechanistic interventions are: 
a direct interaction of GR with JNK [222, 224], or a direct association of GR with 
MKK7 [224], and an inhibition of MEKK1:Hsp90 interaction [177]. Interestingly, 
the deactivating effects of GR on the JNK MAPK culminates in the recruitment of 
inactive JNK MAPK, together with GR, to DNA-bound AP-1 on e.g. the c-jun gene 
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promoter [224–226]. Conceivably, an analogous mechanism could exist for 
 activating NF-kB p65 kinases and NF-kB p65. However, currently, no such mecha-
nism has been reported.

Downstream of the p38 and ERK MAPKs, which are in itself subjected to a 
variety of GC-mediated effects, lie the MAPK-activated kinases (MKs) [42]. As such, 
also the p38 MAPK- and ERK-activated MSK1 [59, 227–231] is influenced by GC 
actions. This nuclear kinase plays an important promoting role in pro-inflammatory 
gene transcription via CREB S133, ATF1 S63 and NF-kB S276 phosphorylation 
and transactivation [56, 58, 59, 227, 230] and via histone H3 S10 phosphorylation, 
thus provoking a local, transcription-facilitating chromatin relaxation [105, 106, 
232]. The phosphorylation of NF-kB S276 promotes CREB-binding protein (CBP) 
and p300 binding [56, 58, 217, 218]. Additionally, MSK-mediated H3 phosphory-
lation creates a platform for 14–3–3 binding, and combined this situation promotes 
heterochromatin protein HP1g dissociation and RNA polymerase II (RNA Pol II) 
recruitment [233–236]. As such, the combined administration of GCs and MSK1 
inhibitors causes an additive repressive effect on NF-kB-regulated gene expression 
[237]. Although activated GR does not affect the MSK1 phosphorylation or activity 
status, GCs can target the MSK1 localization by inhibiting its recruitment to pro-
inflammatory gene promoters and by driving a part of the total cellular MSK1 from 
its nuclear ‘home’ to the cytoplasmic outskirts via a GR- and CRM1-dependent 
mechanism, associated with a GC- and MSK1 activity-dependent interaction of GR 
and MSK1 [238]. Consequently, H3 S10 phosphorylation at these gene promoters 
is abolished, overall NF-kB p65 S276 phosphorylation is attenuated and pro-
inflammatory gene transcription is halted [58, 237, 238]. In this respect, further 
mechanistic studies into the GR-MSK1 interaction and the GC-mediated MSK1 
export could unveil new GC-mediated mechanisms. Nevertheless, experiments 
using Compound A, a selective GR modulator which does not support GRE-
mediated transcription, but can drive repression of NF-kB-regulated gene expres-
sions, already showed that the GR-provoked translocation of MSK1 can be placed 
in the context of the grand, multifactorial mechanism of GR-mediated transrepres-
sion of NF-kB-mediated transcription [238].

The kinase complex comprising IKKa and IKKb, which is essential to the 
 degradation of IkBa and the subsequent release of NF-kB [36], performs also addi-
tional roles in the NF-kB ‘machinery’. Firstly, IKKa and IKKb can phosphorylate 
NF-kB p65 at S536 [239–241], and thus contribute to NF-kB’s activity level, most 
likely via promoting the association NF-kB S536ph with p300 [64]. Moreover, the 
IKK-mediated phosphorylation of NF-kB reduces its binding affinity for IkBa, and 
thus also counteracts the sequestration model for gene repression [240, 242]. 
Secondly, IKKa promotes the binding of NF-kB onto specific gene promoter sites 
[243]. And lastly, activated IKKa can translocate into the nucleus, and transduce 
local H3 S10 phosphorylation, similar to MSK1, thus facilitating pro-inflammatory 
gene expression [107, 108]. No effect of GCs on NF-kB S536 phosphorylation have 
been reported, but GCs can regulate IKKa promoter occupancy and H3 S10 phos-
phorylation. These latter two events were both inhibited at the SP-A promoter by a 
GC stimulus [213].
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In a recent publication, IKKa phosphorylation and activation was elicited via 
the subsequent inductions of PI3K and the serum and glucocorticoid-inducible 
kinase (SGK). These events lead to p300 phosphorylation, an increase in NF-kB 
activation and eventually a marked rise in NF-kB-driven gene transcription [244]. 
However, GCs can possibly influence this pathway as the cellular quantities of 
SGK1 can be augmented by GC treatment [245–247]. Of note, aldosterone, the 
ligand for MR, can activate NF-kB in the cortical collecting duct via SGK1 signal-
ling, while GCs can still attenuate this NF-kB activation [248]. In light of the recent 
findings in IKK complex mechanistics, an exhaustive study about the effects of 
activated GR on the IKK complex functions, its activation pathways and its (anti)-
inflammatory implications would be advisable.

 GR Targeting the Enhanceosome

In the above section some kinases (MSK, IKK), which form an intricate part of the 
NF-kB signalling pathway, were also affected in their gene promoter recruitment 
characteristics. The composition of the enhanceosome which is assembled onto 
active NF-kB-dependent promoters can be intrinsically modulated by a ligand-
activated GR in various manners.

The prototypical example of a GR-targeted enhanceosome, could be found in the 
publications of the group of Yamamoto [159, 160]. Upon the activation of the pro-
moters of IL8 and ICAM1, a pre-initiation complex (PIC) and RNA Pol II is 
recruited to these promoters, and the C-terminal domain of this polymerase is sub-
sequently phosphorylated at S2 and S5. The former RNA Pol II S2 phosphorylation 
is necessary to allow transcription and is mediated by the co-recruited cyclin-
dependent kinase Cdk9 of the positive transcription elongation factor-b (P-TEFb) 
complex, comprising Cdk9 and CylinT1 [159, 249, 250]. This transcription elonga-
tor complex P-TEFb is recruited onto a DNA-bound NF-kB p65 protein, which 
needs to be phosphorylated at S276, and this binding is evenso necessary for 
NF-kB-driven transcription [251]. However, a ligand-activated GR can compete 
with P-TEFb for binding to NF-kB p65. If in this competition binding of GR is 
favoured over binding of P-TEFb, IL8 gene transcription is attenuated and phos-
phorylation of RNA Pol II S2 is halted [159, 160]. However, this mechanism oper-
ates in a gene promoter-specific manner, as the NF-kB-regulated IkB gene 
promoter-occupying enhanceosome is not regulated in a similar way [160]. Of note, 
GCs do not alter the composition of the PIC. Taken together with the above men-
tioned effects of GCs on the NF-kB p65 S276 phosphorylator MSK1, it appears 
that GR intervenes at different points in the chain of recruitment events which cul-
minate in the transcription of the IL8 gene [159, 160, 238, 251].

From another perspective, NF-kB does not always function as a transcription 
factor, but can also function as a – most likely tethering – cofactor. The group of 
Glass [252] described a IRF3-driven promoter activation of Ifit1, IP-10 and a 
recombinant IRF3 promoter, in which NF-kB p65 binds to the DNA-bound IRF3 
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in a toll-like receptor TL4/TLR9-stimulated cell. Glucocorticoids negatively interfere 
with this transcription via evoking a competition model, but only in a TLR4/TLR9-
stimulated context and not in a TLR3-induced cell. Mechanistically, activated GR 
then competes with IRF3 for direct binding to NF-kB p65. However, as GR has a 
greater affinity for NF-kB p65 than IRF3 does, GR prevails in this competition 
model and thus transcription of the IRF-3:NF-kB-driven gene is inhibited [252]. 
Interestingly, the kinase TBK1 can regulate the activating phosphorylations of 
both NF-kB S536 [241] and IRF3 phosphorylations [253, 254]. Recently, McCoy 
et al. revealed that GCs can negatively affect the phosphorylation and activity of 
this TBK1 in a TLR3- and TLR4-stimulated cellular context [255]. The 
GC-mediated repression of TBK1 function and thus IRF3 activity [255], could 
hence contribute to the described IRF3:NF-kB cofactor:GR competition model 
[252]. Combined, these two GC-regulated mechanisms inhibit IRF3-driven gene 
expression of e.g. RANTES [252, 255–257].

The assembly of cofactors surrounding DNA-bound NF-kB p65 can also alter 
under the influence of GCs. These cofactors often have modulating capacities, e.g. 
acetyl or methyl transferase activity, which they exert on either other proteins of the 
enhanceosome, e.g. NF-kB, or on the extruding histone tails of the chromatin. This 
plethora of histone tail modifications assemble into the ‘histone code’. This code can 
define the chromatin condensation/relaxation status, the accessibility of transcription 
factor binding and the likelihood of transcription from a given promoter [51].

In that respect, GCs can attenuate histone H4 K8 and K12 acetylation via a 
combined mechanism. These steroids can diminish the HAT activity of CBP, 
while enhancing the transcription of the histone deacetylase HDAC2, directing 
these HDAC2’s to NF-kB:CBP complexes and steering HDAC1 to, e.g. the SP-A 
gene promoter [213, 258, 259]. Furthermore, GCs decrease the H3 and H4 
acetylation levels at the promoters of the SP-A and IL8 genes [213, 260]. These 
CBP- and HDAC-based mechanisms all contribute to a GC-diminished tran-
scription of NF-kB-regulated genes [213, 258, 259]. However, activated GR 
does not compete with NF-kB for a limited cellular amount of cofactors (CBP/
p300 or SRC-1), as was shown via overexpression and analyses with cofactor-
interacting defective GR mutants [49, 214, 216, 261–263]. GCs can also increase 
the dimethylation of local H3 K9 at the SP-A gene promoter, which is associated 
with transcriptional repression [213]. Combined with the above discussed, 
GC-mediated effects on the H3 S10 phosphorylating kinases MSK1 and IKKa, 
we conclude that the GR-affected enhanceosome is clearly reflected in a changed 
chromatin environment.

Of note, in overexpression studies with SRC-1, SRC-2, and/or the comodulator 
SRC-1 and TIF-2 Associated Modulatory Protein (STAMP), the resulting increase 
in the fold repression for GR-mediated inhibition of NF-kB-driven gene expression 
of IL8 does point to a possible role for these coregulators [120, 264]. We advise 
studies in a more endogenous setting via knock-down and KO studies and/or ChIP 
analyses to resolve the role of these factors in the GR transrepression mechanism 
which targets NF-kB-driven gene expression.
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In conclusion, the GC-mediated transrepression of NF-kB-driven gene transcription 
operates via a stimulus-, gene- and cell-specific, multifactorial mechanism. The basis 
of this gene- and cell-specificity is captured in the varying cellular  cofactor and tran-
scription factor concentrations and activities, the different and specific gene promoter 
sequences and its intrinsic transcription factor binding sites and the distinct local histone 
code and chromatin condensation state.

10.3.2  NF-k B and the Peroxisome Proliferator-Activated 
Receptors, PPAR

The PPAR subfamily of NRs comprises a PPARa (NR1C1), PPARb/d (NR1C2) 
and PPARg (NR1C3) and is differentially expressed in distinct tissues. These 
transcription factors become active upon induction with their cognate ligands, i.e. 
fatty acid derivates or fibrates, and can form a heterodimer with RXR. The PPAR 
family NRs play a role in lipid and glucose metabolism, cell proliferation and 
apoptosis, but also display marked anti-inflammatory effects [129, 265–268].  
As such, PPARa ligands mediate anti-atherogenic activities and contribute to 
controlling obesity-induced hepatitis [269–271]. PPARa ligands, but not PPARg 
ligands, can attenuate IL1-stimulated IL6, prostaglandin and COX-2 production 
in human aortic smooth-muscle cells. Moreover, activated PPARa can restrain 
the inflammatory response in aortic smooth-muscle cells and diminish plasma 
acute-phase protein quantities in the vascular wall [72, 272]. Nevertheless, also 
PPARg ligands can repress NF-kB mediated transcription, e.g. iNOS and MMP9 
in macrophages [273]. Furthermore, PPARg ligands have a beneficial effect on 
intestinal epithelial cell inflammation [274]. Also, PPARb/d can repress NF-kB 
activity in adipocytes [275]. Of note, PPARb/d can stimulate tumor growth.  
In this respect, selective activation of PPARb/d in non-small cell lung cancer 
cells was associated with an increase in NF-kB p65 DNA binding and protein 
levels, a decrease in IkBa gene expression and a marked inhibition of transcription 
of the known tumor suppressor: phosphatase and tensin homolog deleted on chromo-
some 10 (PTEN) [276]. Conversely, PPARa and PPARg have anti-tumorigenic 
effects in a variety of cancer cells [276–278].

Like GR, also PPARa and PPARg can inhibit NF-kB- and AP-1-mediated gene 
transcription [72, 279, 280]. Mechanistically, these nuclear PPARs interfere with 
NF-kB via a multifaceted mechanism. As for GRs, PPAR-mediated transrepression 
of NF-kB driven gene expression is mirrored by a reciprocal repression mecha-
nism. As such, activated NF-kB can inhibit the PPAR response element-driven 
promoter activity, independent of the promoter context [72].

A PPARa-dependent stimulation of IkBa expression and the resulting dimin-
ished NF-kB DNA binding, has been suggested to play a role in the PPARa-
mediated NF-kB-repressive mechanism. This gene induction would occur via a 
necessary recruitment of DRIP205 (also known as MED1) to the kB-adjacent 
Sp-1 site in the IkBa gene promoter. Although PPARa ligand incubation does 
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not influence IKK activity or IkBa degradation in primary human hepatocytes 
[280], these ligands can attenuate IKK activity, IkBa phosphorylation and the 
IkBa  degradation rate in human umbilical vein endothelial cells (HUVECs) 
[281]. As for GR, the contribution of PPAR-induced IkBa is not considered to 
be essential to PPAR’s overall NF-kB-repressive mechanism and is highly cell-
specific. However, it could prove interesting to investigate whether also GR-, 
ER- and AR-mediated IkBa promoter activation would necessitate DRIP205.

Additionally, recent findings of Okayasu et al. [281] indicate that PPARa 
 activation can stimulate AMP-activated protein kinase (AMPK) and thus entice the 
phosphorylation of its downstream targets Akt and eNOS. Moreover, knockdown 
studies and pharmacological inhibition experiment showed that AMPK is a critical 
factor in PPARa-mediated transrepression of NF-kB-driven gene expression in 
mouse endothelial (SVEC4) cells [281]. Conversely, PPARb/d can decrease AMPK 
phosphorylation [282]. It would be interesting to investigate whether AMPK is also 
involved in PPARg- or GR-mediated repression of NF-kB, and thus whether this 
AMPK-based mechanism is shared by various NRs.

PPARg ligands can provoke a NF-kB segregation mechanism; transcription-
ally active NF-kB is extruded to the cytoplasm [283]. Also, PPARa ligand 
stimulation was associated with a decreased nuclear translocation rate of 
NF-kB p65 [129]. However, to date, the mechanism by which PPARs can affect 
the NF-kB p65 localization has not been described and might operate 
 cell-specifically.

Notably, the PPARg agonist 15d-PGJ(2) can also negatively affect NFkB 
function without actually needing the PPARg receptor. This 15d-PGJ(2) can 
covalently modify critical cysteine residues in IKKb and the DNA-binding 
domain of NF-kB. As a result, IKKb activity and NF-kB DNA binding is com-
promised and ultimately these events lead to a decrease in NF-kB-driven gene 
expression [284–286]. Moreover, 15d-PGJ(2) can also lead to a mitochondria-
dependent apoptosis via a NF-kB-dependent mechanism [287]. Furthermore, it 
appears that PPARg function is under the control of a negative regulatory feed-
back loop, as lipopolysaccharide (LPS) stimulation of macrophages leads to an 
NF-kB-dependent decrease in PPARg mRNAs [288]. Of note, A20, an NF-kB-
induced inhibitor of IKK complex activation [289], was recently indentified as 
an inducer of PPARa gene transcription. This increase in cellular PPARa is 
pivotal to the A20-mediated protection against oxidative necrosis in an  ischemia/
reperfusion injury model [290].

The receptor PPARb/d operates distinctly different from PPARg and PPARa, 
albeit that PPARb/d also has NF-kB-modulating effects. In vivo studies comparing 
Zucker diabetic fatty (ZDF) to lean rats revealed that PPARb/d expression levels 
and PPAR DNA-binding activity in white adipose tissue of ZDF rats was reduced. 
Concomitantly, IL6 gene transcription and NF-kB DNA binding was enhanced, 
which originated from this decreased PPARb/d function. Activation of the PPARb/d 
indicated that this receptor can prevent LPS-induced ERK activation and althus 
impede NF-kB activation in adipocytes. In vivo, ZDF rats and PPARb/d KO mice 
showed a constitutively increased ERK phosphorylation [275].
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The combination therapy hypothesis proposes that the combination of two 
therapeutic agents, and the resulting additive effects, allows to use lower dosages 
of each of these agents. Thus combination of these lower dosed agents could limit 
the associated side effects [291]. In this respect, combining PPARg and GR ligands 
to combat inflammatory afflictions results indeed in an additive anti-inflammatory 
effect on a specific subset of TLR-stimulated gene inductions. Mechanistically, this 
additive repression most likely originates from the association of PPARg with the 
corepressor NCoR, and from combined GR- and PPARg-mediated targeting of 
NF-kB [252]. Similarly, combining PPARa agonists and GCs results in an additive 
transrepression of NF-kB-driven gene expression. Furthermore, this additive effect 
was appropriately reflected in an additive inhibition of endogenous IL6 mRNA and 
protein production [292]. Recent findings in PPARa KO mice in various murine 
models, suggest that PPARa could also be a contributing factor in the GR-mediated 
NF-kB repressive mechanism itself [293–295]. However, the precise mechanistics 
of this role were not yet defined. Notably, a trimeric combination therapy of PPARg 
agonists, GCs and COX-2 inibitors is currently used in the treatment of hormone-
refractory prostate cancer [296].

Interestingly, PPARa agonists actually counteract classic GRE-regulated tran-
scription of recombinant vectors and endogenous genes, such as GILZ. A ChIP 
analysis of the promoter of GILZ revealed that PPARa agonist incubation can abol-
ish GR promoter occupancy and diminish RNA Pol II recruitment. The concomi-
tant nuclear association of activated GR:PPARa necessitates the PPARa DBD and 
LBD [292]. An in-depth analysis of the mechanistic basis of this cooperative and 
antagonistic cross-talk of PPARa and GR is currently lacking. As these PPARa 
agonists can also halt GC-initiated transcription of key metabolic regulators, such 
as glucose-6-phosphatase, the PPARa-GR combination strategy might constitute 
an efficacious anti-inflammatory therapy with a reduced GC-mediated side-effect 
profile. Physiological experiments, indeed, confirmed that a GC-elicited deteriora-
tion of hyperinsulemia in high-fat diet-fed mice could be countered by the addition 
of the PPARa agonist fenofibrate [292].

Interestingly, also the combinatorial use of PPARg and RXR agonists in chondro-
sarcoma cells elicited an additive anti-inflammatory effect, as was exemplified for 
MMP1 and MMP13 gene transcription. These effects were accompanied by an 
increase in PPARg gene promoter occupancy and a cross-SUMOylation of the 
PPARg:RXR heterodimer [297]. In an earlier report by Pascual et al. [99], ligand-
dependent SUMOylation of PPARg in macrophages was reported to direct this 
PPARg to NCoR:HDAC3 complexes, residing on inflammatory gene promoters. The 
addition of PPARg to these complexes prevents cofactor exchange, thus prevents 
NF-kB:cofactor complex recruitment and thus precludes NF-kB-mediated promoter 
stimulation [99, 298]. This SUMOylation at PPARg K77 appears to be essential to the 
repression mechanism by which PPARg halts NF-kB-driven gene expression [100].

In conclusion, these trimeric cross-talk mechanisms between two NRs (GR:PPAR 
or PPAR:RXR) and NFkB holds promise for a new, efficient therapeutic strategy with 
possibly a more beneficial effect profile. However, further research into the cell type 
specificity and molecular basis of these combinatorial mechanisms is warranted.
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10.3.3  NF-k B and Liver X Receptor, LXR

The Liver X receptors, LXRa (NR1H3) and LXRb (NR1H2), are activated by oxys-
teroles, i.e. oxygenated cholesterol derivatives, and can thus sense cellular choles-
terol homeostasis. Furthermore, LXRs can also function as an anti-inflammatory 
and anti-atherogenic regulator [299, 300]. Recently, LXRs were shown to have anti-
proliferative capacities in breast cancer cells. In that context, they can inhibit ERa 
gene transcription [301].

In an inflammatory model induced by bacterial pathogens, activation of the 
LXRs results in a decrease of NF-kB-dependent cytokine production of IL1b, IL6, 
iNOS, MCP-1, MMP9, COX-2 and TNF [302–306]. LXRa/LXRb KO mice are 
also more susceptible to bacterial infection [299].

A direct or indirect LXR-mediated repressive effect on NF-kB-regulated tran-
scription was shown using an NF-kB-driven reporter gene [306]. Furthermore, 
LXR agonists elicited a hampered IkBa degradation in murine splenic 
B-lymphocytes, suggesting a delayed NF-kB p65 translocation [307]. However, in 
macrophages, NF-kB DNA binding, as assessed by electrophoretic mobility shift 
assay (EMSA) analysis, was not affected by activated LXRs [308]. The LXR-
mediated inhibition of LPS-induced TNF gene transcription was also associated 
with a decrease in p38 MAPK phosphorylation [305]. Analogous to the 
PPARg:SUMO1 link, LXRs are SUMOylated via SUMO2/3 and subsequently 
directed to distinct pro-inflammatory gene promoters where these SUMOylated 
LXRs lock down NCoR corepressor complexes at these inflammatory gene 
 promoters [298, 309].

Similar to the combination of PPARa or PPARg agonists with GCs, combining LXR 
agonists with GCs results in an additive anti-inflammatory effect on TLR3-stimulated 
IP10, Ifit1 and iNOS expression and on LPS-stimulated TNF and iNOS expression 
[252, 310]. To date, the mechanistic basis for this additive repression has not yet been 
elucidated. Additionally, LXR agonists can also increase PPARa mRNA levels and 
protein production in the duodenum, jejunum, and ileum, but not in the liver [311].

10.3.4  NF-k B and the Estrogen Receptor, ER

The estrogen receptor (ER) subgroup comprises two distinct receptors ERa (NR3A1) 
and ERb (NR3A2), both of which can activate or repress gene transcription [312]. 
Activated ERs homodimerize or heterodimerize upon ligand binding, translocate 
to  the nucleus and can regulate gene transcription via direct DNA interaction, in this 
case on an estrogen response element (ERE) or via tethering mechanisms on other 
DNA-bound transcription factors. Alternatively, estrogens can also bind a membrane-
associated estrogen receptor and thus relay its so-called non-genomic effects. These 
non-genomic events, by definition, are not dependent on gene transcription. Rather, 
these events include direct estrogen effects on  cytoplasmic and nuclear proteins,  
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e.g. kinase signalling cascades, altering the function of these  proteins and thus 
indirectly modulating gene transcriptions [313–315].

Functionally, estrogens have an outspoken role in reproduction. However, these 
steroidal hormones have also been reported to have a function in the regulation 
of cardiovascular, skeletal, central nervous and the immune systems [316–319]. 
The cross-talk of activated ERs with NF-kB can have cell-specific effect on inflam-
mation and the mechanistics and implications thereof will be discussed below.  
In aggressive hormone-refractory cancers, the absence or loss of ER function was 
linked to a constitutively active NF-kB and MAPKs and the resulting elevated 
cytokine and growth factor levels [320–323]. Furthermore, the negative effects of 
estrogen on NF-kB-driven cytokine production, in particular IL6, correlate with 
prevention of age-related disorders, e.g. post-menopausal rheumatoid arthritis, and 
tumorigenesis [34, 324–327].

Similar to the GR, ER can also directly interact with NF-kB in the nucleus thus 
imposing its negative effect [328–331]. To allow these negative effects of ER on 
NF-kB-mediated transcription, an intact ER DBD and NF-kB p65 Rel-HD is 
required [327, 329]. It appears that particulary ERa, rather than ERb, is involved 
in the estrogen-mediated repression of NF-kB signalling [332, 333]. However, cell-
specific effects may be at play here, as estrogens, via most likely ERb, have also 
been reported to attenuate NF-kB p65 nuclear translocation in peritoneal mac-
rophages of endometriosis and thus to diminish iNOS expression levels [334, 335]. 
In in vitro experiments in several cell types using EMSA analyses, estrogens 
appeared to block NF-kB DNA binding and thus negatively affected cytokine pro-
duction [327, 330, 336–340]. The earlier discussed segregation model in which a 
nuclear receptor can stimulate IkBa gene expression has also been reported to be 
mediated by ERs [336, 341]. Of note, the cellular IkBa concentrations are higher 
in ER-positive breast cancer cells than in ER-negative breast cancer cell line. 
Alternatively, Cvoro et al. [121] revealed a cofactor switch model with interesting 
players in U2OS-ERa cells. Namely, unliganded ERa was recruited onto the TNF 
gene promoter together with c-Jun, NF-kB p50, NF-kB p65, CBP and Hsp90 in 
response to a pro-inflammatory signal and unliganded ERa can thus be considered 
a coactivator. However, ligand stimulation of ERa inhibits TNF gene transcription 
via switching the coactivator complex ERa:CBP:Hsp90 for the cofactor SRC-2, 
which acts as a corepressor in this context. Nevertheless, the gene promoter occu-
pancy for c-Jun, NF-kB p50 and NF-kB p65 is not affected [121]. Similarly, ligand-
activated ERa recruitment can displace CBP, but not NF-kB p65, from the gene 
promoter of MCP-1 (monocyte chemoattractant protein-1) and IL8 in MCF7 breast 
cancer cells. Conversely, the IL6 gene promoter association of NF-kB p65, CBP 
and the p300/CBP-associated factor, p/CAF, is diminished upon the recruitment of 
activated ERa [342]. Although the fact that estrogen cannot effect NF-kB p65 
recruitment to the TNF, MCP-1 and IL8 gene promoter seems in conflict with the 
earlier EMSA analyses and the ChIP results for the IL6 gene promoter, most likely, 
the overall mechanism by which ERs can negatively affect NF-kB-mediated gene 
repression is multifaceted and can comprise both mechanisms in different cell types 
and on different gene promoters [343, 344].
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Recent research has added a new facet to the ER-mediated NF-kB-transrepressive 
mechanism; PPARa appears to play a role in the anti-inflammatory activity of 
estrogens as the efficacy of estrogens to attenuate lung inflammation and mechanis-
tically to inhibit NF-kB activation is compromised in PPARa KO mice. Interestingly, 
PPARa also appears to contribute to the estrogen-induced upregulation of ER gene 
expression [345]. As a similar PPARa-contributing mechanism is suggested for 
GR’s anti-inflammatory mechanism [293], it would be interesting to investigate the 
role of PPARa in other NR-mediated mechanisms.

Next to the slower genomic effects of ER, depending on gene transrepression or 
transactivation mechanisms, literature covering the non-genomic effects of estro-
gens, which can manifest themselves in a matter of seconds, adds on new insights 
[346]. As such, estrogens can elicit a diminished phosphorylation of p38 MAPK 
and NF-kB DNA-binding affinity, ultimately resulting in a normalization of the 
cytokine production in several inflammation models [340, 347]. Conversely, ER 
can increase ERK MAPK activity and thus activate NF-kB, resulting in a promoter-
specific activation of the anti-oxidants Mn-superoxide dismutase and gluthathion 
peroxidases in MCF-7 cells [348, 349]. As apparently activated ER can cell- 
specifically impact p38 MAPK and ERK MAPK activity, it would be interesting to 
investigate whether this could indirectly repress the MSK1-mediated NF-kB phos-
phorylation. In general, estrogens can impact several kinase signalling pathways, 
which may indirectly impact NF-kB and NF-kB-driven gene expression. However, 
as these non-genomic effects ultimately also impact transcription, this mechanistic 
classification is challenged.

As for GR, the activation of ERa/ERb and NF-kB features a reciprocal repres-
sion mechanism in a variety of cell lines. Activation of NF-kB via different 
 pro-inflammatory signals can thus repress the activation of ERE-regulated gene 
promoters [350–352]. However, not all cross-talk between ER and NF-kB results 
in mutual antagonism. Gene promoter-specific cooperation of ER and NF-kB has 
been reported, e.g. for transcription of the serotonin 5HT1A receptor gene [353]. 
Furthermore, not all cell lines are susceptible to estrogen-mediated inhibiton of 
NF-kB. Murine fibroblasts and rat smooth muscular cells cells, for instance, do not 
display an inhibition of NF-kB-mediated transcription in response to estrogens, 
most likely due to the lack of a functional ER [354, 355]. Notably, in Jurkat cells 
and human peripheral blood T cells, activated ERb seems to be able to activate 
NF-kB activity [331]. In murine splenocytes estrogens can also lead to an activation 
of NF-kB and upregulate certain NF-kB-driven genes, e.g. interferon IFNg, via 
activation and recruitment of Bcl-3 to the gene promoters [335]. Clearly, the cross-
talk between NF-kB and ER is both cell- and gene promoter-specific [335, 353–357] 
and thus these specificities should advisably be researched when investigating new 
ER:NF-kB cross-talk mechanisms.

As mentioned above, the ER-negative hormone-refractory breast cancers are 
characterized by a constitutively active and DNA-bound NF-kB, while ER-positive 
tumors lack active NF-kB [323]. In a whole, this observation supports a role for 
ER-mediated inhibition of NF-kB signalling in cancer. As also expression of the 
ERs itself can be stimulated via an ERE-dependent mechanism, MAPK and NF-kB 
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activation in breast cancer is associated with the downregulation of ER via a 
 reciprocal repression mechanism [358, 359]. Furthermore, cofactors play a particular 
and cell-specific role in ER response mechanisms (reviewed in [317, 360, 361]). In 
that respect, the ER-mediated regulation of the lifetime of the oncogenic SRC-3 
forms an important recent finding. SRC-3 is sequentially phosphorylated and poly-
ubiquitinated, in which the sequential modulations of SRC-3 serve as a ‘transcrip-
tional time clock’ controlling the activation and functional lifetime of SRC-3 [362]. 
Furthermore also the localization and solubility of this SRC-3 appears to be regu-
lated by phosphorylation events and SRC-3:ERa interactions [363]. Whether and how 
the activation of NF-kB could impact these mechanisms is currently not known.

10.3.5  NF-k B and the Androgen Receptor, AR

The androgen receptor (NR3C4) forms the cognate receptor for testosterone. Like 
GR, also AR can directly interact with NF-kB, albeit weakly, mediating its mutu-
ally antagonistic cross-talk mechanisms. Androgen-activated AR can stimulate 
androgen response element-mediated transcription, while attenuating NF-kB-
driven gene expression of e.g. IL6. Reciprocally, activated NF-kB can halt andro-
gen response element-regulated promoter activity [364]. The latter process appeared 
to involve AR’s N-terminal domain from 297 on and the DBD [365].

In endothelial cells, AR-mediated repression of NF-kB activity was reported to 
regulate a negative effect on the transcript levels of VCAM1, ICAM1, IL6, MCP-1, 
CD40, TLR4, PAI-1, and COX-2 [366]. Although the IkBa upregulation model, 
with concomitant sequestration of inactivated NF-kB p65, was also suggested to 
occur in AR:NF-kB cross-talk [367], most likely, this mechanism is limited to 
select cell types, as investigations in COS-1 cells revealed no androgen-mediated 
IkBa gene transcription [365]. The AR:NF-kB mutually antagonistic cross-talk has 
also been suggested to occur via a competion for limited amounts of the cofactor 
CBP [368]. However, this general competition model lacks gene promoter-specificity 
as the cofactor CBP is utilized by a plethora of genes.

Interestingly, flutamide, a non-steroidal anti-androgen can decrease cytokine 
production, reportedly via a decrease in NF-kB DNA binding. Moreover, pharmaco-
logical inhibition of ERa indicated that this anti-androgen-driven mechanism of 
cytokine repression could be (in part) mediated via ER-regulated mechanisms [369]. 
However, androgens could also activate NF-kB and augment COX-2 and iNOS 
production in cerebral arteries, and overall exacerbate neuroinflammation [370].

Similar to ER, the AR gene can be driven by its own ligand. In accordance with 
the reported reciprocal repression, NF-kB can thus repress the gene transcription of 
AR [371–374]. As such, TNF-activated NF-kB p65 and the B-myb transcription 
factor is recruited to the AR gene promoter, together with a HDAC1:SMRT:mSin3A 
corepressor complex in androgen-sensitive cancer cells. These transcription factors 
can interact in cis at a composite genomic element, resulting in a decreased AR 
expression in androgen-dependent LNCaP human prostate cancer cells. Conversely, 
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in androgen-independent cells, TNF-activated NF-kB does not result in an AR 
downregulation and did not direct NF-kB:B-myb nor the HDAC1:SMRT:mSin3A 
corepressor complex to the AR gene promoter [374]. In contrast, a kB site in the AR 
promoter would actually be responsible for NF-kB-driven production of AR in 
androgen-sensitive prostate cancer cells [373]. Further research would be necessary 
to elucidate this apparent paradox. Additionally, increased AR levels have been 
associated with cancer progression to an androgen-independent prostate cancer and 
thus anti-androgen cancer therapy resistance [374].

Functionally, androgens can attenuate IL6 protein production in bone marrow-
derived stromal cells. Furthermore, the AR-mediated decrease in IL6 protects the 
bone from IL6-regulated osteoclastogenesis [375, 376]. Additionally, androgens 
can elevate the osteoprotegerin (OPG) mRNA levels in osteoblasts without affect-
ing the RANKL mRNA levels [377]. The resulting increase in the OPG/RANKL 
ratio is indicative for a decrease in bone metabolization. Similar bone-protective 
mechanisms have also been reported for estrogens (recently reviewed in [378]).

The use of androgens or anti-androgens in cancer treatments should be consid-
edered for each cancer specifically, as androgen depletion can attenuate normal and 
cancerous prostate growth, while testosterone may cause proliferation and apoptosis. 
In AR-negative prostace cancer cells, NF-kB was constitutively active [379]. 
However, in DU145 AR-negative, hormone-refractory prostate cancer cells, extra-
cellular androgens can activate a membrane-associated AR and thus downregulate 
PI3K/Akt and NF-kB activity, induce pro-apoptotic genes, such as FasL, and 
increase caspase-3 and Bad protein activity [380]. In AR-expressing prostate cancer 
cells, androgens decreased NF-kB translocation and activity. Consequently, NF-kB-
driven gene-expression of the anti-apoptotic Bcl-2 and IL6 was diminished [381].

10.3.6  NF-k B and the Progesterone Receptor, PR

The progesterone receptor (NR3C3) is transcribed of a single gene but can exist as 
multiple isoforms: PR-A, PR-B and a truncated PR-C. Activation of the progester-
one receptor, can instigate inhibition of NF-kB-driven gene expression via a direct 
association of PR with NF-kB [364]. As expected, activated NF-kB also manisfests 
a reciprocal repression onto PR-stimulated gene promoters [149, 215, 382, 383].

As PR is mostly expressed in breast and endometrium, PR can function in the 
maintenance of pregnancy and the near term transformation of uterine quiescence 
into a uterus in labour. Right before parturition, surfactant protein of the fetal lung 
can activate fetal amniotic fluid macrophages. These cells subsequently activate 
NF-kB in the uterine wall and induce COX-2, IL6 and other inflammatory cytokine 
production. These proteins can contribute to the uterine wall contractility and thus 
to the parturition [383–385]. Furthermore, activated NF-kB can act via the recipro-
cal repression mechanism to counteract PRE-regulated promoter activation of 
genes which are involved in maintenance of pregnancy [386]. Recently, a role in the 
switch from pregnant to labouring uterus has been identified for the PR-C isoform. 
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Activation of NF-kB, results in an increase in expression of this PR-C  isoform. As 
this PR-C is a truncated DNA binding-deficient isoform and can furthermore 
attenuate PR-B DNA-binding and transactivation, this event can augment the 
 progesterone insensitivity of the myometrium [383, 386].

However, PR has also described functions in immunosuppression and tumorigen-
esis. For instance, in human leukocyte cells, activated PR plays an important role in 
the attenuation of cytokine gene expression [382, 387]. Furthermore, PR can play a 
protective role in breast cancers, which feature a high level of NF-kB activation and 
the concomitant induction of inflammatory cytokines via NF-kB (reviewed in [388]).

10.3.7  NF-k B and the RARs, RXRs, RORs

The retinoic acid receptors, RARa (NR1B1), RARb (NR1B2) and RARg 
(NR1B3), can be activated via stimulation with vitamin A or related compounds. 
Alternatively, the retinoid X receptors, RXRa (NR2B1), RXRb (NR2B2) and 
RXRg (NR2B3), can bind to retinoids, which structurally resemble vitamin A. 
Additionally, the adopted orphan receptors, RAR-related orphan receptor RORa 
(NR1F1), RORb (NR1F2) and RORg (NR1F2) sense for cholesterol or all-trans 
retinoic acid. Due to their ligand resemblance, we will discuss these receptors 
together. The RXRs can heterodimerize with subfamily 1 nuclear receptors 
including the RARs, but also with other NRs, like the constitutive androstane 
receptor (CAR; NR1I3), the farnesoid X receptor (FXR; NR1H4), liver X recep-
tors (LXRs; NR1H3 and NR1H2), PPARs, the pregnane X receptor (PXR; 
NR1I2), thyroid hormone receptors (TRs, NR1A1 and NR1A2), and the vitamin 
D receptor (VDR; NR1I1). In contrast, RORs appear to bind DNA as a monomer 
[389, 390].

Interestingly, a LPS-stimulated increase in TNF, IL6, IL1a and IL1b transcript 
levels could be gene-specifically lowered by the addition of a RXR-specific ligand, 
but not a RAR-specific ligand in hepatic macrophages. This diminishing mecha-
nism incorporates posttranscriptional effects, as RXR activation could destabilize 
the TNF mRNAs [391]. The basis or extent of this mechanism in RXR regulation 
is currently unknown. Furthermore, overexpression of RORa can impose a decline 
in the levels of TNF-induced IL6, IL8 and COX-2 transcripts. Mechanistically, the 
RORa can decrease NF-kB p65 translocation and in vitro DNA binding, and 
increase IkBa gene transcription [392]. However, these RORa-mediated effects on 
NF-kB function may only make out a small part of ROR’s anti-inflammatory 
mechanism, as knowledge about the mechanisms of these RORs is currently slim.

However, NF-kB does not seem to envoke a reciprocal repression on RAR-
regulated gene transcription, as exemplified by the following model. The RAR is 
constitutively bound to the DIF2 gene promoter. Transcription of DIF2, a gene 
involved that is involved in monocytic differentiation in acute promyelocytic leu-
kemia cells, can be modestly increased by the addition of all-trans retinoic acid 
(RA), which instigates the release of a promoter-bound corepressor complex. 
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However, incubation with TNF boosted the RA-mediated induction of DIF2 gene 
transcription via the recruitment of NF-kB [393]. A similar synergistic stimulation 
with TNF and RAR ligands was reported for the expression of the polymeric 
immunoglobulin  receptor, which reportedly plays a role in the increase in mucosal 
immunity [394].

10.3.8  NF-k B and the Thyroid Hormone Receptor, TR

The thyroid hormone receptors, TRa (NR1A1) and TRb (NRA2), can both be 
activated via thyroid hormones. Alternative splicing can give rise to TRa1, TRa2, 
TRb1 and TRb2 isoforms. Although these TRs function mainly in the regulation of 
metabolism, nevertheless, cross-talk of these TRs with the transcription factor 
NF-kB has been described [69].

The expression of TRs itself is under the control of NF-kB. Namely, activated 
NF-kB can diminish TRa1, TRa2 and TRb1 transcripion in vitro and in vivo in 
various inflammatory contexts [395, 396]. Furthermore, the NF-kB-mediated 
decrease in TRb1 transcript levels, in turn, results in a repressed deiodinase type 1 
gene transcription [396]. As the latter gene product plays an important role in the 
catabolization of thyroid hormones from T4 to the more active T3, NF-kB activa-
tion most likely results in a decreased cellular TR response. However, further 
investigations into the implications of these events are deemed necessary.

We would also like to mention that thyroid-stimulating hormones can initiate 
IL6 release from human adipocytes via a necessary NF-kB activation and can 
increase IL6 mRNA gene induction in CHO cells [397]. The predominant function 
of these thyroid-stimulating hormones is control of the release of TR-binding 
 thyroid hormones. Whether and how this IL6-targeting mechanism could affect 
thyroid hormone release and activity is currently unclear.

10.3.9  NF-k B and the Vitamin D Receptor, VDR

The vitamin D receptor, VDR (NR1I1), can be activated by vitamin D and is closely 
related to the below discussed pregnane X receptor (PXR) (see Section 10.3.10). 
The activated VDR heterodimerizes with RXR in the nucleus and can positively or 
negatively affect gene expression. Of note, GCs can dimish the expression of the 
VDR gene and vitamin D can fuel the transcription of its own receptor. Functionally, 
the VDR has been implicated in the regulation of mineral metabolim, but also 
inflammation and cancer [398].

VDR ligands can affect the immune system by impeding dendritic cell matura-
tion and inhibiting the development of a T helper type 1 (Th1) T-cell response.  
In these dendritic cells, the VDR ligand 1a,25(OH)D3 or synthetic D3 analogs 
could suppress the expression of the NF-kB family member, RelB, via gene pro-
moter binding of a VDR:RXRa heterodimer and a corepressor complex comprising 
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HDAC3 [399, 400]. RelB is pivotal to the differentiation and maturation of  dendritic 
cells. For the Th1 T-cell response, VDR ligands such as 1,25-dihydroxyvitamin D3 
can repress the IL12 gene transcription in macrophages and dendritic cells, possibly 
by downregulating NF-kB activity [401].

Alternatively, 1,25-dihydroxyvitamin D3 can reduce the NF-kB p50 protein levels 
in activated lymphocytes, as well as the NF-kB in vitro DNA-binding and tran-
scriptional activity [402]. Nevertheless, in old VDR KO mice the NF-kB mRNA levels 
were reduced in comparison to old wt mice [403]. In human keratinocytes and periph-
eral blood mononuclear cells, 20-hydroxycholecalciferol, a metabolite of vitamin D3, 
appeared to diminish NF-kB p65 translocation, activity and DNA binding and aug-
ment IkBa gene expression and protein production in a VDR-dependent manner [404, 
405]. In contrary, in human proximal tubular kidney cells, a synthetic vitamin D 
analogue could diminish TNF-stimulated RANTES gene transcription and protein 
production without affecting IkBa phosphorylation and degradation or NF-kB p65 
translocation and activity. Here, the repressive effects of activated VDR, are attributed 
to a diminished NF-kB p65 binding to the RANTES gene promoter together with a 
direct VDR:NF-kB p65 association [406]. Furthermore, in human colonic cancer cells, 
activation of VDR results in a diminished NF-kB p65 S536 phosphorylation and 
hampered the IL1b-stimulated IkBa degradation, culminating in a decreased IL8 gene 
transcription [407]. Taken together, VDR agonists can attenuate the transcription of 
various NF-kB-mediated genes, albeit via cell-specific mechanisms.

As expected, VDR:NF-kB cross-talk features a reciprocal repression mecha-
nism in which activated NF-kB can diminish VDR-driven gene expressions [408]. 
Mechanistically, this inhibition is associated with a VDR:NF-kB interaction and a 
decrease in VDR associaton with the coactivators SRC-1 at VDR-driven gene pro-
moters [409].

10.3.10  NF-k B and Other Nuclear Receptors

The farnesoid X receptor, FXR (NR1H4), can sense the cellular environment for 
oxysteroles and is closely related to the LXRs. This FXR plays an important role 
in hepatoprotection and can also inhibit NF-kB activity in the hepatic inflammatory 
response. Exemplary, FXR KO mice suffer from intense hepatic inflammation and 
the spontaneous formation of liver tumors. Furthermore, these mice show an 
increased responsiveness to a LPS stimulus, as measured by COX-2, iNOS, IP10 
and IFNg transcript levels [410]. In vascular smooth muscle cells, FXR ligands can 
diminish the IL1b-mediated induction of iNOS and COX-2 gene transcription. As 
such, activation of FXR can counteract vascular inflammation. Evenso, these recep-
tors can mediate anti-atherogenic effects [411].

The small heterodimer partner (SHP) (NR0B2) is an orphan NR of which the 
expression is induced with FXR ligands. Like FXR, also this NR can inhbit NF-kB 
activity, as assessed via an NF-kB-driven reporter gene assay in vascular smooth 
muscle cells [411].
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The pregnane X receptor (PXR) (NR1I2) can be activated via a wide array of 
ligands, and plays a role in the clearance of xenobiotics. This PXR can inhibit 
LPS- and TNF-mediated activation of an NF-kB-driven recombinant promoter 
[412]. Furthermore, investigations with PXR KO mice showed that activated PXR 
can indeed inhibit various NF-kB-regulated gene transcriptions [413]. Functionally, 
the PXR:NF-kB cross-talk could account for the PXR-mediated protection against 
inflammatory bowel disease and liver fibrosis [412, 413].

As the drug metabolizing capacity of the body is decreased by a pro-inflamma-
tory stimulus, an involvement of NF-kB in this event was suspected. Clearance of 
xenobiotics is co-regulated by the PXR-induced cytochrome P450 family member 
Cyp3a4. However, recent findings indicate that the reciprocal repression of acti-
vated NF-kB on PXR-driven gene expression, may account for the loss of Cyp3a4 
mRNA expression in an inflammatory setting. In that respect NF-kB directly inter-
acts with PXR, inhibits PXR:RXR binding and PXR:DNA binding onto the cyp3a4 
gene promoter [414]. The NF-kB-regulated expression of cytochrome P450, also a 
drug-metabolizing enzyme, can be counteracted by various nuclear receptors such 
as CAR, GR, PXR, RXR, PPAR, FXR, and LXR [415].

The hepatocyte nuclear factor-4, HNF-4a (NR2A1) en HNF-4g (NR2A2), are 
adopted orphan nuclear receptors wich can be activated by fatty acids. As such 
these receptors are mostly expressed in liver and play an important role in liver 
development. HNF-4a and NF-kB are opposing transcription factors in the tran-
scriptional regulation of the apolipoprotein C-III (APOC3) gene in hepatic cells. 
As such, activated HNF-4a transfers APOC3 promoter activation, whereas TNF-
activated NF-kB decreases APOC3 gene transcription via attenuating HNF-4a 
DNA binding and transactivation functions [416]. Further investigations into this 
HNF-4a:NF-kB cross-talk is necessary to clarify its role in liver development and 
functional maintenance.

The chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII, 
NR2F2) is an orphan NR, which regulates various aspects of metabolism. In a model 
of adenovirus type 12-mediated tumorigenesis, the COUP-TFII-regulated repression 
of MHC class I transcription plays a major role in its phenotype. At this quiescent 
gene promoter NF-kB cannot bind and COUP-TFII, in association with HDACs, 
acts as a resident repressor. Although a TNF stimulus can augment the promoter 
occupancy of NF-kB p65, TNF cannot impact the lack of transcription due to a 
persistent histone deacetylation and HDAC4:COUP-TFII recruitment to the pro-
moter [417]. COUP-TF-II can also cross-talk with the GR via a necessary direct 
association. In that respect, activated GR enhances COUP-TFII-mediated promoter 
activation of e.g. phosphoenolpyruvate carboxykinase, an important enzyme in glu-
coneogenesis. Nevertheless, COUP-TFII hampers GR transactivation mechanisms 
[143]. As such, the cross-talk of COUP-TFII with GR may function to coregulate 
metabolism.

Possibly, the COUP-TFII:GR and COUP-TFII:NF-kB interactions could suggest 
a trimerized cross-talk mechanism; albeit most likely under restricted conditions. To 
date, no such report was made. Overall, the implications of these COUP-TFII-based 
cross-talk mechanisms deserve additional research.
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Lastly, the NR4A family comprises nerve growth factor IB, NGFIB (NR4A1, 
also known as Nurr77), nuclear receptor related 1, Nurr1 (NR4A2), and neuron-
derived orphan receptor 1, NOR1 (NR4A3). These receptors have no known 
ligands and are considered to be ligand-independent transcription factors.

Gene expression of pro-inflammatory cytokines and chemokines, among 
which IL1b, IL6 and IL8 can be diminished via overexpression of NGFIB, 
Nurr1 or NOR1, in human atherosclerotic lesion macrophages [418]. In Jurkat 
cells, overexpression of NGFIB results in the decline of IL2 promoter activation, 
reportedly via the inhibition of NF-kB [419]. Additionally, NGFIB can diminish 
the NF-kB activity in HEK293 cells, as assessed via reporter gene analyses 
[420]. Also Nurr1 can inhibit NF-kB activity. A direct association between the 
two transcription factors at specific inflammatory gene promoters, leads to the 
recruitment of a CoREST corepressor complex and thus halts pro-inflammatory 
gene transcription in microglia and astrocytes [421]. In contrast, Nurr1 can 
cooperate with NF-kB p65 to enhance expression and secretion of IL8 from 
synovial tissues [422].

In apoptosis research, NGFIB overexpression in HEK293 cells promoted resis-
tance to apoptosis via an elevation of NF-kB activity and the subsequent gene 
expression of the anti-apoptotic cIAP-1 [423]. Furthermore, activation of the 
thromboxane A(2) receptor leads to an increased expression of Nurr1 and is associ-
ated with enhanced lung cancer cell proliferation [424]. Currently, the (possible) 
role of NF-kB in this mechanism has not been elucidated. In short, cross-talk 
between NGFIB and NF-kB can play a role in both inflammation and cell fate.

Of note, the expression of NR4A NRs can be induced by inflammatory stimuli, 
via an NF-kB-dependent pathway in macrophages, thus installing a negative feed-
back loop [425]. In support, in synovial tissue Nurr1 mRNA is elevated in an 
NF-kB- and CREB-dependent manner. The specific NF-kB-binding site in its 
promoter can recruit either p65-p50 heterodimer or p50 homodimer NF-kB pro-
tein complexes [426]. Additionally, in Leydig cells, NGFIB promoter activation 
may be regulated via both NF-kB p50 and C/EBPb transcription factor functions 
[427]. However, confirmation via ChIP assay is currently lacking for this NGFIB 
stimulation mechanism. TNF-stimulated NF-kB p65 can impede the transactiva-
tion of NGFIB and thus hamper steroidogenic gene expresson in these same 
cells [428].

Interestingly, NR4A NRs and particularly NGFIB can also cross-talk with the 
GR via a direct interaction via their DBDs. In that respect, the CRH-stimulated 
expression of POMC, a precursor of ACTH, is coregulated by GCs and particularly 
NGFIB. Whereas NGFIB can promote POMC gene transcription, recruitment of 
GR to this promoter inhibits its activity [429].

However, as orphan receptor have no (identified) ligand, these receptors cannot 
be activated exogenously and research in this field often relies on overexpression 
and knockdown/knockout approaches. If a ligand could be ascertained, this could 
open up a new perspective on the function of these orphan NRs. However, it also 
remains possible that these NRs are simply not ligand-dependent.
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10.4  Conclusions

Current cross-talk between NRs and NF-kB encompasses the most important 
effects of steroids on inflammation. As evident from this review, various NRs can 
combat pro-inflammatory gene expression. Moreover, when scrutinizing the mech-
anism of one well-researched NR, e.g. GR, we see that this anti-inflammatory, 
NF-kB-targeting mechanism is built up in different layers of gene promoter- and 
cell-specific mechanisms. Possibly, future research into the mechanisms of the 
other NRs will reveal new NF-kB-modulating mechanisms.
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Abstract The cyclic administration of conventional (i.e., maximum  tolerated dose 
[MTD]) chemotherapy targets primarily the tumor cell population. In contrast, chemo-
therapeutics used at lower doses but on a more frequent basis, and without treatment-free 
breaks, preferentially affect the tumor vasculature. This so-called low-dose metronomic 
(LDM) form of chemotherapy administration can be considered as a complementary 
and/or alternative form of antiangiogenic therapy to the use of targeted antiangiogenic 
agents such as antibodies or small molecule drugs that interfere with vascular endothe-
lial growth factor (VEGF) pathways. However, it becomes increasingly clear that LDM 
chemotherapy affects also aspects of the tumor microenvironment other than angiogen-
esis such as immune responses. Herein, we summarize the complex effects of LDM 
chemotherapy on the tumor microenvironment, with special emphasis on angiogenesis. 
We also compare the effects of LDM versus MTD chemotherapy. Finally, we outline 
how pharmacogenetic characteristics of the tumor host and microenvironment may be 
exploited in the future to predict response to LDM therapy.
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11.1  Introduction

In 2000, Hanahan and Weinberg delineated six hallmarks of cancer, including tumor 
cell intrinsic properties such as limitless replicative potential, self-sufficiency in 
growth signals and insensitivity to antigrowth signals as well as apoptosis-inducing 
stimuli [50]. Cancer cells are also characterized by their propensity to invade neigh-
boring normal tissue and disseminate to remote organs, and by supporting the for-
mation of a tumor-intrinsic vascular network that is interconnected with the vascular 
network of the host. Other important aspects of the tumor microenvironment that 
facilitate successful tumor growth have recently been highlighted and comprise the 
capability of cancer cells to undermine mechanisms of immuno-surveillance [65] 
and to capitalize on cancer-related inflammation [20,77].

More than 30 years ago, Folkman described the need for access to the vascular 
system of the tumor host both as an Achilles’ heel of neoplastic growth and a treat-
ment target [36]. In the meantime, interfering with the tumor vasculature has been 
validated as a successful anticancer strategy. In fact, in a number of phase III trials of 
advanced stages of colorectal, lung, breast, kidney and liver cancers, the use of tar-
geted antiangiogenic agents such as the monoclonal antibody bevacizumab (which 
targets VEGF A) and small molecule VEGF receptor tyrosine kinase inhibitors 
(RTKI; e.g., sunitinib and sorafenib) resulted in improved overall and/or progression 
free survival [61]. By inhibiting the growth of new blood vessels, antiangiogenic 
agents deprive tumor cells from access to oxygen and nutrients, and impair the 
removal of toxic metabolites. However, the biological impact of VEGF pathway 
inhibitors is more complex than simply impairing the expansion of the tumor vascu-
lature. They can affect the function of existing blood vessels, inhibit the mobilization 
and intratumoral recruitment of various bone-marrow derived, proangiogenic cells 
(e.g., endothelial cell precursors and various types of myeloid cells), and shape anti-
tumor immune reactions by facilitating the differentiation of dendritic cells [28].

Antivascular effects are not a unique property of targeted antiangiogenic agents. 
Indeed, most chemotherapeutics can affect the tumor vasculature in various ways 
[79]. Moreover, angiogenesis inhibition is one of the major consequences of LDM 
chemotherapy, i.e., the frequent – often daily – extended administration of small 
doses of conventional chemotherapeutic drugs without major breaks [62].

Herein we will summarize the current understanding of the antiangiogenic basis 
of metronomic chemotherapy scheduling. Furthermore, we will compare the com-
plex effects of LDM versus MTD chemotherapy on aspects of the tumor microen-
vironment other than angiogenesis, such as immune responses.

11.2  Conventional Chemotherapy: Beyond Cytotoxic Effects

Rapidly proliferating cells are exquisitely sensitive to the effects of chemothera-
peutic agents given in a conventional schedule, i.e., intermittent administration at 
the MTD. This is reflected through the antitumor effects of chemotherapy and the 
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commonly seen side effects that involve normal host tissues with high cellular 
turnover, such as the hematopoetic system (i.e., myelosuppression), intestinal mucosa 
(i.e., gastrointestinal side effects) and hair follicles (i.e., hair loss) [37,62].

Endothelial cells are amongst the most rapidly proliferating cells within the 
tumor microenvironment [37]. Thus, they are expected to be susceptible to the 
effects of chemotherapeutic agents [59,79]. Indeed, a broad range of vascular side 
effects are testimony for the antivascular activities of MTD chemotherapy [100]. 
However, various treatment-induced adaptive changes may explain why these 
antivascular effects are mitigated and hence are not considered to represent a 
major mechanism of antitumor activity of MTD chemotherapy (Fig. 11.1). First, 
MTD chemotherapy has been shown to induce the expression and secretion of 
proangiogenic factors such as VEGF by tumor cells [70,80,81,96]. These factors 
can support neoangiogenesis in the chemotherapy-free break period. Furthermore, 
they can render endothelial cells relatively resistant to the effects of chemothera-
peutics [113]. Second, a number of chemotherapeutics are capable of mobilizing 
bone-marrow derived endothelial cell precursors, which then incorporate into the 
tumor vasculature or promote the acute repair of affected vascular structures and 
foster vascular expansion in a paracrine manner [101,104]. This acute surge of 
endothelial cell precursors appears to be mediated among others by the 
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Fig. 11.1 Conventional MTD chemotherapy affects tumor cells directly and via antivascular 
effects. However, the antivascular effects are counteracted by the early mobilization and intratu-
moral recruitment of bone marrow derived endothelial cell precursors, and treatment-induced 
secretion of proangiogenic factors by tumor and/or stromal cells. Furthermore, during hematologi-
cal recovery, another wave of endothelial cell precursors and other types of bone marrow derived 
cells is integrated into the tumor vasculature and microenvironment. Overall, the net effect of MTD 
chemotherapy on the tumor vasculature may be proangiogenic under certain circumstances
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 granulocyte-colony stimulating factor (G-CSF) [105]. Thus, inadvertently the 
practice of using G-CSF as an adjunct for certain MTD chemotherapy regimens to 
facilitate hematological recovery possibly could boost vascular repair and recovery. 
Third, a second wave of endothelial cell precursors and other proangiogenic bone 
marrow derived cells is mobilized during hematological recovery in the chemo-
therapy-free break period [5]. A successful way to impair these repair processes 
and to enhance the chemotherapy-related antivascular effects is the combined use 
of MTD chemotherapy with targeted antiangiogenic drugs such as bevacizumab, 
or with LDM chemotherapy [60,102].

11.3  Low-Dose Metronomic Chemotherapy

11.3.1  Principles

The use of LDM chemotherapy as an antiangiogenic treatment strategy is based on 
three major principles (Fig. 11.2):

 1. Chemotherapeutic agents impair endothelial cell proliferation and induce 
endothelial cell apoptosis at significantly lower doses than needed for the same 
effects in cancer cells [10]. Although the detailed mechanisms of the exquisite 
chemosensitivity of endothelial cells remain to be fully elucidated, several 
explanations have been forwarded. Whereas cancer cells must acquire the capa-
bility to withstand high levels of genomic instability and DNA damage during 
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Fig. 11.2 Chemotherapeutic drugs affect endothelial cells at significantly lower doses than cancer 
cells or other rapidly proliferating cells such as hematological precursors. Thus, frequently applied but 
relatively low doses of chemotherapeutics result in significant antiangiogenic effects, which can be 
achieved without high-grade toxic side effects and the need for mandatory treatment interruptions



24711 The Biomodulatory Capacities of Low-Dose Metronomic Chemotherapy

tumorigenesis, this is not a prerequisite for tumor endothelial cells [72]. 
Furthermore, endothelial cells may be sensitized to the effects of cytotoxic drugs 
by two distinct mechanisms. First, it has been shown that chemotherapeutics 
such as cyclophosphamide (CPA), various microtubule binding drugs, irinote-
can and 5-fluorouracil (5-FU) as well as 5-FU precursors induce thrombospon-
din-1 (TSP-1) in endothelial and/or tumor cells [8,9,21,49,73,74,84,122]. 
Studies by Zhao et al. have implicated the p38 MAPK pathway as well as the 
transcription factor Egr-1 in TSP-1 induction by 5-FU [122]. TSP-1, a potent 
endogenous inhibitor of angiogenesis, facilitates apoptosis in tumor endothelial 
cells expressing the CD36 receptor [115,118]. Thus, elevated TSP-1 levels may 
selectively lower the apoptotic threshold of endothelial cells. Apoptosis in 
endothelial cells is further facilitated by the induction of Fas receptor following 
exposure to non-cytotoxic doses of CPA, cisplatinum, taxanes and doxorubicin 
[88,118], and upregulation of Fas ligand by TSP-1 [115]. Moreover, TSP-1 also 
exerts antiangiogenic effects by binding and sequestering VEGF [46].

 2. Since endothelial cells are so exquisitely sensitive to a broad range of cytotoxic 
agents, antiangiogenic effects can be achieved with chemotherapy doses that are 
unlikely to affect the viability of cancer cells directly. This also explains why 
antiangiogenic doses of chemotherapeutic agents do not result in high-grade 
adverse effects typically seen with MTD chemotherapy such as grade 3–4 myelo-
suppression [1,13,14,16,18,23,31,38,39,71,93,120].

 3. The latter implies that LDM regimens can be administered over prolonged peri-
ods of time without mandatory treatment-free breaks.

Experimental evidence to support the concept of LDM chemotherapy was first 
reported in 2000. Browder et al. showed that below-MTD doses of CPA adminis-
tered every 6 days produced more sustained antiangiogenic effects than conven-
tional every 3-week MTD CPA administration [15]. LDM CPA and docetaxel 
regimens have been shown to be effective even in tumor models with acquired 
resistance to MTD CPA and docetaxel chemotherapy, respectively [15,57], hence 
giving credit to the notion that mechanisms other than direct tumor cell cytotoxic-
ity may account for the antitumor effects of LDM protocols. In fact, the antiangio-
genic nature of LDM protocols is supported by a number of preclinical findings: 
LDM regimens reduce microvessel density, induce endothelial cell apoptosis that 
precedes tumor cell apoptosis, impair tumor perfusion as assessed in magnetic 
resonance imaging (MRI) studies and result in sustained tumor hypoxia 
[8,15,32,64,121]. Besides activities directed towards locally residing tumor 
endothelial cells, LDM therapy also impairs the mobilization and viability of 
endothelial cell precursors [103].

Proangiogenic factors such as VEGF or basic fibroblast growth factor also 
promote endothelial cell survival and confer relative chemotherapy resistance 
[113]. Thus, high levels of proangiogenic molecules may contribute to intrinsic or 
acquired resistance to LDM therapy [14,27]. Conversely, the beneficial effects of 
LDM therapy can be enhanced when combined with targeted antiangiogenic 
agents such as the anti-VEGF receptor 2 antibody DC101 [64], antiangiogenic 
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RTKI (e.g., sunitinib and imatinib [86], axitinib [74] and semaxinib [8]), or when 
combined with TSP-1 peptide derivatives [118]. Such combinations usually show 
much greater anti-tumor efficacy than LDM chemotherapy alone or targeted anti-
angiogenic monotherapy. Moreover, other approaches have been explored, includ-
ing the combination of metronomic schedules with hypoxic cell cytotoxins, such 
as tirapazamine [32], or MTD chemotherapy [86,102]. However, only limited 
preclinical data is available on LDM regimens combining various chemotherapeu-
tics administered in a LDM manner, despite the increasing use of such combina-
tions by oncologists. Indeed, a few pioneering preclinical in vitro and in vivo 
studies have focused on the association of the 5-FU precursor tegafur-uracil (UFT) 
and CPA in a metastatic model of human breast cancer [83], or irinotecan/
oxaliplatin/5-FU in a model of human colorectal cancer [35], in order to facilitate 
a rational rather than empirical development of such associations.

11.3.2  Clinical Applications

The concept of LDM chemotherapy has been rapidly embraced by oncologists [30], 
and is emerging as a complementary or potentially alternative antiangiogenic treat-
ment strategy to VEGF pathway inhibitors. Benefits of LDM therapy have been 
demonstrated in a number of phase II clinical trials of a broad range of malignan-
cies at advanced stages [1,13,14,16,18,23,38,39,43,62,71,93,117,120]. Furthermore, 
metronomic regimens using UFT significantly improved overall survival in patients 
with early stage breast and lung cancers in randomized phase III trials [58,116]. 
Several phase III trials have been initiated to further study the use of LDM chemo-
therapy in early breast cancer [87], and advanced breast and colorectal cancer 
(www.clinicaltrials.gov, NCT01131195 and NCT00442637).

Grade 3 and 4 adverse effects are rarely observed with LDM regimens, in 
sharp contrast to MTD chemotherapy, and to a lesser degree compared to tar-
geted antiangiogenic agents such as bevacizumab and RTKI [1,13,14,16–
18,23,38,39,43,62,71,93,120]. Consequently, the majority of patients tolerate 
LDM regimens over prolonged periods of time without treatment interruptions. 
In addition, combining LDM therapy with targeted antiangiogenic agents does 
not appear to increase the risk of adverse effects compared to targeted antiangio-
genic monotherapy [23,39]. Often, LDM therapy involves outpatient-friendly 
oral regimens by using orally available alkylating agents (e.g., CPA, trofosf-
amide), 5-fluorouracil precursors (e.g., UFT, capecitabine) and microtubule 
binding drugs (e.g., vinorelbine). If off-patent drugs such as CPA are applied, 
the cost of such regimens is considerably less than treatment with targeted anti-
angiogenic therapies [11,22].

As far as the clinical documentation of antiangiogenic effects of LDM therapy 
is concerned, we note the absence of validated markers, as is the case for the field 
of antiangiogenic therapies in general [4,54,56,99]. DCE-MRI studies showed a 
reduction of tumor vessel permeability and blood flow in patients with various 

http://www.clinicaltrials.gov
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advanced malignancies subjected to daily treatment with 500 mg capecitabine 
po bid, and 400 mg celecoxib po bid [108]. Moreover, after 2 months of therapy 
increased numbers of apoptotic circulating endothelial cells were associated with 
improved progression-free survival in patients with advanced breast cancer treated 
with LDM CPA and methotrexate [76]. However, the baseline number of circulat-
ing endothelial cells, and baseline levels or treatment-induced changes of circulating 
endothelial cell precursors were not associated with treatment response. Similarly, 
the results of analyses of circulating pro- and antiangiogenic markers at baseline – or 
changes thereof during LDM therapy – for predictive purposes are not conclusive 
across a number of published clinical studies [1,14,16,18,19,63]. Recently, 
Fontana et al. have proposed an alternative clinical approach to the direct quanti-
fication of circulating endothelial cells and their precursors [38]. The levels of 
circulating VE-cadherin (VE-C) RNA, an endothelial-specific transcript, were 
evaluated through quantitative reverse transcription-PCR analysis of whole blood 
as an indirect measurement of bone-marrow-derived circulating endothelial cell 
progenitors (as previously demonstrated by Rabascio et al. [89]). In metastatic 
prostate cancer patients responding to LDM CPA, celecoxib and dexamethasone 
therapy, VE-C mRNA levels were significantly lower than in non-responders.

While the combined analysis of circulating endothelial cell precursors and mark-
ers of bone-marrow toxicity have been used to define the optimal biological LDM 
dose of a given cytotoxic agent in mice [103], the low number of endothelial cell 
precursors in humans is among the reasons why such an approach cannot be easily 
translated clinically [6]. Thus, in the absence of validated biomarkers to guide met-
ronomic dosing, an operational definition of LDM therapy may comprise the use of 
chemotherapy doses that can be applied for extended periods and without a need for 
treatment interruptions, i.e., that result in grade 3–4 adverse effects only in a small 
minority of patients, if at all [14,68]. Although flat dosing is commonly applied in 
clinical trials of LDM therapy, an individualized gemcitabine dosing strategy 
described by Takahashi et al. suggests that the ‘individualized maximum repeatable 
dose’ can vary significantly among patients [109]. As far as drug administration 
frequency is concerned, mathematical modeling suggests that daily – or even more 
frequent – dosing is superior to less frequent drug administration [48]. Aside from 
uncertainties about optimal dosing and scheduling, another potential limitation of 
the metronomic concept is the delayed onset of antitumor effects. Thus, LDM mono-
therapy should not be considered in situations of rapid tumor progression [14,71].

11.4  Low-Dose Metronomic Chemotherapy:  
Beyond Antiangiogenic Effects

It is not without precedent that the mode of chemotherapy administration can 
affect the mechanisms of action of chemotherapeutic agents. Indeed, preferred 
5-FU incorporation into RNA during bolus administration is distinct from prefer-
ential incorporation into DNA when applying infusional 5-FU regimens. This 
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could explain the absence of complete cross-resistance between these regimens 
[107]. However, both bolus and infusional 5-FU are used at MTD doses. Thus, 
these 5-FU regimens intend to target tumor cells directly whereas LDM chemo-
therapy appears to affect primarily angiogenesis. However, there is growing evidence 
that LDM regimens can also directly affect tumor cells and other cellular tumor ele-
ments. In the following, we will discuss some of these postulated non-antiangiogenic 
effects of LDM regimens, which are summarized in Table 11.1.

11.4.1  Hypoxia-Inducible Factor 1a Inhibition

LDM regimens have been shown to decrease tumor oxygenation [32]. Although 
severe treatment-induced oxygen deprivation contributes to the anti-tumor effects of 
LDM and other antiangiogenic therapies, hypoxia also mediates adaptive responses 
that eventually might support treatment-refractory disease progression. The hypoxia-
inducible factor 1a (Hif-1a) pathway is centrally involved in such adaptation [90]. 
Interestingly, cytotoxic agents such as topoisomerase 1 inhibitors impair the transla-
tion of Hif-1a at non-cytotoxic doses [91]. Furthermore, non-cytotoxic doses of 
doxorubicin affect the DNA binding of Hif-1a [69]. In other words, the LDM use of 
such agents may increase the hypoxic stress in tumors and at the same time under-
mine adaptive survival mechanisms. Finally to mention that Hif-1a inhibition is 
involved in reduced mobilization of proangiogenic bone-marrow derived cells and 
as such can reinforce the antiangiogenic effects of LDM doxorubicin [69].

Table 11.1 Modulation of the tumor microenvironment by MTD versus LDM chemotherapy

Maximum tolerated dose 
chemotherapy

Low-dose metronomic 
chemotherapy

Strategy Maximal tumor cell kill, 
cytotoxicity

Antiangiogenesis, cytostasis

Primary target Tumor parenchyma Tumor vasculature
Dose Maximum tolerated doses Non-cytotoxic doses
Schedule Cyclic administration, mandatory 

treatment-free periods
Frequent administration, 

continuous dosing
Side effects Grade 3–4 common Grade 3–4 rare
‘Collateral’ effects Induction of proangiogenic  

factors, mobilization and 
recruitment of bone-marrow 
derived proangiogenic  
myeloid cells and  
endothelial cell precursors

TSP-1 induction, induction of 
endothelial cell Fas and FasL 
expression

Immunosuppression, facilitated 
antigen presentation

Immunostimulation (depletion of 
regulatory CD4+CD25+ T-cells, 
dendritic cell stimulation and 
maturation)

Prothrombotic effects –
– Anti-Hif-1a activity

TSP-1: thrombospondin-1; Fas/FasL: CD95 receptor/ligand; Hif-1a: hypoxia-inducible factor 1a
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11.4.2  TSP-1 Induction

Increased TSP-1 secretion by endothelial and/or tumor cells as a consequence of 
LDM therapy has been described as an important mediator of the antiangiogenic 
effects of such regimens [9,49]. However, TSP-1 has been implicated in many more 
processes such as tissue differentiation and response to injuries, regulation of 
inflammation and immune response, bone mineralization, and coagulation as well 
as fibrinolysis, all of which could have an impact on tumor progression and/or 
therapeutic resistance [12,114]. In fact, the expression of the TSP-1 receptor CD36 
is not only restricted to endothelial cells. For instance, CD36 can also be found on 
macrophages/monocytes [119], and TSP-1 has been implicated in macrophage 
recruitment during wound healing [82]. Similarly, LDM CPA therapy induced 
TSP-1 secretion appears to be involved in the recruitment of macrophages into 
regressing glioblastoma xenografts [25]. However, the role of macrophages in the 
tumor context are complex and can involve both tumor promoting and inhibiting 
effects [78]. TSP-1 has also been shown to bind to CD47 on T-cells, which induced 
naive or memory CD4+CD25– T cells to become suppressive [44]. Furthermore, 
TSP-1 interacts directly with a number of extracellular matrix proteins found in 
tumors [110]. It remains to be demonstrated how these diverse TSP-1 effects 
contribute to the antitumor effects seen with LDM regimens.

11.4.3  Immunomodulation

The effects of chemotherapeutic agents on tumor antigen presentation and cellular 
effectors of the immune system depend on the type of cytotoxic agent, the dose as 
well as the schedule used. In most instances, MTD chemotherapy is considered to 
reduce the number and impair the function of immunological effector cells 
[67,123]. On the other hand, chemotherapy-related tumor cell destruction may 
facilitate antigen presentation and immunological memory generation.

LDM regimens using the alkylating agents CPA and temozolomide have been 
shown to reduce the number of immunosuppressive CD4+CD25+ regulatory T-cells 
in rodent models, whereas such a phenomenon is not seen with MTD treatment 
schedules [2,41]. LDM CPA also depletes CD4+CD25+ regulatory T-cells in humans 
with advanced malignancies, and restores T- and NK-cell effector functions [42].

Various topoisomerase inhibitors and antimicrotubule agents such as vinblastine 
and taxanes can promote dendritic cell maturation, survival and proliferation at sub-
cytotoxic doses [111]. When using the ovalbumin-transduced EL4 tumor model, 
the intratumoral injection of vinblastine results in clonal expansion of ovalbumin 
specific T effector cells [112].

LDM CPA administration was superior compared to MTD CPA therapy if 
combined with specific antitumor immunotherapy in a mouse melanoma model 
[51]. Although both regimens reduced the number of tumor specific cytotoxic 
T-cells, the reduction occurred more slowly in the LDM CPA treated mice.  
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In addition, LDM CPA therapy spared CD8+ T memory cells. The use of combined 
chemo-immunotherapy in a patient with castration-resistant prostate cancer con-
firms the feasibility of such an approach in humans and suggests a potential clini-
cal benefit [97].

11.4.4  Lack of Pro-Thrombotic Activity

While the risk of thrombotic events is generally increased in patients with malig-
nancies [34], the use of MTD chemotherapy further increases this risk [47]. 
Thromboembolic complications are also among the more common side-effects of 
targeted antiangiogenic agents [17]. This could explain why the risk of thromboem-
bolisms can be even further augmented when MTD chemotherapy is combined 
with targeted antiangiogenic agents [66]. In contrast, the use of LDM regimens 
does not appear to elevate the risk of thromboembolic events [1,13,16,18,23,38,39, 
71,93,120]. In fact, Ma et al. have shown in vitro that lowering the concentration of 
chemotherapeutic drugs such as gemcitabine and cisplatinum results in reduced 
pro-coagulatory activity [75]. Furthermore, the pro-coagulatory effects of targeted 
antiangiogenic agents may be attenuated by concomitant low-dose chemotherapy 
under certain circumstances.

11.5  Low-Dose Metronomic Chemotherapy:  
The Pharmacogenetic Perspective

The role of the tumor microenvironment as predictor of response to antitumor thera-
pies is being increasingly emphasized. Individual genetic traits of patients could 
have a central role in responses to chemotherapy or antiangiogenic strategies by 
modulating the secretion of proangiogenic factors or endogenous angiogenesis 
inhibitors. For instance, a recent study focused on the IL-8 gene and its genetic vari-
ants in order to evaluate their influence on response to LDM CPA and bevacizumab 
therapy in patients with recurrent ovarian cancer [98]. The results suggest that the 
IL-8 251A/T polymorphism may be a molecular predictor of response to such 
therapy. However, the validation of specific polymorphisms that are predicting 
response to LDM regimens is a complex process, which will need to involve both 
preclinical and clinical studies. It is highly desirable that pharmacogenetic studies 
within LDM clinical trials will evaluate both genotype and phenotype in correlation 
with clinical outcome. At the present time, LDM chemotherapy is mainly explored 
as a palliative treatment strategy after numerous lines of standard chemotherapy. 
This aspect should be considered when planning and executing pharmacogenetic 
studies as part of LDM chemotherapy trials. The following paragraphs summarize 
relevant aspects of pharmacogenetic studies focused on the LDM treatment strategy. 
At least the following three specific issues should be addressed:
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11.5.1  How to Integrate Pharmacogenetic Investigations  
into Metronomic Phase II/III Clinical Trials?

Pharmacogenetic analyses within LDM chemotherapy trials could be conducted as 
integral part of large randomized phase II/III trials or as independent studies 
focused on the validation of specific genetic determinants. While the first approach 
may be helpful to find new pharmacogenetic determinants (i.e., by sequencing 
numerous genes directly involved in the metabolism and mechanism of action of 
drugs used in LDM protocols such as CPA), the second approach is instrumental to 
corrobate statistical correlations between selected single nucleotide polymorphisms 
(SNPs) or haplotypes and clinical end-points. Such studies can be conducted both 
in a prospective and retrospective way.

11.5.2  What Is the Most Effective Pharmacogenetic  
Strategy to be Used?

Two types of approach have been defined in recent years in order to set up pharma-
cogenetic studies, i.e., the “candidate gene approach” and the “whole genome SNP 
approach”. The first one involves a priori SNP selection (maximally 3–5) regarding 
a gene of interest in order to confirm a hypothesis, e.g., that the IL-8 251A/T SNP 
may represent a suitable candidate to predict response to LDM CPA plus bevaci-
zumab therapy. The second approach is much more costly by investigating 100,000 
SNPs but may reveal unexpected correlations. To move pharmacogenetics of LDM 
chemotherapy into clinical practice, the “pyramidal model” proposed by Johnson 
et al. [55] could be followed. The required steps from early data to clinical applica-
tion include (i) the initial sequencing of the candidate genes (e.g., IL-8 gene), 
(ii) in vitro studies (e.g., functional analysis of IL-8 polymorphisms), (iii) proof of 
concept clinical studies (e.g., IL-8 SNP analysis in ongoing and planned LDM trials), 
(iv) SNP analysis in relevant patient population, (v) studies aimed at documenting a 
sufficient degree of variability of given SNPs in order to be predictive clinically, and 
(vi) comparison of pharmacogenetically guided versus standard patient care.

11.5.3  How to Decide About Candidate Genes to be Investigated?

Candidate genes for pharmacogenetics of LDM therapy should not be restricted to 
genes implicated in angiogenesis, such as VEGF, VEGF receptor-2 and IL-8, but 
also genes involved in the metabolism of chemotherapeutic drugs. As an example, 
the biotransformation of CPA involves a 4-hydroxylation activation step carried out 
by several cytochrome P450 (CYP) isoforms, including 2B6, 3A4, and 2C9. 
Cytochrome P450 2B6 is the most important isoform in this respect, and the liver 
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is the main organ of this rate limiting reaction resulting in the active metabolite 
4-hydroxy-CPA [33]. Thus, SNPs that could modulate the enzymatic activity of the 
aforementioned CYPs may heavily alter the response to LDM CPA therapy. 
Furthermore, the frequency of specific SNPs may dictate the sample size needed 
for pharmacogenetic studies that are appropriately powered for statistical analyses. 
As an example, to investigate the VEGF-A 936C/T SNP, we should consider that 
the frequency of 936T is around 16% [95].

11.6  Outlook

Clinical strategies targeting aspects of the tumor microenvironment such as angio-
genesis, osteoclast activity [24] and immunity [26] have been shown to be benefi-
cial even though the advancement is only incremental to date. Especially the 
successful application of antiangiogenic therapies has taught us a few lessons:

 1. Targeting a single aspect of the tumor microenvironment such as angiogenesis is 
unlikely to result in a ‘seismic’ shift in antitumor efficacy [106]. In fact, the 
clinical impact of antiangiogenic monotherapy is very modest in most tumor 
types, combining antiangiogenics with cytotoxic therapy does not appear to 
increase the overall survival by more than a few months, and the cure rate of 
early and late malignances is not increased when applying antiangiogenics. 
However, preliminary studies suggest that the simultaneous administration of 
agents affecting different aspects of the tumor microenvironment is feasible and 
may be beneficial [7,92–94]. This remains to be studied in more detail in ran-
domized clinical trials.

 2. Antiangiogenic agents usually need to be given continuously for prolonged peri-
ods of time for maximal efficacy. While this creates new challenges (e.g., treat-
ment adherence, in particular if oral drugs are used) [85], this also points to one 
of the major shortcomings of conventional chemotherapy, i.e., the need for treat-
ment-free breaks for patients to recover from side-effects. Indeed, while MTD 
chemotherapy affects many processes in the tumor microenvironment, including 
angiogenesis, these effects are usually short-lived. Even worse, the acute changes 
inflicted by MTD chemotherapy may elicit adaptive responses that eventually can 
undermine the initial antitumor effects [40]. Although antiangiogenic therapies 
were considered to be less susceptible to acquired resistance than conventional 
tumor therapies, this has not been confirmed (pre)clinically [3,59]. Therapeutic 
resistance remains a major obstacle in the era of antiangiogenic therapies, but the 
underlying mechanisms appear to be clearly distinct from classical cytotoxic drug 
resistance. A better understanding of these mechanisms will hopefully allow to 
delay if not to circumvent such resistance in the not so far future.

 3. The use of microenvironment targeting agents results in cytostatic rather than 
cytotoxic effects. This challenges the way treatment response and resistance are 
defined and monitored.
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LDM chemotherapy is distinct from both conventional chemotherapy (Table 11.1) 
and other antiangiogenic therapies in clinical use or testing [45,53]. First, the anti-
tumor effects of LDM chemotherapy are usually more subtle and often delayed. 
However, this might be beneficial in that adaptive mechanisms are less violent [40]. 
Second, due to its excellent safety profile compared to MTD chemotherapy and – to 
a lesser degree – to targeted antiangiogenic agents, LDM chemotherapy can be 
administered over prolonged periods of time without mandatory treatment interrup-
tions. Third, although the full extent of the pleiotropic effects of LDM therapy 
remains to be elucidated, the broad range of activities could be superior under cer-
tain circumstances compared to the use of the highly specific, targeted agents with 
a very narrow spectrum of antitumor effects [52]. In spite of all these promises, 
certain aspects of LDM therapy need further refinement. Metronomic dosing and 
scheduling are largely empirical to date. We lack insights into which cytotoxic 
drug(s) to choose for metronomic purposes in a given patient. Moreover, there is a 
lack of predictive markers of response.

Nonetheless, 50 years after initial CPA trials the modified use of old-fashioned, 
‘dirty’ drugs like CPA has revealed new and unexpected secrets. The golden anni-
versary of CPA and other cytotoxic agents [29] could be the starting point of many 
more exciting revelations to come.
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Abstract Tumor-related activities that seem to be operationally induced by the 
division of function, such as inflammation, neoangiogenesis, Warburg effect, 
immune response, extracellular matrix remodeling, cell proliferation rate,  apoptosis, 
coagulation effects, present itself from a systems perspective as an enhancement of 
complexity. We hypothesized, that tumor systems-directed therapies might have 
the capability to use aggregated action effects, as adjustable sizes to therapeutically 
modulate the tumor systems’ stability, homeostasis, and robustness. We performed 
a retrospective analysis of recently published data on 224 patients with advanced 
and heavily pre-treated (10–63%) vascular sarcoma, melanoma, renal clear cell, 
cholangiocellular, carcinoma, castration-resistent prostate cancer, and multivisceral 
Langerhans’ cell histiocytosis enrolled in nine multi-center phase II trials (11 
centers). Each patient received a multi-targeted systems-directed therapy that con-
sisted of metronomic low-dose chemotherapy, a COX-2 inhibitor, combined with 
one or two transcription modulators, pioglitazone +/− dexamethasone or IFN-alpha. 
These treatment schedules may attenuate the metastatic potential, tumor-associated 
inflammation, may exert site-specific activities, and induce long-term disease 
stabilization followed by prolonged objective response (3–48%) despite poor 
monoactivity of the respective drugs. Progression-free survival data are comparable 
with those of reductionist-designed standard first-line therapies. The differential 
response patterns indicate the therapies’ systems biological activity. Understanding 
systems biology as adjustable size may break through the barrier of complex 
tumor-stroma-interactions in a therapeutically relevant way: Comparatively high 
efficacy at moderate toxicity. Structured systems-directed therapies in metastatic 
cancer may get a source for detecting the topology of tumor-associated complex 
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aggregated action effects as adjustable sizes available for targeted biomodulatory 
therapies (Reichle A, Vogt T (2008) Systems biology: a therapeutic target for tumor 
therapy. Cancer Microenviron 1:159–170)

Keywords Low-dose metronomic chemotherapy • COX2 • PPAR • Dexamethasone 
• Interferon-alpha • Systems biology • Metastatic tumor • Melanoma • Sarcoma 
• Angiosarcoma • Castration-resistent prostate cancer • Renal clear cell carcinoma 
• Cholangiocellular carcinoma • Langerhans’ cell histiocytosis

12.1  Introduction

Unlike laws of nature, causal relations between initiating processes of tumor devel-
opment are not anchored in an invariance of nature. Therefore, molecular and 
cytogenetic aberrations at initial diagnosis are generally heterogeneous in both 
tumors and single tumor types. Invariance within the tumor process may be 
observed during tumor progression. In interaction with normal human tissue, tumor 
cells use processes according to laws of nature to build up a favorable infrastructure 
for proliferation. In 1986, Dvorak interpreted for the first time these laws of nature 
as tumor-associated ‘wound healing’ mechanisms such as angiogenesis, inflamma-
tion, immunology, remodeling of the extracellular matrix, specific changes in cell 
metabolism and coagulation, and altered behavior in proliferation [1–7]. Accordingly, 
tumors may be figuratively conceived as ‘never healing wounds’. With this inter-
pretation, Dvorak addressed the systems biology of a tumor in a contemporary 
context. Up to now, a tumor’s systems biology has rarely presented a target for a 
systematic approach in cancer treatment.

The dysregulated systems biology of a tumor may commonly not be understood 
mono-causally or explained context-free. The tumor’s systems biology intents on a 
dysbalance between interfering functional elements in a way that conditioning and 
conditioned tumor-promoting elements (e.g. wound healing mechanisms) behave 
reciprocally also under therapeutic aspects.

The dysregulation of wound healing mechanisms is reflected in tumor-associated 
disease traits (e.g. tumor-associated inflammation, ECOG performance status, 
thrombophilia, and tumor-associated auto-immunity) and on the molecular level in 
the dysregulation of (nuclear) transcription factors, both in tumor and neighboring 
stroma cells (see chapter 22). Transcription factors regulate in a concerted action 
distinct gene cascades and consecutively important cell functions for survival. Their 
cooperative interaction is also important for the survival of tumor cells.

In seven published phase II trials, we combined modulators (ligands) of 
(nuclear) transcription factors (pioglitazone, dexamethasone, interferon-alpha, 
cyclooxygenase-2 (COX-2) inhibitors) with the aim to suppress tumor-associated 
inflammation [8–15]. Corticosteroids are known for their anti-inflammatory 
 activity; interferon-alpha at low doses (3.0–4.5 MU three times a week) shows 
both anti-inflammatory and angiostatic activity as well as the antidiabetic drug 
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pioglitazone (peroxisome proliferator-activated receptor (PPAR)-alpha/gamma 
agonist) [16–18]. Besides its anti-inflammatory activity, the COX-2 inhibitor also 
exerts an anti-proliferative via suppression of the PPAR-delta expression [19]. 
The efficacy of the anti-inflammatory therapy approach was controlled by the 
measurement of C-reactive protein (CRP) levels in serum.

To enhance the therapeutic efficacy, a second wound healing mechanism was 
therapeutically targeted: neoangiogenesis. Metronomic low-dose chemotherapy 
with either trofosfamide or capecitabine may enhance the important antiangiogenic 
factor thrombospondin-1 in serum with simultaneously negligible cytotoxic activity 
of the respective drugs [20]. The present therapeutic approach – a combination of 
anti-inflammatory, angiostatic and immunomodulatory therapy – is primarily 
directed against invariant mechanisms embedded in the laws of nature that are 
generally important during tumor progression. Therefore, treatment efficacy may 
be expected to some degree, independently of the tumor type.

The summary of recently published data on combined anti-inflammatory and 
angiostatic therapy approaches in metastatic cancer may support the ‘wound 
 healing’ hypothesis from a therapeutic view. Firstly, we want to show with our data 
from seven clinical trials that different antiinflammatory approaches are not only 
clinically efficacious and safe but show a moderate toxicity profile and may even 
induce continuous complete remission in combination with angiostatic therapies. 
Secondly, we are going to demonstrate according to the observed  typical response 
characteristics that our therapeutic approaches have primarily  biomodulatory rather 
than classic cytotoxic activity. Thirdly, we have introduced combined anti-inflammatory 
and angiostatic approaches for the therapy of metastatic tumors. The combined 
activity may even induce continuous complete remission.

The summarized results of the presented biomodulatory therapy approaches 
in different metastatic tumors contradict the paradigm that for the most part only 
drug-mediated blockades of more or less tumor-specific aberrant pathways may 
induce tumor response, a paradigm which is supported by an overwhelming number 
of clinical data.

12.2  Patients and Methods

12.2.1  Selection of Metastatic Diseases

We performed retrospective analyses of recently published data from our study 
group on patients with advanced and heavily pre-treated tumors (Table 12.1). 
According to our chosen therapeutic approaches – a combined anti-inflammatory 
and angiostatic therapy – we selected (1) tumors with high vascular density such 
as vascular sarcomas and renal clear cell carcinomas (RCCC), (2) a highly inflam-
matory tumor type, i.e. chemo-resistant multivisceral Langerhans’ cell histiocyto-
sis, and (3) tumors with a known inflammatory component at least in the metastatic 
stage (melanoma, cholangiocellular carcinoma, and castration-resistent prostate 
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cancer (CRPC). All patients were enrolled in phase II trials, and melanoma 
patients additionally participated in a randomized phase II trial.

12.2.2  Patients’ Characteristics

The local ethics committee approved study protocols, and patients were required to 
provide written informed consent before enrolment. Patients presented were recruited 
between February 2001 and July 2006 in seven phase II trials including one random-
ized phase II trial in metastatic melanoma. Patients with advanced  bidimensionally 
measurable neoplasias, either systemically pretreated or not, who experienced disease 
progression and who had a life expectancy of more than 3 months were eligible for 
the studies. Controlled brain metastases were no exclusion criteria. The remaining 
inclusion criteria are indicated in the respective publication.

12.2.3  Basic Treatment Considerations

Treatment schedules were intended to achieve disease stabilization in metastatic 
neoplasias of different origin with uniform biomodulatory treatment principles and 
to limit therapy-related toxicity in advanced tumor stages. All patients received a 
combined anti-inflammatory and angiostatic therapy consisting of (1) metronomic 
low-dose chemotherapy (trofosfamide or capecitabine), (2) COX-2/PPAR (peroxi-
some proliferator-activated receptor)-delta blockade (rofecoxib or etoricoxib) 
 combined with (3) one or two transcription modulators, i.e. pioglitazone (peroxi-
some proliferator receptor alpha/gamma agonist) +/−dexamethasone or pioglita-
zone +/− IFN-alpha (Table 12.1) [8–15].

12.2.4  Anti-Inflammatory Therapies

We have chosen drugs with transcriptional activity in the field of inflammation 
control: glucocorticoids (dexamethasone 0.5–1.0 mg daily), interferon-alpha 
(3–4.5 MU three times a week), and the glitazone pioglitazone (45–60 mg daily).

Also the administered coxibs (rofecoxib 12.5–25 mg daily or etoricoxib 60 mg 
daily) may express transcriptional activity by the inhibition of PPAR-delta. The 
transcriptional modulators used are all multifunctional modulators that may not 
only achieve specification of their activity by nuclear receptor cross-talk [21–23] 
but may also have important receptor dependent (genomic and non-genomic) as 
well as independent (non-genomic) activities [17,18,24].

Furthermore, anti-inflammatory approaches were selected according to known 
effects of dexamethasone in castration-resistent prostate cancer and interferon-alpha 
(at high-doses) in metastatic renal cell carcinoma. Interferon-alpha was used at a dose 
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level for angiostatic activity, i.e. at very low doses. In metastatic RCCC, we selected 
in a second consecutive trial an anti-inflammatory approach with presumably 
enhanced anti-inflammatory capacity: pioglitazone, coxib, and additionally inter-
feron-alpha [12]. In CRPC, a combination of two activators of nuclear transcription 
factors (pioglitazone and dexamethasone) has been  introduced [14].

A randomized phase II trial (metastatic melanoma) evaluated the additional 
effects of anti-inflammatory therapy in addition to metronomic low-dose chemo-
therapy on progression-free and overall survival (combined antiinflammatory/ 
angiostatic versus angiostatic approach) [9]. In the trials melanoma I, sarcoma I, 
and vascular sarcomas, we introduced a 14 day lead-in phase with antiinflamma-
tory therapy only (pioglitazone plus rofecoxib or etoricoxib) [8,9].

12.2.5  Angiostatic Therapies

Angiostatic therapy consisted of metronomic low-dose chemotherapy, either 50 mg 
oral trofosfamide (Baxter) administered continuously two or three times daily or 
1 g/m2–1 g absolute oral capecitabine (Roche) administered twice per day.

12.3  Systems Biology: A Therapeutic Target  
for Tumor Therapy

12.3.1  Treatment Schedules

Patients were centrally randomized for the Melanoma II trial. Arm A received 
50 mg oral trofosfamide (Baxter) administered continuously three times daily from 
day 1+, Arm B of trofosfamide in the same dosage plus continuously 60 mg oral 
pioglitazone (Takeda) and 25 mg oral rofecoxib (MSD) once daily starting with day 
1+. Treatment was continued until disease progression was documented or for a 
maximum of 6 weeks after confirmation of CR. Following disease progression, a 
crossover from Arm A to B was allowed.

Patients treated in the vascular sarcoma trial (including one patient with Kaposi 
sarcoma), in the Melanoma I, Sarcoma I, and Langerhans cell histiocytosis trials 
received Arm B-therapy as described above. Melanoma and sarcoma patients had a 
lead-in phase with anti-inflammatory therapy alone over 14 days. Patients in the 
RCCC study I received 1 g/m2 oral capecitabine (Roche) administered twice daily 
from day 1+, 60 mg oral pioglitazone (Takeda). Patients enrolled before November 
2004 also received 25 mg oral rofecoxib daily, whereas patients enrolled after 
November 2004 were given 60 mg oral etoricoxib daily instead, starting with day 
1+. Patients in study II (RCCC II) received additionally 4.5 MU IFN-alpha subcu-
taneously, three times per week, from day 1+. Patients with cholangiocellular 
 carcinoma were treated with the schedule of RCCC I.
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12.3.2  Combined Targeting of Wound Healing Processes

In all studies, we selected transcriptional modulators including those of nuclear 
transcription factors with the aim to control tumor-associated inflammation. 
For metastatic melanoma, we performed a randomized phase II trial to directly study 
the impact of inflammation control on progression-free and overall survival. A his-
toric comparison (RCCC I/II) shows the impact of weak versus strong control of 
tumor-associated inflammation on progression-free and overall survival in renal 
clear cell carcinoma. In castration-resistent prostate cancer, published data from 
metronomic cyclophosphamide and dexamethasone treatment are available for a 
historical comparison [25].

12.4  Pre-Treatment Evaluation Is Indicated  
in the Respective Publications

12.4.1  Evaluation of Efficacy

Response and toxicity were evaluated in patients who had a follow-up duration 
of ³3 weeks. Objective tumor responses were identified using the World Health 
Organization (WHO) criteria (vascular sarcomas, sarcomas, melanomas) or 
RECIST criteria (RCCC and CRPC).

12.5  Modulation of Tumor-Associated Disease Traits

12.5.1  ECOG Status: ECOG Performance Status  
Was Routinely Monitored

Monitoring of CRP Serum CRP levels were measured in follow-up to evaluate the 
incidence of systemic inflammatory response in metastatic tumors dependent on 
the tumor histology and to determine the intensity of the inflammatory response as 
well as the time of inflammation response in relation to objective tumor response.

As part of an exploratory retrospective analysis, PFS and OS were evaluated 
separately for two groups of patients: (1) CRP responder: Patients with normal 
range CRP levels throughout the first 6 weeks of treatment and patients with ele-
vated CRP levels, who responded with an at least 30% decrease within the first 
6 weeks of treatment (two consecutive measurements at least 14 days apart). (2) CRP 
 non-responder: Patients with £30% decline or increasing CRP levels in two con-
secutive measurements 14 days apart within the first 6 weeks of treatment. Patients 
receiving a lead-in phase with anti-inflammatory therapy were monitored for CRP 
at study inclusion and in a 14 day interval.
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12.5.2  Metastatic Sites

On the background of the discussion, whether combined biomodulatory therapies 
have any tissue specificity, i.e. are dependent on the cellular tumor-stroma composi-
tion at an organ site, we analyzed the response dependent on the localization of the 
metastatic organ sites. To assess whether an anti-inflammatory/angiostatic treat-
ment approach has any impact on the metastatic spread during progression, we 
analyzed the metastatic sites after progression on study medication.

12.5.3  Statistics and Data Analysis

Primary endpoints in all trials were PFS and treatment safety. Analysis of treatment 
safety was restricted to patients receiving study medication, analysis of the tumor 
response to patients who were treated for at least 3 weeks. The overall response 
rate was defined as percentage of patients with confirmed CR or PR. SD was 
defined as no tumor progression (<25%) during a 6 months treatment interval. 
Response duration was calculated from randomization or study inclusion to the 
date of first observation of progressive disease (PD) or death. Progression-free 
survival was defined as the interval between the beginning of treatment and disease 
progression. Survival duration was calculated from randomization or study inclu-
sion. Survival distributions were generated using the Kaplan-Meier method. 
Survival analyses were performed on eligible patients, the full analysis set (FAS) 
and on the intent-to treat (ITT) population (defined as all randomly assigned 
patients). In addition, the Fisher exact test and the “Student t”-test were used to 
identify significant associations between clinical and biologic variables.

12.6  Results

In total, 224 patients with metastatic cancer from eleven centers and various 
 medical specialties including urology, dermatology, gastroenterology, and hema-
tology/oncology were treated within seven trials: The intention was to show the 
 efficacy and tolerability of a combined anti-inflammatory (pioglitazone plus coxib) 
and angiostatic therapy (trofosfamide or capecitabine) in advanced tumor stage and 
in a high number of refractory cancer (10–63%). More detailed patient characteristics 
may be found in the respective publications [8–15].

All trials were initiated as palliative therapies. Therefore, it is remarkable that 
we could observe objective response (3–48%) and continuous complete remissions 
independent of the tumor type (vascular sarcoma, RCCC, melanoma, castration-
resistent prostate cancer, cholangiocellular carcinoma, and Langerhans’ cell 
 histiocytosis) in all treatment groups (except RCCC I) (Table 12.2).
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Median progression-free survival as the primary endpoint in all trials is listed in 
Table 12.3. Interestingly, despite of the inclusion of systemically pre-treated 
patients at a high percentage (10–63%), the PFS rate is comparable to the respective 
rate achieved in first-line therapy (trial RCC II, Melanoma II, and cholangiocellular 
carcinoma). In metastatic melanoma (Melanoma II), metronomic low-dose chemo-
therapy with trofosfamide seems to be even equivalent to standard DTIC treatment 
in a historical comparison [26–28].

Table 12.2 Combined targeting of angiogenesis and inflammation: efficacy

Tumor type

Response

No. of 
patients

Partial 
response 
(%)

Complete 
response 
(%)

cCR 
(%)

Sarcomas I 21 19 16 5
Angiosarcomas 6 17 33 17
Melanoma I 19 10 5 0
Melanoma II Arm B 35 9 3 3
Langerhans’ cell histiocytosis 2 – 100 100
Renal clear cell carcinoma I  

(no IFN-a)
18 0 0 0

Renal clear cell carinoma II  
(plus IFN-a)

33 35 13 6

Castration-resistent prostate 
cancer

36 28 6 6

Cholangiocellular carcinoma 21 24 5 5

Table 12.3 Progression-free/overall survival with combined angiostatic plus anti-inflammatory 
therapy

Trial

Treatment
Median Progression-free/overall survival 
(months)

Angiostatic
Anti-
inflammatory

Pretreated 
patients (%) Trial

Historical 
control (first-
line)

RCCC I Capecitabine Pio/Rofe 39 4.7/16.2
RCCC II Capecitabine Pio/Eto/IFN-a 21 11.5/25.6 11.0/na(for 

sunitinib)
CRPC Capecitabine Pio/Eto/Dexa 39 3.6/14.4 na/17.5 (for 

taxotere)
Melanoma II
Arm A Trofosfamide – 63 1.2/8.2 na/5.6 (for 

DTIC)
Arm B Trofosfamide Pio/Rofe 60 2.0/18.8 –
Cholangiocellular 

carcinoma
Capecitabine Pio/Rofe 10 2.0/8.0 PR plus stable 

disease 
20–73%

Pio – pioglitazone; Rofe – rofecoxib; Eto – etoricoxib; RCCC – renal clear cell carcinoma; CRPC – 
hormone refractory prostate cancer; na – not available



274 A. Reichle and T. Vogt

12.7  Tailored Modeling of Tumor-Associated  
Disease Traits

Overall, five different tumor-associated disease traits were followed within each 
trial with biomodulation-derived biomarkers: (1) Changes in the ECOG status, in 
(2) serum CRP levels, (3) the resolution of paraneoplastic syndromes, (4) objective 
tumor response at single metastatic organ sites, and (5) the dissemination of meta-
static disease at tumor progression (metastatic spread).

12.7.1  ECOG Performance Status

ECOG performance status could be improved in all trials (19–100%). As expected 
in the Melanoma II trial, no ECOG improvement was observed within treatment 
arm A (without anti-inflammatory therapy) (Table 12.4). An improvement of the 
performance status due to inflammation control was possible on the basis of a very 
low rate of grade III toxicities in all trials (Table 12.5).

Table 12.4 Tumor-associated inflammation in metastatic cancer

Trial

Frequency 
of CRP 
elevation 
>10 mg/L 
(%)

CRP >30% 
response  
(% patients)

Significance of 
CRP response 
during 2–6 
weeks on 
treatment

Improvement 
of ECOG 
status (% 
patients)

Progression-free 
survival and overall 
survival

Renal clear cell 
carcinoma I

72 69 p = 0.32 22 Significant 
improvement of 
PFS and OS in 
RCCC II (non 
randomized)

Renal clear cell 
carcinoma II

100 100 p = 0.0005 24

Castration-
resistent 
prostate 
cancera

28 11 p = 0.67 30

Melanoma I 81 88 p = 0.004 19
Melanoma II
Arm A 87 6 p = 0.52 0 Significant 

improvement of 
overall survival 
(CRP responder)

Arm B 
(randomized)

100 69 p = 0.0007 27

Sarcoma 79 74 p = 0.006 28
Angiosarcomaa 100 100 – –
Langerhans’ cell 

histiocytosis
100 100 – 100

a Resolution of paraneoplastic syndromes: lupus erythematodes, hypoglycaemia
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12.7.2  Paraneoplastic Syndromes

The anti-inflammatory activity of the chosen treatment schedules was additionally 
shown by the resolution of paraneoplastic syndromes: Hypoglycemia and lupus 
erythematodes respectively [29,30].

12.7.3  Serum CRP Level in Follow-Up

The incidence of elevated CRP levels (>10 mg/L) at study inclusion differed consid-
erably between the different tumor types (Table 12.4). In groups with consistently 
elevated CRP levels (RCCC, melanoma, sarcoma, Langerhans’ cell histiocytosis), a 
significant CRP response (>30%) was observed during the lead-in phase with anti-
inflammatory therapy alone or during 4–6 weeks of combined treatment. Thus, effi-
cacy of an anti-inflammatory therapy could be sufficiently followed in metastatic 
diseases with constitutive systemic inflammatory response (Table 12.4).

A CRP response indicated stable disease or objective response in most patients; 
however, few patients experienced progressive disease (6%) despite of a CRP 
response. Therefore, CRP response indicates a tailored modeling of a tumor-asso-
ciated disease trait but CRP assessment should not be used as a tumor marker. In 
CRPC, a CRP decrease was always paralleled by PSA response, whereas CRP 
response and/or ECOG improvement preceded objective responses by months 
(3.1–8.6 months) in all other trials with the exception of individual patients 
with vascular sarcomas [8]. Due to the observed objective tumor responses to anti-
inflammatory therapy in diseases without initial systemic inflammatory  reaction 
such as CRPC, localized inflammatory tumor-associated processes have to be 
 suggested as basis for the observed objective tumor responses [31].

12.7.4  Impact of Anti-inflammatory Therapy

The efficacy of an anti-inflammatory therapy alone has already been shown in a ran-
domized comparison in advanced cancer [32]. We can now extend the experiences on 

Table 12.5 Toxicities WHO Grade 3 (no Grade 4 toxicities) within all seven trials (n = 224 
patients)

Toxicity No. of patients (%) Trial
Toxicity related to the 
following drug

Cushing syndrome 1 (0.4) CRPC Dexamethasone
Depression 1 (0.4) RCCC Interferon-alpha
Hand-Foot-Syndrome 5 (2.2) CCC, CRPC Capecitabine
Hematotoxicity 14 (6.2) All trials Metronomic chemotherapy
Edema 5 (2.2) All trials COX-2 inhibitor
Nausea/Vomiting 3 (1.3) All trials
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anti-inflammatory therapy: (1) Anti-inflammatory therapy adds further benefits to 
angiostatic low-dose chemotherapy by a significant improvement of OS in metastatic 
melanoma, although the objective response rates in both treatment arms did not signifi-
cantly differ (randomized melanoma phase II trial, Melanoma II), and (2) the intensity 
of an anti-inflammatory approach, as indicated by the extent of CRP decrease in serum, 
may have significant impact on outcome (sequentially performed RCC trials I/II).

12.7.5  Intensification of Anti-inflammatory Therapy

Two kinds of intensification of anti-inflammation were tested including a second tran-
scriptional modulator, i.e. dexamethasone (CRPC) or interferon-alpha (RCCC II) 
(Table 12.1). The addition of low dose interferon-alpha to pioglitazone and COX-2 
inhibitor dramatically increased the control of tumor-associated inflammation and con-
secutively improved the tumor response as well as the survival rate (historical compari-
son). These results demonstrate that strong inflammation control may be an important 
prerequisite for the response in metastatic, non-resectable RCCC. In CRPC, dexame-
thasone showed very modest anti-tumor activity. However, the addition of a glitazone 
(plus coxib) resulted in a high response rate, interestingly even up to the achievement 
of complete remission. Due to the poor monoactivity of capecitabine in CRPC, most 
activity of the schedule might be related to the anti-inflammatory approach.

12.7.6  Combined Transcriptional Modulation

The combined use of transcription modulators for inflammation control in CRPC 
(dexamethasone, pioglitazone, and coxib) and in RCCC II (interferon-alpha, piogli-
tazone, and coxib) – and glitazones plus coxib in all the other tumor types – seems 
to improve outcome in comparison to historical controls or is at least equivalent but 
with less therapy-related toxicity. Except for the monoactivity of metronomic 
 low-dose chemotherapy in advanced melanoma and presumably in angiosarcomas, 
all other treatment components, i.e. interferon-alpha at very low dose-levels, piogli-
tazone, coxibs, and low-dose dexamethasone have very modest or none mono-
activity at all in the respective tumor types [33–38]. Exclusively their combination 
paves the way for objective responses via transcriptional cross-talks.

12.7.7  Angiostatic Therapy

Metronomic low-dose chemotherapy showed a significant activity in the ran-
domized melanoma trial (melanoma II) (Table 12.2). Recently published data 
disclosed that the second drug capecitabine has a rather modest activity in CRPC 
[33] when administered in a nearly metronomic manner. Thus, most clinical 
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effects in CRPC may be related to a combined anti-inflammatory activity. This 
observation is supported by unpublished data indicating objective responses 
after a change to metronomic low-dose treosulfan (250 mg twice daily) in 
patients with progressive CRPC on study medication. In cholangiocellular carci-
noma, anti-inflammatory and angiostatic effects cannot be separated and assessed 
in correlation to historical data.

12.7.8  Metastatic Sites and Response

To evaluate tumor-stroma-specific activities of the administered drugs, we studied 
whether specific single metastatic organ sites respond predominantly to combined 
 biomodulatory therapy. An organ-specificity of combined anti-inflammatory and 
angiostatic activity could be observed in CRPC: in bone lesions, resolution or >50 
regression (scintigraphy) of metastatic lesions could be observed, whereas only 
minor responses or stable diseases were diagnosed in all other metastatically involved 
organs.

12.7.9  Metastatic Sites at Progression

Overall, 76% of the patients within the Melanoma trial II, RCCC trial II, and CRPC 
trial were systematically studied for metastatic sites at tumor progression. Interestingly, 
67% of these patients had no additional metastatic organ sites at the time of progres-
sion, but local tumor progression or additional metastasis in the organ involved origi-
nally. This finding could indicate an attenuation of metastatic spread by the combined 
antiinflammatory and angiostatic approach. Probably because of the short median 
progression-free survival in Melanoma II, no significant differences could be found 
between the two treatment arms concerning metastatic spread at progression. The 
treatment and response characteristics support biomodulatory mechanisms of action: 
(1) No or poor single agent activity of each administered drug, (2) a very moderate 
toxicity profile during long-term drug administration up to 26 months, (3) very 
delayed objective responses, (4) improved overall survival without an increase of 
response rate (randomized Melanoma trial), (5) significant modulation of tumor-
associated disease traits, e.g. inflammation, ECOG status, paraneoplastic syndromes, 
(6) activity depending on the metastatic organ site in CRPC, and (7) predominant site 
of progression at the original localization of the metastases.

12.8  Safety Profile

The toxicity profiles of the presented biomodulatory approaches are modest as 
reflected in a low rate of WHO grade >2 toxicities and no grade 4 toxicities 
(Table 12.6). Thus, the desirable therapeutic effects could be achieved by 
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 minimizing side effects, even by improving the ECOG status before objective 
tumor response will be achieved. Because of the low rate of grade 3 toxicities, long-
term drug administration up to more than 2 years was possible (median time on 
study medication 3.6 months (range 0.5–26.0). The low rate of toxicities > grade 2 
might be related to the fact that each drug is not administered at a maximal tolerable 
dose, even not at a dose level where mono-activity may be observed.

A second important point for safety evaluation is the question whether activating 
biomodulators may promote tumor activity. The stimulatory therapy with transcrip-
tional modulators (interferon-alpha, PPAR-alpha/gamma agonist, dexa- methasone) 
did obviously not enhance the percentage of patients with continuously progressive 
disease compared to standard therapies in the individual tumor types.

12.9  Discussion

The uniform treatment schedules presented were initially chosen to facilitate 
disease stabilization in patients with advanced and pre-treated cancer with less 
toxic agents. Surprisingly, it turned out that these treatment schedules have the 
capacity to induce objective responses (3–48%) and, in individual patients, even 
continuous complete remissions in every tumor type mentioned. Furthermore, 
they may induce OS rates, which compare with established standard first-line 
therapies.

With respect to the multi-facetted activities of the administered drugs (anti-
proliferative, angiostatic, antiinflammatory, metabolic activity, immunomodula-
tory), and their differential cell-specific activities, the exact mechanisms of 

Table 12.6 Combined targeting of angiogenesis and inflammation: patients with progressive 
disease

Tumor type No. of patients
Targeted (nuclear) 
transcription factors

Progressive disease 
(no. of patients %)

Sarcomas I 21 PPAR a /g, PPAR d 4 (19)
Angiosarcoma  6 PPAR a /g, PPAR d 0
Melanoma I 19 PPAR a /g, PPAR d 4 (21)
Melanoma II Arm B 35 PPAR a /g, PPAR d 6 (17)
Langerhans’ cell 

histiocytosis
 2 PPAR a /g, PPAR d 0

Renal clear cell 
carcinoma I

18 PPAR a /g, PPAR d 9 (50)

Renal clear cell 
carcinoma II

33 PPAR a /g, PPAR d via  
IFN-a receptor

2 (7)

Castration-resistent 
prostate cancer

36 PPAR a /g, PPAR d 
glucocorticoid receptor

5 (14)

Cholangiocellular 
carcinoma

21 PPAR a /g, PPAR d 0

Receptor ligands: PPAR a /g – agonist, PPAR d – antagonist (COX-2 inhibitor), dexamethasone, 
interferon-alpha PPAR – peroxisome proliferator-activated receptor
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action of the selected drug combinations are difficult to pin down [17,18,39]. 
The studied drug combinations are interacting with the systems biology of the 
different cell types at regulatory sites and have both genomic and non-genomic 
activity.

With the exception of individual patients suffering from vascular sarcoma, 
responses to therapy occurred much delayed and three phases were observed: 
(1) Inhibition of further tumor progression, (2) prolonged disease stabilization by 3.1 
months to a mean of 8.6 months, followed by (3) objective responses. In some 
tumor types, response to therapy could be monitored by a serum parameter, 
C-reactive protein, indicating the tailored modeling of a tumor-associated disease 
trait, namely inflammation. Systemic tumor-associated inflammation, however, 
was no prerequisite for objective tumor response to a combined anti-inflammatory 
therapy approach as shown in castration-resistent prostate cancer that has a very 
low incidence of systemic inflammatory events [31].

On the basis of these observations, we now postulate tumor-associated inflam-
mation as both a pathophysiologically important element and a therapeutic target 
but without presupposing causal relationships between inflammation and tumor 
progression. On the contrary, the prerequisites for our clinical observations, i.e. 
the multifaceted regulatory activities of the single administered drugs and the 
 differential responses of the multiple cell types within the tumor compartment, 
reveal the relations of conditioned and conditioning tumor-promoting moments as 
reciprocal on the basis of pathophysiologically important interacting elements 
(e.g. inflammation, angiogenesis, and tumor cell proliferation). The still ‘indis-
tinct’ but regulatory activity profile of the administered drugs and the favorable 
therapy results of the uniform treatment concept in a broad variety of different 
tumor types strongly support our hypothesis that tumor growth may be success-
fully attenuated by targeting the tumor system’s biology simultaneously at mul-
tiple regulatory sites, e.g. (nuclear) transcription factors.

Pathologic systems biological processes in cancer may be reported from differ-
ent observation levels: (1) In Loewenstein’s view pathologic cancer processes are 
predominantly mirrored in a deficient cell-cell communication [40]. (2) The initial 
source of observation may also be an altered systems-associated cell composition, 
and (3) distorted functions of single cell systems within the tumor microenviron-
ment [1,3,6]. Inflammatory processes have been identified to be involved in tumor 
systems biology independently of the viewpoint of observation.

One aspect is getting of growing systems-therapeutic interest since normal 
adult and cancer stem cells may be detected by selective expression of the tran-
scription factor Okt-4 [41,42]: Inflammation plays a critical role on all virtual 
stages of tumor development, tumor initiation, promotion and progression [43]. 
The inhibition of gap junctional communication has been identified as an impor-
tant mechanism by which inflammatory processes affect cancer development: 
Cancer cells exist in two forms, those that do not express connexin (gap junction 
genes), and those that express connexin genes but that gap junction function has 
been rendered non functional by oncogenes/loss of tumor suppressor genes [44]. 
Here the use of agents to turn on critical genes, i.e., such as the connexin genes 
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seems to be important [45–47]. That the cancer stem cell must be promoted by a 
number of inflammatory conditions, particularly in the metastatic stage of cancer 
disease (cachexia!) fits with the successful use of anti-inflammatory therapy 
 components in the present systems-targeted treatment strategy [48].

Conventional therapy methods commonly neglect the complexity of the tumor 
compartment. They mainly target the molecular-genetically highly variable tumor 
cell, whose variability is explained by the complexity of the tumor development.  
By blocking a pathological signaling pathway with a small molecule or an anti-
body, the whole tumor system should be destroyed, synonymously with the 
assumption that tumor development could result from a single causative principle. 
Furthermore, combining cytotoxic therapy elements guided by the simple avail-
ability of drugs buys moderately enhanced efficacy at a simultaneously enhanced 
toxicity profile, as shown by many studies.

A lead back to a final first principle that may be therapeutically targeted to eradi-
cate metastatic cancer is generally not permitted, in particular in knowledge of the 
multi-facetted activity profile of the administered biomodulatory agents. However, 
instead of such a lead back to a first principle, we have to deal with multiple and 
various constellations of elements (aggregated action effects), one of which – in our 
case – is tumor-associated inflammation. The constellation of elements has to be 
broken down to its single moments, but, simultaneously, we have to understand the 
relationship between one another rather than separately adding one to another and 
thereby neglecting the importance within the complex constellation. The principle 
therapeutic difficulty lies in this point.

The therapeutic components chosen directly address this difficulty based on 
the hypothesis that the combined activity of regulatory but pleiotropic agents, 
particularly transcription modulators (besides the angiostatic approach), may 
shape the tumor’s organization, e.g. the ‘wound healing’ mechanisms, by attenu-
ating simultaneously multiple activities involved in tumor growth such as angio-
genesis, anti-inflammation, and proliferation. This hypothesis is supported by 
seven treatment-related characteristics: (1) No or poor single agent activity of 
each administered drug (predominantly combined regulatory activity) when given 
alone, (2) a very moderate toxicity profile during long-term drug administration 
(presumably no dose-response relationship), (3) very delayed objective responses 
(stable shaping and focusing of the tumor system’s organization), (4) improved 
overall survival without an increase of the response rate in arm B of the randomized 
Melanoma II trial (biomodulatory activity), (5) significant modulation of tumor-
associated disease traits, e.g. inflammation, ECOG status, paraneoplastic syn-
dromes (biomodulation-derived biomarkers), (6) activity depending on the 
metastatic organ site in CRPC (tumor-stroma-specificity as expected from the 
known differential behavior of the various cell types within the tumor compart-
ment, and the varying stroma cell compositions at the different metastatic sites), 
and (7) predominant site of progression at the original localization of the metas-
tases (hints for impact on metastatic processes). Preclinical data on the action of 
COX-2 inhibitors and PPAR alpha agonists are already revealing antimetastatic 
activity [49,50].
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Even if metronomic chemotherapy has any cytotoxic activity in the classic 
sense, the response characteristics do not support a response behavior as usually 
found in response to pulsed chemotherapy.

The clinical efficacy of the combined anti-inflammatory and angiostatic 
approach in different tumor types reveals preserved regulatory elements for 
 targeting ‘wound healing’ processes with transcriptional regulators (biomodula-
tory agents) in tumor and adjacent stroma cells. (1) The favorable clinical results 
achieved with a small repertoire of transcriptional modulators indicate a constitu-
tive dysregulation of distinct transcription factors, which – on the other hand – 
seems to be paradoxically linked to the heterogeneous tumor-associated 
molecular-genetic aberrations  depending on the tumor type [51]. (2) The combined 
genomic/non-genomic therapy approach specifically shapes the organization of the 
tumor-stroma-interaction. (3) The clinically combined activity of (nuclear) tran-
scription factors in the RCCC II and CRPC trial give sufficient clinical evidence for 
a crosstalk between  drug-activated/deactivated transcription factors.

The focus on the systems biology of a tumor as the original target of cancer 
therapy necessitates biomarkers that indicate stable response in the field of tumor-
associated disease traits or tumor-associated phenomena such as inflammation, 
angiogenesis, coagulation, and metabolism. Rather than the primary or “classic” 
markers for tumor response including tumor shrinkage or decrease of tumor mark-
ers, this new group of markers reflects efficacious biomodulation. However, we are 
aware of the limitation that some of these tumor-associated phenomena mirroring 
tumor biomodulation are sometimes difficult to follow on a systemic level. They 
can not be uniformly interpreted across tumor entities as demonstrated in our 
example of CRPC in comparison to other tumors, when inflammation seems to be 
quite differently integrated in the tumors’ pathophysiology: PSA decline was paral-
leled but not preceded by a CRP decline in CRPC, whereas in other tumor types 
including RCCC decrease of CRP or ECOG performance improvement preceded 
tumor response.

In the immediate presence and future, biomodulatory therapy approaches of 
metastatic tumors could be methodological tools of individualized tumor therapy: 
In contrast to ‘causal’ therapy approaches aiming at blocking aberrant tumor-
associated pathways by a restricted repertoire of highly specific drugs, multiple 
potential modulators (activators and deactivators) of transcriptional processes 
are available for biomodulatory therapy approaches. According to our experi-
ences, mono-activity of a single transcription modulator is no prerequisite for its 
 successful use and their combined administration activity could be followed by 
respective biomarkers. Close monitoring would further allow us to choose other 
modulator combinations in cases of weak interactivity to facilitate objective 
tumor response.

Finally, the constitutive dysregulation of transcriptional activity is shown to be 
an important target for biomodulatory therapy approaches in metastatic cancer. 
Biomodulation in metastatic tumors provides tools for recognizing patterns in 
therapy-associated events via biomodulation-derived biomarkers. Thereby, it 
enables (1) the shaping of the tumor system’s organization and (2) the uncovering 
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of endogenous sources such as transcription factors and their crosstalks for 
 managing growth behavior by counterbalancing the tumor systems’ biology.

Our seven published phase II trials on combined targeted therapy of tumor-
associated wound healing mechanisms, e.g. inflammation and neoangiogenesis, 
have shown that using an approach for understanding systems biology as adjustable 
size, we may break through the barrier of complexity of tumor-stroma-interactions 
in a therapeutically relevant way (Fig. 12.1). For a targeted modulation, elements 
such as inflammation and neoangiogenesis are available, which are  dysregulated on 
the basis of acquired chromosomal aberrations. Biomodulation of systems biologi-
cal processes facilitate comparatively high efficacy at moderate toxicity.

General interpretations of the tumor’s systems biology may not be performed in 
context-free explanations. The requirements of application (therapy schedule, 
tumor type) and the number of surrogate markers define the way the interpretation 
is conducted. Additionally, they define the hermeneutic understanding of extremely 
complex cellular interactions correspondingly to the chosen picture, the wound 
healing mechanisms. In the present case, this means the following: Naturally, the 
administered drugs, particularly the transcriptionally active modulators, have still 
an insufficiently illuminated spectrum of activities, which may be even dependent 
on the cell type. General interpretations concerning the systems biology do not 
obey the same categories of refutation as general theories and remain per se open 
for discussion. The logic of an explanation of the tumor’s systems biology is the 
result of a connection between a hermeneutic understanding (wound healing 
mechanisms) and the causal explanation (e.g. co-regulatory activity of transcription 
factors).

Fig. 12.1 The differential response patterns within our clinical trials indicate the therapies’ 
 systems biological activity. Understanding systems biology as adjustable size may break through 
the barrier of complex tumor-stroma-interactions in a therapeutically relevant way: Comparatively 
high efficacy at moderate toxicity. Structured systems-directed therapies in metastatic cancer may 
get a source for detecting tumor-associated complex aggregated action effects as adjustable sizes 
available for targeted biomodulatory therapies
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Abstract So far, tumors have been assumed to defy experimental therapeutic 
access from inside in a comprehensive and reconstructive way (systems view) and 
to only comply with reductionist knowledge with regard to biochemical pathways.

Our main aim was the uncovering and reconstruction of tumor systems struc-
tures mediating tumor-associated inflammation (eight phase II trials, two of them 
randomized). Thus, we comparatively analyzed anti-inflammatory activities and 
clinical response induced by continuously administered biomodulatory treatment 
modules (module M: metronomic low-dose chemotherapy; module A: pioglitazone 
plus etoricoxib; module A+M; module A+M/+: plus second transcriptional modu-
lator [interferon-alpha or dexamethasone]) in the metastatic stages of different 
types of tumors (266 patients; 54% systemically pre-treated; metastatic melanoma, 
sarcoma, renal clear cell carcinoma, castration-resistent prostate cancer, gastric 
cancer, and Langerhans’ cell histiocytosis).

Tumor-specific and stage-specific therapeutic accessibility of inflammation-
related processes to induce response in all tumor types indicate a constitutive spin-off 
of new systems functions during metastatic processes. Furthermore, this accessibility 
shows the differential integration of inflammation into the context-dependent ‘living 
world’ of tumor compartments that is marked by tumor-specific and subtype-specific 
rationalization processes: Inflammation-related activities are communicatively pro-
moted and differentially adapted during tumor evolution. Empirically, differences 
may be detected in the modalities of developing evolutionary systems and in the 
acquired functional impact of inflammation-related systems. Biomodulatory thera-
pies, administered as fixed modules, may contribute to the discovery and understand-
ing of novel regulatory systems in tumor biology.
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This study highlights the claim for validity of therapeutic inflammation control 
as an important prerequisite for tumor control on the basis of action-relevant yes or 
no statements that generate facts on-site in tumors via biomodulatory therapy 
modules.

Keywords Systems biology • Metastatic tumors • Modularity • Rationalization • 
Robustness • Biomodulatory therapy • Transcription factors • Metronomic chemo-
therapy • Inflammation

Abbreviations

PPAR Peroxisome proliferator-activated receptor
COX-2 Cyclooxygenase-2
Module M Metronomic low-dose chemotherapy
Module A Pioglitazone plus etoricoxib or rofecoxib
Ifn-a Interferon-alpha
ECOG Eastern cooperative oncology group performance status
CRP C-reactive protein
CRPC Castration-resistent prostate cancer
RCCC Renal clear cell carcinoma
LCH Langerhans’ cell histiocytosis
CCC Cholangiocellular carcinoma
RCCC I Trial RCCC I
RCCC II Trial RCCC II
SD Stable disease
PR Partial remission
CR Complete remission
CCR Continuous complete remission

13.1  Introduction

Reductionist considerations are commonly used to create new therapy approaches. 
The reductionist concept is based on the attempt to reduce complex intracellular 
and intercellular interactions of tumor diseases to one single cause or at least only 
to a few causes or distinct hierarchies to build up cause-effect-chains as a rationale 
for therapy planning. The targeting of these suggested causes is presumed to result 
in the eradication or at least attenuation of tumor disease.

Aberrantly expressed genes and their respective gene products in tumor cells 
serve as exceptional causal targets of cancer therapy. An important and clini-
cally approved example is Philadelphia-positive chronic myelocytic leukemia. 
The Philadelphia translocation encodes for a chimeric protein of increased 
tyrosine kinase activity, which can be targeted by a small molecule (TKI; tyrosine 
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kinase inhibitor). This way, presumably life-long tumor control can be achieved 
in more than 60% of patients.

However, we frequently have to face two major therapy-relevant problems in 
cancer disease: Cancer cells often develop multiple chromosomal aberrations 
 during tumor evolution, meaning that multiple aberrations are functionally 
 integrated in a tumor cell by networking. This phenomenon may be therapeutically 
met by uncovering more complex molecular signatures. The second therapeutic 
challenge is the close communicative network between tumor and stroma cells, 
which has not yet been adequately addressed.

Therefore, tumor models need to be developed that address the communicatively 
linked functions within a tumor compartment: Seemingly confusing networks 
within tumors may be considered for therapeutic purposes as a well-structured 
holistic communicative network, gathering all informative processes mediated by 
proteins, cytokines, etc. The input of a communicatively linked and modularly 
structured background is now responsible for differentially redeeming validity and 
denotation of all systems objects, the proteins, i.e. transcription factors, cell func-
tions, and pathways [2,3].

Such systems are self-content: Modular changes do not necessarily implicate the 
loss of a systems’ functionality, if functions are rearranged or even if new systems 
functions may spin off, such as systemic inflammatory processes during the meta-
static stage of tumor disease. Systems are becoming evolvable.

An exceptional example in this context is the transcription factor NF-kappaB, 
which acquires even opposing functions depending on developmental stage, cell 
type, and organ site. Even more, NF-kappaB may develop differential functions 
within one clonal population [4].

If multiplicity of functions linked to distinct systems objects (i.e. proteins, path-
ways, etc.) is available, these functions should be shapeable by biomodulatory 
therapy approaches. Therefore, we may suggest that novel therapy-relevant targets 
lie in the communicative architecture of tumor systems.

Based on this novel pragmatic communication theory, two major questions 
should be asked:

 1. Does modularity constitute a big world inside small world networks? If yes, it 
should be possible to implement modular ‘knowledge’ with respective biomodu-
latory therapy approaches [5].

 2. Are biomodulatory therapies sufficient to induce tumor response at all? If yes, 
biomodulatory therapies represent a methodological approach to comparatively 
uncover – now with normative statements – the tumor’s modular systems struc-
tures and the modular activity of cells promoting distinct systems functions.

How does modular therapy work? When implementing reductionist therapy 
approaches we are used to inhibit communication-related pathways, i.e. signaling 
pathways. Modular therapies evolve the informative background, which redeems 
validity and denotation of tumor-associated objects (Fig. 13.1). Biomodulatory 
therapies may simultaneously alter the behavior of the addressing as well as the 
addressed cell, for example by promoting the addressed cell not to acknowledge the 
received signal (chapter 14, 26).
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Rationalization processes serve as further targets for biomodulatory therapies 
(chapter 2). The functional spectrum of distinct cell types within the tumor com-
partment is limited despite the commonly observed huge plasticity and may be 
challenged by the required systems-associated functions directed at the systems 
objects. These profiles of requirements may lead to discrepancies, which can be 
described as inconsistencies, Achilles’ heels, deformations, or missing intersys-
temic exchange processes. Additionally, we have to expect that different patterns of 
cell types within a tumor compartment may promote particular functions, such as 
inflammation, in a tumor type-dependent manner.

Finally, we can state our hypothesis on the mechanisms of action of modular 
therapy: Tumor-associated inflammation is frequently observed during metastatic 
stages. Inflammation seems to be associated with tumor progression, neoangiogen-
esis, and metastatic processes. However, as shown in the present data analysis, 
differential accessibility of tumor-associated pro-inflammatory processes by modular 
therapy approaches suggest that – rather than in a uniform fashion – it seems to be 
differentially integrated into the context of tumor systems.

Modular therapies consist of stimulatory and inhibitory acting drugs. Monoactivity 
of a single drug is no prerequisite. Drug targets may be ubiquitously available 
structures and are not necessarily presented by specific proteins coded by mutated 
genes. Modular therapies may shape the validity of informative processes associ-
ated with tumor-associated inflammation aiming at attenuating tumor growth. 
C-reactive protein may serve as an easy systems-related read-out parameter [2].

Informative processes:
None-DNA-based,

communication-derived heritage
Genes

(epigenetics)

Gene products

Modularly linked
e.g. transcription factors, 

pathways,
cell functions,

Systems levels
Input from

the communicatively
linked background

Redeeming validity of
systems objects,

(novel) denotations

Evolvability
e.g. tumor-associated

inflammation

Holistic
communicative
tumor system

Novel therapy-relevant targets that lie in the communicative architecture of tumor systems

Pragmatic
communication

theory

Genes are not 
representing 

programs themselves

Modular tumor
architecture

Fig. 13.1 Tumors allow experimental therapeutic access from inside in a comprehensive and 
reconstructive way (systems view) via modular (biomodulatory) therapy approaches and may be 
described as evolutionary developing systems. Modular therapies evolve the informative back-
ground, which redeems validity and denotation of tumor-associated objects. Therapeutically 
accessible pathologies may derive from the decoupling of functional cellular and systems ‘world’ 
and can be targeted by modular therapy approaches



29113 The Comparative Uncovering of Tumor Systems Biology

The present re-evaluation of previously published clinical trials mainly aims at 
showing the modular integration of tumor-associated inflammation and rationaliza-
tion processes within the tumor context by means of novel developed methodologies 
for targeting tumor systems. The methodological instruments are structured bio-
modulatory therapy approaches shaping the validity of communicative processes. 
Three questions in particular were pursued within the present data analysis:

 1. May we describe systems-mediated rationalization processes with normative 
therapy-derived statements?

 2. Are systems stage-specific modular therapies available, which may be guided by 
biomarkers?

 3. May biomodulatory therapies, administered as fixed modules, contribute to dis-
cover and understand novel regulatory systems in tumor biology, for instance 
tumor-associated inflammation?

13.2  Methods

Our basic experimental plan was to show that differential control of tumor- 
associated inflammation may lead to attenuation of tumor growth in different meta-
static tumor entities [2, ,6].

Between 2001 and 2008, we included 266 patients with metastatic neoplasms 
(castration-resistent prostate cancer [CRPC], renal clear cell carcinoma [RCCC], 
sarcoma, melanoma, multivisceral Langerhans’ cell histiocytosis [LCH], and gas-
tric cancer) in eight clinical trials [2, ,6–14]. Most tumors had been systemically 
pre-treated (54%) to prove the activity of biomodulatory therapy modules in a pal-
liative setting. Two trials (melanoma and gastric cancer) were randomized, and 
their clinical outcome has been reported recently [6, ,12].

As backbone of our all-oral, multi-pronged, and modularly acting therapy sched-
ules, we used daily metronomic low-dose chemotherapy in all tumor types. As 
anti-inflammatory axis of treatment, we added pioglitazone as an agonist of the 
nuclear transcription factor peroxisome proliferator-activated receptor alpha and 
gamma and coxib (rofecoxib or etoricoxib). To enhance the anti-inflammatory 
activity of the treatment schedule, we added low-dose interferon-alpha in patients 
with hormone-refractory prostate cancer dexamethasone and in renal clear cell 
carcinoma (Figs. 13.2 and 13.3).

Patients of two trials were randomized (metastatic melanoma [12], metastatic 
gastric cancer [6]) into arms comparing metronomic chemotherapy with or without 
anti-inflammatory therapy. For renal clear cell carcinoma, two sequential trials 
were conducted with escalating anti-inflammatory activity of the treatment sched-
ule. All trials and their design have been published as indicated in Table 13.1.

Metronomic low-dose chemotherapy has a pleiotropic activity profile and 
predominantly acts in an angiostatic and immunomodulatory manner [15–17].

We used stimulatory and inhibitory acting drugs to attenuate tumor-associated 
inflammation and angiogenesis. The single doses of anti-inflammatory therapy are 
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indicated in Table 13.1. All therapy-relevant targets are ubiquitously distributed 
across different cell types within the tumor compartment.

Therapeutic modules: Biomodulatory acting fixed drug combinations 
 characterized by combined systems-directed activity may be more precisely described 
as therapy modules. Modules are biomodulatory elements mediating regulatory 
activities within a tumor compartment by targeting tumor cells and adjacent stroma 

Trofosfamide 50 mg p.o., 3 times daily

Capecitabine 1 g p.o.
twice daily for 14 days

one week
break

Capecitabine 1 g p.o. 
twice daily for 14 days

Angiostatic: Up-regulation of thrombospondin 1, reduction of circulating endothelial cells, 
decreased recruitment of endothelial progenitorcels, and blocking rebounds by the tumor 
vasculature
Anti-inflammatory in gastric cancer
Immuno-regulatory: Reduction of tumor-induced immune-tolerance, enhanced immunity against
various tumor antigens, and strongly curtails immunosuppressive regulatory T-cells

Fig. 13.2 Angiostatic therapies: Metronomic low-dose chemotherapy

Interferon-α 3 to 4.5 MU s.c. three times a week

Pioglitazone 60 mg p.o. daily (PPAR alpha/gammaagonist)

Etoricoxib 60 mg p.o.  daily (COX-2 inhibitor, PPAR deltaantagonist)

- Pioglitazone/etoricoxib (Metastatic melanoma, cholangiocellular carcinoma,
sarcoma, multivisceral Langerhans‘ cell histiocytosis
gastric cancer)

- Pioglitazone/etoricoxib/dexamethasone (Castrate-refractory prostate cancer)

- Pioglitatzone/etoricoxib/interferon-alpha (Metastatic renalclearcell carcinoma)

Dexamethasone 0.5 to 1 mg p.o. daily

Fig. 13.3 Tumors’ systems biology: dysregulation of (nuclear) transcription factors
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cells as well as their dynamic functions (communication). Therapeutic activity does 
not necessarily apply to the mono-activity of a single drug but rather to synergistic 
regulatory processes, which may be cumulatively initiated by an action-oriented 
therapeutic approach.

C-reactive protein: C-reactive protein (CRP) was continuously monitored at 
respective study visits to uncover possible links between systems-directed 
modulation of tumor-associated inflammatory processes and clinical or objec-
tive tumor response, progression-free survival (PFS), and overall survival (OS). 
Thus, situation- and stage-specific background knowledge on systems behavior 
in an individual tumor disease could be collected.

Tumors were monitored for infection-related CRP elevation to be distinguished 
from systemic tumor-associated inflammatory processes.

13.2.1  Tumor-Specific and Stage-Specific Therapeutic 
Accessibility of Inflammation-Related Processes

The activity of treatment modules is described by means of situation-related 
(systems-stage-dependent) systems explanations [2, ,5] based on therapy-derived 
normative yes or no statements. Of special interest were

 1. The anti-inflammatory activity of the modules in the respective tumor types
 2 The time course of CRP response and clinical tumor response
 3. The suitability of theoretically derived systems terms for assessing the tumor’s 

systems behavior (intersystemic exchange, rationalization processes, inconsisten-
cies) as well as the modular activity of biomodulatory therapy approaches [2]

May biomodulatory therapies, administered as fixed modules, contribute to the 
discovery and understanding of novel regulatory systems in tumor biology? To 
answer this question, tumor systems biology is reconstructed as indicated by the 

Table 13.1 Therapy Modules

Module A  
(lead-in) Module M Module A/M

Module A/M  
plus dexa

Module A/M  
plus interferon-a

Melanomaa, c  
(randomized)

+ + + − −

Gastric cancera, b  
(ran.)

− + + − −

RCCCb, c, (i)  
(sequential)

− − + − +

CRPCb, c,d − − − + −
Sarcomaa, c + − + − −
LCHa, c − − + − −

A (anti-inflammatory)c = piolitazone 60 mg daily plus rofecoxib 25 mg daily or etoricoxib 60 mg 
daily; M (metronomic) = trofosfamidea50 mg thrice daily, or capecitabineb1 g/m2 or 1 g absolute 
twice daily for 14 days every 3 weeks; Dex = dexamethasoned  0.5 or 1 mg daily; Interferon-alpha(i) 

3 or 4.5 MU thrice weekly
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response behavior to standardized biomodulatory therapy modules (Fig. 13.1). The 
following modalities were used for assessing tumor systems behavior:

 1. Inconsistencies may be therapeutically met, if an approach leads to a rapid response 
by hitting the main weakness of a tumor system (Achilles’ heel). Paradox processes, 
such as weaknesses, may develop on the basis of a systematic congestion caused by 
rationalizing the functional ‘world’ of tumor-associated stroma and tumor cells. 
This rationalization results in an overload or restriction of communicative infra-
structures or in a decoupling of systems and the functional world of cell systems.

 2. In an evolutionary process, tumor cells may exploit the whole extent of rational-
ization features of both stroma and tumor cells to implement the functional 
diversity of systems behavior aimed at maintaining homeostasis and robustness 
in tumor systems. Differential biomodulatory accessibility of tumor-associated 
inflammatory processes for mediating clinical tumor response is indicative for 
corresponding differential integration of tumor-associated inflammatory pro-
cesses into a tumor’s systems context.

 3. Disturbances in intersystemic exchange processes are suggested in case of low 
sensitivity of CRP responses to predict clinical response.

13.2.2  Statistics and Data Analysis

Primary end point of all trials was PFS. Secondary endpoints included objective 
response rate, OS, toxicity, and C-reactive protein response in serum.

For the present evaluation, clinical response was defined as stabilization of 
progressive disease for at least 3 months (tumor progression <25%), objective 
tumor response, and partial or complete remission as indicated in the respective 
publications [2]. Progression-free survival was defined as the interval between the 
beginning of treatment and disease progression. Survival duration was calculated 
from randomization to treatment or study inclusion. Survival distributions were 
generated by means of the Kaplan-Meier method.

C-reactive protein levels were dichotomously separated into normal CRP  
(<10 mg/dl) and elevated CRP (³10 mg/dl). CRP response was defined as decrease 
of >30% from baseline within 4–6 weeks of treatment for every cancer entity except 
gastric cancer (>50% decrease). All trials or single treatment arms were compara-
tively re-evaluated with regard to anti-inflammatory activity (CRP response) and 
clinical response. If available, PFS and OS rates were compared with regard to single 
or combined modules. In a second step, we evaluated the predictivity of anti- 
inflammatory response for clinical response (sensitivity and specificity).

The Fisher exact test and the “student t”-test were used to identify significant 
associations between clinical and biologic variables.

13.3  Results

Altogether, 266 patients were enrolled into eight phase II trials. Clinical outcome 
has been recently reported in detail [1, ,2].
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C-reactive protein in metastatic tumors: Variable profiles of tumor-associated 
systemic inflammation were empirically detectable depending on the metastatic 
tumor type: Systemic inflammation frequently occurred in most metastatic tumors 
studied (72–100%), including cholangiocellular carcinoma (CCC) (100%), but 
only in about one third of metastatic CRPCs (28%) [2].

CRP response behavior: 98% of CRP responders could be detected during 
the treatment interval of 4–6 weeks. All administered modules turned out to have 
the capacity for attenuating tumor-associated inflammation, although efficacy 
was not uniformly distributed between diseases: Metronomic chemotherapy 
induced CRP responses in 67% of patients with gastric cancer, module A/M in 
92% of patients with melanoma. In contrast, module M induced poor CRP 
response in melanoma as did A/M in RCCC (Table 13.2). Module A mediated 
no additional response in gastric cancer. The addition of a second transcrip-
tional modulator in patients with RCCC was paralleled by increased frequency 
of CRP response (Table 13.2) and a steep decline of base-line CRP levels after 
4–6 weeks of treatment (Table 13.3). CRP responses were already observed dur-
ing the 14-day lead-in phase with module A in some patients with angiosarcoma 
(83%) and melanoma (23%). CRP response to therapy occurred independently 
of the detected frequency of systemic inflammation in the respective tumor types 
(Table 13.2).

In CCC, systemic inflammation was related to tumor-associated cholangitis and 
responded to anti-microbial therapy in 90% of patients. Only 8% of all other 
patients received concomitant anti-microbial therapies.

13.3.1  CRP Response as Predictor for Clinical Tumor Response

CRP none-response to biomodulatory therapy was consistently associated with 
high predictivity for missing clinical response independent of the tumor type. This 
association strengthens the concept of tumor-associated inflammatory processes 

Table 13.2 C-reactive protein responder and therapy module/disease

% C-reactive protein responder

Module M Module A/M
Module A/M plus  
ifn-a or dex

Melanoma 42 92 –
Gastric cancer 67 65 –
CRPC – – 80
RCCC I – 69 –
RCCC II – – 100
Angiosarcoma – 100 –
Multivisceral LCH – 100 –

CRPC = castration-resistent prostate cancer; RCCC = renal clear cell carcinoma; LCH = Langerhans 
cell histiocytosis; CRP = C-reactive protein; Module M = metronomic low-dose chemotherapy; 
Module A = pioglitazone plus etoricoxib or rofecoxib; Clinical response = stable disease, partial 
remission, and complete remission
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that are of pathophysiological importance during tumor progression,  irrespectively 
of tumor type and distinct systems integrations of inflammation-related processes. 
Broad therapeutic accessibility of inflammation-related processes for response 
induction in all tumor types indicates constitutive spin-off of new systems 
functions during metastatic stages (Table 13.4).

CRP response was predictive for clinical response in case of CRPC, RCCC, 
angiosarcoma, and LCH at a high level of sensitivity. In contrast, the relatively 
low sensitivity in metastatic melanoma suggests a lack of inter-systemic exchange 

Table 13.3 C-reactive protein follow-up in CRP responder/non-responder

CRP responder  
(>30%) Mean CRP 
levels at baseline  
(mg/dl)/after  
4–6 weeks

CRP non-reponder  
Mean CRP levels  
at baseline (mg/dl)/ 
after 4–6 weeks P-value

Metastatic melanoma  
module M and A/M

21.7/11.8 20.2/69.6 0.003/0.001

Metastatic gastric cancer  
module M

27.5/6.47 31.2/78.3 0.02/0.004

Metastatic gastric cancer  
module A/M

20.4/6.7 25.6/69.1 0.07/0.02

RCCC module A/M – 47.8/41.7 0.32
RCCC module A/M + 

interferon-a
40.2/11.3 – 0.0005

CRPC, module A/M + dexa 36.8/12.2 – 0.02
Melanoma/sarcoma,  

module A/M
34/12.3 52/98 0.02/0.009

CRPC = castration-resistent prostate cancer; RCCC = renal clear cell carcinoma; CRP = 
C-reactive protein; Module M = metronomic low-dose chemotherapy; Module A = pioglita-
zone plus etoricoxib or rofecoxib

Table 13.4 Inflammation control and clinical response (stable disease, PR and CR)

Predictivity of CRP response for clinical response:  
Sensitivity/specificity (%)

Module M Module A/M
Module A/M plus  
ifn-a or dex

Melanoma (Melanoma Res,  
2007; PPAR Res, 2009)

62/91 75/100 –

Gastric cancer 91/100 85/86 –
CRPC – – 88/100
RCCC I – 89/100 –
RCCC II – – 93/100
Angiosarcoma – 83/100 –
Multivisceral LCH – 100/– –

CRPC = castration-resistent prostate cancer; RCCC = renal clear cell carcinoma; LCH = 
Langerhans cell histiocytosis; CRP = C-reactive protein; Module M = metronomic low-dose che-
motherapy; Module A = pioglitazone plus etoricoxib or rofecoxib; Clinical response = stable 
disease, partial remission, and complete remission
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processes between tumor-associated inflammation and tumor-associated systems, 
promoting progression in about one third of patients (Table 13.4). In patients with 
melanoma or RCCC, clinical response rates consistently increased together 
with the induction of CRP response from 26% to 69% and from 62% to 93%, 
respectively.

Degree of tumor response and CRP response: Clinical responses consecutive 
to CRP response showed varying degrees (SD, PR, CR, cCR) (Table 13.5). 
Particularly high rates of clinical and objective responses resulting in continuous 
complete remissions were observed in RCCC, CRPC, and angiosarcomas; improved 
PFS and OS rates were seen in melanoma, RCCC, and gastric cancer, particularly 
in CRP responders. Vice versa, the groups of CRP none-responder experienced 

Table 13.5 Combined targeting of the modular tumor architecture (52% pre-treated patients): 
response behavior

Tumor type/therapy arm

Response

No. of patients
Partial  
remission (%)

Complete  
remission (%)

Continuous  
CR (%)

Sarcomas I 21 19 16 5
Angiosarcomas  6 17 33 17
Melanoma Arm M® 22  4 0 0
Arm A/M 26 11 3 3
Langerhans’ cell histiocytosis  

(multivisceral)
 2 – 100 100

Renal clear cell carcinoma  
(RCCC) I (no IFN-a)

18  0 0 0

Renal clear cell carinoma II  
(plus IFN-a)

33 35 13 9

Castration-resistent prostate 
cancer (CRPC)

36 28 6 6

Cholangiocellular carcinoma 21 24 5 5
Gastric cancer Arm M® 20 20 0 0
Arm A/M 22 14 0 0

Table 13.6 C-reactive protein response and progression-free/overall survival. Median progres-
sion-free (PFS)/over-all survival (OS) (months)

CRP responder 
PFS/OS

CRP none-responder 
PFS/OS P-value PFS/OS

Metastatic melanoma 2.0/18.0 1.2/5.3 0.016/0.045
RCCC A/M – 4.7/16.2 –
RCCC A/M + ifn-a 11.5/25.6 – –
Metastatic gastric cancer 

Module M plus A/M
6.52/12.34 2.46/5.10 0.01/0.005

Melanoma/sarcoma 3.5/– 1.0/– 0.004/–

Castration-resistent prostate cancer: Too less patients for Kaplan-Meier analysis, RCCC = renal 
clear cell carcinoma; CRP = C-reactive protein; PFS = progression-free survival, OS = overall 
survival; Module M = metronomic low-dose chemotherapy; Module A = pioglitazone and etori-
coxib or rofecoxib
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significant increases in mean CRP levels within 4–6 weeks on treatment and at best 
a retardation of progression (Tables 13.3 and 13.6).

Time intervals from CRP response to objective response were extremely variable. 
In most cases, objective response was preceded by CRP response: The majority 
(91%) of patients with objective response responded with delay (range 3.1–16 
months). Only two patients with CRP response were continuously progressing.  
In case of rapid CRP (within 14 days) and tumor (up to 3 months) responses 
(angiosarcoma, CRPC), biomodulatory therapies may hit a tumor’s Achilles’ heel 
(tumor-associated inconsistencies), whereas delayed objective response may be due 
to the inherent robustness of tumor systems. However, the robustness of tumor sys-
tems can be eventually overcome by the therapeutic sustainability of modules over 
time, as shown particularly in patients with much delayed objective tumor responses. 
CRP response was directly paralleled by PSA response in CRPC, but only a few 
patients with measurable disease also showed delayed objective response.

Interestingly, module M may act via rather different systems-related activities 
in a tumor type-dependent manner, for instance without accompanying anti-
inflammatory activity in tumors such as metastatic melanoma (objective response 
rate corresponded to DTIC first-line treatment) or with significant anti-inflamma-
tory activity as in gastric cancer. Drug related differences used in metronomic 
chemotherapy modules seem to play an inferior role for the observed dichotomy 
in the mechanisms of action. Capecitabine is inefficacious as a monotherapy for 
CRPC [2] but highly effective in combination with an anti-inflammatory therapy 
approach.

Finally, we may map tumor-associated inflammation to show that inflammation 
is rather differentially integrated into the evolutionary context of tumor systems 
and, in fact, modular. Three types of interactions between modules may be distin-
guished by clinical response, PFS, and OS (Fig. 13.4):

 1. No additive activity was found in gastric cancer but simultaneous no response-
compromising activity between module M and A.

 2. Additive or synergistic activity of both treatment modules in melanoma,  
sarcoma, and LCH.

 3. Intensified (specified) and concerted activity by adding a further transcriptional 
modulator such as interferon-alpha in RCCC or dexamethasone in CRPC.

13.4  Discussion

The three mainstays of acquiring new insights into novel therapy approaches imple-
menting modularity are (1) the change from the classic conclusion logic (indicating 
a pathway responsible for cell death) to that of normative statements (how to 
control systems-associated processes with therapy modules to achieve response); 
(2) the change from object-associated to situation-associated systems interpreta-
tions (biomodulatory therapies in metastatic tumors); and (3) the change from an 
intentional (reductionist) to a evolution-based systems explanation (systems 
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behavior and response) [1;2,5]. For situation-associated systems interpretations and 
systems explanations, we may now use terms derived from theoretical consider-
ations on a tumor’s modular systems behavior and intercellular rationalization 
processes [1;2,5].

13.4.1  Systems Rationalization and Inter-systemic  
Exchange Processes

The comparative interpretation of tumor systems presented, which is based on 
modular therapy approaches, shows that:

 1. Completely differently acting biomodulatory treatment modules, such as metro-
nomic low-dose chemotherapy or pioglitazone plus coxib, initiate suppression 
or reversion of tumor-associated inflammation in a tumor- and stage-specific 
manner.

 2. CRP responses may further translate into clinical responses including the 
achievement of CR (Table 13.5).

 3. Inflammation as a tumor-associated sub-system is differentially integrated into 
the context-dependent ‘living world’ of a tumor compartment, which is featured 
by tumor-specific, even tumor subtype-specific rationalization processes:  
In about one third of patients with gastric cancer or metastatic melanoma, 

Pioglitazone, 
Etoricoxib and
metronomic 

chemotherapy

Pioglitazone
and

Etoricoxib

Pioglitazone
and

Etoricoxib

Pioglitazone,
Etoricoxib, 

Dexamethasone,
and metronomic
chemotherapy

Control of
tumor-associated

systemic
inflammation Gastric cancer

Sarcoma
Melanoma,

Langerhans‘ cell
histiocytosis

Renal clear cell
carcinoma

Castration-refractory
prostate cancer

Metronomic
low dose

chemotherapy

Low dose
Interferon-alpha

Metronomic
low dose

chemotherapy

Synergism

Concerted activity of drugs
without monoactivity;

Other mechanisms besides
inflammation control

No impact

Additive / synergistic;
Other mechanisms besides
inflammation control

Synergism

Fig. 13.4 Control of tumor-associated inflammation may be achieved by differentially interacting 
modular therapy approaches. Metronomic low-dose chemotherapy targets at least three systems 
related to inflammation, and the modular response reflects the heterogeneity in tumor-associated 
inflammation-related systems as well as in the acquired functional impact of inflammation-related 
systems
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inflammation is not accessible to the biomodulatory therapies used in these 
studies [6;12] (Table 13.2).

 4. Pioglitazone plus etoricoxib as well as metronomic chemotherapy site-specifically 
mediate and focus on diverse tumor-associated topologies of aggregated action 
effects: Prerequisite for the realization of diverse aggregated action effects are 
inter-systemic exchange and communication processes. These processes seem 
to be altered in metastatic melanoma, as about one third of patients with mela-
noma showed CRP decline to module A, but did not show any clinical response. 
A comparable percentage of patients with gastric cancer and elevated serum 
CRP levels did neither respond to inflammation nor clinically.

 5. The chosen biomodulatory therapy elements act as single modules with identical 
modules showing differential mechanisms of action (e.g. low-dose metronomic 
chemotherapy in metastatic melanoma and gastric cancer or pioglitazone and 
coxib in RCCC, metastatic melanoma, and gastric cancer).

 6. Empirically, differences may be detected in modalities of evolutionary systems 
development. Both tumors systems stage and evolutionary divergence of inflam-
mation-associated systems within a particular tumor type may explain a tumor’s 
selective sensitivity to different therapy modules in the metastatic stage (Fig. 13.4).

Systems integration of multifold interwoven inflammatory processes: The 
administered therapy modules may either induce clinical response in tumor types 
without predominant systemic inflammation in the metastatic stage, i.e. in CRPC, 
or without altering systemic tumor-associated inflammatory processes (efficacy of 
metronomic chemotherapy in melanoma). These empirical observations indicate 
that systems-directed activities of the respective modules may go far beyond those 
systems, which are directly involved in mediating tumor-associated inflammation 
(site-specific activity, attenuation of metastatic spread, attenuation of tumor-asso-
ciated autoimmune phenomena) [1;2;18]. In this comparative analysis, we could 
clearly show that systems processes are multifold interwoven with one another by 
inter-systemic exchange processes. Simultaneous modeling of additional tumor 
characteristics, such as metastatic behavior, organ site-specific activity, and local-
ized or systemic inflammation are shown to be implicit features for therapies 
including biomodulatory acting modules that aim at focusing on biological sys-
tems processes.

Diversity of systems processes in the metastatic stage: The present study 
evaluation shows that tumors can be comparatively characterized by their distinct 
systems biology, which may be uncovered via biomodulatory therapy approaches 
and respective study designs: This approach shows a broad heterogeneity of sys-
tems processes conveying tumor-associated inflammation (Fig. 13.5).

Tumor-associated systems processes are not uniformly integrated into a tumor sys-
tems context, neither within morphologically defined tumor stages (metastatic stage) 
nor within a distinct tumor type. In gastric cancer and melanoma, tumors developed 
either stage-specific or subtype-associated diversity of (sub)-systems by differentially 
developing systems-integrative processes, i.e. rationalization, that mediate tumor-
associated inflammation. These rationalization processes are not related to histological 
subtypes (for instance intestinal versus diffuse type in gastric cancer). The capacity to 
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develop systems diversity indicates a dissociation of the structures and functions of 
tumor systems (e.g. inflammation) on the basis of rationalization processes. This 
development may impede biomodulatory accessibility for distinct therapy modules 
and seems to determine systems-specific activity of the administered modules. 
Therefore, biomodulatory therapies, administered as fixed modules, may contribute to 
discover and understand novel regulatory systems in tumor biology [19].

13.4.2  The Systems Biology of a Tumor: An Independent 
Feature at a Distinct Stage?

The basic idea of this series of studies was to primarily select patients with angio-
genesis- or inflammation-driven tumors or both for combined anti-inflammatory and 
angiostatic therapy. The three suggested treatment groups with distinct biological 
behavior, angiogenesis-driven tumors, generally pro-inflammatory tumors, and 

Tumor-
associated

inflammation

Differential denotation within
tumor-specific systems context!

Constitutive denotation

Tumor progression
Angiogenesis

Metastatic process
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Fig. 13.5 Maps of network components and pathways cannot provide definitive functional sys-
tems interpretations, as inflammation is rather differentially integrated into the evolutionary context 
of tumor systems. However, three types of interactions between therapy modules may be separated 
by clinical response, PFS, and OS or by using markers with intrinsic functional significance (e.g. 
CRP): (1) No additive activity; (2) Additive or synergistic activity; and (3) Intensified (specified) 
and concerted activity. Tumor-specific and stage-specific modular therapeutic accessibility of 
inflammation-related processes indicate a constitutive spin-off of new systems functions during the 
metastatic process and the differential integration of inflammation into the context-dependent ‘liv-
ing world’ of a tumor compartment. This development is featured by tumor-specific and subtype-
specific rationalization processes: Inflammation-related activities are communicatively promoted 
and differentially adapted during tumor evolution. Systems are characterized by differential inte-
gration of inflammation (rationalization) and a distinct decoupling of functional and systems 
‘world’. Context rearrangement can be achieved by anti-inflammatory modular therapy approaches 
involving coxibs, interferons, glucocorticosteroids, and PPARalpha/gamma agonists
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tumors with inflammatory characteristics in the metastatic stage are not mirrored in 
the detected differential systems stages, which are involved in mediating tumor-
associated inflammation. As biological tumor features are not correlated to identical 
biologic behavior in response to biomodulatory therapy, these data indicate that 
tumor-associated inflammation is promoted by differentially developing tumor-
associated subsystems, which characterize tumor type and stage in a similar way as 
the histological subtype.

Particularly from an exclusively therapeutic point of view the analysis of 
comparable biomodulatory therapy approaches administered in patients with 
histologically different metastatic tumor diseases may show that tumor-associated 
inflammation has a constitutive denotation for tumor progression and the 
metastatic process (Fig. 13.5), which is specifically accessible via biomodulatory 
therapies. Implementation of modular ‘knowledge’ in form of biomodulary thera-
pies alters the validity of communicative processes: Tumor-associated inflamma-
tory processes may evolve from their original denotation, namely promotion of 
tumor progression, up to the point of attenuation of tumor growth, which is 
indicated by the stage-specific systems marker CRP (Fig. 13.5).

The descriptive allocation of ‘tumor-inherent’ functions to characterize a 
tumor’s disastrous features remains consistent with reductionist or contextualist 
requirements to create hierarchical levels responsible for promoting tumor growth, 
such as tissue invasion (matrix remodeling), establishing an inflammatory microen-
vironment, the insensitivity to growth inhibition, evasion of apoptosis, sustained 
angiogenesis, limitless replication potency, and self-sufficiency in growth signals [20]. 
In the reductionist picture, tumor-associated pathosphysiological features are 
equated with the causation of a tumor. The usefulness of this description is the 
integration of the tumor cell in a larger environmental context, but it reduces 
environmental tumor-associated activities as compliable unidirectional functions 
mediated by the tumor cell.

The present evaluation of clinical trials on metastatic tumors highlights the 
imperative and context-disrupting claim for validity of controlling therapeutic 
inflammation as an important prerequisite for tumor control. Inflammation control 
with modularly designed therapies allows the deduction of action-relevant yes or no 
statements that generate facts on-site in the tumor via biomodulatory therapy mod-
ules. A comparative analysis to uncover tumor systems biology may foster the 
transition from a context-dependent scientific and medical landscape of knowledge 
(the ‘magic bullet’ of Paul Ehrlich) to that of normative statements that interpret 
tumor systems behavior in a situation-associated manner (modular therapy). This 
change provides a promising basis for novel therapy strategies, which are needed 
to translate fundamental analytically-derived discoveries into personalized, i.e. 
systems-adapted, and thus situation-adapted therapeutic tumor strategies: This way, 
therapies may ‘come’ to the patient.
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Abstract On the background of a formal communication theory (Chapter 3) it is  
possible to phrase pragmatically, what is driving evolutionary processes: Communi‑ 
catively linked biological systems are interweaving the nude identity of their systems 
objects or the arrangement of compartmentalized knowledge (on the observer’s site) 
with situative biological stages or with the communicative arrangement of systems 
objects’ validity and denotation (on the participator’s site) by allowing the implemen‑
tation of internally‑derived or externally‑derived modular knowledge. This knowledge 
is based on rules that are present in modularly arranged and rationalized systems tex‑
tures, which are equitable with the ‘metabolism’ of evolutionary systems and purport 
the frame for evolutionary multiplicity.

Keywords Evolution • Communication theory • Modularity • Rationalization  
• Metastatic tumor

14.1  Letter

To Dr. Greaves article with the title: ‘Darwin and evolutionary tales in leukemia’. 
Hematology Am Soc Hematol Educ Program, 2009: 1–12.

Unlike laws of nature, causal relations between initiating processes of tumor 
development are not anchored in an invariance of nature. Therefore, molecular and 
cytogenetic aberrations at initial diagnosis are generally heterogeneous [1]. 
However, distinct acquired genetic lesions are not distributed at random in tumor 
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cells, despite the high variability of cancer causes, the heterogeneity of observed 
genetic aberrations, and the divergence of morphologic characteristics of diverse 
tumor types.

Invariance within leukemogenesis or tumorgenesis may be observed during leu‑
kemia or tumor progression. In interaction with the tissue, leukaemia and tumor 
(stem) cells use processes according to laws of nature to build up favorable infra‑
structures (systems) for proliferation [2].

A lead back to a final first principle, the ‘founder phenotype or genotype’ 
according to Darwin’s reductionist considerations [1] that may be therapeutically 
targeted to eradicate leukemia or tumor diseases is – with exceptions − not suffi‑
cient for therapeutic purposes: Therapeutic targeting of the molecular‑genetic het‑
erogeneity of malignant (stem) cells includes multi‑level difficulties.

Instead of such a lead back on a ‘founder genotype’, we have to deal with mul‑
tiple and various constellations of functionally defined leukemia‑ or tumor‑associ‑
ated systems (i.e. inflammation, neoangiogenesis, Warburg effect, immune response, 
extracellular matrix remodelling, cell proliferation rate, apoptosis, coagulation effects, 
stem cell niches). These constellations of systems, have to be broken down to their 
single moments, e.g. in a reductionist sense – to evolving novel aberrant leukemia 
or tumor genotypes, indicating ‘branching’ of systems (Darwinian ‘selection’), but, 
simultaneously, we have to understand the communicative relationship between 
one another rather than separately adding one system to another and thereby 
neglecting the presence of constitutive holistic communication architectures in 
biological systems [3]. These to some degree self‑content‑systems are simultane‑
ously involving all systems objects, leukaemia and tumor cells as well as tumor‑
adjacent stroma cells [4,5]. The principle therapeutic problem of neoplasias lies in 
this point [2].

The reductionist Darwinian comprehension of evolution may be now advanced 
on the basis of observations derived from biomodulatory therapy approaches in 
metastatic tumors. The metastatic process may be considered as ‘rapidly’ evolving 
biologic system [2,3,6]:

Modularity of cell systems and proteins enables to constituting a ‘big func‑
tional world’ inside small biological networks [3,7,8]. Modularly constituted 
molecular or cellular architectures allow implementing modular knowledge with 
respective biomodulatory therapy approaches by redeeming novel validity of sys‑
tems objects, the cells, pathways, molecules [2,3]. As biomodulatory therapies are 
sufficient to induce objective tumor response, these therapy approaches represent a 
methodological tool to comparatively uncover leukemia’s or tumors’ modular sys‑
tems architectures. Therapeutically induced evolutionary steps may specify the 
definition of evolvability: Modularity allows to retrospectively establishing spaces 
for primarily non‑heritable evolutionary developments, if modular events are 
implemented, e.g. with biomodulatory therapy [3].

Rationalization processes within tumor compartments may be separated under 
the view of purposes. Purposes are enmeshed in rationalized ‘life‑forms’ of com‑
munication‑driven cell systems, in such a way that we cannot oppose or circumvent 
them: The functional spectrum of distinct cell types within the tumor compartment 



30714 Searching for the ‘Metabolism’ of Evolution

is limited despite of commonly observed huge cellular plasticity and is challenged 
by the required systems‑associated functions directed at the systems objects [6]. 
These profiles of requirements lead to constitutive systems’ features, which con‑
tribute to the robustness of systems. Systems‑associated rationalization processes 
and modular architectures implicitly include discrepancies, i.e. inconsistencies, 
Achilles’ heels, deformations or missing inter‑systemic exchange processes. The 
proof of discrepancies is suitable to identify communication‑derived rules [6]. 
Without these rules, evolutionary processes would not function.

Modular therapies exemplarily give indications of the ‘metabolism’ of evolu‑
tionary processes [3]: All hierarchies, developed by intentionally acquired knowl‑
edge, i.e. Darwin’s evolving branching systems (Fig. 14.1), are leveled by modular 
systems considerations and by considering rationalization processes, to be finally 
discharged in a continuum of contingency programming and continuous inter‑
systemic exchange processes, respectively. Incommensurable ‘worlds’, the hetero‑
geneous external physical or biochemical ‘worlds’ may be linked with the 
modularly arranged non‑DNA‑based heritage of the cellular ‘living world’ [9] and 
the  DNA‑based via the possibility for implementing modular cellular ‘knowledge’. 
This process may result in substantial alterations of the cellular ‘living world’ and 

Fig. 14.1 Charles Darwin’s 1837 sketch, his first diagram of an evolutionary tree from his First 
Notebook on Transmutation of Species (1837). Within reductionist considerations selection pro‑
cesses are indispensable. Modularity and rationalization processes, as discussed in a formal prag‑
matic communication theory, are sufficient to operationally define evolvability, which includes 
failure, fallacies, inconsistencies and rationalization processes
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finally in molecular‑genetic aberrations in tumor and stroma cells, even in trans‑
plantable stroma characteristics (e.g. fibroblasts) [10–12]. Vice versa, the (molec‑
ular‑genetically altered) microenvironment facilitates clonal evolution of tumor 
cells [12].

Darwin has detected evolvability as an inherent feature of biological systems 
(‘On the origin of species by means of natural selection, or the preservation of 
favored races in the struggle for life’; 1859). The presence of evolvability in bio‑
logical systems simultaneously implicates the susceptibility towards events imple‑
menting external or internal modular ‘knowledge’ within holistic communicatively 
linked cellular systems [3,10]. The ‘metabolism’ of evolution, allowing implemen‑
tation of internally and externally derived knowledge according to communication‑
associated rules may establish huge systems’ diversity and context‑dependent 
multi‑functionality of proteins for creating modular cellular architectures (Fig. 14.1) 
[2, 3, 6, 8, 10]. ‘Selection’ in a non‑Darwinian sense may be attributed to mecha‑
nisms covered by a pragmatic communication theory [3]. The novel ‘selection’ 
rules, based on modularity and rationalization processes may be uncovered by 
 retrospectively establishing spaces for primarily non‑heritable evolutionary 
 developments, if modular events are implemented. As rationalization processes are 
inherent in biological systems, inconsistencies, Achilles’ heels, deformations or 
missing inter‑systemic exchange processes are implicitly emerging features of such 
systems architectures: On this background, the claim for ‘survival of the fittest’ 
should be revised. ‘Selection’ in the Darwinian sense relies on reductionist based 
observations, which do not account for the ‘metabolism’ of evolution as the original 
texture. The Darwinian notion has originally established the fundamental biological 
feature, namely evolvability of communicatively linked cell systems. The assump‑
tion of modularity and rationalization processes is sufficient to explain that distinct 
evolving tumor‑associated genotypes may become clinically irrelevant, e.g. during 
the course of tumor diseases [6].

The ‘metabolism’ of evolution is generating distinct biological features of 
systems, i.e. survival, evolvability and finally reproducibility by redeeming validity 
of modular cellular features and rationalization processes. The symbolic modular 
architectures of the ‘living world’ of cell systems are reproducing themselves in 
form of rationalization processes, the variable integration of cells within a distinct 
evolving cellular ‘systems world’. These processes take place within holistic com‑
municative systems, which have been uncovered as experimentally and therapeuti‑
cally accessible entity. Modularly constituted biologic systems implicitly include 
evolvability, i.e. the spin‑off of systems functions, and rationalization processes, 
which are oriented on success. Coordination of actions, and strategic interventions, 
i.e. attenuation of tumor growth, may be (therapeutically) established by implemen‑
tation of internally or externally derived modular knowledge. The possibility to 
choose between communication and strategic interventions is arbitrary and abstract, 
because it is only based on intentional perspectives of system’s participators, once 
cell systems, at another time external systems implementing modular ‘knowledge’, 
or therapeutic operators of systems, e.g. physicians in case of biomodulatory 
therapies.
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The overwhelming multiplicity of fossil and living species exemplifies the 
options of modular biological architectures and rationalization processes in the 
classic reductionist sense.
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Abstract Strong associations are assumed between inflammation, cancer initiation, 
and tumor progression. Weight loss and cachexia predispose for early death in cancer 
disease. Usually, such cachexia conditions are characterized by systemic inflamma-
tion, which is easily monitored by increased blood levels of C-reactive protein and an 
elevated erythrocyte sedimentation rate. Hypothetically, eicosanoids or, more specifi-
cally, prostaglandins could be common mediators in the promotion of cancer cachexia 
and the fatigue syndrome. Consequently, prostaglandins, particularly prostaglandin E

2
, 

have been reported to involve the development of anorexia, altered resting energy 
expenditure, tumor neoangiogenesis, elevated whole-body fat and cell metabolism, as 
well as blood and circulatory homeostasis in progressive cancer disease. 

Thus, primary and secondary interventions with cyclooxygenase inhibitors 
(COX-1, COX-2) should significantly influence the appearance of overt malig-
nancy and attenuate local tumor growth with improved survival in experimental 
and clinical cancer. Providing nutritional support, either by oral ingestion or paren-
teral nutrition, may help to prolong survival and increase wellbeing and quality of 
life in such patients. In our study, this treatment was combined with anti-inflammatory 
therapy to conceptually increase the effectiveness of supportive care.

Keywords Tumor-associated inflammation • Cachexia • Mal-nutrition • COX 2 
inhibitors • Colorectal cancer • Cancer palliation • Tumor-host-interactions
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15.1  Introduction

15.1.1  Tumor–Host Interaction

Strong associations are assumed between inflammation, cancer initiation, and 
tumor progression. Thus, a direct causal link exists between different malignancies 
and chronic inflammation. This link is sometimes related to infections and 
chronic exposure to toxic agents, which may interfere with genetic and epigenetic 
alterations that compromise gene transcription, cell reproduction, as well as 
tissue structures and microenvironments. Common examples are found in various 
solid human malignancies, such as gastric carcinoma, pancreatic carcinoma, hepa-
tocellular carcinoma, cervical carcinoma, prostatic carcinoma, and colorectal 
cancer. Also, a number of classic studies have focused on metabolic and cellular 
alterations in tumor tissue. These studies aimed at showing significant and 
unique metabolisms and cellular reactions, either to explain the continuous and 
uncontrolled proliferation of tumor cells or to define possibilities to attenuate 
and interrupt tumor progression. However, most of these studies seem to essentially 
describe metabolic alterations similar to changes observed in normal, untrans-
formed proliferating cells [1], particularly in the presence of attenuated oxygenation 
and overt hypoxia including tumor stroma interactions and neo-vascularization 
[2–4]. Thus, most tumor-like or tumor-specific alterations are likely to reflect 
rather normal cellular responses, which are usually found in healing wounds and 
tissue compartments during regeneration [5]. Such metabolic alterations are trig-
gered by the local release of growth factors and cytokines from a variety of 
macrophages and host endothelial and immune cells stimulated by chemokines, 
TNF-a, histamine, proteases, various peptidergic growth factors, as well as by 
mediators including heparin, matrix metalloproteinases (MMPs), and serine 
proteases [4,6]. However, the major difference between inflammation in normal 
tissue and inflammation in solid tumor tissue is the continuation of inflamma-
tory reactions during neoplastic circumstances. These reactions are caused by a 
lack of complex negative feedback mechanisms, perhaps due to reprogrammed 
cellular conditions involving epithelial mesenchymal transitions [7]. In this way, 
a malignant tumor initiates and orchestrates a microenvironment that escapes 
normal control, allows promotion of its own progression, and develops the 
prerequisites for a subsequent spread of tumor cells in its host [8]. The inflam-
matory response caused by the interaction between tumor and host cells does not 
only create local tissue reactions, but will also result in adaptational changes in 
host macroenvironments, which are apparent as systemic metabolic and immu-
nological alterations [9,10]. Ultimately, the macrophysiological changes induced 
by local malignant interactions between invasive tumor cells and surrounding 
host cells lead to the physiological state known as cachexia, which is characterized 
by the progressive wasting of host tissues and systemic inflammation [11]. This 
condition may not be entirely related to the size of a tumor but rather correlates 
to a tumor’s biological behavior, biochemical characteristics, and degree of 
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invasiveness with or without overt metastases [12]. The present study will discuss 
such alterations focusing on prostanoids.

15.1.2  Cancer Cachexia

Cancer cachexia involves all host tissues and organs characterized by a negative 
energy balance due to reduced appetite and increased resting energy expenditure 
[13–15]. A negative energy balance explains the initial loss of whole-body fat and 
the subsequent attenuation of skeletal muscle mass [16,17]. Body composition 
changes can be monitored in most organs [11], although cardiovascular and central 
nervous systems were initially believed to be functionally protected [18–21]. However, 
progressive and severe cancer cachexia seems to be universally detrimental for host 
tissues and cellular functions. Metabolic and functional adaptations are probably 
meant to attenuate deteriorations and extend survival as long as possible. Counter-
regulatory mechanisms for such adaptations are communicated by cytokines, growth 
factors, prostanoids, leucotriens, and other messengers, such as classical hormones. 
These changes are apparently well-recognized in stressed organisms but were originally 
thought to partly reflect unique overall metabolic reactions in tumor hosts, particularly 
when combined with under-nourishment (Fig. 15.1). Usually, such cachexia condi-
tions are characterized by systemic inflammation, which is easily determined and 
monitored by increased blood levels of C-reactive protein and an elevated erythrocyte 
sedimentation rate. Transectional multivariate analyses of large groups of unselected 
cancer patients suffering weight loss have confirmed that stress-related and tumor-
related systemic inflammation predict survival, particularly in patients with solid 
gastrointestinal cancer [22]. Hypothetically, eicosanoids or, more specifically, prosta-
glandins could be common mediators in the promotion of cancer cachexia and the 
fatigue syndrome. Consequently, prostaglandins, particularly prostaglandin E

2
 (PGE

2
), 

have been reported to involve the development of anorexia, altered resting energy 
expenditure, tumor neoangiogenesis, elevated whole-body fat and cell metabolism, as 
well as blood and circulatory homeostasis in progressive cancer disease. Thus, primary 
and secondary interventions with cyclooxygenase inhibitors (COX-1, COX-2) should 
significantly influence the appearance of overt malignancy and attenuate local tumor 
growth with improved survival in experimental and clinical cancer [23,24].

15.1.2.1  Prostaglandin Biosynthesis

Prostaglandins are 20-carbon fatty acid derivatives found in almost every tissue and 
organ, mediating a number of physiological and pathological functions. These deriva-
tives are synthesized from different essential fatty acid precursors. Prostaglandins 
derived from arachidonic acid are termed series-2 prostaglandins or prostanoids and 
include prostaglandin E

2
 (PGE

2
), prostaglandin D

2
 (PGD

2
), prostaglandin I

2
 (PGI

2
), 

prostaglandin F
2a (PGF

2a), and tromboxane A
2
 (TXA

2
) [25]. These prostaglandins 

share a common initial biosynthetic pathway, which begins with the hydrolysis of 
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cell-membrane phospholipids liberating arachidonic acid into the cytoplasm [26]. 
This step is mediated by membrane-bound phospholipase A

2
 and activated by diverse 

physiological and pathological stimuli [27]. Arachidonic acid is converted by cyclooxy-
genase into unstable endoperoxide intermediate prostaglandin G

2
 (PGG

2
), which in 

turn is converted into oxygenated intermediate prostaglandin H
2
 (PGH

2
) [28]. 

Phospholipase A
2
 and cyclooxygenase are rate-limiting steps in prostaglandin 

biosynthesis. Three isoforms of cyclooxygenase have been identified: COX-1, COX-2, 
and COX-3. COX-1 is constitutively expressed, and COX-2 is inducible by pathological 
stimuli [29,30]. COX-3 is an isoform of COX-1 that is preferentially expressed in the 

Fig. 15.1 Invasive malignant tumor growth activates the local tissue production of cytokines, 
growth factors, and prostanoids. These mediators are translated into a classic systemic acute phase 
response (red arrows), which is part of more specific immune reactions, such as Th

1
 and Th

2
 

responses. Systemic cascades for signaling are also transferred to CNS centra, both by circulating 
mediators and afferent nerve transmission. This transfer leads to anorexia, which elicits whole-
body adaptive stress responses including negative energy and protein balance, particularly in 
adipose tissue and skeletal muscles
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heart and brain [31]. PGH
2
 is in turn metabolized by cell-specific synthases (PGE-

synthase, PGD-synthase, PGI-synthase, PGF-synthase, and Tx-synthase) into series-2 
prostaglandins [32]. Prostaglandins are released from cells immediately after synthesis 
and act on specific cell-surface prostanoid receptors in an autocrine and paracrine 
fashion [33]. Alternatively, prostaglandins may also be transported by PG-transporters 
across cell membranes into cytoplasmatic compartments, in which effects are terminated 
by oxidizing and reducing enzymes [34,35].

The biological action of the prostaglandins is mediated by specific prostanoid recep-
tors located in cell membranes. These receptors belong to the Rhodopsin-type receptor 
family. The receptor family is characterized by seven transmembrane domains coupled 
with different intracellular subunits of G proteins [36]. There are five major types of 
prostanoid receptors; E-prostanoid receptor (EP receptor), D-prostanoid receptor (DP 
receptor), I-prostanoid receptor (IP receptor), F-prostanoid receptor (FP receptor), and 
T-prostanoid receptor (TP receptor). Each one of these major types consists of one or 
several subtypes with a different structure and biological function [33], which vary 
according to the type of tissue and physiological condition. Functions and distributions 
of the receptors may also vary among species [37]. PGE

2
 is considered to be involved 

in normal physiological functions as well as in malignant and non-malignant conditions 
among serie-2 prostaglandins. There are four different subtypes of EP receptors: EP

1
, 

EP
2
, EP

3
, and EP

4
. These receptors show an overall sequence identity of about 40%, and 

the putative transmembrane domains are the most conserved [38]. Biological signals are 
propagated by an alteration in intracellular calcium (Ca2+) and cyclic adenosine mono-
phosphate (cAMP) levels. Effects of PGE

2
 are determined by the type and presence of 

EP receptors, which differ among cell types and organs.
PGE

2
 has low affinity for the EP

1
 receptor that mediates signaling by activation 

of phospholipase C and elevation of cytosolic Ca2+ concentration by activating Ca2+ 
channels. This process results in the direct activation of downstream kinases and 
transactivation of the HER´s-2/Neu tyrosine kinase receptor and up-regulation of 
the endothelial growth factor-C [39]. The EP

1
 receptor also transactivates the epi-

dermal growth factor receptor, which may promote cell proliferation and invasion 
[40]. The EP

2
 receptor increases levels of cAMP and stimulates cellular growth by 

stimulating PKA and PI3K pathways [41]. The EP
3
 receptor is expressed in a wide 

range of tissues that mediate biological signals by inhibiting adenylate cyclase 
and thereby decreases intracellular levels of cAMP. The EP

3
 receptor is involved 

in acid-induced duodenal bicarbonate secretion and maintenance of mucosal 
integrity [42] and also participates in the regulation of tumor-associated angiogen-
esis and tumor growth; furthermore, the receptor has been shown to activate the Ras 
signaling pathway [43,44]. The generation of fever also appears to be regulated by 
EP

3
 receptors [45]. Three receptor isoforms of EP

3
 exist in mice and eight in 

humans, which are generated by alternative splicing and differ in their C-terminal 
domain [46]. The expression pattern of these receptor isoforms varies between dif-
ferent cell types. EP

3
 receptor isoforms have been reported to differ in their ability 

to down-regulate adenylate cyclase, but the biological significance of this finding 
is not clear [47]. The EP

4
 receptor has a very high affinity for PGE

2,
 raising intracel-

lular levels of cAMP upon activation and stimulating cell growth and cell prolifera-
tion similar to the EP

2
 receptor [41].
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15.1.3  Prostanoid Related Effects in Tumor Bearers

15.1.3.1  Inflammation and Tumor Growth

The link between inflammation and the appearance and progression of cancer was 
first recognized in 1863, when Rudolf Virchow discovered leukocytes in neoplastic 
tissues [48]. The inflammatory process mediates several fundamental tumor prop-
erties, although the mechanisms involved are not yet fully understood [49–53]. 
Epidemiological studies imply that chronic inflammation is the origin of various 
types of cancer triggered by conditions, such as microbial infections (Helicobacter 
pylori and gastric cancer and gastric lymphoma), autoimmune disease (inflammatory 
bowel disease and colon cancer), and inflammation of unknown origin (chronic 
pancreatitis and pancreatic cancer; prostatitis and prostatic cancer). Inflammatory 
mediators, such as prostaglandins, chemokines, and cytokines, are present in tumor 
microenvironments and may create both genetic and epigenetic events for the acti-
vation of oncogenes, chromosomal rearrangement, and gene amplification as well 
as for the inactivation of tumor-suppressor genes. Cells transformed in this way 
usually show activated transcription factors (NF-kB, STAT3, and HIF1a), which 
may further stimulate the production of inflammatory mediators (chemokines, 
cytokines, and prostaglandins) and the recruitment of inflammatory cells (eosinophils, 
mast cells, neutrophils, macrophages, and myeloid-derived suppressor cells) leading 
to cascades of signaling [54–56]. Recent observations have also implied that 
embryonic stem cells depend on prostaglandins for control of growth, apoptosis, 
and perhaps differentiation [57].

15.1.3.2  Prostanoids and Metabolic Alterations

Genes for controlling fatty acid and protein metabolisms were highly down-regulated 
by COX-inhibition in tumor tissue, whereas genes directing carbohydrate metabolism 
were both up-regulated and down-regulated [58]. Such observations may contribute to 
overall host-metabolic effects by indomethacin attenuating catabolism caused by a grow-
ing tumor [22,59]. However, the entire host metabolism also appears to be influenced by 
prostanoids [22]. Distant metastases are a major cause of death in cancer with over-
expression of COX-2 and increased production of PGE

2.
 In contrast, treatment with 

NSAIDs may reduce this imbalance in favor of apoptosis [23,60,61] across the PI3K-
Akt-mTOR signaling in tumor cell metabolism [62]. Thus, the gene coding for Akt was 
drastically down-regulated, and genes coding for proteins behind cell adhesion were also 
down-regulated by COX-inhibition (indomethacin) [58,63]. Results derived in vivo by 
the application of microarray analyses show an overwhelming number of genes affected 
in transcription by indomethacin treatment, in which down-regulations appear to be 
most common. Cancer cell-intrinsic metabolism is also likely to favor growth pro-
gression as a consequence or a cause of local tumor-host cell interactions [64].

Normally, energy balance is finely tuned by the central nervous controls of appetite, 
digestion, ingestive behavior, energy expenditure, and heat dissipation. However, 
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signal alterations are only partly known in clinical aberrations, such as obesity, infections, 
trauma, cancer, stress, and other conditions. The CNS may respond to peripheral 
signals directly through messengers that cross the blood-brain barrier by diffusion or 
by active transport. The CNS may also respond to peripheral signals of inflammatory 
molecules, such as prostaglandins and interleukins, through specific receptors located 
on afferent autonomic nerve endings. Thus, splanchnic afferent vagal and non-vagal 
nerve endings seem to be important pathways for disease-induced and tumor-induced 
inflammatory signaling from the abdominal area to the brain. The vagus nerve is 
widely distributed and also innervates skin areas, mammary glands, the heart, and the 
lungs. Around 90% of vagal fibers below the diaphragm are sensory and project to the 
solitary tract nucleus in the brainstem via the sensory Nodose ganglia. Spinal afferents 
arise in the gut and project to NTS through the spinosolitary tract (SST) via the superior 
cervical ganglion (SCG). From NTS, afferent neurons project to relevant centers of 
food intake control in the hindbrain, hypothalamus, and forebrain. In this way, infor-
mation on peripheral physiological reactions are conveyed to neural networks within 
the brain for integration at appropriate response levels. Such signaling may result in 
changes of the core temperature, metabolic rate, appetite, and ingestive behavior. Thus, 
the hypothalamus is the key brain region for the control mechanism in basic physiology 
of ingestive behavior and digestion. Here, such functions are closely related through a 
number of nuclei, such as the venteromedial hypothalamic (VMH), the lateral hypo-
thalamic (LH), the paraventricular (PVN), and the arcuate (AN) nuclei, which are all 
involved in the control of food intake. Hypothalamic nuclei harbor neuropeptide-
containing neurons that release orexigenic signals, such as neuropeptide Y (NPY), 
agouti-related peptide (Agrp), ghrelin, as well as anorexigenic signals, such as cocaine-
and amphetamine-regulated transcript peptide (CARTp), alpha-MSH, and the corti-
cotropin-releasing factor (CRF).

Vagus afferents respond to mechanical, chemical, and endocrine peripheral signals 
that may arise from adipose tissue, liver, intestine, mammary glands, pancreas, and 
stomach compartments (Fig. 15.2). Thus, the intravenous injection of interleukin-1b 
activates vagal afferents [65–67]. IL-1 as well as IL receptors have been reported to 
be present in the nodose ganglion, the NTS, the area postrema, as well as in the hypo-
thalamic centers for feeding control including AN and PVN nuclei [68–70]. Evidence 
suggests that prostaglandins are directly involved in the activation of vagal afferents 
caused by IL-1 driven inflammatory reactions and vagal sensory neurons in the 
nodose ganglion express mRNA for the EP3 receptor [67]; consequently, indomethacin 
pretreatment blocks the interleukin-1b activation of vagal afferents [67].

Peripheral administration of endotoxin lipopolysaccharide (LPS) is frequently used 
to generate experimental inflammation leading to increased levels of proinflammatory 
cytokines in blood, abdominal organs, and abdominal vagal fibers. In the brain, cocaine-
and amphetamine-regulated transcript (CART) and pro-opiomelanocortin (POMC) 
mRNA are up-regulated in the AN in response to peripheral LPS; CART and melanin-
concentrating hormone (a product of POMC) are likewise up-regulated in the lateral 
hypothalamus [71]. Neuropeptides are also potent to alter food intake after central 
administration [72–75]. It is not yet clear whether peripheral LPS or centrally produced 
IL-1b affects peptide expression and release in hypothalamic neurons after LPS injections. 
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However, evidence suggests that the hypothalamic melanocortin system is involved in 
CNS response to tumor-induced development of anorexia-cachexia. Here, genetic or 
pharmacological blocking of the melanocortin-4 receptor attenuates the development of 
cachexia in tumor-bearing mice [76], besides observations that the central administration 
of a MC-4 antagonist inhibits metabolic and locomotor responses to the peripheral 
appearance of IL-1b [77]. Such observations imply the possibility of future pharmaco-
logical therapy of cancer-induced cachexia by targeting central nervous neuropeptide 
receptors. Small molecule melanocortin antagonists that readily pass the blood-brain 
barrier after peripheral administration have already been developed [78], but the role of 
such treatment strategies needs to be clinically evaluated.

15.1.3.3  Tumor Angiogenesis

Malignant tumors do not change from minimal residues into expanding overt solid 
tumors without angiogenesis. The net balance of positive and negative regulators 
promotes stimulators, such as the vascular endothelial growth factor (VEGF) that is 
produced and secreted from tumor cells [79,80] prior to the mediators of vascular 
remodeling that coopted for subsequent steps [81]. Oncogene derived proteins as well 
as a number of cellular stress factors including hypoxia, low pH, and nutrient deprivation 

Fig. 15.2 The graph illustrates important relationships between adipose tissue and the gastrointestinal 
tract in communications of orexigenic and anorectic signals to different CNS levels, regulating appetite 
and energy homeostasis located in the brainstem and the hypothalamus. Important mediators in such 
communications are, for instance, leptin, ghrelin, insulin, cytokines, and prostaglandins, as described 
in the text
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are important stimulators of angiogenesis [82]. Pro-angiogenic factors, produced 
by tumor cells, bind to endothelial cell receptors for induction of angiogenesis. 
Angiogenic stimuli cause major changes in the phenotype of “tip-cells” inside tumor 
cells located next to a capillary with properties of invasiveness and the ability to 
migrate. Tip-cells activate secreted and cell surface proteases for the partial destruction 
of adjacent basement membranes and extracellular matrix. Tip-cells start to migrate 
in directions paced by VEGF gradients. Subsequently, dissolution of the extracellular 
matrix allows further release of proangiogenic factors together with those produced 
by tumor cells. Endothelial cells proliferate and assemble in tubular structures behind 
migrating tip-cells, in which COX-derivates are recognized [83,84]. Newly formed 
blood vessels mature after the formation of a sufficient amount of vascular tubes. 
The initial step is the fusion of newly formed capillaries, in which tip-cells stop 
migrating and make contact with other tip-cells or existing capillaries. A vessel lumen 
is formed upon contact, and the emerging blood flow contributes to the stabilization 
of newly formed vessels by reducing hypoxia, thereby lowering VEGF levels. 
Capillaries are fused into larger vessels including arteries and veins with junctional 
complexes. Tumor vessels differ from normal vessels in several aspects, for instance, 
they spread without organization and change diameters with loss of differentiation in 
arterioles, capillaries, and venules.

Thus, angiogenesis is an essential factor in cancer progression propagated by 
proangiogenic factors, such as vascular endothelial growth factor (VEGF) and fibro-
blast growth factor 1 and 2 (acidFGF and basicFGF) [85]. COX-2 plays an important 
role in tumor-associated angiogenesis [86,87] by modulating proangiogenic factors 
with correlations between COX-2 and VEGF expression in tumor tissue [88]. PGE

2
 is 

regarded as a mediator of COX-2 activities in tumor angiogenesis [89]. Thus, both 
selective and nonselective COX-inhibitors may reduce tumor angiogenesis by inhibit-
ing production of proangiogenic factors and subsequently the proliferation, migration, 
and tube formation of endothelial cells [83,84,90–95]. The gene coding for one of the 
three forms of VEGF (VEGF-A) was down-regulated by indomethacin, whereas oth-
ers (VEGF-B and C) remained unaffected [90]. AcidFGF showed a trend towards 
down-regulation, whereas basicFGF showed a trend to up-regulation. Other genes in 
angiogenesis were mainly down-regulated. Overall, our results support the assumption 
that indomethacin affects tumor angiogenesis in addition to other processes related to 
tumor cell proliferation directed by subtypes EP

1
 and EP

3
 receptors [90].

15.1.4  Inflammatory Mediators in Colon Cancer

Adenocarcinoma of the colon is a common type of cancer in the Western world. A 
range of studies have investigated the role of various inflammatory mediators in 
colon cancer inhibition, development, and progression. PGE

2
 is a second messenger 

in cell-to-cell communication, involving intracellular reactions related to G-protein 
coupled receptors. Systemic reactions, such as progressive weight loss, anorexia, 
and systemic inflammation, relate to prostaglandin activities in various organs as 
well as in tumor tissue [22]. Therefore attenuation of local and systemic progressive 
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disease would become possible by understanding ligand receptor activities in 
prostanoid-related metabolism and signaling pathways [58,96,97], in which COX-2 
is regarded as the key enzyme for the local cellular production of PGE

2
. In view of 

this fact, up-regulation of COX-2 may represent a global phenomenon in malig-
nancy. However, our own studies have indicated that the tumor content of COX-2 
transcript and protein are not necessarily overall increased in colorectal tumor tissue, 
in which local high concentrations are usually recognized as “hot spots” in contrast 
to the findings in the cell cultures of colon cancer [98]. This finding is not unique 
for COX-2 since most growth factors stain with uneven distribution among tumor 
cells in malignant tissue, which is a composite compartment of different clones of 
tumor cells, stroma, and endothelial and inflammatory cells. Up-regulation of 
COX-2 in tumor cells is likely to explain the majority of increased PGE

2
 content in 

tumor tissue besides the decreased degradation of PGE
2
. However, tumor stroma in 

colorectal tumor tissue also expresses considerable amounts of COX-2 for PGE
2
 

synthesis [99]. Accordingly, we reported that both COX-1 and COX-2 protein 
correlates to the PGE

2
 content in colon cancer tissue [99], in which COX-1 tissue 

expression is proportionally increased to COX-2 tissue expression. This fact may 
explain why unspecific cyclooxygenase inhibitors effectively attenuate tumor 
progression [23,100,101]. mPGES-1 has been reported to be over-expressed in 
colorectal cancer, which is responsible for PGE

2
 production [102], although 

increased PGE
2
 levels in tumor tissue may also depend on decreased PGE

2
 break-

down by HPGD. Accordingly, HPGD expression is low in tumor tissue when 
compared to overall levels in normal colon tissue [103]. Colorectal cancer appears 
to be particularly dependent on cyclooxygenase metabolites for progression 
[104,105]. Consequently, aspirin and conventional NSAIDs have been reported to 
attenuate several steps in disease progression of polyps and the subsequent invasive 
growth of tumor cells [106–109]. However, a recent analysis has suggested that this 
protection may only relate to a defined group of tumors [110].

Dukes’ stages of colorectal cancer represent predictors for outcome independently 
of race, gender, and age with comparable results across countries [111]. Based on 
Dukes’ staging parameters, we collected tumor material from unselected patients at 
primary surgery for the curative resection of newly diagnosed colorectal cancer. 
Immunohistochemical staining was related to tissue and blood concentration of PGE

2
 

as a hallmark of COX activity. Our results showed significant relationships among 
several key-proteins within tumor cells and stroma as well as among factors in tumor 
cells and stroma, indicating a “cross-talk” [99]. We could also show significant rela-
tionships between host systemic inflammation, survival, and protein staining of 
growth-related proteins in tumor cells and stroma [99]. Interesting and unexpected 
findings were that Bcl-2 expression in tumor cells and vWF in stroma were associated 
with prolonged survival, whereas staining of p53 and vWF in tumor cells was related 
to reduced survival. Bcl-2 is regarded as an inhibitor of apoptosis [112], although 
Bcl-2 protein has been recently reported to be related to improve prognosis of col-
orectal cancer [113]. In contrast, dual function of Bcl-2 was explained by interaction 
with the orphan nuclear receptor Nur77 bound to Bcl-2 and induced conformational 
changes that may convert Bcl-2 from an inhibitor to a promotor of apoptosis [112].
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Our results confirmed a statistically significant relationship between tumor tissue 
COX-1/COX-2 staining and the overall tumor tissue content of PGE

2
 in vivo [99]. 

A high COX-2 content suggests elevated tumor PGE
2
, whereas a high COX-1 

content rather predicts the opposite in tumor tissue. This divergence may be a question 
of less maintained physiology in tumor tissue with little retained intestinal morphology 
and function from its original normal mucosa, which is the main reservoir for 
COX-1 protein. Furthermore, a direct relationship between tumor cell proliferation 
and elevated host systemic inflammation was indicated in colon cancer patients. 
Local and systemic inflammation are known to relate to poor prognosis in colorectal 
cancer [23,114]. Accordingly, the correlation between COX-2 expression, PGE

2
 

content, and patient survival indicate a different relationship in tumors with high 
and low PGE

2
. vWF in tumor tissue appears to be a risk factor for reduced survival, 

suggesting increased angiogenesis as a poor prognostic sign. Previous and present 
results link PGE

2
 as a mediator to this pathway [90,98], although vWF may simul-

taneously activate different pathways in epithelial and endothelial tumor cells 
within a tumor [101,115] (Fig. 15.3).

Beneficial effects of NSAIDs in colorectal cancer patients have been published 
years ago [116,117]. Still, the molecular basis of how NSAIDs inhibit tumor progres-
sion remains unclear. Most reports have focused on PGE

2
 as a major product of COX-

Cell

Prostanoid receptors:

Phospholipids
Phospholipase A2

Cell nucleus
Arachidonic acid

COX-1/2

TXA2

PGE2

PGH2

PGD2
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PGF2α

PGJ2
cAMP or Ca2+ level
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,

Fig. 15.3 Schematic illustration of the formation of prostanoids by COX-1 and COX-2 activities 
in cells with subsequent autocrine and paracrine activation of prostanoid receptors to primarily 
change intracellular concentrations of cAMP and Ca2+ levels for downstream signal transductions. 
These are principal biochemical alterations in most cells to control cell proliferation, cell migration, 
adhesion, angiogenesis, and apoptosis
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2, leaving the remaining products of COX unconsidered. Therefore, we quantified 
PGE

2
 receptor expression in human colorectal tumor tissue in comparison to expres-

sion in adjacent normal colon tissue. Expression of the EP
2
 receptor subtype predicted 

reduced disease-specific survival [98], but overall changes in expression of any other 
EP subtype receptor did neither explain tumor progression nor tumor differentiation 
[98]. Therefore, for a more complete evaluation, we analyzed additional receptors 
(DP1, DP2, FP, IP, TP) for prostanoids (PGD

2
, TXA

2
, PGF

2a, PGI
2
) produced by 

cyclooxygenases (COX). Results showed reduced expression in four out of five pros-
tanoid subtype receptors in Dukes A-D tumors when compared to normal colon tis-
sue. This finding was most consistent for DPI and IP expression, whereas TP receptor 
expression was increased in tumor tissue. Such observations are signs of imbalanced 
eicosanoid receptor expression in colorectal cancer tissue. Therefore, complex rela-
tionships of prostanoids may be assumed in tumor carcinogenesis and progression. 
However, altered eicosanoid homeostasis in tumor tissue is well-recognized and 
appears to be a global tumor phenomenon [118–120], which may affect metastatic 
spread [121], tumor angiogenesis, cell proliferation, apoptosis, and immune reactions 
[101]. An obvious limitation to the information on overall tissue measurements is the 
risk to overlook specific alterations within or between defined cell types. However, 
prostanoids clearly are important factors for colorectal cancer progression, although 
the presentation of a simplistic model is not yet possible [63].

EP subtype receptors may be ideal targets for growth interactions among tumor 
tissue cells [122]. The functional response to each ligated EP receptor depends on 
the associated signaling pathway. A suggested role of PPARg in colon carcinogenesis 
is the inhibition of cell growth and induction of apoptosis [123]. Several studies in 
animals have indicated that only EP

2
 homozygous deletion decreases the number 

and size of intestinal polyps in ApcD716 mice. Also, EP
2
 receptors boost COX-2 

expression by a positive feedback loop [124]. EP
1
 and EP

4
 knockout mice show 

significantly suppressed colonic aberrant crypt foci (ACF) and cell proliferation, 
which agrees with findings during treatment with a specific EP

1
/EP

4
 antagonist 

[125–127]. Treatment of EP
1
 receptor knockout mice with the colon carcinogen 

azoxymethane decreases ACF formation without the effects found in EP
3
 knockout 

mice [128]. Tissue distribution of EP receptors in normal human colon tissue shows 
that EP

2
 is expressed on the apex of the crypt, whereas EP

1
 is not expressed at all 

in epithelial cells [129]. Strong EP
3
 expression is seen in the apex of crypts with 

less expression at the lateral epithelium and little or no expression at the base of 
crypts. Epithelial colon cells express EP

4
 in a universal manner similar to mononuclear 

cells in the lamina propria [129]. Here, our own results indicated that EP
1
 and EP

2
 

receptor protein were highly present in tumor cells; EP
3
 occurred only occasionally, 

and EP
4
 was not detected at all in tumor cells.

Epidemiological studies have confirmed that long-term use of non-steroidal anti-
inflammatory drugs (NSAIDs) is associated with significantly decreased occur-
rence of colorectal tumors and decreased disease-specific mortality [116,130,131], 
although mechanisms unrelated to COX may also occur [122,132]. Thus, PGE

2
 

may promote tumor progression via its action on cell surface EP
1–4

 receptors in both 
tumors and tumor surrounding normal cells [122]. However, reports with regard to 
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the question which EP receptor(s) mediate(s) the effects by PGE
2 a

 are contradic-
tory. Some reports claim that the main effects are mainly mediated through nuclear 
receptors (Peroxisome Proliferator-Activated Receptors (PPARs)), although some 
evidence suggests that PPAR activation does not explain antiproliferative effects by 
NSAIDs [133–135]. The transcription factor PPARg seems to be involved by inhib-
iting tumor cell proliferation in vitro as well as by suppressing tumor growth and 
induction of apoptosis both in vivo and in vitro [136–140]. Several studies have 
reported PPARg expression in colorectal cancer [141–143]. However, the role of 
PPARg remains unclear because of the down-regulation in tumor tissues with pos-
sible effects as a tumor suppressor gene, although overexpression occurs in some 
tumors [134,135,144,145]. PPARg is a ligand-activated transcription factor that is 
only functional when heterodimerized to 9-cis retinoic acid receptor (RXR). PPARg 
ligands have been suggested for use in chemoprevention and chemotherapy [135]. 
Results have shown that down-regulation of PPARg expression in colon cancer tis-
sue agrees with decreased apoptosis of tumor cells and increased disease progres-
sion, although multivariate analyses on a variety of prostanoids have not identified 
PPARg as a predictor of tumor-specific mortality [98]. Thus, available reports do 
not provide a unified model of prostanoid receptor expression (EP

1–4
, PPARg) in 

colon cancer tissue, tumor stage, and survival; although overall COX and EP sub-
type receptor expression in tumor tissue has predicted disease-specific mortality in 
multivariate analysis. Expression of EP

2
 and COX-2 have been identified to be 

particularly important. Thus, both the production side (COX-2) of prostaglandins 
(PGE

2
) and the receptor signaling (EP

2
) in tumor tissue are critical for the progres-

sion of colorectal cancer.
Prostanoid receptor expression in colon cancer tissue is, to some extent, affected 

by indomethacin treatment with reduced IP receptor expression in both tumor and 
normal colon tissue. IP is activated by prostacyclin (PGI

2
) and has been reported to 

inhibit apoptosis in colonic epithelial cells [146,147]. Receptors for PGD
2
 (DP1 and 

DP2) show increased expression in normal colon tissue during indomethacin treat-
ment. Some evidence suggests that indomethacin may have a direct agonistic effect 
on DP2 receptor [148]. PGD

2
 may also have several effects in tumor tissue, such as 

decreased proliferation including pro- and anti-inflammatory actions with significant 
effects on immune reactions [149–152]. Thus, different effects within a tumor com-
partment are likely to depend on the type of PGD

2
 receptor activation (DP1, DP2 and 

PPARg), in which PPARg is usually recognized as a tumor suppressor [123]. However, 
indomethacin decreases its expression in both normal and tumor tissue [98].

Also, preoperative treatment with indomethacin for 3 days has caused altered 
expression of numerous genes of different functions, assessed on pooled RNA from 
Dukes A-C tumors. Gene profiling maps appearance or disappearance of gene tran-
scripts in relation to high and low PGE

2
 content in tumor tissue despite tumor stage, as 

reported for normal colon tissue after long-term treatment with celecoxib [153]. We 
have provided information on alterations in gene expression and net PGE

2
 production 

in colon cancer tissue affecting apoptosis, differentiation, and regulation of energy 
metabolism in agreement with similar findings in animal tumor models [154]. Our gene 
algorithm analysis suggested apoptosis to be the overall, most affected pathway in 
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human colon cancer tissue. Extrinsic “survival factors” were particularly down-
regulated to promote net apoptosis, together with decreased external growth factor 
exposure for the stimulation of cell cycling [23]. A speculative guess is that stroma cells 
are influenced to decrease the external stimulation of tumor cells, which promotes 
apoptosis during cyclooxygenase inhibition [99]. Thus, present clinical findings certainly 
emphasize that prostanoid metabolism is a complex issue in colon cancer tissue. Several 
hundred genes are involved, which appear to control local growth and net immune 
response [101,155], cell proliferation, differentiation, energy metabolism and apoptosis 
as also reported for normal colon tissue [153].

15.1.5  Prostanoids and Immunological Tumor Alterations

Malignant disease is characterized by the attenuation of cells mediating anti-tumor 
immune response, probably directed in part by PGE

2
 based on reduced production of 

anti-tumor Th1 cytokines (TNFa, IFNg and IL-2) [156] and increased production of 
Th2 cytokines (IL-4, IL-10 and IL-6) [157–159]. Many studies report that indomethacin 
treatment of patients with different types of solid cancer may prolong survival and 
improve physical functioning and quality of life [23]. However, local effects on tumor 
growth are certainly involved, and a similar number of studies show evidence for the 
attenuation of angiogenesis, decreased tumor cell proliferation, and increased tumor 
apoptosis [59,90,132,154]. The metabolic basis for these observations may be that 
COX-2 and 15-hydroxy-prostaglandin dehydrogenase expression in cancer tissue pre-
dicts tumor tissue variation of PGE

2
 signaling on prostaglandin subtype receptor E

1–4
 

[98,160]. However, prostanoids are also known as major factors behind immune 
responses, which result in complex interactions that may determine disease progression 
and metastasis. Therefore, we consider local immune reactions as significant factors 
behind tumor progression, since NSAID is known to convert states of anergy into 
immune competence in malnourished and stressed patients [161,162].

A major observation in our studies was that many genes belonging to MHC 
locus on chromosome 6p21 were up-regulated in human colon cancer during short 
preoperative treatment with conventional NSAIDs. MHC genes control the synthesis 
of molecules that are essential for immune functions mediated by T-lymphocytes, 
macrophages, APC, and NK cells [163]. Antigen recognition by T-cells depends on 
the expression of HLA molecules by target cells. HLA molecules bind small anti-
genic peptides of enzymatically degraded proteins presented on the cell surface, 
which are subsequently screened and recognized by the T-cell receptor. Normally, 
HLA class I molecules are expressed on all cells, except RBCs and cells of the 
testis, presenting intracellularly derived peptide fragments to CD8+ cytotoxic 
T-lymphocytes. In contrast, HLA class II molecules, which are usually expressed 
on professional antigen presenting cells (APCs), present extracellularly derived 
peptide fragments to CD4+ T-helper lymphocytes [164–169].

Colon epithelial cells may express low levels of HLA-class II, although this 
expression is normally restricted to APCs, such as B-lymphocytes, macrophages, 
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and dendritic cells. The up-regulation of these molecules is associated with inflam-
mation [170]. Attempts have been made to turn tumor cells into antigen-presenting 
cells by inducing HLA signaling, since human tumors often lose expression of 
HLA-molecules, which may leave the immune system inactivated towards tumor 
cells [171–174]. Thereby, increased levels of PGE

2
 in colon cancer may negatively 

influence immunity. Arvind et al. [172] reported that SW1116 colon cancer cells 
express HLA class II antigens, particularly HLA-DR. PGE

2
 constitutively reduced 

the expression of HLA-DR and removal of PGE
2
 restored the levels of HLA-DR, 

whereas PGF
2a and LTB

4
 did not affect the expression of HLA-DR. In addition, a 

colon cancer cell line (HT 29), which did not constitutively express HLA-DR, initiated 
HLA-DR expression, when cells were treated with prostaglandin inhibitors, such as 
aspirin, indomethacin, and sulindac. In contrast, HLA class I expression was not 
influenced by PGE

2
. These observations agree with our results that NSAIDs (indo-

methacin, celebrex) up-regulate HLA class II expression in colon cancer tissue and 
MHC II protein in tumor epithelial cells after short-term preoperative treatment 
[101]. Tumors showed enough HLA class I protein for peptide presentation and 
CTL activation. PGE

2
 suppressed immune response by EP receptor signaling, 

which inhibits the production of downstream targets, such as chemokines and their 
receptors associated with dendritic cells, macrophages, and lymphocyte function 
[48,175–179]. PGE

2
 also down-regulated cytokines, such as TNFa, IFNg, and IL-2, 

with T-helper cell-stimulatory function (Th1) and up-regulated T-helper cell (Th2) 
characterized by immunosuppressive cytokines, such as IL-4, IL-6, and IL-10 
[83,156,158,175,180–182]. These suggestions agree with our results that NSAID 
treatment increases infiltration of B-cells, macrophages, CD4+ T-helper cells, as 
well as CD8+ cytotoxic T-cells in colorectal tumor tissue [101]. We found increased 
RNA expression of granzyme H and perforin and a trend to increased granzyme 
B-levels capable of activating intracellular caspases that initiate apoptosis in target 
cells. Granzymes are released together with perforin, which is a pore-forming protein 
from cytoplasmic granules of CTLs and NK cells [183–190]. Therefore, CTLs 
appear ready for killing target cells based on perforin protein in CD8+ cytotoxic 
T-lymphocytes, shown by “halos” surrounding condensed apoptotic tumor cells or 
disruption of tumor cell patterns after indomethacin treatment [101].

Several reports support the importance of activated tumor-specific CD8+  
cytotoxicT-lymphocytes [191–194]. Accordingly, Pagés et al. [195] reported that 
patients suffering from colorectal cancer without any signs of metastatic spread (vas-
cular emboli, lymphatic invasion, or perineural invasion) had increased infiltration of 
immune cells (CTLs) and increased content of cytotoxins. The mobilization of granu-
locytes, lymphocytes, and macrophages at the invasive border of gastrointestinal 
cancer has been recently associated with improved survival [196,197]. Monocytes and 
macrophages may be responsible for T-lymphocyte impairment by increased PGE

2
 

production [198–201]. Based on vaccine trials, consensus is growing that the co-
operation of CD4+ Th1 cells and activated CD8+ cytotoxic T-lymphocytes are neces-
sary for adequate anti-tumor immune responses. The appearance of CD4+ CD25+/
CD8+ CD25+ T-regulatory cells (Tregs) or associated molecules (immunosuppressive 
FOXP3 and IL-10) may thus be influenced by indomethacin exposure [202,203].
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Unspecific and specific COX-inhibition may exert different effects in complex 
immune reactions, which involve eicosanoids. However, we believe that such differ-
ences are rather quantitatively-based on the systematic analysis of several unspe-
cific, intermediate specific, and specific cyclooxygenase inhibitors in experimental 
models [100]. Besides, indomethacin is the NSAID that implied survival differences 
in the treatment of malignancies [23], although treatment with acetylsalicylic acid 
(ASA) seems to have similar effects [204–207]. Future research will eventually 
show fundamental differences between specific and unspecific COX-inhibition. 
Analysis of normal colon mucosa from patients treated with indomethacin con-
firmed that MHC class II genes are not up-regulated in normal mucosa. Thus, our 
studies showed that NSAID administration for 3 days preoperatively is enough to 
turn tumor microenvironments into conceptually more favorable conditions for 
patient outcomes. Additionally, NSAID administration is accompanied with the 
appearance of tumor infiltration by immune cells showing potential capacity to kill 
tumor cells. This finding agrees with our observations that COX activities, high 
tumor content of PGE

2,
 and tumor expression of EP

2
 increase the risk of reduced 

survival [98,99,101]. Thus, prostaglandins are emerging modulators of tumor-
related immunity [156]. In this respect, malignant tumors may be guarded by the 
down-regulation of immune response through the appearance of Treg lymphocyte, 
as seen in wound healing. Growing tumors and healing wounds may signal growth 
by the same or similar mechanisms, although the initial triggers may be either a 
genomic alteration or a tissue matrix dysfunction.

15.1.6  Anti-Inflammatory Therapy

Several studies indicate favorable effects of the anti-inflammatory treatment of 
cancer development in animal tumor models, but only a few conclusive interven-
tional studies are available in human cancer [23,84]. The study by Lönnroth et al. 
highlighted the possibilities to introduce NSAIDs before surgical trauma-induced 
inflammation with positive effects on the immune response in tumors [101]. In 
addition, the COX-2 inhibitor celecoxib appears to slow down growth of colorectal 
adenomatous polyps, which are regarded as a pre-cancerous stage [208]. Similar 
effects have been found after tiracoxib treatment [209]. In localized prostatic can-
cer, treatment with celecoxib 4 weeks prior to surgery induced cellular changes in 
tumors including reduced cell proliferation, angiogenesis, and enhanced apoptosis 
[210]. In gastric cancer, celecoxib and octreotide pretreatment prior to surgery 
induced apoptosis and reduced angiogenesis [211]. Moreover, beneficial effects of 
long-term celecoxib treatment after H. pylori eradication on regression of pre-
cancerous dysplasia of the stomach have also been reported. Tumor cellular 
changes included increased apoptosis, reduced angiogenesis, and cell proliferation 
[212]. However, these interesting aspects with regard to the primary prevention of 
malignant transformation and appearing invasiveness have been impeded by other 
risk-factors, since some COX-2 inhibitors showed unwanted cardiovascular effects 
[213–215] that were related to specific compounds rather than to COX-2 inhibition 
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as such. In contrast to celecoxib, rofecoxib and diclofenak appeared to impose 
increased risks of cardiovascular events in a meta-analysis [215,216].

The role of prostaglandins for cancer development is well-established in animal 
models. However, such findings cannot be directly transferred to clinical settings. 
Tumors used in animal studies are usually defined by clones that hold little variation 
within groups, unlike the variable biochemical conditions shown in human cancers. 
Therefore, findings that indomethacin administration to cancer patients improves 
function and perhaps survival are encouraging [23]. Also, Fenwick et al. reported 
reduced angiogenesis in colorectal liver metastases after treatment with rofecoxib 
for 14 days before liver resection, but did not examine any possible effects on out-
come [84]. In advanced non-small-cell lung cancer, celecoxib seems to have a ben-
eficial effect on survival when given in combination with chemotherapy, but only in 
patients with tumors showing moderate to high COX-2 expression [217]. These 
results underline the importance of stratification of patient groups in future investi-
gations and analyses, in which specific antagonists for the prostaglandin subtype 
receptors EP

1–4
 may offer new exiting possibilities [121].

Endogenous IL-1 antagonist was reported to reduce clonogenicity of leukemia 
cells [218], although its value in the treatment of solid cancer appears to be limited. 
Some TNF-a inhibitors are available for clinical use, mostly for the treatment of 
inflammatory bowel disease. In a phase II study on patients with pancreatic cancer 
(stage 2–4), no effect on survival was found, although the lean body mass was 
slightly increased in response to the TNF-a inhibitor infliximab [219].

Weight loss and cachexia predispose for early death in cancer disease. The typi-
cal loss of muscle and adipose tissue accompanied by increased energy expenditure 
in combination with reduced food intake, nausea, and anemia imply the need of 
metabolic and nutritional support. Providing nutritional support, either by oral 
ingestion or parenteral nutrition, may help to prolong survival and increase well-
being and quality of life in such patients [220]. In our study, this treatment was 
combined with anti-inflammatory therapy to conceptually increase the effective-
ness of supportive care. Thus, evidence suggests that cachexia can be delayed by 
providing anabolic support to counteract catabolism. Insulin treatment has been 
confirmed to protect adipose tissue content and thus to counteract cachexia and 
prolong survival [221]. Ghrelin, an endogenous orexin considered to initiate hun-
ger, improved food intake in short-term supply to cancer patients [222]. In long-
term care, the daily administration of ghrelin to patients with progressive diseases 
improved appetite and glucose intake, also maintaining the entire body metabolic 
balance [223]. Another typical feature of progressive cancer disease is anemia, 
which is not always related to bleeding. Treatment with human recombinant eryth-
ropoietin (EPO) prevents the development of anemia and has beneficial effects on 
physical functioning and quality of life without any negative effects on survival 
[224,225]. As yet, no evidence exists that the provision of anabolic support, either 
by insulin, ghrelin or EPO and by securing metabolic needs through extra nutri-
tion, would lead to inappropriate disease progression [114]. Net effects of active 
palliative support to counteract cachexia improve quality of life and sometimes 
prolong survival [23,220,221,223–225]. Therefore, this support should be offered 
to patients before cachexia is fully developed.
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Abstract Peroxisome proliferator-activated receptor-gamma and cyclooxygenase-2 
are  frequently overexpressed on cholangiocarcinoma (CC) cells and adjacent stroma 
cells, and might be potential therapeutic targets. A pilot phase II trial was started to 
analyze the activity of angiostatically scheduled chemotherapy, capecitabine 2 × 1 g/m2 
from day 15 to 28 every 3 weeks combined with an antiinflammatory/angiostatic 
therapy, daily 45 mg oral pioglitazone and 25 mg oral rofecoxib day 1+ in advanced 
CC. All 21 consecutively included patients (mean age 64 years) suffered from non-
resectable far-advanced CC, 62% were pretreated. The median dose of capecitabine 
per cycle was 76% of that planned; the median duration of treatment was 6.8 months 
(range 2 to 30+). Only three patients suffered from grade 3 toxicity (hand-foot 
syndrome n = 2, edema n = 1). Therapy continuation was refused in one patient 
with HFS grade 3. Objective response was achieved in 29% of the cases including 
one cCR, 29% achieved SD >6 months. Median overall survival was 8 months. The 
median overall survival in this unselected, partially pretreated patient population 
compares to that observed in selected patient populations receiving second genera-
tion combination chemotherapies which were shown to be accompanied with con-
siderable hematotoxicity. The present completely oral therapy approach combines 
convenience, low toxicity and efficacy, and fits to the general patients characteristics: 
elderly patients with tumor-associated comorbidity. Randomized trials will definitely 
clarify the impact of antiinflammatory treatment strategies on survival.
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16.1  Introduction

Cholangiocarcinoma (CC) occurs mainly in elderly patients [1]. Carcinogenesis is 
at least partially based on chronic inflammatory processes in the bile ducts or liver 
parenchyma [2]. Fifty to ninety percent of the patients are no candidates for cura-
tive resection due to advanced disease at diagnosis [3]. Whereas tumor-associated 
symptoms may be resolved by supportive interventions [4, 5] tumor control by 
systemic therapy remains a challenge [1]. We combined two therapeutic strategies, 
biomodulation with rofecoxib plus pioglitazone and long-term repetitively admin-
istered chemotherapy with low-dose capecitabine. Both treatment strategies are 
directed on tumor stroma as well as tumor cells [6, 7].

Clinical endpoint of the present study was objective response in advanced CC. 
A pretreatment interval during which only the two biomodulators were adminis-
tered was included to evaluate their ability to induce clinical improvement. The 
completely oral therapy approach shows, that progression-free survival (PFS) 
rates in a patient population with 62% pretreatment were similar to those described 
for selected patients receiving second generation pulsatile combination chemo-
therapy [4].

16.2  Patients and Methods

16.2.1  Patients’ Characteristics

The local ethics committee approved the protocol and the patients were required to 
provide their written informed consent before being enrolled into the study. The 
present series of patients considered patients recruited between July 2001 and 
August 2003.

Patients with advanced or non-resectable, progressive (>25% increase in the sum 
of all measurable lesions at begin of study medication in comparison to last follow-
up), histologically proven intra- or extrahepatic cholangiocarcinoma or gallbladder 
carcinoma, bidimensionally measurable disease, and life expectancy >3 months 
were eligible. Patients who had previously received capecitabine were ineligible. 
Further criteria for eligibility were as recently published [4].

16.2.2  Treatment

Pretreatment was performed with pioglitazone 45 mg once daily p.o. and rofecoxib 
25 mg once daily p.o. for 14 days before starting chemotherapy. This pretreatment 
period was included to investigate whether biomodulation alone provides clinical 
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benefit. Combination treatment comprised pioglitazone and rofecoxib,  administered 
continuously at the same doses as above, and capecitabine 1.0 g/m2 twice daily p.o. 
(equivalent of a total dose of 2.0 g/m2/day) continuously throughout the study with 
breaks every 2 weeks for 1 week. Treatment was continued until disease progres-
sion or for a maximum of 6 weeks after confirmation of a complete response (CR). 
Treatment with capecitabine was interrupted in cases of grade 2 toxicity or worse 
and was not resumed until toxicity resolved or improved to grade 1. When treat-
ment was resumed, capecitabine doses were reduced as  follows: (1) to 0.75 g/m2 
daily for patients who experienced the first occurrence of a grade 2 toxicity or any 
occurrence of a grade 3 toxicity or (2) to 1 g absolute twice daily for patients who 
experienced a second occurrence of a grade 2 or 3 toxicity, or any occurrence of 
grade 3 toxicity. Treatment was discontinued if a given toxicity occurred, despite 
dose reduction, for a third time at grade 2 or higher grade. Rofecoxib was reduced 
to 12.5 mg daily in patients developing edema >grade 1 or elevated creatinine level 
(>115 mmol//L).

16.2.3  Evaluation of Efficacy and Safety

Response and toxicity were evaluated in patients with minimum follow-up of at 
least 1 month. Objective tumor response was evaluated according to WHO criteria. 
CR, PR and/or stable disease lasting >6 months, were reported separately as com-
posite parameter (clinical response).

16.2.4  Pre-treatment Evaluation and Follow-Up

Baseline evaluation included medical history, physical examination and ECOG 
status, complete blood cell count (CBCC), serum chemistry including electrolytes, 
coagulation tests, tumor markers, chest x-ray, abdominal ultra- sound, computed 
tomographic (CT) scans of thorax and abdomen, if required for follow-up, and 
facultative bone scan or CT scans of brain.

During the treatment period the patients were monitored before the start of che-
motherapy (after the 14 days treatment with the biomodulators), then every 3 weeks, 
which included the assessment of toxicities, serum chemistry including C-reactive 
protein (CRP) and physical examination. Assessment of the target lesions (abdom-
inal ultrasound, chest x-ray) was performed before a chemotherapy cycle of  
3 weeks. If CT scans were necessary to evaluate response these were performed in 
6–12 week intervals. In long-term responders (>6 months) the assessment intervals 
of toxicity and response were prolonged to 2 months. The tumor marker CA19–9 
was not routinely measured, because in the presence of cholestasis it does not 
reflect the tumor load.
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16.2.5  Statistics and Data Analysis

The endpoints of the study were objective response, secondary endpoints progression-
free survival, CR, PR and/or SD as composite marker and survival, as well as safety of 
the study medication. The safety and response analysis was restricted to patients receiv-
ing at least one cycle of chemotherapy, lasting 3 weeks. The time to event points were 
estimated using the method of Kaplan and Meier. Duration of response was defined as 
the time interval between time of objective response and the date of disease progression. 
Time to progression was defined as the time interval between the start of pioglitazone/
rofecoxib therapy and the date of disease progression. If the event was not yet observed 
at the time of last record, the patient was censored at that time point. Survival time was 
defined as the time from initiation of treatment (intent-to treat analysis) to the date of 
death, or March 15, 2004, depending on which came first. To determine, whether the 
achievement of CR, PR and/or SD was associated with improved survival, a landmark 
analysis of the 21 patients evaluable for response was performed using the definition of 
survival time given above. Patients who have gone off study due to drug-associated side 
effects were estimated as treatment failure. Relative risk of progression or death was 
calculated by univariate analysis using Cox-regression. Fischer’s exact test and t-test 
were used to identify significant associations between clinical and biological variables.

16.3  Results

16.3.1  Patients

The present trial included consecutive patients with advanced non-resectable intrahe-
patic (n = 11), extrahepatic cholangiocarcinoma (n = 7), and gallbladder carcinoma 
(n = 3) (Tables 16.1–16.3). Fourteen patients had non-resectable cholangiocarcinoma 
(n = 14) at initial diagnosis, seven patients tumor progression of hepatobiliary tract 
cancer following surgery, one following radiation and two following systemic chemo-
therapy for CC (Table 16.1). In 19 of 21 patients (90%) multiple liver metastasis were 
detected. Altogether 13 of 21 patients were pretreated (62%), and 18 of 21 (86%) had 
a non organ-confined disease. Some patients had to be treated concomitantly prior or 
parallel to the study medication due to accompanying cholangitis (n = 5), liver 
abscesses (n = 2) and/ or bile duct obstruction (n = 11). Eleven patients received 
stents, two an external drainage and two photodynamic therapy of the bile duct.  
All patients included were evaluated for response and safety of study medication.

16.3.2  Antitumor Activity

Patients enrolled on the study protocol were characterized by far advanced disease 
as indicated by UICC stage, ECOG status, tumor-associated symptoms and 
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 complications and multimode pretreatment (62%) (Tables 16.1–16.3). The tumor 
characteristics are listed in Table 16.3. Most patients had comorbidity due to 
 compensated chronic organ failure (52%: liver, lung, heart). Chronic viral hepatitis 
was not observed, however, liver cirrhosis (Child A) from chronic alcohol abuse 
was present in three patients.

Despite of these unfavorable prognostic factors in an unselected patient popula-
tion objective response was achieved in 29% of the cases including one cCR, 
stable disease in 29% (SD >6 months) (Table 16.4). The six patients with objective 
response were characterized by locally advanced disease. In the patient achieving 
CR, a histologically proven local peritoneal carcinomatosis could be confirmed 
prior to treatment. Besides induction of cCR (8 months+) long-term disease stabi-
lization in PR >12 months (n = 3: 26 months +, 18 months+, 13 months+) were 
surprising as well as a substantial number of disease stabilisations for more than 

No. of patients

Age (years)
 Mean (range) 64 (48–80)
 Male/female (No. of patients) 9/12

ECOG performance status  
(No. of patients)

 0/1 11
 2  6
 3  4

Prior local therapy (No. of patients)
 Gallbladder resection  2
 Hemihepatectomy  2
 Segment resection  3
 Lymph node resection  3
 Radiation  1
 Stent implantation 11
Prior systemic chemotherapy  

(No. of patients)
 2

Infections at diagnosis (No. of patients)
 Liver abscess  2
 Cholangitis  3
Portal vein occlusion (No. of patients)  1
Congenital biliary cysts  1

Table 16.1 Patient baseline 
characteristics

Symptoms No. of patients

Jaundice (bilirubin >3 mg/dL)  7
Pruritus  3
Abdominal pain  9
Weight loss  5
Night sweets  2
Fever  5
Hepatomegaly 11
Right upper quadrant mass  4

Table 16.2 Tumor-
associated symptoms at  
begin of study medication
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6 months (n = 6) even in pretreated patients (n = 4). Objective responses were seen 
in tumors with intermediate or poor differentiation.

Response was independent of the primary tumor localization (intra- vs extrahe-
patic primary), P = 0.61.

16.3.3  Progression-Free Survival (PFS)

Median PFS was 6 months (95% CI, 5–7.3 months) on an intent-to-treat analysis. 
Retrospective analyses showed that PFS was not significantly different in pretreated 
patients vs those without pretreatment (surgery, chemotherapy, photodynamic 
therapy), P = 0.52.

Table 16.3 Tumor characteristics

No. of patients

Histological subtype (No. of patients)
 Tubular adenocarcinoma 19
 Papillo-tubular adenocarcinoma  2

Grading (No. of patients)
 G1  3
 G2 10
 G3  8

No of liver tumors
 Solitary  2
 Multiple 19

UICC staging (No. of patients)
 Stage III B  2
 Stage IV A 10
 Stage IV B  9

Tumor size (No. of patients)
 Maximal tumor diameter
 1–4.9 cm 15
 5–9.9 cm  4
 >10 cm  2

Localisation of the primary tumor (No. of patients)
 Liver lobe  4
 Intrahepatic  7
 Hilar  5
 Bile duct  2
 Gallbladder  3

Metastatic sites (No. of patients)
 Bone  1
 Lung  2
 Peritoneal carcinomatosis  3
 Lymph node involvement 12
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16.3.4  Pre-treatment with Pioglitazone and Rofecoxib

In two patients with B-symptoms (night sweats) an attenuation of these symptoms 
was observed. ECOG status improved in five patients. Pain release cannot be exclu-
sively attributed to systemic antiinflammatory therapy but also to palliative drain-
age of the bile ducts or control of accompanying infectious complications. The 
same is true for the resolution of jaundice.

16.3.5  Response Characteristics

In comparison to pulsatile chemotherapy regimens objective response was delayed, 
mean 4.8 months (range 3–8 months) [8]. Interestingly four patients achieving PR 
remained stable for more than half a year (8 months, 13 months, 18 months+,  
26 months +). Four of six patients with objective response had intrahepatic prima-
ries, two extrahepatic. All patients suffered from multiple metastatic sites in the 
liver (Table 16.4).

16.3.6  Survival

To date 5 of 21 patients (24%) are still alive (9+, 18+, 16+, 21+, 30 months). Overall 
median survival was 8 months (CI 95%, 7.1–9 months) (Fig. 16.1) on an intent-to-treat 
analysis. Median survival for patients with CR, PR and SD >6 months was 12 months 
(CI 95% 2–22.2 months), and with SD <6 months or PD, 3 months (CI 95% 
2–4 months), P = 0.0001, in a landmark analysis. All deaths were tumor-associated.

16.3.7  Tolerability and Safety

Of the 21 patients enrolled, nine non-responding patients (PD, SD <6 months) 
received 3.5 cycles (mean, range 2–5 cycles), the 12 responding patients 16.2 
cycles (mean, range 8–38 cycles). The most frequent reason for treatment discon-
tinuation was progressive disease, occurred (5%). The median dose per cycle was 
76% of that planned. The median duration of capecitabine treatment was 6.8 
months. Hospitalization due to grade 3 toxicity was necessary in two patients. 
Seven patients required symptomatic treatment. Diarrhoea was observed in two 
cases, stomatitis in one, HFS grade 2 in 48%, grade 3 in 9%.

Duodenal or gastric ulcers were not observed during treatment. Grade 3 or 4 
abnormalities in laboratory parameters were observed in six cases. These abnor-
malities were not attributable to treatment but to pre-existing liver disease or tumor 
progression, e.g. cholestasis. Hematotoxicity was mild in one patient (grade 1). 
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Other capecitabine-associated side effects, such as cardiotoxicity, were not 
observed. One dose reduction due to HFS was planned in the group of non-responders 
(PD, SD <6 months, n = 9 patients) but the patient refused to go on with a lower 
dose (Table 16.5). In 10 of 12 responders (CR, PR, SD >6 months, 83%) a dose 

OS (months)
403020100

1,0

,8

,6

,4

,2

0,0

Fig. 16.1 Overall survival (OS) in 21 patients with far-advanced hepatobiliary carcinoma (intent-
to-treat analysis): Median survival was 8 months (CI 95%, 7.1–9.0 months)

Table 16.5 Therapy- and tumor associated complications (WHO Grade I–IV) and response to 
treatment

Hand-foot syndrome Tumor-/therapy-related 
complicationsaPatient No. Grade 1/2 Grade 3 Resp.

2 Cycle 3 – SD
5 Cycle 1 – Leukopenia, thrombopenia, 

grade I, cholangitits
SD

7 Cycle 4 – – PR
8 Cycle 5 – Cholangitits PR
9 Cycle 3 Cycle1 Cholangitits SD

12 – – Cholangitits SD
13 Cycle 2 – Cholangitits SD
14 – Cycle 2 – PD
15 Cycle 5 – Edema grade 3, weight gain 

(3 kg)
PR

16 Cycle 3 – Edema grade 2 CR
18 Cycle 8/9 – – PR
19 – – Cholangitis SD
20 Cycle 9/13 – – PR
aThree further patients with edema grade I WHO with progressive disease (PD), two patients with 
non-cancerous ascites and PD
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reduction of capecitabine to a final dose of twice 0.75g/m2 per day (n = 8 pts) or 
twice daily 1 g absolute (n = 4 patients) was necessary between cycle 1 to 13 (mean 
4.9 cycles). In 10 of 12 responding patients dose reduction due to HFS was per-
formed before objective response has been achieved. Due to edema grade 2/3 a dose 
reduction of rofecoxib to 12.5 mg daily was necessary as well as accompanying 
therapy with diuretics in two patients. The dose of pioglitazone had not to be 
reduced. Cholangitis seemed not to be a therapy-related complication: The reasons 
were stent obstructions and in two cases tumor progression. Two patients developed 
non-malignant ascites due to alcoholic liver cirrhosis Child A (Table 16.5). Other 
side effects, such as gastrointestinal bleedings have not been observed.

16.4  Discussion

The present treatment approach combines convenience for the patient by a com-
pletely oral drug combination, tolerability of the study medication also in patients, 
who would have been unable to tolerate more toxic regimens, and considerable 
clinical benefit in the palliative care of non-selected patients with advanced CC. 
Hematologic toxicity was negligible and hand-foot syndrome was attenuated in 
comparison to the expected and reported incidence and severity during maximal 
tolerable dose (MTD)-guided therapy with capecitabine [8]. The median duration 
of capecitabine treatment in the present study was longer than reported for colon 
cancer [8] and the longest time of ongoing administration was 2.8 years. 
Comparably reduced toxicity of capecitabine may be due to the low doses being 
administered and to the accompanying antiinflammatory therapy with rofecoxib 
and pioglitazone. Thus, the favorable response and toxicity profile of the new treat-
ment approach fits to the general patients characteristics: elderly patients with 
tumor-associated comorbidity.

The current study demonstrates for the first time that complete remission may 
be achieved with long-term intermittent low-dose chemotherapy combined with an 
additional angiostatic therapy approach, that PFS rates in a patient population with 
62% pretreatment, poor performance status (ECOG >2, 48%) and a high rate of 
primary intrahepatic CCs (33%) are similar to those described for selected patients 
receiving second generation combination chemotherapy [9], and that multiple pre-
treated patients may achieve SD over long time periods.

Response rates of schedules including 5-Fluorouracil (5-FU) are ranging 
between 7 and 32%, those of second generation combination therapies between 
22% and 35%, depending on the patients performance status and patient selection 
[4, 10, 11] Median PFS for combination chemotherapies are reported between 6 
and 10 months [4]. Hematotoxicity of 40% seems to be considerable in docetaxel, 
oxaliplatin or cisplatin containing regimens [4.8].

The long-term responses to the current low-dose capecitabine schedule indicate 
that treatment response is not necessarily a function of the MTD but may be also 
achieved by a long-term administration of low doses of capecitabine including short 
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breaks [12]. In 83% of the patients with objective response a dose reduction to 1g or 
1.5 g absolute twice daily was necessary before the achievement of objective response. 
Therefore, the administration of capecitabine with weekly breaks following 14 days 
on treatment could be equivalent to a continuous administration of low doses.

Two recently published studies identified antitumor activity of rofecoxib and 
pioglitazone. In angiosarcoma patients the combined treatment with the two bio-
modulators could induce objective response including complete remission [6]. In 
sarcoma and melanoma patients rofecoxib and pioglitazone were shown to modu-
late tumor-associated serum C-reactive protein (CRP) levels [7].

The present study cannot estimate the impact of rofecoxib and pioglitazone 
on outcome of CCs. In CCs serum levels of CRP are both, tumor-associated and 
caused by accompanying bile duct infections [13]. Therefore, CRP levels were 
not suitable as tumor markers for follow-up. In a retrospective analysis single-
agent therapy with capecitabine has shown a poor response rate (6%). In con-
trast the response rate for the combined modality treatment, low-dose 
capecitabine plus biomodulation with a COX-2 inhibitor and a glitazone was 
29% [14]. The improved response rate in a patient population with unfavour-
able prognostic characteristics may indicate additional activity of a presumably 
anti-inflammatory and angiostatic therapy. Response rates in the present study 
were even comparable to those in selected patient populations receiving second 
generation combination treatments guided by MTD [4, 9–11] Randomized tri-
als will definitely clarify the impact of rofecoxib and pioglitazone in the treat-
ment of advanced CCs.
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Abstract The interaction among signaling networks of tumor and neighboring 
stroma cells in complex disease traits is poorly understood, and read-out parameters 
reflecting tumor-associated functional stages are scarce. A multi-centre phase II 
trial was designed to prove the hypothesis whether activation of presumably com-
plementary receptor-triggered transcriptional cascades (via pioglitazone and inter-
feron-a) could result in synergistic clinical effects. Therapy consisted of low-dose 
capecitabine 1 g/m2 twice daily po for 14 days, every 3 weeks, day 1+, and etori-
coxib 60 mg daily plus pioglitazone 60 mg daily, day 1+, and low-dose interferon-a 
4.5 MU sc three times a week, week 1+, until disease progression. Fourty-five 
patients with renal clear cell carcinoma at a progressive disease stage and ECOG 
0–2 were enrolled between March 2003 and April 2008. Forty-two percent of the 
patients had been systemically pretreated. Objective response was observed in 35% 
of the patients (PR 27%, CR 9%), which was paralleled by strong CRP decline after 
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4–6 weeks’ treatment. CRP values decreased from mean 42.3 mg/L, range 9.1–236, 
to 11.1 mg/L, range 1.1–35.6, P = 0.006. Stable disease >3 months occurred in 
40%. Median overall survival and progression-free survival for the total cohort 
were 26.9 and 7.2 months, for CRP non-responder 13.8 and 2.6 months (95% CI, 
6.5–21.1 / 0.4–4.8), and 24.4 and 11.3 months (95% CI, 22.8–31.0 / 5.7–16.9) for 
CRP responder, P = 0.082 / 0.017 (median observation time 26.1 months). Overall 
survival at 5 years was 18%. Toxicity >WHO grade 3 was reported: Hand-foot 
syndrome in 16 patients (36%), diarrhea in 4 patients (9%), depression in 1 patient, 
and pneumonia in 2 patients. (1) Clinical results of combined anti-inflammatory 
and angiostatic therapy were comparable with available standard therapies, 
although 50% of the patients had been systemically pretreated. (2) Control of 
tumor-associated inflammation is an important therapeutic principle in metastatic 
renal clear cell carcinoma.

Keywords Renal clear cell carcinoma · C-reactive protein · Secretome · Metro- 
nomic chemotherapy · Pioglitazone · Coxib · Metastatic renal cell carcinoma  
· Modular therapy · Systems biology antiinflammatoric agents

17.1  Introduction

Up to now, interleukin-2 has been the most active and, simultaneously, the most 
problematic first-line drug in inducing durable complete remission (CR) in non-
resectable metastatic renal clear cell carcinoma (RCCC): Many patients are not 
eligible for this treatment because of expected therapy-related adverse events. For 
the majority of patients, the multimode targeted therapies available for RCCC are 
associated with a survival benefit over placebo or interferon-alpha monotherapy. 
The main benefit of such therapies is inducing stable disease. The drugs tie in mul-
tiple pathomechanisms, either tumor cell- or stroma cell-derived: Selected targets 
in RCCC are FMS-like tyrosine kinase 3 (Flt-3), mammalian target of rapamycin 
(mTOR), platelet-derived growth factor receptor b (PDGFRb), phosphatidylinositol 
3 kinase (PI3 K), tyrosine kinase, vascular endothelial growth factor (VEGF), and 
vascular endothelial growth factor receptor (VEGFR) [1].

Multiple combination therapies have already been evaluated, either theme-
dependently (immunomodulation, antiangiogenesis, etc.) or guided by ‘histori-
cally’ available ‘standard’ therapies. Bevacizumab showed efficacy in the treatment 
of RCCC when added to IFN-a [1].

Similar to these methodological approaches, future treatment strategies for 
advanced RCCC will probably incorporate a combination of molecular approaches, 
using multi-drug regimens consisting of small-molecule kinase inhibitors with 
biologic therapies or immunomodulatory therapies, or both.

We advanced theme-dependent therapy approaches in RCCC to biomodulatory 
therapies, which are adjusted to evolutionary evolving systems stages, i.e. to the 
spin-off of tumor-associated inflammation in the metastatic stage of RCCC. Thus, 
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RCCC-associated inflammation represents a therapy-relevant target for biomodulatory 
therapy approaches aimed at achieving objective tumor response in the range of 
modest toxicity [2].

Biomodulatory therapies are characterized by poor or no monoactivity of single 
combined drugs. However, concerted single drugs may finally alter the denotation 
of tumor-associated inflammatory processes by therapeutically focusing on the 
validity of systems features promoting tumor growth. Attenuation of  tumor- associated 
inflammation in RCCC, as indicated by declining C-reactive protein (CRP) levels 
(>30% from baseline), is linked with objective tumor response – as shown – even 
with high sensitivity and specificity [2].

In a historical comparison, the addition of interferon-a to low-dose capecitabine, 
pioglitazone, rofecoxib, or etoricoxib highlighted the impact of distinct biomodu-
lary acting combination therapies on inflammation control for improving survival: 
The regimen without interferon may attenuate inflammation but did not have the 
capacity to induce objective tumor response [2].

In an amendment approved by the local ethic committee, the study on capecit-
abine, pioglitazone, and etoricoxib plus low-dose interferon-a was extended 
because of the fact that long-term complete remissions had been observed in non-
resectable metastatic RCCCs. Here, we report on 45 patients with metastatic, 
 non-resectable, and partially systemically pre-treated RCCC.

17.2  Patients and Methods

Centers participating in the trial were the Department of Hematology and Oncology 
and the Department of Urology at the University Hospital Regensburg and the 
Departments of Hematology and Oncology at the Hospitals Fuerth and Passau.

17.3  Eligibility

The local ethics committee approved the study protocol, and patients needed to 
provide written informed consent before enrolment. Eligible patients were required 
to have progressive metastatic (according to Response Evaluation Criteria in Solid 
Tumors (RECIST) requirements) and locally recurrent or contra-lateral non-resect-
able RCCC. If nephrectomy was not indicated because of non-operability, clear cell 
histology was confirmed at a metastatic site. Patients with primarily metastatic dis-
ease underwent nephrectomy at least 21 days before initiation of treatment accord-
ing to protocol. In these patients, disease progression was not a prerequisite for the 
start of therapy. Brain metastases were no exclusion criteria if controlled by surgery 
or radiotherapy prior to the start of study medication. Patients were allowed to have 
received an unlimited number of previous systemic therapies including chemother-
apy and immunotherapy or antiangiogenic agents such as thalidomide and IFN-a, 
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or both (IFN-a pretreatment was no exclusion criterion because we suggested 
synergistic anti-inflammatory activity of pioglitazone/COX-2 inhibitor/IFN-a). 
Previous treatment with pioglitazone or capecitabine presented an exclusion crite-
rion. The remaining inclusion criteria included those of the Eastern Cooperation 
Oncology Group (ECOG) (with the exception of serum creatinine <1.5 mg/dL).

17.4  Pre-treatment Evaluation

Apart from acquiring a medical history, baseline evaluation included a physical 
examination, the assessment of ECOG performance status, a complete blood cell 
count, serum chemistry assays, coagulation tests, a chest X-ray, abdominal ultra-
sound scanning, and computed tomography (CT) (scanning of the thorax and abdo-
men and facultative bone scanning or CT scanning of the brain if metastasis was 
clinically suspected). Patients were subsequently monitored before the start of che-
motherapy and every 3 weeks thereafter (assessment of toxicity, serum chemistry 
assays, one of which measured CRP levels, and a physical examination). For 
patients continuing study medication, target lesions were assessed (via abdominal 
ultrasound or chest X-ray) before each 3-week therapy cycle. If these techniques 
suggested response to treatment or progressive disease, CT scans were carried out 
before the routinely scheduled response evaluations by CT scans in 12-week 
intervals.

17.5  Treatment

Patients received 1 g/m2 oral capecitabine (Roche) administered twice daily for 
14 days, every 3 weeks, from day 1+, 60 mg oral pioglitazone (Takeda), 4.5 MU 
IFN-a sc. (Roche) 3 times per week, from day 1+, and 60 mg oral etoricoxib or 25 mg 
rofecoxib (withdrawn from the market) (MSD) daily starting with day 1+. Treatment 
was continued until disease progression was documented or for a maximum of 
6 weeks after confirmation of complete remission.

17.6  Efficacy Assessment

Response was evaluated in patients who had a follow-up duration of ³3 weeks by 
the treating physicians and centrally (blinded) by the imaging unit of the University 
Hospital Regensburg. Response categories were assigned by means of the RECIST 
criteria [3]. All major responses were reconfirmed in 4–6 week intervals. Stable 
disease was suggested if no tumor progression occurred within 6 months of treat-
ment. Clinical response was defined as stable disease (SD) >6 months, partial 



35717 C-Reactive Protein As a Secretome-Derived Biomarker for Predicting Response

response (PR), and complete remission (CR). Data reported represent the best 
response obtained during treatment according to study protocol.

17.7  Dosage Modification

Drug administration was paused for grade 2 or 3 toxicity and resumed at a reduced 
dosage on resolution to less than grade 2. In case of reoccurrence of dosage-limiting 
grade 3 or 4 toxicity, the corresponding drug was discontinued. Capecitabine 
therapy was continued with a 75% starting dosage for the first and 50% for the 
second occurrence. IFN-a administration was continued at a dose of 3 MU three 
times a week; COX-2 inhibitor administration at a dose of 30 mg etoricoxib every 
day; and pioglitazone at a reduced dose of 45 mg. According to experiences in 
previous phase II studies, the dosage of pioglitazone was not modified as long as a 
dosage reduction or discontinuation of the COX-2 inhibitor was sufficient to 
resolve edema or renal insufficiency to <grade 2.

17.8  Statistical Considerations

The current multicenter non-randomized phase II trial was designed to assess (1) 
response, (2) the qualitative and quantitative toxicity of the treatment schedules, 
and (3) CRP response.

The Kaplan–Meier methodology served to analyze time to progression and over-
all survival (OS). Overall survival and progression-free survival (PFS) was calcu-
lated from the initiation of treatment until death or until November 2009 (date of 
final data analysis), which ever came first. Survival analyses were done on the 
intent-to-treat population. Patients who died as a result of unrelated causes during 
therapy or who were lost to follow-up were censored.

Survival for subsets (CRP responder >30% during 4–6 weeks on treatment vs. 
CRP non-responder and patients with normal CRP levels at base-line) of patients 
was compared by means of two-sided log-rank analysis. In addition, the ‘Fischer’ 
exact and the ‘Student t’-test were used to identify significant associations between 
chemical and biologic variables. Sensitivity and specificity of the predictivity of 
CRP response for clinical response were determined.

17.9  Results

17.9.1  Patients’ Characteristics

In total, 45 patients (of four centers) with non-resectable metastatic RCCC were 
enrolled into the study between February 2003 and April 2008. Detailed patient 
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characteristics are listed in Tables 17.1 and 17.2. The age distribution corresponded 
to the age-related incidence of renal cell carcinoma, and a typical metastatic pattern 
was documented. Only a small proportion of patients had not undergone radical 
nephrectomy. Forty-two percent of the patients had been systemically pretreated.

Table 17.1 Patients’ characteristics

Parameter Absolute %

Age at study inclusion
 Median 63
 Range 45–76
Sex
 Male 30 67
 Female 15 33

ECOG performance status at study inclusion
 0 22 49
 1 20 44
 2  3  7
Nephrectomy 42 93
Surgery of metastasis 24 53

Metastatic tumors
 Lung 41 91
 Lymph nodes 19 42
 Bone 18 40
 Liver 10 22
 Adrenal gland  8 18
 Contralateral kidney  5 11
 Pancreas  5 11
 Skin  4  9
 Local relapse  3  7
 Brain  2  4
 Muscles  1  2
 Breast  1  2
 Thyreoid gland  1  2
 Spleen  1  2
 Peritoneal carcinosis  1  2

Histology
 Clear cell carcinoma 45 88

Histological grading
 0–3 (G0: 0; G1: 4; G2: 19; G3: 13) 36 80
 Not specified  9 20

Motzer risk score
 Low (0) 15 33
 Intermediate (1–2) 19 42
 High (3–5) 11 24
First-line therapy 26 58
Second-line therapy 19 42



35917 C-Reactive Protein As a Secretome-Derived Biomarker for Predicting Response

17.10  Treatment

All patients received at least three 3-week cycles of study medication. The median 
duration of study treatment was 10.5 months (95% CI, 7.2–14.7 months).

17.11  Treatment Efficacy

All 45 patients were assessable for response. At present, 11 patients are alive 
(24%), 3 of 4 CR patients with histologically confirmed CR, 5 patients in PR (11%) 
are still on treatment for 22.0+ to 58.0+, 2 patients with progressive disease are 
alive with alternative therapy approaches. Five patients achieving partial remissions 

Table 17.2 Patients’ characteristics

Prior systemic treatment

No 26 58
Interferon/Interleukin 3 7
Simultaneously 5-Fluorouracil and radiation 3 7
Interferon 1 2
Velbe/Interferon 1 2
Vinblastin 1 2
Vinblastin/Interferon 1 2
Sorafenib 3 2
Vindesin 1 2
Tamoxifen 1 2
Thalidomid 1 2
Sutent 2 2
Temsirolimus 1 2

Radiation prior to study 14 7
Therapy with bisphosphonates 8 18
Chemoembolisation 2 4
Radiofrequence-Thermoablation 1 2
Vaccination 1 2
Pleurodesis (Novantron) 1 2

Table 17.3 Therapy response

Patients with RCCC (n = 45)

Therapy response No. %

Complete remission (CR)  4  9
partial remission (PR) 12 27
Stable disease (SD) 18 40
Progressive disease (PD) 11 24
Therapy response (SD + PR + CR) 34 76
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with only residual measurable metastatic disease in CT scans had negative positron 
emission tomography results, probably indicating complete remissions.

Overall clinical response (SD, PR, and CR) was 76% as detailed in Table 17.3. 
Objective responses were diagnosed after a median time of 4.5 months (range 
2.8–8.7 months). Responses were seen at all major tumor localizations (lung, pan-
creas, lymph-nodes, liver, bone, and contra-lateral kidney). Metastases of patients 
with complete response were localized in the lung (n = 3), liver (n = 1), bone (n = 
1), and in the lymph nodes (n = 4). All these patients had undergone prior tumor 
nephrectomy and two prior localized therapies for control of metastatic disease 
(chemoembolization of metastasis or surgical stabilization of a vertebra-body 
 fracture, and radiation of further bone metastasis prior to study inclusion).

The clinical response rate of patients who had or had not received previous 
 systemic therapy (n = 19; n = 26) was 53% and 92% respectively. Two responders 
received previously IFN-a.

All patients died of tumor progression (75%). After a median follow-up of 26.1 
months, 12- and 24-month progression-free survival rates were 36% and 16%. 12-, 
24-, and 36-month survival rates were 82%, 62%, and 36%, respectively. The 

Fig. 17.1 Progression-free survival of patients with C-reactive protein (CRP) response vs. 
patients without elevated CRP levels or non-response (<30% CRP response during 4–6 weeks’ 
treatment)
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Fig. 17.2 Overall survival of patients with C-reactive protein (CRP) response vs. patients without 
elevated CRP levels or non-response (<30% CRP response during 4–6 weeks’ treatment)
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Fig. 17.3 Overall survival (OS) and progression-free survival (PFS) with targeted agents in phase 
III trials of advanced renal cell carcinomas in comparison with results derived from the presented 
biomodulatory therapy approach (Pioglitazone (Actos®), rofecoxib (Vioxx®) or etoricoxib 
(Arcoxia®), and Interferon-a (Roferon®) combined with low-dose metronomic Capecitabine 
(Xeloda®)
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median PFS and OS rate was 7.2 months (95% CI: 3.2–11.1 months) and 26.9 
months (95% CI: 22.7–31.0 months) (Figs. 17.1 and 17.2). Objective response to 
treatment was observed in all Motzer risk categories.

17.12  CRP Response

CRP levels were available for follow-up in all 45 patients, 32 patients (67%) had 
elevated CRP levels (Fig. 17.3): During therapy, CRP levels significantly decreased 
(>30%) in all patients with initially elevated CRP levels from mean 42.3 mg/L, 
range 9.1–236, to 11.1 mg/L, range 1.1–35.6 mg/L (P = 0.006). The association of 
CRP decline and tumor response is shown in Table 17.4. ECOG status improved in 
45% of the patients with CRP response.

Explorative evaluation of CRP responder and non-responder showed  significantly 
improved PFS (P = 0.017) and a tendency to improved overall survival 
(P = 0.082) for the responder group (Figs. 17.1 and 17.2). Sensitivity and  specificity 
of CRP to predict clinical response was high at 81% and 100%.

17.13  Tolerability and Safety

The treatment regimen aimed at facilitating long-term administration of the entire 
study medication by a scheduled early dosage reduction in case of toxicity >grade 1. 
Treatment-related toxicities (>grade 2 WHO) are specified in Tables 17.5 and 17.6. 
Overall, the therapy regimen was well tolerated as indicated by the low number of 
grade 3 and 4 toxicities. Hematologic toxicity in particular was very modest.

The main toxicity was capecitabine-associated hand-foot-syndrome, which led 
to a dosage reduction as indicated in Table 17.6. Secondly, interferon-a dosage had 
to be reduced. Mild fever reactions and depression were specifically related to 
the additional administration of low-dose IFN-a. Fatigue after the initiation of 
i nterferon-alpha was also observed, albeit less frequently.

Table 17.4 C-reactive protein and tumor response

Number of patients (%)

CRP responder

With elevated  
CRP levels

CRP  
response

Objective response  
(PR + CR)

Stable  
disease (SD)

Progressive 
disease (PD)

32/45 (67) 32 (100) 12 (37) 14 (44) 6 (19)

CRP response: CRP decrease >30% during 4–6 weeks on therapy
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Edema and elevation of creatinine levels led to a dosage reduction of etoricoxib. 
Six patients transiently received mild diuretic therapy (weight gain, edema). 
Because of renal insufficiency (4/4 patients) and hypertension (1/1 patient), COX-2 
inhibitors were discontinued after 3–5 treatment cycles. Dosage reduction of piogli-
tazone became necessary in only a few patients due to edema.

One patient with known angina pectoris experienced symptoms during study 
medication, which were resolved after coronary stent implantation. The dosage of 
one or more drugs was reduced in 64% of the patients (Tables 17.5 and 17.6). Only 
two patients discontinued therapy because of drug-related toxicities after 2.5 
months (depression grade 3) and 6 months (hand-foot-syndrome grade 3).

Table 17.5 Therapy-related toxicities > WHO grade 2

WHO grade 3 WHO grade 4

Therapy-associated toxicity No. (%) No. (%)

Leukopenia 2 (4) – –
Anemia 2 (4) – –
Hand-Foot-Syndrome 16 (36) – –
Nausea/Vometing 3 (7) – –
Fatigue 2 (4) – –
Creatinine 1 (2) – –
Diarrhoea 2 (4) 2 (4)
Edema 2 (4) – –
Infection 1 (2) 1 (2)
Pneumonia 2 (4) – –
Mucositis 2 (4) 1 (2)
Stomatitis – – 1 (2)
Heart failure 1 (2) – –

Table 17.6 Dose modification

Number of patients

Dose modification Capecitabine
Interferon-
alpha

Etoricoxib/
Rofecoxib Pioglitazone

Twice daily 1 g  
absolute

29 – – –

Twice 4.5 Mio IE per 
week

– 20 – –

30 mg or 12.5 mg/d 
daily

– – 9 / 6 –

30 mg daily – – – 2
Therapy breaks  

(<2 Wochen)
 3  3 0/1 –
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17.14  Discussion

We can now provide the long-term follow-up of an extended study population 
treated with a biomodulatory therapy approach for non-resectable, partially systemi-
cally pretreated (42%) metastatic RCCC. The therapy regimen is characterized by 
the inclusion of biomodulatory acting drugs, particularly by the introduction of a 
combined transcriptional stimulation with interferon-alpha and pioglitazone.

Recent study results are confirmatory in every aspect:

Combined biomodulatory treatment has the capacity to induce durable, even •	
pathologically confirmed complete remission in metastatic RCCC.
PFS and OS rates compare to those established in first-line treatments, although •	
42% of the study population had been systemically pretreated, 51% of the patients 
had an ECOG performance status >0, and 67% of the included patients had  elevated 
CRP levels at base-line as a poor prognostic parameter [4–12] (Fig. 17.3).
CRP response >30% or normalization had high sensitivity (82%) and specificity •	
(100%) to predict clinical response (SD, PR and CR).
Clinical responses occurred in a range of comparably low toxicity rates [•	 1].

The origin of frequently increased serum CRP levels in RCCC is complex: CRP 
belongs to the secretome of malignant cells in RCCC and hepatocytes, which 
respond to systemic tumor-associated pro-inflammatory processes [13]. Elevated 
CRP levels have a negative impact on the overall survival rate in patient populations 
receiving surgery for primary or metastatic RCCC [4]. The present study results 
also show that the resolution or even the attenuation of tumor-associated inflamma-
tory processes with non-cytotoxic biomodulatory therapies may improve PFS and, 
as a tendency, OS in non-resectable metastatic disease.

Besides metronomic low-dose capecitabine, the transcriptional modulators inter-
feron-alpha and pioglitazone may be the main team players of the presented sched-
ule. Both drugs have – similar to low-dose capecitabine – poor monoactivity at the 
respective dosage levels. Interferon-alpha decisively attenuates inflammation in nor-
mal volunteers, adding a decisive clinical benefit in RCCC patients. This benefit 
was missing in a historical control group that had not received  interferon-alpha in 
 addition to metronomic low-dose capecitabine, etoricoxib, and pioglitazone, 
although CRP response could be frequently observed in this regimen [2, 14–17]. At 
respective cytotoxic dose levels, the combination capecitabine (twice daily 2 g/m2) 
and pegylated interferon-alpha (180 mug per week) had shown clinical activity 
[18].

The second point of interest is the presented therapy schedule itself. This sched-
ule was not designed to theme-dependently interfere with more or less ‘tumor-
specific’ targets, which turned out to be therapeutically relevant in the ‘general 
model patient’ with RCCC [1].

The activity profile of the administered drugs builds upon their ability to regu-
late systems functions both in tumor and adjacent stroma cells [19]. The biomodu-
latory activity keeps the range of toxicities modest.
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The respective targets for the drugs are ubiquitously available in the tumor com-
partment. Concerted alteration of the holistic communicative infrastructure may be 
now an explanation for the observed attenuation of tumor growth or induction of 
complete remission. Response cannot be pinned down to suggested stereotypically 
available tumor-specific pathways, which is a typical explanation of the activity of 
small molecules or antibodies in combination therapies of contextualist design. The 
therapeutic handicap of these theme-dependent therapy approaches is that we 
 presuppose distinct (pathologic) pathways as exemplarily relevant for the ‘general 
patient’ with RCCC.

In contrast to the classic multitargeted theme-dependent therapies of contextual-
ist design, the novel generation of biomodulatory therapies may be oriented at the 
tumor-specific, the stage-specific, and the evolving situation-specific spin-off of 
systems functions, in our case tumor-associated inflammation. Translated into com-
municative systems terms, the validity of tumor-associated inflammation may be 
therapeutically ‘indirectly’ altered by biomodulation to change its original denota-
tion, namely tumor promotion [20, 21]. In 18% of the patients, alterations in the 
intersystemic exchange processes have to be suggested, as inflammation but not 
tumor progression may be controlled by the study medication.

The ‘indirect’ attenuation of tumor growth necessitates the assumption that 
 specific evolutionary linked functions of systems objects (proteins, pathways, cells, etc.), 
which are commonly featured in form of their nude identity beyond a systems 
 context, may be redeemed in an evolutionary context by the holistic communicative 
tumor system.

Proteins from the tumor-associated secretome, indicating a functional tumor-
associated systems status, are precious systems markers for the successful and 
clinically relevant modulation of particular tumor-associated systems as long as 
intersystemic exchange processes remain undisturbed.
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Abstract The present multi-center phase II study was designed to support the 
hypothesis that networking agents which bind to ubiquitous accessible targets in 
metastatic castration-resistent prostate cancer (CRPC) may counteract neoplasia-
specific aberrant cellular functions, thereby mediating PSA response. Patients with 
metastatic CRPC received low-dose chemotherapy with capecitabine 1 g twice daily 
plus dexamethasone 1 mg daily for 14 days every 3 weeks, COX-2 blockade with 
rofecoxib 25 mg (or etoricoxib 60 mg) daily combined with pioglitazone 60 mg 
daily, starting with day 1 + until disease progression. Thirty six patients with meta-
static CRPC were enrolled; n = 18 (50%) had been extensively pretreated with radio- 
or radionuclide therapy, n = 16 (44%) with chemotherapies; and n = 8 patients (22%) 
were medically non-fit, having an ECOG-score of 0–2. Nine out of fifteen patients 
with PSA response >50% showed objective response. Median time to PSA response 
was 2.4 months (range 1.0–7.3 months). Two out of nine patients responding with 
PSA <4 ng/mL showed complete resolution of skeletal lesions; thirteen patients had 
a stable course of disease, and five patients experienced progressive disease. Median 
progression-free survival (PFS) was 4.0 months (2.8–5.1 months) and median overall 
survival (OS) 14.4 months (10.7–17.2 months). Toxicities according to WHO grade 
III were: Hand-foot syndrome (n = 1), hematologic toxicity (n = 7), edema (n = 1),  
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Cushing syndrome (n = 1). This is the first study reporting complete resolution of 
skeletal lesions in CRPC by means of a biomodulatory therapy approach. The study 
may clinically support the above-mentioned hypothesis  [27].

Keywords Castration-resistent prostate cancer • Metronomic chemotherapy  
• Modular therapy • Pioglitazone • Coxib

18.1  Introduction

The standard treatment for metastatic prostate cancer is androgen deprivation 
therapy [1]. Unfortunately, most men become resistant to hormonal manipulation. 
This disease stage is defined as castration-resistent prostate cancer (CRPC). 
Approximately 12% of patients with newly diagnosed prostate cancer (218,890 in 
the US in 2007) will die of metastatic CRPC [2].

Two pivotal trials of docetaxel-based chemotherapy were reported in 2004. For 
the first time, a survival benefit was observed for chemotherapy in CRPC [3, 4]. 
Thus, the results from these two studies have changed patients’ expectations of 
treatment outcome from pure palliation to improved survival.

However, after the hormonal management of metastatic castration-sensitive PC, 
docetaxel-based chemotherapy represents a change to cytotoxic therapy, which may 
be less well-tolerated, especially by elderly co-morbid patients with limited bone 
marrow reserve due to preceding radiotherapy. Comprehensive recommendations 
for elderly patients with CRPC are still lacking [5]. Although taxanes represent the 
most active agents for the first-line treatment of metastatic CRPC, most patients 
subsequently show disease progression during taxane-based treatments [1].

Many trials now focus on improving the efficacy of docetaxel by combining it 
with novel agents. Several studies investigate new cytotoxic agents to define their 
role for the second-line treatment of CRPC [6–8]. So far, no agents have been 
approved for second-line therapy in CRPC. However, common practice of oncolo-
gists is to continue treatment after docetaxel failure.

Therefore, efficacious therapy approaches are required, meeting the specific 
clinical requirements in the therapy of CRPC: Therapies have to cope with elderly 
and often medically none-fit patients and with patients suffering from limited bone 
marrow reserve due to extended radio- or radionuclide therapy.

Angiostatic therapy approaches are now being established: Limited data are avail-
able on metronomic low-dose chemotherapy [9]. Bevacizumab (Avastin), a recombi-
nant humanized antivascular endothelial growth factor (anti-VEGF) antibody that 
specifically inhibits VEGF, has shown activity in CRPC as add-on to chemotherapy 
[10, 11].

First promising data are now available for the combination of both angiostatic 
approaches in metastatic breast cancer [12]. Besides angiostatic approaches, anti-
inflammatory therapy in CRPC seems to be promising, based on findings that 
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inflammation represents an important systems feature during tumor evolution in 
CRPC [13–15].

These recent observations further provide the rationale to combine angiostatic and 
anti-inflammatory therapy (coxib, dexamethasone, and pioglitazone) in patients with 
CRPC, who are either highly pre-treated or medically none-fit and are motivated to 
receive treatment, considering that no therapy has been approved in this setting.

Cytotoxic drugs typically produce a decline in PSA and a regression of target 
lesions. In contrast, agents that act to slow tumor growth, i.e. combined angiostatic 
and anti-inflammatory therapies, may not [16]. Instead, these agents may inhibit 
osteoblastic bone destruction or tumor-related angiogenesis and inflammatory pro-
cesses, thereby slowing tumor progression [17, 18]. For example, a bone-directed 
therapy may prevent disease-related complications in the skeleton without influenc-
ing the growth of soft-tissue disease: The nuclear receptor agonist pioglitazone 
used in the present study may prevent the differentiation of bone marrow stem cells 
to osteoblasts (chapter 19) [19]. Therefore, besides the primary standard endpoint 
PSA response, an important secondary endpoint for non-cytotoxic drug combina-
tions is survival and the question whether such a therapy may be efficaciously 
administered at modest toxicity rates for a long period of time.

18.2  Patients and Methods

The main eligibility criteria included patients with CRPC who (1) had been 
pre-treated either with chemotherapy (docetaxel, mitoxantrone, etoposide, or other 
cytotoxic drugs) or radiotherapy, (2) were none-eligible for standard chemotherapy 
because of co-morbidity, (3) suffered from disease progression (PSA or nodal or 
visceral site progression) and had a treatment-free interval from the last CT of ³6 
weeks. Bisphosphonates were permitted. Patients needed to have adequate major 
organ function. Written informed consent was required from all patients before 
enrolment into the trial (Table 18.1). The institutional ethic committee approved the 
protocol.

Androgen blockade had to be interrupted for at least 4 weeks with flutamide and 
for 6 weeks with bicalutamide, respectively. The number of prior hormonal thera-
pies was not limited. Luteinizing hormone-releasing hormone agonist (LHRHa) 
treatment was continued during the study. Testosterone levels were not measured 
before starting study medication.

Biochemical progression was defined as >50% prostate-specific antigen (PSA) 
increase between two independent measurements at 2-week intervals.

Patients received capecitabine 1 g twice daily plus dexamethasone 1 mg daily 
for 14 days, every 3 weeks; pioglitazone 60 mg daily, rofecoxib 25 mg (or etori-
coxib 60 mg) daily from day 1 until disease progression.

Early dose reductions were permitted (WHO toxicities grade I–II) to primarily 
facilitate long-term drug administration: Capecitabine doses were reduced to 1 g 
absolute twice daily in patients developing hematotoxicity grade I–II, hand-foot 
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syndrome, or diarrhea grade I–II WHO. In case of edema or renal insufficiency 
(creatinine >1.5 mg/dL), rofecoxib was reduced to 12.5 mg and pioglitazone to 30 mg 
daily, if symptoms improved after a break of <2 weeks.

In contrast to heart failure NYHA >1, controlled hypertension and diabetes mel-
litus were no exclusion criteria. In case of diabetes mellitus, the pre-study medica-
tion had to be adapted to prevent hypoglycemia.

Baseline evaluation included the complete medical history and physical exami-
nation, assessment of the ECOG status, the PSA value, bone scans, and total-body 
computed tomography scans (CT).

Treatment was administered until disease progression (PSA or objective 
progression).

The primary end point was the assessment of the response rate (PSA and the 
objective response of every cycle and all three cycles). Secondary endpoints 
included toxicity, progression-free survival (PFS), and overall survival (OS).

PSA response after three cycles was critical for the continuation of the study 
therapy to anticipate early break-up of study medication because of flare phenom-
ena. Major PSA response was defined as a reduction from baseline of ³50% on two 
consecutive measurements taken at least 2 weeks apart. Minor response was defined 
as ³25–49% PSA decrease; <25% PSA decrease up to <25% PSA increase was 
considered stable disease. Decline from baseline progression was defined as ³25% 
increase from nadir and an increase of at least 5 ng/mL, or back to baseline, which-
ever was lowest, taken in two consecutive measurements at least 2 weeks apart.

Patients with measurable disease were assessed for response to therapy according 
to the standard Response Evaluation Criteria in Solid Tumors (RECIST) criteria, 
computed tomography (CT) or magnetic resonance imaging (MRI), or bone scan 

Table 18.1 Main eligibility criteria

Age >18 years
ECOG 0–2
Life expectancy ³3 months
Histological confirmed adenocarcinoma of the prostate
Castration-resistent disease
Previous chemotherapy or extensive radiotherapy (one third of hematopoietic bone marrow)
or not eligible for standard chemotherapy (medically none-fit patients)
Progressive disease after previous chemotherapy or radiotherapy
PSA increase >50% on hormonal therapy measured on two consecutive occasions, 5.0 ng/mL 

minimum level for entry 
or objective evidence of progression on CT scan or bone scan, or both
New symptomatic bone metastases
Written informed consent signed by the patient
Absolute neutrophil count ³1.5/nL
Hemoglobin ³9 g/dL
Platelets ³1,00,000
Creatinine £1.5 mg/dL
Transaminases <2 ULN

ECOG (Eastern Cooperative Oncology Group); PSA, prostate-specific antigen; CT, computed 
tomography; ULN, upper limit of normal
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every 12 weeks. In case of bone scans, outcome is reported as new lesion or no new 
lesion. A further new lesion in a confirmatory scan two cycles apart was estimated 
as progression and resolution of all lesions only in cases with skeletal involvement 
and PSA levels <1 ng/mL as complete elimination of disease.

We did not calculate a sample size before starting this prospective study because 
our patients were highly pretreated. Furthermore, we did not expect a hypothetical 
PSA response rate in this subset of patients.

Time to progression and overall survival were analyzed by the product-limit 
method (Kaplan-Meier).

18.3  Results

Between January 2003 and May 2006, 36 patients from three different institutions 
were enrolled. All patients were assessable for PSA response and toxicity data. 
Patient characteristics are shown in Table 18.2. All patients had bone disease with 

No. of patients 36
Age (years) 71 (66–86)
ECOG 1 (0–2)
Gleason score 7 (4–9)
£7 11
>7 25
PSA, ng/mL (range) 308 (14–2313)

Previous local therapy
 Surgery 23
 Radiotherapy (prostate/bone) 13/18

Previous hormonal treatment
 LHRH analoga 36

Anti-androgens
 Bicalutamide 36
 Flutamide 22
 Cyproterone acetate 12
 Estrogen 3
 Radionuclide therapy 3

Previous chemotherapy
 Docetaxel 16
 Mitoxantrone 5
 Etoposide 2
 Cyclophosphamide 1
 Estramustine 4
 Platinum compounds 1
Previous bisphosphonates 36

ECOG (Eastern Cooperative Oncology Group); PSA, prostate-
specific antigen; LHRHa, Luteinizing hormone-releasing 
 hormone agonist. Data are expressed as median (range)

Table 18.2 Patient 
characteristics
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or without nodal disease or evidence for visceral spread, or both. Distributions of 
metastatic sites in the total patient cohort were similar to those observed in large 
phase III trials [3, 4].

Docetaxel: 70 mg/ m2 every 3 weeks plus prednisone (5 mg twice daily); mitox-
antrone: 12 mg/ m2 every 3 weeks plus prednisone (5 mg twice daily); etoposide: 
orally 50 mg daily 1; cyclophosphamide: orally 50 mg daily; cisplatin: 50 mg/ m2 
every 3 weeks.

Extended radiotherapy = at least one third of blood-generating bone marrow in 
13 patients.

Each patient had received several hormonal therapies for metastatic disease. 
Sixteen patients with preceding chemotherapy (n = 16) had already received at 
mean 2.1 (range 1–5) chemotherapy regimens for CRPC. The median number of 
previous chemotherapy cycles was 9 (range 2–17 cycles). 29 patients (81%) had 
previously received extensive radiotherapy or chemotherapy, or both.

All patients showed increasing PSA levels, and 13 patients (36%) measurable 
progression. Fourteen out of sixteen patients who had received docetaxel (70 mg/
m2 every 3 weeks) plus prednisone as first-line therapy were treated with second- 
to fourth-line regimens before study inclusion. Two patients were medically non-
fit and therefore not eligible for standard first-line therapy with docetaxel. Six 
other patients were medically non-fit and had previously received extensive radio-
therapy. Twelve patients did not qualify for docetaxel treatment because of preced-
ing extensive radio- or radionuclide therapy, or both. Metastatic sites were bones 
(multiple bone lesions), liver, lung, and lymph nodes (Table 18.3). All patients 
stopped previous chemotherapy for 6 weeks and showed a PSA increase of 
>50%.

Eighty-six percent of patients had a good ECOG performance status (0–1), 14% 
had ECOG 2. Impaired bone marrow function (chemotherapy, extended radiother-
apy) associated with bicytopenia was frequently observed (47%) at study inclusion. 
26% of patients had a previous history of controlled hypertension (28%) and diabetes 
mellitus (19%). 2 patients (6%) suffered from cancer-related disseminated intravas-
cular coagulation (DIC).

Two hundred and sixty- seven cycles of capecitabine, pioglitazone, rofecoxib, 
and dexamethasone were administered (mean 7.4, range 2–57). Dose reductions, all 

Table 18.3 Clinical  
manifestations of progressive  
castration-resistent prostate 
cancer

Manifestation N = 36 (%)

Rising PSA 100
Bone 100
Substantive pain  28
Soft-tissue lesions  8
Lung/liver  16
Lymph nodes  24
Prostate/prostate bed  2
Meningeal involvement  2

PSA, prostate-specific antigen
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drugs included, were necessary in 89% of patients: Capecitabine to daily 1.5 g 
absolute (86%), rofecoxib to 12.5 mg (39%), pioglitazone to 45 mg (28%), and 
dexamethasone to 0.5 mg (53%). The schedule of capecitabine resulted in a mean 
dose intensity of 0.5 g/m2 twice daily or 55% of the planned dose intensity.

Capecitabine was reduced because of hand-foot syndrome in 36% of 287 cycles 
and because of hematotoxicity grade I–II in 51%. Treatment was interrupted 
21 times for less than 2 weeks (10%). Reasons for delay were hematologic toxicity 
(6 cycles), non-hematologic toxicity (14 cycles), and patient’s request (1 cycle). 
Of 36 patients, 34 patients (94%) completed 2 cycles, 16 patients (44%) 4 cycles, 
6 patients (17%) 6 cycles, 6 patients (17%) >10 cycles, and 2 patients (6%) 
>24 cycles.

18.4  Biochemical and Objective Responses

Major and minor PSA responses were observed in 15 (42%) and 3 (8%) patients, 
whereas stable disease and disease progression were seen in 13 (36%) and 5 
patients (14%) (Table 18.4). Overall PSA decline of >25% (including major and 
minor responses) occurred in 50% of patients. Median time to PSA response was 
2.4 months (range 1.0–7.0 months). Two patients showed complete resolution of 
bone lesions in confirmatory bone scans and declining PSA levels of <1 ng/mL. 
Flare-up phenomena with up to 1.8 fold PSA increase occurred in 47% of PSA 
responders within the first two cycles.

Fifteen major PSA responses were observed in patients without previous 
response to docetaxel and consecutive chemotherapy (n = 4) or extensive radio-
therapy (n = 7), and in medically none-fit patients (n = 4). Two patients who had 
previously received extended radiotherapy showed resolution of skeletal involve-

Table 18.4 Responses and survival rates according to follow-up

Response No. of patients (%)

Biochemical (36 evaluable patients)
 Major response 15 (42)
 Minor response 3 (8)
 Stable disease 13 (36)
 Progression 5 (14)

Objective responses in 13 evaluable patients
 Resolution of bone lesions 2 (15)
 Partial response 7 (54)
 Stable disease 3 (23)
 Progressive disease 3 (17)
Progression-free survival (95%CI) 4.0 months (2.8–5.1 months)
Median overall survival (95%CI) 14.4 months (10.7–17.2 months)

95% CI: 95% confidence interval. Response criteria as reported in patients and methods
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ments. 1 patient with complete response relapsed after 27 months; the other has 
been relapse-free since 43 months. Major responses were independent of PSA level 
at study inclusion.

Objective responses (lymph nodes n = 6, lung n = 1, bone n = 2) were 
observed in 9 out of 15 patients with major PSA response (60%). Objective 
responses occurred between cycle 3 and 9, mean 4.6 months (Table 18.3). 
Resolution of single skeletal lesions and significant regression of activity as 
indicated by bone scans occurred in further 6 patients with major PSA response. 
As indicated, only one partial remission was observed in patients with visceral 
lesions. Patients with DIC were multiply pre-treated and showed early progres-
sion within the first three cycles.

18.5  PFS and Overall Survival

Median PFS was 4.0 months (95% confidence interval [95% CI], 2.8–5.1 months) 
with a median overall survival of 14.1 months (95%CI, 10.7–17.2). No further 
study medication was administered to patients after disease progression. The two 
patients with complete elimination of disease received the study medication beyond 
complete remission because of disseminated bone involvement at inclusion and the 
good tolerability of the study medication.

18.6  Toxicity

In general, treatment was well tolerated. No toxic deaths occurred. The most important 
grade III toxicities are listed in Table 18.5. Toxicity WHO grade IV did not occur 
because of early dose reduction according to protocol (Table 18.4).

Toxicity Grade I–II Grade III Grade IV

Neutropenia 8 (22%) 0% 0%
Anemia 14 (39%) 6 (8%) 0%
Thrombocytopenia 9 (25%) 1 (3%) 0%
Edema 18 (50%) 1 (3%) 0%
Fatigue 2 (6%) 0% 0%
Nausea/vomiting 3 (8%) 0% 0%
Diarrhea 6 (17%) 0% 0%
Hand-foot syndrome 12 (33%) 1 (3%) 0%
Cushing syndrome 1 (3%) 1 (3%) 0%
Dyspnea 1 (3%) 0% 0%

Table 18.5 Toxicity data 
experienced per patient  
(n = 36)
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18.7  Discussion

Treatment of most patients with secondary progression of CRPC, of medically non-
fit patients, or of those with limited bone marrow reserve remains difficult. 
Adequate systemic second-line therapies meeting their clinical requirements are 
needed. Several regimens have been tested in this setting. Nevertheless, no second-
line treatment has been approved so far [6–8].

We assessed the efficacy and safety of capecitabine, pioglitazone, rofecoxib 
(etoricoxib), and dexamethasone (in metronomic treatment schedules) in a group 
of highly pretreated (chemotherapy or radiotherapy, 81%) or medically non-fit 
patients with CRPC. The most interesting finding is that responses, namely resolu-
tion of metastatic skeleton lesions for more than 2 years, may occur in a pre-
treated group of patients with CRCP. Additionally, responses were accompanied 
by a modest rate of side effects. The addition of a cyclooxygenase-2 inhibitor 
(celecoxib) could attenuate capecitabine-related toxicity in metastatic breast can-
cer [20].

Our study represents the first investigation with an exclusively combined bio-
modulatory therapy approach in patients with CRPC, i.e. each therapy component 
has modest or no monoactivity [21–23]. Long-term tumor control could only be 
achieved by concerted biomodulatory mechanisms of action [24]. Schedules 
including metronomic drug administration for treatment of CRPC (alkylating 
agents or dexamethasone) have shown to be efficacious in retrospective analyses of 
patient cohorts [9, 25].

Single stimulatory or inhibitingly acting drugs (i.e. modulators of transcrip-
tion factors) do neither exert monoactivity in the respective metastatic tumor 
type (capecitabine, pioglitazone, rofecoxib) nor are they directed at potentially 
‘tumor-specific’ targets [24]. Reductionist considerations may therefore not 
explain how multimodal, less toxic systems-directed therapies are able to induce 
frequently delayed objective responses and even continuous complete remission. 
Communication-technical considerations will be helpful to uncover mechanisms 
of action of modularly designed therapy approaches and to conceptualize how 
this novel way of treatment modulates sub-cellular and cellular communication 
[24, 26].

The most impressing activity of the presented schedule was found in skeletal 
lesions: Pioglitazone may decisively impact stromal tumor components, for exam-
ple by inhibiting osteoblast differentiation besides direct activity on tumor cells 
(chapter 19) [19]. Alkaline phosphates (AP) levels in serum were not systematically 
evaluated. However, rapidly declining AP levels have been observed in single 
patients prior to PSA response. Alkaline phosphates of the bone are produced by 
osteoblasts.

The modular designed therapy approach may still be efficacious in unfavorable 
clinical situations: Major PSA responses were observed in patients without previ-
ous response to docetaxel and consecutive chemotherapy or extensive radiotherapy, 
and medically non-fit patients as well.
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In light of the lack of approved second-line therapies, the retreatment of patients with 
docetaxel after a variable period of time is widely accepted in current clinical practice. 
Therefore, the fact that the presented combined biomodulatory therapy approach may 
induce major responses in docetaxel none-responders is of high interest.

The present report highlights important key points: (1) A completely new com-
bined modular therapy approach may induce major responses and complete resolu-
tion of skeletal lesions in CRPC. (2) Predominant responses in skeletal lesions 
point to a site-specific activity of the regimen: Skeletal activity is of major impor-
tance for the treatment of patients with CRPC (Table 18.3). (3) Responses may 
occur in patients who were compromised by previous treatments for CRPC. (4) As 
major responses occurred in heavily pretreated or medically non-fit patients, the 
observed PSA decline is encouraging, especially against the background of a modest 
toxicity profile even during long-term administration of study medication.

The findings of the present paper are noteworthy because they clearly demonstrate 
that the combination of capecitabine, pioglitazone, rofecoxib, and dexamethasone 
deserves further assessment. In this respect, a randomized phase II study comparing 
docetaxel alone versus the combination in this set of patients is warranted.
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Prostate cancer, the most frequently diagnosed neoplasia in men, represents a thera-
peutic challenge throughout all disease stages. Initial therapy of metastatic prostate 
cancer consists of androgen ablation, either by drugs (LHRH agonists) or by surgery 
(bilateral orchiectomy), and responses can be observed in up to 85% of patients.

However, androgen ablation is not curative, and the disease tends to recur in 
many patients. At this stage, further hormonal manipulation with anti-androgens 
and consecutive androgen withdrawal may result in response, but mostly only for a 
short period of time and without prolongation of survival. Novel approaches for 
more efficacious castration by drugs are currently investigated and hopefully 
 available in the near future.

Therapeutic options for castration-refractory prostate cancer are limited [1]. 
Tannock et al. could demonstrate a survival benefit of taxotere administered three 
times per week. Median survival for this standard therapy in a long-term follow-up 
is 19.2 months [1].

Prostate cancer is a molecular-genetically and cytogenetically heterogeneous 
disease. During tumor progression, more and more chromosomal or molecular-
genetic aberrations are acquired. The mechanisms leading to androgen resistance 
are still unclear. In future, molecular-genetic, frequently recurrent aberrations may 
serve as novel therapeutic targets. The occurrence of advanced stage osteoplastic 
bone disease (chapter 5) is even more frequent, and pro-inflammatory and pro-
angiogenetic processes are always present during metastatic tumor progression.

Therefore, novel therapy concepts including frequently recurrent  tumor-associated 
pathomechanisms should be implemented into the therapeutic calculus.
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In a reductionist design, multiple modes of therapy are basically available to 
target tumor- and stroma-associated processes contributing to tumor progression. 
However, a newly developed therapy approach – as pursued in our concept – is 
based upon altering tumor-promoting functions in such a way that these functions 
cease to sufficiently support tumor growth and finally break down the tumor system 
as a holistic functional unit.

Cellular functions of the tumor compartment may then be modified with 
 biomodulatory therapy approaches [2–4], which means that these therapies are 
active even in the range of modest toxicities (no maximum tolerable doses).

Modularity – as an intrinsic feature of proteins – may be targeted to  therapeutically 
modify tumor growth-promoting functions [3]. Thereby, cellular proteins serving as 
carriers and mediators of tumor-associated functions are transferred to novel  functions 
by altering their molecular and cellular context [2,5]. Proteins get novel denotations by 
therapy-induced modifications of general conditions (‘background knowledge’). 
These variable but calculable conditions may determine the specific functions of  proteins 
in the first place. Transcription factors in particular may  capture opposing functions by 
context-dependently redeeming novel validity and denotation (Fig. 19.1).

A further important but frequently disregarded aim is targeting tumor-inherent 
rationalization processes [3]: Tumor growth-promoting functions are constituted in 
a tumor- and stage-specific way. This phenomenon leads to inconsistencies between 
the functional world of single cell compartments within a tumor. The inevitably 
developing functional demands, which are made up by the evolving tumor system, 
are directed to single tumor-associated cell compartments. The development of 
inconsistencies constitutes the Achilles’ heel of a tumor.
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Fig. 19.1 The peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist piogli-
tazone may significantly suppress differentiation to mature osteoblasts. Osteoblasts as mesenchymal-
derived cells generally play a decisive role for promoting malignant behavior
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Here, we present a novel all-oral biomodulatory therapy, which is characterized 
by the limited mono-activity of the single components in CRPC. Primary aim of 
this phase II trial was the rate of PSA response in CRPC.

Patients with confirmed CRPC and confirmed tumor progression after androgen 
withdrawal were included in the present phase II trial. Patients had to fulfill the 
criteria for CRPC according to the EAU guidelines and must not have received 
prior chemotherapy. Patients had daily administrations of imatinib (400 mg once 
daily), pioglitazone (60 mg once daily), etoricoxib (60 mg once daily), treosulfan 
(250 mg twice daily) and dexamethasone (1 mg once daily). Patients were treated 
for 6 months or until tumor progression. PSA values, ECOG status, and quality of 
life were continuously monitored during the study.

This interims report from two study centers (meanwhile closed phase II study) 
focuses on response behavior (PSA response) and the response of bone lesions in 
bone scans.

PSA levels decreased to <1 ng/mL (five patients) and <4 ng/mL (one patient) 
respectively, independent of initial PSA levels and the velocity of PSA response. 
PSA response was associated with complete resolution of bone lesions in two 
patients. Significant abatement of skeletal lesions was observed in four patients 
(Figs. 19.2 and 19.3). Interestingly, responses may continue for over 1 year without 
medication. Five patients were treated for over 21 months. Remarkably, PSA  doubling 
time of <2.4 months before enrolment into the study protocol was very short.
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Fig. 19.2 Type 1: Increase of PSA levels during the first two cycles of study medication, 
 consecutively steadily decreasing PSA levels (two patients). Type 2: Stable PSA levels during the 
first two cycles of study medication, followed by continuously decreasing PSA levels (two 
patients). Type 3: Dramatic PSA decrease within the first 2 months of study medication with PSA 
nadir of 0.7 ng/mL after 12 months. Type 4: Slightly increasing PSA levels during the first three 
cycles on study medication  followed by a slow but continuous PSA decrease to 3 ng/mL: PSA 
level doubled after 12 months
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Even with the low number of patients evaluated, the study results show that 
biomodulatory therapy may induce responses, very rapid as well as independently 
of the initial tumor spread (tumor mass). These findings indicate that  biomodulatory 
therapies may really target the Achilles’ heel of CRPC or, alternatively, may stably 
modulate tumor growth-supporting functions over longer time periods in such a 
way that finally objective tumor response can be achieved, even if delayed. An 
already completed study, also based on a biomodulatory therapy approach, seem to 
be confirmed by the present study [2]. The question whether the quality of response 
in the present study is prognostically relevant (PSA response versus objective 
tumor response) needs to be investigated.

A randomized phase II trial versus taxotere and prednisone shall start soon.
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Abstract Non invasive imaging plays a crucial role in monitoring the efficacy of 
tumor therapy in the clinics. In addition, it has also been established in preclinical 
research and can favorably bridge from preclinical research to the clinics. However, 
up to now clinical imaging is mostly morphologic and does not meet the demands 
for innovative molecular and personalized therapy concepts. In order to become 
more disease and therapy specific, functional and molecular imaging strategies 
are of general interest. In this context, imaging of tumor angiogenesis as a general 
phenomenon of most tumors and as an important target for tumor therapy is an 
attractive approach.

This chapter reports on current strategies to assess functional parameters of 
vascularization (e.g. relative blood volume, perfusion, vessel permeability) as well 
as molecular vascular profiles by non invasive imaging. Hereby, CT, MRI, PET, 
optical imaging and ultrasound are covered. It is also reported how these tools can 
be used to assess tumor response to therapy and which role they may play in pre-
clinical research and clinical use.

Keywords Molecular imaging • Functional imaging • Perfusion • Therapy 
monitoring • Angiogenesis • Personalized medicine
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DCE CT Dynamic contrast enhanced computed tomography
DCE MRI Dynamic contrast enhanced magnetic resonance imaging
DOTA 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid
[18F]FAZA [18F]-fluoroazomycin arabinoside
[18F]FDG [18F]fluoro-desoxy-glucose
FGF-2 Fibroblast growth factor-2
[18F]FLT 3¢Deoxy-3¢-[18F]fluorothymidine
[18]F-MISO [18F]-Fluoromisonidazole
Gd-DTPA Gadolinium-Diethylenetriaminepentaacetate
ICAM-1 Inter-cellular adhesion molecule 1
k

ep
 Uptake rate constant (extravascular space per unit volume)

K
trans

 Volume transfer constant
MION Monocristalline iron oxide nanoparticle
MMP Matrix metalloproteinase
MRI Magnetic resonance imaging
MT1-MMP Membrane type-1 matrix metalloproteinase
NIRF Near-infrared fluorescence
OI Optical imaging
PFC Perfluorocarbon emulsion
PET Positron emission tomography
QD Quantum dot
SCC Squamous cell carcinoma
SPECT Single photon emission computed tomography
SPIO Superparamagnetic iron oxide nanoparticle
SU11248 Sunitinib malate
TGF-ß Transforming growth factor beta
T1w T1 weighted
USPIO Ultrasmall superparamagnetic iron oxide nanoparticle
US Ultrasound
VCAM-1 Vascular cell adhesion molecule-1
VEGF Vascular endothelial growth factor
VEGFR-2 Vascular endothelial growth factor receptor 2
v

ep
 Extracellular volume fraction

20.1  Introduction

Up to now monitoring of tumor size and morphology is standard for staging and 
therapy monitoring of cancer. However during recent years it has become clear that 
tumor load does not always correlate with patient survival and that the change in 
tumor size can appear too late to allow for adapting the therapy. As a consequence 
morphologic imaging with computed tomography (CT) and magnetic resonance 
imaging (MRI) is more and more supplemented by positron emission tomography 
(PET) providing deeper insight into the tissue pathophysiology such as metabolism 
([18F]FDG-PET) or proliferation ([18F]FLT-PET). Novel tracers capable of 
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 detecting apoptosis or tumor hypoxia ([18F]FAZA, [18]F-MISO, [64]Cu-ATMS) 
are currently in evaluation in preclinical and clinical studies. However, their value 
for monitoring therapy efficacy is not finally clear. Also tracers targeting markers 
of tumor angiogenesis are currently being investigated, which does not only hold 
true for PET imaging but also for other nuclear medicine imaging modalities as 
well as for MRI, ultrasound (US) and optical imaging (OI). Beside these strategies 
for molecular imaging, the vascularization and angiogenic activity of tumors can 
also be described by indirect measures, such as relative blood volume, perfusion, 
vessel permeability and vessel maturation. These parameters have been investigated 
in many preclinical and clinical studies and their capability of indicating early 
tumor therapy response is well proven. All of the upper mentioned imaging  modalities 
can be used for functional imaging of tumor vascularization and even CT as one of 
the most important workhorses in clinical routine has shown  promising results.

Nevertheless, when looking to the recent 10–15 years of research only few 
 functional and molecular imaging methods for the assessment of angiogenesis have 
been established in the clinics (e.g. for breast and prostate tumor detection and 
characterization). Clinical indications are mostly the detection of tumors and the 
increase in the accuracy of the diagnosis but not the assessment of tumor response 
to therapy. This is contrasted by the increasing use of these techniques in academic 
and industrial preclinical research, where leading pharmaceutical companies have 
built up large small animal imaging units.

There are several reasons that may explain the retarded clinical establishment: 
First, in order to see changes in tumor angiogenesis patients must be imaged before 
starting the therapy because vascularization of most tumors is too variable to set up a 
predefined baseline. In addition, repeated imaging in fixed time intervals requires a 
well organized, time consuming and cost intensive patient management. Only specia-
lized comprehensive cancer centers are usually capable of initiating and  performing 
such complex interdisciplinary clinical trials. Second, personalized  therapy schedules 
with the option of an early change in the therapeutic conduct are not broadly estab-
lished and thus the knowledge about early response to therapy may often remain 
without therapeutic consequences. A diagnostic marker, however,  without direct 
influence on the therapeutic conduct will not be used. Nevertheless, it can be expected 
that this will change with the increasing use of cost intensive  molecular therapeutics 
(e.g. antibodies against VEGF or growth factors). Third, there is a high heterogeneity 
between the institutions regarding the imaging and postprocessing protocols and thus, 
study results are often not comparable. Fourth, the market for new and in particular 
for targeted diagnostic drugs is significantly smaller than for therapeutics and the 
demands on safety and effectiveness are comparable or even higher. Thus high devel-
opment costs are opposed by a considerably small outlet. This makes pharmaceutical 
companies hesitate to bring new diagnostic probes to the clinics.

After all these arguments the question rises if in future the assessment of 
 system’s response to therapy will be performed using surrogate markers of tumor 
angiogenesis. The authors believe “yes”. However, there is much need for research 
on finding the most reliable and cost effective biomarkers and imaging modalities. 
For this purpose multicentre studies and a more standardized evaluation of these 
markers are required. Furthermore, there should be a co-development of new  diagnostic 
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biomarkers and therapeutics in preclinical research with the aim of subsequently 
translating integrated therapy and monitoring concepts into the clinics. Hereby, 
imaging of angiogenesis will become a powerful tool to personalize treatment and 
to improve the efficacy of new therapeutic concepts.

In the following it will be explained how angiogenesis can be assessed non  invasively 
and how anti-angiogenic treatments can be monitored. Also the  advantages and the limi-
tations of the imaging modalities and applications will be addressed which may help the 
reader to identify the most optimal imaging strategy for his particular demand.

20.2  Vascular Volume Fraction, Tumor Perfusion, Vessel 
Permeability and Vessel Maturation

In comparison to vessels in physiological tissues tumor vessels are more immature, 
disorganized, leaky, and characterized by significant shunt perfusion. The immature 
nature of the vessels is reflected by a loose association of pericytes and smooth 
muscle cells with the endothelium. These characteristics lead to altered  physiological 
parameters like blood volume, blood flow and vessel permeability that can be 
 measured by various non-invasive imaging modalities. In the following, different 
imaging modalities will be introduced with respect to their sensitivity and  specificity 
for the visualization of different parameters of the tumor vasculature.

20.2.1  PET and SPECT

Tissue blood volume can be routinely determined by [15O]carbon monoxide PET. 
Since this radiotracer irreversibly binds to hemoglobin it can be used as a blood 
pool tracer [1]. Alternatively radio-labeled macromolecules such as polymers or 
proteins are often used as intravascular tracers to determine the relative blood  volume 
and perfusion [1]. Besides macromolecules, tumor perfusion can be assessed by 
[15O]water PET [1]. To this end, the uptake of [15O]water in the tumor and in a 
tissue-feeding artery (arterial input function) is measured and analyzed using a one-
compartment model. In clinical trials on primary tumors and metastases cytostatic 
therapy effects could reliably be detected by PET using [15O]water and [15O]carbon 
monoxide [1]. While the managing effort and the costs for these kinds of  examinations 
are considerably high the excellent sensitivity for radiotracers and the possibility of 
absolute quantification (at least given for PET) are its major strengths.

20.2.2  Computed Tomography

A simple method to estimate tissue blood flow by dynamic contrast enhanced (DCE) 
CT during the first passage of a contrast agent has been proposed by Miles [2]. 
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This model has been applied for characterizing blood flow in liver metastases and 
other tumors. In lung nodules, perfusion data obtained by perfusion CT strongly 
correlated with the [18F]-desoxy-glucose (FDG) uptake in PET. In liver cancer, it 
has been shown that increased perfusion of the metastases and the adjacent liver 
tissue correlates with increased patient survival.

Nowadays, multislice CT scanners can acquire scans from more than 128  sections 
simultaneously with a high temporal resolution, thus strongly improving the quality 
of the measurements. However, the high x-ray doses required for high resolution 
DCE CT scans are still considered to be problematic.

Additional physiological tissue parameters can be obtained using more complex 
pharmacokinetic models for the analysis of density-time curves. In oncology, the 
 models of Tofts [3] and Brix, [4] and modifications thereof are most frequently applied 
for the analysis of DCE CT and DCE MRI data. Both models are two  compartment 
models and base on the assumption that there is a central blood  compartment and an 
extravascular, extracellular compartment (interstitial space) with free bi-directional 
exchange of contrast material between both compartments. By using a measured arte-
rial input function the quantitative determination of the relative blood volume, the 
blood flow (perfusion) and the surface-area permeability product can be obtained.

Simplifications of these models have been made by estimating the course of the 
arterial input function. Doing so, the need for imaging with very high temporal  resolution 
(<2 s/image) decreases and imaging of more slices per time point or imaging with a 
better contrast to noise ratio becomes possible. However, this simplification should 
always be considered as a compromise since it goes along with a significantly 
reduced assignment of the outcome parameters to physiological measures 
Nevertheless, most groups still interpret the extracellular volume fraction, v

ep
 (Tofts 

model) and the amplitude, A (Brix model) as measures of the distribution volume 
(respectively correlatives of the relative blood volume) and K

trans
 (Toflts model) and 

k
ep

 as indicators of tissue perfusion and the surface-area permeability product.

20.2.3  Magnetic Resonance Imaging

Although MRI is less quantitative than PET, SPECT or CT, it offers several  attractive 
applications to study tumor vacularization and vessel function in vivo with a high 
spatial resolution and an excellent tissue contrast. These include dynamic contrast-
enhanced (DCE) MRI but also MR applications without the use of contrast agents 
based on the blood oxygenation level dependent (BOLD) contrast.

In T2*-weighted DCE MRI, the transient local magnetic field inhomogeneities 
(susceptibility effect) that arise from the passage of a short contrast media bolus 
through the capillary network are monitored in the tumor and the feeding artery [5]. 
Postprocessing of these DCE MRI scans is usually based on the indicator-dilution 
model. Not only the blood flow and volume can be determined by deconvolution, but 
also the mean transit time. However, it has to be considered that the model only pro-
vides reliable data of the relative blood volume if the contrast agent does not extravasate 
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during the first pass. This precondition is not given in tumors due to the high vessel 
permeability, resulting in an extravasation rate of up to 45% during the first pass. 
Nevertheless the above mentioned parameters may be used for the descriptive charac-
terization of tumor angiogenesis and might provide a valuable basis for the classifica-
tion of lesions, e.g. in liver, breast and brain [5,6]. For example in patients, low grade 
astrocytomas with high risk of early recurrence could be pre-selected based on their 
high relative blood volume and response of highly malignant brain tumors to anti-
angiogenic drugs was reflected by a decrease in tissue “perfusion” and “relative blood 
volume”.

T1w DCE MRI is the most frequently chosen approach to characterize tumor 
vascularization and has become part of the clinical routine to classify suspect breast 
lesions [5]. Direct inspection of the contrast enhancement curves is clinically used 
in order to characterize suspect lesions. Key criteria for the assessment are the 
maximum enhancement after contrast agent injection and the slope of the wash out. 
Usually the upslope and the downslope of the tumor signal intensity time curve are 
steeper and the maximum enhancement is higher. As an alternative to these  descriptive 
parameters, signal-time courses can be analyzed quantitatively by pharmacokinetic 
modeling as already described for CT [3,4]. Pharmacokinetic analysis of DCE MRI 
data allowed an improved characterization of the tumors e.g. in breast, prostate, 
uterine cervix, and other organs [5]. This was also true for systemic disorders like 
multiple myelomas, where DCE MRI was capable of depicting and classifying the 
bone marrow infiltrate. T1w DCE MRI is also an excellent tool to study early 
response of tumors to anti-angiogenic therapy [5,6]. For example in squamous cell 
carcinoma xenografts measures of the contrast agent distribution volume were 
shown to decrease significantly earlier after start of treatment than tumor volumes 
do (Fig. 20.1). However, it was also shown that these parameters may re-increase 
as soon as the tumor starts to shrink and the remaining vessels draw closer.

Ktrans and k
ep

 were often shown to indicate tumor response to therapy and mostly 
decrease during therapy. However, there are controversial results where no change 
or even an increase was found. Most probably this is due to differences between 
tumor models and treatments and due to the fact that these parameters are influ-
enced by many factors including perfusion, vessel permeability and size of the 
interstitial space. Perfusion may mostly decrease but can also increase due to vessel 
normalization and more laminar flow conditions. The influence of vessel  permeability 
on these parameters depends on tumor leakiness and the contrast agent used. With 
clinical contrast agents and without considering measured arterial input function 
vessel permeability can hardly be assessed. In this context the use of contrast media 
of higher molecular weight is recommended. Unfortunately, up to now such  contrast 
media are only available for the preclinical use.

Prediction of anti-angiogenic treatment efficacy and effects of anti-angiogenic 
treatments were also sensitively imaged by a decrease in the vascular volume  fraction 
measured by USPIO (Ultrasmall Superparamagnetic Iron Oxide Nanoparticle)-
enhanced steady state MRI [7,8].

Alternatively to contrast enhanced MR methods, “Blood Oxygenation Level 
Dependent” (BOLD) imaging may be applied. BOLD imaging bases on MR-sequences 
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that are sensitive to changes of the tissue T2* contrast. Since the oxygenation of 
hemoglobin reduces T2*, the signal in the tissue increases by increasing the oxygen 
amount in the breathed air. Using this endogenous contrast, changes in blood flow, 
vasodilatation and in the level of hemoglobin oxygenation can be detected. 
Studying the reactivity of vessels to hyperoxia and hypercapnia mature and 
 immature vessels in tumors could be differentiated [9]. Furthermore, the effects of 
anti-angiogenic therapies in preclinical and clinical trials as well as early effects of 
a photodynamic therapy on melanoma xenografts in mice [10] were successfully 
monitored by BOLD.

20.2.4  Vessel Size Imaging

In 2001 Tropres developed a MRI technique capable of imaging the mean 
 microvascular diameter in tumors [11]. Here, T2- and T2*-relaxation times of the 
tissue are determined before and after administration of a paramagnetic contrast 
agent. Since the change of T2* is static and thus mostly dependent on the relative 

Fig. 20.1 Color coded parameter maps of the contrast agent distribution volume (Amplitude, Brix 
two compartment model) of an untreated (A, upper row) and an anti VEGFR2-antibody treated 
(a, bottom row) squamous cell carcinoma xenograft. While during the first 4 days of treatment 
sizes of the untreated and treated tumor are not significantly different, there is a significant 
decrease in the central vascularization in the treated tumor. The quantitative data on tumor volume 
changes and the change of “Amplitude” in untreated and treated mice are shown in (b) and (c) 
(Figure modified from [34]
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blood volume while the change of T2 also is influenced by the mean vessel size and 
number, the mean vascular diameter can be determined. Zwick and coworkers 
showed that in squamous cell carcinomas the degradation of small immature 
 vessels occurring after administration of a multispecific tyrosine kinase inhibitor 
leads to an increase in the mean vessel size [12]. However, this trend does not seem 
to hold true for every tumor model and other groups recently reported on increasing 
mean vessel sizes after blocking VEGF signaling. Most probably significant  differences 
in the vascular composition are responsible for these controversial results.

20.2.5  Ultrasound Imaging

Doppler ultrasound imaging allows the visualization of vessels and the estimation 
of blood velocity and relative blood volume without injection of contrast material. 
It bases on the frequency shift of an acoustic wave occurring by its reflection and 
scattering from a moving blood cell. If the object is moving towards the ultrasound 
transducer, the frequency increases and if it moves away the frequency decreases. 
The frequency shifts can be colour coded pixelwise and overlayed on the morpho-
logic B-mode images to visualize the vessels and its flow direction and speed. It has 
been reported that Doppler ultrasound is capable of assessing changes in tumor 
blood flow in larger vessels after anti-angiogenic and gene therapy using clinical 
ultrasound systems operating between 3 and 15 MHz. However, with these  frequencies 
the majority of tumor vessels are not captured since particularly small immature 
vessels being most sensitive to anti-angiogenic drugs have too slow blood veloci-
ties to be assessed. The sensitivity can be increased by increasing the ultrasound 
 frequency and Jugold and coworkers showed the capability of high frequency ultra-
sound (40 MHz) to display a decrease in relative tumor blood volume after admin-
istration of the VEGFR-2 blocking antibody DC101. Unfortunately, by increasing 
the ultrasound frequency its tissue penetration capability decreases. Therefore, with 
40 MHz transducers only superficial structures or small animals can be  investigated. 
Alternatively, ultrasound contrast agents consisting of 1–3 mm large stabilized air 
bubbles may be used [13]. These can be destroyed in vivo by high energy ultra-
sound hereby emitting a strong non linear signal that can be  measured by Doppler. 
Also non destructive imaging techniques may be applied which mostly catch the 
non linear reflections of the microbubbles.

By generating maximum intensity over time courses the relative blood volume 
can be determined easily. Alternatively, during a steady state microbubble concen-
tration in the blood, a destructive pulse can be applied and the replenishment 
recorded. This so called intermittent imaging was initially described by Wei and 
colleagues and enables the quantification of perfusion and relative blood volume 
[14]. Meanwhile there are many papers reporting on the successful use of these 
techniques to monitor chemo- and radiotherapy response. In context with anti-
angiogenic therapies Palmowski and coworkers observed significant differences 
between untreated and treated tumors in mice as early as 1 day after start of 
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SU11248-treatment. Nevertheless, xenograft-tumors are known to be different from 
human tumors and so it is not  surprising that initial clinical studies on monitoring 
cytostatic tumor therapies with angiostatin, thalidomide and tamoxifen in patients 
with contrast-enhanced US revealed mixed results of decreased, unchanged or even 
increased vascularization in response to therapy [13].

As already mentioned non contrast enhanced Doppler ultrasound mostly 
catches vessels with a considerably high blood flow usually being more mature, 
larger and of a more linear course. In contrast, contrast enhanced ultrasound 
 imaging catches all vessels. Thus, the more mature vessels fraction can be distin-
guished from the total vascularization (Fig. 20.2). By combining both ways of 
scanning, it could be shown that during tumor treatment with a multispecific 
tyrosine kinase inhibitor the total vascularization decreased over 9 days, while 
there was a re-increase in the “mature” vessel fraction from day 6 on indicating 
normalization of the vasculature [15].

20.3  Molecular Imaging

A more specific characterization of the tumor tissue can be achieved by using diag-
nostic probes that target specific molecules, which is determined as molecular 
imaging. The aim of molecular imaging is to obtain specific information for a better 
tumor diagnosis and for the assessment of specific therapy effects at early treatment 
stages. In the following, several approaches to specifically target angiogenic marker 
molecules by different imaging modalities are discussed.

Fig. 20.2 Contrast-enhanced and non-contrast-enhanced most intensity projections of A431 
squamous cell carcinoma xenografts during treatment with a multispecific tyrosine kinase inhibi-
tor. Already after 3 days, a strong collapse of vascularization in the tumor center can be observed 
by contrast-enhanced imaging, indicating strong and early degradation of small immature vessels. 
As expectable larger and more mature vessels predominantly located at the tumor periphery and 
displayed by non–contrast-enhanced Doppler imaging, are less responsive. Particularly between 
day 3 and 6, further decrease in vascularization is only visible on the contrast enhanced image. 
Bar, 1 mm (Figure taken from [15])
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20.3.1  (Bimodal) Molecular MRI Probes

Due to its low sensitivity for marker molecules, specific targeting of angiogenic 
 vessels by MRI requires an intense accumulation of contrast agents at the target. 
However, MRI provides an excellent soft tissue contrast combined with a high spatial 
resolution as compared with other non invasive imaging modalities. Superparamagnetic 
iron oxide particles such as MION, SPIO, USPIO and CLIO coated with dextrane and 
its derivates or with other coating materials such as citrate and silica generate a strong 
negative effect on T2-weighted and T2*-weighted MR images. In this context, a 
 non-invasive imaging approach on angiogenesis was performed by covalently  coupling 
cross linked iron oxide particles (CLIO) to the anti-human E-selectin  antibody frag-
ment H18/7 F(ab¢)2. In this study, human vascular endothelial tubules in matrigel 
were implanted in athymic mice and could be visualized due to  upregulation of the 
E-selectin in response to stimulation with interleukin-1 [16].

One frequently addressed angiogenic marker is the avb3 integrin receptor, 
which is expressed on the surface of endothelial cells. It plays a crucial role for 
cell-cell and cell-matrix interactions and is involved in cell migration by interacting 
with specific signal molecules like VEGF. For targeting the avb3 integrin receptor, 
several ligands were developed including monoclonal antibodies and small peptide 
sequences. RGD is a small peptide that has a strong affinity for avb3 integrin. 
RGD-conjugated USPIOs have been successfully applied for the imaging of the 
angiogenic tumor endothelium in SCCs [5]. However, one has to consider that high 
amounts of the RGD-containing diagnostic probe have to accumulate in the target 
tissue to overcome the limited sensitivity of MRI to contrast agents. In a recent 
study it was shown that a diagnostically relevant dose of RGD-USPIO can induce 
unwanted biological side-effects in tumor cells themselves [17].

Liposomes are frequently used carriers for biologically active compounds and 
consist of spherical lipid bilayers with 50–1,000 nm diameter. These nanoparticles 
can be generated with varying size, phospholipid composition and surface charac-
teristics. Liposomes can either be used as carrier of genes and therapeutics or can 
be loaded with contrast agents. Gd-DTPA loaded liposomes were coupled either 
with RGD or antibodies against avb3 integrin [5,18] for angiogenesis imaging by 
MRI. Using these specific probes, a heterogeneous expression of avb3 -integrins at 
the margin of experimental tumors was detected. Mulder and colleagues used avb3 
integrin targeted bimodal liposomes to quantitate angiogenesis in a tumor mouse 
model with magnetic resonance imaging (MRI) and evaluated the therapeutic 
 efficacy of the angiogenesis inhibitors anginex and endostatin. Validation of the 
MRI by fluorescence microscopy revealed a high correlation of the measured MRI 
signals with the microvessel density. Thus, this study provides evidence that 
molecular MRI can be used for the non-invasive assessment of anti-angiogenic 
therapy effects [19].

Besides avb3-integrins aminopeptidases are often overexpressed on the tumor 
endothelium and can be targeted by the cyclic tri-peptide cNGR. Imaging of 
 aminopeptidases by MRI has been successfully applied using paramagnetic  quantum 
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dots labeled with cNGR. The use of quantum dots also allowed the localization of 
the particles on tumor sections by immunofluorescence microscopy [20].

Perfluorocarbon emulsions (PFC) can be used for both, US and MRI. These 
emulsions consist of PFC droplets with a mean diameter of approximately 250 nm 
in suspension and can be labeled with different ligands at the outer surface. Like 
microbubbles used for US (see below), PFC emulsion droplets remain  intravascular. 
Site directed emulsion droplets used for US imaging attach to target molecules on 
the cells, thereby forming a thin acoustically reflective layer between the targeted 
surface and the surrounding medium. Including Gd-chelates in the emulsion, these 
droplets can be additionally used as MRI contrast agent by generating a positive 
contrast. Flacke and colleagues generated emulsion droplets tagged with an anti-
fibrin monoclonal antibody and used them to visualize angiogenic vessels in 
 vulnerable plaques in vivo by MRI [21].

20.3.2  Ultrasound (US)

Contrast-enhanced ultrasound uses small gas filled microbubbles which remain 
strictly intravascular due to their diameter of about 0.7–10 mm. In contrast to the 
clinically used ultrasound contrast agents, target-specific ultrasound requires the 
coupling of specific ligands to the microbubble shell. Target-specific ultrasound 
contrast agents exist as soft- (e.g. phospholipid) and hard-shelled (e.g. polymer 
based) microbubbles [13]. The coupling of streptavidin to the membrane of 
microbubbles allows a flexible and easy labeling with biotinylated ligands. Using 
modern US-techniques that utilize harmonic effects and conversion pulse imaging 
even single microbubbles can be detected in the tissue, thus highlighting the power 
of molecular ultrasound.

Using target-specific microbubbles, US is capable of depicting early tumor 
angiogenesis [13]. Since the microbubbles strictly remain intravascular, specific 
targets are generally molecules that are either induced in activated endothelial cells 
or markedly up-regulated compared with quiescent endothelial cells. Besides nor-
mal endothelium, lymphatic endothelium can be successfully targeted using 
L-selectin specific microbubbles [13].

One prominent angiogenic target in ultrasound is the a
v
b

3
 integrin. It is highly 

expressed on activated endothelial cells and almost absent on quiescent endothelial 
cells in the stable vasculature. a

v
b

3
 integrin specific microbubbles have been either 

conjugated to cyclic RGD peptides or to specific antibodies and have demonstrated 
significant binding capacities to angiogenic endothelial cells in vitro and in vivo. 
Microbubbles conjugated to a cyclic RRL peptide also showed a significant accu-
mulation in s.c. human prostate carcinoma xenografts in mice. Echistatin, a viper 
venom disintegrin with an RGD sequence was conjugated to microbubbles and demon-
strated its potential in imaging angiogenic vessels in FGF-2 enriched  matrigel plugs 
in mice. Additionally, echistatin conjugated microbubbles were  successfully applied 
for a

v
b

3
 integrin based angiogenesis imaging in a rat  intracerebral glioma model. 
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Accumulation of the a
v
b

3
 integrin targeted microbubbles was greatest at the  periphery 

of tumors with the highest a
v
b

3
 integrin expression and correlated well with tumor 

microvascular blood volume. These results highlighted the advantage of combining 
different parameters for the analysis of angiogenesis, e.g. microbubble retention 
with relative blood volume [13].

The most prominent angiogenic marker that is frequently used in ultrasound 
based angiogenesis imaging is the vascular endothelial growth factor receptor 2 
(VEGFR-2) [13]. VEGFR-2 antibody coupled microbubbles showed a significantly 
higher accumulation in subcutaneously implanted tumors than unspecific control 
microbubbles. In addition, the retention of VEGFR-2 specific microbubbles was 
much stronger in “highly invasive metastatic” than in “non-metastatic” breast 
tumours, thus demonstrating the capacity of targeted ultrasound of assessing even 
the angiogenic activity.

Besides characterizing tumor angiogenesis and vascularization, molecular ultra-
sound has been identified as powerful modality for the assessment of anti- angiogenic 
treatment effects. For the imaging and analysis of anti-angiogenic therapy, antibod-
ies either against the VEGF/VEGF-receptor complex were used in an orthotopic 
model of pancreatic cancer or antibodies against VEGFR-2 and/or antibodies against 
CD105 (endoglin) were applied in two subcutaneous models of pancreatic cancer [22]. 
Targeted microbubbles showed a significantly higher enhancement in the tumor 
vasculature than untargeted or control IgG–targeted microbubbles. The video inten-
sity from targeted microbubbles correlated with the expression level of the marker 
molecules (CD105, VEGFR-2, or the VEGF-VEGFR complex). The decrease in 
video intensity correlated with a decreased microvessel density in tumors after anti-
angiogenic or cytotoxic therapy.

The effects of MMP inhibition (Prinomastat) were also assessed with  microbubbles 
against VEGFR-2 and cyclic RGD (ligand for a

v
b

3
 integrin) [23] (Fig. 20.3).  

A significantly lower accumulation of target specific microbubbles was observed in 
treated tumors as compared with untreated ones. Histologic analysis revealed that 
the lower VEGFR-2 and a

v
b

3
 integrin concentrations in treated tumors were due to 

a general decrease in relative vessel density. Thus, this study clearly demonstrated 
that only a combined analysis of relative blood volume and of molecular marker 
expression clarifies whether alterations in microbubble retention are based on a 
general change in the endothelial surface (e.g. relative blood volume) or on a 
marker expression change on the endothelial cells.

An alternative endothelial marker used for molecular ultrasound is CD105 
(endoglin), a TGF-ß co-receptor that is over-expressed by activated endothelial 
cells. As already described, the potential utility of CD105 in imaging tumor  development 
and anti-angiogenic therapy has been well-documented in s.c. and orthotopic 
 pancreatic tumors in mice [22].

In addition, microbubbles targeted against P/E-selectin and VCAM-1 were 
 successfully applied in subcutaneously implanted tumors [13] In a recent study, 
molecular ultrasound imaging was used to intraindividually track changes in the 
expression of the angiogenic markers a

v
b

3
 integrin and ICAM-1 in response to 

carbon ion irradiation in a rat prostate cancer xenograft [24]. A higher binding of 
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a
v
b

3
 integrin and ICAM-1 specific microbubbles was observed in irradiated tumors 

compared to the controls. After normalization of the amount of accumulated 
microbubbles to the relative blood volume, differences between irradiated and 
 control tumors became more prominent, thus indicating that carbon ion irradiation 
upregulated ICAM-1 and a

v
b

3
 integrin expression in the tumor neovasculature.

20.3.3  PET and SPECT

[18F]Galacto-RGD PET was applied for visualizing avb3 integrin on the angio-
genic endothelium in mouse skin cancer xenografts and in patients with melanoma 
and sarcoma. Targeting a

v
b

3
 integrin with [18F]Galacto-RGD provided in most 

cases a higher spatial signal intensity and resolution as the analysis of the tumor 
metabolism by [18F]FDG [25]. However, since the small [18F]Galacto-RGD can 
extravasate and since melanoma and sarcoma cells also express avb3 integrin 
themselves, enhancement of the contrast agent can derive from both, activated 
endothelial cells and tumor cells.

Fig. 20.3 Accumulation of VEGFR-2 specific microbubbles in tumors before and after therapy.  
A, before therapy, the amount of stationary VEGFR-2 specific microbubbles is similar in the con-
trol and therapy group. Note the increased accumulation of VEGFR-2 specific microbubbles in the 
controls after 7 days of tumor growth. * P <0.05; ** P <0.01 (n = 5 animals). B, Immunostaining 
of tumor sections for VEGFR-2 (green), CD31 (red), cell nuclei (Hoechst, blue). Note that 
VEGFR-2 and CD31 are both reduced in the therapy group (b) (Figure adapted from [23])
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Additionally, membrane type-1 matrix metalloproteinase (MT1-MMP) was tar-
geted on activated endothelial cells using liposomes linked to stearoyl-Gly-Pro-
Leu-Pro-Leu-Arg (GPLPLR-Lip) [26]. An about 4-fold higher accumulation of 
these targeted  liposomes was observed in tumor bearing mice compared to control 
animals.

As compared to PET, the sensitivity of SPECT for radiopharmaceuticals is about 
one order of magnitude lower and the quantification of the acquired emission data 
is more complex. On the other hand, handling SPECT tracers is less problematic 
due to the longer half-life of the radionuclides and it allows the use of radiotracers 
with different photon energy at the same time. Site directed SPECT tracers like an 
RGD labeled peptide with Technetium-99 m [27] or an Indium-111 labeled avb3 
integrin targeted agent, have been generated and were used for angiogenesis 
 imaging in preclinical and clinical trials.

Because of the wider availability of g-cameras and SPECT scanners in the past, 
VEGFR imaging was achieved with SPECT earlier than with PET. Several 
 radioisotopes, such as 123I, 111In, 99mTc, 64Cu, and 89Zr, have been used for either 
SPECT or PET applications [28]. 123I-VEGF

165
 and 123I-VEGF

121
 were used for 

VEGFR scintigraphy of primary tumors and their metastases [28]. In a clinical 
study on nine patients the majority of primary pancreatic carcinomas and their 
metastases could be visualized on 123I-VEGF

165
 scans.

In a recent study, bevacizumab was labeled with 111In and 89Zr for SPECT and 
PET, respectively. Nude mice with human ovarian xenograft tumors were injected 
with 89Zr-bevacizumab, 111In-bevacizumab, or 89Zr-IgG. PET revealed tracer uptake 
in well-perfused organs up to 24 h after injection and clear tumor localization at 72 h 
after injection and beyond. Although the tumor uptake of 89Zr-bevacizumab was 
higher than that of 89Zr-IgG, the absolute tumor uptake (<8 %ID/g) was much lower 
than that of other radiolabeled antibodies reported in the literature. The higher 
uptake of 89Zr-bevacizumab than 89Zr-IgG may have been attributable to the  different 
levels of passive targeting of individual antibodies, even though they were isotype-
matched IgG. Whether the levels of VEGF expression are significantly  different 
during different stages of tumor development, in turn leading to different levels of 
tumor uptake of tracers, needs to be studied [28].

Recently, VEGF
121

 was labeled with 64Cu for PET of VEGFR expression. Small-
animal PET imaging revealed rapid, specific, and prominent uptake of 64Cu-DOTA-
VEGF

121
 in highly vascularized small U87MG tumors with a high VEGFR-2 

expression but a significantly lower and sporadic uptake in large U87MG tumors with 
low VEGFR-2 levels. The study demonstrated the dynamic nature of VEGFR expres-
sion during tumor progression, in that even in the same tumor model, levels of 
VEGFR expression were dramatically different at different sizes and stages [28].

In a follow-up study, a VEGFR-2–specific fusion protein, VEGF
121

/rGel 
(VEGF

121
 linked to recombinant plant toxin gelonin) was used to treat orthotopic 

glioblastoma in a mouse model. 64Cu-VEGF
121

/rGel PET imaging was successfully 
used to estimate the tumor targeting efficacy of the therapeutic substance and to 
define the dose intervals. That study suggested that clinical multimodality imaging 
and therapy with VEGF

121
/rGel may provide an effective means of prospectively 
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identifying patients who will benefit from VEGF
121

/rGel therapy and then stratify, 
personalize, and monitor treatment to obtain optimal survival outcomes [29].

To date, there has been only one report on SPECT of integrin a
v
b

3
 with a 

nanoparticle-based tracer. 111In-Labeled perfluorocarbon nanoparticles were tested 
for the detection of tumor angiogenesis in rabbits implanted with Vx-2 lung  carcinoma 
tumors. At 18 h after injection, the mean tumor activity in rabbits receiving integrin 
a

v
b

3
–targeted nanoparticles was about fourfold higher than that obtained with con-

trol nanoparticles [28].

20.3.4  Optical Imaging (OI)

Optical imaging technologies have the advantage of a high sensitivity for contrast 
agents with a high resolution. However, scattering limits the penetration of light in 
tissues. To display molecular targets that are located deeper in the tissue of small 
animals, near-infrared fluorescence (NIRF) optical imaging can be used. In the near-
infrared range (650–900 nm), water and biological tissues have minimal absorbance, 
scattering and auto-fluorescence, allowing efficient penetration and emission of 
photons with a low scattering within the tissue. Analogous to other non invasive 
imaging modalities, in vivo NIRF imaging of angiogenesis and  lymphangiogenesis 
can be performed using specific near infrared fluorochrome labeled contrast agents 
against a

v
b

3
 integrins [30], L-selectin [31] and heparan sulfates [32]. Cheng and 

colleagues [30] generated Cy5.5-conjugated mono-, di-, and tetrameric RGD pep-
tides and compared their effects on integrin avidity and tumor targeting efficacy in 
a subcutaneous U87MG glioblastoma xenograft model. High receptor binding affin-
ity and receptor-mediated endocytosis was observed for all fluorescent probes. 
However, the tetrameric RGD peptide Cy5.5 conjugate showed the highest tumor 
uptake and tumor to normal tissue contrast.

The availability of activatible contrast agents makes OI a unique tool for  imaging 
enzyme activity in vivo, including the analysis of the molecular mechanisms of 
angiogenesis and the non invasive assessment of therapeutic effects. Bremer and 
coworkers performed in-vivo imaging of MMPs activated in tumors using 
 activatable Cy5.5 fluorescent probes. The fluorochromes were linked to an MMP 
substrate and fixed on a polymeric backbone, hereby quenching each other due to 
the close local assembly. After cleavage of the substrate by active MMPs, the 
 fluorochromes become de-quenched, resulting in photon emission. This approach 
was not only very well suited for visualizing and assessing the MMP activity in 
fibrosarcoma and breast cancer models but also for monitoring the effects of MMP-
inhibition [33] and of cytostatic drugs (Fig. 20.4).

Besides fluorochromes like Cy5.5, QDs are frequently used for optical imaging. 
These are inorganic fluorescent semiconductor nanoparticles that have several 
advantages like high quantum yields, high molar extinction coefficients, strong 
resistance to photobleaching and chemical degradation, continuous absorption 
spectra spanning the range from UV to near-infrared, narrow emission spectra 
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(typically 20–30 nm full width at half maximum), and large effective Stokes shifts 
Specific targeting can be achieved by attaching targeting ligands to the QD surface. 
NIRF imaging of integrin a

v
b

3
 on tumor vasculature with RGD peptide–conjugated 

QD705 was successfully performed on the tumor vasculature in s.c. U87MG 
tumors. The large size of the QD705–RGD conjugates (~20 nm in diameter) 
 prevented efficient extravasation; therefore, the QD705–RGD conjugates mainly 
targeted integrin a

v
b

3
 on the tumor vasculature.

Nevertheless, the translation of QDs to clinical applications remains critical due to 
inefficient delivery, potential toxicity, and the lack of quantitative detectability [28].

20.4  Outlook

Already today a concise characterization of tumor vascularization can be achieved 
by non invasive imaging that can potentially be applied in preclinical and clinical 
research as well as in clinical routine. In this context, multimodal and hybrid, respec-
tively fusion imaging is required to cover all relevant pathophysiological aspects. 

Fig. 20.4 Selective MMP detection in HT-29 colon adenocarcinoma xenografts. NU/NU mice 
were injected subcutaneously with HT-29 tumor cells bilaterally in the both mammary fat pads. 
After 1 week, mice either remained untreated or were treated with 100 mL of 10 mg/mL (1 mg/
mouse) doxycyline 1× per day subcutaneously. Mice were injected with an activatable MMP 
probe (MMPSense750 FAST, Visen Medical) 24 h after starting the treatment and imaged 6 h 
later. Whereas the treatment did not reduce tumor volumes yet, MMP activity is already reduced 
significantly (Image kindly provided by Jeffrey D. Peterson, Visen Medical, Boston)
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Whether a combination of different surrogate markers is finally required in the 
 clinics or whether single parameters have sufficient power to characterize cancer and 
to monitor therapy response is still an open question and will also depend on the 
chosen therapy. In particular, personalization of combination treatments of 
 chemotherapeutic and anti-angiogenic drugs will most probably require a more 
complex imaging strategy to evaluate the efficacy of the individual components. In 
this context, it is so far unclear how a differentiation between anti-angiogenic and 
chemotherapy effects can be achieved since both are known to decrease functional 
and molecular characteristics of the vascularization, e.g. the relative blood volume.

In summary, non invasive imaging of angiogenesis is highly valuable to assess 
system’s response to therapy early, reliably and sensitively. With increasing 
 standardization of the measures and with making the outcome parameters more 
quantitative, non invasive imaging of angiogenesis can be expected to play an 
essential role in cancer management. Nevertheless, it must also be taken into 
account that particularly for the clinics such imaging strategies are cost intensive 
and that economic considerations may hamper its acceptance. However, in person-
alized combination therapies cost effectiveness can be achieved if imaging of 
angiogenesis helps to early identify the non response to cost intensive components 
(e.g. an anti-angiogenic drug), to optimize dosing and to re-arrange the treatment.
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Abstract Secretome analysis represents a novel technology for biomarker 
 discovery based on proteome profiling of proteins secreted by both primary tumor 
cells and tumor associated cells. Tumor cells are able to establish a permissive and 
supportive environment for survival and cell growth and to facilitate invasion and 
metastasis by modulating the stromal host compartment. The onset of these charac-
teristic events seems to precede tumor progression. Due to the leaky nature of newly 
formed blood vessels and the increased hydrostatic pressure within tumors, secreted 
proteins are most plausibly shed into the blood. Thus, proteins specifically secreted 
by these cells may serve as early disease biomarkers. Biomarker candidates identified 
by secretome proteomics combined with the application of appropriate bioinformatic 
tools can then be validated in human plasma/sera. Besides biomarker discovery secre-
tome analysis will also shed light on mechanisms of tumor progression offering novel 
targets for therapeutic intervention. The tumor-stroma cell cooperativity is reversible 
and may thus be directly accessible to therapeutic intervention. In conclusion, secre-
tome proteomics offers new insights into the pathophysiology of tumor progression, 
and allows the identification of novel biomarkers and of new drug targets.

Keywords Tumor-associated stroma cells • Secretome profiling • Biomodulatory 
therapy • Mass spectrometry • Primary human cells • Bioinformatics
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CPL/MUW – database  Database of the Clinical Proteomics Laboratories at the 
Medical University of Vienna
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Gpm Global proteome machine organisation
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SOP Standard operating procedure
SVM Support vector machines
TIF Tissue interstitial fluid

21.1  Introduction

21.1.1  The Proteome

The proteome, first defined by Williams in 1996 [1], is the protein complement of 
genomic functionality and is defined as the set of proteins which are present in a 
cell, tissue or organism. The proteome is highly dynamic and may respond to 
almost any kind of environmental stimuli, most obviously it varies according to cell 
type and functional state of cells. The proteome in a body fluid, cell, tissue, or 
organism represents only a subset of all possible gene products at a certain point of 
time and cannot be directly predicted from gene expression. Proteins may exist in 
multiple varieties due to posttranslational modifications which affect protein struc-
ture, localization, function and turnover. These specific changes may reflect imme-
diate and characteristic changes in response to disease processes. Especially the 
low-molecular-weight (LMW) range proteome is believed to be very useful for 
analysis of disease progression and response to treatment [2].

21.1.2  Clinical Proteomics

The goal of clinical proteomics is to obtain the most comprehensive insight into 
pathophysiological conditions derived from protein expression profiles as they 
occur in vivo. Proteins play a fundamental role in controlling multiple functions 
within a cell’s organization. They serve as building materials, enzymes and biologi-
cal transport machines, as well as sensors processing and transferring information. 
Cells consist of thousands of proteins executing diverse operations, not only highly 
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coordinated, but also dependent upon each other. Cells may newly produce specific 
proteins when they encounter challenges for specific functions. When cells encoun-
ter unusual situations, they try to adjust to it by expressing proteins which may help 
to deal with the new situation. Such proteins, specifically synthesized on demand, 
may indicate characteristic disease states and may thus serve as diagnostic markers. 
Detection of such aberrations in protein expression in diseased tissues may lead to 
a better understanding of the cellular pathology and thereby support the develop-
ment of new therapeutic strategies. Therefore, proteins have attracted attention to 
biomarker discovery: One of the central applications of proteomics has become the 
classic protein biomarker discovery and the uncovering of functional tumor-associated 
systems stages, e.g. inflammation, neoangiogenesis, proliferation behaviour and 
others.

Clinical proteomics focuses on the analytical and clinical implementation and 
validation of novel biomarkers and aims to gain a better understanding of disease 
processes which may support the implementation of novel treatment options. 
Therefore it is critically dependent on high-throughput analysis platforms which 
have to provide reproducible and reliable protein patterns, bioinformatics tools for 
data comprehension and interpretation. Furthermore it has to refer to a well-defined 
patient cohort including all necessary anamnestic and physiologic parameters for 
instance age, sex, hormonal status and treatment. Sample collection and biobank 
organization have to be SOP-driven. The samples should be rapidly analyzed since 
transportation and storage may lead to artifacts like selective damage or aggrega-
tion of specific cell subpopulations or shedding of cell surface markers. To collect 
comprehensive information about sample technical analyses such as genomics, 
metabolomics, lipidomics, glycomics, transcriptomics, flow cytometry with defini-
tion of specific cell populations may be combined [2].

As a matter of fact, despite of intensive efforts in proteomics in the recent years, 
few novel disease biomarkers have been discovered. Since 1998 the rate of intro-
ducing newly approved protein targets has been declining to an average of one per 
year in the USA [3,4]. Therefore, novel analysis models and procedures have to be 
defined for biomarker discovery, which are highlighted in this review.

21.1.3  Metastasis and Tumor Microenvironment

Especially in oncology novel biomarkers are urgently needed. Due to metastasis 
cancer is a major cause of mortality worldwide with ten million new cases and more 
than six million deaths per year [5]. Early detection of incipient remodeling pro-
cesses indicating metastatic progression and the development of appropriate thera-
peutic approaches may substantially improve patient survival.

The tumor microenvironment consists of a multi-facetted spectrum of highly spe-
cialized cell types, e.g. mesenchymal cells, myelomonocytic cells, endothelial cells 
and immune cells. The metastatic process is decisively driven by stromal  processes, 
particularly facilitated by neoangiogenesis, lymphangiogenesis and accompanying 
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inflammatory processes. Growth factors secreted by the stromal cells may serve as 
survival factors for cancer cells [6]. The tumor microenvironment, through the pro-
cess of aberrant cell growth, cellular invasion and altered immune system function, 
contributes a unique sum of proteins secreted, with cytokine and chemokine or enzy-
matic activity (for example, matrix metalloproteinases) [7,8]. This generates an 
unbalanced or altered stoichiometry of agonists and antagonists within the tumor 
profile compared to the ‘normal’ milieu and can provide characteristic fingerprints 
applicable as specific and sensitive biomarkers for various purposes [9].

21.2  Biomarker

21.2.1  Definition

A biomarker is objectively measurable indicator of normal biological processes, 
pathogenic processes, or pharmacologic responses to a therapeutic intervention.

Different types of biomarker can be evaluated: prognostic, which characterize 
the course of disease, predictive to monitor the response to treatment, diagnostic 
which demonstrate the evidence of disease and pharmacodynamic for the purpose 
to show efficacy of treatment.

A surrogate endpoint is a biomarker that is intended to substitute for a clinical 
endpoint, a characteristic or variable that reflects how a patient feels, functions, or 
whether he is going to survive.

A surrogate endpoint is expected to predict clinical benefit such as decreased 
pain, quality of life, DFS (disease free survival), OS (overall survival) and cure.

Cancer biomarkers have to enhance the potential to screen, diagnose, prognosti-
cate, localize and stage tumors, or predict and monitor the therapeutic responses to 
various cancers. Therefore cancer biomarkers have to be correlated with the clinical 
situation and can be classified into four broad categories related to tumor burden, 
cancer risk, tumor-host interaction and function.

21.2.2  Biomarker in Cancer

Metastatic cancer presents a substantial clinical challenge since there is a lack of 
adequate approaches to properly define disease subgroups for rational treatment 
design and selection. In addition the majority of cancers are initially diagnosed in 
advanced stages. Some important markers commonly employed in clinical diagnosis 
include CEA (carcinoembryonic antigen), PSA (prostate specific antigen), AFP 
(alpha-fetoprotein), CA 125, CA 15–3, and CA 19–9. Current diagnostic methods 
are limited in their ability to diagnose early disease and accurately predict  individual 
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risk of disease progression and outcome. None of these markers is known to have 
high specificity and sensitivity or to exhibit prognostic value for neoplasms [10]. 
This may be attributed to the high heterogeneity in cancer patients with a lot of vary-
ing parameters such as tumor size, location, histology, depth, stage, grade, ulcer-
ation, age, sex etc. The emerging pattern of molecular complexity in tumors mirrors 
the clinical diversity of the disease. This highlights that cancer is not a single disease 
but a heterogeneous group of disorders that arise from complex molecular changes 
[11]. Thus, there is a growing consensus that marker panels, which are more sensi-
tive and specific than any individual marker, will increase the accuracy of early-stage 
cancer detection.

21.2.3  Stages of Biomarker Development

The discovery phase represent an ‘unbiased’ experimental setup, here high-
throughput methods are of outstanding relevance. The next phase, ‘qualification,’ 
serves for the confirmation that the differential expression of candidate proteins 
observed in the discovery phase can be verified using alternative, targeted methods. 
In addition the differential expression of candidate biomarkers has to be verified 
human plasma/serum samples. During the discovery and qualification phase the 
consistency of association between marker and disease and the marker sensitivity 
and specificity has to be demonstrated. In the ‘verification’ phase the analysis has 
to be extended to a larger number of human plasma samples, incorporating a 
broader range of cases and controls. Here the environmental, genetic, biological 
and stochastic variation in the population has to be considered. In the verification 
phase the sensitivity of biomarker candidates is affirmed and specificity has to be 
assessed [3].

21.2.4  Proteomic Technology in Biomarker Discovery

Important sources for biomarkers should be represented by proteins in the blood. 
The exact number of proteins in blood is not known. Efforts by different laborato-
ries of the Plasma Proteome Project led to the identification 889 proteins identified 
with a confidence level of at least 95%. It is estimated that the plasma proteome 
may contain up to 10,000 proteins [12]. Proteome analysis is a promising tool for 
the discovery of novel and innovative cancer biomarkers [13]. Over the past decade, 
serum and plasma proteomics aimed to identify potential cancer biomarkers [14]. 
Since these markers are present in low amounts in blood samples, the direct isola-
tion requires a labor-intensive process involving the depletion of abundant proteins 
and extensive protein fractionation.

This classical approach comparing the plasma protein profiles of the healthy 
donor to the patient largely failed during the discovery phase. An inherent problem 
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of blood proteomics is the complexity of the protein composition, comprising an 
enormous diversity of proteins and protein isoforms, the dynamic range of plasma 
and other biofluids and the tremendous extend of human and disease variation. In 
addition the anticipated low relative abundance of many disease-specific biomarkers 
represents a pitfall: the concentration range in human plasma covers ten orders of 
magnitude, which means that certain biomarkers may be ten billion fold less abun-
dant than serum albumin. Due to these pitfalls of blood proteomics it has been 
proposed to rather analyze diseased tissue or biological fluids close to diseased sites 
(for example tissue interstitial fluid (TIF)). Here the relevant proteins are expected 
to occur at higher concentrations which facilitates biomarker discovery.

Alternatively, the secretome of cancer cells [15] and tumor associated cells can 
be analyzed and verified subsequently in human blood by ELISA analyses. 
Following completion of the Human Genome Project, scientists postulated that 
important cancer biomarkers will be secreted proteins, as about 20–25% of all cell 
proteins are secreted [16]. Actually some classical cancer biomarkers (e.g., CEA, 
Her2-neu) are cell-membrane bound, with their extracellular domains eventually 
shed into the circulation [14].

21.3  Secretome as Reservoir for Biomarker Discovery

21.3.1  Definition

The secretome is defined as the set of secreted proteins [17,18]. The term “secre-
tome” was first referred by Tjalsma et al. [17] to secreted proteins of Bacillus 
subtilis in a genome-based global survey. The secretome is composed of proteins 
that are actively secreted, shed from the cell surface and intracellular proteins, 
which are accidentally released into the supernatant. Cell lysis resulting from 
necrosis releases relatively large amounts of protein when compared to secretion. 
The secretome harbors proteins released by a cell, tissue or organism through vari-
ous mechanisms including classical and nonclassical secretion as well as secretion 
via exosomes [19]. Secretion may occur either constitutively (continuously) or be 
regulated and triggered on demand resulting from different functional cell states.

21.3.2  The Cancer Secretome

The cancer secretome, the totality of proteins released by cancer cells, has been 
attracting wide attention as it is a potential reservoir of cancer biomarkers. Secreted 
proteins may determine, control and coordinate many biological processes such as 
growth, cell division and differentiation, invasion, metastasis, angiogenesis and 
lymphangiogenesis via an endocrine, paracrine or autocrine way. In addition it is 
known that the tumor microenvironment contributes to tumor development and 
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 progression via communicative processes, mediated by cytokines, chemokines, 
 hormones and specifically secured communication structures (e.g. gap junctions) [8]. 
Therefore also secreted proteins shed by tumor associated cells need to be consid-
ered [9]. Protein secretion exerts autocrine and paracrine biological functions rather 
than maintenance of basic metabolism. Therefore, specifically secreted proteins may 
much better be related to the exertion of biological functions compared to cytoplas-
mic proteins. These proteins eventually end up in the bloodstream, and thereby may 
have a potential as non-invasive biomarkers [9]. Their biological key roles make 
them good targets and sources for therapeutical and drug-based intervention as well 
as tools for diagnosis and prognosis. Thus, great interest is currently focused on the 
characterization of secreted proteins in order to identify novel biomarkers. The leaky 
nature of newly formed blood vessels and the increased hydrostatic pressure within 
tumors increase the chance to find secreted proteins in the blood stream [9]. A patho-
logical situation thus tends to push molecules from the tumor interstitium into the 
circulation. Therefore it seems to be plausible that proteins produced by the microen-
vironment will be shed into the blood, making ongoing processes of tumor develop-
ment detectable [9]. Combinations of markers that are indicative for the specific 
interactions of the tumor tissue microenvironment will achieve higher specificity and 
higher sensitivity than the application of any single marker. Candidate biomarkers 
are expected to exist at very low concentrations diluted in blood plasma with highly 
abundant proteins such as albumin, which exist in billion-fold excess. At early stages 
of disease, cancer-specific proteins will always constitute an evanescent subfraction 
of the proteome representing a true analytical challenge. Noteworthy, early-stage 
disease lesions such as carcinoma in situ represent tumor cell numbers hardly 
exceeding several thousand cells. However, the affected microenvironment com-
prises many more cells compared to the number of tumor cells. Thus proteins 
derived from tumor associated stroma cells will be produced by more cells and may 
accumulate to higher amounts. Consequently it can be expected that such proteins 
will be better accessible for diagnostic purposes than proteins derived from cancer 
cells themselves. Secretome analysis is applicable to cultured cells as well as tissue 
specimens [9]. The most comprehensive analysis results, however, are obtained in 
case of isolated and cultured cells.

In contrast to secreted proteins as new candidates for blood biomarkers, specific 
proteins identified in the cytoplasm rather represent biomarker candidates accessi-
ble to immunohistochemical analysis. Cytoplasmic proteins also comprise specific 
indicators of functional cell states and cell activities. Combining the information of 
both secreted and cytoplasmic proteins further supports the detailed understanding 
of complex patho-physiological processes.

21.3.3  Development of Rational Therapy Design  
by Secretome Analysis

For many years, the main principle in the treatment of metastatic cancer has been 
the cyclic administration of high-dose chemotherapy, which is a unselective 
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 strategy based on cytotoxic effects [20]. Chemotherapy uses the small window 
between killing of rapidly dividing cancer cells and spearing healthy tissues. All 
tissues with a high proliferation rate are affected by chemotherapy leading to severe 
and dose limiting side effects such as myelosuppression, damage of the intestinal 
mucosa and severe skin reactions. Due to this issue, cycles of therapy have to be 
interrupted by drug-free periods to allow normal tissue to recover. Although the 
initial effects of chemotherapy are often quite impressive in terms of depleting 
tumor mass, the duration of remission is often short and resistance may be induced. 
This risk of selecting chemoresistant cell clones can be linked to the genetic insta-
bility and the high mutational rates and heterogeneity of tumor cells. In order to 
overcome this drug resistance, doses of chemotherapy can either be increased; 
intervals shortened or chemotherapeutic combination strategies can be chosen. All 
these options are subsequently potentiating side effects [9].

For an accurate, individualized assessment of risk of disease progression it was 
suggested to classify disease subgroups and rationally select treatments to substan-
tially affect the outcome of advanced disease. Sekulic et al. [11] discuss that the low 
overall response rates observed in clinical trials that rely on clinical disease features 
for patient selection might simply reflect a relatively low percentage of patients 
with the disease susceptible to a given therapeutic agent or combination. As a con-
sequence, patient selection for clinical trials and selection of therapy on the basis 
of individual molecular attributes might be necessary to improve response rates to 
any kind of therapy. Sekulic et al. propose that the detailed consideration of each 
single patient will overcome the problems of heterogeneity and may lead to a new 
classification by genomic techniques [11]. Newer individual sequencing data, how-
ever, suggest that the heterogeneity of genetic aberrations even within a single 
patient is by far too large to enable patient stratification. Another stratification 
option may be derived from the specificity of protein expression profiles which are 
largely dependent on functional states of cells. Cells make proteins in order to fulfil 
specific tasks. Functional activation, therefore, inevitably results in the expression 
of a protein cluster dedicated to fulfil the newly requested functions. Specific 
pathologic processes may, therefore, be characterized by functional protein signa-
tures. These proteins, here designated as functional protein signatures, may thus 
enable the identification of relevant functional cell states. In contrast to the genomic 
techniques focusing on hereditary predisposition, proteome analysis is able to 
detect when and to what extend the risks have become manifest. For characterisa-
tion of diseases, functional aberrations causative for the disease have to be distin-
guished from aberrations resulting from these primary functional aberrations. To 
give an example, uncontrolled proliferation is a common process characteristic for 
neoplasia. The detection of a common process will not support disease sub-classi-
fication. Different kinds but characteristic stressors such as inflammatory activa-
tion, oxidative stress, DNA damage or ER stress, however, may be causative for 
disease states such as uncontrolled proliferation. Each kind of stressor is specifi-
cally detectable by a defined protein signature providing the basis for functional 
disease classification. Understanding and detecting the variety of mechanisms lead-
ing to a common pathology may serve patient stratification aiding rational therapeutic 
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concepts better than the consideration of downstream consequences of pathological 
processes. As a consequence, protein clusters rather than single  proteins will serve 
as biomarkers. Such application may be more feasible than individual genetic pro-
filing to support optimal therapeutic decisions.

In search for alternative strategies for the treatment of advanced cancer, target-
ing the tumor stroma seems to be a promising tool since this approach is not 
cytotoxic but interferes with the cooperativity of tumor and tumor stroma cells. 
This concept is based on the improving understanding that tumor development is 
associated with the transformation of normal stroma into an “activated” stroma 
phenotype. Tumor cells are able to establish a permissive and supportive environ-
ment for survival and cell growth and to facilitate invasion and metastasis by 
modulating the stromal host compartment. Targeting this interference between 
tumor and tumor stroma may consistently lead to a reduction of tumor growth and 
metastasis. The targets in this approach are genetically normal activated cells 
which will not be able to escape therapy due to genetic instability and clonal selec-
tion. Therefore, targeting these cells should lead to a reduction of development of 
resistance. This strategy is also considered to be less toxic and thus allows sustain-
ing the therapeutic pressure continuously over longer time periods [9]. Considering 
that the stroma provides proteins supporting tumor survival, a blockage of this 
process might chemosensitise the tumor. Therefore, this approach might serve as 
an efficient combination therapy with chemotherapeutic agents. The enhanced 
knowledge generated by secretome analysis of molecular aberrations involving 
important cellular processes, such as cellular signaling networks, regulation of cell 
cycle and cell death, will contribute to better diagnosis, accurate assessment of 
prognosis, patient stratification and rational design of effective therapeutics.

21.3.4  Clinical Application

Secretome analysis aims to address three important features of clinical 
 proteomics [9]:

 1. Tumor cells may recruit stromal cells for the secretion of growth factors which 
serve as powerful survival factors. The onset of these characteristic events seems 
to precede tumor progression. These secreted proteins may have a good chance 
entering the bloodstream, due to the leaky nature of newly formed blood vessels 
and the increased hydrostatic pressure within the tumors. Stroma cell secretion 
of bioactive molecules, which may serve as diagnostic biomarkers, are early 
events in carcinogenesis and may thus enable the early detection of cancer 
progression.

 2. Proteome profiling may identify molecular signatures of processes which 
promote metastasis. Secretome analysis of defined cell populations offers 
the opportunity to identify the contribution of the involved cell types and 
thus the underlying pathomechanisms. These pathways rather than single 
proteins should be monitored and targeted.
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 3. Transformation of cancer cells is an irreversible process which may be corrected 
only by apoptotic cell death. Tumor therapy usually targets cancer cells; modern 
therapy concepts include targeting the stroma in an anti-angiogenic and anti-
inflammatory fashion. Cooperativity contributed by stromal cells is reversible and 
thus directly accessible to therapeutic intervention. Most importantly, stroma 
derived survival factors shall be decreased resulting in a higher chemosensitivity 
of the tumor cells. Detailed understanding of the responsible processes may thus 
enable the design of completely new therapeutic strategies.

21.4  Methods

To gain reliable insights into the cancer secretome it is obligatory to prepare sam-
ples which are clearly defined and as pure as possible. Secreted proteins occur in 
body fluids, the direct analysis of potential marker proteins from such samples is 
hindered by the high complexity and dynamic range of resident plasma proteins.  
A cell is the smallest independent protein synthesis unit, therefore a reduction of 
sample complexity to single cell types greatly improves the chances to identify low 
abundant proteins. It has been observed that proteins secreted by tumor cells 
in vitro may very well reflect the proteins secreted by tumors in vivo [21]. 
Therefore, the routine method used is to analyze the secreted of tumor cells or 
tumor stroma cells in vitro [21]. Mbeunkui et al. [22] performed a comprehensive 
study of the secretome of three metastatic cancer cell lines and demonstrated that 
an incubation time of 24 h and 60–70% cell confluence were considered as optimal 
cell incubation conditions (Fig. 21.1). Due to the low abundance of secreted pro-
teins, the contamination by non-secreted proteins may mask the proteins of interest. 
The discrimination of genuine secreted proteins from non-secreted proteins is a 
major issue that needs to be answered in every single experiment [21].

In addition, secreted proteins present in the culture media usually occur at low 
concentrations, which is often below the ng/mL range. These proteins should be 
concentrated before proteomics analysis [21]. Ultrafiltration can be used for the 
concentration of the secretome [21]. Alternatively, precipitation can be performed 
with acetone or ethanol.

21.4.1  2D-gel Electrophoresis

Zwickl et al. [23] have established a metabolic labeling-based technology with 
[35S]-labelled methionine and cysteine which allows for the sensitive and selective 
detection of secreted proteins. They demonstrated the applicability of this method by 
a study on secretome profiles of a hepatocellular carcinoma-derived cell line. These 
cells were incubated in the presence of [35S]-labelled methionine and cysteine. 
Subsequently, the cell supernatant was filtered, precipitated and subjected to  
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two-dimensional gel electrophoresis. After staining proteins were detected by 
 fluorescence staining and autoradiography. Fluorescence staining detects all pro-
teins, in contrast autoradiography detected only those proteins synthesized and 
secreted by living cells during the metabolic labeling period. All identified 16 pro-
tein spots in autoradiography were found to be authentic secreted proteins.

The disadvantages of 2-DE are the low sensitivity in the detection of proteins in low 
concentrations, the poor representation of hydrophobic membrane proteins in 2D-gels, 
furthermore the technique is time-consuming, labor-intensive and has a relatively low 
efficiency in protein detection due to limited amenability to automation [21]. To cir-
cumvent some of these inherent problems of the standard 2-DE procedure, a modified 
method, differential in-gel electrophoresis (DIGE) has been developed by GE 
Healthcare [24], where three charge and mass-matched fluorescent dyes (Cy2, Cy3 
and Cy5), are utilized. These dyes can primarily combine covalently with lysine. 

Fig. 21.1 Workflow of secretome proteomics. Secretome preparation is performed with well-
characterized tumor or tumor associated cells. Supernatant collection, sterile filtration and pre-
cipitation is performed after 6–24 h incubation of the cells in special formulated serum free media. 
For shot gun proteomics the protein samples are separated by SDS-gel electrophoresis followed 
by tryptic in-gel digestion and peptide separation by nano-flow LC. Peptide identification is 
accomplished by MS/MS fragmentation analysis and the MS/MS data are interpreted by the 
Spectrum Mill MS Proteomics Workbench software and searched using the UniProt Database. 
Biomarker candidates are selected considering own laboratory and public available expert infor-
mation. In the verification and validation phase performing ELISA studies in human blood sam-
ples these candidates are correlated with clinic information. Specificity and clinical relevance is 
increased starting from in vitro to clinic while the number of analytes is decreased



416 V. Paulitschke et al.

Different protein samples are differently labeled by these fluorescent dyes, then mixed 
and visualized in one gel. DIGE reduces the experimental variations using one gel for 
three samples [19]. Instead this method is not applicable to those proteins without 
lysine (in case of minimal dyes) or cysteine (in case of saturation dyes).

21.4.2  Mass Spectrometry

A mass spectrometer consists of three components: (a) an ion-producing source, 
(b) a mass analyzer to measure the mass-to-charge ratio (m/z) of the ionized 
molecule, and (c) a detector that registers the number of ions. A typical shotgun 
proteomic experiment generally consists of five stages: (1) proteins present in cell 
lysates, tissue or body fluids are separated by fractionation or affinity selection to 
define the subproteome, (2) enzymatic degradation of proteins to peptides by 
trypsin, (3) peptides are separated by reversed phase nano-flow HPLC and eluted 
into an electrospray ion source where they become charged single molecules in 
the gas phase which may enter the MS. Isotope-labeling methods, such as isotope 
coded affinity tag (ICAT) and stable isotope labeling by amino acids in cell cul-
ture (SILAC), can be used to introduce quantitative aspects in cancer secretome 
analysis [25]. These label based approaches are expensive, time-consuming and 
not always feasible due to the limitation of available tags for primary human 
materials [25]. We have started to systematically analyze secretomes of various 
primary and cultured human cells [9,26]. Therefore we have standardized a pro-
cedure to bioinformatically filter the truly secreted proteins from contaminant 
proteins regarding the known main contaminants, i.e. cytoplasmic proteins and 
serum proteins and as well regarding signal peptides characteristic for secreted 
proteins . Secreted proteins are then classified with respect to cell type specificity 
and their relation to functional cell states which are investigated in vitro by func-
tional activation. The relation of identified proteins to the most plausible cells of 
origin as supported by the CPL/MUW database [27] greatly facilitates the inter-
pretation of complex proteome profiles as derived from human serum samples 
(Figs. 21.1 and 21.2).

The applied standard procedure to analyse secretomes is detailed in the following 
(Fig. 21.1). For the accumulation of secreted proteins cells are incubated in serum-
free specialized media formulations for 6–24 h at 37°C. For isolation of the secreted 
protein fraction, the cell supernatant is collected, sterile filtrated to remove cellular 
debris and precipitated by the addition of ethanol. For the isolation of the corre-
sponding cytoplasmic proteins, all buffers are supplemented with protease inhibi-
tors. Cells are lysed in hypotonic lysis buffer and pressed through a 26 g syringe in 
order to open the cells by rupture. The cytoplasmic fraction is separated from the 
nuclei by centrifugation and precipitated by the addition of ethanol. All protein 
samples are dissolved in sample buffer (7.5 M urea, 1.5 M thiourea, 4% CHAPS, 
0.05% SDS, 100 mM DDT) and separated by SDS-gel electrophoresis followed by 
tryptic in-gel digestion. For shotgun analysis, peptides are separated by nano-flow 
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LC (1100 Series LC system, Agilent, Palo Alto, CA) using the HPLC-Chip technol-
ogy (Agilent) equipped with a 40 nl Zorbax 300SB-C18 trapping column and a 
75 mm × 150 mm Zorbax 300SB-C18 separation column at a flow rate of 400 nl/min, 
using a gradient from 0.2% formic acid and 3% ACN to 0.2% formic acid and 50% 
ACN over 60 min. Peptide identification is accomplished by MS/MS fragmentation 
analysis with an ion trap mass spectrometer (XCT-Ultra, Agilent) equipped with an 
orthogonal nanospray ion source. The MS/MS data are interpreted by the Spectrum 
Mill MS Proteomics Workbench software (Version A.03.03, Agilent) and searched 
against the SwissProt Database (UniProt Version 15.4 containing 20,328 protein 
entries) (Figs. 21.1 and 21.2) allowing for precursor mass deviation of 1.5 Da, a 
product mass tolerance of 0.7 Da and a minimum matched peak intensity (%SPI) of 
70%. Due to previous chemical modification, carbamidomethylation of cysteines is 
set as fixed modification. The reliability of peptide identifications from MS/MS 
spectra relates to spectral quality indicated with specific scores. The scores are 
essentially calculated from sequence tag lengths, but also mass deviations are 

Fig. 21.2 All proteome identification data are based on peptide fragmentation spectra. Blast 
search of each peptide reveal the corresponding proteins. All peptides related to a single protein 
become sorted accordingly. Ambiguity may arise due to partial sequence similarities of different 
proteins, which may not allow to assign a peptide to a single protein only. Uniprot and the CPL/
MUW database assist in the selection of the most plausible candidate. Data of various experiments 
are combined to obtain reference maps of single cell types at specific states. The specificity of any 
single protein expression with respect to cell types may be retrieved using the GPDE. Overlap and 
specificity of proteome maps can be visualized by accurate Venn diagrams. During this process 
specificity is increased while complexity is decreased
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considered. To assess the reliability of the peptide identifications, searches are per-
formed against the corresponding reversed database. Further details are accessible 
via www.meduniwien.ac.at/ proteomics.

A protein fraction may be contaminated with keratins derived from dust and 
comprise identifications with questionable identification quality. To make appropri-
ate decisions, we make use of lists of common contaminants as well as reference 
lists dependent on the kind of sample comprising “expected” proteins. Only those 
putative identifications are included, which are present in the according reference 
list, while all other are discarded. The resulting protein profile is classified using 
the CPL/MUW database to support subsequent data interpretation (Fig. 21.1). 
Classification considers common housekeeping proteins, cell type-specific proteins 
and proteins related to the exertion of specific functions. Furthermore, other public 
available data as the gene ontology (GO) can be included. Protein expression data 
derived from methods other than mass spectrometry such as Protein Atlas and gene 
expression data may support the final decision for expression specificity and thus 
choice of biomarker candidates. Such biomarker candidates have to be verified and 
validated performing ELISA studies with human blood samples and by correlation 
with clinic data. Specificity and clinical relevance is increased starting from in vitro 
to clinic while sample size is decreased (Fig. 21.1).

21.5  Bioinformatics

Proteomes of biological samples typically consist of thousands of different proteins 
with a concentration range spanning nine or more orders of magnitude [28]. Only 
technically demanding high-throughput technologies such as mass spectrometry 
may actually cope with such an analytical challenge [29]. Modern machines 
 produce more than 10,000 peptide fragmentation spectra per hour, piling up to huge 
amounts of data for each experiment. As a consequence, there is no proteome 
 profiling without the assistance of well-performing computers and sophisticated 
bioinformatics tools.

A typical workflow to analyse proteomics data would consist of several indepen-
dent but interrelated steps. These include interpretation of spectra, subsequent protein 
identifications and quantifications as well as the assignment of specifically expressed 
proteins based on comparative analysis. While several different and  powerful soft-
ware packages exist to support these steps such as Mascot [30], SEQUEST [31] and 
Spectrum Mill [32], there is still urgent demand for further improvements. In the fol-
lowing, the implications of each step will be presented in more detail.

To begin with more technical aspects, there is still a broad variety of data 
 formats and protein sequence databases which complicate the exchange and com-
parison of data generated by different laboratories. It was the initiative of the 
European Bioinformatics Institute to establish a common data format, PRIDE-
XML, which can be realized starting from almost any kind of existing data format. 
To support the dissemination of complex proteome data, the public data repository 

http://www.meduniwien.ac.at/
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PRIDE (PRoteomics IDEntifications database, http://www.ebi.ac.uk/pride) was 
installed [33]. The Global Proteome Machine Organisation (gpm) at gpmdb. 
rockefeller.edu was established to improve the quality of proteome analysis data 
relying on tandem mass spectrometry, to make results portable and to provide a 
common platform for testing and validating proteomics results [34]. These impor-
tant tools provide access to thousands of proteome analysis experiments and sup-
ports documentation of published data.

To summarize, clinical proteomics needs standard operating procedures and 
guidelines for data generation, data analysis and validation of datasets [35] since 
the biomarker discovery has suffered in the past from inconsistent data acquisition, 
statistical interpretation and validation [36]. These standards are represented by (1) 
the use of standards in the data format and storage (mzXM/mzData), (2) by public 
data repositories (Peptide Atlas, PRIDE, SwissProt/Uniprot and (3) the integration 
of a complex database including biological information and different bioinformatic 
programs using to link different protein lists for instance to specific pathways [2].

Data mining strategies fall into two categories: unsupervised (analogous to clus-
tering) and supervised (analogous to classification) such as classification and 
regression trees and support vector machines (SVM) [36]. Each algorithm has 
inherent strengths and weaknesses, which must be matched to the different statisti-
cal problems [36]. Some of these softwares are (Fig. 21.1):

 1. ProteinCenter software, a proteomics data mining and management software, 
can be used to predict the function of the identified proteins based on universal 
GO annotation terms. Here a comparison of cell line secretomes with each other 
and a functionally categorization can be performed [36,37].

 2. The SignalP program can be used to determine the presence of secretory signal 
peptide sequences and thus predict potential secretion.

 3. The SecretomeP program offers the possibility to predict non-signal peptide-
triggered protein secretion and to distinguish between protein secretion path-
ways-the classical and non classical pathway [37].

 4. MetaCore (GeneGo, St. Joseph, MI) is used for biological network building and 
describe millions of relationships between proteins, according to publications on 
proteins and small molecules including direct protein interactions, transcrip-
tional regulation, binding or enzyme-substrate interactions [37].

In the process of biomarker discovery, a single biomarker may hardly provide 
sufficient specificity; often several biomarkers have to be combined. Here a two-
step process is required:

 1. Biomarkers have to be identified employing statistics for multiple testing.
 2. They are combined in a predictive model using some of the algorithms [36].

Support Vector Machines (SVMs) offer a cross-validated predictive statement, 
which is an important issue in biomarker combination. In the case of making a 
predictive diagnosis through the combination of biomarker, it is possible to calcu-
late the level of confidence with a classification algorithm. Two basic  considerations 

http://www.ebi.ac.uk/pride
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have to be applied: (1) the number of independent variables should be kept minimal 
and (2) a blinded validation set should be included [2]. Diagnostic accuracy estab-
lishes how accurately the test discriminates between those with and without the 
disease and is determined by calculating the test’s sensitivity, specificity, likelihood 
ratio and receiver operating characteristic (ROC) curve [36].

One inherent problem of the high throughput technology mass spectrometry 
becomes evident upon consideration of statistical aspects [38]. A confidence level 
of 99.5% for the assignment of peptide sequences to fragmentation spectra suggests 
very high validity of data which is currently hardly realised. Modern equipment 
may allow the researcher to identify thousand different peptide sequences per hour. 
A confidence interval of 99% implies that five out of the thousand peptides are not 
correct. A typical experiment consists of around ten injections, summing up to 50 
or more false peptide assignments. Comparative analysis of two groups of experi-
ments summarizing five independent experiments would already sum up to 500 
false peptide assignments. Complex analyses may require the consideration of hun-
dreds of experiments. In such a case, a confidence rate of 99.5% per peptide iden-
tification may result in a chance to receive false results from a database query 
higher than 50%.

The only way out of this dilemma will be the consideration of expert knowledge 
in data analysis [27]. Currently, only quality features of individual spectra are con-
sidered for the assignment of amino acid sequences. Each decision is made inde-
pendent of any other data. Actually, there are chances to make use of other data. We 
know that a given peptide has characteristic and reproducible chromatographic 
mobility as well as ionization and fragmentation characteristics. Therefore, the 
accessible knowledge of successfully identified peptides may facilitate the decision 
of peptide assignments in case of uncertainty. Furthermore, consideration of knowl-
edge of the origin of the sample may greatly improve data consistency. To give an 
example: analysis of a mitochondrial fraction may allow some contaminating pro-
teins derived from the endoplasmatic reticulum, but hardly from the cell nucleus. 
The analysis of a liver sample may include proteins from e.g. immune cells but 
hardly proteins specific for the heart. Although these implications seem trivial, they 
require complex expert system programming in order to be automatically imple-
mented in the high throughput analysis of data. The systematic assessment of 
ontologies may, however, enable the implementation of such strategies.

The processing of data as realized in case of the CPL/MUW-database is outlined 
in the following. Actually, all protein identifications are based on peptide fragmen-
tation spectra (mass spectrometry) (Fig. 21.2). Amino acid sequences are derived 
from the spectra and all related peptides identified during a LC-MS/MS run are 
sorted according to proteins they are derived from (SpectrumMill software). 
Actually, there are peptides which may be allocated to more than one protein, 
which need to be nominated in an easily accessible fashion (Fig. 21.2). In such a 
case, several considerations have to take place. The ambiguity may be solved by 
consideration of gene expression data and previously determined protein expres-
sion data. Consequently, established knowledge made available via the SwissProt-
database needs to be accessed, while laboratory-owned data may as well aid the 
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decision process (Fig. 21.2). On the other hand, known potential contaminants such 
as keratins should be known to avoid misassignments. After the decision process 
resulting in protein lists comprising all relevant experimental and peptide identifi-
cation data as realized via PRIDE XML-files, interpretation of data may be enabled 
by comparative analysis (Fig. 21.2). To provide an example: we have analysed 
secretomes of primary human endothelial cells at normal, angiogenic and inflam-
matory cell states. Accurate Venn diagrams displays the relation between these 
protein fractions (Fig. 21.2). Out of a total of 184 different proteins identified, 75 
were found in all three kinds of cells. 114 proteins were secreted by untreated cells, 
14 of which were not identified at the other two functional states. One twenty-nine 
proteins were identified in IL-1b-treated cells, 33 of those were not identified at the 
other two functional states. Actually, some of them were found as well secreted by 
e.g. inflammatory activated macrophages, leaving 22 proteins apparently specific 
for inflammatory activated endothelial cells. This kind of comprehensive compara-
tive analysis may strongly support the interpretation of complex data.

While data acquisition and protein identification may be considered as relatively 
simple tasks, there is still obvious demand for tools supporting data interpretation. 
These processes organize the data with respect to experiments and cell types, but 
not to functional aspects. Currently there is still obvious demand for further tools 
supporting data interpretation. The application of -omics techniques often leave the 
researcher with very long lists of identified genes and proteins which are impossi-
ble to comprehend. Current strategies try to relate expression data to signaling 
pathways in order to support biological interpretation [39–41]. There are still major 
limitations to these approaches. In many cases, the known involvement of a gene or 
a protein in a specific signaling or metabolic pathway would highlight the protein 
as such. Comparative analyses, however, record up- or down-regulation of proteins. 
Switching on a specific pathway does not necessarily mean that relative amounts of 
proteins involved in the pathway would be regulated. In many cases, however, the 
activation of a specific pathway would result in the up-regulation of proteins which 
are not at all involved in the exertion of the signaling or metabolic event. For the 
identification of the involvement of pathways, which is evidently desirable, data-
bases would be required which exhibit consequences of pathway activation rather 
than involvement in pathways. There is still a demand for such databases.

Another shortcoming of current analysis strategies is the preferential assignment 
of tissue-specific expression patterns rather than cell type-specific expression pat-
terns. Actually it is obvious that tissues are made of different kind of cell types. 
Some cell types such as immune cells occur in all tissue types, other cell types 
specifically occur in a single organ. It is the specific functional characteristics of 
hepatocytes which give raise to liver-specific specific proteins, liver cells other than 
hepatocytes do not express liver-specific proteins. Therefore, it would be more 
accurate to talk about hepatocyte-specific proteins rather than liver-specific pro-
teins. There are databases listing organ-specific protein expression but no databases 
listing cell type-specific protein expression.

For this reason we established the following data analysis strategy. First of all 
the proteome profiles of isolated organelles which commonly occur in cells, such 
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as nuclei, mitochondria , ribosomes and proteasomes were determined. Such analy-
ses obviously allow for the fact that cell type-specific proteins may as well occur in 
organelles such as nuclei but very much account for the fact that the basic protein 
composition of these organelles is highly similar. A proteome profile of a cell may 
thus already be structurally sorted according to the belonging to an organelle. As a 
consequence, a long protein list may already become much easier to be interpreted 
as related groups of proteins are identified.

The next step of systematic analyses focuses on cell types. We have already 
determined proteome profiles of lymphocytes, monocytes, dendritic cells, neutro-
phils, fibroblasts, endothelial cells, various epithelial cells and many others and 
classified both commonly expressed proteins as well as cell type-specific proteins. 
Some of these data have been made available to the public via the CPL/MUW 
database at www.meduniwien.ac.at/proteomics/database [27]. The expression 
specificity of several thousand proteins with respect to cell types can thus be imme-
diately determined.

The SQL database (CPL/MUW – database of the Clinical Proteomics Laboratories 
at the Medical University of Vienna) facilitates (i) quality management of protein 
identification data, which are based on MS, (ii) the detection of cell type-specific 
proteins and (iii) of molecular signatures of specific functional cell states [27].

Proteome analyses of clinical materials constitute a big challenge for investiga-
tors due to its great complexity. Exact planning and documentation of each analysis 
step is crucial to enable meaningful data interpretation. This is why we strictly fol-
low the established rules of the “minimum information about a proteomics experi-
ment” (MIAPE) [35]. According to highest international standards, submit all 
relevant proteome analysis data to the international repository for proteome analy-
sis data, the PRIDE database. We have already successfully implemented a program 
which automatically translates experimental data out of our database to a standard-
ized PRIDE-XML format using international standardized ontology-terms to 
describe all experimental details (http://www.ebi.ac.uk/ontology-lookup/) [41]. 
Furthermore, we have programmed a proteome analysis database referring to the 
investigation of cross-cell type and cross-species comparisons of proteome analysis 
data derived from both, 2D-PAGE and shotgun analysis [27].

Proteins fulfil biological functions. If a cell enters a characteristic functional 
state it may need proteins not expressed under normal conditions. Such proteins 
may be specifically expressed only when the cells enter the functional state. As a 
consequence, the identification of such specifically expressed proteins may identify 
the corresponding cell state. Any disease-related symptom is a consequence of 
aberrant cell activities associated with the disease. Identification of aberrant cell 
activities may thus identify diseases. When investigating disease biomarkers we 
should consider the fact that proteins were designed by evolution to exert functions 
rather than to indicate diseases to medical doctors. Therefore, there are no protein 
biomarkers specific for a disease; there are only, actually plenty of, biomarkers 
specific for biological functions. If such an aberrant function is specifically associ-
ated with a certain disease the corresponding protein may be considered as a dis-
ease biomarker.

http://www.meduniwien.ac.at/proteomics/database
http://www.ebi.ac.uk/ontology-lookup/
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We have started to systematically assess protein expression profiles of cells at 
characteristic functional states. As expected, we were able to identify several spe-
cifically expressed proteins. These include proteins specifically related to func-
tional states such as cell proliferation or inflammatory activation which may be 
entered by different kinds of cells. Actually, there are proteins which we found to 
be exclusively expressed by a single cell type at a specific cell state but not by any 
other cell. Therefore, these proteins are classified into organelle-derived, cell type-
specific, cell state-related and cell type cell state-specific proteins. Comparisons of 
normal and diseased tissue proteome sample therefore result in the consideration of 
alterations in the abundance of organelles (indicative for, e.g. rate of mitochondrial 
respiration compared to glycolysis), the consideration of alterations of the occur-
rence of cell types (indicating e.g. invasion of immune cells or increase in the 
number of fibroblasts), the consideration of cell states (assessment of cell prolifera-
tion, cell stress, apoptosis, inflammatory activation of myofibroblast formation) and 
finally the occurrence of specific cell entities (e.g. type II macrophages). The 
knowledge of disease-associated aberrations in one or several of these aspects may 
thus allow us to design highly specific marker panels.

21.6  Identification of Biomarker Candidates  
by Secretome Analysis

Secretome analysis is an upcoming field of cancer research. This chapter gives a 
brief overview of the latest key secretome studies:

Recently, secretome analysis based on a LC-MS/MS label-free quantitative pro-
teomics approach was used to compare the secretome of a primary cell line SW480 
with its lymph node metastatic cell line SW620 from the same colorectal cancer 
patient [25]. They identified a total of 910 proteins from the conditioned media and 
145 differential proteins between SW480 and SW620 (>1.5-fold change). Among 
them, trefoil factor 3 and growth/differentiation factor 15, two proteins upregulated 
in the metastatic cell line SW620, were analyzed in a large cohort of clinical tissue 
and serum samples and confirmed as biomarker candidates for the prediction of 
colorectal cancer metastasis [25]. Here secretome analysis allowed new insights 
into the pathophysiology of tumor progression.

An important study for a systematic identification of unique markers for col-
orectal cancer was performed by Wu et al. [42]. Secretomes of 21 cancer cell lines 
derived from 12 cancer types (colon cancer, leukemia, bladder cancer, lung cancer, 
NPC, hepatocellular carcinoma, cervical carcinoma, epidermoid carcinoma, ovary 
adenocarcinoma, uterus carcinoma, pancreatic carcinoma and breast cancer) were 
compared. Collapsin response mediator protein-2 (CRMP-2) was only secreted by 
the colorectal cell lines (Colo205 and SW480) but not any other cell lines tested 
and was therefore selected for further evaluation. Initially CRMP-2 was identified 
as a mediator required for semaphoring triggered growth cone collapse and was 
associated with carcinogenesis by p53 regulation. ELISA analyses of plasma 
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 samples from colorectal patients and healthy controls were performed to examine 
the levels of CRMP-2 and CEA revealing that the sensitivities of plasma CRMP-2 
and CEA were found to be 60.5% and 42.9%, respectively. This secretome analysis 
led to a novel marker, CRMP-2, which may be a colorectal marker superior to CEA. 
However, a large cohort study is required to validate the utility of plasma CRMP-2 
levels for CRC screening and diagnosis.

In addition these authors analyzed proteins released by most cancer cell lines 
(pan-cancer marker candidates) and assigned these to specific secretion mecha-
nisms. In the conditioned media of cancer cells proteins may be released via various 
cellular mechanisms, including classical secretion and nonclassical secretion path-
ways, as well as secretion via exosomes. The exocytosis of membranous vesicles 
called exosomes was initially described in antigen-presenting cells such as 
B-lymphocytes and dendritic cells, and was later found to also occur in tumor cell 
lines. The authors assigned some identified proteins to characteristic constituents of 
exosomes including ubiquitously expressed molecules such as intracellular meta-
bolic enzymes (pyruvate kinase and alpha enolase), cytoskeletal proteins (actin, 
cofilin, tubulin, and moesin), and chaperones (HSP90 and HSP70). To determine 
whether some proteins may have been released into the medium by cell death, cell 
viability has to be measured.

To get panels of serum biomarkers for lung cancer, Xiao et al. [43] compared the 
secretome of primary cultures of lung cancer cells and the adjacent normal bron-
chial epithelial cells of six lung cancer patients using one-dimensional PAGE and 
nano-ESI MS/MS . They demonstrated that a panel of four proteins, CD98, fascin, 
polymeric immunoglobulin receptor/secretory component and 14- 3-3 h had a 
higher sensitivity and specificity than any single marker.

To characterize extracellular events such as cell-to-cell interactions and cell- 
to-extracellular matrix interactions associated with breast cancer progression on the 
genomic level, gene profiles of secreted proteins were investigated in a cell line of 
human proliferative breast disease. Differentially expressed genes were searched 
for genes encoding secreted proteins in three public databases. The analysis dis-
played two clusters of secretome genes with expression changes correlating with 
proliferative potential [44].

Celis et al. [45] employed 2-DE and MALDI-TOF-MS to analyze the tumor 
interstitial fluid (TIF), which was collected of freshly dissected invasive breast 
carcinomas. From TIF, which perfuses the breast tumor microenvironment, they 
identified 267 primary translation products, involved in cell proliferation, invasion, 
angiogenesis, metastasis and inflammation.

A novel technology for investigating in vivo cancer secretome was recently 
developed by Huang and colleagues [46]. They collected the samples for further 
secretome analysis by implanting capillary ultrafiltration (CUF) probes into tumor 
masses of a live mouse at the progressive and regressive stages. Five of the detected 
proteins, including cyclophilin-A, S100A4, profilin-1, thymosin beta 4 and 10, 
which previously correlated to tumor progression, were identified at the progressive 
stage. They also identified specifically secreted proteins at the regressive stage 
called fetuin-A, alpha-1-antitrypsin 1–6, and contrapsin.
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Very recently, a secretome analysis of 23 human cancer cell lines derived from 
11 cancer types using one-dimensional SDS-PAGE and nano LC-MS/MS 
(GeLC-MS/MS) was performed on LTQ-Orbitrap MS to generate a comprehensive 
cancer cell secretome [37]. The identified proteins were selected as potential 
marker candidates according to three categories: (i) proteins apparently secreted by 
one cancer type but not by others (cancer-type–specific marker candidates), 
(ii) proteins released by most cancer cell lines (pan-cancer marker candidates), and 
(iii) proteins putatively linked to cancer-relevant pathways [37]. This analysis 
yielded 6–137 marker candidates selective for each tumor type and 94 potential 
pan-cancer markers. Among these, the monocyte differentiation antigen CD14 (for 
liver cancer), stromal cell-derived factor 1 (for lung cancer), cathepsin L1 and 
interferon-induced 17 kDa protein (for NPC) were selected for validation as poten-
tial serological cancer markers.

Immunohistochemistry revealed that bile salt sulfotransferase, ornithine car-
bamoyltransferase, monocyte differentiation antigen CD14, and isoform 1 of asia-
loglycoprotein receptor 2 were less immunoreactive in tissues of other cancer types, 
while multidrug resistance protein 1 and vitamin K-dependent protein C were over-
expressed in hepatocellular carcinoma versus other cancers. Bladder cancer tissues 
reacted more strongly with proteins such as cadherin-6, squalene synthetase, ribo-
phorin II, and 15-hydroxyprostaglandin dehydrogenase while the levels of neuro-
genic locus notch homolog protein 3 and trefoil factor 1 were higher in breast 
cancer tissues versus tissues of other cancers [37]. The stromal cell-derived factor 
1 (CXCL12) reacted more strongly with lung cancer tissues. In addition, Wu et al. 
confirmed the significantly elevated plasma levels of two candidates (CD14 and 
SDF-1/CXCL12) in hepatocellular carcinoma and lung cancer patients [37].

In our recent study, we analyzed the secretomes of primary melanocytes, cul-
tured melanoma cells and representatives of the most prominent stroma cells 
including fibroblasts, endothelial cells and dendritic cells by shotgun proteomics 
[9]. We consider the assessment of cell type-specific secretion characteristics as a 
prerequisite before potential relevant alterations of tumor-associated stroma cells 
can be recognized. In case a tumor-associated fibroblast secretes a protein not 
secreted by normal fibroblasts, but secreted e.g. by normal endothelial cells, such a 
protein would hardly be useful as biomarker. This is why we systematically ana-
lyzed the most important representatives of tumor-associated stroma cells. This 
strategy enables us to identify proteins which are aberrantly expressed by tumor-
associated fibroblasts but not in any normal counterparts isolated from healthy 
background [9]. We performed secretome and proteome profiles generated from 
normal human skin fibroblasts in comparison to melanoma-associated fibroblasts 
isolated from mouse xenografts and fibroblasts from bone marrow of multiple 
myeloma patients. Further mutual comparisons were enabled including proteome 
profiles of melanocytes and M24met melanoma cells. All shotgun proteomics data 
have been made accessible via the PRIDE database. Amongst others, the candidate 
biomarkers GPX5, secreted by melanoma cells, in addition to periostin and stan-
niocalcin-1, which are expressed by melanoma-associated fibroblasts, were identi-
fied. Due to this data we started to investigate tumor associated fibroblasts of 
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primary melanoma and primary melanoma cells in a more systematic fashion by 
rtPCR, comparative genomic hybridization and cytoplasmic proteome and secre-
tome analysis. This information will enable us to better understand cellular pro-
cesses of the tumor and tumor associated cells in order to define new therapeutic 
agents and rational concepts for melanoma treatment and to detect biomarkers.

Secretome analysis is a novel research area offering new opportunities for bio-
marker discovery and drug development. However, despite promising results high-
lighted in this chapter, more systematic and hypothesis driven studies are needed. 
As primary cells are highly sensitive living units, any alteration in culture condition 
may result in aberrant protein secretion. Therefore, for clinical proteomics support-
ing biomarker discovery it is inevitable to refer to a SOP driven data resource of 
secretomes to enable an appropriate correlation of scientific with patient-derived 
information.

21.7  Conclusion

The identification of potential marker proteins is not trivial. Comparative analysis 
of serum samples and tissue specimen is hindered by the natural complexity of 
protein expression. Diseases like cancer mean a variety of de-regulated cell pro-
cesses all of which eventually causing characteristic aberrant protein expression. 
Different kinds of patho-physiological processes may be associated with tumor 
development, such as involvement of the immune system, alterations of the 
microenvironment and characteristic processes in the cancer cells themselves. This 
complexity is further enhanced by the individual heterogeneity in disease in addi-
tion to heterogeneities introduced by the involved experimental procedures. Low 
abundant proteins may be hard to identify as long as they are present in a complex 
protein mixture together with other proteins, several at million fold higher concen-
trations. Dependent on the protein mixture, positive identification of actually pres-
ent, but low abundant proteins may thus fail. Statistical evaluation of comparative 
proteome analysis data may thus not be able to identify the truly relevant proteins. 
One possible concept to overcome this inherent heterogeneity is based on the func-
tional analysis of cell types in advance. It is predicated on the characterization of 
smallest independent units and tries to find a combination of independent units to 
match the molecular profile of an individual sample. This smallest unit capable of 
protein synthesis, the cell, decides whether or not to produce proteins with specific 
activity which may become related to a disease.

In mathematics the strategy to refer to independent functions is called Fourier 
transform which makes a complex function amenable for further analysis. The 
smallest independent and potentially predictable protein synthesis machinery unit 
is a cell. Since every functional cell aberration is associated with aberrations of 
protein expression when compared to normal, the cell is an optimal starting point 
for biomarker discovery. Like Fourier transform in physics, the establishment of 
profiles of the smallest autonomous protein production units in the body, i.e. cells, 



42721 Secretome Proteomics, a Novel Tool for Biomarkers Discovery

may greatly facilitate the interpretation of complex proteome profiles as derived 
from human serum or tissue samples (Figs. 21.2 and 21.3). All proteomes, i.e. pro-
tein mixtures, should it be from tissues, blood, plasma or other body fluids can be 
expressed as a function of cellular proteomes. The assignment to cellular proteome 
reference maps will lead to a massive reduction of apparent complexity (Fig. 21.2). 
Therefore possible candidates can be extracted by defining the involved cell sys-
tems such as cancer cells and distinguished cell of the environment including fibro-
blasts and endothelial cells in a first step. With the aid of specialized databases, for 
instance the CPL/MUW-database [27], specificities and commonalities of protein 
expression profiles of such different cells can be quickly assessed. Therefore, early 
teamwork between the clinical level, bioinformatics, medical informatics, and pro-
teomic scientists is needed to overcome the current limitations.

One key question relates to our ability to draw appropriate conclusions for 
(short-, mid-, or long-term) therapeutic approaches and consequences from the 
highly dynamic proteome profiles. Specific cellular systems and subsystems and 

Fig. 21.3 The novel approach detecting biomarkers and defining potential therapeutic targets. 
The basic strategy for biomarker discovery is visualized. As model systems cultured cell lines, 
animal models for melanoma and squamous skin cancer and biopsy specimens of human skin 
cancer are presented. In all cases the secretome of the same isolated cell types (i.e. cancer cells, 
endothelial cells and fibroblasts) is analyzed. In further steps it is envisaged to analyze for specific 
cell-cell interactions mimicking characteristic tissue states for example by applying different co-
cultures starting from in vitro to in vivo models. In a last step these results shall then be evaluated 
in the human background in the tissue and blood profile [9]
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functional components have to be defined prior to the analyses of a complex organ-
ism influenced by various states of disease. Integration of proteomics and cell-
based technologies will allow the description of the molecular setup of normal and 
abnormal cell systems leading to the standardized discrimination of abnormal cell 
states in disease permitting for instance the design of individualized therapies, the 
prediction of further disease course in patients, the identification of new pharma-
ceutical targets, and establishment of a standardized framework of relevant molecu-
lar alterations in disease [2].

We make use of three different model systems (cell culture, tissue in vivo and 
human being), all have their strength and weakness starting from in vitro to human. 
The complexity but also relevance is increased from in vitro to human being. 
Therefore we combine all these systems (Fig. 21.3).

Our strategy is composed of seven independent steps (Fig. 21.3) [9]:

 1. Establishment of relevant model systems mimicking various functional cell 
states including characteristic in vitro cell activation experiments and (non-) 
contact co-cultures

 2. Standardization of protein isolation
 3. Standardization of MS-procedures
 4. Generation of proteome reference maps for human primary cells
 5. Data organization via database
 6. Interpretation of data from diseased tissues by the use of multiple reference 

maps
 7. Verification of biomarkers or possible therapeutic targets by i.e. ELISA, immu-

nhistochemistry, Western blot

In a last step these results shall then be evaluated in the human background in the 
tissue and blood profile (Fig. 21.3). ELISAs for instance the Luminex system [47] 
are to be established for the most promising candidates (including the specifically 
expressed proteins mentioned above). These assays will then be used to assess pro-
tein levels of candidate biomarkers in serum samples of patients. For validation we 
begin with assaying patients whose fibroblasts were found in vitro to secrete large 
amounts of candidate biomarker proteins. These data are then compared to serum 
samples derived from patients whose fibroblasts were found not to secrete these fac-
tors. This step of analysis will allow us to assess whether serum protein levels of 
these marker proteins are indeed related to the in vitro fibroblast expression levels 
as anticipated. The secretion specificity of the cancer associated fibroblasts has to be 
assessed by comparison to the secretomes of fibroblasts, endothelial cells, tumor 
cells and macrophages, which contribute to tissue remodeling and repair [9,26,48]. 
Here, we present a novel technical approach to better understand the mechanisms of 
tumor progression and metastasis by involving the microenvironment. The approach 
is of tremendous importance since it will allow us new insights in the pathophysiol-
ogy of tumor progression, leading to the identification of novel biomarkers for early 
detection and prognosis and may lead to the identification of new therapeutic targets. 
The plethora of data will offer new opportunities to develop biomarker sets for 
ELISA analysis for the clinical routine [9]. The combination of a set of relevant 
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markers will yield an improvement of sensitivity and specificity of the screenings. 
By focusing on secreted proteins which are early shed by the microenvironment into 
the blood, specific information about the actual status of the patient and define a 
fingerprint of the tumor status in the patient can be gained. This strategy may enable 
early diagnosis of metastatic processes and offers an opportunity for a rational 
therapy selection. Candidate biomarkers shall be evaluated in clinical studies by cor-
relation with the progression free and overall survival. This concept may be able to 
establish novel classifications, to define patient subgroups and to consequently allow 
us to enhance the often low overall response rates observed in clinical trials.
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Abstract COX2 and PPARG are differentially expressed in many human tumors 
and have emerged as potential targets of biomodulatory cancer therapy. Using three 
tissue microarrays (TMA) we studied the correlation of COX2/PPARG immunore-
activity in a broad spectrum of tumors focussing on the correlation between clinico-
pathologic features and outcome of patients with malignant melanoma (MM).
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TMA-1 consisted of normal and tumor tissues (n = 3,448) from 47 organs and 
tissue entities including skin neoplasms (n = 323) of melanocytic (MM, benign 
nevi) and non-melanocytic origin (squamous cell carcinomas, basal cell  carcinomas, 
Kaposi sarcomas, histiocytomas, capillary hemangiomas, sebaceous adenomas). 
TMA-2 consisted of 88 MM with follow-up data, 101 MM metastases and 161 
benign nevi. TMA-3 (n = 194) consisted of MM metastases from 36 patients with 
metastatic stage IV melanoma who had participated in a randomized phase II trial 
using a stroma-directed biomodulatory approach combining COX/PPAR-targeting 
with metronomic low-dose chemotherapy.

COX2 immunoreactivity significantly increased from benign nevi (51%) to 
 primary MM (86%) and MM metastases (91%; P < 0.001, TMA-2). In case  
of primary MM, positive COX2 staining was associated with advanced Clark levels 
(P = 0.004) and shorter recurrence free survival (P = 0.03). Similarly, PPARG 
immunoreactivity was significantly increasing from benign nevi (0%) to MM 
(22%) and MM metastases (33%; P < 0.001). However, PPARG expression in 
 primary MM was not associated with any of the clinico-pathologic characteristics 
or tumor progression and overall survival. On the other hand, patients with PPARG-
positive MM metastases who had been treated either with biomodulatory metro-
nomic chemotherapy (trofosfamide) alone or combined with COX2/PPARG-targeting 
drugs, i.e. rofecoxib and pioglitazone, showed a significant advantage concerning 
progression-free survival (P = 0.044).

We conclude that the expression of COX2 and PPARG is a frequent finding in 
the progression of MM. Regarding primary MM, the expression of COX2 indicates 
an increased risk of tumor recurrence, i.e. melanoma progression. In metastatic 
MM the expression of PPARG may serve as positive predictive marker of potential 
responsiveness to biomodulatory stroma-targeted therapy (Meyer S, Vogt T, 
Landthaler M, et al (2009). Cyclooxygenase 2 (COX2) and Peroxisome Proliferator-
Activated Receptor Gamma (PPARG) Are Stage-Dependent Prognostic Markers of 
Malignant Melanoma. PPAR Res 2009: 848645).

Keywords Tissue microarray • PPARgamma • COX2 expression in tumor tissue 
• Metastatic melanoma • Castrate-resistent prostate cancer • Biomarker analytics 
• Biomodulatory therapy

Abbreviations

MM Malignant melanoma
TMA Tissue microarray
IHC Immunohistochemistry
COX2 Cyclooxygenase 2
PPARG Peroxisome proliferator-activated receptor gamma
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22.1  Introduction

Cyclooxygenases (COXs) catalyze the first rate-limiting step in the conversion of 
arachidonic acid to prostaglandins. Two COX isoenzymes have been identified: 
COX1 is constitutively expressed in most tissues and mediates the synthesis of 
prostaglandins in normal physiological processes, whereas COX2 is not detectable 
in most normal tissues but is rapidly induced by various stimuli such as  inflammatory 
reactions [1]. COX2 is also expressed in various tumor types [2], and levels of 
expression have been shown to correlate with invasiveness and prognosis in some 
tumor entities, suggesting an important role of COX2 in tumor development and 
progression. Epidemiological studies show that prolonged COX2 inhibition through 
acetylsalicylic acid or other nonsteroidal anti-inflammatory drugs (NSAIDs) might 
offer some protection against colon cancer and some other malignancies [3,4]. 
Accordingly, in animal experiments COX2 inhibitors can reduce the incidence of 
colon carcinoma in APC knockout mice treated with chemical carcinogens [5]. The 
mechanism by which COX2 expression accelerates tumorigenesis is poorly under-
stood. However, a potential role of COX2 in epithelial and melanocytic skin cancer 
development is also not unlikely, since COX2 is frequently expressed in malignant 
melanomas (MM) [6,7] and squamous cell carcinomas of the skin [8,9].

The peroxisome proliferator-activated receptor (PPAR) is a member of the 
nuclear hormone receptor subfamily of ligand-activated transcription factors. There 
are three known subtypes of peroxisome proliferator-activated receptors; PPARA, 
PPARD, and PPARG. The latter is involved in physiological adipocyte differentia-
tion and differentially expressed in several types of human cancers [10], e.g. in 
prostate cancer [11,12], breast adenocarcinomas [13], overian cancer [14,15], lung 
cancer [16], and colon cancer [17]. Accordingly, PPAR ligands were shown to 
inhibit the growth of cells from different cancer lineages in vitro [18]. In human 
melanoma cell lines the anti-proliferative and apoptosis-inducing effect of PPARG 
ligands was demonstrated, too [19,20].

Current research data and clinical experience suggest that PPARA/G can medi-
ate both direct antitumoral and immunomodulatory effects and a broad spectrum of 
stroma modulating activity including anti-angiogenic, anti-inflammatory and 
immuno-augmentative effects [21,22]. Examples of super-additive complementa-
tion of PPARG agonists by COX2 inhibitors and metronomic chemotherapy are 
well documented experimentally and in clinical trials, respectively [10,16,23].

We had studied such combined tumor-stroma-targeted cancer therapy using 
PPARG agonists and COX2 inhibitors in the second-line treatment of advanced 
metastatic melanoma disease [22,23]. In a randomized multi-institutional phase II 
trial including 76 mostly chemorefractory patients with progression of metastatic 
melanoma (stage IV melanoma according to AJCC criteria), we had observed a 
significantly prolonged progression-free survival in the group of patients that 
received angiostatically scheduled low-dose metronomic chemotherapy (trofosf-
amide) in combination with a PPARG agonist (pioglitazone) and a COX2 inhibitor 
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(rofecoxib) compared to the group of patients who received metronomic 
chemotherapy alone [22]. Accordingly, tumor associated inflammatory and angio-
genic processes mediated by COX2 overexpression or PPARG deficiency were 
suggested to play a pivotal role in the biology of melanoma progression [22]. 
However, there is insufficient data on the expression of both target molecules; 
therefore, their prognostic and therapeutic relevance in MM is still unclear.

The study presented herein is based on a high-throughput tissue microarray 
(TMA) analysis, a highly efficient technology for investigating large numbers of tumors. 
To the best of our knowledge this is the largest study of this topic which can link 
expression data with extensive follow-up data of melanoma patients, respectively. 
In addition, as we gather extensive data on various other cancers and normal tissues 
(47 organs and tissue entities) we can put the specifities of the melanoma data into 
a broader oncologic context.

22.2  Materials and Methods

Tissue Microarrays (TMAs). TMA construction was performed as described 
 previously [24]. The local Institutional Review Boards of the Universities of 
Regensburg and Basel granted approval for this project.

The first TMA (TMA-1) contained formalin-fixed, paraffin-embedded tissue 
punches from the archives of the Institute of Pathology, University of Basel, 
Switzerland. A comprehensive TMA was created by transferring representative tis-
sue cylinders with a diameter of 0.6 mm to seven new paraffin blocks as described 
by Bubendorf et al. [25]. Representative areas of different subtypes for the most 
frequent tumor entities and their corresponding non-tumorous tissue were selected 
for analysis. Four mm sections of the resulting TMA block were cut and mounted 
to an adhesive-coated slide system (Instrumedics Inc. Hackensack, New Jersey, 
USA). The constructed multi-tumor TMA-1 consisted of 3,448 primary tumors 
from 132 different tumor subtypes and 26 different normal tissues and allowed us 
to determine the prevalence of COX2 and PPARG expression in non-tumorous tissues 
and corresponding malignant tumors. Samples from skin (n = 330), lung (n = 217), 
brain (n = 228), breast (n = 218), colon (n = 204), soft tissue (n = 150), salivary 
gland (n = 152), testis (n = 126), ovary (n = 140) and kidney (n = 144) were the 
major tissues assembled on this TMA. The evaluation of tissue and clinical data 
was performed on the basis of anonymized patient data according to the regulations 
of the University of Basel Institutional Review Board. Detailed tumor and tissue 
characteristics can be found in Table 22.6, 22.7 and Figure 22.5, 22.6. The skin-
related datasets were extracted and are summarized in Table 22.1, the other data 
sets in Figure 22.1 to 22.4 and Table 22.6 and 22.7.

The second TMA (TMA-2) was constructed as described by Wild et al. [26] and 
contained a total of 350 formalin-fixed, paraffin-embedded human tissues: 88 (25.1%) 
primary malignant melanomas, 101 (28.9%) metastases, and 161 (46.0%) benign 
nevi. H&E-stained slides of all tumors were evaluated by two surgical pathologists 
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(T.V., P.J.W.). Clinical follow-up data, provided by the Central Tumor Registry of the 
University of Regensburg, were available for all patients with primary malignant 
melanomas (n = 88). The median follow-up for all patients was 54 months (range 
0–135 months), whereas the median follow-up for censored patients (n = 74) was 
63.5 months. Characteristic parameters of TMA-2 are summarized in Table 22.2.

The third TMA (TMA-3) was constructed on the basis of a randomized multi-
institutional phase II trial using an angiostatic biomodiulatory approach to assess the 
impact of COX2- and PPAR-targeted therapy in combination with metronomic 
 low-dose chemotherapy in patients with advanced metastatic stage IV melanoma 
[22]. The clinical trial was designed to select metronomic chemotherapy alone (arm 
A: trofosfamide 50 mg orally three times daily, day 1+) or combined anti-inflammatory/
angiostatic treatment (arm B: trofosfamide as above mentioned plus rofecoxib  
25 mg orally, day 1+, and pioglitazone 60 mg orally, day 1+) for further evaluation. 
A total of 76 patients, mostly (>60%) refractory to at least one previous chemo-
therapy with maximum tolerated doses, and progression of metastatic melanoma 
were included; from the Institute of Pathology and the Department of Dermatology 
(University of Regensburg, Germany) 194 formalin-fixed paraffin-embedded meta-
static tissues of 36 patients (47%) were available for further immunohistochemical 
analysis. The local ethic committee had approved the study (Table 22.3).

Prior to TMA-construction, H&E-stained slides of all specimens were evaluated 
by two dermatopathologists (T.V., S.M.) to identify representative metastatic areas. 
Clinical follow-up data with a median follow-up period of 9 months (range 1–43 
months) were available for 35 melanoma patients (97%), i.e. 12 patients (33%) who 
received metronomic chemotherapy alone (arm A) and 23 patients (64%) with 
combined anti-inflammatory/angiostatic treatment (arm B). Median follow-up of 
censored patients was 7 months (range 2–43 months). Characteristic parameters of 
TMA-3 are given in Table 22.4.

Immunohistochemistry (IHC). Immunohistochemical studies utilized an avi-
din-biotin peroxidase method with a 3-amino-9-ethylcarbazole (AEC) chromatogen. 
After antigen retrieval (steam boiler with citrate-buffer, pH 6.0 for 20 min) 
 immunohistochemistry was carried out applying the ZytoChemPlus HRP Broad 
Spectrum Kit (Zytomed Systems, Berlin, Germany) according to the manufacturer’s 
instructions. The following primary antibodies were used: anti-COX2 (mouse mono-
clonal, Cayman Chemical, Ann Arbor, MI, USA; dilution 1:200, final concentration 
2.5 mg/ml), anti-PPARG (rabbit monoclonal, Cell Signalling, New England Biolabs 
GmbH, Frankfurt am Main, Germany; dilution 1:400), anti-TP53 (mouse monoclonal 
IgG, clone Bp53–12 (sc-263), Santa Cruz Biotechnology Santa Cruz, CA; dilution 
1:1,000), and anti-Ki-67 (rabbit monoclonal, clone MIB1; DakoCytomation GmbH, 
Hamburg, Germany; dilution 1:10, final concentration 5 mg/ml). As a positive control 
for COX2 and PPARG IHC, a colon carcinoma with known COX2 and PPARG 
expression was chosen. Normal tissue samples of ten different organs were considered 
as negative controls. Two pathologists (F.B., S.M.) performed a blinded evaluation of 
the stained slides. Cytoplasmic COX2 and nuclear PPARG immunoreactivity was 
estimated using an arbitrary semi-quantitative four-step scoring system (0−3+), based on 
the intensity of cytoplasmic COX2 staining [6] and the percentage of PPARG positive 
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Table 22.3 Univariate analysis of factors regarding tumor recurrence and death

Variable Categorization

Tumor recurrence (RFS) Death (OS)

na Events Pb na Events Pb

Age at diagnosis £60 years 48 25 0.7 48  7 0.6
>60 years 40 18 40  7

Gender Female 39 15 0.06 39  5 0.4
Male 49 28 49  9

Clark levelc II  5  0 0.4  5  0 0.3
III 15  8 15  2
IV 54 28 54  8
V 13  7 13  4

Tumor thickness £2.0 mm 38 14 0.03 38  4 0.2
>2.0 mm 50 29 50 10

Ki67 labeling index <5% 33 17 0.7 33  7 0.9
³5% 36 16 36  7

Cytoplasmic COX2  
IHC

score 0 12  2 0.03 12  0 0.1
score 1+–3+ 72 39 72 14

Nuclear PPARG 
IHC

score 0 61 28 0.2 61 11 0.6
score 1+–3+ 17 10 17  2

aOnly initial and unifocal malignant melanomas were included;
blog rank test (two-sided), bold face representing significant data; 
caccording to UICC: TNM Classification of Malignant Tumours. 6th edn (2002) Sobin LH, 
Wittekind CH (eds.) Wiley, New York

cell nuclei [7]: 0 (negative): no cytoplasmic COX2 staining/PPARG staining 0% of cell 
nuclei; 1+: weak COX2 staining/PPARG staining 1–9%; 2+: moderate COX2 staining/
PPARG staining 10–50%; 3+: strong COX2 staining/ PPARG staining greater than 
50%. Causes of non-interpretable results included lack of tumor tissue and presence of 
necrosis or crush artifact. The percentage of tumor cells with nuclear Ki-67 and TP53 
staining was determined as described previously [27]. Ki-67/TP53 labeling was con-
sidered high if at least 5% of the tumor cells were positive.

Statistical analysis. Specimens on TMA-1 and TMA-2 were considered indepen-
dently. Concerning TMA-3, COX2 and PPARG immunoreactivity were examined for 
a mean of 5 metastatic samples per patient (range 1–15); the median level of COX2 and 
PPARG immunoreactivity was chosen for further analyses using the SPSS version 16.0 
(SPSS, Chicago, IL, USA). P-values <0.05 were considered significant. Contingency 
table analysis and two-sided Fisher’s exact tests or X2-tests were used to study statistical 
associations between clinico-pathological and immunohistochemical data. Retrospective 
overall and progression-free survival curves comparing patients with and without any 
of the variables were calculated using the Kaplan-Meier method, with significance 
evaluated by two-sided log rank statistics. For the analysis of progression-free survival, 
patients were censored at the time of their last progression-free clinical follow-up 
appointment. For the analysis of overall survival, patients were censored at the time of 
their last clinical follow-up appointment or at their date of death not related to the tumor. 
For multiple testing, the closed test principle was used (Table 22.5).
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22.3  Results

TMA-1. Investigation of COX2 and PPARG protein expression in 323 benign and 
malignant skin tumors using a comprehensive multi-tumor TMA (TMA-1) was 
informative in 57.6% (186/323) and 65.6% (212/323) of cases. COX2 and PPARG 
expression of any intensity (score 1+–3+) was detected in 81.7% (152/186) and 
32.5% (69/212) of informative cases, respectively. Table 22.1 summarizes the 
expression data and statistical analysis of COX2 and PPARG immunoreactivity of 
each skin tumor entity on TMA-1. For connective tissue tumors (Kaposi sarcoma, 
capillary hemangioma, benign histiocytoma) no significant differences could be 
found in benign versus malignant tumors (P = 0.61 and P = 0.13). Regarding epi-
thelial tumors (squamous cell carcinomas, basal cell carcinomas) positive PPARG 
staining was detected significantly more often in basal cell carcinomas than in 
squamous cell carcinomas (P = 0.001). Surprisingly, 86.9% of benign skin adnexal 
tumors (sebaceous adenomas) were positive for COX2; 21.7% positive for PPARG. 
Regarding melanocytic lesions, 100% (38/38) of primary melanomas and 78.9% 
(15/19) of benign nevi revealed at least weak COX2 immunoreactivity (score 
1+–3+); 48.7% (20/41) of primary melanomas and 8.3% (2/24) of benign nevi 
demonstrated PPARG positivity (1+–2+). Accordingly, compared to benign nevi, expres-
sion of both COX2 and PPARG was significantly increased in primary melanomas 
(P = 0.02 and P = 0.001).

Besides skin tumors, COX2 and PPARG expression was analyzed in many 
other benign and malignant tissue types from 46 different organs using a compre-
hensive multi-tumor TMA-1. As shown in Tables 22.6 and 22.7, differential 
COX2 and PPARG expression between normal and neoplastic tissue could be 
observed for almost every tissue type investigated. In prostate cancer, for exam-
ple, COX2 expression continuously increased from prostatic hyperplasia to pros-
tatic intraepithelial neoplasia (PIN) to organ-confined prostate cancer to 
hormone-refractory prostate cancer to metastatic disease (supplemental Fig. 22.5 
and 22.6).

TMA-2. Based on the results of TMA-1, a second TMA (TMA-2) with clinical 
follow-up data sampling primary malignant melanomas and melanoma metastases 
as well as benign nevi was constructed. COX2 and PPARG immunoreactivity was 
informative in 86.0% (301/350) and 91.7% (321/350) of cases, respectively. 
Expression of COX2 and PPARG of any intensity was detected in 73.8% (222/301) 
and in 15.0% (48/321) of informative cases. Representative negative and positive 
COX2 and PPARG immunostaining patterns in malignant melanoma are shown in 
Fig. 22.1a–d. Figure 22.2a and b summarize the results of COX2 and PPARG IHC 
for primary melanomas, metastases and nevi on TMA-2. The percentage of COX2 
positive cases significantly increased from benign nevi (51%) to primary melano-
mas (86%) and melanoma metastases (91%; P < 0.001; Fig. 22.2a). Likewise, 
PPARG immunoreactivity significantly increased from benign nevi (0%) to malig-
nant melanomas (22%) and melanoma metastases (33%; P < 0.001; Fig. 22.2b). 
Clinico-pathologic variables of melanoma patients were correlated with COX2 and 
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Table 22.6 Frequency of COX2 protein expression in 132 human tumor types

Tumor type

COX2 protein expression

No. of  
tumors  
analyzed

Negative  
(%)

Weak  
(%)

Moderate  
(%)

Strong  
(%)

Adrenal gland
 Adrenal gland adenoma 13 0 7.7 7.7 84.6
 Adrenal gland carcinoma  6 0 0 0 100.0
 Pheochromocytoma 27 0 33.3 48.1 18.5
Anus
 Anus, squamous cell cancer  3 33.3 33.3 33.3 0
Brain
 Cerebrum, grey substance, normal  5 40.0 20.0 40.0 0

Cerebrum, white substance,  
normal

 5 100.0 0 0 0

 Meningeoma 42 71.4 26.2 2.4 0
 Ependymoma  9 11.1 11.1 66.7 11.1
 Astrocytoma 30 10.0 46.7 30.0 13.3
 Glioblastoma multiforme 34 23.5 47.1 20.6 8.8
 Oligodendroglioma 17 17.6 17.6 58.8 5.9
 Medulloblastoma  4 0 25.0 75.0 0
 Esthesioneuroblastoma  2 0 0 100.0 0
Breast
 Breast, normal  3 0 0 0 100.0
 Breast, ductal cancer 43 11.6 58.1 23.3 7.0
 Breast, lobular cancer 30 16.7 53.3 26.7 3.3
 Breast, medullary cancer 25 4.0 36.0 48.0 12.0
 Breast, tubular cancer 16 37.5 56.3 6.3 0
 Breast, mucinous cancer 23 47.8 26.1 13.0 13.0
 Breast, apocrine cancer  3 33.3 0 66.7 0
 Breast, cribirform cancer  5 40.0 40.0 20 0
 Breast, Phylloides tumor 12 16.7 83.3 0 0
Colon
 Colon, mucosa, normal  2 50.0 50.0 0 0
 Colon adenoma, mild dysplasia 31 16.1 58.1 22.6 3.2

Colon adenoma, moderate  
dysplasia

33 18.2 54.5 18.2 9.1

 Colon adenoma, severe dysplasia 23 26.1 43.5 30.4 0
 Colon, adenocarcinoma 40 10.0 55.0 32.5 2.5
Endometrium
 Endometrium, normal  6 0 33.3 33.3 33.3

Endometrium, endometroid 
carcinoma

39 2.6 33.3 53.8 10.3

 Endometrium, serous carcinoma 13 7.7 30.8 46.2 15.4
Esophagus
 Esophagus, normal tissue  6 83.3 16.7 0 0
 Esophagus, adenocarcinoma 6 0 66.7 16.7 16.7

(continued)
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Table 22.6 (continued)

Tumor type

COX2 protein expression

No. of  
tumors  
analyzed

Negative  
(%)

Weak  
(%)

Moderate  
(%)

Strong  
(%)

Esophagus, squamous cell 
carcinoma

26 3.8 42.3 26.9 26.9

 Esophagus, small cell carcinoma 1 0 0 0 100.0
Fat tissue
 Liposarcoma 26 26.9 50.0 23.1 0
Gall bladder
 Gall bladder, normal 4 33.3 66.7 0 0
 Gall bladder, adenocarcinoma 18 5.6 22.2 55.6 16.7
GIT
 GIST 28 17.9 57.1 10.7 14.3
Hematologic (n = 6)
 AML 1 0 0 100 0
 CML 4 0 25 25 50
Kidney
 Kidney, cortex, normal 5 0 0 20.0 80.0
 Kidney, clear cell cancer 46 2.2 32.6 54.3 10.9
 Kidney, papillary cancer 34 8.1 16.2 51.4 24.3
 Kidney, chromophobe cancer 13 7.7 30.8 30.8 30.8
 Kidney, oncocytoma 7 0 0 14.3 85.7
Larynx
 Larynx, squamous cell carcinoma 32 37.5 40.6 15.6 6.3
Liver
 Liver, normal 2 0 0 0 100.0
 Hepatocellular carcinoma 29 0 6.9 6.9 86.2
Lung
 Lung, normal 4 0 0 0 100.0
 Lung, squamous cell carcinoma 43 2.3 55.8 27.9 14.0
 Lung, adenocarcinoma 47 6.4 59.6 27.7 6.4
 Lung, large cell cancer 43 9.3 32.6 37.2 20.9
 Lung, small cell cancer 39 17.9 53.8 25.6 2.6
Lymphatic tissue
 NHL, diffuse large B 16 0 25.0 68.8 6.3
 MALT lymphoma 22 0 27.3 68.2 4.5
 Hodgkin lymphoma, mixed cell 13 15.4 23.1 23.1 38.5

Hodgkin lymphoma, nodular 
sclerosis

23 13.0 34.8 26.1 26.1

Lymph node
 Lymph node, normal 3 0 33.3 66.7 0
 NHL, others 15 0 53.3 33.3 13.3
Mouth
 Mouth, normal 8 0 0 0 8

Oral cavity, squamous cell 
carcinoma

36 33.3 36.1 25.0 5.6

(continued)
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Table 22.6 (continued)

(continued)

Tumor type

COX2 protein expression

No. of  
tumors  
analyzed

Negative  
(%)

Weak  
(%)

Moderate  
(%)

Strong  
(%)

Myometrium
 Leiomyoma 52 59.6 40.4 0 0
Nerve tissue
 Neurofibroma 26 69.2 30.8 0 0
Ovary
 Ovary, normal 4 75.0 0 0 25.0
 Ovary, serous cancer 41 0 56.1 39.0 4.9
 Ovary, mucinous cancer 14 14.3 35.7 35.7 14.3
 Ovary, endometroid cancer 41 4.9 80.5 12.2 2.4
 Ovary, dysgerminoma 2 0 0 50.0 50.0
 Ovary, yolk sack tumor 1 0 0 0 100.0
 Ovary, undifferentiated carcinoma 1 0 0 100.0 0
 Ovary, Brenner tumor 9 44.4 44.4 11.1 0
Pancreas
 Pancreas, normal tissue 9 0 11.1 55.6 33.3
 Pancreas, adenocarcinoma 39 2.6 23.1 46.2 28.2
Parathyroid
 Parathyroid, normal 3 0 33.3 33.3 33.3
 Parathyroid, adenoma 15 0 26.7 26.7 46.7
Parotis
 Parotis, normal 5 0 0 0 100.0
 Salivary gland, small cell cancer 1 0 0 100.0 0
 Sa livary gland, squamous cell  

cancer
2 0 100.0 0 0

Salivary gland, unclassified 
carcinoma

1 0 0 100.0 0

Salivary gland, undifferentiated 
carcinoma

6 33.3 33.3 16.7 16.7

Penis
 Skin, penis normal 3 100 0 0 0
 Penile carcinoma 33 0 54.5 33.3 12.1
Pharynx

Pharynx, lymphoepithelial 
carcinoma

4 0 0 50.0 50.0

Pituitary
 Craniopharyngeoma 4 25.0 75.0 0 0
Pleura (n = 28)
 Malignant mesothelioma 14 7.1 35.7 21.4 35.7
Prostate (n = 134)
 Prostate cancer, untreated 45 6.7 37.8 44.4 11.1

Prostate cancer, hormone  
refractory

30 0 23.3 26.7 50.0

Salivary gland (n = 153)
 Salivary gland, adenolymphoma 29 0 17.2 44.8 37.9
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(continued)

Table 22.6 (continued)

Tumor type

COX2 protein expression

No. of  
tumors  
analyzed

Negative  
(%)

Weak  
(%)

Moderate  
(%)

Strong  
(%)

Salivary gland, pleomorphic 
adenoma

43 7.0 65.1 27.9 0

 Salivary gland, cylindroma 41 7.3 36.6 53.7 2.4
Salivary gland, mucoepidermoid 

cancer
5 60.0 40.0 0 0

 Salivary gland, adenocarcinoma 1 0 0 100.0 0
 Salivary gland, acinus cell cancer 5 40.0 40.0 20.0 0
Skeletal muscle (n = 26)
 Rhabdomyosarcoma 10 0 20.0 40.0 40.0
Skin (n = 359)
 Skin, normal 3 100.0 0 0 0
 Skin, basalioma 31 22.6 51.6 22.6 3.2
 Skin, squamous cell cancer 31 10.0 33.3 36.7 20.0
 Skin, Merkel cell cancer 3 0 0 33.3 66.7
 Skin, malignant melanoma 38 0 42.1 44.7 13.2
 Skin, benign nevus 19 21.1 36.8 42.1 0
 Benign histiocytoma 16 50.0 43.8 6.3 0
 Dermatofibroma protuberans 1 0 0 0 1
 Kapillary hemangioma 14 21.4 64.3 14.3 0
 Kaposi Sarcoma 15 40.0 53.3 6.7 0
Skin appendix (n = 32)
 Skin, benign appendix tumor 23 13.0 56.5 30.4 0
Small intestine (n = 20)
 Small intestine, normal 3 33.3 33.3 33.3 0
 Small intestine, adenocarcinoma 9 11.1 44.4 44.4 0
Smooth muscle (n = 40)
 Leiomyosarcoma 31 9.7 87.1 3.2 0
Soft tissue (n = 156)
 Paraganglioma 7 0 28.6 42.9 28.6
 Lipoma 18 72.2 22.2 5.6 0
 Malignant fibrous histiocytoma 23 34.8 47.8 17.4 0
 Fibrosarcoma 8 0 50.0 50.0 0
 Synovial sarcoma 2 50.0 50.0 0 0
 Alveolar sarcoma 1 0 0 100.0 0
 Epitheloid hemangioma 1 0 0 0 100.0
 Epitheloid Sarcoma 2 0 50.0 50.0 0
 Hemangiopericytoma 5 0 40.0 60.0 0
 Glomus tumor 5 20.0 20.0 60.0 0
 Angiosarcoma 3 33.3 33.3 0 33.3
 Ganglioneuroma 2 0 50.0 50.0 0
 Granular cell tumor 5 0 60.0 40.0 0
 PNET 15 0 26.7 40.0 33.3
 Angiomyolipoma 1 0 100.0 0 0
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Table 22.6 (continued)

(continued)

Tumor type

COX2 protein expression

No. of  
tumors  
analyzed

Negative  
(%)

Weak  
(%)

Moderate  
(%)

Strong  
(%)

Stomach
 Stomach, normal 3 0 0 66.7 33.3
 Stomach, diffuse adenocarcinoma 22 4.5 59.1 27.3 9.1

Stomach, intestinal  
adenocarcinoma

39 5.1 25.6 64.1 5.1

Tendon sheet
 Tendon sheet, giant cell tumor 23 13.0 60.9 21.7 4.3
Testis
 Testis, normal 5 0 0 100.0 0
 Testis, seminoma 48 0 22.9 33.3 43.8
 Testis, non-seminomatous cancer 52 7.7 28.8 51.9 11.5
 Testis, mixed cancer 2 0 0 100.0 0
 Testis, teratoma 5 0 0 100.0 0
Thymus
 Thymus, normal 2 50.0 0 50.0 0
 Thymoma 18 0 66.7 33.3 0
Thyroid
 Thyroid, normal 3 33.3 33.3 33.3 0
 Thyroid, adenoma 38 2.6 13.2 42.1 42.1
 Thyroid, follicular cancer 46 4.3 15.2 17.4 63.0
 Thyroid, papillary cancer 32 0 15.6 43.8 40.6
 Thyroid, anaplastic cancer 5 0 20.0 40.0 40.0
 Thyroid, medullary cancer 9 22.2 22.2 11.1 44.4
Urinary bladder
 Urinary bladder, normal 1 0 100.0 0 0

Urinary bladder cancer,  
non-invasive urothelial cancer

29 13.8 65.5 20.7 0

Urinary bladder cancer, invasive 
urothelial cancer

30 0 30.0 36.7 33.3

Urinary bladder, squamous cell 
cancer

5 20.0 0 40.0 40.0

 Urinary bladder, small cell cancer 3 33.3 0 0 66.7
Urinary bladder, sarcomatoid  

cancer
8 25.0 25.0 25.0 25.0

 Urinary bladder, adenocarcinoma 3 0 66.7 33.3 0
Uterus
 Uterus, carcinosarcoma 6 0 33.3 66.7 0
 Endometrioid stroma sarcoma 3 0 100.0 0 0
Uterus, cervix
 Cervix, normal 1 100.0 0 0 0

Uterus, cervix, cervical 
intraepithelial neoplasia, grade 3

9 77.8 22.2 0 0

Uterus, cervix, squamous cell 
carcinoma

17 17.6 29.4 41.2 11.8



44922 COX2 and PPARG Are Stage-Dependent Prognostic Markers

PPARG expression (Table 22.2). In primary melanomas, positive COX2 immuno-
reactivity was significantly related to advanced Clark levels (P = 0.004), but no 
other clinico-pathologic variables such as tumor growth pattern, p53 immunoreac-
tivity and Ki-67 labeling index. Skin metastases demonstrated a gradually weaker 
COX2 immunoreactivity compared with lymph node metastases (P = 0.013). 
Among the various types of benign nevi on TMA-2, COX2 expression was signifi-
cantly increased in congential nevi compared to compound, junctional and dermal 
melanocytic nevi (P < 0.001).

According to a univariate analysis, tumor progression was significantly related 
to both melanoma thickness and COX2 immunoreactivity, respectively (P = 0.03; 
Table 22.3); i.e. expression of COX2 was associated with shorter progression-free 
survival (P = 0.03; Fig. 22.3). In contrast, PPARG expression of primary melano-
mas was not associated with any of the variables neither the clinico-pathologic ones 
nor progression-free and overall survival (Tables 22.2 and 22.3).

TMA-3. Using TMA-3, the prognostic and therapeutic meaning of COX2 and 
PPARG expression was analyzed in patients with advanced metastatic melanoma 
disease (n = 36). All patients received angiostatic biomodulatory treatment with 
trofosfamide alone (arm A, n = 12) or in combination with rofecoxib and pioglita-
zone (arm B, n = 24). COX2 and PPARG protein expression of metastatic tissues 
was informative in all 36 cases. Expression of COX2 and PPARG of any intensity 
was detected in 97.2% (35/36) and in 38.9% (14/36) of patients, respectively. 
Clinico-pathologic variables of this cohort of patients with advanced metastatic 
melanoma disease were compared relative to COX2 and PPARG expression 
(Table 22.5).

Considering all 36 patients receiving biomodulatory therapy expression of PPARG 
(score 1+–3+) in the metastases was significantly associated with longer progression-
free survival (P = 0.044) but not with overall survival (P = 0.179; Fig. 22.4a and b). 
Expression of COX2 (score 2+–3+) in the metastases, however, was not associated 
with overall and progression-free survival, respectively (Fig. 22.4c and d).

Table 22.6 (continued)

Tumor type

COX2 protein expression

No. of  
tumors  
analyzed

Negative  
(%)

Weak  
(%)

Moderate  
(%)

Strong  
(%)

 Uterus, cervix, adenocarcinoma  2 50.0    0 0 50.0
Vagina
 Vagina, squamous cell carcinoma  3 0 100.0 0 0
Vulva
 Vulva, squamous cell cancer 32 12.5  37.5 31.3 18.8
ZNS
 Malignant Schwannoma  7 14.3  42.9 28.6 14.3
 Schwannoma 37 45.9  35.1 18.9 0
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22.4  Discussion

In this study, we demonstrate by a comprehensive multi-tumor TMA that COX2 and 
PPARG are differentially expressed in a broad spectrum of normal and malignant 
tissues. Focussing on tumors of the skin we can further confirm that COX2 immu-
noreactivity of primary MM is significantly associated with advanced Clark levels 
(P = 0.004) and shorter recurrence-free survival (P = 0.03). PPARG  expression of 
primary MM, however, does not provide significant prognostic information. Yet, by 
analysis of COX2 and PPARG expression in MM metastases of patients who had 
received biomodulatory therapy, we can show that only the expression of PPARG is 
significantly associated with longer progression-free  survival (P = 0.044). Hence, 
our study confirms the prognostic meaning of COX2 in patients with primary MM 

Fig. 22.1 (a–d) Immunohistochemical COX2 and PPARG staining of malignant melanomas on 
TMA-2. Original magnification 10x (insets 200x). Representative examples of a primary malig-
nant melanoma with negative (a) and strong (b) immunoreactivity for COX2. Representative 
examples of a primary malignant melanoma with negative (c) and strong (d) immunoreactivity for 
PPARG
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and adds a new late-stage histolpathological marker, PPARG, which may be predic-
tive for responsiveness to biomodulatory therapy in advanced metastatic MM. To our 
knowledge this is the first TMA study demonstrating that PPARG protein expression 
may be a positive prognostic marker indicating responsiveness to stroma-targeted 
therapy in the late metastatic stage (IV) of MM disease, i.e. in patients refractory to 
conventional first-line chemotherapy, mostly with dacarbacine (Fig. 22.4).

Consistent with previously published data on melanocytic skin lesions [6, 7] our 
immunohistochemical analysis of benign nevi, primary MM and MM metastases 
show that COX2 and PPARG immunoreactivity significantly increases from benign 
nevi to primary MM and MM metastases. In other organs, however, e.g. in primary 
cancers of the lung versus normal lung tissues, decreased expression levels of PPARG 
were found and associated with poor prognosis [16]. At first sight, these finding are 
in contrast to the upregulation of PPARG in primary MM and MM metastases versus 
benign nevi observed with TMA-2. But, as our data also show, this upregulation 
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Fig. 22.2 (a, b) Cumulative bar charts of COX2 (a) and PPARG (b) immunoreactivity in melano-
cytic skin tumors using TMA-2
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does not correlate with the outcome of MM patients indicating a distinct role of 
PPARG in primary MM and MM metastases. Notably, in the advanced metastatic 
stages of MM enclosed in this study, patients with PPARG-positive metastases 
versus PPARG-negative metastases show a significant survival benefit concerning 
progression-free survival (P = 0.044) not dependent on whether angiostatically 
scheduled metronomic chemotherapy (trofosfamide) was administered alone or in 
combination with pioglitazone (PPARG agonist) and rofecoxib (COX2 inhibitor) as 
additional biomodulatory therapy. Considering PPARG or COX2 as candidate  
substrates for targeted cancer therapy, it could be assumed that only patients with 
PPARG- or COX2-positive metastases and additional PPARG-agonistic or COX2-
inhibitory therapy would show a survival benefit compared with patients treated 
with metronomic chemotherapy alone. Yet, subgroup analysis with TMA-3 did not 
show a significant survival benefit for these patients. Thus, our study supports cur-
rent concepts that targeting COX2 and PPAR is more a tumor-stroma effective 
approach than an approach depending on the status of target expression of the 
tumor itself [21,22]. Possible explanations of this paradoxon are multifaceted and 
complex. There may be numerous “off-target” effects of the involved drugs, e.g. 
modulation of COX2/PPARG-independent pathways [16,18,21]. According to the 
paradigm of biomodulatory stroma targeting approaches [21,28] the effects may be 
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Fig. 22.3 Distribution of time (months) to tumor-related death among patients with primary 
malignant melanomas showing negative (0) or positive (1+ to 3+) COX2 immunoreactivity as 
estimated by the Kaplan Meier method
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COX2 (c, d). All patients received biomodulatory treatment. The calculation was performed 
according to the method of Kaplan and Meier
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indirect due to modifying the tumor stroma; i.e. the therapy mainly exploits the 
dependence of cancer tissues on functions of the stroma providing a permissive and 
supportive environment for tumor cell survival, growth, invasion and formation of 
metastases. A variety of soluble agents such as chemokines, growth factors, lipids, 
angiogenetic factors, proteinases and proteinase inhibitors are involved in a com-
plex crosstalk between tumor and stroma. Stroma targeted approaches aim to 
inhibit tumor growth and invasion by disruption of this tumor-stroma interaction. 
Interestingly, stromal cells in the tumoral microenvironment can also differ from 
their normal counterparts in the expression of biologically meaningful molecules 
[29] including also COX2 and PPARG expression. For instance, upregulation of 
these effectors could be detected in stromal myofibroblasts surrounding colon 
adenocarcinomas [30] (Fig. 22.6).

Therefore, to fully evaluate and understand the potential of COX2 and PPAR 
modulation in MM further studies using TMAs punching the surrounding stroma 
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may be interesting future work. Based on the large comprehensive amount of data 
gained in this study it seems to be promising to further develop experimental pro-
tocols that employ COX2/PPAR biomodulation. The combination of both drugs is 
a logical consequence of experimental studies indicating that COX2 and PPARG 
signalling pathways are multiply intertwined: PPARG ligands suppress COX2 
expression induced by lipopolysaccharide and phorbol myristate acetate in mac-
rophages, astrocytes and epithelial cells [16]. Moreover, expression of COX2 was 
suggested to be regulated by a negative feedback loop involving PPARG and 
NF-kB [31,32]. PPARG agonists were shown to down regulate COX2, potentiate 
the apoptotic effects of chemotherapeutic agents, and inhibit the growth of human 
melanoma cell lines in vitro [19,20]. Consistently, the randomized phase II trial by 
Reichle et al. [22] including chemorefractory patients with progressive metastatic 
stage IV melanoma disease demonstrated a significantly prolonged progression-
free survival if metronomic low-dose chemotherapy (trofosfamide) was combined 
with pioglitazone (PPARA and G agonist) and rofecoxib (COX2 inhibitor). In sum-
mary, COX inhibitors and PPAR agonists are a beneficial adjunct in biomodulatory 
therapy of MM rather independent of the presence of the targeted substrates in the 
cancer cells themselves. The expression of PPARG in the cancer, however, can 
indicate a higher probability to respond to stroma-targeted approaches also without 
drugs aiming on PPAR.

In conclusion, our study provides a late-stage prognostic marker, PPARG 
expression, which correlates with responsiveness to biomodulatory stroma-targeted 
therapy. But it should be kept in mind that the indication for such approaches can-
not be solely based on selected features of the cancer cell itself but must consider 
the complexitiy of the stroma-tumor interaction, i.e. the microenvironment, includ-
ing angiogenesis, immuno-effects and functions of the connective tissue, as well. 
Therfore, further prospective clinical trials are needed to validate the meaning of 
PPARG and COX2 targeting as a part of biomodulatory therapeutic approaches.
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Abstract How can get structured therapies in metastatic cancer a source for 
detecting tumor-associated systems-biological processes as adjustable sizes avail-
able for biomodulatory therapies?

A therapy-derived methodological approach to explore tumor-associated sys-
tems biology should be explicated and developed by means of analyses of recently 
 published biomodulatory therapy approaches introducing combined anti- inflammatory; 
angiostatic; and immunomodulatory therapy in the treatment for advanced chemore-
fractory tumors of quite different origin. Biomodulatory therapy approaches in tumors 
intend to develop systems-terms that provide a basis for broadening therapy-relevant 
capacities by regulating biological systems processes for tumor control. Combined 
targeted therapies of tumor-associated wound healing mechanisms, namely inflam-
mation and neoangiogenesis, have shown that – using an approach for understanding 
systems biology as adjustable size – we may break through the barrier of complexity of 
tumor-stroma-interactions in a therapeutically relevant way. Targeting the tumor sys-
tems’ topology of aggregated action effects (inflammation, neoangiogenesis, Warburg 
effect, immune response, extracellular matrix remodeling, cell proliferation rate, apopto-
sis, coagulation effects) may open up the perspective of individualized tumor therapy.

Keywords Combined transcriptional modulation • Metronomic chemotherapy  
• Tumor-associated inflammation • Metastatic tumors

23.1  Introduction

The present systems theoretical discussion is based on a series of published clinical 
trials on systemically pretreated metastatic tumors with different histologies [1–7]. 
The  therapy approaches applied are uniformly characterized by a poor or missing 
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 mono-activity of the respective anti-inflammatory and angiostatic acting drugs 
( peroxisome proliferator- activated receptor (PPAR) alpha/gamma agonists, 
 interferon-alpha, glucocorticoides, cyclooxygenase-2 inhibitors, metronomic low-
dose chemotherapy). These drugs were administered in different combinations in a 
wide range of tumor types. Seemingly unexpected, these therapy approaches have 
the capacity to induce objective and even long-term tumor response at a low rate of 
treatment-associated side effects. Clinically, the mechanisms of action could be 
followed in the resolution of tumor-associated disease traits and in corresponding 
laboratory parameters in the peripheral blood. This constellation of collected 
parameters now offers new insights about the object of interest, i.e. the tumor tissue 
as a networking system, which is still susceptible to concerted regulatory, and, most 
importantly, to clinically relevant therapeutic interventions.

Methodological discussions based on practical and emancipatory knowledge-
guiding interests should (1) uncover the constraints for a systems-biological con-
sideration of tumor-associated biological processes, (2) straighten out how 
systems-biological processes may be detected in tumor tissues via regulatory 
designed biomodulatory therapy strategies, (3) state what kind of scientific program 
should be discharged on the basis of systems-biological considerations, and (4) 
specify how new theorems may be constructed logically.

Structured therapy-derived observations are aimed at uncovering systems structures, 
at understanding probably still anonymous regulatory systems by regularly observable 
biomarkers, and at augmenting the therapy-relevant capacity for therapeutic biomodula-
tory interventions by a systems-biological understanding of tumor-stroma interactions.

Systems theories about the ‘inner life’ of tumors should describe rather complex 
interactions among tumor-associated phenomena that are neither classified causally nor 
randomly in such a way that they may be described statistically or generally with math-
ematical models. Tumors can be considered as open systems, in which phenomena 
such as self-organization, non-linearity, interdependence, and self-regulation (homeo-
stasis) or phenomena mediated by attractors may be observed [8,9]. Compared to the 
traditional attainment of predictions about the system’s behavior by analytical-empiric 
analyses of its structures and functions, the  obtaining of systems-biological insights by 
systematized biomodulatory therapies represents a new perspective. This method is 
completely divergent but presumably complementary to the reductionist approach that 
aims at targeting acquired and poorly predictable aberrations in tumor cells.

23.2  Problems with Therapy Strategies in Metastatic Tumors 
in a Historical Context

Advanced tumor disease is frequently associated with a reduced performance status 
of the patient. Therapy, even palliative approaches, may further transiently worsen 
the patient’s performance status. At this stage, many malignant diseases are often 
incurable, so that comprehensive palliative medicine represents the most important 
therapeutic intention.
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Practical knowledge-guiding interests. Both treatment-related and 
 disease-related comorbidity, which is characterized by multifold arising tumor-
associated disease traits, may determine the quality of life for patients. Combination 
therapies are often used for controlling advanced tumors. These therapies are 
mainly characterized by a steeply increasing toxicity caused by adding one drug to 
another at maximal   tolerable doses and, at the same time, a relatively modest 
improvement in overall  survival, if at all. This dilemma has to be faced when 
choosing  adequate treatment schedules for patients in palliation. Pharmaco-
genomic approaches may minimize toxicity in individual cases. A further individu-
alization of therapies, however, is  difficult or even impossible to achieve because of 
missing treatment-related  biomarkers that indicate response aside from traditional 
tumor markers.

Further and relatively frequent adverse effects in palliative treatment are poor 
chemosensitivity to cytotoxic drugs available for many advanced tumor types and 
the circumscribed benefit of the so-called ‘targeted therapies’ in tumors with cor-
responding target over-expression. For ultimate tumor response, more information 
and insights are necessary on how tumor-associated disease traits (e.g. inflamma-
tion, angiogenesis) may get interactively manageable – data that necessitate thera-
pies guided by biomarkers related to pathophysiologically relevant tumor-associated 
processes.

Advanced metastatic disease is often associated with a poor tolerability of the 
therapy regimen. Therefore, the question of the most important aim arises: achieve-
ment of tumor response or, alternatively, disease stabilization with presumably more 
modest side effects. Therefore, long-term administration of a less toxic biomodula-
tory regimen for long-term disease control is worth considering with respect to the 
chronification of a malignant disease. Sequentially administered pulsed therapy 
approaches may already improve palliation, for instance in colorectal cancer [10].

Emancipatory knowledge-guiding interests. Knowledge-guiding interests are 
developing and getting emancipated to the same extent as traditional treatment 
procedures are being customized or diverse interests established. Structures of 
 distorted communication may be durably institutionalized: Established treatment 
strategies refer to the conflicting interests of medical and pharmaceutical personnel, 
who aim at optimizing response rates, and of patients, who are also interested in an 
improvement of both quality of life and long-term disease control besides disease 
eradication. As shown by many studies, the administration of a combination of 
cytotoxically acting therapy elements – which is frequently guided by the simple 
availability of drugs – often shows a moderately enhanced efficacy at a simultane-
ously enhanced toxicity profile. Conventional treatment strategies are established 
on the assumption that tumor cells have to be targeted directly and have to be 
 disposed of by cytotoxic drugs or pathway inhibitors, or by immunologic, anti-
body-, or cellular-mediated attacks. Emancipatory aspects of knowledge-guiding 
interests are reflected by the fact that a drug needs to demonstrate mono-activity 
before its possible approval for clinical practice. A concerted regulatory activity of 
drugs without mono-activity of the single drug, probably at respective low dosages, 
is excluded as a matter of principle.
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23.3  Explorative Considerations

Unlike laws of nature, causal relations between initiating processes of tumor  development 
are not anchored in an invariance of nature. Therefore, molecular and cytogenetic 
aberrations at initial diagnosis are generally heterogeneous in both tumors and indi-
vidual tumor types. Invariance within the tumor process may be observed during 
tumor progression. In interaction with normal human tissue, tumor cells use processes 
according to laws of nature for building up a favorable infrastructure for proliferation. 
Presently, two major clinical interpretations seem to be continuative: (1) Tumor 
development may be described embryo-genetically, and (2) tumors may be figura-
tively conceived as ‘never healing wounds’. For the first time in 1986, Dvorak inter-
preted these laws of nature as tumor-associated ‘wound  healing’ mechanisms, for 
instance angiogenesis, inflammation, immunology, remodeling of the extracellular 
matrix, specific changes in cell metabolism and coagulation, and altered behavior in 
proliferation [10–15]. With this interpretation, Dvorak addressed the systems biology 
of tumors in a contemporary context. Up to now, a tumor’s systems biology has rarely 
presented a target for a systematic approach in cancer treatment.

Systems-immanent ‘dysbalances’. In tumors, unsolved tumor-specific problems 
concerning the control of self-regulating systems have been observed that are based on 
a dysregulation of constitutive elements such as transcription factors due to acquired 
molecular-genetic aberrations [16,17]. The constitutive dysregulation of transcrip-
tional activity is shown to be an important target for biomodulatory therapy approaches 
in metastatic cancer. The dysregulated systems biology of a tumor may commonly not 
be understood mono-causally or explained context-free. Systems biological consider-
ations target on a dysbalance between interfering functional elements in the tumor in 
such a way that conditioning and conditioned tumor-promoting elements (e.g. wound 
healing mechanisms) also behave reciprocally under therapeutic aspects.

The dysregulation of wound healing mechanisms is reflected in tumor- associated 
disease traits (e.g. tumor-associated inflammation, ECOG performance status, coagu-
lation disorders, tumor-associated auto-immunity, and metastases). On a molecular 
level, it can be observed in the dysregulation of (nuclear) transcription factors, both in 
tumor and neighboring stroma cells. In a concerted action,  transcription factors regu-
late distinct gene cascades and consecutively important cell functions for  survival. 
Their cooperative interaction is also important for the  survival of tumor cells.

23.4  Uncovering Systems-Biological Processes in Tumor 
Tissues by Biomodulatory Therapy Strategies

Generation of biomodulatory treatment strategies. Biomodulatory therapy 
approaches in tumors intend to develop systems-terms that provide a basis for 
broadening therapy-relevant capacities by regulating biological systems processes 
for tumor control. Systems-biological processes may be regulated via (nuclear) 
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transcription factors or by specifically targeting corresponding ‘wound healing 
mechanisms’ (e.g. tumor neoangiogenesis, tumor-associated inflammation and 
immunology). Epigenetic or embryo-genetic processes are additional targets to 
modulate systems-relevant mechanisms. Drugs acting as biomodulators, should 
promote the therapeutic impulse for self-organization, self-stabilization, or achieve-
ment of a new homeostasis in the tumor tissue for attenuation of tumor growth. An 
appraisal of the functional status, for example, tumor-associated wound healing 
mechanisms would be helpful in future to choose the most adequate (personalized) 
biomodulatory therapy approach.

Generation of differentially induced tumor-stroma-organizations. The 
 combined activity of regulatory and pleiotropic agents, such as the administered 
transcription modulators (dexamethasone, pioglitazone, interferon-alpha), or agents 
modulating tumor-associated inflammatory, and immunological processes with a 
close link to angiogenesis (COX-2 inhibitor, metronomic low-dose chemotherapy) 
may shape the tumor’s organization by simultaneously attenuating multiple activi-
ties involved in tumor growth. Targeting constellations of constitutive dysregulated 
tumor-stroma-interactions such as inflammation and angiogenesis should result in 
tumor control (Fig. 23.1).

This hypothesis has been supported in recently performed trials by treatment-
related characteristics (chapter 12): (1) No or poor agent activity of each adminis-
tered drug (predominantly combined regulatory activity) when given alone, (2) a 
very  moderate toxicity profile during long-term drug administration (presumably 
no dose-response relationship), (3) very delayed objective responses (stable shap-
ing and focusing of the tumor systems organization), (4) improved overall survival 
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without an increase of the response rate (biomodulatory activity), (5) significant 
modulation of tumor-associated disease traits such as inflammation, ECOG status, 
and paraneoplastic syndromes (biomodulation-derived biomarkers), (6) activity 
depending on the metastatic organ site (tumor-stroma-specifity as expected from the 
known differential behavior of the various cell types within the tumor compartment, 
and the varying stroma cell compositions at the different metastatic sites), and (7) 
predominant site of progression at the original localization of the metastases (hints 
for impact on metastatic processes) [1–7].

The fundamental potency and specifity of co-regulatory activities of nuclear 
receptor modulators may be exemplarily shown by the action of PPAR ligands 
[18–20]: In prospectively designed clinical trials, dual PPAR-alpha and gamma 
agonists have the capacity to lower the incidence of cardiovascular events in 
patients with diabetes mellitus. On the other hand, retrospectively performed analyses 
of a specific PPAR-gamma agonist reveal an increased incidence of cardiovascular 
events in the same group of patients. This means that, in the first case, side effects 
based on a strong anti-inflammatory activity may accomplish the therapeutic reper-
toire of treating diabetes on a systems-biological level – besides the originally 
intended effect of lower serum glucose levels. In the other case, serum glucose 
levels are also lowered but disease-related inflammation is obviously not  controlled. 
Thus, the observation of side effects – even unexpected ones – becomes highly 
important when co-regulatory activities of modulators of transcription factors are 
used therapeutically. Co-regulatory activities are generally important for treating 
complex disease traits: The impressive amplified anti-inflammatory activity of 
PPAR-alpha/gamma agonists combined with glucocorticoides has been shown 
 preclinically. Thus, this therapy may become successfully implemented in the treatment 
of hormone-refractory prostate cancer as both anti-inflammatory and anti-osteoplastic 
treatment [21].

Targeting multiple disease traits (Fig. 23.1). As demonstrated in multiple 
clinical trials including angiogenesis inhibitors or anti-inflammatory drugs, the 
targeting of single wound healing mechanisms may result in tumor response. In 
recent trials, we have extended these experiences to anti-inflammatory therapy: (1) 
Anti-inflammatory therapy adds further benefits to angiostatic therapy, and (2) the 
intensity of an anti-inflammatory approach may have significant impact on 
 outcome. Based on these systems-biological observations, we now postulate tumor-
associated inflammation as both a pathophysiologically important element and as a 
therapeutic target, but without presupposing causal relationships between inflam-
mation and tumor progression. The combined targeting of wound healing mecha-
nisms may even induce objective response including complete remission and 
continuous complete remission. Successful combined targeting of ‘wound healing’ 
processes with transcriptional regulators in tumor and adjacent stroma cells reveals 
preserved regulatory elements in individual tumor types [1–7].

Combination of approved drugs. In contrast to ‘causal’ therapy approaches that 
aim at blocking aberrant tumor-associated pathways by a restricted repertoire of 
highly specific drugs, multiple potential modulators (activators and deactivators)  
of transcriptional processes or of wound healing processes are available for 
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 biomodulatory therapy approaches (chapter 24). The introduction of approaches 
targeting  systems-relevant processes is not exclusively dependent on the  development 
of new drugs. Established medications may be used for unintended purposes. The 
main therapeutic focus is implementing single drugs in such a way that a concerted 
 biomodulatory activity may arise in the context of a systems-biological approach. 
Consequently, mono-activity of a single drug is no prerequisite for inclusion in a 
combined therapy approach. Drugs with biomodulatory activity (e.g. lenalidomide, 
bevacizumab) could even be used again in second-line, and then within a systems-
biological therapeutic approach (trials are being conducted) [22,23].

23.5  Program of a Scientific Theory

Conventional therapy methods frequently neglect the complexity of the tumor 
 compartment. They mainly target the molecular-genetically highly variable tumor 
cell, whose variability is explained by the complexity of tumor development. By 
blocking a pathological signaling pathway with a small molecule or antibody, the 
whole tumor system should be destroyed, synonymously with the virtual assump-
tion that tumor development could result from a single causative principle. Lessons 
we have learnt from reductionist therapy strategies in relatively rare tumor entities 
such as chronic myelocytic leukemia, gastrointestinal stroma tumors (tyrosine 
kinase inhibitors), promyelocytic leukemia (all-trans retinoic acid) or Flt3 positive 
acute myelocytic leukemias are obviously not conferrable to most of the other 
advanced tumor types.

Induction of complete remission is a frequent prerequisite of reductionist 
 therapy approaches aimed to improve overall survival. If responses are not achiev-
able with such reductionist methods, therapies have to meet criteria of systems- 
biological processes to gain fundamental changes in the biology of metastatic 
 diseases aimed to improve survival via disease chronification.

When gathering the first clinical results on systems-biological treatment 
approaches in metastatic cancer, criticism against the exclusive preference of reduc-
tionist therapy approaches may be reworded: Successful biomodulatory therapy 
approaches in different metastatic tumor types contradict the paradigm that, for the 
most part, only drug-mediated blockades of more or less tumor-specific aberrant 
pathways may induce tumor response; a paradigm that is supported by an over-
whelming number of clinical data.

1.   A lead back to a final first principle that may be therapeutically targeted to 
 eradicate metastatic cancer is generally not permitted, in particular in knowl-
edge of the multi-faceted activity profile of biomodulatory agents. However, 
instead of such a lead back to a first principle, we have to deal with multiple and 
various element constellations, one of which, for example, is tumor-associated 
inflammation. The constellation of elements has to be broken down to its single 
moments; but – simultaneously – we have to understand the relationship between 
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one another rather than separately adding one to another and thereby neglecting 
their importance within the complex constellation. The principle therapeutic 
 difficulty is based on this point. Systems-oriented therapies provide tools to 
cope with these basic problems.

2.   Elements in motion (e.g. angiogenesis, inflammation, etc) are met in the  
circle of functions triggered by the biomodulatory therapeutic activities  
chosen. Thus, stability in systems biology is presumed to be dynamic (chapter 26). 
Biomodulatory therapies have the continuing ability to get adapted to  interacting 
tumor-associated  elements for achieving therapeutic response (individualized 
therapy). Biomarkers (e.g. secretome parameters) are indicating efficacious 
modulation of single  disease traits. Therefore, in the immediate present and 
future, biomodulatory therapy approaches of metastatic tumors could be method-
ological tools of individualized tumor therapy: Close monitoring would further 
allow us to choose other modulator combinations to facilitate objective tumor 
response in case of weak interactivity. For example, a broad variety of drugs is 
currently available to control tumor-associated inflammation or neoangiogen-
esis. On the basis of  biomarkers, success and failure of a biomodulatory 
approach may be calculated for individual patients.

Biomodulation in metastatic tumors provides a tool for recognizing patterns in 
therapy-associated events via biomodulation-derived biomarkers (chapter 20, 21). 
Thereby, it enables the shaping of the tumor systems organization and the uncover-
ing of endogenous sources such as transcription factors and their cross-talks for 
managing growth behavior by counterbalancing tumor systems biology.

Counterbalancing these transcriptional dysregulations by biomodulatory therapies 
– either directly by modulators of transcription factors (e.g. NFkappa-B modulators, 
PPAR agonists/antagonists, glucocorticoides, interferon-alpha) or indirectly by 
targeting wound healing mechanisms (e.g. anti-angiogenic, anti-inflammatory 
approaches) or epigenetic changes – may resolve tumor-associated disease traits 
and thereby control tumor growth. In future, network relationships will need to 
be elaborated in more detail.

From a therapeutic point of view, the systems-biological model does not specify 
whether a wound healing mechanism has to be suppressed or stimulated to achieve 
tumor control: Inflammation control as well as stimulation of inflammation may 
control tumor growth, immuno-suppression, and immune-stimulation [1–7,24]. 
Probably contradictory decisions could be associated with the same capacity to 
achieve tumor control in a distinct tumor type. Thus, the question arising is which 
therapeutic approach is easier to put into practice, is probably more compatible with 
other therapy approaches, and is the most tolerable one with regard to side effects.

Systems theoretical considerations derived from biomodulatory therapy 
approaches may provide an additional platform to discuss new treatment strategies. 
This applies in particular to advanced tumors, for which no routinely recommend-
able therapies exist in the metastatic stage because of known poor chemosensitivity 
or significant therapy-associated toxicity. Particularly in these multi-drug resistant 
tumor types, systems-biological considerations may align therapeutic options to 
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tumor development at the respective organ site, which means that its biological 
 history may implicate therapeutic calculations. As shown in recently published 
 trials, inflammation as well as special stroma compositions at different organ sites 
(e.g. osteoplastic metastasis in prostate cancer) may be specifically targeted by 
combined biomodulatory approaches [1–7].

23.6  Constitution of a New Kind of Consideration  
About Objects of Interest

The construction of therapy-directed systems terms about malignant processes 
(tumor-stroma-interactions) should be developed combining different scientific 
empiric/analytic as well as hermeneutic approaches. Therefore, it is necessary to 
discuss the logic construction of developed theorems, the relation of systems theory 
to biomodulatory therapy approaches, criteria for checking systems behavior and 
creating predictions, as well as checking procedures. The constitution of the new kind 
of consideration about the objects of interest – a therapy-related systems theory – is 
different from the exclusive analytic/empiric systems term that derives from results 
generated by functional genomics/proteomics in tumor systems biology.

Logic construction of theorems. A tumor’s systems biology should not be 
interpreted out of its context. The requirements of application (therapy schedule, 
tumor type) and the number of surrogate markers (secretome parameters derived 
from stroma and/or tumor cells and results from molecular imaging) define the way 
the interpretation is conducted. Additionally, they define the hermeneutic under-
standing of extremely complex cellular interactions corresponding to the chosen 
picture, i.e. the wound healing mechanisms, and enable insights into more abstract 
evolutionary processes. In the present case, this means the following: Naturally, the 
administered drugs – particularly the transcriptional active modulators – still have 
insufficiently illuminated spectrums of activities, which may be even dependent on 
the cell type. General interpretations of the systems biology do not obey the same 
categories of refutation as general theories and remain per se open for discussion. 
The discourse serves to provide explanatory statements of problematic scopes of 
opinions and norms. The logic of explaining tumor systems biology is the result of 
a connection between a hermeneutic understanding of tumor growth, for instance 
as wound healing mechanisms, and the causal explanation (e.g. co-regulatory 
 activity of transcription factors, targeting of wound healing mechanisms). 
Methodologically, the reductionist approach, restricted in terms of a limited inter-
pretation of tumor-associated phenomena, is closely integrated in systems- 
biological approaches that are open for the detection of new networking interactions 
(experimental part). Thereby, the context of discovery (modulation of tumor- 
associated disease traits, biomarkers) has to be consistently separated from the 
context of justification (rational for a biomodulatory therapy approach).

Relation systems theory of tumors to biomodulatory therapy. Statements 
about phenomena linked to cellular functions or regularly observed intercellular events 
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that constitute the systems biology of tumors may be retranslated in (1) therapies 
with a rational and pragmatic purpose – that means in differential biomodulatory 
treatment strategies – but also in (2) a new hermeneutic understanding  of 
empirically and analytically collected results (evolutionary tumor-associated 
processes) or (3) may discharge into specific analytical approaches.

Published phase II trials on combined targeted therapy of tumor-associated 
wound healing mechanisms, for instance inflammation and neoangiogenesis, have 
shown that – using an approach for understanding systems biology as adjustable 
size – we may break through the barrier of complexity of tumor-stroma-interactions 
in a therapeutically relevant way. For a targeted modulation, elements such as 
inflammation and neoangiogenesis are available, which are dysregulated on the 
basis of acquired chromosomal aberrations. Biomodulation of systems-biological 
processes facilitate comparatively high efficacy at moderate toxicity [1–7].

Criteria for checking systems behavior and creating predictions. The focus 
on the systems biology of a tumor as the original target of a cancer therapy neces-
sitates biomarkers that indicate stable response in the field of tumor-associated 
disease traits (secretome analytics, and molecular imaging) or tumor-associated 
phenomena such as inflammation, angiogenesis, coagulation, and metabolism.

Efficacious biomodulation. Rather than the primary or ‘classic’ markers for 
tumor response including tumor shrinkage or decrease of tumor markers, this new 
group of markers (molecular imaging, cellular secretomes) reflects efficacious 
 biomodulation. However, we are aware of the limitation that some of these tumor-
associated phenomena – which mirror tumor biomodulation – are sometimes dif-
ficult to follow on a systemic level. They can not be uniformly interpreted across 
tumor entities as demonstrated in our example of castration-resistent prostate can-
cer (CRPC) in comparison to other tumors, when inflammation seems to be differ-
ently integrated in the pathophysiology of a tumor: Prostate-specific antigen (PSA) 
decline was paralleled but not preceded by a C-reactive protein (CRP) decline in 
CRPC, whereas, in other tumor types including RCCC, decrease of CRP or ECOG 
performance improvement preceded tumor response [1–7].

The more pronounced the dysregulation of transcription factors in tumor and 
adjacent stroma cells compared to normal tissue, the more specific a biomodulatory 
therapy approach could be selected. An open question might be the frequency of 
escape phenomena of the tumor tissue during biomodulatory therapies and how to 
overcome these mechanisms. At least, recently published data have shown that rela-
tively favorable, progression-free survival rates in patients responding to the new 
therapy concepts are not at the cost of enhanced rates of rapid progression.

Checking procedures. Traditional checking levels, tumor shrinkage (computed 
tomography, tumor markers), and side effects may be expanded by systems-relevant 
biomarkers, which may be related to objective tumor response. Biomarkers may be 
followed locally by metabolic or vascular imaging techniques or systemically in 
parameters of the peripheral blood. For example, CRP has been shown to be very 
useful for detecting sufficient control of tumor-associated inflammation.

Safety aspects. The therapeutic index is a measure for the safety of a drug or a 
drug combination and indicates the margin between therapeutic and toxic doses: the 
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bigger the margin, the less dangerous the drug(s). The application of the therapeutic 
index on biomodulatory therapy approaches is limited. As shown in multiple 
clinical  trials, biomodulatory therapies may work on a low toxicity level, as 
 biomodulatory dosages of single drugs are not identical with maximal tolerable 
doses. However, because of the concerted activity of the chosen drugs, these ther-
apy approaches have to be checked for unexpected side effects. Reduced toxicity 
should be achieved by utilizing the co-regulatory activities of transcriptional modu-
lators. Co-regulatory activities may simultaneously specify both the desired thera-
peutic effect and side effects (PPAR agonists!), and may even save up dose of single 
drugs (glucocorticoide dose in combination with glitazones) [21].

23.7  Discussion

Practical and emancipatory interests in therapies integrated in the coherence of 
 science bring together the constitution of new objects of interest, therapy-derived 
systems biology, and their pragmatic application, here in form of biomodulatory 
therapy approaches. These interests led to a methodological approach aimed at 
uncovering systems-biological processes by differentially administered biomodula-
tory drugs for the control of tumor growth. Biomodulatory derived changes in the 
tumor may demerge individually moving processes within the tumor tissue into 
more easily elusive constellations, for example wound healing mechanisms. 
Therefore, these therapy approaches point at a way from bedside to bench: 
Detectable constellations in tumors may be integrated in systems-biological models 
to modify and specify tumor-associated constellations and phenomena by 
 biomodulatory approaches, even to adapt therapies to individual constellations 
[25,26]. On the other hand, constellations may be consecutively analyzed analyti-
cally or empirically at the bench and may be retranslated into new (hermeneutic) 
systems interpretations. Thus, the methodology may partially reverse the traditional 
information flow, which is affected by the predominant transfer from analytical 
sciences to applied sciences.

A striking difference is visible in the pragmatic function, which generated data 
in different scientific areas. Here, we can combine therapeutically derived informa-
tion on systems biology to establish systems-biological models. Information may 
be generated on three levels: Biomodulatory processes (systems-associated prog-
nostic markers), processes indicating tumor response (traditionally tumor shrink-
age, now molecular imaging, cellular secretomes), and side effects on the level of 
the whole organism [25–28].

The claim for objectivity on systems-biological processes studied via biomodu-
latory therapy approaches is based on a possible virtualization of the engagement 
to get experiences or decisions. The virtualization is enabled by a communicative 
evaluation of hypothetical requirements for the validity of a systems-biological 
model and hereby allows the generation of provable knowledge. These new meth-
odological approaches for studying systems biology by a therapy-guided method 
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may be an important supplementation of the established analytical/empirical 
 studies on functional genomics in systems biology [29].

Studies are being conducted to investigate whether the two divergent therapy 
approaches are compatible: systems-directed biomodulatory therapies targeting 
constellations of constitutive dysregulated tumor-stroma interactions to achieve 
self-control (‘communication design’) combined with reductionist approaches and 
pathway/signaling-blocking treatments that virtually lead back tumor development 
to a first causal principle.
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Abstract In the treatment of chemorefractory and metastatic cancer new  concepts 
such as stroma-targeted and antiangiogenetic strategies emerge as powerful alter-
natives to conventional regimes. In this context, several well established drugs 
such as IMiDs, COX 2 inhibitors, mTOR antagonists, and PPARg agonists attract 
increasing attention. Beyond their primary field of indication, these drugs have 
demonstrated broad anti-tumoral activity such as induction of apoptosis and 
inhibition of tumor cell proliferation. In addition, by interrupting the tumor-stroma 
 interaction, these agents also reveal antiangiogenetic and immuno-modulating 
effects. Compared to conventional high dose chemotherapy, stroma-targeted 
 strategies are thought to be less susceptible to the development of drug resistance 
and to cause less  toxicity. Taking into account that combinatorial use and repur-
posing of biomodulating drugs might potentiate the antineoplastic effects without 
causing life threatening toxicities, targeting the tumor stroma is judged to be a 
promising approach in tumor palliation.

Keywords IMiDs • COX 2 inhibitors • mTOR antagonists • PPARg agonists  
• Indication discovery • Repurposing of drugs
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24.1  Introduction

The treatment of chemorefractoy and metastatic cancer remains to be a great 
 challenge in oncology. With the aim of killing as many malignant cells as possible, 
high-dose chemotherapy schedules have been designed. As chemotherapeutic 
agents disrupt DNA replication and cause DNA damage in rapidly dividing 
cells, all tissues with a high proliferation rate are affected by these agents, resulting 
in severe and dose limiting side effects such as damage to the intestinal mucosa, 

COX Cyclooxygenase
FKBP-12 FK 506 binding protein 12
HIF Hypoxia inducibe factors
HUVEC Human umbilical vein endothelial cells
IGFR Insulin-like growth factor receptor
IL Interleukin
IMiDs Immunmodulatory drugs
MMP Matrix metalloproteinase
mTOR Mammalian target of rapamycin
NFkB Nuclear factor kappa B
ICAM intercellular adhesion molecule
NK-cells Natural killer cells
NSAID Non steroidal anti-inflammatory drugs
NSCLC Non small cell lung cancer
PAI-1 Plasminogen activator inhibitor
PCNA Proliferating cell nuclear antigen
PDGF Platelet derived growth factor
PGE

2
Prostaglandin E2

PI3K Phosphatidyl-inositol 3 kinase
PPAR Peroxisome proliferator-activated receptor
PTEN Phosphatase and tensin homologue deleted on 

chromosom ten
RNA Ribonucleic acid
RXR Retinoid X receptor
TDZ Thiazolidinediones
TGFb Transforming growth factor b
TIMP Tissue inhibitor of MMP
TNFa Tumor necrosis factor a
TSC 1/2 Tuberous sclerosis complex 1/2
TSP Thrombospondin
TXA Thromboxane A
VEGF Vascular endothelial growth factor
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myelosuppression and hair loss. For this reason, prolonged breaks between 
 successive cycles of therapy are required to allow the normal tissue to recover.

The initial response to chemotherapy often is rather impressive but mostly short-
lived. Due to their genetic instability, tumors that initially responded to chemother-
apy become drug resistant and the patients experience a relapse. Several strategies 
such as multidrug combination, escalating the maximal tolerated dose and impairing 
side effects by supportive treatment have been established to overcome this drug 
resistance [1]. However, progress has been modest concerning quality  of life and 
survival in many tumor entities. Therefore, scientists and clinicians have sought for 
new strategies of cancer treatment to overcome these limitations.

Interestingly, in recent years several well established drugs, originally developed 
for the treatment of non-oncologic diseases, such as IMiDs, COX 2 inhibitors, 
mTOR antagonists and PPARg agonists revealed anticancer potential. Beside direct 
anticancer activities like induction of apoptosis, cell cycle arrest and inhibition of 
tumor cell proliferation, these biomodulators also are able to modify the interaction 
between tumor and stroma cells. The understanding is growing that cancer cells alter 
the stroma host compartment in many ways to establish a favorable environment for 
survival and cell growth and to foster invasion and metastasis. The cross-talk 
between tumor and stroma is mediated by a variety of soluble agents such as cytok-
ines, growth factors and extracellular matrix proteins as well as by direct cell-cell 
contact [2]. The aim of stroma-targeted therapy is to disrupt the tumor-stroma inter-
action. The targets of this innovative concept are not the tumor cells themselves but 
peritumoral stroma cells such as fibroblasts, endothelia and inflammatory cells. One 
major advantage of this kind of therapy is the suggested genetic stability of stroma 
cells. Thus, stroma targeted approaches are judged to be less susceptible to the devel-
opment of drug resistance [3]. Furthermore, tumor associated stroma cells were 
shown to express different surface molecules than cancer cells. For this reason, a 
selective intervention could be feasible. Since the required drug concentrations for 
stroma targeted therapy are usually lower than for conventional chemotherapy, side 
effects are expected to be less severe and quality of life can therefore be improved. 
For this reason, stroma targeted therapy is a promising approach in tumor therapy. 
However, the primary aim of this kind of therapy is stabilisation of disease and 
prolongation of progression free survival rather than tumor remission.

One very important component of the tumor stroma is the endothelial cell of 
tumor vessels. As the size limit for sufficient oxygen diffusion is 100–200 mm, 
tumors cannot grow beyond this critical size or metastasize without proficient blood 
supply. For this reason, tumor cells alter the balance between pro- and antiangioge-
netic factors and recruit their own blood vessels by angiogenesis [4]. This “angio-
genetic switch” can be triggered by metabolic or mechanical stress, immune and 
inflammatory response as well as by genetic mutations. Due to different mecha-
nisms involved in tumor angiogenesis, the architecture of healthy vessels differ 
fundamentally from that found in the tumor vessels, which often are heterogeneous, 
irregular and leaky. The tumor endothelial cells are disorganized and express imbal-
anced surface molecules [5]. These structural differences open the gate for a 
 selective antiangiogenetic tumor therapy.
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This chapter will focus on the mechanisms of the anticancer and stroma- targeting 
activities of thalidomide, COX 2 inhibitors, mTOR antagonists and PPARg agonists 
as well as the results of clinical trials.

24.2  IMiDs

24.2.1  History of Thalidomide

The glutamic acid derivative thalidomide was first synthesized in 1954 and revealed 
to be an effective sedative and sleep-inducing agent. Due to its anti-emetic effects, 
it was also used for the treatment of morning sickness in pregnant women. In 1961 
thalidomide had to be withdrawn from the market because of severe congenital 
limb defects which were associated with the use during pregnancy [6]. Although 
this agent had written an inglorious chapter in the history of medicine, thalidomide 
is now being re-evaluated for its antiangiogenic effect and potential use in the treat-
ment of various diseases including AIDS and cancer [7]. Being an effective thera-
peutic agent in the treatment of various inflammatory and dermatologic conditions, 
thalidomide was recommended by the World Health Organization for the therapy 
of lepromatous leprosis and was approved for sale in the USA in 1998 [6]. With the 
intent of reducing the teratogenic risk, the use of thalidomide is restricted by the 
mandatory System of Thalidomide Education and prescribing Safety program, 
making thalidomide to the most restrictively prescribed agent ever approved. In the 
meantime, synthetic thalidomide analogues possessing more potent immunoregula-
tory properties while lacking the side effect profile of the first generation drug have 
been designed [8]. Substances such as CC-4047 (actimide) und Revlemid are 
among these new IMiDs (immunomodulatory drugs) [9].

24.2.2  IMiDs in Cancer

Several experimental and clinical studies investigating the anticancer effect of IMiDs 
are ongoing or already finished (Fig. 24.1). A novel sugar-substituted thalidomide 
derivative, STA-35, was potent in inhibiting HL-60 cell proliferation in vitro and 
induced apoptosis by the suppression of NF-kB activation [10]. In addition to these 
direct anticancer effects, the antineoplastic activity of thalidomide and its analogues 
is based on immunomodulating and antiangiogenetic mechanisms as well as epigenetic 
modelling. Thalidomide was shown to inhibit TNFa production by increased 
degradation of TNFa mRNA [11] and to reduce the density of cell surface molecules 
involved in the adhesion cascade such as ICAM-1, VCAM and E-selectin [12]. Also 
an enhancement of TH-1 type immune activity as well as an augmentation of NK 
cell cytotoxicity were detected [6]. Furthermore, IMiDs impaired the metastatic 
capacity of murine colorectal cancer cell lines both in vitro and in vivo [13].

The tumor associated angiogenesis can be blocked by IMiDs via different 
 pathways. Lenalidomide had inhibitory effects on the associations between 
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cadherin 5, beta-catenin and CD31 and adherens junction proteins whose interac-
tion is critical for endothelial cell cord formation. Furthermore, inhibition of 
hypoxia-induced  processes and of VEGF-induced PI3K-Akt pathway signaling 
could be detected [14]. Thalidomide inhibited vasculogenic mimicry channel and 
mosaic vessel formation in melanoma through the regulation of vasculogenic fac-
tors. The reduction of VEGF, NF-kB, PCNA, MMP-2, MMP-9 protein expression 
and MMP-2, MMP-9 mRNA levels was described [14]. In addition, IMiDs might 
diminish circulating endothelial progenitor cells and affect endothelial cell migra-
tion capacity. The knowledge about antineoplastic effects of IMiDs is not limited 
to the results of preclinical studies. In a clinical trial, 18 men suffering from high-
risk prostate cancer were given thalidomide at doses escalated to 600 mg for 12 
weeks, followed by radical prostatectomy. Tissue microarray analyses indicated 
modulation of vascular marker expression accompanied by a reduction in microves-
sel density in the treated group [15].

24.2.3  IMiDs in Clinical Trials

Evidence is growing that single agent lenalinomide is effective and well tolerated in 
relapsed, refractory multiple myeloma [16,17]. Also the anticancer activity of 
 dexamethasone can be improved in advanced multiple myeloma patients. With a 
60.2% response rate compared to 24% in the placebo group, lenalinomide plus 
 dexamethasone was shown to be more effective than high-dose dexamethasone 
alone [18]. In addition, in patients with newly diagnosed myeloma combining lenali-
nomide with low-dose dexamethasone was associated with lower toxicity and better 
overall survival compared to the combination of lenalinomide and high-dose 

Angiogenesis ↓

Thalidomide

TNFα, IL-1β, IL-6, IL-12 ↓

IL-10 ↑

NK cell cytotoxicity ↑

TH-1 Immunoactivity

↓

VEGF ↓, bFGF ↓, IL-6 ↓

Surface adhesion molecules ↓

Circulating progenitor cells ↓

Endothelial cell migration
capacity ↓

Apoptosis ↑

Cell proliferation ↓

Immunomodulation

Tumour

Fig. 24.1 Thalidomide, mechanisms of action: Antitumoral and stroma-targeted effects of tha-
lidomide VEGF = vascular endothelial growth factors, bFGF = basic fibroblast growth factor, 
IL = interleukin, TNF = tumour necrosis factor (From [141; Fig. 12.4, p. 231]. With kind permis-
sion of Springer Science and Business Media)
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 dexamethasone [19]. The efficiency of thalidomide and its analogues in treatment of 
patients suffering from other malignancies including melanoma [20–22], glioma and 
pancreatic cancer has already been shown in clinical trials [23–27]. After 12 month 
of treatment with thalidomide, two out of three patients with Kaposi sarcoma 
showed a complete response [28]. In another clinical trial, the effects of a therapy 
with oral thalidomide appeared to be comparable with those of a single agent intravenous 
chemotherapy in women with advanced ovarian cancer [29]. However, in a large 
randomized double-blind placebo-controlled trial of thalidomide in combination with 
gemcitabine and carboplatin in advanced non-small-cell lung cancer, no improvement 
in overall survival but an increased risk of thrombotic events could be detected [30]. 
Similar results were obtained in a study combining thalidomide and chemotherapy 
in patients with small cell lung cancer [31].

24.3  COX 2 Inhibitors

24.3.1  Cyclooxygenase – Isoforms and Function

The cyclooxygenase (COX) is a key enzyme in the conversion of arachidonic acid to 
prostaglandins. COX 1, the constitutively expressed isoform, is involved in the regu-
lation of several housekeeping processes such as induction of platelet aggregation and 
gastrointestinal cytoprotection [32]. While COX 1 can be found in almost all tissues, 
the expression of the early response gene COX 2 can be rapidly induced by a variety 
of inflammatory processes including cancer. Under physiological conditions, COX 2 
is constitutively expressed in selected tissues like ovarian follicles and seminal vesi-
cles [33]. In the kidney, COX 2 plays a crucial role in the regulation of sodium 
 balance and the maintenance of the perfusion under stress. In addition, COX 2 is 
important for body temperature control and establishment of pain sensation in the 
central nervous system. COX 2 expression was also detected in a variety of malignan-
cies including pancreatic, gastric, cervical, breast and prostate cancer [32].

The identification of the two COX isoforms opened the gate for the development 
of selective COX 2 inhibitors. These new drugs were supposed to reveal similar 
anti-inflammatory, antipyretic and analgesic activity as unselective NSAIDs with-
out causing gastrointestinal side effects [34]. As a long term application of 
Rofecoxib was associated with an increased cardiovascular risk, this substance had 
to be withdrawn from the market and the indications for other selective COX 2 
inhibitors have been restricted.

24.3.2  COX 2 in Cancer

COX 2 is involved in carcinogenesis (Fig. 24.2), promotes tumor cell invasion, 
metastasis and angiogenesis via different pathways and facilitates escape from the 
host surveillance mechanisms. In a variety of cancers, COX 2 overexpression could 
be detected. In several preclinical studies, COX 2 inhibitors were potent in inhibiting 
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tumor cell growth in vivo and in vitro. Via increasing the level of proapoptotic 
BAD and decreasing Bcl-xl concentration as well as reduction of the Bcl-2/Bax 
ratio [35,36], activation of caspase 3, 7, 8 and 9 [36–39] and activation of the 
mitochondrial pathway of apoptosis by decrease in mitochondrial membrane potential 
[40], COX 2 inhibitors are able to trigger programmed cell death in cancer cells.

In addition, COX 2 inhibitors induced cell cycle arrest by decreased expression of 
cyclin A, B1 and D1 as well as CDK1 and induction of the CDK inhibitors p21 and 
p27 [41–43]. Interestingly, in a study using low COX 2 expressing and high COX 2 
expressing gastric carcinoma cells, the growth inhibitory effect by decreasing bcl-2 
expression was COX 2 dependent and the increase of p21(WAF1) and p27(KIP1) 
appeared to be independent of COX 2. Furthermore, the antiproliferative effects of 
celecoxib were comparable in cells with stable transfections of small interfering RNA 
(siRNA) against COX 2 and negative control vector cells [44]. As similar results were 
obtained in several studies using cell lines with low COX 2 baseline expression, in 
COX 2 deficient cell lines or after silencing COX 2 by  antisense depletion, the anti-
tumoral activity of COX 2 inhibitors was judged to  follow COX 2 independent path-
ways [43,45–47]. Schiffmann et al. tested the effects of different COX 2 inhibitors as 
well as methylcelecoxib (DMC), a close structural analogue of celecoxib lacking 
COX 2-inhibitory activity, in COX 2  overexpressing and COX 2 deficient cell lines. 
Interestingly, only celecoxib and methylcelecoxib decreased cell survival by induc-
tion of apoptosis and cell cycle arrest and reduced the growth of tumor xenografts in 
nude mice. For this reason the researchers postulated that the anticancer efficiency of 
celecoxib seems to be no class effect of coxibs [48].

Promoting endothelial cell migration by increased TXA
2
 levels, stimulating the 

production of angiogenetic factors such as VEGF, PDGF, bFGF and TGFb, and 

COX 2-
inhibitors

Cancerogene ↓

Angiogenesis ↓ Invasion capacity ↓

Cell cycle arrest

Immunomodulation

cyclin A, B and D1 ↓
p21 and p27 ↑

Apoptosis ↑

Endothelial cell
proliferation and
migration ↓

Response to 
proangiogenetic
factors ↓ 

Tube formation ↓

Microvessle density ↓

MMPs ↓

Thrombospondin-1 ↑

T-cell proliferation ↑
Antigen presentation ↑
NK-activity ↑

BAX ↑, BAD ↑, Bcl-2 ↓, Bcl-xl ↓

Death receptor 5 pathway

Mitochondrial membran
potential ↓ 

Production of mutagens
and free radicals ↓

Fig. 24.2 Antitumoral and stroma-targeted effects of COX 2 inhibitors NK = natural killer cells, 
MMPs = matrix-metalloproteinases (From [141; Fig. 12.2, p. 225]. With kind permission of 
Springer Science and Business Media)
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triggering tube formation, COX 2 plays an important role in the tumor associated angio-
genesis [33]. These pathways can be blocked by application of selective COX 2 inhibi-
tors. In an orthotopic implantation tumor model of colon cancer, celecoxib enhanced 
tumor cell apoptosis and inhibited tumor growth and angiogenesis by inhibiting COX 2, 
PGE

2
 synthesis, and VEGF and MMP-2 mRNA expression in tumor tissue [49]. In sev-

eral preclinical and clinical studies a reduction of microvascular density as well as 
decreased VEGF concentrations are described [50–52]. In a clinical trial treating 45 
patients with prostate cancer with oral celecoxib for four weeks prior to radical prostate-
ctomy, a decrease in tumor cell proliferation, microvessel density, angiogenesis and HIF-1 
but an enhancement in apoptosis could be observed [49]. As in healthy endothelial cells 
only COX 1 can be found, while cancer associated endothelial cells often express both 
isoforms [53], a  selective destruction of the tumor vasculature seems to be possible.

Angiogenesis is not the only target in the tumor-stroma interaction that is affected 
by COX 2 inhibitors. Liu et al. detected a reduction of lymphatic vessels and lymph 
node metastasis in lung adenocarcinoma [54]. In a Lewis lung carcinoma animal 
model, oral administration of high dose celecoxib significantly inhibited tumor 
growth as compared to a low dose treatment. In combination with radiotherapy, high 
dose celecoxib reduced the number of pulmonary metastases and delayed tumor 
growth to a greater extent than celecoxib or radiotherapy alone [55].

Blocking COX 2 function can enhance the function of immune cells in the 
stroma. PGE

2
 impacts T-cell proliferation and antigen presentation allowing the 

tumor to escape host surveillance mechanisms [56]. In addition, tumor induced 
IL-10 production and activation of T-regulatory cells attenuate antitumor immune 
response [57,58]. As a consequence, the specific blockade of COX 2 triggers 
 recognition and lysis of metastatic tumor cells by modulation of NK activity [59] 
and alters the balance of IL-10 and IL-12 [60].

Results of several studies implicate the importance of COX 2 inhibitors not only 
in treatment of malignancies but also in cancer chemoprevention. The evidence is 
compelling that NSAIDs as well as selective COX 2 inhibitors have strong potential 
for the chemoprevention of different tumor entities including colon, breast, lung 
and prostate cancer [61]. Also in bladder cancer a protective role of rofecoxib and 
celecoxib against tumor growth was detected [62,63].

In the meantime the results of several clinical studies using COX 2 inhibitors as 
single agent or in combination with other biomodulating or cytotoxic drugs are 
available [64–72]. As in a randomised phase II study 75% of the patients who 
received celecoxib but only 31% of the placebo patients showed clinical response, 
celecoxib seemed to have activity in the treatment of high grade cervical dysplasia 
[73]. Celecoxib as a single agent showed efficiency in the treatment of tumor 
cachexia [74]. Combining celecoxib with chemotherapeutic agents showed encour-
aging results in preclinical studies.

Celecoxib potentiated the antiproliferative effect of cisplatin on vulva cancer 
cells in vitro [75], and in a xenograft model of colon cancer celecoxib enhanced the 
antitumor effects of oxaliplatin [76].

However, in a clinical study the combination of celecoxib and doxetaxel, paclitaxel 
or carboplatin did not improve the response rate in patients with NSCLC [77,78].
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24.4  mTOR Antagonists

24.4.1  The mTOR Receptor

The atypical serine-threonine kinase mTOR (mammalian target of rapamycin) is a 
master switch between anabolic and catabolic metabolism and plays a crucial role in 
the regulation of cell proliferation, differentiation, migration and survival [79]. Growth 
factor signaling is transmitted via the IGFR-PI3K-AKT-mTOR cascade. While mTOR 
function can be activated by growth factors, amino acids, ATP and glucose, the tumor 
suppressor proteins TSC1/2 and PTEN are able to inhibit mTOR activity. Because 
mutations of the tumor suppressor gene PTEN can be frequently found in malignan-
cies, enhanced mTOR signaling can lead to uncontrolled cell proliferation. These cells 
are also hypersensitive to growth inhibition by blocking mTOR function. As a conse-
quence, targeting mTOR could be a promising strategy in tumor therapy [80].

24.4.2  mTOR Antagonists

Rapamycin is a natural fungicide which is used as an immunosuppressive drug to 
prevent allograft rejection in organ transplant patients. After binding to its immu-
nophilin FK 506 binding protein (FK-BP12), rapamycin inhibits mTOR function. 
As a result, arrest of cell cycle, inhibition of cell proliferation as well as 5–20% 
reduction in total protein synthesis can be induced in many cancer cells. Although 
the anticancer efficiency of rapamycin was described during its preclinical evaluation 
[81,82], this potential could not be clinically used until a series of rapamycin analogues 
with improved pharmacological properties were designed, including CCI-779, 
RAD-001 and AP-23573 [83].

24.4.3  Blocking mTOR Function in Cancer

In several preclinical studies, incubation of cancer cells with rapamycin or analogues 
reduced tumor cell proliferation [38,84,85] and induced arrest in G

1
 phase of the cell 

cycle. Mechanisms like downregulating Cyclin A, D, E and survivin, as well as 
upregulation of CDK inhibitors p21 and p27 are involved in this process [85–87] 
(Fig. 24.3). One interesting question is, whether mTOR antagonists are able to 
induce apoptotic cell death in cancer. Rapamycin blocked cell cycle progression in 
renal, endometrial and lung cancer without inducing apoptosis [88–90]. In contrast, 
in anaplastic lymphoma an increase of apoptotic cell death was accompanied by a 
reduction of antiapoptotic proteins bcl-2, bcl-xl and c-Flip [86]. RAD001 signifi-
cantly induced apoptosis in nasopharyngeal carcinoma. In addition, additive growth 
inhibitory effects could be obtained by a combinatorial treatment with RAD001 and 
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cisplatin [91]. Also in endometrial, ovarial and scirrhous gastric cancer a combination 
of mTOR antagonists with cytostatic agents led to a potentiation of antineoplastic 
effects by increasing growth inhibition and apoptosis [92–95] (Table 24.1).

Beside direct anticancer activities, mTOR antagonists also target stroma mediated 
mechanisms such as metastasis, invasion and angiogenesis. In a human renal cancer 
metastasis model, rapamycin reduced the number of pulmonary metastases and 
prolonged survival [89].

Cancer tissues with enhanced mTOR function are highly vascularized [96], a 
process which is regulated via hypoxia-inducible factor (HIF) induced transcription 
of proangiogenetic factors such as VEGF and PDGF. Overexpression of mTOR is 
able to increase the levels of HIF-a and subsequently of VEGF in tumor cells. 
Inhibition of mTOR signaling can interrupt this mechanism and block tumor associated 
neoangiogenesis. In some tumor entities, HIF a and VEGF levels as well as the 
response of endothelial cells to stimulation by VEGF could be reduced by mTOR 
antagonists [96–98]. In addition, rapamycin inhibited the proliferative, migratory, 
adhesive and tube formation capacity as well as differentiation of endothelial 
progenitor cells and decreased the level of endothelial nitric oxide  synthase 
[99,100]. An increased susceptibility of tumor specific vessels to thrombosis was 
described after treatment with rapamycin [101]. Furthermore, the mTOR antagonist 
RAD001 reduced VEGF expression and microvascular density in a xenograft 
model of human hepatocellular carcinoma [102].

24.4.4  mTOR Antagonists in Clinical Trials

Clinical studies using rapamycin and its analogues in cancer therapy showed 
encouraging results [103–105]. Forty-one patients suffering from metastatic renal 

mTOR- 
antagonists 

Apoptosis ↑

Cell cycle arrest

Protein synthesis ↓

Proliferation ↓ Proangiogenetic 
factors ↓

Production 
of VEGF ↑

Apoptosis ↑Tumour Endothelium 

Tube formation ↓

Microvessel
density ↓

Fig. 24.3 Antitumoral and stroma-targeted effects of mTOR antagonists VEGF = vascular 
endothelial growth factors (From [141; Fig. 12.3, p. 229]. With kind permission of Springer 
Science and Business Media)
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cell carcinoma were treated with an oral dose of 10 mg everolimus daily. With a 
progression free survival of at least 6 month for approximately 70% of the patients, 
everolimus showed an encouraging anticancer efficiency. As evidence is growing 
that temsirolimus benefits patients with advanced renal cell carcinoma [106] this 
mTOR antagonists is suggested to be the standard therapy for patients with poor 
prognosis [107]. In addition, improving progression free survival and objective 
response, single agent temsirolimus was shown to be effective in the treatment of 
relapsed or refractory mantle cell lymphoma [108,109]. Also in patients with 
myelodysplastic syndrome, everolimus was well tolerated [110]. Furthermore, 
biopsy proven cutaneous Kaposi sarcoma lesions disappeared in kidney-transplant 
recipients after 3 month of treatment with sirolimus [111]. Currently, several 
 clinical studies are ongoing or have already been finished evaluating the anticancer 
potential as well as the safety, tolerability and pharmacokinetic and pharmacodynamic 
properties of the new mTOR antagonist deforolimus [112,113]. The available data 
indicate a high potential of mTOR antagonists in the treatment of advanced cancer. 
Further studies are warranted to use this potential in the treatment of cancer patients 
in the future.

24.5  PPARg Agonists

24.5.1  The PPARg Receptor

Thiazolidinediones like pioglitazone, ciglitazone and rosiglitazone are commonly 
used as insulin-sensitizer in the treatment of type 2 diabetes. They are ligands of the 
peroxisome proliferator-activated receptor g (PPARg), which is mainly expressed in 
adipocytes and cells of the immune system and is an important regulator of the 
 cellular metabolism. The three identified isoforms, PPARa, PPARb/d and PPARg, 
are members of the nuclear hormone receptor superfamily. After heterodimerisa-
tion with the 9-cis retinoacid receptor RXR, PPARs respond to ligand activation 
through the regulation of gene expression [114].

24.5.2  PPARg in Cancer

Similar to thalidomide, COX 2 inhibitors and rapamycin, PPARg agonists are able 
to induce growth inhibition, apoptosis and cell cycle arrest in a variety of human 
cancers [115–117] (Fig. 24.4). Although the underlying mechanisms are not fully 
understood yet, some of the antineoplastic effects seem to be independent from 
PPARg signaling [118–120]. PPARg protein or mRNA expression was detected in 
many human cancer tissues. In some malignancies like glioblastoma and adreno-
cortical carcinoma, PPARg expression was even higher than in healthy tissue 
[121,122]. For this reason it is discussed if a therapy with PPARg agonists could 
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selectively target tumor tissue. Compared to normal myometrium, uterine leiomyoma  
was more sensitive to inhibition by ciglitazone [123] and pioglitazone had stronger 
growth inhibitory effects in leukemia cells than in hematopoietic stem cells 
obtained from healthy volunteers [124]. PPARg activation also enhances gene 
expression in malignancies. In several cancer entities including melanoma [125], 
thyroid carcinoma [126] and in promyelocytic cell lines [127], a reexpression of 
differentiation markers could be induced by PPARg agonists, which may be  associated 
with a better clinical prognosis.

In addition to direct anticancer effects, PPARg interact with the tumor stroma. 
One important mechanism in the tumor progression and invasion is the proteolytic 
matrix degradation by matrix-metalloproteinases (MMPs) and members of the 
plasminogen activating system [128]. PPARg agonists effectively reduce tumor cell 
invasion and metastasis by inhibiting MMP-2, MMP-7 and MMP-9 activity as well 
as upregulating TIMP-1 and PAI-1 [129–132]. Furthermore, rosiglitazone reduced 
the number of lung metastases in a murine mammary tumor model, a process that 
could be associated with the decrease of MMP-9 expression level and reduced 
adhesion, migration and invasion of tumor cells [133]. As PPARg heterodimerises 
with RXR, a combined therapy seems to be a reasonable approach in cancer treat-
ment. In glioblastoma cell lines PPARg and RXR ligands synergistically decreased 
tumor cell invasion and induced apoptotic cell death by increasing cytochrome c, 
caspase 3, Bad and Bax levels while decreasing Bcl-2 and p53 [132].

In addition to the reduction of tumor cell invasion and metastasis, targeting 
PPARg also affects tumor associated neoangiogenesis. Treatment with PPARg 

PPARγ-
agonists

Apoptosis ↑ 

Angiogenesis ↓ Cell cycle arrest

Immunomodulation

Differentiation of tumor 
cells ↑ 

CDKs ↓
cyclin D and E ↓
p18, p21, p27 ↑

BAD and BAX ↑
Bcl-2 and Bcl-x ↓

Migration and invasion 
capacity ↓

Reexpression of
differentiation markers

Endothelial cell 
proliferation and 
migration↓
Response to 
proangiogenetic 
factors ↓ 

Formation of tube-
like struktures ↓ 

MMPs ↓
TGFβ- induces migration ↓

Expression of maturation markers

Regulation of NK-cells

„less malignant“ phenotype

Fig. 24.4 Antitumoral and stroma-targeted effects of PPARg agonists MMPs = matrix-metalloproteinases, 
TFGb = tissue growth factor b, CDKs = cyclin dependent kinases, NK cells = Natural killer cells 
(From [141; Fig. 12.1, p. 223]. With kind permission of Springer Science and Business Media)
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ligands significantly impaired bFGF and VEGF-mediated proangiogenetic effects 
in the chick chorioallantoic membrane model [134] and inhibited leptine induced 
endothelial cell migration [135]. VEGF expression and microvascular density was 
significantly decreased in vitro and in vivo after application of rosiglitazone or 
pioglitazone in preclinical studies using pancreatic or ovarial tumors [136,137]. 
PPARg ligands combined with daily low-dose chemotherapy, which is referred to 
as metronomic chemotherapy, was shown to cause synergistic antiangiogenetic 
effects. Metronomic chemotherapy induces endothelial cell apoptosis via enhanced 
expression of TSP-1 and subsequent activation of endothelial CD36 receptors. As 
PPARg ligands can booster CD36 expression, endothelial cells are more susceptible 
for thrombospondin-1-mimetic peptides [138]. For this reason a combinatorial 
treatment with PPARg agonists and metronomic chemotherapy might be a promis-
ing strategy in tumor palliation. In recent years the combination of PPARg agonists 
and COX 2 inhibitors with metronomically scheduled trofosfamide turned out to be 
effective in the palliative therapy of several tumor entities including angiosarcoma, 
melanoma, soft tissue sarcoma, Langerhans’ cell histiocytosis, Kaposi sarcoma and 
hepatocellular carcinoma [64,67,69,70,139,140].

In conclusion, several well established drugs which are in clinical use for non-
oncological indications are promising new tools in tumor palliation. Especially 
when used in combination, these agents could enhance synergistically antitumor 
effects and overcome single agent induced drug resistance.
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Abstract Personalized medicine should consist of a methodological therapy 
approach. Therefore, metastatic tumors have to be rendered usable for innovative 
action-theoretical therapy approaches to generate therapy-relevant tumor models 
and to uncover novel patterns of targets.

A new therapeutic level could be accomplished by introducing a pragmatic 
 communication theory based on clinical results from less toxic combined 
 biomodulatory therapies, altering the validity and denotation of cellular biochemical 
processes. A post-genomic view expands the role of proteins as an element within 
a network of communicative interactions. In a more abstract way, proteins and cells 
can be expressed as systems objects, which acquire contextual functions within 
circumscriptive functional modules or within the holistic communicative network 
of a tumor system. Biomodulatory therapies allow access to modular systems features 
as well as to the discrepancies between the functionality of single cell systems 
within a tumor compartment and the site-specific systems requirements of an organ 
(rationalization).

This way, modular tumor architectures, rationalization processes, deformations, 
and the Achilles’ heels of tumor systems may be implemented into therapeutic 
considerations to expand therapy options by individual systems-relevant and 
 stage-relevant features (secretome, molecular imaging). Multi-level  decision-making 
during therapy, i.e. biomarker-guided selection of therapies for individual patients, 
consecutively necessitates novel trial designs.
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Selection of patients for therapy could be replaced by selecting therapies for 
patients, corresponding to the stage-dependent developmental status of a tumor system 
in an individual patient.

Keywords Adaptive trial design • Systems biology • Modularity • Metastatic 
tumor • Personalized tumor therapy • Molecular imaging • Secretome analytics

25.1  Personalized Medicine: Post-metaphysic Thinking

The overall aim of personalized medicine is the improvement of benefits: The risk 
ratio for patients needs to be decreased by specifying the diagnosis of tumor diseases 
and by improving the outcome and the delivery of the ‘right’ drug at the right dosage 
and appropriate time. The introduction of biomarkers, pathway signatures, tumor 
genomics, and pharmacogenomics involves the identification and application of 
markers and scores. These instruments correlate with drug response, treatment 
efficacy, or adverse events, and represent a prerequisite for critical drug discovery, 
for the development of decisions and, ultimately, for novel clinical trial designs to 
personalize tumor therapy.

This specific modern trend, which has seized the theoretical concept of personalized 
medicine, lies to a lesser extent in novel methodologies to approach the individualiza-
tion of tumor therapies. This trend is rather based on the versatile motifs of science 
and scientists who aim at getting closer to the particular circumstances, i.e. the 
individual situation and tumor disease, of an individual patient.

The either scientifically-based or interest-guided motifs for personalizing tumor 
therapy compulsorily lead to paradoxes: Primarily theoretically orientated disciplines 
of medical science postulate the inversion of leadership by putting theory before 
clinical practice and by exchanging their original order, although this exchange is 
probably unintentional. As a result, innovation is required for novel trial designs.

The diverse motifs and emancipatory interests of modern trends on personalized 
tumor therapy directly lead to new paradigms of care, which need to be publicly 
communicated. From a scientific perspective, personalized therapy has to be based 
on methodology and delineated from therapy-relevant tumor models to deal with 
the vast amount of knowledge available on tumor diseases.

By focusing the view on regained novel scientific objects, namely patients 
and their postulated individual tumor disease, rather different scientific areas of 
knowledge need to be connected to meet the therapeutic requirements of patients 
and their disease. Large, highly diversified data sets must be fused and comput-
eralized. New languages termed ‘ontologies’ are recommended to be generated, 
combining seemingly incommensurable data from various scientific fields [1,2]. 
This computeralization requires more than sophisticated computer programs; as such 
programs may only partially rescue or put in order these incommensurable data 
fields or, at best, generate some new perspectives and hypotheses to be proven 
by  experimental data.
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25.1.1  Therapy-Relevant Phenotype

The therapeutic accessibility of therapy-relevant situational information about a 
patient’s tumor-associated disease traits (modularity, rationalization processes, 
spin-off of novel systems characteristics) is equally necessary. These attempts 
are at an early stage: Uncovering a tumor’s whole genome with its frequently 
multifold aberrations does not necessarily promise the prediction of a tumor’s 
therapy-relevant phenotype, even if diverse aberrant signaling signatures are 
incorporated into therapeutic considerations. In future, therapy-relevant pheno-
types may be ascertained on a broadened methodological basis and may differ 
from particularized biologic parameters, signaling and genome signatures, or 
complex computer-based scores with predictive potency for survival or metastatic 
behavior [5].

25.1.2  The Reductionist Therapy Approach

The multiplicity of reductionist knowledge on tumor biology derived from highly 
diversified scientific fields has to be focused in individual patients by demonstrat-
ing coherency and practicability-requirements that include multimode aspects.

Therapy-relevant knowledge on tumor biology is preferentially derived from 
acquired gene aberrations or from altered gene expression in tumor cells. Because 
of the suggested genetically-based causation of tumor disease, genes and their gene 
products become therapy-relevant targets (drug discovery), in addition to pathophysio-
logically relevant targets including stem cell niches [6]. The contextualist perspective 
is met by multi-level reductionistically designed therapy approaches, which are now 
specified by complex molecular signature analytics [7].

The central problems, however, that need to be resolved in individual patient 
care remain the complexity, the multi-level hierarchies, and the facticity of a phe-
notypically realized individual tumor disease.

The newly uncovered metaphysic privilege of unity in individual patient care 
replenishes the contextualist preference of multiplicity before unity in a conspira-
tive sense: Incommensurable ‘worlds’ are merged into ‘ontologies’ [8]. Even the 
contextualist compilation of tumors, which primarily focuses on the inherent 
coherency of aberrantly expressed genes, has to face the problem that genes, as 
aberrantly as they may be expressed, do not represent any programs themselves. 
The expression of digitally coded aberrant genetic information has to be consid-
ered in the context of an analogously working none-DNA-based heritage [9]. 
This heritage contributes to the growth ‘program’ of tumor cells by adding, for 
example, modularity, rationalization processes, and contingency programming 
for efficacious tumor propagation and maintenance. Non-autonomous factors of 
tumor cells from the microenvironment additionally configure tumor growth 
(chapter 23) [10].



510 A. Reichle et al.

25.1.3  The Holistic Therapy Approach

The phenotypically-based aspect of tumor-inherent rationalization processes is 
embedded in the holistic communication processes of a tumor (a tumor’s ‘living 
world’). In light of this fact and the developing modularity within complex tumor 
systems, the process of particularization of socially linked cells and sub-cellular 
 functions may represent something different than the disposal of self-reflexively 
guided pathways, networks, genes, and tumor stem cells. Genes do not represent 
programs, and transmission of information is not limited to a one-way direction [4]!

Multi-level particularization, conceptualized by the suggested multi-level differen-
tiation of systems with genes seen as the universal originators (genes and causation), 
is ambiguous for therapeutic issues. Developing a systems description seems rather 
more important, which does not exclusively consider levels of action (tumor genomics, 
pathway analytics, and niches).

The methodological development of modularly designed therapies for metastatic 
tumors may be one answer to the universal competition of unity in patient care and 
the multiplicity of reductionist (contextualist) knowledge [4]. Communicative 
action with metastatic tumors in terms of biomodulatory therapies may be a further 
step in personalizing patient care.

25.2  The Idea of Homogeneous Patient Subsets

25.2.1  Evidence-Based Therapy: Uncovering Prognostic 
Parameters

The choice of cytotoxic agents is empirically-based and geared to fit the average 
patient. However, only in a few tumor types, such as germ cell tumors [11], does 
the majority of patients benefit from classical therapeutic regimens. Molecular 
rationales currently considered for cytotoxic agents in metastatic tumor therapy 
are different in vitro sensitivities of tumor cells, for instance with defects in post-
replication repair genes (cisplatin), an helicase sgs1 mutant (cytarabine), or defects 
in double strand break repair (camptothecin, idarubicin and mitoxantrone). Some 
agents are selective for a broader range of DNA damage repair mutants, and 
some agents are non-specific [12].

In most types of cancer, a high percentage of patients may receive an inefficacious 
combination of cytotoxic drugs. With a better understanding of the mechanisms 
underlying efficacy and toxicity of anti-cancer drugs, medical research is now focus-
ing on personalizing treatment strategies. These strategies involve the  combination of 
preferentially genetic characteristics but also incorporate pathophysiological features 
and micro-environmental factors together with traditional tumor characteristics 
(histology, tumor spread), which currently drive clinical decision-making.
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Increasing knowledge about genetic and molecular-genetic changes in tumor 
cells offers new insights into the development and spreading of tumors, allowing a 
separation of patients at risk for tumor development and patients suffering from 
early metastatic spread [13]. Simultaneously, these genetic changes can present 
therapeutic targets both on a protein level or an RNA level. A steadily growing 
variety of drugs has been developed, tailored to inhibit specific tumor-associated 
molecules, such as enzymes, receptors, and pathways. These drugs are hoped to 
cope with the molecular-genetic-based heterogeneity of tumors: Ever decreasing 
patient cohorts, which are characterized by distinct patterns of molecular-genetic 
characteristics, are intended to receive therapies that are as specific, as tolerable, 
and as efficacious as possible [14].

What do we accomplish? Hope is generally focused on a patient’s personal tumor 
genomic and the complete catalogue of acquired gene aberrations. What  happens, if 
a tumor’s genotype is really individual and even intra-individually  heterogeneous, or 
if no tumor really matches another? Such thoughts may be  particularly relevant in so 
far fairly untreatable types of cancer, such as pancreatic cancer, comprise up to 
70 gene aberrations on average. To keep evidence-based medicine in our therapeutic 
decisions, we have again to look for  homogeneous patient subpopulations, who share 
an intersection of aberrantly expressed genes or other prognostic parameters and who 
may be treated homogeneously [15].

25.2.2  Individual Tumor Disease

The limitations in the homogeneity of patient cohorts are obvious: Aberrant genes, 
as homogenously as they may be distributed within distinct tumor types, do not 
represent unidirectional programs, which definitely constitute a tumor’s phenotype 
in a distinct host organ. We also have to take into account the non-DNA-based 
 heritage of tumor and stroma cells [9]. Intersystemic exchange processes between 
the ‘heritages’ are minted by communication acts [4]. By introducing a pragmatic 
communication-theoretical approach, the intentionally uncovered structural levels 
are resolved in equivalent communicative structures bent on the respective systems 
objects. Now, the socially interwoven tumor and stroma cell community evolves as 
a holistic communication-driven structure, which provides internal access via 
modular therapy approaches, thereby disclosing its modularly designed architecture 
(recons tumor tractibility of modular structures) [3,4].

Communicative tumor (sub)-systems do not obey nominal conditions in an 
evolutionary process but adhere to rules to meet the validity of communication 
processes: Phenotypically distinguishable individual tumor disease may constitute 
within the  predetermined range of-at least to some degree-autonomous tumor 
development (see chapter 26). These self-evident presumptions compromise the 
phenotypical homogeneity of tumors [3].

Phenotypical matchlessness of an individual tumor disease is in conflict with 
the search for homogeneity and common features in larger patient cohorts.  
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The homogeneity of cohorts is a prerequisite to keep tumor therapy evidence-based, 
because trials using targeted therapies do frequently not succeed without prior 
molecular-genetic-based tumor selection.

Additionally, the interference of drugs with a patient’s organ system has to be 
taken into consideration. Drug interactions in combination therapies as well as phar-
macogenomically based variants, which contribute to reduced drug tolerability and 
efficacy, have also to be considered when planning personalized therapies [16].

25.2.3  Novel Therapy-Relevant Methodological Approaches

Leveling hierarchical orders by communication-guided considerations aids the 
establishment of novel therapy-relevant targets that lie in the communicative 
tumor system: The holistic communicative process itself, a tumor’s living world, 
is placed at the investigators’ disposal.

A tumor’s ‘living world’ gathers various input signals and mediates the validity 
and denotation of communicatively-linked biochemical pathways. This communi-
cation-driven biochemical or cellular ‘background’ is directly involved in tumor 
evolution and may be featured by novel systems-related similarities among tumors – 
besides established histological findings and genome signatures [3]. In interaction 
with normal human tissue, tumor cells use communication-linked processes 
according to laws of nature to build up a favorable infrastructure for their 
 proliferation. Also leukemia cells with stem cell functions showing an unlimited 
capacity of self-renewal in vitro are communicatively integrated in a highly  aberrant 
stromal environment. These tumor or stroma cell processes are accessible in a 
reconstructive way via biomodulatory therapies and may be classified to generate 
novel, presumably homogeneous tumor systems characteristics, as indicated by the 
uncovered differential features of tumor-associated inflammation [4,17].

Therefore, the search for homogeneous patient populations may be more success-
ful by the additional incorporation of novel methodologically-based procedures: 
A second, communication-driven objectivation of tumor features is now available 
describing tumor-comprehensive systems stages. These systems stages mirror 
situate, phenotypically characterized dispositions of the tumor and may be used as 
therapy-relevant targets to further personalize tumor therapies [3,4] (Fig. 25.1).

25.3  Differential Model-Creating Determinants

25.3.1  Hierarchical Therapy-Relevant Structures

The descriptive allocation of ‘tumor-inherent’ functions to characterize a tumor’s 
disastrous features remains consistent with reductionist or contextualist requirements 
to create hierarchical levels responsible for promoting tumor growth, such as tissue 
invasion (matrix remodelling), inflammatory microenvironment, insensitivity to 
growth inhibition, evasion of apoptosis, sustained angiogenesis, limitless replication 
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potency, and self-sufficiency in growth signals [18]. Highly specific metabolic 
changes in tumor cells and the impact of coagulation are frequently neglected 
(chapter 3 and 7) [17,18–21]. In the reductionist picture, tumor-associated 
pathosphysiologic features are equated with the causation of tumors. The useful-
ness of this description is the integration of tumor cells into a larger environmental 
context. However, this description reduces environmental tumor-associated activities as 
compliable unidirectional functions mediated by tumor cells.

The newly uncovered systems perspective, which is frequently underestimated, 
moves its focus to the discrepancies that develop between the functional world of 
tumor-associated cell systems and the functional requirements imposed by rational-
ization processes and triggered by a tumor’s systems ‘world’ [3,4]. Systems may 
coordinate the ‘idea’ of different cell types (Table 25.1). From the perspective of a 
participant within a tumor system, novel qualities of systems objects, i.e. cells and 
sub-cellular biochemical processes, may be described: (1) Modular tumor architecture 
emerges, which is accessible for biomodulatory therapy approaches. (2) In com-
parative analyses, tumor systems may be characterized as rationalized tumor-specific 
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Fig. 25.1 Reconstructive analyses of tumor-specific evolutionary processes may be achieved by 
iterative cycles of differentially structured (combined) modular tumor therapies and evaluation of 
modular systems and tumor response: Modular therapies generate systems-related read-outs, con-
secutively leading to decision-relevant yes or no statements. Qualitative and quantitative systems 
analyses may be supplemented and broken down to an analytical level by complementary molec-
ular-biological data mining. Thereby, systems-relevant functions may be assigned to specific 
structures within stage-specific rationalization processes resulting in systems classification



514 A. Reichle et al.

systems features, such as inflammation. (3) Achilles’ heels can be uncovered if 
functions may only be arduously kept up to maintain the systems context as well as 
(4) systems-related deformations of cellular functions. (5) New systems features, 
i.e. tumor-associated inflammation, may spin off [3,4].

25.3.2  May Hierarchical Structures Be Abated  
for Therapeutic Purposes?

Considerations involving evolutionary tumor processes have to abate hierarchical 
aspects to establish communicative systems architectures. Systems objects (cell 
types, pathways, transcription factors, etc.) acquire modular features because their 
function is non-randomly dependent on the multimode bundled functions of the so 
far unrecognized background. This background redeems the validity of systems 
objects in the first place to establish distinct denotation of communicatively-linked 
biochemical processes [4,22]. As shown, modularly-designed tumor therapies may 
also redeem the validity of systems objects in the tumor compartment, which repre-
sents an important novel mechanism to therapeutically achieve tumor control [4].

Hitherto existing perspectives favoring unity of patient care and contextualism 
are likely to consider communicative actions in terms of modularly-designed tumor 
therapies as too weak and presumably inefficacious. The reason for this view is that 
all hierarchies developed by intentionally acquired knowledge are leveled to be 
discharged in a continuum of contingency programming, in modularly-evolving 
systems features, and in continuous inter-systemic communicative exchange pro-
cesses. On the other hand, the methodology of communicative therapeutic interven-
tion (modular therapy) seems to be too potent from a contextualist perspective. This 
view may be caused by the fact that incommensurable ‘worlds’, such as non-DNA-
heritage and DNA heritage or different techniques for implementing modular 
knowledge and various modular tumor architectures, turn out to be pervious, 
despite their qualitatively rather heterogeneous features.

25.3.3  Model-Creating Determinants

Competing model systems, both reductionist and holistic, show different model-
creating determinants (Table 25.2). The genetic background used for developing 
tumor models is now contrasted by communicatively-derived modular architecture. 

Table 25.1 Evolution: the ‘metabolism’ of systems development

Reproduction of social cell communities or realization of social functions
Social integration, coordination of ‘ideas’ of different cell types: ‘Theory of communicative 

action’
Socialization of cell systems and interpretation of requirements
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Therapy-relevant tumor models have to be realized, discussed, and balanced against 
each other before developing or planning appropriate therapies in distinct tumor 
types and systems stages. Thus, differentially-applied methodological approaches 
to implement therapy strategies for metastatic tumors may bring appropriate therapies 
closer to the patient: The most efficacious therapeutic approach for an individual 
patient is now becoming scientifically evaluable.

Basic science is covering versatile forms of acquired knowledge that is based on 
differentially applied methodologies-also in the field of systems biology. The simple 
perception of facts without considering the methodological background leads to 
conclusions that may not be equated with science, for example, if aberrant genes 
are unidirectionally equalized with the causation of an altered phenotype. This 
equation may be appropriate for Philadelphia chromosome-positive chronic myelocytic 
leukemia but cannot be that easily applied in tumors with multiple chromosomal 
aberrations, such as pancreatic cancer [23,24].

The different methodologies for creating tumor models complement each other 
in the same way as the benchmarks of communicative systems correspond to the 
components of which functional sequences are composed (Table 25.3). Systems 
biological considerations rely on studies of basic science, which primarily try to 
disassemble complexity and measure the activity of isolated systems components. 
Such an approach is very successful in characterizing the individual parts but very 
limited in reconstructing how single components are communicatively integrated 
and rededicated within a systems context (modularity): Depending on the host, the 
developmental status, and the systems context, genes and their gene products may have 
completely different, sometimes opposing functions. Obviously, the communicatively-
linked biochemical or cellular background may define the validity and denotation of 
distinct systems objects, for instance transcription factors. The term ‘oncogene’ 
surely does not cope with the evolutionary function of a distinct gene.

Table 25.2 Differential model- and therapy-creating determinants

Determinants Assessment tools

Evolution (principles of communication) •	 Modularity
•	 The	tumor’s	‘living	world’	as	

communicative holism
•	 Denotation	and	validity	of	communication	

processes
Systems ‘world’ versus functional ‘world’ 

(functional diversification of cell systems)
•	 Rationalization
•	 Intersystemic	exchange	processes
•	 Achilles’	heel
•	 Deformation
•	 Topology	of	aggregated	action	effects

Pathophysiology •	 	Angiogenesis,	inflammation,	metabolism,	
extracellular matrix remodelling, 
coagulation, proliferation, etc

Histology/biochemistry Genetics •	 Structure,	function,	interaction
•	 Pathway	signatures
•	 Functional	genomics
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25.4  Modularity and Rationalization of Tumor-Associated 
Functions: Therapeutic Targets for the Therapy  
of Metastatic Tumors

Modularity of cells and cell systems is a ubiquitous intrinsic biologic dimension, 
which becomes of exceptional interest during evolutionary processes, i.e. during 
tumor growth. In the first place, modularity may establish multi-functionality and 
evolvability within a holistic communicative tumor cell system. Modularity either 
descriptively (modular therapy approaches) or mathematically seizes the phenomenon 
that the various, sometimes even opposing, references of the systems objects are 
interwoven situational biological stages, i.e. they are embedded in the communicatively 
arranged validity and denotation of systems objects [4].

Cellular functions, such as signal transmission or cell cycle control, are carried 
out by ‘modules’ made up of small networks, which are composed of numerous 
interacting molecules. The understanding of how modules work depends on com-
bining  phenomenological analysis (uncovering of rationalization processes) with 
molecular-biological studies. Proteins are traditionally identified based on their 
individual actions as enzymes, signaling molecules, or structures constituting 
aggregates in cells. But the post-genomic view now expands the role of proteins as 
an element within a network of communicative interactions. A more abstract term 
for a protein-in a communicative sense − is ‘systems object’, which acquires con-
textual functions within circumscriptive functional modules or within the holistic 
communicative network of a tumor system (chapter 26) [4,25].

Various possibilities seem to exist to redeem novel validity and denotation during 
evolutionary tumor processes independent of the presence of acquired genomic 
aberrations. Multi-functionality has been observed as a feature of protein evolution: 
As an example may serve the protein p53 [22,26,27].

Single molecules acquire cell type-specific functions, and diversification of signaling 
pathways may occur [28]. The highly specified systems-mediated regulation of 
transcription factors, such as NF-kappaB, may induce even opposing biological 
effects within the same clonal cell population [29,30]. In response to diverse stimuli, 
transcription factors alter their interactions to varying degrees, thereby rewiring 

Table 25.3 Change of paradigms: The three mainstays for acquiring new insights into novel 
therapy approaches implementing modularity

•	 Therapeutic access from inside in a 
comprehensive and reconstructive way (the 
participator’s view)

•	 Observation-guided, contra-intuitive 
knowledge (the observer’s view)

•	 Normative statements how to control 
systems-associated processes with therapy 
modules to achieve response

•	 Classic conclusion logic, e.g. indicating a 
pathway responsible for cell death: cause-
effect-chain

•	 Situation-associated systems 
interpretations: modular architecture, 
rationalization processes, evolutionary 
context

•	 Object-associated, intentional 
interpretation (nude identity): 
theme-dependent context-knowledge, 
compartmentalized systems
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networks. A few transcription factors serve as permanent hubs but most act transiently 
only in certain conditions [31].

Modularization is suggested to be a universal characteristic of real networks 
because of the advantages it adds to the multi-functionality, robustness, and evolvability 
of networks. Zhang stated ‘modularity may constitute a big world inside small world 
networks’ [32]. Shorter network diameters could provide higher functional efficiency: 
An intrinsic tradeoff between network efficiency and multi-functionality, robustness, 
and/or evolvability seems to exist.

The modular architecture of biologic networks allows the selective  implementation 
of biomodulatory acting agents. The implementation of modular knowledge 
 provides an important therapeutic instrument. Biomodulatory therapies facilitate 
the reconstructive analysis of tumor and stage-specific rationalization processes, 
for example tumor-associated inflammation.

Modular therapies constitute a novel frame work for qualitative (clinical 
response, tumor site-specific activity) or quantitative analysis (systems-associated 
biomarkers, imaging techniques) of modular tumor architectures as a prerequisite 
for reconstructing or redesigning functional modules or rationalization processes 
from their cellular or molecular constituents.

25.5  Creating a Cancer-Drug Portfolio: Interest  
in the Technical Disposability over Verifiable  
Tumor-Associated Processes

25.5.1  The Classic Approach: Cytotoxic Therapy

The availability of cytotoxic agents brought great progress to the treatment of metastatic 
cancer. Cytotoxic agents are still indispensable. However, a high proportion of patients 
has to frequently face side effects together with no or moderate activity of the admin-
istered cytotoxic drugs. Therefore, the following question has arisen: Which patients 
do really benefit from combined cytotoxic therapy in the light of its additive effects 
on subjective well-being and the impaired quality of life counterbalancing the often 
limited treatment efficacy. As a consequence, this dilemma has propelled the search 
for both prognostic markers and pharmacogenomic parameters.

The handicap of prognostic markers persists because they are closely related to 
the type of therapy as well as to the biology of a disease [33]. Frequently, negative 
prognostic markers do not open up perspectives for alternative therapy strategies, 
and patients depend on the development of novel agents in the long run.

The dogma that aberrant genes cause cancer disease has reinforced the conception 
to counteract the activity of these genes by corresponding inhibiting agents on protein 
or RNA level (anti-sense technology). This method aims at reducing hardly calculable 
side effects and at developing a more biologically oriented therapy, which is now 
often equalized with personalized therapy.
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25.5.2  Targeted Therapy

The term ‘targeted therapy’ reflects the suggested close relation between genetic 
(molecular-genetic) aberrations and cancer causation. Consecutively, the idea is 
that – if the cause has been eradicated within a tumor cell – the tumor cell cannot 
and will not survive.

Trastuzumab has been one of the pioneers in a series of designer drugs selected for 
patients on the basis of the molecular profile of their tumor [34]. Instead of the 
 conventional ‘one size fits all’ approach, trastuzumab provided a novel way to attack 
cancer specifically. The successful approval of trastuzumab for the treatment of Her2-neu 
positive breast cancer has furthered the idea of personalized medicine. However, only 
a limited number of studies highlight tumor-associated gene  aberrations, showing that 
tumors best respond to respectively targeted therapy approaches. A special concern 
remains the reliability of thresholds of biomarkers and their analytical validity. Recent 
studies have emphasized the shortcomings of the ‘gene and causation approach’ by 
showing that the genetic backbone of many cancers is both complex and overlapping: 
A wide variety of rare genetic aberrations are implicated in many types of cancer, and 
mutations in distinct signaling pathways are often not tumor-specific [35].

A consistently reductionist procedure for studying systems interrelations seems 
to be the deconstruction of aberrant tumor cell-associated signaling pathways. 
Tumor-associated gene expression signatures are consecutively reconstructed as 
‘modules’ [7]. Aim of this methodological procedure is to combine multiple targeted 
therapy approaches to finally achieve better tumor cell control [36,37].

Because of antibodies detecting cancer cell epitopes, the main symptoms of a 
disease may be successfully eliminated; but the introduction of novel technologies, 
such as biospecific antibodies (synthetic biology), may even eradicate minimal 
disease residuals [38].

Combinations of chemo-therapy and targeted therapy primarily arise from drug 
availability and from the fact that most standard therapies comprise cytotoxic 
agents, which often makes targeted therapies a simple “add-on” component. Recent 
studies have shown that the efficacy and toxicity of such combination therapies is 
poorly predictable [39].

The consideration of stroma components and their close link to tumor progression 
has led to the introduction of antiangiogenic therapy approaches. These therapies 
served as a proof of principle that tumor-associated stroma components are aberrantly 
expressed and therefore appropriate targets for tumor therapies [40].

25.5.3  A Tumor’s Holistic Communicative Structure  
as a Therapeutic Target

Biomodulatory therapies now establish access to rather novel patterns of targets, 
which predominantly lie in the communicative structure of a tumor compartment. 
The holistic communicative system itself is the therapeutic object, whereas physicians 
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therapeutically participate in the system to guide modular processes. In the course 
of biomodulatory therapies, tumors may be reconstructed from their evolutionary 
site. Biomodulatory therapies may implement modular knowledge by redeeming 
the validity of systems objects. Such therapies may communicatively specify the 
denotation of molecules, for instance distinct transcription factors. Their denotation 
is linked to the communicatively structured background, gathering and mediating 
the multiplicity of input signals [41].

The modular systems structures of tumors are therapeutically accessible to regu-
latory acting target sites that evolve during tumor progression. The repertoire of 
drugs abruptly expands (Table 25.4) with the introduction of systems-therapeutic 
(modular) concepts because:

 1. Substances with unintended indication, such as drugs modulating the transcrip-
tional networking of both tumor and stroma cells, may be introduced for therapy 
[41,42].

 2. Contrary to the molecular-genetic heterogeneity of tumor cells, tumor growth-
promoting systems show a high level of similarities (for example, angiogenesis 
and inflammation). Therefore, a similar repertoire of drugs may be available, 
which target and regulate corresponding tumor-associated subsystems mirrored 
by biomarkers [17].

Table 25.4 Reductionist and systems-directed therapy approaches

Systems level Target Therapy approaches

Tumor cells Tumor cell-specific pathways, 
epitopes, etc. (reductionist)

•	 Cytotoxic	
chemotherapy

•	 Small	molecules
•	 Antibodies,	cellular	

therapies
Stroma cells Stroma cell functions (reductionist) •	 Education,	re-education

•	 Elimination,	Trafficking
•	 Vaccines

Modularity, evolvability Modular tumor architecture (systems-
directed)

•	 Biomodulatory	therapies
•	 Synthetic	biology

Pathophysiology Angiogenesis, inflammation, apoptosis 
metabolism, extracellular matrix 
remodelling, coagulation, 
proliferation etc.

•	 Biomodulatory 
therapies

•	 Antibodies
•	 Small	molecules

(Immune-) Histology 
Biochemistry

•	 Tumor	cell-specific	molecules
•	 Structures,	functions,	interactions
•	 Pathway	signature;	functional	

genomics

•	 Combination	of	small	
molecules

•	 Anti-sense	therapy
•	 Antibodies

Systems versus 
functional ‘world’

Varying cellular mediators of similar 
cell functions:

•	 Rationalization,	Achilles’	heel
•	 Intersystemic	exchange	processes
•	 Topology	of	aggregated	action	

effects

•	 Biomodulatory 
therapies

•	 Antibodies
•	 Small	molecules
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 3. Targeting functionally defined subsystems becomes of increasing interest, as 
subsystems may be exclusively functionally defined in a systems context but 
simultaneously linked to alternating structural systems [43]. Targeting functional 
systems structures provide a new therapeutic window favoring concerted bio-
modulatory strategies.

 4. Beyond that, it should be possible to abstract traditionally described subsystems: 
Drugs with biomodulatory activity as (nuclear) transcription factors regularly 
have an activity profile far above the capacity of hermeneutic comprehension 
[17]. Transcriptional networking may have a decisive regulatory impact on tumor 
promotion, for instance, on the angiogenic switch or on tumor stem cell behavior 
[44]. Indeed, the abdication of hermeneutic comprehension constituted a prereq-
uisite of modern science.

 5. Complimentary reciprocal activity, during which subsystems may generate each 
other, may be analyzed as currents of intersystemic exchange. Therefore, from a 
therapeutic point of view, the systems-biological model does not specify whether 
a systems function has to be suppressed or stimulated to achieve tumor control: 
Inflammation control as well as stimulation of inflammation may control tumor 
growth, immunosuppression, and immune stimulation [17,45]. Contradictory 
decisions could be associated with the same capacity to achieve tumor control in 
a distinct tumor type. Thus, the questions arising are: What therapeutic approach 
would be easier to put into practice, what approach is likely to be more compatible 
with other therapeutic approaches, and what is the most tolerable approach with 
regard to side effects?

 6. Based on the reductionist use of drugs for tumor therapy, a drug should have 
significant mono-activity and still be acceptable at maximum tolerable 
doses. Now, in the light of biomodulatory therapy approaches, demands are 
revolving. De Vita phrased: ‘If an agent modulates a target in preclinical 
models and the expected downstream effect induced by target interaction is 
observed, perhaps this provides sufficient evidence to test the agent in a 
clinical trial, even in the absence of demonstrated efficacy in preclinical 
models, provided there is enough information to determine a safe starting 
dose’ [46]. A large number of drugs could be integrated into modularly 
designed therapy approaches because their single prerequisite is biomodulatory 
activity in a concerted action.

 7. In the near future, biomodulatory therapy approaches of metastatic tumors could 
be methodological tools for personalized tumor therapy: In contrast to ‘causal’ 
therapeutic approaches aiming at the blockage of aberrant tumor-associated 
pathways by a restricted repertoire of highly specific drugs, multiple potential 
modulators (activators and deactivators) of transcriptional processes are available 
for biomodulatory therapy approaches. According to our experience, mono-activity 
of a single transcription modulator is no prerequisite for its successful use, and 
the combined administration activity of all modulators could be followed by 
respective biomarkers. Close monitoring would further allow us to choose other 
modulator combinations in case of weak interactivity to facilitate objective tumor 
response [17].
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 8. The simultaneous communicative therapeutic interaction with systems entails 
the administration of low-dose levels of each biomodulatory acting drug 
within a combined schedule. Achieving cytotoxicity with maximum tolerable 
doses is not of primary concern any more.

25.5.4  Expansion of Therapeutic Options

The therapeutic capacity of biomodulatory therapy approaches to meet pheno-
typically featured systems stage-specific and modular architectures points to 
an asymmetry between reductionist and communicative systems-directed therapy 
approaches (Table 25.4). The extent of attaining therapy-relevant targets with 
(combined) reductionistically derived ‘targeted’ therapy approaches seems to 
be more limited compared to the provided prospects for targeting systems-relevant 
rationalization processes within a tumor, for instance tumor-associated inflamma-
tion: (1) Multiple systems features, the topology of aggregated action effects, 
robustness, inconsistencies, deformations, inter-systemic exchange, and rationaliza-
tion processes may establish a broad capacity to resolve therapeutic problems. 
(2) A broad series of stimulatory and inhibitory drugs without mono-activity in 
a respective tumor type could be introduced into combined biomodulatory 
treatment schedules [17].

Furthermore, analytical data point to a postulated asymmetry between the thera-
peutic capacities of modular therapeutic options versus reductionist approaches: 
The extremely high frequency of un-anticipated actions of approved drugs, which 
are observed by screening against complex pathways, supports the model of robust-
ness. Transcriptional modulators, which carry out tasks such as lowering the serum 
glucose level (PPARgamma agonists), are likely to achieve additional effects. Thus, 
such modulators may acquire completely novel denotations in combination with 
other transcriptional modulators, such as dexamethasone and interferon-alpha 
(indication discovery) [47].

Un-anticipated actions of approved drugs contrast a narrow selection of patients 
for studies. On the other hand, for some drugs, patient selection seems to be the 
only path to therapeutic success.

25.6  Monitoring Therapy

The incorporation of biomarkers into drug developing and drug monitoring processes 
will improve the understanding of how therapies or therapeutic strategies work. 
This incorporation will allow a more accurate identification of patients benefiting 
from these therapies. The aim of incorporating a patient’s tumor systems-related 
data in treatment planning is becoming reality.
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25.6.1  Integration of the Classic Reductionist Approach

Genetic testing allows selection of the best treatment. Physicians start to use 
detailed information about the tumor genomes of a patient to decide which treatment 
will be best [7,48–50].

The classic biomarker for reductionist therapy approaches is related to a drug’s 
target. Consequently, prognostic tumor cell-associated parameters directly mirror 
response or futility of distinct groups of respective targeted agents.

For true effectiveness, more than one single biomarker has to be developed in 
separate training and test sets. The inherent problem associated with, for instance, 
microarray data sets is termed ‘overfitting’ the data. This process occurs when 
many elements, for instance genes, are correlated with a few clinical end points 
such as survival, recurrence, etc.: Only a small number of a long list of genes may 
be found to correlate in expression and by random chance with one of the few possible 
clinical end points [51].

As a next step, the integration of multi-parameter clinico-pathological variables 
including imaging and biomarker data (commonly termed systems pathology) may 
result in a highly accurate tool for predicting clinical outcome [52].

25.6.2  Are Therapeutic Approaches Developing  
into a Systems-Associated Marker-Guided Therapy?

Systems stage and systems architecture (for instance inflammation): The 
 technique of communicative action, which allows the implementation of modular 
(therapeutic) knowledge, connects rather incommensurable scientific worlds of 
communicatively linked structures, i.e. digitally coded DNA and analogously operating 
non-DNA-based heritage [17]. Consecutively, the classification of tumor-associated 
structures and functions (systems stages) has novel practical and particularly thera-
peutic impact (Table 25.5).

The communicatively uncovered and frequently unconsidered molecular and 
cellular ‘background’ involved in tumor evolution gathers the diversity of input 
signals and mediates the validity and denotation of multifold communicatively-linked 
biochemical pathways and cellular functions. This background may be featured 
in novel modular systems similarities among tumors and tumor-specific 
rationalization processes. Modularity is shown to be a separate basic func-
tional attribute of a tumor besides tumor histology and molecular tumor biology. 
In interaction with normal human tissue, tumor cells use communication-linked 
processes according to laws of nature to build up a favorable infrastructure for 
proliferation. These processes are accessible in a reconstructive way via biomodu-
latory therapies and may be classified to get novel, presumably homogeneous 
tumor characteristics as indicated by differential characteristics of tumor-associated 
inflammation.
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Common systems features: The most important task is to look for common systems 
features (‘topologies’, inconsistencies) within different tumor types to get action-
theoretically guided classifications of distinct tumor-associated evolutionary systems 
processes. Furthermore, classification is essential because classification is the basic 
language of medicine and of systems organizations across different tumor types, which 
need to be clearly defined. The uncovering of common features in different tumor 
types is only the beginning: Lymphomas could soon be classified according to their 
activation of inflammatory signaling pathways [53]; common stroma gene expression 
sets may be detected in response to tumor invasion [54]; and neoplasias may be classified 
according to their responsiveness towards combined modulation of transcriptional 
networking [17]. Another attempt may be the formulation of stroma scores, which still 
seems to neglect functional system aspects [3,10,17].

25.6.3  Tumor Type-Specific and Systems Stage-Specific Therapy

Because of the increasing experience in applying diversified methodological 
approaches for tumor therapy, we have developed a common understanding of 
important elements and principles required for distinct tumor type-specific and 
systems stage-specific tumor therapies. These considerations will lead to novel 
systems-based tumor classifications and to novel risk assessment, risk management, 
and risk communication. Risk management will continue to be a balancing act of 
competing priorities and needs but will be methodologically amenable and thus 
more personalized. Flexibility and scientifically-based adequate judgment are the 
ultimate keys to appropriate, successful risk decisions.

Table 25.5 Modular versus reductionist-derived molecular therapy approaches

Choosing alternatives

Modular therapies Magic ‘bullets’

Malignant systems separation High grade of rationalization Low grade of 
rationalization

Systems’ robustness High Low
Systems’ evolution Extended systems diversification 

(high grade of complexity)
Low grade systems 

diversification  
(e.g. CML)

Therapeutic targets – Inconsistencies
– Deformations (Achilles’ heel)
– Rationalization processes
– Validity of communication 

processes
– Malignant behavior (tumor  

stem cell niche)
– Tumor and stroma cells

– Reductionist targets
– (Blockade of 

pathways, receptors 
etc.)

– Denotation of 
communication 
processes

– Bulk of malignant 
disease

– Cancer stem cell
Treatment-related toxicity Biomodulatory efficacious doses Maximal tolerable doses
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Tumor-specific and stage-specific therapeutic accessibility of inflammation-related 
processes to induce response in all tumor types indicates a constitutive spin-off of new 
systems functions during metastatic processes. Furthermore, the multimode therapeu-
tic accessibility shows differential integration of inflammation into the context-dependent 
‘living world’ of tumor compartments featured by tumor-specific and subtype-specific 
rationalization processes: Inflammation-related activities are communicatively promoted 
and differentially adapted during tumor evolution. Empirically, differences may be 
detected in the modalities of evolutionary systems development and in the acquired 
functional impact of inflammation-related systems. Biomodulatory therapies, admin-
istered as fixed modules, may contribute to discover and understand novel regulatory 
systems in tumor biology.

The modality of response induction is decisively affected by the change from 
histologically derived and molecular-genetically derived object-associated therapy 
developments (pathways, gene expression pattern, stem cell niches) to situation-
associated and stage-related tumor systems interpretations for establishing 
tumor therapy, for example ‘late-stage therapy’ in metastatic melanoma. The holistic 
approach relies on the induction of inter-systemic exchange processes, which may 
be initiated by systems-targeting therapy modules [3]. This approach contrasts with 
the reductionist approach, which primarily aims at blocking communication pro-
cesses, such as signaling pathways, and aberrant gene expression.

As shown in a recent study, a new generation of biomarkers may now empirically 
predict response to systems-targeted therapies: PPARgamma expression in melanoma 
cells is stage-specific (late-stage) and may predict response to ‘anti-angiogenic’ 
 therapy approaches, independent of the administered biomodulatory therapy [55]. 
Future treatment response may be better monitored by evolving molecular imaging 
techniques because these techniques may decisively contribute to follow the biomodu-
latory activity of systems-directed therapies before objective response is achieved.

25.6.4  Guiding Systems-Directed Therapies

Stage-specific and systems-related prognostic markers (PPARgamma expression as 
‘late-stage’ marker in melanoma; COX-2 as early stage prognostic marker) and 
markers describing the functional status of systems, such as serum C-reactive 
 protein (CRP) levels, may guide systems-directed approaches with high predictivity 
for clinical response. A broad and heterogeneous repertoire of drugs is available to 
modulate distinct systems behaviors, for example inflammation: As shown, inflam-
mation-related processes remain pathophysiologically important for response 
induction, irrespective of the mode of tumor-specific integration of rationalization 
processes.

Cell type-specific proteins, detected by analyzing the secretome of distinct 
tumor-associated cell types (Chapter 21) mirroring their functional status, could 
become a tool for biomarkers for guiding systems therapies and could give hints on 
mechanisms of action in a reductionist sense [56].
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Molecular imaging: Molecular imaging (chapter 20) is an emerging field that 
joins  molecular and cell biology for non-invasive tumor imaging [57,58]. These tech-
niques require the development of necessary assays and ways for in vivo monitoring 
distinct molecular changes. Molecular imaging will allow a better understanding of 
the biological evolution of cancer, leading to improved diagnosis and disease man-
agement. Furthermore, molecular imaging may facilitate the observation of specific 
molecular and biological processes influencing tumor response behavior (prolifera-
tion, apoptosis, inflammation, metabolism, and angiogenesis). Novel imaging tech-
niques could decisively contribute to foster therapy selection for patients (patients’ 
situational tumor systems stage), which could play a critical role in cancer detec-
tion, drug development, and finally in personalized tumor treatment.

25.7  Implementation of New Therapy Models

25.7.1  Can Patient Selection for Therapy Be Improved or, Vice 
Versa, Can Therapy Selection Be Improved for Patients?

The gene-causation-approach serves as a methodological basis for drug  development 
as well as for guiding patient selection according to distinct molecular-genetic cri-
teria or genomic signatures. Therapeutic aim remains the diversification of targeted 
cancer therapy. The advances in genomic technologies have the potential to add 
substantial value to current medical practice by using both the genetic characteristics 
of the metastatic disease and the genotype of the patient (pharmacogenomics).

The inclusion of tumor systems biology into the therapeutic calculus, i.e. 
 modularity, and the rationalization processes besides the whole genome’s molecu-
lar genetics, allow more choices for differential tumor therapies dependent on a 
tumor’s  genetically-based and evolutionary status.

Table 25.5 outlines the selection options for systemic tumor therapies:

 1. Tumor systems may be assessed according to rationalization aspects (for instance, 
how is inflammation implemented and rationalized?). Systems that are based to 
a high degree on division of functions seem to be less susceptible to reductionis-
tically designed therapeutic perturbations. Tumor cells in such rather robust systems 
are characterized by multifold chromosomal aberrations.

 2. A tumor’s robustness is likely to be a further decision criterion. Failure of single 
agent-targeted therapies or multi-agent chemotherapies may be a measure for the 
resistance of these tumor systems towards external perturbances.

 3. Awareness of discrepancies between the functional features of cell compart-
ments and the systems world may uncover the inconsistencies and deformations 
of systems (Achilles’ heels). Both biomodulatory and reductionist therapy 
approaches could be therapeutic options after precise identification of the 
Achilles’ heel.
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 4. The introduction of modern technologies, such as microarray analyses, pathway 
analysis in cancer and stroma cells, and accompanying translational research, has 
led to some fundamental biological understanding of complex cell interactions asso-
ciated with important therapeutic implications [59,60]. Analytically and  empirically 
obtained data are important, including the myriad of prognostic markers: But the 
systems perspective offers the opportunity of weighing constellations as well as 
pathophysiologically important elements for taping new treatment strategies!

 5. Pathophysiologically related pathway signatures could prompt combinations of 
reductionist therapy approaches.

 6. Toxicity of therapy approaches and pharmacogenomic aspects may be decisive 
in co-morbid or medically none-fit patients for decision-making.

Combinations of targeted approaches with chemotherapy have brought s ignificant 
progress in small molecularly-characterized subgroups of patients, sometimes also 
progress in palliative care for a respective molecularly non-specified patient cohort: 
Now, significant targeted effects beyond postulated tumor cell-specific response 
have to be suggested. Therefore, selection should only be done at a later stage in 
the process of evaluating targeted therapies [61,62].

25.7.2  Using and Incorporating Systems-Relevant Information 
in Clinical Trial Designs for Metastatic Tumors

Systems-related biomarkers represent a novel kind of markers, which offer the possibility 
of new study designs: Systems-related biomarkers could record early systems 
response. Biomodulatory therapies could be continued in case of favorable marker 
response; in case of unfavorable response (futility of therapy), biomodulatory 
 therapies could be rapidly changed to finally achieve the target values of a distinct 
biomarker. These adaptive trial designs would be able to cope with the time 
 sensitivity for achieving tumor control. Patients would be adaptively randomized, 
and treatment assignment probabilities could be altered to favor the treatment that 
appears best for a patient’s biomarker characteristics. This process will allow new 
agents or combinations to enter the trial. In traditional trial designs, data obtained 
during the trials do not influence randomization probabilities.

Sequential administration of modular therapy approaches to adjust predictive 
systems-associated biomarkers focus on the adequate selection of biomodulatory 
therapies to meet the situational ‘metabolism’ of a tumor’s evolutionary process, 
i.e. for example inflammation-related rationalization processes.

Controlled administration of rapidly alternating systems-directed therapies until 
adjustment of favorable target values, i.e. tumor imaging parameters (molecular 
imaging) or systems-related biomarkers could be uniformly controlled procedures 
for treating heterogeneous tumor diseases with distinct systems-related features.

For example, a clinical trial could demonstrate (1) whether the rate of CRP 
detection is meaningful in a particular tumor disease and stage, (2) what are reliable 
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therapy-relevant CRP thresholds, and (3) the clinical benefit of CRP-guided and 
CRP-directed therapies. (4) If therapies have to be rapidly changed to finally 
achieve marker thresholds, the following question has to be addressed: What is the 
treatment by marker interaction (quantitative and qualitative interaction)? Such 
study designs may not answer the question whether biomodulatory therapies could 
also benefit marker-negative patients, for instance with castration-refractory pros-
tate cancer [4].

‘High-throughput’ therapeutic adoption of modular therapies on tumor-
specific and stage-specific rationalization processes of sub-systems could enable 
personalized tumor therapy. Systems-directed approaches have not to deal with a 
diagnostic and therapeutic black box until objective response is recorded with traditional 
imaging techniques measuring tumor size.

Multilevel decision-making during therapy and general moderate toxicity 
profiles represent an important ethical justification for action-theoretical  therapeutic 
approaches. Therapeutic risk may be recorded at an early stage of therapy and may 
revise the therapeutic procedure by an alternative therapy approach to finally adjust 
the respective systems-related biomarker at its target value: Increasing knowledge 
about tumor systems behavior and evolutionary developing systems structures 
(reconstruction) combined with representative target values (for instance, C-reactive 
protein) or prognostic parameters (for example, PPARgamma expression) may be 
helpful to guide modular therapy strategies [55].

25.8  Therapeutic Aims

Systems-directed therapies may meet rather new therapeutic requirements by a second 
objectivation of the tumor (Fig. 25.1): Rationalization processes and  modularity are 
now uncovered as components of a tumor’s ‘living world’, besides the common 
description of theme-dependent, reductionist subject-object relations (gene-causation-
approach): The novel modeling of tumor systems significantly expands therapeutic 
options. Therefore, the discussion about study endpoints comes into focus again.

 1. Biomodulatory therapies focus on the chronification of metastatic disease besides 
the induction of complete remission.

 2. Biomodulatory therapies are tools for personalized tumor therapy.
 3. Approaches may be specifically designed for the demand of tumor stages and 

corresponding systems stages for involved organ sites.
 4. Weighing systems constellations is the basis for establishing new therapy 

approaches.
 5. The combination of approved drugs (within therapy modules) installs new life 

into old drugs.
 6. Therapy modules may cause cancer cells to behave more like normal cells, for 

instance, by modulating the ‘stemness’ of tumor cells, Oct 3/4 genes via orphan 
receptors (Peroxisome proliferator-activated receptors) [63–65].



528 A. Reichle et al.

25.9  Challenging Space

25.9.1  Communication Theory, Basic Science,  
and Therapy of Metastases

In the current understanding, information theory (such as cellular signal  integration), 
basic science (with its advances in tumor genomics), and clinical tumor therapy 
(targeted therapy and cytotoxic therapy) seem to constitute  incommensurable 
worlds given that the various scientific areas deal with rather different scientific 
objects. The proposed action-theoretical approach aims at both the therapy of 
 metastatic tumors and the uncovering of modular systems structures. This approach 
represents a pragmatic communication-theoretical method for understanding 
 communicatively linked systems objects, biochemical processes, and cell functions 
by communication-technical terms, namely the validity and denotation of systems 
objects. The formal-pragmatic communication theory exceeds information 
 theoretical approaches because the modular feature of systems objects is acknowl-
edged beyond the simple exchange of information.

25.9.2  Reverse Engineering, Reconstruction of Systems Features 
(Intensio Obliqua) Versus Forward Engineering (Intensio 
Recta) with the Gene-Causation-Approach

The introduction of biomodulatory therapy regimens for metastatic tumors allows the 
versatile involvement of clinical treatment in communication theory and basic science:

The implementation of therapies interfering with evolutionary tumor processes 
serves as

 1. A detector of therapeutic structures based in modular tumor architecture. 
Although biomodulatory therapies can be seen as “targeted” as classic  reduction- 
istically designed therapies, now holistic communicative (modular)  structures 
are the  targets, which have the capacity to redeem the validity and denotation of 
single systems objects within communicative tumor processes.

 2. Therapy-relevant action-theoretical approaches may uncover the interwoven 
modular tumor architecture. We may describe modular textures on a molecular 
basis (including molecular imaging techniques), on the background of altered 
cell functions in the course of rationalization processes, in form of  therapy-guiding 
biomarkers (secretome analytics), and, where applicable, as systems-relevant 
prognostic parameters (Figs. 25.1 and 25.2).

Basic science is getting directly involved in the reconstructive process, even though 
an approach has been established directed from bedside to bench to implement 
clinical practical care (adaptive trial designs) as scientific object in patient care.
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25.9.3  Biomodulatory Therapy: Gene-Based and Non-DNA-
Based Heritage

Prerequisite for uncovering a tumor’s communicative structures, i.e. modularity and 
rationalization processes, is the inclusion of clinical read-out parameters because 
‘know that’ biomodulatory therapies may achieve chronification of metastatic 
tumor disease, even objective and complete responses. Such therapies may induce 
organ-site specific activity by modulating the evolvability of metastasis and can 
regulate systems-relevant biomarkers.

The newly established pragmatic communication-theoretical approach shows that 
causality in any particular form does not need to be a feature of every successful 
scientific explanation: Primarily the ‘know that’, i.e. the activity of a biomodulatory 
therapy approach, is sufficient, whereas the ‘know how’ has to be further evaluated, 
again in a reductionist sense (Fig. 25.2).

The reductionist approach for uncovering the nature of tumor development is 
supplemented by an indirect, communicatively-guided biomodulatory approach 
(‘intensio obliqua’). Scientific knowledge about a tumor systems architecture 
 consequently depends on the kind of implemented biomodulatory therapy and on 
the ‘policy’ of treatment.

Systematic observation-derived
analytical experiments (‘in vitro’)

Modification
Pathways 
Signaling 

Cell engineering 
Epigenetics 

Molecular genetics

Read-out 
Technologies:  
‘Omics’, ‘arrays’ 

Functional genomics
Imaging etc. 

Clinical response

Models
(intensio recta)

Contextualist knowledge:
Statistical models 
Stochastic models 
Reaction models 

Data mine
Data bases 

Attaching denotations:
Model construction (in-silico)

verification, 
calibration, validation 

Reductionist quantitative
models 

Fig. 25.2 Theme-dependent and closely interrelated areas of knowledge are the basis for reductionist 
approaches to uncover systems biology. According to reductionist systems interventions, scientists 
are observers of subject-object relations. However, if references of studied systems objects resolve 
during evolutionary tumor development, and systems objects are anticipating novel systems-related 
rationalization processes (e.g. differential integration of inflammation), then methodological 
considerations guided by ‘intentio obliqua’ (Figure 25.1) are appropriate to reconstruct evolutionary 
systems stages (modular approach)
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After uncovering the architecture of rationalization processes or the  identification 
of deformations and Achilles’ heels in metastases by applying novel indirect 
 methodology (‘intension obliqua’), vulnerable nodal points of subsystems should 
be targeted by reductionist approaches. This way, approaches derived from  synthetic 
biology could be clinically implemented.

Therefore, the therapeutic focus of reductionist approaches could be expanded 
beyond targeting aberrant genes or their proteins, namely by widening the targets 
of reductionist therapy approaches to essential functional systems features, which 
evolve on the background of multiple tumor-associated aberrations and  rationalization 
processes, representing the evolutionary ‘program’.

In future, we have to face the task of reconstructing a tumor’s evolutionary 
development (reverse engineering) to the full extent (Fig. 25.1). The technique 
of reverse engineering is similar to methodologies for uncovering the tumor-related 
psychosocial development of patients on their cultural background.

As shown, tumor-associated inflammation may be rather differentially accessi-
ble for biomodulatory therapy approaches. Highly variable modular architectures 
for tumor-associated inflammation in various tumor types and stages have to be 
uncovered via systems-directed therapy approaches. This perspective allows a new 
comprehension of individualized tumor therapy. The time-sensitivity of a  therapeutic 
approach in particular may be addressed.

Clinical trials have now to show how modular systems-directed therapies may be 
combined with tumor pathophysiology-orientated and molecular-genetically-based 
treatments. All these approaches have the capacity to displace classic chemotherapy in 
some areas. If so, personalized therapy in metastatic cancer – originally only a motif 
to focus therapeutic care in a single patient – may be realized with advanced method-
ological access to therapy-relevant tumor models. Selection of patients for therapy 
could be replenished or even displaced by selection of therapy corresponding to the 
stage-dependent developmental status of the tumor systems in individual patients.
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Abstract Based on communication-technical considerations, it has become obvious  
that both reductionist and holistic understandings are equitably exerted to repro-
duce the situational stage of a tumor disease. As required by methodology, these 
approaches have to virtually dissect the coherence of systems and the functional 
‘world’ of distinct tumor systems: Differential perspectives of interaction are entan-
gled with various levels of knowledge and consecutively with different therapy 
strategies.
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26.1  The Problematization of Established Interpretations  
of Evolving Tumor Systems

Therapeutically efficacious access to metastatic tumors, which is mediated by 
 communicative interactions of biomodulatory acting drug combinations, has 
emerged as a trigger for the problematization of established tumor models [1,2]. 
Traditional models are based on reductionist or contextualist interpretations of 
metastatic tumors. However, these models may not explain the observed and thera-
peutically relevant activity of biomodulatory therapy approaches, which include 
drug combinations with only poor single agent monoactivity or none at all [3].
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Tumors are characteristically composed of functionally rather heterogeneous 
cell populations, i.e. tumor and stroma cells. Despite the ostensible morphologic 
heterogeneity of these cell populations, clinical trials using biomodulatory therapy 
approaches have shown that these heterogeneous cell communities constitute a 
holistic, therapeutically accessible communicative entity [3], which seems to be a 
contradiction. Holistic communicative processes – recently termed the tumor’s 
 ‘living world’ – turned out to be a novel scientifically and therapeutically accessible 
object offering insights into evolutionary processes: Biomodulatory therapy 
approaches bring transparency into holistic communicative systems by breaking 
into a tumor’s ‘living world’ and by dissecting a tumor for practical purposes, such 
as the attenuation of tumor growth (normative notion), in comprehensible 
 evolutionary processes.

First of all, critical scrutinizing established reductionist data interpretations 
of tumor evolution results in disintegration. This disintegration is based on the 
fact that systems objects, i.e. single cell compartments, cells, proteins, etc., of 
the tumor compartment, are expelled from their position as objects and are to 
be re-integrated into novel tumor models as situatively defined systems  subjects. 
The observed therapy-derived phenomena, i.e. the therapeutic  accessibility of 
the holistic  communicative tumor system through biomodulatory therapies, 
may be adequately explained by the integration of systems-imposed activities, 
which are carried out by particular systems participators [3]. The routine reduc-
tionist perception of a  metastatic tumor is now bereaved of its conversance and 
 universal validity.

The recently developed formal-pragmatic communication theory basically 
emphasizes two perspectives of interaction with systems participators: One is based 
on the perception of an observer (a reductionist and contextualist point of view), the 
other on that of a participator (a communicative, holistic point of view). The 
 simultaneous double-sided perspective offers the opportunity to describe systems 
participators as objects (in the past tense form) with the aim to formally  discriminate 
one object from other systems objects and as situatively emerging subjects that are 
integrated in the evolutionary context of a biological system. Situative operational 
characteristics of systems participators develop by implementing modular  knowledge 
that is either internally-derived or externally-derived, or both. Systems may be 
subjected to often complex configured coincidental or sequential information 
flows, which consecutively lead to highly specific situative changes in the function 
of otherwise familiar systems objects. All communicative processes adhere to rules, 
which lie within the holistic communicative systems texture.

Based on these communication-technical considerations, it has become obvi-
ous that both reductionist and holistic understandings are equitably exerted to 
 reproduce the situational stage of a tumor disease. As required by methodology, 
these approaches have to virtually dissect the coherence of systems and the func-
tional ‘world’ of distinct tumor systems: Differential perspectives of interaction are 
entangled with various levels of knowledge and consecutively with different 
 therapy strategies [3].
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26.2  Re-interpretation of Reductionist Considerations  
on Tumor Evolution

The main challenge for the formal-pragmatic communication theory is now to 
explain the multimode experimentally-derived results from rather different 
experimental positions, describing mechanisms that are involved in tumor 
 progression. We selected the most recent important papers describing  mechanisms 
of tumor evolution for discussing the respective reductionist interpretation of 
these study results.

 1. Greaves impressively phrased the dilemma which arises on the basis of the 
reductionist interpretations of evolutionary processes during the development of 
acute lymphocytic leukemia [4]: On the one hand, he suggested a ‘back to 
Darwin’-model for cancer-propagating cells that places cells with variable self-
renewal potential or ‘stem cells’ as the units of evolutionary diversification and 
selection. On the other hand, he showed an only temporally limited hierarchical 
development of leukemia and cancer cells: ‘Cancer stem cells (CSCs) could, in 
some circumstances, be developmentally positioned at the apex of a hierarchy’. 
Graves also stated – in contradiction to the postulated hierarchy – that ‘there is 
no reason to suppose that hierarchical structures are inherently stable and 
 maintained with cancer progression’.

 2. An answer to Greaves’ dilemma of the existence of probably various and 
 alternating stages of hierarchical and non-hierarchical developments during 
tumor evolution is given by Raaijmakers et al. [5]. From their experimental 
observations, it can be delineated that ‘individual microenvironment constituents 
can serve as regulators of tissue functions beyond that of stem cell support’. 
Thus, the position of the so-called ‘cancer stem cell’ at the apex of a hierarchy 
is relativized because ‘the mechanism of malignancy may result from the 
 interaction of cell autonomous and microenvironmentally determined events’. 
The microenvironment may be the site of the initiating event that leads to secondary 
genetic changes, even in heterologous cell types. These observations presup-
pose  communicative processes between different cell types and consecutively 
suggest the holistic communicative systems community as the primary evolving 
unity. However, the question why heterogeneous neoplasias are developing 
upon a unique molecular-genetic aberration in a heterologous cell type remains 
unanswered.

 3. An important observation contradicting the Darwinian selection processes 
(selection of the fittest) describes how analogous acting and evolution-promoting 
processes (genotoxic stress) are translated into digitalized reproducible genomic 
structures in prostate cancer cells [6]: Novel findings elucidated several 
 unexpected general principles for non-random chromosomal translocations in 
tumors. ‘A long-standing concept in tumor translocation has been that genotoxic 
stress causes direct random double strand breaks (DSBs) that lead to ran-
dom  translocations, with the selection of those conferring growth advantages. 
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By devising and investigating a model of tumor translocations that fully mimics 
the frequency of in vivo events without proliferative selection’, Lin et al. sug-
gested that ‘there is a site-selective immediate pattern of DSBs that ultimately 
dictates the pattern of tumor translocations’.

The novel communication-based tumor model may be applied to explain the 
mentioned findings that occur during tumor development in an evolutionary 
context.

26.3  The Collapsed Reductionist Interpretations  
of Observations on Tumor Evolution Have Now  
to Be Reconstructed with Novel Methodologies

Systems objects as actors within a systems-associated biological context situatively 
gain novel and specified assignments of identities. The novel systems-associated 
identity may be even contradictory and of a completely different quality to 
any known object-associated identity (spin-off of novel systems functions). The 
 systems-associated identity of an actor, as the originator of a spontaneously accom-
plished communicatively-derived action, may be only retrospectively assigned to 
already established, object-associated identities. The object-associated identity 
only occurs as a ‘historical’ feature. The identity of a systems object is no inherent 
feature but is communicatively and situatively mediated. The more evolutionary 
processes involved, the more novel systems-linked identities of systems objects 
may be expected.

26.4  Implementation of Internally-Derived  
or Externally-Derived Modular Knowledge

Communicatively linked biological systems are interweaving the nude identity 
of their systems objects or the arrangement of compartmentalized knowledge 
(on the observer’s site) with situative biological stages or with the  communicative 
arrangement of systems objects’ validity and denotation (on the participator’s 
site) by allowing the implementation of internally-derived or externally-derived 
modular knowledge. This knowledge is based on rules that are present in modu-
larly arranged and rationalized systems textures, which are equitable with the 
‘metabolism’ of evolutionary systems and purport the frame for evolutionary 
multiplicity.

As shown by Lin et al., the implementation of modular knowledge as postulated by 
the formal-pragmatic communication theory may indeed initiate specific transloca-
tions within a distinctive systems context [3,6]. The liganded androgen receptors in 
combination with genomic stress (modular knowledge) are related to the development 
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of specific translocations in prostate cancer cells. This context-associated systems 
feature represents a pivotal example of how validity and denotation of systems objects 
(androgen receptor) is redeemed within a situatively characterized systems context to 
facilitate evolutionary processes.

Communication may be basically modular and leads to the rationalization of 
systems [1,3]. Implementation of modular knowledge is the configuration of the 
coherence between the validity and denotation of communication processes. Vice 
versa, modular therapies may supplement prepositional aspects of communication, i.e. 
the presence of a tumor’s living world by normative aspects, namely by therapy-
derived yes or no statements (‘know that’).

26.5  Objects Anticipate the Attitudes of Subjects

Context-dependent conflicting impulsions for operations mediated by distinct  systems 
objects deprive the respective objects of the features of an object; also the objects 
anticipate the attitudes of a subject. The emergence of a distinct description of an 
object that is only available ex post is closely associated with the transition to an evo-
lutionary novel stage of communication, also in the case of androgen  receptors in 
prostate cancer cells when liganded in the presence of genomic stress (irradiation).

The possible ‘no’ by which an addressee refuses an offer for communication does 
neither touch the validity of a communication act nor the identity of an addressee. 
Both sites have to acknowledge each other as systems actors; this acknowledgement 
represents an important prerequisite for evolutionary progression.

26.6  The Accomplishment of the Interactive Roles of Cells 
Within a Tumor Tissue may Never Only Imply  
their Reproduction

The description that interactions of ‘cell autonomous and microenvironmentally 
determined events’ support the mechanism of malignancy during the evolution 
of myelodysplasia and consecutive acute myelocytic leukemia points to a 
 communicative aspect that has been experimentally proven in a mouse model [5]. 
Also, this model of leukemogenesis suggests non-random molecular-genetic and 
genetic aberrations, even in heterologous cell types (hematopoetic cells), as a 
 consequence of initiating molecular-genetic aberrations in mesenchymal cells.

Despite a unique initiating molecular-genetic event, variable presentations of 
myelodysplasia and acute myelocytic leukemia in mice underline that the accom-
plishment of interactive roles of cells within a tumor tissue may never only imply 
their reproduction, as long as interactions are communicatively, i.e. to some degree 
non-hierarchically, structured: Therefore, a formal-pragmatic communication theory 
is necessary to explain communication processes within a cellular systems context.



542 A. Reichle and G.C. Hildebrandt

26.7  Homeostasis-Preserving ‘Social’ Subject

As actors (genes, proteins, and cells), systems participators acquire the objective 
relevance of both activity profiles, namely those of a (known) object as well as that 
of a situatively defined, evolutionary-linked systems subject. The actors simultane-
ously take in the perspective of another systems participator, thereby acquiring the 
feature of a homeostasis-preserving ‘social’ subject within the rules given by the 
‘metabolism’ of evolution.

Basically, acquired molecular-genetic changes in any cell have the chance to be 
repaired. Yet, the repair machinery including epigenetic mechanisms may not be 
able to resolve the problem for several reasons: (1) because of an inability to repair 
or compensate; (2) because of situatively provided communicative circumstances; 
(3) or because genetically altered cells may not be silenced in a communicative 
sense by their adjacent cellular environment. If the repair machinery fails, the 
altered cells start to participate in a localized or more global communication 
 process and may develop cellular systems in their function as potentially evolution-
promoting novel systems objects, thereby simultaneously preserving homeostasis 
as systems subjects. The manifestation of evolutionary tumor processes may be 
multimode, dependent on the communicative rules constituting the ‘metabolism’ of 
evolution. The unlimited cellular communication community finds its support in 
the structure of communication lines and intersystemic exchange processes.

26.8  The Situative Identity of Systems Objects Proves  
the Sustained Subjectivity of Communication

The not explicitly predictable situative identity of a systems object proves the 
 sustained subjectivity of communication as a medium, in which systems objects do 
not necessarily objectively acknowledge one another. Therefore, identity that backs 
itself is missing: (1) Identity is communicatively-derived. (2) Systems objects 
assume the normative expectations of the ‘alter’ (protein, cell etc.), the other  systems 
participators, but they do not stereotypically redeem reductionist expectations in a 
distinct systems context.

The situative identity of systems objects is facilitated by the acquired systems-
associated identity, which is characterized by modular and rationalized features. 
This identity also restrains, from an intersubjective perspective of a systems 
 context, the capability of a systems object to redeem established object-associated 
identities. Therefore, the observed broad variety of hematopoetic disease traits, i.e. 
myelodysplasias, acute myeloid leukemias [5] is fully consistent with the formal-
pragmatic communication theory, even if derivable from a single molecular-genetic 
aberration in a heterologous cell type (mesenchymal cells).

The object-associated identity of a systems object must not coincide with the 
situative identity as a systems subject. The situative identity is the originator of 
a  spontaneous action reference, which is implemented by modular knowledge: 
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The liganded  androgen receptor in connection with genomic stress may take on a 
 completely novel role in prostate cancer cells. Therefore, the identity of systems 
objects is defined by communication rules, which lie in an evolutionary horizon. 
The  identity of a systems object is related to the identity given by a situative evolu-
tionary systems context. This identity is defined ex post from the perspective of an 
actively participating but not necessarily reified molecular or cellular systems 
world (noise, no specific interactions) as symbolized by the so-called ‘background 
knowledge’, which is provided by the tumor’s holistic communicative world, i.e. its 
‘living world’.

As systems objects are getting integrated in a systems context, they are 
 constituted as objects capable of acting, thereby developing the possibility to redeem 
novel denotations and validity within communicative systems by the acquisition of 
systems-associated requirements, i.e. normative features.

26.9  Discussion: The Privileged Access of Systems Actors

The object-associated identity serves as a descriptive distinction towards the ‘alter’. 
The systems-associated identity as the originator of spontaneous activity aspects, 
i.e. spin-off of novel systems functions, represents the privileged access of a sys-
tems actor towards its own subjective microenvironment (communicative world) 
via expressive communication activities within a systems context. The object-
associated identity of a systems object, which directly describes the communication 
act, is the function of arbitrary acts directed at a communicative target. These com-
munication acts may be redeemed according to communication-derived rules and 
aim, for example, at preserving homeostasis; in an intentional sense, they also aim 
at inducing tumor control with biomodulatory therapies. Normative contexts limit 
the number of relations between the systems objects.

Within this communicatively defined frame, smallest multimode systems 
become conceivable, which implicates that multimode ‘niches’ supporting tumor 
evolution may occur on the background of evolutionary texture (‘metabolism’ 
of evolution). Consecutively, multiple clonal phenotypes may arise, fully consistent 
with the observations compiled by Greaves for acute lymphocytic leukemia.

The communicative systems world of a tumor has equitable systems partners, 
i.e. systems are not unidirectional built up by genes. Vice versa, the analogously 
working communicative systems have the capability to implement external or 
 internal modular knowledge, or both, to promote the digitalization of evolutionary 
processes in form of reproducible genetic aberrations.
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Abstract The successful implementation of biomodulatory therapies for controlling 
a wide variety of metastatic types of cancer has been demonstrated in multiple clinical 
phase II trials. These therapies have opened up new perspectives for studying novel 
tumor models, which may explain response to combined biomodulatory therapies. 
Hereby, insights in evolutionary systems structures have become possible.

Keywords Adaptive trial design • Modularity • Personalized medicine • Tumor 
evolution • Metastatic tumor

27.1  Introduction

Comprehensive interpretation of a tumor disease is a prerequisite for the successful 
systemic treatment of metastatic tumors. Such interpretations consider classical 
parameters, i.e. histology, cytogenetics, molecular-genetics, pharmacogenetics, 
 cellular phenotypes, clinical parameters, and natural history. The course of a dis-
ease, including its therapy-related side effects, and a patient’s holistic perception of 
the disease offer rather different perspectives for individualizing the treatment of a 
tumor disease.

Oncologists have to cope with individual tumor diseases in distinct  evolutionary 
systems stages beyond the routine ascertainment of a widely scattered spectrum of 
often incommensurable tumor-associated parameters, which are finally gathered in 
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a contextualist, theme-dependent compilation of tumor-associated  pathomechanisms. 
Only this method allows consistency with the principle of medical treatment, i.e. to 
select  therapies for patients and not – as commonly practiced – to select patients for 
therapies, which corresponds to the general comprehension of a personalized 
tumor therapy.

27.2  Tumors Are Communicative Networks

One of the primary tasks of oncologists is the therapeutic accomplishment of 
 specific functionally characterized evolutionary stages of tumor diseases. The 
interpretation of a tumor’s functional stage has necessarily communicative 
aspects. Tumors are now considered as communicative molecular or cellular 
 systems, which – in contrast to the well-known reductionist theme-dependent 
 compilation of tumor models – should be uncovered in a time-sensitive manner and 
discussed in an evolutionary context. Methods investigating communicative tumor 
processes must be detached from established exclusively reductionistically or 
 contextualistically derived considerations about tumor-associated systems  structures 
including the favored cause-effect-chain.

Reductionistically derived therapy approaches preferably rely on the multitude 
of tumor-associated chromosomal aberrations and the associated disturbances of 
protein functions or signaling pathways. Contextualistically compiled and theme-
dependent treatments are characterized by the concomitant use of multiple small 
molecules or antibodies targeting circumscriptive tumor-associated pathomecha-
nisms. Drugs targeting the synthetic linkage of biological processes, such as bispe-
cific antibodies, are now increasingly used in clinical trials.

Communicative relationships primarily lie in the post-genomic world,  constituting 
the holistic functional world of cells, proteins, and mediators. The main questions 
that need to be answered are:

How can we get an appraisal of the • evolutionary stage of an individual tumor 
system?
What are the carriers and propagators of multimodal interwoven evolutionary • 
developing tumor systems?
Are these • systems reconstructible and classifiable to be used as a future base 
for broadening therapeutic options?

A reductionistically derived answer to these questions lists multimodal specified 
tumor features, which are suggested to generally promote tumor growth: Tumor-
associated inflammation, neoangiogenesis, Warburg effect, insufficient immuno-
logical response, extracellular matrix remodeling, cell proliferation rate, apoptosis 
defects, coagulation effects, cellular niches, and molecular genetics, etc. 
Reductionistally derived, theme-dependent knowledge does not answer the ques-
tion of how these  phenomena interact in the evolutionary stage of an individual 
tumor disease – communication, communication distortion, and communication 
disruption come into play.
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27.3  From Molecular to Modular Tumor Biology

A prerequisite for solving the above questions is to therapeutically, and thereby 
communicatively, interfere with tumor systems in such a way that the following 
targets can be achieved:

Objective tumor response – the crossing point of reductionistically and holisti-• 
cally derived therapeutic interventions
At the same time, novel insights into how tumor systems differentially interfere • 
with biomodulatory combination therapies

Systems-associated biomarkers derived from the cellular secretome or from 
molecular imaging techniques are novel indicators for differential systems response 
and may characterize tumor-associated systems behavior (e.g. C-reactive protein 
(CRP) for tumor-associated inflammation). Communicative systems architectures, 
their intersystemic exchange processes, and functional organizations may be com-
pared among different tumor types to detect differential, namely modular systems 
activities in response to identical biomodulatory therapies.

Multimode technologies have uncovered myriads of prognostic parameters for 
stages of tumor diseases as well as for corresponding therapy approaches. 
Nevertheless, a big gap still exists for systems-derived markers, which may indicate 
successful biomodulation of distinct tumor-associated molecular systems or cell 
compartments. Ideally, systems-associated biomarkers mirror  therapy-relevant 
changes in the behavior of tumor subsystems. These biomarkers are, to some degree, 
independent of the repertoire of the administered biomodulatory acting drugs.

Biomodulatory therapy approaches are marked by their ability to specifically 
modulate the evolvability of tumor systems with the aim of tumor control and of 
achieving objective response. Modular, evolutionary context-embedded activity of 
biomodulatory therapies is contrasted by the aspired selective theme-dependent 
activity (e.g. cytotoxic, anti-angiogenetic activity, etc.) of reductionist approaches 
for the treatment of metastatic tumors.

Biomodulatory therapies with the capacity to induce complete response proved 
to be, for example, metronomic low-dose chemotherapies plus the combination 
of transcriptional modulators. Unlike reductionist treatment approaches, bio-
modulation can include drug combinations with stimulatory effects. Biomodulatory 
therapies are often characterized by no or poor monoactivity of the single drug in 
the respective tumor type.

27.4  Model-Creating Capacity of Biomodulatory Therapies

The successful implementation of biomodulatory therapies for controlling a wide 
variety of metastatic types of cancer has been demonstrated in multiple clinical 
phase II trials. These therapies have opened up new perspectives for studying novel 
tumor models, which may explain response to combined biomodulatory therapies. 
Hereby, insights in evolutionary systems structures have become possible.
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Response evaluation during the administration of biomodulatory therapies 
excludes reservation towards objectivity of attained therapy results. The decisive 
scientific turn with respect to content and methodology, of how to create objective 
knowledge about holistic and communicatively appreciated tumor systems, is related 
to the fact that available response data, including biomarkers characterizing systems 
behavior, allow the interpretation of

The • individual evolutionary status of a tumor disease in a tumor type- and 
stage-specific manner
The collected data combine classic response criteria with information indicating • 
differential systems responses, enabling therapy-derived systems interpreta-
tions and classifications

The model-creating capacity of biomodulatory therapies is closely linked to novel 
systems-derived biomarkers (e.g. CRP, peroxisome proliferator-activated recep-
tor (PPAR) gamma expression), the functionally varying secretome of cells within 
the tumor compartment, and parameters derived from molecular imaging 
techniques.

The novel scientific field, therapy-derived systems biology, covers technical 
and conceptual aspects:

How are biomodulatory therapies performed?• 
What drugs may be combined?• 
How may the individual • evolutionary status of a tumor be interpreted?
How can therapies be rapidly adapted to the tumor’s situational and evolutionary • 
status (adaptive trial design).

27.5  Therapy-Derived Systems Biology: A Formal-Pragmatic 
Communication Theory

The two uncovered model-constituting principal determinants are the tumor systems 
modular architecture and systems-immanent rationalization processes. Both 
systems features allow the explanation of objective response to drug combinations 
without significant monoactivity as well as different response kinetics. The bio-
modulatory activity of the administered drug combinations is underlined by much 
delayed, but also by very rapid (striking the Achilles’ heel) objective responses.

A basic assumption of the novel underlying formal-pragmatic communication 
theory is the tumor’s ‘living world’ which comprises the tumor’s holistic com-
munication processes, on which we rely in every therapy. The ‘living world’ of 
morphologically defined tumor cell systems creates the term opposite to those ide-
alizations, which originally constitute scientific (intentional) knowledge. The ‘liv-
ing world’ is uncovered by redeeming validity of communicative tumor processes 
by implementing modular knowledge of the cellular and external environment 
(for instance for therapeutic requirements).
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The tumor’s ‘living world’ can only be divided into categories of knowledge, for 
example modular systems textures, by experimental or therapeutic experiences 
(biomodulatory therapies). Primarily the ‘know that’, i.e. the activity of a biomodu-
latory therapy approach, is sufficient, whereas the ‘know how’ has to be evaluated 
further, again in a reductionist sense. In contrast, the cause-effect-chain represents 
a fundamental prerequisite to justify theme-dependent therapeutic procedures, but 
these may be not necessarily related to the tumor’s evolutionary status.

27.6  Novel Systems Determinants Constitute a ‘Big World’ 
Inside Small World Networks

Modularity in the present context is a formal-pragmatic communicative systems 
concept, describing the degree and specificity to which systems components (cells, 
pathways, molecules, etc.) may be communicatively separated in a virtual contin-
uum, reassembled, and rededicated (e.g. co-option) to alter validity and  denotation 
of communication processes. This concept refers to possible interactions between 
the systems objects (cells, pathways, molecules, etc.) in a tumor as well as to the 
degree to which the communicative rules of the systems architecture (for 
 establishing validity and denotation) enable or prohibit the focus on the validity and 
denotation of systems objects. Systems objects acquire the features of symbols, 
which are rich in content and able to acquire novel references by rearranging 
 validity and, consecutively, denotation. Tumors consist of modules, which become 
a scientific object by communicatively uncovering the tumor’s ‘living world’ 
(defined as the tumor’s holistic communicative world) with biomodulatory and 
therefore modularly designed events.

Biomodulatory therapies represent a novel therapeutic instrument, which  supplements 
molecular tumor therapies (e.g. blockade of pathways, classic  cytotoxicity) by 
modular, evolution-adjusted tumor therapies.

Rationalization processes turned out to be important targets of biomodulatory 
therapies: The functional spectrum of distinct cell types within the tumor 
 compartment is limited despite the commonly observed huge plasticity and may be 
challenged by the required systems-associated functions directed at the systems 
objects. These profiles of requirements may lead to discrepancies within the 
 systems, which may be described as inconsistencies, Achilles’ heels, and deforma-
tions or missing intersystemic exchange processes. Additionally, we have to expect 
that different patterns of cell types within the tumor compartment may promote 
particular functions, such as tumor-associated inflammation, in a concerted action 
as well as in a tumor type-dependent manner.

The modularly structured and rationalized ‘living world’ of single cell compart-
ments or tumor systems represents the horizon for the practice of inter- and intrac-
ellular communication and understanding, in which communicatively acting 
‘rationalized’ subjects, i.e. cellular proteins, cellular compartments, and niches, are 
continuously trying to implement modular ‘knowledge’ by redeeming novel 
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 validity and denotation: Modularity of cell systems and proteins enables to 
 constitute a ‘big world’ inside ‘small world networks’.

The focus on the ‘living world’ of tumors with

• Novel scientific instruments (biomodulatory therapies, hermeneutic 
considerations)
Novel • read-out parameters (secretome analytics, molecular imaging)
Scientific organization structures • (translational science) may contribute to a 
contemporary diagnostic self-conception of dynamically evolving, stage- and 
tumor-specific functions. The tumor’s ‘living world’ delivers the resources for 
interpretation processes. With these interpretations, the operator (e.g. the oncologist) 
tries to cover the necessary requirements for understanding the mechanisms of 
action of distinct biomodulatory therapy approaches. The resulting formal-
pragmatic communication theory has, presumably, broad impact on the thera-
peutic practice of metastatic tumors and personalized tumor therapy.

Reductionist systems approaches are now opposed by a holistic communication-
based model, the tumor’s ‘living world’, which is uncovered by implementing 
modular knowledge into cellular and molecular environments, for instance for 
therapeutic requirements: The tumor’s whole communicative system is subjected 
to modular interventions pursuing integration of complex biochemical systems 
processes.

27.7  Tumors May Be Viewed and Uncovered as 
Communicatively Structured Holistic Systems

Biomodulatory therapies broach the issue of the tumor’s ‘living world’ as a holistic 
and self-contained communication process by configuring situational stage- and 
tumor-specific evolutionary systems features (Fig. 27.1). Therapy-derived configurations 
are based on rules of modular molecular architectures as well as on cellular 
rationalization processes. The holistic aspect allows therapy-derived situational 
systems interpretations in an evolutionary context as well as systems classifications 
without preconceived teleological notions.

Novel modular architectures may be configured by the compliance of 
 biomodulary therapy approaches with modular tumor architectures. In case of miss-
ing redemption of validity and denotation, noise develops, which may produce 
stress that may be spontaneously silenced and repaired, or otherwise could be 
directly involved in redeeming novel validity and denotation of communicative 
processes (Fig. 27.2).

Individual tumor-associated evolutionary systems stages are separated episodes 
of the tumor’s ‘living world’ with respect to distinct issues or intentions, namely 
the aspired growth control of respective metastatic tumors. Systematic  administration 
of biomodulatory therapies in multiple tumor types has uncovered a novel therapeutic 
instrumental cascade:
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Biomodulatory therapies broach the issue of 
the tumor’s ‘living world’ by configuring 

situational, stage- and tumor-specific systems features

Therapeutic accomplishment
of distinct

tumor-associated situations

Technological aspect:
Development of a
therapeutic plan
• Biomodulatory therapy

• Implementation of 
modular knowledge

Communicative aspect of the
situation‘s analysis

Molecular imaging, secretome analytics
(Prerequisite of personalized therapy)
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The operator‘s
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Fig. 27.1 Biomodulatory therapies broach the issue of the tumor’s ‘living world’ as a holistic and 
therefore self-contained communication process by configuring situational, stage- and tumor-
specific systems features. The tumor’s evolutionary-derived stages are separated episodes of the 
tumor’s ‘living world’ with respect to distinct issues or intentions, namely the aspired growth 
control of respective metastatic tumors

Validity of modular communication processes may be altered by stage- and • 
tumor-selective therapies to refocus differential denotations of constitutive 
tumor processes, e.g. inflammation.
Thereby, modularly constituted communication processes lose their primary • 
purpose, i.e. growth promotion, to finally induce attenuation of tumor growth.
Conclusively, biomodulatory therapies modify the prerequisites for validity of • 
communicative molecular or cellular processes, which are lying in the tumor’s 
‘living world’, thereby necessarily altering their denotation.

27.8  Evolutionary Systems Development

Tumor-specific and stage-specific therapeutic accessibility of, for example, 
inflammation-related processes to induce response in a wide variety of histological 
tumor types indicates:

A • constitutive spin-off of new systems functions during the metastatic process 
(tumor evolution).
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Furthermore, this accessibility shows different integration of inflammation into • 
the tumor compartments’ ‘living world’ that is featured by tumor-specific and 
subtype-specific rationalization processes.
Inflammation-related activities are communicatively promoted and differentially • 
adapted during tumor evolution.
Empirically, differences may be detected in modalities of • evolutionary systems 
development and in the acquired functional impact of inflammation-related 
systems.

Biomodulatory therapies, administered as fixed modules, may contribute to the 
discovery and understanding of novel regulatory systems in tumor biology.

Interestingly, identical biomodulatory therapy components (modules) induce • 
clinical activity via differential tumor-associated systems.
As shown, intersystemic exchange processes may be decisively disturbed • 
 (Comparative uncovering of tumor systems biology by modularly targeting 
tumor associated inflammation, Reichle A, Hildebrandt GC).
In addition, biomodular therapies provide a methodological equipment to • 
describe evolvable tumor systems with steadily advancing modular architec-
tures and rationalization processes.

‚Modus operandi‘: Differential perspectives of interaction
are entangled with various levels of knowledge

The operator‘s view
(e.g. oncologist)

presumes a frame of references

Cognitive modus:
• Targets of therapy

• Nude identity of systems‘ objects
• Compartimentalized knowledge

(Objectifying attitude)

Interactive, ‚regulative‘ modus:
• Implementation of modular knowledge

• Communication rules
(Attitudes that are situation-dependent and conform to

communication-derived rules)

Expressive Modus:
-Objective tumor response

Configuration of novel modular architectures:
• Noise: No redemption of validity and denotation,

• Compliance with modular architectures
(Expressive attitude resulting in

evolutionary processes)

Aim:
Tumor control

The operator
as participator of

the system

Fig. 27.2 Novel modular architectures may be configured by the compliance of biomodulary 
therapy approaches with situational architectures. In case of missing redemption of validity and 
denotation, noise develops which may produce stress that may be spontaneously silenced or 
repaired, or otherwise could be directly involved in redeeming novel validity and denotation of 
communicative processes
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Modularly acting events, such as modularly designed therapies, may induce 
 significant modular response in socially linked cell systems (prerequisite) and may 
provide room for evolutionary development by redeeming novel validity. 
Following modular events, molecular-genetic alterations may also occur.

The additional assumption of Darwinian selection processes is no prerequisite 
for explaining evolutionary processes. Selection processes are indispensable 
within reductionist considerations. But what is the ‘vis a tergo’ for selection 
processes? Modularity is sufficient to operationally define evolvability, which 
includes failure, fallacies, inconsistencies, and rationalization processes. 
Necessarily, evolution does not aim at selecting the fittest. Achieving compliance 
with modular architectures is sufficient enough, as long as reproducibility and 
survival remain preserved.

Biomodulatory therapies are currently being implemented in a wide variety of 
different metastatic tumor types. Thereby, these therapies simultaneously delineate 
novel tumor characteristics linked with evolutionary processes.

• Tumor-type comprehensive anti-tumor activity of biomodulatory therapies 
indicates to some degree invariant processes of nature-promoting leukemo- and 
tumorgenesis, which now have to be classified according to their modular 
background.
In interaction with stromal tissue, leukemic as well as tumor (stem) cells use • 
processes according to laws of nature to establish infrastructures (modular 
 systems) favorable for proliferation.

27.9  Adaptive Trial Designs

Procedural aspects of biomodulatory therapies are closely guided by 
 tumor-inherent rationalization processes and modular tumor architectures, which 
are frequently based on complex chromosomal aberrations in metastatic tumors. 
Modularity and rationalization as model-immanent determinants have an enormous 
effect on the design of biomodulatory therapy concepts, and finally necessitate 
adaptive trial designs by inclusion of systems-relevant biomarkers for follow-up. 
These markers may indicate early systems response as prerequisite for objective 
tumor response or chronification of tumor disease. On the other hand,  biomodulatory 
therapies could be rapidly changed in case of insufficient marker response (high 
‘through-put’ consecutive administration of biomodulatory therapies adapted 
to evolutionary-derived systems stages).

Biomodulatory therapies pose the question about therapy-relevant study 
 endpoints. Systems-related surrogate markers may predict disease chronification 
and early or delayed induction of objective tumor response. Knowledge about 
intersystemic exchange processes and the architectural constitution of tumor-
associated modular subsystems helps to develop rapidly changing adaptive trial 
designs allowing changes of treatment modules. Implementation of adaptive 
trial designs requires the availability of different combinatory biomodulatory 
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therapies, demonstrating specific activity on stage- and tumor-specific modular 
systems  architectures. Furthermore, intersystemic exchange processes must not 
be disturbed to alter  validity and denotation of systems processes involved in 
tumor progression.

27.10  Biomodulatory Therapies Accentuate  
and Focus Practical Issues

Specified plans for therapeutic interventions implementing biomodulatory  therapies 
accentuate and focus practical issues: Biomodulatory therapies and their communi-
cative feature manage tumor-associated functional situations and stages by redeeming 
novel validity and denotation of the communicatively linked objects of tumor 
systems in a range of modest toxicity. Thereby, such therapies may initiate 
organ-site specific activity.

The formal unity of all available competitive or supplementary systemic therapy 
concepts for the growth control of metastatic tumors, derived from and directed at 
different communicatively designed tumor models (reductionist, contextualist, or 
holistic), may not be sustained any more by a unique conception with regard to 
 contents. The diversity of therapeutic conceptions decisively reflects particular tumor 
models, which we perceive as ‘appropriate’ in a single patient’s disease.

The hermeneutic technique (intensio obliqua) used for the present  therapy-derived 
systems description may now partially overcome traditional scientific procedures 
of discussion (intensio recta). The reason for this change may be that the herme-
neutic technique remains susceptible for holistic communicative concepts, 
which supply the background of all pathways, proteins, and cell functions 
 uncovering the modular behavior of all these systems subjects in response to 
 biomodulatory therapy approaches.

27.11  Holism and Reductionism Represent Separate, 
Scientifically Accessible Scopes of View

Reductionism as an alternative method to derive scientific knowledge about tumor 
systems shows that complex systems can be explained by theme-dependent knowl-
edge, i.e. pathways and complex gene aberrations. Why is the emerging  tumor-associated 
systems behavior hard to predict from a reductionist point of view? The number of 
interactions between components of cellular or molecular systems – which increase 
combinatorially with the number of components – and the  interaction patterns are 
characteristically restricted by the respective modular evolutionary status of the tumor 
systems architecture (the ‘living world’), thus potentially enabling the emergence of 
many new and subtle types of behavior. The temporally restricted appraisal of  modular 



55527 From Theme-Dependent to Evolution-Adjusted Tumor Therapy

systems arrangements in particular is the domain of holistic and therefore 
 communication technical methodological approaches.

The successful introduction of biomodulatory therapies in metastatic tumors 
underlines that holistic communicative processes may be successfully studied at their 
own autonomous level of analysis, i.e. the tumor’s ‘living world’, to uncover evolu-
tionary processes as basis for therapy-relevant knowledge. In so far, socially linked, 
communicative tumor systems as a ‘whole’ are not reducible to or completely 
 explicable in terms of reductionistically derived descriptions of tumor behavior.

To place the study of systems into manageable and simplified frameworks, the 
tumor’s ‘living world’ is commonly conceptualized as a nested hierarchy of 
tumor-associated components, ranging from the DNA-based heritage to tumor and 
stroma cells, to tumor tissues, to the hosts’ organs, and to the host. Kolch remarked 
that ‘we try to find out the function of a system by disassembling it and measuring 
the activity of isolated components. This approach is very successful in characterizing 
the individual parts but very limited in reconstructing the evolutionary  development 
of a system as a whole’ (Kolch W (2008) Defining systems biology: through the 
eyes of a biochemist. IET Syst Biol 2:5–7). This systems concept as antithesis to 
reductionist concepts remains fully consistent with reductionist scientific approaches. 
This concept has to face the problem that small, circumscriptive, theme-dependent 
systems patterns do not necessarily explain large scale phenomena, the spin-off of 
novel systems features, or the evolutionary-based behavior of  holistic communica-
tive tumor systems.

The sentence ‘the whole is more than the sum of its parts’ (Aristotle in The 
Metaphysics, 1045a10) concisely emphasizes the problem that a (tumor) system 
as a holistic system develops complex, often little understood stage-dependent and 
situate interactions. When applied to cancer, this problem may be, at least to some 
degree, due to the autonomous modular-based development of tumor systems 
(chapter 26). The therapeutically successful access to tumor systems by commu-
nicative interventions (biomodulatory therapies) may now separate the object of 
interest, the tumor’s ‘living world’, which is composed as a holistic communica-
tive system in categories of knowledge, i.e. the modular architecture and rational-
ization processes.

27.12  The Ambition for Personalized Tumor Therapy: 
Configuring Situational, Stage- and Tumor-Specific 
Systems Features

The ambition for personalized tumor therapy is reluctant towards any kind of func-
tional reductionistically derived specification, trying to categorize ‘ tumor-inherent’ 
functions as disastrous tumor features, i.e. tumor-associated inflammation, neoan-
giogenesis, Warburg effect, immunological response, extracellular matrix remod-
elling, cell proliferation rate, apoptosis, coagulation effects, cellular niches, or 
molecular genetics.
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Instead, ubiquitously available therapy-relevant targets are differentially involved 
in distinct tumor-associated molecular or cellular subsystems, dependent on the 
tumor type and stage. These targets are part of a holistic view and susceptible to 
biomodulation. Personalized tumor therapy approaches focus on biological effects 
in systems involved in tumor progression by redeeming novel validity and 
 denotation of particular modular systems and intersystemic exchange processes, 
which present basic mechanisms to finally attenuate tumor growth.

27.13  Outlook

The current ‘colonization’ of the tumor’s ‘living world’ – which is sometimes 
characterized by emancipatory interests of basic sciences, sophisticated techniques, 
market, capital, laws, and redtapism – has to be criticized as these colonization 
processes may constrain the view for principally communicatively linked tumor-
associated systems processes. Instruments for merging different scientific direc-
tions for systems-theoretical considerations are missing. Basic research is 
predominantly technology-oriented, aligning itself with the dichotomy of structure- 
and function-analytical problems. Pre-clinical therapy models focusing on biomodu-
lation necessitate closer cooperation between academic institutions, biotechnology, 
and pharmaceutical industries. Further advancement of various scientific resources 
are needed to uncover novel biomodulatory combination therapies, to study these 
therapies in a systems-associated context, and to develop adaptive trial designs.

Modular situation-adapted therapy approaches have to ‘conquer’ their position 
among already established theme-dependent therapy concepts compiled in a reduc-
tionist and contextualist manner. Potentially, highly chemoresistant and genetically 
complex tumors may become susceptible to post-genomic modular therapies. The 
alternative approach, experimental or therapeutic knock-down of single or multiple 
tumor-associated aberrations in metastatic tumors, has not yet overcome the tumor 
systems robustness in case of multiple or complex tumor cell-associated genetic 
aberrations.

The more evolutionary processes are involved in tumor progression, the more 
modularly designed tumor therapies could be applied, which should be of advantage 
in comparison to contextualistically compiled therapy concepts. Successful bio-
modulatory therapy approaches in castrate-refractory prostate cancer, metastatic 
renal clear cell carcinoma and melanoma etc. point in this direction (Systems 
Biology: A Therapeutic Target for Tumor Therapy, Reichle A, Vogt T, chapter 12).
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