
CHAPTER 2

Global State-of-the-Art Overview

Abstract

The work presented in this book targets nomadic battery operated embedded
systems. In this context, a large amount of related work exists. The goal of
this chapter is to present a structured overview of the relevant related work in
the design of embedded systems, which forms the broad context. The presented
ordering will cover both the architectural as well as the related mapping aspects.
An overview will be presented of the state of the art for the different components
that form an embedded system. Specific related work and comparisons the indi-
vidual contributions of this book will be presented in the respective chapters.

The rest of this chapter is structured as follows: Section 2.1 present an
overview of the architectural components, namely the processor core, Data
Memory Hierarchy (DMH), Instruction/Configuration Memory Organization
(ICMO) and the inter-core communication architecture. Section 2.2 intro-
duces the related work on the architecture exploration over this space which
forms a key aspect of the embedded systems design, together with the eva-
luation methods and relevant criteria or cost metrics. Finally Section 2.3
concludes this chapter.

F. Catthoor et al., Ultra-Low Energy Domain-Specific Instruction-Set Processors, 17
DOI 10.1007/978-90-481-9528-2 2, c© Springer Science+Business Media B.V. 2010

Global State-of-the-Art Overview

2.1 Architectural components and mapping

Figure 2.1 shows the main components of an embedded system. At the heart
of the system, the processor core performs the computations of the appli-
cation. It operates on the application data, which are stored in the Data
Memory Hierarchy. The DMH can consist of multiple individual memories of
different sizes. The type of operations that need to be executed by the proces-
sor and their required order is stored in the Instruction/Configuration Memory
Organization. As with the DMH, the ICMO can consist of multiple memories.
Modern embedded systems often contain multiple processor cores and use an
inter-core communication architecture to connect all components and enable
the data transfer between different processors and memories.

The rest of this section will discuss the relevant related work for each of the
components of Figure 2.1, including the techniques that are used to map
applications efficiently to these architectural components.

2.1.1 Processor core

The processor core consists of the hardware that executes the operations
(the datapath), the foreground memory from which the operands are loa-
ded and to which the results are stored back and the local interconnection
between these components. In addition to these components, the processor
core also consists of other components like processor pipelining and the issue
type. In this book, the foreground memory is defined as the memory to and
from which reads and writes happen in the same cycle as the processing, e.g.
register files, pipeline registers. Related work on these individual parts can
be structured according to these components as shown in Figure 2.2. Based
on the design decisions made for each component, processor styles can be
defined. The state-of-the-art processors representative for those styles, will
be categorized and described and the end of this subsection.

Figure 2.1: Processor architecture space

18

Architectural components and mapping

Figure 2.2: Processor core architecture space

2.1.1.1 The FUs, slots and PEs of the datapath

Depending on the community, the terms FU, slot and PE can be used to re-
present the same or different architectural components. Therefore a clear
definition is presented below, that is followed throughout the rest of this
book.

Functional Unit (FU) The hardware component that executes an operation
of a specific type, e.g. and adder, multiplier or shifter. A single-issue
processor can still contain multiple FUs, but then only one FU can start
execution in a certain cycle.

Slot A group of FUs that are used mutually exclusively. Multiple (issue) slots
can execute in parallel. The terms slot is commonly used in Very Large
Instruction Word (VLIW) processor literature.

Processing Element (PE) Similar to a slot, but can also contain a local data
or instruction storage. The term PE is commonly used in reconfigurable
hardware literature.

Operation The functionality that is executed by an FU, e.g. ADD, MUL,
SHIFT.

Instruction The binary representation that determines what operation will
be executed by a single slot or PE. In VLIW literature, the VLIW-
instruction is a concatenation of the instructions for all parallel slots.

In conclusion, the slots or PEs of a processor typically consists of different
types of Functional Units and each FU supports a different functionality. The

19

Global State-of-the-Art Overview

instructions decide what operation is executed on a certain slot and on the
corresponding FU within that slot. Typically the combination of FUs into slots
or PEs is called the processor datapath.

Processors can differ in the type and mix of FUs and in the number of slots. In
order to be able to efficiently execute their target application domains the de-
signer has to match these parameters to the requirements of the application.
The set of operations that is supported by the FUs of a processor is called the
instruction set. Various techniques exist that identify customized instruction
set extensions and implement them [VPr94, Che05, Lee03, Yu04] . These
techniques identify appropriate sub-graphs from the control-data flow graph
that can be executed by a single customized FU and in a way that efficiently
accelerates the application.

The number of slots of the processor determines the amount of instructions
that can be issued in parallel (Instruction Level Parallelism or ILP). Various
processors offer different levels of instruction level parallelism [TI00, Phi,
VdW05]. A range of techniques exist to compile to architectures with mul-
tiple issue slots. For example modulo scheduling or hyper-blocking [Ron07,
Rau94, Mah92] increase the number of instructions that can be scheduled
together.

Irrespective of the number of parallel slots (the ILP), each of the different FUs
of the processor can potentially support the execution of the same operation
on multiple data words in parallel. This is called SIMD (Single Instruction
Multiple Data) and is a form of Data Level Parallelism or DLP. Various pro-
cessors offer different possible SIMD possibilities [Fre, Int, TI00, VdW05].
The individual data elements on which the operation is performed in parallel
are called sub-words and together they form a word. In order to exploit the
DLP that is present in the application, often the data layout (the order in
which the data is stored in the memory) has to be modified and the data sub-
words that will be operated in parallel have to be (re-)packed together into
words. This process, together with the re-structuring of the application code
to perform the data parallel execution is called vectorization or SIMDization.
Various SIMDization and transformations techniques have been proposed in
literature [Bou98, Xue07, OdB03, Lar05].

2.1.1.2 Foreground memory (or register files)

The second component of the processor core is the foreground memory, from
which the data is loaded and to which the data is stored back after the exe-
cution. The foreground memory organization consists of the Register File (RF)
and the connectivity between the RF and the FUs or between different FUs
(forwarding/interconnection) (see Figure 2.2).

20

Architectural components and mapping

The biggest challenge when designing a register file is to balance the need to
deliver data in parallel to all slots with the requirement to keep the number of
ports low for a feasible implementation and higher energy efficiency [Rix00a,
Lap02]. Clustering (splitting into parts) of the register file is a typical tech-
nique to allow delivering data in parallel to many slots in a scalable way
without increasing the number of ports per register file. However the com-
munication between the different clusters can have a negative effect on
performance. An extensive study of various inter-cluster communication
architecture is presented in [Gan07].

Other types of foreground memory organizations have also been proposed,
ranging from hierarchical register files [Zal00a] to FIFO based register files
[Tys01, Fer97]. Vector register files [Kap03, Asa98, Koz03] target data paths
that provide data level parallelism (SIMD) and form another important class
of foreground memory.

For each of these architectures a range of register allocation techniques exist
[Zha02, Smi04, Cha82]. Some techniques like [Das06] target specific strea-
ming models of register file as well.

In addition to the register file and the datapath, most state-of-the-art proces-
sors have special forwarding paths between the functional units. This allows
more flexibility as data can be sent from one FU to another without passing
through the register file [Gan07, Sch07]. As the availability of forwarding
paths has an impact on the register allocation, the compiler which maps to
these architectures must also support such forwarding paths.

2.1.1.3 Processor pipelining

Processor pipelining is a design method that inserts an extra register be-
tween different phases of the processor execution. Typically different stages
are used for Fetch, Decode, Execute and Writeback [Hen96]. As a result the
critical path is shortened, which allows increasing the clock frequency. In or-
der to reach the required clock frequency for current designs, state-of-the-art
processors have a pipelining depth ranging from 3 to 12. However, increasing
the frequency arbitrarily will lead to the additional stages and an increase in
the dynamic energy/power consumption due to the extra registers. In extre-
mely scaled technologies, timing differences due to process variation lead to
even more design problems for very high clock frequency processors. There-
fore the processor design needs to carefully balance the exploited parallelism
and target frequency (linked to the pipelining depth) in order to reach the
required performance.

21

Global State-of-the-Art Overview

2.1.1.4 Issue logic

Different processor types can be categorized based on the order in which
they issue and complete their instructions. Some processors support the out-
of-order issuing of instructions. Out-of-order execution requires the hardware
to keep track of what hardware is currently in use, which instructions have
been executed, which operands have been produced etc. Alternatively, the
responsibility of keeping the hardware busy can be moved to the compiler, in
which case, in-order issuing can be used and no expensive hardware is requi-
red. With respect to the completion of the instructions, two types exist. With
in-order completion, the results need to be written back in the same order as
the instructions have been issued. With out-of-order completion, this restric-
tion is removed, which leads to more flexibility, but a higher complexity.

Traditionally techniques like speculative execution, out-of-order issue and
completion are extensively used in high performance super-scalar processors
e.g. Intel’s series of x86 processors, Power PC. In battery operated embed-
ded systems, due to the energy efficiency requirement, a preference is given
to simple hardware and the issue (and completion) order of instructions is
fixed by the compiler at compile time. Using techniques like software pipe-
lining, the execution can follow a different order than is given by the DFG,
thereby creating freedom to optimize the performance. This allows much
lower overhead at run-time and therefore is more energy efficient.

2.1.1.5 Overview of state-of-the-art processor classes

The embedded processor space contains a wide range of options. On one side,
very low power processors target battery operated or even self-sustaining sys-
tems, but provide only a limited performance. On the other side, very parallel
types can provide an extremely high performance in case a larger battery or
a connection to the power grid is acceptable. The state-of-the-art embedded
processors can be split up into different processor types, each offering a dif-
ferent trade-off point in the performance vs. energy efficiency vs. mapping
effort space. At the lowest performance and lowest flexibility side of the pro-
cessor spectrum, ultra-low power micro-controllers, like TI’s MSP430 [TI09a]
can be used to do very basic types of processing. They are good candidates
when the total energy budget is extremely constrained and when the work-
load and performance requirements are correspondingly low. They are na-
mely optimized mostly for control tasks.

Slightly more flexibility can be provided by small sequential RISC proces-
sors, e.g. [ARM09a]. They are typically small in-order single slot machines
that have a shallow pipeline and that can exploit only a limited amount of
parallelism.

22

Architectural components and mapping

Another class of ultra low power processors are targeting sensor nodes (as
shown in Figure 1.1). These processors have a power budget in the range of
tens to hundreds of microwatt. Examples are [Eka04, Kar04, Cal05, Naz05].
But also in that case, the maximal performance is heavily limited. Espe-
cially at U.C. Berkeley [Rab0-] major efforts have been invested to moti-
vate the need to improve the energy efficiency to reach the levels of these
scavenging limits, and to contribute in these improvements for sensor node
networks.

By providing multiple slots, VLIW processors can increase the performance,
while minimizing the required hardware overhead (compared to superscalar
processors). Low power embedded VLIW processors can typically execute
between 2 [TI09b] and 8 [TI06] operations in parallel. Most of them combine
this however with a limited form of data parallelisation on several of the
slots (e.g. the C6x series of TI and the TriMedia of NXP [VdW05]). So every
instruction then executes several operations in parallel (e.g. 2 tot 4). This
can potentially increase the maximal performance significantly. Many VLIWs
provide a rather general instruction set and therefore are still quite flexible.
But on the other hand, most of them are quite optimized for executing digital
signal processing tasks in e.g. wireless or media processing.

Another class of VLIW style processors is organized as wide or hierarchical
VLIW processors, which provides more flexibility than pure vector processors,
as different operations can be executed in parallel [SilH, Mon05]. They form
very heterogeneous VLIWs.

Some VLIW processors however support only quite specific operations that
improve the performance for a selected target application or application do-
main. Various processor extensions (SIMD, loop buffering, clustering, etc.)
can be used to improve energy efficiency, performance or both. When the
processors are more customized in this way, they become an Application
Specific Instruction set Processor or VLIW-ASIP. In this case a distinction
can be made between ASIPs and accelerators, e.g. [Lu99]. An accelerator
is customized to accelerate only part of the application, while the rest is exe-
cuted by a so-called host processor. An ASIP often combines both into one
processor.

Worth mentioning in the wireless domain are the following ASIPs. NXP’s
embedded vector processor (EVP) is a software-programmable platform for
basebands with a relatively wide data-path [Kum08]. Infineon’s MuSIc (Mul-
tiple SIMD Cores), is a DSP-centered and accelerator-assisted architecture
and aims at battery-powered mass-market handheld terminals ([Ram07])
The University of Michigan has developed a very low-power processor
meant especially for relatively low performance sensor applications – called
Phoenix [Woh08]. It consumes power as low as 30 pW. Sandbridge [Glo04,

23

Global State-of-the-Art Overview

Sandbridge] has launched a multi-core, multi-threaded, dynamically repro-
grammable processor that supports SIMD vector processing. At the Univ. of
Dresden, the Tomahawk platform and its predecessors have been introduced
[Hos04]. And also at the University of Aachen, ASIP related work has been
ongoing for several years [Schl07].

In addition, several commercial activities on such ASIP IP cores have been
launched. Some of these are also template-based. In particular, Tensilica’s
Xtensa and Lx processors belong to this family [Xtensa]. And Silicon Hive
has proposed several VLIW-ASIP cores oriented to multi-media and wireless
processing too [Phi]. Also CSEM’s Macgic DSP template belongs to this cate-
gory [Ram04].

Heterogeneous cores, like [Bar05b], combine multiple styles into a single
processor, e.g. a RISC core with a more parallel datapath part, to accelerate
the execution of specific application parts only when needed.

To meet the real-time constraints of some highly regular application domains
(limited control flow) with high throughput requirements, extremely parallel
processors have been developed. These processors are called vector proces-
sors. Some make extreme use of SIMD like [Abb07].

Others are explicitly targeting graphics applications, can handle many paral-
lel threads with low overhead and are called GPUs or Graphics Processing
Units for e.g. [Nvi09, ATI09]. These GPUs also offer very high SIMD and ac-
celerators for various graphics operations. They also contain extra hardware
to support the dynamism of fast thread creation and management used in,
e.g. objects in 3D gaming.

Finally some embedded processors extensively make use of data communi-
cation between their PEs in order to map larger parts of the data flow graph
onto the processor. These processors are often organized as a 2D array, and
are usually called Coarse Grained Reconfigurable Architectures or CGRAs,
e.g. [Mei03a, PAC03]. CGRAs offer a wide range of design parameters, like
the type and topology of their interconnect, the number of slots, etc.

Figure 1.4 provides a comparison of several of the main processor classes and
a few representative instances in the energy-performance trade-off range.

In order to achieve an efficient mapping of software onto this wide range
of processors, various mapping and compilation techniques have been deve-
loped. This ranges from the efficient extraction of data parallelism, thread
level parallelism, exploiting ILP and various other techniques. As architec-
ture and compiler are closely linked, most of the above mentioned references
include a description on relevant compilation strategies for the respective
processors.

24

Architectural components and mapping

2.1.2 Data memory hierarchy

Next to the processor core, the data memory hierarchy is a second component
that has a high impact on the performance and power consumption of the
platform. In general purpose computing the movement of data between dif-
ferent parts of the data memory hierarchy is often handled by hardware sup-
port. This corresponds to the use of so-called hardware controlled caches. In
most embedded applications the data access pattern is more regular and can
be analyzed. Therefore the movement of data can be more efficiently hand-
led by the compiler or programmer and scratchpads are used (data memory
without hardware support to move data around). Hybrids also exist, in which
part of the cache can be used as a scratchpad, e.g. in [VdW05]. A scratchpad
based solution is power and performance efficient [Kan04a, Ban02], but it
requires a DMA or Direct Memory Access, which is a separate datapath that
needs be programmed to handle the required transfer. [Tal08, Mat03, Het02]
present various architectural possibilities and their trade-offs for DMAs and
Address Generation Units (AGUs) [Tal08].

Besides the aspect of the type of memory that is used (hardware controlled
cache or scratch pad), it is also possible to exploit the reuse of data over time
and the access order pattern (locality). Therefore a right choice of the me-
mory sizes, multiple levels and their inter-connectivity (memory hierarchy)
is needed for low power and high performance. The locality can only be effi-
ciently exploited if the application is transformed to make the most efficient
use and transfer of the data possible. Various transformation techniques that
expose the data locality (both spatial and temporal) have been proposed in
the literature [Abs08, Bro00a, Mar03, Pan98].

2.1.3 Instruction/configuration memory organization

The instruction memory contains the bits which describe the functionality of
the different slots and other processor components. In the CGRA/FPGA com-
munity this is also called the configuration memory. They are conceptually
similar and are treated together in this book. Instructions/configurations are
distributed and stored in the Instruction/Configuration Memory Hierarchy or
ICMO.

A good ICMO aims at distributing the instructions over the architecture at
the appropriate time and at a low cost. The ICMO can be organized similar to
the data memory hierarchy, namely as multiple hierarchical layers. However,
instructions differ from data in some important aspects (e.g. they are only
read, not written) and therefore some extra optimizations can be used. With
respect to the locality, instructions offer extra opportunities for (mostly tem-
poral) reuse as most embedded applications consist of computations that are

25

Global State-of-the-Art Overview

organized in the form of loops. Various techniques like filter caches [Kin00],
trace caches [Rot96], victim caches [Jou90, Jou94] have been proposed to
optimize the behavior of caches for loop code.

Further optimizations, like loop buffers [Kav05, Uh99] go one step further,
by adding a special scratchpad (software controlled) to store the instructions
of loops only. Loop buffers can also be clustered [Vda04b, Jay05b] and their
size can be customized to reduce the energy/power consumption.

Independent of the fact if hardware controlled caches or scratchpads are
used, the instructions stored in memory can be compressed. This allows
a smaller memory foot print and is especially important for very parallel
architectures, e.g. VLIW processors. These techniques also reduce the traffic
between the instruction memory and the processor cores, but require an
additional decompression before the actual execution step. Various tech-
niques of instruction compression and NOP compression exist in litera-
ture [Deb00, Tan02, Gor02b, Adi00]. A detailed survey of instruction com-
pression is given in [Bes03].

A more detailed overview of the design space of instruction/configuration
memory organization is presented in Chapter 6.

2.1.4 Inter-core communication architecture

In order to use all described components in an embedded system, they have
to be connected. This can be done using different architectures, ranging from
custom point to point connections, over a standard bus (e.g. ARM’s AMBA),
to a network-on-chip. An overview of state-of-the-art communication archi-
tectures can be found in [Kog06, DeM06, Ler08] for network-on-chip solu-
tions or [Pap06, Hey09] for bus based work. The communication architecture
can be chosen based the traffic requirements, number of components, design
time, etc. A description of the trade-off space for communication architec-
tures is outside the scope of this book and is not discussed further.

2.2 Platform architecture exploration

The range of embedded processors is large and both architectural as well as
mapping extensions can be used to modify a processor style. Therefore an
exploration phase should be used to find the best match between architec-
ture and application. Conceptually, the architecture exploration can be spit
into three different parts, as is shown in Figure 2.3. Firstly, a search strategy
has to be chosen to go over the different candidates. Secondly, a number of

26

Platform architecture exploration

Exhaustive
Heuristic
based
Constructive
Hybrid

Source Code based
estimation
Profiling based
Instruction-set
simulation
RTL/Gate/Spice
simulation
Emulation (on FPGA)

Performance
Power
Energy
Area
Reliability
Flexibility

Figure 2.3: Architecture exploration tools/models

criteria or cost estimates, on which each candidate architecture has to be eva-
luated on. These are often cost models which may be analytical or empirical.
Finally, each candidate solution has to be evaluated using a certain evaluation
method, with respect to the design criteria. These three parts are discussed in
more detail below.

2.2.1 Exploration strategy

In order to design an embedded processor that meets all requirements with
respect to performance, energy efficiency, area, etc. architecture exploration
is used to compare a range of architecture candidates and gradually improve
the design. An exploration strategy or technique is needed to steer this pro-
cess, as the exploration space is extremely large. In most practical cases, the
exploration is restricted to a part of the space, usually called the supported
architecture template [Gon02, Mei03a, Tar08]. This template can be the re-
sult of the experience of the design engineer, often including a combination
of application knowledge and intuition, or the result of restrictions in the
used mapping tools (e.g. the compiler). The exploration within the template
can be further steered by a set of heuristics to speed up the exploration fur-
ther, as in most cases an exhaustive search would still be infeasible. Such
heuristic based exploration is performed in commercial tools, like Tensilica’s
Xtensa [Gon02] and in academic work, like [Jac00, Lap02]. Alternatively,
constructive techniques can be used to generate an architecture based on the
analysis of a set of applications, usually starting from a minimal (or extremely

27

Global State-of-the-Art Overview

rich) base architecture and demand driven adding (or removing) resources.
This approach is popular in high level synthesis and in cases where only a
fixed set of applications have to be run. An example of such constructive
techniques can be found in Synfora’s PICO [Syn08, Phi04].

2.2.2 Criteria/cost metric

The target of the architecture exploration is to find an architecture that meets
the requirements. These requirements can be defined with respect to a num-
ber of criteria or cost metrics, of which performance, energy efficiency, area,
design effort, flexibility are the most used examples. Requirements can be a
combination of relative (trade-offs) or absolute (constraints) criteria, e.g. mi-
nimize the energy consumption within the available design time (trade-off)
for a given minimal performance target (constraint). The effect of a modifica-
tion at the architecture level, be it a change in processor or memory style or
an extension to a component of a processor, propagates to the various design
criteria in a non-trivial way. This is because all criteria are linked and strong
trade-offs exist, either in the design of a single component or elsewhere in
the system.

2.2.2.1 Performance

As most embedded systems interact with the physical world, their real-time
performance is often essential. Therefore performance is one of the most im-
portant requirements. Simulation is a commonly used technique to estimate
the performance during embedded processor design, e.g. [Aus02]. The pro-
cessor can be modeled at different abstraction levels and the corresponding
simulation can be instruction accurate, cycle accurate or bit accurate. Cycle
accurate simulations are commonly used to estimate the performance of the
processor. However, to validate the real-time performance (in seconds), a
target clock frequency is needed. To obtain an accurate estimate for this, the
complete design needs to be synthesized/placed and routed. The more ac-
curate the simulation needs to be, the slower the process of estimating the
performance. In most cases, for relative comparisons a crude estimate suffices
however.

2.2.2.2 Energy consumption

In the context of battery-operated embedded systems, trade-offs with respect
to the energy efficiency of the architecture can be made visible throughout
the design if the energy consumption can be estimated. Traditionally, energy

28

Platform architecture exploration

estimation is done rather late in the design flow, e.g. at gate level. However,
this means that many decisions have been taken and a design change at
this stage of the design process would require a large effort. Therefore it is
difficult to perform a broad exploration at this level or to make significant
modifications based on the feedback from the gate level energy estimation. It
is however possible to create energy models at various levels of abstraction,
which can then be used during exploration at higher abstraction levels. In
this way both benefits, namely speed and accuracy can be combined to some
extent, which suffices for relative comparisons during early exploration.

Models calibrated after measurement For widely used processors like an
ARM9 [ARM09b], TI’s TMS320C6x [TI00] series, Intel’s processors measu-
rements can be performed to create an accurate energy model. This energy
model is often created by a test sequence of instructions or program and
measuring the current. Various related work, like [Sin01, Ben02, Jul03,
Cha00, Isc03, Tiw96] have created an energy/power model after measure-
ment. These models are often at the granularity of energy consumption per
instruction for the complete processor. This complicates the use of the model
to make architectural modifications, as they don’t produce a breakdown for
different processor components.

Analytical models It is also possible to create models that are analytic.
Related work like Wattch [Bro00b], CACTI [Shi01] and others like [Mam04,
Ye00] create an energy model for individual components. They make as-
sumptions on the micro-architecture for each of the components and on the
design style (e.g. standard cell vs. custom design). Based on the technology
choice and the micro-architecture assumption, the analytical model gives the
energy consumption per activation of the component. Most work in analytical
modeling is targeted towards memories as their structure is quite regular and
can be captured in a model with reasonable accuracy. However, some work
on analytical datapath modeling exists, e.g. [Ask99, Hel02]. The energy mo-
dels from analytical modeling are often energy consumption per activation
of a component. They can also be sensitive to the actual bit switching.

Models at/after RTL Models can also be created at Register Transfer Level
(RTL), either for components or for the complete processor. The RTL can be
synthesized and the energy consumption can be estimated based on statis-
tical activity. Instead of statistical activity real application data can be used,
but this can be very time consuming, especially for a complete processor. The
estimation can be made more accurate if done at gate level, and even more
accurate after place-and-route and parasitic extraction. A detailed study of
the error incurred and the time consumption between the different stages is

29

Global State-of-the-Art Overview

done by [Bal04]. Based on the granularity of the modeling, the models will
represent the energy consumption per activation of a component or the com-
plete processor respectively. These models can also be extended to take into
account the switching activity of the input.

Peak power consumption In the design of embedded systems for mobile
devices, energy consumption is an important metric, as it is directly linked to
what can be drawn from the battery. However, the peak power consumption
has a large impact indirectly, as is influences the worst case heat dissipation
and thereby the packaging cost. Estimating the peak power consumption re-
quires, in addition to e.g. the simulation set-up, the availability of worst case
test patterns [Hsi97].

2.2.2.3 Area

In the competitive market of consumer electronics, the cost of the design
is extremely important and for some designs the cost is directly related to
the area of the chip. A first synthesis of individual components gives a first
area estimate at the component level. Further placement and routing of com-
ponents can improve the accuracy of this estimate. However, both methods
ignore the overhead/optimization potential of global place and route. Early
in the design, a crude estimation suffices to be able to do relative compa-
risons. For memories this can be often be estimated by analytical models
like Wattch [Bro00b] or by using commercial memory generators like Arti-
san [ARM] or Virage [Vir].

2.2.2.4 Design effort

Aside from the impact different processor styles have on the performance
and energy efficiency, there usually is also an effect on the design effort that
is to be expected when choosing for a certain style. For example a simple
RISC processor, using a push-button compilation approach, will take a much
less design effort than the implementation of an ASIP, which requires the
manual modification of the application code to make use of the application
specific processor extensions. It can be expected that the energy efficiency
and performance of the ASIP will be superior to that of the RISC. But when
comparing an ASIP solution with a CGRA implementation, the trade-off be-
comes less obvious. The design effort is part of the overall design trade-off
and therefore should be taken into account, but is rather hard to quantify
accurately. Therefore in most cases qualitative comparisons are often used
and the weight of this criterion with respect to the other cost metrics is up to
the designer.

30

Platform architecture exploration

2.2.2.5 Flexibility

A final important aspect of the embedded platform design trade-off is the
flexibility of the designed solution. This aspect covers the ability to map other
applications to the platform after the design. One extreme case is an Applica-
tion Specific Integrated Circuit or ASIC, which is completely fixed to a single
task, but performs this task very efficiently. On the other side of the spec-
trum, a general purpose processor can run any application, but at a severe
energy and performance cost. The embedded processor space contains mul-
tiple in-between solutions, that provide varying levels of flexibility, at various
performance and energy efficiency points. However flexibility is a qualitative
criteria as often it is a trade-off with efficiency of mapping.

2.2.3 Evaluation method

A key element of a successful exploration is the ability to evaluate different
options with respect to the criteria and cost metrics. Depending on the cost
metric, different evaluation methods can be used and the evaluation can be
(or needs to be) performed at different abstraction levels or with different ac-
curacy. At each of the different levels the cost models can be used to evaluate
the quality of the architecture.

Often the initial algorithm development happens in a high level language
like Matlab, at which stage the functionality is evaluated. Based on the com-
putational complexity of the application a this level, a first rough estimate
can be made of the required peak performance of the processor. It is then
refined down to C,1 which is functionally equivalent to the Matlab reference
and now is ready for mapping on an architecture.

The initial architecture exploration is often performed on Instruction Set
Simulators. Various simulators exist, like Trimaran [Tri08], Simplesca-
lar [Aus02] etc. Instruction Set Simulators are often accompanied with an
associated (retargetable in some cases) compiler front end which compiles
the code on the architecture. Commercial instruction set simulators, like Tar-
get Tools [Tar08], Processor Designer [CoW08a], Synfora’s PICO [Syn08],
ASIP Meister [EDA05], Tensilica [Gon02] are available at this level.

Architectures can also be modeled at transaction level. The architecture in
this case is modeled in a transaction accurate model often in SystemC or
similar languages. Frameworks like Liberty [Lib02], Unisim [Uni05] can
be used for this purpose. In practice these simulators model on an abs-
traction level below ISS level and therefore are more accurate, but slower

1The C-language is used most for the embedded systems domain, which is the target of this
book, but other languages can be used.

31

Global State-of-the-Art Overview

than instruction set simulators. Some commercial frameworks like CoWare’s
Virtual Platform [CoW08b] also exist to support TLM (Transaction Level
Modeling) of such processor architectures together at the platform.

On further refinement, architectures can also be evaluated/explored at Re-
gister Transfer Level (RTL). This is very time consuming and often only minor
modifications are done during exploration at RTL level at the complete pro-
cessor level. This can then be refined to gate level and simulated as well. Both
RTL and gate level simulation for multi-million gate designs are prohibitively
slow and therefore are not usable.

However, instead of simulating the gate level model, it can also be mapped
on an FPGA. This is called emulation and it is commonly used practice to
verify the final design, before producing the chip. Emulation of an architec-
ture is faster than RTL or gate level simulation and therefore some amount
of exploration can also be done at this level. Various academic FPGA emu-
lation projects like [UCB07, Ati07] and commercial emulation platforms like
Mentor Graphics’ VStation [Men07] exist.

2.3 Conclusion and key messages of this chapter

This chapter has presented a structured overview of the related work in the
design of battery operated embedded systems, with an emphasis on the de-
sign, exploration and evaluation of embedded processors. Specific related
work that is directly related to the specific contributions of this book will be
discussed at the end of each respective technical chapter.

The design space for embedded processors is extremely large. In addition, the
complete embedded platform consists of multiple components (each with a
range of options) that can not be studied in total isolation, as modifications
to one component can influence the other components. Architecture explora-
tion can be used to find a good match between the application requirements
and the architecture design. To be able to perform an efficient exploration
and compare different processor styles, this exploration should be perfor-
med early on in the design. Therefore a trade-off has to be made between
the implementation effort that is required to model an architecture, the eva-
luation speed and the accuracy. In the next chapters this broad exploration
will be performed based on a realistic case study resulting in a set of high-
level requirements and a proposal for an ultra-low energy platform template.
In addition, a framework will be proposed to effective support this broad
exploration.

32

	Chapter 2:Global State-of-the-Art Overview
	2.1 Architectural components and mapping
	2.1.1 Processor core
	2.1.1.1 The FUs, slots and PEs of the datapath
	2.1.1.2 Foreground memory (or register files)
	2.1.1.3 Processor pipelining
	2.1.1.4 Issue logic
	2.1.1.5 Overview of state-of-the-art processor classes

	2.1.2 Data memory hierarchy
	2.1.3 Instruction/configuration memory organization
	2.1.4 Inter-core communication architecture

	2.2 Platform architecture exploration
	2.2.1 Exploration strategy
	2.2.2 Criteria/cost metric
	2.2.2.1 Performance
	2.2.2.2 Energy consumption
	2.2.2.3 Area
	2.2.2.4 Design effort
	2.2.2.5 Flexibility

	2.2.3 Evaluation method

	2.3 Conclusion and key messages of this chapter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

