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Preface

Modern mobile embedded systems offer a wide range of features. These
devices are capable of offering various applications. They can also commu-
nicate to different devices using different wired and wireless standards. For
a good battery life for these devices, they have to be extremely energy effi-
cient. All parts of such a device have to be optimized to reach an acceptable
energy efficiency. This book focuses on the platform architecture of these de-
vices and how to improve the energy efficiency of the processors, the data
and instruction memory organisation.

In order to perform a consistent optimization, we describe a complete,
consistent framework for architecture exploration. Such a framework allows
the designer to get a complete view of the processor and therefore allowing
him/her to see the global effect of the optimization instead of a narrow
view of only component. This book discusses the elements of the framework
but also the main results and guidelines which we have derived from it.
Next, we describe the different platform architecture extensions that enable
the ultra-low power domain-specific processor realisation. They include the
instruction memory organisation of the processor where also efficient multi-
threaded execution of multiple loops is enabled. In addition, we propose a
novel way to map indirectly indexed arrays and dynamically accessed data
on the scratchpad and data memory organisation. And we also propose
very energy-efficient foreground memory architecture as alternative to the
traditional power-consuming register-files used now. Finally, we have also
extended the processor data-path itself by incorporating an effective fine-
grained data-parallel support that is fully software controlled by compiler
directives.

This book also provides a recent overview of the state-of-the-art lite-
rature in energy-efficient platform architectures, intended for portable
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Preface

data-dominated applications domains. The material that we present here
is based on research at IMEC and its university partners in this area in the
period 2001–2009.

Our approach is very heavily application-driven which is illustrated by seve-
ral realistic demonstrators, partly used as red-thread examples in the book.
Our target domain consists of embedded systems and especially portable real-
time processing systems which deal with medium to large amounts of data.
This contains especially multi-dimensional signal processing (RMSP) algo-
rithms like video and image processing in many different application areas
including bio-oriented sensors, graphics, video coding, image recognition,
medical image archival, advanced audio and speech coding, multi-media ter-
minals, artificial vision, graphics processing. But it also includes wired and
wireless terminals which handle less regular arrays of data. Those are present
especially in the digital front-end and baseband signal processing, including
the cognitive radio sensing engines. Other target areas include automative
signal processing and bio-informatics.

The cost functions which we have incorporated for the data and instruction
memory organisation are access rate, memory footprint and energy consump-
tion. For the data-path we focus on area cost and energy consumption. Due
to the real-time nature of the targeted applications, the latency or through-
put is normally a constraint. So performance is in itself not an optimisation
criterion for us, it is mostly used to restrict the feasible exploration space. The
potential slack in performance is used to optimize the real costs like energy,
area, and (on- or off-chip) memory foot-print.

We therefore expect this book to be of interest in academia, both for the ove-
rall description of the exploration methodology and for the detailed descrip-
tions of the main ultra-low energy platform contributions. The priority has
been placed on issues that in our experience are also crucial to arrive at in-
dustrially relevant results. All projects which have driven this research, have
also been application-driven from the start, and the book is intended to re-
flect this fact. The real-life applications are described, and the impact of their
characteristics on the methodologies and platform components is assessed.

We therefore believe that the book will be of interest as well to senior archi-
tecture design engineers and their managers in industry, who wish either to
anticipate the evolution of commercially available design concepts over the
next few years, or to make use of the concepts in their own research and
development.

The material in this book is partly based on work in the context of several
European and national research projects. And it has also been indirectly spon-
sored by the industrial IMEC program partners in the wireless and design
technology activities. Also the Flemish IWT has sponsored some of the work
in regular IWT (especially SWANS) and SBO (especially Flexware) projects.
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It has been a pleasure for us to work in this research domain and to
co-operate with our project partners and our colleagues in the low po-
wer platform architecture and embedded compiler community. Much of this
work has been performed in tight co-operation with many university groups,
mainly across Europe. In addition to learning many new things about sys-
tem synthesis/compilation and related issues, we have also developed close
connections with excellent people. Moreover, the pan-European aspect of
the projects has allowed us to come in closer contact with research groups
with a different background and “research culture”, which has led to very
enriching cross-fertilization. This is especially reflected in the many common
publications. We want to especially acknowledge the valuable contributions
and the excellent co-operation with: the ACCA group at K.U.Leuven (now
part of ELECTA at the El.Eng.Dep. of the K.U.Leuven, Belgium), U.Autonoma
Barcelona (Spain), U.Completense Madrid (Spain), Osaka Univ. (Japan),
Patras Univ. (Greece).

We would like to use this opportunity to thank the many people who have
helped us in realizing these results and who have provided contributions
in the direct focus of this book, both in IMEC and at other locations. That
includes everyone who helped us during the PhD. and M.S. thesis research.

In particular, we wish to mention: David Atienza, Francisco Barat, Bruno
Bougard, Erik Brockmeyer, Henk Corporaal, Stefan Cosemans, Geert
Deconinck, Hugo De Man, Veerle Derudder, Bjorn De Sutter, Bert Geelen,
Jos Huisken, Jos Hulzink, Yuki Kobayashi, Rudy Lauwereins, Anthony Leroy,
Toon Leroy, Min Li, Stylianos Mamagkakis, Pol Marchal, Dragana Miljkovic,
Satyakiran Munaga, David Novo, Martin Palkovic, Antonis Papanicolaou,
Antoni Portero, Christophe Poucet, Adelina Shickova, Guillermo Talavera,
Ittetsu Taniguichi, Christian Tenllado, Karel Van Oudheusden (Edgar
Daylight), Arnout Vandecappelle, Liesbet Van der Perre, Tom Van der Aa,
Diederik Verkest, for all their technical feedback during the research that is
incorporated in this book. Indirectly also many others have contributed in
some way though and the list would be too long to explicitly mention them
all here. But we do acknowledge their support.

Also thanks to all the masters students who helped in the research: Chaitanya,
Estela, Georgia, Ioannis, Jean-Baka, Nandu.

We finally hope that the reader will find the book useful and enjoyable, and
that the results presented will contribute to the continued progress of the
field.

The book authors: Francky Catthoor, Praveen Raghavan, Andy Lambrechts,
Murali Jayapala, Angeliki Kritikakou, Javed Absar.

Autumn 2009
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CHAPTER 1

Introduction

Abstract

This book focuses on domain-specific instruction-set processor architecture ex-
ploration for embedded systems. Next to a general framework to explore such
platforms, we will also propose different platform architecture extensions that
enable ultra-low power domain-specific processor realisation.

This introduction describes the general context of this book (Section 1.1),
in which some open problems are identified. Section 1.2 discusses the focus of
the book. The key elements addressed here are listed in Section 1.3. Finally,
Section 1.4 explains the structure of the rest of the text.

1.1 Context

Modern consumers carry many electronic devices, like a mobile phone, digi-
tal camera, GPS, PDA and an MP3 player. The functionality of each of these
devices has gone through an important evolution over recent years, with a
steep increase in both the number of features as in the quality of the ser-
vices that they provide. Access to multimedia content and wireless commu-
nication have become ubiquitous. At the same time, Swiss-knife-like units,
combining a range of functionalities into one compact package, have become
widespread.

F. Catthoor et al., Ultra-Low Energy Domain-Specific Instruction-Set Processors, 1
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However, providing the required compute power to support (an uncompro-
mised combination of) all this functionality is highly non-trivial. Continuing
the trend of increasing quality (e.g. higher resolutions) and wider feature
sets, in increasingly compact units leads to complex designs. It requires the
development of embedded compute platforms that can combine the flexi-
bility to accommodate the different and often dynamically variable perfor-
mance requirements with the extremely high energy efficiency needed for a
battery-powered device.

In addition to these established markets, emerging applications in domains
like wireless sensor nodes, smart medical implants or precision agriculture
have even more constrained requirements and present interesting new
opportunities for embedded processing. The work that is presented in this
book mainly targets this type of mobile, battery operated embedded systems.
The individual elements can be reused in other low-energy domains also
though.

Visionaries have emphasized and re-emphasized the human urge for ever
more ambient intelligence to make improve various aspects of human life
ranging from communication, health care, safety and others. This quest of
Ambient Intelligence (AmI) has necessitated higher computation and higher
communication requirements in electronic devices. This “dream” or vision
requires that there is secure computing and communication embedded in
everything and everybody and it is context/ambient aware and sensitive to
the person/user.

For realizing such an ambitious dream a wide range of electronic devices is
needed. This space of electronic devices is often split in three large classes:
stationary devices, nomadic devices and transducer-based devices. These
three classes of devices have different power-performance requirements. The
three different classes with their requirements are shown in Figure 1.1. At
one extreme of these devices range are “sensor nodes” which perform little
computation and have a very low power budget of few tens of microwatts.
At the other extreme are “stationary devices” connected to the power supply
which perform very high computation and have a power budget of tens to
hundreds of watts. In the middle exist the “nomadic devices”, which are
mobile handheld devices which are powered by batteries. These nomadic
devices have a power budget of few tens to few hundreds of milliwatts and
have a modestly high computation and communication requirement.

To reach this dream it is necessary to accommodate the high computational
requirement under the power constraints of each of these different classes
of devices. This problem is further compounded by the fact that the com-
munication (and consequently computational) data rate has been increasing
dramatically and predictably [Che04]. The various number of different types
of applications and communication standards that need to be supported on
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Figure 1.1: Different device class in the context of a dream of Ambient Intel-
ligence (as described in [DeM05])

these devices also require that the device is flexible. However poor scaling
of battery technology is not helping towards reaching this goal. This requires
the designer of such devices to manage multiple objectives: supported appli-
cations, performance, flexibility, area and energy efficiency.

In order to achieve this we have to create large improvements on the energy-
efficient realisation of all the platform components. In this book we will
focus on a single (data-parallel) processor core so the main components
involve the processor itself, its data memory hierarchy and the instruction
memory organisation. We will not look at the (inter-processor) communica-
tion organisation. For the background data memory hierarchy we will mainly
reuse state-of-the-art work in terms of software controlled scratchpad memo-
ries both in terms of the architecture aspects and the mapping/compilation
issues [Cat98b, Ver07]. So this book is mainly focused on the processor-
related components including the local instruction memory organisation.

1.1.1 Processor design: a game of many trade-offs

Traditionally, the combination of energy efficiency and high performance req-
uirements has been a synonym for Application Specific Integrated Circuits or
ASICs, which are completely optimized for a single application (Figure 1.2).
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Figure 1.2: Characterization of desktop General Purpose Processor (GPP),
embedded GPP and ASIC, according to multiple design criteria

However, the increasing cost of designing specialized chips in modern Deep
Sub-Micron (DSM) technologies, together with the need to fit more functio-
nality into a single system, has forced designers to build more flexible solu-
tions. If evolving product generations and a wide range of similar products
can use the same chip, non-recurring engineering costs can be amortized
over larger markets. This aspect clearly favors programmable or configurable
components. in the context of embedded processors. The use of a processor,
especially off the shelf components, has an added benefit that it can help
to reduce the time to market, which is extremely important in a consumer
electronics context.

Designing processors that meet the demanding requirements of future mo-
bile devices requires the optimization of the embedded system in general and
of the embedded processors in particular, as they should strike the correct
balance between flexibility, energy efficiency and performance. A complete
range of solutions has been proposed, giving different weights to each cri-
terion in this trade-off space and, in addition, requiring different amounts
of design time or mapping (implementing an application on a processor)
effort. Classes of processors can be distinguished from each other, based on
the amount of parallelism they exploit, the way parallelism in applications is
detected, the amount of customization to a certain application or domain,
etc. Each class will hit a different balance in the trade-off space that is
discussed here.

This book mainly focuses on the domain of nomadic embedded processor
platforms. In that context, Figure 1.2 presents a comparison of two well-know
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classes of processors to an ASIC solution, with respect to four important
criteria, namely flexibility, performance, energy efficiency and the design/
mapping efficiency. A General Purpose Processor or GPP is a very flexible pro-
cessor (can run any application), as is used in desktop or laptop computers.
The desktop GPP is an off-the-shelf product and applications can be easily
mapped using push-button compilers. Therefore, the design/mapping effi-
ciency is a strong point. However, the rather high performance and emphasis
on flexibility comes at a clear penalty. A desktop GPP typically consumes tens
of watts and hence does not score well on the energy efficiency axis. Due
to the energy-constrained nature of battery operated mobile embedded sys-
tems, simple devices often make use of very simple small embedded GPPs,
which are mostly sequential RISC processors. They can run many different
applications at much better energy efficiencies, but have a limited peak per-
formance that is often not sufficient for our target application domain. The
design/mapping efficiency is still high, as very mature compilers exist for
these systems.

As embedded systems typically do not suffer from code compatibility issues
and do not need to support legacy code (for which only binaries are avai-
lable) as is common for general purpose computing, the compiler can be mo-
dified from one device to another and from one version to the next. Specific
compilation techniques and manual optimizations can be used to match the
application and the processor design in the best way possible. This freedom
also enables the use of architecture extensions and processors, which can
be designed for specific application domains. In this way, different classes of
embedded processors trade-off design/mapping efficiency to improve both
the performance and energy efficiency. In the context of battery operated
embedded systems, classes that push the trade-off towards energy efficiency,
without loosing all flexibility, are especially worth looking at. One interesting
class of processors that follows this philosophy is the Very Long Instruction
Word processor or VLIW [Fis05]. VLIWs perform multiple operations in pa-
rallel in order to deliver the required compute power for e.g. multimedia
applications and make use of a compile-time detection of this parallelism.
Generic VLIW processors still have a flexible instruction set, but by adding
special instructions and features, both the performance and energy efficiency
can be heavily improved for specific application domains. This results in Ap-
plication Specific Instruction-set Processors (see ASIP in Figure 1.3). Adding
more resources, as in the case of Coarse Grained Reconfigurable Processors
or CGRAs, improves the performance and potentially also the flexibility fur-
ther, but this can reduce the energy efficiency. Some applications require
extremely energy efficient solutions (Ultra Low Power, as in the ULP-ASIP of
Figure 1.3), but more customization (e.g. in the data and instruction memory
organizations) will be required to achieve this. As a result, both the flexibility
and design/mapping efficiency move to less optimal points.
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Figure 1.3: Characterization of CGRA, ASIP and ULP-ASIP according to mul-
tiple design criteria

1.1.2 High level trade-off target

The overall embedded processor design space is extremely large. The classes
of processors that have been described above, are often not clearly defined in
literature and many hybrids exist. In general, a designer will try to minimize
the energy consumption (as far as needed) for a given performance, with
a sufficient flexibility. However, achieving this goal is already complex
when looking at the processor in isolation, but, in reality, the processor is
a single component in a more complex system. The complete embedded
platform typically consists of multiple processors, each optimized for a set
of tasks, together with dedicated accelerators, memories and interconnec-
tion networks (e.g. Ti’s OMAP and DaVinci platforms [TI09c]). In order to
design such complex system successfully, critical decisions during the de-
sign of each individual component should take into account effect on the
other parts, with a clear goal to move to a global Pareto optimum in the
complete multi-dimensional exploration space. This book is mainly focused
on the processor and its local instruction memory organisation (see above).
Still, to avoid a too narrow viewpoint, in Chapter 3 we will also put our
work in a more global perspective by analyzing the performance and energy
contributions of the different platform components for different architecture
styles.
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1.2 Focus of this book

The target scope of this book is the class of embedded systems, that are
usually also imposing stringent (soft or hard) timing and performance cons-
traints. The main subclass for which we illustrate our concepts are “nomadic
devices” that require both flexibility and increased energy efficiency. Howe-
ver principles used in this book are extensible for other embedded systems in
domains like video and image processing in many different application areas
including bio-oriented sensors, graphics, video coding, image recognition,
medical image archival, advanced audio and speech coding, multi-media ter-
minals, artificial vision, graphics processing.

Typically a nomadic device would consist of various different parts: user
interface (screen), wireless communication interface (antenna), and digital
and analog chips. Given the high communication data rate and the computa-
tion requirement, the design of digital components within the energy budget
of the battery has become a challenging task.

To perform the digital computation in these nomadic devices, often unflexible
ASIC solutions are used and at times power-hungry programmable proces-
sor solutions are used. Both these solutions give a trade-off between energy
efficiency/performance and flexibility. However the raising number of appli-
cations and communication standards have necessitated the need for flexible
solution to be both cost effective as well as reduce time-to-market.

Various design options exist for such flexible processors based solution.
Figure 1.4 shows a normalized graph of energy efficiency of the processor to
their peak performance. Note that most processors in this graph belong to the
class of nomadic hand-held processors and each have different architectural
parameters. Each of these architectures gives a different trade-off between
energy efficiency, performance, programmability and flexibility.

To meet the every increasing computation and communication requirement,
very high energy efficiency is needed. And to reach this high energy effi-
ciency, it is important to keep both the technology aspect as well as the
application into mind during the design of the processor core. As we scale
to smaller and smaller technologies, scaling issues like domination of inter-
connect energy play an important role. Therefore the design of the proces-
sor architecture must take these effects into account. As the title of the AmI
dream suggests: the device has to be “ambient” aware. This implies that the
application adapts to the ambient. Adaptation to the environment makes the
application dynamic. The processor design must also take these application
characteristics into account. Given that current processor architectures do
not reach the required high energy efficiency, future architectures and com-
pilation techniques need to take into account the application and technology
aspects. Chapter 3 performs an in-depth analysis of various technology as
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well as application characteristics which must be taken into account during
the design of an energy-efficient processor core.

In the complex, global design of battery-operated embedded systems, the
focus of this book is on the energy − aware architecture exploration of
domain − specific processor datapaths and the co-optimization of the da-
tapath architecture with its mapping techniques or compiler at early stages
of the design.

• Architecture Exploration: In order to balance application, architecture
and mapping, architecture exploration is used as a method to estimate
the quality of the design with respect to various quality criteria.

• Energy-aware: Even at early stages of the design, where the impact on
the final energy efficiency is still large, energy-estimation is essential
and should give a clear overview of the relative contributions of dif-
ferent components in the platform.

• Domain-specific: A clear motivation exists to push for the development
of energy-efficient and performant processor based solutions, optimi-
zed for a range of applications, in contrast to application specific solu-
tions or accelerators.

• Compiler: The ability to efficiently map applications to a processor is
key to the success of the designed solution. Exploiting more application
information during the mapping and looking at mapping techniques

8



Focus of this book

and datapath design together, gives rise to new opportunities and
trade-offs. This compiler is however not the main focus of this book.
See [Rag09b, Lam09] for more information on this important topic.

• Early design stages: A clear benefit exists in getting feed-back on many
quality criteria, including energy consumption, early on in the design.
At the higher abstraction levels (at Register Transfer level, before gate
level), different design styles can be compared relatively fast. The im-
pact of this decision potentially has a large impact on the quality of the
final implementation.

Processor architecture exploration is often considered in isolation from the
rest of the platform. By explicitly taking into account the relations with other
components of the platform, the risk of optimizing one component at the
expense of negatively affecting the performance and energy-consumption of
others is tackled. In the processor architecture exploration itself, a trade-
off exists between the accuracy of the energy consumption estimation and
the abstraction level at which it is conducted. Often energy estimation is
postponed until late in the design, when a detailed and accurate estima-
tion is possible, but many processor design decisions are already fixed. Intra-
processor interconnect energy consumption is mostly neglected during the
early stages of the processor design. However, for some more recent classes
of processors, the amount of intra-processor interconnect is much larger than
for others, resulting in a clear underestimation of the energy consumption at
the higher abstraction levels. Especially in more scaled technologies, the wire
dominance (in energy consumption) is further increasing, so this effect will
become more pronounced. In general, the processor energy estimation ac-
curacy vs. speed trade-off is currently not optimal for performing systematic
architecture exploration.

From a compiler point of view, extra optimizations can be added by exploiting
application knowledge and by adapting the mapping to the dynamism of the
application. Modern applications often exhibit highly variable performance
requirements in different phases of their execution. At the application level,
this can often be linked to different accuracy requirements and this informa-
tion is currently not fully exploited in the final implementation. Clear oppor-
tunities exist to couple application accuracy requirements and dynamism to
the word-width of the data and the exploited parallelism. Additionally, du-
ring the architecture exploration, the instruction set definition and mapping
techniques can be co-designed in order to reduce the total execution cost, as
not all operations have equal energy consumption, latency or area.

The related work in the context of embedded systems design mostly focuses
on one component, e.g. the processor [Abb07] or the data memory orga-
nization [Ram05]. With respect to the relations with other components,
default solutions are used, instead of globally combining multiple state-
of-the-art aspects across components. This leads to skewed interpretations
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of improvements and decisions that are often not globally improving the
design. That applies for domain-specific processors in general. Specifically
for Coarse Grained Reconfigurable Processors (CGRAs), only a few propo-
sed architectures are explicitly template based [SilH, Ebe96] and support
exploration and customization to the target application domain. Some limi-
ted parameters have been explored, e.g. [Ban04] investigates the impact of
different network topologies for mesh-based CGRAs, but the template is too
restricted and the work is for performance only. No existing work enables
early and systematic energy-aware and interconnect-aware exploration over
the template. Note that CGRAs could be seen as quite similar to the family
of instruction-set programmable architectures when the semantics (not the
syntax) of the constituting components is analyzed.

Also for the ASIP research community, a similar observation can be made: in-
dividual contributions are available on the components, but no global holistic
energy optimisation is enabled in this way. Still, the interest in ASIP style
processor platforms has become very high in the last 2 decades, especially in
the last few years. Early advocates in the 1990s of that approach were Ma-
saharu Imai [Sat91], Peter Marwedel [Mar03], Gert Goossens [Goo95], and
Pierre Paulin [Pau00, Poz07], together with their teams. In a broader context
of domain-specific processors, architecture exploration and the development
of architecture extensions for specific application domains is closely linked
to the ability of compilers to efficiently use these extensions. Therefore,
many opportunities exist at the architecture–compiler interface. Some limi-
ted attempts have been made to link application requirements and efficient
implementations through the used of variable word-widths [Eve01, Ber06].
However, also no systematic overview has been presented with respect to
exploiting word-width information throughout the mapping process, trading
off execution cost with application requirements. The same observation spe-
cifically also applies for the exploitation of strength reduction techniques for
multiplications in the context of a complete and broad search space. Current
compilers only focus on a part of the available exploration options, for a
specific context only [Har91, Par01].

Chapter 2 provides a more thorough review of the related work in these
domains.

1.3 Overview of the main differentiating
elements

The differentiating elements presented in this book are closely linked to the
main problem and subproblems that have been identified in the previous
section and are all linked to the architecture exploration of the embedded
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processor datapath, extended with its compilation techniques. The research
results that are presented in this book have been obtained in the context
of a team of Ph.D. students that have been active both at IMEC and seve-
ral university groups with which we collaborate. The result is hence a team
outcome.

1. A comprehensive energy consumption breakdown is provided for an
embedded platform, running a representative application, including
a detailed analysis on the relative importance of the different plat-
form components and on the way they influence each other. The study
includes a comparison of different embedded processor styles, indivi-
dually optimized for the same application. This breakdown indicates
that, although the datapath does only account for a small percentage
of the total energy cost, the processor design is an important part of
the system, as its design heavily influences the cost of the data and
instruction memories [Lam04, Lam05, Lam09, Rag09a, Rag09b].

2. A key element in this book is the detailed analysis of the space of em-
bedded processor architectures and its relation to process technology
and application domains [Lam09, Rag09b].

3. This analysis has lead to the proposal of a parameterized template of a
domain-specific instruction-set processor platform, called FEENECS,
which offers an energy-performance figure of merit of over 900
MOPS/mW in the TSMC 40 nm CMOS technology (using non-optimized
standard cell synthesis). This is less than a factor 2 higher than an opti-
mized ASIC for the same application instance, as illustrated in [Kri09].

Importantly, the basic architectural components of the FEENECS tem-
plate have a quite wide scope including all domains that are loop-
dominated, that exhibit sufficient opportunity for data level parallelism,
that comprise signals with multiple word-lengths (after quantisation
exploration) and that require a relatively limited number of variable
multiplications. Prime examples of this target domain can be found
in the areas of wireless base-band signal processing, multimedia si-
gnal processing or different types of sensor signal processing [Lam09,
Rag09b, Kri09, Rag06a].

4. A consistent architecture exploration framework is proposed which can
model a large set of architectural features for low power design. It
forms one of the key elements in this book. This framework has also
been extensively used in the rest of the book as well as to perform archi-
tecture exploration over different architectural parameters to illustrate
the different trends and trade-offs that are present [Lam09, Rag08a,
Rag08b, Rag09b].
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5. A distributed instruction memory organisation is introduced based
on distributed loop buffers. Also the interaction with a clustered fo-
reground data memory organisation is discussed [Rag06a, Jay02a,
Jay02b, Jay05a, Vda03, Vda04a, Vda04b, Vda05].

6. An efficient low power multi-threading architecture extension is pro-
posed for embedded processors. This architecture extension allows the
possibility of running multiple threads with communication and syn-
chronization with nearly no overhead. This is enabled by providing an
alternative distributed instruction memory organization. The proposed
approach also increases performance and reduces energy consumption
[Rag06a, Rag09b, Sca06].

7. Handling irregular indexes and dynamic accesses is a key issue for the
background data memory organisation. Ways to effectively deal with
this on a compiler-driven scratchpad architecture are proposed [Abs08,
Abs05, Abs06, Abs07].

8. Another core element is a novel asymmetrical foreground memory (re-
gister file) architecture for embedded processors. The proposed archi-
tecture extension is shown to be energy efficient as well as improve
performance by exploiting the spatial locality of data in the applica-
tion [Rag06a, Rag07a, Rag09b].

9. A systematic methodology is proposed for exploiting (heterogeneous
and non-power of 2) word-widths during mapping applications to em-
bedded processors, namely during assignment, scheduling, ISA selec-
tion and parallelization, including word-width aware energy estimation
at the Instruction Set Simulator level and a quantification of the expec-
ted gains for the different proposed techniques. Based on the estima-
ted gains, parallelization is identified as the most promising technique,
as it affects the energy consumption in all parts of the processor and
the platform, while the other techniques are most useful in systems in
which the datapath energy cost is a bottleneck [Lam07, Lam09].

10. A technique for word-width aware parallelization is described, ope-
rating on different word-widths in parallel, without using special
hardware (Software SIMD). The Software SIMD technique provides
significant speed-ups and a reduction in the energy consumption for
applications that have heterogeneous word-widths or in which the
word-width is significantly different from the hardware supported
word-widths [Lam07, Kri09, Lam08a, Lam09, Rag06b, Rag07b].

11. A cost-driven method for constant multiplication strength reduction
is proposed, including a systematic and complete description of the
conversion space. The unique benefits of this method are the co-
optimization with the processor instruction set and a trade-off of

12



Structure of this book

accuracy at the application level, which can lead to a reduction in
the energy consumption, a performance improvement or both. The
presented technique can be used as an enabling step for Software
SIMD [Lam08b, Lam09].

12. All the key domain-specific instruction-set processor/platform exten-
sions are illustrated on a realistic demonstrator, namely an online
bioimaging monitoring application. There also the large gains in
energy-efficiency for a given (high) performance are quantified and
substantiated. Due to our architectural innovations, we obtain about
1,000 MOPS/mW for a 40 nm TSMC CMOS technology using a conven-
tional standard cell library combined with a low-power SRAM macro.
This is a factor 10 higher than state-of-the-art processors that span a
similar target domain [Kri09].

1.4 Structure of this book

The flow of the book as well as the dependencies of the different chapters are
shown in Figure 1.5. The organization of the rest of the book is as follows:

Chapter 2 presents a structured overview of the global related work. It
briefly discusses the important architectural components of battery
operated embedded systems and the related mapping techniques. It
discusses architecture exploration and evaluation methods, together
with the most relevant design criteria or cost metrics. The specific
related work for each key element and comparisons with our proposals
will be presented at the end of each of the following chapters.

Chapter 3 discusses a case study that presents an energy consumption
breakdown for a complete embedded platform, consisting of the pro-
cessor, data memory hierarchy, instruction memory organization and
communication network. The main objectives of this case study are
to get a better insight into platform energy estimation in general, to
highlight the bottlenecks for this representative platform and to track
the effects of local changes on the other parts and the final platform
quality. The experiment is conducted using a representative driver ap-
plication and provides a context to the optimizations that are presented
in the rest of the book.

Chapter 4 presents the framework that has been used for architecture ex-
ploration in the rest of the book. It also presents exploration of various
architectures and illustrates the various trade-offs between different
cost criterion like area, energy and performance between different
architectures.
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Figure 1.5: Dependence flow of this book

Chapter 5 presents our distributed loop buffer organisation and the integra-
tion with the clustered foreground data memory organisation.

Chapter 6 introduces the technique of executing multiple independent thre-
ads on a single-threaded processor in an efficient way for both per-
formance as well as energy. The proposed solution ensures that the
instruction memory is efficiently organization to enable such multi-
threading.

Chapter 7 describes how irregular indexes and dynamic accesses can be
handled on the background data memory organisation. Ways to effec-
tively deal with this on a compiler-driven scratchpad architecture are
proposed.
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Chapter 8 introduces the novel Very Wide Register (VWR) based architec-
ture as an alternative to traditional multi-port register file based design.
It also evaluates the VWR architecture over different benchmarks. A
case study of the VWR is also illustrated in Chapter 11 for an online
bioimaging monitoring application.

Chapter 9 focuses on exploiting word-width information during application
mapping in order to reduce the energy consumption or improve the per-
formance of processor-based embedded systems. It presents the use of
word-width aware energy models to improve ISS-based energy estima-
tion sensitivity to word-width variation. It then systematically describes
how to exploit this information during various steps of the mapping
process, namely during assignment, scheduling, ISA selection and pa-
rallelization. For each part, the concept of the optimization is detailed
and the expected gains are evaluated. This chapter also presents a more
detailed description of how to implement word-width aware paralleli-
zation, also called Software SIMD.

Chapter 10 details the proposed method for the strength reduction of mul-
tipliers. It first motivates that constant multiplications form a relevant
sub-set of the multiplications in the targeted application domains and
then presents a systematic overview of the complete conversion space.
A context-aware cost-driven search over this space is proposed. Experi-
mental results are presented that illustrate the resulting conversion in
a set of relevant contexts.

Chapter 11 shows how are proposed architecture innovations can be com-
bined in a very effective ultra-low power template that has been ins-
tantiated for realistic bioimaging application.

Chapter 12 draws the final conclusions and presents directions for future
research.
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CHAPTER 2

Global State-of-the-Art Overview

Abstract

The work presented in this book targets nomadic battery operated embedded
systems. In this context, a large amount of related work exists. The goal of
this chapter is to present a structured overview of the relevant related work in
the design of embedded systems, which forms the broad context. The presented
ordering will cover both the architectural as well as the related mapping aspects.
An overview will be presented of the state of the art for the different components
that form an embedded system. Specific related work and comparisons the indi-
vidual contributions of this book will be presented in the respective chapters.

The rest of this chapter is structured as follows: Section 2.1 present an
overview of the architectural components, namely the processor core, Data
Memory Hierarchy (DMH), Instruction/Configuration Memory Organization
(ICMO) and the inter-core communication architecture. Section 2.2 intro-
duces the related work on the architecture exploration over this space which
forms a key aspect of the embedded systems design, together with the eva-
luation methods and relevant criteria or cost metrics. Finally Section 2.3
concludes this chapter.
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2.1 Architectural components and mapping

Figure 2.1 shows the main components of an embedded system. At the heart
of the system, the processor core performs the computations of the appli-
cation. It operates on the application data, which are stored in the Data
Memory Hierarchy. The DMH can consist of multiple individual memories of
different sizes. The type of operations that need to be executed by the proces-
sor and their required order is stored in the Instruction/Configuration Memory
Organization. As with the DMH, the ICMO can consist of multiple memories.
Modern embedded systems often contain multiple processor cores and use an
inter-core communication architecture to connect all components and enable
the data transfer between different processors and memories.

The rest of this section will discuss the relevant related work for each of the
components of Figure 2.1, including the techniques that are used to map
applications efficiently to these architectural components.

2.1.1 Processor core

The processor core consists of the hardware that executes the operations
(the datapath), the foreground memory from which the operands are loa-
ded and to which the results are stored back and the local interconnection
between these components. In addition to these components, the processor
core also consists of other components like processor pipelining and the issue
type. In this book, the foreground memory is defined as the memory to and
from which reads and writes happen in the same cycle as the processing, e.g.
register files, pipeline registers. Related work on these individual parts can
be structured according to these components as shown in Figure 2.2. Based
on the design decisions made for each component, processor styles can be
defined. The state-of-the-art processors representative for those styles, will
be categorized and described and the end of this subsection.

Figure 2.1: Processor architecture space
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Figure 2.2: Processor core architecture space

2.1.1.1 The FUs, slots and PEs of the datapath

Depending on the community, the terms FU, slot and PE can be used to re-
present the same or different architectural components. Therefore a clear
definition is presented below, that is followed throughout the rest of this
book.

Functional Unit (FU) The hardware component that executes an operation
of a specific type, e.g. and adder, multiplier or shifter. A single-issue
processor can still contain multiple FUs, but then only one FU can start
execution in a certain cycle.

Slot A group of FUs that are used mutually exclusively. Multiple (issue) slots
can execute in parallel. The terms slot is commonly used in Very Large
Instruction Word (VLIW) processor literature.

Processing Element (PE) Similar to a slot, but can also contain a local data
or instruction storage. The term PE is commonly used in reconfigurable
hardware literature.

Operation The functionality that is executed by an FU, e.g. ADD, MUL,
SHIFT.

Instruction The binary representation that determines what operation will
be executed by a single slot or PE. In VLIW literature, the VLIW-
instruction is a concatenation of the instructions for all parallel slots.

In conclusion, the slots or PEs of a processor typically consists of different
types of Functional Units and each FU supports a different functionality. The
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instructions decide what operation is executed on a certain slot and on the
corresponding FU within that slot. Typically the combination of FUs into slots
or PEs is called the processor datapath.

Processors can differ in the type and mix of FUs and in the number of slots. In
order to be able to efficiently execute their target application domains the de-
signer has to match these parameters to the requirements of the application.
The set of operations that is supported by the FUs of a processor is called the
instruction set. Various techniques exist that identify customized instruction
set extensions and implement them [VPr94, Che05, Lee03, Yu04] . These
techniques identify appropriate sub-graphs from the control-data flow graph
that can be executed by a single customized FU and in a way that efficiently
accelerates the application.

The number of slots of the processor determines the amount of instructions
that can be issued in parallel (Instruction Level Parallelism or ILP). Various
processors offer different levels of instruction level parallelism [TI00, Phi,
VdW05]. A range of techniques exist to compile to architectures with mul-
tiple issue slots. For example modulo scheduling or hyper-blocking [Ron07,
Rau94, Mah92] increase the number of instructions that can be scheduled
together.

Irrespective of the number of parallel slots (the ILP), each of the different FUs
of the processor can potentially support the execution of the same operation
on multiple data words in parallel. This is called SIMD (Single Instruction
Multiple Data) and is a form of Data Level Parallelism or DLP. Various pro-
cessors offer different possible SIMD possibilities [Fre, Int, TI00, VdW05].
The individual data elements on which the operation is performed in parallel
are called sub-words and together they form a word. In order to exploit the
DLP that is present in the application, often the data layout (the order in
which the data is stored in the memory) has to be modified and the data sub-
words that will be operated in parallel have to be (re-)packed together into
words. This process, together with the re-structuring of the application code
to perform the data parallel execution is called vectorization or SIMDization.
Various SIMDization and transformations techniques have been proposed in
literature [Bou98, Xue07, OdB03, Lar05].

2.1.1.2 Foreground memory (or register files)

The second component of the processor core is the foreground memory, from
which the data is loaded and to which the data is stored back after the exe-
cution. The foreground memory organization consists of the Register File (RF)
and the connectivity between the RF and the FUs or between different FUs
(forwarding/interconnection) (see Figure 2.2).
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The biggest challenge when designing a register file is to balance the need to
deliver data in parallel to all slots with the requirement to keep the number of
ports low for a feasible implementation and higher energy efficiency [Rix00a,
Lap02]. Clustering (splitting into parts) of the register file is a typical tech-
nique to allow delivering data in parallel to many slots in a scalable way
without increasing the number of ports per register file. However the com-
munication between the different clusters can have a negative effect on
performance. An extensive study of various inter-cluster communication
architecture is presented in [Gan07].

Other types of foreground memory organizations have also been proposed,
ranging from hierarchical register files [Zal00a] to FIFO based register files
[Tys01, Fer97]. Vector register files [Kap03, Asa98, Koz03] target data paths
that provide data level parallelism (SIMD) and form another important class
of foreground memory.

For each of these architectures a range of register allocation techniques exist
[Zha02, Smi04, Cha82]. Some techniques like [Das06] target specific strea-
ming models of register file as well.

In addition to the register file and the datapath, most state-of-the-art proces-
sors have special forwarding paths between the functional units. This allows
more flexibility as data can be sent from one FU to another without passing
through the register file [Gan07, Sch07]. As the availability of forwarding
paths has an impact on the register allocation, the compiler which maps to
these architectures must also support such forwarding paths.

2.1.1.3 Processor pipelining

Processor pipelining is a design method that inserts an extra register be-
tween different phases of the processor execution. Typically different stages
are used for Fetch, Decode, Execute and Writeback [Hen96]. As a result the
critical path is shortened, which allows increasing the clock frequency. In or-
der to reach the required clock frequency for current designs, state-of-the-art
processors have a pipelining depth ranging from 3 to 12. However, increasing
the frequency arbitrarily will lead to the additional stages and an increase in
the dynamic energy/power consumption due to the extra registers. In extre-
mely scaled technologies, timing differences due to process variation lead to
even more design problems for very high clock frequency processors. There-
fore the processor design needs to carefully balance the exploited parallelism
and target frequency (linked to the pipelining depth) in order to reach the
required performance.
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2.1.1.4 Issue logic

Different processor types can be categorized based on the order in which
they issue and complete their instructions. Some processors support the out-
of-order issuing of instructions. Out-of-order execution requires the hardware
to keep track of what hardware is currently in use, which instructions have
been executed, which operands have been produced etc. Alternatively, the
responsibility of keeping the hardware busy can be moved to the compiler, in
which case, in-order issuing can be used and no expensive hardware is requi-
red. With respect to the completion of the instructions, two types exist. With
in-order completion, the results need to be written back in the same order as
the instructions have been issued. With out-of-order completion, this restric-
tion is removed, which leads to more flexibility, but a higher complexity.

Traditionally techniques like speculative execution, out-of-order issue and
completion are extensively used in high performance super-scalar processors
e.g. Intel’s series of x86 processors, Power PC. In battery operated embed-
ded systems, due to the energy efficiency requirement, a preference is given
to simple hardware and the issue (and completion) order of instructions is
fixed by the compiler at compile time. Using techniques like software pipe-
lining, the execution can follow a different order than is given by the DFG,
thereby creating freedom to optimize the performance. This allows much
lower overhead at run-time and therefore is more energy efficient.

2.1.1.5 Overview of state-of-the-art processor classes

The embedded processor space contains a wide range of options. On one side,
very low power processors target battery operated or even self-sustaining sys-
tems, but provide only a limited performance. On the other side, very parallel
types can provide an extremely high performance in case a larger battery or
a connection to the power grid is acceptable. The state-of-the-art embedded
processors can be split up into different processor types, each offering a dif-
ferent trade-off point in the performance vs. energy efficiency vs. mapping
effort space. At the lowest performance and lowest flexibility side of the pro-
cessor spectrum, ultra-low power micro-controllers, like TI’s MSP430 [TI09a]
can be used to do very basic types of processing. They are good candidates
when the total energy budget is extremely constrained and when the work-
load and performance requirements are correspondingly low. They are na-
mely optimized mostly for control tasks.

Slightly more flexibility can be provided by small sequential RISC proces-
sors, e.g. [ARM09a]. They are typically small in-order single slot machines
that have a shallow pipeline and that can exploit only a limited amount of
parallelism.
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Another class of ultra low power processors are targeting sensor nodes (as
shown in Figure 1.1). These processors have a power budget in the range of
tens to hundreds of microwatt. Examples are [Eka04, Kar04, Cal05, Naz05].
But also in that case, the maximal performance is heavily limited. Espe-
cially at U.C. Berkeley [Rab0-] major efforts have been invested to moti-
vate the need to improve the energy efficiency to reach the levels of these
scavenging limits, and to contribute in these improvements for sensor node
networks.

By providing multiple slots, VLIW processors can increase the performance,
while minimizing the required hardware overhead (compared to superscalar
processors). Low power embedded VLIW processors can typically execute
between 2 [TI09b] and 8 [TI06] operations in parallel. Most of them combine
this however with a limited form of data parallelisation on several of the
slots (e.g. the C6x series of TI and the TriMedia of NXP [VdW05]). So every
instruction then executes several operations in parallel (e.g. 2 tot 4). This
can potentially increase the maximal performance significantly. Many VLIWs
provide a rather general instruction set and therefore are still quite flexible.
But on the other hand, most of them are quite optimized for executing digital
signal processing tasks in e.g. wireless or media processing.

Another class of VLIW style processors is organized as wide or hierarchical
VLIW processors, which provides more flexibility than pure vector processors,
as different operations can be executed in parallel [SilH, Mon05]. They form
very heterogeneous VLIWs.

Some VLIW processors however support only quite specific operations that
improve the performance for a selected target application or application do-
main. Various processor extensions (SIMD, loop buffering, clustering, etc.)
can be used to improve energy efficiency, performance or both. When the
processors are more customized in this way, they become an Application
Specific Instruction set Processor or VLIW-ASIP. In this case a distinction
can be made between ASIPs and accelerators, e.g. [Lu99]. An accelerator
is customized to accelerate only part of the application, while the rest is exe-
cuted by a so-called host processor. An ASIP often combines both into one
processor.

Worth mentioning in the wireless domain are the following ASIPs. NXP’s
embedded vector processor (EVP) is a software-programmable platform for
basebands with a relatively wide data-path [Kum08]. Infineon’s MuSIc (Mul-
tiple SIMD Cores), is a DSP-centered and accelerator-assisted architecture
and aims at battery-powered mass-market handheld terminals ([Ram07])
The University of Michigan has developed a very low-power processor
meant especially for relatively low performance sensor applications – called
Phoenix [Woh08]. It consumes power as low as 30 pW. Sandbridge [Glo04,
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Sandbridge] has launched a multi-core, multi-threaded, dynamically repro-
grammable processor that supports SIMD vector processing. At the Univ. of
Dresden, the Tomahawk platform and its predecessors have been introduced
[Hos04]. And also at the University of Aachen, ASIP related work has been
ongoing for several years [Schl07].

In addition, several commercial activities on such ASIP IP cores have been
launched. Some of these are also template-based. In particular, Tensilica’s
Xtensa and Lx processors belong to this family [Xtensa]. And Silicon Hive
has proposed several VLIW-ASIP cores oriented to multi-media and wireless
processing too [Phi]. Also CSEM’s Macgic DSP template belongs to this cate-
gory [Ram04].

Heterogeneous cores, like [Bar05b], combine multiple styles into a single
processor, e.g. a RISC core with a more parallel datapath part, to accelerate
the execution of specific application parts only when needed.

To meet the real-time constraints of some highly regular application domains
(limited control flow) with high throughput requirements, extremely parallel
processors have been developed. These processors are called vector proces-
sors. Some make extreme use of SIMD like [Abb07].

Others are explicitly targeting graphics applications, can handle many paral-
lel threads with low overhead and are called GPUs or Graphics Processing
Units for e.g. [Nvi09, ATI09]. These GPUs also offer very high SIMD and ac-
celerators for various graphics operations. They also contain extra hardware
to support the dynamism of fast thread creation and management used in,
e.g. objects in 3D gaming.

Finally some embedded processors extensively make use of data communi-
cation between their PEs in order to map larger parts of the data flow graph
onto the processor. These processors are often organized as a 2D array, and
are usually called Coarse Grained Reconfigurable Architectures or CGRAs,
e.g. [Mei03a, PAC03]. CGRAs offer a wide range of design parameters, like
the type and topology of their interconnect, the number of slots, etc.

Figure 1.4 provides a comparison of several of the main processor classes and
a few representative instances in the energy-performance trade-off range.

In order to achieve an efficient mapping of software onto this wide range
of processors, various mapping and compilation techniques have been deve-
loped. This ranges from the efficient extraction of data parallelism, thread
level parallelism, exploiting ILP and various other techniques. As architec-
ture and compiler are closely linked, most of the above mentioned references
include a description on relevant compilation strategies for the respective
processors.
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2.1.2 Data memory hierarchy

Next to the processor core, the data memory hierarchy is a second component
that has a high impact on the performance and power consumption of the
platform. In general purpose computing the movement of data between dif-
ferent parts of the data memory hierarchy is often handled by hardware sup-
port. This corresponds to the use of so-called hardware controlled caches. In
most embedded applications the data access pattern is more regular and can
be analyzed. Therefore the movement of data can be more efficiently hand-
led by the compiler or programmer and scratchpads are used (data memory
without hardware support to move data around). Hybrids also exist, in which
part of the cache can be used as a scratchpad, e.g. in [VdW05]. A scratchpad
based solution is power and performance efficient [Kan04a, Ban02], but it
requires a DMA or Direct Memory Access, which is a separate datapath that
needs be programmed to handle the required transfer. [Tal08, Mat03, Het02]
present various architectural possibilities and their trade-offs for DMAs and
Address Generation Units (AGUs) [Tal08].

Besides the aspect of the type of memory that is used (hardware controlled
cache or scratch pad), it is also possible to exploit the reuse of data over time
and the access order pattern (locality). Therefore a right choice of the me-
mory sizes, multiple levels and their inter-connectivity (memory hierarchy)
is needed for low power and high performance. The locality can only be effi-
ciently exploited if the application is transformed to make the most efficient
use and transfer of the data possible. Various transformation techniques that
expose the data locality (both spatial and temporal) have been proposed in
the literature [Abs08, Bro00a, Mar03, Pan98].

2.1.3 Instruction/configuration memory organization

The instruction memory contains the bits which describe the functionality of
the different slots and other processor components. In the CGRA/FPGA com-
munity this is also called the configuration memory. They are conceptually
similar and are treated together in this book. Instructions/configurations are
distributed and stored in the Instruction/Configuration Memory Hierarchy or
ICMO.

A good ICMO aims at distributing the instructions over the architecture at
the appropriate time and at a low cost. The ICMO can be organized similar to
the data memory hierarchy, namely as multiple hierarchical layers. However,
instructions differ from data in some important aspects (e.g. they are only
read, not written) and therefore some extra optimizations can be used. With
respect to the locality, instructions offer extra opportunities for (mostly tem-
poral) reuse as most embedded applications consist of computations that are
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organized in the form of loops. Various techniques like filter caches [Kin00],
trace caches [Rot96], victim caches [Jou90, Jou94] have been proposed to
optimize the behavior of caches for loop code.

Further optimizations, like loop buffers [Kav05, Uh99] go one step further,
by adding a special scratchpad (software controlled) to store the instructions
of loops only. Loop buffers can also be clustered [Vda04b, Jay05b] and their
size can be customized to reduce the energy/power consumption.

Independent of the fact if hardware controlled caches or scratchpads are
used, the instructions stored in memory can be compressed. This allows
a smaller memory foot print and is especially important for very parallel
architectures, e.g. VLIW processors. These techniques also reduce the traffic
between the instruction memory and the processor cores, but require an
additional decompression before the actual execution step. Various tech-
niques of instruction compression and NOP compression exist in litera-
ture [Deb00, Tan02, Gor02b, Adi00]. A detailed survey of instruction com-
pression is given in [Bes03].

A more detailed overview of the design space of instruction/configuration
memory organization is presented in Chapter 6.

2.1.4 Inter-core communication architecture

In order to use all described components in an embedded system, they have
to be connected. This can be done using different architectures, ranging from
custom point to point connections, over a standard bus (e.g. ARM’s AMBA),
to a network-on-chip. An overview of state-of-the-art communication archi-
tectures can be found in [Kog06, DeM06, Ler08] for network-on-chip solu-
tions or [Pap06, Hey09] for bus based work. The communication architecture
can be chosen based the traffic requirements, number of components, design
time, etc. A description of the trade-off space for communication architec-
tures is outside the scope of this book and is not discussed further.

2.2 Platform architecture exploration

The range of embedded processors is large and both architectural as well as
mapping extensions can be used to modify a processor style. Therefore an
exploration phase should be used to find the best match between architec-
ture and application. Conceptually, the architecture exploration can be spit
into three different parts, as is shown in Figure 2.3. Firstly, a search strategy
has to be chosen to go over the different candidates. Secondly, a number of
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Figure 2.3: Architecture exploration tools/models

criteria or cost estimates, on which each candidate architecture has to be eva-
luated on. These are often cost models which may be analytical or empirical.
Finally, each candidate solution has to be evaluated using a certain evaluation
method, with respect to the design criteria. These three parts are discussed in
more detail below.

2.2.1 Exploration strategy

In order to design an embedded processor that meets all requirements with
respect to performance, energy efficiency, area, etc. architecture exploration
is used to compare a range of architecture candidates and gradually improve
the design. An exploration strategy or technique is needed to steer this pro-
cess, as the exploration space is extremely large. In most practical cases, the
exploration is restricted to a part of the space, usually called the supported
architecture template [Gon02, Mei03a, Tar08]. This template can be the re-
sult of the experience of the design engineer, often including a combination
of application knowledge and intuition, or the result of restrictions in the
used mapping tools (e.g. the compiler). The exploration within the template
can be further steered by a set of heuristics to speed up the exploration fur-
ther, as in most cases an exhaustive search would still be infeasible. Such
heuristic based exploration is performed in commercial tools, like Tensilica’s
Xtensa [Gon02] and in academic work, like [Jac00, Lap02]. Alternatively,
constructive techniques can be used to generate an architecture based on the
analysis of a set of applications, usually starting from a minimal (or extremely
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rich) base architecture and demand driven adding (or removing) resources.
This approach is popular in high level synthesis and in cases where only a
fixed set of applications have to be run. An example of such constructive
techniques can be found in Synfora’s PICO [Syn08, Phi04].

2.2.2 Criteria/cost metric

The target of the architecture exploration is to find an architecture that meets
the requirements. These requirements can be defined with respect to a num-
ber of criteria or cost metrics, of which performance, energy efficiency, area,
design effort, flexibility are the most used examples. Requirements can be a
combination of relative (trade-offs) or absolute (constraints) criteria, e.g. mi-
nimize the energy consumption within the available design time (trade-off)
for a given minimal performance target (constraint). The effect of a modifica-
tion at the architecture level, be it a change in processor or memory style or
an extension to a component of a processor, propagates to the various design
criteria in a non-trivial way. This is because all criteria are linked and strong
trade-offs exist, either in the design of a single component or elsewhere in
the system.

2.2.2.1 Performance

As most embedded systems interact with the physical world, their real-time
performance is often essential. Therefore performance is one of the most im-
portant requirements. Simulation is a commonly used technique to estimate
the performance during embedded processor design, e.g. [Aus02]. The pro-
cessor can be modeled at different abstraction levels and the corresponding
simulation can be instruction accurate, cycle accurate or bit accurate. Cycle
accurate simulations are commonly used to estimate the performance of the
processor. However, to validate the real-time performance (in seconds), a
target clock frequency is needed. To obtain an accurate estimate for this, the
complete design needs to be synthesized/placed and routed. The more ac-
curate the simulation needs to be, the slower the process of estimating the
performance. In most cases, for relative comparisons a crude estimate suffices
however.

2.2.2.2 Energy consumption

In the context of battery-operated embedded systems, trade-offs with respect
to the energy efficiency of the architecture can be made visible throughout
the design if the energy consumption can be estimated. Traditionally, energy
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estimation is done rather late in the design flow, e.g. at gate level. However,
this means that many decisions have been taken and a design change at
this stage of the design process would require a large effort. Therefore it is
difficult to perform a broad exploration at this level or to make significant
modifications based on the feedback from the gate level energy estimation. It
is however possible to create energy models at various levels of abstraction,
which can then be used during exploration at higher abstraction levels. In
this way both benefits, namely speed and accuracy can be combined to some
extent, which suffices for relative comparisons during early exploration.

Models calibrated after measurement For widely used processors like an
ARM9 [ARM09b], TI’s TMS320C6x [TI00] series, Intel’s processors measu-
rements can be performed to create an accurate energy model. This energy
model is often created by a test sequence of instructions or program and
measuring the current. Various related work, like [Sin01, Ben02, Jul03,
Cha00, Isc03, Tiw96] have created an energy/power model after measure-
ment. These models are often at the granularity of energy consumption per
instruction for the complete processor. This complicates the use of the model
to make architectural modifications, as they don’t produce a breakdown for
different processor components.

Analytical models It is also possible to create models that are analytic.
Related work like Wattch [Bro00b], CACTI [Shi01] and others like [Mam04,
Ye00] create an energy model for individual components. They make as-
sumptions on the micro-architecture for each of the components and on the
design style (e.g. standard cell vs. custom design). Based on the technology
choice and the micro-architecture assumption, the analytical model gives the
energy consumption per activation of the component. Most work in analytical
modeling is targeted towards memories as their structure is quite regular and
can be captured in a model with reasonable accuracy. However, some work
on analytical datapath modeling exists, e.g. [Ask99, Hel02]. The energy mo-
dels from analytical modeling are often energy consumption per activation
of a component. They can also be sensitive to the actual bit switching.

Models at/after RTL Models can also be created at Register Transfer Level
(RTL), either for components or for the complete processor. The RTL can be
synthesized and the energy consumption can be estimated based on statis-
tical activity. Instead of statistical activity real application data can be used,
but this can be very time consuming, especially for a complete processor. The
estimation can be made more accurate if done at gate level, and even more
accurate after place-and-route and parasitic extraction. A detailed study of
the error incurred and the time consumption between the different stages is
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done by [Bal04]. Based on the granularity of the modeling, the models will
represent the energy consumption per activation of a component or the com-
plete processor respectively. These models can also be extended to take into
account the switching activity of the input.

Peak power consumption In the design of embedded systems for mobile
devices, energy consumption is an important metric, as it is directly linked to
what can be drawn from the battery. However, the peak power consumption
has a large impact indirectly, as is influences the worst case heat dissipation
and thereby the packaging cost. Estimating the peak power consumption re-
quires, in addition to e.g. the simulation set-up, the availability of worst case
test patterns [Hsi97].

2.2.2.3 Area

In the competitive market of consumer electronics, the cost of the design
is extremely important and for some designs the cost is directly related to
the area of the chip. A first synthesis of individual components gives a first
area estimate at the component level. Further placement and routing of com-
ponents can improve the accuracy of this estimate. However, both methods
ignore the overhead/optimization potential of global place and route. Early
in the design, a crude estimation suffices to be able to do relative compa-
risons. For memories this can be often be estimated by analytical models
like Wattch [Bro00b] or by using commercial memory generators like Arti-
san [ARM] or Virage [Vir].

2.2.2.4 Design effort

Aside from the impact different processor styles have on the performance
and energy efficiency, there usually is also an effect on the design effort that
is to be expected when choosing for a certain style. For example a simple
RISC processor, using a push-button compilation approach, will take a much
less design effort than the implementation of an ASIP, which requires the
manual modification of the application code to make use of the application
specific processor extensions. It can be expected that the energy efficiency
and performance of the ASIP will be superior to that of the RISC. But when
comparing an ASIP solution with a CGRA implementation, the trade-off be-
comes less obvious. The design effort is part of the overall design trade-off
and therefore should be taken into account, but is rather hard to quantify
accurately. Therefore in most cases qualitative comparisons are often used
and the weight of this criterion with respect to the other cost metrics is up to
the designer.
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2.2.2.5 Flexibility

A final important aspect of the embedded platform design trade-off is the
flexibility of the designed solution. This aspect covers the ability to map other
applications to the platform after the design. One extreme case is an Applica-
tion Specific Integrated Circuit or ASIC, which is completely fixed to a single
task, but performs this task very efficiently. On the other side of the spec-
trum, a general purpose processor can run any application, but at a severe
energy and performance cost. The embedded processor space contains mul-
tiple in-between solutions, that provide varying levels of flexibility, at various
performance and energy efficiency points. However flexibility is a qualitative
criteria as often it is a trade-off with efficiency of mapping.

2.2.3 Evaluation method

A key element of a successful exploration is the ability to evaluate different
options with respect to the criteria and cost metrics. Depending on the cost
metric, different evaluation methods can be used and the evaluation can be
(or needs to be) performed at different abstraction levels or with different ac-
curacy. At each of the different levels the cost models can be used to evaluate
the quality of the architecture.

Often the initial algorithm development happens in a high level language
like Matlab, at which stage the functionality is evaluated. Based on the com-
putational complexity of the application a this level, a first rough estimate
can be made of the required peak performance of the processor. It is then
refined down to C,1 which is functionally equivalent to the Matlab reference
and now is ready for mapping on an architecture.

The initial architecture exploration is often performed on Instruction Set
Simulators. Various simulators exist, like Trimaran [Tri08], Simplesca-
lar [Aus02] etc. Instruction Set Simulators are often accompanied with an
associated (retargetable in some cases) compiler front end which compiles
the code on the architecture. Commercial instruction set simulators, like Tar-
get Tools [Tar08], Processor Designer [CoW08a], Synfora’s PICO [Syn08],
ASIP Meister [EDA05], Tensilica [Gon02] are available at this level.

Architectures can also be modeled at transaction level. The architecture in
this case is modeled in a transaction accurate model often in SystemC or
similar languages. Frameworks like Liberty [Lib02], Unisim [Uni05] can
be used for this purpose. In practice these simulators model on an abs-
traction level below ISS level and therefore are more accurate, but slower

1The C-language is used most for the embedded systems domain, which is the target of this
book, but other languages can be used.
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than instruction set simulators. Some commercial frameworks like CoWare’s
Virtual Platform [CoW08b] also exist to support TLM (Transaction Level
Modeling) of such processor architectures together at the platform.

On further refinement, architectures can also be evaluated/explored at Re-
gister Transfer Level (RTL). This is very time consuming and often only minor
modifications are done during exploration at RTL level at the complete pro-
cessor level. This can then be refined to gate level and simulated as well. Both
RTL and gate level simulation for multi-million gate designs are prohibitively
slow and therefore are not usable.

However, instead of simulating the gate level model, it can also be mapped
on an FPGA. This is called emulation and it is commonly used practice to
verify the final design, before producing the chip. Emulation of an architec-
ture is faster than RTL or gate level simulation and therefore some amount
of exploration can also be done at this level. Various academic FPGA emu-
lation projects like [UCB07, Ati07] and commercial emulation platforms like
Mentor Graphics’ VStation [Men07] exist.

2.3 Conclusion and key messages of this chapter

This chapter has presented a structured overview of the related work in the
design of battery operated embedded systems, with an emphasis on the de-
sign, exploration and evaluation of embedded processors. Specific related
work that is directly related to the specific contributions of this book will be
discussed at the end of each respective technical chapter.

The design space for embedded processors is extremely large. In addition, the
complete embedded platform consists of multiple components (each with a
range of options) that can not be studied in total isolation, as modifications
to one component can influence the other components. Architecture explora-
tion can be used to find a good match between the application requirements
and the architecture design. To be able to perform an efficient exploration
and compare different processor styles, this exploration should be perfor-
med early on in the design. Therefore a trade-off has to be made between
the implementation effort that is required to model an architecture, the eva-
luation speed and the accuracy. In the next chapters this broad exploration
will be performed based on a realistic case study resulting in a set of high-
level requirements and a proposal for an ultra-low energy platform template.
In addition, a framework will be proposed to effective support this broad
exploration.
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CHAPTER 3

Energy Consumption Breakdown and Requirements
for an Embedded Platform

Abstract

Current embedded systems are built of many interacting components. While
optimizing the system, it is important to track the impact of the different
parts and their interaction on the global optimality metrics. In this chapter,
a representative case study is presented that estimates and compares the most
important parts of an embedded platform: namely the processor, data memory
hierarchy, instruction memory organization and communication network. The
experiment uses a realistic driver application (a MPEG2 video encoder/decoder
chain) to estimate the relative importance of the different parts on the final
performance and energy consumption of the system. The main objectives of this
case study are to get a better insight into platform energy estimation in general,
to highlight the bottlenecks for this representative platform and to track the ef-
fects of local changes on the other parts in order not to move to a globally worse
point. It thereby provides a context to the optimizations that are presented in
the rest of this book. Also high-level requirements are derived for the entire
platform.

F. Catthoor et al., Ultra-Low Energy Domain-Specific Instruction-Set Processors, 33
DOI 10.1007/978-90-481-9528-2 3, c© Springer Science+Business Media B.V. 2010
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3.1 Platform view: a processor is part of a system

Future SoC platforms will have to satisfy many critical requirements: they
will have to be energy efficient, to be able to handle diverse applications
and to provide sufficient processing capacity, all at the same time. The com-
bination of all these requirements poses serious challenges on the current
platform styles and related mapping methodologies.

To meet these requirements, most SoCs contain several types of processor
cores and data memory units, resulting in very heterogeneous platforms. Cur-
rent designs are often still organized around a shared bus, a solution that is
not scalable on the long term as it leads to a bottleneck in the communica-
tion when the number of processors and memories grows. To overcome this
problem, other solutions, like Sectioned Buses [Pap06, Hey09] and Network-
on-Chip (NoC) solutions [DeM06, Ler08] have emerged, both in academia
and in industry. In this chapter, such a state-of-the-art NoC-based SoC is the
subject of the presented case study.

As has been shown in Chapter 2, most related work focuses on one aspect of
the platform, e.g. the data memory hierarchy, instruction memory organiza-
tion, communication network or the processor, while a global effort contai-
ning all these components is essential to estimate their relative importance
and the impact on each other. Additionally, the related work on full-platform
estimation focuses on homogeneous platform tiles and regular array/mesh
structures, while in reality more heterogeneous platforms are far more likely.
The presented experiment aims to expose the real bottlenecks and highlight
present trade-offs related to this context. ISS-based energy estimation is used
to estimate the energy consumed in the different parts, as has been motivated
in Section 2.3. As already indicated in Chapter 1, the multi-processor aspect
will not be the real focus of this book. We will look at multi-threading aspects
on a single processor in Chapter 6 but not beyond that. The main focus lies
on the global interaction between all the key elements of one processor and
its data and instruction memory organisation.

Due to the wide scope of this case study (a complete platform) and the large
number of components involved, it is not feasible to model all parts to the
highest possible detail. Therefore, less important aspects have been ignored
or parts that are complex to estimate at a higher abstraction level have been
simplified. However, these assumptions are made explicit and are motivated
quantitatively during the analysis of the results. This discussion is instructive
for understanding the relationship between the different parts of the platform
and the conclusions that are drawn about the relative contribution of the
parts to the total energy consumption.
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In summary, the goal of this case study is to get insight into the relations
between and the relative contributions of the platform components and less
emphasis should be put on the absolute numbers.

The rest of this chapter is organized as follows. A global experiment based
on a MPEG2 video encoder/decoder benchmark allows us to summarize the
conclusions for the full system, as presented in Section 3.2. Here the data
and instruction memory hierarchy and the processor data-path are viewed
in the context of a heterogeneous multi-processor platform including the
impact of the inter-processor communication network. Based on this it is
clear that the data and instruction memory organisation is dominant initially.
Then a more focused exploration of different processor styles is presented in
Section 3.3 where it is concluded that the clustered VLIW and CGRA (coarse-
grain reconfigurable array) styles are very attractive ones, especially when
domain-specific optimisations like custom instruction/FUs and SIMD paral-
lelism exploitation are incorporated. Section 3.4 derives the high-level requi-
rements for an well-balanced low-power platform, and Section 3.5 presents
the context of this work and the current trends (including deep-submicron
effects) and bottlenecks in the processor architecture exploration space.
Section 3.6 presents various architectural proposals for the main platform
components, namely data and instruction memory organisation and proces-
sor datapaths, in order to reach a similar overall energy efficiency as that
of an ASIC. Section 3.7 combines these different architectural components
to present the FEENECS architecture template that we propose in this book
to achieve ultra low energy execution of embedded loop-dominated appli-
cations. Section 3.8 discusses the related work and provides a comparison.
Finally, Section 3.9 concludes this chapter and summarizes the key messages
of this chapter.

3.2 A video platform case study

The key result in this chapter is that a complete power breakdown of a mul-
timedia platform is presented that, unlike most related work, considers an
optimized mapping of the application for all platform components. The po-
wer consumption of the processor, communication architecture, data memory
hierarchy and instruction memory organization are estimated for a represen-
tative video processing chain. The relative contribution of different compo-
nents is studied and relations and the impact of various optimizations are
identified.
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3.2.1 Video encoder/decoder description and context

The platform considered in this experiment is viewed as a set of tiles intercon-
nected by a communication architecture. A tile can be either a data memory
or a compute node, which consists of a processor (e.g. a DSP), including its
local data memory.

This section describes the different components of the platform: the driver
application, the compute nodes, the heterogeneous platform tiles and the
tile sizing and placement. The communication architecture is presented and
the mapping of the application on the platform is discussed.

3.2.1.1 Driver application

The power breakdown for a NoC platform is measured for a representative
application, consisting of a video chain as is typically used in digital camcor-
ders (see Figure 3.1). This video chain consists of a camera interface (CAM),
an MPEG2 encoder and decoder (ENC and DEC), an intermediate buffer
(BUF) and a display interface (DISP). Alternatively, the encoded data can be
stored to external memory (External). The camera generates 25 4-CIF frames
(704 × 576) per second. This stream is transferred to the MPEG2 encoder.
A recent history of the encoded video (a few seconds) is placed in the inter-
mediate buffer to allow the user to quickly playback. When the user wants
to replay a recent event, the video is read from this on-chip buffer and sent
to the display. This is less energy-consuming than reading from an off-chip
device. It is assumed that the entire video is also stored in a dense but slow
off-chip storage device for later use. The respective memory interface and
additional connections to the off-chip memory are not considered here, but
they would not have a significant effect on any of the conclusions.

The bandwidth requirements have been computed for the complete video
chain and have been annotated on Figure 3.1. The bandwidth corresponding
to the communication between the encoder/decoder and their respective
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Figure 3.1: Video chain annotated with required bandwidths

36



A video platform case study

data memory tile has been computed with the assumption that extensive Data
Transfer and Storage Exploration (DTSE [Moo97]) optimizations have been
performed to reduce the number of data memory accesses to a minimum.

3.2.1.2 Embedded platform description

Heterogeneous compute nodes Embedded multimedia applications are
very demanding in terms of performance and flexibility and very constrai-
ned in terms of energy. They will therefore require both heavily specialized
processors and more flexible reconfigurable processors, here in more gene-
ral terms called compute nodes. The correct choice of compute nodes al-
lows these platforms to deliver the correct performance at minimal power
consumption, while maintaining some flexibility.

A platform like the one considered in this case study could include a num-
ber of compute nodes: a VLIW DSP (TI-C6x-like) for intensive signal proces-
sing, a VLIW ASIP (specialized cores) for specific video or audio processing, a
Coarse Grained Reconfigurable Architecture (CGRA) for flexibility and hard-
ware acceleration and an ARM-like RISC processor to support application
tasks that are not computationally intensive. These processors would be dis-
tributed over the platform tiles shown in Figure 3.2, e.g. the MPEG2 decoder
on tile 13 could be a VLIW DSP, while the MPEG2 encoder on tile 6 could be
CGRA. The camera and LCD display interfaces are also present in this SoC
platform. A large amount of on-chip data memory is distributed on the plat-
form to reduce off-chip communications and to allow the storage of several
MPEG2 frames on-chip. For the platform energy breakdown presented in this
section, only one processor type is used to serve as an example, namely the
VLIW DSP. A detailed description and comparison of the other above listed
compute node styles is presented in the second part of this case study (see
Section 3.3).

Tile sizing and communication In this experiment, it is assumed that the
platform consists of 16 large heterogeneous tiles, contrary to some other re-
search that considers very small tiles [Wie02], resulting in hundreds of tiles
on a chip. This choice is motivated by the fact that distributing heavily com-
municating sub-tasks over several tiles leads to a high energy consumption
over the global inter-tile communication network. That is especially true in
scaled technologies where wires start to fully dominate the power/energy
consumption in a design. Instead, we opt for larger tiles consisting of a com-
pute node and its local memory. This leads to a second type of communica-
tion, the intra-tile communication. If the applications are split in such a way
that the intra-tile communication is completely design-time analyzable, it can
be heavily optimized and is less expensive than the inter-tile communication,
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which requires run-time hardware support [Guo08]. The intra-tile commu-
nication typically consists of the communication between the processor and
the local memories on one hand and the communication between different
slots on the other hand. The communication with the local memories can
be kept small by optimizing the local lay-out (see also Section 3.6) and the
types of processors that are considered here, except for the CGRA, have a
limited amount of local interconnect. Therefore, this local communication is
not considered further in this chapter. For RISC and VLIW processors, the cost
of this local interconnect is here included into the energy cost of the commu-
nicating components. For CGRAs, this assumption does no longer hold and
this is handled in detail in Chapter 4 of [Lam09].

The tiles in this experiment are sized in such a way that they are able to
execute complete complex tasks (e.g. MPEG encoding). These tasks are still
only parts of the complete applications (in this case, the video encoder/de-
coder chain), but are split in such a way that most of the communication
remains intra-tile. The platform tiles also include a reasonable amount of
embedded L1 caches or scratchpads, which requires a careful design of cache
and scratchpad size (for a target application or application domain) [Das05].
In this way, a well-optimized tile mapping can help to reduce the perfor-
mance degradation and power consumption due to inter-tile communication
overhead.

Moving the first level of cache or scratch-pad inside the tile, together with
the assumption that the application has been heavily DTSE-optimized, leads
to a heavily reduced energy consumption for the inter-tile communication
architecture (as will be shown by the experimental results of this section).

Tile placement In order to correctly estimate the energy consumed by the
inter-tile communication, the placement of the different tiles onto the chip
and the respective wire-lengths have to be known. In this experiment, we
have chosen to distribute the compute nodes over the platform with a good
average placement relative to memories, as opposed to a placement that is
optimized for only certain tiles or applications. Using more specific task load
information, the placement can be further optimized for a narrow application
domain by clustering heavily communicating tiles. More information on this
type of inter-tile communication optimization can be found in [Guo08].

3.2.1.3 Inter-tile communication architecture

Shared buses are still a popular choice for on-chip communication, but they
do not offer the scalability and extended bandwidth that is required for fu-
ture multimedia platforms. Buses connecting a large amount of tiles quickly

38



A video platform case study

become a bottleneck and are not energy-efficient as the whole bus has to be
driven each time an access is performed. Networks-on-Chip (NoC) have been
proposed as an alternative to buses [Dal01], next to other more scalable
bus-variants, like bridged buses or sectioned buses [Pap06]. As the optimiza-
tion and exploration of Communication Architectures is not the topic of this
book, a NoC-based communication has been chosen, because of its ease of
use, which makes it a strong possibility for future platforms.

In a NoC-based platform, each tile is connected to the network through its
own network interface, which is connected to a router (a group of tiles can
also share a router). Routers are linked to a sub-set of the other routers to
form a specific topology (e.g. a mesh). A routing algorithm determines which
path must be taken from source to destination.

For this experiment, a regular mesh has been chosen as the logical view of the
network, because it heavily simplifies the task of the network control algo-
rithm and allows the network to be reconfigured fast enough for very dyna-
mic applications like 3D graphics. The network uses switched virtual-circuits,
a technique that consists of establishing an exclusive connection from source
to destination. Part of the network resources and bandwidth are thus dedi-
cated exclusively to this connection, as long as it is not released. To find and
reserve the best circuit of a given bandwidth across the network from source
to destination, an adaptive routing algorithm is used that allows to efficiently
avoid paths that are entirely occupied by other existing circuits [Shi03].

3.2.1.4 Mapping the application to the architecture

The logical view of the platform (Figure 3.2) shows the mapping of the appli-
cation. A set of assumptions have been made about other applications run-
ning simultaneously on the same platform, in order to achieve a globally
more realistic view of the platform, as the current application alone would
never generate any congestion or routing problems. As the communication
network is not the focus of this book, the reader is referred to [Ler08] for
more information about these assumptions. The resulting mapping is des-
cribed here briefly. The camera and display interfaces (I/O) are placed at
the border of the chip and do not require a large area (tiles 1 and 7 res-
pectively). The MPEG2 encoder and decoder are mapped respectively on a
coarse-grained architecture (tile 6) and on a VLIW (tile 13). The encoder
and decoder working memories are chosen (from the available memories) to
be as close as possible to these processing nodes. The dark arrows show the
paths that are set up by routing algorithm of the virtual circuit switched net-
work. In this example, it is assumed that the maximal bandwidth is reached
on some links (indicated by a cross) and as a result, some communication
can not follow the shortest route (e.g. from MPEG2 decoder to Display).
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Figure 3.2: Mapping of the application on the logical platform view

Other application tasks may run simultaneously on the unoccupied nodes of
the platform (e.g. a 3D-graphics chain that will produce a smaller picture-
in-picture game window on the shared display). The data and instruction
memory hierarchies are based on state-of-the-art clustered/distributed orga-
nizations at the local level and a shared SDRAM at the top level.

A more detailed description of the NoC modeling, a detailed description of
the routers and the control algorithm to set-up the virtual circuits can be
found in [Ler08].

3.2.2 Experimental results for platform components

This section presents the experimental procedure, the energy and power es-
timation and the contribution of different platform components.

3.2.2.1 Experimental procedure

The case study that is presented in this chapter combines the results of se-
veral experiments, each modeling a certain aspect of the platform. The re-
ported results for the different levels of the memory hierarchy and for the
datapath operations correspond to one particular compute node, namely the
MPEG2 decoder mapped on a homogeneous VLIW processor with eight slots
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and have been generated using the COFFEE platform instruction-set simula-
tor that is based partly on the older CRISP simulator (see Chapter 4). The
processor types described in Section 3.2.1.2, will all be compared in the se-
cond part of this case study (Section 3.3) for the MPEG2 decoder, in order
to compare their respective performance, while normally the different tasks
described here would be mapped on different processor types.

The reported power consumption of the inter-tile communication architec-
ture corresponds to the cost for all communication in the whole platform,
based on computed band-widths for the different links. In order to be able
to estimate these bandwidths, DTSE optimized has been assumed, such that
the transferred amount of data could be estimated from the size of a frame
(assuming two reads and one write). The energy estimation was performed
for the individual components of the NoC, but no network simulator has been
used for the complete described NoC. Still, we believe this provides a reaso-
nable estimate that is at most a small factor below the actual value. And even
with a larger error offset, the conclusions that are discussed in Section 3.2.3,
will not change due to the relatively small contribution of the NoC in the
entire power pie, due to the energy-efficient mapping (especially because of
applying the DTSE stage) of the network.

3.2.2.2 Embedded processor datapath logic

The embedded processor used in this section is a VLIW DSP, running the
MPEG2 decoder. A comparison with other processor styles is presented in
Section 3.3. For the platform energy breakdown of this part, a centralized
heterogeneous VLIW architecture is used, as is shown in Figure 3.3. If all slots
in a VLIW contain the same FUs and hence can execute the complete proces-
sor instruction (operation) set, the VLIW is called homogeneous. If the slots
are specialized and can execute only a subset of the supported operations,
as is the case for most commercially available VLIW architectures [TI04], the
VLIW is called heterogeneous. When all slots share the same register file, the
register file is called centralized, while the processor is called a clustered
VLIW if the slots are grouped and each group has its own register file. In this
experiment, a centralized register file of 32 entries is used. Clustered VLIW
architectures are discussed in Section 3.3.

RF

L S M D D M S L
slot slotslot slotslot slotslot slot

Figure 3.3: Heterogeneous centralized VLIW processor architecture
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The different slots of Figure 3.3 are modeled after the TI-C6x-family of
heterogeneous VLIW DSPs. Four different types of slots, called L, S, M and
D, each support a sub-set of the processor instruction set. Their functionality
is as follows:

• L: Arithmetic, Compare and Logical operations

• S: Arithmetic, Shift, Logical and Branch operations

• D: Arithmetic and Load/Store operations

• M: Multiplications

The embedded processor has been simulated using the the COFFEE platform
instruction-set simulator (see Chapter 4). The MPEG2 decoder application
has been taken from the Mediabench [MedB] benchmark suite. This task de-
codes a sequence of four 4-CIF frames (IPPP). The processor, a heterogeneous
VLIW, has eight slots of which the supported operations for each slot are mo-
deled after the TI TMS320C6204 [TI04]. The energy cost per operation for
the datapath assumes the use of optimized module generator (semi-custom)
data reported by [Fei03] for a processor implemented in a 0.13 μm CMOS
technology node and running at 1.2 V. The instructions that are executed on
the VLIW are categorized as ALU operations on one side and MUL opera-
tions on the other side. This assumption has been used as an approximation,
since in most processors the difference in energy consumption of most non-
MUL operations does not vary significantly [Fei03]. This is partly due to the
control overhead and the overhead of the fetch and decode stages. There-
fore, Arithmetic and Logic operations, Loads and Stores and Shift operations
are all grouped into the ALU group, which has a significantly lower power
consumption than that of the operations in the MUL group. For scaled ar-
chitectures, we expect the cost of (larger) multiplier to increase relative to
the cost of the ALU. The significantly higher cost of MUL operations is further
discussed in Chapter 10.

Table 3.1 presents the energy and power consumption estimates for the pro-
cessor datapath separately.

3.2.2.3 Datapath pipeline registers

The energy cost of the pipeline registers is normally included in the energy
cost for the datapath operations, which leads to higher numbers as repor-
ted by others. In this case, we have consciously made a split between the
datapath logic and the datapath pipeline registers to take out the effect of
increasing the clock frequency on the energy consumption of the core. In this
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MUL ops. ALU ops. Total
Number of ops. 7,883,491 366,006,736 373,890,227
Energy cost per op. 4.86E-12 J 2.24E-12 J
Total Energy 3.83E-5 J 8.19E-4 J 8.58E-4 J
Power at 25 fps 5.36 mW

Table 3.1: Energy and power estimation for a module-generated (semi-
custom) datapath logic, for the decoding of four MPEG2 frames at 25 fps

experiment, the energy that is spent in pipeline registers has been modeled
and computed separately, as the core clock-frequency is assumed to be quite
high (600 MHz).

For a target frequency of 600 MHz, we assume that a pipeline depth of
12 stages is required (which is in line with the pipeline depth of the Ti C62
family). Our computations show that a 32-bit pipeline for eight parallel slots
consumes a total of 82.9 mW at 0.13 μm and 1.2 V. In contrast, the same
datapath will require only four pipeline stages and consumes only 9.2 mW
if that processor is running at 200 MHz (assuming no Vdd scaling has been
applied). An increase with a factor 3 in frequency leads to an increase in the
pipeline energy consumption of about a factor 9.

3.2.2.4 Data and instruction memory hierarchy

Foreground data memory The foreground memory, the memory closest to
the datapath, is considered to be part of the processor (the core). In the case
of a VLIW processor, the foreground memory is the register file. A centra-
lized register file in a 8-slot VLIW processor needs 16 read ports and eight
write ports. It has been modeled using energy per access estimates obtained
from [Ben01]. The register file has 32 entries and consumes 98 mW. Table 3.2
clearly shows that the power consumption of the register file is an important
part of the power breakdown. This power consumption can be reduced by
moving to a clustered register file, which will be discussed in Section 3.3.

Background memory and loop buffer The background memory hierarchy
typically consists of a level 1 instruction cache (IL1, 8kB), a level 1 data cache
(DL1, 8kB) and a unified level 2 (UL2, 256kB) cache (both for instructions
and data). With just a single level of instruction cache, we observed that the
instruction memory hierarchy formed the largest bottleneck. Therefore, we
decided to introduce a loop buffer (can be seen as the foreground instruction
memory, but is only useful for loops) as presented in [Jay02a]: this small
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Architecture component Power consumption (mW)
Data path logic 5.4
Pipeline registers 82.9
Centralized register file 98.2
Loop buffer 84.6
Level 1 instruction cache 25.9
Level 1 data cache 134.8
Unified level 2 cache (DTSE optimized) 3.2
Communication architecture
(DTSE optimized)

7.1

Table 3.2: Power breakdown for the embedded platform, running a video
encoder/decoder application. The results for the processor components and
memories are for the MPEG2 decoder application only, while the commu-
nication architecture includes the cost of all traffic of the encoder/decoder
application

register file can store the instructions for a loop and has a lower energy cost
per access than the level 1 cache. During loop execution, the datapath gets
the instructions directly from the loop buffer that can store 64 instructions
and the IL1 is not accessed (can be switched to a low power state). During
non-loop code, the processer accesses the IL1 directly. This approach reduces
the number of accesses to the larger and more expensive instruction cache,
which results in a reduction in the power consumption. For more information
on this optimization, the reader is referred to [Jay02a].

The higher levels of instruction and data caches were modeled using cache
models obtained from [Log04]. The loop buffer has been modeled as a single
ported register file.

This experiment has shown a power consumption of 84.6 mW for the loop
buffer, 25.9 mW for the L1 instruction cache, 134.8 mW for the L1 data cache
and 3.2 mW for the unified L2 instruction-data cache.

3.2.2.5 Inter-tile communication architecture

As the physical implementation of the virtual mesh is no longer a regular
mesh, because the different tiles of the platform contain processors of dif-
ferent types and memories of different sizes, the tile size and link length
are very heterogeneous. Therefore, a high level layout has been used using
realistic area estimates for the different tiles, to estimate the link lengths
(Figure 3.4).
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Figure 3.4: Physical view of the platform (die size = 140 mm2 for a 0.13 μm
technology node)

The power consumption of the virtual circuit-switched network has been es-
timated for a network composed of 16 routers interconnected to the nodes
through network interfaces. A detailed energy estimation has been performed
for a 0.13 μm implementation, based on a gate level simulation, using real
traffic. More details on the router power consumption estimation approach
can be found in [Lam05] and [Ler08].

The inter-tile communication architecture contributes a total power consump-
tion of 7.1 mW for executing the 25 fps video chain. This cost is rather low,
as a result of the above mentioned decisions on tile sizing and the fact that
the accesses to the background memory are DTSE optimized. As a result, this
cost can be considered to be a lower bound on the global communication
but even with a significant increase (e.g. by a factor 2) due to less design
effort being spent, the inter-tile communication architecture will still not be
a dominant component in the overall power pie.

3.2.3 Power breakdown analysis

The power consumption for the different components of Table 3.2 is pre-
sented as a pie-chart (Figure 3.5), which gives the relative contributions of
the different parts of the platform. As has been mentioned before, in order
to draw correct conclusions from this breakdown, the analysis of the rela-
tive order should include the assumptions that were used to conduct this
experiment. In the following paragraphs, important assumptions and their
consequences will be discussed in detail and conclusions will be drawn.
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Figure 3.5: Power breakdown for the embedded platform, with the compo-
nents of the processor core grouped

Datapath logic and pipeline registers For the datapath logic, the energy
per activation costs are based on module generator-based (semi-custom)
functional units that have been reported in [Fei03]. These have been used
instead of estimates for a standard cell based design which is more and more
dominated by wiring overhead. As many industrial designs still use stan-
dard cell datapaths, the energy cost for the datapath logic can increase up to
around 5% or more for those conventional systems.

When more performance is needed and the processor will be running at hi-
gher frequencies (e.g. up to 1 GHz), the number of pipeline stages will in-
crease heavily, which leads to a severe increase in the energy and power
consumption of the datapath. This can lead to an energy consumption in the
pipeline register of up to 30% overall [Rag08b]. On the other hand, when
more parallel architectures that can deliver the same amount of performance
at a lower clock frequency (e.g. down to 200 MHz) are used, the pipeline
depth can be reduced and the energy spent in pipeline registers will be redu-
ced heavily. At the same time, the number of operations will increase (exploi-
ting more parallelism mostly leads to a certain number of extra operations,
e.g. pack/unpack, predication as a form of speculative execution etc.), which
will lead to a larger contribution of the datapath logic. Combined with a stan-
dard cell technology, the datapath logic will become an important part of the
breakdown. An example of this trend can be seen in Section 3.3 and in the
energy breakdown for the CGRA in Chapter 4 of [Lam09].

Overall, we can conclude that the estimated cost for the datapath logic in this
experiment can be seen as a lower bound and that the energy consumption in
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most state-of-the-art processors today will be significantly larger. The energy
consumed in pipeline registers is significant and varies with the processor
clock frequency.

Foreground data memory A large portion of the pie chart of Figure 3.5 is
the foreground memory, here the register file. The design of the register file
is a crucial factor, which can dominate the total system power consumption.

The number of read and write ports to the register file is a critical factor that
determines the register file power consumption. Based on the parallelism
available in the application and the performance requirements, the designer
must try to reduce the number of read and write ports, which is linked to
the design of the datapath. The use of hierarchical register files or clustered
register files can partly reduce the number of ports and thereby the cost per
access of the register file. A reduction of 40% for the power consumption of
a two-level hierarchical register file (HRF), compared to a single centralized
register file, is reported by [Zal00a]. A comparison with clustered register
files is presented in Section 3.3.

As the register file is an important contributor to the total cost, this com-
ponent will be discussed in more detail in Section 3.3.

Data memory hierarchy The power consumption of the data memory hie-
rarchy represents a significant amount of the pie-chart. Programmers often
write applications in a way that separates production and consumption of
data using temporary storage, because this is easy to understand. However,
this leads to many unnecessary copies and extra accesses to the data memory.
These unnecessary accesses can be removed by techniques like DTSE, or by
other data management techniques, using code transformations [Moo97].
In this experiment the accesses to the level 1 data cache contain such
redundant accesses and therefore can be significantly reduced. As no multi-
level cache simulator was available, the accesses to the background memory
(level 2 cache) and the corresponding transfers over the inter-tile commu-
nication architecture have been estimated based on the required amount
of data that needs to be minimally transferred per frame, starting from the
frame size. This assumption, specifically two reads and one write per frame,
holds for DTSE-optimized code, when data re-use is maximized and addi-
tional accesses are minimized. The use of simulated accesses for the level 1
cache with non optimized code and estimated accesses for the background
memory has to be taken into account when interpreting these results. As the
expected improvements of applying the full DTSE methodology are a reduc-
tion with a factor 2–5 [Cat98b, Cat02], a corresponding increase in accesses
to the Background Memory can be extrapolated. However, this will still not
increase the power consumption of this component to a point where it would
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become a bottleneck. In contrast, applying DTSE to the DL1 data memory,
which currently is a large consumer (30.5% in Figure 3.5), is needed and we
assume that this would reduce the cost for this component significantly (at
least with a factor 2 [Cat02]) and it will no longer be a bottleneck.

Additionally, circuit level techniques, like drowsy caches [Fla02, Kim04],
selective activation of the caches, efficient bank organization etc. may be
used to reduce the static energy and the cost per activation. Given the large
amount of research spent on optimizing the data memory hierarchy, we as-
sume that the overall cost of this part can be heavily reduced with respect
to the cost shown in the breakdown of Figure 3.5. However, it is still one of
the major consumers and it is important to make sure that processor optimi-
zations do not add additional cost to the data memory. The DTSE methodo-
logy inherently ensures this by an appropriate phase ordering in the different
steps and by propagating the necessary constraints from each step to the next
one [Cat98b, Cat02]. In this way, the processor mapping decisions cannot be-
come overly constrained and the decisions in that later stage cannot undo the
obtained cost reductions in the DTSE stage.

Instruction memory organization As parallel architectures, like VLIW pro-
cessors, execute multiple operations per cycle, they require a wide access to
the instruction memory per cycle, which can be very costly. As a unified le-
vel 1 instruction memory would fully dominate the power consumption in
such a case, a loop buffer has been used in this experiment. However, the
combined power consumption of the IL1 and the loop buffer is still consu-
ming 25% in Figure 3.5. To further reduce the power bottleneck in the in-
struction memory, techniques like clustered or distributed loop buffering,
source code transformations [Pet03] and instruction compression [Kad02]
can be introduced, in addition to the simple loop buffering scheme that has
been used in the here presented experiment. As with the data memory hie-
rarchy, we acknowledge that the instruction memory organization is a large
consumer of energy, but we assume that the energy consumption can be redu-
ced with respect to the cost shown in Figure 3.5 by implementing the above
listed optimizations (e.g. [Baj97] reports up to 60% reduction when using
a loop buffer and [Jay02a, Jay05b] reports an additional 60% for clustered,
distributed loop buffers). Again, it is important to verify that processor op-
timizations do not have effects on the instruction memory that would move
the overall energy consumption to a globally worse point.

Inter-tile communication architecture Contrary to common belief, the
power breakdown shows that the global communication architecture is not
dominant for well chosen tile sizes and a well-optimized mapping, at least
in our target domain of handheld multimedia terminals. Some assumptions
are at the basis of this (to some) surprising conclusion. By choosing tile sizes
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that are larger than many tiles reported in literature, a part of the commu-
nication has been pushed into the tiles, namely the communication between
the processor slots and the foreground memory and between the processor
and the first level data cache. As this communication is guaranteed to be very
local, the energy spent there is assumed to be small and is neglected here.
It should be noted that the floor-planning of the actual nodes in the net-
work leads to a very heterogeneous physical network model with different
lengths and bandwidth requirements for the links, which should be taken
into account by a lay-out-aware routing algorithm to minimize the cost. If
this is not done, the communication cost would increase due to sub-optimal
routing decisions (see motivation in [Ler08, Ler06b, Mur09]). The reported
estimate is assuming that DTSE has been performed to minimize the global
communication (and the accesses to the background memory). If this is not
the case, the traffic can be as much as five times more (depending on missed
re-use opportunities and redundant transfers), leading to a corresponding
increase of the energy spent in the inter-tile communication.

We can conclude that energy spent in an optimized communication archi-
tecture can be low, although the estimate reported in this chapter should be
considered to be an optimistic lower bound. As the communication cost does
not dominate the total system at this stage, we do not focus on communica-
tion any further.

3.2.4 Conclusions for the platform case study

It can be clearly seen in Figure 3.5 that the processor (datapath + fore-
ground memory), the data memory hierarchy and instruction memory hie-
rarchy consume equally important parts of the total platform power. The
absolute cost of the datapath (Functional Units performing the real compu-
tations) is quite low, but, as the processor style (see Section 3.3) heavily
influences the cost of foreground memory and the instruction memory hie-
rarchy, the importance of the processor is still high. Therefore, a large need
exists to optimize processor, instruction and data memory hierarchies, kee-
ping track of their effect on each other. If it is optimized like in this expe-
riment, the energy or power consumption of the inter-tile communication
architecture can be kept sufficiently low.

3.3 Embedded processor case study

Major innovative solutions are needed to merge energy efficiency, flexibi-
lity and high performance into a single embedded processor. A first step
in this direction is the evolution from RISC to VLIW. VLIW processors
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provide more computing resources, and rely heavily on the compiler to
use these resources efficiently. VLIWs thereby avoid the energy-hungry hard-
ware resources (e.g. dispatch unit) that are extensively used in super-scalar
processors. Because even higher performance and higher energy efficiency
is needed, different, mostly domain specific VLIW-descendants are currently
being developed. However, no clear overview of these different design styles
and their advantages and disadvantages was available in public literature at
the time of our publication [Lam05]. To be fair and really valid this overview
needs to be based on concrete data for the same realistic application, that is
separately optimized for the different styles. In the context of the case study
that has been presented in the previous section, a comparison of different
processor styles and their performance and energy consumption is presented
for the MPEG2 decoder application. In contrast to the results presented in
Section 3.2, all results presented in this section are generated in the same
way and therefore can be directly compared.

Recently, this study has been extended in [Por06], adding more processor
styles and substantiating the conclusions of this work.

3.3.1 Scope of the case study

The processor styles compared here include both traditional instruction set
processors (software style) and reconfigurable hardware. The performance
(cycle and operation count) of different processor cores is estimated running
the MPEG2 decoder part of the presented video processing chain.

We assume that when techniques like DTSE [Moo97] are used, the energy
consumption of the data memory hierarchy will be relatively low compared
to the other unoptimized parts of the platform, as described in Section 3.2.2.
Moreover, the optimized organization can be assumed to be quite similar
(certainly in terms of energy consumption) for all covered processor styles,
because the same application is mapped with the same throughput requi-
rements. So, except for the local variables in the foreground data memory
(e.g. register files), which will vary heavily in the different styles, the ac-
cesses and the related energy consumption to the higher levels of the me-
mory hierarchy will be very comparable. Because of this, the source code
transformations to better exploit the data memory hierarchy are not discus-
sed any further in this work. In Chapter 7 we will describe though how to
handle irregular indexed arrays and dynamically accessed data structures on
our platform, in order to show the wide use domain of our approach.

When the data memory hierarchy is optimized, the instruction memory hie-
rarchy will consume a significant part of the total energy [Vij03]. Moreover,
the instruction memory hierarchy exploration is coupled to the architecture
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style of the compute node/processor, as increasing the number of parallel
resources leads to an increase in the number of instructions to be fetched
every cycle. In this section, the results of an instruction memory hierarchy
exploration that is described in [Vda05], will be summarized. Apart from the
summary, the optimization of the instruction memory hierarchy is outside
the scope of this book. However, because of its closer link with the processor
style, effects of processor optimizations on the instruction memory cost have
to be closely monitored in order to reduce the overall system cost.

The Instruction Memory Hierarchy is also called Configuration Memory for
the so called reconfigurable hardware processors. Both components are very
similar and different proposed optimizations can be fully shared over the two
target styles. Therefore, the used terminology is from here on shared and we
will call it the Instruction or Configuration Memory Organization or ICMO
from now on.

3.3.2 Processor styles

The computation intensive nature of future embedded applications has
moved the designers’ choice from sequential RISC processors towards more
parallel architectures, like the VLIW (see Figure 3.3). In a VLIW, multiple
(typically four to eight) slots operate in parallel. A 4-slot VLIW can therefore
issue four new instructions per cycle. The VLIW paradigm is relying on the
compiler to extract sufficient Instruction Level Parallelism (ILP) to keep all
slots busy. Every slot contains one or more Functional Units (FU) that operate
mutually exclusively and execute the operations that are allocated on that
slot. A slot can typically execute a range of similar operations, e.g. an Arith-
metic and Logical Unit or ALU executes arithmetic operations like additions
and subtractions, but also logical operations (AND, OR etc.) and relational
operations (equal to, greater than etc.).

Because a VLIW compiler decides which instructions can be executed in pa-
rallel, the processor does not need hardware that performs this job at run-
time, as in the case of a super-scalar processor. This leads to a more energy
efficient, less complex processor, in which more resources can be dedicated
to do the actual computations.

The conventional heterogeneous centralized VLIW architecture, as was used
in Section 3.2 and is called VLIW baseline further on, relies on mature com-
piler support, but suffers from two major drawbacks. Firstly, the multi-port
centralized data register file (with three ports per slot) and the very wide in-
struction memory hierarchy (all slots need to access the ICMO every cycle) of
the baseline consume too much energy. Secondly, the baseline VLIW architec-
ture is not scalable to higher performances (up to tens of slots) as is required
by future multimedia applications. These applications contain very regular
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and computation intensive loops (kernels) that can provide more parallel
operations than a VLIW processor with four to eight slots can exploit. The
quest to minimize the energy consumption for a given performance, as re-
quired by the application, has lead to the development of a whole range of
VLIW “descendants”, with several types of extensions, both compiler tech-
niques and architectural optimizations. This section will summarize some ap-
proaches that try to improve the energy efficiency, the performance or both.

3.3.2.1 Software pipelining (e.g. modulo scheduling)

Goal: performance improvement and indirectly (instruction + data-
path) energy reduction A VLIW processor can only achieve the promised
speed-up over a RISC (only one slot) and energy reduction over a super-
scalar processor (no hardware to detect parallel operations) if the compiler
succeeds in keeping the extra resources busy as often as possible. Traditio-
nally, VLIW compilers have concentrated on finding independent instructions
in the sequential instruction stream. However, reported data show that com-
pilers, on average, can keep only three to five slots busy by using only
Instruction Level Parallelism or ILP [Mei03b]. Modulo Scheduling (MS) is
a software pipelining technique used by the compiler to extract more pa-
rallelism by executing multiple iterations of a loop at the same time. This
type of parallelism (Loop Level Parallelism or LLP) is abundantly available
in multimedia applications. The most compute intensive parts of these ap-
plications, called kernels, consist mostly of nested loops. MS allows different
loop iterations to be executed in an overlapping manner, and can keep up
to tens of slots busy during the execution of the kernels, depending on the
data dependencies that exist between successive loop iterations. This results
in a higher performance if the architecture has sufficient slots to exploit this
kind of parallelism. As the available hardware will be more efficiently used
if more slots are filled per cycle, which is expressed as the Instruction Per
Cycle count or IPC, the energy efficiency of the instruction memory and the
datapath will also improve. An alternative way to exploit the application
parallelism is SIMD or sub-word parallelism, which is discussed later in this
section.

For very regular applications that can be software pipelined, it can happen
that more parallelism is available than can be exploited by a traditional VLIW.

3.3.2.2 Clustering Clustering (clustered V LIW )

Goal: energy efficiency improvement The energy consumption of the
multi-ported centralized data register file of the baseline can be reduced by
grouping the slots in separate clusters. By using a separate, smaller register
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Figure 3.6: Clustered VLIW with two clusters of four slots each, modeled after
the TI-C6x-family

file with fewer ports for every cluster, the total area and energy consumption
of the register files can be reduced. Figure 3.6 shows an example of a cluste-
red VLIW modeled after the TI-C6x-family. In this case, the L and S slots also
support a cluster copy operation, which reads a value from the register file of
the other cluster and stores it in the local register file. This inter-cluster-copy
operation consumes a cycle and only one value per cycle can be read from or
written to the other cluster.

Clustering complicates the compilation, as the compiler needs to take the
restrictions in the communication between clusters into account. When the
clusters become too small, the number of extra copies that are needed to
communicate between clusters will start to have a negative influence on per-
formance. Other ways to implement inter-cluster communication exist (e.g. a
sub-set of the units can directly execute on data that is read from the other
cluster or the use of forwarding paths). In any case, due to the extra restric-
tions that the compiler has to take into account, increasing the clustering for
an equal amount of slots leads to a performance degradation. This type of
clustering can also be successfully applied to the instruction hierarchy, na-
mely to the loop buffers.

3.3.2.3 Coarse-grained reconfigurable architecture

Goal: performance improvement and potentially also good for energy
efficiency A second possible way to increase the performance of the base-
line VLIW processor is by adding extra resources, e.g. adding more (rows of)
slots (Figure 3.7). One slot, a base unit of the CGRA, contains a set of mu-
tually exclusive FUs (as in VLIWs), but also contains local routing resources
(MUXes) and potentially local register files or part of the distributed loop
buffer, which is here called the configuration memory. This base unit is called
a Processing Element or PE and the complete architecture is called a Coarse-
Grained Reconfigurable Architecture (CGRA).

The spatial ordering of the PEs can be in the form of a matrix, in which case
this type of processor is also called a Coarse-Grained Reconfigurable Array.
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Figure 3.7: The ADRES CGRA, with tightly coupled VLIW processor

However, the interconnect can be organized differently, leading to hierar-
chically or more one-dimensionally organized structures, which are concep-
tually all part of the same CGRA family. A compiler for this architecture needs
to be able to exploit the highly parallel architecture in order to boost the per-
formance, but also faces the extra task of routing the data through the array.

Figure 3.7 shows one example of a CGRA, in which the first row of the array
literally is a VLIW processor of the same width as the reconfigurable array.
This is not necessarily the case, as the VLIW can be narrower or can be remo-
ved completely. More details on this specific CGRA architecture called ADRES
(a CGRA developed at IMEC vzw [IMEC]) can be found in [Mei03a].

The CGRA can be seen as a second baseline style, but can also be conside-
red as a VLIW extension [Mei03a]. Due to the large amount of interconnect
in a CGRA, the ISS-based energy estimation approach that is used for the
VLIW architectures is not usable. For a solution to this problem and a de-
tailed energy breakdown of the more complex CGRA processor, we refer to
Chapter 4 of [Lam09].
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3.3.2.4 SIMD or sub-word parallelism

Goal: performance improvement and potentially a large impact on
energy Another way to be able to execute more operations in parallel is to
use a sub-word parallel, vector or SIMD approach. Instead of adding extra
slots, the FUs can be made to operate on different data in parallel (Data
Level Parallelism or DLP). This means that a 32-bit wide FU can, e.g. do a
single 32-bit, two 16-bit or four 8-bit operations. The operations that are
performed in parallel are of the same type, e.g. all additions, hence Single
Instruction Multiple Data or SIMD. Next to the performance improvement,
the energy consumption can be reduced because almost no extra operations
are needed if the mapping is performed effectively [OdB03].

In multimedia or wireless communication applications, word sizes of 8 and
16 bits are very common. Again the success of this approach depends on
how well the compiler, in this case called a vectorizing compiler, can take
advantage of the sub-word parallel capabilities of the hardware. As the com-
pilers that are used in this book do not provide automatic vectorization, all
sub-word parallel code has been parallelized manually. Due to the large po-
tential performance improvements, manually parallelizing important kernels
is common practice.

A discussion on the trade-offs with respect to exploiting LLP, ILP and DLP,
see Section 3.6.5.

3.3.2.5 Custom instructions and/or FUs

Goal: performance and energy efficiency improvement If a VLIW is
targeted towards a certain application or application domain, specialized
instructions can be added to the instruction set. These custom instructions
combine a number of frequently used operations into one instruction and
are executed on specialized FUs that are more efficient (in time and energy).
This technique can have a very big positive influence on performance and
energy consumption if the target application domain effectively makes use
of the new instructions and FUs. The disadvantage is the area overhead.

On the other hand, if only limited flexibility is needed, the number of suppor-
ted instructions can be reduced to support only a small set of applications.
This customization leads to a cost reduction for the ICMO (less bits are nee-
ded) and the datapath itself (less area and a reduced energy consumption).

The disadvantage of both approaches is a loss of generality/flexibility (best
suited for an ASIP).

55



Energy Consumption Breakdown and Platform Requirements

3.3.2.6 Optimized data memory hierarchy

Goal: energy efficiency improvement and performance improvement by
reducing stalls By adding extra layers to the data/instruction memory hie-
rarchy, locality of data/instructions can be exploited. Data or instructions can
be moved to small memories, closer to where they are needed and can be ac-
cessed with a smaller delay and lower energy penalty. This results in better
performance and less energy consumption. More information about options
and trade-offs will be provided in Section 3.6.2.

3.3.2.7 Hybrid combinations

It should be stressed that the actual processor data-paths proposed in the
literature are usually hybrid combinations of the above extensions. It indeed
makes much sense to combine them partly for addressing the requirements of
a given application domain. Good recent examples in the commercial domain
are the TI OMAP [TI09c] and the ARM Cortex [Bar05b]. But many other
hybrids have been proposed in the academic literature in the last decade.
Also our own template proposal in Section 3.7 is essentially a well-chosen
hybrid that is optimized for our ultra low-energy target domain.

3.3.3 Focus of the experiments

Most of the concepts that have been presented in the previous paragraphs
can be considered to be decoupled. This means that a specific processor de-
sign can implement combinations of these approaches, of which only some
influence each other. The concepts can be categorized in two different ways.
On one hand, a distinction can be made between techniques improving the
energy efficiency and those improving performance, as has been already in-
dicated by the Goals in the individual paragraphs. On the other hand, these
concepts can be separated into extensions of the baseline styles and sup-
porting techniques. In this book, (1) the clustered VLIW, (2) the sub-word
parallel VLIW, (3) the VLIW with custom FUs and (4) the coarse-grained ar-
chitecture are considered to be extensions of the VLIW baseline design style.
They modify the baseline architecture and can be considered descendants of
the centralized VLIW. Software pipelining and the usage of a memory hierar-
chy can be applied to all these variants and are considered to be supporting
techniques.

In this section, the performance of the different styles is compared: a RISC
(separate baseline style, used as a reference), a centralized VLIW, a clustered
VLIW and a CGRA (with closely coupled VLIW). A comparison with an
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FPGA-soft-core, and ASIC and a specialized ASIP was recently added
by [Por06]. The goal is to get a feel of the differences between these styles
and their effect on performance and energy consumption. The sub-word pa-
rallel VLIW and the custom instruction approach are not included in this first
exploratory comparison, but these techniques are used for experiments in
later chapters (see e.g. Section 9.4.4 for a comparison on different SIMD im-
plementations and Section 10.3.4 for custom instructions). To make a good
comparison, also the supporting techniques are used. Both the compilers of
the clustered VLIW and the VLIW with closely coupled coarse-grained archi-
tecture use modulo scheduling to extract sufficient parallelism to efficiently
fill these architectures (achieve a high utilization).

An important part of the total energy consumption of embedded systems
is consumed by the ICMO. The choice of the processor design style has a
strong influence on this part of the system. Moving from RISC processors
to more parallel architectures, like VLIWs and coarse-grained architectures,
means fetching more instructions in parallel. In these parallel processors,
architecture-specific new techniques can be used to reduce the energy
consumption of the ICMO. A separate study of ICMO extensions has been
conducted as part of this case study. Different implementations of loop buf-
fers have been compared. Optimizations at micro-architectural, compiler
and software levels have been proposed to improve the energy efficiency of
the instruction memory, using the same tool flow, energy models and driver
application. The results show that the energy consumption of the instruction
memory for different VLIW architectures (centralized and different clustered
versions) can be reduced by up to 60% depending on the implemented loop
buffer variant. More information about this ICMO optimization can be found
in [Vda05, Lam05].

3.3.4 Experimental results for the processor case study

The results for the different processor styles that will be presented in the
following section are for the MPEG2 decoder, taken from the Mediabench
benchmark suite. The results show the required number of operations and
cycles to decode a 4 frame MPEG2 reference sequence (IPPP) with a frame
size of 4-CIF. These performance estimates are produced by the respec-
tive tool flows for the different processor styles, using optimized code, the
processor-style specific compiler and cycle-accurate simulator and including
the effects of the memory hierarchy, like load/store latency and stalls (for all
processors but the ADRES CGRA). For comparison, the number of decoded
frames per second is shown for all processors running at 600 MHz. The
results are presented in Table 3.3.
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# ops. # cycles IPC fr./s ms/fr.
(×106) (×106) at 600 MHz

(a) 243 336 0.7 6.9 145
(b) 252 86/60 2.9/4.0 27.9/39.9 36/25
(c) 311 95/72 3.2/4.3 25.2/33.3 40/30
(d) 337 84/64 3.9/5.2 28.5/37.5 35/27
(e) 331 26 9.3 92.4 11

(a) RISC (ARM920T), (b) centralized VLIW (eight slots), (c) clustered VLIW (2 × 4 slots),

(d) clustered VLIW (3 × 4 slots), (e) ADRES (8 × 8 PEs)

Table 3.3: Performance simulation results for different processor design
styles: all reported results are for Impact semantics. The re-computations
from Elcor to Impact semantics mention worst case/best case assumptions
(separated by a /). The ADRES CGRA result does not include the effects of a
memory hierarchy

3.3.4.1 RISC

As a first reference case, the decoding of the four frames has been simulated
with ARMulator for an ARM 920T embedded RISC core. This resulted in
a total of 243 million operations, and 336 million cycles. This means that
at 600 MHz, this processor can decode almost 6.9 frames per second. The
number of executed Instructions Per Cycle (IPC) in this case is 0.7. This is
clearly far from the performance that is needed in this context (15–30 frames
per second). Even for very high clock frequencies, this issue would not be
solved yet.

3.3.4.2 Centralized VLIW

For the second reference case, the VLIW baseline, the heterogeneous centra-
lized VLIW with eight slots (as in the first part of this case study) has been
simulated using the COFFEE processor architecture simulation and explora-
tion environment [OdB01, Rag08b]. This retargetable research compiler and
simulation framework for VLIW-like architectures was built on top of Trima-
ran [Tri99]. The framework uses an Impact front-end for standard architec-
ture independent compiler optimizations and the Elcor back-end for target
specific register allocation, scheduling and assignment. Elcor has been origi-
nally developed for the HP PlayDoh architecture [Kat00], but is customizable
to other targets using a machine file. The COFFEE simulator reports the to-
tal number of cycles and the total number of operations needed to execute
the MPEG2 decoder for four frames. It also reports the amount of reads and
writes to different levels of the memory hierarchy.
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Consistency between different frameworks To be able to correctly com-
pare the produced results, in number of operations and cycles, the detailed
instruction set of the processors had to be compared. Because of differences
in the underlying assumptions with respect to the target instruction set
of the Impact back-end (for the CGRA), and the Elcor back-end (for the
VLIWs), the produced results are not directly comparable. Elcor decomposes
some instructions (post-increment/decrement, branch/prepare-to-branch
etc.) into multiple operations, while Impact does not. To make a fair com-
parison possible, results produced by the Trimaran framework have been
recomputed into Impact semantics by removing the extra operations. As
a simple removal in some cases will lead to the reduction of the critical
path, a shorter schedule can be obtained. Additionally, the IPC is reduced
because operations are removed, but potentially increased because of a
shorter schedule. Because the automatic estimation of the Trimaran flow
was not usable for the modified generated schedule (removing the extra
operations leads to an invalid Trimaran schedule), two re-computations are
presented. The optimistic re-computation assumes that the IPC will stay the
same for the reduced number of operations and re-computes the cycle count
as #ops./IPC. This estimate is reported as “best case”. The pessimistic, or
“worst case” result assumes that only cycles that are completely empty (NOP
on all slots) after the extra operations have been removed, can be removed
from the cycle count. The lower IPC is then calculated based on this lower
cycle count as #ops/#cycles. The recomputed results are mentioned be-
tween brackets (worst and best case separated by /) and are summarized in
Table 3.3.

Tweaking the compiler settings The results of this experiment are highly
influenced by the performance of the used compiler flow, in this case COF-
FEE: Impact/Elcor. The first straightforward result, obtained by compiling
the unoptimized Mediabench MPEG2 decoder code, has resulted in a cycle
count of 484 million and an operation count of 824 million, or an IPC of
only 1.7. This shows that on average less than two of the eight slots are used.
This very bad performance, even worse than the RISC, was the result of a
mismatch between the compiler front-end, Impact, and the Elcor back-end of
Trimaran. An aggressive loop unrolling in Impact prevented Elcor from per-
forming modulo scheduling in the kernels and generated a lot of spill code.
This explains the extra operations and a degraded performance. It shows that
simply using public domain compiler software to compare different solutions
does not guarantee valid conclusions. A large effort had to be spent to find
out all the issues involved and to modify the compilation setting accordingly
to obtain a correct comparison.

Changing the parameter settings of the front-end, turning off the default ag-
gressive unrolling, had the biggest impact. By doing this, the result improved
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to 182 million cycles and 392 million operations, or an IPC of 2.1. This
corresponds to decoding 13.2 frames per second at 600 MHz, which is still
not impressive.

Local platform-dependent source code transformations Another impor-
tant issue that is often overlooked in comparisons is the impact of source code
transformations. The way the code was initially written, heavily influenced
the outcome of the experiments. By performing very processor specific ma-
nual optimizations to the MPEG2 decoder code, the performance has been
increased to 88 (86/60) million cycles and 373 (252) million operations,
or an IPC of 4.1 (2.9/4.0). In this case, on average, more than half of the
slots are occupied every cycle. At 600 MHz, this processor can decode 27
(27.9/39.9) frames per second. The manual optimization consists of well
known code transformations (e.g. loop merging, loop unrolling, etc.) that
have to be applied with the specific architecture in mind. To obtain a fair
comparison, a significant effort was spent to create optimized versions for
all the investigated styles. This experiment shows that mapping an applica-
tion to a certain platform is highly influenced by the quality of the compiler.
Large improvements can still be made by (up to now) manual source code
transformations.

3.3.4.3 Clustered VLIW

The COFFEE simulation framework extends Trimaran by adding support for
data-path clustering. This includes (1) assigning operations to a data-path
cluster, (2) scheduling inside the clusters (assigning operations to a certain
slot, in a certain cycle), using modulo scheduling for the kernels, and (3)
adding necessary copy operations to communicate between clusters.

Effect of clustering on performance A clustered VLIW with two clusters of
four slots was modeled to compare to the eight slot centralized VLIW of the
previous paragraph. The simulations show that the clustered processor needs
95 (95/72) million cycles and 415 (311) million operations, which corres-
ponds to an IPC of 4.3 (3.2/4.3). This means it can decode 25 (25.2/33.3)
frames per second. The decreased performance (8% more cycles needed) and
the significant increase in number of operations (12% more) are the result
of the communication overhead between different clusters. The compiler has
to add extra inter cluster copies. In this case, looking at the overall IPC only,
would lead to the wrong conclusion. In fact, less instructions that belong to
the original algorithm are executed per cycle.

A clustered VLIW with three clusters, each containing four slots, has been
included in this experiment to see how performance scales with respect to an
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increase in resources. The decoding takes 84 million cycles and 445 (337)
million operations, with an IPC of 5.2 (3.9/5.2). The number of frames that
can be decoded at 600 MHz would be 28 (28.5/37.5). In this case, the very
small performance improvement can not justify the increase in resources by
adding an extra cluster. The higher operation count will lead to a higher
energy consumption for the same task. The positive effect on performance
of adding more resources (more clusters) is quickly countered by the per-
formance degradation of the communication overhead between the clusters.
Even though the IPC can still increase, the amount of useful operations per
cycle often does not, as an increasing number of cluster copy operations are
required. The number of clusters that can efficiently be used, depends on the
amount of parallelism available in the application, and on the ability of the
compiler to exploit it.

Effect of clustering on the energy consumption As has been explained in
Section 3.3.2.2, the goal of clustering is to save energy. Because the energy
consumption of a centralized register file quickly dominates the energy bud-
get of a processor as the number of ports grows [Zyu98], clustered register
files allow designers to reduce the energy consumption of their VLIWs or to
keep the energy consumption of large VLIW processors under control.

As mentioned above, VLIW processors exploit their extra resources to in-
crease performance, but the cost of multi-ported register files will cause an
important energy penalty. Table 3.4 presents the energy consumption of the
register file for the different VLIW configurations under study. The power
model used is linear with respect to the number of simultaneous read/write
accesses and to the number of read and write ports, as reported in [Ben02].

Compared to the centralized VLIW with eight slots, the clustered VLIW
(2×4 slots) can bring the energy consumption of the VLIW register file down
with almost 80% (from 98 to 22 mW), at the cost of a small decrease in
performance (a reduction in frame rate of two frames per second). At the

#Reg file #read ports #write ports Power Energy
clusters (/cluster) (/cluster) (mW) (mJ)

(a) 1 16 8 98 13.3
(b) 2 8 4 22 11.1
(c) 3 8 4 26 12.5

(a) Centralized VLIW (eight slots), (b) clustered VLIW (2 × 4 slots), (c) clustered VLIW (3 × 4

slots)

Table 3.4: Register file energy (for four simulated frames) and power
consumption (scaled to 25 frames per second) for the different clustered
versions of a VLIW processor
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beginning, the performance of a clustered VLIW increases as more resources
are added. After a certain point (in this case already for 3 × 4 slots), the
performance improvement reduces due to the inter-cluster communication
and the inability of the compiler to use all the clusters. Due to the extra
operations, the power consumption can again increase significantly. In this
experiment, an increase in the energy consumption of 18% has been shown
for the register file of the 3 × 4 slot VLIW (from 22 to 26 mW), compared
tot the clustered register file of the 2 × 4 slot VLIW, while the performance
increase is only three frames per second.

3.3.4.4 Coarse-grained architectures

Experiments for the coarse-grained architecture have been performed with
the retargetable DRESC compiler [Mei02], which combines a modulo sche-
duler, register allocator and 2D router. This compiler can map complete ap-
plications written in C to the ADRES architecture [Mei03a]: a coarse-grained
array with tightly coupled VLIW processor. DRESC uses modulo scheduling
to map the regular and compute intensive kernels of the application on the
CGRA, while more control dominated parts are mapped to the VLIW part of
the architecture. The DRESC compiler re-uses the Impact research compiler
(front-end and back-end) to compile to this VLIW part. More information on
ADRES/DRESC can be found in [Mei02] and Chapter 4 of [Lam09].

The simulated architecture consists of an 8×8 array of PEs, of which the first
row is a normal VLIW. The other PEs are ALU-like resources or multipliers,
with support for predication and routing capabilities. The reconfigurable in-
terconnect architecture allows results from an operation performed on one
PE to be consumed by other PEs in the architecture without passing through
the centralized register file. The DRESC simulator does not include a cache
simulator, and assumes a fixed latency for the data and instruction memory
hierarchy. Therefore, the results for this case do not include the performance
effects of realistic memory hierarchy. A realistic implementation would add
extra stalls because of cache misses. Because of this, the reported figures are
optimistic with respect to the delivered performance.

The decoding of the four MPEG2 frames on ADRES takes 26 million cycles
and 331 million operations, or an IPC between 15 and 35 for kernels that
are mapped to the CGRA and an overall IPC (including the parts that are
executed on the VLIW) of 9.33. Excluding the predicated (nullified) and the
routing operations, the overall IPC is 8.8. Running at 600 MHz, this architec-
ture would be able to decode 90 frames per second.

The CGRA successfully boosts the performance and can decode up to 90
frames per second at 600 MHz, which means that a lower clock frequency can
be chosen, which could be beneficial for the energy consumption. However,
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the number of operations has again increased. These extra operations par-
tially needed to route data between PEs, but the ability of the CGRA to di-
rectly move data between PEs reduces the number of accesses to the register
files. A second source of extra operations is the use of predication to allow
the mapping of kernels that contain a limited amount of control-flow onto
the CGRA.

Because of the high number of resources, the area of a CGRA is significantly
larger than the other options. It should also be noted that the performance
increase for an increase in resources is gradually reducing (over a certain
threshold). A detailed energy breakdown of a CGRA architecture is the sub-
ject of Chapter 4 of [Lam09].

3.3.5 Conclusions for the processor case study

The design style case study for embedded processors/compute nodes shows
that improvements for energy efficiency and/or performance over currently
used RISC or VLIW processors can be achieved.

The results presented in Table 3.3 show that a RISC processor can do the job
with the smallest number of operations. However, it is clear that a RISC, even
for higher clock frequencies, does not provide the performance that is nee-
ded for this real-time multimedia application. A centralized VLIW processor
exploits its extra resources to increase performance, but the energy cost of a
centralized register file will be prohibitive to integrate this type of processor
into platforms with stringent energy constraints. A clustered VLIW can bring
the energy consumption down, at the cost of a (small) decrease in perfor-
mance. After a certain point, however, the performance deteriorates due to
the inter-cluster communication and the inability of the compiler to use all
the clusters. The CGRA with tightly coupled VLIW can really boost perfor-
mance for applications that are regular enough to keep the vast amount of
resources busy (sufficient loop level parallelism with limited control flow).
However, the price that has to be paid is an increase in the number of ope-
rations, which is expected to increase the energy cost for the same task. The
energy analysis of a CGRA is presented in Chapter 4 of [Lam09].

3.4 High level architecture requirements

Figure 3.8 shows the different design styles and the key metrics on which
they are efficient. ASICs are known for their high performance and energy
efficiency. DSPs on the other hand are flexible as well as deliver the perfor-
mance, but they are not energy efficient. Application Specific Instruction-set
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Figure 3.8: Different design styles target different design metrics

Processors (ASIPs) on the other hand try to combine all three metrics. ASIPs
try to reach the same energy efficiency and performance of an ASIC while
still being flexible. To design such an efficient ASIP or embedded processor, it
is necessary to observe the high level requirements and trends in the domain
of processor design. However the design effort for mapping code on an ASIP
is higher.

The goal of this book is to bring the ASIP based programmable solution as
close as possible to the ASIC based solution in terms of performance as well
as energy efficiency. This chapter presents a high level analysis of the space of
processor architectures in an embedded platform. Also such a high level and
global analysis would ensure that the different parts of architecture and the
compiler are consistent with each other and each of the optimization does
not destroy the optimization of another step. Such a high level analysis of
trends and requirements is required before finding the solutions for each of
the individual parts and to reach an energy-efficient ASIP solution.

While this book focuses on some parts of the processor, it impacts all parts
of the platform. To ensure this work is consistent with optimizations in other
parts, it is required to look at all parts of the platform. A common analy-
sis and trade-off discussion of proposed architecture extensions ensures the
consistency between the different parts. The different contributors have fo-
cused on different parts, but have also taken the effect of local modifications
on the rest of the platform into account.
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The result of this common analysis is presented in this chapter and toge-
ther all proposed modifications form the FEENECS architecture template
(Section 3.7). By explicitly looking at the requirements and restrictions of
current compilers and their link with the architecture, high-level relations
have been derived in order to improve the compilability. Based on these
relations and on the specific features of the FEENECS architecture template,
a matching compiler proposal has been drafted (see [Lam09], [Rag09b] and
the patent filing [Rag08a]).

3.5 Architecture exploration and trends

Architectures form the bridge between the application and the technology.
Therefore to optimize an ASIP processor architecture, the designer must take
into account the application requirements. An effective ASIP architecture ex-
ploration has to cover a wide range of architectures to find the one which
is Pareto optimal for the application and system cost trade-offs (e.g. reduce
the energy consumption while providing the required real-time constraints
and quality). From the implementation side, it is important to take the phy-
sical design method (e.g. custom design vs. standard cell design) and high
level technology inputs (e.g. poor interconnect scaling in Deep Sub-Micron
or DSM technologies, leakage) into account early in the design flow to ensure
a more optimal implementation. If the implementation allows the designer
to give guidelines on the floor-plan, it is important to take this into account.
Architecture exploration therefore forms the corner stone of any processor
design.

Note that the variability and reliability impact on processor platforms is a
crucial issue in DSM technologies and they are the subject of much recent
research (see, e.g. recent proceedings of the DATE, DAC, HPCA conferences).
But the mitigation of these effects can be handled in a complementary
way [Wan07, Wan09] that is compatible with our overall platform template
proposal and mapping approach. These aspects will however not be tackled
in this book.

3.5.1 Interconnect scaling in future technologies

A number of papers have appeared that compare the scaling of interconnect
to the scaling of logic (transistors) for scaled technology. According to many
papers [DeM05, Jos06, Syl99] and the latest ITRS report [ITR07] a clear
difference exists between logic and interconnect scaling and, interconnect
scales much worse. This leads to potentially reduced gains when scaling to
Deep Sub-Micron (DSM) technologies (65, 45, 32, 22 nm). The poor scaling
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of interconnect and vias is due to varying physics limited factors ranging
from the k-value between the wires as well as due to DSM issues like surface
scattering and grain boundary scattering. This affects both local and global
wiring and therefore this trend needs to be taking into account for future
architectures.

In this chapter, it is assumed that interconnect does indeed scale worse than
logic and that the impact of this interconnect scaling in terms of performance
and energy cost is increasing. Therefore, some rather disruptive modifica-
tions to the architecture are proposed (e.g. replacement of traditional register
files with new foreground memory structure, as discussed in Section 3.6.3).
The architecture modifications that are proposed in this chapter are propa-
gating the higher cost of interconnect through to various levels of the design
(from heavily communicating components, based on application knowledge,
down to layout).

However, in case the cost of interconnect (especially the local interconnect)
does not increase with respect to logic, the gains of the proposed solutions
will still exist with respect to traditional designs, but may relatively reduce.
Therefore some of the traditional state-of-the-art solutions will still be part
of the valid trade-off solution to choose from. It may also be the case that
because a disruptive change often takes more effort, the current state-of-the-
art architecture may still be taken.

3.5.2 Representative architecture exploration examples:
What are the bottlenecks?

During and after architecture exploration, the designer can obtain an
energy breakdown of the different components of the processor architec-
ture. Figure 3.9 shows the energy break-down for a high-performance CGRA
processor implemented in 130 nm running a MIMO application. Figure 3.10
shows the energy break-down for an embedded VLIW processor running the
MPEG2 decoder.

While both breakdowns are from different application and processors, similar
conclusions can be drawn. From both figures, it can be seen that the energy
consumption is not really dominated by a single architectural component.

In the CGRA a large part of the energy consumption is spent on the intercon-
nect (the architecture instance that is shown is a high-performance instance
with a rich interconnect topology). This is because a significant part of the
communication between different slots in the VLIW has been pushed from the
VLIW register file to the interconnect and the PE Pipeline Registers. This leads
to a relatively smaller part of the CGRA energy that is directly consumed by
shared register files. In fact, in a CGRA the foreground memory organization
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Figure 3.9: Energy break-down for a high performance CGRA (8 × 8 PEs)
running a MIMO benchmark, with a clock of 200 MHz
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consists of the register files, pipeline registers and the interconnect and the-
refore still remains a critical issue.

It is assumed here that in order to reach the required high performance, the
eight slot VLIW has to be clocked at a significantly larger clock speed (here
600 MHz compared to 200 MHz for the CGRA).
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The CGRA is more parallel than conventional VLIWs and a larger part of
the energy consumption is directly spent on the datapath logic (in this case
12% for both ALU and MUL PEs, compared to only 2% for the VLIW), which
indicates a more efficient energy usage. Note that neither of the pie-charts
gives direct information about the difference in absolute energy consumption
between the VLIW and the CGRA.

In conclusion, both pie-charts show that the configuration memory or loop
buffer, register files, datapath logic, datapath pipeline registers and intercon-
nect consume almost equally important parts of the global energy. Therefore,
all parts need to be considered together while optimizing.

3.6 Architecture optimization of different
platform components

A clear need exists to think globally and across different abstraction layers
while designing an architecture. The properties required at each of the ar-
chitecture components and the reasons for these properties can be motivated
across the different abstractions layers. This cross-abstraction knowledge can
lead to different optimizations than would be selected if every part of the sys-
tem optimized in isolation, which we call entanglement. The following sub-
sections present a possible solution for individual architectural components
and its reasoning across different abstraction layers.

3.6.1 Algorithm design

Even though this section targets architecture optimizations, the cross-
abstraction information can be propagated down from the algorithm design.
Following the increase in processor parallelism and the inability to exploit ir-
regularity in algorithms (with many conditions), algorithmic designers have
been pushed to design more regular algorithms. In case of power efficient
ASIC design, once again designers are forced to use regular algorithms as
adding flexibility is expensive in ASIC design. However, when these trends
leads to a drastic increase in the number of operations that need to be exe-
cuted, the energy penalty is significant (e.g. compute motion compensation
in MPEG as a full search or hierarchical search). Even though the parallel
architecture can be better filled and performance can be better, the resulting
efficiency in terms of energy per task is still (significantly) lower. Therefore,
some of the modifications that are proposed in this section explicitly address
the need to support more useful irregularity in an efficient way, directly on
the parallel architecture. These modifications include a split in address and
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data computations onto separate slots (Section 3.6.6), distributed control
loop buffers (Section 3.6.4), and efficient parallelization of irregular data
(Section 3.5 in [Rag09b]). When the architecture supports more irregularity,
different versions of an algorithm can be designed, taking into account the
context. One promising example with large gains (up to a factor 10 in energy
efficiency and performance) can be found in [Li09], where the conditions
of the wireless channel are taken into account in order to select different
implementations of an FFT algorithm to match the requirements instead of
executing a full FFT in all cases.

The rest of this section will focus on the different architecture components
and discuss the propagation of constraints from the application down to the
layout.

3.6.2 Data memory hierarchy

Application As the amount of data required increases substantially from
one generation of the application to the next, e.g. a higher data rate in wi-
reless applications or a higher resolution in image/video applications, it is
important to efficiently handle the transfers of this large amount of data.
Typical embedded applications exhibit both spatial and temporal data loca-
lity, which can be exploited (using source code transformations as discussed
in [Bro00a]) to reduce the cost of the data memory hierarchy by optimizing
the reuse.

Architecture When the application can be analyzed at compile time, the
data transfers can be managed by the programmer or compiler and a scratch-
pad can be used instead of a cache [Ste02, Ban02, Pan98, Mar03]. In the
case of a scratchpad, the data transfers from the higher level memories
to the scratchpad memory are programmed explicitly and handled by a
DMA engine. This programming overhead is acceptable as it can be done at
design-time. In rare cases where embedded applications exhibit truly random
accesses and their access pattern can not be analyzed at compile time can
still use (hardware controlled) caches [Abs07].

Implementation From the perspective of layout and circuit design it is not
always possible to design one large memory. Because of the increasing cost of
long interconnect [Jos06, Syl99, ITR07], very large monolithic memories are
increasingly difficult to build in scaled technologies. Therefore the memory
can be partitioned into banks and internally into sub-banks. Furthermore the
use of multiple levels of hierarchy and the DMAs should also be taken into
account while floor planning.
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3.6.3 Foreground memory organization

In case of VLIWs, register files form the core part of the communication of
data across the different slots and clusters as a storage element. Alternati-
vely, as in CGRAs, part of that communication can be pushed to the intercon-
nect between different PEs. Therefore the centralized and distributed register
files, the PE pipeline registers and the inter-slot or inter-PE interconnect are
all considered to be part of one architectural component and they need to be
optimized together. From here on register files and the connections between
the slots are together called the foreground memory organization in the rest
of the book.

As foreground memory forms one of the core parts of the processor architec-
ture and given that it is one of the biggest bottlenecks, new ways to optimize
them needs to be considered.

Application Different types of data: Current embedded application contain
various types of data, from array data that have high spatial locality to scalar
data that store, e.g. a single coefficient or a temporary value. Unlike the data
layout of the data memory hierarchy, that explicitly allocates (parts of) arrays
to scratchpads and optimizes the transfers with local copies, at the register
file all data is treated the same. Array data is stored together with temporary
variables, without any concept of data layout. By introducing the data layout
concept at the level of the traditional register file, the specific properties of
different data elements in terms of spatial locality, temporal locality, size, life
time etc. can be exploited. In conventional architectures and compilers this
is not yet done.

Architecture Heterogeneous register file: To be able to split the different
types of data and treat them accordingly, a heterogeneous foreground me-
mory architecture is needed. A separate register file for scalar variables will
enable to perform a more optimized data layout for the streaming data (e.g. a
wider register file for SIMD data and a narrower scalar register file). Splitting
off the address computations into separate slots (see below) enables the use
of an optimized register file for the address path.

Architecture: Energy cost per access: From the architectural perspective,
about 50% of the power consumption of a typical L1 data memory (around
64K) is spent in the decoding logic. The other 50% is spent in the actual
data storage, in the memory cells [Amr00, Eva95]. The spatial locality that is
available in array data of the streaming type can be exploited by loading them
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together into the register file by a wide load/store from the memory. The
overhead of the address decoding in the memory will thereby be distributed
over a number of words.

Additionally, the energy cost per access scales with the number of ports
[Rix00a], as an increase in the number of ports leads to an increased load for
every register file cell. Therefore multi-ported register files can be replaced by
a clustered register file architecture, with multiple register files that have less
ports each. From the cost per access point of view, a form using only single-
ported register file cells is therefore advisable. In today’s architectures this
is not achievable due to restrictions in both architecture and compiler, that
would lead to poor performance and utilization. Therefore a more disruptive
foreground memory change is needed to reach this goal, where architecture
and compiler modifications are coupled/entangled.

Implementation Finally, from the layout perspective it is important that
the wire lengths of the interconnect inside the register file and of the com-
plete foreground memory organization (including the connections to the
other slots) should be optimized. Accesses to the foreground memory are
very frequent and heavily communicating components are close together.
This activity-aware floor planning is compatible with the approach presen-
ted by [Guo08], but here the concept is applied at a finer granularity.

Proposed solution Some intermediate values in parallel architectures of-
ten have a single cycle life-time, it does not make sense to store the variable
into the register file organization. In this case it is more efficient to use
the forwarding network, that writes the result of one Functional Unit after
the execute pipeline stage directly into the pipeline register before the exe-
cute stage of the next FU. This type of forwarding is commonly found in DSPs
and forms an integral part of the proposed foreground memory organization.

For variables with a longer life-time, a novel architecture solution is propo-
sed. Figure 3.11a shows a typical clustered register file where the interfaces
between the memory and the register file on one hand and between the da-
tapath and the register file on the other hand are of equal width. Data can
be copied word by word into the register file, with no restrictions on the
data layout in the L1 data memory. Figure 3.11b shows the proposal of a
Very Wide Register (VWR), a foreground memory organization optimized for
streaming applications that exhibit a large amount of spatial locality. The
VWR has a wide interface (width of a complete SPM row) towards the me-
mory and a narrow interface (width of a datapath word) towards the data-
path. From the datapath side, through an interconnection network, SIMD FUs
can read out data words that internally contain many sub-words. The wide
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Figure 3.11: Very Wide Register: A register file solution for streaming data
with spatial locality

interface towards the memory allows a large amount of data to be transferred
to/from the VWR with a single memory decode. This implies a reduced de-
code overhead for the L1 memory, but requires a careful data layout and
increased compiler complexity to maximize the number of useful data words
to be present in this transfer. One multi-ported register file can be replaced by
a set of VWRs. While there are effectively two ports one towards the memory
and one towards the datapath, the VWR storage cells remain single ported as
both the ports are not simultaneously accessed. This single ported cell nature
of the VWR internally reduces the energy cost per access compared to a multi
ported register file, at the cost of an increased complexity for the compiler.
The physical layout of the VWR and SPM can be matched (pitch alignment)
to reduce the interconnect length between both. Therefore the layout of the
physical implementation should be such that the VWR and SPM are placed
next to each other.

The gains that can be expected when moving from a traditional register file
architecture to a VWR-based foreground memory organization depend on
the assumption that the cost of interconnect increases when scaling to DSM
technologies and the improvements will be less if the cost of interconnect can
be reduced by technology modifications.

The VWR forms a key architecture extension discussed in this book. A more
detailed description of the VWR, its micro-architecture, its operation and the
potential gains is detailed in Chapter 8. The compilation technique for a VWR
based architecture is detailed in [Rag09b].
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3.6.4 Instruction/Configuration Memory
Organization (ICMO)

A traditional instruction memory organization consists of an L1 instruction
memory which is controlled by a program counter (PC). As increasingly pa-
rallel architectures require more instructions to be fetched every cycle, the
instruction memory needs to be wider and therefore consumes a lot of energy.

Application Applications typically consist of different control flows merged
into a single combined control flow, e.g. the address-generation part of the
program is mixed with different data producer–consumer chains into one
sequence of operations. Mixing the different flows seemingly simplifies the
programming, but the efficiency of the instruction memory can be impro-
ved if the different flows can be handle separately. To enable this in current
architectures is however not possible.

Additionally, most applications contain both control intensive parts and regu-
lar kernels that perform the most computationally intensive parts. The ker-
nels are structured as nested loops and form the core of most embedded
applications. By matching the instruction memory organization to the ker-
nel structure, the overall efficiency can be improved. Many applications also
contain kernel with incompatible loop nests that are potentially executed
concurrently in the final task schedule.

Architecture Traditional instruction memory organizations consist of a
monolithic L1 instruction memory, controlled by a single program counter
(PC). Recently academic and some industrial architectures have introduced
a small instruction memory closer to the processor, called loop buffer or L0
memory [Sia01, IBM05, Uh99]. This small L0 memory contains the instruc-
tions for a kernel, together with a small zero-overhead loop (ZOL) control
or a loop controller (LC). During loop execution, instructions are fetched
from the loop buffer and the L1 instruction memory can put to sleep (by
either Vdd throttling or clock gating). Due to the extra copy that is needed to
move the kernel instructions from the L1 to the loop buffers, there is a trade-
off involved. For some instructions in control-intensive parts of the code
it will be difficult to gain back the cost of this extra copy. Therefore these
control-intensive parts are still directly fetched from the L1. This approach
is compatible with the use of non-volatile memories for the L1 instruction
memory in order to reduce leakage energy consumption in the L1 memory.

The concept of a loop buffer can not only be used for different slots of the
datapath, but is also useful for other platform components that need to be
programmed, e.g. the DMA, interconnect networks, etc. However, the activity
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of e.g. the DMA and the datapath can be very different. Therefore sharing a
single loop buffer and keeping the control centralized will normally lead to
an inefficiency.

To obtain a more optimal solution the control of loop buffers for different
parts of the architecture can be split in order to match the application
constraints, resulting in clustered and distributed control loop buffers. By split-
ting the control, components that are not active for a certain number of
cycles can be kept under low-leakage/sleep mode. These distributed loop
buffers can also have a local controller per partition [Rag09c]. That allows
to support a form of software-controlled multi-threading. Moreover, the
different loop nests can now be incompatible which allows the concurrent
execution of distinct loop nests and required by many modern applications.
And finally each of the partitions can now be separately optimized for size
and access count, enabling the better exploitation of spatial and temporal
locality.

Implementation Physically distributed loop buffers are placed close (during
layout) to the parts of the processor they control. This can be achieved using
activity aware floor-planning techniques like [Guo08] and distributing the
loop buffers as explained in [Jay05a].

Figure 3.12a shows a state-of-the-art physically distributed loop buffer as ex-
plained in [Jay05a]. Figure 3.12b shows the proposed physically distributed
loop buffer with distributed control which would enable different parts of
the program to be controlled in an efficient way, based on its corresponding
activity of that part.

The distributed control based loop buffer is a key architecture extension in
this book. A more detailed description of the clustered respectively distribu-
ted control and its operation can be found in Chapters 5 and 6.
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3.6.5 Datapath parallelism

Although the datapath operations are not a bottleneck in Figures 3.9 and
3.10, the datapath style has a large effect on how the register files and ins-
truction/configuration memory organization will be used. The organization
of the datapath decides on the complexity and consequently on the cost of
the interconnect. Current embedded processors exploit parallelism in order
to provide a sufficient amount of performance, while still keeping the energy
consumption under control. They can however differ in the way they do this.
As not all approaches are as energy efficient, this section discusses the trade-
offs involved.

Application The computationally intensive kernels of most embedded ap-
plications contain parallelism at different levels: e.g. across different pixels,
blocks of pixels or frames of a video sequence. Different types of paralle-
lism follow from the way it is extracted from the application. When different
iterations of a loop are being executed in parallel, this is called Loop Level
Parallelism (LLP). The parallel execution of different instructions, be it out-
side or inside a loop is called Instruction Level Parallelism (ILP). Finally, the
execution of multiple instructions of the same type on different data is called
SIMD or Data Level Parallelism or DLP. The amount of parallelism of dif-
ferent types that can be extracted depends on the application dependencies.
Ideally, processors should contain a mixture of slots of different widths: very
wide SIMD units for regular kernels that contain a large amount of DLP, toge-
ther with medium wide units for kernels with more control and scalar units
for non-DLP code.

Architecture Embedded processors can be designed to exploit one or a
combination of these types of parallelism. Both embedded VLIW proces-
sors and CGRAs provide parallel slots or PEs and use software pipelining
to convert the LLP into ILP (see Figure 3.13). Separate instructions (although
combined into a single very large instruction in VLIW terminology) control
the parallel slots or PEs, which gives a lot of freedom to the compiler with
respect to how to overlap the different iterations (still respecting the de-
pendencies) and how to place the different instructions on the slots. As a
downside, exploiting ILP requires managing a large number of separate units
and the communication between them for every instruction of the overlap-
ped loops, which leads to a significant amount of energy that is spent in the
ICMO (Instruction/Configuration Memory Organization).

When subsequent iterations can be overlapped completely, the parallelized
operations are of the same type and subword parallelism or SIMD can be
used. This means that they can be executed on the same FU (wider and

75



Energy Consumption Breakdown and Platform Requirements

ti
m

e

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

lo
o
p

sl
ot

sl
ot

sl
ot

sl
ot

sequential ILP

(SIMD)sl
ot

DLP

Figure 3.13: Converting Loop Level Parallelism (LLP) into Instruction Level
Parallelism (ILP) or Data Level Parallelism (DLP)

slightly modified to separate the data). The advantage of exploiting DLP is
that the resulting SIMD instruction executes multiple (e.g. 4 as shown in
Figure 3.13) operations in parallel, but is still steered by a single instruction,
hence Single Instruction Multiple Data or SIMD. This leads to a more energy
efficient parallelization than exploiting ILP.

A common approach to extract DLP from a loop is to overlap multiple itera-
tions of a loop. The amount of DLP that can be extracted this way corresponds
to the number of iterations that can be fully parallelized without breaking de-
pendencies between the iterations. This freedom is usually limited.

Architectures can use exploit both ILP and DLP. State-of-the-art embedded
VLIW processors support SIMD [TI00, VdW05], while subword parallelism
in CGRAs is far less common.

In conclusion, the total number of separate slots can be reduced for the same
performance by using DLP. Therefore the relative contribution of the cost of
the instruction/configuration memory to the total energy consumption can
be reduced. Secondly, the reduction in the number of slots leads to a reduc-
tion in the complexity of the interconnect. Because of this motivation, the
processor architecture should first exploit all available DLP and only then, if
required, a limited amount of ILP can be used to reach the required real-time
performance. The ICMO should also be organized in a distributed fashion
and customized to the different slots to be efficient.

Implementation As with the register file architecture and physically dis-
tributed loop buffers, it is important to place the datapath slots as close as
possible to where they are needed. For example the units that will compute
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the addresses (Address Generation Units or AGUs) can be placed closer
to the interface to the memory and do not need to be grouped with the
data computation units (see next section). Additionally, the most heavily
communicating slots can be placed next to each-other in the floor plan.
In order to optimize the implementation of the datapath units, without
going to a full custom design, so-called Datapath Generators (DPG) can be
used. Given that it is more favorable to exploit SIMD, each of the sub-word
datapaths can be optimized well using semi-custom logic instead of random
standard-cell based place and route. Such a semi-custom/custom based da-
tapath will consume significantly less area and energy, as is demonstrated
in [Wie01].

3.6.6 Datapath–address path

Application Operations that contribute to the execution of the target appli-
cation are different from the operations that compute the memory addresses
for loads and stores. Both types of operations have different characteristics,
like e.g. dynamic range and different dependence chains. By separating them,
their execution can be made more efficient.

As various data optimizations like DTSE [Pan01, Cat98b] substantially in-
crease the addressing complexity, the address calculations can consume a
significant amount of resources and should be looked at in detail. Hence,
platform-independent source code transformations have been proposed to
reduce this overhead [Mir96]. On top of that, a separate platform-dependent
compiler phase has been added in the flow of [Rag09b] and [Lam09].

Architecture Most processors perform data and address computation ope-
rations on the same slots. As the operations that compute the addresses
and the data computations of the application algorithm follow separate de-
pendence chains, they can be separated onto different sets of slots. Only
the load/store operation forms a synchronization point between the two
paths.

Address calculations have different characteristics than operations on data.
The dynamic range of calculations on addresses (fixed range of, e.g. 16 bits
depending on memory size) and iterator values is not necessarily the same as
the dynamic range of the data (e.g. 8-bit data for pixels). Separating the data-
path and address path enables the FUs to be of different widths. Additionally
the instruction set of address and datapath can be customized, in order to op-
timally support the required operations. This will lead to larger performance
and energy gains.
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Implementation Using the same high level layout directives that have been
mentioned above, the data path and address path FUs can be grouped with
their respective register files (or VWRs), memory interfaces and loop buffers.

A more detailed description of the split between address path and datapath
can be found in [Tan08]. Various commercial DSPs as well as research works
like [Kim05, Mir97, Par99, Ver98] also exploit such a split between address
generation unit and the processing datapath for low power and/or high per-
formance as well.

3.7 Putting it together: FEENECS template

Figure 3.14 combines the optimizations for different components that have
been presented in the previous Sections. The presented processor design is
still a template and architecture exploration within this template is required
to find the optimal architecture for one application or a set of applications.
Based on the performance requirements and on initial feedback from syn-
thesis for a certain technology node, the parameters in the template for this
in-order processor have to be fixed, especially the number of units, the pre-
cise pipelining and the forwarding paths.
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The most notable components of Figure 3.14 are the data memory hierarchy,
that consists of an L2 background data memory that is accessed over a generic
global communication architecture (NoC, Bus or other). Data is transferred
from this L2 memory into the L1 Data memory, a Scratch-Pad memory, by
the DMA. From there on, complete lines of the SPM are moved to the VWRs
for data parallel computations and single values can be copied to a scalar
RF. The AGU units are also placed close to the background or foreground
memory units between which they organize the transfers. Preferably they are
even split over read and write ports so that they can be fully local to the port
they are providing addresses to. The datapath FUs also come in two types:
(1) a set of Complex FUs that balance DLP and ILP (a set of SIMD FUs) and
use extensive forwarding to reduce VWR accesses, and (2) a set of control
FUs that are of scalar type and access the scalar RF. On the instruction side,
the L1 Instruction memory can be accessed directly by control code, but for
the kernels a set of physically distributed loop buffers are used, placed next
to the components they control. To improve the efficiency of the instruction
memory, these loop buffers also have distributed control and can synchronize
at certain points using local controllers (LCs). As they do not follow a single
program counter (PC), the number of NOP (no operation) entries is heavily
reduced in applications that exhibit very different activation frequencies for
the different components.

The communications between different processors of this type (inter pro-
cessor communication) is compatible with other related work like [Ler08],
while the intra processor connections can be optimized using techniques like
segmented bus etc. [Pap06].

In this architecture template, the implementation and layout guidelines that
have been discussed in the previous sections have been used to group the
different architecture components based on their communication require-
ments in order to reduce the interconnect cost. Hierarchically structured
hardware design using Datapath Generation [DPG05] and Energy-aware
floor-planning[Guo08] can be used to propagate these constraints down to
the physical implementation.

This parameterized template of a domain-specific instruction-set processor
platform template, offers a potential energy-performance figure of merit of
over 900 MOPS/mW in the TSMC 40 nm CMOS technology (using non-
optimized standard cell synthesis). Importantly, the basic architectural com-
ponents of the FEENECS template have a quite wide scope including all
domains that are loop-dominated, that exhibit sufficient opportunity for
data level parallelism, that comprise signalswith multiple word-lengths
(after quantisation exploration) and that require a relatively limited num-
ber of variable multiplications. Prime examples of this target domain can be
found in the areas of wireless base-band signal processing, multimedia signal
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processing or different types of sensor signal processing. See [Lam09,
Rag09b, Kri09] for more information. The set of architecture modifica-
tions that is presented above has also led to the filing of several patents, as
described in [Rag06a, Lam08a, Jay08].

3.8 Comparison to related work

Research groups are mostly focusing on a single component of the platform.
Different groups are active in optimizing the on-chip communication archi-
tectures (e.g. [Ryu01, Ye02]), the processor power consumption and perfor-
mance (e.g. [OdB01]) or the cost of the memory hierarchy (e.g. [Ram05]
for data and [Pet03] for instruction memory). Often unoptimized, standard
implementations are used for the components that are not the main focus,
which leads to wrong conclusions on the relative contribution to the platform
cost. Little work has been done to consider the complete platform, using op-
timized implementations for all components. An analysis of overall system
performance has been published by [Xu04], but it unfortunately does not
consider power.

At the time of study and of publication of our papers [Lam05] and [Lam04]
(2004–2005), this was the first effort to compare all parts of a realistic plat-
form in an apples with apples comparison. More recently, additional proces-
sor styles have been added for a similar application by [Por06]. And also we
have performed additional experiments with our COFFEE compiler frame-
work [Rag08b]. These results extend and substantiate the conclusions of this
chapter.

3.9 Conclusions and key messages
of this chapter

As SoC-based embedded systems grow and become more complex, a com-
prehensive energy breakdown of such a platform is crucial to evaluate the
contribution of the different components, identify the bottlenecks and de-
termine the impact of different power optimization efforts. In this chapter,
such a study and analysis is presented for all important parts of a realistic
SoC platform. This case study, using a relevant complete application (the
MPEG2 decoder) instead of a kernel, provides one consistent story, for which
all parts of the platform have been optimized in order to show the real bot-
tlenecks. The power bottlenecks are highlighted and possible techniques to
tackle these bottlenecks are discussed.
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An overview of the most important embedded processor styles and energy
or performance improving techniques is presented. A performance compari-
son, using the same consistent context of the case study, provides an indi-
cation of the relative performance potential the different styles can provide.
The conclusions remain valid for the potential hybrid styles that are being
used more and more, including heterogeneous processors where the different
functional units are widely differing in instruction set choices, or processors
augmented with customized accelerators.

Another major focus in this chapter is the design of a scalable high-level archi-
tecture design template, targeted at low energy, high performance embedded
systems for streaming applications. An important characteristic of the propo-
sed template is the incorporation of the importance of interconnect in future
scaled technologies. The problematic scaling of interconnect is taken into ac-
count explicitly during the evaluation of cost trade-offs and when proposing
implementation (layout) guidelines.

Currently, embedded systems designers are already facing a set of complex
trade-offs: energy efficiency vs. performance vs. area. Most often they are
working on a single element of the platform and try to optimally design this,
considering different design styles to be able to pick the one that is best suited
to meet the given requirements. While making this choice, both the impact
of the local decision on the other parts, as the effect of the other parts of the
system on the local decision has to be taken into account. Solving all these
entangled problems together is too complex, but a high level knowledge of
the main contributors to the platform cost and the overall trade-offs that are
important in every part can help a designer to come closer to the global op-
timum. In our research we have always tried to aim for globally better solu-
tions when optimizing locally. A similar argument is present for the mapping
flow that should accompany such an architecture template. Such a flow is not
the focus of this book, but more information about the status of the mapping
research is provided in [Lam09], [Rag09b] and the patent filing [Rag08a].

This chapter has shown that embedded platforms consist of many compo-
nents that each contribute in different ways and different amounts to the
total cost. Therefore, it is important that the relations between these com-
ponents and the effect of local optimizations on other parts are taken into
account. The energy breakdown presented in this chapter and the relations
that have been identified together with the resulting template, will now be
used throughout the following chapters to decide which optimizations make
sense in a certain context and which have to be investigate further.
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CHAPTER 4

Overall Framework for Exploration

Abstract

This chapter presents one of the core contributions of the book which also forms
one of the main stepping stone for the rest of the book. It presents the com-
pilation, simulation and energy estimation framework for modeling the large
architecture design space of single core platforms for low power embedded sys-
tems. For multi-core platforms, the intra-core space can be reused but the inter-
core data memory and communication network organisation should be added.
The framework has been made to be consistent and complete with respect to
the architecture space commonly used in embedded systems including possible
extensions needed for future evolution. The chapter also presents some explo-
ration results which are obtained using the framework. A few counter-intuitive
trends which emerge from an exploration in this framework are also included.

4.1 Introduction and motivation

In current design flows, energy estimation in an industrial design is mostly
performed only at the final stage of the design, when the hardware is nearly
completely fixed and gate level simulations are possible. This approach
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restricts extensive energy driven architecture exploration, taking into ac-
count the impact of the compiler and possible transformations on the source
code. When optimizing applications for a given architecture, designers try
to minimize the energy consumption by improving other metrics like a re-
duction in the number of data memory accesses. For instance in most cases
loop splitting and loop unrolling are used as loop transformation techniques
which improve the performance and reduce the number of accesses to the
data memories. However, these transformations increase the number of
instructions and thus adversely affect the instruction memory efficiency. In
another scenario, increasing the granularity of SIMD units (Single Instruc-
tion Multiple Data) has the advantage that the number of instructions can be
reduced thus improving the instruction memory energy. However, the energy
consumption of the data-path units and pipeline registers increase. In order
to correctly perform these complex global trade-offs, the energy model has
to be accurate/detailed enough to show the impact of certain optimizations
and complete enough so that all the relevant aspects of the processing system
are considered. Furthermore to explore the high level architecture space
discussed in Section 3.6 such a consistent framework is essential.

Decisions at different levels of abstraction have an impact on the efficiency
of the final implementation, from algorithmic level choices to source le-
vel transformations to compiler optimizations and all the way down to
micro-architectural changes as described in the previous chapter. At each
abstraction level different tools exist to perform exploration only within that
abstraction level. For instance source to source code transformation tools
exist, which enable the designer to perform high-level source transforma-
tions. However, the gains due to the transformations are typically estimated
on a host processor/platform, which is often not the targeted processor/
platform. Hence, the estimation of the gains due to the transformations will
not be consistent with the actual gains on the target processor/platform. This
requires an energy model of the target processor/platform. In order to keep
the performance and energy estimations consistent, the tools at different
abstraction levels and inside one single abstraction level, must be integrated
into one framework.

Besides the large space across abstraction layers, architecture exploration
needs to be performed before arriving at a close to the optimal architecture.
Addressing the above needs, this chapter presents an integrated exploration
framework called COFFEE as shown in Figure 4.1. This framework provides
performance estimates either from profiling the application or through in-
struction set simulation. It also provides an energy estimate of the target
architecture as it has an energy model of each component and by estimating
the number of activations for various components. Such a consistent and
complete framework allows a good basis for architecture exploration. The
underlying compiler and the simulator can support different state of the art
and advanced low power architectural features, which makes the framework
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Figure 4.1: COFFEE compiler and simulator framework for transformations,
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widely retargetable. New instructions can be added to the instruction set
when they are described in an intrinsic library. These intrinsics correspond
to the equivalent of an assembly-level mapping decision (or hint) which is
incorporated in the high-level C code specification. New functional units can
be characterized and added to the library of components to support energy
estimation. These features make the proposed framework extensible. As it
can be seen in the figure, code transformation tools, compiler and the si-
mulator are integrated into one framework. All the relevant information is
passed from one phase to the other and the performance and energy esti-
mates are obtained on the targeted platform, making the estimates consistent.
Furthermore, the energy estimation is complete since all the relevant compo-
nents in the processor system are included in the energy model library all
from the same source (technology vendor). Very often estimates obtained
from various sources (technology vendors, technology processes, IP vendors
etc.) are combined which requires extrapolations etc. which may lead to in-
consistencies in the results. Furthermore, the energy per activation figures
are obtained through conventional hardware design flow making the energy
estimates quite accurate.

The prominent messages for this chapter of the book include:

1. A consistent framework (at ISA level and profiling-level based es-
timates), which is automated to a large extent, to quickly explore
different design options in code transformations, compilation and
architecture spaces and also obtain performance, energy and area
estimation.

2. A complete energy estimation framework that takes into account all the
relevant parts of a processor system namely: data memory hierarchy
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and instruction memory organization, functional units (custom and
general purpose), register files (foreground memory organization and
pipeline registers.

3. A framework that enables simulation and compilation for a wide range
of state-of-the-art processors and advanced low power architectural ex-
tensions like (clustered) loop buffers, stream register files and distribu-
ted data memory hierarchies.

4. And finally, using such a framework this chapter also provides various
relevant insights from the different architecture explorations.

The rest of this chapter is organized as follows: Section 4.2 introduces the
proposed framework, describes the modeled components and the explora-
tion space that can be covered by the framework. Section 4.3 illustrates
the how the energy model for the different components of the platform has
been estimated. Section 4.4 compares the proposed framework with existing
frameworks for architecture exploration and highlights the similarities and
the differences. Section 4.5 describes the architecture space exploration for
various benchmarks and provides a performance-energy-area trade-off for
various large applications. This section also elaborates the different trends
from the architecture exploration and also discusses the time required for
the exploration. Finally, Section 4.6 concludes the chapter and summarizes
the main messages of this contribution.

4.2 Compiler and simulator flow

Figure 4.1 shows the retargetable compiler and simulator framework. For a
given application and a machine configuration, the flow is automated to a
large extent, requiring minimal designer intervention. Manual steps are only
needed for inserting specific intrinsics from the intrinsic library (see above)
or in the case of specifying a particular loop transformation. Since the frame-
work is retargetable, it facilitates exploring different machine configurations
for a given application.

The loop transformation engine is part of the Wrap-IT/Uruk framework
[Coh05], which is integrated into the tool chain (shown in Figure 4.1) and
forms the first part of the proposed flow. Essentially, this engine creates a
polyhedral model of the application, which enables automating the loop
transformations. The compiler and the simulation framework are built on
top of Trimaran [Tri99], but are heavily extended in order to support a
wider range of target architectures and to perform energy estimation. The
integrated and extended flow forms the COFFEE framework.
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Figure 4.2: XML machine description: Various details like the ISA, functional
units, slots, instruction memory hierarchy, register files (data clusters), data
memory hierarchy are all defined in the xml file

The application code is presented to the flow as ANSI-C code. A user-friendly
XML schema is used to describe the target architecture (machine descrip-
tion). It is read in by processor aware parts of the flow, e.g. the compiler
(Coffee-Impact, Coffee-Elcor), simulator (Coffee-Simulator) and the area/
power estimation engine. The application code can be transformed by the
Uruk front-end, before it is passed on to the rest of the compiler and even-
tually used for simulation. The simulator generates detailed trace files to
track the activation of the components of the processor. These traces fi-
nally are processed by the area, power and performance estimation engine.
Figure 4.2 shows a high level overview of the XML schema used for descri-
bing the processor, further described in the following subsections.

The exploration space of the compiler and the processor architecture simu-
lator that is currently supported by COFFEE framework is described below.
Note however that this framework is also extensible in terms of adding new
architecture components to the energy model library, architecture simulator
and the intrinsics library (see above).

4.2.1 Memory architecture subsystem

The simulator supports both Harvard and Von-Neumann based memory ar-
chitectures. The supported features for the data and instruction memory are
described below.
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4.2.1.1 Data memory hierarchy

The extended simulator supports complete data memory hierarchy simula-
tions, both for software controlled caches (scratchpad memories or SPMs)
and hardware caches. The presented tool-flow assists the designer when se-
lecting a cache or a scratchpad, by reporting energy and performance results.
In this way application characteristics can be taken into consideration during
this choice.

Scratchpad memories have been shown to be extremely efficient in terms of
energy, performance and area for relatively static applications [Ban02]. For
scratchpads, the data transfers to and from the higher level memories are
handled by the DMA. When using scratchpads, the DMA has to be program-
med to perform the correct data transfers and the correct timing is accounted
for. An intrinsic library has been added to provide an interface to the desi-
gner to program the transfers to and from the higher level data memory, e.g.
DMA TRANSFER (source addr, spm dest addr, transfer size).

This is similar to how state-of-the-art scratchpads and DMAs are controlled.
Typically the insertion of these intrinsics is performed manually by the de-
signer. However, in this framework the insertion of DMA intrinsics has been
automated when the loop transformation engine is used (further explained
in Section 4.2.3). The DMA can also support more complex functionality, like
changing the data layout during the transfer, interleaving or tiling data. This
type of advanced DMA can help to reduce the power consumption further.
For caches, hardware cache controllers manage these memory transfers. The
choice for either cache or scratchpad depends on the dynamic or static nature
of the application, and should be made by the designer based on simulation
analysis [Abs07]. In both cases, the energy and performance is appropriately
accounted for by the simulator.

Another important design decision to be explored is the size and the number
of ports of memories and the usage of multi-level memory hierarchies. These
decisions heavily affect the overall power consumption of the system and
hence it is crucial to be able to explore the entire design space. The COFFEE

simulator has been extended from the original Trimaran 2.0, in order to accu-
rately simulate multi-level cache and scratchpad based hierarchies. Connecti-
vity, sizes, number of ports etc. are specified in the XML machine description
and can be easily modified for exploration. In case of a cache, the line size,
associativity, the replacement policy are also mentioned in the tags of the
mem section. Based on the replacement policy (Least Recently Used or Least
Frequently Used etc.) the simulator, simulates appropriately. The details of
this would be entered in the memories section (e.g. as <mem>) of the XML
description as shown in Figure 4.2.
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Identification of copy candidates for transfer between memories could also
be aided by IMEC’s MH tool. Also other DTSE techniques can be reused from
earlier research [Bro00a, Cat98b] activities as they are source to source trans-
formation tools.

4.2.1.2 Instruction/Configuration Memory Organization/
Hierarchy (ICMO)

An instruction memory is activated every cycle to fetch new instructions. Es-
pecially in wide architectures, like VLIWs, this can be one of the most energy
consuming parts of the system. Design space exploration of the ICMO can
therefore have a large overall effect on the processor energy efficiency. The
ICMO can be simulated as a cache, a scratchpad or a multi-level hierarchy.
Other advanced features, like Loop buffer (or L0) clustering and loop coun-
ters (e.g. [Gor02a, Jay05b]), are also supported. Loop buffers can also be
clustered to reduce the power consumption [Jay05a, Kob07b]. The precise
L0 clustering would be under the <instruction cluster> tag of the XML,
as in Figure 4.2 and the parameters like width and depth of the loop buffers
are described in L0 Cluster Parameters section as shown in Figure 4.2.

Figure 4.3 shows different supported configurations of the instruction me-
mory. (a) is a conventional L1 configuration where the Program Counter
(PC) fetches instructions from the L1 instruction cache and executes them
on the FUs. (b) shows a centralized loop buffer, where the loops are loa-
ded from the L1 instruction memory to the loop buffer when the loop starts.
During the loop execution, the LC (Loop Controller) fetches the instructions
from the loop buffer instead of the L1 memory. (c) shows a distributed loop
buffer organization that can be customized to the application loop size for
every slot to minimize energy consumption, but are still controlled by a
single LC. The COFFEE framework supports automatic identification and loa-
ding of loops into the loop buffers. Compilation and design space exploration
for distributeds loop buffers is described in detail in [Jay05b, Vda04a]. More

IL1 Memory

Slot

PC

Slot Slot Slot

(a) Regular L1
Instr. Memory

IL1 Memory

Slot

LC

Slot Slot Slot

(b) Centralized Loop 
Buffer based memory

L0 Loop Buffer

PC

IL1 Memory

Slot

LC

Slot Slot Slot

(c) Distributed Loop 
Buffer based memory

L0 Loop
Buffer

PC

L0 Loop
Buffer

Figure 4.3: Variants of Instruction Memory Configuration are supported in
COFFEE
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complex loop buffer organizations, where every loop buffer is controlled by a
separate LC (described in Chapter 6), are also supported. For all these cases,
compilation, simulation and energy estimation are supported.

In summary, we propose the remove the energy bottleneck in the instruction
memory organisation by partitioning it into smaller and heavily distributed
units that are heavily accessed but that require much less energy per access.
The overall control still resides in the large L1 layer organisation but that is
nearly not accessed any more. Moreover, the smaller units are located very
close to the platform components that consume their control bits. Hence the
wiring contribution is significantly decreased. Finally, also the internal ove-
rhead in these local units is heavily reduced by separating the distinct func-
tionality (e.g. addressing versus arithmetic operations) over different loop
buffers that can support incompatible loop nests with zero overhead (local)
condition and loop execution. The down-side is the increased compiler com-
plexity for mapping a given code onto this organisation, which requires also
non-traditional techniques that have not been available in conventional com-
piler literature. But also on that side of the research, significant progress has
been made (see e.g. [Kob07, Kob07b, Tan08, Tan09]). This is not the topic
of this book though.

4.2.2 Processor core subsystem

The processor core subsystem consists of the datapath units and foreground
memory organization/register file. These components are described below.

4.2.2.1 Processor datapath

The proposed framework supports a large datapath design space. Different
styles of embedded processors can be modeled, from small RISC processors
with a single execute slot,1 to wide VLIW processors with many heteroge-
neous execution slots. Multiple slots can execute instructions in parallel, and
can internally consist of multiple functional units that execute mutually ex-
clusively. The number of slots and the instructions that can be executed by
each slot (this depends on the functional units in that particular slot) can be
specified in the XML machine description (as shown in the <slot> section in
Figure 4.2). New functional units can be added to the architecture, compiler
and simulator easily by modifying the machine description and adding the
behavior of the new instruction (in C) to the intrinsic library. The operation’s
latency, operand specification, pipelining, association of the functional unit
to a certain slot, are specified in the XML machine description and correctly

1Note that in this book the term “slot” always refers to an execute slot.
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taken into account during simulation. Different datapath widths can be sup-
ported: 16-bit, 32-bit, 64-bit, 128-bit or even higher. By varying the width
and number of slots, the trade-off between ILP and DLP can be explored. The
width can be specified for each FU separately, allowing the usage of SIMD
and scalar units in one architecture. An example of this approach is shown
for ARM’s Cortex A8 [Bar05b] and for other novel SIMD architectures with
forwarding networks [Sch07] in the appendices of [Rag09b].

The pipeline depth of the processor can be specified in the machine descrip-
tion and the compiler correctly schedules operations onto pipelined functio-
nal units. It is assumed that the processor consists of a standard pipeline
with Fetch, Decode, multi-cycle deep Execute and Writeback stages. Based
on the activity, the energy consumption of the pipeline registers is automa-
tically estimated. This is crucial for architectures with deep pipelines (high
clock frequency), and for wide SIMD architectures. In both cases the number
of flip-flops in pipeline registers is large and accounts for a large amount of
the energy cost.

4.2.2.2 Register File/Foreground Memory Organization

Register Files or Foreground Memory are known to be one of the most po-
wer consuming parts of the processor. Hence it is important to ensure that
the foreground memory design space is explored properly. The COFFEE flow
can handle several foreground memory options including centralized register
files, clustered register files, with or without a bypass network between the
functional units. The size, number of ports and connectivity of the regis-
ter files/foreground memory are specified in the machine description file as
shown in the Data Cluster Parameter section in Figure 4.2.

Forward paths exist between the functional units and in some architectures
like the SyncPro [Sch07] architecture, to transfer data from one cluster to
another after the Execute pipeline stage. For such paths, the compiler and
simulator can be re-targeted. The modeling and exploration of a few such
architectures is detailed in the appendices of [Rag09b].

Figure 4.4 shows different register file/foreground memory configurations
that are supported by the framework. Combinations of the configurations
shown in Figure 4.4 are supported, both in the simulator and the register
allocation phase of the compiler. Separate foreground memory for scalar and
vector slots can be used together with heterogeneous datapath widths. An ex-
ample of such a scalar and vector register file/foreground memory is shown
in appendices of [Rag09b] using ARM’s Cortex-A8 core [Bar05b]. Various
mechanisms for communication of data between clusters are supported, as
shown in Figure 4.4, ranging from extra copy units to a number of point to
point connections between the clusters. The performance vs. power trade-off
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(as inter cluster copy operations take an extra cycle, while increasing the
fan-out of register file ports costs energy in interconnections) can be explo-
red using the framework.

In case the processor has multiple Functional Units (FUs) that can run in pa-
rallel and multiple distributed L1 data memories, there can be a need to go
beyond a point-to-point or shared bus towards a more segmented bus like
solution [Guo08, Pap06]. The framework however does not support segmen-
ted bus based approach yet. For the rest of the book, either point-to-point or
a shared bus based solution is used.

Another commonly used foreground memory/register file architecture is
a stream register/buffer. Such architectures have been used in [Dal04,
Rag07a]. The precise micro-architecture of such a stream register is one of
the core contributions of this book and is further detailed in Chapter 8. One
such example is also shown in Figure 4.5. The stream register architecture
consists of two parts: the data memory (known as SRF/Stream Register
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in [Dal04]) and the stream buffer (known as stream buffer or Very Wide
Register/VWR (in Chapter 8). Such architectures for the register file are
extremely efficient (power and performance) for streaming applications.
They may have one or more ports towards the datapath. It is important that
such efficient architectures are also covered by a design space exploration
framework and in COFFEE that is the case.

4.2.3 Platform dependent loop transformations

Before starting the mapping process on the target platform architecture, it is
essential to perform a number of enabling transformations. In literature se-
veral classes of such compiler oriented transformations have been described.
However, in addition to the ones that are directly coupled to the compi-
ler or low-level mapping process, it has become clear that also platform
independent transformations are crucial prior to the platform-dependent
stages. A prime example of this are the source code transformations that
are required to optimize the usage of the data memory organisation (see,
e.g. the DTSE methodology in [Cat02]). These are far from trivial to apply
manually because they are quite error-prone to execute in a complex code,
and their exploration space is too huge to effectively overlook by a human
designer. Hence, we will now explore the frameworks that are required to
better support that stage.

Having an automated transformation framework integrated to the back-end
compiler is crucial for efficient optimization. The URUK framework [Coh05]
performs designer directed source level transformations to optimize locality
in the data memory, improve the number of Instructions Per Cycle (IPC) and
to enable vectorization. Automated transformations provided by the frame-
work include: loop split, loop fusion, loop interchange, loop tiling etc. These
transformations may be platform dependent or independent. The platform
independent transformations however can be performed earlier in the de-
sign flow and also can be steered by higher level metrics [Kje01, Hu07]. The
designer needs to specify the required transformation in a predefined for-
mat and the URUK tool performs the transformations automatically, which is
less error prone. We have extended the URUK framework, such that it can
automatically insert the DMA transfers at the appropriate points in case a
scratchpad is used. A case study of the transformation is performed in the
appendices of [Rag09b], where URUK has been used for transformations
which optimize locality and enable vectorization. This allows the designer
to get early feedback on the effect on energy consumption and performance
of code transformations for state-of-the-art and experimental architectures.
The designer can judiciously iterate over different (combinations of) transfor-
mations, like proposed in [Gir06], to optimize the energy and/or area and/or
performance for the final platform.
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4.3 Energy estimation flow (power model)

The architecture exploration that we envision for our embedded and largely
mobile target application domain, should be strongly energy-aware while at
the same time meeting the performance requirements. Traditionally however,
such an exploration is targeted to optimizing the performance and decreasing
the cycle count, where the power is then reduced in a second stage. We want
to turn this around and take care that very performance oriented but power
hungry options are not withheld during the exploration. Hence we need a
sufficiently accurate but fast energy estimation technique/model to support
this goal.

In order to get fast and fairly accurate energy estimates, to guide code trans-
formations or architecture exploration, we propose an energy estimation en-
gine coupled to the instruction set simulator. At this abstraction level, the full
hardware description is not yet needed and therefore exploration can be fast.
To enable early estimates with sufficient accuracy for relative comparison, we
propose the following methodology.

The components of the processor (register file, ALU, pipeline registers, Multi-
pliers, Instruction Decoders, etc.) are up-front designed at RTL level (optimi-
zed VHDL description). This is done for various instances of each component,
e.g. various register file configurations, in terms of ports, number of words
and width.

Once the VHDL for a component with a particular parameter set is avai-
lable, the description is used as input to the flow shown in Figure 4.6. The
target clock frequency of the system is imposed as a fixed timing constraint
on the design. UMC90 nm general purpose standard cell library from Faraday
[Far07] has been used for all experiments shown in this chapter. However this
is not a restriction and in various sections of this book different technologies
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Figure 4.6: Flow used for power estimation for different components of the
processor
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have been used and have been indicated appropriately. Each component is
passed through logic synthesis (using Synopsys Design Compiler [Syn06a]),
Vdd/Ground Routing, Place and Route, Clock Tree Synthesis (if needed),
DRC, LVS checks (using Cadence SoC Encounter [Cad06]). The extracted net-
list (with parasitics) is back-annotated to the gate level netlist in Prime Power
[Syn06b]. A testbench is generated for (each instance of) all the components,
using input data with realistic toggle behavior. The energy per activation and
leakage power for the different components are estimated from the activity
information from gate level simulation and the parasitic information. This
results in a library of parameterized energy models.

Because memories are highly optimized custom hardware blocks, the stan-
dard cell flow cannot be used. Therefore a library of energy consumptions
(dynamic and leakage) has been created using a commercial memory com-
piler (from Artisan [ARM]). Finally, our pre-computed library contains the
energy consumption (dynamic and leakage) for various components of the
processor using the standard cell flow, and for memories, using a commercial
memory compiler. However this can be replaced with more semi-custom de-
sign methodologies. Such semi-custom efforts are common for energy critical
designs like memories, register files and critical datapath. Efforts for genera-
ting these designs in a parameterized way are being carried out at ESAT,
K.U. Leuven [Cos07, Cos08] and RWTH Aachen [DPG05, Gem02].

The access statistics needed for energy estimation can be done at two pos-
sible levels: after profiling or after instruction set simulation (ISS). The choice
between either a profiling based energy estimation or after ISS depends on
the accuracy and the design-time needs. For early exploration and pruning,
the designer may choose a profiling based energy estimation. Various effects
likes cache behavior etc. would not be accurate in the profiling based method.
After an early pruning, a more detailed ISS based energy estimation may be
done. In case the designer requires a high quality and has sufficient compute
power and time available, he/she may choose to run an ISS based estimation
to get a more accurate numbers. A more detailed description of the energy
model and the different components of energy consumption in sub-micron
technology is illustrated in the appendices of [Rag09b]. The approxima-
tions and the possible errors introduced in the estimation are also elaborated
there.

After compilation, the code is profiled on the host for the given input stimuli.
Each of the individual basic/super/hyperblock is annotated with a weight.
Weight is the number of times that block would be executed if the same
input were to be fed during simulation. Based on the weight of each block,
the compiled code and the energy/access of the individual components, the
COFFEE tool is capable of estimating the energy consumption of the processor.
This is the flow marked as (1) in Figure 4.1. A profiling based estimation
is extremely fast as instruction set simulation is not performed and only a
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high-level energy modeling abstraction is incorporated. In this case accuracy
is traded off for estimation speed with respect to an instruction set simulation
flow (described below), because the profiling based estimation is not capable
of keeping track of the dynamic effects, like e.g. cache behavior. Profiling
based estimation can be used for quick and early exploration.

The instruction set simulation based estimation flow, described in Section 4.2,
counts the number of activations for each of the components. Based on this
activation and the components’ energy/access from the pre-computed library
described above, the energy consumption of the complete system is compu-
ted (marked as (2) in Figure 4.1). This approach correctly keeps track of
dynamic effects and is slower than the profiling based approach, but it is
still orders of magnitude faster than a detailed gate level simulation for the
complete processor, and therefore fast exploration is possible. Given such a
fast exploration a wide range of architecture exploration can be performed
sufficiently quickly (few hours).

The power model itself in the tools also supports coarse grain power gating
and clock gating and can be used when to duty cycle when the schedules have
many holes (no operations to perform). The overhead of this should also be
modeled appropriately. The above modeling of the total energy consumption
and average power consumption of the complete system would allow the
designer to either analyze and optimize the processor architecture (either by
a change in architecture or a compiler optimization or transformation).

4.4 Comparison to related work

Various frameworks are available which aim to address the problem of design
space exploration for processing sub-systems of embedded systems. Most of
these frameworks support some of the desired features but not all important
state-of-the-art extensions in all parts of the processor. All the features men-
tioned in the previous section are essential for a framework to be used for
future embedded system designs.

Trimaran [Tri99] is a fast and extensible VLIW compiler and processor ex-
ploration framework. The proposed framework is based on Trimaran 2.0,
but we have extended the compiler optimization and processor architecture
design space to a large extent. Few examples are clustered register file sup-
port, stream register file support, clustered loop buffer support, cache simula-
tion and scratch pad memory simulation (a complete list of the design space
parameters is described in Section 4.2). In addition we have also extended
Trimaran with a sufficiently accurate energy estimation engine (after profi-
ling and after instruction set simulation) and also coupled a loop transforma-
tion engine in a consistent manner.
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ACE’s CoSy framework [ACE08] and GCC [GCC07] are retargetable compi-
ler frameworks which are fast and extensible. They also support a wide range
of high-level compiler optimizations and also support code generation for a
wide range of processors. However, these frameworks do not support instruc-
tion set simulation and energy aware exploration. GCC is mainly targeting
code generation for general purpose oriented processors (like x86, Alpha,
PowerPC, etc.) rather than for low power embedded processors, which is our
focus. The road map of GCC extensions indicates this is slowly changing,
e.g. providing support for loop transformations and vectorization. One of the
possible future directions of the framework is integrating the energy aware
exploration framework with GCC as a front end. Other frameworks, like CoSy
[ACE08] target low power embedded processors, however their scope of re-
targetability is limited.

In the code transformation space SUIF [Sui01] pioneered enabling loop
transformations and analysis. Wrap-IT [Coh05] from INRIA uses the polyhe-
dral model for analysis and to perform transformations. These tools alone
are not sufficient as transformations can have an impact (positive, negative
or neutral) on various parts of the processors. This is because these trans-
formations are not platform independent and therefore essential to have
one integrated flow. In the proposed flow, the Wrap-IT loop transformation
framework has been directly coupled to the retargetable compiler, simulator
and energy estimation engine.

In a sense, the above frameworks are complementary to the proposed COFFEE
framework since all three have the capability to perform performance explo-
rations in a certain sub-set of the intended design space consistently. Essen-
tially compared to these, the COFFEE framework supports a larger design
space along with an accurate, complete and consistent (w.r.t processing sys-
tem) energy estimation engine.

Wattch [Bro00b] and SimplePower (which is based on Simplescalar [Aus02]),
enable architectural exploration along with energy estimation. However,
their power models are not geared towards newer technologies, their
parameter range is still too restricted and they are geared towards high
performance systems. To the best of my knowledge, these frameworks do not
support important architectural features like software controlled memories,
data parallelism or SIMD (Single Instruction Multiple Data), clustered
register files, stream register files, loop buffers etc. These features have
become extremely important for embedded handheld devices as energy
efficiency is a crucial design criterion.

Epic Explorer [Asc03] is VLIW exploration framework, also based on
Trimaran [Tri99], supports energy estimation of the processing system.
However, the energy model is not detailed enough to give a breakdown of
energy consumption of the various processor components (e.g. for register
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files, functional units and pipeline registers). The architecture design space is
also limited to general purpose VLIWs and the memory hierarchies supported
are only caches. Furthermore, a loop transformation engine is not coupled
to it in order to make a consistent framework in order to explore the design
space an embedded designer might wish to cover. Other simulation envi-
ronments like Liberty [Lib02] also exist which allow exploration of various
micro-architectural features. However Liberty is a simulator environment
and also lack a compiler and an energy model. However the simulation part
of the proposed framework could be built using Liberty.

Other industrial tools like Target’s IP Designer [Tar08], Coware’s Processor
Designer [CoW08a] and Tensilica’s XPRES [Gon02], provide architectural
and compiler retargetability, but the supported design space is limited to a
restricted template and they do not provide fast, high-level energy estimates.
Synfora’s PICO Express does provide early estimates for architecture explora-
tion, however, it does not support various architecture features like streaming
registers, loop buffers etc. Detailed energy estimates can be obtained by syn-
thesizing the generated RTL and using the traditional hardware design flow.
Generating such detailed estimates is too time consuming for wide explo-
ration and for evaluating compiler and architectural optimizations. Energy
estimates based on a library of architectural components, as proposed in
this book, do not suffer from these drawbacks, as they are fast and suffi-
ciently accurate and complete for the early explorations of an embedded
designer.

Several studies in literature describe the outcome of a the manual explora-
tion of a specific subdomain in the entire exploration space. For instance, a
detailed study of foreground memory organization and the impact on power
and performance has been performed in both [Rix00a] and [Gan07]. But
these studies are limited to the specific domain (e.g. foreground memory/re-
gister file alone) and do not provide a framework for exploring other parts of
the processor.

In the analytical power estimation domain there exist various research works
like [Ben02] which is limited to the Lx processor, [Sch04] which is limi-
ted to the TI C6x processor, [Tiw94] which is limited to i486 and Sparc,
[Cha00, Sin01] which are accurate but limited to ARM only, [Ye00] which
is limited in architecture space, [Pon02] which is very accurate but uses a
old technology and models only the datapath. To the best of my knowledge
no framework exists which is complete, consistent, flexible and accurate in
its power modeling over a large architectural space with a large amount of
state-of-the-art features.

The proposed COFFEE framework combines the benefits of all the above ex-
ploration frameworks, while giving fast and accurate estimates of energy and
performance early in the design process. It also provides a framework which
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can analyze the impact of high level code transformations on the architec-
ture’s performance and power consumption. This framework can be used to
explore hw/sw co-design, architectural optimizations or software optimiza-
tions. Note though that it is not intended that COFFEE would produce the final
assembly code on an instantiated platform. The later is the focus of commer-
cial tools like Synfora’s PicoExpress [Syn08], Target’s IP Designer [Tar08],
Coware’s Processor Designer [CoW08a] and other such tools. Once again
this could introduce some amount of absolute inaccuracy in the estimation
due to the way VHDL is written or other such cases.

4.5 Architecture exploration for various
algorithms

The previous sections described the large architecture space that can be cove-
red by the COFFEE framework. This section illustrates the exploration and the
impact on energy, area and performance. Section 4.5.1 shows an exploration
of various parameters: number of data clusters, number of slots per cluster,
depth of the loop buffer and size of the data memory. Section 4.5.2 will also
illustrate various counter-intuitive trends which emerge whilst covering the
complete architecture space. Such trends are often hidden when only one
part of the architecture is explored.

4.5.1 Exploration space of key parameters

To cover the large number of parameters that are varied a naming convention
has been introduced. Table 4.1 shows the naming convention used in this

Naming Range Details
Convention explored

dc=2 1,2,3,4 Two data clusters
spdc=4 2,4 Four slots per data cluster
dcd=16 16,32,64 Sixteen registers per data cluster
icd=32 32,64,128 Thirty two entries in Loop Buffer
mem=8K 4–256 K 8 KB data memory (with 2 bank, 4KB/bank)
dc:spdc:dcd:icd:memk Generic architecture name

2:4:16:32:16K Two data clusters with four slots/data cluster
with 16 deep register file/data cluster
with 32 entry deep loop buffer and
16 KB (4×4KB) data memory

Table 4.1: Naming Convention Used for Architecture Exploration
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section and the range over which each of these parameters are varied. The
different parameters that are varied are:

1. Number of data clusters: This corresponds to the number of cluste-
red register files. The interconnection network between the clusters as
shown in Figure 4.4 (clustered register file) is assumed for experiments.

2. Number of slots per data cluster: This corresponds to the number of
issues slots used per data cluster. In case the number of slots increases
by one, the number of ports required on the corresponding register file
increases by two read ports and one write port.

3. Register file size: This corresponds to the number of registers available
per data cluster’s register file.2

4. Loop buffer depth: This corresponds to the number of instructions the
loop buffer can store at a given point of time.

5. Data memory size: This corresponds to the size of the L1 data memory.
It is assumed that the data memory is banked into banks of 4 KB each.

Besides the above variation in parameters, the following design parameters
are kept constant throughout the exploration in this subsection:

1. Five stage pipeline with traditional fetch, decode and three arithmetic
operator related stages

2. Latency of multiply operation is three execute cycles (pipelined), ALU
is one execute cycle, Load/Store latency is two cycles (pipelined)

3. 32-bit datapath

4. 512 entries of VLIW instructions in the L1 instruction memory (this
implies wider the VLIW, larger the L1 instruction memory)

5. All slots are homogeneous

6. All data clusters, which are realized as register files, are of the same
size

7. A centralized loop buffer is used as shown in Figure 4.3b

To illustrate the design space, various embedded system benchmarks have
been used from Mediabench [MedB], Versabench [Rab04], as well as an
in-house optimized video decoder H.264/AVC (Advanced Video Codec)

2Note that this chapter does not explore the VWR architecture. The trade-offs for different
VWR implementation is addressed in more detail Chapter 8.
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[Wie03] and a MIMO (Multiple Input Multiple Output) Loop Compensation
have been used. From the Mediabench benchmark suite MPEG2 encoder,
decoder and EPIC (image filtering algorithm) have been chosen. From the
Versabench benchmark suite 802.11a convolution coder and FM radio have
been chosen. An optimized version of H.264/AVC (which is a particular
implementation of the MPEG4 decoder) has also been chosen. The AVC
decoder is optimized for its CIF frame size (352× 240) and 25 fps operation.
The MIMO Loop Compensation is part of a multi-antenna Software Defi-
ned Radio (SDR) running wireless LAN. Loop Compensation forms part of
the baseband processing which decouples the inputs from multiple source
antennas (in the benchmark the number of antennas is set to two).

Figures 4.7 through 4.9 show the design space exploration of these different
benchmarks. For each benchmark, the figures show the normalized trade-
off space between energy consumption and performance. In such a two-
dimensional trade-off, points that are further to the right and upward from
other points are clearly suboptimal as they add more cost on both axes. So
we can discard them. The remaining points are called Pareto-optimal. Hence,
only the Pareto-optimal curve for each of these benchmarks is shown in the
figures. The Pareto-optimal architectures for each of the benchmarks are then
listed in a table next to the figure. The architectures listed on the listing is
ordered by from moving from left to right on the Pareto-curve.

It can be seen from Figures 4.7 through 4.9 that a large trade-off variation in
energy and performance can be obtained. On the Pareto curves, an average
trade off of 55% in energy and average trade-off of 22% in performance can
be observed. Over all the design points themselves, the energy can be re-
duced by up to 90% and the performance can be improved by up to 60%.
Such a higher level architecture exploration with these trade-offs would al-
low the designer to prune the design space before the actual instantiation of
the architecture.

4.5.2 Trends in exploration space

Various trends can also be observed from the architecture exploration. To
understand these trends consider the MPEG2 Encode benchmark shown in
Figure 4.10. We can observe that architectures with larger number of data
clusters3 and slots like (1)[4:4:64:128:48K], (3)[4:4:32:128:48K] provide
high performance, while the energy consumption is quite high. The next
important aspect is that reducing the register file size reduces the energy
consumption, but also degrades the performance. This can be illustrated

3Although a cluster can imply either data or instruction cluster, in this section for simplicity
we use data cluster and cluster interchangeably. We vary only the data clusters. The number of
instruction clusters is set to one.
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Figure 4.7: Pareto-curves for benchmarks MPEG2Dec and epic. Note that not
all Pareto points are visible and may overlap each other. They are still preser-
ved because they are still Pareto points

by moving from architecture (2)[4:4:64:64:48K] to (3)[4:4:32:128:48K] or
moving from architecture (5)[2:4:64:64:24K] to (6)[2:4:32:128:24K]. The
data memory size also reduces from 48K till 8K as we traverse the Pareto-
curve from top to bottom.

More generally one can observe the following trends over the different
benchmarks:

1. Number of data clusters: For all the benchmarks as one moves from
the top to bottom of the Pareto-curve, the number of data clusters

102



Architecture exploration for various algorithms

0

0.2

0.4

0.6

0.8

1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

N
or

m
al

iz
ed

 E
ne

rg
y

Normalized Cycles

versabench.BIT.802.11a.stats

Pareto Arch.:

[2:4:32:32:24K],

[2:4:16:32:24K],

[1:4:32:32:12K],

[2:2:16:32:16K],

[1:2:32:32:8K]
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Figure 4.8: Pareto-curves for benchmarks 802.11a and fmradio. Note that
not all Pareto points are visible and may overlap each other. They are still
preserved because they are still Pareto points

used reduces. This is because as we use lower number of clusters, the
performance degrades and the energy consumption also reduces (as
the total number of registers and functional units also goes down).

2. Memory size: Another common trend that can be observed is that while
increasing the number of banks (therefore the total data memory size),
the performance improves and the energy consumption also increases.

3. Register file size: It can be seen that for most benchmarks, 16 registers/
data cluster is suboptimal. This is because inside the critical parts of
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Figure 4.9: Pareto-curves for benchmarks MIMO and AVC. Note that not all
Pareto points are visible and may overlap each other. They are still preserved
because they are indeed Pareto points

the application, the register pressure is high. Furthermore an increase
in register file size also improves the performance at the cost of energy
consumption. And an increase in register file size causes a substantial
increase in energy as a larger number of registers need to be clocked.

4. Slots/cluster: Another trend is that as the number of slots/cluster re-
duces, the performance degrades and the energy consumption reduces.
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Figure 4.10: Performance-energy trade-off space for MPEG2 encode over the
various design points

When the number of slots/cluster is reduced, the number of ports re-
quired decreases and therefore the energy consumption of register file
also reduces.

5. Loop buffer depth: As it can be expected, the size of the optimal loop buf-
fer is benchmark specific. The net size of the loop buffer should be vie-
wed as Num. of clusters× Num. of slots/cluster× Loop buffer depth. This
value reduces as one traverses the Pareto-curve from top to the bottom.

Besides the above trends, one can observe the following trends which are
benchmark specific:

1. mediabench/epic: The real trade-off space for epic is limited. This result
implies that the compiler mapping is not that efficient. In this particular
case the reason was due to an idiosyncrasy in the data cluster assign-
ment phase in the compiler, which performs poorly when many condi-
tional constructs are present within the loops. However these have been
solved in the later versions of Elcor which is the backend compiler of
Trimaran [Tri08].

2. mediabench/mpeg2enc and mediabench/mpeg2dec: Both MPEG2 decode
and encode have a large variation in the loops sizes, IPC for each
kernel etc. This enables different architectures to be better suited for
different parts of the algorithm. Therefore the trade-off in the energy-
performance space is large.
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3. versabench/stream/fmradio: This benchmark has several loops which
are small with few variables only. This explains the poor trade off
present in energy. Moreover this is the only benchmark for which the
register file size of 16 entries is still Pareto-optimal. The loop buffer
depth required is only 32 entries.

4. versabench/bit/802.11a: This initial benchmark is only partly optimized
by the designer who coded it. It consists of a loop which in turn contains
a function call. But the compiler could inline the function into the loop.
Also the loop does not have any loop carried dependency and has a
high degree of instruction level parallelism. Therefore a good trade off
exists for this benchmark.

5. imec/mimo: The loops in the MIMO Loop Compensation algorithm
consist of a large number of live variables. This implies that the Pareto-
optimal architectures require a larger number of registers. For all the
architectures with only 16 registers per data cluster, the compiler could
not even find a solution due to the increased register pressure.

6. imec/AVC: In AVC the amount of control code is significant. Also inside
the loops, a large amount of conditional code exists. Therefore cluste-
red architectures have not been efficiently used and the Pareto-optimal
architectures for AVC are all single cluster architectures.

So far the previous sections have presented explorations with two objective
functions namely performance and energy. Another important view which
is required for system design also includes area. Figure 4.11 shows the ex-
ploration results on three key objective axes namely: area, energy and cycles
for MPEG2encode. The filled points in “blue” are the Pareto-optimal design
points. The “hollow green points” are all the remaining design points. The
surface shown is curve fit4 over the different Pareto-optimal design points.
Note that the number of Pareto-points compared to the 2 dimensional plot is
higher. This is because of the new objective function (area) which introduces
more trade offs between energy and performance. For example, compared to
the Performance-Energy trade off space (shown in Figure 4.10), several new
extreme architecture points like (28) [1:2:32:32:8K] have appeared that ex-
hibit lower area than the other points. A basic trend that can be seen from
Figure 4.11 is that, while adding more hardware (area), the performance in-
creases along with the energy consumption. These results validate the basic
intuition that area is a first degree estimate of energy. However, some trade
off points exist where an increase in area leads to a decrease in energy for
the same performance. This kind of result indicates that the compiler map-
ping performed is not efficient or that the optimizations have reached the
point of diminishing returns. By observing this result closely it can be seen

4Drawing a three dimensional Pareto-surface is quite non-trivial therefore, a curve fit of
three dimensional Pareto-points is presented instead.
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Figure 4.11: Area-performance-energy design space for MPEG2 encode over
the various design points

that moving from architecture (4)[3:4:64:64:36K] to (2)[4:4:64:64:48K],
the number of clusters is increased, but the performance remains the same
and the energy consumption is increased. In this case the application does
not have sufficient (exploitable) ILP in order to fill four clusters of four slots
per cluster. These results illustrate that the proposed COFFEE framework ena-
bles the designer to analyze and observe some interesting and non-trivial
trade-offs and also identify the limitations and bottlenecks of the system,
optimizations and applications.

Figure 4.12 shows the energy breakdown of the different components for
different benchmarks on a subset of their Pareto-optimal architectures as in-
dicated on the x-axis. As in the previous energy breakdown plots, the clock
energy of a corresponding component is not shown separately but included
in the energy of that component. In Figure 4.12 one can observe a few inter-
esting trends.

For example moving from the architecture [1:4:32:64:12K] to [1:2:64:
128:8K] for mediabench/mpeg2dec causes an increase in the net register file
energy as the register file size increases. In contrast, the instruction memory
cost decreases as the size of the instruction loop buffer is increased (thereby
allowing more loops of the application to be mapped onto the low energy
loop buffer).

Consider another example: Moving from architecture [3:4:32:128:36K]
to [2:4: 64:128:24K] for imec/mimo causes the instruction memory and
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pipeline energy to decrease due to lower number of issue slots. A larger
issue machine requires a wider instruction memory and therefore the ener-
gy/access of the instruction memory (despite NOP compression) is higher.
However, the register file cost goes up as the number of registers increases
from 96 (32 registers/cluster × 3 clusters) in the first architecture to 128
(64 registers/cluster × 2 clusters) in the second architecture .

Another interesting trend is that moving from architecture (5)[2:4:64:
64:24K] to (6)[2:4:32:128:24K] for mediabench/mpeg2enc causes the in-
struction memory energy to decrease as loop buffer size is increased.
However, the data memory cost increases as the register file size decreases,
causing more register pressure, therefore more spilling. This causes more
load/stores and therefore the data memory cost increases. This re-emphasizes
the claim that it is crucial to have a complete and consistent view of all parts
of the system, else various such effects cannot be taken into account in a
correct and consistent way.

The above observations are quite non-intuitive to a typical embedded pro-
grammer who does not understand enough about the architecture as well as
to an architect who does not understand enough about application to com-
prehend the trends on their own. Also such trends can only be observed using
a framework similar to the COFFEE as presented in this chapter, which gives
complete, consistent and accurate energy, area and power estimates along
with a large set of compiler optimization and architectural options.

4.5.2.1 IPC trends

Instructions Per Cycle or IPC is a commonly used technique for an estimate
of performance of an application. Figure 4.13 shows the IPC evolution of the
different Pareto optimal architectures for the different benchmarks explored.
For each of the benchmarks the bars from left to right represent the different
Pareto optimal architectures decreasing in performance (in terms of cycles).
A generic trend that can be observed is that as one moves from left to right

Figure 4.13: IPC analysis of different architectures
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the IPC for each benchmark decreases. However, this cannot be generali-
zed and exceptions exist. For example moving from architecture [1:4:32:32]
to [2:2:16:32] for fmradio actually increase the IPC, however, reduces the
number of cycles. A similar trend is observed when moving from architecture
[1:4:32:32] to [2:2:16:32] for 802.11a benchmark. All these architectures
have four slots, but the second architecture has two data clusters instead of
one. Often in case of multiple clusters, data needs to be copied from one
cluster to another. This introduces “cluster copy” instructions. While these
are valid instructions, they do not add to the performance of the application.
Therefore in these cases the IPC increases but the performance decreases.

Another very counter intuitive trend can be seen in case of the mpeg2enc
benchmark while moving from architecture [2:4:64:128] to [2:4:64:64], the
IPC increases but the performance decreases. At first sight this would appear
incorrect as decreasing the loop buffer size should not affect the IPC. Howe-
ver, as we decrease the loop buffer size from 128 to 64, the number of times
the instruction required to activate the loop buffer is higher. For example,
since the loop buffer is smaller, there will be many more invocations to acti-
vate and load code to the loop buffer compared to the larger loop buffer case.
This further emphasizes a need for a consistent framework for exploration.

4.5.2.2 Loop buffers and their impact on Instruction Memory
Hierarchy/Organization

Figure 4.14 shows the normalized instruction memory energy consumption
annotated on a graph which also contains the ratio of instructions mapped
onto loop buffers to L1 instruction memory. For each of the benchmarks,
some of the Pareto optimal points have been plotted to observe a few trends.
The instruction energy consumption for each benchmark is normalized to the
architecture which consumes the highest. For each of the benchmarks as one
goes from left to right (as in Figures 4.7–4.9), the performance degrades.
This usually means that we go from a processor with larger number of slots
to a one with lower number of issue slots. This consequently also means that
the width of the instruction memory decreases and therefore the net energy
consumption of the instruction memory decreases as well. However, for two
processors with the same number of slots, the instruction memory energy
consumption also depends on how many instructions can be issued from the
loop buffer and how many from the instruction cache. The loop buffer depth
has to be optimally sized as well. For example in epic, moving from architec-
ture [2:4:64:128] to [2:4:64:64] reduces the instruction memory energy, but
the ratio of loop buffer operations to non-loop buffer operations remains the
same. For the benchmark mpeg2enc, moving from architecture [4:4:64:64]
to [4:4:32:128] increases the instruction memory energy consumption as
the depth of the loop buffer is higher. Therefore the energy/access is also
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Figure 4.14: Correlation between instruction memory energy consumption
and code mapped onto loop buffer
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higher. Specifically an odd behavior can also be observed like in the bench-
mark fmradio. The number of issue slots in both architectures [1:4:32:32]
and [2:2:16:32] is four, and the loop buffer depth is 32 entries. However, the
instruction memory energy increases. This is because of the clustered regis-
ter file (architecture [2:2:16:32] which has two clusters with two issue slots
each) for which not all loops can be software pipelined. In such a case, the
compiler uses only the first cluster. Therefore the performance degrades whe-
reas the number of instructions issued increases. This leads to an increased
energy consumption.

Such trends further emphasize the fact that it is very crucial to consider the
complete processor platform power consumption instead of each component
in isolation.

4.5.2.3 Exploration time

To illustrate the complexity of the exploration space, Table 4.2 shows the
total time required for performing the architecture exploration, the average
time required for one single compilation and the time required to do instruc-
tion set simulation on one architecture. The simulation times are reported
on a dual core AMD Opteron 2.3 GHz running Red Hat Linux 3 Enterprise.
It should be noted that the compilation and simulation time is dependent
on the precise architecture chosen and the benchmark. For example the time
required on an architecture with few registers and mpeg2dec is quite high.
This is because the register allocator tries hard to find a solution. Whereas if
an FIR filter was compiled on the same architecture, the time required would
be quite low. Another important point to note is that when large benchmarks
are compiled on small architectures, the compiler may even fail. In that case
it does not lead to a point in the exploration space, but adds to the total
time for exploration. However, Table 4.2 shows the average time required

Benchmark Exploration Compilation ISS
time (s) time (s) time (s)

versabench/fmradio 1,430 24 97
versabench/11a 1,591 26 1,498
mediabench/epic 5,883 98 412
mediabench/mpeg2dec 9,433 157 3,410
mediabench/mpeg2enc 10,230 208 6,593
imec/mimo 2,234 39 313
imec/AVC 29,579 547 NA

Table 4.2: Exploration, compilation, simulation time consumption
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for a single successful compilation run and a single simulation run. The total
architecture exploration time is the time required to compile on 60 different
architectures to find the Pareto optimal architecture. Once the Pareto-optimal
architectures are found after estimation at compilation, instruction set simu-
lation is performed only on the Pareto-optimal architectures.

Special note should be taken of the AVC benchmark. For this benchmark, no
single simulation run could be completed because the amount of space requi-
red to produce the trace file is larger than 60GB. A disk space utilization of
around 60GB (excluding /swap) was reached in a day’s time. Unfortunately
despite using Linux pipes and optimizing the printing of traces to the bare
minimal, a complete trace for AVC could not be recorded and therefore the
simulation times are not reported. This shows the need for better and faster
simulators.

4.6 Conclusion and key messages of this chapter

This chapter has presented a framework to perform energy-area-performance
aware architecture exploration. The proposed framework provides all the ne-
cessary low power architecture features to optimize processors for hand-held
embedded systems. The accuracy of the energy estimation has been valida-
ted by comparing it to a detailed gate level simulation, using an in-house
processor design. The chapter also has shown that the proposed framework
is capable of compiling, simulating, and estimating energy for a wide range
of architectures and advanced low power architectural features. It has illus-
trated the design space exploration on various benchmarks and industrial ap-
plications. Such a framework has shown to provide an energy-performance-
area trade-off early in the design phase. Such a framework has been shown
to illustrate and explain various counter-intuitive trends that occur during
architecture exploration. The COFFEE framework has been used in various
parts of this book to perform architecture exploration and to model different
architectures. Also it is currently being used by other PhD students and re-
searchers within the current system design activities in IMEC and its network
of cooperating institutions.
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CHAPTER 5

Clustered L0 (Loop) Buffer Organization
and Combination with Data Clusters

Abstract

A distributed L0 buffer organization is an energy-efficient template for
augmenting the instruction memory organization at the lowest level of the
instruction memory hierarchy. In particular, functional units in the datapath
are grouped into logical units called L0 clusters. Each L0 cluster obtains an
associated L0 buffer which stores the instructions (coded operations) correspon-
ding to the functional units in that cluster. Also, a local controller in each L0
cluster is responsible for indexing into and progressing through the L0 buffers.
In this chapter, that control is however limited to conditions and the loop nest
still has to be fully compatible between the L0 buffers. That limitation will be
relieved in the next chapter. One of the principal energy-improving aspects in
this book is the architecture concept embedded in such a distributed L0 buffer
organization. Generating application-specific L0 clusters and compiling for L0
clusters are ways to exploit that distributed organization. In this chapter the
repertoire of the organization is described and the key architectural parameters
are introduced.

F. Catthoor et al., Ultra-Low Energy Domain-Specific Instruction-Set Processors, 115
DOI 10.1007/978-90-481-9528-2 5, c© Springer Science+Business Media B.V. 2010
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5.1 Introduction and motivation

Thus far L0 buffer organizations proposed and analyzed in literature are to a
large extent centralized, i.e., a single logical cluster is assumed and a single
controller controls the indexing into the buffer to store and fetch instructions.
However, such an organization in the context of VLIW processors is energy
inefficient and its scalability is limited. Firstly, the wordlines of the buffers
should be at least as wide as the number of issue slots or the number of func-
tional units (FUs) in the datapath in order to provide a desired throughput of
one instruction per cycle. Realistically, in an embedded VLIW processors like
TI C6x series from Texas Instruments [TI00], this width would be about 256
bits (eight FUs with 32 bit operations). Even if the L0 buffers store compres-
sed instructions (NOP Compression or more advanced instruction encoding),
the width of the buffer still needs to be as wide as the uncompressed case
in order to provide the necessary best case throughput. With an increase in
number of FUs the width of the wordlines is bound to increase. In general,
memories with wide wordlines tend to be energy inefficient. Partitioning or
sub-banking is a known technique to avoid long wordlines. However, these
techniques are applied at the microarchitectural level or at the hardware
level. In contrast we propose to raise the notion of partitioning to the archi-
tectural level where certain features of the application can be exploited to
achieve higher energy efficiency. Since we expose the partitions at the archi-
tectural level, necessary extensions to the local controllers have to be made.
In the next section, we propose two schemes for the local controllers. In this
chapter, that control is however limited to conditions and the loop nest still
has to be fully compatible between the L0 buffers, i.e. the different nests
should have corresponding iterator positions and ranges. That limitation will
be lifted in the next chapter.

The rest of this chapter is organized as follows. Section 5.2 discusses the dis-
tributed L0 buffer concept. Section 5.3 presents an illustration. Section 5.4
provides the architecture level evaluation. Section 5.5 discusses the related
work and provides a comparison. Section 5.6 combines the L0 and data clus-
ter concepts, and presents the practical consequences. Finally, Section 5.7
concludes this chapter and summarizes the key messages of this chapter.
For simulation results presented in Section 5.4.2 in this chapter, the cluster
generation tool presented in Chapter 5 of [Jay05a] has been used.

5.2 Distributed L0 buffer organization

The essentials of the proposed distributed L0 buffer organization are illustra-
ted in Figure 5.1. The L0 buffers are partitioned and grouped with certain
FUs in the datapath to form an instruction cluster or an L0 cluster. In each
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Figure 5.1: The distributed L0 buffer organization with local controllers that
enable distinct conditions but a single loop nest organisation

cluster the buffers store only the operations of a certain loop destined to
the FUs in that cluster. Furthermore, the buffers are placed close to the FUs.
By closeness, it is meant that the latency of transfer of the instructions from
the buffers to the FUs is minimal and also the physical distances between the
buffers and FUs in a cluster is as small as possible.

The operation of distributed L0 organization is as follows. By default the L0
buffers are not accessed during the normal phase of the execution, which in
turn results in a potentially significant reduction in the energy consumption.
In Figure 5.1 one can notice that operations are loaded from the L1 in non-
loop mode and from L0 only in loop mode. Parts of the program that are to be
fetched from L0 buffers should be marked explicitly either by the program-
mer or the compiler. A special instruction lbon (loop buffer on) should be
inserted at the beginning of the program segment along with the number of
instructions in the program segment. The program segment can be any loop
with conditionalconstructs, nested loop or even parts of several loops. By
arranging the code in a proper layout, any generic program segment can be
mapped. For our analysis, we have chosen loops that have significant weight
in the program execution. An example illustrating this process is shown in

117



Clustered L0 (Loop) Buffer Organization and Data Clusters

OP31

    −     −

    − OP34

−OP11 OP21

OP32

OP25     −

OP22    −

OP13

OP14

OP15

BNZ’X’

BR’Y’

−

BNZ’S’

IF block

ELSE block

lbon 5 − −−

{
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if (...) {.....}
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}

for (i=1 to 256)

X:

Y:

S:

Figure 5.2: A part of the program segment mapped onto the L0 buffers

Figure 5.2. Here, a loop is explicitly marked by the compiler to be mapped
onto the L0 buffers, and also the number of instructions in the loop (five
instructions) is indicated.

5.2.1 Filling distributed L0 buffers

Once the instruction containing the lbon operation is encountered during
the program execution, the processor pipeline is stalled and the instructions
that immediately follow lbon are fetched and distributed over the different
L0 partitions. The number of instructions pre-fetched will be as indicated in
the lbon operation (five instructions in the example illustrated). Alternati-
vely, clever pre-fetching schemes can be adopted in order to avoid the stalls
(e.g. [Jou90]). For every instruction fetched, the instruction dispatch stage
issues the operations to their corresponding clusters. Once the instructions
are stored in the L0 buffers, the execution is resumed with instructions now
being fetched from L0 buffers. The dispatch logic does not decode the ope-
rations, but partially decodes the instructions to extract operations for each
cluster. Here, we assume that this logic is negligible and it is not considered
in further analysis and discussions. Additionally, the buffers can also be used
to store decoded operations. However, this decision requires analysis of the
instruction encoding and the trade-off between sizes of L0 buffers before and
after decoding. It is highly desirable that the L1 instruction memory is put in
low-power (leakage reduction) mode whenever it is inactive for the duration
of the inner loop iterations.

Alternatively, the L0 buffers can be filled with the instructions of the loop
by simultaneously feeding the datapath during the first iteration of the loop,
thus avoiding the stall cycles. However, this alternative is suitable only for
loops without conditional constructs. For a loop with conditional constructs,
some of the basic blocks may not be executed in the first iteration. In the
worst case, one of the basic blocks may not be executed until the last
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iteration. In this scenario instructions would still be fetched from expensive
L1 cache instead of L0 buffers. However, this can be solved to some extent
by employing code transformation techniques like function in-lining [Liv02],
loop splitting, loop peeling and code hoisting [Sia01].

5.2.2 Regulating access

One of the key features of our distributed organization is that we can res-
trict the accesses to partitions that are not active in an instruction cycle.
We achieve this by providing an activation trace (AT) in the local controller
(ITC) of each cluster. While operations of each instruction in the loop are
fetched and distributed among the partitions, a one or a zero is stored in
the activation trace register indicating that the partition is active or inactive
respectively. Figure 5.3 shows the activation trace for the example illustrated
in Figure 5.2. For instance, during the execution of the third instruction of
the loop, partitions one and four are active while partitions two and three
are inactive. Thanks to this activation trace we can now restrict the access to
partitions two and three through the ‘enable’ signal, thus saving energy.

Energy saved by switching off an L0 buffer partition (the L0 buffer plus
its functional units) is higher than regulating accesses per cycle [Bur92]. In
the proposed organization, we can detect if a particular L0 buffer partition is
not used. If the activation trace is filled with zeros, then the corresponding
partition is not used and hence it can be switched off. Alternatively, if the
counter (described in the following section) that keeps track of the next free
location in the L0 partition is zero, then we know that the corresponding
partition is not used. These two detection schemes employ some hardware
logic. The compiler could also indicate if a partition is not used. This requires
the compiler to be aware of L0 clusters in the processors. By the extensions
described in Chapter 4 of [Jay05a], the compiler can detect if an L0 cluster
is used. By using any of these detection schemes L0 buffer partitions can
potentially be switched off to save energy.
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Figure 5.3: L0 buffer operation with activation based control scheme
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5.2.3 Indexing into L0 buffer partitions

In order to store and fetch instructions, indexes that point to appropriate lo-
cations in each L0 partition have to be generated. One of the following two
schemes can be adopted for the index generation. In the first scheme, a com-
mon index (NEW PC in Figure 5.3) is generated for all the L0 partitions. This
index is derived directly from the program counter as described in Eq. 5.1

NEW PC = fn(PC, START ADDRESS) (5.1)

Having only one index for all the L0 partitions, implies that the operations of
an instruction that are stored in different partitions have to be stored in iden-
tical locations in the corresponding cluster. For instance, the third instruction
of the example illustrated in Figure 5.2 has two operations op13 and BR‘Y’.
These are stored in L0 partitions one and four at location two. Although only
two operations are stored, the corresponding locations in L0 partitions: two
and three, cannot be reused to store operations of other instructions. Further-
more, this also implies that the number of words in each partition has to be
identical. One of the advantages of this scheme is that the index generation
is simple but this comes at the expense of inefficient storage utilization.

In the second scheme, instead of only one index for all the partitions, se-
parate indexes for each L0 partition are generated and stored in an Index
Translation Table (ITT) as shown in Figure 5.4. Here, a counter keeps track
of the next free location available in each partition, and this is incremen-
ted only when an operation is stored in that partition. Furthermore, all the
ITTs are in turn indexed by the NEW PC, which is generated as described
above. The operation of this indexing scheme is illustrated in Figure 5.4. For
instance, the operations of the third instruction in the above example, are
stored in locations one in the first partition and one in the fourth partition,
while nothing is stored in partitions two and three, thus utilizing the storage
space more efficiently than the first scheme. However, this efficiency comes
at the expense of increased complexity and cost of index translation in each
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partition. Unlike the previous scheme where only one index is used for all the
partitions, the local controller in this scheme requires a storage for the index
translation of width and depth as shown in Eqs. 5.2 and 5.3 respectively.

width = log2(DepthL0i ) (5.2)

depth = max(Ninstructions mapped) (5.3)

where,
DepthL0i := # of entries in L0 partition i, and
max(Ninstruction mapped) := maximum # of instructions among all the blocks
that are mapped onto the L0 buffers.

5.2.4 Fetching from L0 buffers or L1 cache

When the lbon instruction is encountered during execution, the address loca-
tion of the first instruction of the loop and the address of the last instruction
of the loop are stored in the start and end registers provided in the Loop
Buffer Control or the LBC (not shown in the figure). When the program
counter points to a location within this address range, the instructions are
fetched from the L0 buffers instead of the L1 cache. The signal L0 buffer
enable (or L1 Cache Disable) in Figure 5.1, selects the appropriate inputs of
the multiplexers and enables or disables the fetch from L1 cache.

The start register is comparable to a tag in conventional caches. Typically,
when the instruction lbon is encountered during execution, the start address
of the loop body following that instruction is compared with the start ad-
dress already stored in the start register. If there is a match, then the instruc-
tions that are already stored in L0 buffers are used. On the other hand if there
is a mismatch, only then the instructions of the loop body following the lbon
instruction are fetched and stored in the buffers. This prevents unnecessary
fetch of the same instructions and hence reduce accesses to energy expensive
L1 Cache.

For the above example (Figure 5.2), a detailed illustration of the operation
of distributed L0 buffers with two schemes of controller is provided in the
following section.

5.3 An illustration

Figure 5.5 illustrates the distributed L0 buffer operation with activation trace
and without ITT. For simplicity each FU is assumed to have a separate L0
buffer partition. A sample loop and its corresponding schedule is shown at
the top of the figure.
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Figure 5.5: An illustration of distributed L0 buffer operation with Activation
T race and without Index Translation Table
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When the instruction lbon is encountered during the execution, the operations
within the loop are distributed into the corresponding clusters. After this ini-
tiation, at the end of CYCLE N, the operations are now fetched from the L0
buffers. During the first cycle (refer stage CYCLE N+1 in Figure 5.5) of the
loop, the NEW PC indexes into the activation trace. If a ‘1’ is stored at that
index, the corresponding L0 buffer is accessed. During this cycle the fourth
cluster is not accessed. During the second cycle (refer stage CYCLE N+2 in
Figure 5.5), the first cluster is not accessed. Additionally, a branch is encoun-
tered BNZ‘X’. Assuming that the result of the branch is available within one
cycle and the result indicates the branch to be taken, then the NEW PC is
updated so that in the next cycle it points to the appropriate instruction.
During the third cycle (refer stage CYCLE N+3 in Figure 5.5), the NEW PC
points to the fourth instruction of the loop and executes the appropriate
operations. During the fourth cycle (refer stage CYCLE N+4 in Figure 5.5),
the operations of the last instruction are executed. If the execution is not
in the last iteration then the branch points to the first instruction and the
execution continues with instructions being fetched from L0 buffers. If the
execution is in the last iteration, then the branch points to a location out of
the address range of the loop and the instructions are now fetched from L1
cache.

Figure 5.6 illustrates the distributed L0 buffer operation with activation trace
and index translation table. The execution is similar to the scheme illustrated
in Figure 5.5, but for the two main differences. First, the sizes of the L0
buffers are optimized according to the active operations in the loop. Secondly,
the NEW PC indexes into activation trace and an index translation table. For
a certain NEW PC, the index stored in the translation table points to the exact
location of the operation to be executed.

5.4 Architectural evaluation

For our evaluation to be realistic we have modeled the L0 buffer organiza-
tion based on a known embedded VLIW processor from the TI C6x processor
series [TI00], with eight FUs (eight issue slots) and an instruction width of
256 bits with 32-bit operations for each FU. Using the compiler and simu-
lator of the framework presented in the previous chapter, applications were
mapped onto this processor model and simulated to generate the profiles.
The compiler in particular has been extended to identify loops which have
less than 512 operations (64 instructions) and which have significant weight
in the execution time, to be mapped onto the L0 buffers [Vda03].

Since our domain of interest is embedded multimedia applications, we have
chosen the benchmarks for our evaluation from Mediabench [MedB]. Some
characteristics of these benchmarks are shown in Table 5.1.
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Figure 5.6: An illustration of distributed L0 buffer operation with Activation
T race and Index Translation Table
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Benchmark Type Avg ILP Max size
(in loops) inst’s (ops)

adpcm dec Audio decoding 4.10 22 (176 ops)
adpcm enc Audio encoding 2.65 22 (176 ops)

cavity detector image processing 1.50 26 (208 ops)
g721 dec Audio decoding 4.10 12 (96 ops)
g721 enc Audio encoding 4.00 51 (408 ops)

gsm Wireless 2.75 55 (440 ops)
jpeg enc Image encoding 2.38 38 (304 ops)

mpeg2 dec Video decoding 2.80 47 (376 ops)

Table 5.1: Characteristics of the benchmarks

The energy consumption of the L0 buffers and the local controllers is repre-
sented by the Eq. 5.4. This equation is based on the energy model described
in Appendix B of [Jay05a].

E =
Nclusters∑

i=1

(Ei ∗Ni + LCi) (5.4)

where, Ei is the energy consumed for any random access, Ni is the number of
accesses made during the program execution and LCi is the local controller
energy per cluster. For all L0 buffers and the local controllers, the Ei are
obtained by modeling them as single read, single write port register files in
Wattch [Bro00b] in a 0.18 μm technology.

5.4.1 Energy reduction due to clustering

Clustering the storage at an architectural level aids in reducing the energy
consumption in two ways. First, smaller and distributed memories can be
employed. Second, at the architectural level an explicit control over the ac-
cesses to these memories can be imposed (through the local controller).

As described in Section 5.2, with the aid of ITT the depths of L0 partitions can
be optimized independently in each partition. This corresponds to reduction
in effective buffer energy per access (ΣEi). Figure 5.7 shows the reduction
in effective buffer energy per access1 for increasing number of clusters. For
instance when the number of clusters is equal to four, the effective buffer
energy per accesses is reduced by about 20%. We see that with an increase

1For a single cluster, the energy for AT+ITT is slightly more than the energy for AT. This
difference is due to additional address decoder used for the buffer, instead of one-hot encoding.
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Figure 5.7: Reduction of effective buffer energy per access (ΣEi) due to index
translation table (ITT) with increasing number of clusters (Nclusters )

in number of clusters the effective buffer energy per access reduces, and it is
minimal when number of clusters is equal to number of functional units. For
this analysis we have assumed that clusters are generated randomly. Howe-
ver, as demonstrated in Chapter 5 of [Jay05a], by generating clusters with
the knowledge of memory access patterns, the optimal number of clusters is
not 8, as implied in Figure 5.7, but somewhere in between 1 and 8.

By restricting the accesses to the buffers we can reduce the amount of swit-
ching energy in the L0 buffers. Figure 5.8 shows the reduction in the effective
number of accesses (ΣNi) with increase in number of clusters. Here, effective
number of accesses is defined as sum of all the accesses per functional unit.2

We see that with increase in number of clusters, the effective accesses keep
on reducing and are minimal when number of clusters is equal to number
of functional units. The reduction is fairly intuitive because with increase in
number of clusters, the degree of control over effective number of accesses
per functional unit increases and when each functional unit has its own buf-
fer partition, this degree is maximal.

The aforementioned reductions reduce the buffer energy. However, this re-
duction is traded-off against the increase in local controller energy. Figure 5.9
summarizes the trade-off between the buffer energy (ΣEi ∗Ni) and the local

2Here, effective number of accesses is defined as:
∑Nclusters

i=1 (Ni ∗ NFU i)/NFU . Where,
Nclusters is the number of L0 clusters, Ni is the number of accesses for cluster i, NFU i is the
number of FUs in cluster i and NFU is the total number of FUs in the datapath.
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trace (AT) with increasing number of clusters (Nclusters)
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Figure 5.9: Reduction in buffer energy and increase in local controller energy

controller (ΣLCi) for the two proposed schemes and Figure 5.10 shows the
total energy reduction for the two schemes. Since for the scheme represented
by Figure 5.4, buffer energy is reduced due to both regulating the accesses
and reducing the effective size, this reduction is greater than the energy
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Figure 5.10: Reduction in total energy for two L0 buffer schemes

reduced for the scheme represented by Figure 5.3, where only accesses are
regulated. As expected, the local controller energy in the former is larger
than the local controller energy in the latter due to increased complexity. Ho-
wever, Figure 5.10 shows that in some cases increased complexity in the local
controller pays-off against reductions in buffer energy.

5.4.2 Proposed organization versus centralized
organizations

We have evaluated two centralized L0 buffer schemes, namely a centrali-
zed uncompressed scheme and a centralized compressed scheme, against our
proposed organizations, a distributed L0 buffer with activation trace and a
distributed L0 buffer with activation trace and index translation. Figure 5.11
summarizes the energy reductions of various schemes on different applica-
tions of the Mediabench [MedB] suite. On average the energy consumption
in the proposed distributed organization is about 63% lower than the energy
consumed in an uncompressed centralized scheme, and about 35% lower
than the energy consumed in a centralized compressed scheme.

For the centralized uncompressed scheme the size of the L0 buffer, for each
application, will be the maximum number of instructions among all the loops
that were identified by the compiler. However Table 5.1 indicates that the
average ILP is typically less than the width of eight operations per word in L0
buffer, and hence the L0 buffer is unnecessarily large and energy inefficient.
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Figure 5.11: Energy consumption of distributed organization in comparison
with other schemes

In contrast, a centralized compressed L0 buffer efficiently utilizes the storage
and the depth of the L0 buffer can be made smaller. For the benchmark
‘mpeg2dec’, we observed that the depth of the L0 buffer could be reduced
from 47 to 18. This reduction comes from the fact that the instructions are of
variable length and the operations in an instruction are tightly packed elimi-
nating the NOPs. Here, we have adopted the instruction fetch model from the
TI C6x processor series, where every fetch to the L0 buffer partition fetches
an instruction packet of eight operations. This packet is stored in an additio-
nal buffer and the operations are fed to the datapath from this buffer every
instruction cycle. A new instruction packet is fetched only when operations
in the additional buffers are used up. Based on this model, we can see that
on average 44% of energy can be reduced over an uncompressed centralized
scheme. The number of fetches to the L0 partition is reduced significantly
but at the expense of adding an additional buffer. However, in most cases
this overhead is compensated by the reductions in the L0 buffer except for
one particular benchmark, g721dec. For this benchmark the energy reduc-
tion in the L0 buffer (reduction in depth) was not sufficient to compensate
for the overhead (refer Figure 5.11).

In the distributed scheme with both AT and ITT as opposed to distribu-
ted scheme with AT only, in addition to reducing the number of accesses
in each partition, the depths of the L0 buffers in each partition can be
further optimized. This reduction in the L0 buffer size comes at the exp-
ense of increased complexity and energy consumption of the controller.
However, this increase in energy is just large enough not to be compensated
by the reduction in the L0 buffer energy. Figure 5.11 shows that the energy
consumption of the distributed organization as proposed in Figure 5.4 (local
controller with both Activation Trace and Index Translation Table) is slightly
more than the energy consumption of the distributed organization proposed
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in Figure 5.3 (local controller with only Activation Trace). In our analysis
of the distributed organizations we have assumed that only one type of
local controller is used throughout. However, a hybrid scheme could also
be employed where in some clusters have activation trace while the others
have both activation trace and an index translation table. Currently, we have
not made any analysis regarding the hybrid scheme, and we leave such an
analysis for future work.

5.4.3 Performance issues

From Section 5.2.4, we can deduce that the number of cycles lost by stalls
due to fetching depends on the number of instructions in the loops that are
mapped to the L0 buffers. However, in comparison with the number of cycles
the instructions in the loops are executed, the stall cycles are negligible. From
Figure 5.12 we can observe that the performance degradation due to pre-
fetching is less than 5%.

In the distributed organization as shown in Figure 5.4, two storage blocks
have to be accessed sequentially in one cycle, namely the Instruction Trans-
lation Table and L0 buffer partition. While this requirement may seem to
constrain the cycle time, in reality it does not. In embedded processors which
operate at low frequencies (100–1,000 MHz), two storage blocks can be ac-
cessed within one instruction cycle. For instance, in the benchmark ‘gsm’, the
L0 buffer size of one partition is about 3kb and the corresponding size of the
local controller is about 0.5kb. For the register file model in (0.18 μm techno-
logy), the access times to the buffer and the controller are about 2.5 and 2.0
ns respectively. Together, the critical-path length is about 4.5 ns, translating
to about 250 MHz, which is about the same as the operating frequency of

Figure 5.12: Performance degradation due to filling in L0 buffers
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some of the TIC6x processor series in 0.15 μm technology [TI99]. However,
even if the access times are not within the critical path length of the proces-
sor, the L0 buffer access in the proposed scheme can be pipelined. In the first
stage, the local controller can be accessed to get the activation and the index,
while in the second stage the operations stored in the buffer can be retrieved.

5.5 Comparison to related work

The available literature for instruction memory organization falls under two
broad categories. The first category encompasses the literature available in
relation to L0 buffers or loop buffers, which is one of the central concepts
of our proposed organization. We give an overview of different flavours of
L0 buffer organization and indicate that our approach is complementary to
most of them. The second category encompasses the literature available in
relation to partitioned or decentralized organization. We give an overview
of different partitioned organizations especially in relation to the instruction
memory and the processor front end.

The concept of using small buffers has been applied to optimize both perfor-
mance and energy. Jouppi [Jou90] has studied the performance advantages
of small pre-fetch buffers or stream buffers. On the other hand, the reduction
of energy using small buffers was first observed by Bunda [Bun93], and this
idea was more generalized as Filter cache [Kin00] by Kin et al. The authors
have shown that up to 58% of instruction memory power can be reduced
with a performance degradation of about 21%. To mitigate the loss in perfor-
mance, Tang et al. [Tan01] have proposed a hardware predictive filter cache.
Alternatively, authors in [Lee99, Baj97, And00], proposed to use these buf-
fers only for loops, thus reducing the loss in performance while still retaining
the large reductions in energy.

Since the identification of loops to be mapped onto the L0 buffers is largely
hardware controlled and dynamic, loops with small iteration count could
also be mapped onto the L0 buffer leading to thrashing. Vahid et al. [Gor02b]
have analyzed this situation and they propose a pre-loaded loop cache, where
the loops with large instruction counts are identified by profiling and only
these are mapped onto the loop cache. Furthermore, their scheme also sup-
port loops with control constructs and various levels of nesting.

In a partitioned organization [Shi99, Con96a], a buffer is divided into smaller
partitions in order to reduce the wordline width. However, the process of
partitioning is largely arbitrary. The operations of a certain functional unit
are not necessarily bound to few partitions, they can be placed in any of
the partitions. Thus, no correlation exists between the process of partitioning
and the functional unit activity. A correlation between the two should be
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explicitly imposed in order to physically place the partitions over different
functional units in the datapath and ease the constraints on the interconnect.
Otherwise, an operation for a functional unit may need to be fetched from
a partition which is physically placed close to a different functional unit,
and thus constraining the interconnect severely. In this sense, we follow a
partitioning or clustering scheme which is different and at a higher level of
abstraction than the conventional partitioning scheme.

Similar to the distributed organization presented in this book, small loop
buffers are present in the scalable dual-fetch architecture [Bar05a]. In that,
a master fetch path consists of an level-1 I-cache and a loop buffer. The slave
paths consists of several clusters with loop buffers in each, where the instruc-
tions are fed directly from a level-2 memory. The key differences with the
dual-fetch architecture are as follows.

In the dual-fetch architecture [Bar05a], the instruction (or L0) clusters and
data clusters are identical, i.e., the FUs comprising within a data cluster
and L0 cluster are the same. However, a clear distinction between instruction
and data cluster is made in this book and the the FU composition can be lar-
gely independent. Additionally, since instruction and data clusters are identi-
cal in the dual-fetch architecture assignment options for instruction clusters
are limited. Additionally, operation assignment scheme is primarily directed
at data clusters. In this book however, we propose that an explicit stage is
added (in addition to data clustering) to perform scheduling and assignment
for L0 clusters (see also Chapter 4 of [Jay05a]).

In the dual-fetch architecture, the slave paths are primarily controlled by
the master path through a special dedicated operation in the instruction
format. The opcode fields of that operation corresponds to slave clusters
which provide a mechanism for indexing and access regulation. However in
this book, the instruction clusters are controlled in a distributed manner with
local controllers providing the indexing and access regulation mechanisms.
Additionally, the indexing in dual-fetch architecture is centralized with one
index per cycle for all the clusters. However, an index translation scheme is
provided in this book that enables the L0 clusters to have more decoupled L0
buffers, i.e., the size of an L0 buffer in a cluster is independent of other
clusters. By combining indexing of dual-fetch architecture with the index
translation of this book, the two fetch mechanisms can be made compatible.

At a conceptual level, the distributed L0 buffer organization proposed in this
book is similar to an n-way associative cache with way-prediction [Pea01]
or even horizontally partitioned caches with cache-prediction [Kim01]. In
associative caches, instructions are stored in different ‘ways’, while in our
case, the instructions are stored in different clusters. The way-predictors pre-
dict the ‘ways’ that are to be accessed in any instruction cycle, while in our
case the local controllers regulate the accesses to each cluster. In spite of
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these similarities, the underlying details of associative caches and distributed
L0 buffers are different. Firstly, the way prediction schemes are much more
complex than the local controller schemes proposed in this book, and they
still rely on tags for addressing. Secondly, most of the way prediction schemes
have been applied in the context of hardware controlled caches, and thus
there is a possibility of mis-prediction. However, in our case the L0 buffers
are software mapped and hence the activation of each partition can be known
beforehand, thus avoiding any mis-prediction.

Superscalar processors are high-performance (GHz range) and high power
consuming (10–100 W) desktop oriented processors. On the other hand, em-
bedded processors are high-performance (100 Mhz range) and at least two to
three orders of magnitude lower power consuming (0.1–2 W). Their proces-
sor characteristics vary significantly [Fly99]. However, the notion of cluste-
ring is also seen in some of the superscalar processors. Here, we mention only
a few distributed (decentralized) architectures. Zyuban et.al. [Zyu01] have
analyzed the effects of clustering the front-end of a superscalar processor,
particularly on energy. They also propose a complexity-effective multi-cluster
architecture that is inherently energy efficient. Many other research groups
have proposed some form of decentralized organizations [Fra93, Pal97]. Ho-
wever, their primary concern was mainly performance and not energy costs.

5.6 Combining L0 instruction and data clusters

In the previous sections, instruction memory hierarchy issues were discus-
sed independently of data memory hierarchy. The results presented earlier,
assume a centralized data memory hierarchy, i.e., a single data memory ar-
chitectural block at different levels of memory hierarchy. This includes single
(but multi-ported) register file, per processor, at the lowest level, single le-
vel 1 data cache and an external memory. However, in realistic systems fore-
ground data memories are also clustered. For instance, in TMS320C6000, a
VLIW processor from Texas Instruments has two register files at the lowest
level of memory hierarchy. Systems designed by following the DTSE metho-
dology often have multiple level 1 data memories. Since the execution of
instructions depend on the data, instruction and data memory organizations
affect each other to various degrees depending on the system abstraction
level and the memory hierarchy level. From the work in [Vda05], we can
learn that the data memory optimizations at the software and architectural
level for level 1 and higher levels of memory hierarchy, have considerable
impact on the instruction memory organization in terms of energy.

In the remainder of this chapter we show that these problems can be cons-
traint orthogonalized by optimizing for data first, followed by propagating
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the resulting constraints and then optimizing for instructions. We can still
achieve significant energy efficiency in L0 buffers, where the optimum is close
to the optimum when L0 clusters are generated for a centralized data register
file. Furthermore, the optimizations for instructions are applied per data clus-
ter. We follow this approach at the lowest level of memory hierarchy (L0 buf-
fers and register files) and at the architectural level of system abstraction.

As mentioned before at the architectural level of system abstraction, both in-
struction memory and data memory are organized in levels. These levels are
conventionally distinguished by difference in the access times: as measured
in number of cycles per random memory access. Higher levels of memories
typically have higher access times. Alternatively, multiple levels can also be
distinguished by the physical distances from the data path (or functional
units). Register files and L1 data caches might have the same access times,
but register files are closer to the datapath, hence register files can be consi-
dered to be at a lower level in the memory data memory hierarchy.

In a datapath cluster, the functional units derive data from a single register
file. In contrast, the functional units in an L0 cluster derive instructions from
a single L0 buffer partition. If register files can be viewed as the lowest level
storage in the data memory hierarchy, then the L0 buffers can be viewed as
the lowest level of storage in the instruction memory hierarchy. Some clus-
tered VLIW architectures proposed in literature, in particular the Lx [Far00]
processor, have a notion of instruction cluster control similar to the L0 clus-
ters (except for the explicit introduction of the copies to the L0 buffers).
However in their architecture, a datapath cluster and an instruction cluster
are fully equivalent. In contrast, we distinguish between the two explicitly.
For instance, we could employ several L0 clusters within a datapath cluster
(or vice versa). That will be worked out in more detail and illustrated in the
rest of this section.

In terms of number of accesses, the cumulative number of access to register
files are higher compared to L0 buffers. In most datapath organizations for
each execution of an operation, two read accesses and one write access to
the data register files is needed, while only one read access to the instruction
memory (L0 buffer) is needed. Additionally, for VLIW organizations the re-
gister files are multi-ported. This implies that for every operation, there are
three accesses to an energy expensive data register file and one access to a
relatively energy inexpensive L0 buffer.

5.6.1 Data clustering

In conventional VLIWs large multi-ported register files are a major bottleneck
for energy efficiency. Various clustered organizatons have been proposed to
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increase the energy efficiency of the register files [Rix00a]. Reducing register
file energy by clustering, results in performance loss. By clustering, the num-
ber of ports per register file is reduced and hence the energy. However, since
the data is distributed across the clusters, the data produced in one cluster
may be needed in another cluster. This inter-cluster data communication is
an overhead, since a number of cycles and operations are wasted in transfer-
ring data from one cluster to another. With smaller data clusters, i.e. smaller
number of FUs and smaller number of ports per register file, the inter-cluster
communication increases and hence large performance losses are incurred.
Due to this trade-off most of the state-of-the-art VLIW processors still have
relatively large data clusters.

5.6.2 Data clustering followed by L0 clustering

With several optimizations to be performed at a certain system level abs-
traction, ordering these optimizations in steps is important [Cat98a]. In this
particular context ordering the two optimization phases: data and L0 cluste-
ring. Data clustering phase has a larger impact in terms of energy and perfor-
mance compared to L0 clustering. Also, the consequences of data clustering
are larger compared to L0 clustering [Keu00, Cat99]. By consequences, we
mean here the number of architectural parameters affected by the decision
taken by this phase. Hence, we follow a methodology where data clustering
is applied first, followed by L0 clustering.

In addition to generating L0 clusters after data clusters, L0 clusters are gene-
rated per data cluster. Thus we propagate the constraints of data clustering
to instruction clustering. If the two phases are applied independently the re-
sulting clusters could be misaligned as shown in Figure 5.13. Here, FUs 1,
2, 3 and 4 are in first data cluster, while FU1 is in first L0 cluster, FU2 in
second L0 cluster and FUs 5 and 6 are in third L0 cluster. This misalignment
in the cluster boundaries will lead to severe constraints in placement and
routing of the architectural blocks. Which in turn could lead to increased
energy consumption by the interconnect. In order to avoid the misalignment
of cluster boundaries, L0 clusters are generated per data cluster.

In this section we show that for the current VLIW organizations, applying
data clustering first followed by L0 clustering per data cluster, is a reaso-
nable methodology. Irrespective of the data cluster generation scheme em-
ployed, by following this methodology, both types of clusters can be accom-
modated. And the energy reductions in L0 buffers are still substantial. An
instance of the resulting clusters is shown in Figure 5.14. For instance, a
datapath of eight FUs has two datapath clusters with four functional units
each. This is a reasonable data cluster configuration since many state-of-the-
art VLIWs, like C6x series from Texas Instruments and Lx processor series
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Figure 5.13: An instance where data and L0 cluster boundaries are
misaligned
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Figure 5.14: An instance when L0 clusters are encompassed in data clusters

from STMicroelectronics, have similar configurations. Additionally, within
each data cluster several L0 clusters can be employed. For example, three
and two L0 clusters in two data clusters as shown in Figure 5.14.

5.6.3 Simulation results

Figure 5.15 summarizes the methodology and the results of generating L0
clusters per data cluster for Mpeg2 Decoder benchmark. A datapath with
two data clusters with four FUs each is assumed. This datapath configuration
is modeled after the VLIW processor TMS320C6000 processor from Texas
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Figure 5.15: L0 cluster per data cluster as applied to Mpeg2 Decoder for a
VLIW with two data clusters

FU no. C6x Fully Het Homo
1 add/shft add add(fp)/shft/mult(fp)/ldst
2 mult/shft shft add(fp)/shft/mult(fp)/ldst
3 mult/add mult add(fp)/shft/mult(fp)/ldst
4 fp alu/ldst fp alu add(fp)/shft/mult(fp)/ldst
5 fp mult/add fp mult add(fp)/shft/mult(fp)/ldst
6 add/shft ldst add(fp)/shft/mult(fp)/ldst
7 mult/shft add add(fp)/shft/mult(fp)/ldst
8 mult/add mult add(fp)/shft/mult(fp)/ldst
9 fp alu/ldst ldst add(fp)/shft/mult(fp)/ldst

10 fp mult/add shft add(fp)/shft/mult(fp)/ldst

Table 5.2: Machine configurations with different FU types

Instruments. The types of FUs are as indicated in the second column of
Table 5.2. All the energy figures are estimated by modeling the L0 clusters in
0.18 μm technology.

Sub-fig. 3 shows the L0 buffer energy consumption for different ways of
L0 clustering. Legend (A) corresponds to centralized unclustered L0 buffer.
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All the other energy figures are normalized against this number. Legend (B)
corresponds to applying L0 clustering assuming that there are no data clus-
ters. L0 clusters generated this way would yield the highest reductions (about
60% in this case), since misalignment of cluster boundaries are not conside-
red. Legend (D) corresponds to L0 clustering, where the data clusters define
the L0 clusters. No further L0 clustering is applied and the L0 clusters are
equivalent to data clusters, which is, two L0 clusters with four FUs each, simi-
lar to the data clusters. Legend (C) corresponds to generating L0 clusters per
data cluster. As described in Chapter 5 of [Jay05a], a systematic technique
is used to generate the L0 clusters, considering the traces per data cluster.
Sub-figures (1) and (2) show the result of clustering. The best L0 clustering
for each data cluster, namely points C1 and C2 in sub-figures (1) and (2)
respectively, are combined together to form the final L0 cluster configuration
for the whole datapath. The combined configuration is shown at the bottom
right of Figure 5.15.

From these results we see that, by generating L0 clustering per data cluster,
the reduction in L0 buffer energy is still substantial. Namely, it is about 50%
compared to centralized unclustered L0 buffer (Legend (A)), and about 30%
more than by making L0 clusters identical to data clusters (Legend (D)).
And, only about 10% worse than generating L0 clusters independently
(Legend (B)). Figure 5.16 shows results similar to sub-figure (3) in Figure
5.15, but for all the benchmarks in Mediabench. We see that on average ge-
nerating L0 clusters per data cluster is only about 10% worse than generating
L0 clusters independently.

Even when the data clusters are smaller (two to three FUs per data cluster),
the resulting L0 clusters by following this methodology are still energy effi-
cient. Figure 5.17 shows the results for a datapath with three data clusters
on an eight FU datapath (two data clusters with three FUs each and one
data cluster with two FUs). On average, L0 clusters are only 10% worse than
the L0 clusters generated independently. But also only 10% better than the

Figure 5.16: L0 buffer energy by L0 clustering per data cluster for Media-
bench with two datapath clusters
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Figure 5.17: L0 buffer energy by L0 clustering per data cluster for Media-
bench with three datapath clusters

L0 clusters when data and L0 clusters are identical. By making data clus-
ters small, the freedom to generate L0 clusters is less. Hence in some cases
like ‘djpeg’, generating L0 cluster per data clusters and making L0 clusters
identical to data clusters, have similar energy figures. Typically L0 clusters
generated independently are small (one to three FUs per L0 cluster). Hence
by making data clusters small the difference in L0 energy, between making L0
clusters identical to data clusters and generating L0 clusters independently,
is reduced. In Figure 5.16, this difference is about 30% on average, while the
same difference is about 20% in Figure 5.17.

5.6.4 VLIW Variants

In some variants of VLIW architectures like Jazz processors from Improv
Systems [Imp99], Transport Triggered Architectures (TTAs) [Corp98] and
coarse grained reconfigurable arrays [Sin00, Col03, Ven03], the intercon-
nect connecting the register files to FUs follow different topologies than
the conventional VLIW. Those particular topologies enable the architect to
employ smaller data clusters. In such cases, L0 clusters can be applied inde-
pendent of data clusters without the concerns of cluster boundary misalign-
ment. An extreme form of data clustering is shown in Figure 5.18, where each
FU is a data cluster and the L0 clusters encompass multiple data clusters. As
a result, if the data cluster overlaps with two L0 clusters, then the L0 cluster
boundary is realigned so that the boundaries do not overlap. The data cluster
boundaries will not be affected. In such cases, data clustering is still applied
first since they have larger impact in terms of energy and performance.
However, now L0 clusters are generated independently as described in
Chapter 5 of [Jay05a], with similar results.
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Figure 5.18: An instance when data clusters are encompassed in L0 clusters

5.7 Conclusions and key messages
of this chapter

In this chapter, a distributed L0 buffer organization was presented with two
different schemes to control the activation and indexing of the L0 partitions.
Here, that control is however limited to conditions and the loop nest still
has to be fully compatible between the L0 buffers. An analysis based on two
key metrics (energy per access and number of accesses) related to energy
consumption, gives an insight as to why the energy is reduced. Although
Figure 5.10 indicates that a fully distributed organization is energy efficient,
it has been shown in [Jay05a], that an exploration of trade-off between the
local controllers and the L0 buffers yields a solution in between. The local
controller with activation trace and index translation offers more freedom
in the architecture (the depths of L0 buffers can be independent). In com-
parison to other centralized schemes energy consumption in the proposed
distributed organization is about 63% lower than the energy consumed in
an uncompressed centralized scheme, and about 35% lower than the energy
consumed in a centralized compressed scheme. Additionally, the energy effi-
ciency is achieved without jeopardizing performance.

Further extensions to this architecture can be conceived. Executing multiple
incompatible loops in parallel has benefits both in terms of energy and per-
formance. The organization presented in this chapter supports only the exe-
cution of a loop with single compatible threads of control. Extensions can
be made to this architecture to support execution of multiple loops (multiple
thread of control). This is explored in Chapter 6.
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Currently the clustering is done at the lowest level of instruction storage, na-
mely the L0 buffers. However, the notion of clustering can be extended to
higher levels of instruction memory hierarchy, namely levels 1 and 2 instruc-
tion caches [Jay02b].

In addition, issues related to combining data and L0 clusters were presented.
Through qualitative reasoning we proposed to order the two optimizations:
data clustering followed by L0 clustering. For relatively larger data clusters,
to avoid cluster boundary misalignment, we propose to generate L0 clusters
per data cluster. From the simulation results we can infer that by following
this methodology about 50% energy saving can be obtained in the L0 buffers
for Mediabench.
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CHAPTER 6

Multi-threading in Uni-threaded Processor

Abstract

This chapter introduces the concept of executing multiple incompatible loops
in parallel and thereby enabling multi-threading in an efficient way in a VLIW
processor. The proposed multi-threading is enabled by the use of a distributed in-
struction memory organization with a minimal hardware overhead. This forms
one of the core contributions of this book. It also shows how the proposed in-
struction memory hierarchy extension can both improve performance as well
as reduce the energy consumption compared to state-of-the-art simultaneous
multi-threaded (SMT) architectures over various DSP benchmarks. The chapter
also shows that the proposed architecture can be compiled for.

6.1 Introduction

The instruction memory organization is a large energy consumer in the
processor, which can become a real bottleneck after techniques like loop
transformations, software controlled caches, data layout optimizations
[Ban02, Kan04a] and distributed register files [Rix00a, Lap02] have been
applied to lower the energy consumption of other components of the

F. Catthoor et al., Ultra-Low Energy Domain-Specific Instruction-Set Processors, 143
DOI 10.1007/978-90-481-9528-2 6, c© Springer Science+Business Media B.V. 2010



Multi-threading in Uni-threaded Processor

system. This has also been shown in Chapter 4. This chapter presents a
novel architectural enhancement that reduces the energy consumed in the
instruction memory organization, while allowing a “virtual” multi-threaded
operation inside the processor.

Previously proposed architecture enhancements aim to reduce the energy
consumption of the instruction memory hierarchy for VLIW processors
by using loop buffers [Jay05b], NOP compression [Hal02], SILO cache
[Con96a], code-size reduction [Hal02], etc. In spite of these enhancements,
the instruction memory organizations are still centralized and the resulting
energy efficiency is still quite low [Jay05b]. Additionally, centralized loop
buffers are not scalable to more parallel architectures.

The well known L0 buffer or loop buffer is an extra level of memory hierarchy
that is used to store instructions corresponding to loops. As shown in
[Jay05b] and Chapter 5, the L0 buffer organization is a good candidate for
the clustered/distributed instruction memory hierarchy solution. However,
the earlier described distributed loop buffer solution supports only one
thread of control. In every instruction cycle, a single loop controller gene-
rates an index, which selects/fetches operations from the loop buffers. The
loop counter/controller may be implemented in different ways: instruction
based or using a separate hardware loop counter. By supporting only one
thread of control different incompatible loops cannot be efficiently mapped
to different distributed loop buffers (explained in detail in Section 6.2).
Hence a need exists for a distributed and scalable solution which can provide
multiple threads of control. That will be effectively addressed in this chapter.

Current platforms and processors need to exploit more parallelism at dif-
ferent levels [DeM05] to improve both performance and energy efficiency.
The most important compute intensive parts of current embedded applica-
tions are written as nested loops and therefore loops form the most important
platform load in a program.

On single threaded architectures, techniques like loop fusion and other loop
transformations are applied to make use of the parallelism that is available
within loops (boost ILP). Not all loops can be efficiently broken down into
parallel operations in this manner as they may be incompatible. This incom-
patibility of loops leads to a large control overhead. Therefore different loops
can be distinguished as the following types:

1. Regularity of Loop Nest

(a) Regular Loop Nest: Nested loops with no data dependent condi-
tions inside the loops

(b) Irregular Loop Nest: Nested loops with data dependent conditions
inside the loops
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2. Compatibility of Loops

(a) Compatible Loops: Two loops that have identical nesting and loop
bounds. They can be merged without any conditions and have no
dependencies that block merging.

(b) Incompatible Loops: Two loops with different bounds and/or nes-
ting is not identical. These types of loops need conditions to be
merged into one single loop. Dependencies across the loops would
also introduce extra conditions and extra iterations to be inserted,
in order to align production and consumption correctly.

To be able to handle all these types of loops efficiently, multi-threaded plat-
forms that can support the execution of multiple incompatible loops in pa-
rallel are needed. It is however essential that this can be done with minimal
hardware and instruction overhead. This chapter proposes such a virtually
multi-threaded distributed instruction memory hierarchy that can support
the execution of multiple incompatible loops (for example, see Figure 6.1)
in parallel. In addition to regular loops, irregular loops with conditional
constructs and nested loops can be mapped. To make the loops fit in the
loop buffers, sub-routines and function calls within the loops must be se-
lectively inlined or optimized using other loop transformations, like code
hoisting or loop splitting. Alternatively, sub-routines can be executed from

Loop/Code − 2

for i = 1...10
      for j = 1...10

     for k = 1...10

for i’ = 1...5
      for j’ = 1...5

Code for SDRAM/
Scratchpad

Management

Code for Processor
Operations

Loop/Code − 1

Figure 6.1: Incompatible loop organizations: a simple example
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the conventional level-1 instruction cache or scratch-pad if they do not fit in
the loop buffers. Another possible solution is where the sub-routine code is
completely or partly loaded onto the loop buffer. This would still be a fea-
sible solution if the gains are justified. In the proposed architecture, the loop
buffers are clustered and each loop buffer has its own local controller. This
local controller is responsible for indexing and regulating accesses to its res-
pective loop buffer. The main contributions in this chapter of the book are
as follows:

• A distributed local controller based loop buffer organization, that can
efficiently support two modes – single threaded and multi-threaded.

• In addition to executing loop nests sequentially and executing multiple
compatible loops in parallel, the distributed controllers enable the exe-
cution of multiple incompatible loops in parallel inside one “virtual”
thread.

• Simulation results show that the distributed controller based instruc-
tion memory hierarchy is energy efficient and scalable. Additionally,
this enhancement improves the performance by enabling local data sha-
ring instead of communication via the memories.

The rest of this chapter is organized as follows: Section 6.2 motivates the
need for a multi-threaded architecture and the requirements for such an
architecture. Section 6.3 presents the proposed architectural extension for
performing multi-threading in an uni-threaded architecture and also illus-
trates how such an architecture can be used. Section 6.4 presents how a com-
pilation technique can be built for this architecture. A qualitative comparison
with related work in the area of multi-threading and distributed instruction
memory is performed in Section 6.5. The quantitative results and compari-
sons are presented in Section 6.6 on various benchmarks. Finally, Section 6.7
concludes this chapter and summarizes the key messages that can be taken
from this contribution.

6.2 Need for light weight multi-threading

The need for a light weight distributed multi-threading similar to other
contributions of this book can be motivated across abstractions levels.
Observations can be made from both from the application side as well
as from the physical design perspective as motivated in Chapter 3.

Application perspective From the application side, the majority of the
execution time in embedded applications is spent in loop code. Instead of
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Figure 6.2: Processor architectures with central and distributed loop control

accessing the large L1 instruction memory for every instruction, the loop
code can be buffered inside a smaller local memory called a loop buffer to
reduce the instruction memory energy consumption. An architecture consis-
ting of a conventional loop buffer based instruction memory is shown in
Figure 6.2a. Another property of embedded systems is that the amount of co-
arse grained parallelism across applications is low as the number of threads
running in parallel is low. Therefore the parallelism has to be exploited at
the sub-task level, across different loops of the same application (which may
have dependencies).

For executing loops, usually software instructions are used to keep track of
the current iteration of the loop. This leads to instructions which decrement
a register, compare and conditionally branch. Since looping is very common
for embedded systems, it is beneficial to convert these instructions into a
hardware based loop counter. This is now done in nearly all state-of-the-art
DSPs generally known as zero overhead looping (ZOL). ZOL is a key fea-
ture in most DSP from the late 1980s [TI00, STM00, AT90, Eyr99]. These
counters are referred to in the rest of the book as iteration counters. However
these DSPs do not support execution of multiple incompatible loops in paral-
lel (do not support SMT). Therefore room for improvement still exists with
respect to exploiting parallelism across loops.

Physical design perspective From the layout perspective, it has been
shown in [Dal05, Jos06, Syl99] and various other works that interconnect
scaling is an key issue for energy-aware design. It is therefore crucial that
the most frequently accessed instruction components for different clusters of
the VLIW are located closer to their execution units. A distributed L0 buffer
configuration for each VLIW cluster with separate loop controllers as shown
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in Figure 6.2a and b, can significantly reduce the energy consumed in the
most active local wiring. Further the loop buffers’ width and depth can be
customized for each cluster [Jay05a, Vda05].

Example illustration To illustrate the above requirement for a low power
instruction memory hierarchy consider the following example: Different
loops inside the same application can have very different loop characteristics
(e.g memory operation dominated vs. computation dominated or address
generation loop vs. data computation loop which may have different loop
boundaries, loop iterator strides etc.). One such example code shown in
Figure 6.1 illustrates two loops with different loop organizations. Code 1
gives a loop structure for the computational code that would be executed
on the data path of the processor. Code 2 gives the loop structure for the
corresponding code that is required for data and address management in the
data memory hierarchy that would be executed on the address management/
generation unit of the processor. This may represent the code that fetches
data from the external SDRAM and places it on the scratch-pad memory
(or other memory transfer related operations). Code 1 in this example exe-
cutes some operations on the data that was fetched by Code 2. In the context
of embedded systems with software controlled data memory hierarchy, the
above code structure is realistic.

The above code example can be mapped on different platforms. These two
codes could also represent two parts/clusters of a VLIW executing two blocks
of an algorithm, where each cluster could be customized for executing that
particular block. In case these loops were merged on a platform with a single
thread of control, extra conditions would need to be inserted. This would lead
to poor performance, high energy consumption as well as an increased code
size. Hence a need exists for a distributed control of two or more separate
sets of codes.

The above code can also be run on two separate processors. In which case
the each of the two processors would have separate PCs (therefore sepa-
rate threads of control). However the two processors would not share data
between their register files or between their L1 data memories. Explicit
copy of data would be needed across the L1 data memories to share data.
Therefore it is easy to imagine that the overhead of a fully multi-processor
based solution would be very high for tightly coupled communicating
loops.

In addition to the above example, one can also imagine these multiple
threads as a chain of producers and consumers where the latency/
performance of these can be very different. This is often common in most
code segments and therefore such a distributed multi-threading can benefit
most applications.
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From the above discussions of both application as well as layout, it can be
summarized that the instruction memory for a low power embedded proces-
sor should satisfy the following requirements to be low power:

• Smaller memories (loop buffers) instead of large instruction memory.

• Specialized local controllers with minimal hardware overhead.

• Distributed and localized instruction memories to reduce long inter-
connect and minimized interconnect switching on very active connec-
tions.1 Customized and distributed loop buffer for each cluster in terms
of depth and width.

• Distributed local controllers that can support execution of different
loop organizations in parallel (single loops, multiple compatible loops
and multiple incompatible loops).

6.3 Proposed multi-threading architecture

This section presents the details of the proposed architectural enhancement
that saves energy consumption and improves performance by enabling a syn-
chronized multi-threaded operation in a uni-processor platform.

6.3.1 Extending a uni-processor for multi-threading

This work extends a uni-processor model to support two modes of loop buffer
operation: Single-threaded and Multi-threaded. The former is the conventio-
nal one and the extension to the multi-threaded mode is achieved with spe-
cial concern to support L0 buffer operation. A VLIW instruction is divided
into bundles, where each bundle corresponds to an L0 cluster. To correctly
control the execution of loops from a loop buffer, two types of counts come
into play: a counter for indexing into loop buffer and an iterator counter.
The indexing counter goes over all the instructions in the loop buffer (also
referred to as LC), corresponding to a single iteration. The iterator coun-
ter keeps track of the current iteration number of the loop. The indexing
counter is always implemented in hardware. However the iteration coun-
ting (or loop control) can be done in hardware or software. This book pro-
poses two basic variants for of the architecture: a software counter based
loop controller (shown in Figure 6.3) and a hardware counter based loop

1From simulations it appears the interconnect cost even in TSMC90nm technology is about
30% of the loop buffer memory access cost.
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controller architecture (shown in Figure 6.4). The software counter based
loop controller implements the iteration counter in software whereas the
hardware loop counter based architecture implements the same in a sepa-
rate hardware architecture.

Note that however fundamentally both software control based as well as
hardware control based distributed loop controller architecture can be used
to accelerate non-loop code as well. However given that in embedded systems,
loop code is dominant the focus in this book has been limited to loop code
alone.

6.3.1.1 Software counter based loop controller

An L0 controller (LC) (illustrated in Figure 6.3) along with a counter (size
of counter depends on the depth of the loop buffer) is used to index and
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regulate accesses to the L0 buffer. Unlike conventional Program Counters
(PCs), the L0 controller (LC) logic is optimized to handle only loops, which
leads to a smaller area and lower energy consumption. In other words, the
PC can address complete address space of the instruction memory hierarchy,
the L0 controller can access only the address space of the loop buffer. The
LB USE signal indicates execution of an instruction inside the L0 buffer. The
NEW PC signal is used to index into the L0 buffer. The loop buffer operation
is initiated on encountering the LBON (Loop Buffer ON) instruction as men-
tioned in Chapter 5 and [Jay05b]. It is possible to perform branches inside
the loop buffer as a path exists from the loop controller to the branch unit si-
milar to the one presented in Chapter 5 and [Jay05b]. The L0 controller (LC)
illustrated in Figure 6.3 only performs the counting to index into the loop
buffer, therefore instructions to perform the operations on the loop iterator
like increment, compare and conditional branch are still needed. This can be
eliminated using a hardware based counter described in the next section.

6.3.1.2 Hardware counter based loop controller

Figure 6.4 shows an illustration of a hardware loop based architecture that
performs the loop iterations. Note that this is still a fully programmable
architecture. A register file contains the following: start value, stop value,
increment value of the iterator, start and stop address for each of the different
loops. Keeping these variables in the standard register file may be a problem
as the register pressure is often too high given the large number of live va-
riables. Therefore it is advisable to keep these variables can be kept in a sepa-
rate register file. However they may also be kept in the standard register file
as well, if the cost is not too high. In case these values are needed for compu-
tation, an explicit inter-cluster copy operation may be inserted. The current
iterator value is also stored in a separate register as shown in Figure 6.4.
Based on these values, every time the loop is executed, the corresponding
checks are made and necessary logic is activated.

Figure 6.5 shows a sample C code and the corresponding assembly which is
required for operating on this hardware based loop controller. At the begin-
ning of the loop nest, the corresponding start, stop, increment values of the
loop iterator and the start and stop address of the corresponding loop must be
initialized. The LDLB instructions are used to load the start, stop, increment
values of the iterators, and start, stop address of the loop respectively in the
register file. The format for the LDLB instruction is shown in Figure 6.4. It can
be seen from Figure 6.5b that although a number of LBLD instructions are
needed to begin the loop mode (introducing an initial performance penalty),
only one instruction (LB instruction) is needed while operating in the loop
mode (LB 1 and LB 2). The loop buffer operation is started on encountering
the LBON instruction, which demarcates the loop mode. The LB instructions
activate the hardware shown in Figure 6.4 thereby performing the iterator

151



Multi-threading in Uni-threaded Processor

LDLB 1, 2, 1
LDLB 1, 3, 0
LDLB 1, 4, <start_addr_i>
LDLB 1, 5, <stop_addr_i>

LDLB 2, 1, 10
LDLB 2, 2, 1
LDLB 2, 3, 0
LDLB 2, 4, <start_addr_ j>
LDLB 2, 5, <stop_addr_ j>

ASM for Code
Block 1

ASM for Code
Block 2

ASM for Code
Block 3

for (i=0; i< 20; i++) {

}

      <Code Block 2>

      for(j=0; j<10; j++) {

     }

      <Code Block 1>

      <Code Block 3>

// Load iterator start address

// Load iterator stop address

// Load iterator current value

// Load iterator increment value

// Load iterator stop value

LBON

LB 2

LB 1

// Perform loop for j

// Perform loop for i

LDLB 1, 1, 20

a b

Figure 6.5: Assembly code for hardware loop counter based solution

increment/decrement, comparison operations for the loop and branching
to the appropriate location if necessary. Hence the instruction memory cost
(number of accesses to the loop buffer) for every loop is reduced, although
the operations performed are the same. Such an architecture also allows the
loop bounds to be both non-affine and non-manifest. Non-manifest implies
that the initialization values are not known at compile time, non-affine means
the operators are not linear. It is possible to have both conditions inside the
loop buffer mode as well as breaks outside the loop buffer code.

Similar to the software based controller the signal LB USE is generated for
every loop to indicate that the loop buffer is in use. This signal is used later
on for multi-threading (see Section 6.3.1.3).

Since a hardware iterator counter is used instead of using the regular data-
path to perform the iterator manipulation, the counter size can be customi-
zed to be of the size of of the largest iterator value that may be used in the
application which is much lower than the 32-bit integers.

6.3.1.3 Running multiple loops in parallel

The L0 controllers can be seamlessly operated in single/multi-threaded
mode. The multi-threaded mode of operation for both the software controlled
architecture and hardware controlled architecture is similar as both of them
produce the same signals (LB USE) and use LBON for starting the L0 ope-
ration. The state diagram of the L0 buffer operation is shown in Figure 6.6.
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Figure 6.6: A state diagram illustrating the switching between single and
multi-threaded mode of operation for both software controlled loop buffer
and hardware controlled loop buffer

The single threaded loop buffer operation is initiated on encountering the
LBON <addr> <offset> instruction. Here <addr> denotes the start address
of the loop’s first instruction and <offset> denotes the number of instructions
to be fetched to the loop buffer starting from address <addr>. In the single
threaded mode, the loop counter of each cluster is incremented in lock-step
every cycle. This mode of operation is similar to the L0 buffer operation pre-
sented in [Jay05a, Jay05b], but in the proposed approach an entire cluster
can be made inactive for a given loop nest to save energy. In case of the
hardware based loop buffer operation the LDLB and LB instructions are also
needed for the single threaded operation as explained in the previous section.

In the multi-threaded mode, the loop counters are still incremented in lock-
step under the same clock, but not necessarily at every instruction. Instead
alignment can be enforced at loop boundaries or explicit alignment points
identified by the compiler (explained in Section 6.4). To spawn execution
of multiple incompatible loops that have to be executed in parallel, each
L0 cluster is provided with a separate instruction (LDLCi <addr> <offset>)
to explicitly load different loops into the corresponding L0 clusters. Here
i denotes the cluster number. For instance, in the following example two
instructions LDLC1 <addr1> <offset1> and LDLC2 <addr2> <offset2> are
inserted in the code to indicate that the loop at addr1 is to be executed in
cluster 1 and the loop at the addr2 is to be executed in cluster 2.

—
LDLC1 <addr1> <offset1>
LDLC2 <addr2> <offset2>

addr1: for (...){
Loop Body }

addr2: for (...){
Loop Body}
—
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Once the instruction LDLCi is encountered, the processor operates in the
multi-threading mode. During the initialization phase all the active loop buf-
fers are loaded with the code that they will be running. For example, the ith
loop buffer will be loaded with offseti number of instructions starting from
address addri specified in instruction LDLCi. Meanwhile, each cluster’s loop
controller copies the needed instructions from the instruction memory into
the corresponding loop buffer. If not all the clusters are used for executing
multiple loops, then explicit instructions are inserted by the compiler to di-
sable them. The LDLCi instructions are used the same way and are used
instead of the LBON instruction for both the software and hardware control-
led loop buffer architectures. For the above example, in case of the hardware
based loop buffer architecture, the LDLB instructions for initializing the loop
iterations and address for the two loops would precede the LDLC instruc-
tions.

When a cluster has completed fetching a set of instructions from its cor-
responding address, the loop buffer enters the execution stage of the
Multi-threaded execution operation. During the execution stage, each loop
execution is independent of the others. This independent execution of the
different clusters can be either controlled by the software or the hardware
based loop controller mechanism. Although the loop iterators are not re-
quired to be in lock-step, the different loop buffers are aligned at specific
alignment points (where dependencies need to be met) that are identified
by the compiler. Additionally, the compiler or the programmer must ensure
the data consistency or the necessary data transfers across the data clusters.
programmer or the compiler.

The loops loaded onto the different L0 buffers can have different loop boun-
daries, loop iterators, loop increments etc. This enables executing different
incompatible loops in parallel.

6.4 Compilation support potential

The code generation for the proposed architecture is similar to the code gene-
rated for a conventional VLIW processor, except for the parts of the code that
need to be executed in multi-threaded mode. As mentioned in the previous
section, additional instructions are inserted to initiate the multi-threaded
mode of operation and its associated communication and synchronization
operations.

However in this work the compiler has not been automated. For the expe-
riments that follow, insertion of the instructions/operations have been done
manually. A more detailed study is required for an efficient compilation step
for such a multi-threaded architecture. This section describes a possible road
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Figure 6.7: Assembly code for the code shown in Figure 6.1 (extra alignment
bits are shown in brackets)

to building a compiler for such a multi-threaded architecture and the work on
the compiler is to be considered as possible future directions of this research.

Figure 6.7 shows the assembly code for the two incompatible loops presen-
ted in Figure 6.1. Code 1 is loaded to L0 Buffer 1 and Code 2 is loaded to
L0 Buffer 2. As for two iterations of loop i, only one iteration of loop i’ has
to be executed, there is a need to identify this dependency and insert the
necessary alignment points to respect this dependency. For this purpose, the
two loops shown in Figure 6.1 are first represented in a polyhedral model
[Qui00]. Once the different codes are represented in a common iteration
domain [Qui00], a data dependency analysis can be done [Gom04]. On ana-
lyzing the data dependencies between different codes, the alignment points
can be derived. The alignment points are then annotated back on the origi-
nal code shown in Figure 6.7 within brackets. In case the original code has
pointers or if conditions which prevent from entering the polyhedral model,
various pre-processing techniques like SSA, if-conversion, pointer removal
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[Pal05] are used. These preprocessing steps are typically executed on top of
a polyhedral framework and they fall outside the scope of this book. Once the
different code segments are represented in the common iteration domain, va-
rious algorithms like Kernigham-Lin etc. can be used for a min-cut through
the polyhedra to ensure low communication across the two threads. More-
over at the cuts, appropriate cluster copy/communication instructions can be
inserted if and when required. Further, such a cut across would also need to
ensure that the ILP and DLP is balanced on the different threads.

Once the alignment has been identified either by the compiler or manually,
it can be implemented between the two clusters by adding an extra bit to
every instruction, as shown in Figure 6.7. A ‘0’ bit indicates that the instruc-
tion can be executed independently of the other cluster. A ‘1’ bit indicates
that the instruction can only be executed if the other cluster issues a ‘1’ as
well. In case the cluster 1 issuing a ‘1’ bit, does not get a ‘1’ from the other
cluster, then cluster 1 would stall till it gets the alignment bit from the other
cluster.

For the example shown in Figure 6.7, only one extra bit is sufficient, as
only two LCs exists. In case of more than two LCs, one bit can be used for
every other cluster that needs to be synchronized with. At the worst case,
this would require as many bits as one less than the number of clusters.
A trade off can be made between granularity of synchronization versus the
overhead due to synchronization. This instruction level alignment reduces
the number of accesses to the instruction memory and hence improves the
energy-efficiency.

It can be seen from the assembly code in Figure 6.7, that using the alignment
bits the data sharing can be done at the register level. This is in contrast to the
cache level like used in the case of SMT processors. This reduces the number
of reads and writes to the memory and register file and further improves
performance and energy usage.

6.5 Comparison to related work

The related work to the proposed distributed loop buffer based architecture
can be categorized into various parts: (1) loop buffers or L0 organization,
(2) loop transformation techniques, (3) Simultaneous multi-threading tech-
niques, and (4) multi-core.

loop buffers/L0 organization The L0 organization is a commonly used
technique to reduce instruction memory hierarchy energy [Cot02, Jay05b].
In this architecture, a small loop buffer is used in addition to the large
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instruction caches/memories, which is used to store only loops or parts of
loops. Additionally, several compiler techniques are proposed to improve
energy and performance of loop buffering [Sia01, Ste02]. State-of-the-art in-
struction memory organization can be categorized based on various aspects
like loop buffers, local controllers, thread of controls etc. This work comple-
tely reuses the space of loop buffers and various scheduling techniques for
loop buffers [Cot02, Jay05a, Jay05b, Kob07b].

Most state-of-the-art loop buffers and the associated local controllers [Cot02]
are centralized. However for higher energy efficiency both the loop buffers
and local controllers can be distributed.

Additionally, the thread of control can be single or multiple threaded. State of
the art loop buffer organizations are intended for single thread of control (as
illustrated in Figure 6.2a). This book proposes the support for the execution
of multiple threads, in particular for the execution of multiple incompatible
loops in parallel. In order to support this multiple loop execution, the local
controllers need to have additional functionality as detailed in Section 6.3.
Local controllers in [Jay05b] only regulate the accesses to the loop buffers.
In contrast, local controllers in the proposed approach provide indexes to
the loop buffers and synchronize with other local controllers, in addition to
regulating the access to the loop buffers. Some commercial processors like
[Sta00] implement the unified loop controller as a hardware counter, but en-
force restrictions on handling branches during the loop mode. Other limita-
tions include, the need for affine loop bounds for performing loop iterations
in hardware. In the proposed method, branches can be present inside the
loop mode, either as a branch inside the loop buffer or as a branch outside
the loop buffer contents (as explained in Section 6.3).

Loop transformations In processors with a single thread of control
(Figure 6.2a) loop transformations are often used like loop fusion is a com-
monly used technique to execute multiple threads in parallel. By applying
loop fusion, the candidate loops with different threads of control are merged
into a single loop, with a single thread of control thereby converting thread-
level-parallelism (TLP) into instruction-level-parallelism (ILP). However,
with this technique incompatible loops like the one shown in Figure 6.1
cannot be handled efficiently. When incompatible loops are merged, many
if-then-else constructs and other control statements are required for the
checks on loop iterators. The number of these additional constructs needed
can be very large, resulting in loss of both energy and performance (see
Section 6.6 for comparison). This overhead still remains even if advanced
loop morphing [Gom04, Sca06] technique is applied.

Multi-threaded architectures Multi-threaded architectures and Simulta-
neous Multi-Threaded (SMT) processors [Oze05, Kax01, Tul95] can also
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Figure 6.8: Weld based SMT architecture as in [Oze05]

execute multiple loops in parallel. In such architectures, each thread has
a set of exclusive resources to hold the state of the thread. One such SMT
based technique where each thread has its own register file and program
counter logic, is shown in Figure 6.8. Furthermore, in these architectures
the data communication between the processes/threads is done at the cache
level (or level-1 data memory). While fundamentally both techniques can
be used for both loop and non-loop code, the proposed multi-threading
architecture has been developed keeping in mind the need to accelerate
tightly coupled loops. Compared to SMT architectures, the proposed multi-
threaded architecture has the following differentiators. Firstly, the hardware
overhead/duplication is minimal. A simplified local controller is provided
for each thread. Secondly, the data communication between the threads, in
addition to cache level (or level-1 data memory) can also be done at the
register file level. Thirdly, the proposed architecture is intended specifically
for executing multiple incompatible loops. This implies, that any generic
threads cannot be executed in the architecture unless the generic threads
are pre-transformed into loops. Since the hardware overhead is minimal,
the proposed architecture is energy efficient. This is quantitatively shown in
Section 6.6).

From the software perspective, the data and control dependencies between
the two threads can be analyzed through design/compile time analysis of the
loops as described in Section 6.4. This analysis improves the performance
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and energy efficiency, as it enables efficient data communication between
the threads through the register file level and insertion of synchronization
points between the loops. In Multi-threaded or SMT processors, such ana-
lysis is not performed. The primary motivation for SMT processors is to in-
crease performance/throughput/IPC of the processor. In other words, this
improves the net-throughput of the processor and not the single-thread per-
formance. This is achieved by improving resource utilization, i.e., fill in the
empty instruction cycles of functional units (FUs) with instructions from dif-
ferent threads without view of the complete code (limited scope). Hence,
all the threads share all the FUs in the datapath. In the proposed architec-
ture, the primary motivation is to improve resource utilization and by doing
this both primarily reduce energy consumption and improve performance. As
motivated in the earlier sections, each thread has an exclusive set of FUs
(FUs in one cluster) to minimize interconnect energy and the loops are pre-
processed such that computations in each thread use only their exclusive set
of FUs. This pre-processing consists of the mapping of loops to individual
clusters.

Multi-core A link can also be made between the proposed multi-threading
architecture and multi-core systems. For a multi-core platform, the communi-
cation costs between cores should be minimized by placing applications with
minimal communication on different cores. The proposed technique applies
to parallelism present inside the same application where there is communica-
tion between the loops. Therefore the proposed technique would be comple-
mentary to a multi-core platform, where parallelism present due to multiple
applications is exploited across cores. And the parallelism present inside a
single application can be still exploited inside one core using the technique
presented in this chapter.

With the proposed architecture enhancement, multiple incompatible loops
can be executed in parallel, without the overhead/limitations mentioned
above. Firstly, multiple synchronizable Loop Controllers (LCs) (one LC per
loop) enable the execution of multiple loops in parallel. Secondly, such a dis-
tributed technique enables a reduction in the interconnect required between
the instruction memory and the datapath. Thirdly, the LC logic is simplified
compared to a full fledged program counter (PC) and the hardware overhead
is minimal, as it has to execute only loop code. Fourthly, data sharing and syn-
chronization is done at the register file level and therefore context switching
and management costs are eliminated. This contribution of the book also pro-
poses a hardware based loop counter which is capable of having breaks out
of the loop (instruction affects the PC) and conditional/unconditional jumps
inside as well (instruction affects the LC and counters). Non-affine and non-
manifest loop bounds (which occur when the loop bounds are only known at
run-time) can also be supported.
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6.6 Experimental results

Section 6.6.1 presents the experimental setup that is used to demonstrate this
work and Section 6.6.2 describe the benchmarks that have and the baseline
architectures that have been used in the experiment. Section 6.6.3 analyzes
the energy and performance gains of the proposed architecture and the rea-
sons for the gains.

6.6.1 Experimental platform setup

The experiments are performed on the COFFEE framework as described in
Chapter 4. The target technology used is TSMC90nm G technology, 1.0 V
Vdd. The complete system is clocked at 200 MHz,2 which is a realistic fre-
quency for an embedded processor. The power/energy model for each of the
individual components have been obtained after place and route and extrac-
ted gate level simulation.

Given that the proposed architecture has been optimized while taking into
account a distributed organization it would scale well with future techno-
logies as well as other operating frequencies used in embedded processors.
The extra energy consumed due to the synchronization hardware is also
estimated after physical design after layout, capacitance extraction and
back-annotation. The Artisan Memory Generator [ARM] has been used for
generating the memories. These different blocks haven then been placed
and routed, and the energy consumption of the interconnect between the
different components is calculated based on the activation of the different
components.

The interconnect requirement between the loop buffers, loop controller and
the functional units has also been taken into account while computing the
energy estimates.

Special instructions as mentioned in the previous sections have been inserted
to enable multi-threaded operation on the VLIW. Since most current embed-
ded applications do not provide very high ILP, a VLIW of four slots was cho-
sen. All slots are homogeneous and form one data cluster i.e. all four slots
share the same global register file and two L0 instruction clusters of two slots
each. Although the proposed multi-threading technique has been applied on
a 4-issue VLIW, the results scale to other sizes of VLIWs provided the appli-
cation also provides the required ILP. In case more threads are used (greater
than 2), a wider VLIW can be used (based on the ILP available and the per-

2200 MHz can be considered roughly the clock frequency of most embedded systems. The
conclusions would still be valid for other operating frequencies.
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formance requirement). The input on the number of slots for each cluster
and its functionality is one of the crucial inputs for the compiler to map the
appropriate code on either side of the cluster.

6.6.2 Benchmarks and base architectures used

The TI DSP benchmarks [TI09d] have been used for benchmarking the pro-
posed multi-threading architecture, which is a representative set for the em-
bedded systems domain. The output of the first benchmark is assumed to be
the input to the second benchmark. This is done to create an artificial de-
pendency between the two threads. Experiments are also performed on real
kernels from a Software Defined Radio (SDR) design of a MIMO WLAN recei-
ver (two-antenna OFDM based outputs) [Pal08]. After profiling, the blocks
that contribute most to the overall computational requirement were taken
(viz. Channel Estimation kernels, Channel Compensation). In these cases,
dependencies exist across different blocks and they can be executed in two
clusters.

Figures 6.9 and 6.10 respectively, show the energy savings and performance
gains that can be obtained when multiple kernels are run on different L0
instruction clusters of the VLIW processor with the proposed multi-threading
extension.

In the Sequential case (Baseline case), two different codes are executed on the
VLIW one after the other. The VLIW has a centralized loop buffer organiza-
tion. In the loop merged case, a variant of the loop fusion technique proposed

Figure 6.9: Instruction memory energy savings normalized to Sequential
Execution
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Figure 6.10: Performance comparison normalized to sequential execution

in [Gom04] is applied and executed on the VLIW with a centralized loop buf-
fer organization and with a central loop controller. For the Weld SMT case,
a complete program counter and instruction memory of 32KB are used. The
SMT is performed as described in [Oze05]. This SMT has also been enhan-
ced with an energy efficient centralized loop buffer instead of the IL1 and PC
based architecture. The overhead of the “Welder” is also taken into account.
The “Welder” is a network constructed of muxes and a mux controller, to dis-
tribute operations for different threads over the functional units. Although
the SMT and Loop buffer technique are orthogonal, for the comparison to be
fair, loop buffering technique is also applied to the SMT architecture (Weld
SMT+L0).

The software based proposed multi-threading (Proposed MT) is based on the
logic shown in Figure 6.3. The hardware loop counter based multi-threading
(Proposed MT HW) is based on the logic shown in Figure 6.4. This archi-
tecture has a 5-bit iterator counter logic for each cluster. All the results are
normalized with respect to the sequential execution. Also aggressive compiler
optimizations like software pipelining, loop unrolling etc. have been applied
in all the different cases.

6.6.3 Energy and performance analysis

The Loop-Merged (Morphed) technique saves both performance and energy
over the Sequential technique (see Figures 6.9 and 6.10) since extra memory
accesses are not required and data sharing is performed at the register file
level. Therefore the Loop-Merged technique is more energy as well as perfor-
mance efficient compared to the Sequential case. In case of the Loop-Merged
case an overhead exists due to iterator boundaries etc., which introduce extra
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control instructions. Furthermore loop merged case would also give an extra
overhead in terms of code size required.

The Weld SMT and Weld SMT+L0 improve the performance further as both
tasks are performed simultaneously. In some benchmarks used, the Weld SMT
can help achieve an IPC which is close to 4. The overhead due to the “Welder”
is quite large and hence in terms of energy the Weld based techniques per-
form worse than both the sequential and the loop merged case. Since the
“Welder” has to be activated at every issue cycle, its activity is quite high.
Additionally, an extra overhead is present for maintaining two PCs (in case
of Weld SMT) or two LCs (in case of Weld SMT+L0) for running two threads
in parallel. The data sharing is at the level of the DL1, therefore an added
communication overhead exists. As a result, the Weld based techniques per-
form worse than the sequential and the loop merged techniques in terms
of energy. Even if enhancements like sharing data at the register file level
are introduced, the overhead due to the Weld logic and maintenance of two
PCs is large for embedded systems. For an architecture which can run more
than two threads, this overhead would be higher, whereas the proposed L0
controller is more scalable.

In case of the Proposed MT and Proposed MT HW architectures, the tasks
are performed simultaneously (like in the case of Weld SMT), but the data
sharing is at the register-level. This explains the energy and performance
gains over the Sequential and Loop Merged cases. Since the overhead of the
“Welder” is not present, the energy gains over the Weld SMT+L0 technique
are large as well. Further gains are obtained due to the reduced logic require-
ment for the loop controllers and the distributed loop buffers. In conclusion,
the proposed technique has the advantages of both loop-merging as well as
SMT and avoids the pit-falls of both these techniques.

The results show that the Proposed MT has an energy saving of 40% over se-
quential, 34% over advanced loop merged and 59% over the enhanced SMT
(Weld SMT+L0) technique. On average the Proposed MT has a performance
gain of 40% over sequential, 27% over loop merged and 22% over Weld SMT
techniques. In certain cases like Chan1Est + Chan2Est and C1Est + ChanCom-
pen, the SMT based techniques outperform the proposed multi-threading as
the amount of data sharing is very low compared to the size of the bench-
mark. In terms of energy consumption the proposed multi-threading is al-
ways better than other techniques. It can be intuitively seen that in case
the Weld SMT+L0 architecture is further enhanced with data sharing at the
register file level, the Proposed MT and Proposed MT HW would perform rela-
tively worse in terms of performance. In terms of energy efficiency however,
the Proposed MT and Proposed MT HW based architectures would still be
much better. It has been theoretically3 observed that even when the Weld

3This implies removing the cycles that correspond to the shared data transfer through the
memory.
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SMT+L0 architecture would support data sharing at the register file level,
the performance gain of this architecture over the Proposed MT and Proposed
MT HW is less than 5% in most cases.

The Proposed MT HW is both more energy efficient as well as has better per-
formance compared to the Proposed MT technique. This is more apparent in
smaller benchmarks as the number of instructions per loop iteration is small.
The hardware based loop counter (Proposed MT HW) outperforms the soft-
ware based technique, as the number of cycles required for performing the
loop branches and iterator computation is reduced. This difference is larger
in case of smaller benchmarks and smaller in case of larger benchmarks. Also
in terms of energy efficiency the Proposed MT HW is more energy efficient
compared to the Proposed MT. The overhead of loading the loop iterators and
the values required form the Proposed MT HW architecture was about two to
three cycles for every loop nest. This overhead depends on the depth of the
loop nest. Since all the LDLB instructions are independent of each other, they
can be executed in parallel. Since in almost all cases, the cycles required for
the loop body multiplied by the loop iterations is quite large, the extra ove-
rhead of initialization of the hardware counter is small. The synchronization
required between the distributed loop buffers in case of both the Proposed
MT and Proposed MT HW, was of the order of one or two cycles per loop
iteration for most benchmarks. The relative overhead of this synchronization
depends on the number of cycles required for the loop body itself and the
amount of data sharing present across the two loops running in parallel. For
example, the loop body size of the benchmark Chan1Est + Chan2Est is about
163 cycles and 6 cycles of this were due to synchronization.

To further analyze the energy efficiency of these various architectures, the
energy consumption in different parts of the instruction memory is investi-
gated for three of the benchmarks and is shown in Figure 6.11. The energy
consumption is split into three parts and is normalized to the Weld SMT + L0
energy consumption:

1. LB Energy: Energy consumption of the loop buffer which stores the
loop instructions

2. LC Energy: Energy consumption of the control logic required for acces-
sing the instruction (Loop Controller, Weld logic, Hardware loop coun-
ter etc.)

3. Interconnect (Inter.) Energy: Energy consumption of the interconnect
between the loop buffer and the FUs

Figure 6.11 shows that the energy consumption of the LC logic considerably
reduced as we move from the Weld SMT+L0 based architecture to a standard
L0 based architecture with a single LC or the Proposed MT and Proposed MT
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Figure 6.11: Energy breakdown of different architectures

HW based architectures. This is because of the overhead of the Weld logic
and the extra cost of maintaining two loop controllers. The interconnect cost
also reduces as we go from a centralized loop buffer based architecture to a
distributed loop buffer based architecture by almost a factor of 20%. In case
of smaller loops the energy efficiency of the Proposed MT HW is higher than
that of the Proposed MT.

6.7 Conclusion and key messages of this chapter

This chapter has introduced one of the core contributions of this book namely
a distributed loop buffer organization. The proposed architecture has a dis-
tributed control which allows the execution of multiple incompatible loops
in parallel. Such an architecture has also been shown to provide efficient
local communication while enabling running multiple threads in parallel. It
has also been shown to be energy efficient compared to state-of-the-art SMT
techniques as well as other techniques like loop merging. A high-level propo-
sal for building a compiler technique supporting this architecture extension
has also been included, to illustrate the compilability of the architecture.
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CHAPTER 7

Handling Irregular Indexed Arrays and Dynamically
Accessed Data on Scratchpad Memory Organisations

Abstract

Many application codes contain indirectly indexed arrays. These are arrays
accessed inside loop-nests using linear function of iterators, symbolic constants
and, additionally, other arrays. Several techniques are available in the literature
to reorder the data accesses to such arrays in the given program in order to im-
prove locality. However, we then still need a technique for mapping the data to
the memory hierarchy, if the hierarchy consists of not just cache but scratchpad
memory (SPM) as well. For the cache, data management is done automatically
by instituting the least recently used algorithm in hardware. From the soft-
ware perspective, all that is necessary is to present a program where much of
the reuse has been well exposed. But for effective execution with SPM, a lot more
than that is warranted, and for indirectly indexed arrays the problem is even
further compounded. That problem is the first major focus of this chapter.
A further complication is introduced when the data structures become dyna-
mically accessed. In the existing literature, that now leads to a pure dynamic
allocation process with new and delete functions that are treated by a dynamic
memory manager embedded in the middleware. That potentially leads however
to significant performance and energy overhead. Hence, whenever feasible such
dynamic accesses should still be handled by a compile-time mapping technique,
and preferably they should be allocated on a scratchpad again. That problem is
the second major focus of this chapter.

F. Catthoor et al., Ultra-Low Energy Domain-Specific Instruction-Set Processors, 167
DOI 10.1007/978-90-481-9528-2 7, c© Springer Science+Business Media B.V. 2010



Handling Irregular and Dynamic Data Access

7.1 Introduction

Chapters 5 and 6 have extensively dealt with the instruction memory
organisation. However, the data memory hierarchy remains a large bot-
tleneck in terms of energy consumption as shown in Chapter 3. Given this
bottleneck, in the embedded systems community, the concept of scratchpad
memory (SPM) has lately gained significant prominence [Mar03, Pan98].
SPM is essentially comprised of an on-chip SRAM that occupies a small
part of the address-space of the main memory. It is also considered as a
software-controlled cache [Chi00, Zuc98], when the hardware is actually a
cache which provides the feature that a part of its memory can be controlled
through software. The advantage of the SPM is that because of its hardware
simplicity it is smaller in size and consumes less energy on a per access
basis [Ban02].

Most work in the past on scratchpad management has happened on arrays
that are indexed using linear functions of the loop-iterators, i.e. directly in-
dexed arrays [Ste02, Iss04, Kan04b, Ver07]. Also our previous work on the
DTSE methodology (see [Cat98b, Cat02]) has provided several source code
transformation steps which improve the usage of this SPM.

Many multimedia codes, however, also index into arrays using other arrays,
i.e. incorporating indirectly indexed arrays. Current techniques map these in-
directly indexed arrays either, as a whole [Pan97] onto the SPM, or reject it
altogether if it does not fit completely in the SPM. Not incorporating the abi-
lity to analyze and move the relevant parts of the indirectly indexed arrays
onto the scratchpad implies a potentially heavily suboptimal solution. Hence,
we wish to address this energy bottleneck in this chapter.

The rest of this chapter is organized as follows. In Section 7.2 a real-life exa-
mple is presented to illustrate the problem of mapping of indirectly indexed
arrays to SPM. Section 7.3 reviews related literature. Section 7.4 describes
concept of irregularity over an iterator, which together with the SPM cost
model (Section 7.5) lead to our SPM mapping algorithm (Section 7.6).
Section 7.7 presents the results on the indirect indexing. Section 7.9 pre-
sents related work on the dynamic data structure access. Section 7.10
discusses locality optimization and mapping of data structures with static
data organization but with dynamic referencing behavior. We will look at
the interesting example of the spell-checker implemented using the trie
data structure. We will also prove using our Independent Reference Model
that this class of application, under optimal SPM mapping, will always
outperform the direct mapped cache. Section 7.11 next takes up the pro-
blem of locality optimization and mapping of data structures with dynamic
data organization. We start with applications where the data organiza-
tion can still be contained so that good mapping to SPM is still possible.
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More precisely, we will look at the interesting example of Prim’s algorithm
for minimum spanning tree. We will then discuss much more dynamic
cases.

Based on these techniques, we can largely reuse the highly efficient SPM
mapping techniques that have been proposed in the past for regularly and
directly accessed arrays, such as the DTSE methodology of [Cat98b, Cat02]
and the techniques of [Ste02, Iss04, Kan04b, Ver07].

7.2 Motivating example for irregular indexing

The code segment below is from QSDPCM [Sto98], an inter-frame image
compression algorithm. The arrays x and y are motion vectors which are
used to index into the array image. Figure 7.1 (left side) is an illustration
of this selection process. Now, while x and y are directly indexed, image is
indirectly indexed using iterators as well as the arrays x and y.

Example 1
for( i = 0 ; i < N ; i++)for( j = 0; j < M ; j++ )
for( k = 0 ; k < 16 ; k++ ) for( l = 0 ; l < 16 ; l++ )
...= image[ 16*i+x[i][j]+k ][ 16*j+y[i][j]+l ];

Let us evaluate our options such that all references in the loop-nest map to
the SPM. Arrays x and y (motion-vectors) are small in size, so they can be
copied completely to the SPM before the start of the loop-nest. Also, since x
and y are directly indexed, we know precisely the elements that would be ac-
cessed at a given iteration point. For instance, using data-tiling [Kan04b], we
could move only a single row of x and y on SPM. The code for transferring

region that is moved to SPM
LEGEND

motion vector

16i

16j

16i

16j

x[i][j]

y[i][j]

x[i][j]

y[i][j]

Figure 7.1: Migrating the relevant portion of an indirectly indexed image-
data to SPM requires analysis of the index expression and indexing arrays
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the relevant rows of x and y to SPM is shown below. We assume that a DMA
controller is available to move data efficiently to SPM (such as the one des-
cribed in [Pol04]).

for( i = 0 ; i < N ; i++){
SPM[0:M-1] <- x[i][0:M-1] //DMA-transfer
SPM[M:2*M-1] <- y[i][0:M-1] //DMA-transfer
for( j = 0; j < M ; j++ )

for( k = 0 ; k < 16 ; k++ )
for( l = 0 ; l < 16 ; l++ )
...= image[ 16*i+SPM[j]+k ][ 16*j+SPM[M+j]+l ];}

Next, consider the mapping of image to the SPM. Since it is indirectly in-
dexed, current techniques would try to map it as a whole. But that may not
be always possible due to limited SPM size (e.g. a 256 × 256 image would
need 64 KB of SPM). The problem with trying to map indirectly indexed
arrays is that because of the indirection we may not know easily, at compile-
time, which locations of the array would be accessed. This situation is unlike
those for regular computations such as matrix multiplication.

However, in this chapter we will show that for some cases of indirectly in-
dexed arrays, it is still possible to do a good SPM mapping. For example,
when we analyze the index expression of image we see that for a fixed va-
lue of i and j the set of elements of image that are accessed (inside loop of
k and l) is completely known. These locations are, of course, relative to the
starting point defined by x[i][j] and y[i][j], which are known only at run-time.
One possible mapping (data-tiling) of image is shown below. Each time, for a
given value of i and j, the 16×16 block in image that would be next accessed
is copied to SPM. This process is also shown in Figure 7.1 (right side).

for( i = 0 ; i < N ; i++)
for( j = 0; j < M ; j++ ){

SPM[0:15][0:15]<-image[16*i+x[i][j]+(0:15)]
[16*j+y[i][j]+(0:15)];

for( k = 0 ; k < 16 ; k++ )
for( l = 0 ; l < 16 ; l++ )
...= SPM[k][l]; }

7.3 Related work on irregular indexed array
handling

Several researchers have presented mapping techniques for the SPM
[Domi05, Kan01b, Ver04]. Initial work, by Panda et. al. [Pan97], mapped
only small-sized arrays on SPM based on frequency of access.
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Their approach was extended and improved upon by other researchers
[Avi02, Ste02, Ver04, Ver07] who applied knapsack formulation and ILP sol-
vers to find the best set of data objects (globals, stack variables and arrays)
and program routines that would still fit into the SPM and yet save the hig-
hest amount of energy. For arrays larger than the SPM size, these solutions
do not work well. However, for arrays accessed in a regular pattern – inside
nested-loops by index expressions which are linear functions of the loop
iterators – several additional SPM mapping techniques using data-space and
iteration space tiling have been proposed [Iss04, Kan01a, Kan04b]. They
work well irrespective of the array size, and always outperform the cache.

Kandemir et al. [Kan04b] consider both loop and data-layout transformations
to arrive at the best SPM mapping for directly indexed arrays. Issenin et.
al. [Iss04] consider multi-level SPM and use it to exploit multi-level locality.
The locality optimizations are assumed to have been done prior to their step.
However, all these works consider only directly indexed arrays.

In [Abs05], preliminary ideas are presented on mapping of indirectly in-
dexed arrays to SPM. The focus is on deciding which portion of the array to
move to SPM. The locality optimization issue has been addressed in [Abs06].
Subsequent to our work, other authors have taken indirectly indexed array
analysis further, for instance, to provide algorithms for loop tiling of such
references [Che06].

7.4 Regular and irregular arrays

Here, we describe the concept of regularity and irregularity of an array over
an iterator. We will use this later to optimize the mapping to scratchpad.

First some notations will be introduced. A reference to an array inside a given
loop-nest can be represented by a reference matrix and an offset matrix. For
instance, B[i+j] can be represented as:

RBI + oB =
[

1 1
] [

i
j

]
+

[
0

]

Irregular: An m-dimensional array X , with a generic reference �X(I) is des-
cribed below:

�X(I) =

⎡

⎢⎢⎢⎣

∑
q U1,q〈�U1,q (I)〉∑
q U2,q〈�U2,q (I)〉

...∑
q Um,q〈�Um,q (I)〉

⎤

⎥⎥⎥⎦ + RXI + oX (7.1)
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In this equation, the m dimensions each have an expression that is poten-
tially irregular, where several iterators from the loop nest iterator vector I are
combined. This is represented by the Σq summation augmented with the Uk,q

selection. The generic reference RXI provides the linear baseline expression
and oX provides the constant offsets as indicated above.

This Eq. 7.1 is said to be “irregular in the pth dimension, over iterator i”, if
at least one of the two hold:

1. For some q, i appears in the index expression of Up,q.

2. For some q, Up,q is irregular over i in at least one of its dimensions. �

For example, array C with reference C[k][k+1], is regular over {k} in both its
dimension. Array B in B [C[k][k + 1] + D[j] + i], is irregular over {j, k}, but
is regular over {i}. Array Y in Y [Z[i][j] + j] [k] is irregular over {i, j}, and
regular over {j}, in the first dimension. It is regular over {k} in the second
dimension.

7.5 Cost model for data transfer

Consider a loop-nest with an iterator vector I = [ i1 i2 · · · in ]
′

where
each level in the loop nest has its own iterator ik. Suppose the iterator ik
assumes the values 1, 2, . . . , Ik. An array X referenced inside the body of
such a loop-nest will, therefore, be accessed I1× I2× · · ·× In times. We have
two scenarios:

1. Array X not mapped to SPM: In this case, every access to X is an access
directly to the external-memory. If mE is the cost per access for a word
in the external memory, then the Total Cost = I1× I2× · · ·× In×mE .

2. Array X mapped to SPM: In this case, the total-cost has two parts:

Total Cost = Transfer Cost + Access Cost

T ransfer Cost is the total cost of moving relevant parts of X from
external-memory to SPM (or vice versa). Suppose that the transfers to
SPM of the relevant portion of array X is done at loop-level k, i.e. inner
to loop-nest [i1, i2, . . . , ik] but outer to the loop-nest [ik+1, ik+2, . . . , in].
Therefore, there will be in total I1 × I2 × · · · × Ik number of trans-
fers. We model each of those transfers as composed of N number
of sub-transfers. For each sub-transfer, the DMA is programmed to
move Q contiguous elements to the SPM from the external memory.
A DMA-transfer incurs a fixed startup cost, C, and a cost that is
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proportional to number of elements, �, that are transfered [Kan04b],
i.e. DMA transfer cost = C + �t. Therefore, each sub-transfer has a
cost C +Qt. And so, Transfer Cost = (C +Qt)×N×I1×I2×· · ·×Ik.

Access Cost is the cost of all the readings/writings to the copy of X on
SPM. Typically, only a small relevant part of X would be present on SPM
at anytime. Let mS be the cost per access for a word in the SPM. Therefore:
Access Cost = I1 × I2 × · · · × In ×mS .

7.6 SPM mapping algorithm

7.6.1 Illustrating example

We explain our algorithm, firstly, with an example. Figure 7.2 (left-column)
shows a four-level nested-loop with I = [ i1 i2 i3 i4 ]T . In this loop,
array A[100][200] is referenced as A[ B[i2] + i3 ][ C[i1] + i4 ].

We can choose to do transfers of A, to the SPM, at five possible points. For
instance, we could make a copy just before the start of loop i4. That point
is labeled as migration-point m4 in the figure. At the point m4, i1, i2 and
i3 each have a fixed value, temporary albeit. Starting at row B[i2] + i3 and
column C[i1]+2, the next four locations in that row can be copied to the SPM.
These five locations, therefore, form a copy-candidate. The SPM-Mapping
(third) column in Figure 7.2 shows how much of the SPM gets filled with that
copy. The number of times this transfer would happen equals the number of
times the program comes to migration-point m4. That is, 50 × 50 × 80 =
200,000 times. The Total Cost at m4 is:

Total Cost = (C + 5t)× 200,000︸ ︷︷ ︸
Transfer Cost

+ 50× 50× 80××5×mS︸ ︷︷ ︸
Access Cost

Rather than m4, we could choose migration-point m3. In that case we have
to transfer 5 × 80 elements of A, starting at row: B[i2] + 1 and column:
C[i1] + 2. But then, we have to do it only 50× 50 times.

If we next try to do the copying at migration-point m2, we must copy the en-
tire 100 rows for the column C[i1] + 2 to column C[i1] + 6 (inclusive). The
transfer will have to be done only 50 times. As pictorially illustrated in the
Figure 7.2, with a slight increase in copy size we get an enormous reduction
in the number of transfers (from 250, down to 50). That leaves us with two
additional migration points: m1, where we attempt to copy the entire array,
but it is not possible because of limited SPM size; and m5, where it is cheaper
to access the external memory directly.
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PROGRAM Copy-candiate for A Mapping

C[i1]+i4

B[i2]+i3

*50*50*80*4

C[i1]+2

B[i2]+i3

*50*50*80

5

C[i1]+2

B[i2]+1

*50*50

5

80

C[i1]+2

*50

5

SPM

SPM

SPM

SPM

*1

SPMint A[100][200]

for(i1 = 1 to 50){ 

 for(i2 = 1 to 50){

  for(i3 = 1 to 80){

  for(i4 = 2 to 6){

A[B[i2]+i3][C[i1]+i4]

}}}}

copy-candidate size
exceeds SPM-Size

No SPM Mapping 
Required

(m1)

(m2)

(m3)

(m4)

(m5)

Figure 7.2: Trade-off between number of transfers and the size of each
transfer

For each of the migration-points above, we can compute the Transfer Cost.
We chose the point that has the least cost. Note that Access Cost is inde-
pendent of the migration-point.

7.6.2 Search-space exploration algorithm

Consider a loop-nest with I = [ i1 i2 · · · in ]′. In our algorithm, we will
need to describe subsets of the iterators. The set of all iterators is denoted as
I = {i1, i2, . . . , in}. We define Ik, a subset of I, as {ik, ik+1, . . . , in}; e.g. I2 =
{i2, i3, . . . , in}.
The m-dimensional, indirectly indexed array X is accessed inside the loop-
nest I described above. The size of X is D1×D2× · · · ×Dm. X is referenced
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as X [E1][E2] · · · [Em], where each Ep is a linear expression of iterators and
indirectly indexed arrays (Up,q). That is,

�X(I) =
[ ∑

q U1,q〈�U1,q (I)〉 ∑
q U2,q〈�U2,q (I)〉 · · · ]T

+ RXI + oX

We refer to Up,q ’s as the indirectly indexed arrays at the first-level. The ite-
rators over which X is regular in the pth dimension is represented as αp.
Similarly, the iterators over which X is irregular in the pth dimension is re-
presented as βp.

First, we transform the loop-nest to improve locality, based on the computed
reuse vector as described in [Abs06]. Next, starting from the innermost loop
(in), we traverse to the outermost loop (i1), computing the Transfer Cost
for each migration-point. The migration-point mk is located inner to the
loop of iterator ik−1 but outer to loop of ik (see Figure 7.2). Note that, during
the execution, each time the program reaches mk, the iterators in the set
I − Ik have a fixed valid value.

Our main data-structure for the algorithm is config. It has three com-
ponents: (1) An array called range, (2) A number k which specifies the
migration-point mk, and (3) The Transfer Cost for the migration-point
mk. The element range[p] contains the lower and upper limits of the
pth dimension that must be transferred. As seen in Algorithm 1, the
search-space is traversed via two loops. The outer loop, k = n, . . . , 1,
is over the migration-points, starting from mn (inner-most) and mo-
ving up to m1. The second loop, p = 1, . . . , m, is over the dimensions
of the array X . For a given mk, and a particular dimension p, our fo-
cus is to: find the range of the pth dimension of X that must be trans-
ferred to the SPM, assuming that the migration-point has been fixed
as mk.

We, first of all, check if any of the iterators in Ik are present in the irregular
set (βp). Recall that iterators in βp are those used to indirectly index X in
the pth dimension. Also, iterators in the set Ik are those not having a definite
fixed value at mk. They cover a range. Therefore, if any iterator in Ik is also
present in βp, we cannot know the exact locations in pth dimension of X that
would be accessed. Therefore, if Ik ∩ βp 	= φ (φ is the null-set), we copy the
entire range (0, . . . , Dp − 1) to the SPM (see Algorithm 1).

If Ik ∩ βp = φ, then we check the regular set, αp, which represents iterators
generating regular access in the index-expression Ep. Iterators in I −Ik have
a fixed value at mk. Therefore, the free-iterators in Ep – those representing
not one particular value at mk, but a range – is the set αp∩Ik. These iterators
in Ep are analyzed to determine the range of the pth dimension of X that
should be transferred to the SPM. If Ik ∩ αp = φ, then only a single point in
this dimension is to be transferred.
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Algorithm 1 An algorithm for mapping indirectly indexed arrays to scratch-
pad.

Function: Find optimal mapping to scratchpad for indirectly indexed array

for k = n downto 1 do
for p = n downto 1 do

if Ik ∩ βp 	= φ then
range[p]← (0 . . .Dp − 1)

else if Ik ∩ αp 	= φ then
range[p]← compute range based on variables Ik ∩ αp ...
... in Ep, treating I − Ik and arrays as constants

else
range[p]← a single point

end if
end for
c← transfer cost(range), config[k]← 〈range, k, c〉

end for
return config with the minimum cost

For each mk, a configk is generated. It contains the range information and
associated Transfer Cost. If the sizes in range amount to more than the
allocated SPM-size, the cost is set to infinity (not shown in Algorithm 1). We
choose the optimal config as one with the minimum cost. This is compared
with the No SPM -Mapping, i.e. direct access from external memory.

The data-layout of X should be changed so that the dimension that has the
largest range is the fastest changing dimension [Kan99]. This data-layout
will result in the least number of DMA-transfers. In other words, based on
the dimensions of the hyper-cuboid that must be transferred, the layout must
be such that the longest edge is stored contiguous in memory.

Now we consider the case when the range of values assumed by the elements
of (at least some) indirectly indexed arrays are provided to the algorithm. In
real embedded application, this is usually possible because, even for data-
dependent parameters, the designers typically apply some bounds. With that
information, in Algorithm 1, for the case Ik ∩ βp 	= φ, we do not automa-
tically extend the range to full-length (0, . . . , DP − 1). Instead, arrays, such
as Up,1, Up,2, . . . , which indirectly index X at the first-level in the pth di-
mension, are treated as variables that can assume any value in the specified
range. Also, iterators in Ep belonging to the set Ik ∩ αp, i.e. iterators whose
value is not fixed at mk, are also treated as variables. Treating the rest of the
iterators in Ep as constants, the total range is computed.
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7.7 Experiments and results

The output program generated using our technique is standard C code, with
API calls for DMA transfers. The optimized program is compiled and executed
on the cycle-accurate ARM SystemC based simulator [Ben05b]. In the simu-
lator, all components have incorporated timing and power models and hence,
the simulator is able to provide accurate energy and performance numbers.
We present results on key kernels from the following benchmarks:

• QSDPCM (Quad-Tree Structured Difference Pulse Code Modulation)
which is an inter-frame compression technique for video images
[Sto98].

• PEGWIT: A Public-Key Encryption algorithm from Media-Bench
[Med97]. It has multiple levels of indirect indexing. Its kernel com-
prises of ordinary operations such as multiplication and addition, but
because the numbers involved are elements in the Galois-Field, these
operations take several cycles per operations.

• Cavity-Detector: A medical imaging algorithm.

• AC-3 Encoder: Audio compression algorithm [Tod94] (also known
as Dolby-Digital). The bit-allocation part has several two level array-
indexing.

For the experiments we used the following parameters for SPM mapping eva-
luation: C (constant factor in DMA-Transfer) = 15, t (cost per element, for
the transfer) = 1, mE (cost for data in external memory) = 5, and mS (cost
for data in SPM) = 1. These are typical values used by other researchers
[Kan04b].

Figure 7.3 shows the energy consumption for each application. It includes
the energy of the external memory, on-chip memory (scratchpad of cache)
and the DMA (direct memory access device). For each application, Figure 7.3
has a group of three columns. The first column shows the energy value for
the original program. No SPM mapping (Non-Opt) was done but the arrays
were accessed through the cache. The second column shows the execution-
time when all the arrays with only regular access (directly-indexed) were
mapped to the SPM, in the best possible way (Opt-Reg). Arrays not map-
ped to the SPM were put in the cacheable-section of the external memory.
The third column shows the execution time when both regularly and irre-
gularly accessed arrays were allowed to be mapped to the SPM, using our
technique (Opt-Irreg). Figure 7.4 shows the execution time for the three
versions. Clearly, SPM mapping improves execution time and, even more,
the energy consumption.
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Figure 7.3: Total energy consumption of each application. Results are provi-
ded for three versions - 1. Non-Opt, 2. Opt-Reg, 3. Opt− Irreg

0

0.2

0.4

0.6

0.8

1

1.2

QSDPCM Cavity Pegw it AC-3

Non-Opt

Opt-Reg

Opt-Irreg

Figure 7.4: Total execution time for each application and each version

Next, we study the impact of different scratchpad sizes (see Figure 7.5). For
this, we take the Opt-Irreg in Figures 7.3 and 7.4 as the reference (i.e. as
one) and show the improvements (or otherwise) in performance as we scale
the scratchpad size. For QSDPCM, a bigger SPM means greater exploitation
of reuse for the indirectly indexed arrays such as image. The motion vector
value, though run-time dependent, has a limited range (search is limited to
a certain range in the application). This information is communicated to the
mapping algorithm via constraints. This information is subsequently used to
increase SPM usage. For applications like cavity and pegwit, increasing the
SPM size beyond a certain point has negative impact because larger SPM size
implies more energy per access. If that loss is not amortized by higher reuse,
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Figure 7.5: Energy performance for different scratchpad sizes
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Figure 7.6: Execution time for different scratchpad sizes

then we may see a decrease in performance with increase in memory size.
Figure 7.6, similarly, shows the execution time for different SPM sizes.

7.8 Handling dynamic data structures
on scratchpad memory organisations

In the remainder of this chapter, we will study the problem of access and
layout locality optimization, and mapping to scratchpad memory, of data that
exhibit dynamism in their data organization or exhibit dynamism in their
memory referencing.

Dynamism in data organization is exhibited when either the size of the data
structure changes rapidly, through insertions and deletions, or the linkage
and position between the data items evolve with time. This kind of behavior
is typically seen in pointer based structures such as trees, heaps, graphs and
linked lists, but is definitely not limited to them, as we will see in the sub-
sequent sections. Also, it is not necessary that a pointer data structure will al-
ways exhibit dynamic data organization. Dynamism in memory referencing,
on the other hand, is exhibited when the data access pattern seems irregular,
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unpredictable and is not easily amenable to compile-time analysis. Examples
of this are indirect array indexing (as discussed earlier in this chapter), ha-
shing and dictionary search.

Optimizing locality of data structures, that exhibit dynamism in data organi-
zation or in referencing, can become extremely difficult. The reason is that
dynamism hinders reuse analysis. When there is dynamism in the data orga-
nization, the reuse pattern of the data items being accessed change rapidly
with time. For example, when an AVL-tree is rebalanced, nodes that are down
below near the leaves may come up toward the root. The nodes near the root
are reused or accessed more often. However, with the next rebalancing new
nodes may emerge at the top throwing the old ones at the top to down below.
Therefore, which nodes would be reused depends entirely on the data that
triggers the reorganizations. When the referencing is dynamic, e.g. based on
input data, it can be difficult to know beforehand the next data item that
would be accessed. Therefore, locality optimization in such situations work
better at the algorithmic level rather than at code transformation level.

Dynamism in data organization and referencing is not only a problem for lo-
cality optimization, but also for mapping to scratchpad memory (SPM). Using
SPM makes sense only when we know which are the data items that would
be accessed next. Then those data items can be moved to the SPM. With dy-
namic referencing, it is difficult to know what will be accessed next, and so
it can be difficult to know what to move into SPM and what to move out.
With respect to dynamic data organization, using a SPM can create problem
because data items currently on SPM may lose priority and become less likely
to be accessed in the future. Adopting to the new structure could then mean
moving a lot of items out of SPM and bringing new data items into it. The
high frequency of transfers necessary just to match with repeated changing
of data organization can then undo the benefit of SPM over cache.

7.9 Related work on dynamic data
structure access

Banakar et al. [Ban02] performed a detailed study of the energy and area
advantage of the SPM over the cache. On a per access basis, they found that
a 2 KB, 2-way cache consumed 4.57 nJ, while a 2 KB SPM consumed only
1.53 nJ. Initial work by Panda et al. [Pan97] on utilizing the SPM focused
on scalars and highly used, small-sized arrays. Dominguez et al. [Domi05]
explain a technique for mapping dynamic data structures, e.g. linked lists
and trees, to SPM. The size allocated in the SPM to each set, e.g. nodes of a
particular tree, is made proportional to the overall number of access to that
set. They do not compare between SPM and cache but focus just on finding
the best allocation on the SPM for the different dynamic objects.
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For the cache, itself, there have been numerous studies to estimate its
performance for regular and non-regular applications. Several studies have
tried to quantify the cache performance by summarizing or analyzing actual
memory access trace [Aga89, Sin92]. From analytical comparison perspec-
tive, however, trace analysis is not fruitful. On the other hand, the Inde-
pendent Reference Model (IRM) of Rao [Rao78, Kin71] is more suited to
our purpose of analyzing cache behavior for comparison with SPM. This
model was recently extended [Lad99, Fix02] to algorithmic analysis. Rao’s
equations assume a fixed data-layout. However, results in this chapter allow
conclusions to be drawn across all possible layouts.

7.10 Dynamic referencing: locality optimization

In this section, we will study locality optimization and mapping of data struc-
tures that have dynamism in access pattern, for example due to continuously
changing input data. Let us start with a very interesting example. The func-
tion search in the program section below, does a spell-check by performing
a search of the given word, of n letters, in its dictionary. If the word is found
in the dictionary, then the spelling is considered to be correct.

typedef struct node{ //trie data-structure
struct node *next, *down; char letter;

}Node;

bool search(Node *nptr, char *word, int n){
for( i = 0 ; i < n ; i++ ){
while(nptr && (nptr->letter < word[i])){

nptr = nptr->next;
}
if(nptr){

if(nptr->letter == word[i]) //word found
nptr = nptr->down; //move to next word

else return false; //word not found
}else return false; //word not found

}
return true; //word found

}

The dictionary is implemented using a trie. A trie is an ordered tree data
structure that is used to store associative arrays, where the keys are strings.
Unlike a binary tree, in a trie the full key, which is a search-word in this case,
is not stored in any node. It is the position of the node in the trie that denotes
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Figure 7.7: Spell-checker implemented with a trie data structure for fast
reTRIEvals. Search-path to the word the is delineated with a dotted line

what key it represents. Also note that all the descendants of a node have a
common prefix. The trie data structure is the most common approach to
implementing dictionary [Kuk92]. The spell-checker is shown in Figure 7.7.
The search-path to the word the is delineated with a dotted line in the figure.

Our goal is to optimize the locality of the memory accesses in the spell-
checker. There is no obvious access reordering possibility in this application,
so we can only optimize layout locality. With respect to layout locality, we
have two choices for the L1-memory. We can map our spell-checker, under
software control, on SPM. Or, we could simply use a data-cache. For the case
of data-cache, since the tracking and migration of relevant data items to and
from the cache is handled by hardware, no changes are required on the code.
For the case of SPM, however, additional instructions are necessary to place
the important nodes on SPM. The rest of the nodes remain in external me-
mory from where they are directly accessed.

Access to the nodes mapped to SPM will be quick and energy efficient. If the
nodes are mapped intelligently such that most of the search is to nodes on
the SPM, then the overall performance and energy efficiency can be expected
to be high. The question is: Can the SPM really outperform the cache in
such cases of dynamic and data-dependent referencing? How do we decide
what to map to SPM? Note that once the dictionary has been built, the data
structure does not undergo changes anymore. Therefore, this is a case of
dynamic referencing with static data organization. Now, we we could just try
to find out empirically if spell-checker mapped to SPM outperforms the cache.
However, that will not tell us much about how the next application with
similar characteristics would behave. Therefore, let us take a more theoretical
approach to converge on the right answer. Following that, we will naturally
cross-check it with empirical results.
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7.10.1 Independent reference model

Computations such as matrix multiplication and digital filtering generate me-
mory reference strings, i.e. sequence of data memory addresses, that are re-
gular and input-independent, and can be determined without even running
the program. This makes mapping to SPM easy, and as such the SPM is able
to outperform the cache for all these types of computations [Kan04b].

Indirectly indexed arrays posed a problem, for locality optimization and map-
ping to SPM, and was discussed in Chapters 4 and 5, respectively. Note that
in the case of indirectly indexed arrays, we were able to avoid part of the
uncertainty or irregularity by tackling only those indirectly indexed arrays
and only those indexing arrays that were not written to in the same loop-
nest in which they were read. Efficient mapping to SPM was then achieved
by dividing the problem into separate decisions for each dimension of the
indirectly indexed array. The techniques of indirectly indexed arrays cannot
be applied in the same way to applications like the spell-checker. Moreover,
instead of just proposing some technique for SPM mapping, firstly we want
to determine theoretically, if SPM is indeed a good solution for these kind of
applications, or is the cache better.

Dynamic applications, with dynamic referencing, generate reference strings
that are irregular and input-dependent. Therefore, predicting SPM and cache
performance, i.e. hit-rate, with the techniques used for the regular case turns
out to be unwieldy and complicated. Therefore let us use statistical me-
thods [Tri02] to model the SPM and the cache behavior. This will lead us
to determine when a good mapping to SPM is possible and when it is not.
We start by characterizing the reference string using the Independent Re-
ference Model (IRM) [Lad99][Rao78]. The basis of this model is that we
cannot know with certainty the next data that will be accessed, since it is in-
put dependent, but we can presumably describe it with a certain probability
function.

Consider a set of objects, or data items, O1, O2, . . . , On and a set of corres-
ponding access probabilities p1, p2, . . . , pn. The reference string, i.e. the string
containing the list of objects that are referenced at various times, can be
denoted as r1, r2, . . . , rt, . . . , rN . Here rt is the object referenced at time t.
Under IRM:

Pr[rt = Oi] = pi , 1 ≤ i ≤ n , t > 0

That is, the probability that Oi is accessed at time t is pi. Though this model
does not take into consideration the correlation between the accesses, studies
[Jel04] show that the behavior modeled assuming independent reference
gives results that are very close to those obtained using models that do indeed
incorporate such correlation. We will also show this with empirical results
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which reconfirm that IRM is indeed able to accurately predict SPM and cache
performance, for data-structures such as trees where the access-patterns are
clearly data-dependent and correlated.

Now, let us use this model to estimate the cache hit-rate for a given set of
access probabilities. Suppose we have a cache with just one block and so it
contains only the last object accessed. It can been shown [Kin71] that the
states of this cache forms a homogeneous Markov chain, where each state
Si is defined as having the object Oi inside the cache block. The equilibrium
probability of state Si equals pi [Rao78] and hence, the probability that ob-
ject Oi is inside the cache, at anytime, equals pi. Therefore, if object Oi is
accessed, then the probability that the access results in a hit (object found in
cache) equals pi. Averaging the hit-rate across all possible accesses, we get
the expected hit-rate η for a cache of size one as:

η =
n∑

i=1

p2
i (7.2)

Embedded systems usually contain caches with low associativity. Therefore,
results that we derive are in the context of the direct-mapped cache (DM-
Cache). However, caches with low associativity perform similar to the DM-
Cache [Rao78]. We will later present empirical results that confirm this.

The expected hit-rate for a DM-Cache of more than one block can be deter-
mined by placing the objects into disjoint groups. Assume that the DM-Cache
contains m cache blocks, and each block holds only one object. Let Gi de-
note the set of objects which map to cache block i. Out of the n objects
O1, O2, . . . , On, assume, for simplicity, that k = n/m objects map to each
cache block. Objects in Gi are denoted as O1(i), O2(i), . . . , Ok(i), and the
corresponding probabilities as p1(i), p2(i), . . . , pk(i), respectively. Let Di =
p1(i) + p2(i) + · · ·+ pk(i). The following result, from Rao [Rao78], gives the
expected hit-rate of a DM-Cache:

ηDM =
m∑

i=1

1
Di

k∑

j=1

p2
j(i) (7.3)

Essentially, a DM-Cache behaves as m disjoint, fully-associative caches, each
of size one. So, Eq. 7.2 can be applied to each cache block, but with condi-
tional probabilities pj(i)/Di. The overall hit-rate equals the weighted sum of
hit-rates of each individual block. The weight for a block equals the probabi-
lity that the next access would be to that block. For block i, this equals Di.

Let us now illustrate how access probabilities can be determined for different
data structures. A linked-list is shown in Figure 7.8. Each node contains a
key and some data. The search for a node, with a certain key, starts at the
head and continues till that node is found. Each key is equally likely to be
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the target of the next search. Now, if the nth node has access probability p,
then the (n − 1)th node has access probability 2p. Reason: the (n − 1)th
node is referenced when the nth node is the target of a search, and it is also
referenced when it is, itself, the target of a search. Probabilities for all the
nodes is shown in Figure 7.8. It is also possible to assign probabilities in an
application-specific way or based on profiling.

Next, consider a binary search-tree. A search starts at the root and proceeds
downward to the leaf-nodes. From any parent, the search-path has an equal
chance of moving to the left child-node or to the right child-node. Therefore,
if the access probability of a parent is p, each child-node has access proba-
bility p/2. Figure 7.9 shows the access probabilities of the nodes in a binary
tree. Note the exponential decline in access probabilities.

7.10.2 Comparison of DM-cache with SPM

In this section, we will make a theoretical comparison of SPM and DM-
Cache performance using the Independent Reference Model. The purpose
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is to determine if the hit-rate of DM-Cache exceeds the SPM. That is, for
objects referenced dynamically, in a data-dependent way, which could be ap-
proximated by a probability distribution function.

To recapitulate, we have n objects O1, O2, . . . , On with access probabilities
p1, p2, . . . , pn, respectively. Without loss of generality, let p1 ≥ p2 ≥ · · · ≥ pn.
To maximize the SPM hit-rate, objects O1, O2, . . . , Om, where m is SPM size,
must be placed on SPM. The rest of the objects remain in the memory, from
where they are accessed directly. Hence, each access to Oi, where i > m,
constitutes a miss. The expected hit-rate of this optimal SPM mapping is:

ηSPM =
m∑

i=1

pi (7.4)

Let us now compare this with the hit-rate of a DM-Cache, also of size m, using
Eq. 7.3. 4As before, objects O1(i), O2(i), . . . , Ok(i), with access probabilities
p1(i), p2(i), . . . , pk(i), respectively, map to cache block i. Again, without loss
of generality, let p1(i) ≥ p2(i) ≥ · · · ≥ pk(i). Although we assume that exactly
k = n/m objects map to each block, it is not a limitation of the proof, but is
done so as to simplify the notation.

Since Di = p1(i) + p2(i) + · · · + pk(i) in Eq. 7.3, we have p1(i) = Di −∑k
j=2 pj(i) Now, Eq. 7.3 can be rewritten as:

ηDM =
m∑

i=1

1
Di

k∑

j=1

p2
j(i)

=
m∑

i=1

1
Di

[
p2
1(i) +

k∑

j=2

p2
j(i)

]

=
m∑

i=1

1
Di

[
p1(i)

(
Di −

k∑

j=2

pj(i)
)

+
k∑

j=2

p2
j(i)

]

=
m∑

i=1

p1(i)−
m∑

i=1

p1(i)
Di

k∑

j=2

pj(i) +
m∑

i=1

1
Di

k∑

j=2

p2
j (i)

=
m∑

i=1

p1(i)−
m∑

i=1

1
Di

k∑

j=2

(
p1(i)pj(i)− p2

j(i)
)

=
m∑

i=1

p1(i)−
m∑

i=1

1
Di

k∑

j=2

pj(i)
(

p1(i)− pj(i)
)

(7.5)
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Now, since p1(i) ≥ pj(i) for all 1 < j ≤ k, in Eq. 7.5 each expression
pj(i)

(
p1(i) − pj(i)

)
is always a positive number. Therefore, the second term

in in Eq. 7.5 is a positive number and so:

ηDM ≤
m∑

i=1

p1(i) (7.6)

The expression
∑m

i=1 p1(i) in Eq. 7.6 attains its maximum value when the ob-
jects O1(1), O1(2), . . . , O1(m), with probabilities p1(1), p1(2), . . . , p1(m), res-
pectively, are any permutation of the objects in the set {O1, O2, . . . , Om}.
Note that O1, O2, . . . , Om are the objects with the highest access probabili-
ties among all the n objects. Therefore, the highest value attained by ηDM is∑m

i=1 pi. Comparing this with Eq. 7.4, we conclude that ηDM ≤ ηSPM .

Therefore, the result of IRM analysis is that the SPM with an optimal map-
ping can always outperform the DM-Cache. We must again emphasize that
this result holds, firstly, if the access pattern can be well approximated using
access probability. Secondly, the subtle assumption has been that the access
probabilities do not change over time. This assumption is almost true if the
data organization does not change. We will elaborate this further under dy-
namic data organization discussions.

7.10.3 Optimal mapping on SPM–results

Let us now verify the theoretical conclusion with experimental results. Let us
start with the simple example of key-search on a linked-list. Search begins at
the head and stops when the target is found. Each node is equally likely to be
the target of the search. We computed the access probabilities of the nodes
earlier, and had come to the, sort of obvious, conclusion that the nodes near
the head of the list have the higher access probabilities. Therefore, the first
m nodes are mapped to SPM.

Figure 7.10 plots the measured hit-rates for searches conducted on the linked
list. In the experiment, the L1-memory size is 4KB, with cache block-size 16B.
Each node is 16B. In the case of SPM, the first m (256) nodes from the head
of the list were placed on SPM. For the DM-Cache case, the first m nodes were
placed in different cache blocks. From Figure 7.10 we see that SPM indeed
outperforms the direct-mapped cache. The cache performance, with respect
to SPM, worsens for increasing problem size due to increasing conflicts.

The spell-checker [Kuk92] was described in detail earlier in this chapter. At
first, one might be tempted to map the spell-checker onto the cache because it
involves data-dependent traversal of a pointer-based dynamic data structure.
However, we will see that with a smart mapping the spell-checker actually
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Figure 7.10: Hit-rates for key search on the linked list. Cache performance
worsens, compared to SPM, with increasing problem size (number of nodes)

does better on SPM. The challenge is to determine which nodes have the
highest access probability and then map them to SPM.

In our experiment, the trie contains over five thousand commonly used
words. In addition to using a dictionary (Cambridge) to fill the words in the
trie, we also added popular proper nouns. We then performed a mock spell-
check with a large training-essay of several thousand words. The frequency
of access to each node was then used to estimate the access probability.
The estimated access probabilities were then used to map the most heavily
accessed nodes to SPM.

The access probabilities were also then used to predict the hit-rates using
Eqs. 7.3 and 7.4. For SPM, it assumes that the nodes with highest access
probabilities are mapped to SPM, while for the DM-Cache case it assumes
that they map to different cache-blocks. The actual hit-rates are measured
by running the spell-checker over online newspaper articles (NYTImes and
Washington Post) of more than hundred thousand words.

Figure 7.11 shows the predicted and measured hit-rates. The first observation
is that the predictions, both for SPM and DM-Cache, is close to the measured
values. Therefore, IRM using access probabilities is indeed able to model
SPM and cache behavior for data-dependent traversals to a high degree of
accuracy. The second observation is that, as proved in previous section, the
SPM with optimal mapping does indeed outperform the DM-Cache – albeit
by a small margin. However, since SPM is considerably more energy efficient
than cache, the absolute gain in energy numbers is significantly higher.
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Figure 7.11: Spell-checker: Predicted (pred.) and experimentally measured
(meas.) hit-rates of SPM and DM-Cache. Predictions are 2.6% accurate

Let us now compare the previous SPM and DM-Cache mappings with other
mapping techniques. Typically, the trie is grown by inserting new words into
it. In the first version SPM-1, the words are inserted into the trie in lexico-
graphical order and the nodes are allocated space in the SPM on a first come
first serve basis, till the SPM gets full. In the SPM-2 version, the trie is built
by inserting the most commonly used words (e.g. the, as, and) first, and then
inserting the remaining words. Therefore, words which are searched most
often have their paths almost entirely on the SPM. We say almost because
words inserted later-on could potentially add new nodes in the paths to the
commonly used words.

Figure 7.12 shows the hit-rates for SPM-1 and SPM-2, and compares them
with SPM-3 and DM-Cache. The SPM-3 version puts the nodes with hi-
ghest access probabilities on SPM. Therefore, SPM-3 is identical to SPM
(meas.) in Figure 7.11 but is shown again for comparison. DM-Cache in
Figure 7.12 shows the hit-rate when no customized mapping of nodes is
done. This is different from the experiment conducted for DM-Cache (meas.)
in Figure 7.11 where nodes with highest access probabilities were mapped
to different cache-blocks. As expected, the hit-rate values for DM-Cache in
Figure 7.12 are less than that in Figure 7.11. From Figure 7.12, we therefore
conclude that mapping using access probabilities can be superior compared
to conventional mapping techniques.

Next, we study the impact of increasing associativity on the performance
of the cache. In particular, we would like to see if set-associative caches
can outperform the SPM. Figure 7.13 compares direct mapped (1-way) with
2-, 4- and 8-way set-associative cache. The SPM hit-rate (columns for SPM-3)
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Figure 7.12: Spell-checker: Comparison of SPM with DM-Cache. Using
access-probabilities (SPM-3) gives better results compared to conventional
mapping schemes (SPM-1: lexicographic insertion, SPM-2: common words
first).
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Figure 7.13: Spell-checker: SPM performance compared to 1-, 2-, 4- and
8-way set-associative caches. Increasing associativity does not improve
performance.

are also shown for comparison. We see that increasing the associativity does
not tilt the performance toward cache. Moreover, set-associative caches
are power hungry and hence any performance gains comes at high energy
penalty.
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Let us now summarize our discussion on locality optimization for data struc-
tures referenced dynamically, primarily due to data-dependent access. We
have seen, based on experimental results, that IRM can be used to model
such referencing quite accurately. The model is a good approximation even
for correlated accesses and associative caches. Using the model, we derived
the result that the optimally mapped SPM, i.e. when the nodes with the hi-
ghest access probabilities are mapped to SPM, always outperforms the DM-
Cache. This can be a surprise to many since it is conventional to think that
the cache is always good for dynamic situations.

The critical hurdle in attaining the optimal SPM mapping is that the high
access probability nodes may not be easily identifiable. Recall that for the
spell-checker it was not so straightforward to reach the optimal mapping. In
the case of the tree we at least know the high access probability nodes. Ho-
wever, flat data structure such as graphs often pose difficulty with respect to
acquiring knowledge about which nodes have high reuse and which nodes
would be accessed together. For instance, applications such as Voronoi and
Perimeter, in the Olden [Car96] benchmark, are almost impossible to map
effectively on the SPM. Which nodes would be accessed heavily next is not
known in advance. The cache performs much better with those applications.
Similarly, the A*star algorithm, often used to find the shortest path between
two points in the terrain, such as in the popular game Microsoft’s Age of
Empire, references the array containing information about the obstacles in
a seemingly almost random manner. Post-analysis of the accesses reveals si-
gnificant reuse of data, over short periods, but this information cannot be
gleaned much in advance to actually exploit it.

7.11 Dynamic organization: locality
optimization

In this section, we will study locality optimization and mapping to SPM, of
data structures that exhibit frequent data organization during execution of
the application. We will start with a very interesting example, Prim’s algo-
rithm for minimum spanning tree. In this case, even though the basic data
structure is just an array, it actually embeds a complete binary tree. Every
time the tree is restructured to enforce the heap property, the position of
several data items in the array are reorganized. The number of reuse, for
any data item, depends on its current location but the position keeps chan-
ging. However, as the heap is embedded in an array, this still offers some
advantage in enabling a good locality solution. After MST, we will turn to
even more dynamic cases where good locality solutions seems impossible
to find.
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7.11.1 MST using binary heap

Minimum spanning tree is useful in many applications including multimedia
gaming. Prim’s algorithm finds a minimum spanning tree (MST) for a given
connected graph [Cor98]. The algorithm starts with a single node and adds
one edge at a time, till all the nodes have been connected. At any time, during
the construction of the tree, there is a set of nodes T already in the tree, and
another set of nodes T ′ that are currently not in the tree. Each node in T ′ is
assigned a weight that is equal to the cheapest edge connecting it to some
node in T . Organization of the set of weights of the nodes in T ′, in such a
way that the cheapest edge can be found quickly, is done using a binary heap.

A binary heap, such as in Figure 7.14, is a complete binary tree embedded
into an array. Each node in the heap has a weight which is less than or equal
to that of its two children. This implies that the node h with the minimum
weight is always at the top (root). When h is removed, the last heap-node is
moved to the top and then it percolates down to its new appropriate place.
This structure can also be viewed as a priority queue, where the least weight
has the highest priority and so is located at head of queue.

Based on our earlier analysis of the binary tree, we know that the nodes at
the top of the tree have the highest access probabilities. Therefore, a good
mapping to SPM constitutes putting the top part of the tree, as much as
possible, on the SPM. In this case of binary heap embedded in an array, it
literally means mapping the first m elements of the array on SPM. For the
cache, the default mapping is already the best one.

Figure 7.15 shows the hit-rate of the MST algorithm on the SPM and DM-
Cache, for a graph of over thousand nodes. Note that the SPM gives slightly
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Figure 7.14: A binary heap implementation of the priority queue. It is used
to construct the minimum spanning tree of a graph using Prim’s algorithm
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Figure 7.15: Minimum spanning tree: Comparison of hit-rates of SPM and
DM-Cache. Predicted (pred.) values are from Independent Reference Model

better performance than the DM-Cache. Given that SPM consumes less
energy per cycle, it is therefore clear that SPM should be the preferred choice
for L1-memory.

Figure 7.15 shows both the predicted (pred.) and measured (meas.) hit-rates.
In estimating the hit-rates (using Eqs. 7.3 and 7.4), we assume that a node
percolating downward, ultimately reaches the bottom. This simplification has
a certain degree of associated error. Secondly, note that the tree shrinks in
size as nodes are removed from it. Therefore, the estimated hit-rate is the
mean for the entire range. Observe that the predicted values are slightly be-
low the measured values. The reason is that since some nodes do not perco-
late all the way down, the access probabilities are actually higher for nodes
near the top of the heap as compared to what was assumed in our calcula-
tions. Figure 7.16 gives the hit-rates for different set associative caches. We
see that increasing the associative does not have a big impact on the cache
performance and the SPM still outperforms the cache.

7.11.2 Ultra dynamic data organization

The reason we were able to return high performance for the SPM, in the case
of the minimum spanning tree algorithm, is because the tracking of the high
access probability nodes was easy due to the typical array structure. The
data items with the highest probabilities were always moved to the top of
the array. Now, imagine if that was not the case and the high access probabi-
lity nodes were dispersed all over the array. Then mapping becomes difficult
since, for tracking what is on the SPM and what is not, it is always preferred
to move a contiguous segment of the array to SPM.
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Figure 7.16: Minimum spanning tree: SPM performance compared with set-
associative caches. Increasing associativity does not improve performance

Tree implemented using pointers pose a similar problem with respect to loca-
lity optimization. When a tree is rebalanced, nodes that were up near the top
can move down or even be deleted. Nodes down below may be brought up
with the next rebalancing. Assuming, quite reasonably, that the nodes near
the top have high access probability, then to achieve good locality, nodes
near the top should mostly be on the SPM. Firstly, they are accessed more
frequently and, secondly, they are often accessed together (at least parent
and immediate child), i.e. good for layout locality. However, to retain nodes
at the top of the tree in the SPM, nodes continuously have to be moved in
and out of the SPM. In the end, the extra cycles spent in achieving locality
undo any gains resulting from the good locality.

We can explain the increased complexity of locality optimization, due to ra-
pid data reorganization, from the perspective of the Independent Reference
Model. When the access probabilities are static, it is often possible to identify
the high access probability nodes and optimize their layout locality. As we
have seen in the examples before, the access pattern is usually completely
rigid and defined by the input data. Therefore, access locality improvement
freedom is usually limited.

Now, when the data structure is continuously reorganized, the access pro-
bability of the data items change rapidly. Then, it is either too difficult to
identify the top probability nodes, or continuous migration of data around
to maintain top nodes on SPM becomes far too costly. The cache, on the
other hand, due to the nature of the least recently used algorithm, can per-
form rather well in such a scenario of varying access probabilities. Let us
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elaborate this further, because herein lies the answer to the question: In the
case of dynamic data organization, is the cache performance really better
than SPM?

The answer depends on a number of factors such as the application characte-
ristics and the size of the working set. A major factor, which we discovered in
our research, that influences the difference between cache and SPM perfor-
mance, is the cumulative distribution function of the data-structure. Let us
explain this. Without loss of generality, we can assume that the access pro-
bability of the data items are in the form p1 ≥ p2 ≥ · · · ≥ pn. Let X be a
random variable that takes on values from the set {1, 2, . . . , n}. The cumula-
tive distribution function (CDF), F [x], is defined as the total probability that
any object between O1 and Ox , inclusive, will be accessed next. That is:

F [x] = Pr[X ≤ x] =
x∑

i=1

pi

Therefore, F [1] = p1 and F [n] = 1. The CDF captures how the access proba-
bilities are distributed over the entire n objects. The cumulative probability
distribution function when each object has the same access probability is a
linearly increasing function. On the other hand, for a data structure such as
a binary tree, where the nodes at the top have high access probability while
the nodes below have exponentially reduced access probability, the CDF is a
logarithmic function (rising sharply and then increasing very slowly).

Having introduced the notion of CDF of access probabilities, we next need
to define the concept of skewness in the CDF, in order to explain our major
finding. We define a linearly increasing CDF as having zero skewness. Zero
skewness is the result of all data items have the same access probability.
When a few data items have a much higher access probability, compared to
the remaining data items, the CDF becomes skewed. Therefore, CDF of a
binary tree is more skewed than the CDF of a linked list. CDF of a linked list,
on the other hand, is more skewed than the CDF of an array that is uniformly
accessed. Note that F [n] = 1, and so if the access probability increases for a
data item, it must reduce for some other item. Now, we give a result which
connects the CDF to the expected hit-rate on a DM-Cache.

Theorem 1 Hit-Rate of a Direct-Mapped Cache increases with increased skew-
ness of the cumulative distribution function of access probabilities.

We provide an intuitive proof for this. With a sufficiently large main-memory,
each object Xi has an equal chance of being mapped to any of the m cache
blocks. In total, there are mn possible ways that n objects can map to m cache
blocks. A very bad layout is when all the n objects map to the same block.
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The probability of that happening is, however, only m(1/m)n. This is rather
small. With a highly skewed CDF, a few objects have the lion’s share of the
access-probability. The probability that these few objects would conflict with
each other in the same cache block is low. Therefore, in the case of highly
skewed CDF, the cache would return high hit-rate.

Now, consider the situation of the SPM. In a dynamic situation, we may not be
able to identify the high probability nodes to move them to SPM. Therefore,
in a dynamic situation of varying access probabilities, the SPM typically holds
onto just an arbitrary subset of the total data structure. The probability that
the important, high access probability, nodes reside on SPM, in fact, reduces
with increasing skewness of the CDF. Therefore, when the access probabilities
are unevenly spread across the objects, i.e. the CDF of the data structure
is highly skewed, then the difference between SPM and cache performance,
based on the above theorem becomes significantly different. Let us now check
experimentally if this is indeed true.

Figure 7.17 compares the hit-rates of the SPM and DM-Cache for the ap-
plication key search in the binary tree. The hit-rate of cache depends on
the placement of the data in memory. When the placement is such that the
nodes, specially high access frequency ones, conflict with each other then
the hit-rate would be low. In a dynamic situation, where the binary tree is
continuously reorganized, the application will have little control over the lo-
cations of the high access frequency nodes in the memory. Therefore, instead
of showing the hit-rate for one particular placement, we simulated it over
thousands of randomly selected placements. This will give us a good esti-
mate of what to expect as the average behavior in the normal run of the
program. For the SPM, we also randomly selected nodes to be placed on the
SPM. Therefore, Figure 7.17 shows the frequency, with a probability density
function (PDF), of the different hit-rates resulting from different placements.
We see from Figure 7.17 that SPM gives hit-rate in the range 6–30% with the
average around 13%. The DM-Cache, on the other hand, gives hit-rate in the
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Figure 7.17: Hit-Rates of SPM and DM-Cache for key search on a binary tree.
The PDF shows the results across different layouts of the data in memory
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Figure 7.18: Hit-rates of SPM and DM-Cache for a uniform-random access of
data. The variations in the hit-rate for different layouts is marginal

range 44–55% with the average around 51%. Therefore, the DM-Cache per-
formance is far better than that of SPM. This is exactly what was predicted
by the theorem above.

Figure 7.18 compares the hit-rate of the SPM and DM-Cache for a table that is
accessed randomly. Both SPM and SM-Cache show similar hit-rates (around
15%) as predicted from the probability models. Moreover, note that the va-
riation in hit-rate, for different data-layouts, is small. The reason is: since all
objects have equal access probability, the sensitivity regarding which object
conflicts with which other is small.

To conclude, the cumulative distribution function gives an estimate of the
expected performance on the DM-Cache for dynamic data organizations lea-
ding to varying access probabilities. This expected hit-rate of DM-Cache can
now be compared to the expected hit-rate if the data structure were to be
mapped to the SPM. In a dynamic situation, where retaining nodes with high
probability of access on the SPM requires additional overhead, we can use
the CDF to predict if the DM-Cache would be able to do a better job.

7.12 Conclusion and key messages
of this chapter

In this chapter, we have developed an algorithm for mapping indirectly in-
dexed arrays efficiently to scratchpad memory. This algorithm tries to find
out the appropriate portions of the array to be brought into the scratchpad
at different time instants such that the total energy consumption is minimi-
zed. We have also demonstrated that our technique works well on real-life
applications.

In addition, dynamic, or data-dependent, referencing to data structures such
as tries, trees, heaps and linked lists can be modeled to a reasonable level
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of accuracy using Independent Reference Model (IRM). We propose to use
IRM to prove that scratchpad memories, with an optimal mapping based on
access probabilities, can outperform the direct-mapped cache, irrespective
of the layout influencing the cache behavior. This analytical result has then
been verified with experiments. Increasing the associativity in the cache is
shown not to improve the cache performance in any significant way. We also
demonstrated that for dynamic data organization situations, where retaining
nodes with high probability of access on the SPM requires additional ove-
rhead, the CDF can be used to predict if the DM-Cache would be able to do a
better job.
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CHAPTER 8

An Asymmetrical Register File: The VWR

Abstract

This chapter introduces one of the core contributions of the book which helps
improve the energy efficiency of the register file. It presents a novel register
file/foreground memory organization which is motivated across application,
architecture and physical design abstraction layers. It is fully compatible with
the energy-efficient scratchpad memory organisation that is proposed to be
used for the large data storage in the previous chapter. It motivates across
these different abstraction layers why the proposed register file is more efficient.
It also shows that the proposed architecture is energy efficient over different DSP
benchmarks.

8.1 Introduction

Register files have been known to be a notorious power consuming part of
a processor architecture. It was already shown in Chapter 3 that there is a
need for a comprehensive treatment of register files such that their power

F. Catthoor et al., Ultra-Low Energy Domain-Specific Instruction-Set Processors, 199
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consumption is reduced while still meeting all the realtime requirements of
an application. In the previous chapter is has been shown that the energy-
efficient storage of large data requires the maximal usage of scratchpad me-
mory organisations instead of more conventional cache hierarchies. That is
also true for non-regular and not fully static data structure access. In this way,
the energy bottleneck moves even more to the foreground memory in the tra-
ditional multi-port register-file concept. Multi-ported data Register Files (RF)
are one of the most power hungry parts of any processor, especially Very Long
Instruction Word Processors (VLIWs) as shown in Chapter 3 and [Lam05]. On
average every operation requires three accesses (two reads and one write)
to the RF, which make them a very active part of the processor. Current
architectures try to achieve a high performance by exploiting parallelism,
and therefore perform multiple operations per cycle (e.g. Instruction Level
Parallelism or ILP, as used in VLIW processors). This quickly results in a large
port requirement for the register file, that is mostly implemented as a single/
centralized or distributed large multi-ported register file. A high number of
ports has a strong negative impact on the energy efficiency of register files
as well faces strong performance constraints for design. Traditionally, this
problem is addressed through various clustering techniques [Rix00a] that
partition (or bank) the RF. Data can then only be passed from one partition
to another through inter-cluster communication [San01, Lap02]. However,
as partitions get smaller the cost of inter-cluster copies quickly grows. In ad-
dition, the resulting register files are still multi-ported. For high energy effi-
ciency, it is clearly preferable that the registers cells be single ported [Jan95].

Broadly speaking, from the application perspective, variables in an applica-
tion can be of different types:

• Dynamic data types

• Input/Output arrays with spatial locality in access

• Input/Output arrays without spatial locality

• Intermediate arrays with spatial locality (Short1 and Long lifetime)

• Intermediate arrays without spatial locality (Short and Long lifetime)

• Low life time intermediate scalar variables

• High life time intermediate scalar variables

These different variables are also shown in Figure 8.1. Dynamic data types
are not in the focus of this book and it is assumed that they can be converted

1Short lifetime implies a few cycles such that it can be handled via the processor’s pipeline/
forwarding network.
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Figure 8.1: Different application variable types

into static variables by the time the compiler has to deal with them. This can
be achieved by grouping the data into pools under the control of a dyna-
mic memory allocator [Wil95]. However given the embedded application
domain and even in some general purpose domains, there is a set of va-
riables (input/output or intermediate) which exhibit spatial locality. This na-
ture is often not exploited by typical state-of-the-art register file architectures.
In contrast there is a small set of variables that exhibit poor spatial loca-
lity need to be accessed in random order. This requires a typical register file
which can be addressed and written to in irregular order. For an efficient so-
lution each of these set of variables needs to be treated effectively and their
properties needs to be exploited. In case the variables do not exhibit spa-
tial locality or their data layout is improper, it is assumed that appropriate
data-layout transformations have been done to make the spatial locality is
exploitable.

Besides looking at the access part of the variables in application the designer
also needs to look into the physical design aspect of the processor architec-
ture. While in most cases during the design phase it may be too early to take
into account the physical layout aspect, it is still important that the architec-
ture is defined in a “layout-friendly” way. Given the increasing wire capaci-
tance due to scaling [DeM05, Jos06, Syl99, ITR07], it is important that even
in the early design phase the cost of wiring is taken into account. However,
even in case interconnect does not scale worse than logic, the proposed re-
gister file would still be efficient but the gains of using such a register file
may be lower.

This chapter presents a comprehensive technique for organizing the register
file such that all the different types of variables are handled in an efficient
way. More specifically, this chapter presents one of the main contributions of
this book namely a novel asymmetric register file organization called Very
Wide Register or VWR. This VWR together with its interface to the wide
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Figure 8.2: Very Wide Register organization

memory, achieves a significantly higher energy efficiency than conventional
organizations and forms an efficient and layout-friendly solution for arrays
with spatial locality. The proposed register file or foreground memory orga-
nization is shown in Figure 8.2. Three aspects are important in the proposed
organization: the interface to the memory, single ported cells and the inter-
face to the datapath. The interface of this foreground memory organization is
asymmetric: wide towards the memory and narrower towards the datapath.
The wide interface enables to exploit the locality of access of applications
through wide loads from the memory to the foreground memories (registers).
At the same time the datapath is able to access words of a smaller width for
the actual computations (further details in Section 8.3). Internally each of
these words can consist of sub-words (for a Single Instruction Multiple Data/
SIMD datapath). The difference between a complete line, word, sub-word is
further clarified by Figure 8.2. In this chapter standard state-of-the-art me-
mory is used, with a slightly modified organization compatible with most
memory generators: a wide memory organization, where at the interface be-
tween the memory and the foreground memory (register file), the complete
width of the memory will be read out (complete line/many words).2 While it
is always preferred that complete lines are read from the L1 memory, partial
(1/2 or 1/3 section) of the complete line may also be read out and the decode
cost of reading multiple words is shared.

2A qualitative motivation is given in section 8.3 that for energy efficiency wider memories
are suitable.
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The rest of this chapter is organized as follows: Section 8.2 motivates the
need for a scalable register file architecture for embedded streaming appli-
cations from different abstraction levels. Section 8.3 gives a detailed descrip-
tion of the proposed very wide register architecture and its connectivity of
the VWR to the memory and the datapath. An example mapping of data to
the VWR and its operation is illustrated in Section 8.4. The proposed VWR
architecture is compared to the state of the architecture foreground memory
architectures in Section 8.5. The experimental setup and the energy savings
of using the proposed VWR architecture is presented in Section 8.6. Finally,
Section 8.7 concludes this chapter and summarizes the main messages to
take from this chapter.

8.2 High level motivation

The motivation for an alternative solution for the register file (alternati-
vely referred to as foreground memory organization) of the processor can be
brought to attention from various different levels of the design flow.

• Application: As explained in the previous section each application has
a whole range of variables which are accessed during its execution.
Further, the most embedded (especially wireless) applications exhibit a
streaming behavior of data (both intermediate as well as input/output
variables). Also these variables/arrays exhibit a high amount of spatial
locality which is exploited by state-of-the-art techniques in the data me-
mory hierarchy but ignored at present in the register file. Note though
that in general the main data types can be indexed in an irregular and
partly dynamic way, as explained in the previous chapter. However,
even then the techniques proposed there allow to handle this still in
the scratchpad memory organisation. Moreover, when copying smaller
chunks of data from these larger scratchpads into the foreground me-
mory organisation it is sufficient to deal only with statically allocated
and more regularly accessed intermediate variables. These can then be
limited to the class of static affine data access. And only that class is
further dealt with in this foreground memory oriented chapter.

On the other hand the data level parallelism of these streaming appli-
cations is often limited by dependencies in the application. Therefore a
need exists for an architecture which takes both this parallelism as well
as spatial locality into account.

• Processor Architecture: As explained in detail in Chapter 3, register
files form one of the most energy consuming parts of the processor.
This is also because of the fact that on average for every operation
two operands need to be read from the register file and one operand
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written to. Given the high activity it is important that the micro-
architecture of the register file is carefully optimized.

Given the strict energy constraints of an embedded processor and the
streaming nature of its applications, it is more efficient to program the
data movement using SRAM scratchpad memories [Kan04a] instead of
caches. In such small L1 SRAM memories (even upto 32KB or 64KB),
half of the energy consumption of a read/write operation is spent in the
decode logic and another half in the cells [Eva95]. Given the overhead
of the decode, it is important that we exploit the spatial locality by
loading more than a single word in a single decode stage in the memory.
This approach effectively reduces the number of decodes required to
get the same amount of data and increases the maximum bandwidth
between the memory and the processor simultaneously.

Another key motivation at the architecture level is ports of the regis-
ter file. Multi-ported register files are known to be energy inefficient
and should be avoided if and when possible. Therefore a uni-ported
distributed register file solution is needed when possible.

• Physical Design: Traditionally in register files, the read/write port of
the register file towards the memory and that towards the datapath are
identical. In this book this is called symmetrical register file. Due to this
symmetrical interface, the wire connectivity between the register file
and the memory can become longer. However such a real need to keep
the interface towards the memory and that towards the datapath the
same does not exist. A customized design of the interface towards the
memory can be made which is more efficient and more wire-friendly.

Given the above reasoning about the requirements for an efficient foreground
memory solution, this book proposes a new architecture as an alternative
for the traditional clustered register file for streaming array variables. The
tradition register file is quite capable of covering also the variables with low
spatial locality and scalar variables. However, since in embedded systems
these variables form the minority, a small traditional register file could also
be used to deal with them. A case study of such a split is illustrated in the
FEC appendix of [Rag09b] and also the bioimaging ASIP instance explored
in Chapter 11 has a need for the scalar variables that are present outside the
main Gauss loop nests.

8.3 Proposed micro-architecture of VWR

The architectural motivation for the proposed very wide register archi-
tecture is derived from various parts of the processor. Section 8.3.1 gives
the architectural innovations in the data memory hierarchy. Section 8.3.2
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presents the Very Wide Register and its micro-architecture and also presents
the interconnection between the scratchpad memory. The VWR and the in-
terface between the VWR and the datapath is described in Section 8.3.3.
The layout aspects of a standard cell based VWR architecture is presented in
Section 8.3.4. Finally Section 8.3.5 gives a detailed overview of the micro-
architecture of the Very Wide Register in combination with the memory and
the datapath if it were to be designed as full custom.

8.3.1 Data (background) memory organization
and interface

Energy consumption in memories can be reduced by improving one or
more of three aspects: the memory design (circuit level), the mapping of
data onto the background memory, the memory organization (and its in-
terface), as discussed in the previous chapter. This section discusses the
background (L1 data) memory organization. A detailed energy breakdown
of an SRAM based scratchpad3 shows that for a typical size for the level-1
data memory (e.g. 64KB) about half of the energy is spent in the decoder
and the word-line activation [Amr00, Eva95]. The other half is spent in
the actual storage cells and in the sense-amplifiers. The decode cost is the
price that is paid for being able to access words in any given order. The
energy consumption in the memory organization can be optimized further
by performing as few decodings as possible by reading out more data for
every decode. In the embedded systems domain this can be achieved by
aggressively exploiting the available spatial locality of data. While this spa-
tial locality is used for DMA transfers for L2 and L1, cache optimization,
etc., it is not further exploited between the transfer for L1 memory and the
register file.

In the proposed architecture (see Figure 8.3) spatial locality of data in the
L1 memory is exploited to reduce the decoding overhead. The row address
(Row Addr in Figure 8.3) selects the desired row in the memory through the
pre-decoder. The sense-amplifiers and pre-charge lines are only activated for
the words that are needed and only these will consume energy and are read
out. Figure 8.3 also shows the address organization that has to be provided
for such a memory. To be able to handle partial rows (less optimal for energy,
but more flexible), the full address contains two additional fields: Position
decides at which word the read-out will start, while No. Words decides the
number of words that has to be read out. Hence, at most a complete row
and at least one word of the SRAM can be read out and will be transferred

3Scratchpad based memories are used in the rest of this book instead of Cache based L1
memories as they have been shown to be energy efficient [Kan04a] as has been motivated in
Chapter 3.
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Figure 8.3: VWR and scratch pad organization

from the scratchpad to the VWR registers. The scratchpad can be internally
partitioned or banked and the proposed technique can be applied on top of
the banked structure.

This architecture is compatible with almost all existing SRAM generators (e.g.
Artisan, Virage), but in actual instantiations, such a wide interface may not
yet be available. If the used design library does not contain such a wide
memory, it can be composed from multiple narrower memories by connec-
ting them in parallel, but the overhead due to extra decoding would not
allow the gains to be maximal. For maximal gains it would be necessary that
many words (either from the different banks or the same bank) share the
same decode circuitry. However, a case study detailed in the FEC appendix
of [Rag09b] shows that even with connecting multiple narrow memories in
parallel, the gains are still substantial. Concatenating multiple narrower me-
mories still results in gains at the processor level as wider loads/stores im-
plies fewer address computations at run-time, fewer load/store instructions
and fewer decodes required even for the register file.

8.3.2 Foreground memory organization

The proposed register file has single ported register cells as shown in
Figure 8.2. This register organization is called Very Wide Register (VWR).
The VWR has asymmetric interfaces: a wide interface towards the memory
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and a narrow interface to the datapath. Every VWR is as wide as the line
size of the scratch pad or background memory, and complete or partial lines
can be read from the scratchpad into these VWRs. The VWRs have only a
post-decode circuit, which consists of a Multiplexer/De-Multiplexer (MUX/
DEMUX). This circuit selects the words that will be read from or written to
the VWR. Each VWR has its own MUX and DEMUX, as shown in Figure 8.2.
The controls of the MUX and DEMUX on which register is to be accessed is
derived from the instructions. Because of the single-ported cell design, the
read and write access of the registers to the scratchpad memory and access
to the datapath cannot happen in parallel. The VWR is part of the datapath
pipeline with a single cycle access similar to register files.

Since the VWR is single ported, it is important that data that are needed in the
same cycle/operation are placed in different VWRs. Arrays are mapped on the
VWR during a separate mapping process (explained further in Section 8.4).
Scalar data like scalar constants, iterators and addresses etc. can be mapped
to a separate Scalar Register File (SRF) in order not to pollute the data in the
VWR with intermediate results.

The interface of the VWR to the memory is as wide as a complete VWR, which
is of the same width as the memory and the bus. Therefore the load/store unit
is also different. It is capable of loading or storing complete (or partial)4. lines
from the scratchpad to the VWRs. Section 8.4, shows an example on how the
load/store operations are performed between the memory and the VWR. A
more clear example of which data to be loaded/stored and the scheduling
and data layout of this data is explained in detail in Chapter 8 of [Rag09b].

To analytically show the gains, assume that M words need to be read and
operated on which are stored in the memory. Assume: N words per line in
the memory and also N words in one VWR, where M ≥ N .5 Conventional
register file would require: M memory pre-decodes + M memory cell activa-
tions + M memory post-decodes/column decode + M writes to the register file,
where as in case of the VWR: M/N memory pre-decodes + M memory cell
activations + M memory post-decodes/column decode + M/N wide VWR write.
The ratio between the these two can be of the order of 2–5 excluding the
gains in the instruction memory.

Due to the split interfaces of the register file, other optimizations can be
exploited at the physical design level. During placement and routing the cells
of the VWR are aligned with pitch of the sense amplifiers of the memory
to reduce the amount of interconnect and the related energy. This enables
clear direct routing between the wide memory and the VWR without much
interconnect overhead. The same optimization cannot be done in case of a

4multiple contiguous words in the same row of the SRAM
5Note that this is not a necessary condition, but however gains are higher when M is greater

than N.
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traditional register file, because of the fact that the memory and datapath
interfaces of the register file are shared and due to the multi-ported nature
of these register files. For a more detailed experimental setup and analysis of
placement and routing, the reader is referred to [Dom05]. A brief overview
of the layout aspects in given in Section 8.3.4

8.3.3 Connectivity between VWR and datapath

The foreground memory consisting of VWRs and SRF can be connected to any
datapath organization (consisting of multipliers, adders, accumulators, shif-
ters, comparators, branch-unit etc.) by replacing the register file. Figure 8.4
shows the connectivity between the VWRs, SRF and the datapath. The data-
path may or may not support sub-word parallelism similar to state-of-the-art
processor engines like Altivec, MMX or SSE2.

Once the appropriate data are available in the foreground memory, the de-
coded instruction steers the read and write operations from and to the fo-
reground memory and the datapath. At a given cycle, one word (consisting
of subwords) will be read from the VWR to the datapath and the result will
be written back to a VWR. The foreground VWR organization along with the
datapath is shown in Figure 8.4.

Scratchpad

SP Width = Bus Width  = FG 
Width

SP Width

Single Ported VWR
Single Ported VWR

Scalar Register
File

‘N’ Inputs /
Outputs

Interconnect

Bus
Width

FG Width

Datapath Width

Datapath

‘M’ Inputs/
OutputsDatapath Width

e.g. SP Width = Bus Width  = FG Width = 1024 bits
Word = Datapath Width = 64 bits

Figure 8.4: VWR and Scalar Register File connectivity to the datapath and
the L1 memory
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In case the processor is designed with a higher ILP (i.e. multiple instructions
can be issued in the same cycle), more VWRs are needed. Given that each
VWR is single ported, the number of VWRs needed scales linearly with the
number of issue slots. Around three VWRs are needed per issue slot. In case
not all issues slots write back to the VWR in the same cycle, the number of
VWRs per slot can be lower. This would imply that the VWRs are shared over
the different issue slots. More complex schemes can also be imagined where
parts of the same word are used as the two operands for an operation. It is
expected that the number of VWRs needed would be few as motivated in
Chapter 3 that it is more efficient to first exploit the DLP as much as pos-
sible and then use ILP to meet the real-time requirements for optimal energy
efficiency as well as performance.

8.3.4 Layout aspects of VWR in a standard-cell
based design

Given the above micro-architecture it is important that the physical design
of the micro-architecture is also done efficiently. Often the design of register
files (for small number of ports) is done using register file macro generators.
For larger ports register files often full/semi-custom design is used. Since the
VWR and its interfaces are unique it is also efficient to use a semi-custom
based design methodology.

A tool that can be used for such a design is the DPG or datapath generator
[DPG05] from RWTH Aachen. The DPG tool is a tool that takes in leaf cells
and places and connects them in a particular order as per the suggestions
of the designer. Leaf cells are simple or complex cells (few gates) that can
be treated as a unit for the design. The input to the DPG tool is a structural
description of the design. In case of the VWR this would consist of the cells
and the multiplexers and de-multiplexers. This also gives the freedom per
unit on how to shape the unit and place the interface pins of the unit.

For the VWR, the design can be made with such a DPG instance where
the leaf cells would include flip flops (for the storage cells) and different
muxes/demuxes. Since such a semi-custom design does not have the same
restrictions as a standard cell flow where the Vdd and ground lines have to
be spaced uniformly over the different rows, a larger freedom exists in the
design. An efficient placement can be done such that the pitch of the memory
design is aligned with the flip flops of the VWR. The MUX/DEMUX can then
be placed below in an efficient way such that the design is optimal.

To further emphasize that a pure standard cell place and route based de-
sign would be sub-optimal also for the proposed design, a set of experiments
have been performed. A design which consists of a wide memory (960 bits),
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Figure 8.5: Default standard cell place and route

two VWR with 10 entries and an simple96-bit ALU has been used as a driver.
The physical design for this has been performed using the following three
methods:

1. Pure standard design with default pin placement and default standard
cell shape (Figure 8.5).

2. Standard cell design with shaping of blocks and placement but pins
automatically placed (Figure 8.6).

3. Standard cell design with shaping of blocks and intelligent placement
of pins (Figure 8.7 ).6 Such a design can be made using a DPG based
flow.

For the design flow Magma Fusion Blast environment has been used. When
the individual blocks are optimally shaped and the pins are placed (which
is the case with a DPG based flow) an efficient layout can be obtained.
This would imply (as shown in Figure 8.7)7 that the wires would be di-
rectly coming from the sense-amplifier (and driver) of the memory directly
into the VWR instead of a random routing which is common in pure stan-
dard cell design. Figure 8.8 shows the total wire lengths required for the the
interconnection between the memory and the two VWRs. It is clear that if a

6Note that in this figure the components are kept at a longer distance to show the wiring
direction and to reduce the complexity.

7Note that in this figure the components are kept at a longer distance to show the wiring
direction and to reduce the complexity
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Figure 8.6: Standard placement and routing with optimized shaping of
different blocks

Figure 8.7: Place and route with optimized shaping and pin placement of the
blocks

semi-custom design is done, it can be optimized efficiently. For more detailed
analysis on the experimental setup used for this and the tool flow the reader
is referred to [Dom05]. A basic overview of how the same design could be
done in a fully custom design flow is illustrated in the next section.

8.3.5 Custom design circuit/micro-architecture and layout

It was motivated in Chapter 3 that semi-custom design is a viable and neces-
sary design option especially in deep sub-micro technologies for low power.
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Figure 8.8: Normalized wire lengths for different physical design based flow

This is already often followed in industries with large volumes as well. Also
even in case of standard-cell based designs, the register file is at times gene-
rated using a module generator. These module generators assembles custom
designed parts of the register file. This section illustrates a possible semi-
custom design option for a VWR based design. Note however that all the
circuit level issues are not dealt with in detail and complexity of some circuit
level issues is not considered. Therefore the real implementation may vary.
Each of the different interfaces and read/write paths are illustrated in the
paragraphs below.

All the interfaces are illustrated one by one and for one VWR first. Then the
design is generalized for multiple VWRs and how they would be put together.
Figure 8.9 shows the one-ported VWR storage cells connected both to the
memory as well as to the datapath. The figure shows the interface to the
memory which would be used to perform a wide read from the memory
and a write to the VWR cells. The cells of the VWR can be pitch aligned to
that of the memory cells. A direct connection from the sense-amplifier of the
memory to the VWR cells can be made for a write from the memory to the
VWR. Partial activation of the sense-amplifiers can be done for a partial write.
The read interface to the datapath consists of a network of wires followed by
a MUX structure to section from the different words of the VWR. Once the
write to the VWR has been done, the wires to the datapath till the MUX
are also activated. However these wires can be made low swing. This would
ensure that the one-time write cost is low. The sense-amplifier logic can be
integrated in the MUX towards the datapath to bring the swing back to full
swing. Note that the high-activity wires would be the read to the datapath
and the only wires that would switch is the short wires from the MUX to the
datapath. The longer wires which include the wires from the VWR cells to the
MUX however have low activity. This would ensure the energy consumption
is low.
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The wire routing between the VWR cells and the MUX can be high, therefore
efficient routing is necessary based on efficient river routing techniques
[Hea91, Lei83] instead of standard-cell based channel based routing tech-
nique. While these river routing techniques are from years ago when metal
layers were scarce, they can be reused as metal layers have now to be scar-
cely used due to energy constraints. If the design is fully custom, this can be
done efficiently such that each wire does not cross another wire more than
once to avoid extra capacitance due to higher metal layers and vias.

Figure 8.10 also shows the VWR with its interfaces to the memory and the
datapath. However the figure only shows the interface for writing from the
datapath and write back from the VWR to the memory. Note however that a
write from the datapath is expensive as a large capacitance has to be driven.
To compensate for the large capacitance, a low-swing can be made for the
write. The selection of which word in the VWR to write, can be done inside
the storage cell with a sense-amplifier. It can be seen from Figures 8.9 and
8.10 that with a single ported cells an efficient read/write can be performed
towards the datapath as well as towards the memory. Also longer wires can
be made low-swing again to reduce the power consumption further.

Figure 8.11 shows a possible organization when multiple VWRs need to be
connected between the memory and the datapath. It can be observed from
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read from datapath)

the figure that the wire-lengths can increase to a large extent when the
number of VWRs increase. This is specifically the case when one SRAM and
datapath is involved. However in realistic cases we can expect very few VWRs
(two to three) to be required.

8.4 VWR operation

Figure 8.12 presents the operation of the VWR on simplified example code,
assuming a 32-bit processor datapath and a 256-bit line-size. This means that
one VWR at any given point in time can store eight words. For the sake of
simplicity no subword parallelism or vector parallelism is used in this exam-
ple, of which Figure 8.12 shows the C code (with intrinsics). The asymmetric
interface of the VWR results in the following mode of operation: a complete
row of the scratchpad is copied to the VWR at once, using a LOAD row. In
this example operands from arrays b and c are allocated to two different rows
in the scratchpad and to two different VWRs (VWR 1 and 2). Therefore two
rows are loaded. In the next phase these operands are consumed one by one
by the inner loop and the results are stored in a third VWR (VWR 3). Only
when all computations of the inner loop are finished, the complete VWR 3 is
stored back to the scratchpad.
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Figure 8.11: Custom designed VWR: Multiple VWR organization

Or ig ina l Code :

f o r ( i =0; i <64; i++) {
a[ i ] = b[ i ] ∗ c [ i ] ;

}

Modified Code with VWR:

fo r ( i =0; i <8; i++) {
LOAD row VWR2, b[ i ∗8];
LOAD row VWR1, c [ i ∗8];
fo r ( j =0; j <8; i++) {

VWR3[ j ] = VWR2[ j ] ∗ VWR1[ j ] ;
}
STORE row VWR3, a [ i ∗8];

}

Figure 8.12: Re-written C code with Very Wide Registers and load/store
operations
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Figure 8.13: Illustration of the data-layout for Figure 8.12 in the different
VWR registers and the scratchpad memory

Figure 8.13 shows an illustration of the data allocation in the scratchpad as
well as the data layout in the three VWR registers at the end of the first
iteration of the outer loop (i loop). The datapath organization can be ge-
neric (single/multi-issue etc.). In the first iteration (i = 0), a row of data
b[0]–b[7] is loaded onto VWR and a row of data c[0]–c[7] is loaded onto
VWR1. At each iteration of the the inner loop j, one element of b and one
element of c from VWRs 2 and 1 respectively are consumed to produced
one element of a in VWR3. At the end of the inner loop j, produced data
a[0]-a[7] in VWR3 can be stored back onto the L1 background memory. At
the beginning of the next iteration (i = 1), the next set of data (b[8]–b[15]
and c[8]–c[15]) can be loaded and consumed in the inner j loop and so on
till the end. In this example, there is no need for an epilogue as the number
of loop iterations is a multiple of the number of locations in the VWR. If this
is not the case, a smaller epilogue loop may be needed for the remaining
elements.

Because in the embedded signal processing systems domain (including the
benchmarks used here), most data is streaming and continuous in the fore-
ground memory, it is reasonable to assume that most of the time complete
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lines of the scratchpad can be loaded with relevant data. It is still possible to
load partial rows if not enough independent data words can be found to fill
a complete row (for instance at the end of a loop). Also any sort of buffering
can be done in the higher level memories such that when the data comes to
the L1 data memory and the foreground memory, even non-streaming access
can be performed.

Currently the allocation of arrays to the VWR is shown to be done using
intrinsics (like LOAD row, STORE row, etc.) as the compilation has not been
automated. However a technique for compiling C code onto VWR is detailed
in Chapter 8 of [Rag09b].

8.5 Comparison to related work

A large amount of research exists on improving the performance and energy
efficiency of register file organizations. Many techniques have been propo-
sed at various levels of abstraction (namely circuit, architecture, compiler
and system level). In this section we present an overview of the state-
of-the-art architectures and emphasize the differences with the proposed
organization.

Clustered register file Clustering register files is a generic architectural
technique that reduces energy consumption by splitting register files in smal-
ler parts [San01, Lap02]. Since the energy/power consumption increases
super-linearly with number of ports, clustering techniques reduce the number
ports per cluster and therefore improve energy efficiency. This comes at the
extra cost of inter-cluster communication [Rix00a, Lap02]. Fully distributed
register file organizations are an extreme form of clustering, where single
ported registers are used at the outputs (or inputs) of the functional units
[Imp99, Corp98, Jan95]. A bypass network interfaces the functional units in
the datapath and the memory. In the proposed approach, multiple VWRs can
be viewed as multiple clusters, with at least two or three VWRs per cluster.
Each VWR has only a single port. Another category of related work are hie-
rarchical register files [Zal00a] which introduce another level of hierarchy in
the register file. While adding an extra level of hierarchy in the register file
would exploit the temporal locality available in the application, it would not
be able to exploit the spatial locality.

The FEC appendix of [Rag09b] also quantitatively compares and contrasts
the proposed very wide register architecture against hierarchical register file
[Zal00a], stream register file [Rix00a, Jay04] and traditional clustered regis-
ter file using the case study example.
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Asymmetric register file In state-of-the-art clustered organizations all the
ports are symmetric, i.e., the interfaces to datapath and to the memory
are of equal width and often shared. In the recently introduced VICTORIA
architecture [Der06] from IBM an asymmetrical interface seems to exits,
the solution is targeted towards purely a high performance solution with
an added constraint of supporting legacy code.8 IBM’s Victoria architecture
also requires a run-time lookup table (referred to in their paper [Der06] as
map management) which needs to be maintained to get the right set of data
from the higher level memory to the register file. This allows the flexibility
of shuffling any data element to be placed in any position from the memory
to any position in the register file This overhead can be eliminated in case
of an embedded system where the application that would be running on
the architecture is known in advance, can be statically analyzed and the
flexibility is not needed. Each register or the iVMX architecture also requires
six read and two write ports which is at the cost of 10 times more area (as
stated in the paper itself) and a high power penalty as well.

Register pairs In some processors like the TI’s TMS320C64x series [TI00],
the processor also allows the usage of register pairs. This allows two adjacent
registers to be loaded simultaneously from memory and used either together
or separately. However register pairing is limited to two registers, and the
register file architecture in [TI00] is still very flexible with no knowledge of
data-layout.

Vector register file The concept of wide registers is commonly used in vec-
tor registers for data-parallel architectures [Kap03, Asa98, Koz03]. Multiple
data elements are stored into the vector registers and one vector/word can
be read out to the datapath. This set of data elements is referred to as a word
and each data element inside this word is referred to as sub-word. However,
in that case the width of the register file and the datapath are equal. The
main motivation for wide registers in these architectures is to support data-
parallelism. The same operation is performed on multiple data (Single In-
struction Multiple Data, SIMD) that are stored in the vector registers.

The proposed approach is complementary to the vector register approach as
data level parallelism and spatial locality are orthogonal to each other. Firstly,
the primary target is energy efficiency. Secondly, the proposed approach can
be used in both SIMD and non-SIMD contexts. In a SIMD context, the widths
of data read to the (SIMD) datapath from the VWR are the same as the vec-
tor data size. However, a single VWR is much wider than a vector register
and holds multiple vector data. Figure 8.2 also illustrates the relative sizes of
lines, words and subwords. SIMD datapaths can be used with the proposed

8Further the proposed VWR solution has been submitted for patenting at a prior date.
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VWR based architecture. In such a case, each line contains a set of vectors/
words and each vector/word contains the different subwords. Usually a large
amount of SIMD parallelism is not available in applications due to dependen-
cies and therefore wider datapaths cannot be used. In case of such dependen-
cies, the VWR can still be used, where consecutive words are dependent on
each other.

Load/Store Queues Other broad class of related work exists in the area
of stall cycle optimization. This work is centered around memory queue
structures to reduce the stall cycles. Most of the work [Par03, Set07, Cas05,
Sub06] is centered around additional hardware for load/store queues that
hide the latency. However such extra overhead comes with the cost of po-
wer, which is not acceptable in hand-held embedded systems. Most of these
research works are also focused around out-of-order super-scalar processors
where the power budget is more relaxed.

DRAM Memory The principle of asymmetrical interfaces have been used
extensively in off-chip DRAMs extensively. In DRAMs a complete row of a
DRAM bank is latched and the column decoder is used to read words from the
latched output. The reason however to do this is driven due to two reasons:
limited number of pins to the DRAM chip and the DRAM technology itself.
The proposed VWR architecture is partially inspired from the DRAM world.
Also in case of the DRAM access the memory controller has to generate the
perform the row, column activations.

8.6 Experimental results on DSP benchmarks

8.6.1 Experimental setup

The modeling required for the experiments has been done on the COFFEE
framework as explained in Chapter 4. The different components of the pro-
cessor have also been modeled in the COFFEE framework. The power model
used for the different components has been synthesized in TSMC 65 nm ge-
neral purpose technology at the worst case corner. The target clock frequency
400 MHz and the power/energy model for each of the individual components
have been obtained after place and route and extracted gate level simulation.

Since wide L1 memories and VWR are used here, the energy overhead due
to the interconnect bus could become large if the interface bus is incorrectly
routed. Hence, the interconnect has been modeled (in both the VLIW and
the VWR based register files cases with the L1 SRAM memory) accurately
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using the detailed results from place and route and is taken into account in
the energy estimations. The energy consumption of the clock tree network of
every component is included in the energy consumption of the component
itself. Accurate energy/access numbers are obtained from the physical de-
sign and are combined with the activation trace for each component from
the instruction set simulation, providing the net energy consumption of each
component for any simulation run.

8.6.2 Benchmarks and energy savings

For comparison with other regular register file configurations, a 4FU VLIW
register file (12 ports, 32 registers deep) is used for the base line processor.
Another processor namely a 2FU VLIW (6 ports, 32 registers deep) has also
been considered. These two processors have been labeled 4FU VLIW and 2FU
VLIW. Since the VWRs are single ported, four VWRs are used to allow four
(R/W) accesses in parallel. Each VWR contains four words of 32-bit each.
A 8KB of memory is used in all the three architectures, but the output is
128-bit for the VWR case and 32-bits for the VLIW. This architecture has
been labeled VWR.

The TI DSP benchmark suite [TI09d] and realistic benchmark kernels from
Software Defined Radio (SDR): 802.11a synchronization, 802.16e synchroni-
zation and some benchmarks from Versabench [Rab04] are used to evaluate
the three different architectures 4FU VLIW, 2FU VLIW and VWR. Figure 8.14
shows the energy gains of using a VWR for each of the different benchmarks.
Figure 8.14 shows the energy consumption of the data memory, the inter-
connect between the memory and the register file, and the register file of the
different architectures. The energy consumption has been normalized to the
energy consumption of the 4FU VLIW case for each benchmark.

Figure 8.14 shows that the energy consumption is largely dominated by the
register file. As expected the 2FU VLIW consumes lower energy than the 4FU
VLIW. However the VWR based architecture has a significantly lower energy
consumption compared to both the VLIW architectures. On average the VWR
based architecture consumes 60% lower energy (considering the memory,
buffer, register file subsystem and its connectivity to the FUs) than the 4FU
VLIW case. Another interesting fact to note is that the energy consumption
of the interconnect (buffer energy) is also lower in case of the VWR based
architecture. This is because the pins of the VWR are aligned and matched
to the pitch of the sense amplifier of the memories, in order to reduce the
net capacitance of the bus and the energy required to drive them. The VWRs
consist of cells that are connected to only one bitline and one wordline each,
which results in a smaller net-capacitance that has to be driven. Therefore
VWR designs can be clocked faster than multi-ported register files. The larger
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buffer cost in case of the VLIW register file is the result of the unified interface
and multi-ported nature of a traditional register file to both the datapath and
the memory. The extra cost of the bus that connects this port to the memory
has to be paid every time the register file is accessed from the datapath.

The gains obtained by using a VWR based architecture differs across the dif-
ferent benchmarks and this is dependent on the spatial and temporal loca-
lity exhibited by that application. A more detailed method of how locality
can be exploited while mapping data on the VWR is explained in Chapter 8
of [Rag09b].

Note that the gains in the background memory subsystem itself is close to 0.
This is because the memory generator used could not generate a 128-bit wide
memory and therefore multiple 32-bit wide memories were concatenated
and their address lines were tied together. However to obtain additional gains
a memory generator is required which can generate a single wide memory.

A more detailed case study and exploration of various processor parame-
ters for an ASIP architecture using the VWR is shown in the FEC appendix
of [Rag09b]. It also gives a detailed quantitative comparison between the
proposed VWR solution and other state-of-the-art foreground memory archi-
tectures. This case study comprehensively explores both the data-path size
as well as the memory-interface size of the VWR and other state-of-the-art
solutions.

8.7 Conclusion and key messages of this chapter

This chapter has introduced an asymmetrical register file called Very Wide
Register as an alternative to the traditional clustered register file for low
power embedded applications. Such very wide registers were shown to be
efficient for array data with spatial locality. It has been shown that using VWR
the designer can exploit the spatial locality provided by many embedded
applications in the register file to both improve performance as well as reduce
energy consumption. The required formalism to model data in the VWR and
a compilation technique for such an architecture starting from C code have
been presented in [Rag09b].
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CHAPTER 9

Exploiting Word-Width Information During Mapping

Abstract

Optimizing the energy efficiency of an embedded platform has to be tackled
at different abstraction levels and for all relevant components. In the previous
chapters we have seen that that platform components that initially dominate the
power/energy pie chart have been one by one reduced with a substantial factor:
the instruction memory organisation, the data background memory hierarchy
and the data foreground memory. As a result, the bottleneck in the power pie
should now also be strongly influenced toward the last component in the (single-
core) platform. Hence, in this chapter we move our focus to the processor data-
path. The main objective in this chapter is to use data word-width information
in order to reduce the energy consumption of datapath operations of processor-
based embedded systems (both traditional instruction-set and coarse grained
reconfigurable processors).

9.1 Word-width variation in applications

Figure 9.1 presents an overview of the different aspects of the application
mapping that can benefit from this extra information and form the core of
this chapter.

F. Catthoor et al., Ultra-Low Energy Domain-Specific Instruction-Set Processors, 223
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Energy Models

Figure 9.1: Overview of the different ways to exploit data word-width infor-
mation during application mapping

A representative example will be used to motivate that varying word-widths
are to be found in embedded applications and that the optimization freedom
that results from this variation is currently for a large part lost due to very
coarse rounding after a crude fixed-point refinement (see Section 9.1.2). The
fixed point refinement is discussed briefly, as it is an important enabling tech-
nique for the work that is presented here. If the word-width information is
propagated through different compilation phases, the minimal word-width
information for different data can effectively be used during mapping to im-
prove energy efficiency and performance.

As some proposed word-width-aware optimizations have effects on other
parts of the platform (e.g. the number of accesses to instruction and data
memory is changed because of a change in the number of datapath opera-
tions), the impact on the overall platform energy consumption can be larger
than what would be expected. This is especially true for systems where the
datapath operations account for a rather small relative contribution to the
total energy consumption.

The need for word-width aware energy models to improve ISS-based energy
estimation sensitivity to word-width variation is investigated (Section 9.2).
This extra level of detail is required in order to correctly evaluate and steer
optimizations that use word-width information, as is indicated by the ar-
rows of Figure 9.1. Examples of such word-width aware models are pre-
sented and the development of these models is described. The improved
sensitivity of the energy estimation can influence a designer’s decision or
prevent wrong conclusions, as is shown for an example energy breakdown in
Section 9.4.3.

A systematic description is presented on how to exploit this information du-
ring various steps of the mapping process shown in Figure 9.1, namely the
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assignment, scheduling, ISA selection and parallelization steps (Section 9.3).
For each part, the concept of the optimization is detailed and the expected
gains are evaluated.

Section 9.4 will be dedicated to the word-width aware parallelization step
called Software SIMD, as the expected gains for this step are more complex
to analyze and potential gains are larger than for other word-width aware
optimizations.

An efficient mapping of the application code onto the processors of the plat-
form is essential to achieve the best possible energy efficiency. A mapping
can be considered to be efficient if it is using the available hardware to its
full potential. Exploiting application knowledge during mapping can help to
improve the average platform utilization, from the algorithmic level down
to the implementation. This chapter presents an approach that enables the
usage of word-width information (application knowledge) to evaluate dif-
ferent mapping options in terms of energy consumption and performance.

Word-width information has been exploited during hardware synthesis and
the generation of ASICS and application specific custom hardware for a long
time. This work specifically targets processor implementations, where still
room for improvement exists, as motivated below.

The rest of this chapter is organized as follows. The rest of Section 9.1
discusses the concepts of fixed point refinement and wordwidth variation
exploitation. Section 9.2 presents the wordwidth-aware energy models.
Section 9.3 discusses three ways to exploit the wordwidth variation, namely
scheduling, ISA selection and data parallelisation. Section 9.4 presents the
data-parallelisation exploitation based on software SIMD in more detail.
Section 9.5 discusses the related work and provides a comparison. Finally,
Section 9.6 concludes this chapter and summarizes the key messages of this
chapter.

9.1.1 Fixed point refinement

Algorithms are mostly designed using floating point representation.
In embedded applications, the floating point data and operations in these
algorithms have to be converted to a fixed point format, which is chea-
per to implement in hardware (less area, energy and can achieve higher
clock speeds). The conversion process is called fixed−point refinement or
word-length optimization and is summarized here according to [Cma99].

Current fixed point refinement is performed based on the observation that
processor implementations can only exploit a very limited set of word-widths.
Therefore, current techniques do not perform a very detailed refinement.
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This is not a conceptual restriction, however, and the techniques can be used
to perform more detailed refinements.

Overflow and precision A fixed-point refinement decides on two aspects
of the data: range and precision. This can be interpreted as the required
position (with respect to the fractional point) of the Most Significant Bit or
MSB and the Least Significant Bit or LSB. Both decisions are different in
nature, as the MSB decision aims to avoid errors (overflow is unwanted),
while the LSB decision is trying to match the error to the requirements. The
distance between the MSB and LSB then fixes the required word-width, as
can be seen in Figure 9.2a.

The MSB is chosen such that the largest number that will occur for a cer-
tain signal can be represented without causing overflow (based on range
analysis). A signal, as shown in Figure 9.4, is a set of data (e.g. an array)
that has a certain effect on the application requirements and therefore cer-
tain overflow (and accuracy, see below) requirements. A distinction can be
made between the instantaneous word−width at a certain moment in time
(one specific value of a signal), the maximal word-width throughout the algo-
rithm execution and over different possible inputs (for all possible values of
that signal) and the word-width that is available on the hardware. Different
word-widths are defined here as follows:

• Instantaneous Word-Width: Width of a specific value of a signal, at a
certain moment in time, during the execution

• Word-Width or WW: Minimal required width of the data at a specific
place in the algorithm (irrespective of the hardware width), for all pos-
sible values of that signal

• Maximum Word-Width or MWW: The maximum of the word-widths of
different signals of an algorithm, such that the MWW does not change
throughout the algorithm

• Total Word-Width or TWW: Width as supported by the hardware, width
of the datapath

MSB LSB

word-width

MSB

LSB

word-width

a b

Figure 9.2: MSB and LSB decision for fixed point refinement decide together
on word-width
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• Dynamic Range or DR: Alternative to the word-widths above, which
considers only the varying part of the data in cases where consecutive
data are highly correlated (the non-varying part can be removed by
scaling the data)

Traditionally, the MWW is taken to decide on the MSB position, after roun-
ding it to the next power of two that is available on the hardware (TWW,
worst case). In this chapter, three other approaches are enabled with respect
to improving this worst case. Firstly, by taking a more flexible approach with
respect to the rounding, the MWW can be used directly without rounding.
This corresponds to a smaller worst case width, e.g. 11 bits instead of roun-
ding this up to 16. Secondly, by identifying different phases with different
word-width requirements (so-called system scenarios [Pal07, Ghe09]), smal-
ler word-widths can be used for the different parts, which is still the MWW of
that phase. In this case, the overhead of switching between scenarios (which
then requires a data repacking) should be taken into account when deci-
ding to exploit different phases, which leads to a trade-off between reducing
the word-width more and switching more. Thirdly, in an even more complex
case, the required width can be separately tracked for every signal by using
the WW directly (e.g. for c = a+ b; a, b and c can be of different widths). De-
pending on the usage of the width information, the word-width to exploit can
be chosen from one of the above described cases. To make any of these im-
provements possible, the lowest possible word-width (per signal, per phase
or per algorithm/program) should be decided during fixed point refinement.

The LSB position determines the number of bits that are used to represent the
fractional part of the number (Figure 9.2a). The LSB position has an impact
on the rounding error (the difference between the floating point number that
was used during algorithmic design and the fixed point number for imple-
mentation). The highest possible LSB should be chosen such that the appli-
cation requirements with respect to precision are being met (e.g. a sufficient
Signal to Noise Ratio or SNR for audio filtering). The outcome of the LSB
determination can be left of the fractional point (as shown in Figure 9.2b),
which means that no fractional numbers are needed in order to provide the
required precision. For example the LSB on the second position to the left
of the fractional point means that only multiples of 4 can be represented.
Hereby, a trade-off between implementation cost and data accuracy can be
made. Another example of this trade-off can be found in Section 10.3.6,
where the accuracy of the operator (a multiplication) is traded off for the
cycle and energy cost.

Both MSB and LSB positions can be fixed using analytical techniques (static
analysis methods), simulation (dynamic analysis methods) or hybrids. A full
description is outside the scope of this text, but the reader is referred
to [Cma99, Nov09].
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After fixed-point refinement, both LSB and MSB together determine the
required minimal word-width. This minimal word-width for every signal can
be used as an input to various mapping optimizations. During the rest of this
chapter, we assume that detailed information on word-widths is available
during different stages of the application mapping. It can still happen that
operations of a larger width than the minimally required width are being
executed, e.g. due to a fixed word-width in the datapath hardware. However,
in that case we assume that the minimally required width information is
not lost after the initial fixed point refinement, but is still passed on through
the different phases of the compiler or is available to the programmer. The
fixed point refinement is not the subject of this work, but it is used as an
input. More information can be found in [Nov09].

Overflow, underflow and saturation In some cases, choosing the MSB
such that it is guaranteed that an overflow (or underflow) will never occur
leads to very pessimistic and wide word-widths (e.g. signals with rare tran-
sitional behavior) or is even impossible (e.g. digital filters with feedback).
In this case, the MSB can be determined with simulation for realistic inputs
and saturation behavior can be implemented to catch rare cases. Numbers
that are larger than the biggest representable number will be saturated to
the biggest value. Extra logic can be added to support saturation behavior.

In this work, it is assumed that no extra saturation logic is used. As the algo-
rithm designer will know at which place in the algorithm the risk for overflow
exists, an extra check can be added in software and the required corrective
action will be taken (e.g. saturate to maximal value). When exploiting the
word-width information, has an effect on the way saturation should be hand-
led, this should be explicitly considered, as is discussed in Section 9.4. In all
other cases, the optimizations are orthogonal to the availability of saturation
logic.

Scaling of signed numbers For signed data that vary symmetrically
around 0, using 2’s complement representation, the effectively used word-
width will always be equal to the Total Word-Width TWW (datapath hard-
ware width), even if the effective range of values (the true dynamic range)
is very small. This is because the sign bit and a large portion of the word
flips for a change from a small positive to a small negative number and
vice versa. In this work, it is assumed that this undesired behavior can be
prevented by scaling the data such that all values become positive, as is
shown in Figure 9.3. As the range analysis part of the fixed point refinement
already analyzes the minimal and maximal value of each input variable, the
scaling offset can be decided during the fixed point refinement. Some pre-
caution is needed for subtraction, but this can be handled and is discussed in
Section 9.4.2.
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Figure 9.3: Scaling with offset of signed signal (a), to a positive unsigned
signal (b)

With respect to complex numbers, it is assumed here that the implementation
will decompose complex numbers into their real and imaginary part and
operate on them separately (as most embedded processors do not directly
support complex arithmetic). Scaling can then be applied to both parts
separately.

9.1.2 Word-width variation in applications

Figure 9.4 (from an internal exploration experiment) shows the WW per
signal, the result of a fixed point refinement performed for an IEEE 802.11a/g
WLAN transceiver for different use-cases, depending on the modulation
scheme (e.g. BPSK, Binary Phase-shift Keying etc.) and coding rate that are
used. It can clearly be seen that a wide range of widths is available, from 3
to 12 bits per signal, within and across different configurations. Exploiting
other design decisions (e.g. trade-off quality of the result against energy
spent) and mapping other applications onto the same platform (e.g. audio,
video and 3D applications) can lead to a larger diversity in word-widths.

Because of this large diversity, traditional Hardware SIMD support is not cost-
efficient (not all widths can be supported), which leaves room for other tech-
niques to exploit this further. Even though the fixed point refinement can
determine the exact minimal width, this information is currently not used in
processor implementations (it is for a part used in ASICs, which contributes
to the significantly better energy efficiency of this type of fixed hardware).
Because processor datapath hardware only supports operations of a single
width or a limited set of fixed widths (e.g. 32-bit datapath with additional
support for 2 × 16 or 4 × 8-bit SIMD), the minimal width is rounded to
the next available power of 2, e.g. minimally 6 bits is rounded to 8 bits.
Additionally, because the hardware does not support all the different widths,
this information is not exposed to the compiler (or made available to the
programmer), and therefore no further optimizations (even if they would be
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Figure 9.4: Minimum required word-lengths for different baseband configu-
rations (modulation scheme and coding rate) of an IEEE 802.11a/g WLAN
transceiver

supported by hardware of a fixed width) can exploit this diversity. In conclu-
sion, the standard practice to round different widths in applications to a com-
mon maximum and therefore worst-case width can still be improved. To en-
able this, the minimal width should be propagated to the mapping (compiler
or programmer).

To better exploit the large word-length diversity, this chapter presents a des-
cription of different mapping techniques, allowing designers or compilers
to exploit the minimal and heterogeneous word-width information in ways
that are not currently exploited. The primary goal is to explore how this in-
formation can be exploited and to estimate the potential gains in the context
of embedded applications that require extreme energy efficiency and a high
performance.

9.2 Word-width aware energy models

To enable designers to see the potential gains of using word-width infor-
mation during mapping and achieve a better energy efficiency and higher
performance, simulation and estimation techniques need to give more accu-
rate (specifically more sensitive to word-width variation) and more detailed
energy estimates. To make this possible, word-width aware energy models
are needed. Current energy models used in ISS energy estimation assume
that hardware components (e.g. adders, multipliers) are always operating
on data that fill the complete width of these components. When the actual
required data width of a certain algorithm is less wide, these components
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internally toggle less, which leads to a smaller energy consumption. Current
processor and platform simulators can easily be extended to make use of
these more detailed energy models, once they are available and if the word-
width information is propagated or can be extracted.

A complete description of the used modeling approach is presented in the
appendices of [Lam09]. This section will briefly summarize the presented
approach, show an example of a word-width aware model and briefly discuss
the use-cases, benefits and the usage, with respect to the standard, activation-
based models.

9.2.1 Varying word-width or dynamic range

To model variations in word-width or dynamic range, the input data that
are simulated in the energy estimation flow, have to exhibit this variation.
A set of testbenches have been created that contain automatically generated
input data, containing a random component, but with the following statistical
characteristics:

• Word-Width or WW: For a component that has a Total Word-Width
(TWW) of e.g. 32 bits, only the WW least significant bits are assumed
to be toggling, while the other bits are always 0.1

• Dynamic Range or DR: In this alternative, only DR bits out of the TWW
are toggling, but the other bits are fixed, but not all zero.

For both cases, we assume an initial distribution of 50% 0 bites and 50% 1
bits. The data has been generated such that it has an activity of 0.1, 0.2, 0.3,
0.4 or 0.5. The activity is defined as the probability that a bit (of the active
part of the word) toggles between two consecutive data words.

An example of such a word-width aware energy model for a simple Carry
Lookahead Adder can be seen in Figure 9.5, where the activity is indicated
next to the used testbench type WW or DR. Similar models have been gene-
rated for other processor components, like a multiplier and a register file.

In contrast to traditional non-word-width-aware models that only provide an
energy per activation for the full word-width, which corresponds to the right-
most points in the graph, the presented model includes energy per activation
estimates for various word-widths, including a variation in activity.

1In this work, it is assumed that all data has been scaled to be positive, in order to prevent
the complete datapath width to toggle for data varying around 0 when using 2’s complement
representation.
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9.2.2 Use-cases for word-width aware energy models

It is needed to go through the effort of generating these models at least once
per technology, in order to verify if a sufficient variation in energy consump-
tion exists to motivate the extra level of detail. If a sufficient variation is
found, then extra optimizations that exploit word-width information can
be enabled and e.g. mapping decisions can be based on word-width aware
energy estimates. The experiment that is presented in Figure 9.5 shows that
the energy per activation of e.g. a 40-bit addition is about 30% less than for
a 64-bit addition on the same adder (e.g. for an activity of 0.5, and varying
word-width WW). Therefore, we conclude that for a 90 nm technology, the
extra effort is justified if the target application uses a data word-width or
dynamic range that significantly differs from the hardware word-width.

The word-width aware models can be seen as a replacement of the activation
based models that are currently being used with ISS-based energy estimation
that is specifically more sensitive to the word-width variation and in that res-
pect more accurate for relative comparisons. As such, they can give designers
fast and fairly accurate energy estimates to steer the energy-aware mapping
of an application onto a platform. The effort that is needed to move to word-
width aware energy estimation differs according to the goal of the experi-
ments at hand.

For processor design, which includes architecture exploration, it is the goal
to optimize the architecture components given a set of applications or an
application domain. Here, models should be developed for every component

Figure 9.5: Word-width aware energy model for 64-bit Carry Lookahead
SIMD Adder in 90 nm CMOS standard cell technology. WW and DR indi-
cate the word-width or dynamic range respectively, for different bit activities
ranging from 0.1 to 0.5
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within the explored range (e.g. adders of different widths and potentially of
different types, but also for register files of different width, depth and for dif-
ferent numbers of ports, etc.). This quickly leads to a high modeling effort.
This modeling should only be done once per technology node, making it still
very worthwhile. Section 9.2.3 presents an estimate for one such architec-
ture based on energy models generated for a single adder, multiplier and
register file.

Mapping experiments, where the architecture of the platform is given, re-
quire only the word-width aware energy models for specific instances of
components present in the processor. This means e.g. only one type of ad-
der of a fixed width needs to be modeled, e.g. the Carry Lookahead Adder
model shown in Figure 9.5. This heavily restricts the modeling effort that is
required, making it a feasible and practical approach.

In both cases, the energy models are used to correctly assess the bottlenecks
that would decide which part to focus on next and potentially to steer word-
width aware optimizations (as are discussed in Section 9.3).

9.2.3 Example of word-width aware energy estimation

A representative wireless communication kernel has been mapped onto a
fixed platform, containing a small in order RISC processor and both a data
(DL1) and instruction (IL1) memory. The processor has a 64-bit datapath
that consists of the components that have been modeled above. The data is
read from and stored back to a background data memory (DL1) of 8kB and
instructions are read directly from the instruction cache (IL1) of 8kB.

The result presented in this section are for a kernel from a real life MIMO
(Multiple Input Multiple Output) Baseband processing algorithm, namely the
Spatial Equalizer part.

Figure 9.6 shows rather extreme comparison to make the point, comparing
the Activation Based, as has been discussed in Chapter 4 of [Lam09], (No
WW) approach for 9-bit data on a 64-bit datapath counted at the full 64-bit
cost with the Word-Width Aware (WW Aware) for 9-bit data on a 64-bit
datapath, but counted using the word-width aware model of 9-bit data on
a 64-bit datapath.

The energy breakdown for the Activation Based method shows a severe over-
estimation of the energy consumption. The Word-Width Aware method (WW-
Aware) more accurately estimates the real cost, when only a small width of
the available datapath is used. For the datapath this effect is most visible
(a factor 3), as a reduced active word-length heavily reduces the activity in
the datapath units, like adders, shifters and multipliers.
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Figure 9.6: Comparison between activation based energy estimation
(no WW) and energy estimation based on activation information using word-
width aware models (WW Aware) for the MIMO Spatial Equalizer

Figure 9.6 shows an overall difference of 14.4% in the energy estimation of
the kernel for the full platform, between the non-word-width aware and the
word-width aware method. This is a quite significant difference and moti-
vates the development of word-width aware models in cases where the data-
path operations are really the bottleneck and there is often a large mismatch
between the datapath width and the effective width of the data. Not doing
so, can in these cases potentially lead to wrong conclusions, or wasted effort
in optimizing the platform. Based on the no WW plot, one might e.g. decide
to spend effort on techniques that try to reduce the energy spent in the data-
path, even at the cost of a small overhead. In reality the cost of the datapath
is much lower and that small overhead could introduce an overall energy pe-
nalty. It should also be noted that the exact difference depends on the chosen
processor and platform.

For more information on the modeling in this experiment and an analysis of
the impact of word-width variation for the different components, the reader
is referred to the appendices of [Lam09].

9.3 Exploiting word-width variation in mapping

This section describes how transformations or mapping techniques can ex-
ploit knowledge about data word-widths or a variation there-of in order to
achieve a better energy efficiency or performance. The focus of this work is to
exploit word-width information during various stages of mapping operations
onto the datapath. The secondary effects on other parts of the platform are
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taken into account, e.g. when the number of accesses to register files, data or
instruction memories is changed. Specific techniques to exploit word-width
information in other parts of the platform, e.g. to reduce the required com-
munication bandwidth between processors or to reduce the memory foot-
print of arrays, are outside the scope of this work.

The rest of this section describes the use of word-width information du-
ring four phases of mapping operations to the datapath, namely during as-
signment, scheduling, ISA selection and parallelization. The optimization
concepts and initial estimates on gains that could be achieved during these
steps are presented. As was motivated in Section 9.1, it is assumed that the
word-width information is available during mapping and that it represents
the minimal word-width that will respect the application requirements.

9.3.1 Assignment

A first way to exploit detailed word-width information, is during the assign-
ment of operations to PEs and FUs in these PEs. The assignment step decides
onto which FU a certain operation is mapped, taking into account the availa-
bility and the type of operation that needs to be executed.

9.3.1.1 Concept

It is possible to design a processor with multiple different implementations of
the same type of FU in the same PE. One example can be found in the sepa-
ration of a fully flexible shifter into a shuffler/shifter combination [Rag06b].
In this case, a flexible shuffle network can re-order or move, e.g. 4-bit parts
of a word efficiently, while the complexity of the coupled shifter is heavily re-
duced and only needs to support shifts up to a 3-bit distance. Correspondin-
gly, separate implementations for often occurring specific word-widths can
be added. This would make sense if they would represent different trade-off
points, e.g. a fast one with restricted functionality and low energy consump-
tion vs. a slow, flexible and more energy-consuming one. As such, the func-
tionality restriction can refer to a maximum word-width that is supported
and the assignment can be based on the word-width information.

Figure 9.7 shows a schematic data-parallel datapath, in which multiple im-
plementations are provided for the multiplier and the shifter. For a certain ap-
plication domain, a large number of multiplications could be with very small
factors of a restricted width. A cheaper implementation of this restricted mul-
tiplication could be provided, next to a more costly wider multiplier. Related
to this optimization, the implementation of constant multiplications and tra-
ding off multiplier accuracy with the operator cost is explored in Chapter 10.
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Figure 9.7: Word-width aware assignment optimization on a schematic SIMD
datapath

As was proposed in Section 3.6.6, splitting address computations and data
computations onto different PEs altogether would be one example of word-
width aware assignment. Another possibility would be to provide different
FUs customized to the address and to the data widths inside every PE and to
make the split internally.

9.3.1.2 Expected gains

The expected gains of the word-width aware assignment depend heavily on
the target application, on the available word-widths and the ratio between
different widths and on the energy versus performance trade-off points of-
fered by the different FUs. However, it is already clear that the decision to
which exact FU inside a fixed PE a certain operation will be assigned, will
have no other effect on the number of accesses to the register files or the
instruction memory. Therefore, the cost improvement would be restricted to
the relative contribution of the datapath operations to the total cost. Only
when different FUs have different latencies in terms of cycles, the impact
on the schedule length could indirectly affect the execution cost beyond the
datapath logic alone. This effect will be discussed further, specifically for dif-
ferent FUs to implements multiplications, in Chapter 10.

Scope, problems, benefits etc. In order to be able to exploit the assign-
ment optimization, different assignment options are required, which means
multiple resources should implement the same functionality. This would lead
to a hardware overhead and extra control requirements (extra instruction
memory cost). It is unlikely that extra resources would be added specifically
to be able to use this optimization. However, in some cases, this choice will
be available for other reasons. Then, word-width information can be used to
exploit that freedom or improve the assignment decision.
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As was mentioned above, the datapath/address path split is based on one
specific instance of word-width aware assignment. However, it also enables
a better data-layout for, e.g. VWR usage (see Section 3.6.3). Therefore, this
split is still worth-while, even if the datapath logic only consumes a small
part of the platform energy.

In conclusion, we do not expect word-width aware assignment (apart from
the split of datapath and address path) to be a general purpose optimiza-
tion, but it can be part of the optimization toolbox in certain specific cases,
e.g. if multiple FUs are already available for other reasons, like with the
goal to provide a performance range or to provide redundancy for unreliable
technologies. Therefore, since our target application domain is currently not
dominated by the datapath operations alone and as we have already propo-
sed a split of data and address operations, this optimization is not explored
further in this work.

9.3.2 Scheduling

During scheduling, the order in which the operations are mapped onto the
datapath is decided (by the programmer or by the compiler). In this step,
the dependencies between the operations and the latency of each operation
has to be respected. If word-width information on the data that are consu-
med by these operations is added to the set of information that can be used
to make the scheduling decision, a more energy efficient schedule can be
constructed as is described below. This is a second potential usage of word-
width information in the compiler.

9.3.2.1 Concept

When consecutive operations on a certain functional unit (e.g. an adder) ope-
rate on data of the same word-width, which is smaller than the total width
of that unit, less energy will be spent because not all circuitry is activated
(as was shown in Figure 9.5). When operations on data of different widths
(e.g. as is shown in Figure 9.8a) are being executed successively, the ac-
tive part is the maximum word-width of both (indicated with striped boxes).
If this maximum width is less than the total width of the datapath, using the
corresponding value from the word-width aware energy model will then be
more accurate.

When the application contains different groups of operations, e.g. filter
operations on one side and updates on filter coefficients on the other side,
which have different accuracy requirements and are operating on different
word-widths, there is a possibility of doing a word-width aware scheduling.
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Figure 9.8: Schematic representation of word-width aware scheduling opti-
mization, in which the order of the operations is modified to minimize tog-
gling in the datapath logic

By grouping the operations that operate on the same word-width, the inter-
nal activity of the hardware can be minimized. Figure 9.8b shows a grouping
of the operations of equal width, which leads to less toggling, indicated by
the large rectangle. Dependencies between the operations have to be res-
pected, which in some cases results in the successive execution of smaller
groups (as shown in Figure 9.8c).

9.3.2.2 Expected gains

The expected gains for this optimization can be directly derived from the
energy models for the datapath FUs, as presented in Section 9.2. They de-
pend only on the total width of the FU and on the two different widths of the
effective operations.

Figure 9.9 presents an initial estimate on the gains that could be expected,
using a hypothetical example: a series of 100 additions on two data sets of
different widths (assuming an equal number of operations on each width).
Estimates are presented for different dependency distances between the ope-
rations and for different variations in word-widths. The original cost, shown
on the left, assumes subsequent operations on different widths of respectively
12 bits followed by 8 bits, 32 bits followed by 12 bits and an extreme case
of 32 bits followed by 4 bits. All following bars are normalized with respect
to the base case and present a dependency distance of 2 (additions of same
width grouped per 2) up to the best case (all additions of the same width
grouped).
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Figure 9.9: Example of energy savings as a result of word-width aware sche-
duling optimization

From this example, it can be seen that if very heterogeneous word-widths are
present and if no close dependencies between these computations exist that
prevent a re-scheduling, the potential of word-width aware scheduling can
reduce the energy consumption of the datapath logic with 10–45% (e.g. with
20% for the 32/12 case with a 3 on 3 dependency in Figure 9.9).

Scope, problems, benefits etc. As this optimization only changes the or-
der of the operations (respecting the dependencies), it has no effect on the
number of accesses to data or instruction memories. Therefore, the poten-
tial is restricted to reducing the energy cost of the datapath operations. This
corresponds to only 1.2% of the full platform cost of Figure 3.5, but this can
increase for more parallel architectures as is shown in Figure 3.9 (12% of the
CGRA processor: 5% for the ALU PEs and 7% for the MUL PEs). As the base
cost by far exceeds the variable cost for the pipeline registers, this reduction
is minimal and is not shown here. The same applies for reads and writes to
the register files (as shown in Figures 9.10 and 9.11), so it does not make
sense to attempt a toggle minimization for subsequent accesses to the regis-
ter files (this however, can change if better register file designs would reduce
the base cost).

However, this optimization can be applied within the restrictions of other
scheduling constraints, at no extra cost. Therefore, it can be applied for ap-
plication domains where heterogeneous word-widths are available, the da-
tapath operations are a bottleneck and the last Joule needs to be optimized
(e.g. biomedical signal processing). Since this is clearly not always the case,
this is not a general purpose optimization.

A clear link exists between this optimization and the proposed split of the
data and address computations as was discussed in Section 3.6.6. The aim of
word-width aware scheduling is to reduce the amount of toggling by grou-
ping operations on shorter word-widths instead of mixing them with opera-
tions on longer word-widths, which would increase the effectively toggling
width to the width of the latter. One of the main reasons to propose the
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Figure 9.10: Energy per write for a 1W/2R Synthesized Register File that can
store 16 words of 64 bits
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Figure 9.11: Energy per read for a 1W/2R Synthesized Register File that can
store 16 words of 64 bits

split of data and address operations onto different execution units altoge-
ther (which is an assignment decision, as is discussed in the next section),
was the difference in dynamic range between both types of computations.
This difference in dynamic range is therefore one of the most obvious cases,
in which also word-width aware scheduling can lead to a gain. However,
when the operations are split onto different execution units, the potential of
word-width aware scheduling is reduced, as data and address operations are
already effectively split.

Word-width aware scheduling hinges on the assumption that some opera-
tions under-utilize the full width of the datapath and that grouping those
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operations can still minimize the toggling on that part. Therefore, the
potential gains of this optimization are reduced by other techniques that
attempt to fill the available hardware as much as possible (e.g. SIMD, as
discussed in Section 9.4).

As with the word-width aware assignment, our target application domain is
currently not dominated by the datapath operations alone and as we have
already proposed a split of data and address operations, this optimization is
not explored further in this work.

9.3.3 ISA selection

Another way to exploit word-width information, is when the intermediate
representation or the Data Flow Graph (DFG) of the application is parsed
and virtual operations are mapped to instructions of the target processor.
In VLIW terminology, the combination of all operations of the different slots
is called a single instruction. To prevent confusion, the ISA (Instruction Set
Architecture) Selection can be called operation selection here. In some cases,
the data word-width can provide extra information on which mapping stra-
tegy to follow.

9.3.3.1 Concept

In a traditional compiler, the mapping of DFG nodes to operations of the
target processor is decided based on which set would cover the DFG in
the most efficient combination of operations (mostly with respect to perfor-
mance). In some cases, the additional word-width information can influence
this decision.

In Chapters 10 and 11, two examples of word-width-aware ISA Selection are
described. There word-width information, together with accuracy require-
ments and the specific type of multiplication at hand are taken into account
when deciding on how to implement a multiplication (see Chapter 10 for the
specific details). Figure 9.12 presents a graphical illustration of how the mul-
tiplication node in the DFG can either be directly mapped to a multiplier (for
wider word-widths and high accuracy requirements) or can be broken down
into a set of cheaper add, shift or special new operations if the word-width
(and thereby the number of required instructions) or the accuracy is less.

9.3.3.2 Expected gains

ISA selection can in general be described either as a one-to-one mapping
(one node in the DFG corresponds to a single instruction), a one-to-many

241



Exploiting Word-Width Information During Mapping

*

instructions/operations

+

+

<<

-

+

1 MUL

2 Shift + 1 Add 

1 special Shift ShiftAdd SSA

*
<< <<

+

DFG

Figure 9.12: Schematic representation of converting a DFG node into one or
a set of instructions/operations on the target processor

mapping (one node is broken into multiple operations), a many-to-one map-
ping (many nodes are combined into a single operation, e.g. using template
matching techniques) or a many-to-many mapping (a combination of nodes
is replaced by a combination of other nodes). Because of this variation in
resulting operations, a different number of intermediate variables will have
to be register allocated and the resulting schedules can vary in length. The-
refore, the potential effect of this optimization goes beyond the datapath
logic alone, as the number of accesses to register files and the Instruction/
Configuration Memory Organization (ICMO) can change. Consequently, the
expected gains are difficult to predict in general and are more complex to
estimate than for word-width aware scheduling and assignment. The specific
case of strength reduction for constant multiplications, as covered in Chap-
ter 10, will thoroughly cover one example of this optimization.

9.3.4 Data parallelization

One more potential step during application mapping that can be impro-
ved when using the additional word-width information is when deciding
how much Data Level Parallelism or DLP to exploit. This decision depends
on the amount of parallel independent operations that can be extracted from
the program (e.g. across loops as described in Section 3.6.5), but in prac-
tice the choice is restricted to what is supported by the hardware: how many
operations of a certain width can be executed in parallel.

The same hardware-supported widths are traditionally used as the minimal
word-widths after fixed point refinement. By removing the restriction that all
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used data widths should be equal to what is supported by the hardware and
by propagating the real minimal word-widths, more optimal mappings can
be constructed.

9.3.4.1 Concept

When parallelizing the execution of a kernel (using SIMD), the same ope-
ration is executed for multiple data of equal width in parallel. This width is
chosen from the set of widths supported by the SIMD hardware and is mostly
equal to one of the following powers of 2: 4, 8, 16 or 32.

Potentially, a different, more efficient parallelization can be achieved for data
of which the minimal word-width differs from the available hardware op-
tions. Variable width hardware has been proposed, for which multiple cus-
tom word-widths are supported (e.g. for 9-, 18-, 24- and 36-bit words in the
Mpact Media processor [Fol96]), but providing a per bit variable SIMD sup-
port in hardware is prohibitively expensive. Other solutions use a bit-serial
approach to offer a range of flexible widths, but they do not provide the re-
quired performance [Ann90]. Above all, they are very energy inefficient, due
to the overhead in control and storage. As a fully flexible Hardware SIMD
solution is either too expensive (area, energy) or too slow, an alternative
approach is proposed here.

Using detailed word-width information, different data words can be packed
into a single word in order to operate on them together, without specific
hardware support for the combined word-widths. Without specific hardware
support, however, keeping the data separated during the execution is no lon-
ger guaranteed. By inserting extra masking operations where needed and
potentially extra guard bits between the data when packing them together
into a larger word, the correctness can still be guaranteed. This technique is
called Software SIMD.

Since Software SIMD is less restrictive toward the word-widths that can
be combined, it can handle cases where traditional Hardware SIMD is not
possible. When compared to the traditional hardware SIMD, the potential
lies in operating on different word-widths together, called Heterogeneous
Software−SIMD, or operating on widths that are not equal to the suppor-
ted hardware widths or a combination of both.

In the following simple motivating example (Figure 9.13), minimal word-
width information is used when deciding how to make use of SIMD to handle
data parallelism. The minimal width of the data that is needed to reach the
required precision is decided upfront. It is then passed on to the designer or
to the compiler and can be used to decide the optimal packing of words into
the full datapath width.
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for i=1 to 500

a[i]=b[i]+c[i]

for j=1 to 500

d[j]=e[j]+f[j]

Original Code

for i=1 to 500
Pack (b,e)
Pack (c,f)
(a,d)[i]=(b,e)[i]+(c,f)[i]
Unpack (a,d)→ a
Unpack (a,d)→ d

Transformed Code

Figure 9.13: Motivating example for Software SIMD, in which the word-
width information of a, b, c, d, e and f is used to pack them together into
a single word, even if this would not be possible using traditional SIMD

The original code on the left shows two loops that are operating on arrays.
During fixed point refinement, the data of arrays a, b and c are found to
require minimally 18 bits, while the data of arrays d, e and f only require a
12-bit precision. On a traditional 32-bit datapath, supporting 4 × 8 or 2 ×
16-bit SIMD, the loops can not be merged by using SIMD. Because of register
file pressure, we assume both loops cannot be merged.

In the right code fragment, the extra word-width information was used du-
ring mapping, and Software SIMD is used. By packing data of 18 bits with
other data of 12 bits into one 32-bit word, leaving a 1-bit guard band at the
MSB side of each sub-word (not always needed, as explained in detail in
Section 9.4), SIMD can still be used. Hardware SIMD support is not required
and the datapath is still filled. In this case, the computations of both loops
have been merged and arrays (b,e) and (c,f) are operated on together,
producing the combined results (a,d). In this simple example, it is assumed
that register file pressure is reduced by combining data into less words, so
the loops can be merged.

9.3.4.2 Expected gains

Parallelization by using SIMD is a very popular technique, as it increases
performance and improves the energy efficiency. In contrast to the above dis-
cussed word-width aware scheduling and assignment optimizations, chan-
ging the parallelism that is exploited by using a more flexible Software SIMD
does change the number of operations and also the accesses to the register
files and the instruction memory. Therefore, the impact of this optimization
goes beyond the cost of the datapath operations alone. Because it affects the
number of accesses to memories and also the number of cycles needed to
complete an algorithm, the gains depend on different parts of the platform
(not only the 1.2% of the datapath operations of Figure 3.5, but all parts of
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the core, which is in total over 60% and even the accesses to background
memory could be affected). If the technique is applied blindly, the overhead
can be larger than the gains.

To be able to operate on the data together, without the use of hardware for
that specific SIMD width, the sub-words have to be packed in a certain way.
For some operation types, additional corrective operations need to be inser-
ted to keep the data separated or to maintain the functional correctness with
respect to the unpacked execution. Finally, the results have to be unpacked
at the end of the computation. Packing and unpacking are conceptually not
different from what is needed for Hardware SIMD, but a different number of
words needs to be combined and their respective positions inside the word
are also different. The cost of this overhead should be carefully balanced
against the expected gains.

Due to the extra operations, complex trade-offs come into play. Estimating
the expected gains is significantly more complex than for word-width aware
scheduling and assignment. Therefore, a closer look at Software SIMD is
needed and this is presented in Section 9.4

9.4 Software SIMD

This section shows how significant gains in both performance and energy effi-
ciency can be obtained during the mapping process when word-width infor-
mation is exploited during parallelization. Different parallelization options
are presented, comparing the sequential code to versions exploiting either
SIMD supported by hardware (SIMD in the traditional sense, here referred
to as Hardware SIMD) or Software SIMD. For the SIMD cases, the way data
is stored initially in memory is being considered. Finally, the energy and per-
formance estimations for each of these mappings are shown and conclusions
can be drawn.

9.4.1 Hardware SIMD vs Software SIMD

Current energy efficient and high performance processors use (Hardware)
SIMD (Single Instruction Multiple Data) to make use of the data parallelism
available in applications, to obtain a higher energy efficiency and to boost
performance. SIMD processors provide special hardware in their datapath
that supports computations on a certain combination of sub-words of the
same length (e.g. 1 × 64 bits, 2 × 32 bits, 4 × 16 bits or 8 × 8 bits), pro-
ducing multiple separate results. The availability of multiple SIMD modes is
called multi−gauge in literature. This capability can be used to differentiate
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SIMD processors from Vector processors that support only a single parallel
execution mode (e.g. 10 × 32 bits).

In many cases, however, the limited number of different word-lengths that
are supported requires the data widths to be rounded to the next available
supported SIMD mode, which leads to a loss in efficiency. When the smallest
sub-word supported by the hardware is, e.g. 8-bit, an operation on 5-bit data
has to be promoted to 8-bit sub-words, which leads to a total of 24-bits that
are wasted on a 64-bit datapath.

By providing more detailed word-width information to the mapping pro-
cess, different and potentially more efficient combinations in mapping can
be found. These detailed word-widths should not be restricted to pre-defined
word-widths or rounded to the next sub-word size (of higher width) that is
supported by hardware, as is traditionally done.

The Software SIMD technique is intended to exploit the word-width infor-
mation and to deliver more efficient mappings by combining different word-
widths that would not be supported by the hardware, or could even be used
to make use of SIMD on a datapath that does not support this. However, this
lack of hardware support requires the insertion of extra operations in specific
cases, in order to guarantee the functional correctness. There is a trade-off
involved here and the overhead of the extra operations turns out to be very
small if the fixed point refinement is properly done. In general, a more syste-
matic trade-off exploration is needed.

As with regular Hardware SIMD, the overhead of packing and unpacking data
can be limited if the data are used together for a large number of times or can
be eliminated if the data are stored packed in memory. Modern applications,
especially in the wireless context, are well suited to use this technique.

Software SIMD improves performance and energy efficiency when suf-
ficient word-length variation is present Software SIMD can directly af-
fect the performance and energy consumption of many different parts of the
platform. As with Hardware SIMD, the increase in parallelism leads to a re-
duction in the number of operations that are needed to execute a certain
kernel for a fixed set of data. This leads to a reduced number of accesses
to the instruction memory organization. If different shorter data words are
stored together in a single word, the number of accesses to the data memory
hierarchy (and the memory footprint) can be reduced. As less operations
have to be scheduled, this leads to an increase in performance. In contrast
to Hardware SIMD, where only packing and unpacking lead to overhead,
for Software SIMD, the extra corrective operations that are inserted affect
the gains and should be monitored carefully. When enough different word-
lengths are present, that are not only a power-of-2 variation, then usually the
energy gains (strongly) exceed this cost.
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BA C
datapath

of
32 bits

Figure 9.14: Packing heterogeneous data in order to be able to operate on
them together later, using Software SIMD

Software SIMD is more flexible In addition to packing different sub-words
of equal and pre-defined lengths, as is supported by the hardware, Software
SIMD can exploit (combinations of) different widths that are present in appli-
cations, as was shown in Section 9.1.2. In order to operate on a combination
of data elements in a SIMD fashion, the elements of arrays A, B and C, which
are for example respectively 14, 11 and 7 bits can be packed into a 32-bit
word (for a 32-bit datapath) as is shown in Figure 9.14. The extra bits that
potentially have to be added to stop overflow from one sub-word to the next
are discussed below. The additional freedom and optimization potential that
are created as such can lead to the usage of SIMD in applications that cannot
use Hardware SIMD (e.g. because the minimal word-width that is required is
larger than the supported sub-words). Even in mappings that already make
use of traditional SIMD, a more efficient mapping could be obtained when
making use of the more flexible Software SIMD. This extra flexibility leads
to many more potential SIMD combinations, but increases the complexity of
deciding which parallelization to use and to estimate the expected gains of
applying the Software SIMD.

9.4.2 Enabling SIMD without hardware separation

Operating on different sub-words in parallel, without specific hardware sup-
port to keep the data of these sub-words separated, can not be done without
the insertion of extra operations. What exactly is required depends on the
type of operation and on the characteristics (in this case with respect to the
word-width) of the data. The combination of packing, execution on a regular
(non-SIMD) datapath and the insertion of the corrective operations where
needed, is called Software−SIMD.

This section discusses the enabling techniques and restrictions. In the follo-
wing discussion, we assume that Software SIMD will be applied to selected
kernels of an application. Therefore, the scope is the algorithm that makes
up the computation of a certain kernel.

Saturation behavior without hardware support As has been discussed
in Section 9.1.1, some applications require the implementation of saturation
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A = 13 bits B = 10 bits C = 6 bits

BA C
datapath
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32 bits

0 0 0

Figure 9.15: Extra guard bits (set to 0) are added to be able to handle over-
and underflow

behavior in order to prevent unwanted overflow and underflow. As with hard-
ware, the Software SIMD approach can support saturation at an extra cost.
In order to make this test possible and correctly handle over- and underflow
when required, an extra guard bit is added to the left of every sub-word, as
shown in Figure 9.15.

Depending on the instruction set of the used processor, the implementation
of the saturation behavior can be more or less costly. An example of satura-
tion for overflow and underflow will be presented below, for addition and
subtraction respectively.

Signed numbers scaled to unsigned The special treatment of the sign
bit for some operations (e.g. arithmetic shift) complicates the application
of Software SIMD. Therefore, we here assume that all signals are scaled to
be positive (as was discussed in Section 9.1.1) and the parallelization occurs
on unsigned data. Standard truncation rounding behavior rounds all num-
bers towards negative infinity, so there will be no additional effects on the
accuracy when scaling a signal to be positive. Additional care has to be ta-
ken when rounding towards 0 is assumed (requires extra hardware support),
which is not supported here. The different rounding behavior has to be taken
into account, in order not to violate the application requirements.

9.4.2.1 Corrective operations to preserve data boundaries

Operating on different sub-words in parallel without using specific hardware
support is only possible if the effect of the various operations of an algorithm
on the separation of the data can be controlled. However, different opera-
tions that are executed on these packed words will have a different effect
on the separation between the results. In order to keep the computations
of the algorithm unchanged, the results of the computations should still be
functionally correct and meet the application requirements.

The compute-intensive kernels of our target applications domains, namely
wireless communication and multimedia, (mostly) consist of a relatively
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small set of different operations: arithmetic operations like additions/
subtractions, shifts, multiplications, logic operations like AND, OR, XOR
and relational operations like equal to, greater than, less than. Some of these
operations will be directly supported by the processor instruction set and
special modifications could be made in order to support the Software SIMD
variants better (examples will be given below). However, in this chapter, it is
assumed that a standard instruction set is used and that it is not extended
specifically to support the proposed optimizations. Therefore, some opera-
tions need to be decomposed into the operations available in the processor
instruction set, which changes the overall cost of e.g. using saturation. The
example implementations that will be shown below assume a standard in-
struction set. If specific other operations are available to support specific
target applications, these operations might be of use to reduce the cost of
Software SIMD operations. For example the Altivec Instruction set [Fre] sup-
ports very flexible vector permute operations to do sub-word manipulations.

Addition Performing an addition on the packed data is rather straightfor-
ward. A schematic example is shown in Figure 9.16 for a set of data that
is guaranteed not to cause overflow. This means that the word-width that is
assigned to the different sub-words (A, B, C) is larger than the instantaneous
values (represented by the gray boxes). The fixed point refinement guaran-
tees, as in the case of the normal SIMD, that no overflow beyond the range
supported by A, B and C will occur during the execution of the algorithm and
no extra guard bits are required in this case. Potential overflow bits (repre-
sented as a black box in the result of Figure 9.16) will still stay inside the
bit-range that is reserved for each data item.

If the word-width that is required to make this guarantee is too costly, a
smaller width can be used and saturation can be implemented to catch the

+

=

B

CA

Figure 9.16: Schematic representation of the Software SIMD addition, in
which the instantaneous values are smaller than the representable range of
the respective sub-words. Therefore, the extra bits that are potentially gene-
rated by the addition are still within this range
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occasional overflow (at an additional cost). The following example shows
how this can be implemented using one extra guard bit and some extra ope-
rations. This leads to a trade-off with spending more bits on the sub-word
(less chances for overflow to occur) vs. the cost of the overflow detection
and how often the more expensive corrective action has to be executed.
Alternatively, the scenario approach [Pal07] can be used to limit the input
word-width from the start and e.g. to meet the SNR/BER requirements of a
wireless communication algorithm without unneeded overhead, as is shown
in [Nov08, Nov09].

Addition with overflow saturation Figure 9.17 shows three packed words:
inputs ①, ② and result ③ , which consist of data a, b and c, d and e, f respec-
tively and guard bits q, r, s for the first sub-words and x, y, z for the second
sub-words. The guard bits are 0 by default.

When performing an overflow-sensitive operation (and only then), saturation
can be implemented, as described below. A normal unsigned addition (for the
full datapath width) is performed and followed by a test (using AND (&) and
an equality comparison ==),2 which detects an overflow in any of the sub-
words. Guard bits are represented in bold, as e.g. 1.

standard unsigned addition: ③ = ① + ②

overflow test: (③ & 10. . . 010. . . 0 ) == 00. . . 000. . . 0

The overflow mask ( 10. . . 010. . . 0 ) selects only the guard bits (shown in
bold), which are then compared to 0. In this way, the overflow test can suc-
cessfully detect the occurrence of an overflow and a corrective action can be
taken if required. Different corrective actions can be generated at compile

ba

dc

fe

q

r

s

x

y

z

SW 2SW 1

1

2

3

Figure 9.17: Schematic representation of the packing of data into sub-words
SW1 and SW2, separated by extra guard bits

2Note that bitwise operators are represented by a single symbol, e.g. &, while the logical
conjunction AND would be represented by the double symbol &&.
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time and are stored in the loop buffer. At run-time, the required satura-
tions can be performed, using the loop buffer’s local controller (as descri-
bed in [Jay02a]). If no local controller is available, a branch to a sub-routine
that handles the saturation or the use of predication to nullify the satura-
tion of sub-words that are not needed can be used, but this will be less ef-
ficient. The test itself requires a mask operation and a (regular full-word)
comparison only.

If the test fails, an overflow is detected and all guard bits are separately com-
pared to 0 in order to check which sub-word caused the overflow. Many DSPs
support instructions that would be able to handle this efficiently (e.g. get po-
sition of most significant non-zero bit). A special instruction could be added
to handle the saturation very efficiently, by directly saturating the sub-words
that have non-zero guard bits. If no such special operations are supported,
separate mask operations can select all guard bits one by one. The guard−bit
select masks contain a 1 for a single guard bit, while all other bits are 0
(e.g. 10. . . 000. . . 0 for the first guard bit). If a specific guard bit is found to
be 1, an overflow is detected for that sub-word and the corresponding sub-
word is saturated (using an OR (|)). The other sub-words are left untouched.
As multiple sub-words could generate an overflow, all guard bits have to be
checked. However, these comparisons can be done in parallel.

overflow test for SW1: (③ & 10. . . 000. . . 0) == 00. . . 000. . . 0
saturation of SW1: ③ | 11. . . 100. . . 0

After all sub-words that generated an overflow have been saturated, the over-
flow bits are set back to 0.

reset guard bits: ③ = (③ & 01. . . 101. . . 1)

It should be noted that the occurrence of an overflow should only be checked
after overflow sensitive operations (this information is propagated down the
fixed point refinement or from the algorithm design) and that the overflow
test is relatively cheap. It should be stressed here that this will not be required
e.g. for every addition in the algorithm. Only when an overflow effectively
occurs, the saturation penalty has to be paid.

Subtraction For a subtraction, the assumption that data is scaled such that
the algorithm operates on (and produces) unsigned, positive data, results
in subtractions where the relative size of both operands is known and the
result will always be positive. This assumption can, next to the fixed point
refinement, be partly enabled by the use of correlation information on the
data at compile time and limited explicit tests at run-time (scenario detec-
tion). Using the example of Figure 9.17, this means a ≥ c and b ≥ d. In this
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case, the assumption that all data will be positive is always respected and
the subtraction can be performed as with a normal subtraction of datapath
width.

standard unsigned subtraction: ③ = ① - ②

However, if this is not always guaranteed, there is a risk that the result of
the subtraction for any sub-word would have a negative result, which would
destroy the separation of data. This is because the standard subtraction will
“borrow” a bit from a sub-word on the MSB side and produce a wrong result.
To stop this from happening, two approaches can be taken. Firstly, under-
flow saturation can be implemented, meaning that a negative result will be
rounded to 0. Secondly, a test can be performed to check the relative size
of sub-words, before performing the subtraction and required corrective ac-
tions can be taken. Example implementations of underflow saturation and
relational operations are shown next.

Subtraction with underflow saturation In order to correctly detect under-
flow, the guard bits of the first operand are set to 1. This again should only
be done in those parts of the algorithm that have a risk to underflow.

set guard bits to 1: ① = (① | 10. . . 010. . . 0 )
perform standard subtraction: ③ = ① - ②)

underflow test: (③ & 10. . . 010. . . 0 ) == 10. . . 010. . . 0

For the same packing as shown in Figure 9.17, the following cases are pos-
sible:

if a > c and b > d: e = a− c, f = b− d and s == 1, z == 1 (no underflow)
if a < c or b < d: guard bits x and q stop the borrow from MSB−side

sub−word, but the result is wrong

If the underflow test fails (overflow detected), the same approach is taken as
with the overflow for additions: test which sub-word caused the overflow and
saturate it, set it to 0. Finally, the guard bits are set back to 0, their default
value.

reset guard bits: ③ = (③ & 01. . . 101. . . 1 )

Logical operations and masking Logical operations, like NOT, AND, OR,
XOR, etc., as have been used above, are bitwise operations. Therefore, there
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is no need for special hardware support and these operations are supported
by the Software SIMD approach as is.

The masks that are used together with the logical operations in the example
implementation of saturation above, can be generated at compile time and
stored in memory or can be passed as part of the operation (as an imme-
diate). A limited number of different masks are required.

Relational operations Relational operations like equal to, greater than,
less than etc. require specific hardware to separate the comparison of the
different sub-words and can not directly be supported when using Software
SIMD. However, they can be decomposed into supported operations.

Different kinds of relational operations can be supported. One type produces
a mask, in which bits at specific places indicate the outcome of the compari-
son. Figure 9.18 shows an example implementation for relational operations
that produce such a mask, based on the subtraction. Other relational opera-
tions, that e.g. combine the largest sub-words of both inputs (compared one
to one) into the output, can be implemented using such masks. The top of
the figure defines the input words, with their respective sub-words. Additio-
nal information, to be used in this example, is presented on how the sizes of
corresponding sub-words relate to each other. The rest of the figure indicates
how ≥, ≤ and == can be implemented, producing the result of the respec-
tive comparison for each sub-word in the guard bits. Finally, < and > can be
generated as a combination of the above, using a logical XOR operation.

Even though the relational operations can be implemented as presented
above, it should be noted here that the usage of this kind of operation in a
Software SIMD kernel should still be avoided, as the operations following
the relational operation will probably depend on the result of the compa-
rison. However, a Hardware SIMD implementation suffers from the same
problem. Therefore, speculative execution of both paths or the use of alge-
braic transformations to reduce the amount of relational operations should
be considered when enough design time is available. As a (more costly)
fall-back solution, the operations that depend on the comparison can always
be performed on the unpacked data.

In an ASIP implementation, the cost of relational operations can be heavily
reduced by adding specific operations to the instruction set that enable the
cheap generation of masks. For example providing the position of the guard
bits ( 10. . . 010. . . 0 ) and the result of a comparison as shown in Figure 9.18
as inputs, a mask can be generated with 1 bits for all sub-words that have a
guard bit equal to 1 and 0 bits for the other sub-words. Using these masks,
e.g. the largest sub-words of two input vectors can be combined into an out-
put vector efficiently. A more thorough evaluation of potential instruction set
extensions is part of future work.
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:  set guard bits of   1   (q,r,s) to 1, then do   t1 =   1   - 2

invalida - d1 0t1 c – f = 01

:  set guard bits of   2   (x,y,z) to 1, then do   t2 =   2   - 1

e - binvalid0 1 c – f = 00t2

a ≥ d : ceurt ≥  f : trueb ≥ e : false

default: guard bits = 0 
q,r,s,x,y,z = 0

a>d
b<e
c=f

e.g.

b ≤ e : truea ≤ d : false c ≤ f : true

:     t3 =   t1 &    t2

e - binvalid0 0 invalid1t3

b == e : false c == f : truea == d : false

:     t1 XOR   t3:     t2 XOR   t3

Figure 9.18: Example implementation of Software SIMD relational opera-
tions, based on subtraction with underflow detection

Left shift As all data is assumed to be positive, only logical shifts have to be
considered. Arithmetic shifts preserve the sign bit for signed numbers, which
is not required here. However, a difference still has to be made between three
types of logical left shifts, with respect to the way they are used.

For the first type (Figure 9.19), a shift to the left over x positions, the
instantaneous input data of the respective sub-words is not shifted out of
the representable range of each sub-word. This type is supported for use
in a software-SIMDized kernel as is and does not require any special extra
operations.
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Figure 9.19: Software SIMD left shift with data within MSB range
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Figure 9.20: Software SIMD left shift with data out of MSB range

This excludes a special second type of left shift that requires truncation, as
is shown in Figure 9.20. In some cases, the shift operation is used to select
a certain bit range by shifting the data partially out of the word, thereby
truncating the original data on the MSB side. This type of shift can be seen
as a bad programmer’s practice and should be avoided, but it can still be
supported. As there is no hardware to enforce the boundaries between the
different sub-words, an extra mask operation is required to prevent bits from
one sub-word to be shifted into the next. This can be achieved by adding
a logical AND with a mask, in which the bits that correspond to the to-be-
truncated range are set to 0 and all other bits are set to 1. After this extra
operation, the shift can be performed using the normal shift operation.

Alternatively, the mask operation to force the to-be-truncated range to 0 can
be moved after the shift. This enables combining multiple of these operations
into a single mask, if some later shifts or other operations also need mask
operations. This kind of transformations helps to reduce the overhead.
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Figure 9.21: Software SIMD left shift saturation detection

As with the addition, a left shift can potentially lead to an overflow. In that
case, it can be combined with saturation behavior, which makes it the third
type of shift. An extra test is needed to detect if an overflow has occurred and
for which words the saturation should be applied. The overflow detect mask
selects the x leftmost bits of each sub-word, when shifting left over x posi-
tions, as shown in Figure 9.21. The result of this mask is compared to zero
to detect an overflow in any of the sub-words (the two leftmost sub-words
will require saturation in the example of Figure 9.21). If the test succeeds,
meaning no saturation is required, a normal left shift is performed. If the
test fails, extra comparisons are done to detect which words need saturation.
Then, as for the shift with truncation, a mask is used to remove the x left-
most bits of each sub-word, followed by the shift and the saturation of the
offending sub-words (as with the addition).

Again, the overflow detection is cheap, requiring only one AND and one com-
parison. If no overflow is detected, a normal shift can be performed. If over-
flow is detected, a more expensive correction is required.

Right shift Finally, a logical shift to the right can be implemented in a simi-
lar way. In this case, the extra mask operation is always required to prevent
bits from the LSB side of one sub-word to enter the MSB side of another one.
As is shown in Figure 9.22, the logical AND operation is inserted to force
the to-be-shifted right bits to zero, before (or after, as explained above) the
actual shift operation is being done.

If many shift operations are required, in ASIPs, the addition of a dedicated
shift slot would be preferred to reduce the cost of the shift operations. This
unit is simpler than the combined shuffle/shifter [Rag07b] that is needed for
pack/unpack operations.
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Figure 9.22: Software SIMD right shift

Note that the above described implementation of left and right shifts depends
on the packing. It is possible to pack the instantaneous data into the MSB
side of their respective sub-words, which results in simpler right shifts (if the
shift distance does not shift the data out of the reserved width), but more
complex left shifts. Depending on the context, i.e. the number of shifts of
either direction that are used in the algorithm, a preference can be given to
the packing style.

Multiplications are a problem Additions/subtractions, shifts and logical/
relational operations all behave in a controllable way with respect to how the
separation of packed data in the input is propagated to the output. An effi-
cient usage of those operations in a Software SIMD implementation is still
feasible as long as the fixed point refinement was properly done. As was
shown in Figures 9.16 and 9.19, the separation of the sub-words is maintai-
ned in the result (the same bits belong to the same sub-word).

For multiplications, however, the placement of the result corresponding to
the product of the input sub-words is more complex. As can be seen in
Figure 9.23, the width of the complete result of a multiplication is the double
of the input width (e.g. 2 × 32 bits gives a 64-bit result). Typically, this re-
sult is then cast back to the single word-width afterward, to avoid increasing
word-widths. However, when using a normal (full-word) multiplication for
packed data, the placement of the results of the product terms is such that
they need to be placed at the extreme MSB and LSB side of the packed word,
in order to be able to recover the products of individual sub-words. As is
shown in Figure 9.23a, a large separation in between has to be reserved to
hold the cross-products that are unwanted here. These cross-products will
quickly overlap with the useful products, thus making the useful data unre-
coverable. For the simple example shown here, packing only 2 sub-words and
for widths of a, b and c, d of x and y bits respectively, the width of the guard
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Figure 9.23: Overlap problem when using MUL and Software SIMD

band z has to respect: z ≥ (x + y + 1). This restricts the useful part of the
datapath to less than half of the full width. For more than two packed sub-
words, this effect is even worse as more unwanted cross-products are placed
all over the word.

This effect results in a very sparse usage of the datapath, whenever multipli-
cations are involved, which is the absolute opposite of what Software SIMD
is supposed to achieve. Therefore, related work [Eve01, Ber06] does not al-
low any multiplications or requires extremely large guard bands [Kra07].
As this restriction heavily reduces the applicability of this technique in our
target application domain, we propose a conversion of multiplications into a
sequence of shift and add operations. This conversion is discussed in detail
in Chapter 10.

Also for other types of operations that are not supported by the Software
SIMD technique, the decomposition approach can be followed. As very few
processors support division, square root, modulo, trigonometric operations,
etc. natively in their instruction set, these operations are converted into other
supported operations. That can happen for example very effectively based on
the CORDIC transformation [Vol59]. That is illustrated for the bioimaging
application in Chapter 11. In most cases more than one conversion is pos-
sible. Therefore, it can make sense to revisit the conversion strategy in the
context of Software SIMD. Apart from the multiplications, for which this as-
pect is discussed in Chapter 10, this is outside of the scope of this book.
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9.4.2.2 Software SIMD on a Hardware SIMD capable datapath

Software SIMD can be used as a technique to exploit SIMD on non-SIMD
capable datapaths. However, on SIMD datapaths, it can still be used to exploit
heterogeneous sub-words or sub-words of other sizes than the supported po-
wers of 2. Whenever the required word-widths match the word-widths sup-
ported by the hardware, it will always be better to use the HW SIMD, as no
extra operations are required. However, when heterogeneous word-widths
can be combined, or when the required word-width differs significantly with
what is supported by the hardware, Software SIMD can be used. An exam-
ple of a homogeneous parallelization using Software SIMD on a Hardware
SIMD capable datapath is presented in Section 9.4.3 for a simple case and in
Section 9.4.4 for a more challenging case.

9.4.3 Case study 1: Homogeneous Software SIMD
exploration for a Hardware SIMD capable RISC

This section starts with a theoretic estimation of the potential of Software
SIMD. Table 9.1 presents an optimistic estimate (no extra overhead) of
the gains that can be expected when using homogeneous Software SIMD
for various potential word-widths. A datapath of 64 bits is assumed with
8 × 8, 4 × 16, 2 × 32 and 1 × 64-bit SIMD modes. The table presents the

WW # in 64-bit DP HW SIMD Conclusion If no 1 × 64 mode
4 12 (12× 5 = 60) 8 50% Yes
5 10 (10× 6 = 60) 8 25% Yes
6 9 (9× 7 = 63) 8 12.5% No
7 8 (8× 8 = 64) 8 No gain Yes
8 7 (7× 9 = 63) 8 12% loss No
9 6 (6× 10 = 60) 4 50% Yes

10 5 (5× 11 = 55) 4 25% No
11 5 (5× 12 = 60) 4 25% No
12 4 (4× 13 = 52) 4 No gain Yes

13–15 4 4 No gain Yes
16 3 (3× 17 = 51) 4 25% loss No

Table 9.1: Comparison of the theoretic maximal performance gain (without
additional corrective operations) for data with a certain word-width (WW)
for Software SIMD (# in 64-bit DP) and Hardware SIMD (HW SIMD), as-
suming a 64-bit SIMD datapath with 8 × 8, 4 × 16, 2 × 32 and 1 × 64-bit
modes. The expected gain (or loss) is given, next to the availability of that
option if no 1 × 64 mode would be available
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theoretically achievable gains for the best case: firstly, when no additional
corrective operations are required and secondly, if there are no dependencies
that restrict the parallelization.

Table 9.1 presents the evolution in the expected gain for varying data widths.
The first column, WW, represents the required word-width, ranging from 4
to 16 bits. The second column indicates which Software SIMD mode will be
selected, when operating on a 64-bit datapath and how many words can be
operated on in parallel. The HW SIMD column indicates to which Hardware
SIMD mode this can be compared. This leads to a projected gain, presented
in the next column (Conclusion). An additional column indicates the availa-
bility of that specific solution on a datapath that only supports 8 × 8, 4 × 16
and 2 × 32-bit SIMD modes. In that case, the sub-words have to be aligned
correctly with the 2 × 32-bit SIMD mode.

The table shows that even if homogeneous Software SIMD is applied on a da-
tapath that supports SIMD in hardware, for minimal word-widths of 4, 5, 6,
9, 10 and 11, significant performance gains of 11–50% could be achieved by
using Software SIMD. For all other cases, the usage of Software SIMD would
only make sense if the hardware would not support SIMD. The omission of
the full 64-bit mode rules out the solutions for 6, 10 and 11 bits.

The parallelization options presented in Table 9.1 assume that a guard bit
is added to every sub-word. If no relational operations or saturation are re-
quired, the guard bits can be removed, which leads to improvements with
respect to the table as potentially more sub-words can be packed together.
For example for a word-size of 9 bits, 7 sub-words can be packed, compared
to only 4 in the Hardware SIMD case, which leads to a maximal improve-
ment of 75%. Without guard bits, there will be no cases that have a loss with
respect to the HW SIMD.

Software SIMD for the MIMO benchmark Following the predicted per-
formance improvement of 50% when performing Software SIMD for a word-
width of 9 bits, in the following part of this section, we will present an energy
estimation for the platform and benchmark application that has been descri-
bed in Section 9.2.3, namely a compute intensive part of the MIMO bench-
mark on a 64-bit Hardware SIMD-capable in-order RISC. For this realistic wi-
reless communication kernel, the energy consumption (using the word-width
aware energy models introduced in Section 9.2) and performance (including
potential packing effects) are estimated for five different Hardware and Soft-
ware SIMD code versions. The selected benchmark in this case only consists
of additions, subtractions and multiplications. After the multiplications have
been converted (see Chapter 10), only additions, subtractions and shifts are
required. The original implementation does not require saturation and is
using 16-bit data. We assume that a re-quantization of the data (taking into
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account the specific requirements of the target system) requires only 9 bits
per word. For this specific example, no extra Software SIMD specific correc-
tive operations need to be inserted and the potential of this technique can be
estimated. This means the impact on performance is as predicted in Table 9.1.
The experiment of this case study is the result of a manual conversion of the
original non-SIMD code (compiled) to the various SIMD versions.

The potential energy gains of exploiting word-width information are demons-
trated by presenting five different mappings:

1. No SIMD: In this case, no SIMD is used on the processor (as a pessimis-
tic baseline case), and all data are aligned in the data memory to 64-bit
boundaries (only 9 bits out of 64 contain the data).

2. Hardware SIMD: The second reference case assumes that the Hardware
SIMD provided by the datapath hardware is exploited and all data are
aligned in memory to 16-bit boundaries (so in each sub-word, that ac-
tually contains only 9-bit data, the 7 MSB bits are 0). In this case, the
data are pre-packed when they are read from the memory in an optimal
way for the datapath (4 × 16-bit mode) and also can be stored back
packed.

3. Hardware SIMD with Pack/Unpack: If the data is not pre-packed in
memory, the Hardware SIMD capability of the datapath can still be
exploited, but extra pack and unpack operations have to be performed
in order to transform the data layout. In this case, the datapath operates
in the 4 × 16-bit mode, but the data layout is assumed to be aligned
to 64-bit boundaries (only 9 bits out of 64 contain the actual data).
To transform the data layout, we combine four loaded words into one
word, using a pack unit. At the end of the computations the words are
unpacked and stored back using the original data layout.

4. Software SIMD: A more efficient mapping can be obtained by directly
operating on the 9-bit sub-words. Assuming that data are pre-packed
in memory according to 10-bit boundaries (9-bit data + 1 guard bit),
6 sub-words of 9 bits can be operated on in parallel, filling the 64-bit
datapath almost completely. The guard bit is not needed for the current
kernel, but is included to support relational operations or saturation
elsewhere in the application and to avoid re-packing later. Without the
guard bit, one more sub-word can be fitted in for this case (for the same
overhead), which leads to larger gains. The pre-packing assumption is
realistic if the producer code can be modified also.

5. Software SIMD with Pack/Unpack: If the fixed point refined data are
not pre-packed, or if they are only used in the specific packing that
is needed in this kernel once, the packing/unpacking overhead cannot
be neglected. In this case, the extra (shuffle/shift) operations, needed
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to transform an initial data layout of 64 bits to the packed version of
the previous case, are included. This introduces five pack operations
and six unpack operations for every Software SIMD enabled operation.
Most algorithms will provide the opportunity to re-use the packed data
inside the kernel itself, so this packing overhead is rather worst-case.

Figures 9.24 and 9.25 show the energy breakdown and performance of all
mapping variations described above, using word-width aware models in all

Figure 9.24: Energy breakdown of different mapping variants of the MIMO
kernel, using different SIMD options and data layouts

Figure 9.25: Performance results of different mapping variants of the MIMO
kernel, using different SIMD options and data layouts
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cases (for the energy plot). The results have been normalized to the energy
consumption and performance of case 1, which serves as a pessimistic ba-
seline case. For case 1, no SIMD is used on a 64-bit wide datapath, which
leads to a high energy cost and a bad performance (as is to be expected).
In this case, every data item that is needed during the computation is loaded
from the memory to the register file, operated on and eventually stored back
individually.

Using the Hardware SIMD capabilities provided by the hardware, and assu-
ming a SIMD optimized data layout, the energy consumption is reduced by
more than 70% (1 in Figure 9.24) and performance is improved with 75%
(for the same 2 bars in Figure 9.25). This is the result that can be achieved by
a state-of-the-art approach, using a good mapping. In this case, the number
of loads from the memory to the register file is heavily reduced by loading
multiple data in parallel (four data items of 9 bits, each promoted to 16
bits in the full 64-bit datapath width), which leads to energy savings in both
the register file and the memory. The number of computational operations
is reduced by the same factor, which leads to less accesses to the instruction
memory.

By exploiting extra word-width information and performing Software SIMD,
the energy consumption can be reduced even more. When, as in the previous
case, the data layout has been optimized (SW−SIMD), a reduction of over
80% compared to the baseline (2) or over 30% compared to HW −SIMD
(3) can be achieved. Note that if a state-of the-art SIMD implementation
would serve as a baseline, this improvement of over 30% is very significant.
Performance is improved with 83% compared to no SIMD WW and with
over 33% to HW−SIMD. In this case, more data items are packed together
in one word (6 data items of 9 bits, each with a 1-bit guard band, filling the
64-bit datapath width), which lead to even less accesses to the data memory
and the register file and to less operations and accesses to the instruction
memory hierarchy.

When the data-layout has not been optimized, or when different packings
are needed in different parts of the application, the overhead of the pack
and unpack operations cannot be removed completely or neglected. When
transforming the data layout in order to use Hardware SIMD (HW−SIMD
Pack−Unpack), the number of datapath operations that is performed on the
packed data is still smaller than for no SIMD WW , but a high number of
pack and unpack operations are added to make this possible, which leads
to a larger energy cost in the datapath itself. The number of accesses to the
register file are, however, overall still reduced. The number of accesses to the
data memory and the energy cost of this part are exactly the same, as the
original and final data layouts are the same. Compared to no SIMD WW
the energy consumption is still reduced with over 20% (4) and performance
is improved with about the same amount.
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By adding extra word-width information and performing Software SIMD
under the same constraints as for HW −SIMD Pack−Unpack, an addi-
tional 3.5% (5) can still be gained, on both energy and performance. In this
case, the number of accesses to the register file and the number of operations
is still marginally reduced, but even more pack and unpack operations had
to be added, which leads to an overall gain of just a couple percent (4.6%
better than HW−SIMD Pack−Unpack, (6)). However, this gain is still re-
levant, as it corresponds to an improvement for the full platform, including
the processor and the data, instruction memories (DL1 + IL1).

In case the data layout has been optimized for the Hardware SIMD and if
this can not be changed, one could still decide to re-pack the data in order to
benefit from the extra parallelism of the Software SIMD approach. However,
as the overhead of the pack/unpack operations is large, this would lead to a
penalty, both in energy and performance (7). As embedded systems mostly
allow the designer to modify the data producer, the packing can be changed
there to prevent this from occurring.

It should be noted here that without going through the effort of modeling
the effective word-width to estimate the energy, gains would look different
here. Without word-width aware energy models, the energy cost of the da-
tapath would be overestimated for no SIMD WW , as has been shown in
Figure 9.6, and less in the other mappings, as there the datapath is much
better filled. This would lead to larger expected gains, which in reality would
not be present, when comparing the sequential with the parallel versions.
In some cases, this would justify more expensive data layout transforma-
tions, which in the end might lead to an overall energy loss. As is described
in the analysis of the appendices of [Lam09], the variation of the energy
consumption with varying word-widths for non-datapath components is cur-
rently rather small, but can be improved by using more optimized design
methods. This would lead to larger variations and would reduce the corre-
lation between Figures 9.24 and 9.25. Currently, the most visible part of the
energy variation is related to the difference in accesses to the register file,
the DMH and the IMH. These differences are the direct result of operating on
a different number of elements in parallel, which is reflected directly in the
performance. Therefore, the overall shape of both figures is the same.

9.4.4 Case study 2: Software SIMD exploration, including
corrective operations, for a VLIW processor

The second case study, presented in this section, presents a more complex
FFT (Fast Fourier Transform) kernel, taken from the TI DSP library [TI09d].
The benchmark performs a mixed radix forward FFT. It is used in the
radix 4 mode for a set of 1,024 input samples, which are assumed to
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represent one OFDM (Orthogonal Frequency Division Multiplexing, a wi-
reless communication standard) symbol of a wireless communication. The
multiplications have been converted (see Chapter 10) for some code versions
(MUL-converted) in order to enable the Software SIMD.

Experimental setup In contrast to the previous case study, this kernel has
been Software SIMDized and optimized for an embedded eight-slot VLIW
processor (clustered heterogeneous VLIW, with two clusters of four slots
each, as shown in Figure 3.6). In this case, the addition of various corrective
operations was required in order to prevent unwanted overflows. In selec-
ted parts of the algorithm, overflow tests and saturation behavior for addi-
tions was implemented as has been described in Section 9.4.2.1. These extra
operations and the fact that the target processor in this case is a parallel
processor, result in significant differences with respect to case study 1. Gi-
ven the fact that differences in the energy consumption of today’s processors
are dominated by the change in accesses to the register file, DMH and IMH
(as was concluded in the previous case study), this section will only present
performance estimations. When architecture modifications, as proposed in
Chapter 3, are implemented, the energy breakdown will be more balanced
and a separate estimation of the impact on the energy consumption will be
needed. This is part of future work.

Parallelization exploration Different code versions have been constructed
in order to compare various Hardware SIMD and Software SIMD implemen-
tations. As in case study 1, the pack/unpack operations have been separated
from the kernel in order to be able to estimate the expected gains when a
modification of the data-layout is possible. Because the conversion of the
multiplications can have a beneficial effect on the Hardware SIMD version or
on the sequential version (due to the parallel slots of the VLIW in this case),
the conversion has been applied independently of the Software SIMD tech-
nique as well. The presented results have been generated using the COFFEE
tool flow [Rag08b].

Figure 9.26 presents the results of this experiment. The original benchmark,
performing an FFT on 1 OFDM symbol at a time (no SIMD), is taken as the
baseline. The other results are normalized to this case and are presented as
cycles per symbol. The sequential MUL Converted code shows a slight in-
crease in performance, as the strength reduction produces operations that
can be scheduled on more slots, which lead to a performance improvement.
In this case, an exact conversion was selected, which introduces multiple
operations per removed multiplication. As a result, the performance impro-
vement is slightly less than 3% in this case (for the details on this effect, see
Chapter 10).
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Figure 6.29

Figure 9.26: Comparison of different FFT implementations, varying the num-
ber of symbols that are computed in parallel. The results have been normali-
zed to the performance of the original, sequential code

The original implementation operates on 16-bit data and Hardware SIMD
version has been parallelized across four symbols in order to fill the 64-bit
datapath. As expected, a four-way parallelization improves the performance
significantly. In this case, it leads to a gain of 78% when compared to the ba-
seline or of 57% when including the overhead of the pack/unpack operations.

Software SIMD versions for data widths out of the interesting range {4, 5, 6, 9,
10, 11} have been constructed, as predicted by Table 9.1. Figure 9.27 presents
the rest of the results, normalized with respect to the Hardware SIMD version
(including packing overhead). The different Software SIMD versions operate
on an increasing number of symbols in parallel, ranging from 5 to 12, for
word-widths of 11–4 bits in parallel. In order to support the Software SIMD,
an additional guard bit has been added to all sub-words. The guard bit is used
to detect overflows, implement saturation and some types of special shift-
add instructions, as discussed in Chapter 10. Even though more pack/unpack
operations are added moving to more parallel Software SIMD versions (there
is a slight increase in the ratio between the FFT cycles and the total cycles),
there is still a gain when moving to more symbols in parallel.

As no properly quantized data was available for real OFDM symbols, ran-
domly generated input data has been used. However, the reported perfor-
mance results are obtained from valid schedules and are reported as the
required number of cycles per symbol for comparison. In order to cope with
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Figure 9.27: Comparison of different parallel FFT implementations, varying
the word-width of the input data and thereby the number of symbols that are
computed in parallel, using Software SIMD. The results have been normali-
zed to the performance of the Hardware SIMD version

potential overflows, saturation has been implemented for a set of additions
that are potentially causing overflow (based on casts present in the original
implementation). In order to get a performance estimate without using real
data, the assumption has been made that on average 2 sub-words out of 5
or 6, 3 out of 6, 4 out of 9 or 10, and 5 out of 12 would require saturation
(arbitrary choice, with constant ratio between 0.4 and 0.5). Based on these
average saturation requirements, the corresponding number of required ins-
tructions has been inserted. The gains when moving to more parallel imple-
mentations are reducing (e.g. moving from four-way to 12-way, operating on
three times more symbols in parallel, only reduces the FFT cycles per symbol
with a factor 2.2, from 51% to 23% or a factor 1.9, from 100% to 52% when
including packing overhead). The improvements are in this case smaller than
the theoretically achievable best case (a factor 3 for the same example), due
to the overhead of the saturation operations. This best case, without ove-
rhead, is included in Figure 9.27, as a reference.

Due to the parallel nature of the processor, the extra operations could fit into
the empty slots of the schedule. If this happens, the performance degradation
will be smaller. As the FFT kernel can be heavily optimized, the produced
schedule is already very dense and some extra operations do cause a longer
schedule, which leads to diminishing returns when moving to more parallel
versions.
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As exploiting smaller word-widths in some cases will lead to more repacking
in between program phases (as has been explained in Section 9.1.1), the
overall overhead will increase for the smaller modes and a sweet-spot will
exists.

In this case study, all pack/unpack operations are performed using shifts and
bitwise AND operations. In case of hardware SIMD, in some architectures
special pack/unpack units can be used that support single cycle pack and
unpack corresponding to the different hardware SIMD modes (with limited
flexibility). In case the Hardware SIMD version of Figure 9.27 would make
use of those operations, the pack/unpack overhead would reduce by a fac-
tor 2, which corresponds to a reduction of the total cycles per symbol to about
75%. In that case, exploiting word-widths of 10 and 11 bits, which corres-
ponds to a Software SIMD parallelism of 5, would not lead to any gains.
Providing the equivalent, more efficient support for pack/unpack for Soft-
ware SIMD would require somewhat more complex pack/unpack units, but
would improve the Software SIMD results in a similar way, but with larger
relative gains, as the initial overhead would be larger to start with. A detailed
study of that more complex pack/unpack is outside the scope of this book.

The SIMD versions compute the FFT for different OFDM symbols in parallel.
These symbols can potentially have different word-width requirements. This
can be the case when they, e.g. belong to different wireless communication
channels that have different channel conditions. Therefore, more or less bits
are being assigned to the symbols (as is discussed in [Nov08]). Using Soft-
ware SIMD, these variable word-width requirements can be taken into ac-
count in the implementation and the FFT of symbols of different word-width
can still be computed in parallel, which is not possible with a traditional
SIMD approach. A number of combinations that are likely to occur (called
scenarios) can be generated at compile time and can be selected at run-time.
More details on the scenario approach can be found in [Nov08, Pal07].

9.5 Comparison to related work

Word-width aware energy models and word-width aware optimizations
Firstly, most instruction set simulators and add-ons for energy estimation,
like Trimaran [Tri99], SimpleScalar [Aus02], Wattch [Bro00b] etc. provide
average energy estimates based on activation count. This implies that the
energy/activation does not depend on the precise data that is being operated
on. In order to evaluate the specific effect of word-width aware optimizations
that affect the datapath toggling, it is crucial to take the precise toggle acti-
vity inside the component into account while estimating the energy/power
consumption. Secondly, for some platforms that consume a large part of their
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energy in the datapath logic, that execute on strongly varying word-widths
and for which this variation is not exploited by using SIMD, the word-width
aware models will give a more realistic estimate of the contribution of the
datapath logic to the total energy consumption. In this way, they can prevent
wrong optimization decisions and contribute to the architecture exploration
or mapping.

The models presented in this book allow designers to steer these optimiza-
tions and to evaluate in which context they should or should not be applied.

Other instruction set simulators like MPARM [Ben05a], which are written
in synthesizable SystemC (using a detailed modeling of all components at
a low abstraction level) are capable of producing detailed results, but are
extremely slow and therefore not well suited for architecture exploration.
Our previous work [Rag09a] takes into account toggle activity, but no word-
width information, and does this only for the register file.

In this book, word-width aware models are presented that can still be cou-
pled to instruction set simulator based energy estimation. Therefore, they
preserve the fast speed that is required for wide architecture exploration or
fast interactive application optimization.

Other energy estimation methods like [Jul03] model the energy needed for a
certain operation, taking into account the previous operation, but the work is
very processor specific and not-retargetable at a component level. The energy
model described in [Sch04] illustrates that the actual energy consumption
depends on various factors like degree of parallelism, number of instruc-
tions and also the data-width. This is however tuned only toward the TI’s
TMS320C6416 processor and is not scalable to other processors. Because it
is highly specialized to this specific architecture, it cannot be used for other
processors or platforms or for architecture exploration.

The presented approach can be used to generate word-width aware energy
models for any processor component that can be modeled in VHDL, using a
state-of-the-art standard cell synthesis and energy estimation flow.

Exploiting variable word-widths in custom hardware Reducing the
word-width to the minimally required width is done extensively in hardware
synthesis for custom logic (embedded accelerators) or for ASICS. Methods
like [Syn08] provide bit-width aware architecture synthesis of custom hard-
ware accelerators. Their PICO (Program-In-Chip-Out) system automatically
optimizes the hardware by exploiting information about the varying num-
ber of bits that are required to represent and process operands. Others,
like [Oze08] use stochastic bit-width estimation techniques that follow a
simulation-based approach to minimize the area and energy consumption of
custom hardware.
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The work presented in this book enables designers to benefit from exploiting
this information on processor centric platforms, thus reducing the need for
custom processing blocks and leading to more flexible and reusable plat-
forms.

Exploiting variable word-width to reduce register pressure, the memory
footprint or the required bandwidth to off-chip memories Word-width
aware register allocation is presented in [Tal03] in order to enable loading
and storing data of various widths to the register file at a sub-word level.
[Bro00a] discusses techniques to reduce the cost of the memory hierarchy by
assigning smaller word-widths to narrow memory and larger widths to wide
memories. Additionally, packing multiple smaller word-width data together
before storing them to memory can be used to reduce the required memory
footprint. Alternatively, [Thu08] presents a scheme for word-width aware
data compression to reduce the required band-width between the on-chip
and off-chip memories.

The concepts discussed in this book focus on the datapath and do not di-
rectly optimize for the memory footprint or register file pressure. However,
by applying Software SIMD, the available datapath width is more efficiently
filled. The resulting packed data that are stored to the register file are the-
refore using the full width. Enabling accesses at sub-word level (as presen-
ted in [Tal03]) can reduce the pack/unpack overhead in case of occasional
operations that are not supported or too expensive for the Software SIMD
approach. With respect to the memory footprint, the usage of Software SIMD
will result in efficiently packed data that, if they are stored back to memory
in the packed format, will result in automatic memory footprint reductions.

Exploiting variable word-widths in Hardware SIMD Some techniques
enable the usage of variable word-widths in Hardware SIMD. For example
the Mpact processor [Fol96] supports various SIMD modes for homogeneous,
non-power of 2 word-widths, namely operating on sub-words of 9, 18, 24 and
36 bits. However, this type of processors still supports only a limited num-
ber of combinations that should be tuned to the application domain, which
in this case was DVD decoding. A more flexible approach (with respect to
word-widths) can be found in [Bal98], that proposed an arbitrary precision
arithmetic for a SIMD adder. However, a proposal is presented only for addi-
tions by adding an additional gate to stop the carry at every bit. No solution
is presented for other operators, which heavily restricts the application of
this approach in real kernels or applications. True support for variable width
SIMD is proposed in [Ann90] by using a bit-serial approach and emulation
in software. However, the energy efficiency and performance implications
of this approach are significant (for both energy and performance) as the
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underlying hardware is effectively reduced to a width of 1bit only. The extra
control and storage that is needed to cycle the data through is resulting in
an expensive component. The emulation approach is reported to achieve si-
gnificant speed-ups with respect to the fully bit-serial approach, but is not
compared to bit-parallel implementations. A related approach, using multi-
precision hardware, in which a small word-with (e.g. 4 bits) is used to im-
plement wider operations, trades off some of the flexibility of the complete
bit-serial approach for more performance and energy efficiency, but it again
lacks the flexibility to adapt to non-supported widths.

Exploiting variable word-widths as Software SIMD The direct related
work in Software SIMD is very limited. To the best of our knowledge, the
concept was first mentioned by two very short online articles that briefly dis-
cuss the benefits of Software SIMD. [Eve01] describes a very basic approach
that creates very wide guard bands by operating on even and odd bytes se-
parately. In order to generate those separate words, extra mask operations
are used, and the results are finally combined again into one word. The ar-
ticle does not cover other operations than the addition and only targets the
emulation of byte by byte SIMD on processors that do not support any type
of SIMD. [Ber06] presents an approach that is very much related to the ap-
proach of this book. They present a simple example of Software SIMD for a
logical shift and an addition and propose the support of signed operations,
but only for additions, at the cost of extra guard bits.

Very recently, [Kra07] presented some early results on Software SIMD. This
work also operates only on positive, scaled data and provides more infor-
mation on the scaling approach. They however have no good solution for
multiplications and use very large guard bands whenever the algorithm re-
quires a multiplication. [McK08] also uses a very wide guard band to pack
two data streams of 5 bits into an 18-bit multiplier on an FPGA. This is still
a nice example of exploiting the dynamic range, but the target of this imple-
mentation is to reduce the number of hardware multipliers of the FPGA that
are used for a single application. The results are resented for an implemen-
tation of an FFT kernel and show also significant improvements in the FPGA
power consumption, but the presented approach is much less flexible than
the Software SIMD as introduced in this chapter.

In all the above approaches, the application is restricted to the emulation of
homogeneous SIMD for powers of 2 on datapaths that do not support SIMD.
This related work does not consider the link to the minimal word-width infor-
mation from fixed point refinement and therefore assumes extra mask ope-
rations have to be inserted everywhere, which leads to smaller gains. Addi-
tionally, as no clear link is made to the range analysis part of the fixed point
refinement, in many cases, more guard bits are needed in order to prevent
overflows. None of the related work considers the packing of heterogeneous
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or non-power of 2 word-widths and most importantly, they do not provide a
solution for multiplications. As a result, the additional flexibility with respect
to traditional Hardware SIMD is small, which restricts the applicability of the
optimization to a small number of cases. Because of these restrictions, Soft-
ware SIMD is mostly considered to be applicable only for a very low number
of operations inside a kernel and the pack/unpack overhead is not decoupled
from the potential of the parallelization technique.

A constructive approach has been presented that describes how to exploit
fixed point refinement during parallelization, using Software SIMD. The tech-
nique differentiates between different types of operations and only adds extra
corrective operations where needed. Arithmetic, logic and relational opera-
tions are supported, including saturation in software, for unsigned positive
data. The overhead that is introduced by pack/unpack operations is estima-
ted separately in order to motivate a modification of the data-layout where
possible. As multiplications heavily reduce the efficiency of the Software
SIMD technique, a conversion method is proposed to convert a large number
of multiplications into other supported operations. This so-called strength
reduction will be discussed in Chapter 10.

9.6 Conclusions and key messages
of this chapter

Exploiting application information can have a large impact on the final per-
formance or energy efficiency of the implemented system. This chapter has
explored the potential of using word-width information during various map-
ping phases. In order to be able to quantify the effects of these optimizations,
word-width aware energy models have been developed for datapath com-
ponents. These models can also be used to steer optimizations that exploit
word-width variation in the datapath. As the potential impact of word-width
aware scheduling and assignment is restricted to the datapath logic only,
which is often not the most important bottleneck, these optimizations are not
explored further. Word-width aware parallelization, used as Software SIMD,
has effects throughout the system and is therefore explored in detail, using
two case studies. A first case study has explored the energy and performance
effects of exploiting word-width information to increase parallelization for a
simple sequential processor. A second case study performed a performance
exploration across different data word-width for an 8-slot VLIW processor.

This chapter has extended the sensitivity of ISS-based energy estimation to
cover variations in data word-widths. This extension allows designers to esti-
mate the impact of various word-width aware optimizations on their system
and to steer optimizations that specifically target energy reduction in the

272



Conclusions and key messages of this chapter

datapath logic. The improved sensitivity of these models was demonstrated
and has been proven essential to correctly evaluate the expected gains and
steer the optimizations (20% difference with non-word-width-aware conven-
tional approach). Word-width aware energy models can be generated using
the presented flow. The models can be coupled to existing Instruction Set
Simulators to generate fast and detailed estimates.

This chapter has shown the value of exploiting word-width information of
application data during application mapping. A systematic overview was pre-
sented, covering all relevant compilation phases, from the SIMD/Vectorisa-
tion step (introducing the novel SoftSIMD approach) that decides on the
parallelization down to the instruction selection, scheduling and assignment.
The concept of these optimizations was described and the expected gains
have been estimated. For instance, when applying the SoftSIMD for a MIMO
kernel, a reduction in energy consumption and an improvement in perfor-
mance of about 80%, when compared to using no SIMD, or of over 30%
when comparing to Hardware SIMD has been demonstrated.

Software SIMD is much more promising and can deliver significant impro-
vements over state-of-the-art Hardware SIMD implementations, due to its
larger flexibility in handling different and even heterogeneous word-widths.
However, if the algorithm contains multiplications, the applicability is com-
promised. Therefore, a conversion is proposed in Chapter 10. When deciding
to apply Software SIMD, the overhead of a more complex pack/unpack (with
respect to Hardware SIMD) and the additional overhead of extra operations
that are needed to prevent the overlap of data in neighboring sub-words,
should be taken into account. Additionally, a trade-off exists between re-
packing between different program phases (system scenarios [Ghe09]) and
using wider data word-widths.

The most important restriction to be able to apply this work, is the availability
of the required level of detail in the word-width information. If no informa-
tion is passed on, nothing can be exploited. Active research in this area is
looking promising. Partly automatic flows for data type refinement and fixed
point refinement have already been proposed [Nov09, Roc06, Wid95].
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CHAPTER 10

Strength Reduction of Multipliers

Abstract

This chapter presents a conversion technique for constant multiplications. The
targeted multiplication operations (or MULs), which form a significant part of
all MULs, are converted into (a number of) less complex, cheaper operations.
Multiplier strength reduction is a well-known technique in hardware synthesis
and has been used extensively for filter design in custom hardware. However,
the specific context of embedded processors presents opportunities and trade-
offs that have not been exploited before. The presented strength reduction
significantly extends current multiplier strength reduction in compilers and
can depend on a cost function in order to optimize performance, area, energy
consumption and even operator accuracy, according to the requirements of a
specific context. This approach enables the conversion of many more multi-
plications than are currently converted by state-of-the-art techniques. One of
the main ways to exploit this transformation has been described in Chapter 9
where the SoftSIMD concept strongly benefits from the conversion of hardware
multiplications into shift-and-add operations.
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10.1 Multiplier strength reduction: Motivation

Use-cases for multiplier strength reduction Multiplier strength reduc-
tion, if it is approached as a general problem, can be used to serve different
goals. Depending on the specific goal, the requirements and conversion trade-
offs change. The following paragraphs describe different instantiations of the
general conversion problem. This general scope, together with the systema-
tic representation and exploration of the full search space, still within the
context of embedded processor implementations, sets apart this work from
the related work.

Firstly, the MUL-conversion can be used as a stand-alone technique to
improve either the performance or the energy efficiency of an applica-
tion or kernel, or even to reduce the area of a processor by reducing the
number of multipliers. A speed-up can be achieved for kernels that have a
multiplication-related bottleneck, by converting the MUL operations into,
e.g. ALU operations. The ALUs are typically a less scarce resource, the-
reby improving the compiler freedom and reducing the schedule length.
Processors that are designed to achieve a high performance for these kernels
often provide many parallel MUL-capable PEs (e.g. [Bou08]), which is very
costly in terms of area. After performing a strength reduction on (part of) the
multiplications, the number of PEs that can execute a MUL can be reduced.
As the energy consumption of a multiplier is much larger than that of an ALU
operation, the conversion can also directly lead to energy savings. Examples
of all three types of improvements will be given in Section 10.4.

Secondly, the MUL-conversion can be one example of a word-width aware
ISA selection optimization when the word-width information would be used
to select one of various mappings to (a set of) operations, as was shown
in Figure 9.12. If the application domain contains a large set of constant
multiplications with small factors (not necessarily with constants), a cheap
multiplier implementation with restricted width can be specifically added
to handle those efficiently. Based on the word-width information of the
constant, the compiler can select this FU over a more costly one.

Thirdly, this technique can be used as an enabling step for optimizations
that can only be applied to multiplier-free code (or for which multiplications
are too expensive to handle), like the Software SIMD that was presented in
Chapter 9. By replacing the MUL operation with other, less complex opera-
tions, more freedom is generated for other optimizations and improvements
on performance or energy efficiency can be achieved. It is essential to re-
cognize the enabling character of the conversion, as in that case the MUL-
conversion should even be applied in cases where e.g. a performance penalty
is realized, as long as the following optimization will move the design back
to a more optimal point. This aspect is not covered in the related work.
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The applicability of the work presented in this chapter as an enabler for Soft-
ware SIMD was demonstrated in Section 9.4.4. All multiplications from the
FFT kernel are successfully converted into ALU operations.

One more aspect that can heavily influence the conversion cost is the im-
plemented operator accuracy. When the decision is made to convert a single
MUL into a series of cheaper operations, the natural opportunity arises to
limit the number of post-conversion operations. If the application accuracy
requirements are taken into account, the inserted error that is the result of
this restriction can be acceptable. These optimizations can lead to significant
area and energy reductions.

The rest of this chapter is organized as follows. Firstly, an overview is
presented of the different types of multiplications and which part is tar-
geted in this work, together with a motivational example for strength re-
duction in the context of performance improvements (Section 10.2). Then
the global conversion space is systematically covered (Section 10.3). This
space covers all above discussed contexts. The experimental section of this
chapter (Section 10.4) focuses on using the MUL conversion as a stand-
alone technique for a set of relevant applications. Different applications
require different conversion strategies and examples are presented of both
exact conversions, as well as conversions in combination with a trade-off on
operator accuracy.

10.2 Constant multiplications: A relevant sub-set

Even though the replacement of a multiplication with multiple other opera-
tions seems to have a negative effect on both performance and energy effi-
ciency, often the opposite can be achieved. This section will motivate how
to use the MUL-conversion to improve performance on parallel embedded
processors. The case for energy reduction is similar but even more opportu-
nities are present there when also distributed loop buffers (see Section 3.6.4)
and advanced power gating are used. Parallel embedded processors provide
a set of parallel Processing Elements or PEs to reach the required perfor-
mance. In order to be energy and area efficient, most processors are hete-
rogeneous: not all PEs provide the same functionality and each contains a
set of FUs, depending on the application domain. PEs that support multipli-
cations (MULs) are expensive, in cycles, energy and availability (they can
be a bottleneck resource). State-of-the-art VLIW processors that can execute
eight operations in parallel, most often only support two multiplications to
be started in a single cycle, while they support up to 8 add-based opera-
tions in parallel (e.g. most of the TI processors do [TI06, TI00, TI09c]). Du-
ring the execution of compute intensive kernels, this can become a severe
bottleneck.
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Strength reduction for constant multiplications can convert a subset of these
MULs into less expensive operations. This chapter describes the complete
conversion space and a technique for strength reduction of multiplications
by an integer emphconstant at compile time. By converting these multipli-
cations into a series of equivalent cheaper operations, the bottleneck can be
removed. More specifically, a conversion into shift and add operations will be
used to explain the different conversion techniques. Other target operations
are possible however and will be discussed as part of the conversion space.
Some optimized results will be shown in the experimental Section 10.4. A
large amount of related work exists on the strength reduction of multiplica-
tions by an integer constant and a detailed comparison with that work will
be presented in Section 10.5.

Current state-of-the-art deals with only a subset of all possible conversion me-
thods, uses only performance as a cost-function and, most importantly, does
not consider the underlying specific requirements and opportunities of the
embedded processor context, e.g. the VLIW instruction set. This chapter does
take those requirements into account and presents a systematic description
of the complete exploration space. The presented conversion technique uses
a heuristic in combination with multiple decomposition methods to obtain
the cheapest conversion with respect to a cost function (e.g. performance).
Instruction set extensions are proposed to obtain more efficient conversions.

The results show that for many applications a high percentage of multipli-
cations can be converted. The introduced technique achieves a significant
strength reduction in almost all cases. The technique achieves a speedup of
15% for a motion compensation kernel (MC) from the mpeg2 decoder, which
translates to a 6% performance improvement for the complete application.
Trading off accuracy to implementation cost by taking into account the ap-
plication accuracy requirements can lead to larger gains. This aspect can be
coupled to the processor architecture exploration, where an over-all reduc-
tion of the number of application multiplications can lead to a reduction in
the number of hardware multipliers that need to be provided in the processor.
When the hardware that is freed by this reduction can be used for additio-
nal ALU slots, performance increases of up to 30% can be demonstrated, as
shown in Section 10.4.

10.2.1 Types of multiplications

In the compute intensive kernels of heavily optimized embedded appli-
cations, multiplications are often competing for resources and can be
a bottleneck while other resources are under-utilized. However, many
multiplications are in fact constant multiplications, which can be conver-
ted at compile time. Traditionally, these multiplications have been a target
for removal by compilers.
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In general, multiplications can be of five types.

• Type 1 between two variables (var1 ∗ var2). This type can not be de-
composed at compile time and is not the target of this work. Especially
in a wireless communications context, many multiplications that are
seemingly of this type can be traced back to a set of constant para-
meters that change depending on the modulation scheme or coding
rate. However, using techniques like scenario’s [Man10], these MULs
that are currently considered to be variable, can be treated as constant
multiplications and move to the other categories.

• Types 2, 3 and 4, namely cons1 ∗ cons2 (cons for constant), induction
variable ∗ cons and var ∗ 2n, are completely known at compile time
and will be expanded by state-of-the-art compilation techniques. The-
refore, these multiplications are considered to be already removed and
the results that are shown in the rest of this chapter do not include
multiplications of types 2, 3 and 4.

• Type 5, var ∗ cons MULs, can be broken down, e.g. into a sequence of
shift and add operations. However, the standard MUL-conversion can
be done using a range of techniques of which no single technique is
always better than the others.

Figure 10.1 shows that the percentage of MULs of type 5 to the total num-
ber is significant for a representative set of benchmarks from spec (Standard
Performance Evaluation Corporation), mediab (Mediabench) and our internal
benchmarks from the multimedia and wireless communication domains. This
experiment was conducted using the COFFEE Tools [Rag08b], which includes
the conversion mentioned above. The results show the ratio after the multi-
plications of types 2, 3 and 4 have been removed by the compiler.

Figure 10.1: Ratio of constant MULs (of type 5) to total number of MULs
(type 1 + type 5), counted during execution (dynamic)
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Most existing conversions start from a specific context or optimization goal
and propose a conversion based on fixed criteria, intended for a specific
context (e.g. MULs in digital filters for ASICs). This leads to rather rigid res-
trictions and heuristics (e.g. only convert if the total number of inserted new
operations is less than 3), which leads to a rather low number of effective
conversions. Additionally, these approaches do not exploit the trade-off op-
portunities between performance, energy and other metrics that might be
important in the embedded systems context.

Aspects of the conversion, or that influence the conversion, which are mis-
sing in the state-of-the-art, are added to the conversion space. Examples
are given of how they can potentially improve the conversion. More spe-
cifically, three new aspects are added. Firstly, the link with the underlying
processor implementation is taken into account explicitly, as this heavily in-
fluences the conversion cost. The instruction set can be extended, making
this technique an input to the architecture exploration. Secondly, a method
to trade off the implementation cost of the MUL with the accuracy is added,
which allows to reduce the number of operations in case the application can
tolerate the introduced error. Finally, a cost-function driven conversion is pro-
posed to give designers control over the involved energy-performance-area
trade-offs and potentially push the conversion technique such that all MULs
in a certain kernel are converted, even at an extra cost, if this would enable
additional optimizations afterward.

In conclusion, this section presents a technique for strength reduction of
MULs of type 5 at compile time: expensive constant MUL operations are re-
placed with cheaper/weaker ALU operations.1 A systematic description of the
complete relevant conversion space enables this work to differentiate with
respect to the state-of-the-art in the following aspects:

• Use of a heuristic-based search that takes the platform costs and op-
timization targets into account (e.g. special ISA-extensions, the use of
the conversion as an enabling step, minimize register file accesses).

• Enable a trade-off between implementation cost and operator accuracy.

• Link to architecture exploration through the reduction of the required
number of multiplier slots and ISA extensions.

As a result, many more (or different) multiplications can be converted than
are currently converted by state-of-the-art techniques.

1The results shown in this work consider an operation to be cheaper/weaker if more PEs sup-
port this type of operation (defined in Section 10.4). This definition is for illustrative purposes
only. This definition can be extended to include a weighted function of energy, performance and
area or any other metric.
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10.2.2 Motivating example

Strength reduction [Muc97] is a well-known compiler technique which
replaces costly operations with cheaper ones. Various types of strength re-
duction for constant multiplication exist.

Most state-of-the-art compilers replace multiplications of types 2, 3 and 4 (as
introduced in Section 10.2.1) and a subset of type 5 MULs that are easy to
convert (e.g. (2n + 2m) or MULs with small constants that convert into less
than three shifts and adds). After removing these, Figure 10.1 shows that the
number of MULs type 5 is still significant for a large number of benchmarks.
While in some benchmarks the ratio of constant MULs to all MULs is low, they
are often part of kernels and can still form a bottleneck. Therefore, more ad-
vanced strength reduction techniques can be considered to reduce this type
of multiplications. These techniques however should not only be more advan-
ced in the conversion they perform, but also in selecting the best conversion
strategy for the specific context. Which conversion method to apply or even
if the conversion should be applied at all (in some cases the multiplier is still
the best choice), can heavily depend on the optimization target (e.g. improve
performance, even at the cost of an increase in energy) or the type of pro-
cessor (e.g. very parallel, with many PEs and some space in the schedule to
accommodate extra operations vs. not so parallel).

Typically, an 8-issue VLIW processor, as is shown in Figure 10.2a, contains
only two slots that allow multiplication (e.g. slot 1 and 5), while an ALU
operation can be performed in any slot. This is similar to the .M1 and .M2
of the TIC320C64x [TI00]. These expensive multiply slots can easily be-
come the bottleneck while executing kernels. One such schedule is shown
in Figure 10.2b, showing ALU operations as [1–8] and MULs as [A–D]. The
schedule contains MUL operations of two types: between one variable and
one constant (A and C, can be handled by our conversion) and between two
variables (B and D cannot be removed at compile time).

a)  Target processor
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Figure 10.2: Example of the effect of strength reduction and slot availability
on performance
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Figure 10.2c shows a schedule where A and C have been converted. Since the
inserted ALU operations (A1, A2 for A and C1, C2, C3 for C) can be executed
in any slot, previously unused and less scarce resources can be used. The
multiplication is no longer the bottleneck and the denser schedule leads to an
improved performance (the schedule length is reduced by one cycle). Current
compilers only support a fixed conversion that does not allow to explore this
opportunity. This chapter shows that, by exploring the complete search space,
an efficient conversion can be performed (see Section 10.3).

As part of this motivating example, a flat conversion (all constant multiplica-
tions are converted, unconditionally) has been performed for all applications
of Figure 10.1. This experiment has been performed using the COFFEE com-
piler, which has been modified to detect the constant multiplies and appro-
priately report the required number of operations required after conversion
(details on the conversion will be presented in Section 10.3).

Figure 10.3 shows the average number of operations inserted per constant
multiplication per application, comparing the code that is using multipliers
(original) with the result of a conversion to normal shift and add instruc-
tions (with ALU) and two types of special operations which allow a more ef-
ficient conversion (SA and SSA respectively). More details on the different
ISA extension possibilities are discussed in Section 10.3.4. The plot has been
normalized to the number of constant multiplications in the corresponding
benchmark. It can be seen that in most cases the conversion of the constant
multiplication resulted in inserting two to four operations. In case of cjpeg
and djpeg, it was observed that the constants that are used for the multipli-
cation are large and therefore the number of operations that are needed is
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Figure 10.3: Average number of new operations inserted after the conversion,
per MUL (original), using different specialized instruction variants (standard
ALU vs. SA vs. SSA)
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also large. In such cases, it may be desirable to still use the multiplication,
as a few multiplier slots will still be available. This decision should be steered
by the cost function.

As the number of inserted operations does not take into account the number
of slots that support that specific operation, a more abstract strength metric
has been defined as follows:

Resource-aware Strength The resource-aware strength, called strength
from here on, of an operation is defined here as the reciprocal of the num-
ber of functional units that can perform the operation. This definition of
strength2 is an area/performance oriented criterion, used here in the context
of parallel processors and performance improvement. Other criteria can be
defined specifically for performance, based on the critical path or for energy,
based on the energy cost of the operations. In case two slots of the VLIW
can perform multiplications, the strength of a multiply operation is equal to
1/2 = 0.5. The strength of an ALU operation is then 1/8 = 0.125.

Figure 10.4 shows the effective strength reduction that was achieved using a
flat conversion. The graph is normalized to the strength of all constant mul-
tiplications for the corresponding benchmark. It is assumed that the SA and
SSA operations can be executed in any of the eight slots, which is reaso-
nable, given the limited area overhead, as is detailed in Section 10.3.4. It
can be seen from Figure 10.4 that in some cases (5 out of 11) the strength
of the multiplication is already reduced when an ALU operation is used.
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Figure 10.4: Resulting strength reduction for different specialized instruction
variants for a brute force conversion

2In literature, no consistent definition for strength can be found, due to the context specific
use of strength reduction in general. The consensus is that strength reduction is a technique that
improves compiler-generated code by reformulating certain costly computations in terms of less
expensive ones. Therefore the definition of strength depends on the optimization criteria that
define the cost.
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The conversion is done in a brute force way. Therefore, the net strength after
conversion can be higher (cjpeg, mpeg2dec). In case the extended instruction
set is used, a significant reduction in the strength can be achieved in almost
all the cases (9 out of 11). On average over all the benchmarks, the strength
is reduced by 30% after converting constant MULs to ALU operations.

Overall, the positive effect on performance of this conversion depends on
two aspects. Firstly, the multiplication should be a bottleneck resource and
secondly, free space should exist in the schedule to accommodate the inserted
operations. More detailed performance results are presented in Section 10.4,
but first the conversion space is introduced.

10.3 Systematic description of the global
exploration/conversion space

The complete relevant conversion space is described in this section, with res-
pect to six different aspects, represented by the tree in Figure 10.5. The first
branch contains Primitive Methods, which are techniques that completely
reduce any given constant multiplication directly into a sequence of opera-
tions of lower complexity. A second branch, Partial Methods, contains me-
thods that reduce the given constant into smaller constants of which some
potentially can be converted more efficiently. To further convert the smaller
factors into a series of less complex operations, a primitive technique has
to be used. The Coding branch indicates various encoding schemes or re-
codings that can be considered for representing the constant. Depending on
the selected coding, the primitive methods will produce a different conver-
sion with a corresponding difference in cost. The fourth branch covers the
relation to the platform: the ISA Extensions branch specifies the opera-
tions that are available on the platform. In the following text, it is assumed
that the default case for this tree is the conversion to a sequence of shifts
and adds. Potentially, more complex operations can be added to improve the
conversion efficiency. The Optimization Techniques branch contains some
transformations that can be applied to a conversion. The final branch covers
the Implementation Cost versus Accuracy T rade − off , the modification
of the exact constant value in order to reduce the conversion cost.

Primitive
Methods

Partial
Methods

Coding ISA
Extensions

Optimization
Techniques

Implementation Cost
vs. Accuracy Trade-off

Figure 10.5: Overview of the constant MUL conversion space
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Note that any branch can be combined with any other, and the final shift/add
decomposition is only fixed after deciding on all six aspects. The conversion
tree describes the complete conversion space. We propose to use a search
strategy to cover this space, and to select the cheapest conversion given a
cost function (e.g. performance, energy, etc.).

10.3.1 Primitive conversion methods

Primitive methods systematically convert a constant into a sequence of shifts
and adds (see Figure 10.6). Two main approaches can be identified based on
the parallelism of the produced conversion. The first method, called Bitwise,
is the most parallel one and generates shifts for every separate non-zero bit of
the constant based on the position of that bit in the word. Those intermediate
results are then combined into the multiplication results using adds (two
by two). The second method, called Recursive, generates the shifts in an
iterative way based on the relative position of the non-zero bits with respect
to other non-zero bits. In this approach, every shift starts from the previous
intermediate result, which leads to a more sequential conversion. Hybrids
between these two methods can be formed. represented as a binary word
(or an other coding), which can be the complete constant, or the result of a
partial method.

The examples presented here apply left or up shifts. However, a similar ap-
proach can be followed by using right or down shifts. An example of this
will be given in Section 10.3.6 to illustrate the impact of this choice on the
accuracy of the results.

10.3.1.1 Bitwise (or parallel) method

The Bitwise method (see Algorithm 2) inserts shift operations that shift
the variable over a number of positions, indicated by the shift vector

Figure 10.6: Primitive conversions convert the input constant completely into
a set of target operations
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Algorithm 2 Bitwise Method
Input: Multiplication: var × constant

{Move over bits of constant from LSB → MSB side}
1: pos ⇐ 1{Keep track of position of bit}
2: while bits left in constant do
3: if bit(pos) =1 then
4: var � pos

{Insert Shift operation}
5: pos++
6: Continue to next bit
7: else
8: pos++
9: Continue to next bit

10: end if
11: end while
12: for all Inserted Shift operations do
13: Add pairwise to get final result

{Insert Add operations}
14: end for
15: return Sequence of Shifts and Adds

(sh1, sh2, etc. in Figure 10.11), that corresponds to the position of that
respective non-zero bit, moving over the constant from the LSB (Least Signi-
ficant Bit) side to the MSB (Most Significant bit) side. The partial results are
pairwise added, until the final result is obtained.

This method typically results in rather large shift vectors (of maximum size
equal to the word-width of the data, e.g. 32), but all these shifts can be per-
formed in parallel (depending on resources). The minimal number of cycles
needed for a constant with N non-zero bits is (�log2(N − 1)�+ 2) cycles. The
parallel nature of this method (see Figure 10.11a) produces good results
when the cost-function tries to optimize performance (minimize latency).

10.3.1.2 Recursive (or sequential) method

The Recursive method (see Algorithm 3) moves over the bits of the constant
from MSB to LSB and (except for the first non-zero bit) inserts a shift every
time a non-zero bit is found, with a shift vector equal to the number of bits
between the previous and the current non-zero bit, plus one. The variable is
added to the result of the previous shift operation and then used as input for
the next shift. This method produces a sequential series of operations (see
Figure 10.11b), but the shift vectors are on average smaller than those pro-
duced by the bitwise method (although no direct guarantee can be provided
on the maximal size). Therefore, this method is better suited for VLIW pro-
cessors that support cheap small shift vectors and hence can be more area
and energy efficient (e.g. due to reduced loop-buffer requirements). As the
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Algorithm 3 Recursive Method
Input: Multiplication: var × constant

{Move over bits of constant from MSB → LSB}
1: while bit = 0 do
2: Continue to next bit
3: end while{Reached first non-zero bit}
4: count ⇐ 1 {Count number of 0-bits}
5: temp ⇐ var {Keep intermediate result}
6: Continue to next bit {Skip first 1-bit}
7: while bits left in constant do
8: if bit = 0 then
9: count++

10: Continue to next bit
11: else
12: temp ⇐ (temp � count) + var

{Insert Shift and Add operations}
13: count ⇐ 1 {Reset counter}
14: Continue to next bit
15: end if
16: end while
17: if count > 1 && LSB = 0 then
18: temp = temp << (count-1)
19: end if
20: return Sequence of Shifts and Adds

partial results of every shift-add pair are used as the input for the next shift,
the minimal number of cycles needed for a constant with N non-zero bits is
2N − 2 (2N − 1 if the LSB bit = 0).

Although there is a clear difference in the minimal number of cycles that is
required for both primitive methods (O(log2(N)) for Bitwise and O(N) for
the Recursive approach), the number of operations that is required is equal
for both methods, namely N Shifts and N−1 Adds. In case the most LSB-side
bit is non-zero, one Shift less is required, leading to a total of N−1 Shifts and
N −1 Adds. In both cases, the number of operations follows O(N). However,
the style of shifts is different (as mentioned above), with smaller shift vectors
for the Recursive method.

The primitive methods generate different conversions, depending on the co-
ding that is used (see Section 10.3.3). The final cost depends on the plat-
form ISA (see Section 10.3.4). So, all combinations of these branches can be
considered.

10.3.2 Partial conversion methods

A second branch of the search space is formed by different methods
that handle parts of constants efficiently, represented by Figure 10.7. The
splitting, here called Factoring, can be done following two approaches:

287



Strength Reduction of Multipliers

Figure 10.7: Partial methods split the input into a set of less complex
constants

Multiplicative Factoring or Additive Factoring (explained below). Once
the split is performed, each factor can be handled separately using a primi-
tive method. A partial method is beneficial if the cumulative cost in terms of
energy or cycles, needed for the conversion of all factors, is smaller than for
a primitive method. This subsection discusses the only two available types of
factoring that can be used for mainstream arithmetic, namely multiplicative
and additive factoring. Also, in this case, hybrid approaches are possible, by
recursively using different split decisions on a constant.

10.3.2.1 Multiplicative factoring

In multiplicative factoring (which corresponds to traditional factoring), the
constant is broken down into its factors (const = cons1 ∗ cons2 ∗ · · · ∗ consn).
Potential candidate factors can be found by first splitting the constant into
prime factors (see Algorithm 4). As the final cost of the conversion needs to
be minimal, it is beneficial to look for larger good factors first. Good factors
are defined as factors that can be converted efficiently. Therefore, combina-
tions are generated using the prime factors, and sorted in descending order.
They are converted if they are of the form (2n) or (2n ± 1), which leads to a
single shift or a shift and an add only. Other good factors that can be selected
are (2m± 2n), two shifts and one add, and so on. Which good factors to look
for and how they are preferred or discouraged by the cost-function depends
on the underlying VLIW instruction set (see Section 10.3.4).

Consider the example of Figure 10.8: var ∗ 45. The binary representation of
45 is 101101, which leads to three shifts and three adds, when directly using
a primitive method (N = 4). However, when 45 is factored into 3 ∗ 15, a
more efficient conversion is possible, using a temporary variable: temp =
[(var � 4) − var], because 15 = 24 − 1, to first generate var ∗ 15. This
result, temp can then be multiplied with 3, by doing (temp � 1) + temp,
because 3x = 2x + x. This takes only two shifts and two adds (subtract) in
total. However, the minimal depth of the dependency tree has increased from
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Algorithm 4 Multiplicative Factoring
Input: Multiplication: var × constant
1: Break down constant into prime factors
2: Sort factors in ascending order
3: temp ⇐ var {Keep intermediate result}
4: twocount ⇐ 0
5: while current factor = 2 do
6: twocount++
7: Remove 2 from list of factors
8: Go to next factor
9: end while

10: temp ⇐ (temp � twocount)
{Insert Shift for factor 2twocount}

11: factor[n] {array of remaining factors, n in total}
12: for i = n downto 1 do
13: comb[k] = set of Ci

n of factor[:]
{comb[k] is array of combinations, k in total}

14: Sort comb[k] in descending order
15: for j = 0 to k do
16: if comb[j] is of form (2x + 1) or (2x − 1) then
17: Remove contributing i factors from list
18: temp ⇐ (temp � x) + temp or

temp ⇐ (temp � x) − temp resp.
{Insert Shift and Add (Subtract)}

19: goto 11
20: else if Test for more interesting forms here then
21: Insert corresponding Shift and Add
22: end if
23: end for
24: end for{No more good combinations found}
25: for all factor[k] with k = 1 to rem factors do
26: min(Bitwise(temp, factor[k]),

RecursiveMethod(temp, factor(j)))
27: Insert corresponding number of Shifts and Adds
28: end for
29: return Sequence of Shifts and Adds

3 to 4 in Figure 10.8. The effect of this increase on the required number of
cycles depends on the number of parallel slots in the architecture and on the
use of techniques like software pipelining.

10.3.2.2 Additive factoring (word splitting)

Another possibility of splitting constants into parts is to split the binary word
into different parts by selecting for every 1-bit into which part it is put,
e.g. splitting 101101 into 101000 and 101. Interesting parts to handle se-
parately are the targets for the optimization techniques of Section 10.3.5,
e.g. repeated bit patterns, for which the conversion can be re-used. In ge-
neral, more complicated splits can be made, e.g. 101101 into 100100 and
1001, in which the non-zero bits in both parts are in non-distinct sub-words.
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Figure 10.8: Comparison of two conversion options for var ∗ 45, trading of
the number of operations for the minimal latency

By identifying the interesting parts to split off, called good additive factors,
the number of operations can be reduced. As with multiplicative factoring,
which good factors to look for and how they are preferred or discouraged
by the cost-function depends on the underlying VLIW instruction set (see
Section 10.3.4). Therefore, the algorithm to exploit additive factoring is not
described in general here, but the following classes can be targeted:

• Repeated bit patterns: Form a target for Common Sub-expression Eli-
mination or CSE (as explained in Section 10.3.5)

• Long runs of 0’s: Selectively reduce the size of the shift vectors used in
the following conversion of the MSB part(s)

• Equidistant splits into parts: Uniformly reduce the size of all shift vec-
tors to a size equal to largest supported shift distance in the hardware

The experiments presented in Section 10.4 only make use of additive facto-
ring in the context of CSE.

10.3.3 Coding

A third aspect of the MUL-conversion methods is the coding that is used
to represent the constant, represented by Figure 10.9. In ASIC designs, it
is well-known that the choice of encoding has an impact on the implemen-
tation of multipliers and the number of shifts and adds required internally.
In [Hew00], the usage of Canonical Sign Digit (CSD) representation is dis-
cussed. [Par01] introduces a Minimal Signed Digit (MSD) representation.
In [Pat98], the authors discuss the usage of Booth encoding.

290



Systematic description of the global exploration/conversion space

Figure 10.9: Different encodings result in a different number of non-zero bits
and different optimization opportunities

In the context of processor implementations, this aspect directly translates to
the number of operations that are needed after conversion. When a constant
is represented by its binary coding, the conversion of the constant multipli-
cation to shifts and adds requires a number of shifts equal to the number
of non-zero bits (see the primitive techniques). By allowing subtractions (re-
presented by −), fewer shifts are required. The CSD form is represented by
using 1 for addition and − (instead of −1) for subtraction. For example, the
multiplication by 27 (11011 in binary), can be rewritten as 100− 0−, which
corresponds to ((32) + (−4) + (−1) = 27). This requires fewer shifts and
adds/subtracts than the binary case. Re-coding the binary constant in to a
CSD representation, uses the subtraction and at the same time guarantees
that only the minimal possible number of non-zero bits is used. A CSD form
is unique (a number has only one CSD representation), thanks to the ad-
ditional restriction that no two neighboring bits are both non-zero. When
this extra requirement is removed, but the number of non-zero bits is still
minimal, the representation is called MSD (this is not a unique represen-
tation any more). In the context of this work, the MSD representation will
normally be preferred as it provides more flexibility and reduces the total
word-length (e.g. 11001 is one bit less than the CSD form 10 − 001). In
state-of-the-art compilers, CSD is often used as the coding of choice, as it
leads to the smallest number of operations for complete conversion of the
constant. In this work, the target is a conversion with a minimal cost, which
also depends on the underlying VLIW hardware. Therefore, the trade-off
is not that simple. The combination with partial methods could mean that
e.g. the binary or MSD representation could give better opportunities for
CSE. Therefore, all coding variants can be considered. Booth coding provides
similar opportunities by handling pairs of bits together.

10.3.4 Modifying the instruction-set

The branch of Figure 10.10 shows some potential hardware implementa-
tions (FUs) for the multiplication operation. The Platform ISA tree is not
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Figure 10.10: Different instruction-set extensions can reduce the conversion
cost

fully systematically explored here, but we provide some example hardware
options that are relevant to the embedded VLIW processor domain (e.g. using
standard Shift and Add operations or combinations of those). The availability
of special FUs heavily influences which conversion strategy should be follo-
wed, as it impacts the cost function when exploring the search space. The
next section will describe some potential instruction set extensions that can
improve the result of the conversion of constant MULs.

Instruction set extensions The strength reduction algorithms described in
the previous sections produce sequences of shifts and adds. The produced
sequence, represented by its data-flow graph or DFG, depends on the exact
combination of primitive and partial techniques that was selected for a cer-
tain constant. This DFG still can be scheduled and assigned in different ways.
Additionally, it is possible to modify/extend the instruction set of the archi-
tecture to better match the produced DFGs and in this way reduce the cost
(e.g. improve the performance).

Given the case that no special FUs have been added to improve the efficiency
of the conversion, the add and shift operations will be executed in the ALU
unit (standard 32-bit ALU area=8,176 μm2 for a UMC 90 nm Standard Cell
technology). One of the recurring subgraphs that are formed using the recur-
sive method is marked using a striped box in Figure 10.11b. Most instruction
sets contain a single instruction which can execute a shift and add opera-
tion in a single cycle. As an ALU unit typically already consists of both the
logic for the Add as for the Shift, providing a combined Shift-Add operation
requires very little extra hardware. In the rest of the paper this functional
unit is referred to as SA. The SA operation can be executed on the ALU.
For the bitwise method, the common recurring subgraph is shown using a
striped box in Figure 10.11a. This operation requires three inputs and pro-
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Figure 10.11: Bitwise and recursive method: The striped boxes show a re-
curring subgraph for both methods that can be implemented in a special FU,
here called SSA and SA for (a) and (b) respectively

duces one output. The Shift vectors can be register allocated or encoded into
the instruction. We refer to this functional unit as SSA (extended ALU, in-
cluding SSA, area=10,620 μm2, due to an extra shifter). The area numbers
should be compared to the area of a 16-bit multiplier, which is 25,846 μm2,
which shows that providing the SSA is affordable, most importantly because
most of the needed hardware is already available in the ALU and the extra
overhead is limited. These numbers also indicate that, purely from an area
perspective, it is not unreasonable to consider the possibility of adding extra
ALU slots (in this case 2, including SSA support, can be adder per removed
MUL) if the MUL-conversions can be used to reduce the number of MUL slots
in the architecture (see the experiments in Section 10.4.4).

10.3.5 Optimization techniques

Some optimization techniques allow to efficiently convert constants or
parts of constants and can be used together with the partial methods (see
Figure 10.12). In general, the optimization techniques try to directly reduce
the cost of the conversion by reducing the number of operations or indirectly,
by modifying the DFG to match the ISA better, thereby reducing the number
of instructions.

A common target for this type of manipulations is to apply Common
Subexpression Elimination (CSE). In this case, repeated bit-patterns in
the constant can be identified and can be combined to form the full constant,
e.g. in combination with additive factoring. One example is 101101, which
can be split into 101 and 101, the common sub-expression. To get the origi-
nal constant, the extra shift is needed to move the first part to its original
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Figure 10.12: The total conversion cost can be reduced by applying optimi-
zations across operations

position, 101000. For var ∗ 101, one shift and one add are needed, using a
primitive method. This result is then shifted over three positions, leading to
var ∗ 101000, to which var ∗ 101 is added again, resulting in var ∗ 101101, in
a total of two shifts and two adds, instead of the six operations needed by
directly using a primitive method.

Another interesting pattern to split off are Runs of 1′s, which is actually
the additive factoring equivalent of (2n − 1). This case is handled automa-
tically when using a CSD encoding, but can be applied selectively in other
encodings. For example when performing var ∗ 111111, the 111111 can be
converted to 1000000− 1, which leads to only one shift and one subtraction,
instead of six shifts and five additions using the primitive methods.

Independent of the chosen conversion method, a combination of partial and
primitive methods, the resulting DFG can also be manipulated, e.g. to match
the available hardware. One example of this kind of optimization techniques
is to move common shift vectors down the conversion tree, as is shown in
Figure 10.13

In principal, the full range of algebraic transformations (associativity, com-
mutativity, etc.) are possible. A complete formal categorization of this space
is part of future work.

10.3.6 Implementation cost vs. operator accuracy trade-off

This section discusses the trade-offs related to the accuracy that can be ex-
ploited when using constant multiplication strength reduction. Three aspects
of this trade-off come into play here. Firstly, the controlled introduction of er-
rors can be exploited to reduce the cost of the conversion. Secondly, different
techniques can be used to control the width-expansion that can occur when
multiplying. Thirdly, a difference exists between applying this for scalar data
and the usage of the strength reduction in a Software SIMD (or other data
parallel) context.
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Figure 10.13: The DFG of the conversion tree can be transformed to match
the underlying hardware, e.g. if a shifter that supports only small shift vectors
is available. The Bitwise conversion of (a) is transformed to (b) by moving
down the shift over two positions. The fully sequential version (c) is obtained
by moving the common shift over five positions

10.3.6.1 Trading off accuracy with performance

The conversion of a multiplication into a sequence of e.g. shifts and adds can
be used to trade off the operator implementation cost with the accuracy of the
results. By matching the application requirements to the MUL-conversion, in
many cases, the effective cost of the conversion can be reduced. Depending
on the chosen technique and on how the conversion will be used, different
costs and trade-offs come into play.

As the conversion methods that have been discussed in this chapter produce
a sequence of operations for each converted multiplication, a natural way to
reduce the cost is to restrict the number of operations used in the conversion
and to truncate that sequence. Figure 10.14 shows an example of the Bitwise
conversion (a), in which the smallest shift vectors are removed (b). This
leads to an error on the produced product, but depending on the application
requirements, this error can be tolerated in specific contexts. In the following
example, a constant (773) is changed to another cheaper constant (768),
because fewer non-zero bits lead to less operations after conversion.

Original MUL Result of Truncation

var ∗ 773 var ∗ 768
binary 01100000101 binary 01100000000
CSD 10-00000101 CSD 10-00000000
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Figure 10.14: Accuracy vs. implementation cost trade-off, by restricting the
number of shift operations. In this example, the smallest shift vectors are
removed for a Bitwise conversion

Figure 10.15: The implementations cost of a constant MUL can be traded off
with the application performance

Alternatively, the constant can be modified directly (without first deci-
ding on a conversion and then restricting the total number of operations)
to a different good constant, meaning it can be efficiently converted (see
Figure 10.15). The difference with truncating the conversion tree, is that
other techniques can be used to decide which other constant is interesting,
e.g. based on CSD coding (a larger constant can be interesting) or CSE,
which changes the conversion tree completely.

10.3.6.2 Preventing width expansion of multiplication results

Another aspect that affects the implementation cost of multiplications, is the
decision on the word-width that is used internally and at the output of
the MUL operation. This section will cover some possibilities and highlight
the trade-offs in the context of the conversions.
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Multiplication with a double width result In general, the result of the
constant multiplication can be the sum of the widths of both input operands
(e.g. a product of inputs of width w produces a result of width 2w). In a rea-
listic implementation, however, the width is not allowed to increase without
restriction over time, so the result will be shifted back (mostly into the word-
width of the inputs, as shown in Figure 10.16a). Therefore, some accuracy is
lost when shifting back to width w.

Many DSP implementations support only multiplication that are half the
width of the other operations, e.g. w/2 as shown in Figure 10.16b. In that
case, the input operands are truncated and the cost of the multiplication
is reduced, but an additional reduction in accuracy has to be taken into
account.

In order to get the same result after strength reduction, the first possibility
(for scalar operations) is to provide a functionality equivalent to version (a),
which means the intermediate results are of increasing widths and shifting
back is done afterward, as in case of the multiply. Figure 10.16c then corres-
ponds to the use of SSA hardware that internally uses wider registers to allow
the width expansion and produces a double width output. Note that the com-
plexity is still much less than that of a multiplier, as the number of partial
products for the SSA operation is restricted to two only, while for a multiplier
this scales with the word-width of the multiplicand. This corresponds to the
fact that a multiplier can execute any multiplication of the supported width,
while the SSA hardware only supports constant multiplications that can be
converted into only two shifts and one add.

However, this approach (allow the double width internally) increases the
cost of the SSA implementation and, in many cases, this extra cost is not
needed, as the extra precision is not required and the accuracy reduction can

w w

2w

>>
w

w w

2w

>>

SSA

w

w w

w

SSA

w/2 w/2

w

a b

c

SA

a b c d e

Figure 10.16: The word-width requirements of produced outputs, with
respect to the inputs, and the implications for the accuracy depend on the
implementation of the strength reduction. Different versions have different
trade-offs with respect to their cost and usage restrictions
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be tolerated by the application. This is especially true if the accuracy is traded
off further to reduce the conversion cost, by restricting the inserted number
of operations, as has been discussed above.

The increase in width can be avoided by propagating the shift that comes
after the multiplication up using transformations, as shown in Section 10.3.5.
As a result the output width of the SSA is immediately the required width
and the extra shift is removed (Figure 10.16d). When using more parallel
conversion methods, this can generate additional errors, because some bits
will be shifted out of range before they can cause a carry. However, in many
cases, this additional error can be tolerated and will still lead to results within
spec. This is e.g. true for many applications from the wireless communication
domain, as they are designed to cope with non-perfect channel conditions.

By taking the output width into account during the conversion and when
using a sequential conversion strategy (all carry bits get the chance to propa-
gate), the same results as for a multiplication can be obtained (Figure 10.16e,
illustrated by an example in Figure 10.17), which will be explained below.

Strength reduction for Software SIMD Using a conversion strategy where
the width of the intermediate results is allowed to increase will lead to pro-
blems in any data parallel approach where words are used that are a concate-
nation of sub-words, but even more so in a Software SIMD approach, as bits
will eventually ripple to the neighboring sub-words. Therefore, extra care has
to be given to the conversion in this context.

For Software SIMD, multiple solutions can be used to handle this problem.
As a first possibility, as was used as a requirement throughout Section 9.4,
the output requirements of the sub-words can be propagated to the input pa-
cking. This corresponds to the assumption that the word-width requirements
of sub-words stay constant during the execution of a kernel (worst case or
worst case during a phase when linked with scenarios). This approach, shown
in Figure 10.16c, assumes that the instantaneous width of the input data is
such that the result of the constant multiplications will fit into the word-width
that has been assigned to each sub-word. As a result, the shifts of the normal
sequential method will not move out the available word-width and no extra
corrective operations are required. However, more flexibility in the Software
SIMD packing can be supported by restricting the produced output width of
the multiplication, as is normally done by shifting back the multiplication re-
sult into a smaller word-width. Figure 10.16e represents this solution, where
the results of the multiplication of inputs with instantaneous data of widths a
and b respectively can be restricted into an output of width c, with c ≤ a + b.

Figure 10.17 shows an example conversion in which the multiplication of a
5-bit variable and constant produces a 10-bit result which will be cast back
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var * constant : 5bit * 5bit → 8 bit
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Figure 10.17: By aligning the data to the MSB side of the word and using a
conversion based on right-shifts, the accuracy can be improved with respect
to the input restriction method

into an 8-bit word (as shown at the top). Figure 10.17 a shows the sequential
conversion method, which produces a sequence of shifts and adds in which
each shift moves the previous partial product to the MSB side. The input to
this conversion is the multiplicand variable, aligned to the LSB side. Some
partial products exceed the width of the output (as indicated by the vertical
line, max MSB). At the end of the conversion, the result is shifted back into
the required width, causing an error only at the end. Using this method in
a Software SIMD context is problematic, as the MSB bits will interfere with
neighboring sub-words. Masking can be used to remove potentially offen-
ding bits, but in this case, removing the MSB bits will lead to large errors in
the produced output. Figure 10.17b (an example of Figure 10.16e) shows an
alternative implementation of the sequential method, here called the down
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shift sequential method. In this case, the data is aligned to the MSB side (or
to MSB-1 if no guard bit is used) first (var∗) and all subsequent shifts are
down-shifts or shifts to the LSB side. As a result, the position of the MSB bit
of the partial products is guaranteed to be smaller or equal to the required
MSB increased with one (MSB + 1). To stop this one bit from causing inter-
ference with the neighboring sub-word, the same guard bit can be used as
was discussed e.g. in the context of overflow detection. Note that the guard
bit is not necessary here, as the initial alignment can be to MSB −1. At the
start of this conversion, the position of the fractional point is changed by
the re-alignment to the MSB side (e.g. by +3 positions in the example of
Figure 10.17b). Subsequent shifts will modify this position again (e.g. −2
and −1, respectively in the same example). At a certain moment in time
(compile-time analyzable), the number of positions from shifts to the LSB
side can exceed the initial shift to the MSB side. At this point, LSB bits can
interfere with MSB bits from neighboring sub-words. However, unlike in the
normal sequential method, in this case, they can be easily masked (using a
compile-time generated mask). In this case, LSB bits are removed during the
subsequent right shifts with masks, instead of removing all redundant bits
at the end only. As the down-shift sequential method allows carry bits from
partial products to ripple and, as only LSB bits that exceed the specified out-
put range are masked away, the result is equal to the multiplication result
of Figure 10.16a. For some very small word-widths, still an error is possible,
but this can be taken into account during the fixed point refinement and the
mapping.

Instead of using a mask operation to remove the bits that are shifted out
of the sub-word on the LSB side, a (temporary) repacking can be used to
provide the extra bits. If a very flexible shuffler unit is available, the extra
bits can potentially be shuffled out of the word. Which option is preferable
depends on the respective costs and availability of these operations.

10.3.7 Cost-aware search over conversion space

As the conversion space that is covered by the trees described above is ex-
tremely large, heuristics are needed to steer the conversion or to be able to
eventually automate this conversion and come up with an algorithm with rea-
sonable compilation time. Finding an optimal set of heuristics to get the best
results is outside the scope of this book. In the experiments that are presented
in Section 10.4, the cost function aims to improve the performance. There-
fore, a simple heuristic is used as a first example of a full conversion imple-
mentation for some realistic applications, targeting constant multiplications
in a scalar context. The heuristic search starts by performing a Bitwise or
parallel conversion on the CSD representation of the constant. This approach
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guarantees the minimal length of the dependency tree, assuming parallel exe-
cution because of the Bitwise conversion, together with a minimal number of
operations after conversion, because of the CSD form. After this first conver-
sion result, the search is used to find cheaper conversions, using factoring.
A full search is performed on multiplicative factoring and a limited search
on additive factoring, identifying only the interesting targets for the CSE
(repetitive bit patterns). When a factoring approach is tried and the sum
of all non-zero bits (using CSD) for different parts is not smaller than for the
full constant, the search is stopped for this factoring. In this way, the search
space is quickly reduced, and only the most promising paths are searched.
As the end cost depends heavily on the operations that are supported by the
platform, a high level cost metric strength has been introduced to evaluate
the success of the conversion (see Section 10.2.2). The strength metric takes
the availability of operations on the platform into account. To show specific
results for performance, the here described simple heuristic was used for a
flat conversion (all constant multiplications have been converted).

Extensions to this simple heuristic should replace the flat conversion with
a conditional conversion, still using a traditional multiplication for constant
multiplications that can not be approximated by a cheaper constant and for
which the exact conversion would require too many operations. In addition to
this performance driven conversion, an energy-aware cost function is requi-
red. To enable this, energy estimates for the instruction set extensions, like
SSA and SA, are required. The hardware design and detailed performance
and energy estimations for such extensions are outside the scope of this book
and are part of future work.

10.4 Experimental results

This section illustrates the strength reduction of multiplications for some
practical examples. Firstly, the experimental procedure is explained in Sec-
tion 10.4.1. A high level broad experiment shows the potential of a flat
conversion method for a broad range of applications, using the abstract me-
tric strength (defined below). Sections 10.4.2, 10.4.3, 10.4.4 and 10.4.5
present more detailed performance estimates for conversions with different
boundary constraints or optimization goals for a video application (an IDCT
kernel, part of an MPEG2 decoder), a multi-antenna wireless communica-
tion application (FFT kernel, part of a MIMO application), a biomedical ap-
plication (a DWT kernel, from a hearth-rate monitoring application) and a
biotechnology application (detection kernel from an online monitoring ap-
plication) respectively. Each section will discuss the implemented choice and
the trade-offs and obtained results.
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10.4.1 Experimental procedure

The proposed strength reduction algorithms of Section 10.3 have been used
to convert the constant multiplications from a range of applications into ALU
operations or more efficient SA or SSA operations. The conversion process
has been performed according to the performance-improving heuristic of
Section 10.3.7 and has been partly automated. A set of scripts have been
implemented to perform the automatic conversion of constants using the pri-
mitive methods, the exhaustive search over all multiplicative factoring pos-
sibilities and over different coding variants. A manual step has been used to
cover additive factoring and identify candidates for CSE. The original bench-
mark code has been modified manually to reflect the conversion and the
resulting code has been compiled using the COFFEE framework [Rag08b].

As no accurate energy estimation numbers have been produced for the dif-
ferent ISA extension candidates, the results of this chapter focus on achieving
performance gains as a first target, but rough energy estimates are presented
for selected kernels to give an indication of the expected gains. The target
architecture is a standard heterogeneous VLIW processor with eight slots, of
which only slot 1 and 5 contain a multiplier.

10.4.2 IDCT kernel (part of MPEG2 decoder)

To show the effect of the strength reduction on a well defined cost metric,
namely performance, the presented conversion technique has been applied
on the mpeg2 decoder. The conversion is using the simple heuristic and the
search over the trees of the conversion space, as has been discussed in Sec-
tion 10.3.7. In order to show the effect of the conversion clearly, the bot-
tleneck that is caused by the multipliers has been been exaggerated for the
sake of argument, by assuming a multiplier latency of 6 cycles. Increasing the
multiplier latency, in this case, simulates an application that is heavily bot-
tlenecked by the multiplier. However, the experiment in Section 10.4.3 will
show improvements for a more realistic latency of two cycles. The Motion
Compensation kernel, one of the most important kernels of the application,
contains multiplications with constants (a part of an IDCT, Inverse Discrete
Cosine Transform) that are not converted by state-of-the-art techniques (the
constants are relatively large and are not of one of the easy to convert forms,
like (2m ± 2n)). Using the presented technique, and using the special SSA
operation (as introduced in Section 10.3.4), significant speedups can be rea-
lized for this application.

Figure 10.18 shows the schedules for the Motion Compensation kernel, res-
pectively before conversion, after conversion into shift/add/subtract ALU
operations, and after using the special SSA operation. The multiplications
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a b c

Figure 10.18: Strength reduction for the mpeg2 decoder before conversion
(a), after conversion using standard ALU operations (b), and using special
SSA operations (c). White: free slot; light grey: LD/ST operations; dark grey:
ALU operations; black: MUL operations in (a) and SSA in (c)

are pipelined (a new operation can be started in the next cycle, even though
they have a multi-cycle latency) and are therefore only marked in the
cycle the execution starts. In Figure 10.18a, the constant multiplications
(11 operations, shown in black) are forming a bottleneck, which is indicated
by the completely empty lines in the schedule, due to their high latency.
One iteration of this version of the IDCT kernel takes 35 cycles. The sche-
dule still contains plenty of free space, which indicates that the cheaper
ALU resources (gray operations in Figure 10.18a) are under-utilized. The
multiplications are converted into multiple cheaper ALU operations in the
second schedule (Figure 10.18b), which is much denser. However, it is of-
ten possible to schedule these in parallel, which leads to a speedup (only
24 cycles needed per iteration). When the special SSA operations are used
(black operations in Figure 10.18c), the cycle count is reduced to 19 cycles
per iteration.

As is shown in Figure 10.19, this leads to a performance improvement of
about 45% for the version using ALU operations and 84% for the version
with SSA support (normalized to the performance of the MUL version). This
performance improvement for the IDCT kernel alone translates to a speedup
of about 15% for the MPEG2 Motion Compensation and of 6% for the com-
plete MPEG2 decoder application, by only optimizing the bottlenecked IDCT
part of the Motion Compensation.

A first rough energy consumption estimate for the IDCT kernel alone (see
Figure 10.19), using energy per activation estimates for a 40 nm TSCM stan-
dard cell flow3, shows that the datapath energy for this kernel is reduced

3Cost of modeled operations per activation: MUL = 4,050 fJ, ALU op = 400 fJ, Shift on ALU
= 200 fJ, Shift = 100 fJ, SSA = 600 fJ.
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Figure 10.19: Impact of MUL-conversion on energy and performance of the
IDCT kernel, normalized to the MUL version

with 29% when converting the MUL operations into ALU operations, while
using the SSA unit leads to a reduction of 33% (both numbers normalized to
the energy consumption of the MUL version). In this case, the performance
improvement of the version with SSA support is even combined with a slight
improvement in energy efficiency for the datapath operations. As the number
of operations is reduced, taking into account a reduced number of accesses
to the ICMO will lead to a larger energy improvement. This depends on the
target platform and is not discussed here further.

For processors with a smaller multiplier latency (see also the following ex-
periments) or in case the multiplier is not the main performance bottleneck,
the conversion can then still be used to reduce the energy consumption, even
at cost of some loss in performance.

In this experiment the constants of the IDCT have been converted using
an exact conversion method (the conversion is I/O true). In many appli-
cations, however, accuracy requirements can be taken into account to re-
duce the conversion cost of larger constants. This is shown in the following
experiment.

10.4.3 FFT kernel, including accuracy trade-offs

This experiment shows the conversion results for the FFT (Fast Fourier
Transform) kernel, taken from the TI DSP library [TI09d] that also has
been used in Section 9.4.4. The strength reduction is used there as an en-
abling step for the Software SIMD. In this section, however, the FFT kernel
is used to illustrate the potential performance improvement when trading
off implementation accuracy with operator cost. This is done by propagating
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Figure 10.20: Strength reduction for FFT, before conversion (a), after conver-
sion using 2 SSA operations per MUL (b), and 1 SSA operation per MUL (c).
White: free slot; light grey: LD/ST operations; dark grey: ALU operations;
black: MUL operations in (a) and SSA in (b) and (c)

application knowledge to the strength reduction step and taking into account
the requirements to reduce the number of ALU or SSA operations that are
used per replaced MUL operation.

Figure 10.20 a shows the original schedule, using MUL operations (in this
case with a latency of 2 cycles). Using the conversion strategy described
in Section 10.3.7, in this specific case, converting the constants required 2
SSA operations for an exact (I/O true) conversion. However, by reducing the
maximum number of inserted SSA operations, the conversion cost can be re-
duced, at the cost of an accuracy reduction. Depending on the application
requirements, the introduced error can in some cases be tolerated.

Figure 10.20 b shows the schedule for a conversion using 2 SSA operations
per MUL, which leads to an energy gain for the datapath operations of 27%,
without affecting performance (see Figure 10.21). Figure 10.20c goes one
step further, by restricting the inserted number of SSA operations per MUL to
1. In this case, the performance increases with 17% and the energy is reduced
with 43% compared to the MUL version.

However, this conversion introduces an error into the FFT, which can only
be allowed if the application does still perform within spec. In this case, the
FFT was part of an I E E E 802.11 n 2 antennas MIMO receiver. This system
supports a set of different communications modes, as shown by Figure 10.22,
ranging from a SISO BPSK (Single In Single Out, Binary Phase Shift Keying)
to a MIMO QAM 64 mode (increasing complexity).

A detailed Matlab accuracy simulation has shown that for all but the two
most complex modes, the strength reduction with a single SSA operation is
providing sufficient accuracy. The M I M O Q AM 16 and M I M O Q AM
64 modes with 1 SSA show an increased Bit Error Rate (BER) for high SNR
(shown at the right side of Figure 10.22) with respect to the strength reduced
versions with 2 SSA operations per MUL. This indicates that the introduced
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Figure 10.21: Impact of MUL-conversion with a maximum of 2 inserted SSA
and 1 inserted SSA operation respectively, on energy and performance of the
FFT kernel, normalized to the MUL version
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error in those modes leads to a degradation in the application performance.
When using these modes, more operations have to be spent, while all other
modes can save energy by using a cheaper conversion.

The strength reduction for the FFT kernel of this section has shown that signi-
ficant trade-off opportunities exist, when exploiting application requirements
during the strength reduction. Additional opportunities exist when this trade-
off is extended to the architecture exploration during processor design, as is
shown in the following section.

10.4.4 DWT kernel, part of architecture exploration

In this section, the conversion of constant multiplications is explored as part
of the processor design exploration and together with the application ac-
curacy requirements. This step can be integrated into the ASIP architecture
exploration when deciding how many MUL-capable slots are required with
respect to the requirements of the target application domain.

In this case, the target application is a Discrete Wavelet Transform (DWT)
kernel, as is used in the JPEG 2000 [JPEG] image encoding or in several
biomedical algorithms[Sas95] used for, e.g. compression of Electrocardio-
gram (ECG) signals. The specific DWT that is used here [DWT] is a Discrete
bi-orthogonal CDF 9/7 wavelet forward transform (lifting implementation)
that consists of 8 subsequent loops and contains a set of filtering steps with
constant multiplications.

The original floating point benchmark has been converted to a 16-bit fixed
point version, which resulted in an error with respect tot the floating point
description. In this specific case, the introduced peak error for the multiplier
implementation was equal to 7.62%, as indicated by Figure 10.23. The spe-
cific constants of the DWT required in this case 4 SSA operations per MUL
for an exact conversion (equal to the MUL version) using the conversion
strategy of Section 10.3.7. By reducing the number of inserted SSAs, an ad-
ditional error has been introduced, as indicated by Figure 10.23. The version
with 3SSAs, even though some constants are approximated, does not lead to
an increased peak error. When only 2 SSAs are used per MUL operation, the
peak error slightly increases with about 2%. When every MUL is replaced by
a single SSA, the error rises significantly with an additional 11%. Depending
on the application requirements this may or may not be tolerated.

In this section, the link between the different implementation options for
the multiplier accuracy and the architecture design is explored. The ratio-
nale for this trade-off could be the impact of the number of multipliers on
the area (and therefore the cost) of the processor core, but also indirectly
the impact of the datapath area on the length of the processor interconnect,
which e.g. can have an important effect on the energy consumption in the
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Figure 10.23: Introduced error of different MUL implementations, compared
to floating point version

interconnect of CGRA processors (See Chapter 4 of [Lam09]). In many cases
the number of multipliers in the architecture is decided based on the algo-
rithmic requirements, often explored at Matlab level, e.g. the ADRES instance
optimized for wireless communication architectures of [Bou08] consists of a
4 × 4 CGRA in which every PE includes a multiplier. As the area of a 16-bit
multiplier is 15 times larger than the area of a 16-bit adder,4 it makes sense to
investigate the strength reduction in the context of architecture design. Many
wireless algorithms heavily depend on linear transformations like FFT’s and
many multiplications can be strength-reduced (as shown for the FFT above)
to reduce the number of PEs that include a multiplier. A second example of
this trade-off can be found in the biomedical context, where extreme energy
efficiency is targeted for very small cores. The signal processing includes a
large amount of filtering and linear transformations, in which context a large
amount of multiplications are present.

In this experiment, different versions of a (manually) heavily optimized DWT
kernel have been mapped on different VLIW processor architectures, assu-
ming that a reduction in the number of multiplier slots could lead to an
area cost reduction, which in turn could be exploited by adding more non-
multiplier slots. As the indirect effect on the processor interconnect energy
consumption is difficult to estimate for a VLIW processor, the experiment will
focus on performance improvements for different processor variants. The pre-
sented results have been achieved for a loop unrolling factor of 4.

Figure 10.24 shows the results of this experiment, assuming an initial VLIW
processor with three slots, of which two include a multiplier (e.g. based
on high level application requirements). This architecture is compared with
other architecture variants in which one multiplier has been removed and ad-

4Based on in-house a standard-cell design in TSMC 40 nm.

308



Experimental results

60

70

80

90

100

110

120

130

140

3slots 2MUL
2LD/ST

4slots 1MUL
2LD/ST

5slots 1MUL
2LD/ST 

6slots 1MUL
2LD/ST 2
clusters

8slots 1MUL
2LD/ST 2
clusters

N
o

rm
a
li
ze

d
 C

y
cl

e
 C

o
u

n
t 

MUL 4

MUL 2

4 SSA

3 SSA

2 SSA

1 SSA

Figure 10.24: Performance comparison for DWT MUL conversion exploration
(the six- and eight-slot architectures use a clustered register file with two
clusters)

ditional non-multiplier slots have been added, in case a 4-, 5-, 6- and 8-slot
variant. This corresponds to 1 to 5 additional slots, based on the fact that
an adder is 15 times smaller than the removed multiplier, but an additional
overhead of an ALU slot (all added slots support only ALU operations) and
other control overhead needs to be taken into account.

The size of the register file has been kept constant, but as the number of
port needs to increase, the 6- and 8-slot variants have been clustered (the
area increase of the RF with an increasing number of ports also has to be
taken into account). Other architectural parameters (e.g. slot functionality
and number of load/store units of the processor) have been kept constant.

In this case, the performance results of Figure 10.24 (normalized to the initial
architecture) show some interesting trade-off opportunities, linked to the ap-
plication accuracy requirements of Figure 10.23. When comparing the DWT
version using a multiplier with a latency of four cycles (MUL 4), trading in the
multiplier for one additional slot leads to significant performance improve-
ments for the versions with 2 and 1 SSA operation per removed MUL (about
5% and 15% respectively). For a multiplier latency of 2 cycles (MUL 2), a per-
formance gain can be achieved for the version with 1 SSA for the first slot,
but when more slots are added, e.g. five slots, the 3 SSA version achieves the
same performance and the 2 SSA and 1 SSA version achieve improvements
of about 10% and 20% respectively. It is interesting to note that moving to
the clustered architectures with six and eight slots degrades the performance
due to the inter-cluster communication overhead, but the negative effect is
larger for the MUL-code as the single multiplier in the first cluster becomes
more of a bottleneck, while the strength-reduced code can still distribute the
ALU operations over multiple slots.
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Figure 10.25: Performance comparison for DWT MUL conversion exploration
(the 6- and 8-slot architectures use a clustered register file with two clusters)

As the multiplier code also shows a limited benefit from the addition of one
or two ALU slots instead of an additional multiplier, it is clear that the DWT
kernel is not fully multiplier bottlenecked. However, the strength reduction
still achieves nice performance improvements for this code.

Figure 10.25 shows the same experiment, but for a different initial architec-
ture with four slots and two multipliers. In this case, removing one multiplier
and adding a single slot already results in equal or better performance for
the 3 SSA, 2 SSA and 1 SSA versions. The performance improvement is also
significant, e.g. over 10% for the 2 SSA version on a 6-slot architecture with
respect to the multiplier version with latency 2 (MUL 2).

It should be noted here that the quoted performance improvements are si-
gnificant, as the initial code has been heavily manually optimized before the
strength reduction was performed. The improvements, starting from a very
good baseline, lead to extremely efficient code, as is shown in the example
schedule of Figure 10.26 in which only four empty cycles are available in the
software pipelined schedule for one of the loops of the DWT kernel.

10.4.5 Online biotechnology monitoring application

This application has been worked out in detail in Chapter 11, including the
constant multiplier transformation into shifts and adds.
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Figure 10.26: Example of heavily optimized DWT schedule after MUL
conversion

10.4.6 Potential improvements of the strength reduction

The presented experiments have demonstrated the constant strength reduc-
tion for standard architectures. However, when other architectural exten-
sions are present, potential improvements over the demonstrated approach
can still be achieved. This section briefly discusses some of these potential
improvements.

10.4.6.1 Loop Buffer with Local Controller

The converted multiplications are in most cases part of a loop in which the
constant varies over the loop. This has some consequences on how the
conversion can be done, as, e.g. the number of inserted operations af-
ter strength reduction can not be varied from one constant to the next.
Therefore, the experiments presented in the previous section have fixed this
number, independent of the constants. This means that if the number of
inserted operations is fixed to, e.g. 3, constants that only require 1 operation
for an exact conversion will still cost 3 operations.

When the architecture contains loop buffers with local controller [Jay02a],
the compiler can generate different versions, based on how many operations
are required and at run-time the execution can jump to the correct entry,
thus reducing the execution cost and improving the performance, without
accuracy loss. The importance of the use of distributed loop buffers has been
strongly shown in the biotechnology monitoring experiment of [Kri09]. In
particular, due to this extension, the energy consumption of the instruction
memory hierarchy contribution in the Software SIMD ASIP mapping has been
reduced to a negligible overhead.

10.4.6.2 Link between SSA, CSD and performance

The presented conversion experiments mostly target performance improve-
ments and therefore make use of a conversion strategy that tries to find the
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cheapest conversion with minimal depth of the dependence chain. The in-
struction set has been fixed to a rather standard instruction set, extended
with the SA or SSA operations. This results in a conversion that in most cases
favors a CSD based conversion, combined with the binary method. However,
depending on the target clock frequency and the technology node, more chal-
lenging special FUs can be designed, of which the Generic Shift-Add-Shift or
GSAS is one example. In that case, depending on if the more complex opera-
tions will be possible with a single-cycle latency and if they can be pipelined,
this will result in very interesting conversion optimization problems.

10.4.6.3 Multiple precision MUL operations

All presented strength reduction experiments have been using a full conver-
sion, meaning that all constant multiplications have been converted. Howe-
ver, in some cases (that require a high accuracy for a very large constant) the
conversion can be expensive and a multiplication can still be the cheapest op-
tion. To cover those cases and the multiplications that can not be converted
into constant multiplications, most processors will still require a multiplier
to be present in one of the slots. However, as the ratio of non-converted
multiplications to other operations will be low, it is possible to replace this
expensive multiplier by a multiple precision version: e.g. a 4-bit MUL ins-
tead of a 16-bit MUL, with the option of using the 4-bit version to perform
16-bit multiplications with increased latency. In this case, 16 operations on
the 4-bit multiplier are required to generate one 16-bit result. This will lead
to additional gains in energy efficiency due to interconnect length reduction
and especially in area, with limited performance degradation. The resulting
architecture is still generic, as it still supports variable multiplications.

10.5 Comparison to related work

Strength reduction techniques for optimizing compilers for high performance
systems have been studied extensively in the past. [Coo01] gives a good over-
view of related work on operator strength reduction. Most techniques are
restricted to constant multiplication with iterator or induction variables of
loops. One class, based on [All81] and [Coo01], targets optimizing constants
and loop-invariants for a single loop exploiting control flow analysis informa-
tion. Another class, e.g. [Dha79], is based on data-flow methods. These tech-
niques are complementary, as this chapter targets constant multiplications to
data variables other than iterator or induction variables. In the results pre-
sented in this chapter, the state-of-the-art optimizations have been enabled
in our compiler front-end [Rag08b] and the shown improvements are with
respect to this state of the art.
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Other techniques specifically target the strength reduction of constant multi-
plications. [Har91] and [Par01] focus on digital filter design, while [Ber86]
and [Par01] have proposed conversion techniques for general purpose pro-
cessors. A large amount of related work exists in the context of Canonical
Signed Digit (CSD) conversion methods [Hew00], including Binary Coded
CSD (BCSD) [Has96] and Minimal Signed Digit (MSD) [Par01] representa-
tions. Interesting conversion strategies include the localization of optimally
convertible blocks, to reduce the search space, but the conversion is comple-
tely decoupled from the underlying instruction set and the application requi-
rements. They present a limited overview of the different conversion options
(e.g. binary and sequential), but only consider a search cut-off heuristic with
a very limited instruction sequence cost. This basic algorithm has been ge-
neralized in [Bri94, Lef01] and is currently implemented in GCC, a state-of-
the-art compiler. However, this implementation considers only constants or
its factors which can be broken down into the canonical form (2m ± 1).

[Wu95] also proposes a search over the conversion space steered by heuris-
tics, using a branch and bound approach that favors one specific instruction
set extension, called LEA, as much as possible. The conversion targets only
performance, is implemented in an x86 compiler, but it does not consider co-
ding options like CSD and therefore misses important optimization potential.
This approach also misses a systematic description of the search space and
therefore does not cover options like CSE and additive factoring.

Techniques like [Kar07] explores the complexity reduction in FIR filters from
the point of view of removing computational redundancy in the synthesis
phase of multiplier less filters. They synthesize “modified coefficients” so that
a proper trade-off between computation/communication complexity and fil-
ter quality can be made. This corresponds to propagating the applications
requirements to the conversion. However, the rest of the conversion space is
not explored and the specific context of a processor based implementation is
missing in this work.

To the best of our knowledge, no single technique exists that covers the com-
plete relevant search space in a systematic way (as described in Section 10.3),
while taking both the underlying instruction set as well as the application re-
quirements into account, which enables more complex conversions.

10.6 Conclusions and key messages of chapter

Multiplications are expensive operations, in terms of area, energy consump-
tion and cycles/performance. Strength reduction is a well-known technique
to convert a subset of all multiplications into less costly operations. However,
the state-of-the-art strength reduction techniques only convert the most
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simple cases and can still be improved by taking into account other design
considerations. Some examples include firstly, the removal of all multiplica-
tions, even at a relatively high cost, to enable other optimizations, like Soft-
ware SIMD. Secondly, by taking into account and potentially extending the
processor instruction set, the cost of the converted operations can be redu-
ced. Thirdly, by propagating the application requirements to the conversion,
the accuracy of the multiplication can be traded-off for the implementation
cost.

The work that is presented in this chapter contains several contributions and
it is different from the related work in the five following aspects.

Firstly, it presents a complete and systematic classification for the conver-
sion of constant multiplications to a sequence of less complex operations.
The space is represented as a set of trees, in which a full conversion method
is fixed by a combination of decisions in each of the trees. Secondly, the
strength reduction is explicitly linked to the underlying hardware, as this
heavily influences the final cost of a conversion. Based on the processor in-
struction set, decisions in other trees can be made or extra transformations
can be used, in order to reduce the total conversion cost. During architecture
exploration, special instructions can be considered to reduce this cost even
further. Thirdly, the accuracy requirements at the application level are taken
into account, in order to reduce the cost of the conversion. Traditionally, only
I/O true transformations are considered during the mapping. However, by
verifying the impact of a reduced accuracy in the operator implementation at
the application level, in many cases the introduced error can be tolerated and
larger cost reductions can be achieved. Fourthly, the conversion of constant
multiplications is considered in the context of being an enabler for other opti-
mizations that require multiplication-free code (e.g. Software SIMD). In this
case, the cost of the conversion can be tolerated to be high, if the enabled
optimization will result in an even larger cost reduction. Finally, a search
strategy over the described conversion space is proposed. A cost-aware search
over the described conversion enables a context-specific conversion, based on
the relative importance of multiple quality criteria (e.g. improve performance
vs. reduce energy, target a very parallel processor vs. a less parallel proces-
sor). This approach is demonstrated using a conversion technique based on a
simple heuristic to improve performance. By changing this cost function, the
conversion can be applied in different contexts and is therefore not limited
to the specific examples or architecture shown in this chapter.
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CHAPTER 11

Bioimaging ASIP benchmark study

Abstract

This chapter describes the application of the main techniques proposed in this
book to a realistic application benchmark, namely a bioimaging detection and
tracking algorithm for on-line animal monitoring. Most of the components and
contributions presented in this book have been applied and illustrated in this
realistic demonstrator. In particular we exploit the distributed loop buffer orga-
nisation, the very wide register with a wide interface to the SRAM scratchpad,
and the SoftSIMD concept in the data-path including the constant multiplica-
tion strength reduction. All these are embedded in an instance of the FEENECS

architecture template of Chapter 3.

First the application is discussed in Section 11.1, including the fixed-point
word-length quantisation of the variables. Section 11.2 discusses our effec-
tive realisation of the many constant multiplications in the application code.
Section 11.3 describes the different architecture options that are energy and
performance optimized for the scalar ASIP template. Similarly, Section 11.4
describes the options for the data-parallel ASIP template, with emphasis on
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the data-path. Section 11.5 continues with the background and foreground
memory organisation for that data-parallel ASIP. Section 11.6 concludes with
the overall energy results and the discussion of the global ASIP exploration.

11.1 Bioimaging application and quantisation

Biotechnology is defined as the technology that deals with the living cells
and its purpose is the improvement of the human living and human plus
animal welfare. Today, biotechnology has a significant impact on the world
economy and the world society, since it is applied in many daily activities.
Biotechnology applications are divided in four major sectors, namely: health
care, agriculture, industrial products and environment.

A part of agriculture biotechnology applications finds use in livestock farming
and especially in animal observation. The latter has proven to be very useful
in the improvement of their productivity, physiology and health. A common
way of observing a living organism is usually done by audio-visual ways per-
formed by a human who is present on the scene. This method is however
subjective, expensive, error prone and time consuming. Relying on the fact
that the correctness of the results crucially depends on the capabilities of the
observer and on the way he interprets the behavior of the animal, the human
factor is directly or indirectly causing both subjective observations and the er-
roneous conclusions that may occur. Moreover, the person should be present
through the entire time period of the observation, a fact that makes this me-
thod expensive, both in time and in cost. Instead of performing the animal
observation by a human, on-line monitoring systems are proposed. In the
benchmark selected in this book chapter, we are using specifically the bioi-
maging approach proposed by the BIORES group at the K.U. Leuven [Ler06].

On-line monitoring systems are capable of collecting information about the
environment that they are observing. Analyzing these data, they use the re-
sults to specify many aspects of the monitored object, such as its position, its
movement or even its behavior. They consist of low-cost intelligent sensors
that are combined with image analysis techniques to provide an automa-
ted objective contact-less monitoring method for the behavior of the living
organisms. It is based on a computer vision application categorizing the be-
haviour of animal responses. In the instantiation used here, it has been tuned
to monitor individual laying hens. A video camera is used as an input device
to the system that provides images taken from the hen. It should be men-
tioned that the current case study is performed on a video sequence of 3 s,
with 25 frames/s. This bioimaging approach is separated in two algorithmic
modules. The first module detects the monitored object (detection algorithm)
and the second one tracks it (tracking algorithm). During the detection
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Figure 11.1: Bioimaging application flow
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Figure 11.2: Detection algorithm flow

algorithm, the monitored object is being detected using image processing
techniques on a frame captured by a video camera. Then, the tracking
algorithm is executed in order to locate, each time, the position and the
characteristics of the monitored object that have changed. These changes
over its characteristics are categorized and finally translated to the behavior
of the monitored animal. In Figure 11.1, a brief description of the flow of the
bioimaging application is provided.

The detection of the monitored object is performed on the first input frame by
an image processing algorithm. The algorithm determines the position, the
orientation, the body length and width of the monitored object through a set
of parameters that are based on an ellipse shape model and are called ellipse
parameters. After their calculation they are translated to posture parameters,
which are the final output of the detection algorithm. The flow of the detec-
tion algorithm of the bioimaging application is illustrated in Figure 11.2.

A typical input image is shown in Figure 11.3. In the first step of the detection
algorithm, the first input grayscale image is subtracted pixel by pixel from
the background image and then a Gaussian filter is applied to the result of
the image subtraction in order to reduce the existing noise. The application
of the Gaussian filter is performed by the multiplication of the Gaussian coef-
ficients by the appropriate neighbor pixel, horizontal, vertical and diagonal.
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Figure 11.3: Ellipse fitted to the body of the hen

Then the sum of these multiplications replaces the value of the central pixel.
The result of the application of the Gauss filter in the whole image is its
blurring in order to create a less noisy one. It should be mentioned that the
calculation of the ellipse parameters of the monitored object, and hence the
calculation of its posture parameters, demands the image to be in a binary
form. This binary conversion necessitates the determination of a threshold
value, that depends on the quality of the images, in order to distinguish the
“hen” pixels from the “background” ones. The conversion consists of reading
the whole image pixel by pixel. In case its value is less than the estimated
threshold value, then it is converted to a black pixel, which means a back-
ground pixel with logic value equal to 0. In case its value is more than the
threshold value, then it is converted to a white pixel, which means a hen
pixel with logic value 1. Then, the ellipse parameters are evaluated using the
binary image. Their calculation is based on the indication of a shape that can
approximate the two-dimensional object of the binary image. Studying the
images that derive from the imaging processing steps, a simple ellipse shape
is used for the approximation of the monitored object’s body. As illustrated
in Figure 11.3, this ellipse is calculated in order to best fit into the shape of
the monitored object.

The ellipse is a simple shape that is used for estimation of the hen’s contour
and it is modified through the variance of five parameters, which are cal-
led ellipse parameters. These ellipse parameters, which are depicted in
Figure 11.4, consist of the coordinates of the ellipse centre of the Xc and Yc,
the orientation angle θ, the major axis l and the minor axis w. The position
of the ellipse is given by the position of the center; while its orientation
corresponds to the angle θ, which is the angle between the major axis l of
the ellipse and the x axis. The size of the ellipse is determined by both the
major axis and the minor axis, l and w respectively.
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Figure 11.4: Ellipse model

Their calculation is based on the calculation of the general two-dimensional
order moments p and q of the binary image [Roc02].Then, the ellipse para-
meters are translated to posture parameters, which consist of the coordinates
of the centre Xc and Yc, the parameters rx and ry, and the parameter p. The
coordinates of the ellipse center, Xc and Yc, indicate the position where the
ellipse is placed in the image. The parameters rx and ry represent the scale
and the rotation factor of the ellipse, whereas the parameter p represents
the factor that estimates the transformation of the ellipse in order to fit into
the monitored object. The five posture parameters are evaluated based on
Eqs. 11.1 and 11.2.

Xc =
m10

m00
; Yc =

m01

m00
(11.1)

rx = (l + w) cos θ; ry = (l + w) sin θ; p =
l − w

l + w
; (11.2)

The posture parameters are the final output of the detection algorithm. These
are inserted as input arguments to the tracking algorithm, where they are dy-
namically updated through a set of steps. The tracking algorithm is applied
a number of iterations on the same input frame, i.e. ten iterations per frame
(10 iterations/frame), in order to optimize the results. The updated posture
parameters are fed back again to the tracking algorithm which now is applied
to the next successive frame. This continuous update of the posture parame-
ters consist the main idea of the way the algorithm tracks the monitored
object.

Due to the non-demanding image processing analysis of the tracking algo-
rithm, it has faster execution time and significantly lower energy consump-
tion than the detection algorithm. Actually, the number of operations per
frame of the tracking algorithmis a factor 50 lower than the one of the detec-
tion. Accordingly, only the tracking algorithm is applied for many successive
input frames in order to reduce the image processing time and the energy
consumption. The number of frames where only the tracking algorithm is ap-
plied and no detection, should be low enough so that it does not degrade the
performance of the overall bioimaging application and hence where the mo-
nitoring results are considered acceptable. As already mentioned, the video
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sequence lasts 3 s with 25 frames/s. Within the 3 s, in our instantiation the
detection algorithm is applied once in the first frame and then the tracking
algorithm is applied 10 times for each of the next 75 frames of the video se-
quence, so the applied ratio between the detection algorithm and the tracking
algorithm is 1/750. The bioimaging application, is used in on-line monitoring
systems, which means that the performance of the application must meet
some hard real-time performance requirements. We are assuming here the
image contains only a single chicken that should be monitored continuously
(no time multiplexing between chickens). Considering a realistic processor
clock frequency of 200 MHz, the available time between two consecutive
frames is equal to 0.04 sec and the available cycles for performing both the
detection and the tracking algorithm amount to 0.04 s× 200 Mhz =8,000,000
cycles = 8 Mega Cycles.

This bioimaging application aims at a low energy and low cost implemen-
tation and will now be targeted to an ASIP platform, that is the core of an
embedded system. Such processors do not use floating point Function Units
(FUs) due their high cost and high energy consumption. Consequently, the
bioimaging application must be converted from floating point to fixed point
representation before it is mapped to the potential ASIP platforms during
architecture exploration. In order to apply this conversion, it is obligatory
to determine the appropriate word-length of the application variables. This
is performed by quantization analysis which determines the smallest accep-
table word length for each signal, i.e. while maintaining the output results of
the bioimaging application to be acceptable. The quantization analysis is ba-
sed on calculating the required range (dynamic range analysis) and adjusting
the accuracy (precision analysis) of each one of the bioimaging application
signals. The estimated word-lengths are used for the transformation to the
fixed-point representation.

For this purpose, we have used a systematic and effective approach that is
described in [Nov08, Nov09]. A brief summary of its application will now
be provided here but the details have been left out as this step is not the
focus of this book. The determination of the dynamic range of the signals is
based on the annotation of the maximum value, positive or negative, that is
assigned to these signals during the execution of the bioimaging application
for a representative input stream. It gives the appropriate bits for the repre-
sentation of the integer part of each signal. Regarding the required bits for
representing its decimal part, precision analysis is performed. It consists of a
number of steps that modify the number of the decimal bits in such a way
as to determine iteratively the exact word-length that will be used by each
bioimaging application signal.

The calculation of a baseline solution for the word length of each signal of
the bioimaging application is done by an exploration of the solution space
for finding the near optimal solution. A set of bounded CPU-time heuristic
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methods have been used whose priority function is the reduction of the word
length of the most important signals. A measure that reflects the importance
of each signal is the total cost of the operations in which it takes part. The
cost of each signal is based not only on the amount and the kind of arithmetic
operations, but also on the memory allocation and on the amount of the me-
mory operations. Different weights are used to indicate the most important
signals in the application. These heuristics reduce the computational problem
of exhaustive exploration in order to obtain an near optimal solution, which
is depicted in Figure 11.5. The baseline solution is placed between the Real
Lower Bound solution (RLB) and the Upper Upper Bound (UUB) solution.
The RLB solution stands for the lower bound of the word length that each
signal of the bioimaging application can have and the results are acceptable,
while the rest of the signals are having their UUB. The UUB stands for the
“fully safe” higher bound of word length that each signal can have and that
leads to a potential reduction in the word length of another signal. In the rest
of this chapter, the calculated word lengths of the baseline solution are used
in order to represent the bioimaging application in fixed point arithmetic.
More information is available in [Kri09].

Figure 11.5: Total word length (y axis) for each signal (x axis) of the detec-
tion algorithm of the bioimaging application. The bars show the lower bound
RLB (green), baseline solution (red) and the upper bound UUB (black)
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11.2 Effective constant multiplication realisation
with shift and adds

The multiplication is a functional operation that is widely used by the pro-
grammers and in the processor target, it usually is implemented by a multi-
plier Function Unit (FU). Although the multiplier FU has high performance,
it increases the cost and especially the power consumption of the processor,
due to its domination in the data path area and energy consumption. This is
a very important fact for the on-line bioimaging application which aims at a
low energy and low cost implementation for use in chicken farms. This means
we should avoid as much as feasible the use of the multiplier FUs in the final
ASIP platform. Hence, in this book we have studied a more efficient imple-
mentation based on the replacement of constant multiplications by sequences
of shift and addition operations (see Chapter 10) that are implemented on
specific FUs.

First of all, the efficiency of this replacement of operations is examined
in order to decide where this conversion is worthwhile to be applied.
Theconversion efficiency is determined by profiling the code of the bioima-
ging application. The more constant multiplications exist in the bioimaging
application, the more gain will be obtained by this conversion. The total
number of the arithmetic operations and the multiplications of the detection
algorithm are illustrated in Figure 11.6.

The Arithmetic and Logic operations (ALU), which do not include multipli-
cation operations and divisions, are dominant in both the detection and the
tracking algorithm. It is stressed that the profiling of the tracking part is
done on one iteration of the algorithm. Depending on the iterations perfor-
med by the algorithm, the above results are multiplied by the appropriate

Figure 11.6: Total number of arithmetic operations of the detection and the
tracking algorithm
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Figure 11.7: The multiplication operations for the detection algorithm rep-
resent almost 100% of the non-ALU operations and for the tracking algorithm
about 96%

factor. According to the application’s specifications (video sequence of 3 s,
25 frame/s, 10 iteration/frame), the appropriate factor is equal to 75× 10. A
more detailed profiling of the remaining operations, i.e. other operations, is
needed in order to determine what kind of operations they are. The majority
of the other operations (see Figure 11.7) are multiplication operations for
both the detection and the tracking algorithm of the bioimaging application.
In addition, in Figure 11.8 the number of multiplications that corresponds
to constant multiplications for both algorithms is illustrated. Observing these
graphs, the constant multiplications are the main operations of the remaining
operations (other op), e.g. the total operations excluding the ALU operations
that by default do not include the multiplication or division operations.

The conversion of a constant multiplication to a sequence of shift and ad-
dition operations can be performed through different approaches, such as
the parallel, the sequential and the hybrids. The sequential approach is ty-
pically implemented by using left-shift operations and hybrids, as described
in Chapter 10. But alternatively it can also be implemented by using right-
shift operations. Especially in the SoftSIMD context, the right-shift sequential
approach is more advantageous than the left-shift sequential one, because it
reduces the needed data-path width. During the right-shift sequential ap-
proach the digits that are calculated first are the LSB bits of the output. The
right shift operation pushes the LSB bits of the partial results out of the data
path and they are lost. Moreover, the right-shift sequential approach pre-
serves the necessary precision, while it uses a data path with width equal to
the smallest one needed, i.e. the output size. In case of left-shift operations,
it is necessary to increase the data path width, since the left operations push
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Figure 11.8: The constant multiplications for the detection algorithm re-
present almost 100% of the multiplications and for the tracking algorithm
they amount to 87.4% of the multiplications

Figure 11.9: Multiplication of 255dec × 2585dec using the left-shift approach

the MSB bits of the partial results out of the data path and the precision of
the output is not guaranteed. The correct implementation of the constant
multiplication using left-shift operations needs a wider data path than the
implementation with right-shift operations. After the calculation of the final
result, the output is shifted back to the precision needed. A more detailed ex-
ample (255dec×2585dec) that uses the left-shift sequential approach is shown
in Figure 11.9.

In this example, the input of the multiplication, e.g. the multiplicand, has
a word-length equal to 8 bits while the output has a word-length equal to
12 bits. In order to have a correct output, it is required that the data-path
width is equal to 20 bits, although the needed word-length of the output is
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Figure 11.10: Multiplication of 255dec×2585dec using the right-shift approach

only 12 bits. The use of left-shift operations moves the MSB bits of the partial
product out of the needed output word length and as a consequence, the data
path is growing. After the calculation of the output it is shifted back to the
appropriate word length. In the case of the right-shift sequential approach,
shown in the example of Figure 11.10, the input is aligned to the MSB− 1
bit of the output. The use of right-shift operations moves the LSB bits of
the partial products out of the data path and as a consequence of this, the
result is correctly calculated, while the data-path width is only 12 bits, i.e.
the word-length of the final output.

Tradeoffs exist between these different approaches regarding the perfor-
mance, the energy consumption and the area. It is stressed that the analysis
of the constants of the bioimaging application that are used in multiplica-
tions, is necessary in order to determine which approach and how many FUs
are necessary for the implementation of the sequence of shift and addition
operations. Hence, constant analysis is carried out both for the parallel ap-
proach, which has better performance but increased hardware demands and
the sequential approach with right shifts, due to its advantages in area and
energy consumption. The constant analysis includes the indication of all the
different constants of the application that take part to constant multiplica-
tions and they are either positive or negative values. Only the case with the
positive constants is further analyzed here, since the negative ones can be
transformed. The multiplication by a negative constant is replaced by the
multiplication by the absolute value of the constant and the sign is then
propagated to the next addition/subtraction input and absorbed there. The
positive constants are determined by their binary value, which provides the
needed shift factors and the necessary additions according to its non-zero
digits (see Chapter 10). Consequently, the cost of implementing the sequence
of shift and addition operations is given by the number of non-zero digits of
the corresponding constant.
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For performing the constant analysis, the utilization of the constant with the
worst cost is a critical factor for deciding the use of the worst case or the
average case [Kri09]. The constant with the worst cost used in a multiplica-
tion of the bioimaging application is 32767dec and it is part of the tracking
module. Considering the fact that the detection algorithm is applied once
over 75× 10 applications of the tracking algorithm, according to the applica-
tion’s specifications (video sequence of 3 s, 25 frame/s, 10 iteration/frame),
the utilization of the worst case constant is not negligible and, consequently,
drives the constant analysis. This worst cost constant is equal to 15 non-
zero digits, which means that 14 shift operations and 14 addition operations
are needed in order to convert this multiplication to a sequence of shift and
addition operations. The high requirements in shift operations and in addi-
tion operations lead to the selection of another coding, namely the Canonic
Signed Digit (CSD) coding (see Chapter 10), which represents the same va-
lue but with less non-zero digits. Hence, the worst cost using the CSD coding
has changed to 23170dec and it is equal to six non-zero digits, which means
that five shift operations and five addition operations are needed in order to
convert the multiplication by the worst case constant to a sequence of shift
and addition operations.

Moreover, the worst case constant analysis with different approaches for the
implementation of the sequences of shift and addition operations is perfor-
med in order to determine the most promising sequence. First of all, the mul-
tiplication by the worst cost constant is converted to a sequence of shift and
addition operations considering a parallel approach, as illustrated in Eq. 11.3.
Three shift-shift-add (SSA) FUs are necessary for achieving the highest per-
formance, but this incurs a large cost in hardware requirements. The map-
ping of the worst case sequence to this SSA3 FU is illustrated in Figure 11.11.

a× 23170dec = a× 10− 0− 01010000010⇒

a×23170dec = (a� 15)− (a� 13)+(a� 11)+(a� 9)+(a� 7)+(a� 1)
(11.3)

Figure 11.11: SSA3 FU for implementation of multiplication a× 23170dec
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Figure 11.12: SA5 FU for implementation of multiplication a× 23170dec

Then, the multiplication by the worst case constant is converted to a se-
quence of shift and addition operations considering the right-shift sequential
approach, as shown in Eq. 11.4. In this case, five shift-add (SA) FUs are nee-
ded, leading to the SA5 FU proposal that is illustrated in Figure 11.12.

a× 23170dec = a× 10− 0− 01010000010⇒

a× 23170dec = [(((((a� 6) + a)� 2 + a)� 2 + a)� 2 + a)� 2 + a]� 1
(11.4)

Observing the implementations of the different approaches of the worst case
sequence, a tradeoff is present between the number of cycles needed for
execution and the hardware requirements. Due to high number of non-zero
digits, transformations to the worst case constant are applied in order to re-
duce this number and furthermore the cost of implementing the sequence of
shift and addition operations. The first transformation applied to the worst
constant is the further reduction of its precision. The number of bits used for
the representation of the decimal part of all the constants is reduced from 17
to 14 bits precision. The transformation impact has to be verified by a pro-
cedure similar to the one used in Section 11.1, namely checking whether the
new word-length meets the performance criteria. This is possible due to the
fact that the quantization analysis has indicated that more degradation can
be accommodated here. After this transformation, the worst case constant is
2896dec and it consists of five non-zero digits, corresponding to four shift ope-
rations and four addition operations. The implementation of the new worst
case constant on the SSA3 FU is depicted in Figure 11.13 and it is based on
Eq. 11.5. The mapping on an alternative option, namely a SA4 FU is depicted
in Figure 11.14 and it is based on Eq. 11.6.
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Figure 11.13: SSA3 FU for implementation of multiplication a× 2896dec

Figure 11.14: SA4 FU for implementation of multiplication a× 2896dec

a× 2896dec = a× 10− 0− 01010000⇒

a× 2896dec = (a� 12)− (a� 10)− (a� 8) + (a� 6) + (a� 4) (11.5)

a× 2896dec = a× 10− 0− 01010000⇒

a× 2896dec = [(((((a� 2) + a)� 2− a)� 2− a)� 2 + a)]� 4 (11.6)

The utilization of the constants in the multiplications is modified due to the
applied transformation, but the worst case constant 2896dec is still dominant.
Accordingly, further transformations are applied in order to reduce its num-
ber of non-zero digits. The next transformation consists of the replacement of
the actual worst case constant with another one, which has a nearby value,
but uses less non-zero digits for its representation. Again we have checked
whether it meets the overall performance criteria. After the transformation,
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Figure 11.15: SSA2 FU for implementation of multiplication a× 2912dec

Figure 11.16: SA3 FU for implementation of multiplication a× 2912dec

the new worst case constant is 2912dec. It now consists of four non-zero digits,
corresponding to three shift operations and three addition operations. The
mapping of the new worst case constant to a SSA2 FU is based on Eq. 11.8
and it is depicted in Figure 11.15, whereas its mapping to a SA3 FU is based
on Eq. 11.8 and it is depicted in Figure 11.16.

a× 2912dec = a× 10− 00− 0− 00000⇒

a× 2912dec = (a� 12)− (a� 10)− (a� 7)− (a� 5) (11.7)

a× 2912dec = a× 10− 00− 0− 00000⇒

a× 2912dec = [((((−a� 2)− a)� 3− a)� 2 + a)]� 5 (11.8)

After the reduction of the non-zero digits of the worst cost constant and its
implementation by the parallel and by the sequential with right shifts ap-
proaches, the shift factors for every implementation are calculated. The po-
sition of the non-zero digits of the CSD coding of the constants specifies the
shift factors that must by implemented by the shifters of the SSA FU with the
parallel approach, while the difference between the positions of non-zero di-
gits specifies the shift factors that must by implemented by the shifter of the
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SA FU with the sequential approach. The mapping of the sequences of shift
and addition operations of all the constants to the SSA FU and to the SA FU
determines the factors that each shifter has to implement, while the mapping
of the worst cost constant determines the maximum number of each FUs in
order to execute the sequence in one cycle. It should be stressed again that
the SA3 FU stands for three Shift Add Function Units. So the worst constant
multiplication is implemented in one cycle, while the SA FU stands for one
Shift Add Function Unit, where the worst constant multiplication needs three
cycles in order to finish its execution. The use of the parallel approach leads
to shift factors that are characterized by a potentially big range, a fact that
leads to the need for complex shifters and as a consequence, an increase to
the cost and to the energy consumption. In contrast, the shift factors of the
right shift sequential approach have similar values. Consequently, the right
shift sequential approach is considered for implementation due to the simpli-
city of its shift factors. The Table 11.1 is summarizing the final shift factors
for SSA FU, SA FU and for the SAS FU, which consists of the cascade of the
SA FU with one shifter. The SAS FU can potentially be beneficial during the
replacement of the constant multiplications of the bioimaging application,
since the last shifter can be used for the preparation of the output of the
multiplication for the next operation.

In conclusion, the right-shift sequential approach is considered for the re-
mainder of the present case study due to the use of small shift factors. The

Sequential Sh1 Sh2 Sh3
Detection
SA3 3.4.5 2.3 2.5
SA2 3.4.5 2.3
SA 2.3.4.5
SAS 2.3.4.5 2
Tracking
SA3 2.3.5.12 2.3.4 2.4
SA2 2.3.5.12 2.4
SA 2.3.4.5.12
SAS 2.3.4.5 2

Parallel Sh1 Sh2 Sh3 Sh4
Detection
SSA2 1.3.4 3.5.6.7 9 10.11
SSA 1.3.4.5.6 7.9.10.11
Tracking
SSA2 1.2.3.4.5 3.4.6.7 8.9.10 11.12
SSA 1.2.3.4.5.6.7 8.9.10.11.12

Table 11.1: Shift factors for the sequential and the parallel approach
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right-shift sequential approach is considered for implementation on the SA
FU, which uses one Shift-Add FU. It is also used on the SAS FU, which consists
of one Shift Add Shift FU. The option of allocating a SASA FU, which consists
of two Shift Add Functional Units, is not attractive due to the values of the
constants of the bioimaging applications which usually lead to one or three
cycles in order to calculate the corresponding multiplication. By combining
the proper transformation space (explored in Chapter 10) and the controlled
finite-precision degradation of the constant multiplications to sequences of
shift and addition operations, it is feasible to heavily reduce the overall im-
plementation complexity.

11.3 Architecture exploration for scalar
ASIP-VLIW options

The generic ASIP architecture template used in the COFFEE tool for the ex-
ploration of the potential ASIP platform instances, consists of several major
components. In particular, it includes a data memory hierarchy with a data
memory Level 1 scratchpad DL1 (addressed by a domain-specific DMA en-
gine) and a data foreground memory (which can be either a conventional
register-file RF or a very wide register VWR as proposed in Chapter 8). In ad-
dition, it has an instruction memory organisation with an instruction memory
Level 1 scratchpad (IL1) and a distributed loop buffer LBx (see Chapter 5).
Finally, it includes the functional unit (FU) slots and their communication in
the ASIP data-path clusters.

For the mapping of the bioimaging application we have used a scalar ASIP
version, illustrated in Figure 11.17 and afterward also a data-parallel SIMD
version (see Section 11.4). During the architecture exploration with COFFEE,
different numbers of data clusters, slots per data cluster, registers in the RFs
or words in the VWRs, and positions in the LB are used. The main goal of the
architecture exploration is to find the most promising ASIP instances that are
characterized by (ultra) low-energy consumption and acceptable area cost,
while they maintain or even increase the maximal achievable performance.

The main benchmark used here for the architecture exploration is the fixed
point representation of detection algorithm of the bioimaging application (as
derived in Section 11.1). The developed methodology can however also be
applied to the fixed point representation of the bioimaging tracking algorithm
and any other algorithm that meets the characteristics of the target domain.
In particular we focus here on data-flow and loop nest dominated applica-
tions where the operations are mainly consisting of the add/subtract/shift
class including constant multiplications that are then decomposed in shifts
and adds. All other operations are assumed to be much less frequent so that
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Figure 11.17: Generic architecture used in COFFEE tool

it is feasible to decompose them also in iterative versions (e.g. by means
of the very versatile CORDIC algorithm) that typically take as many compute
cycles as the output word-length requirement. Algorithms meeting these cha-
racteristics are abundant in wireless and bio-sensor processing, but also large
subdomains of multi-media or automotive processing belong to this. Hence
we cover a quite wide domain with our ultra low-power ASIP-VLIW template.

While mapping the benchmark using the COFFEE tool to architectures with
different numbers for data clusters, slots per data cluster, size of the RF size
and depth of the LB, the tool set also provides the overall Pareto trade-off
curve. This is illustrated for a specific context in Figure 11.18. The curve is
normalized to the architecture with the worst energy consumption and to the
architecture with the worst performance. The Pareto points of Figure 11.18
indicate architectures that consist of one data cluster, two slots per data clus-
ter, RF size equal to 16 or 64 and LB depth equal to 64 or 128. The execution
of the above experiment aims at the reduction of the architecture exploration
space, while it gives a first estimate of the energy consumption. The energy
estimation of the pareto point 2 is depicted in Figure 11.19.

It should be stressed that a lot of already known and partly well developed
methodologies exist for the reduction of the IM energy, the PR (Pipeline
Register) energy, the RF energy and the DM energy. The present study is
focusing on the further reduction of the processor data path energy. This
exploration exploits the use of the constant multiplication conversion to se-
quences of shift and addition operations (as described in Chapter 10) and
then by combining the outcome of the conversion with SoftSIMD data paral-
lelization techniques (as advocated in Section 9.4). The introduction of new
FUs impacts not only on the FU energy, but also on the rest energies. Even
if the FU energy is shown negligible on the above example, transformations
that will be applied will affect the rest of the energies, as it will be shown
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Figure 11.18: Pareto curve of initial architecture exploration. The numbers
for each point stand for number of data clusters number of slots per data
cluster RF size LB depth

Point 2
<PR_energy>

<FU_energy>

<RF_energy>

<IM_energy>

<DM_energy>

Figure 11.19: Energy pie of point 2, where PR stands for Pipeline Registers,
FU for Function Units, RF for Register File, DM for Data Memory and IM for
Instruction Memory

later on this chapter. The insertion of new FUs affects the structure of the
IMH, and especially the structure of the LB. The IM energy is dominant
due to the fact that the LB energy is overestimated. The default LB width
is equal to 32 bits per slot and its depth is equal to 128 positions. This LB
is oversized though; accordingly, in order to specify the really required IM
energy consumption, the actual needed size of the LB has to be determined.
Moreover, the insertion of the new FU affects the ISA of the processor and so
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also the PL energy. In addition, the RF energy is depending on the RF size,
so the minimum needed RF size should be estimated for the biotechnology
application. Finally, the DM energy consumption can be reduced by applying
methodologies like ADOPT [Mir98] and DTSE [Cat98b, Cat02].

The architectures of the ASIP platform that are considered firstly for explo-
ration are four VLIW architectures which consist of one data cluster and one
slot per data cluster (1 1), one data cluster and two slots per data cluster
(1 2), two data clusters and one slot per data cluster (2 1), two data clusters
and two slots per data cluster (2 2). At the very beginning of the architec-
ture exploration, specific FUs that implement the different approaches of the
sequences of shift and addition operations, are inserted to the slots of the
different architectures of the ASIP platform. The generic VLIW architecture
is characterized by high cost since it includes additional FUs on top of the
needed for the efficient implementation of the target application. It is stres-
sed that in the next stages of the architecture exploration, experiments with
low-cost ASIPs that have only the needed FUs are carried out. The FUs used
in the generic VLIW architectures 1 1 and 1 2 are schematically illustrated in
Figures 11.20 and 11.21. It is mentioned that the generic VLIW architectures
2 1 and 2 2 are formed by duplication of the data cluster of 1 1 and 1 2,
respectively.

Based on the constant analysis of the bioimaging application, the use of SA
and SAS FUs for the implementation of the sequences of shift and addition
operations is explored. New intrinsics are inserted to the intrinsic library of
COFFEE tool in order to simulate the behavior of these SA and SAS FUs. The
constants do not lead to the same execution cycle count, due to the distinct
number of shifts and adds in each constant. Hence, different intrinsics with
different latencies are introduced for the SA and SAS FU. For example, a
constant that represents three shift operations and three addition operations
and is implemented on the SA architecture, will require one shift and one
addition operation in every cycle. Hence, it then uses the intrinsic SA3 for

Figure 11.20: Generic VLIW architecture with one data cluster and one slot
per data cluster (1 1)
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Figure 11.21: Generic VLIW architecture with one data cluster and two slots
per data cluster (1 2)

Figure 11.22: SA FU Architecture

which the execution time is equal to three. The same constant when it is
implemented on the SAS FU it uses the SAS3 intrinsic for which the execution
time is equal to three. The control bits for each FU determine the size of
the corresponding loop buffer, which allows the LB energy to be estimated.
In this phase of the high-level exploration, the LB energy is overestimated
because the detailed mapping is not yet known. That will stay so until the
decision of the final ASIP architecture, where the LB size and its energy will
be recalculated. That will happen based on actual synthesis results and layout
extraction, and that will replace the COFFEE results for the IM energy.

Subsequently, the architectures of the different FUs that implement the se-
quences of shift and addition operations are analyzed. In Figure 11.22, the
architecture of the SA FU is illustrated.

The SA FU consists of one register R, where the multiplicand loaded initially
from the RF is kept, or in general it can also contain a variable. In addition,
the FU contains one shifter, one adder, one pipeline register PLR, one mux,
which selects the input to the shifter, and one demux for bypassing the pipe-
line register. The pipeline register is used for the constants that need more
than one cycle in order to finish the execution of their shift and addition ope-
rations. Instead of writing and reading the partial product from the RF, it is
fed-back through the pipeline register to the mux and so to the input of the
shifter. When the execution of the intrinsic is finished, the result is written
back to the RF. The advantage of the use of the pipeline register is based on
the fact that, during the execution of the intrinsic, one more register is free
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for use, while moreover the non-redundant accesses to the costly RF are avoi-
ded. One field of the instruction of the SA FU is the opcode, which consists
of one bit for the selection of reading or writing to the RF, one bit for the
selection of the mux output, one bit for the selection of the demux output
and the needed bits for the selection of the instruction itself. The total nee-
ded bits for the opcode are equal to y and they depend on the total number
of different instructions that exist in the processor’s ISA. The necessary bits
for the fields, which determine the operands of the instruction, depend on
the RF size and are equal to 2× x bits, where x is derived from the equation
2 × x = RF size. From the application’s constant analysis, the bits that de-
termine the shift factors of the shifter are equal to 2, 3, 4, or 5. Considering
a logarithmic shifter, then the needed bit-width for representing the shifter’s
factors equals to three. One more bit is necessary for the addition or subtrac-
tion of the input that is read directly from register R. The instructions that
use the SA FU are illustrated in Figure 11.23. It is stressed that the missing
bits for the separation of the fields are determined during the architecture
exploration.

The SAS FU is illustrated in Figure 11.24 and consists of one register R,
where the variable deriving from the RF is kept, two shifters, one adder, one
pipeline register PLR, one mux, which selects the input to the first shifter,
and one demux, which bypasses the pipeline register.

For the SAS FU, a similar instruction set exploration is performed. The out-
come is also similar to what is shown in Figure 11.24 except that now more
shift factors and register selection bits have to be concatenated.

Figure 11.23: Instructions that use SA FU. The instructions are loaded into
distributed LB, i.e. LB1 for the RF and LB2 for the FU. The control bits for the
addressing of the operands are loaded to the LB1, which is responsible for
the memory management, while the control bits for performing the operation
to LB2, which is responsible for executing the instruction to the correspon-
ding FU

336



Architecture exploration for scalar ASIP-VLIW options

Figure 11.24: SAS FU architecture

The detection algorithm is used as a benchmark for the COFFEE experiments
to determine the final ASIP architecture. The critical multiplication loop is
defined as the loop that has the maximum number of constant multiplications
of the whole biotechnology application and it is the loop that applies the
Gauss filter to the frame in the detection algorithm. Firstly an amount of loop
transformations is applied to it in order to simplify and reduce the amount of
performed operations.

In the original code of the detection algorithm, the Gauss filter is applied
through a square 3 × 3 matrix that holds the Gauss coefficients. In every
iteration, the result of the application of the Gauss filter for one pixel is cal-
culated by using the eight neighborhood pixels, which means that each neigh-
bor pixel plus the centre one is multiplied by the appropriate coefficient, the
results are summed up and the extracted value replaces the value of the cen-
tral pixel. The first transformation applied to the critical multiplication loop is
the conversion of the square coefficient matrix into two vectors, i.e. the split
into two one-dimensional loops. One vector consists of the coefficients, hence
it is called coefficient vector. For every pixel it is multiplied by the columns of
the 3× 3 needed image pixels. The other vector consists of the factors and it
is called factor vector. The factor vector is applied after the coefficient vector
to the rows of the 3×3 needed image pixels. The factor vector has the appro-
priate values in order to give equivalent results with the initial ones. The loop
nest is split into two loops, where the first loop applies the coefficient vector
and the second one applies the factor vector, so the application of the Gauss
filter is performed by two loops that iterate through the whole image. The
main idea of the next transformation is to merge these two loops into one.
Instead of having one loop that iterates through the whole image and that
applies the coefficient vector and another loop, which again iterates through
the whole image but applies the factor vector, the transformation converts
the code into one outer loop that iterates on rows and two inner loops that
iterate on columns. Finally, the last loop transformation applied is the mer-
ging of the two inner loops. Instead of having two inner loops that iterate on
columns, one for multiplication by the coefficient vector and another one for
the multiplication be the factor vector, the transformation converts the code
with one outer loop and one inner loop. Consequently, while multiplying the
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Program 1 Critical Gauss loop after transformations

for (x = 1; x < N - 1; x++){
MulRes0 = imsub[x-1][1]*Gauss[0][0];
MulRes4 = imsub[x][1]*Gauss[0][1];
MulRes7 = imsub[x+1][1]*Gauss[0][2];
imgauss_x[x][1]=MulRes0+MulRes4+MulRes7;
for (y = 2; y < M - 1; y++) {
MulRes0=imsub[x-1][y]*Gauss[0][0];
MulRes4=imsub[x][y]*Gauss[0][1];
MulRes7=imsub[x+1][y]) * (Gauss[0][2])) ;
imgauss_x[x][y]=MulRes0+MulRes4+MulRes7;
MulRes4 =imgauss_x[x][y-1]*3;
imgauss[x][y-1]=imgauss_x[x][y-2]+MulRes4+imgauss_x[x][y];
imgauss[x][y-1]=imgauss[x][y-1]>>DECimgauss;

}
MulRes4=imgauss_x[x][M-2]*3;
imgauss[x][M-2]=imgauss_x[x][M-3]+MulRes4+imgauss_x[x][M-1];
imgauss[x][M-2]= imgauss[x][M-2]>> ]>>DECimgauss;

}

pixels by the coefficient vector, the previous pixels can by multiplied by the
factor vector, in the same iteration. The final code of the critical Gauss loop
is depicted in Program 1.

After the loop transformations, the detection algorithm is used as a bench-
mark to the COFFEE tool fot the architecture exploration of the ASIP plat-
forms. This phase is divided into three sub-phases, one that maps only the
constant multiplications to the specific SA and SAS FUs (Section 11.3.1), one
that maps the rest of ALU and shift operations to more generic SA and SAS
FUs that are inserted in the generic VLIW architecture of Section 11.3.2 and
the final one that makes the final and accurate mapping of the detection in
Section 11.3.3

11.3.1 Constant multiplication FU mapping: Specific SA
and SAS options

All the constant multiplications that are performed in the detection algorithm
of the biotechnology application are mapped to the SA and SAS FUs. It is no-
ted again that, in order for the sequential shift right approach to have the cor-
rect results, the input is aligned to the MSB − 1 bit of the word-length of the
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output. A new intrinsic is introduced to the COFFEE library in order to apply
the correct alignment of the input before the application of the sequence of
shift and addition operations. Moreover, sometimes the alignment of the in-
put can be propagated to a previous operation, so no overhead is introduced.
Combining the shift factor applied to the previous operation that calculates
the input of the constant multiplication with the shift factor that is needed for
the alignment, the overhead of adding one more operation is avoided. This is
important for the critical Gauss loop that iterates through the whole image.
The alignment of the input of the constant multiplication is propagated to
the previous operation. Accordingly no overhead is introduced. In addition, a
pass of the whole code indicates cases where two shifts can be combined into
one. For example, if a variable, when it is computed, is shifted left due to pre-
cision and, when it is used, it is shifted right due to alignment for performing
correct operation. Then the two shifts can be combined in order the previous
operation to prepare the input of next operation. These combinations are ap-
plied in the code in order to reduce the number of instructions, and hence the
number of operations, since they remove the redundant shift operations. It
should be noted that these combinations do not appear in the important loops
of the detection algorithm. The COFFEE results for the performance, the
energy consumption and the LB depth, are depicted in Figures 11.25–11.27.

It is stressed, once again, that the energy should be used only for a crude rela-
tive comparison and that the performance of the SA and SAS FUs is approxi-
mated. The IM energy shown in Figure 11.28, is somewhat overestimated
due to the upper bound taken for the LB energy.

11.3.2 FUs for the Generic SAs

This option explores a more generic SA FU, which is called GSA FU, and a
more generic SAS FU, which is called GSAS FU. In the GSA and GSAS FUs
not only the constant multiplications can be mapped, but also the rest of

Figure 11.25: LB depth comparison of the detection algorithm for the imple-
mentation with the multiplier FU and the SA and SAS FU
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Figure 11.26: Performance comparison of the detection algorithm for the
implementation with the multiplier FU and with the SA and SAS FU

Figure 11.27: Energy comparison of the detection algorithm for the imple-
mentation with the multiplier FU and with the SA and SAS FU

Figure 11.28: IMH energy comparison of the detection algorithm for the im-
plementation with the multiplier FU and with the SA and SAS FU
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the ALU and shift operations that would be required for the detection or
tracking modules. For instance, the GSA and GSAS FUs are able to use not
only right shift operations but also left shift operations. For the GSA and
GSAS FUs new intrinsics are introduced to the COFFEE tool, as illustrated
in the Figures 11.29 and 11.30. The needed bits for selecting a register, e.g.
operands from the RF, equal four since the RF size is now set to 16 registers.
That is needed due to the increased set of operands and life-times in the part
of the code that is not focused only on the Gauss filtering.

It should be mentioned that the GSA and GSAS data-path can be used to exe-
cute pure shifting. In this case, the adder adds a zero value to the output of
the shifter. This zero value could come from a register, which has as disadvan-
tage of one redundant access to the RF for reading the zero value. Moreover,
one less register is available for the other variables. A better solution can be
achieved either by bypassing the adder using one demux and one mux, or by
driving the first input of the adder using an AND gate. In case of performing
the addition with the zero, then the control bit of the AND gate is set to zero,
forcing the output to have a zero value. That is probably the most interesting
option but it depends on the technology and the cell library used. Finally,
another solution can be enabling of the register reset signal after its use.

The code of the detection algorithm is converted using the new intrinsics for
the GSA FU and the GSAS FU, and combining, whenever is possible, the shift
applied to a next operation with the shift of the previous operation. These
combinations reduce the number of operations since they remove the redun-
dant shift operations. Moreover, the shift operations are mapped to the shifter
of the GSA FU and the GSAS FU by adding a zero to the output of the shifter,
while the addition or subtraction operations are mapped to the adder of the

Figure 11.29: GSA FU architecture

Figure 11.30: GSAS FU Architecture
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Figure 11.31: LB depth comparison of the detection algorithm that uses FUs
only for implementing the constant multiplications and of the detection al-
gorithm that uses more generic FUs for mapping the whole application

Figure 11.32: Performance comparison of the detection algorithm that uses
FUs only for implementing the constant multiplications and of the detection
algorithm that uses more generic FUs for mapping the whole application

GSAS FU and GSAS FU by shifting zero positions. The COFFEE results for the
LB depth, the performance and the energy consumption between the imple-
mentations using the specific SA and SAS FUs and the generic GSA and GSAS
FUs are depicted in Figures 11.31–11.33.

Based on the above results, the LB depth is set to 32 positions for redu-
cing the IM energy consumption of the COFFEE results. After the selection
of the final ASIP architecture, the LB size will be explicitly defined and the
IM energy will be recalculated. Considering that 8 Mega cycles are available
for performing both the detection and the tracking algorithm between two
consecutive frames, only the generic VLIW architectures, which accommo-
date more ILP while avoiding the intercluster copy instructions, are further
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(a) Architectures 2 1 and 2 2 (b) Architectures 1 1 and 1 2

Figure 11.33: Energy comparison of the detection algorithm that uses FUs
only for implementing the constant multiplications and of the detection al-
gorithm that uses more generic FUs for mapping the whole application

explored in order to meet the performance requirements of the bioimaging
application. Furthermore, the GSA and GSAS FUs are considered due to the
fact that they reduce the cost of the architecture since the mapping of the
rest of the operations to these FUs increases their utilization.

11.3.3 Cost-effective mapping of detection algorithm

The architectures that are considered for further exploration consist of the
ones that provide sufficient parallelism, e.g. the architecture with one data
cluster and two slots (1 2) and the architecture with two data clusters and
two slots (2 2). The next step consists of removing the redundant FUs of
the VLIW architectures in order to reduce their cost and to create thin ASIP
architectures. The thin ASIP architecture for the 1 2 case is illustrated in
Figure 11.34, while the thin ASIP architecture 2 2 is formed by duplication
of the data cluster of the thin ASIP architecture 1 2.

However, in order to select the final ASIP architecture, a more accurate
modeling and more cost-effective mapping of the detection algorithm is nee-
ded. The more detailed performance and energy consumption models for
the GSA and GSAS FUs are used, while the unconverted operations of the
benchmark are modeled through intrinsics. We have also converted the tri-
gonometric functions, square roots and divisions of the code of the biotech-
nology application to sequences of shift and addition operations, but the
details are not incorporated in this book chapter. The trigonometric and
the square root functions can be converted with a CORDIC implementa-
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Figure 11.34: Thin ASIP architecture with one data cluster and two slots per
data cluster(1 2)

tion [Maz93, Vol59], whereas the division can be achieved also with iterative
methods based on shifts and additions. New intrinsics that simulate the be-
havior of the above operations are introduced to COFFEE tool for the correct
modeling of the benchmark. In order to have a good approximation of the
needed execution time, the trigonometric and square root functions have
an execution time that is linearly proportional to their output word-length,
whereas the execution time of the division is equal to the word-length of
the denominator plus one. Furthermore, no pipeline is allowed for either the
GSA and the GSAS FUs or for the new intrinsics. The next two applied steps
consist of further code optimizations focusing on the operations and FUs. The
variable multiplications are converted using multiple precision multipliers of
4 bits [Pau92, Pau95]. In this case, the longer multiplication size is modeled
by breaking up the operands into 4 bit segments and then accumulating the
4 by 4 bit partial multiplier results. When we start initially with a 16 by 16
bit multiplication, we end up with 16 partial multiplier results to be added
up with the appropriate alignment shifts. Their behavior is again introduced
through the COFFEE tool using new intrinsics, each one with the appropriate
execution time depending on the word-length of the two inputs of the mul-
tiplication. Moreover, the multiplications applied to the indexes of the arrays
are pre-calculated and the results are stored in a Look Up Table (LUT). Du-
ring the execution of the detection algorithm, the values of the multiplica-
tions arederiving directly from the LUT. In addition, the loop that applies the
conversion to the binary image and the loop that calculates the least square
methods are merged in order to remove unnecessary if statements.

The transformed detection algorithm is mapped through the COFFEE tool to
the FAT (Generic VLIW) and to the THIN (ASIP) architectures using the GSA
FU and the GSAS FU. The results for the LB depth, the performance and the
energy are compared in Figures 11.35–11.37.
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Figure 11.35: LB depth comparison of the detection algorithm with and wi-
thout the loop optimizations for the implementation with the multiplier FU
and with the GSA and GSAS FU

Figure 11.36: Performance comparison of the detection algorithm with and
without the loop optimizations for the implementation with the multiplier
FU and with the GSA and GSAS FU

Figure 11.37: Energy comparison of the reference and final detection algo-
rithm for the implementation with the multiplier FU, GSA FU and GSAS FU
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11.4 Data-path architecture exploration
for data-parallel ASIP options

The Single Instruction Multiple Data (SIMD) instructions exploit the data pa-
rallelism that is contained in applications and increase their performance,
since they execute one instruction on different data at the same time. In ad-
dition to the conventional hardware-enabled SIMD approach, we have also
exploited the software-SIMD concept (see Chapter 9). The Soft-SIMD concept
is applied especially on the critical Gauss filtering loop of the detection algo-
rithm. The approach used for the required correction operations consist of
combining the worst case sub-word and one shuffler. Instead of using always
the worst-case sub-word, an intermediate sub-word can be used. When even
more space is required, repacking operations are applied to the already pa-
cked words by a shuffler. The analysis of the operations performed on the
critical Gauss loop of the detection algorithm determines the intermediate
sub-word that should be used for the packing of the data. It should be men-
tioned that the loop should be split into two loops, one that uses Soft-SIMD
over the x iterator and another that uses Soft-SIMD over y. Otherwise the
SIMD directions are not compatible. For the correct modeling of the bench-
mark, the GSAS intrinsics are used because the shift operations performed
by the second shifter can be performed by the shuffler in one cycle. Moreo-
ver, a new intrinsic is inserted to the COFFEE simulation for modeling the
repacking operations performed by the shuffler.

The proposed architecture GSAS FU (Generic Shift Add Shuffle Function
Unit) for the implementation of Soft-SIMD consists of one shifter, one adder,
one shuffler and four registers. The R1 register is used for keeping constant
the packed word that is read from the VWR (Very Wide Register). The R2
and the R3 registers are used for storing the packed words required for the
repacking operations. The R4 is used for feed back from the shifter and the
adder. The VWR is able of storing an amount of packed words, in this case
12, as illustrated in Figure 11.38.

The loop body of the sequential code of the critical Gauss loop of the detec-
tion algorithm, i.e. the Gauss loop, is illustrated in Program 2.

Subsequently, the mapping of the critical Gauss loop to the proposed archi-
tecture is performed. The first operation performed is the addition of two
image pixels (imsub) using the adder of the GSAS FU (Generic Shift Add
Shuffle Function Unit). Based on the quantization results (Section 11.1), the
word-length of the imsub variable is equal to 7 bits. The imsub variable is pa-
cked in 7-bit sub-words in memory. After performing the addition, the result
needs a word-length equal to 8 bits. Therefore, the input variable imsub is
repacked to 8-bit sub-words with the use of the shuffler FU in order to avoid
a later repack operation, as illustrated in Figure 11.39.
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Figure 11.38: Architecture for mapping critical Gauss loop implemented with
sequences of shift and addition operations using Soft-SIMD

Program 2 Sequential critical Gauss filter loop implemented with sequences
of shift and addition operations
for (x = 1; x < N - 1; x++){

for (y = 2; y < M - 1; y++) {

7 MulRes0 = GSAS1(imsub[x-1][y],imsub[x+1][y],0x0,0x0);

8 MulRes7 = GSAS3(MulRes0,MulRes0,0x8018040,0x20);

9 MulRes4 = GSAS3(imsub[x][y],imsub[x][y],0x60100A0,0x34);

10 imgauss_x[x][y] = GSA1 (MulRes7,MulRes4,0x20,0x0);

11 MulRes2 = GSAS1(imgauss_x[x][y-1],imgauss_x[x][y-1],

0x20,0x0);

12 MulRes5 = GSAS1(imgauss_x[x][y-2],imgauss_x[x][y],0x0,0x0);

13 imgauss[x][y-1] = GSA1 (MulRes5,MulRes2,0x24,0x0);

}

}

10

.xxxxxxx

.xxxxxxx

.xxxxxxxx

012345678911

S7:    Imsub[x-1][y]
Imsub[x+1][y]

MulRes0

12

Figure 11.39: Addition of 8 bit sub-words

The second operation is performed on the output of the addition and
represents the implementation of the multiplication of the constant 655dec

using the GSAS FU for 3 cycles. The input has word-length equal to 8 bits
while the output of the multiplication needs 9-bit word-length. Due to code
transformations that have been applied to the Gauss loop, the appropriate
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information about the required intermediate word-lengths is not available.
Therefore, a safe but conservative assumption that the output needs max
(word-length(input1)),word-length(input2) = max(8, 13) is made. No need
exists for guard bits (see Section 9.4.2) due to the known dynamic range of
the variables. hence the word-length of the output is set equal to 12 bits.
Analyzing the steps performed during the execution of the sequence of shift
and addition operations, the worst-case subword is equal to 17 bits. For the
rest of the analysis it is assumed that the decision of 17 bits is too conser-
vative, so 16 bits are used. That is motivated because the final resolution of
results that are passed to the y loop is only 13 bits. In order to correctly apply
the Soft-SIMD, the input needs to be packed in 12 sub-words.

During the first cycle, the partial product is shifted four positions to the right
and is still inside the sub-word. The second shift operation passes the par-
tial product outside the sub-word. This indicates that repacking through the
shuffler FU of the partial product must be performed from 12-bits to 16-bit
subwords. Hence also the input repacking must be performed from 12-bits to
16-bit subwords. The second and the third cycle are performed on 16-bit sub-
words and at the end of the third cycle the result is repacked at 12-bits sub-
words using the shuffler FU. The next operation is performed on the imsub
variable, which is packed in 7-bit sub-words in memory. This represents the
implementation of the multiplication of the constant 983dec using the GSAS
FU for 3 cycles. The input has word-length equal to 7 bits while the output of
the multiplication requires a 9-bit word-length. As already mentioned, due
to code transformations that have been applied to the Gauss loop, the ap-
propriate intermediate word-lengths are not fully known here yet so a safe
assumption that the output is equal to 12-bit word-length has been made.
Therefore, the input variable is packed to 12-bit sub-words. This could have
been further optimized by locally applying the quantisation optimisation of
Section 11.1 again.

We will now explain in more detail how this 983dec constant multiplication
is decomposed into shift and add operations. We will also indicate how the
guard bits for each of these subword operations is performed. Subword mani-
pulation is happening within the arithmic operation of the SIMD operations
and during repositioning of bits inside the word. That leads to moves and
extensions to the left and right, and those risk to overwrite bits that belong
to other neighbouring subwords. To avoid this problem, guard bits are intro-
duced at the sides of the subword as buffers.

Table 11.2 depicts the form in which the 12-bit input variable is packed.
During the first cycle of the multiplication, it is used both as multiplicand
and as partial product. It consists of the 7-bit actual wordlength of the imsub
variable, preceded by one guard bit that is needed because of the addition
during the first cycle. It is extended by 4 guard bits at the right-hand side,
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Multiplicand - g x x x x x x x g g g g - - -
Partial result - g x x x x x x x g g g g - - -

>> 3 - g g g g x x x x x x x g - - -
+ imsub[x][y] - x x x x x x x x x x x g - - -

Table 11.2: First sequence of shift and addition operations due to multiplica-
tion M4 by constant 983dec to 12 bit subwords

Multiplicand g g x x x x x x x g g g g g g g
Partial result g x x x x x x x x x x x g g g g

>> 2 g g g x x x x x x x x x x x g g
+ imsub[x][y] g x x x x x x x x x x x x x g g

Table 11.3: Second sequence of shift and addition operations due to multi-
plication M4 by constant 983dec to 12-bit subwords

that guarantee that during the first shift to the right by 3, no bits are shifted
out of the subword toward its neighbour. In this illustration, the guard bits
are represented by “g”, while “x” stands for the different data bit values and
the double line indicates the position of the decimal point.

The second and third shift operations pass the partial product outside the
subword. They indicate that repacking must be performed from 12-bit to 16-
bit subwords through the shuffler FU of the partial product. Hence the input
has to be repacked, before entering the second cycle of the multiplication.
In this case, although only one guard bit preceding the actual value of the
multiplicand would be enough to prevent the final result from possible over-
flow during the two next additions of the multiplication, one additional issue
needs to be taken into account. The final result of this multiplication, namely
the variable MulRes4, participates in an addition that represents the fourth
operation of the loop body of the critical Gauss loop in Program 2. This im-
plies that the result of this multiplication must already be provided with a
guard bit, that will ensure the correct execution of the subsequent addition.
Thus, an extra guard bit is needed at the left-hand side of the partial result
subwords, which leads to two guard bits required at the left-hand side of
the repacked multiplicand. These considerations lead to the choices shown
in Table 11.3 regarding the 16-bit representation of the multiplicand and the
partial result.

During the third cycle, the partial result needs to be shifted by 5 (Table 11.4).
Because of the 16-bit length of the partial result, 3 bits have to be shifted out
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Multiplicand g g x x x x x x x g g g g g g g
Partial result g x x x x x x x x x x x x x g g

>> 5 g g g g g g x x x x x x x x x x
+ imsub[x][y] g x x x x x x x x x x x x x x x
Result:MulRes4 g x x x x x x x x x x x x x x x

Table 11.4: Third sequence of shift and addition operations due to multipli-
cation M4 by constant 983dec to 12-bit subwords

.

.

.

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxxx

S10:           MulRes7
+MulRes4

imgauss_x[x][y]
.
.
.

Figure 11.40: Addition of 12-bit sub-words

of the subword. In this case, care must be taken so that the extra bits are “cut
off” and do not enter the neighbouring subword. The output is repacked to
12-bit subwords.

The last operation that is performed while using Soft-SIMD on x is the addi-
tion of the results of the constant multiplications by the adder of the GSAS
FU. Both the inputs are packed in 12-bit subwords. They are aligned, so that
the addition can be performed without repacking of the variables. This is
illustrated in Figure 11.40.

It should be mentioned that shift operations for alignment of the decimal
points are also performed during the repacking operations. The rest of the
Gauss body loop consists of operations that are executed with Soft-SIMD
over the y iterator. Between the operations performed using Soft-SIMD in
x and Soft-SIMD on y, the output variables of Soft-SIMD on x are passed
through the shuffler FU in order to be packed in 13-bit sub-words and then
they are stored in the VWR and from there to the data memory (see data
layout in Figure 11.41). All the operations using Soft-SIMD on y can be
performed without need for repacking since the results are always inside the
13-bit sub-words, as illustrated in Figure 11.42.

Applying the above analysis on the Gauss body loop, the loop is converted to
the one depicted in Program 3. It is noted that the data path width is set equal
to 48 bits, so the packed data with 8-bit sub-words consist of six different
data, the packed data with 12-bit sub-words consist of four different data
and the packed data with 16-bit sub-words consist of three different data.
In order to have full use of the packed bits using different sub-word each

350



Data-path architecture exploration for data-parallel ASIP options

Figure 11.41: Packed words on x vector and on y vector in memory
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Figure 11.42: Shift operations and additions performed on the y vector on
13-bit sub-words

time, the code must be partially unrolled, as illustrated on the example of
Figure 11.43.

The operations performed on 8-bit sub-words are unrolled once and the ope-
rations performed on 12-bit sub-words are unrolled twice in order to create
12 different data that completely full each packed word. The code in the
Program 3 illustrates the converted Gauss loop in which Soft-SIMD on x and
Soft-SIMD on y have been applied.

The correct modeling of the Soft-SIMD through the COFFEE tool is perfor-
med by unrolling the operations that need more that one cycle. This is done
due to the need for repacking between the cycles that execute the sequence
of shift and addition operations, especially when the shifting factor pushes
the sub-word out of its available data-path width. This fact indicates that one
cycle is required for executing the shift and addition operation and another
cycle for the repacking operation through the shuffler. Furthermore, it should
be stressed that cases are present in which the shifter, the adder and the shuf-
fler can be executed in one cycle by bypassing the pipeline registers before
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Figure 11.43: Unrolling of operations for full utilization of packed words

Program 3 Parallel critical Gauss loop using Soft-SIMD on x and on y
for (x = 1; x < N - 1; x=x+12){

for (y = 2; y < M - 1; y++) {

MulRes0_8_a = GSAS1(imsub_8[x-1][y],imsub_8[x+1][y],0x0,0x0);

MulRes0_8_b = GSAS1(imsub_8[x-5][y],imsub_8[x+7][y],0x0,0x0);

MulRes0_12_a = REPACK(MulRes0_8_a,0);

MulRes0_12_b = REPACK(MulRes0_8_a,MulRes0_8_b);

MulRes0_12_c = REPACK(MulRes0_8_b,0);

MulRes7_12_a = GSAS3(MulRes0_12_a,MulRes0_12_a,0x8018040,0x20);

MulRes7_12_b = GSAS3(MulRes0_12_b,MulRes0_12_b,0x8018040,0x20);

MulRes7_12_c = GSAS3(MulRes0_12_c,MulRes0_12_c,0x8018040,0x20);

imsub_12_a = REPACK(imsub_8[x][y],0);

imsub_12_b = REPACK(imsub_8[x][y],imsub_8[x+6][y],2);

imsub_12_c = REPACK(imsub_8[x+6][y],0);

MulRes4_12_a = GSAS3(imsub_12_a,imsub_12_a,0x60100A0,0x34);

MulRes4_12_b = GSAS3(imsub_12_b,imsub_12_b,0x60100A0,0x34);

MulRes4_12_c = GSAS3(imsub_12_c,imsub_12_c,0x60100A0,0x34);

imgauss_x[x][y] = GSAS1(MulRes7_12_a,MulRes4_12_a,0x20,0x0);

imgauss_x[x+12][y] = GSAS1(MulRes7_12_b,MulRes4_12_b,0x20,0x0);

imgauss_x[x+24][y] = GSAS1(MulRes7_12_c,MulRes4_12_c,0x20,0x0);

}

}

for (x = 1; x < N - 1; x++){

for (y = 2; y < M - 1; y=y+3) {

MulRes2 = GSAS1(imgauss_x[x][y-1],imgauss_x[x][y-1],0x20,0x0) ;

MulRes5 = GSAS1(imgauss_x[x][y-2],imgauss_x[x][y],0x0,0x0 );

imgauss[x][y-1] = GSAS1(MulRes5,MulRes2,0x24,0x0);

}

}

the shuffler. The transformed Gauss loop using Soft-SIMD is embedded in the
program of Figure 11.46, which will be described further on.

The performance obtained by the COFFEE scheduler for the Gauss loop
and the architecture with one data cluster and two slots is illustrated in
Figure 11.44.
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Figure 11.44: Performance comparison of the sequential critical Gauss loop
and of the parallel critical Gauss loop using Soft-SIMD, both implemented
with sequences of shift and addition operations

11.5 Background and foreground memory
organisation for SoftSIMD ASIP

11.5.1 Basic proposal for 2D array access scheme

As motivated above, we would like to have a scheme where the data-path is
combining a number of subwords into a word, of, e.g. 48 bit. And then for
using the VWR based foreground memory, we need an SRAM interface of e.g.
576 bit (12 times wider), i.e. with a complete “line”. That is one of the key
components of our proposed scheme, see also Figure 11.45. See Section 11.4
and [Kri09] for more motivation for the actual widths that are used in the
subword parallel ASIP data-path organisation. For all practical illustrations
in this section we will utilize these same numbers.

However, in between the data-path and the background memory, we also
need to plug a foreground memory as a “buffer” to compensate for the une-
qual read and write access sequences. Conventional multi-port register-files
will not provide a really low-energy access, so instead we have proposed to
utilize very wide registers (VWRs) (as described in Chapter 8 and [Rag07a])
of, e.g. 576-bit wide, that have 1-port cells but multiple external ports of e.g.
48 bit to the data-path. This asymmetrical interface allows to convert the
relative small size of the data-path effectively to a very wide SRAM inter-
face. The VWR can be pitch-matched to the output lines of the SRAM, and
can even replace the conventional in/out buffers, allowing to save even more
energy!
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Figure 11.45: Main option for background and foreground storage
organisation

Finally, we also need an operator to reorganize the words in the line and
potentially also the subwords inside a word. For this purpose, we can reuse
the shuffler that is designed to reorganize the subwords in the word (see
Figure 11.38). An efficient and flexible design of such a versatile shuffler is
presented in [Rag07b, Rag07c]. However, then we would require a 576-bit
wide shuffler which is quite expensive in area and energy consumption. So
instead, in our main option, we will use a (sub)word selection network that
only contains some simple multiplexers. Indeed, only a very small subset
of all 576 to 576 crossbar connections are needed here. That subsetting is
enabled in the design of [Rag07c]. In practice, we will only exploit the fully
regular and relatively “local” reshuffles. Those are namely sufficient for our
purpose here. In the illustration further on we need only a maximal shuffling
scope of 72 bit out of the 576-bit total width.

All the more complex subword and bit manipulations (such as realignment,
addition of guard bits, left/right shifting) then have to be performed on the
regular (48-bit) shuffler that belongs to the last section of the data-path
proper.

We assume that the (sub)word selection network is positioned next to the
VWR, in a pitch-matched way. That selection network is then also taking care
of the selection of specific VWR words to the data-path itself. Typically the
data-path will then also contain an M-bit wide local register to buffer the
required data. That will reduce the requirement on most energy-costly VWR
accesses whenever temporal data reuse can be exploited.
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Even with this communication network in place, it is however not yet possible
to correctly and effectively exchange data-parallel (sub)words between the
SRAM background memory and the VWR plus datapath. Indeed, we need a
hardware enabling for writing words both in the conventional way along the
rows (576-bit wide) but in addition also along part of the column direction
(e.g. 72-bit wide).

The most promising and energy-efficient options to realize the above have
been described in [Cat09]. They are not the focus of this book. The option
with the best energy-efficiency requires a modification in the periphery of the
SRAM, namely in the write buffer and global address decoder for the global
bit-line selection. We do not want to modify the internal cells and the local
bit line (LBL) organisation [Cos08] because that would require a complete
redesign and recharacterisation. Our proposal hence does not require any
changes in the SRAM matrix itself and thus the design overhead is relatively
small. Moreover, the energy gain compared to a conventional RAM scratch-
pad is significant, as demonstrated in [Cat09]. That report also describes the
schedule for the full data exchange in the Gauss loops between the SRAM
background memory and the VWR plus datapath.

To complete this subsection, also the alternative for a conventional SRAM wi-
thout modified write organisation will be sketched. In that case, everything
related to the horizontal/vertical “transpose” reorganisation should be taken
care of either by the SRAM addressing, or by the regular datapath shuffler.
When we try to use the addressing, the limitation of the SRAM data layout
(that has to be matched between the write and the read phase) will force us
to pay a very heavy penalty in cycles, and hence also energy. So that option is
not really attractive. Then we can as well not exploit the data parallelism in
that part of the algorithm which exhibits the described data access to more
dimensional arrays! In particular, for the 3 × 3 matrix operation in the bioi-
maging detection module it would mean that we go back to 8-bit accesses
to the SRAM for the read and write operations. A hybrid would then still be
feasible where we write with individual 8-bit subwords (at the proper loca-
tions) and then we can read in a data-parallel way from the SRAM into the
VWR. For the schedule above, this would mean we have 9 × 8 = 72 write
accesses per line instead of 9 writes in the fully optimized scheme of [Cat09]
and the single read access of 576 bit remains the same. Overall we then have
73 writes and 2 reads instead of 10 writes and 2 reads. The SRAM energy will
go up with approximately a factor 6.25 then. That makes the SRAM related
energy become quite high again in the overall energy pie. Still, in this hybrid
way it is slightly lower than the total data-path contribution.

When we try to use the shuffler, the performance penalty will reduce, espe-
cially depending on how wide the scope and flexibility of the allowed shuf-
fling really is. But that improvement in performance goes fully at the cost of a
significant energy increase. Even with small scopes, the shuffler is already an
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energy bottleneck, due to its dependence on many and relatively long inter-
connections. Obviously, also this option is not that attractive. It has to be
carefully evaluated up-front whether enough can be gained overall with the
data-parallel operation compared to the energy penalty paid in the shuffling.

Finally, we can also try to use non-conventional addressing schemes. An
example of this is a special type of zig-zag (Morton type) addressing that
is utilized, e.g. in multi-dimensional discrete wavelet schemes (see, e.g.
[Laf99]). Then we can probably reach a better compromise between perfor-
mance and energy penalty. But the “space-filling scan” puts higher demands
on the AGU (resulting in energy penalties there) and it will still imply a
significantly higher overall energy overhead compared to the proposal de-
fined here. In summary, the conventional SRAM memory module is not an
attractive option here. So the domain-specific data-path of the ASIP is best
extended with the domain-specific SRAM module of [Cat09].

Note also that the proposed two-dimensional background memory access
scheme is quite generic for all data-parallel (including soft-SIMD) contexts,
and it is also fully compatible with the other ultra-low energy optimisations
that have been described earlier in this chapter. In particular, it enables the
effective use of customized data word-lengths (e.g. 6, 8, 12, 16, 24 bit),
shift-add based versions of constant multiplies, of division, of trigonometric
functions and so on.

11.5.2 Overall schedule for SoftSIMD option

The bioimaging application code of Program 3, after applying the appropriate
unrolling factor described above, can be used as basis for an extremely dense
and energy-efficient mapping effort. When we exploit the full functionality
and flexibility of all the operators in the Soft-SIMD data-path and the VWR
to the limit, this leads to a relatively complex and entangled schedule which
is highly optimized. This is described in the program of Figure 11.46, which
is based on [Psy10].

Figure 11.38 is used as the processor architecture instance on which we map
this program. The Shift-Add unit is fully occupied for each of the 27 cycles
and that forms the critical path. The schedule in Figure 11.46 contains only
the first 17 cycles out of a total of 27 in order not to overload the description
here. The more energy-expensive shuffler unit is only used when required
and that column contains several NOPs still (especially toward the end of
the schedule, not shown here). The VWR access in the 3rd column is also
restricted as much as possible. The registers R1–R4 allow to store just suffi-
cient intermediate data to achieve this highly efficient schedule. In particu-
lar, R1 stores the multiplicand on a temporary basis within the steps of the
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Figure 11.46: Optimized data-path scheduling entangled with foreground
data memory scheme for SoftSIMD Gauss x loop, based on [Psy10]

shift-add constant multiplications. R2 and R3 store two neighbouring words
from which the shuffler will select the desired subwords for the output word.
And R4 is used as temporary storage in the Shift-Add feedback loop. A small
fragment of this schedule is enlarged in Figure 11.47. It contains only the
14th and 15th cycle. Here it can be seen that the optimized orchestration of
the different slots allows to read the different words from the VWR, shift and
add them, and reorganize them from 8- to 12-bit subwords in the shuffler to
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Figure 11.47: Excerpt of optimized data-path scheduling for SoftSIMD Gauss
x loop, based on [Psy10]

prepare them for further processing later on in the schedule. The different
slots have partly different loop nest formatting but that is taking care of by
the distributed loop buffer approach.

This very optimized schedule has also been introduced in the Target Compi-
ler tools CHESS and CHECKERS [Tar08]. It has been feasible to reproduce
the optimized schedule with 27 cycles for this ASIP data-path, by carefully
coding the application in C with a set of user-defined intrinsics (see [Psy10]).
This shows the clear potential for partly automated compiler support for our
energy-efficient ASIP template.

Exploiting the background memory communication scheme which is descri-
bed above in Section 11.5.1, the globally optimized schedule for the x loop
is indirectly also illustrated in the program of Figure 11.46 (for N=576 bit,
M=48 bit). Indeed, the VWR read and write accesses should be preceded
or followed by the wide SRAM write resp. read accesses. For the y loop the
schedule stays the same as the one described in Program 3 but after applying
the appropriate unrolling factor (see also [Kri09]).

11.6 Energy results and discussion

As already mentioned in the previous sections, the initial energy estimation
derived from the COFFEE tool was inaccurate up to now, due to the sub-
optimal modeling of the new inserted FUs that implement the new intrinsics.
The present section determines the accurate estimation of the energy that is
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consumed in the data path of the ASIP platform. The energy consumption of
the data path consists of the FU and the distributed LB energy. The distributed
LB is used and it is responsible for storing the control bits for the correct
execution of the instructions.

First, the consumed energy for the optimized sequential critical loop of the
2D Gauss filtering will be estimated and compared with the original code.
Then, the effect of applying data parallelisation on the critical Gauss loop will
be compared with the optimized sequential version of the code. Moreover,
the overall energy consumption of mapping the data parallel version to the
proposed architecture will take place. Finally, an estimation of the energy
gain of the whole detection algorithm due to the bit true and approximate
optimizations will be performed. The energy consumption will be estimated
for the data path of the ASIP platform with one data cluster and two slots per
data clusters, which seems to be the most attractive one.

11.6.1 Data path energy estimation for critical Gauss loop
of scalar ASIP

The data path energy of the ASIP platform consists of the consumed energy
by the FUs and the LB, which stores the control bits of the FUs. The back-
ground and foreground data memory operations and the instructions corres-
ponding to address computation are outside the scope of the present sec-
tion and they will be presented in Section 11.6.5 (see also [Cat09]). For the
energy estimation we have considered the 40 nm TSMC technology (LP), a
Vdd of 1 V, a clock frequency of 200 MHz and a data path width of 16 bits.
The Table 11.5 illustrates the energy that each FU consumes. The adder and
shifter are based on accurate synthesis results, starting from VHDL code. The
shifter is assumed to have a limited shift factor though. When that shift fac-
tor goes up to the required range of 5 bits, the power will go up to about
40 μW . However the total power for the entire SA datapath logic should not
exceed 100 μW , including the power of the pipeline register and the muxes.
For the 16 × 16 bit multiplier a rather optimistic estimate has been made,
because some results indicate a loss of up to a factor of 20 compared to a 16
bit adder.

FU Power per activation (μW ) Energy per activation (fJ)
Multiplier 810 4050
Adder 45 225
Shifter 20 100
SA 100 500

Table 11.5: Power and energy consumption for the different FUs
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Cycles
1 ADD W Address: (x-1,y) ADD W Address: (x+1,y)
2 ADD W Address: (x,y) L W C1 C1 Load pixel: (x,y-1)
3 ADD W Address: (x,y-1) L W C1 C1 Load pixel: (x+1,y)
4 ADD W Address: (x,y-2) L W C1 C1 Load pixel: (x,y)
5 SA1 MulRes0=(x-1)(y)+(x+1)(y) L W C1 C1 Load pixel: (x,y-1)
6 SA3 MulRes7=MulRes0*Coef(0,0) SA3 MulRes4=Imsub(x,y)*Coef(0,1)
7
8
9 SA1 ImGauss_x(x,y)=MulRes4+MulRes4 SA1 MulRes1=Imgauss_x(x,y-1)*Vector(0,1)
10 SA1 MulRes2=ImGauss_x(x,y-1)+MulRes1 L W C1 C1 Load pixel: (x,y-2)
11 ADDL W y++ S W C1 Store pixel: ImGauss_x(x,y)
12 SA1 MulRes1=ImGauss_x(x,y-2)+MulRes2 ADD W
13 SA1 ImGauss(x,y-1)=ImGauss(x,y-1)>>Dec ADD W
14 S W C1 Store pixel: ImGauss(x,y-1)
15 BRF B B F

Slot 0 Slot 1

Figure 11.48: Software scheduling of COFFEE tool for SA FU

The FU energy is estimated by Eq. 11.9, where the EM is the energy consu-
med by one activation of the multiplier and ESA the energy consumed by
one activation of the SA FU. In order to estimate the total energy consumed,
the FU energies should be multiplied by the total number of activations.

EFU = (EM ×#MUL) + (ESA ×#SA) (11.9)

The total number of activations is equal to the number of operations perfor-
med in one iteration of the loop multiplied by the total number of iterations.
The operations are derived from the scheduling of the COFFEE tool, as illus-
trated in Figure 11.48, excluding the operations that are responsible for the
addressing of the operands and the load and store instructions. The latter are
namely executed on the power-efficient DMA engine.

The energy estimation of the FUs of the architecture with one data cluster
and two slots for the critical Gauss loop is depicted in Figure 11.49.

The LB energy is estimated by two bounds, one pessimistic and one op-
timistic. The ERMul and ERSA are the required energies for reading one
multiplication and one SA instruction from the LB, respectively. The reading
energy of one instruction is calculated by multiplying the energy consumed
when reading one Flip Flop (FF) (EFF = 5fJ) by the number of required FFs
for storing the control bits of the instruction, e.g. instruction width W. The
WMUL and WSA are 6 bits and 12 bits. In order to estimate the total energy
consumed by the LB, the energy of reading each instruction should be mul-
tiplied by the total number of reads. The optimistic approach is calculated
by Eq. 11.10. Here it is assumed that selecting the appropriate LB word to
be read is not reflected in the access energy, which provides of course only a
lower bound.

ELBopt = (ERMul ×#MUL) + (ERSA ×#SA) (11.10)

where ERMul = EFF ×WMUL and ERSA = EFF ×WSA
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Figure 11.49: FU energy comparison of the original critical Gauss loop im-
plemented to the multiplier FU and of the optimized critical Gauss loop
implemented to the SA FU

Figure 11.50: LB structure

In the most pessimistic energy estimation of the LB it is assumed that the read
energy is proportional to the depth of the LB, as shown in Figure 11.50. The
consumed energy is calculated from the Eq. 11.11. The real energy consump-
tion is somewhere between these bounds. For the further experiments the up-
per bound is selected to ensure that the overall gains are not overestimated
later on.

ELBpess = (ELBOpt × LBdepth) (11.11)

The energy estimation of the LB for the architecture with one data cluster
and two slots for the critical Gauss loop is depicted in Figure 11.51

11.6.2 Data path energy estimation for critical Gauss loops
of SoftSIMD ASIP

The same assumptions as in Section 11.6.1 are made for the data path
energy of the ASIP platform, except that the data path width is now 48
bits. Table 11.6 illustrates the energy that each FU consumes. The shuffler
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Figure 11.51: LB energy comparison for pessimistic and optimistic approach
of the original critical Gauss loop implemented to the multiplier FU and the
optimized critical Gauss loop implemented to the SA FU

FU Power per activation (μW) Energy per activation (fJ)
Shuffler 360 1,800
SA 300 1,500

Table 11.6: Power and energy consumption for the different FUs

is based on a very worst-case older VHDL synthesis experiment [Rag07c].
It should be possible to improve this energy estimation significantly based
on module generation with a more optimized routing algorithm. In addition,
the SA power is overestimated as it is assuming a factor of 3 more power for
the 48-bit data path compared to the initial one for the 16-bit data path.

The FU energy is estimated by Eq. 11.12, where the EFUx is the energy
consumed by the activation of the FU due to the instructions of Soft-SIMD on
x and the EFUy due to the instructions of Soft-SIMD on y. In order to estimate
the total energy consumed, the above energies should be multiplied by the
total number of activations, respectively. The operations performed in one
iteration of the loop are again derived from the scheduling of the COFFEE
tool. But the operations that are responsible for the addressing of the ope-
rands and the load and store instructions have again been excluded because
these are executed on a separate power-efficient AGU unit (see, e.g. options
described in [Tal08]).

EFU = (EFUx + EFUy) (11.12)

where EFUx = (ESA × #SAx) + (ES × #Sx) and EFUy = (ESA × #SAy)
+(ES ×#Sy).

The energy estimation of the FUs of the architecture with one data cluster
and two slots for the critical Gauss loop is depicted in Figure 11.52.
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Figure 11.52: FU energy comparison of sequential critical Gauss loop imple-
mented to the SA FU and parallel one using Soft-SIMD implemented on the
Shift-Add-Shuffler FU

The LB energy is estimated by the pessimistic approach. The ERSAS is the
required reading energy for one instruction from the LB. The reading energy
is calculated by multiplying the energy consumed when reading one Flip Flop
(FF) (EFF = 5fJ) by the number of required FFs for storing the control bits
for each instruction, e.g. instruction width W. The WSA and WS are 6 bits
and 4 bits for the shuffler. In order to estimate the total energy consumed by
the LB, the consumed energy of reading each instruction should be multiplied
by the total number of reads. It should be stressed that while unrolling the
operations the LB reads are not increasing, due to the fact that the same
instruction, i.e. the same control bits, is applied to different data. Applying
again the pessimistic approach results in Eq. 11.13.

ELB = (ELBx + ELBy) (11.13)

where ELBx = ELBpessx,ELBy = ELBpessy ,ELBpessx = EFF × (WSA +
WSF )×LBdepth×#SASx and ELBpessy = EFF × (WSA +WSF )×LBdepth×
#SASy.

The energy estimation of the LB the architecture with one data cluster and
two slots for the critical Gauss loop is depicted in Figure 11.53.

11.6.3 Data path energy estimation for overall Detection
algorithm

The estimation for the data path energy consumption of the detection algo-
rithm is performed for the mapping of the detection algorithm to the scalar
ASIP platform with one data cluster and two slots per data cluster. The data
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Figure 11.53: LB energy comparison of sequential critical Gauss loop imple-
mented to SA FU and parallel critical Gauss loop using Soft-SIMD implemen-
ted on Shift-Add- Shuffler FU

FU Power per activation (μW) Energy per activation (fJ)
Multiplier 810 4,050
Adder 45 225
Shifter 20 100
SA 100 500
GSAS 180 900

Table 11.7: Power and energy consumption for the different FUs

path energy of the ASIP platform consists of the consumed energy of the FUs
and the LB, which stores the control bits of the FUs. A similar methodology as
the one that has been applied for the energy estimation of the critical Gauss
loop, can be also applied for the data path energy estimation of the detection
algorithm. Assuming 40 nm TSMC technology, clock frequency 200 MHz and
data path width 16 bits, the Table 11.7 illustrates the energy that each FU
consumes.

The FU energy can be estimated by Eq. 11.9 taking into account the whole
code of the detection algorithm. The consumed energy is approximated
by the most dominant part of the code, which is the loops that iterate
through the whole image. This is illustrated in for the main Gauss loop in
Figure 11.54.

The energy estimation of the FUs of the architecture with one data cluster
and two slots for detection algorithm is depicted in Figure 11.55.

The LB energy is estimated again by the pessimistic approach where it is
assumed that the read energy is proportional to the depth of the LB and
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Cycles Slot 0 Slot 1 Cycles Slot 0 Slot 1
1 ADD W ADD W 1 ADD W ADD W
2 L W C1 C1 L W C1 C1 2 ADD W L W C1 C1
3 ADD W ADD W 3 ADD W L W C1 C1
4 L W C1 C1 L W C1 C1 4 ADD W L W C1 C1
5 MPYL W ADD W 5 GSAS1 L W C1 C1
6 MPYL W L W C1 C1 6 GSAS3 GSAS3
7 MPYL W ADD W 7
8 MPYL W L W C1 C1 8
9 ADD W SHL W 9 GSAS1 L W C1 C1
10 MPYL W SHL W 10 GSAS1 S W C1
11 L W C1 C1 ADD W 11 GSAS1 ADDL W
12 MPYL W SHL W 12 GSAS1 ADD W
13 L W C1 C1 ADD W 13 ADD W S W C1
14 ADDL W SHL W 14 BRF B B F
15 MPYL W L W C1 C1
16 ADDL W SHL W
17 MPYL W ADDL W
18 MPYL W SHL W
19 ADDL W SHL W
20 ADDL W SHL W
21 ADDL W SHL W
22 ADDL W ADDL W
23 ADDL W ADDL W
24 ADD W SHR W
25 BRF B B F S W C1

Figure 11.54: Software scheduling of Gauss loop in MUL FU and GSAS FU

Figure 11.55: FU energy comparison of the original detection algorithm im-
plemented to multiplier FU and transformed detection algorithm implemen-
ted on SA FU

it can be calculated by Eq. 11.11. The energy estimation of the LB for the
architecture with one data cluster and two slots for the detection algorithm
is depicted in Figure 11.56.

11.6.4 Energy modeling for SRAM and VWR contribution

The SRAM energy model is derived from the ultra-low power SRAM research
at the K.U.Leuven-MICAS group. Both the active and the leakage energy for
small embedded SRAMs up to 256kbt, have been heavily optimized in their
work (see e.g. [Cos08, Gee09]). So that is the ideal starting point for our
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Figure 11.56: LB energy comparison of the original detection algorithm
implemented on multiplier FU and transformed detection algorithm imple-
mented on SA FU

L1 SRAM scratchpad memory. Details of this estimate will not be provided
here, see [Cat09]. The result is an SRAM circuit with a quite low dyna-
mic energy operating at 250 MHz and 0.6 V Vdd in 90 nm CMOS. When
scaled to 40 nm CMOS we expect about 4.3 fJ/bit/read access and 7.4 fJ/-
bit/write access. For the 32–48 bit interface (needed in the version without
VWR), we obtain in a similar fashion 13.5 fJ/bit/read access and 22.6 fJ/-
bit/write access. Obviously, the absolute accuracy of these data should not
be seen as better than about 20–30%, but the relative accuracy can be ex-
pected to be much better. And for our purposes we mainly need the relative
comparison.

These calculations have also made clear that for all practical purposes, in our
embedded low-power context (with low temperatures and non-aggressive
clock cycles) we can safely ignore leakage in the 90 nm node.

The VWR energy model is based on VHDL synthesis and comparing it to an
adder of the same bit-width. A 576-bit wide VWR with 1-port cells but two
external ports of 48 bit (to the data-path) would consume a pure dynamic
energy of about 1,215 fJ/576-bit memory transfer and 108 fJ/48-bit data-
path transfer, when operating at 200 MHz in a 40 nm TSMC CMOS node. It
is assumed here that the mux selector from 576 bit lines to 48-bit wide words
is implemented in a very effective style including river routing where feasible.
But we have to incorporate also clock power, which have been assumed to
increase the result with a factor 2 when the layout is organized in a quite
regular fashion. That amounts to 2,430 fJ/576-bit memory transfer and 216
fJ/48-bit data-path transfer. Compared to the SRAM read data above that is
already relatively high.
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The register-file (RF) energy model for the non-SIMD architectures is also
based on VHDL synthesis but now using absolute numbers and a conserva-
tive scaling factor of 4 form 90 to 40 nm. For the multiplier-based ASIP we
require a 32-bit wide regfile with 32 words and 6 ports. The energy is then
about 7,500 fJ/32-bit data-path access, when operating at 200 MHz in a 40
nm TSMC CMOS node. For the ShAdd based ASIP, we require a 16-bit wide
regfile with 16 words and 6 ports. The energy is then about 2,470 fJ/16-bit
data-path access.

11.6.5 Memory energy contributions

We will first study the variable multiplier based ASIP architecture. In
that case we have 5,528,952 accesses to the standard-cell synthesis-based
32w*32b*6port regfile, which at 7,500 fJ/access leads to a total of about
41.47 μJ. And the number of accesses to the 32-bit SRAM is then 311,040
reads and 103,680 writes so the total energy is then about 240 fJ, which is
quite low especially due to the very low-power SRAM used here. That regfile
energy is clearly highly dominant compared to the 4.2 and 1.74 μJ spent in
the data-path operators respectively the loop buffers. If we would have used
conventional instruction caches, that contribution would have also been
quite dominant in the global power pie though.

Next we will analyze the shift-add constant multiplier based ASIP architec-
ture. Now we have 12,888 + 3,673,080 = 3,685, 968 accesses to the standard-
cell synthesis-based 16w*16b*6port regfile, which at 2,470 fJ/access leads
to a total of about 9.1 μJ. And the number of accesses to the 16-bit SRAM
is then also 311,040 reads and 103,680 writes so the total energy is then
estimated to be about 240 fJ just as for the multiplier ASIP. Again the reg-
file energy is very dominant compared to the 0.614 and 0.516 μJ spent in the
data-path operators respectively the loop buffers. Also here a more conventio-
nal instruction cache solution would have been quite dominant in the global
power pie.

Finally we will study the soft-SIMD architecture. In our bioimaging case
study the requirements for the most critical Gauss filter loop in the detec-
tion module, requires per detection execution about X=4950 read accesses
and Y = 5670 write accesses of 576 bit each to the SRAM. So the total detec-
tion energy amounts to X/103 ∗ 7.481 + Y/103 ∗ 13.325 = 112.6nJ per image
frame. For the VWR the access rate is higher due to the additional 48-bit data-
path interaction. So on top of the 576-bit reads/writes (corresponding to the
SRAM access), we also need X2=495,900 read accesses and Y2=204,060
write accesses of 48 bit. This results in a rather worst-case energy per de-
tection execution of about (X + Y )/103 ∗ 2.43 + (X2 + Y 2)/103 ∗ 0.216 =
25.8+151.2 = 177 nJ per image frame. So the total energy in the back- plus fo-
reground data memory organisation becomes about 290 nJ per image frame.
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For the optimized schedule of Figure 11.46, which requires a few additional
muxes in the Soft-SIMD data-path, we arrive even at a VWR contribution of
107nJ because then X2=25,976 and Y2=92,754, leading to a total of only
220nJ in the data memory organisation per image frame!

11.6.6 Global performance and energy results for options

The set of the applied systematic methodologies the bioimaging application,
such as the advanced fixed point refinement of the signals in the applica-
tion, the efficient conversion of the constant multiplications to sequences of
shift and addition operations, and finally the effective application of the Soft-
SIMD approach lead to a heavily optimized ASIP architecture with low-cost
ultra low-energy consumption while it still meets all the performance requi-
rements. The performance gain for the critical Gauss filtering loop of the
bioimaging application is illustrated in Figure 11.57.

Observing the results of Figure 11.57, the obtained performance gain due
to quantization techniques that lead to the fixed point refinement of the cri-
tical Gauss loop is equal to 5.14. The application of bit true code transfor-
mations in order to reduce the number of the constant multiplications and
furthermore to reduce the number of shift and addition operations, has a
performance gain of 1.76. The conversion from constant multiplications to
shift and addition operations does not have a great impact of performance,
while it will enable the application of Soft-SIMD and thereby a significant
reduction of the energy consumption, especially in the instruction and data
memory hierarchies. Finally, the enabling of data parallelization due to Soft-
SIMD has as result a further gain factor of 2.42. The total performance gain

Figure 11.57: Performance of the critical Gauss loop for the different imple-
mentations
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Figure 11.58: Data path energy consumption of the critical multiplication
loop for the different implementations

for the critical constant multiplication loop is actually equal to 29.63. Energy
gains are expected by fully avoiding the multiplication operations. The data
path energy estimation of the processor with one data cluster and two slots
per data cluster is depicted in Figure 11.58.

Observing the results of Figure 11.58, the obtained energy gain of the data
path of the processor due to the conversion from fixed-point constant multi-
plications to shift and addition operations, while applying code transforma-
tions in order to reduce the number of the constant multiplications and to
reduce the number of shift and addition operations, has resulted in a gain
of 5.25. Finally, the enabling of data parallelization due to Soft-SIMD has
resulted in an additional gain factor of 1.22. The latter is however an un-
derestimate because several pessimistic estimates have been included here,
and the main expected gain is situated in the data memory organization (see
Section 11.6.5 and [Cat09]).

When we use the estimates of Section 11.6.5 combined with the results for
the Shift-Add-Shuffler data-path leads to the total energy that is depicted in
Figure 11.59 The obtained energy gain of the processor due to the conver-
sion from fixed-point constant multiplications to shift and addition opera-
tions, while applying code transformations in order to reduce the number of
the constant multiplications and to reduce the number of shift and addition
operations, has resulted in a gain equal to 4.45. Finally, the enabling of data
parallelization due to Soft-SIMD has as result an additional gain factor of
9.31. The data path energy is clearly dominant now compared to the energy
consumption of the data background memory and the VWR foreground me-
mory for the Soft-SIMD. Note that also the instruction memory overhead (the
loop buffer mainly) represents only 0.08% of the total energy due to the use
of the distributed loop buffer approach of Chapter 5.
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Figure 11.59: Total energy estimation of the Gauss loop for the implementa-
tion with multiplier, SA and Soft-SIMD

Figure 11.60: Performance of full detection algorithm for the different imple-
mentations

For the whole detection algorithm, more generic Function Units (FUs) that
implement the sequences of shift and add operations have been introduced
in order to be able to integrate it. This has enabled to also convert costly
operations like division, square root and trigonometric functions. A thorough
exploration of the most promising ASIP architectures, which can integrate
the biotechnology application, has been performed. The overall performance
gain for the detection algorithm of the biotechnology application is illustrated
in Figure 11.60.

Observing the results of Figure 11.60, the obtained performance gain due
to quantization techniques is equal to 4.5. The conversion from constant
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Figure 11.61: Data path energy estimation of the full detection algorithm for
the different implementations

multiplications to shift and addition operations and the mapping of the
detection algorithm to GSAS FU, while applying bit true code transforma-
tions, such as multiple precision multiplier and Look Up Tables, has a perfor-
mance gain equal to 1.48. Finally, the total performance gain is equal to 6.66.
Based on the experiments of the critical multiplication loop, we expect that
the enabling of data parallelization due to Soft-SIMD will lead to even better
performance gains. The detection algorithm that uses the multiplier FU has
1/6 of the total operations equal to multiplication operations. By reducing
the required multiplication operations to a small number that is implemen-
ted in a 4-bit multiplier further energy gains are expected. The data path
energy estimation of the processor with one data cluster and two slots per
data cluster is depicted in Figure 11.61.

Observing the results of Figure 11.61, the obtained energy gain of the data
path of the processor due to the conversion from constant multiplications to
shift and addition operations, while applying code transformations in order
to reduce the number of the multiplications is equal to 7.89. Finally, based
on the experiments of the critical constant multiplication loop the enabling
of data parallelization due to Soft-SIMD will lead to further energy savings.

The energy efficiency of the dominant part of detection algorithm is about
1217 MOPS/mW for an estimated 40 nm TSMC implementation, regarding
the Soft-SIMD data-path including the instruction memory overhead. A first
estimate of the energy in the SRAM and VWR leads to the conclusion that
those contributions are smaller, namely only 13% extra overhead. The latter
still achieves real-time with a clock frequency of about 100 MHz or with a
50% duty-cycles clock frequency of 200 MHz. This clearly enables a battery-
operated mobile system with long lifetime for the on-line animal tracking
system.

However, we have then not yet counted the energy consumed in the AGU
data-path and corresponding loop buffers. Given that the access patterns are
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quite regular, and the total number of addresses to be supplied is really low,
it can be expected though that this addressing overhead is so low it can
be mostly ignored (compared to the actual reads and writes to the SRAM).
Also the control overhead should be negligible on condition that we use the
distributed loop buffer approach of Chapter 6. Detailed layout experiments
on a full netlist will have to confirm this though.

We can conclude that the data memory organisation in the soft-SIMD version
of the bioimaging ASIP has become a minor cost. This is in sharp contrast
with the initial sequential multiplication option for a more conventional
VLIW processor architecture, where the data and instruction memory orga-
nisation heavily dominate the global power pie [Lam04, Hul08]. Actually, an
initial estimate has shown that compared to a heavily optimized standard-
cell based ASIC implementation, we loose less than a factor 2 in energy
efficiency!

11.7 Conclusions and key messages of chapter

This chapter has described the application of the main techniques proposed in
this book to a realistic application benchmark, namely a bioimaging detection
and tracking algorithm for on-line animal monitoring. First the application
itself has been discussed, including the fixed-point word-length quantisation
of the variables. Then we have discussed our efficient proposal to realize
the many constant multiplications in the application code. Next, we have
described the different architecture options that are energy and performance
optimized for the ASIP template that we have explored: the scalar option, the
data-path and background/foreground memory organisation for the data-
parallel option. template, with emphasis on the data-path.

Finally, we have provided the overall energy results and a discussion of the
global ASIP exploration. Thanks to the effective and holistic application of
the techniques introduced in this book, we have obtained an overall energy
efficiency of over 1,000 MOPS/mW for a standard cell based 40 nm TSMC
CMOS library and a low-power SRAM macro. That figure includes the data
and instruction memory organisation of the ASIP platform. So we believe
that this result is about 20 times better than state-of-the-art low power DSP
platforms, and at least 10 times better than other proposed instruction-set
programmable ASIP platforms for a similar wide scope of the application
domain target. More information is also available in [Kri09].
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CHAPTER 12

Conclusions

This book has presented various aspects of low-energy domain-specific
instruction-set processor architecture exploration for embedded systems.

12.1 Related work overview

Chapter 2 presents an extensive overview of related work with a focus on
low-power/low-energy platform architecture exploration and design. It is
clearly evident that the design space for embedded systems is extremely
large. For instance the number of options available for the design of a pro-
cessor core and the associated instruction memory organization grows expo-
nentially. Furthermore, a complete embedded platform consists of multiple
components that can not be studied in isolation, as modifications to one com-
ponent will influence various other components and will also add to the ove-
rall cost metrics in non-obvious ways. Reliance on a template architecture
and a corresponding consistent architecture exploration framework becomes
essential. To be able to perform an efficient exploration and compare dif-
ferent processor styles, the exploration should be performed early on in the
design cycle. Therefore a trade-off has to be made between the implemen-
tation effort that is required to model an architecture, the evaluation speed
and the accuracy.
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12.2 Ultra low energy architecture exploration

Chapter 3 first describes our case studies on energy/power and perfor-
mance analysis on a realistic embedded platform for a video encoding
application. Through these studies we have been able to derive the require-
ments of a template architecture for low-energy high-performance embedded
processors.

The platform study provide us with important insights regarding the in-
fluence of choices for the main components on each other and also to the
overall cost metrics. Specifically this has lead us to conclude that the data
memory hierarchy, the instruction memory organisation and the processor
(foreground memory plus data-path units), consume about equally impor-
tant parts of the platform power pie. The absolute cost of the datapath (only
the Functional Units) is quite low, but, as the processor style significantly
influences the cost of the foreground memory and the instruction memory
organisation, the importance of the processor style (and hence the datapath)
is still quite considerable.

The processor design style case study shows that improvements for energy
efficiency and/or performance over state-of-the-art RISC or VLIW processors
can be achieved. The results indicate that a RISC processor can perform a
task with the small number of operations. However even for higher clock
frequencies, the RISC style does not provide the performance needed for
real-time multimedia applications. A centralized VLIW processor exploits its
extra resources to increase performance, but the energy cost of a centralized
registerfile (foreground memory) will be prohibitive to integrate this type of
processor into platform with stringent energy constraints. A clustered VLIW
can partly bring the energy consumption down, initially at the cost of a mar-
ginal compromise in performance. However after a certain point, the perfor-
mance deteriorates significantly due to inter-cluster communication and the
inability of the current compilers to utilize all the clusters. A coarse grain
reconfigurable array (CGRA) with tightly coupled VLIW can boost the per-
formance of applications that are regular enough to keep the vast amount
of resources busy. However, also this comes at the price of overheads in the
number of operation and interconnect and thus an increase in energy cost
for the same task.

Another major focus of this chapter is the design/derivation of a scalable
high-level architecture design template called FEENECS. It is targeted at
low energy, high performance embedded systems for data dominated and
streaming applications. This template has been derived based on a tho-
rough analysis and reasoning, incorporating the constraints from application,
architecture and deep submicron implementation, especially the incorpora-
tion of the dominance of interconnect in the future scaled technologies.

374



Main energy-efficient platform components

One of the major foundations of this work is the building of a consistent
framework for performing architecture exploration. The COFFEE framework
presented in Chapter 4 is capable of modeling and performing exploration
over a large range of architectural parameters for a large range of bench-
marks and industrial applications. This framework is capable of compiling,
simulating and deriving key performance metrics like area, energy, power
consumption, performance measured in cycles, Instruction Level Parallelism,
etc. While this is originally based on the Trimaran 2.0 compilation frame-
work, we have over the years extended this framework to incorporate various
additional features as explained in Chapter 4. The accuracy of the energy es-
timation has been validated by comparing the figures from the framework to
a detailed gate level simulation of an in-house embedded processor. Several
case studies are shown in Chapter 4 to illustrate and explain various counter-
intuitive trends that occur during architecture exploration. Essentially, the
proposed framework provides all the necessary low power architecture fea-
tures to optimize processors for low-power high-performance embedded sys-
tems.

12.3 Main energy-efficient platform components

The next chapters present the individual key novel architectural extensions
that improve the energy efficiency over the respective state of the art.

Distributed loop buffer and multi-threading: A major contribution of this
book is the concept of distributed or clustered loop buffering. Chapter 5
presents the basic concept of distributed loop buffering along with different
schemes for the local controller. It has also been indicated that local control-
lers with activation trace and index translation offer more freedom in the
architecture. In comparison to other centralized schemes, distributed loop
buffer schemes consume about 63% lower energy consumption without com-
promising performance. Since this clustering/distribution scheme can be ap-
plied to both data (foreground memories) and instructions, a scheme has
also been presented to remove any incompatibility between the two different
types of clusters without compromising significantly on any of the cost me-
trics. Although the notion of clustering/distributing is applied here to loop
buffers, in principle the same concept can be applied to any other instruction
memory components e.g. the level 1 instruction caches.

Chapter 6 has presented the concept how the distributed loop buffer scheme
can be extended to also support the execution of multiple incompatible loops
in parallel. Such an architecture has been shown to provide efficient local
communication while effectively enabling to run multiple threads in parallel.
Through simulation studies it has also been shown to be highly energy
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efficient compared to state-of-the-art simultaneous multi-threading (SMT)
techniques, as well as other techniques like loop merging.In addition,a
proposal for building a compiler technique supporting this architecture
extension has also been provided.

Irregular data access support on scratchpad memories: Many applications
in our target domain contain at least a few irregular indexes and dynamic
data accesses. Normally, these are not supported on the platform architecture
and its compiler. In Chapter 7 we have described how we can extend the
framework to handle these extended data access schemes on the background
data memory organisation based on compiler-driven scratchpads.

The proposed techniques and algorithms explore the appropriate portions of
the arrays or irregular data structures to be brought into the scratch-pad at
different time instants, such that the total energy consumption is minimi-
zed. We have also demonstrated that our technique works well on real-life
applications using cache models.

Very Wide Register – foreground memory alternative: Another core contri-
bution of this book is the asymmetrical register file organisation, called very
wide register (VWR), in Chapter 8. The proposed VWR has been shown to
be inspired from both application characteristics as well as deep submicron
technology aspects. This VWR together with its interface to the wide layer-
1 SRAM scratchpad, achieves a significantly higher energy efficiency than
conventional organizations and forms a layout-friendly solution for appli-
cations with significant spatial locality. It has been demonstrated through a
standard-cell implementation that the proposed architecture even then gains
substantially over a multi-ported register file.

Software SIMD approach: Exploiting word-width information during appli-
cation mapping is key to reduce the energy consumption or to improve the
performance of processor-based embedded systems. In Chapter 9, we have
presented the use of word-width aware energy models to improve energy
estimation sensitivity to word-width variation in instruction-set processor si-
mulation. We have also systematically described how to exploit this informa-
tion during various steps of the mapping process, namely during assignment,
scheduling, ISA selection and parallelization. For each part, the concept of
the optimization is detailed and the expected gains are evaluated. Next, we
have presented a more detailed description of how to implement word-width
aware parallelization, also called Software SIMD.

In addition, in Chapter 10, we have described how we can apply strength re-
duction for the main operations that occur in our target domain. One major
class are the constant multiplications. We have presented a systematic over-
view of the complete conversion space. A context-aware cost-driven search
over this space is proposed.
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Bioimaging demonstrator: To substantiate our holistic claims of combining
high performance with overall energy-efficiency, in Chapter 11, we have
combined the main techniques proposed in this book. They are applied to
a realistic application benchmark, namely a bioimaging detection and tra-
cking algorithm for on-line animal monitoring. Most of the components and
contributions presented in this book have been applied and illustrated in this
realistic demonstrator. The end result is a domain-specific processor instance
which can reach about 1,000 MOPS/mW in a 40 nm TSMC CMOS technology
with standard-cells for the data-path and an SRAM module generator for the
memories. Both the data and instruction memory organisation are included
in that figure-of-merit.
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