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Abstract  Arbuscular mycorrhizal fungi (AMF) are obligate biotrophs, living 
symbiotically in the roots of most land plants. They form spores in the soil, which 
are able to germinate and grow, but are unable to complete their life cycle without 
establishing a functional symbiosis with a host plant. In this chapter, results of 
recent studies providing new insights into the main developmental switches occur-
ring in the fungal organism, from the relief of spore dormancy to the development 
of germlings and growth arrest in the absence of the host, are reviewed. The knowl-
edge of environmental, cytological, biochemical and molecular events involved  
in early stages of AMF life cycle may reveal how these obligate symbionts com
pensate for the lack of host-regulated spore germination, possibly representing 
a strong selective disadvantage. Diverse scientific approaches showed multiple 
survival strategies, active during pre-symbiotic mycelial growth, contributing to 
the survival of AM fungal individuals and populations.
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1 � Introduction

Arbuscular mycorrhizal (AM) fungi (AMF) are obligate biotrophs, which live 
symbiotically in the roots of about 80% of plant species. Most AMF form spores in 
the soil which are able to germinate and grow from a quiescent-like state in 
response to different edaphic and environmental conditions, but are unable to pro-
duce extensive mycelia and to complete their life cycle without establishing a 
functional symbiosis with a host plant (Mosse 1959; Hepper and Smith 1976). The 
key developmental switches occurring in the fungal organism, from the germina-
tion of an individual spore to the formation of an extensive hyphal network in the 
soil, involve a sequence of morphogenetic events represented by: spore germination 
and pre-symbiotic mycelial growth, differential hyphal branching pattern in the 
presence of host roots, appressorium formation, root colonization, arbuscule devel-
opment, extraradical mycelial growth and spore production (Giovannetti 2000).

The lack of host-regulated spore germination, contrary to what happens with 
many pathogenic biotrophic fungi, could have represented a strong selective disad-
vantage. Nevertheless, AMF are considered evolutionary successful “living fossils”, 
having survived and evolved for 460 millions years, their ancestral nature having 
been shown by diverse fossil records and DNA sequence data (Simon et al. 1993; 
Remy et al. 1994; Phipps and Taylor 1996; Redecker et al. 2000a, b). Their persis-
tence indicates that they must have evolved efficient strategies to overcome the lack 
of spore germination regulation and to allow the survival of individuals and popula-
tions (Logi et al. 1998; Giovannetti et al. 2000; Giovannetti 2002).

The aim of this chapter is to review recent developments which contributed to 
our understanding of cellular and molecular events involved in the early stages of 
the life cycle of AMF, from relieving spore dormancy and triggering spore germina-
tion to germling growth and growth arrest in the absence of the host.

2 � Spore Dormancy

The phenomenon of spore dormancy has concerned researchers since Godfrey’s 
early studies on spore germination (Godfrey 1957). As early as 1959, Barbara 
Mosse suggested the storage of collected spores on damp filter paper at 5°C for  
6 weeks in order to obtain the regular germination of resting spores of an Endogone 
sp. (presumably Glomus mosseae) (Mosse 1959). Eighty percent of spores treated 
in this way germinated within 3–4 days. The problem of erratic spore germination 
has been mentioned in many reports, and in 1983 Tommerup gave a clear-cut defini-
tion of spore dormancy, making a distinction between dormancy and quiescence 
(Tommerup 1983a). A dormant spore was defined as one failing to germinate when 
exposed to physical and chemical conditions which support germination of appar-
ently identical spores, defined as quiescent spores. Differences in cytoplasmic orga-
nization between young and old resting spores were described in Acaulospora laevis 
and in Glomus species: in dormant spores the oil globules enlarged at the expense 
of the cytoplasm, which was restricted to small interstitial spaces (Mosse 1970a, b; 
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Meier and Charvat 1992; Maia and Kimbrough 1998). A fine network of cytoplasmic 
material interlaced between large lipid droplets was also described by Sward 
(1981a) in dormant spores of Gigaspora margarita.

The relief of dormancy by storage was reported by many authors. Hepper and Smith 
(1976) found that spores of G. mosseae from freshly harvested sporocarps germinated 
slowly compared to spores detached from sporocarps and stored at 6°C for 5 weeks. 
The same results were obtained with a North American isolate of G. mosseae, which 
showed a marked difference in germinability between freshly isolated and 10°C-stored 
spores (Daniels and Graham 1976). Diverse species of the genus Glomus exhibited 
spore dormancy, such as Glomus intraradices, Glomus clarum, Glomus caledonium, 
Glomus monosporum (Hepper 1979; Tommerup 1983b; Louis and Lim 1988; Douds 
and Schenck 1991; Juge et al. 2002). Other species, such as Glomus coronatum, showed 
erratic germination even after cold treatments lasting 1 year (Giovannetti et al. 1991).

A marked dormancy was shown by spores of A. laevis, which germinated after 
6 months storage in two different experimental conditions (Tommerup 1983a; Gazey 
et al. 1993). Other species within the genus Acaulospora exhibited the same behav-
iour: in a laboratory experiment only a small proportion of spores stored for 2 months 
germinated, while most spores germinated well after storage for 4–6 months (Gazey 
et al. 1993). Similarly, Acaulospora longula showed complete relief of dormancy 
after 8 weeks storage at 23°C in soil (Douds and Schenck 1991).

Not all the species and genera of AMF show spore dormancy. Spores of 
Gigaspora gigantea collected throughout the year from sand dunes did not show 
any dormancy, and were able to germinate as early as 1 day after incubation, either 
when they had been surface sterilized or not (Koske 1981a), while newly formed 
spores showed a period of endogenous dormancy (Gemma and Koske 1988). Germ 
tubes of G. margarita emerged after 72 h incubation on water agar or within 3–5 days 
on agar media without any storage treatment (Sward 1981c; Siqueira et al. 1982). 
Similarly, spores of Scutellospora fulgida and Scutellospora persica did not possess 
any dormancy, showing mycelial growth and the formation of auxiliary cells after 
2 weeks in the dark at 24°C (Turrini et al. 2008).

Propagule dormancy may contribute to the survival of AMF in adverse environments, 
but despite many different experimental reports on spore dormancy of many species of 
AMF a complete understanding of the phenomenon has not been obtained. We still do 
not know whether dormancy is more species or genus than isolate correlated, because 
experiments have often been carried out on different isolates. Moreover, no studies have 
been performed on the molecular bases of dormancy: we ignore whether it may be 
affected by the presence of compounds in young spores, which inhibit germination, or 
by the occurrence of compounds in mature, old spores, which enhance germination.

3 � Triggers for Spore Germination

The molecular signals which relieve spore dormancy and activate the cell cycle still 
remain unknown, though different environmental conditions triggering the initia-
tion of germination in genera and species of AMF have been investigated. In fact, 
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resting spores of many AM fungal species germinate both in soil and in agar under 
adequate physical, chemical and microbiological conditions.

Many germination factors have been identified which play important roles in 
growth activation of quiescent spores. Although complex interactions among differ-
ent factors probably play the most important role in spore germination in nature, 
many investigators have studied germination factors such as pH, temperature, mois-
ture, mineral and organic nutrients, host plants, and microorganisms as if they were 
independent triggers, and as such they will be considered here.

3.1 � pH

Differences in spore germination among species and genera are often related to the 
environment where the endophytes live and to which they are ecologically adapted 
(Sylvia and Williams 1992; Clark 1997). For example, spore population surveys 
from different sites showed that A. laevis is the predominant AM fungus in low pH 
soils (Abbott and Robson 1977), or even the only species in soils at pH < 4.9 
(Nicolson and Schenck 1979). Also data from INVAM (International Culture 
Collection of Arbuscular and Vesicular-Arbuscular Mycorrhizal Fungi, http://invam.
caf.wvu.edu/ ) collection showed that 88.5% of Acaulospora isolates live at soil pH 
< 6.0 (Morton et al. 1993). Accordingly, results obtained in experimental conditions 
demonstrated that spore germination of A. laevis is strongly regulated by soil pH, 
being optimum between 4 and 5, decreasing at pH 6, and declining to less than 10% 
between pH 6.5 and 8 (Hepper 1984b). Similar results were exhibited by Gigaspora 
coralloidea and Gigaspora heterogama isolated from acidic soils, which germinated 
best at pH from 4 to 6 (Green et al. 1976). Other authors reported that G. margarita 
is less sensitive to acidic conditions than G. mosseae (Siqueira et al. 1984).

An isolate of G. mosseae, collected from a wheat field, showed a pH optimum for 
spore germination between 6 and 9 in water or in soil extract agar, and was not able 
to form germ tubes at pH 4 and 5 (Green et al. 1976). Another strain of the same 
species, isolated from an agricultural soil, failed to germinate at pH 4.5 (Mosse and 
Hepper 1975). Other species of the genus Glomus germinated best at pH ranging 
from 6 to 8 and were capable of producing root infection and multiplying in very 
alkaline soils (Daniels and Trappe 1980; Giovannetti 1983; Douds 1997).

The thorough surveys of Sieverding (1991) confirmed that G. mosseae does not 
occur in natural tropical soils with pH < 5.5. Thus, it may be that edaphic factors 
related to the environment from which the different species of glomeromycotan 
fungi were originally isolated play an important role in spore germination and pre-
symbiotic hyphal growth (Giovannetti and Gianinazzi-Pearson 1994). However, it 
may also be that the optimal pH values attributed to each species are actually 
characteristic of the isolates used in each experiment and cannot be applied to 
all the isolates of the species. Each isolate originating from a specific environ-
ment could in fact represent an ecotype adapted to peculiar soil characteristics. 
This could apply in particular to G. mosseae, which has been shown to occur in 

http://invam.caf.wvu.edu/
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55 different countries throughout all continents and biomes (Avio et  al. 2009). 
Different geographic isolates of the same species should be used to obtain new 
evidence on this point.

3.2 � Temperature

The germination of AM fungal spores is greatly affected by temperature and the 
limits for germination exhibited by different species have been ascribed to their 
fundamental dissimilarity. Tommerup (1983b) reported that three fungal species 
isolated from the same source possessed different temperature limits for germina-
tion: A. laevis germinated best at temperature ranges of 15–25°C, Gigaspora 
calospora at 10–30°C, and G. caledonium at 10–25°C.

Some studies have suggested that many differences among glomeromycotan 
fungi in temperature ranges affecting spore germination reflect the differences in 
the environments from which the fungi were isolated. Accordingly, two Florida 
isolates of G. coralloidea and G. heterogama germinated best at 34°C, while  
G. mosseae, isolated from more northern latitudes, showed maximum germination 
at 20°C and failed to germinate at 34°C (Schenck et al. 1975). Also, an isolate of 
Glomus epigaeum from cool climates showed maximum germination at 22°C 
(Daniels and Trappe 1980). Most rapid germination of spores of G. gigantea was 
obtained at 30°C, whereas no germination occurred at 15°C, and only 6% spores 
germinated at 35°C (Koske 1981a).

It is interesting to note that the lethal exposure times to 60°C for G. caledonium and 
A. laevis spores were 5 min and 1 min, respectively (Tommerup and Kidby 1980). 
Viability of G. intraradices and G. mosseae was nil beyond 60°C, and that of Glomus 
deserticola beyond 54°C (Nemec 1987). Interestingly, an isolate of G. intraradices 
showed a great tolerance to 45°C for up to 24 h (Bendavid-Val et al. 1997).

Temperature optima for germination may be related to the environment to which 
each endophyte is indigenous. The demonstration of this requires the germination 
of different strains of the same species isolated from geographical areas with very 
dissimilar climates.

3.3  Moisture

Soil water content can have variable effects upon spore germination of species and 
genera of AMF. G. margarita spores germinated independently of soil water content, 
while germination of G. intraradices, G. mosseae and A. longula was strongly inhib-
ited by matric potentials between −0.50 and −2.20 MPa (Douds and Schenck 1991). 
Other authors reported that spore germination of G. epigaeum and G. gigantea was 
increased at soil moisture near field capacity or above (Daniels and Trappe 1980; 
Koske 1981a). Three other Glomus species, Glomus macrocarpum, G. clarum and 
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G. etunicatum, showed tolerance to soil drying, maximum germination occurring at 
matric potential of −0.01 MPa (Sylvia and Schenck 1983). G. epigaeum spores ger-
minated well when soil moisture content ranged from field capacity to soil satura-
tion, and no germination was observed below −3.4 MPa (Daniels and Trappe 1980), 
while G. gigantea showed delayed germination at −1.0 Mpa (Koske 1981a).

As noted above for pH and temperature, differences in spore germination of AM 
fungal species and genera are often related to the moisture conditions of the envi-
ronment to which they are ecologically adapted. No general conclusions can be 
made without knowing germination responses of several isolates of a species, each 
from environments with widely different moisture regimes, to different soil matric 
potentials. Moreover, it is probable that soil wetting and drying cycles are the most 
important factors affecting survival, germination and thus infectivity of AMF in 
nature; in particular in Mediterranean climates where glomeromycotan spores sur-
vive the hot and dry summers to colonize young emerging plants during the follow-
ing seasons (Braunberger et al. 1996).

3.4 � Mineral and Organic Nutrients

The germination of AM fungal spores is inconsistently affected by mineral nutrient 
content of soil. G. gigantea spores germinated at the same rate regardless of phos-
phorus concentrations (5–500 ppm) in sand plates (Koske 1981a). Germination of 
G. mosseae and G. caledonium spores was not affected by phosphorus concentra-
tions in agar up to 30 mM, while above this level germination was reduced by 56% 
or more (Hepper 1983). Similar results were obtained with G. margarita, whose 
spores germinated well up to 16 mM phosphate solution (Tawaraya et al. 1996a) 
and with G. epigaeum spores, whose germination was not influenced by increasing 
levels of NH

4
NO

3
 and K

2
SO

4
, up to 200 ppm (Daniels and Trappe 1980). However, 

when phosphorus was added to soil, spore germination of different species of AMF 
decreased with soil P increments (De Miranda and Harris 1994). Investigations on 
the role of inorganic sulphur-containing compounds on the growth of G. caledo-
nium mycelium showed that it was stimulated by the presence of thiosulphate, 
metabisulphite, sulphite and sulphate in the medium (Hepper 1984b).

Some inorganic ions completely inhibit spore germination of AMF. Hepper 
and Smith (1976) found that the inhibitory effects of different agar media on 
germination of G. mosseae spores was due to Mn and Zn. Toxicity of heavy metals 
such as Cu, Mn and Zn also affected spore germination of G. caledonium 
(Hepper 1979).

Germination and hyphal growth of different AM fungal species, evaluated in 
acidic soils with varying Al saturation, showed that most species of Gigaspora and 
Scutellospora were more tolerant than Glomus species (Bartolome-Esteban and 
Schenck 1994). However, no generalization is possible, since different isolates 
within a species showed varying responses to heavy metals (Gildon and Tinker 
1981; Weissenhorn et al. 1993).
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Studies on the effects of salinity on AM fungal spores showed inhibition of 
germination and hyphal growth by increasing concentrations of NaCl (Hirrel 1981; 
Estaun 1989; Juniper and Abbott 1993, 2006; McMillen et  al. 1998). However, 
Koske et al. (1996) reported on the ability of G. gigantea spores to retain germinabil-
ity upon exposure to natural conditions of immersion in sea water and stressed the 
importance of this feature for the dispersal of the species in coastal waters.

A range of organic substrates such as glucose, fructose, sucrose, L-arabinose and 
aspartic, succinic, malic, pyruvic acids, reduced germination and germ tube growth of 
G. mosseae spores (Siqueira et al. 1982). Accordingly, their germination was inhibited 
by excess nutrients, such as those provided by Potato Dextrose or Nutrient Broth Agars 
(Daniels and Graham 1976). However, hyphal growth of G. mosseae was stimulated 
by tartaric acid (Mosse 1959), and peptone, yeast extract, thiamine, cystine, glycine 
and lysine showed great growth promoting effects on G. caledonium hyphae (Hepper 
1979; Hepper and Jakobsen 1983). Recent findings also reported that a growth stimu-
lant isolated from the brown alga Laminaria japonica increased hyphal growth of 
G. margarita sterile spores germinated in vitro (Kuwada et al. 2006).

3.5 � Host/Non Host Plants

Early germination trials showed that AMF are able to germinate in axenic culture 
in the absence of the host (Godfrey 1957; Mosse 1959; Hepper and Smith 1976; 
Powell 1976; Koske 1981a). Thus, host-derived signals do not represent essential 
factors for spore germination of AMF. Accordingly, the presence of growing host 
roots did not trigger the relief of spore dormancy in different AM fungal species 
(Tommerup 1983a). Nevertheless, host roots, crude or purified root exudates and 
compounds derived by their fractioning positively affected spore germination and 
germling growth in different experimental conditions, depending on both plant 
and AM fungal species (Graham 1982; Bécard and Piché 1989; Gianinazzi-Pearson 
et al. 1989; Nair et al. 1991; Tsai and Phillips 1991; Giovannetti et al. 1993a, 1994, 
1996; Suriyapperuma and Koske 1995; Tawaraya et al. 1996b; Buée et al. 2000; 
Nagahashi and Douds 2000; Scervino et  al. 2006). The key compounds exuded 
from host roots able to induce hyphal branching in AMF, strigolactones, stimulated 
spore germination in Gigaspora rosea, G. intraradices and Glomus claroideum, 
and increased mitochondrial density and respiration in G. intraradices (Tamasloukht 
et al. 2003; Besserer et al. 2006). Modulation of AM fungal spore germination was 
also reported in the presence of exudates of mycorrhizal and non mycorrhizal host 
roots and of their differential flavonoid components, which showed species-specific 
effects (Scervino et al. 2005a, b). Detailed information on fungal responses to host-
derived signals is given later in this volume (Chapters 2 and 4).

It is interesting to note that transgenic plants may or may not affect AMF life 
cycle, since the experimental works showed different results depending on the type 
of genetic modification and gene product expressed. Elfstrand et al. (2005) reported 
that the constitutive 35S-driven expression of Mtchit 3-3, a class III chitinase gene 

http://2
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in Medicago truncatula root-organ cultures, was associated with stimulation of 
spore germination of G. intraradices and Glomus constrictum, suggesting that the 
Mtchit 3-3 gene product might directly act on the walls of AM fungal spores. 
Actually, one gene belonging to class III chitinases was specifically induced in 
mycorrhizal M. truncatula (Salzer et al. 2000; Bonanomi et al. 2001).

Root exudates of both non host and ectomycorrhizal plants often showed no 
effects on spore germination (Daniels and Trappe 1980; Azcón and Ocampo 1984; 
El-Atrach et al. 1989; Gianinazzi-Pearson et al. 1989). Nevertheless, contradictory 
fungal behaviours were reported, in in vitro and in vivo experiments (Ocampo et al. 
1980; Glenn et al. 1985; Parra-Garcia et al. 1992; Schreiner and Koide 1993a, b; 
Giovannetti and Sbrana 1998). The release of inhibitory compounds by non-hosts 
was reported by different authors (Vierheilig et  al. 2000; Roberts and Anderson 
2001; Oba et al. 2002; Bainard et al. 2009), and a heat-labile factor able to reduce 
G. gigantea and G. intraradices germination and growth was detected in root exu-
dates of a non mycorrhizal tomato mutant (David-Schwartz et  al. 2001, 2003; 
Gadkar et al. 2003).

3.6 � Microorganisms

Although several species of AMF germinate well in axenic culture, some growth 
stimulation by soil and rhizosphere microorganisms has been reported (Mosse 1959; 
Watrud et  al. 1978; Daniels and Trappe 1980; Azcón-Aguilar et  al. 1986; Azcón 
1987, 1989; Gryndler et  al. 2000; Scervino et  al. 2008; Pivato et  al. 2009). The 
mechanisms of such activity remain unknown. Many laboratory experiments indi-
cated that different bacterial isolates may affect spore germination and hyphal exten-
sion. For example, Streptomyces orientalis stimulated germination of G. mosseae  
(Mugnier and Mosse 1987), diverse field isolates of Streptomyces spp. increased 
germination of G. margarita by production of volatile compounds (Carpenter-
Boggs et al. 1995; Tylka et al. 1991), and Klebsiella pneumoniae increased hyphal 
extension in G. deserticola germlings (Will and Sylvia 1990).

Differential effects of factors released by Bacillus subtilis, Mesorhizobium medi-
terraneum and a PGPR strain on G. mosseae and G. rosea spore germination and 
growth was reported by Requena et al. (1999). G. mosseae spore germination was 
not affected by bacteria, whereas a fungistatic effect was evidenced in G. rosea 
when challenged with a strain of B. subtilis, although such strain was able to induce 
hyphal growth enhancement in G. mosseae.

Several saprophytic fungi isolated from G. mosseae sporocarps decreased or did 
not affect germination of G. mosseae spores on water agar (Fracchia et al. 1998). 
By contrast, the soil fungus Trichoderma spp. enhanced the development of myce-
lium from germinating spores of G. mosseae (Calvet et al. 1992). A recent study 
reported the increase of G. rosea hyphal length in the presence of exudates of 
Drechslera sp., a common fungal endophyte isolated by the inner cortical cells of 
the grass Lolium multiflorum (Scervino et al. 2009).



111  Fungal Spore Germination and Pre-symbiotic Mycelial Growth

Gram-positive bacteria (Paenibacillus spp. and Bacillus spp.) were found 
associated or attached to fungal hyphae (Artursson and Jansson 2003), and among 
them Paenibacillus validus induced the production of new spores of G. intraradices 
grown in plates in dual culture in the absence of the host (Hildebrandt et al. 
2002, 2006).

Different taxa of microbes are associated with spores collected from the field, 
which may remain contaminated even after surface disinfestation procedures 
(Mayo et al. 1986; Ames et al. 1989; Walley and Germida 1996). Investigations on 
the role played by such resident microbial populations are very interesting. For 
example, spore-associated bacteria, including Pseudomonas and Corynebacterium, 
enhanced germination of Glomus versiforme spores in vitro, confirming that this 
fungal species germinates best under non-sterile conditions (Mayo et  al. 1986). 
Other bacteria were intimately associated with the outer spore wall of G. clarum 
(Walley and Germida 1996), or embedded in the electron-dense spore wall of 
Glomus species (Filippi et al. 1998; Maia and Kimbrough 1998), confirming previ-
ous reports on the occurrence of chitin-decomposing microorganisms in washed, 
healthy spores of G. macrocarpum (Ames et al. 1989). Recent PCR-DGGE analy-
ses showed that bacterial species associated with spores of Glomus geosporum and 
G. constrictum belonged to taxonomic groups known to degrade biopolymers 
(Cellvibrio, Chondromyces, Flexibacter, Lysobacter, and Pseudomonas) (Roesti 
et al. 2005), suggesting that such microbes, being able to digest the outer walls of 
AMF, mainly composed of chitin, may aid spore germination.

In the family Gigasporaceae, spores originating from different geographic 
areas were shown to harbour intracellular symbionts belonging to b-proteobacteria 
(Bianciotto et al. 2000, 2003), which could possibly affect germination, since an 
isolate of G. margarita, cured of its endobacteria, showed delayed germling 
growth (Lumini et al. 2007). Actually, previous results showed that germination 
frequency of G. decipiens spores was significantly enhanced by diverse intracel-
lular strains of Burkholderia vietnamiensis, but not by Burkholderia pseudomallei 
(Levy et al. 2003).

4 � Modes of Spore Germination

Glomeromycotan fungi germinate in different ways depending on the genus. Spores 
of most Glomus species germinate by regrowth from the end of hyphal attachments 
(Godfrey 1957; Mosse 1959). Many germ tubes may emerge from the old subtend-
ing hypha, as in G. clarum, or a single one, as in G. mosseae and in G. caledonium. 
Some Glomus species, such as Glomus viscosum, germinate after forming a balloon-
shaped swelling at the broken end of the subtending hypha (Godfrey 1957; Walker 
et al. 1995). By contrast, germ tubes of Gigaspora, Scutellospora and Acaulospora 
species emerge directly through the spore wall. Though, different germination 
structures can be formed depending on the genus. A simple structure is produced 
by Gigaspora spores, which germinate after a papillate layer has formed in the inner 
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part of the spore wall. Light and electron microscopy studies of this mode of 
germination were performed in G. margarita (Becker and Hall 1976; Sward 1981b, c). 
In other genera inner (or germinal) walls are involved in germination, with the for-
mation of specialised structures usually on the outer surface of the innermost wall. 
Species of Scutellospora develop germination shields (Walker and Sanders 1986) 
whose morphology has been recently used to taxonomically revise the family 
Gigasporaceae (Oehl et al. 2008). A different structure, described in some species 
of Acaulospora and Kuklospora, was termed “germination orb” (Spain 1992) since 
it differs morphologically from Scutellospora shields, while persisting after germi-
nation. The cellular events leading to spore germination in A. laevis were monitored 
at the ultrastructural level, by means of sequential sampling of spores incubated in 
conditions allowing germination (Mosse 1970a, b). Germination structures were 
described as dense peripheral compartments, containing cytoplasm and many nuclei, 
from which germ tubes arose and pushed through the outer layers of the spore wall. 
Some Pacispora species are known to develop Glomus-like spores with germination 
structures morphologically similar to Scutellospora shields, but differing from them, 
since they are delicate, deteriorating over time and therefore difficult to discern 
(Walker et al. 2004; da Silva et al. 2008). Distinctive simpler germination structures 
occur in spores of Archaeospora trappei and some Ambispora species (Spain 2003; 
Spain et al. 2006; Goto et al. 2008).

Multiple germination can be defined as the abilily of fungal spores to germinate 
several times by producing successive germ tubes when those formed previously are 
severed from the parent spores (Koske 1981b). This capacity was described in 
spores of a Glomus sp. (Mosse 1959), and later studied in G. gigantea, whose spores 
were able to germinate up to ten times over a period of 50 days, after their germ 
tubes had been severed (Koske 1981b). Multiple germination may be considered an 
additional strategy to increase the probability of successful infection of a host root 
by germinating spores of AMF.

5 � Development of Pre-symbiotic Mycelium

After germination, hyphae generally follow a forward, linear growth, with a strong 
apical dominance and regular, right-angled branches. Hyphae are thick-walled, 
aseptate, about 5–10 µm wide, and contain many nuclei (Fig. 1a, b).

Cytoplasm and nuclei can be easily observed migrating along two directions in 
hyphae originating from spores during germination (Mosse 1959). Ultrastructural 
studies confirmed these early observations, obtaining clear evidence of a swirling 
motion of the cytoplasm, and suggested redistribution of spore cytoplasm into the 
germ tube (Sward 1981c). Two-photon fluorescence microscopy and video-enhanced 
microscopy allowed the detection of nuclei moving along hyphae originating from 
germinated spores of G. rosea and G. caledonium, respectively (Bago et al. 1998; 
Logi et al. 1998). Such movement could be a microtubules (MT)-dependent process, 
since in G. mosseae germlings nuclei were always detected in close association 
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with MT, as visualised by indirect immunofluorescence microscopy (Astrom et al. 
1994), confirming previous observations on the growth of G. margarita germ-tubes 
(Sward 1981c).

The elongating germ tubes give rise to a mycelial network whose extension is 
highly variable between individuals. Even when growing in the most suitable media, 
hyphal growth of AMF is poor. For example, mycelial length in G. caledonium 
reached 30–50 mm after 10–15 days growth on water agar, and the mean growth rate 
of the mycelium during the early phase was 1.97 ± 0.39 µm/min (Logi et al. 1998). 
Accordingly, hyphal growth rate in G. mosseae growing in the absence of root factors 
ranged between 1.65 and 2.7 µm/min (Mosse 1959; Giovannetti et al. 1993b). New 
hyphae of G. clarum extended up to 8 mm after 10 days incubation (Louis and Lim 
1988). Hyphal length of G. margarita after 9 days growth ranged between 18 and 
25 mm (Bécard and Piché 1989; Gianinazzi-Pearson et al. 1989), while that 
of G. gigantea reached 54.4 cm after 15 days growth in vitro (Douds et al. 1996).

Studies on transgenic plants designed to constitutively express the insecticidal 
toxin from Bacillus thuringiensis reported diverse effects on hyphal growth of 
G. mosseae germinated sporocarps, which was lower in the presence of Bt corn 176 

Fig.  1  Micrographs showing differential stainings of mycelium originated by Glomus mosseae 
spores growing in the absence of the host. (a, b) DAPI-stained mycelium showing nuclear distribution 
along hyphae and in secondary spores. Scale bars = 130 and 40 µm, respectively; (c) Haematoxylin-
stained anastomosing hyphae showing protoplasm continuity in the hyphal bridge. Scale bar = 13 µm; 
(d) Succinate dehydrogenase localisation and Trypan blue staining of an incompatible interaction 
between hyphae belonging to geographically different isolates. Scale bar = 10 µm
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than in the presence of Bt 11 or non-transgenic plants. By contrast, hyphal length 
of G. mosseae did not show differences when grown in soil samples containing Bt 
and non-Bt plant residues (Turrini et al. 2004a; Castaldini et al. 2005). Root exu-
dates of aubergine plants transformed to express the antimicrobial Dm-AMP1 
defensin from Dahlia merckii did not affect hyphal growth of G. mosseae, as com-
pared with non transgenic plants (Turrini et al. 2004b).

Fungal hyphae expanding from the primary mycelium or from branches meet 
frequently and often fuse, by means of hyphal fusions (anastomoses), when growing 
on agar or on membranes (Fig. 1c). The occurrence of anastomosis in AMF was 
mentioned by some authors who did not report any quantitative data on the fre-
quency of hyphal fusions in the different species or on the cytological events 
involved (Godfrey 1957; Mosse 1959; Tommerup 1988). In 1999 for the first time 
anastomoses between living hyphae of individually germinated spores of AMF 
were monitored via a combination of time-lapse and video-enhanced light micros-
copy, image analysis, and epifluorescence microscopy (Giovannetti et al. 1999) The 
percentage of contacts leading to anastomosis ranged from 35% to 69% in hyphae 
from the same germling and from 34% to 90% in hyphae from different germlings 
of the same isolate of G. mosseae, G. caledonium, G. intraradices. By contrast, no 
anastomoses were detected between hyphae from the same or different germlings 
of G. rosea and Scutellospora castanea. Such differential behaviour of AM fungal 
species belonging to Glomeraceae and Gigasporaceae families was later confirmed 
by other authors (de Souza and Declerck 2003; de la Providencia et al. 2005).

Spatiotemporal studies made it possible to monitor anastomosis formation: com-
plete fusion of hyphal walls and the establishment of cytoplasmic flow in the fusion 
bridge took about 35 min after a hyphal tip showed directed growth towards another 
hypha, both in G. caledonium and in G. mosseae mycelia. Protoplasmic continuity, the 
distinctive mark of true anastomoses, was evidenced by SDH activity in hyphal 
bridges, where cellular organelles moved at the speed of 1.8 µm/s (Giovannetti et al. 
1999). Nuclear migration through fusion bridges suggested that genetic exchange 
could occur by means of anastomosis between hyphae derived from genetically different 
individuals. Accordingly, other studies demonstrated that geographically and geneti-
cally different G. mosseae isolates were unable to fuse (Giovannetti et  al. 2003) 
(Fig. 1d), while genetic exchange occurred, by means of anastomosis, between geneti-
cally distinct isolates of one population of G. intraradices from the same field (Croll 
et al. 2009). Such nuclear exchange may represent a fundamental mechanism allowing 
the maintenance of genetic diversity in AMF, hitherto regarded as ancient asexuals.

6 � Biochemical Changes During Germination  
and Pre-symbiotic Growth

The germination of AM fungal spores is characterized by increased activity of the 
cytoplasm, involving essential biochemical changes for the switching from a meta-
bolically quiescent state to active metabolism.
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Early studies on biochemical events that take place during germination and 
growth of germlings in G. caledonium reported that kinetics of radioactive leucine 
and uracil incorporation was suggestive of RNA and protein synthesis being opera-
tive by 35 min after imbibition (Beilby and Kidby 1982). The response of ungermi-
nated and pregerminated spores to inhibitors of nucleic acid synthesis suggested 
that the synthesis of mRNA, unnecessary for germination of G. caledonium spores, 
was required for germling growth, and that mitochondrial DNA was synthesized 
during germination and hyphal growth (Hepper 1979; Beilby 1983). However, pro-
duction of detectable amounts of ribosomal and mRNAs during imbibition and cold 
storage was shown in ungerminated spores of G. rosea (Franken et al. 1997). Other 
authors were not able to demonstrate the occurrence of DNA synthesis in  vitro, 
during and after germination of G. margarita spores, by using cell cycle inhibitors 
or direct labelling of nuclear DNA (Burggraaf and Beringer 1989). By contrast, the 
capability of DNA replication was reported to occur in a small nuclear population 
of germlings of the same species (Bianciotto and Bonfante 1993). More evidences 
of DNA replication and transcription during germination and early stage of fungal 
growth are reported in Section 7.

Protein synthesis was demonstrated to be essential for spore germination and 
germling growth by studying the effects of the protein synthesis inhibitor cyclohex-
imide (Hepper 1979) and later confirmed by using radioactive leucine and the same 
metabolic inhibitor (Beilby 1983). The early report, based on 14C labeled acetate, 
that amino acid biosinthetic pathway were operating within 35 min of imbibition in 
G. caledonium (Beilby and Kidby 1982), has been recently confirmed by 15N labeling 
experiments and gene expression studies, which showed the ability of G. intraradices 
and G. mosseae to synthesize aminoacids from endogenous reserves (Breuninger 
et al. 2004; Gachomo et al. 2009).

A net synthesis of lipids was observed during germination and germ-tube growth 
of G. caledonium spores, with an increase of free fatty acids and polar lipids and a 
decrease in neutral lipids (Beilby and Kidby 1980). Total lipid content increased from 
45% of dry weight in ungerminated spores to 55% and 75% of dry weight in 7 and 
14 days old germinated spores, respectively. However, in other experiments, using 
13C-labeled substrates and nuclear magnetic resonance spectroscopy, no detectable 
labeling of lipids was reported (Bago et al. 1999a), suggesting the lack of lipid bio-
synthesis in G. intraradices germinating spores. Later experiments, using 13C labeled 
glycerol or 14C acetate furtherly supported this hypothesis (Bago et  al. 2002b; 
Trépanier et al. 2005). On the other hand, the occurrence of labeled 18- and 20-carbon 
fatty acids but not of 16-carbon fatty acids in germinating spores of G. intraradices 
and G. rosea, suggested that germlings could elongate and desaturate palmitic acid 
even in the absence of fatty acid synthase activity (Trépanier et al. 2005).

Other biosynthetic abilities of AMF during spore germination and germling 
growth have been demonstrated in G. caledonium and G. intraradices, which were 
able to synthesize sterols (Beilby and Kidby 1980; Fontaine et  al. 2001a, b), as 
confirmed by the use of sterol biosynthesis inhibitors (Zocco et al. 2008).

The biosynthesis of polyamines, important regulators of fungal growth and 
differentation (Walters 1995), was studied in G. mosseae and G. rosea in order to 
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assess the effects on AMF of polyamine biosynthesis inhibitors used to control 
plant disease. An increase in polyamines levels was observed after germination in 
G. mosseae, although enhanced germling growth in the presence of exogenous 
putrescine and spermidine suggested a low, growth limiting level of their endoge-
nous concentrations (El Gachtouli et al. 1996). Interestingly, polyamine biosynthe-
sis seems to occur only via the ornithine decarboxylase in G. mosseae, while in  
G. rosea the alternative pathway using arginine decarboxylase was active (Sannaz
zaro et al. 2004).

As for carbohydrate metabolism, cytochemical studies and isozyme staining 
performed on spores or germ tubes showed the occurrence of many enzymes of 
central metabolic pathways such as glycolysis, tricarboxylic acid cycle (TCA), 
pentose phosphate pathway and gluconeogenesis (Macdonald and Lewis 1978; 
Hepper et al. 1986; Saito 1995), many of which were operative 35 min after hydra-
tion. A rapid increase in spore ATP concentration after 45 min was evidence of the 
presence of an active respiratory system in G. caledonium germlings (Beilby and 
Kidby 1982).

A thorough survey of biochemical potentiality of germinating spores of G. intra-
radices was performed by using 13C-labeled substrates and nuclear magnetic reso-
nance spectroscopy. The labeling patterns observed were consistent with significant 
carbon fluxes via various pathways, confirming that gluconeogenesis, TCA, glyco-
lysis, and pentose phosphate pathway are operational in germlings, and supporting 
the important role played by glyoxylate cycle and non-photosynthetic one-carbon 
metabolism during germination (Bago et al. 1999a).

Since triacylglycerols (TAG) and free fatty acids may represent a large pro-
portion of AMF spores’ weight (Beilby and Kidby 1980; Gaspar et  al. 1994), 
their degradation is central to the process of spores germination and ger-
mling growth. Actually, the breakdown of TAG was assessed 5 days after germina-
tion in G. versiforme spores, probably by an active lipase (Gaspar et al. 1994, 1997).

Ultrastructural data on the movement and disappearance of lipid globules in 
hyphae originating from germinating spores (Maia and Kimbrough 1998; Bago 
et al. 2002a, b) support the hypothesis that storage lipids are used to provide pre-
cursors for anabolism through glyoxylate pathway and gluconeogenesis, and to 
fuel respiratory chains by b-oxidation and TCA, as confirmed by labeling experi-
ments (Bago et al. 1999a; Lammers et al. 2001). Such hypothesis was also con-
firmed by the detection of isocitrate lyase and malate synthase genes involved in 
the glyoxylate cycle and of an acyl CoA dehydrogenase involved in fatty acid 
b-oxidation in G. intraradices and G. rosea spores (Lammers et al. 2001; Bago 
et al. 2002b).

Interestingly, trehalose was detected in spores of G. etunicatum in small quanti-
ties, decreasing during the early germination stage, suggesting its role as a source 
of energy before the start of lipid breakdown (Bécard et al. 1991).

Electron microscope observations of membrane-bound crystals in spores of 
G. margarita and A. laevis suggested the occurrence of protein storage material, 
observed in different stages of apparent breakdown in G. margarita germlings 
(Bonfante et  al. 1994; Mosse 1970b; Sward 1981a, b). Native and denatured 
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protein profiles of G. mosseae showed the presence of bands whose intensity 
decreased during spore germination, supporting the hypothesis of the existence of 
storage proteins in AM fungal spores (Avio and Giovannetti 1998; Samra et al. 
1996). In addition to storage proteins, spores may utilize N stored in the form of 
aminoacids, especially asparagine, which was present in high concentration in 
quiescent spores of G. intraradices and G. caledonium (Beilby and Kidby 1982; 
Gachomo et al. 2009).

Transmembrane electric potential differences and ion fluxes in AM fungal 
hyphae showed a generally weak polarization of germ tubes growing in the absence 
of host derived signals, confirming a basal metabolic activity with low ATP con-
sumption (Berbara et al. 1995; Ayling et al. 2000; Ramos et al. 2008).

In summary, AMF spores possess a large pool of enzymes allowing them to 
germinate and grow. Though, in the absence of host roots germling growth is 
arrested, even before depletion of spore reserves (see Section 8), while a boost of 
metabolism, primarily an increase of respiration (Tamasloukht et al. 2003; Bücking 
et al. 2008), occurs in the presence of root exudates. Interestingly, analyses of elec-
tric potential differences and H+ ion flux profile in AM fungal hyphae showed a 
strong influence of host derived signals, which induced ion fluxes enhancement 
depending on the specific hyphal domains, suggesting a differential activation and 
distribution of electrogenic H+-pump isoforms through plasma membrane (Ayling 
et al. 2000; Ramos et al. 2008).

7 � Cytological and Genetic Changes During Germination  
and Pre-symbiotic Growth

Early evidence of cell cycle activation in AMF growing in the absence of the host 
was reported by Mosse, who described the development of dense regions containing 
normal cytoplasm and many dividing nuclei in spores of A. laevis prior to germina-
tion (Mosse 1970a). Also, Sward (1981b) observed a large number of nuclei with 
highly condensed chromatin and prominent nucleoli in G. margarita spores after 
24  h of incubation on water agar. Cytological studies showed that nuclei from 
quiescent spores of G. versiforme were in the GO/G1 phase, whereas nuclei from 
mycorrhizal roots were in the synthetic and G2/M phases (Bianciotto et al. 1995). 
Mitotic spindles were also detected in germinated spores of G. mosseae by tubulin 
immunostaining, confirming the occurrence of DNA replication during pre
symbiotic growth (Requena et  al. 2000). In the latter work, the gene GmTOR2, 
encoding a protein with high homology to the C terminus of Saccharomyces 
cerevisiae TOR2 (controlling cell cycle), was characterised. Under treatment with 
the anti-inflammatory drug rapamycin, which interferes with TOR2 by arresting 
S. cerevisiae cell cycle in G1 phase, G. mosseae spore germination was unaffected, 
whereas hyphal growth decreased, suggesting that nuclear replication in the 
pre-symbiotic stage is only necessary for hyphal growth (Requena et al. 2000).
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EST sequencing from germinated spores of G. intraradices and G. rosea 
revealed putative homologues to cell cycle and meiosis-specific genes from other 
fungi, such as chromatin assembly factor, ubiquitin-encoding genes (Stommel et al. 
2001) and Neurospora crassa NDT80, known to control exit from pachytene phase 
of meiosis (Jun et al. 2002). Furthermore, a putative gene involved in the biosyn-
thesis of new nucleotides was detected in germinated spores of G. intraradices (Jun 
et al. 2002).

The occurrence of nuclear division was inferred in non symbiotic mycelium by 
using image analysis counts of the number of nuclei (Bécard and Pfeffer 1993), 
which decreased from 2,000 to 800 in individual spores during the early days of 
germination, suggesting the migration of nuclei from spores to hyphae. This was 
confirmed by data on the occurrence of cytoskeletal components, both microtubules 
and microfilaments, in the mycelium originating from germinating spores of  
G. mosseae and G. caledonium (Astrom et al. 1994; Logi et al. 1998). The presence 
of such components is consistent with the role of cytoskeleton in the migration of 
nuclei and cellular organelles during active growth. Expression of b-tubulins in 
germinating AM fungal spores (Franken et  al. 1997; Butehorn et  al. 1999) was 
confirmed by the detection of sequences putatively encoding other cytoskeletal 
proteins, such as a-tubulin, b-actin, dynein and actin-related protein, possibly 
involved in nuclear and nutrient movements, in G. intraradices germinated spores 
(Jun et al. 2002). Recently, full-length b-tubulin gene has been sequenced from 
G. gigantea and G. clarum, showing some peculiar traits compared to fungi other 
than glomeromycota (Msiska and Morton 2009).

Nuclear division in G. rosea hyphae was also detected in the presence of host root 
exudates or of the synthetic strigolactone GR24, which induced an accumulation of 
nuclei in the apical area of treated hyphae (Buée et al. 2000; Besserer et al. 2008).

Early experiments showed that inhibitors of mRNA translation hindered AM 
fungal spore germination (Hepper 1979; Beilby 1983). Accordingly, differential 
display analysis of G. rosea did not show changes in RNA accumulation patterns 
during hyphal development, suggesting that in this phase proteins are produced 
only by translating transcripts synthesized prior and during spore germination 
(Franken et al. 2000).

Many expressed genes detected in germinating AM fungal spores showed 
homology to those encoding for proteins involved in translation, protein process-
ing, primary metabolism and transport processes (Franken et al. 1997; Lammers 
et al. 2001; Stommel et al. 2001; Jun et al. 2002; Bago et al. 2002a, 2003). The 
identification of genes putatively codifying for several enzymes involved in carbon 
metabolism and lipid breakdown often confirmed biochemical data.

An interesting gene, G. mosseae GmGIN1, was highly and specifically expressed 
in non symbiotic mycelium, whereas it was silenced during the symbiosis, both in 
the intraradical structures and the extraradical mycelium (Requena et  al. 2002). 
Interestingly, several genes with homology to the N-terminus of GmGIN1, 
sequenced from Magnaporthe grisea, N. crassa, Gibberella zeae and Aspergillus 
nidulans, encode for a family of proteins playing an essential role in polarized 
growth, septal formation and hyphal morphological changes in the phytopathogenic 
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fungus Ustilago maydis and in the ectomycorrhizal fungus Suillus bovinus (Gorfer 
et al. 2001; Weinzierl et al. 2002).

A 14-3-3 protein encoding gene, known to be involved in modulation of cell ion 
pumps and channels, was detected in G. intraradices mycelium (Porcel et al. 2006). 
This finding suggests an important role of this gene in controlling the activity of 
P-type H+-ATPases, detected in G. intraradices and G. mosseae (Requena et  al. 
2003; Corradi and Sanders 2006), which are responsible of the maintenance of 
hyphal ionic gradient during polarized growth (Ramos et al. 2008).

Interestingly, a sequence showing strong similarity to an endonuclease involved 
in lateral transfer of an rDNA intron has been detected in G. intraradices germi-
nated spores, suggesting the occurrence of lateral gene transfer during nuclear 
exchange between anastomosing hyphae belonging to genetically different AMF 
(Jun et al. 2002; Croll et al. 2009).

Induction of genes encoding for putative pyruvate carboxylase and mitochon-
drial ADP/ATP translocase, involved in respiration enhancement activity, has been 
observed in G. rosea and G. intraradices during early responses to host root factors, 
before hyphal branching (Tamasloukht et  al. 2003, 2007). The expression of the 
former gene could explain the stimulatory effects exerted by CO

2
 on AM fungal 

growth (Bécard and Piché 1989), whereas the expression of the latter gene could be 
necessary for the delivery of large quantity of ATP produced at high respiration 
rates (Requena et al. 2003). Activation of such genes and oxygen consumption were 
induced by host root exudates after 0.5–3 h, when no morphological change in 
hyphal growth pattern was detectable yet. On the contrary, no differences in the 
expression of key metabolic genes during the first 48 h after strigolactone analogue 
GR24 treatment were observed in G. rosea, which showed strong enhancement in 
transcript levels after 2 days of incubation, independently of GR24 treatment 
(Besserer et al. 2008). These findings suggest that other unknown signal molecules 
may be active and that strigolactone-induced mitochondrial activity is due to post-
translational regulation of key enzymes (Delano-Frier and Tejeda-Sartorius 2008; 
Rani et al. 2008). The need of host-derived signals for developmental stages follow-
ing spore germination can be inferred by results obtained with the pmi mutants of 
Solanum lycopersicum, which are regularly colonised by extraradical mycelium 
and mycorrhizal roots but are not susceptible to colonisation by hyphal germlings 
(David-Schwartz et al. 2001, 2003).

AM fungal spores germinating in the absence of host-derived factors constitu-
tively release unknown compounds which are perceived as signals by host plants and 
are able to elicit recognition responses, such as a transient cytoplasmic calcium induc-
tion in soybean cells (Navazio et al. 2007) and the accumulation of starch in Lotus 
japonicus roots (Gutjahr et al. 2009). Ca2+-mediated signaling was also suggested by 
expression of genes involved in Ca2+-mediated signal transduction in M. truncatula 
roots in the presence of a diffusible factor released by G. mosseae (Weidmann et al. 
2004). Previous studies had reported the release of a diffusible signal by G. mos-
seae, G. rosea, G. gigantea, G. margarita and G. intraradices growing in the pres-
ence of host plants (Chabaud et al. 2002; Kosuta et al. 2003). The perception of such 
signals by M. truncatula induced root expression of the early nodulin gene 
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MtENOD11, which was related, both spatially and temporally, with the appearance 
of hyphal branching enhancement. Moreover, factors released by G. margarita and 
G. intraradices mycelium growing nearby M. truncatula plant roots were able to 
induce lateral root formation (Olah et al. 2005) and those released by G. intraradices 
branching hyphae elicited root calcium-spiking responses (Kosuta et al. 2008). No 
information is still available on the chemical nature of AM fungal factor(s).

Although many studies reported germling growth improvement by different 
microorganisms, little is known about the molecular mechanisms of such phenom-
enon. Changes in AM fungal gene expression in response to the perception of 
microbial derived factors were detected by Requena et al. (1999) during co-culture 
of G. mosseae with a strain of the rhizobacterium B. subtilis, inducing mycelial 
growth increases. In particular, down-regulation of the putative gene GmFOX2, 
encoding a protein involved in long-chain fatty acids catabolism, was evidenced. It 
is not known which is the signaling pattern between bacteria and fungi, although it 
has been hypothesized that an increase in fungal cAMP, due to the perception of 
flavonoid/estrogen bacterial signals, could be responsible for the glucose repression 
stage that down-regulates GmFOX2 (Requena et al. 1999).

8 � Growth Arrest in the Absence of the Host

Although spores of AMF are able to germinate in  vitro in response to different 
edaphic and environmental conditions, they are not capable of extensive indepen-
dent hyphal growth, and, in the absence of the host, germlings cease growth within 
8–20 days (Mosse 1959; Daniels and Graham 1976; Beilby and Kidby 1980; Koske 
1981a; Hepper 1984b; Bécard and Piché 1989; Giovannetti et al. 1993b; Schreiner 
and Koide 1993b; Logi et al. 1998) (Fig. 2).

Microchambers allowing continuous observation of living mycelium over a 
period of several hours, showed that when no host-derived signals from the sur-
rounding environment were perceived by G. caledonium and G. rosea germlings, 
hyphae entered a state of developmental arrest. Cytoplasm, nuclei and cellular 
organelles were retracted from the tips and from peripheral hyphae and retraction 
septa were produced, separating viable from empty hyphal segments (Logi et al. 
1998). In vivo two-photon microscopy, carried out on G. rosea germlings, showed 
differences in the organization and distribution of nuclei between actively growing 
hyphae and those undergoing septation (Bago et  al. 1998, 1999b). Protoplasmic 
flow rate, measured in actively growing germlings on the basis of the movement of 
cell particles – nuclei, small vacuoles, mitochondria, fat droplets, tiny organelles –  
ranged from 2.98 to 4.27 µm/s in living hyphae of G. caledonium (Giovannetti et al. 
2000). Microchambers and two-photon microscopy studies revealed that neither 
protoplasm streaming nor nuclear movements occurred in protoplasm-retracting 
hyphae and that progressively enlarged vacuoles led to the formation of empty 
areas where a cross wall was eventually formed (Bago et  al. 1998, 1999b; 
Giovannetti et al. 2000) (Fig. 3a, b).
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Metabolic activity was still detectable in G. caledonium 6-month-old hyphae 
proximal to the mother spore, which was able to retain infectivity, suggesting that 
such resource reallocation is functional to long-term maintenance of viability, 
allowing survival of fungal propagules in the absence of host plants (Logi et  al. 
1998; Giovannetti et al. 2000).

The reasons for such behaviour have been investigated with the aim of determining 
whether vital metabolic pathways may be blocked. The main results have been 
considered earlier in this chapter (see Section 6), and they indicate that germinating 
spores do possess the metabolic machinery for hyphal growth and that spore 
reserves are not totally depleted during germling growth (Hepper 1979; Beilby and 
Kidby 1980; Koske 1981b). Germinating AM fungal spores showed low respiratory 

Fig. 2  Micrograph showing the limited growth of a Glomus mosseae spore in the absence of host 
derived signals. Scale bar = 240 µm

Fig. 3  Micrographs showing protoplasm retraction during growth arrest in hyphae originating 
from Glomus mosseae spores. (a) DAPI staining, evidencing nuclar occurrence in retracting pro-
toplasm. Scale bar = 7 µm; (b) Haematoxylin staining showing a viable hyphal compartment 
below a septum isolating the empty hyphal tip. Scale bar = 10 µm
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activity and reduced resource utilization, allowing limited biosynthesis, whereas 
higher respiration rates and use of C sources, sustaining growth and morphogene-
sis, were detected after the perception of host root factors. Respiratory metabolism 
seems a suitable control target for non symbiotic growth arrest, which has been 
suggested to represent a strategic mechanism preventing spore reserves consump-
tion in the absence of host-regulated germination.

9 � Concluding Remarks

Several survival strategies are supposed to have affected the evolutionary history of 
AMF, allowing them to overcome their obligate biotrophic status. The first survival 
strategy is represented by the wide host range – ~80% of land plant species –, 
which increases the possibility of individually germinated spores to come into con-
tact and colonise host roots: such strategy, relying wholly on chance, appears a 
weak explanation for 460 million years continued existence. A second evolutionary 
mechanism allows the survival of spores germinated in the absence of host roots by 
mycelial growth arrest, which is accompanied by peripheral protoplasm withdrawal 
and resource reallocation towards mother spores, functional to retaining long-term 
colonisation ability. Challenges remain concerning factors triggering the onset of 
growth arrest and the molecular mechanisms involved. Further energy-saving 
mechanisms allow the unequivocal discrimination of host from non host roots, 
since AM fungal hyphae undergo a biochemical switch and a distinctive pattern of 
hyphal morphogenesis only after perceiving host-derived signals. Recently, we 
obtained data on the ability of AMF germlings to plug into a compatible mycor-
rhizal mycelium by means of anastomoses, thus gaining access to plant-derived 
carbon before undergoing growth arrest, enhancing their survival chances. The abil-
ity of AM fungal mycelium to form anastomosis and to discriminate self from 
nonself may represent a fundamental additional survival strategy. These strategies 
may compensate for the lack of host-regulated spore germination, an apparently 
inconsistent behaviour for obligate symbionts, and contribute to the survival of 
individuals and populations of AMF.
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