
Chapter 8

Regression II

Regression serves in this chapter to relate two climate variables, X(i)
and Y (i). This is a standard tool for formulating a quantitative “climate
theory” based on equations. Owing to the complexity of the climate
system, such a theory can never be derived alone from the pure laws
of physics—it requires to establish empirical relations between observed
climate processes.

Since not only Y (i) but also X(i) are observed with error, the relation
has to be formulated as an errors-in-variables model, and the estimation
has to be carried out using adaptions of the OLS technique. This chapter
focuses on the linear model and studies three estimation techniques (de-
noted as OLSBC, WLSXY and Wald–Bartlett procedure). It presents a
novel bivariate resampling approach (pairwise-MBBres), which enhances
the coverage performance of bootstrap CIs for the estimated regression
parameters.

Monte Carlo simulations allow to assess the role of various aspects of
the estimation. First, prior knowledge about the size of the measurement
errors is indispensable to yield a consistent estimation. If this knowledge
is not exact, which is typical for a situation in the climatological practice,
it contributes to the estimation error of the slope (RMSE and CI length).
This contribution persists even when the data size goes to infinity; the
RMSE does then not approach zero. Second, autocorrelation has to be
taken into account to prevent estimation errors unrealistically small and
CIs too narrow.

This chapter studies two extensions of high relevance for climatological
applications: linear prediction and lagged regression.

Regression as a method to estimate the trend in the climate equation
(Eq. 1.2) is presented in Chapter 4.
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340 8 Regression II

8.1 Linear regression
To make a regression of the predictor variable, X, on the response

variable, Y , we re-apply the errors-in-variables model (Section 4.1.7),

Y (i) = β0 + β1 [X(i)− SX(i) ·Xnoise(i)] + SY (i) · Ynoise(i), (8.1)

i = 1, . . . , n. The variability of process X(i) and Y (i) is denoted as SX(i)
and SY (i), respectively; the noise component, Xnoise(i) and Ynoise(i), is
of assumed AR(1) type with persistence time τX and τY , respectively.
One task is to estimate the regression parameters, β0 and β1, given a
bivariate sample, {t(i), x(i), y(i)}n

i=1. Another, related task is to make a
prediction of an unknown Y for a given value of X.

The errors-in-variables model (Eq. 8.1) differs from the simple model
(Eq. 4.3) in its nonzero noise component of the predictor. Several es-
timators for the errors-in-variables model have been developed to deal
with this more complex situation.

8.1.1 Ordinary least-squares estimation
The simple OLS estimation minimizes the unweighted sum of squares,

SSQ(β0, β1) =
n∑

i=1

[y(i)− β0 − β1x(i)]2 . (8.2)

This yields the estimators

β̂0 =

[
n∑

i=1

y(i)− β̂1

n∑
i=1

x(i)

] /
n (8.3)

and

β̂1 =

{[
n∑

i=1

x(i)

] [
n∑

i=1

y(i)

] /
n−

n∑
i=1

x(i) y(i)

}

×


[

n∑
i=1

x(i)

]2 /
n−

n∑
i=1

x(i)2


−1

. (8.4)

Using OLS means ignoring heteroscedasticity, persistence and errors
in the predictor variable, X. However, heteroscedasticity and persistence
can successfully be taken into account by employing WLS and GLS
estimation, respectively. The success of ignoring errors in X depends on
how large these are relative to the spread of the “true” X values (Eq.



8.1 Linear regression 341

4.34), which are given by Xtrue(i) = X(i)− SX(i) ·Xnoise(i). If SX(i) =
SX is constant and S2

X � VAR[Xtrue(i)], the estimation bias should be
negligible. If SX(i) is not constant, one may expect a similar condition
to the average of SX(i). The decisive quantity is VAR[Xtrue(i)], which
may be difficult to control for an experimenter prior to sampling the
process.

If Xnoise(i) and Ynoise(i) are independent, the estimator β̂1 is biased
downwards (Section 4.1.7) as E

(
β̂1

)
= κ · β1, where κ ≤ 1 is the atten-

uation factor or reliability ratio,

κ =
(
1 + S2

X /VAR [Xtrue(i)]
)−1

. (8.5)

The intuitive reason of the bias downwards is that “smearing” the “true”
predictor variable, Xtrue(i), leads to a situation where the “cheapest fit
solution” in terms of SSQ is a line that is horizontally tilted (Fig. 8.1).

8.1.1.1 Bias correction
Eq. (8.5) points to a bias-corrected slope estimation. Let SX(i) = SX

be constant and known, and let the variance of the “true” predictor
values be given by VAR[Xtrue(i)] = VAR[X(i)]− S2

X . This leads to

β̂1 = β̂1,OLS

/{
1− S2

X /VAR [X(i)]
}

, (8.6)

where β̂1,OLS is the simple OLS slope estimator (Eq. 8.4). We denote
this estimation method (Eq. 8.6) as ordinary least squares with bias
correction (OLSBC). The OLSBC intercept estimator equals the OLS
intercept estimator (Eq. 8.3). In practice (sample level), plug in x(i) for
X(i).

8.1.1.2 Prior knowledge about standard deviations
Assume homoscedastic noise components, SY (i) = SY and SX(i) =

SX , and denote their squared ratio as

λ = S2
Y

/
S2

X . (8.7)

Knowledge prior to the estimation about SX , SY or λ can increase the
estimation accuracy.

If SX is known, then OLSBC can be readily performed (Eq. 8.6). Such
prior knowledge may be acquired, for example, by repeating measure-
ments. Or there may exist theoretical information about the measuring
device and, hence, SX .

If SX is only known within bounds, OLSBC estimation can still be
applied. CI construction has then to take into account the limited prior
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Figure 8.1. Linear errors-in-variables regression model, OLS estimation. The
{y(i)}n

i=1 are identical in panels a–c; the data size is n = 18; and the {x(i)}n
i=1

are realizations of a predictor variable, X(i), with constant zero (a), small (b) and
large (c) noise components, SX(i) ·Xnoise(i). The true slope is β1 = 1.0 (a). The OLS

fits (solid lines) exhibit slope estimates that are unbiased (a β̂1 = 1.0) or biased (b

β̂1 = 0.92; c β̂1 = 0.55).
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knowledge. The result is a wider CI compared to the situation of perfect
prior knowledge (Section 8.3).

If only the ratio, λ, is known, then one may be tempted to employ
the method of moments estimator from the background material (Eq.
8.26) and plug in ŜX for SX in Eq. (8.6). Similarly, if only SY is known,
then one may be tempted to employ Eq. (8.26), replace therein δ =
λ1/2 by SY /ŜX and solve the equation for ŜX . However, own Monte
Carlo experiments (results not shown) revealed completely inacceptable
coverage accuracies of bootstrap confidence intervals for the slope (but
acceptable accuracies for the intercept). The reason is the inaccurate
ŜX estimation (Fuller 1987: Section 2.5 therein). Our recommendation
for the case of known λ (or SY ) is the weighted least-squares estimation
(Section 8.1.2).

If no knowledge at all exists about SX , SY or λ, then we face dif-
ficulties. One may simply try OLS but risk a biased slope estimation.
One may resort to the Wald–Bartlett procedure (Section 8.1.3), but also
this does not produce accurate results when so little is known. We dis-
courage from adopting an OLS regression of Y an X and estimating SX

via the residual mean square (Eq. 4.8), an idea found occasionally in
the literature. Own Monte Carlo experiments (similar to those in Sec-
tion 8.3, results not shown) revealed inacceptable coverage performance
of bootstrap CIs.

8.1.2 Weighted least-squares for both variables
estimation

Studying the combination of both noise components in Eq. (8.1) in the
form of SY (i) · Ynoise(i)− β1 SX(i) ·Xnoise(i) makes clear the estimation
approach via attaching weights to the observations of both variables
(Deming 1943; Lindley 1947). The variant by York (1966) and others,
who suggested minimization of the weighted least-squares sum,

SSQWXY (β0, β1) =
n∑

i=1

[y(i)− β0 − β1x(i)]2

SY (i)2 + β2
1 SX(i)2

, (8.8)

was included in the Numerical Recipes (Press et al. 1992: Section 15.3
therein). However, no general analytical solution exists and some numer-
ical difficulties have to be circumnavigated (Section 8.8). We abbreviate
this estimation procedure as WLSXY (Fig. 8.2).

8.1.2.1 Prior knowledge about standard deviation ratio
Assume SY (i) and SX(i) to be unknown, but their (squared) ratio,

λ = SY (i)2
/
SX(i)2, (8.9)



344 8 Regression II

5 10 15x(i )

-10

-5

0

5

10

15

y(i )

Figure 8.2. Linear errors-in-variables regression model, WLSXY and OLS estima-
tions. The {x(i), y(i)}n

i=1 are overtaken from Fig. 8.1c. The OLS fit of X on Y

(solid line) has a slope of β̂1 = 0.55, the OLS fit of Y on X (long-dashed line) has

1/β̂′1 = 2.45 and the WLSXY fit of X on Y (short-dashed line) has β̂1 = 1.15. (The
model for the regression of Y on X is X(i) = β′0 + β′1Y (i) + SX ·Xnoise(i).)

to be constant and known. Such type of knowledge may be available in
climatological applications. Then,

SSQWXY (β0, β1) =
n∑

i=1

[y(i)− β0 − β1x(i)]2(
1 + β2

1 /λ
)
SY (i)2

, (8.10)

which is minimized (Section 8.8). The sub-case of constant SY (i) (or
SX(i)) is considerably easier to treat than the heteroscedastic sub-case.

Under the assumption of Gaussian distributional shapes of Xnoise(i)
and Ynoise(i), the WLSXY estimators equal the maximum likelihood es-
timators (Madansky 1959; Fuller 1987).

8.1.2.2 Geometric interpretation
WLSXY minimizes the sum of squares of distances between the fit line

and the data points. How to measure the distance depends on the ratio,
λ = SY (i)2/SX(i)2. The geometric interpretation is straightforward
(Fig. 8.3) and generalizable to higher dimensions (background material).

If SX(i) = 0, that means, the X(i) values are exact, then λ = ∞
and we use WLS regression of X on Y (Section 4.1.1); if further SY (i)
is constant, this amounts to OLS regression. On the other hand, if
SY (i) = 0, then λ = 0 and we use WLS regression of Y on X. (See Fig.
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Figure 8.3. Geometric interpretation of WLSXY. The lines L0, Lλ and L∞ measure
the distance from a data point to the fit line for λ = 0, 0 < λ < ∞ and λ = ∞,
respectively.

8.2 for the regression of Y on X.) If the standard deviations are nonzero
and 0 < λ < ∞, we measure the distance along the line Lλ (Fig. 8.3).
The slope of this line is equal to −λ/β̂1 (York 1967).

If heteroscedasticity is in one or both of the noise components, then
the ratio λ may vary with time (i) and, hence, the line Lλ may vary in
its slope. The difficulty of non-identifiability is introduced by unknown
λ because then it is not unequivocally determined how to measure the
distance and minimize the sum of squares.

8.1.3 Wald–Bartlett procedure
A straightforward estimation idea (Draper and Smith 1981: Section

2.14 therein) is to build two groups of the bivariate sample according
to the size of the x values, then to take for each group the centres
defined by the x and y averages and, finally, to connect the centres
using a straight line—defining the estimate of the slope. The intercept
estimate is found via the centre of the complete bivariate sample and the
slope estimate. This goes back to Wald (1940), who grouped the sample
into two halves of same size (if n is even) and Bartlett (1949), who
showed that taking three groups improves the accuracy of the regression
estimators. (Intuitively, the means of the two groups are further apart for
taking thirds than for taking halves, outweighing the deficit of reduced
data sizes.) We call this estimation Wald–Bartlett procedure (Fig. 8.4).

The Wald–Bartlett procedure can in principle be applied to any group-
ing of the set of data points, not only according to the size of the x values.
A point to note is that the grouping has to be independent of Xnoise(i)
for achieving consistency of the estimators (Wald 1940). This condition
is violated when the {Xtrue(i)}n

i=1 are unknown and the size ordering
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Figure 8.4. Wald–Bartlett procedure. The bivariate sample {x(i), y(i)}n
i=1 is divided

into three groups of same size according to the size of the x values; if n is not divisible
by 3, then take the closest grouping. Let j index the size-sorted sample. Let the
averages of {x(j)}n/3

j=1 and {y(j)}n/3
j=1, denoted as x̄1 and ȳ1, define the first group’s

centre (P1, cross), and let the averages of {x(j)}n
j=2n/3+1 and {y(j)}n

j=2n/3+1, denoted
as x̄3 and ȳ3, define the third group’s centre (P3). The line P1 P3 (long-dashed)

defines the Wald–Bartlett regression estimate of the slope, β̂1 = (ȳ3 − ȳ1)/(x̄3 − x̄1).
The centre of the complete sample (P ) is defined via the averages of {x(j)}n

j=1 and

{y(j)}n
j=1, denoted as x̄ and ȳ. The Wald–Bartlett intercept estimate, β̂0 = ȳ − β̂1x̄,

completes the linear fit (solid line).

is made on the noise-influenced observations. Monte Carlo simulations,
similar to those in Section 8.3, reveal that the inconsistency leads to an
inacceptably poor coverage performance of bootstrap CIs (for β̂0 and β̂1)
(not shown). This limits severely the applicability of the Wald–Bartlett
procedure to real-world climatological problems, where the Xtrue(i) are
usually unknown.

Wald (1940: p. 298 therein) notes that if prior knowledge exists
on the standard deviation ratio, then a consistent estimation could
be constructed. This situation is similar to WLSXY estimation (Sec-
tion 8.1.2.1).

The calculation of classical CIs (Wald 1940; Bartlett 1949) via the
Student’s t distribution assumed prior knowledge to be available, allow-
ing a consistent estimation, and the errors, Xnoise(i) and Ynoise(i), to be
serially independent and of Gaussian shape.

8.2 Bootstrap confidence intervals
Classical CIs are based on the PDF of an estimator (Chapter 3). The

PDF can be analytically determined unless the situation (estimation
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problem, noise properties) becomes too complex. The construction of
classical CIs for the linear errors-in-variables model (Wald 1940; Bartlett
1949; York 1966; Fuller 1987) made a number of assumptions from the
following:

1. Gaussian distributional shapes of the noise components, Xnoise(i) and
Ynoise(i);

2. absence of autocorrelation in the noise components;

3. absence of correlation between X(i) and Xnoise(i) as well as between
Y (i) and Ynoise(i);

4. absence of correlation between Xnoise(i) and Ynoise(i).

Some authors treat the correlation effects (points 3 and 4) and non-
Gaussian errors (point 1), see the background material (Section 8.7).
However, allowance for autocorrelations (point 2) seems to have been
made by none.

Here we are interested in linearly relating two climate processes, X(i)
and Y (i), and our sample, {t(i), x(i), y(i)}n

i=1, contains the time. The
previous chapters document that non-Gaussian distributions and persis-
tence phenomena are typical of climate processes. We cannot therefore
expect the classical method to yield accurate results for climate data.
This is, as in previous chapters, the reason to consider the bootstrap
method. An additional point is incomplete knowledge about the noise
components. Often we have no or only limited information about SY (i),
SX(i) or their (squared) ratio, λ. Such incomplete knowledge, which
may widen the CI, is quantifiable using bootstrap resampling (Booth
and Hall 1993).

One resampling algorithm is the pairwise-MBB, which has been found
useful in the context of correlation estimation (Algorithm 7.2).

The other algorithm, introduced here for the purpose of enhancing the
coverage performance in the context of fitting errors-in-variables mod-
els, is called pairwise-moving block bootstrap resampling of residuals
or pairwise-MBBres. It is based on the observation that the (linear)
errors-in-variables regression (Eq. 8.1) is a model with a deterministic
(linear) component. Since pairwise resampling seems to be handicapped
in the presence of deterministic components (Chapter 4), the idea of
the pairwise-MBBres algorithm is to take the fit and the regression
residuals, apply pairwise-MBB to the residuals and add the resampled
residuals to the fit. The new approach is that the residuals, eX(i) and
eY (i), are in two dimensions (Fig. 8.5). The pairwise-MBBres is given
as Algorithm 8.1.
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Figure 8.5. Pairwise-MBBres algorithm, definition of residuals. The line Lλ mea-
sures the distance from a data point to the fit line (Fig. 8.3). The residuals (dashed

lines) are given by eX(i) = [β̂0+ β̂1 ·x(i)−y(i)]/[λ/β̂1+ β̂1] and eY (i) = −λ ·eX(i)/β̂1.

8.2.1 Simulating incomplete prior knowledge
Assume for the convenience of exposition homoscedastic noise com-

ponents, SX(i) = SX and SY (i) = SY . For achieving an identifi-
able problem, OLSBC estimation requires information, not contained
in the sample, about SX (Section 8.1.1.2); analogously, WLSXY estima-
tion requires information about both SX and SY , or about their ratio,
δ = λ1/2 = SY /SX (Section 8.1.2.1).

In practical applications such prior knowledge is not always exact. SX

or δ are then described by random variables. Bootstrap resampling can
be augmented by a simulation step, where random numbers are drawn
from the distribution of SX or δ. This increases the uncertainty of the
OLSBC or WLSXY estimates, leading to wider bootstrap CIs compared
to a situation with exact prior knowledge (Booth and Hall 1993).

In the Monte Carlo experiments studying incomplete prior knowledge,
we use the model

√
λ∗ = δ∗ = δ · EU[1−∆; 1+∆](i), (8.11)

S∗
X = SX

/√
δ∗, (8.12)

where EU[1−∆; 1+∆](i) is an IID random process with a uniform distribu-
tion over the interval [1 −∆; 1 + ∆]. For example, ∆ = 0.5 specifies a
situation where we only know δ to lie between 0.5 and 1.5 times its true
value. Other models are possible.

The construction of bootstrap CIs (Algorithm 8.1) is adapted at Step
8, the calculation of the replications. Instead of applying to the resam-
pled data the same estimation procedure that is used for the original
data, an adapted estimation is performed (Steps 8a and 8b).
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Step 1 Bivariate time series {t(i), x(i), y(i)}n
i=1

Step 2 Parameter estimates β̂0, β̂1

from OLSBC, WLSXY or

Wald–Bartlett procedure

Step 3 Residuals (Fig. 8.5) eX(i), eY (i)

Step 4 Fit values xfit(i) = x(i)− eX(i),

yfit(i) = y(i)− eY (i)

Step 5 Bias-corrected AR(1)

parameters, â′X = â′Y

estimated on residuals,

block length selection l

after Eqs. (7.31) and (7.32)

Step 6 Resampled residuals,

pairwise-MBB with l
{
e∗b

X (i), e∗b
Y (i)

}n

i=1
(b, counter)

Step 7 Resample x∗b(i) = xfit(i) + e∗b
X (i),

y∗b(i) = yfit(i) + e∗b
Y (i), i = 1, . . . , n

Step 8 Bootstrap replications β̂∗b
0 , β̂∗b

1

Step 9 Bootstrap prediction ŷ∗b(n + 1) = β̂∗b
0 + β̂∗b

1 x(n + 1)

Step 10 Go to Step 6 until b = B

(usually B = 2000)

replications exist
{
β̂∗b

0

}B

b=1
,
{
β̂∗b

1

}B

b=1
,
{
ŷ∗b(n + 1)

}B

b=1

Step 11 Calculate CIs

(Section 3.4)

Algorithm 8.1. Construction of bootstrap confidence intervals for parameters of the
linear errors-in-variables regression model, pairwise-MBBres resampling, even spac-
ing. In case of uneven spacing, Step 5 uses τ̂ ′X = τ̂ ′Y . Step 8 can be adapted as follows
for taking incomplete prior knowledge into account. Step 8a: simulate λ∗, S∗

X ; Step
8b: use OLSBC with S∗

X instead of SX (Eq. 8.6), use WLSXY with λ∗ instead of λ
(Eq. 8.10). Steps 9 and 10: ŷ∗b(n + 1) refers to prediction (Section 8.5).
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8.3 Monte Carlo experiments
The first group of experiments (Section 8.3.1) adopts an “easy” set-

ting, where distributional shapes are Gaussian and prior knowledge is
exact. The results confirm the success of block resampling methods in
preserving serial dependence. The second group of experiments (Sec-
tion 8.3.2) shows that for realistic settings, with non-Gaussian distri-
butions or incomplete knowledge, the results are less exact. It appears
that then WLSXY estimation combined with pairwise-MBBres resam-
pling yields the relatively best results. The third group (Section 8.3.3)
quantifies coverage accuracy and RMSE in dependence on the accuracy
of the prior knowledge (standard deviation ratio). It demonstrates that
even with n →∞, the RMSE (and the CI length) for β̂1 (slope) does not
go to zero, but rather approaches finite values. On the other hand (inter-
cept), with n → ∞ does RMSE

β̂0
→ 0. The last group (Section 8.3.4),

finally, explores what happens when we mis-specify the degree of how
accurately we know the standard deviation ratio.

8.3.1 Easy setting
The easy setting (Gaussian shapes of Xnoise(i) and Ynoise(i), complete

prior knowledge) is further simplified when no autocorrelation resides
in the noise components. Table 8.1 exhibits excellent coverage perfor-
mance of bootstrap CIs with pairwise-MBBres resampling already for
sample sizes as small as 20. The excellent performance regards both pa-
rameters (intercept and slope) and all estimation procedures (OLSBC,
WLSXY and Wald–Bartlett). Similar results for OLSBC and WLSXY
were obtained using pairwise-MBB resampling (results not shown).

If there exists autocorrelation, then pairwise-MBBres resampling suc-
cessfully preserves it, where it does not matter whether the AR(1) pa-
rameters are known or, which is more realistic, have to be estimated.
However, there is one exception: the Wald–Bartlett estimation of the
intercept fails completely, independent of the sample size. Also OLSBC
and WLSXY estimations of the intercept are of reduced CI coverage ac-
curacy, but become acceptable for n above, say, 200. It is not clear why
intercept estimation is more problematic than slope estimation.

We remark that the inacceptable performance of the Wald–Bartlett
procedure occurred even in the presence of knowledge of the size of the
true predictor values, which in turn enabled a perfect grouping (inde-
pendent of the predictor noise). The three points of the (1) inacceptable
performance of CIs for the intercept, (2) not better (compared with
OLSBC and WLSXY) performance of CIs for the slope and (3) rather
strong requirement of knowledge of the size of true predictor values—
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Table 8.1. Monte Carlo experiment, linear errors-in-variables regression with AR(1)
noise of normal shape and complete prior knowledge: CI coverage performance.
nsim = 47,500 random samples were generated from Xtrue(i) = EN(0, 1)(i) and
Y (i) = β0+β1Xtrue(i)+SY ·Ynoise(i), i = 1, . . . , n, with β0 = 1.0 and β1 = 2.0. Predic-
tor noise was subsequently added, X(i) = Xtrue(i)+SX ·Xnoise(i). The Xnoise(i) and
Ynoise(i) are mutually independent Gaussian AR(1) processes for even spacing (Eq.
2.1) with parameters aX and aY , respectively. Construction of bootstrap CIs used
pairwise-MBBres resampling (Algorithm 8.1), block length selection after Eqs. (7.31)
and (7.32), the Student’s t interval type (ν = n − 2), B = 2000 and confidence level
95%. Prior knowledge of SX = 0.25, SY = 0.5 and the size of the {xtrue(i)}n

i=1 was
exact and utilized in the estimations; AR(1) parameters are in two cases known, in
one case unknown and estimated with bias correction.

n γa
β̂0

γa
β̂1

Nominal

Estimation method Estimation method

OLSBC WLSXY WBb OLSBC WLSXY WBb

aX = aY = 0.0 (known)
10 0.933 0.928 0.933 0.955 0.928 0.938 0.950
20 0.939 0.939 0.942 0.949 0.938 0.942 0.950
50 0.944 0.947 0.948 0.949 0.946 0.947 0.950

100 0.944 0.946 0.947 0.949 0.947 0.946 0.950
200 0.945 0.949 0.950 0.949 0.947 0.945 0.950
500 0.946 0.949 0.949 0.950 0.946 0.946 0.950

1000 0.945 0.948 0.949 0.949 0.948 0.945 0.950

aX = aY = 0.3 (known)
10 0.839 0.831 0.785 0.949 0.919 0.912 0.950
20 0.863 0.862 0.816 0.947 0.936 0.926 0.950
50 0.895 0.896 0.827 0.948 0.945 0.930 0.950

100 0.909 0.911 0.827 0.947 0.945 0.933 0.950
200 0.921 0.924 0.836 0.947 0.945 0.939 0.950
500 0.931 0.933 0.840 0.948 0.944 0.941 0.950

1000 0.935 0.938 0.844 0.950 0.949 0.945 0.950

aX = aY = 0.3 (unknown, estimated)
10 0.807 0.797 0.841 0.922 0.892 0.935 0.950
20 0.871 0.869 0.853 0.943 0.932 0.947 0.950
50 0.896 0.897 0.852 0.946 0.943 0.947 0.950

100 0.911 0.913 0.854 0.948 0.947 0.949 0.950
200 0.921 0.923 0.853 0.949 0.948 0.949 0.950
500 0.930 0.932 0.850 0.949 0.945 0.948 0.950

1000 0.934 0.937 0.849 0.949 0.948 0.949 0.950

a Standard errors of γ
β̂0

and γ
β̂1

are nominally 0.001.
b Wald–Bartlett procedure.
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Table 8.2. Monte Carlo experiment, linear errors-in-variables regression with AR(1)
noise of normal shape and complete prior knowledge: CI coverage performance (con-
tinued). Design is identical to the previous experiment (Table 8.1), with the exception
that autocorrelation is ignored at CI construction.

n γa
β̂0

γa
β̂1

Nominal

Estimation method Estimation method

OLSBC WLSXY WBb OLSBC WLSXY WBb

aX = aY = 0.3 (ignored)
10 0.846 0.838 0.846 0.955 0.928 0.939 0.950
20 0.842 0.840 0.845 0.948 0.937 0.942 0.950
50 0.845 0.847 0.849 0.948 0.944 0.946 0.950

100 0.842 0.846 0.846 0.947 0.946 0.946 0.950
200 0.845 0.848 0.849 0.947 0.946 0.945 0.950
500 0.846 0.849 0.849 0.948 0.945 0.947 0.950

1000 0.846 0.848 0.849 0.946 0.948 0.946 0.950

a Standard errors of γ
β̂0

and γ
β̂1

are nominally 0.001.
b Wald–Bartlett procedure.

provide enough support to exclude the Wald–Bartlett procedure from
consideration in the further experiments (which have more realistic set-
tings).

One experiment under the easy setting studied what happens when
autocorrelation is ignored (Table 8.2). This was achieved by prescrib-
ing positive AR(1) parameters, aX and aY , of both noise components
and resetting their estimate values to zero, â′X ≡ 0 and â′Y ≡ 0. The
detrimental effect, again on β̂0 but not β̂1, was an underestimated boot-
strap standard error, which led to too narrow CIs and too low cover-
ages. (Similar results where found when replacing pairwise-MBBres by
pairwise-MBB resampling.)

The major findings of the first experiment on CI coverage accuracy
(Table 8.1) are reflected in the results on empirical RMSE (Table 8.3).
Autocorrelation increases the estimation error of the intercept, but not
of the slope. A larger data size means a smaller estimation error of the
intercept and the slope. For n →∞, both RMSE

β̂0
and RMSE

β̂1
appear

to go to zero.
OLSBC and WLSXY estimation methods perform similarly; only for

small n and slope estimation does WLSXY seem to give smaller error
bars than OLSBC.
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Table 8.3. Monte Carlo experiment, linear errors-in-variables regression with AR(1)
noise of normal shape and complete prior knowledge: RMSE. Design is identical to
the experiment shown in Table 8.1.

n RMSEa
β̂0

RMSEb
β̂1

Estimation method Estimation method

OLSBC WLSXY OLSBC WLSXY

aX = aY = 0.0
10 0.237 0.245 0.645 0.289
20 0.161 0.164 0.190 0.178
50 0.099 0.101 0.110 0.105

100 0.070 0.071 0.076 0.073
200 0.049 0.050 0.053 0.052
500 0.031 0.032 0.033 0.033

1000 0.022 0.022 0.023 0.023

aX = aY = 0.3
10 0.300 0.310 5.759 0.275
20 0.211 0.216 0.188 0.174
50 0.134 0.137 0.110 0.105

100 0.094 0.096 0.076 0.073
200 0.067 0.068 0.053 0.052
500 0.042 0.043 0.034 0.033

1000 0.030 0.031 0.024 0.023

a Empirical RMSE
β̂0

, given by

[∑nsim
i=1

(
β̂0 − β0

)2
/nsim

]1/2

.

b Empirical RMSE
β̂1

, given by

[∑nsim
i=1

(
β̂1 − β1

)2
/nsim

]1/2

.

8.3.2 Realistic setting: incomplete prior
knowledge

The setting becomes more complex, or realistic, when the prior knowl-
edge about the standard deviations of the measurement noise is not
complete. We study (Table 8.4) a situation where the true ratio is
δ = SY /SX = 2.0 but one knows only that δ is between 1.0 and 3.0. The
adapted bootstrap CI construction (WLSXY with λ∗ = (δ∗)2), for both
β̂0 and β̂1, yields acceptable accuracies for normal shape and n ' 200—
under the condition that pairwise-MBBres resampling is employed. (For
climatological purposes, a 95% CI may be “acceptable” if the true cov-
erage is between, say, 92 and 98%.) The pairwise-MBBres resampling
method (Fig. 8.5) is clearly superior to the pairwise-MBB method.

Bootstrap CI construction for OLSBC estimates failed to achieve the
accuracies for WLSXY—for both resampling methods. Rather large
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Table 8.4. Monte Carlo experiment, linear errors-in-variables regression with AR(1)
noise of normal/lognormal shape and incomplete prior knowledge: CI coverage per-
formance. Design is identical to the first experiment (Table 8.1), with the following
exceptions: (1) autocorrelation parameters are unknown (and estimated with bias cor-
rection) and (2) Ynoise(i) has normal or lognormal shape. Estimation and CI construc-
tion is identical to the first experiment (Table 8.1), with the following exceptions: (1)
the Wald–Bartlett procedure is omitted; (2) prior knowledge of SX = 0.25, SY = 0.5
(δ = 2.0) is incomplete after Eqs. (8.11) and (8.12) with ∆ = 0.5; and (3) CI con-
struction is adapted accordingly (Section 8.2.1).

n γa
β̂0

γa
β̂1

Nominal

Estimation method Estimation method

OLSBC WLSXY OLSBC WLSXY

aX = aY = 0.3, Ynoise(i) normal shape, pairwise-MBBres
10 0.809 0.802 0.941 0.895 0.950
20 0.871 0.871 0.956 0.931 0.950
50 0.898 0.899 0.955 0.940 0.950

100 0.909 0.913 0.952 0.942 0.950
200 0.921 0.924 0.948 0.943 0.950
500 0.930 0.934 0.939 0.947 0.950

1000 0.937 0.939 0.927 0.952 0.950
2000 0.936 0.939 0.919 0.958 0.950
5000 0.941 0.944 0.909 0.960 0.950

aX = aY = 0.3, Ynoise(i) normal shape, pairwise-MBB
10 0.856 0.875 0.980 0.947 0.950
20 0.864 0.867 0.972 0.944 0.950
50 0.862 0.862 0.958 0.943 0.950

100 0.866 0.866 0.955 0.943 0.950
200 0.865 0.865 0.954 0.948 0.950
500 0.871 0.871 0.943 0.947 0.950

1000 0.873 0.871 0.932 0.952 0.950
2000 0.880 0.880 0.922 0.957 0.950
5000 0.891 0.889 0.915 0.962 0.950

aX = 0.3, aY = 0.8, Ynoise(i) lognormal shape, pairwise-MBBres
10 0.689 0.673 0.942 0.871 0.950
20 0.738 0.738 0.956 0.902 0.950
50 0.788 0.793 0.961 0.904 0.950

100 0.817 0.824 0.960 0.897 0.950
200 0.849 0.856 0.959 0.897 0.950
500 0.880 0.887 0.949 0.902 0.950

1000 0.894 0.901 0.936 0.917 0.950
2000 0.912 0.919 0.925 0.929 0.950
5000 0.924 0.931 0.917 0.947 0.950

a Standard errors of γ
β̂0

and γ
β̂1

are nominally 0.001.
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sample sizes (n = 2000 and 5000) reveal the “worrisome” behaviour of
γ

β̂1
for the OLSBC estimates: they do not saturate and approach the

nominal value of 0.95 but seem rather to drift away for large n.
It becomes clear that for realistic settings (autocorrelation, incomplete

prior knowledge), WLSXY estimation combined with pairwise-MBBres
resampling is the only one-loop option to achieve acceptable levels of CI
accuracy. A second loop of resampling (calibration or bootstrap-t) may
in principle improve the accuracy, also for errors-in-variables regression
(Booth and Hall 1993).

The combination of WLSXY and pairwise-MBBres performed well
(Table 8.4) also for a rather difficult setting (stronger, unequal autocor-
relations, lognormal shape). It is interesting to note that slope estima-
tion yielded more accurate results than intercept estimation. The data
size requirements, however, become rather strong (Table 8.4). Obtaining
accurate results for data sizes in the range of 500 and below may require
calibration methods.

8.3.3 Dependence on accuracy of prior knowledge
In practical situations, our prior knowledge about the measurement

standard errors or their ratio, δ = SY /SX , may depend to a consider-
able degree on how good we know the measurement devices (calibration
standards, replication analyses, etc.) or the archives “containing” the
data (sampling error). The accuracy of that knowledge, parameterized
here in form of ∆ (Eqs. 8.11 and 8.12), should influence the estimation
RMSE and possibly also the CI accuracy. This is explored by means of
a set of simulation experiments (Tables 8.5 and 8.6), where ∆ is varied.

The selection of the other setting parameters follows the previous
Monte Carlo experiments in this section: intermediate sizes of autocor-
relation, Gaussian shape and a true standard deviation ratio of δ = 2.0.
The data size may take relatively large values (n = 2000 and 5000) be-
cause also the limiting behaviour is of interest. We employ the WLSXY
estimation and Student’s t CI constructed by means of pairwise-MBBres
resampling.

The resulting coverages (Table 8.5) approach with increasing data size
the nominal value—as they should. In general, the levels are acceptable
from n above, say, 200 (slope estimation) or 500 (intercept estimation).
In the case of slope estimation, a highly inaccurate prior knowledge
(∆ = 0.9) may require more data points for achieving a coverage level
similar to values found for smaller inaccuracies (∆ ≤ 0.7).

The resulting RMSE values (Table 8.6) for intercept estimation ap-
proach zero with increasing data size. The rate of this convergence seems
not to depend on the accuracy of the prior knowledge (∆). The RMSE
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Table 8.5. Monte Carlo experiment, linear errors-in-variables regression with AR(1)
noise of normal shape: influence of accuracy of prior knowledge on CI coverage perfor-
mance. Design is identical to the previous experiment (Table 8.4), with the following
fixed setting: (1) autocorrelation parameters are aX = aY = 0.3, (2) both noise
components have normal shape. Estimation and CI construction is identical to the
previous experiment (Table 8.4), with the following exceptions: (1) only WLSXY
estimation with pairwise-MBBres resampling is considered; (2) prior knowledge of
SX = 0.25, SY = 0.5 (δ = 2.0) is incomplete after Eq. (8.11) with various ∆ values.

n γa Nominal

Accuracy of prior knowledge

∆ = 0.1 ∆ = 0.3 ∆ = 0.5 ∆ = 0.7 ∆ = 0.9

Intercept estimation
10 0.774 0.772 0.802 0.773 0.782 0.950
20 0.868 0.867 0.871 0.869 0.873 0.950
50 0.895 0.898 0.899 0.897 0.902 0.950

100 0.913 0.912 0.913 0.914 0.915 0.950
200 0.924 0.924 0.924 0.925 0.928 0.950
500 0.931 0.933 0.934 0.934 0.934 0.950

1000 0.936 0.936 0.939 0.939 0.941 0.950
2000 0.940 0.939 0.939 0.942 0.944 0.950
5000 0.945 0.945 0.944 0.944 0.946 0.950

Slope estimation
10 0.873 0.877 0.895 0.877 0.875 0.950
20 0.933 0.931 0.931 0.925 0.916 0.950
50 0.944 0.942 0.940 0.936 0.916 0.950

100 0.948 0.945 0.942 0.936 0.918 0.950
200 0.947 0.948 0.943 0.938 0.920 0.950
500 0.947 0.948 0.947 0.942 0.924 0.950

1000 0.948 0.947 0.952 0.945 0.925 0.950
2000 0.946 0.950 0.958 0.946 0.924 0.950
5000 0.950 0.963 0.960 0.945 0.923 0.950

a Standard errors of γ for intercept and slope estimations are nominally 0.001.

values for slope estimation show an interesting behaviour: they do not
vanish with increasing data size but rather approach a finite value. The
reason is that the inaccurate prior knowledge about the measurement
standard errors (nonzero ∆) persists to influence the slope estimation—
an error source independent of the data size. Similar behaviours were
found also for OLSBC estimation of intercept and slope (results not
shown). The saturation value of RMSE

β̂1
depends on the accuracy of

the prior knowledge (∆), seemingly in a close-to-linear relation.



8.3 Monte Carlo experiments 357

Table 8.6. Monte Carlo experiment, linear errors-in-variables regression with AR(1)
noise of normal shape: influence of accuracy of prior knowledge on RMSE. The ex-
periment is the same as described in Table 8.5.

n RMSE

Accuracy of prior knowledge

∆ = 0.1 ∆ = 0.3 ∆ = 0.5 ∆ = 0.7 ∆ = 0.9

Intercept estimationa

10 0.310 0.313 0.315 0.329 0.348
20 0.217 0.219 0.220 0.227 0.241
50 0.137 0.137 0.139 0.143 0.151

100 0.096 0.097 0.098 0.100 0.106
200 0.068 0.069 0.069 0.071 0.075
500 0.043 0.043 0.044 0.045 0.048

1000 0.031 0.031 0.031 0.032 0.034
2000 0.022 0.022 0.022 0.023 0.024
5000 0.014 0.014 0.014 0.014 0.015

Slope estimationb

10 0.279 0.300 0.428 0.303 0.339
20 0.173 0.177 0.181 0.191 0.223
50 0.105 0.107 0.114 0.126 0.166

100 0.074 0.077 0.085 0.099 0.146
200 0.052 0.056 0.066 0.084 0.135
500 0.033 0.040 0.052 0.073 0.127

1000 0.024 0.032 0.047 0.069 0.125
2000 0.018 0.028 0.043 0.067 0.123
5000 0.012 0.025 0.042 0.066 0.124

a Empirical RMSE
β̂0

, given by

[∑nsim
i=1

(
β̂0 − β0

)2
/nsim

]1/2

.

b Empirical RMSE
β̂1

, given by

[∑nsim
i=1

(
β̂1 − β1

)2
/nsim

]1/2

.

To summarize, measurement error in the predictor requires to mod-
ify the OLS method to yield a bias-free slope estimation: OLSBC or
WLSXY. These modified estimation methods require prior knowledge
about the size of the measurement error. If this knowledge is not ex-
act, which is a typical situation in the climatological practice, then it
contributes to the estimation error of the slope (RMSE and CI length).
This contribution persists even when the data size goes to infinity.

8.3.4 Mis-specified prior knowledge
What happens if we make a wrong specification of the accuracy of

our prior knowledge? We study (Table 8.7) a situation where (1) the
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Table 8.7. Monte Carlo experiment, linear errors-in-variables regression with AR(1)
noise of normal shape: influence of mis-specified prior knowledge on CI coverage per-
formance. Design and estimation (WLSXY) are identical to the previous experiment
(Table 8.5). CI construction (via pairwise-MBBres resampling) is identical to that
in the previous experiment, with the following exceptions: (1) prior knowledge of
SX = 0.25, SY = 0.5 (δ = 2.0) is incomplete after Eq. (8.11) with ∆ = 0.5; (2) the
adaptive Steps 8a and 8b of Algorithm 8.1 are allowed to mis-specify ∆.

n γa
β̂0

γa
β̂1

Nominal

True ∆ = 0.5 True ∆ = 0.5
Specified ∆ Specified ∆

0.3 0.5 0.7 0.3 0.5 0.7

10 0.801 0.802 0.803 0.893 0.895 0.898 0.950
20 0.870 0.871 0.871 0.928 0.931 0.935 0.950
50 0.899 0.899 0.900 0.932 0.940 0.950 0.950

100 0.912 0.913 0.913 0.924 0.942 0.960 0.950
200 0.923 0.924 0.925 0.908 0.943 0.970 0.950
500 0.933 0.934 0.934 0.870 0.947 0.986 0.950

1000 0.939 0.939 0.940 0.827 0.952 0.994 0.950
2000 0.939 0.939 0.940 0.783 0.958 0.998 0.950
5000 0.944 0.944 0.944 0.744 0.960 1.000 0.950

a Standard errors of γ
β̂0

and γ
β̂1

are nominally 0.001.

true standard deviation ratio is δ = SY /SX = 2.0, (2) the estimation
on the sample is done with an incomplete knowledge of δ, modelled
as a uniform distribution over the interval between 1.0 and 3.0 (∆ =
0.5), and (3) the bootstrap CI construction is allowed to mis-specify
the incomplete knowledge by letting δ∗ be uniformly distributed over
the intervals between 1.4 and 2.6 (specified ∆ = 0.3) or between 0.6
and 3.4 (specified ∆ = 0.7). Specifying ∆ = 0.3 (instead of the correct
∆ = 0.5) constitutes a case of overestimation of the accuracy of the
prior knowledge, ∆ = 0.7 means an underestimation and ∆ = 0.5 is an
unbiased estimation.

The first result is that such a mis-specification has no effect on the
accuracy of CIs for the intercept. Table 8.7 displays results (for ∆ =
0.3, 0.5 and 0.7) that are, within the bounds of the “simulation noise,”
indistinguishable.

The second result is that mis-specified prior knowledge has a clear
effect on the accuracy of CIs for the slope. Table 8.7 shows results for
∆ = 0.3 and 0.7 to deviate from those for the correct value of ∆ = 0.5. If
we underestimate the accuracy of the prior knowledge about the size of
the measurement standard deviations (∆ = 0.3 instead of 0.5), then the
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CIs become too narrow and the coverage is reduced; if we overestimate
the accuracy (∆ = 0.7 instead of 0.5), then the CIs become too wide
and the coverage is inflated.

8.4 Example: climate sensitivity
The effective climate sensitivity, denoted here as Λ−1

S , is a parameter
that relates changes in annual-mean surface temperature to changes in
the radiative forcing (greenhouse gases, etc.) of the climate system. Its
units are ◦C (or K) per Wm−2. Climate sensitivity may vary with forcing
history and climatic state, reflecting the influence of varying feedback
mechanisms (amplifying or attenuating) in the climate system (Mitchell
et al. 1987). The lack of an accurate knowledge of Λ−1

S in the recent
past (since, say, 1850) is one of the major obstacles for making accurate
projections of future temperatures by means of AOGCMs (Forster et al.
2007).

The traditional estimation method for Λ−1
S seems to be via perturbed

climate models experiments, where the temperature response of the sys-
tem is studied for a range of variations of model parameters and forcing
scenarios (Forster et al. 2007). Due to the limited performance of cli-
mate models, it may be helpful to consider estimations that are based
entirely on direct observations. We therefore relate variable Y (i), the
observed temperature changes from 1850 to 2001, to variable X(i), the
radiative forcing variations. The time series with standard errors are
shown in Fig. 8.6. Since the predictor (forcing) has been determined
with error, our model is the linear errors-in-variables regression (Eq.
8.1). The estimation objective is the slope, β1 = Λ−1

S .
The result (Fig. 8.7) from WLSXY estimation of Λ−1

S is 0.85 K W−1m2.
The 95% CI, a Student’s t interval obtained from pairwise-MBBres
resampling with B = 2000 (Algorithm 8.1), is [0.47 KW−1m2; 1.24
KW−1m2]. The 90% CI, a level often used in the IPCC–WG I Report’s
chapter on radiative forcing (Forster et al. 2007), is [0.53 K W−1m2; 1.17
KW−1m2]. The climate literature often uses the “equilibrium climate
sensitivity,” which is defined as the temperature change that would be
approached in a (hypothetical) equilibrium following a doubling of the
atmospheric “equivalent carbon dioxide concentration” (representing all
greenhouse gases). This other sensitivity value is around (4 W−1m2)Λ−1

S ,
at least in the climate world of the E-R AOGCM of the National Aero-
nautics and Space Administration Goddard Institute for Space Studies,
New York (Foster et al. 2008). Thus, the WLSXY result suggests that
a CO2 doubling will lead to a temperature increase of 3.4 K.

What are the effects of autocorrelation? The block bootstrap resam-
pling took into account the relatively strong memory of temperature and



360 8 Regression II

Figure 8.6. Northern hemisphere temperature anomalies and climate forcing,
1850–2001: data. a The temperature time series, y(i), is shown (solid line) as devia-
tion from the 1961–1990 average (n = 152). The annual-mean composite was derived
using instrumental data from several thousand stations on land and sea (HadCRUT3
data set). The temperature standard error, sY (i), is shown (shaded band) as ±2sY (i)
interval around y(i); it reflects following sources of uncertainty (Brohan et al. 2006):
measurements, reporting, inhomogeneity correction, sampling, station coverage and
bias correction of sea-surface temperatures. b The radiative forcing time series, x(i),
is shown (solid line) with ±2sX(i) uncertainty band (shaded); it comprises follow-
ing components thought to influence temperature changes (Hegerl et al. 2006; Forster
et al. 2007): changes of atmospheric concentrations of greenhouse gases, solar activity
variations (Fig. 2.12) and changes of sulfate and other aerosol constituents in the tro-
posphere (lower part of the atmosphere). c Standard deviation ratio, δ = sY (i)/sX(i).
(Data from (a) Brohan et al. (2006) and (b) Hegerl et al. (2006).)
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Figure 8.7. Northern hemisphere temperature anomalies and climate forcing,
1850–2001: fit. WLSXY estimation yields a straight regression line (solid) with a

slope (i.e., effective climate sensitivity) of β̂1 = 0.85 KW−1m2. Also shown is OLS
regression line (dashed).

forcing noise components (â′X = â′Y = 0.82) by selecting a block length
of l = 18. Ignoring autocorrelation (setting l = 1) would make the CI
too narrow; for example, the 90% CI would become [0.56 KW−1m2; 1.14
KW−1m2].

The estimate and, more, the CI for Λ−1
S should be assessed, however,

with caution.

CI construction (Algorithm 8.1) used pairwise-MBBres resampling
with an assumed constant standard deviation ratio of δ = 0.66 (time-
average). This was done because of the absence of Monte Carlo
tests of adaptions of pairwise-MBBres resampling with respect to het-
eroscedastic errors. Instead we imposed an uncertainty of δ measured
by the “incomplete prior knowledge” parameter ∆ (Eq. 8.11). The
employed value of ∆ = 0.5 may have been too small and produced
a too narrow CI. Particularly, unrecognized temperature variations
not caused by measurement error or forcing changes, that is, “internal
temperature variability,” may let δ increase and reduce the sensitiv-
ity estimate (Laepple T 2010, personal communication). Note that
WLSXY estimation itself recognized heteroscedasticity.

The HadCRUT3 temperature data (Brohan et al. 2006) are down-
biased between about 1940 and the mid-1960s because of an unrec-
ognized change in 1945 in the sea-surface measurement techniques
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(Thompson et al. 2008). Since this interval is short relative to the
total observation interval, the influence of the inhomogeneity on the
Λ−1

S estimate should be small.

The tropospheric aerosol component of the forcing is known only
with a “low” to “medium–low” scientific understanding (Forster et al.
2007). The aerosol contribution to X(i) and SX(i) may be large in
error. Consequently, the error in SX(i) and δ may be large, and the
parameter ∆ may be larger than 0.5 (or even another model of the
incomplete prior knowledge required). We stress that the large error
of the predictor necessitates fitting an errors-in-variables regression
model. Ignoring this error (i.e., using OLS estimation) would strongly
underestimate the climate sensitivity (Fig. 8.7).

Volcanic eruptions, providing large negative forcing components (cool-
ing) have been ignored in the estimation (because of the many un-
knowns), although the observed temperature time series (Fig. 8.6a)
includes this effect. Since the number of large eruptions during the
151-year interval (Hegerl et al. 2006) is assessed as relatively small
(about 8 eruptions with < −2.0 Wm−2 in the northern hemisphere),
this omission should have a minor influence on the Λ−1

S estimate.

Ocean heat uptake has similarly been ignored, although observed
temperatures may show this influence. Assuming that it cannot be
neglected would (1) increase the Λ−1

S estimate and (2) widen its CI.

The analysis focused on the temperature of the northern hemisphere,
while the concept of climate sensitivity applies to the globe. The su-
periority of temperature data quality for the northern part (more sta-
tions) suggested this restriction. Obviously, other geographic parts,
including the globe, may be analysed in an analogous manner.

8.5 Prediction
A prediction is a statement about an uncertain event. In climate

sciences the events lie often in the future (forecast) but frequently also
in the past (hindcast), see the introductory examples (p. 3). In the
context of the present chapter, we wish to predict an unobserved value,
y(n + 1), given a sample, {t(i), x(i), y(i)}n

i=1, and a new observation,
x(n + 1), of the predictor variable made at time t(n + 1).

A typical situation is when a relation between a climate variable, Y (i),
and a proxy variable, X(i), is to be established. Suppose we observed
{t(i), x(i), y(i)}n

i=1 over a time interval [t(1); t(n)] but have available a
longer proxy time series, {t(i), x(i)}m

i=1 with m > n (often m � n). If
t(i) denotes age and t(i) > t(n) for i > n, then we wish “to hindcast”
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y(i) for i > n. An example is δ18O as precipitation proxy; y(i) is pre-
cipitation, x(i) is δ18O from a speleothem, [t(1); t(n)] = [0 a; 50 a] is the
interval for which we have instrumental measurements of y(i) (the past
50 years) and [t(1); t(m)] = [0 a; 500 a] is the interval covered by the
speleothem samples (the past 500 years). If t(i) denotes time, then we
wish to forecast. An example is climate model projections; y(i) is pre-
cipitation, x(i) is modelled precipitation (AOGCM), [t(1); t(n)] = [1950;
2010] is the interval for which we have instrumental measurements of y(i)
and [t(1); t(m)] = [1950; 2100] is the interval analysed by means of the
climate model (a typical value for the upper bound used by IPCC–WG I
(Houghton et al. 2001; Solomon et al. 2007) in its reports).

Prediction can be performed by fitting a regression model and utilizing
the estimated regression parameters. In the linear case (Fuller 1987:
Section 1.6.3 therein):

ŷ(n + 1) = β̂0 + β̂1 x(n + 1), (8.13)

where β̂0 and β̂1 have been estimated using the sample {t(i), x(i), y(i)}n
i=1

and the new observation is x(n + 1).
Which method is suitable for estimating β̂0 and β̂1?
Fuller (1987: pp. 75–76 therein) explains that usage of OLS, ignor-

ing measurement errors of the predictor, is justified when x(n + 1) is
drawn from the same distribution that generated {x(i)}n

i=1. This means
effectively that two conditions have to be met:

1. SX(n + 1) ·Xnoise(n + 1) has the same properties (range, shape, etc.)
as SX(i) ·Xnoise(i), i = 1, . . . , n;

2. Xtrue(n + 1) has the same properties as Xtrue(i), i = 1, . . . , n.

Fuller advises further to take measurement error into account when
not both conditions are satisfied. This can be done, for example, by using
WLSXY (or OLSBC) estimation. Treating the regression estimates as
if they were known parameters, Fuller (1987: p. 76 therein) gives the
following expression for the prediction standard error:

ŝe
Ŷ (n+1)

=
[
SY (n + 1)2 + β̂2

1 SX(n + 1)2
]1/2

. (8.14)

We argue that in climatology the above conditions are almost exclu-
sively not satisfied, and we advise to use WLSXY (or OLSBC) as a
more conservative approach. In the majority of applications, t(n + 1),
the time value related to the new measurement, is outside of [t(1); t(n)],
and x(n+1) does not necessarily originate from a random drawing from
the process Xtrue(i), i = 1, . . . , n. The new measurement may rather
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constitute a step in a new direction of the course of climate, and it is
safer to allow for that possibility by using WLSXY (or OLSBC).

However, the “machine error bar” (Eq. 8.14) may be too small because
it does not include the estimation errors of the regression parameters.
Therefore, it is advisable to use the bootstrap prediction error:

ŝe
Ŷ (n+1)

=

{
B∑

b=1

[
Ŷ ∗b(n + 1)−

〈
Ŷ ∗b(n + 1)

〉]2
/

(B − 1)

}1/2

, (8.15)

where
〈
Ŷ ∗b(n + 1)

〉
=

∑B
b=1 Ŷ ∗b(n + 1)/B and the determination of

Ŷ ∗b(n + 1) is explained (sample level) within Algorithm 8.1.
Another source of prediction error, difficult to quantify, stems from

the extrapolation. This regards (1) the standard deviations, SX(n + 1)
and SY (n+1), under heteroscedasticity but also (2) the possibility that
with x(n + 1) outside of the observation interval, from min(x(i)) to
max(x(i)), or with t(n + 1) outside of [t(1); t(n)], new laws set in and,
if unrecognized, may bias the prediction. A physical theory behind the
regression model may guard against such errors (background material).

8.5.1 Example: calibration of a proxy variable
Calibrating a proxy variable, X(i), means quantifying the relation

with a climate variable, Y (i), by means of regression. Since X(i) is usu-
ally observed with measurement error, the errors-in-variables equation
(8.1) has to be considered. The fitted regression curve serves for pre-
dicting an uncertain value, y(n + 1), given a new proxy measurement,
x(n + 1). Calibration is ubiquitous in quantitative paleoclimatology.
Examples: oxygen isotopic composition in a marine sediment core is a
proxy for temperature (Fig. 1.2), hydrogen isotopes in an ice core indi-
cate temperature (Fig. 1.3a). Here we look at δ18O in a coral as a proxy
for air temperature.

We make two further remarks. First, the calibration methodology ap-
plies also to predicting future climate values by means of climate models.
Second, the core of the interest lies usually in relative variations, changes
of a variable—the slope (which itself is susceptible to estimation bias).

Draschba et al. (2000) calibrated δ18O, measured in a coral taken from
a site off the coast of Bermuda, against observations of air-temperature
on that island (Fig. 8.8). The calibration curve, established for the
time interval from 1856 to 1920, was then used to make a hindcast of
temperature for the interval from 1350 to 1630 (by using measurements
from another coral located close to the site of the “calibration coral”).
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Figure 8.8. Bermuda air temperature and coral δ18O, 1856–1920: data. a The
annual-mean temperature time series, y(i), is shown only at those time points for
which δ18O values (b) are available (n = 23). The temperature standard error,
sY (i), is assumed to be constant and equal to 0.03◦C (Table 1.3). b The δ18O time
series, x(i), is unevenly spaced (d(i) = 2 or 3 a). The δ18O values have a constant
measurement error of sX = 0.07h (Draschba et al. 2000). (The temperature data
are digitized values from Draschba et al. (2000: Fig. 2c therein), the δ18O data were
downloaded from http://doi.pangaea.de/10.1594/PANGAEA.88200 (17 September
2009).)

The accuracy of the δ18O timescale, crucial for a successful calibra-
tion, is excellent owing to the presence of seasonal density banding (vis-
ible on X-ray photographs). Measurement procedures and errors (Fig.
8.8) are described in detail by Draschba et al. (2000). Sample ma-
terial requirements led to an unevenly spaced δ18O time series, with
D′(i) = D(i) = d(i) = 2 or 3 a (see Fig. 1.13 for definitions). Draschba
et al. (2000) transformed the temperature record (monthly observations)
by binning to either an annual resolution or a 3-year resolution. Their
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Figure 8.9. Bermuda air temperature and coral δ18O, 1856–1920: prediction.
OLSBC estimation yields a straight prediction line (solid) with an intercept of

β̂0 = 15.2◦C and a slope of β̂1 = −2.3◦Ch−1. Also shown is 95% Student’s t con-
fidence band (shaded), obtained from bootstrap resampling (pairwise-MBBres with
τ̂ ′X = τ̂ ′Y = 6.9 a, l = 6, B = 2000).

calibration result did not strongly depend on that choice. Here we use
the annual values from those years for which also δ18O values exist (Fig.
8.8).

The calibration curve (Fig. 8.9) has a slope that is in size larger by
a factor of approximately 1.3 than that estimated by Draschba et al.
(2000). This considerable deviation is likely the result of an ignored bias
correction in the original paper. The bias-corrected OLSBC fit curve
deviates considerably from a na-ive per-eye fit through the points (Fig.
8.9). (Interestingly, the authors considered already their slope estimate
as rather large in absolute size.) The pointwise bootstrap confidence
band allows to quantify the prediction uncertainty, also outside of the
original range of observations (Fig. 8.9).

The bootstrap prediction error (Eq. 8.15), averaged over the interval
of x values shown in Fig. 8.9, is equal to 0.25◦C, while the “machine
error bar” (Eq. 8.14) is 0.16◦C.

Two further remarks ought to be made. First, the confidence band
assumes a time-independent calibration relation and homoscedastic er-
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rors. This assumption may be violated. Second, the confidence band
may be inaccurate owing to the limited data size, as the Monte Carlo
experiments (Section 8.3) show.

8.6 Lagged regression
Let us reconsider the linear errors-in-variables model (Eq. 8.1) in con-

tinuous time, T . Assume for convenience homoscedasticity. Introduce a
time lag parameter, H, to shift the predictor variable, such that

Y (T ) = β0+β1 [X(T + H)− SX ·Xnoise(T + H)]+SY ·Ynoise(T ). (8.16)

A lag H > 0 (H < 0) means that variations of “true” Y lead over
(lag behind) variations of “true” X. This is a lagged errors-in-variables
regression model.

Measured time series are discrete in time and finite in size. Assume
for convenience even time spacing (d(i) = d = const.) and introduce a
dimensionless time lag, h = H/d, such that

Y (i) = β0 + β1 [X(i + h)− SX ·Xnoise(i + h)] + SY · Ynoise(i), (8.17)

i = 1, . . . , n− h. Given a bivariate sample, {x(i), y(i)}n
i=1, the task is to

estimate β0, β1 and h.
WLSXY estimation should in principle be possible by minimizing a

normalized sum,

SSQWXY (β0, β1, h) = (n− h)−1
n−h∑
i=1

[y(i)− β0 − β1x(i + h)]2

S2
Y + β2

1 S2
X

. (8.18)

This may be achieved technically by numerical minimization (Section 8.8)
of SSQWXY (β0, β1, h̃) for a fixed (candidate) lag, h̃, and a brute-force
search over a range of h̃ values. Intuitively, if 1 � h � n, then the error
due to the discretization of the time should be smaller than when h is
close to either bound.

A more general, realistic situation arises when the two time series
were observed at mutually unequal times. This has been explored in
the context of correlation estimation (Section 7.5), where the time gaps
could be bridged owing to the presence of persistence. The situation
becomes even more realistic (difficult), when timescale errors are intro-
duced. We analyse such an example (Section 8.6.1), where we resort
to interpolation. The taken approach is somewhat ad-hoc. The the-
oretical knowledge about estimators and their properties, let alone CI
construction, is rather limited for such situations, and the given litera-
ture (background material) does not cover this issue exhaustively.
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8.6.1 Example: CO2 and temperature variations
in the Pleistocene

One of the major contributions of ice cores as climate archives is
information about CO2 variations far back in time (late Pleistocene).
The Vostok core’s record, first drilled and measured over the past 160
ka (Barnola et al. 1987), was later extended to the full span of 420 ka
(Petit et al. 1999). The longest CO2 record currently available (past 800
ka) comes from the EPICA Dome C ice core (Siegenthaler et al. 2005;
Lüthi et al. 2008). The major finding from those ice core studies was that
not only temperature and ice volume underwent large changes during the
ice age (100-ka cycle), but also the atmospheric CO2 concentration. We
explore here the full Vostok span of changes of CO2 and temperature
(inferred via δD), shown in Fig. 1.3, to estimate the phase relations
between these changes. Such relations constitute a basis for erecting
a causal climatological theory of the late Pleistocene ice age—which
does not yet exist in sufficient detail. We follow the paper by Mudelsee
(2001b), who used lagged regression as a tool for phase relationship
estimation.

Mudelsee (2001b) deviated in some technical points from the errors-
in-variables methodology developed in the previous sections. These and
some additional points are discussed first, the results shown thereafter.

First, the time values of the predictor variable, {tX(i)}3311
i=1 , are not

identical to those of the response variable, {tY (j)}283
j=1. Allowing for

a candidate lag, H̃, requires a time shift. For those reasons, the lag
estimation used linear interpolation of the x values (Fig. 8.10), tX =
tY (j) − H̃. The fact that the lag is imposed for computational reasons
on tY (j) rather than tX(i) (Eq. 8.16), is not relevant for the estimation.

Second, the lagged regression employed a parabolic model. This per-
formed slightly better than the linear one, as evaluated by means of
the reduced sum of squares (fourth point). (A logarithmic model would
yield similar values as the parabolic (Fig. 8.12).)

Third, the predictor’s error has an upper limit of sX = 1h (Petit et al.
1999), which is clearly smaller than the standard deviation (spread) of
the x(i) values of 17h. This means only a small estimation bias when
ignoring measurement error (Mudelsee 2001b).

Fourth, the estimation (Mudelsee 2001b) used GLS (Section 4.1.2)
with the V matrix elements given by exp[−|tY (j1)−tY (j2)|/τY ]. Because
the persistence time, τY , was unknown, a second brute-force loop for τY

was nested and the overall minimum taken as solution. The resulting
reduced least-squares sum is

SSQGν(β,H, τY ) = (y −Xβ)′ V−1 (y −Xβ)
/
ν, (8.19)
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Figure 8.10. Vostok deuterium and CO2, timescales for lag estimation. The time
interval [303 ka; 304 ka] illustrates the relation between the predictor (X) variable,
deuterium, and the response (Y ) variable, lagged CO2. The candidate lag in time is

H̃. The predictor values are obtained by linear interpolation of the x and x∗ values,
tX = tY (j)− H̃ and t∗X = t∗Y (j)− H̃, respectively. (Original data shown in Fig. 1.3.)

where

β =

β0

β1

β2

 (parameter vector), (8.20)

y =

 y(1)
...

y(n− h)

 (response vector), (8.21)

X =

1 x′(1) x′(1)2
...

...
...

1 x′(n− h) x′(n− h)2

 (predictor matrix), (8.22)
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ν = n− h− 3 (degrees of freedom) and x′ is interpolated x (Fig. 8.10).
The linear model has no β2 parameter and ν = n− h− 2. The step size
of the brute-force search for Ĥ was 5 a.

The resulting lag estimate is Ĥ = −1.3 ka, that is, a lag of CO2

variations behind temperature variations. The resulting persistence time
is τ̂Y = 0.92 ka. The reduced least-squares sum in dependence on H̃ is
shown in Fig. 8.11. The resulting parabolic fit is shown in Fig. 8.12.
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Figure 8.11. Vostok deuterium and CO2, reduced sum of squares. The minimum
(i.e., lag estimate) is at H̃ = −1.3 ka. (After Mudelsee 2001b.)

Both predictor and response (x, y) exhibit measurement and proxy
errors, and both timescales (tX , tY ) show dating uncertainties. These
four error sources propagate into the estimation standard error of the
lag, ŝe

Ĥ
. Mudelsee (2001b) determined ŝe

Ĥ
by means of a parametric

surrogate data approach (Algorithm 8.2).
The first error source (x) was simulated (Mudelsee 2001b) as

x∗(i) = x(i) + xnoise(i), (8.23)

where xnoise(i) is a realization of a Gaussian AR(1) process with standard
deviation sX = 1.0h (Petit et al. 1999) and persistence time τX = 2.1
ka (Chapter 2).

The second error source (y) was simulated analogously as

y∗(i) = y(i) + ynoise(i), (8.24)

where the noise process had a standard deviation sY = 2.5 ppmv (Petit
et al. 1999) and persistence time τY = τ̂Y = 0.92 ka.

The third error source (tX) was simulated (Mudelsee 2001b) using
the depth points of the ice core samples (Petit et al. 1999) and a non-
parametric fit of the “sedimentation rate” (Fig. 4.13). The simulated
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Figure 8.12. Vostok deuterium and CO2, parabolic fit. Data points are lagged CO2

(Ĥ = −1.3 ka) against interpolated δD (n − h = 280). The fit line is given by
y = −1482− 9.05x− 0.012x2. (After Mudelsee 2001b.)

Step 1 Time series {tX(i), x(i)}nX
i=1 ,

{tY (j), y(j)}nY
j=1

Step 2 Lag estimate Ĥ

via minimization of SSQGν(β, H, τY )

Step 3 Simulated time series;
{
t∗b
X (i), x∗b(i)

}nX

i=1
,

b, counter
{
t∗b
Y (j), y∗b(j)

}nY

j=1

Step 4 Replication Ĥ∗b

Step 5 Go to Step 3 until b = B (usually B = 2000)

replications exist
{
Ĥ∗b

}B

b=1

Step 6 Calculate standard error and CIs

Algorithm 8.2. Determination of bootstrap standard error and construction of CIs
for lag estimate in lagged regression, surrogate data approach (Sections 3.3.3 and
3.4). The algorithm is applicable also to other estimation techniques than SSQGν

minimization (Step 2).

sedimentation rate was obtained parametrically (Mudelsee 2001b) by
imposing a relative, Gaussian error of 1.2%. The simulated sedimen-
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Figure 8.13. Vostok deuterium and CO2, sensitivity study of lag estimation error.

tation rate, combined with the depth points, resulted in a simulated
timescale (Section 4.1.7). In a final step, the simulated timescale was
randomly compressed or expanded to fit into the GT4 timescale error
range (Petit et al. 1999), which is ≤ 5 ka for the last 110 ka, ≤ 10 ka for
“most of the record” (interpreted as 110–300 ka by Mudelsee (2001b))
and ≤ 15 ka in the early part.

The fourth error source (tY ) was simulated on basis of the simulated
ice-ages (t∗X). The additional error contribution comes from the uncer-
tainty in the ice–gas age difference,

t∗Y = t∗X + EN(0, σ2
ice–gas)

(·). (8.25)

Petit et al. (1999: p. 434 therein) reported σice–gas to be 1 ka or more.
The surrogate data approach yielded (Mudelsee 2001b) ŝe

Ĥ
= 1.0

ka. To restate, the lag estimation result is that temperature variations
occurred 1.3± 1.0 ka before CO2 variations.

The crucial point for achieving such a small estimation error is that
x and y were measured on the same core (Vostok). This means a rather
close coupling of t∗X and t∗Y (Eq. 8.25). Only the uncertainty in the ice–
gas age difference weakens the coupling. Had CO2 been measured on a
core from a different site, no coupling would exist and t∗X and t∗Y had to
be simulated independently of each other, leading to a clearly larger lag
estimation error than in the present case.

The lag estimation result underlines the importance of the uncer-
tainty, σice–gas, in the ice–gas age difference, which contributes nearly
100% to the lag estimation error of 1.0 ka. A sensitivity study (Fig.
8.13) quantifies this contribution over a range of prescribed σice–gas val-
ues. For example, in the case of σice–gas = 0.2 ka the lag estimation error
would be ŝe

Ĥ
= 0.27 ka. In the case of a perfectly known difference
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(σice–gas equal to zero), the remaining error sources would propagate
into ŝe

Ĥ
= 0.13 ka.

As regards causal explanations of the late Pleistocene glacial cycles,
Mudelsee (2001b) noted that Vostok’s air temperature (δD) represents,
at best, the southern hemisphere and that there exists a time lag of
the variations relative to the northern hemisphere (Blunier et al. 1998).
However, the complexity of the ice-age climate may be better under-
stood, that is, the set of feasible causal scenarios (Broecker and Hender-
son 1998: Table 1 therein) further constrained, with the help of quanti-
fied phase relations.

8.7 Background material
OLSBC estimation of the slope has also been denoted as attenuation-

corrected OLS (ACOLS) estimation (Ammann et al. 2009).
The method of moments estimator of the standard deviation of

the predictor in the case of homoscedasticity, SX , is (Fuller 1987: Eq.
(1.3.10) therein):

ŜX = (2δ)−1

{
mY Y + δmXX −

[
(mY Y − δmXX)2 + 4δm2

XY

]1/2
}

,

(8.26)

where

δ = λ1/2 = SY /SX , (8.27)

the moments are

mY Y =
n∑

i=1

[y(i)− ȳ]2 /(n− 1) , (8.28)

mXX =
n∑

i=1

[x(i)− x̄]2 /(n− 1) , (8.29)

mXY =
n∑

i=1

[x(i)− x̄] [y(i)− ȳ] /(n− 1) (8.30)

and the sample means are

ȳ =
n∑

i=1

y(i) /n (8.31)
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and

x̄ =
n∑

i=1

x(i) /n . (8.32)

ŜX is plugged in for SX (Eq. 8.6).
WLSXY estimation of a linear relationship between two variables

that are both subject to error has been studied, and the geometric inter-
pretation been made, already before and at the beginning of the twen-
tieth century (Adcock 1877, 1878; Pearson 1901); see also Wald (1940)
and Fuller (1987, 1999). The method to fit a hyperplane to data with
errors in all their coordinates (possibly more than two) is also denoted
as total least squares (Nievergelt 1998).

Non-Gaussian, heteroscedastic noise components in the linear
errors-in-variables regression model can be taken into account in the
estimation using GLS, that is, using the covariance matrix, analogously
to Section 4.1.2. In practical applications to climatological problems,
where the covariance matrix is unknown and has to be estimated, an
iterative procedure may be used. Fuller (1987: Section 3.1 therein)
describes GLS estimation for serially independent noise components and
gives a result (standard errors of parameters) that is valid for large data
sizes. He advises to consider developing a model for the error structure
if the data size is small. However, it is not clear whether such a classical
approach to parameter error determination can be applied also to serially
dependent noise components.

Correlated noise components in the linear errors-in-variables re-
gression model can be taken into account. York (1969) adapts a least-
squares criterion to recognize correlation between Xnoise(i) and Ynoise(i)
and gives an example from radiometric dating. Freedman (1984) and
Freedman and Peters (1984) present two-stage regression with boot-
strap resampling as a method to treat a correlation between Xnoise(i)
and Y (i). Fuller (1987: Section 3.4 therein) presents a transformation
for dealing with correlation between Xnoise(i) and X(i).

Multiplicative measurement error may occur in form of X(i) =
Xtrue(i) ·X ′

noise(i), where the primed noise component is dimensionless.
Carroll et al. (2006: Section 4.5 therein) mention transformation meth-
ods that may be applied in this case.

Nonlinear errors-in-variables models can be estimated on basis
of several assumptions about the model and the noise properties, by
using numerical techniques for solving the maximum likelihood or least-
squares optimizations (Fuller 1987: Section 3.3 therein). A recent book
(Carroll et al. 2006) gives more details.
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The pairwise-MBBres algorithm from Section 8.2 is a response to
resolving the “quite nonstandard” (Hall and Ma 2007: p. 2621 therein)
situation, where neither the true predictor variable, Xtrue(i), nor the er-
rors, Xnoise(i), “can be directly accessed.” Previously, Efron and Tibshi-
rani (1993: Section 9.5 therein) and Davison and Hinkley (1997: Section
6.2.4 therein) considered that pairwise bootstrap resampling is applica-
ble to errors-in-variables regression problems. Linder and Babu (1994)
presented another alternative to the simple pairwise resampling. These
authors scaled the residuals in both dimensions (X, Y ) and resampled
independently from both sets. They analysed maximum likelihood es-
timation with known standard deviation ratio and tested the accuracy
of bootstrap CIs (percentile and Student’s t) by means of Monte Carlo
experiments, finding acceptable levels of accuracy. This was confirmed
in an additional simulation study of slope estimation (Musekiwa 2005)
with small data sizes (n = 20, 30). It should be interesting to investigate
further the approach of Linder and Babu (1994), adapted to the clima-
tologically more realistic situation where the standard deviation ratio is
not exactly known and the errors exhibit serial dependence.

The approaching of finite RMSE values or, equivalently, the ab-
sence of shrinking CIs with n →∞ was verified for slope estimation and
falsified for intercept estimation (Section 8.3.3). Previously, Booth and
Hall (1993) found a non-shrinking bootstrap confidence band in a Monte
Carlo experiment on prediction (Section 8.5), ŷ(n+1) = β̂0+β̂1 x(n+1).
Thus, it appears that this observation (Booth and Hall 1993) has its ori-
gin in the non-shrinking of RMSE

β̂1
.

The simulation–extrapolation algorithm (Carroll et al. 2006: Chap-
ter 5 therein) is a bias correction method based on Monte Carlo sim-
ulations. The idea is to add artificial measurement error to the data
and study the dependence of an estimate (say, β̂1) in dependence of the
size of the artificial error. Extrapolation to zero size should, so the idea,
provide an unbiased estimate.

Prediction and forecasting by means of regression and other mod-
els is reviewed by Ledolter (1986). The success of prediction depends,
of course, on the validness of the regression model and the absence of
disturbing “latent” variables (Box 1966). A physical theory behind the
model is a guard against wrong conclusions based on such disturbances.
For example, radiation physics and meteorology support the concept of
climate sensitivity (estimated by means of a regression of changes in
temperature on changes in radiative forcing, see Section 8.4) and refute
claims that time acts as a latent variable. On the other hand, a re-
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gression of annual temperature on the annual output of scientific papers
on global warming over the past, say, 150 years, would find a strong
relation (highly significant slope)—however, a spurious relation because
the latent variable time is acting and no theory exists that supports the
model.

Lagged regression as presented in Section 8.6 (that means, with
one single lag parameter, h), is a special case of rational distributed lag
models (Koyck 1954; Dhrymes 1981; Doran 1983; Pankratz 1991), where

Y (i) = β0 + β1,0X(i) + β1,1X(i + 1) + β1,2X(i + 2) + · · ·+ SY · Ynoise(i).
(8.33)

The sequence {β1,0, β1,1, β1,2, . . .} is called impulse response function.
Note that the equation ignores errors in the predictor. Fitting such
models may be performed using maximum likelihood (Dhrymes 1981) or
frequency-domain techniques (Hannan and Robinson 1973; Hannan and
Thomson 1974; Hamon and Hannan 1974; Foutz 1980). This technique
is frequently applied in econometrics. One of the rare applications to
climatology is the work by Tol and de Vos (1993), who estimated a lagged
regression of annual-mean temperature, 1951–1979, on atmospheric CO2

concentration. Insofar climate is a dispersive system, where the response
of one variable on the input of another is frequency-dependent, it should
be worth developing further such models and fitting techniques that
take into account typical properties of paleoclimatic series (measurement
errors, unequal times and uncertain timescales).

The effective climate sensitivity is usually denoted as λ−1
S . Vari-

ous estimation approaches have been carried out, Table 8.8 gives a short
overview. The approach via the heat capacity (Schwartz 2007) opened
an interesting exchange of arguments in the Journal of Geophysical Re-
search. Let C denote the effective heat capacity (change in heat per
change in temperature) per unit area that is coupled to the relevant
timescale of a perturbation (i.e., years to decades). The perturbation
regards the radiative balance of the Earth (change in forcing). Schwartz
(2007) estimated C (with standard error) to be 17 ± 7 Wa m−2K−1.
The C value reflects mainly the upper part of the ocean, which can
take up heat on the discussed timescale of (anthropogenically enhanced)
radiative perturbations. The simple equation,

τ = C · Λ−1
S , (8.34)

describes the time span (relaxation, τ) over which a radiative pertur-
bation (C) has an effect on the temperature (Λ−1

S ). Schwartz (2007)
estimated τ by fitting an AR(1) model (Chapter 2) to observational
data. The criticism on this approach (Foster et al. 2008; Knutti et al.
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2008; Scafetta 2008) was centred on the AR(1) model as over-simplistic
and estimation bias. In his reply, Schwartz (2008) kept the AR(1) model
but conceded τ to be larger (8.5±2.5 a) than in his original contribution
(5± 1 a). The revised estimate for τ leads to the entry in Table 8.8.

Table 8.8. Estimates of the effective climate sensitivity.

Λ−1
S Estimatea Approach Reference

(KW−1m2)

0.29 [0.05; 0.53]b,c Direct observations, 2000–2006 Chylek et al. (2007)

0.48 [0.24; 0.72]b,d Direct observations, 2000–2006 Chylek et al. (2007)

0.51 [−0.01; 1.03]b Physical principles (heat capacity) Schwartz (2008)

0.65 [0.09; 1.21]b Thermodynamical model Scafetta and West (2007)
0.70 [0.38; 1.55]e Climate model and observations, Hegerl et al. (2006)

1000–2001
0.85 [0.53; 1.17]c Direct observations, 1850–2001 This book

1.53 [0.40;∞]e,f Direct observations, Gregory et al. (2002)
1861–1900 and 1957–1994

a With 90% CI.
b CI calculated as ±2 standard error interval.
c Ignoring ocean heat uptake.
d Assuming strong ocean heat uptake.
e Calculated from originally estimated equilibrium climate sensitivity.
f Median given instead of estimate.

The leads and lags of carbon dioxide variations relative to those of
temperature in the Pleistocene have been studied by several researchers
on time series from ice cores from Antarctica. Previously to Mudelsee
(2001b), who estimated Ĥ = −1.3 ± 1.0 ka (a lag of CO2), the origi-
nal authors of the 0–420 ka Vostok paper (Petit et al. 1999) had found,
seemingly by per-eye inspection, that CO2 decreases lag behind tem-
perature decreases by several ka. Cuffey and Vimeux (2001: p. 523
therein) believed that the lag, “especially during the onset of the last
glaciation, about 120 ka ago,” is largely an “artefact caused by varia-
tions of climate in the water vapour source regions.” They presented
model simulations that correct for this effect and lead to Ĥ ≈ 0 ka using
the Vostok data, 0–150 ka and 150–350 ka. Subsequently, Monnin et al.
(2001) analysed high-resolution records (d̄ ≈ 0.18 ka for CO2) from the
EPICA Dome C site over the interval 9–22 ka by means of an explorative
technique (“correlation maximization”) similar to the brute-force search
(Section 8.6.1). They obtained an estimate of Ĥ = −0.41 ka, which was
assessed as not significant owing to the uncertainty of the ice–gas age
difference. Caillon et al. (2003) revisited the Vostok ice core, inspected
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the time interval around Termination III (230–255 ka) and took argon
isotopes instead of deuterium as proxy for temperature changes. The
motivation for performing the new measurements was the idea that the
poorer proxy quality of argon isotopes would be more than compensated
by the smaller timescale uncertainties. Since argon is, as CO2, contained
in the enclosed air bubbles in the ice, no uncertainty of the ice–gas age
difference influences lag estimation (Eq. 8.25). The result of correlation
maximization (Caillon et al. 2003) was a lag of CO2, Ĥ = −0.8±0.2 ka,
where the error bar value is based on an assessment of the uncertainty of
the ice accumulation (but not on an additional consideration of the proxy
errors). The “EPICA challenge” (Wolff et al. 2005), issued to paleocli-
matologists, was to predict CO2 concentration for the interval 420–740
ka on basis of the then available EPICA Dome C deuterium (tempera-
ture) and dust records (EPICA community members 2004). The simple
model, lagged regression of Vostok CO2 on EPICA deuterium (temper-
ature), calibrated on the 0–420 ka records, did not produce the worst of
the eight predictions, as was found when the EPICA Dome C CO2 series
became known. The complete interval back to 800 ka from the EPICA
ice core archive of past changes in temperature (Jouzel et al. 2007) and
CO2 (Siegenthaler et al. 2005; Lüthi et al. 2008) enables to analyse also
temporal changes of the lag, H, concepts that the ice-age climate re-
lationships changed for a while after a glacial termination (Raynaud
et al. 1993). To summarize, the overall lag of CO2 variations behind
temperature variations during the late Pleistocene appears significant.
This is a quantitative basis for developing and testing concepts about
causes and effects of long-term climate changes (Broecker and Hender-
son 1998; Saltzman 2002), about how the external astronomical forcing
(Milankovitch cycles) propagates into the geographic regions, and how
the climate variables respond. Further refining the ice-age theory is
currently an active research field (Kawamura et al. 2007; Huybers and
Denton 2008; Wolff et al. 2009). It is important to note that the char-
acteristic timescales on which the analysed Pleistocene climate changes
occurred, are relatively long: the average spacing (d̄), the estimated lag
(Ĥ) and its estimation error (ŝe

Ĥ
) are between several hundred and a

few thousand years. The late Pleistocene lag estimates are therefore
hardly relevant as regards concepts about the ongoing climate change,
which is anthropogenically enhanced since, say, 150 years. This recent
change is considerably faster than the late Pleistocene change, it leads
to CO2 levels not experienced during at least the past 800 ka and it
affects other physical processes. The consideration from physics and
meteorology that the recent change has a positive time lag (CO2 rise
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before temperature rise) is not contradicted by the finding that the late
Pleistocene change had a negative time lag. The scientifically interesting
question is whether humans are able to put a (temporary) end to the
succession of glacials and interglacials (Berger and Loutre 2002).

Errors-in-variables regression models for climatology have not
often been formulated in an explicit manner in the research literature.
Allen and Stott (2003) showed theoretically the importance of an un-
biased slope estimation for linear models that relate temperature changes
predicted by an AOGCM with observed temperature changes. Hegerl
et al. (2007a) studied in that manner proxy calibration to reconstruct
30–90◦N mean annual land-surface temperature for the past 1500 years.
Kwon et al. (2002) fitted a nonlinear model to dating samples,

Y (i) =
exp (λ40K · τFCs)− 1

exp {λ40K [X(i)− SX ·Xnoise(i)]} − 1
+ SY · Ynoise(i), (8.35)

i = 1, . . . , n. They used five paired samples of Y (i) = 40Ar/39Ar ratio
and X(i) = reference age, observed with small, homoscedastic (SX , SY ),
mutually independent measurement errors of assumed Gaussian shape.
The estimation parameters were λ40K (decay constant of 40K) and τFCs

(age of Fish Canyon sanidine age standard). Kwon et al. (2002) de-
rived maximum likelihood estimators and analysed bootstrap standard
errors based on the surrogate data approach. Their Monte Carlo study
showed that the estimates do not strongly depend on the Gaussian as-
sumption. The result, λ̂40K = 5.4755 ± 0.0170 · 10−10 a−1, leads to
a half-life estimate (Section 1.6) of T̂1/2 = ln(2)/λ̂40K = 1.266 ± 0.004
Ga. Bloomfield et al. (1996) made a multivariate nonlinear regression
of daily tropospheric ozone concentration in the Chicago metropolitan
area, 1981–1991, on a variety of predictors, including temperature, wind
speed and relative humidity. The interesting point in the context of
this chapter is that also lagged predictors (H prescribed as 1 or 2 days)
were included. Bloomfield et al. (1996) used GLS estimation (Gallant
1987: Sections 2.1 and 2.2 therein) and obtained parameter standard
errors by means of jackknife resampling (Section 3.8), which takes serial
dependence into account.

8.8 Technical issues
WLSXY minimization of SSQWXY (β0, β1) is numerically difficult

because the slope, β1, appears in the denominator of the least-squares
sum (Eq. 8.8). The routine Fitexy (Press et al. 1992) parameterizes the
slope as β′1 = tan−1(β1), scales the y values and uses Brent’s search
(Section 4.5) with a starting value for the slope from an initial OLS
estimation. (A more recent Numerical Recipes edition is Press et al.
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(2007).) Papers on the way from the work of Deming (1943) and York
(1966) to the routine Fitexy include Reed (1989, 1992) and Squire (1990).
This book follows those authors in usage of WLSXY for estimation, but
it does not so for parameter error determination; for that purpose it
uses instead bootstrap resampling. Extensions of WLSXY to nonlin-
ear regression problems (nonlinear in the parameters) were considered
by Jefferys (1980, 1981) and Lybanon (1984). A review of least-squares
fitting when both variables are subject to error (Macdonald and Thomp-
son 1992) studied besides WLSXY also other weighting techniques. It
appears that a generalized least-squares estimation method for the case
of (1) serial correlations in both X and Y errors and (2) correlation be-
tween X and Y errors, supported by a proof of optimality (in terms of,
say, RMSE) under the Gaussian distributional assumption, has not yet
been developed.

LEIV1 is another Fortran implementation of WLSXY estimation
(York 1966), available at http://lib.stat.edu/multi/leiv1 (26 October
2009).

LEIV3 is a Fortran software for maximum likelihood fitting of linear
errors-in-variables models with heteroscedastic noise components (Rip-
ley and Thompson 1987), available at http://lib.stat.edu/multi/leiv3 (26
October 2009).

Bootstrap software for errors-in-variables regression is not
abundant. Carroll et al. (2006) and Hardin et al. (2003) mention Stata

October 2009). Software for block bootstrap resampling seems to be
unavailable—limiting the ability to study errors-in-variables regression
with autocorrelated noise components.

software, available from the site http://www.stat.tamu.edu/~carroll (26
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