
Chapter 8
Structural and Functional Adaptations
in Plants for Salinity Tolerance
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Abstract Salt tolerance in plants is a multifarious phenomenon involving a variety
of changes at molecular, organelle, cellular, tissue as well as whole plant level.
In addition, salt tolerant plants show a range of adaptations not only in morpho-
logical or structural features but also in metabolic and physiological processes that
enable them to survive under extreme saline environments. Morpho–anatomical
adaptations include xeromorphic characteristics like thick epidermis and scle-
renchyma, well developed bulliform cells, increased density of trichomes and
increased moisture retaining capacity by increasing cell size and vacuolar volume.
Development of excretory structures like vesicular hairs and salt glands is another
major structural adaptation and very crucial for salt tolerance. Physiological adapta-
tions include restricted toxic ion uptake, increased succulence, osmotic adjustment
and exclusion of toxic Na+ and Cl–.
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1 Introduction

Soil salinity is among the major abiotic stresses that limits crop productivity
worldwide (Hu et al. 2005) since most crops are sensitive to soil salinization (Munns
2002). There are two major processes of soil salinization; geo–historical processes
and man–made. Most of the worldwide salt–affected lands are the result of natu-
ral causes, i.e., from accumulation of salts over long time period, and this occurs
mainly in arid and semiarid zones (Rengasamy 2002). One way of soil salinization
is weathering of the rocks that releases soluble salts, which is mainly in the form of
sodium chloride and calcium chloride (Szabolcs 1989), other being salt accumula-
tion due to the deposition of salts from oceans by wind or rain (Munns and Tester
2008). Man–made saline soils are mostly found in (semi) arid lands as a result of
over-irrigated agriculture, and hence in the rise of water tables. This is the main
factor of increasing salinity in agricultural lands (Munns et al. 2002).

Soil salinity is an ever–increasing problem worldwide and it is estimated that the
saline soils approach 930 million ha, about 7 percent of the total land worldwide
(Szabolcs 1994). Nearly, one third of the total 230 million ha under irrigation is
uncultivable due to soil salinity (Oldeman et al. 1991; Ghassemi et al. 1995). Of this
total, 15.57% is located in Africa, 5.07% in Australia, 0.57% in Mexico and Central
America, 1.80% in North America, 20.21% in South America, 26.70% in North
and Central Asia, 24.25% in Southern Asia, and 5.82% in Southeast Asia (Massoud
1974). A large number of plants are found to grow on these areas but tolerance
varies greatly not only among species but also within species. Among monocotyle-
donous crop plants, rice is the most sensitive, bread wheat moderately tolerant and
barley the most tolerant. The halophytic tall wheatgrass, a relative of wheat is one
of the most salt tolerant of all monocots (Munns and Tester 2008). In dicots, salinity
tolerance is even more diverse. For example, some legumes are even more sensi-
tive than rice (Läuchli 1984). Alfalfa is relatively tolerant to salt, and halophytes for
example some Atriplex spp. grow well at extremely high salinities (Flowers et al.
1977).

There is a wider range of salt tolerance in natural populations, which is reported
to be evolved naturally in numerous grass species like Agrostis, Festuca, Lolium,
and Poa (Humphreys et al. 1986; Acharya et al. 1992). Such plants provide out-
standing materials for studying the mechanisms of adaptations they use to tolerate
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high concentrations of salt (Ashraf 2003). Such adaptations have been evaluated in
several grass populations from quite diverse habitats such as estuaries and coastal
areas, marine and fresh water salt marshes, and dry–land salinities. Examples are
Sporobolus virginicus (Naidoo and Mundree 1993), Cynodon dactylon (Pasternak
et al. 1993; Hameed and Ashraf, 2008), Spartina patens (Ashour et al. 1997),
Urochondra setulosa (Gulzar et al. 2003), Ochthochloa compressa and Aeluropus
lagopoides (Naz et al. 2009), and Imperata cylindrica (Hameed et al. 2009).

The main objectives of this chapter are to present the physio–biochemical aspects
of salinity tolerance in naturally adapted salt tolerant plants and to correlate them to
the structural adaptations found in different plants to cope with highly saline adverse
environments.

2 Adaptive Components of Salt Tolerance

Salt tolerance is a complex phenomenon involving a variety of mechanisms. It can
be defined as the ability of the plants to complete their growth cycle with an accept-
able growth and yield (Flowers et al. 1986; Colmer and Flowers 2008). Three major
factors affect the plant growth under salinity, water stress, ion toxicity, and nutrient
uptake and translocation, and as a result, disturbance of ionic balances such as K+

and Ca2+. Physiological drought may play a crucial role, which restricts the water
uptake by plants (Table 8.1). On contrary, excess salt uptake by plants interrupts the
cellular functions and this damages vital physiological processes, i.e., photosynthe-
sis and respiration (Marschner 1995). Furthermore, mechanisms like increased leaf
resistance (fewer stomata, increased cuticle and epidermis thickness, and mesophyll
resistance) could prevent turgor loss from leaf and root surface, and hence better
water efficiency.

Plant tolerance to saline environments is of broad spectrum ranging from gly-
cophytes (that are sensitive to salt) to halophytes (that tolerate high concentrations
of salt). The acquired salt tolerance may be of hereditary nature in some species
(Niknam and McComb 2000), i.e., passed along to offspring. Halophytic or salt
tolerant species can adopt multiple strategies to survive under high salinities by
controlling the levels of ions their shoots or particularly in leaves. The mecha-
nisms involved are restricting or excluding the ion uptake at root level, and hence
minimizing the translocation of salts to the shoot (Flowers and Colmer 2008).

Genkel (1954) divided the halophytes into three groups: euhalophytes, crino-
halophytes, and glycohalophytes, but this classification has been modified by
Nagalevskii (2001) and Zhao et al. (2002). Salt tolerance in euhalophytes is based
on accumulation, as they accumulate salts in their tissues, crinohalophytes depend
on excretion of toxic ions like Na+ and Cl− as they are capable of excreting salts out
of the plant body, and glycohalophytes rely on avoiding mechanism by preventing
the accumulation of excess salts (Voronkova et al. 2008). The growth rate can be
linked to the accumulation of salts in the plant leaves that plant takes up from the
roots, so the continuation of growth under saline environments is an indication of
high degree of salt tolerance.



154 M. Hameed et al.

Ta
bl

e
8.

1
Ph

ys
io

lo
gi

ca
la

nd
bi

oc
he

m
ic

al
m

ec
ha

ni
sm

s
of

sa
lt

to
le

ra
nc

e
in

so
m

e
hi

gh
ly

sa
lt

to
le

ra
nt

or
ha

lo
ph

yt
ic

pl
an

ts
pe

ci
es

Pl
an

ts
pe

ci
es

Io
n

up
ta

ke
an

d
tr

an
sp

or
t

O
sm

ot
ic

ad
ju

st
m

en
t

Io
n

ex
cl

us
io

n

M
on

oc
ot

s
A

el
ur

op
us

la
go

po
id

es
R

es
tr

ic
te

d
up

ta
ke

of
N

a+
an

d
C

l–
(N

az
et

al
.2

00
9)

,a
nd

in
cr

ea
se

d
up

ta
ke

of
K

+

an
d

C
a2+

A
cc

um
ul

at
io

n
of

N
a+

an
d

C
l−

in
sh

oo
t,

in
ad

di
tio

n
to

re
te

nt
io

n
of

K
+

an
d

C
a2+

(N
az

et
al

.2
00

9)

E
xc

re
tio

n
of

on
ly

N
a+

an
d

C
l−

io
ns

(N
az

et
al

.2
00

9)

C
ym

bo
po

go
n

jw
ar

an
cu

sa
In

cr
ea

se
d

up
ta

ke
of

C
a2+

,a
nd

in
cr

ea
se

d
K

+

in
sh

oo
ts

A
cc

um
ul

at
io

n
of

to
ta

lf
re

e
am

in
o

ac
id

s
an

d
so

lu
bl

e
pr

ot
ei

ns
C

yn
od

on
da

ct
yl

on
R

es
tr

ic
te

d
up

ta
ke

of
N

a+
ac

co
m

pa
ni

ed
by

hi
gh

up
ta

ke
of

K
+

an
d

C
a2+

(H
am

ee
d

an
d

A
sh

ra
f

20
08

)

A
cc

um
ul

at
io

n
of

so
lu

bl
e

su
ga

rs
,p

ro
lin

e
an

d
to

ta
lf

re
e

am
in

o
ac

id
s

(H
am

ee
d

an
d

A
sh

ra
f

20
08

)

E
xc

re
tio

n
of

N
a+

an
d

C
l−

Im
pe

ra
ta

cy
li

nd
ri

ca
In

cr
ea

se
d

up
ta

ke
of

C
a2+

A
cc

um
ul

at
io

n
of

to
ta

lf
re

e
am

in
o

ac
id

s
an

d
pr

ol
in

e
L

as
iu

ru
s

sc
in

di
cu

s
In

cr
ea

se
d

up
ta

ke
of

C
a2+

O
ch

th
oc

hl
oa

co
m

pr
es

sa
E

xc
re

tio
n

of
N

a+
an

d
C

l−
Pa

ni
cu

m
an

ti
do

ta
le

H
ig

h
w

at
er

us
e

ef
fic

ie
nc

y
(H

am
ee

d
an

d
A

sh
ra

f
20

09
)

Sp
or

ob
ol

us
ar

ab
ic

us
R

es
tr

ic
te

d
up

ta
ke

of
N

a+
an

d
C

l−
A

cc
um

ul
at

io
n

of
fr

ee
am

in
o

ac
id

s
an

d
pr

ol
in

e
E

xc
re

tio
n

of
N

a+
an

d
C

l−

Sp
or

ob
ol

us
io

cl
ad

os
R

es
tr

ic
te

d
up

ta
ke

of
N

a+
an

d
C

l−
A

cc
um

ul
at

io
n

of
fr

ee
am

in
o

ac
id

s,
so

lu
bl

e
pr

ot
ei

ns
an

d
so

lu
bl

e
su

ga
rs

E
xc

re
tio

n
of

N
a+

an
d

C
l−

D
ic

ot
s

C
re

ss
a

cr
et

ic
a

R
es

tr
ic

te
d

up
ta

ke
of

N
a+

an
d

C
l−

E
xc

re
tio

n
of

N
a+

Fa
go

ni
a

in
di

ca
A

cc
um

ul
at

io
n

of
N

a+
an

d
C

l−
in

sh
oo

t,
in

ad
di

tio
n

to
re

te
nt

io
n

of
K

+
an

d
C

a2+

H
al

ox
yl

on
re

cu
rv

um
In

cr
ea

se
d

up
ta

ke
of

N
a+

an
d

C
l−

D
um

pi
ng

of
f

N
a+

E
xc

re
tio

n
of

C
l−

H
al

ox
ul

on
sa

li
co

rn
ic

um
D

um
pi

ng
of

f
N

a+
an

d
C

l−
Sa

ls
ol

a
ba

ry
os

m
a

D
um

pi
ng

of
f

N
a+

an
d

C
l−

Su
ae

da
fr

ut
ic

os
a

D
um

pi
ng

of
f

N
a+

an
d

C
l−



8 Structural and Functional Adaptations in Plants for Salinity Tolerance 155

Morphological features of the plant roots can prevent salts in large quantities.
At cellular level, physiological and metabolic features can counteract salts if salts
do enter the roots (Winicov 1998). Plants generally use two mechanisms to tolerate
high salt concentrations. Firstly, the avoidance, i.e., keeping the salts away from the
metabolically active tissues (Munns and Tester 2008). This is through passive exclu-
sion of ions (by a permeable membrane), active expelling of ions (by ion pumps),
or by dilution of ions in plant tissues (Allen et al. 1994). Secondly, compartmen-
talization of accumulated salts in the vacuoles of plant cells (Munns 2002). These
two methods are vital for preventing toxic ions to accumulate or causing damage to
the plant tissues, and therefore, they could be employed for identifying markers for
genetic manipulation of salinity tolerance in plants.

Salt tolerant or halophytic plants can minimize the detrimental effects of salts
(i.e., ion toxicity, nutritional disorder, osmotic stress) by modifying morphological,
anatomical and physiological mechanisms of salt tolerance (Poljakoff-Mayber
1975; Hameed et al. 2009). Extensive root system (root length and proliferation)
and the presence of salt secreting structures (e.g., salt glands) on the leaf surface
may prove vital in plants (Marcum et al. 1998; Naz et al. 2009). The salt tolerance
of plants may involve: (a) restricted or controlled uptake of salts, (b) tissue tolerance,
(c) accumulation of salt in inert areas (e.g., vacuoles), (d) ion discrimination (e.g.,
uptake and translocation of ions like K+, Na+, Cl− and SO4

2−), (e) production of
low molecular weight protective osmolytes like enzymes, hormones, antioxidants,
etc. (Gorham and Jones 1990; Munns and Tester 2008). These mechanisms may
be responsible for variations in the salt tolerance within plant genotypes or species
(Table 8.1).

Soil reclamation is a very expensive and physically difficult process to practice.
However, cultivation of salt tolerant species/varieties is the most practical solution,
particularly when salinity is relatively low. When a plant is exposed to increased
soil salinity, a primary response is decreased plant water potential, and this is due
to a decrease in both osmotic and water potentials of the soil. Accumulation of
osmotically compatible cellular solutes (e.g., sugars, proteins, free amino acids) is
one of the well–characterized responses of plants to such low water potential. In salt
tolerant species, accumulation of osmotically compatible solutes directly correlates
with Na gradients in soil and thereby reduces the detrimental effect of salt stress
(Briens and Larher 1982; Lee et al. 2007). Mechanisms involved in salinity tolerance
or adaptations crucial for the plant survival are still not well understood. Therefore,
there is a need to identify appropriate morpho-anatomical or physio-biochemical
indicators of salinity tolerance in halophytic and other salt tolerant plants (Ashraf
and Harris 2004).

2.1 Morphological Traits

Salinity–induced changes in root morphology, anatomy, and ultrastructure as well as
some physiological implications of the altered growth patterns have been reviewed
earlier at length. Excess salinity has been reported to inhibit both root cell division
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and cell expansion (Zidan et al. 1990). Generally, in glycophytes, root growth is
less affected by salinity than either vegetative shoot growth or fruit and seed pro-
duction (Maas and Nieman 1978). Depending on the type of plant species, the level
of salinity stress and the composition of the external solution, root growth may be
stimulated, inhibited or unaffected (Delane et al. 1982, Waisel 1985).

Soil salinity directly affects plant growth and development, especially crop
species (Chinnusamy et al. 2005; Ashraf 2009). In general, dicotyledonous halo-
phytes show optimal growth up to 250 mM NaCl (Flowers et al. 1986). However,
in monocotyledonous halophytes growth is generally not simulated by salts or if so,
then it is at 50 mM NaCl or less (Glenn 1987; Glenn et al. 1999). Rooting param-
eters (depth, proliferation and weight) are reported to be associated with salinity
tolerance. Root weights increase under salinity in the grasses (Marcum et al. 1998).
Shoot biomass production in highly salt tolerant species like Leptochloa fusca
and Puccinellia distans is not affected by salinity. On the other hand, Pennisetum
divisum has the lowest fresh and dry biomass of both shoots and roots and is very
sensitive to salinity stress (Ashraf and Yasmin 1997).

2.2 Anatomical Traits

Both halophytes and non–halophytes exhibit remarkable anatomical changes when
exposed to elevated levels of salinity (Maas and Nieman 1978). However, most
conspicuous changes are notable in leaf. Longstreth and Nobel (1979) reported a
smaller increase in the mesophyll area/leaf area in Atriplex patula (halophyte) than
that in Phaseolus vulgaris and Gossypium hirsutum (both glycophytes). This reveals
a greater tendency of Atriplex to maintain constant mesophyll area, and is an adap-
tive feature which reflects greater degree of shielding to photosynthetic mechanisms
from harmful effects of salts. Zoysiagrass (Zoysia spp.) does not show any change in
the density of salt glands when grown under salinity (Marcum and Murdoch 1990).
Enhanced salt tolerance of Zoysia spp. is proportional to a greater density of salt
glands in different species (Figs. 8.1 and 8.2) followed by exclusion of shoot ions
through leaf glands (Marcum et al. 1998).

Many salt tolerant plants, particularly dicotyledonous halophytes are charac-
terized by xeromorphic characteristics (Table 8.2) such as thick succulent leaves
(Fig. 8.3), which apparently aid sufficient water supply (Vakhrusheva 1989). Smaller
reduced leaves with dense covering of pubescence are also a characteristic of
xerophytes, which accounts for a successful survival of halophytes under dryland
salinities (Mokronosov and Shmakova 1978).

Salt secretion by micro-hairs has been detected only in certain Chloridoideae, all
having ‘chloridoid type’ micro-hairs with basal cell partitioning membranes. It has
not been detected in many species with micro-hairs lacking basal cell partitioning
membranes. For example, the ‘chloridoid type’ micro-hairs of Sporobolus elongatus
and Eleusine indica do not secrete salt, despite their possession of partitioning mem-
branes (Amarasinghe and Watson 1988). At leaf level, there are certain appendages
which help the plant to secrete excess salts from the main body. Most important
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Fig. 8.1 a Dense hairiness in Aeluropus lagopoides on leaf surface. b Glandular and simple hairs
on leaf margins in A. lagopoides. c Marginal hairs in leaf of Cymbopogon jwarancusa. d Salt
secretory hairs on leaf margins. e Marginal hairs in leaf of Lasiurus scindicus, and f Glandular
hairs on leaf surface in L. scindicus

among these are salt secretory trichomes (e.g., Atriplex spp.), second type is multi-
cellular salt glands which occur in many desert and coastal habitat flowering plants,
and are confined to the members of families including Poaceae, Aveceniaceae,
Acanthaceae, Frankeniaceae, Plumbaginaceae and Tamaricaceae (Mauseth 1988;
Thomson et al. 1988; Marcum and Murdoch 1994). In contrast, the stem of halo-
phyte Salicornia fruiticosa has a simple cortex and single layered epidermis which
is thin–walled and the photosynthetic tissue has palisade and parenchymatous cells
for storage of water (Fahn 1990).
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Ochthochloa compressa 

Cressa cretica 

ba

dc

Fig. 8.2 a Dense hairiness in Ochthochloa compressa on leaf surface with a mixture of glandular
and simple hairs and trichomes. b Marginal hairs on leaf in O. compressa. c Dense hairiness in
Cressa cretica on leaf surface, and d Leaf margins

Fig. 8.3 a, e Dense cover of leaf trichomes in Aeluropus lagopoides. b Aerenchyma in leaf
sheath in Desmostachya bipinnata. c Leaf succulence in Haloxylon recurvus, and d Dense cover
of microhairs on both leaf surfaces and trichomes on adaxial surface in Leptochloa panicea
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Stomatal features like density and size are critical for controlling transpirational
loss from leaf surface and even more critical under physiological droughts (Hameed
et al. 2009). The importance of stomatal characteristics in avoiding water loss
through leaf surface has been reported several species like Distichlis spicata (Kemp
and Cunningham 1981), barley (Gill and Dutt 1982), and wheat (Akram et al. 2002).

The roots of saline desert plants have reduced cortex to shorten the distance
between epidermis and stele. The casparian strip is much wider in the highly dry
and salt marsh habitat plants, as compared to mesophytes. In saline habitat plants,
the endodermis and exodermis (hypodermis with casparian band) represent barri-
ers (Fig. 8.4) of variable resistance to the radial flow of water and ions from cortex

Salsola baryosmaAeluropus lagopoides

Fagonia indicaCressa cretica

Haloxylon recurvum Haloxylon salicornicum 

a b

dc

e f 

Fig. 8.4 Roots a Sclerification surrounding vascular region above endodermis and in vascular
region in Aeluropus lagopoides, b Sclerification in patches in vascular regions with unusually large
metaxylum vessels in Salsola baryosma and e Haloxylon recurvum, c Sclerification of vascular
region with highly developed storage parenchyma in pith and cortical regions in Cressa cretica,
Highly sclerified central region in d Fagonia indica and f Haloxylon recurvum
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to the stele under prevailing conditions (Hose et al. 2001; Taiz and Zeiger 2002).
Such adaptation is advantageous for efficient functioning of endodermis, when the
protoplasts are attached to the large portions of the radial and transverse walls of
endodermal cells (Fahn 1990).

Drought avoidance is a vital adaptive strategy against salt stress. Modifications
like highly developed bulliform cells (important for leaf rolling) can play an impor-
tant role in avoiding water loss during physiological drought caused by salinity
(Abernethy et al. 1998; Alvarez et al. 2008). Thick epidermis is a characteristic
feature of many salt tolerant terrestrial species (Ristic and Jenks 2002) and this is
one of the most valuable mechanisms relating to xeric adaptation to prevent water
loss (Jenks and Ashworth 1999; Zhao et al. 2000).

Root aerenchyma is reported to be a distinctive attribute of waterlogged
plants. Colmer and Flowers (2008) summarized characteristics of aerenchyma
in halophytic species, but this is exclusively under waterlogged conditions.
Aerenchyma formation in halophytes may aid in efficient solute transport in addi-
tion to oxygen (Hameed et al. 2009). Increased sclerenchyma under salinity stress
not only provides rigidity to the tissues or organs, but also vital for reducing
water loss through plant surface. Increased sclerification has been reported by
several researchers in salt tolerant or halophytic plants, e.g., Spartina alterniflora
(Walsh 1990), Puccinellia tenuiflora (Zhao et al. 2000), and Prosopis strombulifera
(Reinoso et al. 2004).

2.2.1 Succulence

Succulence (both leaf and stem) is one of the most noticeable features in halophytes,
which provides not only more space for dumping off toxic ions in the plant body, but
also increasing the total plant water content (Waisel 1972; Drennan and Pammenter
1982), and this is crucial for balancing out ion toxicity. Leaf succulence is very
rare in monocots (Hameed et al. 2009), but relatively common in dicots, such as
Kandelia candel (Hwang and Chen 1995) and many other halophytes (Flowers and
Colmer 2008). It is not very much clear as succulence is simply a response to salinity
or is the response of adaptive value of halophytic plants (Waisel 1972).

Increased succulence in halophytes in response to increasing salinity is pre-
sumed to be of adaptive nature (Waisel 1972). Succulence is very much greater in
halophytic dicotyledonous species than in monocotyledonous ones (Flowers et al.
1986). There is also evidence of a rapid increase in vacuolar volume and in the
concentration of Na+ (Mimura et al. 2003) in the cells of mangrove Bruguiera
sexangula, which is a potential mechanism to cope with a rapid increase in external
salt concentration.

2.2.2 Salt Excretion

Halophytes utilize salts in osmotic adjustment, which lowers water potentials of
their tissues. Accumulation of toxic ions in large quantities in leaves, while avoid-
ing their toxic effects seems to be an important strategy for growth and survival
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under harsh climates (Greenway and Munns 1980). Balancing of growth and ion
accumulation is the major phenomenon of salt tolerance in some species, while in
others excess of toxic ions is secreted via secretory structures like salt glands and
micro-hairs (Drennan and Pammenter 1982; Flowers and Yeo 1986). Spartina spp.
are the example where shoot mineral content is regulated by the ionic secretion
through specialized salt glands. Salts are also released by the leaf surface through
cuticle or in guttation fluid; but they also become concentrated in salt hairs (Stenlid
1956).

Many species exude Na salts onto the leaf surface (Drennan and Pammenter
1982; Marcum et al. 1998; Naidoo and Naidoo 1998), which is effective in reducing
Na concentration in plant tissues, i.e., Sporobulus spp. (Lipschitz and Waisel 1974;
Marcum and Murdoch 1992). Salt secretory trichomes, characteristic of Atriplex
spp., are bladder–like hairs projecting out of leaf surface. They consist of a large
secretory or bladder cells on the top and a stalk consisting of one or sometimes
a few cells (Samoui 1971; Dickison 2000). All these cells contain mitochondria,
dictyosomes, ribosomes, endoplasmic reticulum and a large flattened nucleus. The
chloroplasts are rudimentary or partially developed. The only difference lies in that
a single large vacuole is present in bladder cell and many small vacuoles in the
stalk cell (Osmond et al. 1969). A symplastic continuum exists from the mesophyll
cells to the bladder cells for the movement of ions. The external walls of bladder and
stalk cells are cutinized, while inner primary walls are not (Thomson and Platt-Aloia
1979).

In grasses, the glands are generally bi–celled, i.e., an outer cap cell and a sub-
tending basal cell. They may be sunken, subsunken, extending out of epidermis
(Lipschitz and Waisel 1974; Marcum and Murdoch 1994) or lie in bands or ridges
(Marcum et al. 1998). In dicotyledonous species, the salt glands are multi–cellular,
consisting of basal and secretory cells. The number of cells may vary from 6 up to
40 in different genera (Fahn 1990). For example, in Tamarix spp. the salt glands
consist of two basal collecting cells and outer six highly cytoplasmic secretory
cells (Mauseth 1988). However, the glands of Avicennia and Glaux comprise sev-
eral secretory cells positioned above a single disc–shaped basal cell (Rozema et al.
1977). The position of the epidermal glands may be lateral (Tamarix), present in epi-
dermal depression (Glaux) or projecting out of abaxial surface of leaf–like trichomes
in Avicennia (Thomson et al. 1988).

2.3 Physiological/Biochemical Traits

Salinity causes many adverse effects on plant growth which may be at physiological
or biochemical levels (Munns 2002; Munns and James 2003), or at the molecular
level (Mansour 2000; Tester and Davenport 2003). In order to assess the tolerance of
plants to salinity stress, growth or survival of the plant is measured because it inte-
grates up– or down–regulation of a variety of physiological mechanisms (Niknam
and McComb 2000). Cell growth rate depends on cell wall extensibility as well as
turgor (Lockhart 1965).
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2.3.1 Osmotic Adjustment

Accumulation of exceptionally high concentrations of inorganic ions as well as
organic solutes is an important physiological adaptation in both halophytic and
salt tolerant species (Pitman 1984). In salt excretory plants, salt is kept away
from photosynthesizing or meristematic cells. In these plants, osmotic balance
is generally achieved via extensive accumulation of organic solutes and/or inor-
ganic ions. However, in plants where salt inclusion is the prime mechanism,
accumulation of some inorganic ions (predominantly Na+ and Cl−) regulates the
osmotic adjustment (Wyn Jones and Gorham 2002; Ashraf 2004). Both organic
and inorganic solutes are essential for osmoregulation in plants, especially under
saline environments. However, their relative contribution to osmotic adjustment
varies from plant to plant or species to species, or even within different tissue
of the same plant (Ashraf 1994; Ashraf and Bashir 2003; Hameed and Ashraf
2008).

There is a variety of compatible osmolytes in higher plants. Important among
these are soluble sugars, organic acids, and soluble proteins. The important amino
acids that accumulate in the plants are alanine, arginine, glycine, leucine, serine,
and valine, along with the imino acid proline, citrulline and ornithine (Rabe 1990;
Mansour 2000; Ashraf 2004). Osmoregulation via accumulation of free amino acids
and in particular, glycinebetaine is the principal strategy in many plant species to
tolerate salt stress (Martino et al. 2003). Amides such as glutamine and asparagine
(Dubey 1997; Mansour 2000), and proline (Ashraf 1994; Abraham et al. 2003) have
also been reported to accumulate in large amounts in higher plants in response to
salt stress.

2.3.2 Ion Selectivity

A major feature of the solute transport by plants in saline conditions is the degree
of selectivity, particularly between potassium and sodium (Ashraf et al. 2005). One
of the most important physiological mechanisms of salt tolerance is the selective
absorption of K+ by plants from the saline media (Ashraf et al. 2006). Halophytic
or salt tolerant species differ from salt–sensitive ones in having restricted uptake or
transport of Na+ and Cl− to the leaves despite an effective compartmentalization
of these ions. This is critical in preventing the build–up of toxic ions in cytoplasm
(Munns 2002; Ashraf 2004). Ion imbalance, particularly that caused by Ca2+ and
K+ is the most important and widely studied phenomenon affected by salt stress,
which is directly influenced by the uptake of Na+ and Cl− ions (Munns 2002 Munns
et al. 2006). Maintaining better concentrations of K+ and Ca2+ and limiting the Na+

uptake are vital for the salt stress tolerance in plants (Karmoker et al. 2008). Higher
K+/Na+ or Ca2+/Na+ ratios are characteristic to the tissue salt tolerance, and are
often used as a screening criteria for the salt tolerance (Munns and James 2003,
Ashraf 2004; Song et al. 2006).
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2.3.3 Salt Exclusion

Halophytes or highly salt tolerant plants have both types of mechanisms that enable
them to survive and grow for long times in saline soils. They exclude salts efficiently
in addition to effective compartmentalization of the salts in vacuoles. Glycophytes,
on the other hand, exclude the salts but they are unable to compartmentalize them.
The mechanism of salt exclusion involves transport of salts to the leaves and subse-
quently excreted out of the plant body thereby reducing salt concentration in plant
tissues. Salts translocated in the transpiration stream are deposited and their concen-
tration increases with time. This results in much higher salt concentrations in older
leaves than those in younger leaves. Mechanisms conferring salt exclusion (both
at cellular and whole plant levels) have been reviewed by many authors (Greenway
and Munns 1980; Storey and Walker 1999; Jeschke 1984). Salt exclusion is the most
important adaptive strategy regulating the internal salt load of halophytes. As an
example, about 98% of salt was reported to be excluded in the mangrove species
Avicennia marina growing in 500 mM NaCl (Ball 1988). In perennials, exclusion is
particularly important and it is more vital to regulate the incoming salt load in the
plant body (Amtmann and Sanders 1999; Hasegawa et al. 2000).

2.3.4 Intracellular Ion Compartmentation

Sequestering of Na+ and Cl− in the vacuoles of the plant cells is ideal situation
for plants under salt stress. Exceptionally, high concentrations of salts are found in
leaves, which still function normally. Concentrations well over 200 mM are common
in halophytic or highly salt tolerant species, and such concentrations will severely
inhibit the activity of several enzymes in vivo (Munns and Tester 2008).

2.3.5 Stomatal Responses

Although there are few data available on stomatal responses of different plant
species, it is possible to identify two types of stomatal adaptations to increasing
salinity (Flowers et al. 1997): the guard cells can utilize sodium instead of potassium
to achieve their normal regulation of turgor (Ashraf 1994), or the ionic selectiv-
ity of the guard cells that use potassium and are capable of limiting the sodium
intake (Robinson et al. 1997). This mechanism may be very important in non-
secretory halophytes that lack secretion mechanisms, and it may therefore be of
particular interest as a potential contributor to the development of salt tolerance in
crops. Sodium can substitute for potassium in the stomatal mechanism (Flowers and
Colmer 2008). In Suaeda maritima, sodium is the major cation under salinity in the
guard cells of closed stomata (Flowers et al. 1989). Stomatal regulation by sodium
provides a vital regulatory mechanism for the control of excessive salt translocation
in the shoot, when a plant capacity to compartmentalize increases. In glycophytes,
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accumulation of sodium ions damages the stomatal function, and this disruption
supports their lack of survival under saline conditions (Robinson et al. 1997).

3 Conclusion

Salt tolerant plants adapt specific structural and physiological modifications to
cope with high salinities. Morpho–anatomical adaptations include the prevention
of undue water loss from the plant by the development of thick epidermis and scle-
renchyma, well developed bulliform cells for extensive leaf rolling, and increased
density of trichomes, and this is vital in water limiting environment under high salin-
ities. Increased moisture retaining capacity is the other adaptive feature which is
critical under physiological drought due to salinity stress. Development of excre-
tory structures like vesicular hairs and salt glands is a major structural adaptation
and very crucial for salt tolerance. Physiological adaptations include restricted toxic
ion uptake at root level. At cell level, succulence is crucial for dumping off toxic ions
in relatively inert areas like vacuoles. Toxic ions like Na+ and Cl− are important for
osmotic adjustment in highly salt tolerant species. Lastly, the most important point
is that ion exclusion which is one of the most vital phenomena for high salt tolerance
in plants.
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