
Chapter 1
Toxins and Their Phytoremediation

Muhammad Ashraf, Munir Ozturk, and Muhammad Sajid Aqeel Ahmad

Abstract The agricultural and industrial revolutions in the last few decades have
resulted in increased concentration of toxins in our environment that are now-a-days
a major cause of toxicity in plants and animals. Among different toxins, increasing
levels of salts, heavy metal, pesticides and other chemicals are posing a threat to
agricultural as well as natural ecosystems of the world. These contaminants result
in soil, air and water pollution, and loss of arable lands as well as crop productivity.
They also cause changes in species composition and loss of biodiversity by bring-
ing about changes in the structure of natural communities and ecosystems. In this
situation, different approaches are being adopted to reclaim polluted environments.
Among these, phytoremediation has a potential in removing these toxins from the
environment. This approach is based on the use of natural hyperaccumulator plant
species that can tolerate relatively high levels of pollutants in the environment.
Pollutants accumulated in stems and leaves of high biomass producing and toler-
ant plants can be harvested and removed from the site. Therefore, this approach
has a potential to remove large amounts of toxins by harvesting the above-ground
biomass. However, the effectiveness of phytoremediation approach can be increased
if we have better knowledge of physiological, biochemical, molecular and genetic
bases of plant resistance to natural and anthropogenic induced toxins. All these
aspects of toxicity mechanisms and their removal techniques are comprehensively
reviewed in this book.
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1 Introduction

With the increasing human population in the world, the issues related to environ-
mental degradation are becoming more serious (Koptsik et al. 2003; Jarup 2003;
Murch et al. 2003). Humans have accelerated the emission of organic and inor-
ganic pollutants such as pesticides, salts, petroleum products, acids, heavy metals
etc. Most of the pollutants cannot be easily degraded and hence they accumulate in
the environment. Although, some pollutants such as salts and heavy metals naturally
occur in soils, industry (Richards et al. 1997; Ortiz-Hernandez et al. 1999; Sharma
2005), and agriculture (Scancar et al. 2000; Yagdi et al. 2000; Delibacak et al. 2002;
Suciu et al. 2008) are considered as the major sources of anthropogenic induced pol-
lution in the environment. Accelerated accumulation of toxins in the environment
results in soil degradation, deforestation, desertification, loss of species diversity,
pollution, acid rain, greenhouse effect and other issues related to environmental
degradation.

Toxins or toxic chemicals are the inorganic and organic compounds that have
negative effects on plant growth and metabolism. These are emitted into the environ-
ment as a result of human activities. For example, salts and heavy metals are released
from leakage during extraction by mining, smelting, combustion and industrial
effluents (Nriagu and Pacyna 1988; Nriagu 1989). Similarly, extensive use of fer-
tilizers and pesticides in agriculture has resulted in considerable soil contamination.
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Other pollutants such as petroleum products, explosives, cyanides etc. also result in
considerable toxicity to living organisms.

The toxicity of a particular pollutant is determined in terms of its (i) biological
role, (ii) ability to bioaccumulate, (iii) poisonous nature, and, (iv) persistency in
the environment (Wildhaber and Schmitt 1996; Barron 2002). However, all these
aspects vary greatly for different pollutants depending upon their molecular struc-
ture and physical as well as chemical properties (Wildhaber and Schmitt 1996).
Unlike organic pollutants which are eventually converted into CO2 and H2O, inor-
ganic pollutants such as metals and salts tend to deposit in different environmental
components, especially in lakes, and estuarine and marine sediments (Ingersoll et al.
1996; MacDonald et al. 1996). Therefore, their removal is much more difficult as
compared to that of organic pollutants and requires a different strategy to adopt
for their removal. In addition, metals can easily circulate from one environmental
compartment to another. These features make them a highly environmental as well
as health hazardous if they accumulate at higher concentrations in the environment
(Philp 1995; Hu 2002).

There are various hyperaccumulator species from various groups of bacteria,
fungi, lichens, and higher plants that have the ability to uptake, accumulate or detox-
ify various organic and inorganic pollutants (Verhaar et al. 2000; Gramatica et al.
2002). This process broadly known as bioremediation utilizes various mechanisms
such as phytoextraction, phytoimmobilization or phytostabilization, phytotransfor-
mation, phytodegradation, phytostimulation, phytovolatilization and rhizofiltration
to remove toxic materials from different environmental components especially from
soil and water (Schwitzguebel 2000; Cummings 2009). All these strategies are
based on different methods and are effective for the removal of specific pollutant.
In addition, a particular strategy effective for removal of one pollutant could
be entirely useless for the removal of others. For example, phytoextraction and
phytoimmobilization could be remarkably effective for the removal of salts and
heavy metals. However, it can be entirely useless for the removal of organic
contaminants such as hydrocarbons and explosives where phytotransformation or
phytodegradation could be more effective. Therefore, the selection of a particular
plant species to recommend and grow in the contaminated areas depends on the
nature of contaminant, mechanism used by that species to remove the Contaminant,
tolerance of that plant species to the pollutant and other environmental constraints
(Huang and Cunningham 1996; Meagher 2000; Memon et al. 2001).

2 Toxins and Their Types

Toxins are generally classified into biodegradable (organic) and non-biodegradable
(inorganic) pollutants (Verhaar et al. 2000; Gramatica et al. 2002). Biodegradable
toxins are easily broken down into simpler molecules (CO2 and water) by the
activity of living organisms when they enter in the biogeochemical cycles. Such
toxins are generally not harmful as they occur in low quantities in our envi-
ronment. However, at high concentrations they prove to be highly toxic to all
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living organisms. In addition, organic toxins such as petroleum products are toxic
even at low concentrations. The examples of biodegradable pollutants include
domestic and agricultural residues, petroleum products, urine and fecal matter and
sewage water (Cunningham et al. 1996; Kazuya et al. 1999; Aboul-Kassim and
Simoneit 2001). In contrast, non-biodegradable toxins cannot be broken down into
simple and harmless products by living organisms even over long time period.
These include inorganic fertilizers, pesticides and insecticides (DDT), heavy met-
als (nickel, mercury, copper, lead, aluminum, arsenic etc.), salts (NaCl), oxides of
nitrogen and sulphur (NO2 and SO2) and cyanides (Van der Werf 1996; Misra and
Mani 1991; Sigel et al. 2005). Unfortunately, these toxins persist in the environment
for a long period of time and prove harmful to the organisms once they enter in the
food chain. Therefore, the removal of these toxins from the environment is much
more difficult as compared to bio-degradable one.

Another classification system is based on the environmental components (soil,
air or water) in which these toxins accumulate. This classification system reflects
the immediate environmental component which is exposed to the degradation by
these toxins. Toxins that accumulate in soil include salts, heavy metals, inorganic
and organic fertilizers, pesticides, and domestic, agricultural and industrial pollu-
tants etc. Similarly, toxins that are released into air include primary (CO2, CO, SO2,
NO2, CH4, ammonia, volatile organic compounds) and secondary (ozone, peroxy-
acetylene nitrate) air pollutants. Water pollution is mainly caused by sewage water,
residues from food processing units, industrial wastes, petroleum products, fertiliz-
ers and pesticides from agricultural runoff etc. Most of the toxins can easily circulate
from one environmental component to the other and finally accumulate in soil and
water bodies. These pollutants can then be easily taken up by plants and aquatic
fauna and flora and transfer to the human body where they cause serious illness and
disorders (Philp 1995; Albering et al. 1999; Korte et al. 2000).

2.1 Salts

The excessive amounts of salts in different soil profiles are the largest source of
pollutants in the environment causing the problem of salinity world-wide. It is esti-
mated that about 7% of the total earth’s land and 20% of the total arable area are
affected by high salt contents. In addition, about half of the irrigated area is highly
salinized and unfit for cultivation of agricultural crops (Szabolcs 1994; Zhu 2001).
The most common salts that create soil salinity problem include NaCl and MgSO4.
On the basis of origin, soil salinity can be classified as Primary or natural and sec-
ondary or induced soil salinity. Primary or natural soil salinity arises by weathering
of minerals derived from highly saline parent rocks (Ashraf 1994). In contrast, sec-
ondary salinization results from human interference with natural water regimes.
It occurs when native perennial vegetation is replaced by shallow rooted seasonal
crops. In addition, other activities such as overgrazing and deforestation greatly
reduce plant cover (Ashraf 1994, 2004; Ashraf and Foolad 2007). This results in
rise of underground water-table up to 2–3 m and then capillarity brings the salts
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dissolved in different soil profiles to the surface causing the problem of secondary
soil salinity (Chhabra 1996; Datta and de Jong 2002). In addition, due to reduction
in vegetative cover, the amount of water entering underground aquifers (recharge)
is increased but water taken up by plants (discharge) is dramatically reduced. This
results in rise of water-table bringing the salts stored deep in the soil to the earth
surface (Dunin 2002). Sometimes, introduction of exotic crops as well as other plant
species and extensive agronomic practices result in altered water-use requirements
of the vegetation. If this results in greater recharge of underground aquifers than
discharge, the groundwater level will rise, bringing up salts with it and thus causes
secondary soil salinity (Srivastava and Jefferies 1996).

Although high level of salt in soil can have a variety of effects on crop plants at
biochemical, molecular and physiological levels, the most common effects include
inhibition in photosynthesis, nutrient imbalance, changes in metabolic activities,
disturbance in solute accumulation, enzyme activities, and hormonal imbalance etc.
(Ashraf 1994, 2004; Tester and Davenport 2003; Munns 2005; Munns et al. 2006).
It is now widely accepted that salinity inhibits plant growth by four major ways,
(i) salt-induced water stress, (ii) specific ion toxicity (ion imbalance or nutritional
disorders), (iii) oxidative stress, i.e., production of reactive oxygen species, and
(iv) hormonal imbalances (Greenway and Munns 1980; Munns 1993, 2002; Ashraf
2004; Flowers 2004; Munns and Tester 2008). In addition, the degree of growth
inhibition due to salt stress depends on the duration of stress, plant growth stage,
and type of plant species. However, early growth stages such as germination and
seedling stages are contemplated as more susceptible to salt damage as compared to
later adult stages (Hamdy et al. 1993).

The salt effects on plant growth and development have been discussed in detail
in a number of reviews. Their main focus has been on physiology of salt toxic-
ity and tolerance, intra- and inter-cellular ion transport as well as long distance
transport in plants, identification and characterization of traits and/or genes respon-
sible for ion homeostasis, osmotic adjustment, and antioxidants whose expression
is regulated by salt stress (Ashraf 1994, 2004; Ingram and Bartels 1996; Tester
and Davenport 2003; Flowers 2004; Munns 2005; Munns et al. 2006; Munns and
Tester 2008). Of various plant responses to salt stress, accumulation of compati-
ble solutes (organic compounds of low molecular weight) is one of the prominent
responses of plants to salt stress, because this phenomenon helps the plant to
become acclimated to different stressful environments (Bohnert and Jensen 1996;
Ashraf and Harris 2004; Ashraf and Foolad 2007). Various compatible osmolytes
such as proline and glycinebetaine are considered as extremely effective in reg-
ulating growth under stressful environments and are widely distributed in a wide
variety of plants (Rhodes and Hanson 1993). These compatible solutes are of
low molecular weight, high solubility, and non-toxic, even if they accumulate at
high cellular concentrations. They protect cellular structures from abiotic stress-
induced injuries. For example, they promote osmotic adjustment, scavenge reactive
oxygen species, stabilize enzymes/proteins, and protect membrane integrity in
plants subjected to stressful conditions (Hasegawa et al. 2000; Ashraf and Foolad
2007).
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2.2 Heavy Metals

Heavy metals have gained considerable attention as a potential environmental
pollutant in recent years (Misra and Mani 1991). This is the result of their excessive
use in a number of industrial processes and therefore, their toxicity is more com-
mon as compared to deficiency in organisms (Lindberg and Greger 2002). Most
metals are commonly used in a multitude of industrial processes, such as manu-
facture of batteries, alloys, electroplated metal parts, pesticides, textile dyes and
steel etc. Consequently, they are emitted to the environment to supplement natu-
ral background geochemical sources (Barnes and Rudzinski 2006). The sources of
metal pollution in the environment include leakage during extraction by mining and
smelting, combustion (particularly during power generation, incineration, smelting
and the internal combustion engines) and industrial effluents, (Duce et al. 1991;
Galloway et al. 1982; Hutton and Symon 1986; Nriagu 1989; Nriagu and Pacyna
1988).

There are 35 metals that are of a concern to environmental health and 23 of
them are called as heavy metals. These include arsenic (As), antimony (Sb), bis-
muth (Bi), cadmium (Cd), cerium (Ce), copper (Cu), chromium (Cr), cobalt (Co),
gallium (Ga), iron (Fe), gold (Au), lead (Pb), nickel (Ni), manganese (Mn), mercury
(Hg), platinum (Pt), silver (Ag), thallium (Tl), tellurium (Te), and zinc (Zn) (Philp
1995; Hu 2002). Among these, the most common heavy metals that cause toxicity in
plants and animals are arsenic, lead, mercury, cadmium, nickel, iron and aluminum
(Hutton and Symon 1986; Chaney and Ryan 1994). Most of the metals are easily
absorbed by the plants and bioaccumulate in different organs (Wang et al. 2003).
These metals may ultimately enter the human body through ingestion of food, use
of metal contaminated water or breathing in air containing toxic metals (Philp 1995;
Albering et al. 1999; Jarup 2003).

All metals are not toxic as some of them function as micro-nutrients in less con-
centration and hence are considered as essential nutrients (Taiz and Zeiger 2006;
Timbrell 2005; Pechova and Pavlata 2007). Some of the metals are also called as
trace elements (such as iron, copper, manganese, and zinc) due to their extremely
low concentrations/requirement in biological systems (Nriagu 1989; Graham and
Stangoulis 2003). Since they are found naturally in soil, their adequate amounts are
naturally found in our foodstuffs, fruits and vegetables (Ghafoor et al. 1996; Islam
et al. 2007). They are also a component of commercially available multivitamin
products (Boullata and Armenti 2004). Most of the metals function as a cofactor of
a number of metabolic reactions. For example, Fe, Zn, Cu, Ni and Mo are among
the common metals that have known biological functions in plants (Westbroek and
De Jong 1983; Seiler et al. 1994; Taiz and Zeiger 2006). These metals are mostly
required as enzyme activator and some of them are even integral components of a
number metaloenzymes. Hence, their deficiency may lead to suppression of growth
and development of plants with visible deficiency symptoms reflected as chlorosis
and subsequent necrosis of plant tissues (Dixon and Webb 1958; Ghani and Wahid
2007).

Despite the fact that some of the metals function as essential elements in low con-
centrations, they may become toxic if they accumulate at higher concentrations in
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the environment (Verkleij and Prast 1990). Other metals (biologically non-essential)
may become toxic to organisms even at very low concentrations (Verkleij and
Prast 1990; Islam et al. 2007). The general signs associated with metal toxicity
in plants include reduced shoot and root growth, poor development of branching
system, deformation of various plant parts and abnormal flower shape, decreased
biomass production, leaf spotting, mitotic root tip disturbances, inhibition of germi-
nation, and chlorosis that can result in foliar necrosis (Ewais 1997; Madhava Rao
and Sresty 2000; Pandey and Sharma 2002; Rahman et al. 2005; Gajewska et al.
2006). Ultimately, all these processes lead to reduction in yield of agricultural crops
(Balaguer et al. 1998; Ahmad et al. 2007).

2.3 Herbicides and Pesticides

Herbicides and pesticides have long been used as the most effective means
of crop protection by controlling or eliminating the pests and pathogens. They
include fungicides, bactericides, insecticides, weedicides, herbicides, rodenticides
and algicides (Ellenhorn et al. 1997). These chemical substances are applied to
crops at different growth stages e.g., as pre-sowing seed treatments, during crop
cultivation and after harvest to protect seeds, grains and cereals from the attack of
pests and pathogens and to prolong their storage capacity (Morgan and Mandava
1988; Boesten 2000). These chemicals are applied as liquid sprays, powder and
dusts, seed-treatments, oil-based solutions and aerosols. Different examples include
dichlorodiphenyltrichloroethane (DDT), benzene hexochloride, lindane, malathion,
and 2,4-dichlorophenoxy acetic acid etc. (Morgan and Mandava 1988; Laws and
Hayes 1991). Most of the pesticides can effectively control pests and pathogens and
therefore, they are the most popular, economical and effective technology for crop
protection among farmers of different regions of the world (Mandava et al. 1985).

Although application of these chemical compounds is regarded as an effective
mean to control pest and pathogens, their application can have adverse effects on
plants and animals including invertebrate and vertebrate species (Schluz 2004).
These pesticides and herbicides can enter the atmosphere and ecosystems during
their preparation and processing procedures, application methods, post-application
evaporation and volatilization and water runoff (Van der Werf 1996; Shreiver and
Liess 2007). In addition, disposal of expired chemicals into soil and water bodies
is also a major source of their pollution in the environment (Bacci 1994). Among
different classes of these chemicals, insecticides are the most important in damaging
environment and causing toxicity to living organisms. This is followed by fungicides
and bactericides and herbicides (Marer 2000; Goel and Aggarwal 2007).

The toxic/damaging effects of pesticides and herbicides on organisms and envi-
ronment are determined by a number of features. These include (i) their chemical
nature (systemic or non-systemic), (ii) active ingredients (formulation), (iii) organ-
ism exposed, (iv) persistency in the environment, and (v) concentration used for
application (Van der Werf 1996). Besides these facts, some other factors such as
personnel skill of the applicator (farmer), time of application and weather condition
also contribute significantly towards the pesticide’s actual toxicity and can make
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them extremely hazardous. These chemicals accumulate in soil and water bodies
and prove extremely toxic to the non-target organisms including plants and animals
as well as humans (Jeyaratnam 1990).

2.4 Cyanides

Cyanides are organic compounds that comprise the cyano group (C≡N) in their
structure. Cyanide toxicity is also known as prussic acid poisoning (Vogel et al.
1987). Different forms of cyanides include hydrogen cyanide (HCN), potassium
cyanide (KCN) and sodium cyanide (NaCN). Among these, HCN is a colorless
gas with odor just like a bitter-almond while NaCN and KCN are white pow-
ders with a similar odor as that of HCN. Both NaCN and KCN are converted into
HCN when they get mixed in water and cause toxicity to living organisms (Curry
and LoVecchio 2001). Cyanogenic compounds occur naturally in certain bacte-
ria, fungi, algae and higher plants. Therefore, they occur in a variety of food and
plant products. Cyanogenic compounds naturally occur in a number of plant fami-
lies including Poaceae, Papilionaceae, Sambucaceae, Euphorbiaceae and Rosaceae.
They are found in small amounts in various plant fruits such as apple seeds, cit-
rus seeds, plums, mango stones, peach stones and bitter almonds (Poulton 1990;
Wong-Chong et al. 2006).

In plants, cyanides are generally found in bound forms as cyanogenic glycosides
and play an important role in plant defense against herbivory. For example, cas-
sava roots have been reported to contain excessive amount of cyanogenic glycosides
(Emmanuel and Emmanuel 1981). Among different cyanogenic glycosides found
in plants, amygdalin is the best characterized one, which is present in a number
of plant species especially in the leaves and seeds of cherry, almond and peach,
etc. (Santamour Jr 1998; Sánchez-Pérez et al. 2008). For example, cherry kernels
may yield up to 170 mg while bitter almond pulps up to 250 mg 100 g−1 dry
weight. Overall, cyanogenic glycosides have been reported to occur in more than
3000 plant species (ca. from 130 families) and thus these species have a potential
to produce HCN toxicity if ingested by animals and humans. However, actual inci-
dence of cyanide poisoning is low, because these plants are not frequently eaten up
by animals or humans (Curry and LoVecchio 2001).

In addition to natural sources, cyanides are also released by various industrial
sources. For example, thiocyanate is discharged in a variety of industrial wastewater
discharges, while cyanogen halides are released upon chlorination or bromination
of water containing free cyanides (Zheng et al. 2004). Cyanides are also used as
a raw material during the production of chemicals (nylon and plastic), adhesives,
cosmetics, dyes, computer electronics, pharmaceuticals, and road salts, pesticides,
rodenticides, wine, anticaking agents, fire retardents, pharmaceuticals, painting
inks, and other materials (Kjeldsen 1998). In addition, they are also directly used in
a variety of processes, including electroplating and hydrometallurgical based gold
and silver extraction (Kavanaugh 2004). Current industries that produce cyanide
as a by-product include chemical manufacturing, iron and steel making, petroleum
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refining, and aluminum smelting (Wong-Chong et al. 2006). Overall, the approxi-
mate production of cyanides is 1.4 million tons per annum (Mudder and Botz 2001)
which means over 10,000 tons of cyanide are being released into the environment
each year (Mudder and Botz 2001; Korte et al. 2000).

Cyanogenic compounds, if accidentally ingested by animals or hydrolyzed by
plants, prove extremely toxic (Schnepp 2006; Barillo 2009). This is mainly due to
their ability to uncouple cytochrome C oxidase in mitochondria. HCN can readily
bind to Fe in cytochrome in a stable and irreversible bonding (Cooper and Brown
2008). These result in disruption of electron transport chain thus blocking aerobic
respiratory pathway that contributes to 95% of the energy produced in the cells
in the form of ATP (Taiz and Zeiger 2006). In animals, tissues which are primarily
dependent on aerobic respiration for source of energy, e.g., heart and central nervous
system are markedly affected (Schnepp 2006; Barillo 2009). Thus, due to the block-
age of ATP synthesis, plants or animals die quickly as no energy will be available to
perform routine activities.

2.5 Toxic Explosives

Immense industrial and military activities are the main causes of substantial contam-
ination of the environment with toxic explosives. Worldwide, a number of explosive-
manufacturing, testing and storage facilities and military bases are contaminated
with these chemicals. In addition, inappropriate disposal of explosive wastes and old
and non-functioning weapons also contribute considerably towards environmental
pollution (Pennington and Brannon 2002). The most common examples of explo-
sives at hazardous waste sites are nitroglycerine (NG), 2,4,6-trinitrotoluene (TNT),
hexahydro-1,3,5-trinitro-1,3,5-triazine (Royal Demolition Explosive - RDX) and
octahydro-1,3,5,7-tetranitro-1,3,5,7- tetrazine (Rosenblatt 1980; Best et al. 1999).
Among these, the most toxic materials used in military activities include TNT and
RDX (Jenkins et al. 2006). Despite the threat of explosion upon exposure to large
quantities of these explosives, exposure to these explosives such as TNT can cause
severe health hazardous effects such as abnormal liver function, anemia, skin irri-
tation, and cataracts. Similarly, RDX cause severe spasm when inhaled or eaten in
large quantity. TNT and RDX also cause long-term health effects such as failure of
nervous system and heart, which could lead to death of affected individuals (Lynch
et al. 2002). In some cases, these toxic wastes may leach down to groundwater
causing toxicity far away from the contaminated sites (Best et al. 1999).

There is only a little work on the effect of explosive materials on plants. However,
the available literature suggests that these chemicals including nitroglycerine, TNT,
RDX have a variety of effects on plants growing in contaminated areas (Harvey
et al. 1991; Just and Schnoor 2004; Vila et al. 2007a; Rao et al. 2009). These effects
include retardation of seed germination, growth (fresh and dry biomass) and devel-
opment, and induction of leaf chlorosis and necrosis of plant tissues (Peterson et al.
1996; Robidoux et al. 1996; Vila et al. 2007b). Since the chemicals are mutagenic,
they can also cause lethal mutations in animals as well as plants (French et al. 1999;
Podlipna et al. 2008).
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3 Plant Resistance to Toxins

3.1 Salts

The extent of the adverse effects of salt stress on crops or other naturally growing
plants greatly differs and it depends on the type of species or cultivar, growth stage
and interaction with other environmental constraints (Ashraf 1994; Ashraf et al.
2008; Munns and Tester 2008). Therefore, a variety of information is available in
the literature depicting genetic variation for salt tolerance in crop plants. For exam-
ple, while appraising the relative salinity tolerance in field pea, canola, dry bean,
and durum wheat, Steppuhn et al. (2001) ranked these crops in an ascending order
as dry bean < field pea < durum wheat < canola. Of different Brassica species,
B. napus was found as the most salt tolerant, while B. campestris and B. nigra the
most salt-susceptible (Kumar 1995). Some other studies entailing the exploration of
mechanism of salt tolerance in canola have shown that cv. Dunkeld has high salt tol-
erance due to having higher photosynthetic, antioxidant, ion exclusion and osmotic
adjustment capacities which make it highly salt tolerant (Ali et al. 2006; Ulfat et al.
2007; Ashraf and Ali 2008).

Plants use different mechanisms to overcome high salt concentration in soil.
These include osmoregulation, compartmentalization of toxic ions, ion excretion,
scavenging of reactive oxygen species and accumulation of compatible solutes etc.
Salt tolerance in plants can be achieved by avoiding high ion concentration, i.e.,
delayed germination or maturity until favorable conditions, salt exclusion at root
level or preferential root growth in non-saline areas, compartmentation of salts
in vacuole or specialized cells such as salt glands and salt hairs or storage in
older leaves, and selective discrimination of Na+ against K+ or Ca2+ (Marschner
1995; Hasegawa et al. 2000; Munns 2002, 2005; Tester and Davenport 2003;
Flowers 2004). The antioxidant defense system includes antioxidant compounds
(tocopherols and carotenoids) and enzymes like superoxide dismutase (SOD), cata-
lase (CAT), peroxidase (POD) and many others. Plants differ in their ability to
scavenge ROS. For example, SOD in plants can catalyze the dismutation of super-
oxide to dioxgyen and hydrogen peroxide. Peroxidase or catalases can counteract
H2O2 (Shalata and Tal 1998; Garratt et al. 2002).

Accumulation of compatible solutes such as polyols, sugars, glycinebetaine, pro-
line, and other free amino acids is considered as one of the most vital components
of salt tolerance in plants. Under saline conditions, these solutes not only allow the
cells to adjust the osmotic potential to a level in the cytoplasm so as to maintain a
sufficient amount of water content (Bohnert and Jensen 1996; Subbarao et al. 2001;
Yokoi et al. 2002), but also safeguards proteins from the salt-induced dissociation of
their respective subunits (Incharoensakdi et al. 1986). Moreover, in photosynthetic
organisms, these organic solutes play a vital role in maintaining integrity of photo-
system II at high levels of salt (Murata et al. 1992; Papageorgiou and Murata 1995),
as well as the activity of enzymes involved in the mechanism of photosynthesis
(Yokoi et al. 2002; Bohnert and Jensen 1996) such as ribulose 1,5- bisphosphate
carboxylase/oxygenase (Nomura et al. 1998). Among the compatible solutes,
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accumulation of proline and glycinebetaine plays a crucial role in osmoregulation
and osmotolerance in plants (Rhodes and Hanson 1993; Hasegawa et al. 2000).
They also protect membranes and proteins against the destabilizing effects of abiotic
stresses such as salt stress and water stress. In addition, their ability to scavenge free
radicals generated under stress conditions renders them as an important marker of
salt tolerance (Kavi Kishore et al. 2005; Ashraf and Foolad 2007).

3.2 Heavy Metals

Although some of the metals function as essential elements such as copper and
zinc in low concentrations, they may become toxic if they accumulate at higher
concentrations in the environment (Verkleij and Prast 1990). Other metals (non-
essential) may become toxic to organisms even at very low concentrations (Verkleij
and Prast 1990; Loska et al. 2000; Islam et al. 2007). The concentration of essential
elements in organisms is generally controlled homeostatically i.e., they are taken up
from the environment according to the nutritional demand of a plant (Sigel et al.
2005; Mueller-Roeber and Dreyer 2007; Alloway 2008), except for some elements
like selenium, iodine and technetium (Wolterbeek 2001; Windisch 2002). If this
regulatory mechanism breaks down either due to insufficient supply (deficiency) or
excess (toxicity) of metal, its effects on growth are manifest as deficiency or toxicity
symptoms in organisms (Grusak et al. 1999; van Wuytswinkel et al. 1999; Grusak
2002; Welch 2002).

The differential variability of uptake of different metals depends on various
aspects such as the metal itself, the absorbing organism, the physico-chemical
properties of the soil environment and the levels of other important metals and
complex chemicals present in waters from different sources (Cataldo and Wildung
1978; Battarbee et al. 1988; Antosiewicz 1992). For example, free ions are largely
bioavailable forms of a metal, and the free ion concentration is usually a potential
indicator of toxicity (Seiler et al. 1994). However, in some other cases the situation
is different. For example, in case of mercury, the organic form (methylmercury) is
more toxic than the inorganic mercury ion (Wright and Welbourn 2002). In addition,
the valency of a particular metal ion also has great influence on its bioavailability
and mobility in soil and plants (Deoraj 2003; Deoraj et al. 2003).

A great deal of controversy exists in the literature on the prospective mecha-
nisms of metal tolerance. This is likely due to a lack of knowledge on issues related
to metal toxicity or due to the complexity of plant responses to metal toxicity.
Furthermore, a variety of mechanisms may have been evolved in different species
to tolerate high amounts of metals and even within the same plant species more than
one mechanism may be operational (Memon et al. 2001; Meharg 2005; Gao et al.
2007). In most studies, plant species are tested for tolerance ability by using only one
or a combination of a few metals. However, under natural conditions, most of the
sites are polluted with more than one type of pollutants (organics and in-organics)
having varying degrees of toxicity. In addition, other environmental and geophysical
features also contribute considerably for their availability and uptake. Therefore, it
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becomes extremely difficult to distinguish their toxicity and mechanism operative
for their tolerance in pants (Cataldo and Wildung 1978; Antosiewicz 1992; Deoraj
et al. 2003).

Plants can employ numerous strategies to counteract excess external metal levels.
These can be categorized into two main types, i.e., limiting the uptake or transport
of metals, and internal metal tolerance mechanisms (Taylor 1987; Clemens 2006).
In the first strategy, the toxic effects of metals are reduced by preventing the entry of
excess metals in the plant by reduced uptake. This is brought either by complexing
or precipitating metals in the root zone. Plants have the ability to precipitate metals
by elevating the pH of the rhizosphere or by excreting them in the form of anions
(Taylor 1991). However, a great deal of work has been done with limited number
of metals such as Al and extensive work for other metals is essential to appraise the
extensive validity of this mechanism.

True metal tolerance in plants could be, however, realized if metals are
sequestered/compartmentalized within the cell of different tissues so that metals are
unable to react with metabolically active cellular substances (Volesky 1990; Barley
et al. 2005; Rajamani et al. 2007). In many studies, a significant increase in the
level of organic molecules and amino acids (such as histidine) has been reported
to occur in roots of metal stressed plants (Hall 2002). These results suggest that
the complexation of metals with these organic molecules and amino acids might be
involved in reduced delivery of metals from roots to shoots and hence reduced tox-
icity in aerial parts. However, once metals are transported to the aerial parts, there
must be an effective mechanism to reduce their toxicity. As a first strategy, com-
partmentation of metal ions in the vacuole is the most plausible method of cellular
sequestration (Rajamani et al. 2007). In addition, most of the metals lead to the pro-
duction of reactive oxygen species. Therefore, most of the plants have evolved an
effective scavenging system consisting of enzymatic (superoxide dismutase, perox-
idase, catalase, glutathione reductase and ascorbate reductase) and non-enzymatic
(proline, ascorbic acid, tocopherols, glutathione, carotenoids and phenolics) anti-
oxidants. These antioxidants scavenge reactive oxygen species and protect micro-
and macro-molecules and other cellular structures from oxidative damage (Luna
et al. 1994).

3.3 Herbicides and Pesticides

Herbicides and pesticides have different effects on animals and plants. A few of
these chemicals are selective in nature while others are broad spectrum in action.
Therefore, broad spectrum pesticides are more hazardous to environment and organ-
isms as compared to selective one (Laws and Hayes 1991; Marer 2000). Most of
these chemicals persist in the environment which ultimately proves extremely toxic
to non-target plants and animals. In addition to the toxic effects of these chemicals
to plants and animals, these chemicals also contribute to soil degradation and affect
soil microorganisms (Arthur Coats 1998; Andreu and Pico 2004).

Pesticide pollution causes considerable threats to a wide variety of non-target
organisms including useful soil microbes, crops, livestock and other aquatic species.
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Avoiding or minimizing the use of toxic chemicals is essential to improve continued
existence of these non-target organisms (Calderbank 1989; Goel and Aggarwal
2007). It is now well known that soils have diverse composition and mainly consist
of mineral particles and organic matter. Different types of pesticides may interact
with the soil and form toxic residues in soils with minerals and organic matter,
which may not be recovered from the soil even through extensive extraction (Gevao
et al. 2000). The bioavailability of these bound residues is of great significance that
determines toxicity to microorganisms and plants (Khan 1982; Calderbank 1989).
Although, it has been documented that the activities of soil microorganisms pri-
marily depend on the release of bound residues from the soil, but other factors like
agronomic practices and application of some other chemicals that may change the
chemical nature of soil may cause the release of soil bound residues (Khan 1982;
Calderbank 1989; Goel and Aggarwal 2007). This might result in recycling of the
compounds into the soil solution that could be ultimately absorbed by the plants and
causes sever toxicity in plants (Andreu and Pico 2004).

Excessive use of pesticides and herbicides has been shown to produce a variety of
toxicity symptoms in plants. However, there is great variation in toxicity symptoms
depending upon type of chemical, active ingredient and concentration in the growing
environment (Morgan and Mandava 1988; Boesten 2000; Hendersona et al. 2006).
The most common toxicity symptoms in non-target plants are inhibition of seed
germination, growth retardation, loss of photosynthetic pigments, damages to the
photosynthetic machinery, fruit drop, reduced yield and a variety of other symptoms.
These defects could result in chlorosis and necrosis of plant tissues eventually lead-
ing to the death of whole plants (Nair et al. 1993; Hendersona et al. 2006; Shreiver
and Liess 2007).

3.4 Cyanides

The concentrations of cyanogenic glycosides greatly vary with phenology, growth
stage, infection by pathogens, herbivory and environmental conditions (Gebrehiwot
and Beuselinck 2001; Dzombak et al. 2006; Ballhorn et al. 2007). In plants,
cyanogenic glycosides are usually compartmentalized in cell vacuoles and thus cells
are prevented from their toxicity (Gruhnert et al. 1994; White et al. 1994; Gleadow
and Woodrow 2002). Therefore, cyanogenic glycosides in plant tissues are not toxic
unless they are hydrolyzed by plant enzymes (or rumen microorganisms) to form
free HCN (White et al. 1998). This hydrolysis is usually carried out by the enzyme
β-glucosidase that is found in plant cytoplasm. This conversion is also enhanced
when the plant cells are injured (crushing, insect attack, herbivory) or when the
plants are subjected to sever environmental stresses such as wilting or freezing stress
(Ballhorn et al. 2009).

Some plants species contain an enzyme system that is able to detoxify cyanide
by converting certain amino acids such as alanine and asparagine to cyanogenic
glycosides in which a simple sugar is bonded to a cyanide molecule (Miller and
Conn 1980; Galoian et al. 1982). In some plant species, β-cyanoalanine synthase
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(CAS) was found to be able to catalyze the conversion of cyanide plus cysteine
to β-cyanoalanine and sulfide (Miller and Conn 1980; Maruyama et al. 2001).
This enzyme occurs in a number of higher plants and plays a vital role in the
metabolism of cyanides (Maruyama et al. 2001). Since mitochondria are potential
sites of cyanide toxicity and this enzyme is exclusively localized in this organelle,
its principal physiological role has been attributed to its detoxification capability of
cyanides (Manning 1988). In another study conducted on both cyanogenic as well
as non-cyanogenic plants, asparagine was the only metabolic product found when
they were exposed to labeled 14CN (Manning 1988). In an experiment by Yu et al.
(2004) 28 plants belonging to 23 families were appraised for their performance for
removal of cyanide. These authors found that most of the plant species were capable
of readily metabolizing cyanide to non-toxic chemical. This evidence shows that the
mechanism of cyanide detoxification in plants needs to be fully explored.

3.5 Toxic Explosives

The toxicity of explosives containing nitro groups is usually attributed to the num-
ber of nitro groups. It has been suggested that different plants can take up and
degrade toxic explosives such as nitroglycerine into simpler non-toxic compounds.
In this regard, Podlipna et al. (2008) showed that the toxicity of nitroglycerine
decreased with the decreasing number of nitro groups during phytodegradation of
these chemicals by mustard (Sinapis alba), Juncus inflexus, Phragmites australis
and flax (Linum usitatissimum). Most recently, genetically engineered plants have
been shown to have greater ability to detoxify these compounds. In these plants,
toxic explosives such as TNT are converted to different compounds that are used by
the plant enzymes for further processing (Rylott and Bruce 2008). In response to the
explosive presence several genes are up-regulated, including transferases, which by
transferring a particular residue to the acceptor molecule, alter its bioactivity, sol-
ubility and/or transport properties (Ekman et al. 2003; Mezzari et al. 2005). A full
characterization of the activity of the most promising enzymes such as transferases
should be performed so that new concepts are added to the biochemical scheme of
transformation of toxic explosives.

4 Phytoremediation of Toxins

Phytoremediation, a subcategory of bioremediation, is generally defined as removal
of toxins from the environment by the use of hyperaccumulator plants. This word
has been derived from the Greek “Phyto” meaning plant, and Latin “Remedium”
meaning refurbishing balance, removal, or remediation. Thus, in the process of
phytoremediation, pollutant/toxins from contaminated soils, water or air are mit-
igated/removed by using plants which are able to hold, breakdown or remove
metals, salts, insecticides, pesticides, organic solvents, toxic explosives, crude oil
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and its derivatives, and a variety of other contaminants from different environmental
components. Phytoremediation is generally considered as efficient, inexpensive
and environment-friendly technique, as compared to other mechanical or chemi-
cal methods of remediation that involves excavation of soil from contaminated site
and ex-situ treatment for the removal of contaminants (Cunningham and Ow 1996).

Phytoremediation of contaminated soils can be achieved through various
processes. These include phytoextraction, phytoimmobilization or phytostabiliza-
tion, phytotransformation, phytodegradation, phytostimulation, phytovolatilization
and rhizofiltration (Schwitzguebel 2000; Cummings 2009). Of these strategies,
phytoextraction or phytoaccumulation consists of natural or induced (enhancement
through use of chelating agents) potential of plants, algae and lichens to uptake
and remove pollutants from soil, water environment by accumulating them into
harvestable biomass. This method is traditionally used for the removal of heavy
metals and salts from the contaminated soils. Phytostabilization is stabilization of
the toxic pollutants over a long-term. Some plants have natural ability to immobi-
lize pollutants by providing a region around the roots where these pollutants can
be precipitated and stabilized. Unlike phytoextraction, phytostabilization involves
sequestering of toxins into the rhizosphere, thereby preventing metal uptake by plant
tissues. Therefore, pollutants turn out to be less mobile and bioavailable to plants,
wildlife, livestock, and humans. Phytotransformation is the conversion of different
types of organic pollutants by certain plant species to non-toxic substances. In addi-
tion, microorganisms living in soil and water and those associated with plant roots
may metabolize these substances to non-toxic ones. However, it is imperative to
note that these tenacious and complex compounds cannot be degraded to simple
molecules such as water, carbon dioxide etc. by plant metabolism. However, in this
process, a change in their chemical structure is brought about that reduces their tox-
icity to living organisms. Phytostimulation involves the enhancement of uptake of
pollutants by increasing the activity of soil microorganisms to degrade the contami-
nants. This involves normally the activity of those organisms that live in association
with the roots of higher plants. Phytovolatilization is the removal of substances from
soil or water and hence, their release into the atmosphere. Rhizofiltration is the filtra-
tion of contaminated water through a mass of roots so as to remove toxic substances
or surplus nutrients (Raskin and Ensley 2000).

The use of phytoremediation approach for the removal of environmental toxins
has been greatly appreciated due to its environmental friendliness. In comparison to
the conventional methods being used for cleaning up contaminated soil that dam-
age soil structure and hamper soil fertility, phytoextraction can clean up the soil
without causing any major change in soil quality and fertility. Another potential
benefit of phytoextraction is that it is comparatively cost-effective as compared to
any other traditional clean up method in vogue. In addition, the effectiveness of
plants in the process of phytoremediation can be easily monitored by their growth
potential under contaminated soils (Salt et al. 1995, 1997; McIntyre and Lewis 1997;
Sadowsky 1999; Raskin and Ensley 2000; Schwitzguebel 2000). Despite all these
advantages, the process of phytoremediation is criticized due to its certain limi-
tations. For example, it can reclaim only surface soils as well as up to the depth
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occupied by the plant roots. As this process depends on the ability of plants to
uptake and degrade/metabolize, so more time is required as compared to traditional
but highly efficient methods used for cleaning of contaminated soils. In addition,
with plant-based remediation systems, preventing leaching of pollutants to ground-
water aquifers is not easy without the complete removal of the pollutants from the
soil. The survival of the plants growing in the contaminated land is determined by
the extent of toxicity of pollutants. Finally, there is always a risk of bio-accumulated
contaminants in plants to enter into the food chain, from primary producers to pri-
mary consumers and upwards, and finally to humans (McIntyre and Lewis 1997;
Chaudhry et al. 2002; Prasad 2004a, b; Lupino et al. 2005).

Remediation of saline soils by using highly salt tolerant plants (halophytes) has
been suggested as an economical approach. Some halophytic species (e.g., those
of Atriplex, Suaeda, Salsola, Chenopodium and Portulaca) could uptake salt ions
through roots and metabolize or store them in the leaves through the process of
phytoextraction (McKell 1994; Grieve and Suarez 1997). The salt uptake and accu-
mulation by these halophytes can reduce the salt level at least at rhizospheric level,
and make the soil suitable for growth of the agricultural crops with better yield
(Zuccarini 2008). This approach seems to be effective because many halophytic and
highly salt tolerant plant species naturally grow on highly saline soils and hence
can be employed to reclaim saline soils. This approach appears to be less expen-
sive when conventional soil reclamation and advanced biochemical and genetical
modification approaches are costly. However, it should be clear that the salt toler-
ance ability varies greatly within species as well as within populations of the same
species. In addition, it also depends on interaction of salinity stress with other envi-
ronmental adversaries that limit plant growth under that set of environments (Ashraf
2004). Therefore, the successes of a particular halophyte may differ greatly under
different environments that need to be explored by proper experimentation. In addi-
tion, if the phytoremediation potential of halophytes is aided by other conventional
techniques, the amelioration processes would be more fast, effective, reliable and
sustainable (Ashraf et al. 2008).

Heavy metals from contaminated soils can best be removed by phytoextrac-
tion or phytoaccumulation techniques without destroying the soil structure and
fertility. In this approach, toxic metals are absorbed and accumulated into the
biomass that can be easily harvested and removed from the contaminated areas
(Huang and Cunningham 1996; Chaney et al. 2000; Lasat 2000). Phytoextraction
can be achieved using natural or chelate assisted extraction of heavy metals
from the contaminated soils. Continuous or natural phytoextraction involves
the removal of metals depending on the natural ability of a particular plant
species to accumulate metal contaminants without showing any significant
symptoms of toxicity (Salt et al. 1995, 1997). In contrast, in chelate assisted or
induced phytoextraction, the phytoremediation potential of different species is
enhanced by synthetic chelates such as ethylenediaminetetraacetic acid (EDTA),
S,S-ethylenediaminedisuccinic acid (EDDS), trisodium nitrilotriacetate (Na3NTA),
N-hydroxyethyl-ethylenediamine-triacetic acid (HEDTA), ethylenediamine
di-(o-hyroxyphenylacetic acid) (EDDHA), trans-1,2-diaminocyclohexane-
N,N,N ′,N ′-tetraacetic acid (CDTA), ethylene glycol-bis(β-aminoethyl ether),
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N,N,N ′,N-tetraacetic acid (EGTA), and diethylenetriaminepentaacetic acid (DTPA)
(Blaylock et al. 1997; Kulli et al. 1999; Kayser et al. 2000; Grcman et al. 2003;
Kos and Lestan 2003). These chelates generally increase the mobility and uptake
of metal contaminants by plants many-folds as compared to natural conditions.
However, it must be understood that the success of phytoextraction technique
mainly depends on the ability of a plant species to (i) extract large quantities of
heavy metals into their roots, (ii) translocate the heavy metals to above-ground
parts, and (ii) produce a large quantity of plant biomass (Grcman et al. 2003; Kos
and Lestan 2003; Luo et al. 2004). Other factors such as growth rate, element
selectivity, resistance to disease, methods of harvesting, are also important in
determining the success of this technique (Baker et al. 1994; Cunningham and Ow
1996). Therefore, slow growth, shallow root system and small biomass production
limit the potential of hyperaccumulator species (Brooks 1994). This technique has
successfully been used for the removal of almost all known metal contaminants by
various plant species.

Phytovolatilization involves the uptake of contaminants from polluted soil and
their transformation into volatile compounds and their extraction into the atmo-
sphere by transpiration. This technique is relatively less useful for removal of heavy
metals as the pollutant must (i) be taken up by plants through roots, (ii) pass through
the xylem to the leaves (iii) be converted into some volatilable compounds, and
(iv) volatilize to the atmosphere (Mueller et al. 1999). Despite these limitations,
this technique has been reported to be useful for the removal of mercury from the
polluted soils by transgenic tobacco plants carrying bacterial mercury detoxifica-
tion genes merA and merB (Rugh et al. 1996, 1998; Bizily et al. 1999, 2000). The
genes (merA) encodes the enzyme mercuric ion reductase that reduces ionic mer-
cury (Hg+) to the less toxic volatile Hg(0) using NADPH reducing equivalents.
In this process, the mercuric ion is transformed into methylmercury (CH3Hg+)
and phenylmercuric acetate (PMA), that are fat-soluble and finally to metallic ele-
mental mercury Hg(0) that is volatile at room temperature (Langford and Ferner
1999). In another study, plants growing on high selenium media have been shown to
produce volatile selenium in the form of dimethylselenide and dimethyldiselenide
(Chaney et al. 2000). However, this technique has the biggest disadvantage that
most of the pollutants evaporated into the atmosphere are likely to return back to
the ecosystems by precipitation (Hussein et al. 2007). Additionally, the success of
this technique has a been test only for a limited scale under controlled conditions
and a lot of work has to be done for determining its effectiveness for other metals as
well as under field conditions.

Rhizofiltration i.e., removal of metals by passing through a mass of roots, can
be used for the removal of lead, cadmium, copper, nickel, zinc and chromium,
which are primarily retained with in the roots (Chaudhuri et al. 2002; United States
Environmental Protection Agency Reports 2000). This technique has been tested
using different crop plants such as sunflower, Indian mustard, tobacco, rye, spinach
and corn, as well as tree plants such as poplar (Chaney et al. 1997; Eapen et al.
2003; Pulford and Watson 2003; Biró and Takács 2007; Lee and Yang 2009).
Among these, sunflower and poplar have the greatest ability to remove metals from
the contaminated environment (Prasad 2007; Zacchini et al. 2009). The greatest
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benefit of the rhizofiltration method is that it may be conducted in-situ, with plants
being grown directly in the contaminated soil and water bodies. It does not involve
removal and ex-situ treatment of contaminants. Therefore, it is considered as a
relatively cheep procedure with low capital costs. Operational costs are also low
but it depends on the type of contaminant as well as selection of plant species.
Additionally, crop may be converted to biofuel, used as a substitute for fossil fuel
or used in other domestic and agricultural purposes (Chaudhry et al. 2002; Rugh
2004). Despite this, the applicability of this method is very limited. First of all, the
plants species selected may grow well in moderately contaminated areas but might
show poor performance in highly contaminated sites. Secondly, contaminants that
lie in deep soil below the rooting depth will not extracted by this method. Therefore,
plants with shallow root system will not be much effective as the deep-rooted plants.
Thirdly, it normally takes many years to reduce the concentration of the contaminant
to regulatory levels. Fourthly, most sites are contaminated with a variety of con-
taminants including metals, inorganics and organics. In this case, the use of plants
for removing the pollutant through rhizofiltration will not be sufficient and would
require support of some other methods. Plants grown on polluted water and soils
may become a threat to animal and human health. Therefore, a careful attention
should be taken while harvesting and only non-fodder crops should be chosen for
the remediation of soil and water through the rhizofiltration method (Cunningham
and Ow 1996; Chaudhry et al. 2002).

In bioremediation of herbicides and pesticides, plant metabolism contributes to
their removal by transformation, break down, stabilization or volatilization after
uptake from soil and groundwater. Biodegradation of these chemicals is mainly
carried out by both bacteria and plants. However, bacterial degradation of these
chemicals is more efficient as compared to plants (Roberts et al. 1993; Allison et al.
1995; Hall et al. 2000; Hendersona et al. 2006; Liao and Xie 2008). Bioremediation
by microbes is mostly active in the upper layer of the soil surface, where the
organic matter is the source of nutrients for their activity (Navarro et al. 2004). The
degradation process consists of formation of metabolites and their decomposition
to inorganic and simple products that are generally harmless to living organisms
(Sassman et al. 2004, Sparks 2003, Kale et al. 2001). Some fungal species such as
Phanerochaete chrysosporium and Phanerochaete sordida have also been shown
to actively degrade pesticides such as DDT from the contaminated soils. This
extremely toxic chemical was transformed into comparatively less toxic products
such as DDD and DDE (Bumpus and Aust 1987; Safferman et al. 1995). Although
both these chemicals are less toxic to micro-organisms, which have the ability to
metabolize and detoxify them into more simple products and their high concen-
tration can prove extremely toxic to these organisms (Bumpus and Aust 1987;
Safferman et al. 1995; Osano et al. 1999).

In addition to the role of bacteria in biodegradation of herbicides and pesticides,
many plants contain certain enzymes that can break down and convert ammuni-
tion wastes, chlorinated solvents such as trichloroethylene and other herbicides
to simpler and harmless molecules. The enzymes include oxygenases, dehaloge-
nases and reductases (Black 1995). In some studies, it has bee reported that some
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grass species such as big bluestem, switchgrass, and yellow Indian-grass have a
potential to remove pesticide residues from the contaminated soils. These species
can develop a region around rhizosphere with microflora that can readily detox-
ify pesticide residues (Hoagland RE, Zablotowicz 1995; Marchand et al. 2002;
Hendersona et al. 2006). Specific strains of atrazine-degrading bacteria have been
shown to have atrazine chlorohydrolase that can enhance the rate of biotransforma-
tion of atrazine in soil. In addition, these prairie grasses were also found to reduce
the rates of leaching of pesticides from soil to ground water (Hendersona et al.
2006). In another study by Coats and Anderson (1997) some members of Kochia
sp. were found to be effective in degradation and detoxification of various chemi-
cals such as atrazine and trifluralin. In this case, most of the degradation occurred
in the rooting zone (rhizosphere), suggesting that micro-organisms residing in the
rhizosphere of these plant were involved in enhanced degradation of these pesti-
cides. Additional experimentation on members of Kochia sp. by the same authors
have shown to be promising for the removal of pesticide from soils and groundwa-
ter (Arthur and Coats 1998). In laboratory experiments, poplar tree with fast growth
potential and deep root system were found to be very successful in the removal
of atrazine and arochlor from soil and groundwater. In this case, poplar plantations
absorbed and metabolized these harmful compounds to less toxic chemicals (Burken
and Schnoor 1996; Burken and Schnoor 1997; Nair et al. 1993).

Various plant species have the potential to remove cyanides from the polluted
environments. These include hybrid willows (Salix matssudana Koidz x Salix
alba L.), weeping willows (Salix babylonica L.), basket willows (Salix viminalis),
poplar (Populus deltoides), upright hedge-parsley (Torilis japonica), Chinese elder
(Sambucus chinensis), snow-pine tree (Cedrus deodara (Roxb.) Loud), water
hyacinth (Eichhornia crassipes) and many other plant species (Ebbs et al. 2003;
Yu et al. 2004 2005; Larsen et al. 2004; Taebi et al. 2008). However, their reme-
diation ability varies greatly and differs with plant species, age and level of toxin
in the environment. Hence, the decision whether to use a particular species for
phytoremediation of cyanides should be carefully evaluated before any sound rec-
ommendation. In addition, it has also been shown that the removal of cyanide may
also be carried out by certain species of micro-organisms through the process of
biodegradation (Dubey and Holmes 1995).

As mentioned earlier, some plant species have the ability to uptake, transport and
detoxify the cyanogenic compounds. The basic detoxification mechanism in toler-
ant species is phytodegradation in which the conversion of cyanides to cyanogenic
glycosides is carried out by specific enzymes. This helps these plants to reduce
the level of cyanide to non-toxic levels and maintain growth under cyanide pol-
luted environment. In view of a report a small amount of cyanides can also be
evaporated through phytovolatilization (Trapp and Christiansen 2003). This pos-
tulation was confirmed by the work of Yu et al. (2004) in which it was found that
1.5% of total cyanide fraction could be evaporated through leaves. However, they
suggested that this small fraction is not sufficient enough to confirm whether the
process of phytovolatilization is involved in the removal of cyanides from contami-
nated soils. Later, Larsen et al. (2004) did not find a significant relationship between
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evaporation and removal of cyanides by basket willows. However, they confirmed
the involvement of two potential enzymes beta-cyanoalanine synthase and beta-
cyanoalanine hydrolase in the ability of willow to detoxify cyanides. This evidence,
although insufficient, shows that bioremediation of cyanides from the environments
polluted can be carried out mainly by biodegradation and on a limited scale through
phytovolatilization.

The primary solution for the remediation of soils affected with explosive chemi-
cals is soil evacuation and ex-situ treatment by incineration or secured land-filling.
However, this method is extremely cost-intensive, destructive to the environment,
and not practicable by any means. In this situation, bioremediation is an afford-
able and environment-friendly method and has been evaluated using a number of
bacterial strains and a few plant species. A number of fungi, yeast, bacteria and
other microorganisms present in the root zone (rhizosphere) of higher plants have
been shown to break down organics such as explosives, fuels and solvents (French
et al. 1998; Bhadra et al. 1999; Burken et al. 2000; Hawari et al. 2000). Among
plants, willow and poplar have been extensively used in the cleaning-up of soils
contaminated with toxic explosives. It has been reported that hybrid poplar (Populus
deltoids x P. nigra) is very effective in removal of TNT when it was grown in
hydroponic solution, but it translocated only 10% of total TNT to the foliar parts
(Thompson et al. 1998). In another study, clones of hybrid willow (Salix clone
EW-20) and Norway Spruce (Picea abies), were found to be very effective in
readily metabolizing TNT to non-toxic intermediates (Schoenmuth and Pestemer
2004).

A limiting factor for using phytoremediation approach of explosives is that it is a
very slow and in most of the cases an incomplete process. This leads to accumula-
tion of a variety of intermediate metabolites that can be further incorporated into the
food chain and may ultimately reach humans (Dietz and Schnoor 2001; Aken 2009).
Recently, a number of bacterial genes have been introduced into plants to enhance
inherent limitations of plant detoxification capacities. For example, various bacte-
rial genes encoding enzymes involved in the detoxification of explosives have been
successfully introduced in plants. In this regard, the genes encoding nitroreductase
and cytochrome P450, have been successfully engineered in a number of plants. This
has resulted in a considerable improvement in uptake, detoxification and tolerance
to toxic explosives by these plant species (Cherian and Oliveira 2005; Park 2007;
Aken 2009).

5 Conclusion

Although phytoremediation is very helpful in removing contaminants from polluted
soil and water, it is absolutely not the complete answer to all contamination prob-
lems. It is a fact that once pollutants are added to the environment, they cannot be
completely removed due to their ability to circulate among different environmen-
tal components and food chains. Therefore, as a first strategy, we must try to avoid
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or reduce the addition of pollutants to the environment. Secondly, if soil or water
environment has been polluted, we must adopt in-situ and environment-friendly
approach such as bioremediation to overcome this problem rather than ex-situ and
destructive remediation methods.

The use of phytoremediation approach to remove contaminants has been greatly
appreciated due to its environment friendliness. Perhaps, the greatest benefit of
this approach is that plants are directly planted in the contaminated soils and it
does not involve massive soil evacuation and ex-situ treatment for removal of con-
taminates. This feature greatly reduces the operational as well as capital costs
incurred and renders this method less expensive than any other in-situ and ex-situ
clean-up methods. In comparison to the traditional methods used for removing
contaminants from contaminated soil that degrade structure of soil and reduce fer-
tility, phytoremediation can clean-up the soil exclusive of bringing about any major
change in soil quality and fertility. In addition, the effectiveness of plants in the
process of phytoremediation can be easily monitored by examining their growth
potential when grown in contaminated soils. Some crop products may be converted
to biofuel, used as a substitute for fossil fuel or employed in other domestic and
agricultural purposes.

Despite the attractiveness of bioremediation as environment-friendly, economi-
cal and feasible approach, it has certain limitations as its full potential is still being
discovered. First of all, most plants have shallow root system and can generally grow
and remediate in only top soil up to 3–4 feet. Even if we use deep-rooted plants, it
can effectively remediate up to a depth of only 10 feet and thus may not be effective
for the remediation of groundwater. Secondly, it requires a considerable time-period
to effectively remediate a contaminated site and bring the level of contaminants to
acceptable levels. It also requires a continuous monitoring of the effectiveness dur-
ing this process that increases capital cost. Thirdly, in most of the bioremediation
techniques such as phytoextraction and phytostabilization, plants uptake pollutants
from soil and then transport and accumulate them to their above-ground parts such
as stems or leaves. In this case, pollutants are not completely biodegraded to non-
toxic compounds, but accumulate in plant tissues. This can be extremely harmful
to primary (herbivores) and secondary (human) consumers. Fourthly, sometimes, it
is impossible to predict the byproducts of transformation process and in this case
degradation of some pollutants, such as DDT leads to accumulation of byproducts
such as DDE and DDD that proved extremely toxic in most organisms. Although
some microorganisms have the capacity to detoxify or metabolize them (DDE and
DDD) to more simple and harmless products, their high concentrations can be
toxic to them. Finally, some pollutants are extremely resistant to biodegradation and
some are recalcitrant in nature. Therefore, the removal of these compounds requires
superior and efficient organisms or alternative methods.

An extensive research work is required to fully understand the mechanism of bio-
remediation. It could be achieved through immense work in the fields of physiology,
molecular biology, and biochemistry. Different species of plants and microor-
ganisms need to be identified and carefully evaluated for their bioremediation
potential. In addition, different genes found in micro-organisms with a potential
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of bioremediation can be identified and introduced into crop plants and trees. This
would enhance the efficiency of natural hyperaccumulator species for the effective
removal of environmental pollutants. Since most of the soils and water bodies are
polluted with more than one type of pollutants, an integrated approach should be
used to get the maximum benefits of bioremediation.
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