Chapter 8
Detection and Identification of Weeds

Martin Weis and Markus Sokefeld

Abstract This chapter reviews the approaches for the automation of weed
detection. Site-specific plant protection needs to address the varying weed infes-
tation, but the automation is only partially solved and research is still ongoing.
The properties for plant species distinction as well as approaches that use them
are presented. The focus is on image based methods, of which an example is given.

1 Introduction

The detection of weeds is the prerequisite for successful site-specific weed man-
agement. For a uniform treatment the average weed infestation level, weed species
composition and growth stages of weeds and crop have to be known. Herbicides or
mechanical weed control methods are applied uniformly across the total field, if the
economic weed threshold is exceeded. The spatial and temporal variation of weed
populations needs to be assessed, if the treatment should vary within a field. It is
also needed to select and adapt the herbicide mixture. Commonly, the number of
weeds per square meter and/or the weed coverage for each species are measured.
This data can be used to estimate the expected yield loss and to decide for each part
of the field which weed control method is warranted.

Different methods have been proposed to assess the weed infestation within a
field. The most common approach is the weed scouting by human experts. This
approach can be done by the experienced farmer or a consultant. An expert can
take the history of the weed infestation over the years into account and focus on
the most prominent weed species, which are relevant for the yield loss. Different
sampling schemes for the within-field estimation were used. Weed infestation can
be measured by regular or irregular sampling. Positions of the sampling points can
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be determined using a local coordinate system and regular distances between the
sampling points, or their coordinates can directly be measured with GPS (Global
Positioning System) technology. Most studies used a sampling scheme which was
constrained by the time and manpower available. The effect of different grid sizes
and interpolation techniques have been discussed by Backes et al. (2005), Hamouz
et al. (2006), and Heijting et al. (2007). Many weed patches remained undetected, if
the grid size exceeded a distance of 15-30 m between the sampling points. An eco-
nomic evaluation of the manual sampling versus an automatic approach was done by
Oebel and Gerhards (2005), estimated costs are about 60€/ha for the manual sam-
pling at regular spaced grid points (8 x8 m). The use of a mobile GIS (geographic
information system) to map the infestation reduced the costs to 26€/ha.

Since the manual weed sampling is too expensive for practice-oriented manage-
ment, automatic methods to assess the infestation have been developed (Brown and
Noble 2005). Automatic weed sampling provides a way to increase the amount
data gathered in the field (smaller sampling intervals) at lower overall costs of
6-11€/ha (Oebel and Gerhards 2005). Sensor technology has already been used to
apply herbicides site-specifically, resulting in 30-70% reduction of herbicide use.
Depending on the application technology the sensor design has to be adapted; if
small robots are used to manage weeds, the driving speed may be lower than with a
boom-sprayer.

2 Properties to Distinguish Plant Species

To distinguish plant species from each other, certain characteristic properties have
to be identified, which can be measured automatically. Experts identify species by
their shape and plant morphology. The location of a plant is a useful property to
distinguish species, on the large scale there are several habitats, on the small scale
there are locations within a field with a higher probability of occurrence, e.g. at
the borders of a field, on certain soil types or between the rows in row cropping
systems. In the following sections useful properties for distinguishing plant species
are evaluated.

2.1 Spectral Properties

Intact green plants transform the incoming light by their chlorophyll pigments,
which absorb mostly red as well as violet and blue light. Only a fraction of the
green and most of the near infrared light is reflected. The spectral reflectance of
plants has a minimum in the visible wavelengths of about 650 nm and increases
towards the invisible near infrared above 700 nm. The steep part of the curve is
called the ‘red edge’ (Fig. 8.1; Guyot et al. 1992). Plant characteristics — chloro-
phyll content, leaf area index LAI, biomass and water status, age, plant health levels
(Shafri et al. 2006) — can be derived from the position of the red edge (REP), usually
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Fig. 8.1 Reflectance curves for soil (filled dots) and different plant species with the typical steep
incline (red edge) between 680 and 750 nm wavelength

determined by the position of the turning point (point of maximum slope). The spec-
tral curves of different plants have a similar nonlinear shape, but the soil curve in
Fig. 8.1 is linear. The local extremes of the plant curves are within the green band
(550 nm, maximum), the red band (660 nm, minimum) and near infrared (750 nm,
maximum).

Several spectral indices have been proposed that make use of the different
reflectance in the green (G), infrared (IR) and red (R) part of the spectrum. Ratios
or subtraction of the values at the extremes lead to the highest differences for plants
and soil and are therefore useful for the discrimination of plants against their back-
ground. From Fig. 8.1 we can conclude, that the highest difference exists in the
near infrared and red spectrum (see also image example in Fig. 8.4). One important
index is the normalised difference vegetation index NDVI (Eq. 1), the values are
normalised to the interval [—1, 1], with values near one meaning a high amount of
chlorophyll. This index correlates well with the biomass and LAI and has been used
in remote sensing applications (Godwin and Miller 2003, Lépez-Granados et al.
2006, Reyniers et al. 2006) and for near-range sensors to measure plant biomass
production, crop vitality and to forecast crop yield. A few commercial products for
weed control with optoelectronic equipment exist that use this spectral information:
DetectSpray® (evaluated by Biller 1998) and WeedSeeker® (used by Sui et al.
2008).

Depending on the availability of the measured wavelengths several indices have
been used and compared to identify living plant material against the background
(Woebbecke et al. 1995, Meyer and Neto 2008). The soil adjusted vegetation index
(SAVI, Eq. 1) introduces a variable L into the formula of the NDVI. L can be used
to adjust for the soil component; values near O are used for high vegetation cover.
Variations of these indices exist; Haboudane et al. (2004) compared several indices
for an estimation of the leaf area index. Langner et al. (2006) developed an index
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called DIRT (difference index with red threshold) to improve the contrast between
plants and background in mulched areas (DIRT = sign(f - R) NDVI, with f = 0.12).

NDVI = (IR — R)/(IR + R)
SAVI = [(IR — R)/(IR + R + L)I(1 + L); L[0, 1] "
EGI =2G—R—B

NDI = (G — R)/(G + R)

Transforming RGB colour space images into the HSI (hue, saturation, intensity)
colour space leaves the brightness in the intensity channel and colour information
in the hue and saturation channels, which then can be used to identify green parts.
For standard RGB images the excess green index EGI has proven to be useful for
the enhancement of green plant material in many studies (Rasmussen et al. 2007,
Burgos-Artizzu et al. 2008). An example for the EGI is shown in Fig. 8.2. Equation
(1) contains the formulae for the most important indices.

The spectral reflectance is influenced not only by the plant characteristics, but
also depends on the illumination conditions. Atmospheric changes lead on the one
hand to different spectral characteristics of the illumination, on the other hand the
amplitudes can vary much; direct sun and cloudy conditions differ by factors of
1,000 or more in the amount of light. Therefore some approaches use controlled
conditions with artificial lighting and exclude the natural illumination. Artificial
lighting equipment has the advantage to make the measurement independent of the
external illumination conditions.

Piron et al. (2008) evaluated 22 wavelength bands for weed and crop (carrots) dis-
crimination, and found an optimum with three wavelengths at 450, 550 and 750 nm,
reaching a classification accuracy of about 65% for carrots and 80% for weeds. They
used artificial lighting to reduce the variability of the natural light conditions in the
field. Paap et al. (2008) used a line sensor and LED illumination (635, 670 and
785 nm) to distinguish plants from background. Several approaches explored the
spectrometric properties to distinguish different species. Zwiggelaar (1998) found
the spectral properties alone not to be able to discriminate all weed species. In more
specific cases the spectral information was successfully used to discriminate weed
and crop. Borregaard et al. (2000) used a line scanning spectrometer with artificial

Fig. 8.2 Green, red and blue components of a standard RGB camera combined to EGI image
(from left to right), enhancing the plants (bright) against the background (dark). Gray values were
stretched for better contrast in print
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light and were successful in discrimination of plant and soil as well as crops (sugar
beet and potatoes) and three weed species. They used stepwise linear discriminant
analysis to select six wavelengths (694, 970, 856, 686, 726 and 897 nm), of which
they found the first three to be able to discriminate the five species with an accuracy
of 60% and crop and weeds with an accuracy of 90%. Girma et al. (2005) selected
five bands between 515 and 865 nm and ratios of them (515/675, 555/675, 805/815,
and 755) to distinguish two weed species and winter wheat under controlled condi-
tions (greenhouse). Two trials led to classification accuracies of 64 and 90%. Wang
et al. (2001) also selected five wavelengths (496, 546, 614, 676, and 752 nm) and
reached 62—-86% classification accuracy for the discrimination of nine grouped weed
species, soil and wheat. Okamoto et al. (2007) use a spectrometric line sensor with
420 channels of 10 nm to distinguish sugar beet and four weed species with a suc-
cess rate of about 75-89%), if the data were transformed by a wavelet decomposition
and classified using selected wavelet coefficients.

2.1.1 Remote Sensing

Lamb and Brown (2001) reviewed the use of remote sensing (RS) imaging for weed
detection. They conclude, that the use of remote sensing is limited in general due to
the low spatial resolution, which does not permit the analysis of weeds on a sub-field
scale.

A high infestation level of weeds within patches is accompanied by locally
increased biomass production. Early in the season the effect can be used to locate
the patches, if the weeds germinate earlier than the crop. Backes and Jacobi (2006)
explored remote sensing techniques to detect patches of dicotyledonous weeds in
sugar beet using the NDVI.

Thorp and Tian (2004) identified the problem, that the spectral measurements
are mixed signals of soil and plant material. The proposed analysis methods for
weed detection have to be improved and further developed to reliably detect dif-
ferent weed species, not only local changes in biomass density. Another problem
remains the availability of up-to-date imaging material, since RS sensors need clear
sky conditions (without clouds) and their update cycles might be of too large inter-
vals. Later in the season patches can be identified using RS: Lépez-Granados et al.
(2006) used hyperspectral RS to map grass weed infestations in wheat late in the
season. Their accuracies for the grass weed patch detection were about 90%.

2.1.2 Fluorescence

Chlorophyll fluorescence of the plant photosystem is an indicator for the effec-
tiveness of the photosynthesis. The fluorescence intensity shows a typical temporal
change after saturation of the photosynthesis system with light, called the Kautsky
effect. Kautsky functions indicate healthiness of the plants but can also be used
to distinguish different species due to the different leaf structure and leaf angle of
grasses and dicotyledons. The fluorescence effect can be used to distinguish living
plants from other objects and may lead to methods for species discrimination in
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the future. A problem for online weed identification is the time of measurement,
since the effect can be explored best when the measurements are taken over a cer-
tain period of time (seconds to minutes). Current research tries to explore shorter
measurements, which may lead to suitable sensing equipment for online species
discrimination in the future. Keridnen et al. (2003) reduced the measurement time
by reducing the pre-measurement dark adaption period to practicable times under
field conditions. They were able to distinguish six species using a neural network
classifier.

2.2 Location and Temporal Properties

The location of plant species can be used to identify them. Most weeds occur in
patches within a field (Heijting et al. 2007) and their location was found to be stable
over years. This effect is due to persistent seed banks in the soil and variable germi-
nation conditions. The germination rate is higher in areas with a high seed density.
Perennial weeds have additional vegetative reproduction organs such as rhizomes,
tubers and roots, from which the plants regenerate (e.g. Convolvulus arvensis,
Cyperus esculentus, Cirsium arvense, Agropyron repens). Therefore, patches of
perennial weeds were found to be most aggregated and stable. Historical maps can
be used to predict the occurrence of weeds (Dille et al. 2002, Mortensen 2002). This
information is especially useful for preemergence herbicide applications.

The position of weeds can also be helpful on a smaller scale, the plant level. In
row crops weeds can be detected between the rows, since no crop plant is expected
to grow there. Sensors detecting green plants between the rows have successfully
been used for this purpose (Astrand and Baerveldt 2004). Slaughter et al. (2008)
described the robust weed detection as a primary obstacle for robotic weed con-
trol technology and review the approaches for weed detection as well as actuator
technology.

Several image processing approaches for row detection have been proposed, most
of them using standard RGB images. Bossu et al. (2009) determined crop rows for
intra-row weed detection and Jones et al. (2007) developed a system to create arti-
ficial images to test weed detection algorithms in crop rows. Bakker et al. (2008)
used a Hough transformation to detect linear structures in images to find the rows.
Astrand and Baerveldt (2004) modelled Gaussian location probability functions for
the crop plants in the row and locate the weed plants at locations with low proba-
bility values, either between the rows or within the row at locations between crop
plants. Burgos-Artizzu et al. (2008) used large row spacing (barley) and the column
sums of the intensities to determine crop rows. They determined crop rows and used
additional (expert) knowledge about the scenes to determine optimal parameters for
the image processing and feature extraction process.

2.2.1 Morphological Properties

The morphology of the plants is important for the determination of the species by
a human expert. Dicotyledons and monocotyledons have a different morphology,
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e.g. the number of cotyledons and the structure, compactness and diameter of the
leaves, which contribute to the overall appearance.

The third dimension can provide information about the orientation of the leaves
and the height above ground and leaf structure. The three-dimensional (3D) struc-
ture of the plants is a feature, which has not yet been investigated often. Reasons are
that the acquisition of suitable 3D data is computationally intensive or requires spe-
cial 3D measuring equipment, which became available in the recent years. Chapron
etal. (1999) and Andersen et al. (2005) proposed a stereo vision method, extracting
height information from two aligned images. The height information can be used to
detect overlapping of leaves and can be helpful to separate leaves above others from
the ones below.

2.2.2 Overlapping

Occlusion and overlapping is one of main problems for all image processing
approaches. The plants in the images, especially the long-leaved ones like cereals
and grass weeds, tend to overlap. Overlapped leaves are segmented as one object,
since they lead to connected regions, of which parts belong to different plants. It is
difficult to detect and separate these leaves from each other, since therefore context
information is necessary to assemble occluded leaf shape and assign these to plants.
The mentioned 3D approaches provide segment information directly, and a few 2D
image processing techniques have been used to overcome this situation (Sggaard
and Heisel 2002, Manh et al. 2001, Neto et al. 2006a). These approaches are based
on heuristics about the occluded parts. Piron et al. (2009) combine stereoscopic mul-
tispectral images with height information from a coded structered light technique,
which uses a projected known pattern to derive the distance to the camera.

2.2.3 Texture

More general approaches distinguish plant species based on the texture, which is
different for overlapped broad leaved and narrow leaved plants in cluttered condi-
tions. Ishak et al. (2009) present a texture analysis for images of two weed species
(a broadleaved and a grass weed) in late growth stage. Weeds in grassland require
different approaches, because the plants cannot be separated to single plants from
the background (soil), because the overall coverage is very high and the plants
overlap. But the most important weeds in grassland have leaves with a different mor-
phology (bigger, broader and more homogeneous surface). These properties can be
quantified by textural analysis of 2D images. Gebhardt and Kiihbauch (2007b) seg-
mented the image according to a homogeneity criterion and use a textural and colour
features to find Rumex obtusifolius, Taraxacum officinale and Plantago major in a
grassland plant community with an accuracy of over 70%. Van Evert et al. (2009)
used a partial 2D Fourier transformation to determine homogeneous regions, which
were identified to be the broadleaved weed leaves of R. obtusifolius. From 3D sensor
data Seatovi¢ (2008) segmented broad leaves and classified them as weeds in grass-
land. Klose et al. (2008) developed a robot with weed detection capabilities in maize
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using a sensor fusion approach: A vertical laser triangulation sensor measuring the
thickness of the maize plant stem is combined with a horizontally mounted camera
viewing the maize row from above to find weeds within the row.

Morphological properties can also be explored with 2D shape features, which is
the focus of the following image processing part.

3 Image Processing for Automatic Weed Species Identification

In the following the general image processing steps will be outlined. Fig. 8.3 shows
the workflow of the basic steps image creation, segmentation, feature extraction and
classification.

Imaging sensors like cameras or line sensors deliver 2D images of agricultural
fields. These images are the input for the following image processing procedures.
Depending on the type of imaging sensor the resulting images may have to be pre-
processed to normalise the values or reduce noise. Noise can be reduced in the
original images before segmentation into foreground and background objects takes
place. Typical pre-processing steps of the original images include filtering with a
low pass filter to minimise the effect of Gaussian noise or the use of median filters
to suppress pixels with outlier values (zero or maximum values).

3.1 Segmentation

A segmentation of the image into regions with homogeneous properties is the next
step, which results in a separation of the image according to the measured prop-
erties. One or more intermediate images can be created that enhance the contrast
between object and background. In this step homogeneous regions with different
gray or colour values are created. This image can be computed using one of the
colour indices mentioned before, if colour images are the input, or texture features,
if the image should be segmented according to the texture (e.g. grassland images).
Fig. 8.4 gives an example for an IR and R difference image (IR-R), the resulting
image enhances the plants (bright) and the background objects have been suppressed
(dark). The enhanced image is then separated into foreground and background
objects, resulting in a binary image (black/white).

imaging sensor segmentation feature extraction classification
training data
RGB ‘ ‘ IR foreground shape classifier
multispectral background spectral species

L>
image

Fig. 8.3 General image processing steps leading from the image to a classification
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Fig. 8.4 Example for the difference (right) of an infrared (left) and red (middle) image. Plants
are bright due to the spectral difference in the red and infrared, background objects like dead
material (mulch, stones) disappear in the difference image. Gray values were stretched to increase
the contrast for the print version

A threshold can be used to label the enhanced regions (e.g. white), which are
above the threshold and the background (e.g. black). More advanced methods use
spatial homogeneity criteria to improve the segmentation (Gorretta et al. 2005). If
the foreground regions have been identified, connected foreground regions can be
assembled to objects. Noise may have lead to small regions in the thresholding step
and can now be filtered using either a size criterion or morphological image process-
ing (Soille 2003). Figure 8.5 shows the result of a segmentation using a threshold
and pre-processing steps to reduce noise. Mathematical morphology provides ero-
sion and dilation operators as basic filters for regions. Erosion of region leads to a
shrinking, the borders of the region are cut. If an object has a hole (inner borders),
this hole will grow bigger. The dilation operation does the opposite: the region grows
around the border and small holes can be closed this way. Both operators can be
combined to the so called opening (erosion, then dilation) and closing (dilation, then
opening) operators. Since both operators are nonlinear the results of the opening and
closing are different: opening tends to separate an object at small connections and
prune small elongated spikes, closing can combine regions with little distance into
one, e.g. leaves which have been separated by the thresholding. It may also happen
that small regions disappear in the opening step, which are then gone in the dilation
step of an opening. Figure 8.5 (right) shows the result of a morphological closing,
leading to connected regions for the dicotyledonous leaves near the centre of the
image and the elongated leaves in the top left.

Fig. 8.5 Binarisation and preprocessing of the difference image in Fig. 8.4. Left: the result of the
thresholding, right: the result after applying morphological operators (closing with circle of 5 pixel
diameter) and area size selection (regions with more than 30 pixel), as well as discarding regions
which are cut by the image border. Foreground objects are black, the background is white
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Morphological operators were used by Hemming and Rath (2001) to extract
broad leaves from scenes with overlaps. Pérez et al. (2000) used morphological
operators to separate the germination leaves of dicotyledonous weeds and analyse
the shape of each leaf.

The resulting blobs are the objects of interest for the following feature extraction.
Shape, texture or colour features (the latter derived from the input image) describe
the properties of each foreground object in the image. These features are used for a
classification of each object in the image.

3.2 Shape-Based Weed Discrimination

Several researchers used shape features to discriminate weed and crop (Gerhards
and Christensen 2003, Astrand and Baerveldt 2004, Berge et al. 2008). The shape
features were derived for each connected foreground region. Image processing tech-
niques provide a set of commonly used shape features. To describe the shape of a
region one of the simplest feature is the size, expressed either in number of pix-
els or scaled by the ground resolution. There may be objects of different size,
but with similar overall shape characteristics (geometrically congruent). Therefore
shape descriptors have been developed which are invariant to the size of the region.
Two other properties are often not relevant for the shape description: the position
and the orientation of a region within the image. Certain shape descriptors are nor-
malised and invariant to translation, rotation and size. Some well known invariant
features are derived from statistical moments of the pixel distribution (Hu features;
Hu 1962). This type of features is called region-based, since they are derived from
the spatial distribution of the region pixels.

Other features are computed from the outline of a region, given by the border
pixels that have neighbouring background pixels. Since the border of an object is a
closed contour, a periodic representation can be derived (either using a chain code
or polar coordinates; see Jdhne 2001 for details). Fourier analysis can be used to
analyse the periodic representation (Neto et al. 2006b). The resulting parameters
are phases and amplitudes of periodic functions, which can easily be normalised to
translation, rotation and size invariant parameters, since this information is located
only in the first two of them. The lower order parameters contain the overall shape
of the object and the higher order parameters contain information about the small
scale curvature changes of the contour (notches and small convexities). A curvature
description can be derived from the contour, if it is computed for different scales
(by smoothing), then this is called a CSS (curvature scale space) representation
(Mokhtarian et al. 1996). Zhang and Lu (2004) review shape description techniques
and distinguish between region-based and contour- based ones.

We found also skeleton features helpful for the discrimination of plant species
(Weis and Gerhards 2007). The skeleton is the central line (also called core) of a
region, and can be derived from a distance transform of the region or by morpho-
logical operators (Soille 2003). A distance transform assigns a distance value to each
region pixel: the shortest distance to the contour. Local maxima form a line which
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Fig. 8.6 Left: skeleton of image in Fig. 8.5. Right: two skeleton features (size and mean dis-
tance to leaf border) for Hordeum vulgare (HORVU), monocotyledons (MOKOT), Brassica napus
(BRSSN) and dicotyledonous weeds (DIKOT) in the feature space

is located in the middle of the object and with maximum distance to the borders.
Statistical measures (mean, maximum, variance, number of pixels) of these maxima
yield a thickness description of the shape, which is especially useful to discriminate
broad and narrow leaved species, since the core of a broad leaf has a bigger distance
to the border than elongated, thin leaves. Figure 8.6 shows the distribution of four
different classes in the feature space of two skeleton features. These features are well
suited to discriminate these classes, since the classes have a clustered occurrence in
the feature space.

There exist also ‘high level’ shape descriptions, that involve models for the
shape description and try to fit the model to the shape. Sggaard and Heisel (2002)
and Manh et al. (2001) used active shape models respectively deformable tem-
plates for the species discrimination. Templates of various shapes are generated and
parametrised (these parameters are the features) and the deformations necessary to
match the templates to the shape lead to a similarity measure. The more a model
has to be deformed to fit the shape, the higher is the dissimilarity. One problem with
these models is the comparably high complexity of the description, leading to a high
dimensional search space of the parameters and therefore a high computational load.
On the other hand these models can deal with partial occlusion.

3.3 Classification

All numeric features can be combined to feature vectors. The according feature
space has as many dimensions as there are features and is usually high dimensional.
A high dimensionality of the feature space opposed to the relatively low number of
training samples exposes the problem that the samples are ‘vanishing’ in the space
and can decrease the performance of a classifier, this is known as the ‘curse of
dimensionality’. Features without discriminative abilities to the problem introduce
noise into the classification process. Therefore a feature selection process should
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be performed before classification, aiming at the reduction of the number of fea-
tures to the most relevant ones. Combinations of features can lead to new features
with higher discriminative abilities. An example for the combination of features
are the spectral indices (see Eq. 1), combining the amplitude values of different
wavelengths to a new value. A popular feature selection algorithm is discriminant
analysis (Cho et al. 2002, Borregaard et al. 2000, Gebhardt and Kiihbauch 2007a,
Neto et al. 2006b).

The classification is the last step of the analysis. Classification algorithms can
be grouped into unsupervised classifiers, also known as clustering, and supervised
classifiers. Unsupervised classifiers use the feature vectors without additional infor-
mation and create groups of similar objects according to a distance measure of the
vectors in the feature space. These groups are called clusters and may refer to classes
of the problem. A supervised classifier has to be trained with prototype informa-
tion, which are selected feature vectors of known class. Classifiers compare the
features of the unknown objects to the trained ones and assign a class. The num-
ber of classification algorithms is large, ranging from simple algorithms like kNN
(k-nearest-neighbour), that uses the training data directly, to complex functions and
function systems like neural networks, tree classifiers or support vector machines,
which generate a classifier model from the training set and use that for the classi-
fication. Cho et al. (2002) successfully trained neural networks, Pérez et al. (2000)
used Bayes rules and a nearest neighbour classifier with shape features. Burks et al.
(2005) used neural networks to classify texture features.

A shape based approach was tested by Oebel (2006) under field conditions,
the classification accuracies were suitable for the creation of application maps.
Table 8.1 shows the detailed results for Zea mays and Hordeum vulgare crops using
discriminant analysis.

Table 8.1 Confusion matrices (predicted and true class in percent) for Zea mays (corn, ZEAMX,
left) and Hordeum vulgare (spring barley, HORVS, right), taken from Oebel (2006)

pred\true ZEAMX DICOT MOCOT CHEAL pred\true HORVS DICOT MOCOT GALAP

ZEAMX 100 0 0 0 HORVS 97 4 4 4
DICOT 0 98 1 1 DICOT 0 87 9 5
MOCOT 0 6 90 4 MOCOT 0 4 93 0
CHEAL 0 11 0 89 GALAP 0 0 0 100

DICOT: dicotyledonous weeds, MOCOT: monocotyledonous weeds, CHEAL: Chenopodium
album, GALAP: Galium aparine. The test sets were independent from the training data with
more than 500 samples each

An example for a classification with shape features (region-based, Fourier and
skeleton features) is shown in Fig. 8.7. The image was composed of samples from
several IR-R difference images. A small training set was created containing proto-
types of the species. Nine different species have been classified using a radial basis
function network classifier. The objects in the image were labelled according to the
classification result.
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Fig. 8.7 Labelled image, each region is labelled with the classification result (the species)

The shape based approach has its limitations due to the number of plant species
and the shape variability within different growth stages of each species. A class
scheme was developed (Weis and Gerhards 2007) for these variations and used to
create training data for various weed and crop species.

4 Conclusions

The automation of weed detection in the field is a very challenging topic, which is a
current research topic of several working groups. The complexity of this task origi-
nates in the variability of the plant species in the field. Several plant properties have
been presented, which can be used to distinguish species. Approaches and results,
achieved with available sensor technology, were reviewed. Some sensors were
already used successfully for weed detection and discrimination under controlled
conditions and also in field experiments, but yet there is no general best practice to
achieve this, especially under changing conditions within the field. The combination
of different techniques might lead to robust solutions in the future. Sensor fusion and
integrative analysis of multiple sensor data could improve the weed detection rate
and also influence other precision-farming technologies. Commercial products like
special sensors and analysis equipment for this task are to be developed. If such
systems are available, the weed infestation can be assessed for site-specific manage-
ment and population dynamics research. These will add valuable data for precision
farming applications and decision support systems.



132 M. Weis and M. Sokefeld
References

Andersen HJ, Reng L, Kirk K (2005) Geometric plant properties by relaxed stereo vision using
simulated annealing. Comput Electron Agric 49:219-232

Astrand B, Baerveldt AJ (2004) Plant recognition and localization using context information.
In: Proceedings of the Mechatronics and Robotics 2004 (MechRob2004), Sascha Eysoldt
Verlag, Aachen, pp 1191-1196

Backes M, Jacobi J (2006) Classification of weed patches in Quickbird images: verification by
ground truth data. EARSeL eProceedings 5:173-179

Backes M, Schumacher D, Pliimer L (2005) The sampling problem in weed control. Are currently
applied sampling strategies adequate for site-specific weed control. In: Stafford J (ed) Precision
agriculture 2005. Wageningen Academic Publishers, Wageningen, pp 155-161

Bakker T, Wouters H, van Asselt K et al (2008) A vision based row detection system for sugar
beet. Comput Electron Agric 60:87-95

Berge T, Aastveit A, Fykse H (2008) Evaluation of an algorithm for automatic detection of broad-
leaved weeds in spring cereals. Prec Agric 9:391-405

Biller RH (1998) Reduced input of herbicides by use of optoelectronic sensors. J Agric Eng Res
71:357-362

Borregaard T, Nielsen H, Ngrgaard L, Have H (2000) Crop-weed discrimination by line imaging
spectroscopy. J Agric Eng Res 75:389-400

Bossu J, Gée C, Jones G, Truchetet F (2009) Wavelet transform to discriminate between crop and
weed in perspective agronomic images. Comput Electron Agric 65:133-143

Brown R, Noble S (2005) Site-specific weed management: sensing requirements — what do we
need to see? Weed Sci 53:252-258

Burgos-Artizzu XP, Ribeiro A, Tellaeche A et al (2009) Improving weed pressure assessment
using digital images from an experience-based reasoning approach. Comput Electron Agric 65:
176185, doi:10.1016/j.compag.2008.09.001

Burks T, Shearer S, Heath J, Donohue K (2005) Evaluation of neural-network classifiers for weed
species discrimination. Biosyst Eng 91:293-304

Chapron M, Requena-Esteso M, Boissard P, Assemat L (1999) A method for recognizing vegetal
species from multispectral images. In: Stafford J (ed) Precision agriculture 1999. Sheffield
Academic Press, Sheffield, pp 239-248

Cho SI, Lee DS, Jeong JY (2002) Weed-plant discrimination by machine vision and artificial neural
network. Biosyst Eng 83:275-280

Dille JA, Mortensen DA, Young LJ (2002) Predicting weed species occurrence based on site
properties and previous year’s weed presence. Prec Agric 3:193-207

van Evert F, Polder G, van der Heijden G et al (2009) Real-time vision-based detection of Rumex
obtusifolius in grassland. Weed Res 49:164—-174

Gebhardt S, Kiithbauch W (2007a) A new algorithm for automatic Rumex obtusifolius detection
in digital images using colour and texture features and the influence of image resolution. Prec
Agric 8:1-13

Gebhardt S, Kiihbauch W (2007b) Continous mapping of Rumex obtusifolius during different
grassland growths based on automatic image classification and GIS-based post processing. In:
Stafford J (ed) Precision agriculture *07, 6th European Conference on Precision Agriculture
(ECPA), Wageningen Academic Publishers, Wageningen, pp 499-506

Gerhards R, Christensen S (2003) Real-time weed detection, decision making and patch spraying
in maize, sugar beet, winter wheat and winter barley. Weed Res 43:385-392

Girma K, Mosali J, Raun WR et al (2005) Identification of optical spectral signatures for detecting
cheat and ryegrass in winter wheat. Crop Sci 45:477-485

Godwin R, Miller P (2003) A review of the technologies for mapping within-field variability.
Biosyst Eng 84:393-407

Gorretta N, Fiorio C, Rabatel G, Marchant J (2005) Cabbage/weed discrimination with a
region/contour based segmentation approach for multispectral images. In: Bellon Maurel V,



8 Detection and Identification of Weeds 133

Carbonneau A, Regnard JL et al (eds) Information and technology for sustainable fruit and
vegetable production. Production, Proceedings of FRUTIC’05, AgroM ENSA Montpellier;
Cemagref Montpellier; CIRAD; INRA, Cemagref, Montpellier France, pp 371-380, 7th Fruit
nut and vegetable production engineering symposium, 12—-16 Sep 2005

Guyot G, Baret F, Jacquemoud S (1992) Imaging spectroscopy for vegetation studies. In: Toselli F,
Bodechtel J (eds) Spectroscopy: fundamentals and prospective applications. Kluwer Academic
Publishers, Dordrecht, pp 145-165

Haboudane D, Miller JR, Pattey E et al (2004) Hyperspectral vegetation indices and novel
algorithms for predicting green lai of crop canopies: modeling and validation in the context
of precision agriculture. Rem Sens Environ 90:337-352

Hamouz P, Novakova K, Soukup J, Tyser L (2006) Evaluation of sampling and interpolation
methods used for weed mapping. J Plant Dis Prot XX (special issue):205-215

Heijting S, van der Werf W, Stein A, Kropff MJ (2007) Are weed patches stable in location?
Application of an explicitly two-dimensional methodology. Weed Res 47:381-395

Hemming J, Rath T (2001) Computer-vision-based weed identification under field conditions using
controlled lighting. J Agric Eng Res 78:233-243

Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8:179-187

Ishak AJ, Hussain A, Mustafa MM (2009) Weed image classification using gabor wavelet and
gradient field distribution. Comput Electron Agric 66:53-61

Jiahne B (2001) Digital image processing, Sth edn. Springer, Berlin

Jones G, Gée C, Truchetet F (2007) Simulation of perspective agronomic images for weed detec-
tion. In: Stafford J (ed) Precision agriculture 07, 6th European Conference on Precision
Agriculture (ECPA), Wageningen Academic Publishers, Wageningen, pp 507-515

Kerdnen M, Aro EM, Tyystjarvi E, Nevalainen O (2003) Automatic plant identification with
chlorophyll fluorescence fingerprinting. Prec Agric 4:53-67

Klose R, Thiel M, Ruckelshausen A, Marquering J (2008) Weedy — a sensor fusion based
autonomous field robot for selective weed control. In: VDI (ed) Land technik 2008. VDI Verlag,
Stuttgart, pp 167-172

Lamb D, Brown R (2001) Remote-sensing and mapping of weeds in crops. J Agric Eng Res
78:117-125

Langner HR, Bottger H, Schmidt H (2006) A special vegetation index for the weed detection in
sensor based precision agriculture. Environ Monit Assessm 117:505-518

Lépez-Granados F, Jurado-Expdsito M, Pefia-Barragan JM, Garcia-Torres L (2006) Using remote
sensing for identification of late-season grass weed patches in wheat. Weed Sci 54:346-353

Manh A, Rabatel G, Assemat L, Aldon M (2001) Weed leaf image segmentation by deformable
templates. J Agric Eng Res 80:139-146

Meyer GE, Neto JC (2008) Verification of color vegetation indices for automated crop imaging
applications. Comput Electron Agric 63:282-293

Mokhtarian F, Abbasi S, Kittler J (1996) Robust and efficient shape indexing through curvature
scale space. In: Pycock D (ed) Proceedings of the British Machine Vision Conference 1996,
BMVC, British Machine Vision Association, Edinburgh, pp 53-62

Mortensen DA (2002) Crop/weed outcomes from site-specific and uniform soil-applied herbicide
applications. Prec Agric 3:95

Neto JC, Meyer GE, Jones DD (2006a) Individual leaf extractions from young canopy images
using Gustafson-Kessel clustering and a genetic algorithm. Comput Electron Agric 51:66—-85

Neto JC, Meyer GE, Jones DD, Samal AK (2006b) Plant species identification using elliptic fourier
leaf shape analysis. Comput Electron Agric 50:121-134

Oebel H (2006) Teilschlagspezifische Unkrautbekdmpfung durch raumbezogene Bildverarbeitung
im Offline- und (Online-) Verfahren (TURBO). PhD thesis, Universitit Hohenheim, Fakultit
Agrarwissenschaften

Oebel H, Gerhards R (2005) Site-specific weed control using digital image analysis and georefer-
enced application maps — first on-farm experiences. In: Stafford JV (ed) 5th ECPA, Uppsala,
Wageningen Academic Publishers, Wageningen, pp 131-138



134 M. Weis and M. Sokefeld

Okamoto H, Murata T, Kataoka T, Hata SI (2007) Plant classification for weed detection using
hyperspectral imaging with wavelet analysis. Weed Biol Manag 7:31-37

Paap A, Askraba S, Alameh K, Rowe J (2008) Photonic-based spectral reflectance sensor for
ground-based plant detection and weed discrimination. Opt Express 16:1051-1055

Pérez A, Lopez F, Benlloch J, Christensen S (2000) Colour and shape analysis techniques for weed
detection in cereal fields. Comput Electron Agric 25:197-212

Piron A, Leemans V, Kleynen O et al (2008) Selection of the most efficient wavelength bands for
discriminating weeds from crop. Comput Electron Agric 62:141-148

Piron A, Leemans V, Lebeau F, Destain M (2009) Improving in-row weed detection in multispectral
stereoscopic images. Comput Electron Agric 69:73-79, doi: 10.1016/j.compag.2009.07.001

Rasmussen J, Ngrremark M, Bibby B (2007) Assessment of leaf cover and crop soil cover in weed
harrowing research using digital images. Weed Res 47:299-310

Reyniers M, Vrindts E, De Baerdemaeker J (2006) Comparison of an aerial-based system and
an on the ground continuous measuring device to predict yield of winter wheat. Eur J Agron
24:87-94

Shafri HZM, Salleh MAM, Ghiyamat A (2006) Hyperspectral remote sensing of vegetation using
red edge position techniques. Am J Appl Sci 3:1864-1871

Slaughter DC, Giles DK, Downey D (2008) Autonomous robotic weed control systems: a review.
Comput Electron Agric 61:63-78

Sg@gaard H, Heisel T (2002) Machine vision identification of weed species based on active shape
models. In: van Laar HH, Bastiaans L, Baumann DT et al (eds) EWRS 12th EWRS Symposium,
European Weed Research Society. Grafisch Service Centrum Van Gils BV, Wageningen, pp
402-403

Soille P (2003) Morphological image analysis, 2nd edn. Springer, Heidelberg

Sui R, Thomasson JA, Hanks J, Wooten J (2008) Ground-based sensing system for weed mapping
in cotton. Comput Electron Agric 60:31-38

Thorp K, Tian L (2004) A review on remote sensing of weeds in agriculture. Prec Agric 5:477-508

Seatovié¢ D (2008) A segmentation approach in novel real time 3D plant recognition system. In:
Proceedings of the Computer Vision Systems, Lecture Notes in Computer Science, vol 5008.
Springer, Berlin/Heidelberg, pp 363-372

Wang N, Zhang N, Dowell FE, Sun Y, Peterson DE (2001) Design of an optical weed sensor
using plant spectral characteristics. In: ASAE (ed) Transactions of the ASAE, vol 44. American
Society of Agricultural Engineers, St. Joseph, pp 409419

Weis M, Gerhards R (2007) Feature extraction for the identification of weed species in digital
images for the purpose of site-specific weed control. In: Stafford J (ed) Precision agricul-
ture 07, 6th European Conference on Precision Agriculture (ECPA). Wageningen Academic
Publishers, Wageningen, pp 537-545

Woebbecke D, Meyer G, von Bargen K, Mortensen D (1995) Color indices for weed identifi-
cation under various soil, residue and lighting conditions. American Society of Agricultural
Engineers, St. Joseph, pp 259-269

Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recognit
37:1-19

Zwiggelaar R (1998) A review of spectral properties of plants and their potential use for crop/weed
discrimination. Crop Prot 17:189-206



	8 Detection and Identification of Weeds
	1 Introduction
	2 Properties to Distinguish Plant Species
	2.1 Spectral Properties
	2.1.1 Remote Sensing
	2.1.2 Fluorescence

	2.2 Location and Temporal Properties
	2.2.1 Morphological Properties
	2.2.2 Overlapping
	2.2.3 Texture


	3 Image Processing for Automatic Weed Species Identification
	3.1 Segmentation
	3.2 Shape-Based Weed Discrimination
	3.3 Classification

	4 Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 1.30
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing false
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




