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Abstract The light use efficiency of photosynthesis dynamically adapts to envi-
ronmental factors and is one major factor determining crop yield. Optical remote
sensing techniques have the potential to detect physiological and biochemical
changes in plant ecosystems, and non-invasive detection of changes in photo-
synthetic energy conversion may be of great potential for managing agricultural
production in a future bio-based economy. Here we give an overview on the
principles of optical remote sensing in crop systems with a special emphasis on
investigating hyperspectral reflectance data and the sun-induced fluorescence sig-
nal. Especially sun-induced fluorescence as a parameter, which becomes important
in remote sensing research may have great potential quantifying the physiological
status of the photosynthetic apparatus. Both remote sensing principles were applied
during the CEFLES2 campaign in Southern France, where the structural and func-
tional status of several crops was measured on the ground and using state-of-the-art
optical remote sensing techniques. Sun-induced fluorescence measurements over
a variety of crops showed that additional information can be retrieved also over
dense canopies, where classical remote sensing signals often saturate. With a view
to the future, we discuss how hyperspectral reflectance and sun-induced fluores-
cence can quantitatively be related to photosynthetic efficiency and help to measure
and manage productivity of natural and agricultural ecosystems.

1 Background on Optical Spectroscopy of Plant Canopies

Solar radiation that interacts with plant tissues or plant canopies is either reflected,
absorbed or transmitted (Fig. 6.1, left). The spectral characteristics of the three
components at leaf or canopy scale are a function of (I) leaf level absorption and
scattering, (II) the optical properties of other canopy components and the canopy
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Fig. 6.1 Left: Conceptual scheme of light absorption, transmission and reflection in plant tissues.
Right: Spectral characteristics of absorption, reflection, and transmission illustrated at a winter
wheat leaf (Tritium aestivum L.)

architecture itself, and (III) external effects (illumination, observation geometry)
(Goel 1988, 1989, Chen et al. 2000). Optical spectroscopy mainly focuses on the
reflected part of radiation as a measure to derive information about the biochemical
and structural properties of plants at leaf and canopy level (Fourty and Baret 1998,
Liang 2004), whereas the optical properties of leaf tissues significantly determine
the canopy optical parameters (Asner 1998, Otterman et al. 1995). For instance,
the low intensity reflectance of plant leaves in the visible (400–700 nm) part of the
light spectrum results from strong absorbance by the photosynthetic foliar pigments,
while the high reflectance in the near infrared (700–1,100 nm) is due to low absorp-
tion of light by the internal leaf mesophyll tissues, and the reflectance intensity in
the shortwave infrared (1,100–2,500 nm) is strongly affected by the amount of water
in plant tissues (Curran 1989) (Fig. 6.1, right).

During the phenological cycle, in response to an adaption of plants to environ-
mental conditions, or between different species, leaf biochemical components vary
and cause variations in the interaction of solar radiation with leaf tissues (Gausman
and Allen 1973, Grant 1987). This, in turn, results in changing optical properties
of leaf tissues. Figure 6.2 exemplarily shows the variation of reflected radiation in
response to varying chlorophyll and water content.

Fig. 6.2 Leaf reflection in response to the varying leaf biochemical components chlorophyll
(left) and water content (right). Simulations were performed using the leaf reflectance model
PROSPECT (Jaquemoud and Baret 1990)
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2 Remote Sensing of Photosynthesis

Sensing the state of photosynthetic activity, however, is much more complex and the
sole information about pigment content is insufficient to predict the current photo-
synthetic rate. In fact, plant photosynthesis is a dynamically regulated process that
quickly adapts to environmental conditions and is affected by the ecological plastic-
ity of each species (Turner et al. 2003b, Rascher and Nedbal 2006). Consequently,
photosynthetic rates may greatly vary between different species with similar pig-
ment composition and, additionally, both photosynthesis and pigment composition
is dynamically adjusted in diurnal and seasonal cycles (Schurr et al. 2006). Most
of the time, natural canopy photosynthesis is not operating at its maximum poten-
tial rate and may be largely reduced under prevailing environmental conditions. For
example, Bergh et al. (1998) estimated that the CO2 uptake by a frost stressed boreal
forest over a growing season reached only 44% from its potential rate or, Rascher
et al. (2004) observed a 30% decrease in photosynthesis as response of drought
stress in a tropical ecosystem. These reductions of photosynthetic rates cannot be
tracked by the pigment content and the pigment composition itself.

The remote observation of photosynthetic rates can principally be grouped into
two approaches: methods that indirectly relate photosynthesis to environmental
stresses and approaches that estimate photosynthesis directly from remote sens-
ing data. Recent research effort has focused on estimating the physiological status
of photosynthesis directly from remotely sensed data because remote sensing pro-
vides the only practical approach to characterize photosynthesis and productivity
of vast crop and natural ecosystems. The efficiency of photosynthesis is controlled
on various levels involving biophysical and biochemical mechanisms (see Schulze
and Caldwell 1995 for a summary on the ecophysiology of photosynthesis). Light
absorbed by chlorophyll can be used to (I) drive photosynthesis, and (II) excess
energy can be dissipated by a variety of non-photochemical processes usually as
heat or, (III) it can be reemitted as fluorescence at longer wavelengths. These three
processes compete with each other and an increase in the efficiency of one will
result in the decrease of yield in the other two. The major component of the Non-
Photochemical Quenching (NPQ) is related to a transthylakoid pH gradient, which
activates enzymes altering the epoxidation state of xanthophyll molecules associ-
ated with the light harvesting complex and this affects the energy dissipation as heat
(Demmig-Adams and Adams 1996, Müller et al. 2001, Baker 2008).

In the following two state-of-the-art remote sensing approaches (based on
hyperspectral reflectance data and on the emitted sun-induced fluorescence sig-
nal) are described for the potential to directly measure the functional status of
photosynthesis.

2.1 Photochemical Reflectance Index (PRI)

The Photochemical Reflectance Index (PRI) is related to NPQ and was developed
to serve as an estimate of photosynthetic light use efficiency. This normalized
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difference reflectance index uses two wavebands (Eq. 1): 531 nm, which is corre-
lated with the xanthophyll pigment composition during the NPQ energy dissipation,
and 570 nm, which serves as a reference waveband (Gamon et al. 1992).

PRI = R531 − R570

R531 + R570
(1)

PRI has been used in a variety of case studies and positively correlates with
photosynthetic efficiency. It has been successfully used to detect changes in photo-
synthetic efficiency at the leaf level (see Rascher et al. 2007, for an overview of the
literature).

However, PRI values vary greatly between species with the same photosynthetic
capacity (Guo and Trotter 2004). Additionally, the PRI is greatly affected by the
geometry of the sun, the leaf, and the detector (Barton and North 2001). As natu-
ral canopies are an assembly of differently oriented leaves that additionally change
their orientation during development of the plant and as a response to environmen-
tal conditions, canopy measurements of PRI often were greatly affected by seasonal
changes in canopy structure (Filella et al. 2004). Thus, challenges remain to transfer
the very promising results from the laboratory to the canopy and field scale. One
of the first successful demonstrations of field measurements was performed in a
Siberian forest (Nichol et al. 2002). Since then several groups have further evalu-
ated the potential of PRI and are currently identifying procedures to scale and use
the PRI on natural canopies (Hall et al. 2008).

2.2 Fluorescence

Light energy that is absorbed in photosynthetic pigments is partly re-emitted as
fluorescence light with well defined wavelength characteristics. Chlorophyll fluo-
rescence is emitted in two broad, overlapping bands with peaks at 685 nm and
around 740 nm (Fig. 6.3a; Lichtenthaler and Rinderle 1988). However, the total
amount of the emitted fluorescence signal is small in comparison the reflected light
(Fig. 6.3b). The intensity of the emitted fluorescence signal is reversely correlated
to the energy used for photosynthesis and thus can serve as an indicator for pho-
tosynthetic light conversion (see Baker 2008 for a recent review). Fluorescence
approaches for analysis of photosynthesis have been developed over the past couple
of decades. The most commonly used technique is the Pulse Amplitude Modulation
(PAM) fluorometry, which uses the saturating light pulse method (Schreiber and
Bilger 1993, Schreiber et al. 1995, Genty et al. 1989, Maxwell and Johnson 2000).
PAM data can be analyzed to determine the efficiency with which absorbed photons
are being used for photosynthesis, the rates of electron transport, and the degree of
non-photochemical protection. This approach requires measurements very close to
the leaf as a saturating light pulse has to be applied and is therefore not practical
for measurements of plant canopies. However, processes within canopy with mil-
lions of leaves – each in its unique environment and all contributing to the overall
performance of the canopy – provide many challenges and cannot be derived from
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Fig. 6.3 (a) Fluorescence and reflectance spectra of a sugar beet leaf. (a) Fluorescence emission
spectrum in the region between 650 and 820 nm. (b) Reflectance with and without fluorescence,
i.e. real and apparent reflectance. Measurements were performed on a sugar beet leaf under solar
illumination with an ASD FieldSpec Pro coupled with the FluoWAT leaf clip (Alonso et al. 2007),
which enables the extraction of the fluorescence spectrum by selectively filtering the incoming
light. For details see Meroni et al. (2009)

single leaf measurements. Therefore, techniques and instruments for measurements
on canopy scale are required and several approaches are currently being developed
for application from a distance for the remote quantification of plant canopies and
fields (Osmond et al. 2004, Rascher et al. 2009).

One way of remote quantification of photosynthesis by fluorescence relies on
making it possible to measure and analyze fluorescence transients at a distance from
the target leaf. A newly developed Laser Induced Fluorescence Transient (LIFT)
instrument makes use of a telescope to collect light from target leaves and a low
power laser to manipulate the light regime of the target. Constraints on the power
of lasers for use in open environments make it impossible to use the same proto-
cols that have been used with PAM fluorometers. New approaches make use of the
laser to make much smaller but highly replicated modification of the light regime to
analyze the efficiency of photosynthesis (Kolber et al. 2005). The LIFT instrument
is required to make measurements that are at the noise limit and computer assisted
fitting of the data to a theoretical model are substituted for brute force and sim-
ple analysis used in PAM fluorometery (Ananyev et al. 2005, Kolber et al. 1998).
The LIFT approach was successfully used to monitor spatial and temporal dynam-
ics of the photosynthetic properties of leaves in the inaccessible outer canopy of
trees (Osmond et al. 2004, Rascher and Pieruschka 2008). However, it is limited to
measurements at a distance of 5–50 m from the canopy.

2.3 Retrieval of Remotely Measured Sun-Induced Chlorophyll
Fluorescence

Fluorescence measurement of large ecosystems relies on passive measurements of
solar induced fluorescence (Fs). The approach uses Fraunhofer lines with reduced
incoming solar radiation reaching the Earth surface in three main absorption bands
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in the red and near infrared spectral domain: the Hα line at 656.3 nm is due to the
hydrogen absorption by the solar atmosphere whereas two bands at 687 nm (O2-B)
and 760 nm (O2-A) are due to the molecular oxygen absorption by the terrestrial
atmosphere. Fluorescence originated from the canopy occurs in these otherwise
‘black’ absorption bands and, therefore, can be selectively quantified. Especially the
O2-A and O2-B bands overlap with the chlorophyll fluorescence emission spectrum
and are wide enough to allow quantifying fluorescence from air- and space-borne
platforms. The Fraunhofer Line Discrimination method (FLD) has been proposed
for this purpose (Plascyk and Gabriel 1975) and was used with success in different
works (Carter et al. 1990, Moya et al. 2004, Meroni et al. 2009).

Retrieval of sun-induced fluorescence takes advantage of the great difference
in incoming radiation in a small spectral window around the atmospheric oxygen
absorption lines. Incoming and outgoing radiance is measured on the shoulders
outside of the absorption lines and inside the absorption lines. Fluorescence is a
spectrally comparably broad signal which is added to the reflected signal and by
comparing values inside and outside of the oxygen absorption feature sun-induced
fluorescence can be quantified (Fig. 6.4).

Approaches to quantify Fs can be divided in two major categories: radiance-
and reflectance-based approaches. Radiance-based approaches exploit the narrow
absorption feature of a Fraunhofer line and so make use of high spectral resolution
data (from few nanometres up to 0.03 nm Full Width at Half Maximum (FWHM)).
The main methods proposed in the literature require 2–3 spectral channels near
the investigated absorption line, while other three methods require a set of con-
tiguous channels covering the whole spectral range of interest. Reflectance-based
approaches on the contrary compute optical indices related to Fs but cannot pro-
vide direct Fs estimates, neither in physical nor in auxiliary units. In fact, these

Fig. 6.4 Principle of retrieval of sun-induced fluorescence in the atmospheric absorption lines,
where I is incoming radiance and L is reflected, i.e. outgoing radiance, the subscripts ‘in’ and ‘out’
refer to radiance inside and outside of the atmospheric absorption lines (courtesy Jose Moreno,
University of Valencia)
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methods exploit the effect of Fs on the apparent reflectance spectrum in the red-
edge region (from 650 to 800 nm) and several indices have been proposed for this
purpose (Meroni et al. 2009).

Taking the advantages and disadvantages of the different approaches into account
and considering several sensitivity studies, the method proposed by Maier et al.
(2003) may be a good compromise between low complexity and stability among a
wide range of applications. According to the common measurement procedure of
field spectroscopy, this method needs the hyperspectral reflectance measurement of
a white (non-fluorescing) reflectance standard (e.g. a calibrated SpectralonTM panel)
that is mounted on the same height as the vegetation or alternatively if applied on
the larger scale non-fluorescent surfaces, such as fields of bare soil that are large
enough to be not-influences by diffuse fluorescence from adjacent fields. Radiance
measurements from the non-reflecting surface are compared with radiance measure-
ments of the fluorescing canopy. Fluorescence can then be calculated according to
Eq. (2)

Fs =
Iin − Lin

Lout
· Iout

1 − Lin

Lout

(2)

with I being the incoming radiance, L is the radiance of vegetation, and the sub-
scripts ‘in’ and ‘out’ indicate the wavelengths within and outside of the absorption
line, respectively (see also Fig. 6.4).

The magnitude of fluorescence emission is primarily driven by the amount of
absorbed light in the photosynthetic ‘machinery’ and secondly depends on the phys-
iological properties of the photosynthesis. If one is interested in the physiological
status, the fluorescence signal (Fs) has to normalize by incoming or absorbed light.
This can be achieved by rationing the number of photons emitted (Fs) and the
number of photons absorbed by the plants (APAR). The resulting signal is termed
fluorescence quantum yield (Fsyield). Changes in Fsyield are independent of the light
level and thus reflect the functional status of photosynthesis.

3 Case Studies

3.1 CEFLES-2 Campaign

Field data were acquired as part of the European Space Agency (ESA)
supported CEFLES-2 campaign in April, June and September 2007 (http://
www.esa.int/esaLP/SEMQACHYX3F_index_0.html). The campaign was perfor-
med in the Les Landes area, Southwest France. The main site is located in a plain
of the Garonne valley and dominated by intensive agriculture (Fig. 6.5). CEFLES-2
was designed to provide extensive and spatially resolved validation of photosynthe-
sis estimates based on remote sensing fluorescence measurements obtained by using
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Fig. 6.5 Aerial view of the main study site Les Landes in Southern France. The RGB false color
image was derived from the Airborne Hyperspectral Scanner (AHS) airborne sensor (R: 855 nm,
G: 652 nm, B: 539 nm) on September 15, 2007, around 11:44 local time, close to Marmande. The
image dataset was acquired in a flight height of 2,840 m above ground with a spatial resolution
of 6 m. Several corn fields (MC) and selected sunflower (SF), potato (MP), grass (MG, MBU),
Kiwi (MK) and Rapeseed (MR) field that were intensively characterized for their structure and
photosynthetic function are marked

airborne instrumentation. Remotely sensed fluorescence parameter were validated
by extensive ground measurements of structural parameters (leaf area index (LAI)),
canopy height or fractional cover (fcover), biochemical characterizations (chloro-
phyll, water and dry matter content), physiological parameters (PAM fluorometry,
gas exchange) and standard field spectroscopy. These more traditional measure-
ments were complemented with novel set-ups aimed to quantify fluorescence at
the canopy level. Winter wheat and maize were chosen as species of major interest
in April and September, respectively. Additionally, investigations were expanded to
rapeseed, grassland, pine, maize, potato, sunflower, bean, kiwi, grapevine and oak
forest. A detailed overview of the campaign is published in Rascher et al. (2009).

3.2 Characterization of Spatial and Species Dependent Variability
of Photosynthesis Using Fluorescence Estimates

Some basic information about the spatial and species dependent variability of
canopy fluorescence was investigated covering 36 individual fields in 8 different
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crop types, including bare soil. Main focus of this analysis was to investigate the
variability of sun-induced fluorescence within the same field, of the same crop, and
in different canopies (Fig. 6.5). A comparison of the well established Normalized
Difference Vegetation Index (NDVI) and Fs was performed to investigate the plau-
sibility of the derived Fs values. The NDVI typically shows the ‘greenness’ i.e.
the index is a measure for green biomass or canopy chlorophyll content (Goetz
and Prince 1999). As fluorescence is also a function of canopy chlorophyll con-
tent, we expect that low Fs values correspond to low NDVI values and high Fs

values go along with high NDVI values respectively. Important is the dependency
of Fs to photosynthesis and Fs covers complementary information about photo-
synthetic activity. Hence, we also expect a non linear relationship between both
parameters.

A first relative evaluation of the data showed that the Fs signal exponentially
increases with increasing NDVI (Fig. 6.6). A clear difference in the inter- and
intra-field variation was obvious for both parameters. This result is mirroring the
heterogeneity of cultivation, nutrient availability, or simple species composition
within one field being much lower compared to different fields. Principally, the

Fig. 6.6 Comparison between the NDVI and sun-induced fluorescence (Fs). Measurements were
taken over a wide range of agricultural crops and surface classes. During the three campaigns in
April, June, and September 2007, 8 different crops and bare soil were characterized. To cover
the spatial heterogeneity of each field, four representative places were selected and three mea-
surements per place were performed. Measurements were taken top-of-canopy using a FieldSpec
Pro high resolution spectroradiometer (Analytical Spectral Devices, Boulder,USA), which mea-
sures reflected radiation within the spectral domain of 350–2,500 nm with a spectral resolution
(FWHM) of 3.0 nm (350–1,050 nm) and a field-of-view (FOV) of 25◦. A calibrated SpectralonTM

panel (25 × 25 cm) served as white reference to estimate incident irradiance. The fluorescence sig-
nal was quantified using the FLD method according to Maier et al. (2003) in the O2-A band. At
each place in the field, the instrument’s fibre optic was mounted on a tripod, approximately 1 m
above the canopy. Three different spots with a circular area of 0.5 m diameter each were recorded
moving the fibre optic manually over the canopy
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results seem to describe the status of vegetation: the vital and dense winter wheat
fields reach the highest Fs values, slightly senescent corn field medium Fs values and
dry stressed grassland and senescent sunflowers have lowest Fs values (Fig. 6.6).
Moreover, the sensitivity of both parameters differs especially at the boundaries of
the parameter range. On the one hand, the classical vegetation index saturated in
dense canopies (e.g. when LAI is higher than 4) at a NDVI value of 0.9, where Fs

still provided a differentiation of values (e.g. Fig. 6.6, for winter wheat). On the
other hand, NDVI showed a significant variability for non vegetated surface classes
(e.g. bare soil or water). Fs values of non-vegetated surfaces, such as bare soil and
burned grass were close to zero, or greatly senescent sunflower field also showed Fs

slightly below zero (Fig. 6.6).
The relationship between Fs and NDVI indicates that both parameters are driven

by canopy chlorophyll content, but also that the fluorescence signal is complemen-
tary driven by other parameters and may support the theory that Fs is sensitive to
photosynthetic activity. The results clearly show that the observed canopy Fs signal
is affected by various structural effects, e.g. canopy structure, fractional cover, or
canopy height. A comparison of Fs values from canopies with different structural
characteristics and the linkage of derived Fs values to photosynthesis necessitate a
proper normalization for the mentioned structural effects.

4 Conclusions

Quantum yield of photosynthetic energy conversion can be related to photosyn-
thetic light use efficiency (LUE), which represents photosynthetic processes, by the
amount of fixed carbon per unit of absorbed solar radiation (Genty et al. 1989).
Estimation of plant productivity is often based on the linear relationship between
net primary productivity (NPP) and the fraction of absorbed PAR (fAPAR), with
LUE as the slope of this relationship (Monteith 1972, 1977). However, LUE is
often estimated from physiological models or look-up tables, and LUE can vary
greatly among different vegetation types (Gower et al. 1999, Ruimy et al. 1995, Weis
and Berry 1987). Monitoring of LUE by measurement of sun-induced fluorescence
could greatly improve these models.

Crop productivity varies within fields and between fields due to various environ-
mental factors, diseases, and management practices. Photosynthetic efficiency may
be a promising parameter to detect limitations or down-regulation of photosynthesis
regardless of its cause on thus may serve as an early indicator for reduced pro-
ductivity. Air- and space-borne fluorescence or hyperspectral sensors may provide
spatio-temporal information for better response and managing of crops.

Different studies have shown that fluorescence is somehow related to photosyn-
thesis or LUE, respectively (Damm et al. 2009, van der Tol et al. 2009, Meroni
et al. 2008). However, the existence of non-photochemical quenching mechanisms
may influence the relationship of Fs and LUE within a diurnal course and between
different species. Understanding the relation of sun-induced fluorescence and photo-
synthetic efficiency in structurally complex and diverse canopies and ecosystems is
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extremely complex and challenging but it may provide a very useful tool to quantify
productivity of natural and agricultural ecosystems.
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