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Abstract The success of precision agriculture requires accurate methods for
monitoring the state and health of crops. An additional key issue is the availability
of accurate and efficient techniques for in-situ determination of soil properties.
Reflectance spectroscopy, a technique which can be applied in the laboratory, in the
field and from remote observation systems has attracted the attention of scientists
in a variety of disciplines. In soil science, this technology as it relates to precision
farming is rapidly developing and has triggered new research initiatives. Although
a number of studies are available where soil properties have been derived from
reflectance spectra the approach involves substantial scaling problems when trans-
ferring methods from laboratory spectroscopy to optical sensor systems onboard
satellites and aircrafts. The analysis of reflectance images also requires dealing with
data having limited signal-to-noise level, being distorted by atmospheric effects and
largely affected by bidirectional effects in reflectance distribution. Starting with a
short review of the state-of-the-art we present the potential use of reflectance spec-
troscopy for retrieving useful soil parameters based on several case studies. These
studies serve to illustrate the existing limitations for retrieving soil properties over
large heterogeneous areas.

1 Introduction

The success of precision agriculture not only depends on accurate methods for
monitoring the state and health of crops buts also relies on accurate and efficient
techniques for in-situ determination of soil properties. Soil parameters are neither
static nor homogenous in space and time, however analytical costs are often a limit-
ing factor when attempting to address spatial soil variability especially in large-scale
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applications (Plant 2001, Viscarra-Rossel and McBratney 1998). Some applica-
tions, such as precision farming, even require the diagnosis of short or medium
term changes in the nutrient content of soils. The traditional way to explore in field
soil variation is grid-sampling, which is time consuming, labor intensive and lacks
spatial exhaustiveness. Schnug et al. (1998) identified the development of actual
physico-chemical soil maps as one of the major bottlenecks for continuous soil mon-
itoring at the farm level. When a new technology saves time and results in greater
profitability and reduced environmental risk, it will be rapidly adopted by farmers
(Schepers and Francis 1998). Thus, the demand on new techniques for soil monitor-
ing is to find a compromise between analytical speed and precision (Shepherd and
Walsh 2002).

The first scientists who systematically investigated the relationship between soil
spectral information and soil properties were Condit (1970) and then Stoner and
Baumgardner (1981). Their soil spectral library quickly became a classical tool for
soil scientists and was further used as a fundamental reference source for future stud-
ies. Over the past few years, it has been shown that soil spectra across the Visible
(VIS, 0.4–0.7 μm), Near Infrared (NIR, 0.7–1.1 μm) and Short-Wave Infrared
(SWIR, 1.1–2.5 μm) spectral regions are characterized by significant spectral fea-
tures that enable quantitative analysis of several soil properties (e.g. Ben-Dor et al.
1999, 2008, Nanni and Demattê 2006, Schnug et al. 1998, Shepherd and Walsh
2002, Viscarra-Rossel et al. 2006). Pure soil minerals and soil organic matter exhibit
distinct spectral fingerprints caused by electronic transitions in the VIS and by over-
tones and the combination modes of functional groups in the NIR and SWIR, which
derive from their respective C-H, N-H and O-H fundamental vibrations bonds in the
MIR (2.5–25 μm) region (Salisbury 1993). In general, these overtones and combi-
nation modes have reflectance peaks that are less clear than those at the fundamental
frequencies. A linkage between the two spectral domains can be established using
2D- correlation analysis (Barton and Himmelsbach 1993). Respective models are
useful to interpret broad spectral features in the NIR selected by some multivariate
statistical calibration model by means of the related primarily absorption features
in the middle infrared. A wide range of soil constituents can be identified from
the VIS, NIR and SWIR spectral regions under laboratory conditions if advanced
analytical techniques such as artificial neural networks and partial least-squares
regression analysis are used (e.g. Ben-Dor and Banin 1995a, b, Udelhoven et al.
2003, Viscarra-Rossel 2007).

It was also suggested that methods which are successful for analyzing spec-
tra recorded in the laboratory or in the field, including traditional quantitative
approaches that successfully work for laboratory spectrometry of minerals (Clark
and Roush 1984), also may be applicable for analyzing the spatially continuous
reflectance data provided by multi- or hyperspectral imaging systems. For the
emerging discipline of precision agriculture, optical remote sensing and imaging
spectrometry in particular were expected to provide soil parameters before and after
the growing season, and thus provide farmers with a spatially explicit quantitative
overview of the soil properties and phenomena in question. In this way, farmers
may be able to control resources such as irrigation, nutrients and cultivation, as well
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as obtain better yields per hectare and gain substantial savings through optimized
fertilizer, herbicide and pesticide application.

2 Background

Bi-directional soil reflectance in the wavelength range between 0.4 and 2.5 μm is a
cumulative property, which derives from the inherent spectral behaviour of the het-
erogeneous combination of minerals, water, organic matter and other chromophores
(Udelhoven et al. 2003). A chromophore – a part of a molecule that causes it to
be colored – is a parameter or substance (physical or chemical) that significantly
affects the shape and nature of a soil spectrum. A single soil sample usually features
a range of chromophores, which may vary with the environmental conditions and
soil forming processes.

Soil chromophores can be divided into chemical and physical categories
(Ben-Dor et al. 1999). Chemical chromophores are those materials that absorb inci-
dent radiation in discrete energy levels (Fig. 5.1). Usually the absorption process
appears on a reflectance spectrum as a feature whose position is attributed to specific
chemical groups in various structural configurations, overtone, combination modes,
and electronic processes. All features in the VIS- NIR- SWIR spectral regions have
a physical basis. In soils, three major optically active chemical chromophores can be
roughly categorized as follows: (I) minerals, mainly clay, iron oxide, primary min-
erals feldspar, salt, and hard to dissolve substances such as carbonates, phosphates;
(II) fresh and decomposing organic matter; and (III) water in solid, liquid, and gas
phases (Fig. 5.1). Minerals, for example, exhibit distinct spectral fingerprints caused
by electronic transitions in the VIS and NIR (0.4–1.1 μm) and by overtones and
combination modes of OH-, SO-, and CO-groups in the SWIR (1.1–2.5 μm) (Hunt
and Salisbury 1970). Often the spectral signals related to a given chromophore over-
lap with the signals of other chromophores and thereby render the assessment of a
specific chromophore difficult.

Physical chromophores are properties that affect the overall spectral region and a
particular waveband position, or in other words, do not relate to the chemical func-
tional group. Examples of these are particle size variation and refraction indexes of a
material that changes from one illumination condition to another. A comprehensive
review of chemical and physical chromophores in soil and elaborating more gener-
ally on minerals, some of which are important in the soil environment is given in
Irons et al. (1989), Ben-Dor et al. (1999), Clark (1999) and McBratney et al. (2006).

Soil color is one of the most useful attributes for characterization and identi-
fication of soil types that can also be derived from most operational multi- and
hyperspectral sensor systems (Torrent and Barron 1993). Its relevance is mainly
attributed to the fact that soil color can be correlated to important soil properties
(Mulders 1987). Traditionally, soil color is measured using the Munsell soil color
chart (Munsell Colour Company 1975), which is a useful system for categorizing
soil color, but does not lend itself to statistical analysis (Viscarra-Rossel et al. 2006).
Therefore, Melville and Atkinson (1985) recommended the use of the CIE-LAB



70 J. Hill et al.

Fig. 5.1 Active groups and mechanisms of chemical soil chromophores. For each possible group,
the wavelength range and absorption feature intensity are given (Ben-Dor et al. 1999, modified)

color system instead, and more recently, Jarmer et al. (2009) successfully applied the
CIE (Commission Internationale de l’Eclairage) color system from 1931 to assess
soil organic carbon concentrations from Landsat TM data on a regional scale level.
In the CIE system, color is calculated from reflectance values. In addition the pos-
sibility of using statistical analysis of the calculated color values provides another
substantial advantage. Satellite data are often characterized by redundant informa-
tion leading to high correlation among spectral data recorded in various spectral
bands, especially those data in the visible domain. Transforming reflectance into
the CIE color values leads to a substantial de-correlation of spectral data which is
an important advantage for statistical data analysis. Additionally, this transforma-
tion additionally allows comparison of soil color derived from different sensors and
sensor independent use of developed prediction models.
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Major drawbacks for scaling from point (laboratory) to imaging systems are
the large size of the pixels that results in a significant mixed pixel problem and
the wide spectral band response function and incomplete capture of specific spec-
tral features of the chromophore. While the latter can be efficiently compensated
for by using high spectral resolution imaging systems, surface roughness effects
cause substantial bidirectional effects which are not straightforwardly controlled.
Additional problems arise from the necessity to correct atmospheric distortions in
the reflectance signal (Ben-Dor et al. 2009).

3 Retrieval Methods

The general concept for retrieving soil properties requires that a spectrum is pro-
cessed to provide quantitative information about its chromophores. This can be an
index, an equation or a model that is extracted from the spectral information, usu-
ally combined with the traditional chemical information. This is usually done by
selecting a group of samples, followed by traditional chemical analysis and spec-
tral measurements. Manipulations are done between the two data sets in order to
derive a parameter or set of parameters that can describe the property solely from
the reflectance readings. Theoretical or empirical models are allowed, whereas val-
idation of each model is essential using external samples (Ben-Dor et al. 2008).
This technology is termed Visible and Near-Infrared Spectroscopy (VNIRS) and
was adopted from a strategy developed about 40 years ago in food science. In this
approach, the reflectance measured from powder or aggregates, across the VIS-
NIR- SWIR region, is modeled against constituents determined by wet chemistry
methods. After this theoretical chemical model is validated, it can be applied to
unknown samples (e.g. Awiti et al. 2008).

In soil science the VNIRS concept has provided promising results for rapid
determination of several soil properties. Optically active soil components comprise
organic matter (Dalal and Henry 1986, Krishnan et al. 1980, Wilcox et al. 1994, iron
oxide minerals, Kosmas et al. 1984, clay and sand content, Al-Abbas et al. 1972,
Selige et al. 2006, Waiser et al. 2007), specific surface, hygroscopic moisture, metal
and carbonate content (Ben-Dor and Banin 1995a, b). These soil attributes play a
decisive role in assessing topsoil characteristics e.g. soil aggregation, aggregate sta-
bility and resistance to water and wind erosion (Selige et al. 2006). Recently, He
et al. (2007) demonstrated that macronutrients could be predicted via VNIRS for
precision farming purposes, although not all are optically active substances. This
phenomenon deserves special attention and will be discussed in more detail in one
of the next sections. A comprehensive literature review summarizing the VNIRS
optical concept and its achievements in soil science can be found in Malley et al.
(2004). Another recent review was provided by Nanni and Demattê (2006), who
elaborate on the current utilization of this technique for soils, whereas Viscarra-
Rossel et al. (2006) provided a detailed list where all soil constituents successfully
predictable by VNIRS are presented.
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In fact, laboratory VNIRS is accepted as a fast and non-destructive approach
(Chang et al. 2001, Shepherd and Walsh 2002), and more recently a number of
advanced methods have been suggested to transform reflectance spectra into quanti-
tative estimates of soil constituents. These include multivariate adaptive regression
splines (Shepherd and Walsh 2002), radial basis function networks (Fidêncio et al.
2002), and artificial neural networks (Daniel et al. 2003). An important require-
ment for advanced statistical methods is the ability to handle large sets of collinear
predictor variables and to deal with noisy patterns.

3.1 Artificial Neural Networks

The application of artificial feed-forward neural networks (ANNs) is one of the
standard methods in spectroscopic applications (Udelhoven and Schütt 2000). A
three-layer ANN represents a universal approximator able to fit any continuous
function, linear or non-linear, between independent and dependent variables to a
pre-defined arbitrary degree of accuracy. A major drawback of ANNs is that they
appear to be black boxes due to their high degree of flexibility and the variety of
learning parameters and network architectures. ANNs require a learning function to
adjust all the weights and biases of a given neural network. There exists a variety
of different training algorithms for feed-forward ANNs, including gradient descent
methods, conjugate gradient methods, the Levenberg-Marquardt algorithm, to men-
tion only a few. A detailed mathematical description can be found, for example, in
Bishop (2005).

Udelhoven and Schütt (2000) tested several variants of feed-forward ANNs for
chemical characterization of sediments based on reflectance measurements in a lab-
oratory approach. Ten chemical properties including inorganic carbon, Fe, S, Al, Si,
Ca, K, and Mg from 214 samples from various drilling locations all over the central
part of the Iberian Peninsula were simultaneously estimated using one ANN model.
They concluded that the combined methodology of diffuse reflectance spectroscopy
evaluated with a trained and representative neural network can be applied as a rapid
and cost-effective screening method to characterize solid samples provided that a
representative set of analytical data for the network training is available. A similar
conclusion has been drawn by Kemper and Sommer (2002) who used an ANN to
predict heavy metals in soils contaminated by mining residuals using reflectance
spectroscopy.

3.2 Partial Least Squares Modeling (PLSR, PLSR Combined
with a Genetic Algorithm)

Partial least squares regression (PLSR) is an extension of the multiple linear regres-
sion and principal component regression models. PLSR projects the data into a
low-dimensional space (i.e. a set of orthogonal variables, called latent variables).
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It maximizes the covariance between the spectral matrix (X) and chemical con-
centration matrix (Y) by accomplishing eigendecomposition of both matrices (Otto
1998, Wold et al. 2001). The objective is to model X in such a way that the informa-
tion in Y can be predicted as precisely as possible. The first latent variable, which
is extracted from the matrix X, explains a maximum of the variance of matrix Y.
The second latent variable describes a maximum of the residual variance, which has
not been described by the first latent variable, and so on. The optimum number d of
latent variables to be used in the analysis is determined by comparing the root mean
square errors of cross-validation (RMSEcv) of the predictions with different values
of d. Alternatively, a validation data set can be used to determine an appropriate
number of latent variables.

In the following, one example for using PLSR to estimate soil clay content from
spectroradiometric measurements is briefly documented. In total 64 soil samples
with prevailing loamy sand texture were collected in a floodplain in Central Europe.
An ASD FieldSpec II Pro FR instrument (Analytical Spectral Devices, Boulder,
USA) was used for the spectral readings of these samples after air drying and grind-
ing. Measured reflectance data were resampled to 10 nm resolution over the 0.4–2.5
μm wavelength range (211 spectral predictor variables). In the PLS approach an
optimum number of seven latent variables was found. For this model, the influence
of the original spectral variables is reflected by the PLS regression coefficients.
The coefficient profile (Fig. 5.2b) exhibits several peaks throughout the complete
wavelength range, and thus does not represent the intrinsic spectral features of clay
minerals e.g. illite with two strong absorption bands at 2.2 and 2.34 μm. The PLS
model provides estimates with an r2

cv value of 0.68 (Fig. 5.2a). RMSEcv amounts
to 43.3 g kg−1 (relative RMSEcv = 0.33), and the RPD (ratio of standard devia-
tion of measured samples to RMSEcv) is 1.77. According to the guideline of Malley
et al. (2004) these results may be categorized as moderately useful for screening
purposes, such as distinguishing low, medium and high values.

Fig. 5.2 Partial least squares regression (PLSR) for calibrating soil clay contents: Predicted vs.
measured values (a) and PLS regression coefficients (b)
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An important factor that contributes to the performance and robustness of a
statistical prediction model is its parsimony. The parsimony of PLSR is to use
a limited number of latent variables for the prediction of a dependent variable.
Nevertheless, the number and prediction quality of the relevant latent variables
strongly depends on the spectral information that is used to calculate these factors.
Therefore improved prediction by PLSR may be achieved by applying some form
of variable selection to optimize the quality of the latent variables.

With a large number of features it is not feasible to test all possible subsets
for an optimal calibration model. Several techniques can be employed to iden-
tify a near optimal solution, among which genetic algorithms allows an efficient
search in high-dimensional and complex response surfaces. The overall goal is to
identify the most informative variables that allow an improved predicitive capac-
ity of the calibration model, or at least a simplified model with less variables and
without loosing prediction accuracy (Leardi and González 1998, Yoshido et al.
2001).

The genetic algorithm used in our example mainly follows the principles
described by Leardi and González (1998). Each chromosome of the initial pop-
ulation is composed of 211 genes (corresponding to the 211 original spectral
predictors), each gene being formed by a single bit or binary coding, where each
spectral variable can be switched on or off. Chromosomes with an above-average
fitness (fitness criterion: cross-validated variance explained by the PLS-regression)
are selected as parents. Offsprings are obtained by reproduction (cross-over method)
and mutation, and the responses of the new chromosomes are evaluated with the
decision to be included in the population or to be discarded. At the end of each run
each with 200 evaluations, the selected variables of the fittest chromosome are iden-
tified. Selection frequencies at the end of all runs (100 runs per cycle, and then ten
repetitions of the complete cycle), decide on the most predictive variables that are
accepted for the final PLS calibration (Fig. 5.3).

In this case, only 29 of the 211 original variables are selected. Based on now
6 latent variables, the PLS regression model provides estimates with an r2

cv value

Fig. 5.3 Partial least squares regression with genetic algorithm (GA-PLSR): Predicted versus
measured values; based on the averaged frequency of selection per 100 runs (10 repetitions), 29
spectral variables are selected by GA



5 The Use of Laboratory Spectroscopy and Optical Remote Sensing 75

of 0.82 (Fig. 5.3), and a RMSEcv of 32.0 g kg−1 (relative RMSEcv = 0.24). In
comparison to PLS without feature selection the RPD value of 2.40 proves a con-
siderable improvement of GA-PLS up to useful levels for quantification purposes
(Malley et al. 2004).

3.3 Support Vector Machine Regression

Support vector machine regression (SVM-R) represents a different model class com-
pared with PLSR techniques since it is based on statistical learning theory (Vapnik
1995). SVM-R has recently be successfully applied for the retrieval of soil organic
carbon in Luxembourg based on airborne AHS imaging data (Stevens et al. 2010).
The most valuable properties of SVMs are their ability to handle large input spaces
efficiently, to deal with noisy patterns and multimodal class distributions, and their
restriction to only a subset of training data in order to fit a non-linear function. The
SVM-R methodology is described in detail in Schölkopf and Smola (2002). In prin-
ciple an input vector X is mapped from the input domain into a higher dimensional
feature space via a kernel function, where data are spread out in a way that facilitates
the finding of an interpolation function (Vapnik 1995). This function is identified by
fitting a tube with radius ε to the training data using boundary samples, the so-
called support vectors (SV). The optimization problem is solved using Quadratic
Programming (QP) techniques (Schølkopf and Smola 2002). This requires fixing
a free regularization parameter C beforehand that confines the influence of criti-
cal training patterns. As kernel the Gaussian radial basis function (RBF) is often
selected due to computational convenience. The RBF kernel requires only selecting
one free parameter (σ) beforehand that controls the smoothness properties of the
interpolating function.

3.4 Penalized-Spline Signal Regression (PSR)

Penalized-spline Signal Regression (PSR) is a novel technique that has been devel-
oped by Marx and Eilers (1999, 2002); PSR is – like PLSR – able to solve a
multivariate calibration problem in which the predictors are highly correlated and
their number exceeds the number of observations. The main difference between the
PLSR and the PSR is that in the former the order of the predictor variables i.e.
wavelengths in spectrometry, does not influence the model, whereas PSR forces
the coefficient of the regression to vary smoothly across the wavelengths. This is
attained by projecting the coefficients onto a set of smooth functions (B-splines).
There are several PSR parameters that must be fixed beforehand, including the
degree of B-splines and the number of intervals between knots, the point where
B-splines join. Stevens et al. (2010) found PSR to be superior to PLSR in the esti-
mation of soil organic carbon from airborne hyperspectral AHS-160 data in an area
in Luxembourg.
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4 Applications

One soil parameter that is of special relevance in precision farming applications is
soil organic carbon (SOC), since it plays an important role with respect to chemi-
cal and physical processes in the soil environment (Ben-Dor et al. 1999). Together
with clay content and composition, it has a major effect on major soil properties
such as the stability of soil aggregates and water retention (Stevens et al. 2010).
Furthermore, soil organic carbon strongly influences soil fertility, plant nutrient
supply, microbial activity and soil physical properties (Wilcox et al. 1994). The
following examples focus on the assessment of organic carbon at different scales.

4.1 Scale Dependencies in the Assessment of Chemical Soil
Constituents

Soil monitoring using VNIRS has been applied on different scales, ranging from
laboratory measurements, field approaches to airborne and satellite hyperspectral
imaging devices. At a field scale VNIRS has been used to estimate chemical soil
constituents with portable spectrometers (Kooistra et al. 2003, Odlare et al. 2005,
Udelhoven et al. 2003). At the regional scale soil properties were assessable by
multispectral satellite systems (Hill and Schütt 2000, Jarmer et al. 2009), airborne
imaging spectrometry (Ben-Dor et al. 2002, Stevens et al. 2010, 2006), and recently
also from the hyperspectral satellite platform HYPERION (Gomez et al. 2008).

Udelhoven et al. (2003) evaluated soil chemical properties from different loca-
tions in the Trier region (Rhineland-Palatinate, Germany) under field and laboratory
conditions using a portable spectrometer and PLSR. Generally, laboratory spectrom-
etry using air dried and sieved samples performed better than field spectrometry.
This was probably due to strong interferences of soil surface properties such as
moisture content, roughness and crusting. In a plot experiment they investigated the
accuracy in the retrieval of chemical soil parameters such as Ca, Mg, Fe, Mn, K and
SOC. In Fig. 5.4 a spline interpolation is shown for organic and inorganic carbon
for both measured and estimated contents from the data set. The prediction accuracy
of the SOC-model with the best performance corresponded to a mean square error
for cross-validation (RMSECV) of 0.14, and to a coefficient of determination (r2

cv)
of 0.6, respectively. Although statistically significant, Fig. 5.4 illustrates that at this
level of accuracy measured spatial concentration pattern in the plot are not sus-
tained. In contrast, PLS estimations of inorganic carbon were more accurate (r2

cv=
0.93), resulting in a much better representation of the inorganic carbon values in the
plot. This demonstrates that a statistically significant relation between dependent
and spectral variables does not guarantee that the spatial patterns in concentration
can be well reproduced. This is due to the fact that the spatial interpolation also fits
the prediction errors of the target variable.

Airborne imaging spectrometry has an even greater potential to overcome the
restrictions of ground based or laboratory spectroscopy as spatial interpolation is
circumvented and upscaling over large areas is possible. These systems provide high
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Fig. 5.4 Spline interpolation of measured and estimated (cross-validation) inorganic carbon and
organic carbon contents at field scale (plot ‘Dietrichskreuz’, Helenenberg, Rhineland-Palatinate,
SW Germany; Udelhoven et al. 2003)

spatial and spectral resolution along with flexible temporal resolution which is ide-
ally suited for soil monitoring in the context of precision agricultural applications.
Major constraints include atmospheric absorptions interfering with the spectral mea-
sure, spatial variation in surface properties and a lower signal-to-noise ratio, which
might result in an incompatibility between field and airborne spectroscopic mea-
surements (Ben-Dor et al. 2008, Chappell et al. 2005, Stevens et al. 2010). Hill
and Schütt (2000) could demonstrate that meaningful spatial patterns of soil organic
matter which exhibited a positive correlation to crop productivity could be derived
from multispectral satellite systems. Gomez et al. (2008) estimated SOC from
reflectance data from vertisols in Australia using HYPERION data and a portable
field spectrometer and partial least squares regression (PLSR).

Ben-Dor et al. (2002) could explain 83.3% of the variability of SOC using
DAIS-7915 airborne data (400–2,500 nm) of clay soils in Israel. Uno et al. (2005)
and Stevens et al. (2006) found between 74 and 85% common variability of SOC
and spectrometry data from the CASI airborne hyperspectral sensor (400–950 nm).
Selige et al. (2006) achieved slightly better results (r2 = 0.9) with the HyMap sen-
sor (420–2,480 nm). Less satisfactory prediction models of SOC were obtained by
Bajwa and Tian (2005) with the RDACS/H-3 sensor (471–828 nm; r2 = 0.66) and
De Tar et al. (2008) with the AVNIR sensor (429–1,010 nm; r2 = 0.48).

Whereas the majority of these studies addressed comparably small areas or
homogeneous soil types, Stevens et al. (2010) analyzed hyperspectral images
acquired with the AHS-160 sensor to predict variation in SOC content in
Luxembourg (Fig. 5.5), a country which is covered by different soil types and
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Fig. 5.5 Locations of bare
soils within five parallel flight
stripes using the AHS-160
sensor in Luxembourg

a large variation in SOC contents. Reflectance data were related to surface SOC
contents of bare croplands (n = 325) by means of 3 different multivariate calibration
techniques: PLSR, PSR and least square support vector machine (SVM-R). Their
performance was tested under different combinations of global and local calibra-
tions stratified according to agro-geological zone. Figure 5.6 illustrates the results
for the global calibration and for four separate sub-models obtained for the different
agro-geological zones and for each statistical model using an internal validation data
set. The measure of accuracy is related to the root mean squared error of prediction
(RMSEP).

Nevertheless, a substantial spread in observed versus predicted SOC values above
30 g C kg−1 indicates a higher degree of variability in the reflectance data. This is
not solely attributed to the organic carbon content, but to other soil chromophores
such as soil moisture and ferrous oxides that differ between the agro-geological
regions. These chromophores disturb the global correlation with SOC.

Figure 5.6, right, shows the results obtained for the local calibrations over each
agro-geological subset separately. This strategy allowed considerable improvement
in the accuracy of the models. In addition the problem of non-linearity of PLSR and
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Fig. 5.6 Plots of measured versus predicted SOC as obtained by PLSR (top), PSR (middle) and
SVR (bottom) using AHS-160 data validation data set
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PSR models at high SOC content no longer occurs when applying local calibrations
for each of the agro-geological regions. Other attributes used to stratify the data set
e.g. soil type and image number also led to an improvement when compared to the
global models (Stevens et al. 2010). For the stratified samples PSR demonstrated
the best ability to predict SOC content in the stratified samples. These findings are
in line with the conclusions of Marx and Eilers (2002) who showed that PSR offers
greater stability in predictions under changing experimental conditions compared to
PLSR.

4.2 Estimation of Optically Featureless Soil Components

A number of studies suggest that it is possible to estimate even optically non-active
chemical soil properties with featureless spectra. This is possible in that these ele-
ments are bonded to active soil components such as Fe oxides, organic matter and
clay and these bonds provide a major predictive mechanism (Kemper and Sommer
2002, Kooistra et al. 2003, Vohland et al. 2009, Wu et al. 2007). In statistics this phe-
nomenon is known as spurious correlation. Martínes-Carreras et al. (2010) predicted
different chemical properties of suspended sediments from the small catchment of
the Wollefsbach, (4.4 km2), a sub-catchment of the Attert River catchment located
in the NW of Luxembourg, from spectroradiometer data through PLSR. Apart from
major suspended particle components such as organic carbon, calcium and iron
oxides they were able to predict trace minerals, such as Li, Sc, Cr, Ni and Cs and
even rare earth elements like La, Ce, Pr, Nd, Sm, Eu and Dy. This is due to indirect
correlation with spectra caused by optically active background variables, in particu-
lar iron oxides, organic matter and clay and clearly reflects the mineralogical nature
of the investigated catchments. Spurious correlation can be detected by statistical
techniques. Wu et al. (2007) used Principal Component Analysis (PCA) with vari-
max rotation to clarify the relationships between different chemical tracers. The
conception is that highly correlated variables might be estimated from reflectance
data if at least one of these properties is optically active.

Another approach is to analyze patterns in the correlation spectra for each soil
constituent of interest. The value of the correlation coefficient at a single wavelength
describes the univariate importance of a wavelength for the prediction of the given
constituent. Another possibility is to analyze factor loadings or regression coeffi-
cients in PLSR or related statistical calibration models (Malley and Williams 1997,
Vohland et al. 2009). An example is given in Fig. 5.7 which shows the correla-
tion spectra (correlograms) for the sediment properties from the study of Udelhoven
and Schütt (2000). The two correlograms are grouped according to the correlation
structure of the considered chemical compounds. The first class consists of Fe, K,
Al and Si while the second of C, LOI, Ca and calcite. Within both groups the cor-
relation structure is to some extent redundant, however only Fe, C (in carbonates)
and calcite have direct optical features. The prediction of the remaining properties
is based on spurious correlation. It can be assumed that these patterns cannot be
attributed to only one dominant chemical characteristic in these groups, but to the
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Fig. 5.7 Correlograms of selected soil properties in a plot experiment (Udelhoven and Schütt
2000)

collective occurrence of several optically active minerals in the samples from a spe-
cific petrography. The explanatory optically active components in the first groups
are iron oxides and clay minerals.

This example demonstrates that spurious correlation of chemical soil constituents
with the soil reflectance pattern is often caused by the soil’s geological and miner-
alogical nature. By no means can statistical regression models based on spurious
correlation be transferred to other regions beyond the study area with different
underlying geology or to soil parameters that are highly variable in space and time.
This excludes VNIRS as a diagnosis tool of short or medium term changes of the
soil’s nutrient status e.g. potassium or phosphorus.

5 Conclusions

Arable soils are important resources which should be preserved for present and
future human needs by sustainable agriculture. The monitoring of environmen-
tal processes on large-scales requires up-to-date maps of physico-chemical soil
properties. Soil reflectance is determined by soil chromophores that are basically
determined by soil chemical composition and to soil albedo that is related to soil
physical characteristics. Consequently, soil mapping in the context of precision
agriculture applications may largely benefit from imaging and non-imaging diffuse
reflectance spectrometry, which has the potential to overcome the current problems
of high costs, labor and time. Soil mapping should aim to represent the temporal
and spatial variability of soil properties at different scales using in-situ and labo-
ratory methodologies. There are still some restrictions that hinder the transfer of
visible and infrared spectroscopic methods from the laboratory to the field scale.
Two of the most disturbing factors for in-situ spectral measurements are soil rough-
ness and moisture content that must be taken into account to enable models to work
accurately under a variety of conditions.
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The spectral prediction mechanism may be a direct one that is based on diag-
nostic spectral fingerprints of the studied parameter, or indirect when variables
of interest are without spectral features but correlated with spectrally active soil
components. Airborne imaging spectrometry has the advantage that spatial inter-
polation is circumvented and upscaling over large areas is possible. The spectral
range of current and forthcoming airborne (e.g. HyMap, APEX, ARES, AISA,
HySpex) and satellite imaging spectrometers (HYPERION, EnMAP) is excellent
for detecting electronic transitions in minerals e.g., iron oxides, Fe2+ bearing miner-
als, and vibrational absorptions due to lighter elements e.g. OH, SO4, CO3, CH,
etc.. Therefore, the spatial distribution of OH-bearing minerals, carbonates, sul-
fates and organics can be mapped on bare soil surfaces. A substantial restriction in
regional soil monitoring is that the related statistical models to retrieve soil param-
eters from spectroscopic data are applicable only to geological homogeneous areas
or ‘soilscapes’. Otherwise a stratification of the soil samples according to geological
conditions and the calibration of respective sub-models are suggested due to the cor-
relation of the strata with important chromophores like soil moisture or ferrous oxide
content.

Despite many encouraging results, the exploitation of chemical soil property
maps derived from imaging spectrometry data should still be considered with some
caution. In particular, a post-validation over fields not covered by the existing cal-
ibration/validation sets would be necessary to assess the actual accuracy of the
statistical models. This is important particularly in cases of the prediction of fea-
tureless soil properties. Another critical issue is the representativeness of statistical
models in case of varying surface and illumination conditions.

Beyond the increasing number of airborne systems, spaceborne hyperspec-
tral imagers provide a viable coverage for large-scale studies of bare soils for
future operational applications. HYPERION, a hyperspectral imaging instrument
on the EO-1 platform is currently the only operational spaceborne hyperspectral
sensor. The sensor measures the radiance with 242 continuous spectral bands,
ranging from 356 to 2,577 nm with approximately 10 nm of spectral resolu-
tion and 30 m of spatial resolution. HYPERION collects image data for an area
of about 7.7. km in the across-track direction and 42 km in the along-track
direction.

In 2014 the German Hyperspectral Environmental Mapping and Analysis
Program (EnMAP) satellite will be launched. This sensor is expected to provide
a higher signal-to-noise ratio than that of HYPERION. However it will not solve
the problem of the rather limited spatial resolution of 30 m. Thus, the recorded
reflectance is often the mixed result of several surface components. This makes it
necessary, especially in heterogeneous landscapes, to apply spectral unmixing tech-
niques to isolate the reflectance signals of soils from disturbing influences especially
from green vegetation and crop residues.
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