
Chapter 11
Mining Graph Patterns in Web-Based Systems:
A Conceptual View

Matthias Dehmer and Frank Emmert-Streib

11.1 Introduction

The task of applying Data Mining methods [38] to web-based hypertexts is often
referred to as Web Mining [16]. In view of the steadily increasing complexity of
web data sources and the huge amount of information available online, Web Mining
has been an important and fruitful research topic [16, 46]. Generally, Web Mining
can be divided into the following categories:

1. Web Content Mining: Web Content Mining provides methods for automatically
extracting information from web-based data sources. Important problems are
data extraction and analysis by using, e.g., Text Mining methods [53].

2. Web Structure Mining: Web Structure Mining deals with exploring structural
properties of web-based hypertexts, e.g., investigating internal and external link
structures of web-based documents [16] or exploring hypertext structure types
using graph-based models [55]. Moreover, there are a lot of earlier contribu-
tions rooted in complex network theory [29] dealing with analyzing mathemat-
ical growth-properties of the web graph and web subgraphs by using stochastic
models [1, 34, 40, 48, 63]. Often, these methods aim to improve web-search and
information extraction algorithms in Web Mining [14, 45].

3. Web Usage Mining: Web Usage Mining [73] deals with exploring and analyzing
patterns reworked from web logs to analyze behavior of hypertext users. Such
an analysis can be in particular useful to optimize business websites, to analyze
their quality and to detect effectiveness features, see, for example [64].

In this chapter, we put the emphasis on discussing methods (in the context of Web
Structure Mining) to analyze graph-based hypertext patterns. To tackle our problem,
we discuss a graph-theoretic framework for exploring graph-based patterns repre-
senting web-based hypertext structures. Besides modeling document structures as
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graphs [57] that means that in the sense of consistent graph similarity measuring, we
apply a method to measure the structural similarity of graphs (see Section (11.4.2))
to approach problems in Web Structure Mining, for example:

1. Computing the cumulative similarity distribution Θ of a web genre [50] corpus
containing graph-based documents (see Section 11.5). A possible interpretation
of Θ addresses the important question how structurally distributed the graph-
based documents in the given corpus are.

2. Structural filtering of web-based units: By measuring the structural similarity
of the document structures and then applying clustering techniques, we obtain
clusters which contain structurally similar web-based units.

The main contribution of this conceptual chapter is to shed light on the task of
automatically analyzing web genre data by using a method for structurally compar-
ing graph-based hypertexts [18, 22, 27]. We use the term “web genre” and “web
genre data” in the sense of Mehler et al. [59] where web genres are considered as
hypertext types, see, e.g. [59, 65]. Also, we want to emphasize that we do not use the
vector space model [31, 52] to represent a web-based document structure [18, 24].
Instead, we use a special graph class called generalized trees (GTs) [25, 57] for
modeling our web-based documents [57].

Basically, Mehler focuses on webgenres not from the point of view of a bag-
of-features model [56]. Rather, this approach conceives instances of webgenres as
complex signs that have a characteristic structure due to their membership to a
certain genre. This contrasts genre modeling with topic modeling in Information
Retrieval [2] where a topic is represented by a set of lexical units that are typically
used to manifest that topic. Rather, Mehler’s approach is linguistic in the sense that
instances of a certain text type are seen to have a characteristic topical structure
and a characteristic generic structure. Take the example of a newspaper article in
contrast to, say, a personal letter: although in both cases the universe of topics
is certainly open, we can nevertheless expect that instances of both types depart
with respect to the topical areas they typically deal with. Moreover, the differences
between these text types are also manifested in structural terms: the structure of a
letter significantly differs from that of most newspaper articles. So why not exploring
text structure [28], document structure [62] or even layout structure [75] to get
insights into the webgenre (or hypertext type) of a webpage or of a website?

Interestingly, many webgenre models oversee this structural source of the charac-
teristics of webgenres. Consequently, they tend to rely on some extension or simply
on some application of the bag-of-features or vector space model. However, such an
approach disregards a central characteristic of web units as instances of webgenres,
that is, their hyperlink structure, which is genuine web-based. From this point of
view, a website is seen to be identifiable as an instance of a webgenre by means of its
hypertextual structure – beyond its textual structure. Mehler et al. [59] have shown
that because of many aspects of informational uncertainty this hypertextual structure
is – by analogy to its textual counterpart – not immediately accessible: neither can
we simply read-out this structure from HTML tags or URLs, nor is it manifested by
hyperlinks only. Rather, this hidden hypertext document structure needs first to be
explored as this is done with its counterpart in the form of document structure [62].
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In this paper, we propose a structural approach of webgenres and webgenre
classification that builds upon a webgenre-related hypertext structure model. More
specifically, we utilize a certain graph model (in the form of generalized trees) that
has been found to be the structural kernel of many complex linguistic aggregates
[54]. Our task is to add a computational model that deals with this class of graphs
as a model of webgenre structure. In this sense, we propose an algorithmic model
that integrates a recent structural model of linguistic units by example of webgenres
with their computational processing.

The graph similarity-based approach we want to discuss in this chapter operates
on generalized trees representing hierarchical and directed graphs. We notice that
generalized trees are more general than ordinary rooted trees because a generalized
tree contains an ordinary rooted tree as a special case. For practical applications, this
implies that a generalized tree captures more structural information of the under-
lying document structure than an usual DOM-tree [15] represented by a directed
rooted tree. The classical DOM-tree model has been also applied for measuring the
structural similarity of underlying hypertext structures by [13, 42].

The chapter is organized as follows: Section 11.2 presents some mathematical
preliminaries. In Section 11.3, we briefly discuss the problem of deriving structural
properties of graphs to characterize them structurally. Besides outlining existing
methods for measuring the similarity of web-based document structures in Sec-
tion 11.4, this section also discusses a graph similarity-method that operates on
generalized trees. In Section 11.5, we outline resulting applications in Web Struc-
ture Mining and Web Usage Mining. The chapter finishes with a short summary in
Section 11.6.

11.2 Mathematical Preliminaries

First, we introduce some mathematical preliminaries [25, 37, 39].

Definition 1 G = (V, E), |V | < ∞, E ⊆ (V
2

)
is called a finite undirected graph.

G = (V, E), |V | < ∞, E ⊆ V × V represents a finite directed graph.

Definition 2 Let G = (V, E) be a graph. G̃ = (Ṽ , Ẽ) is called a subgraph iff
Ṽ ⊆ V and Ẽ ⊆ E . Moreover, if it holds Ẽ = E ∩ (Ṽ × Ṽ ), then we call G̃ the
induced subgraph of G.

Definition 3 An isomorphism class denotes the set of graphs which are isomorphic
to a given graph G.

Definition 4 A tree is a connected, acyclic undirected graph. A tree T = (V, E)

with a distinguished vertex r ∈ V is a rooted tree. r is called the root of the tree.
The level of a vertex v in a rooted tree T equals the length of the path from r to v.
The maximum path length d from the root r to any vertex in the tree is called the
depth of T . A leaf is a vertex incident to exactly one edge in a tree.

Definition 5 Let G = (V, E) be a finite, directed graph. Then, we define the fol-
lowing sets and quantities:



240 M. Dehmer and F. Emmert-Streib

N+(v) = {w ∈ V \{v} | (v,w) ∈ E},
N−(v) = {w ∈ V \{v} | (w, v) ∈ E},
δout(v) = |N+(v)|,
δin(v) = |N−(v)|.

We call δout(v) and δin(v) out-degree and in-degree of v ∈ V , respectively.

Definition 6 A directed acyclic graph T is called a directed rooted tree if there is an
unique vertex r satisfying δin(r) = 0 from which any other vertex of T is reachable
by a unique path.

Definition 7 Let T = (V, E1) be a directed rooted tree. The vertex set is defined by

V := {v0,1, v1,1, v1,2, . . . , v1,|V1|, v2,1, v2,2, . . . , v2,|V2|, . . . , vd,1, vd,2, . . . , vd,|Vd |},
(11.1)

and we assume |V | < ∞. |L| denotes the cardinality of the level set L =
{l0, l1, . . . , ld}. The surjective mapping L : V −→ L is called a multi level function
that assigns to every vertex an element of the level set L . It holds d = |L| − 1. vi, j

denotes the j-th vertex on the i-th level, 0 ≤ i ≤ d, 1 ≤ j ≤ |Vi |. |Vi | denotes the
number of vertices on level i . The edge set EGT := E1 ∪ E2 ∪ E3 ∪ E4 of a finite
generalized tree H = (V, EGT ) is defined as [57]:

• E1 forms the edge set of the underlying directed rooted tree T . These edges are
called Kernel-edges.

• E2: Up-edges associate analogously vertices of the tree hierarchy with one of
their (dominating) predecessor vertices.

• E3: Down-edges associate vertices of the tree hierarchy with one of their
(dominated) successor vertices in terms of that tree hierarchy.

• E4: Across-edges associate vertices of the tree hierarchy, none of which is an
(immediate) predecessor of the other in terms of the tree hierarchy.

Figure 11.1 shows a generalized tree exemplarily.

Definition 8 We define some metrical properties of graphs. d(u, v) denotes the
distance between u ∈ V and v ∈ V representing the minimum length of a

UE
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Fig. 11.1 A generalized tree with its edge types
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path between u, v. Note that d(u, v) is an integer metric. We call the quantity
σ(v) = maxu∈V d(u, v) the eccentricity of v ∈ V . ρ(G) = maxv∈V σ(v) and
r(G) = minv∈V σ(v) is called the diameter and radius of G, respectively.

11.3 Structural Graph Measures

Graphs can be considered as powerful and generic models to describe complex rela-
tional objects which appear in a large number of scientific areas, e.g., computer
science, chemistry, sociology, cognitive sciences and biology [17, 33, 76]. Apart
from using graphs for modeling real world problems, an important problem is also
to quantify structural information by inferring structural properties of a graph in
question. This problem addresses the task of characterizing graphs based on graph
measures. To give a short overview on such structural network measures, we present
the listing as follows:

1. Degree distributions P(i), e.g., see [29].
2. Exponent of degree distributions, i.e., it holds P(i) ∼ i−γ , e.g., see [29].
3. Total number of vertices |V | and edges |E |.
4. Distance matrix (d(vi , v j ))vi ,v j ∈V .
5. Metrical properties of graphs, e.g., σ(v), ρ(G) and r(G), e.g., see [70].
6. Clustering coefficient, modularity and network motifs, e.g., see [3, 8].
7. Vertex centrality measures, e.g., see [9, 51, 76].
8. Eigenvector measures, e.g., see [47, 51].

Another method to characterize graphs is based on quantifying structural infor-
mation using information-theoretic measures. This problem relates to determine the
structural complexity of a graph. Entropic measures to determine the so-called struc-
tural information content of a graph have been developed by [7, 6, 19, 20, 30]. A task
that is also related to determine structural features of graphs is to identify stylistic
properties. For example, a stylistic property can be understood as a characteristic
structural feature of a graph that manifests a graph class, e.g., a hierarchy, an undi-
rected edge set, a directed edge set etc. To identify such features exemplarily, we
consider Fig. 11.2. The depicted graphs from different application domains manifest
different styles of graphs. More precisely, graph (A) represents a directed rooted
tree to model a DOM-structure. Graph (B) shows a more complex website structure
representing a generalized tree. Graph (C) is a chemical structure represented by an
undirected and vertex labeled graph. A different definition of a style that aims to
compare such styles structurally (this lead to a generalization of the classical graph
similarity problem [26]) has been already expressed in [26]. In [26], a style was
defined as a set of graphs with impressed structural properties. Finally, we compared
the styles by using a method which is based on the definition of a median graph
[26, 58].
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Fig. 11.2 Graph styles from different application domains

11.4 Graph Similarity Measures for Web Mining

11.4.1 Classical Similarity and Distance Measures for Graphs

The problem of measuring the similarity (or distance) between structures repre-
senting networks occur in numerous scientific disciplines [5, 13, 22, 68]. Usually,
graph similarity measures are based on incorporating structural features of given
graphs, e.g., degree sequences, subgraphs, and other metrical properties of graphs
[70]. Also, the task of measuring the structural similarity of graphs is often referred
to as graph matching [12]. There exist basically two major paradigms for matching
graphs structurally which have been intensely discussed in the scientific literature:
exact graph matching and inexact graph matching [12].

Exact graph matching is mainly based on the principle of finding a graph or a
subgraph of a given graph that matches a graph or subgraph structure of an other
graph exactly. With other words, one has to determine if two graphs are isomorphic
[39], i.e., structurally equivalent. It is known that even classical graph similarity
measures belonging to the exact graph matching paradigm are based on determining
isomorphic and subgraph isomorphic relations, see, e.g., [43, 71, 72, 77]. A promi-
nent example of a classical graph metric represents the well-known Zelinka-distance
[77]; two graphs are more similar, the bigger the common induced (isomorphic)
subgraph is. This implies that graphs which have a large common induced subgraph
have a small distance and vice versa. It is worth mentioning that Zelinka [77] was
the first who introduced such a measure for unlabeled graphs of same order. The key
result is as follows [71, 72, 77].

Theorem 1 Let H = (VH , EH ) and G = (VG , EG) be unlabeled graphs without
reflexive and multiple edges and it holds |VH | = |VG | = n. SU Bm(H) denotes the
set of induced subgraphs of order m. H � denotes the isomorphism classes of such
graphs in which H lies and let
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SUBm(H) := {H �| H ∈ SU Bm(H)}. (11.2)

SUBm(H) is just the set of isomorphism classes in which the induced subgraphs
of H with order m lie. Then,

dZ (H, G) := n − SIM(H, G), (11.3)

is a graph metric, where

SIM(H, G) := max{m|SUBm(H) ∩ SUBm(G) = ∅}. (11.4)

A more general version of this theorem was introduced by Sobik [71, 72]. The
following assertion states that the measure dS(H, G) for determining the structural
similarity of arbitrary and also labeled graphs represents a graph metric.

Theorem 2 Let H := (V, E, fV , fE , AV , AE ) be a finite and labeled graph.
AV , AE denote finite, non-empty vertex and edge alphabets and fV : V → AV ,
fE : E → AE the associated vertex and edge labeling functions. Now, let H and G
be finite, labeled graphs of arbitrary orders, respectively. Then,

dS(H, G) := max {|H |, |G|} − SIM(H, G)} (11.5)

is a graph metric.

Now, we want to briefly discuss inexact graph matching. The most prominent
measure from inexact graph matching is the so-called graph edit distance (GED)
developed by Bunke [10]. It can be considered as a powerful extension of the
Levenshtein-distance [49]. GED is mainly based on the idea to define graph edit
operations such as insertion or deletion of an edge/vertex or relabeling of a vertex
along with costs associated with each such operation [10]. Moreover, Bunke [10]
calls an optimal inexact match a sequence of edit operations which transforms a
graph G into H by producing minimal transformation costs. If m1, m2, . . . , mn

are assumed to be all possible transformations mapping G to H , then the optimal
inexact match [10] m′ is defined by

c(m′) = min{c(mi )| 1 ≤ i ≤ n}. (11.6)

Finally, the graph edit distance between two graphs is the minimum cost associ-
ated with a sequence of edit operations. Further, the optimal error-correcting graph
isomorphism is defined as the resulting isomorphism after obtaining this optimal
sequence of edit operations [10]. The original result of Bunke [10] can be now
expressed as follows.

Theorem 3 Let d(H, G) be the costs for determining the optimal inexact match
between H and G. Then, d(H, G) is a graph metric.

Many other graph similarity or distance measures and methods can be found in,
e.g. [4, 17, 44, 60, 67, 71, 72].
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11.4.2 Graph Similarity Measures Based on Trees

In this section, we outline graph similarity measures applied to web-based document
structures. As follows, we express a listing of graph similarity measures which have
been applied to DOM-trees [13]:

1. Similarity measures which are based on tree edit measures, e.g., see [41, 69, 74].
2. Similarity measures based on the frequency of tag labels, e.g., see [13].
3. Similarity measures based on Fourier transformation, e.g., see [32].
4. Similarity measures based on path similarity, e.g., see [42].

A major problem of these measures is that they only operate on ordinary rooted
trees which do not capture the structural information properly represented by a com-
plex hyperlink structure associated to a graph-based document. Especially the mea-
sures based on tag frequencies, see, e.g., [13] are restrictively interpretable because
a rearrangement of the tag order does not necessarily imply a variation of the cor-
responding similarity measure. Moreover, the sketched measures do not provide
the option to emphasize certain structural properties when measuring the struc-
tural similarity of graphs because the measures are non-parameterized. In contrast,
parameterized similarity measures would give us the possibility to learn the param-
eters by using appropriate data sets. In Section 11.4.3, we express the definition
of such a parameterized measure for determining the structural similarity of gen-
eralized trees. An in-depth treatment of graph similarity measures can be found in
[11, 12, 18, 22].

11.4.3 Structural Similarity of Generalized Trees

This section aims to repeat the construction principle of a method for measuring the
structural similarity of generalized trees, see, e.g. [18, 22, 27]. The main construc-
tion steps can be stated as follows [18, 22, 27]:

• We start with two generalized trees, H1 and H2.
• Derive their formal string representations and transform them into linear integer

strings which are called property strings.
• Perform string alignments of the derived property strings by using a dynamic

programming (DP) algorithm. From each such alignment (on each level i), a
similarity score will be obtained.

• By cumulating up the derived similarity scores, a final graph similarity measure
can be obtained. Hence, the problem of comparing two generalized trees struc-
turally is then equivalent with determining optimal property string alignments.

These key steps are also visualized in Fig. 11.3. We start repeating the construc-
tion by stating some definitions [18, 21, 22].

Definition 9 Let X be a set. A positive function s : X × X −→ [0, 1] is called
similarity measure if
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Fig. 11.3 Key steps to infer a
graph similarity measure for
generalized trees
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Transforming GT’s into property strings

...
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...
...
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d1
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1

2

d2

Aligning property strings (DP)
Evaluating alignments

Deriving graph similarity measures

• s(x, y) > 0 ∀ x, y ∈ X .
• s(x, y) = s(y, x) ∀ x, y ∈ X .
• s(x, y) ≤ s(x, x) = 1 ∀ x, y ∈ X .

Definition 10 Let X be a set. A positive function ω : X × X −→ [0, 1] is called
distance measure if

• ω(x, y) ≥ 0 ∀ x, y ∈ X .
• ω(x, y) = ω(y, x) ∀ x, y ∈ X .
• ω(x, x) = 0 ∀ x ∈ X .

Definition 11 Let H be a generalized tree. We call the set

SH :=
{
vH

0,1, v
H
1,1 ◦ vH

1,2 ◦ · · · ◦ vH
1,|V1|, . . . , ◦vH

d,1 ◦ vH
d,2 ◦ · · · ◦ vH

d,|Vd |
}

, (11.7)

the formal string representation of H . The symbol ◦ denotes usual string concate-
nation.

Definition 12 Let H be a generalized tree. We call

SH
out :=

{
δout

(
vH

0,1

)
, δout

(
vH

1,1

)
◦ δout

(
vH

1,2

)
◦ · · · ◦ δout

(
vH

1,|V1|
)

, . . . ,

◦δout

(
vH

d,1

)
◦ δout

(
vH

d,2

)
◦ · · · ◦ δout

(
vH

d,|Vd |
)}

, (11.8)
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the set of out-degree property strings and

SH
in := {

δin

(
vH

0,1

)
, δin

(
vH

1,1

)
◦ δin

(
vH

1,2

)
◦ · · · ◦ δin

(
vH

1,|V1|
)

, . . . ,

◦δin

(
vH

d,1

)
◦ δin

(
vH

d,2

)
◦ · · · ◦ δin

(
vH

d,|Vd |
) }

, (11.9)

the set of in-degree property strings of H .

Define r Hk

k := vHk

0,1 , k ∈ {1, 2}. Let H1 be a given GT and vH1

i, j , 0 ≤ i ≤ d1, 1 ≤
j ≤ σi denotes the j-th vertex on the i-th level of H1. Analogously, this also holds
for vH2

i, j ∈ H2. As mentioned above, the task of measuring the structural similarity

between H1 and H2 is equivalent to determine the optimal alignment of

S1 = vH1

0,1 ◦ vH1

1,1 ◦ vH1

1,2 ◦ · · · ◦ vH1

d1,σd1
,

S2 = vH2

0,1 ◦ vH2

1,1 ◦ vH2

1,2 ◦ · · · ◦ vH2

d2,σd2
,

with respect to their associated property strings and to a cost function α. Sk[i]
denotes the i-th position of the sequence Sk and it holds S1[n] = vH1

d1,σd1
, S2[m] =

vH2

d2,σd2
, N � n, m ≥ 1, Sk[1] = r Hk

k , k ∈ {1, 2}. The algorithm for finding the opti-

mal alignment of S1 and S2 generates a matrix (M(i, j))i j , 0 ≤ i ≤ n, 0 ≤ j ≤ m.
We find that its time complexity is O(|V̂1| · |V̂2|), see [18, 23]. To determine optimal
alignment of the derived property strings, we state the following algorithm [18, 23]:

M(0, 0) := 0,

M(i, 0) := M(i − 1, 0) + α(S1[i],−) : 1 ≤ i ≤ n,

M(0, j) := M(0, j − 1) + α(−, S2[ j]) : 1 ≤ j ≤ m,

and

M(i, j) := min

⎧
⎪⎨

⎪⎩

M(i − 1, j) + α(S1[i],−)

M(i, j − 1) + α(−, S2[ j])
M(i − 1, j − 1) + α(S1[i], S2[ j])

for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Here, the derived property strings will be aligned on
two levels: globally and locally. To evaluate the alignments, we need the preliminary
assertion as follows.

Lemma 1 Let ω(x, y) := 1 − e
− 1

2
(x−y)2

σ2 . ω : R × R −→ [0, 1] is a distance
measure.

Proof From the definition of ω(x, y) we infer ω(x, y) ∈ [0, 1], ∀ x, y ∈ R and
ω(x, x) = 1 − 1 = 0, ∀ x ∈ R. Since (x − y)2 = (y − x)2, ∀ x, y ∈ R, the
symmetry condition holds.
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Now, we define

αout
(
vH1

i1, j1 , v
H2

i2, j2

)
:=

{
ωout

(
δout

(
vH1

i1, j1

)
, δout

(
vH2

i2, j2

)
, σ 1

out

)
: i1 = i2

+∞ : else ,

0 ≤ ik ≤ dk, 1 ≤ jk ≤ σik , k ∈ {1, 2}, where ωout(x, y, σ k
out) := 1 −

e− 1
2 (x−y)2/(σ k

out)
2
, x, y, σ k

out ∈ R, and

αout
(
vH1

i, j1 ,−
)

:= ωout
(
δout

(
vH1

i, j1

)
, ξ, σ 2

out

)
,

αout
(
−, vH2

i, j2

)
:= ωout

(
ξ, δout

(
vH2

i, j2

)
, σ 2

out

)
.

ξ > 0 prevents an alignment between two leaves being better evaluated
as an alignment between a leaf and a gap (“–”) [22]. By ωin

(
x, y, σ k

in

) :=
1 − e− 1

2 (x−y)2/
(
σ k

in

)2

, we define analogously αin
(
vH1

i1, j1
, vH2

i2, j2

)
, αin

(
vH1

i, j1
,−

)
and

αin
(
−, vH2

i, j2

)
.

To evaluate the alignments of the property strings locally (i.e., on each general-
ized tree level), we express the mapping [18, 22]

align
(
vH1

i, j1

)
:=

{
vH2

i, j2
: align−1

(
vH2

i, j2

)
= vH1

i, j1
− : else.

For vH1

i, j1
, the mapping determines the vertex vH2

i, j2
during the trace-back [18].

Moreover, we define the functions

γ out
Hk (i) :=

∑σ k
i

j=1 α̂out

(
vHk

i, j , align
(
vHk

i, j

))

σ k
i

,

γ in
Hk (i) :=

∑σ k
i

j=1 α̂in

(
vHk

i, j , align
(
vHk

i, j

))

σ k
i

,

k ∈ {1, 2}, which provide similarity values of the alignments of out-degree and
in-degree property strings. Finally, by analogously defining the functions α̂out and
α̂in, we obtain the normalized and cumulative functions

γ out
(

i, σ̂ 1
out, σ̂

2
out

)
:= 1 − 1

σ 1
i + σ 2

i

·
⎧
⎨

⎩

σ 1
i∑

j=1

α̂out
(
vH1

i, j , align
(
vH1

i, j

))
⎫
⎬

⎭

− 1

σ 1
i + σ 2

i

·
⎧
⎨

⎩

σ 2
i∑

j=1

α̂out
(
vH2

i, j , align
(
vH2

i, j

))
⎫
⎬

⎭
, (11.10)
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and
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which detect the similarity of an out-degree and in-degree alignment on a level i .
σ̂ 1

out, σ̂
2
out and σ̂ 1

in, σ̂
2
in are the parameters of α̂out and α̂in, respectively. By using the

defined quantities, it can be proven that the resulting comparative measure is a graph
similarity measure (i.e., the measure satisfies the properties of Definition (9)) [18,
22].

Theorem 4 Let H1, H2 be two generalized trees, 0 ≤ i ≤ μ, μ := max(d1, d2).
Then,

s(H1, H2) := (μ + 1)
∑μ

i=0 γ fin
(
i, σ̂ 1

out, σ̂
2
out, σ̂

1
in, σ̂

2
in

)

μ∏

i=0

γ fin
(

i, σ̂ 1
out, σ̂

2
out, σ̂

1
in, σ̂

2
in

)
,

(11.12)
is a graph similarity measure where γ fin is defined by

γ fin = γ fin
(

i, σ̂ 1
out, σ̂

2
out, σ̂

1
in, σ̂

2
in

)

:= ζ · γ out + (1 − ζ ) · γ in, ζ ∈ [0, 1].

11.5 Applications

In the following, we outline existing and future applications of our presented
approach which we have stated in Section 11.4.3. Here, we represent websites as
a graph-based model [57] where we map each document structure to a generalized
tree. In [22], a family of graph similarity measures was evaluated based on a corpus
containing 500 conference websites from mathematics and computer science cre-
ated by Mehler et al. [57]. Finally, the conference websites were inferred from the
web and transformed into generalized trees by using the tool HyGraph [35, 36].

One of the main ideas is to apply a comparative analysis to a corpus consisting
of graph-based web units. Now, for automatically analyzing web genre data, we
propose the following evaluation steps:

1. Because the graph similarity measure outlined in Section 11.4.3 is parameter-
ized, one can emphasize structural features of the graphs under consideration
when measuring their structural similarity [27, 22]. This can be done by varying
the parameters

(
ζ, σ̂ 1

out, σ̂
2
out, σ̂

1
in, σ̂

2
in

)
. For example in [27, 22], we have shown
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that by setting ζ equal to 1 or 0, we either consider the alignments of out-degree
or in-degree property strings only. To set ζ = 1

2 means that we weight the out-
degree and in-degree property strings equally [22, 27].

2. We calculate the complete similarity matrix by computing the pairwise similarity
scores of the given generalized trees. For this, we use the graph similarity mea-
sure presented in Section 11.4.3 with a fixed parameter set [22]. Moreover, we
can compute the so-called cumulative similarity distribution Θ usually depicted
as a two-dimensional plot. Θ can be used for expressing the percentage of gener-
alized trees which possess a similarity value less or equal s ∈ [0, 1] and, hence,
to answer the question how structurally different the document structures of a
given corpus are [22, 27]. Generally, we consider the study of Θ as a prelimi-
nary step for automatically analyzing web genre data that already led to a better
understanding of the problem of comparing web-based hypertexts structurally
[18, 22, 27].

3. Starting from a computed similarity matrix, one can additionally apply multivari-
ate analysis methods, e.g., clustering techniques to filter web-based documents.
By determining such clusters one identifies websites of similar structure, i.e.,
these clusters contain structurally similar web pages [18].

From the just outlined steps, it should be clear that this approach can also be
used for analyzing data sets of hypertext structures inferred from other Web Mining
areas. For example, if it would be possible to transform weblog data sets into sets
of generalized trees, we could apply the approach analogously. This would result
to novel applications in Web Usage Mining. In [18, 27] it has been sketched that
the focus of such a study would be to analyze the navigation behavior of hypertext
users [61, 66]. Generally, navigation patterns can be described by graphs [61, 66].
Particularly in our case, we would describe those by generalized trees. Each cluster
we could determine by using the above stated approach then contains generalized
trees which reflect a similar navigation behavior of a specific user. As we have
already outlined in [18, 27], a possible interpretation of these clusters can lead to
study psychological features of hypertext users.

11.6 Conclusion

The main goal of this conceptual chapter was to present an approach for
automatically analyzing web genre data representing graphs. Instead of using
the well-known vector space model for modeling document structures, we applied
a graph-based representation model proposed by Mehler et al. [57]. A notable fea-
ture of this model is that the document structures represented by generalized trees
capture more structural information than DOM-trees [18, 36, 57]. In Section 11.4.2,
we briefly reviewed methods to measure the structural similarity of web-based doc-
uments which operate on tree structures only. In contrast to this, in Section 11.4.3
we repeated an approach for measuring the structural similarity of generalized trees.
A key feature of this method is that the graphs will be transformed into linear integer
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strings. By applying a string alignment algorithm, we weighted these alignments
and finally derived a graph similarity measure for generalized trees. Hence, we
solved a graph similarity problem by transforming it into a string similarity problem.
Section 11.5 presented an overview of possible evaluation steps for automatically
analyzing web genre data representing graphs. Moreover, existing applications of
this approach were discussed.

Acknowledgments We are thankful to Alexander Mehler for fruitful discussions on this topic.
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