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Preface

This book brings together two dynamic subjects, precision agriculture and geostatis-
tics, that have spatial variation at their core. Geostatistics is applied to many aspects
of precision agriculture (PA) including sampling, prediction, mapping, decision-
making, variable-rate applications, economics and so on. Contributions from experts
in several fields of study illustrate how geostatistics can and has been used to ad-
vantage with data such as yield, soil, crops, pests, aerial photographs, remote and
proximal imagery. Geostatistical techniques applied include variography, ordinary-,
disjunctive-, factorial-, indicator-, regression-, simple-, space-time- and co-kriging,
and geostatistical simulation. This book was requested by participants at the Sixth
European Conference on Precision Agriculture in Skiathos, 2007 because the link
between geostatistics and PA will increase as more intensive information on the soil
and crops becomes available from sensors and on-the-go technology. This is not a
recipe book, but is intended to guide readers in the use of appropriate techniques for
the types of data and needs of the farmer in managing the land. All chapters include
one or more case studies to illustrate the techniques.

Chapter 1 sets the scene for the two main topics of the book. The two core
techniques of geostatistics, variography and kriging, are described, together with
examples of how they can be applied. Sampling for geostatistics is an important
issue because it underpins sound results. Chapter 2 considers the importance of
spatial scale in sampling, the use of ancillary data, a nested survey and existing
variograms of soil or crop properties to guide sampling. Chapter 3 demonstrates
the potential to optimize the design of soil sampling schemes if the variation of the
target property is represented by a linear mixed model. Chapter 4 describes how
calibrated yield data from monitors can be used to target crop and soil investigations
and nutrient applications, and for on-farm experiments. This chapter uses spatial
statistics rather than only geostatistics because it lends itself better to econometrics.
Many environmental variables that are relevant to precision agriculture, such as crop
and soil properties and climate, vary in both time and space; Chapter 5 explains
the basic elements of space-time geostatistics. Chapter 6 provides an overview of
mobile proximal sensors, such as those used to measure apparent soil electrical
conductivity (ECa/, and how geostatistics can be used to direct soil sampling to
create site-specific management units. Three geostatistical methods to incorporate
secondary information into the mapping of soil and crop attributes to improve
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the accuracy of their predictions are the topic of Chapter 7. For soil and crop
properties that require costly sampling and analysis, there are often insufficient data
for geostatistical analyses and Chapter 8 shows how management zones can provide
an interim solution to more comprehensive site-specific management. Weeds and
plant-parasitic nematodes occur in patches in agricultural fields; Chapter 9 describes
how standard geostatistical methods have been used successfully to analyse counts
of both weed seedlings and nematodes in the soil and to map their distributions
from kriged predictions. Chapter 10 shows how geostatistics can play an important
role in analysing experiments for site-specific crop management. Two broad classes
of experimental design for precision agriculture (management-class experiments
and local-response experiments) are considered and how each may be analysed
geostatistically. Geostatistical simulation provides a means to mimic the spatial
and or temporal variation of processes that are relevant to precision agriculture, and
Chapter 11 shows how it can incorporate uncertainty into modelling to obtain a more
realistic impression of the variation. The book has raised several issues, ideas and
questions, which are summarized in Chapter 12. Geostatistics needs to be tailored
better to the needs of the various groups involved; farmers, advisors and researchers
which have their own particular requirements. The potential for geostatistics and
precision agriculture for the rest of the twenty-first century appears great.

The Appendix gives examples of software that can be used for geostatistical
analyses, and there are brief descriptions of GenStat, VESPER and SGeMS.

Reading, United Kingdom Margaret A. Oliver
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Chapter 1
An Overview of Geostatistics and Precision
Agriculture

M.A. Oliver

Abstract This chapter sets the scene for the two main topics of this book, namely
geostatistics and precision agriculture. The aim is to provide readers with a foun-
dation for what is to come in the other chapters and an understanding of why the
subjects make suitable companions. The history and basic theory of geostatistics
are covered, together with the history of precision agriculture and of geostatistics
in precision agriculture. The two core techniques of geostatistics, variography and
kriging, are described, together with examples of how they can be applied. Meth-
ods of estimating the variogram and fitting an authorized model to the experimental
values are explained and illustrated. There are many types of kriging; ordinary and
disjunctive kriging are described briefly in this chapter, and others types are por-
trayed in subsequent chapters. The application of the variogram and kriging are
illustrated with a case study of an arable field in England.

Keywords History of geostatistics � History of precision agriculture � Theory of
geostatistics � Stationarity � Variograghy � Variogram modelling � Ordinary kriging �
Disjunctive kriging � Factorial kriging

1.1 Introduction

It is no coincidence that the two essential topics of this book, namely geostatistics
and precision agriculture, have come together. When I became interested in preci-
sion agriculture (PA) in the mid-1990s, I was surprised to discover that geostatistics
was already quite well established for analysing various types of data. It came as a
relief that I could propose geostatistical analyses of the data involved in PA without
having to convince people of its value. Having come into PA from a background
in soil science, my previous experiences were quite different. Soil scientists were
reluctant to appreciate the benefits of geostatistics even though Richard Webster
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2 M.A. Oliver

(another soil scientist) was one of the first to transfer its methods from the mining
industry to the environmental sciences. This distinction remains to some extent even
now; the PA community has embraced geostatistics to explore the many kinds of
data that farmers work with.

This chapter gives an overview of the development and theory of geostatistics,
a brief history of precision agriculture and geostatistics in PA. The variogram is
the central tool of geostatistics; Section 1.2.2 describes how to compute, model
and interpret it. Kriging is a generic term for geostatistical prediction; there are
many types of kriging, but ordinary kriging remains the most widely used form. In
addition to Section 1.2.3.1 on ordinary kriging, Section 1.2.3.4 describes disjunctive
kriging which has the potential to enable farmers to manage their land objectively
and to give certain areas priority for treatment. Disjunctive kriging is not described
in any other chapters. The methods described are put into practice in a case study of
a field on the Shuttleworth Estate in Berkshire, England. The data analysed include
yield and soil data.

1.1.1 A Brief History of Geostatistics

What we now regard as geostatistics applies to a specific set of models and tech-
niques developed largely by Matheron (1963) in the 1960s to evaluate recoverable
reserves for the mining industry. Many of the ideas had arisen previously in other
fields; in fact they have a long history stretching back to the work of Mercer
and Hall (1911) at Rothamsted Experimental Station (now Rothamsted Research).
Mercer and Hall (1911) examined variation in the yields of crops in numerous small
plots in the historical fields at Rothamsted, Harpenden, England. Mercer and Hall
were interested in the optimal plot size for experiments on crop yields. Student in
an appendix to Mercer and Hall’s (1911) paper showed even greater foresight in
his observation that yields in adjacent plots were more similar to one another than
between other plots further away. He suggested that there were two sources of varia-
tion; one that was autocorrelated, i.e. spatially correlated or dependent as we would
now refer to it, and the other completely random or spatially uncorrelated, i.e. the
nugget effect. In spite of Student’s early understanding of the components of spatial
variation, these ideas had little impact until the middle of the last century.

As a consequence of the burgeoning amount of data from the agricultural field
trials at Rothamsted there was a need for more statistical expertise, and R. A. Fisher
was employed in 1919 to develop appropriate methods of analysis. He was interested
in the design of experiments and his aim was to be able to estimate the responses
of crop yields to different agronomic treatments and varieties. Although he recog-
nized the existence of spatial variation, he regarded it as a nuisance. Therefore, he
designed his experiments in such a way as to remove the effects of short-range varia-
tion by using large plots and of long-range variation by blocking. The result was that
spatial variation was regarded as of little consequence. However, two agronomists
Youden and Mehlich (1937) adapted Fisher’s (Fisher 1925) analysis of variance to
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estimate the variance associated with different sample spacings (see Section 2.2.1).
Their aim was to plan further sampling based on this knowledge to avoid wasted
effort. As with Student, their ideas were not followed up for several decades. The
main revival of Youden and Mehlich’s (1937) ideas came after Miesch (1975)
showed the equivalence of the components of variance from a hierarchical analy-
sis of variance based on distances with the semivariances of geostatistics. Webster
and Butler (1976) also applied this approach in soil science.

Russian research in meteorology by Kolmogorov (1941) led to the recognition
of spatial autocorrelation for which he developed the ‘structure function’ (now
the variogram). He also worked out how to use the structure function for optimal
interpolation, i.e. without bias and with minimum variance (now kriging). In the
early 1950s Krige observed that variation in the block grade in the South African
gold mines was considerably less than that of the averaged core samples, and
that the block and core-sample grades were correlated. He saw that this relation
could improve prediction using regression (Krige 1951). This technique was effec-
tively the first use of kriging and which he called later simple elementary kriging.
Matheron (1963) expanded Krige’s empirical ideas, in particular the concept that
neighbouring samples could be used to improve prediction, and put them into the
theoretical framework of regionalized variable theory that underpins geostatistics.
This theory provides the basis for solving the pressing problem in the environmen-
tal sciences of the need to predict from sparse data. Matheron (1963) first used the
term ‘kriging’, although it derives from Pierre Carlier’s use of ‘krigeage’ in the late
1950s, for geostatistical prediction in recognition of D. G. Krige’s contribution to
improving the precision of estimating concentrations of gold and other metals in
ore bodies. Geostatistics has since become a principal branch of the wider body of
spatial statistics (Cressie 1993). It has been applied in many different fields, such as
agriculture, fisheries, hydrology, geology, meteorology, petroleum, remote sensing,
soil science and of importance here precision agriculture.

1.1.2 A Brief History of Precision Agriculture

As with geostatistics, the background to precision agriculture is multifarious and
apparently novel. Precision agriculture, however, has been carried out by farmers
since the early days of agriculture. Subsistence farmers worked (and still do in parts
of the world) on small patches of ground, the characteristics of which they knew
well. They divided their landholdings into smaller areas, fields, to grow crops where
the conditions were most suitable. For them precision was about ensuring enough
food to sustain the family; a life or death matter. The work of Gilbert and Lawes
and their successors at Rothamsted was also about precision farming; they wanted
to assess the benefits of different combinations and amounts of crop nutrients and
of crop varieties. The aim was explicitly to increase yields; cheap fertilizers could
achieve this and concerns about their impact on the environment were not an issue at
the time. Until the 1980s precise or site-specific management was at the farm level
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and the management unit was the field. The soil of a field was sampled to determine
the mean value of crop nutrients and pH, and it was amended uniformly over the
field. The crop yield was based on the total weight taken from the field.

The term precision agriculture appears to have been used first in 1990 as the
title of a workshop held in Great Falls, Montana, sponsored by Montana State
University. Before this, the terms ‘site-specific crop management’ or ‘site-specific
agriculture’ were used. In fact, the first two international conferences on ‘preci-
sion agriculture’ referred to site-specific management in the title, but by the third
conference in 1996 the term precision agriculture was being used. By the mid-
1990s, what we now regard as the new paradigm in agriculture was being referred
to as precision agriculture. The concept of modern precision agriculture has been
driven forward and is underpinned by technological changes based on informa-
tion technology (Schueller 1997). This enabled more precise local management,
and consequently the unit of management has now become the field and variation
within that unit has become the focus. This reflects a change in the scale of operation
from the farm to the field, but there is more to it than this. With the increase in size
of machinery being used in agriculture in the developed countries, farmers removed
field boundaries and merged fields into increasingly larger units. The original fields,
which had probably been created because of a particular set of soil or landscape
conditions, were now parts of larger fields and their inherent variation was added
together. The increase in field size was accompanied, therefore, by an increase in
within-field variability.

Robert (1999) mentioned that in the mid-1970s to early 1980s there was a greater
awareness among farmers of the potential benefits of better farm record keeping
and understanding of soil and crop input requirements. He described how in the late
1970s CENEX (Farmers Union Central Exchange, Inc.) and the Control Data Cor-
poration started a joint venture called “CENTROL – Farm Management Services”.
The outcome of their study was a better awareness of within-field variation in prop-
erties of the soil and crop, and of the potential benefits of management within fields
by zones. This then led to a project by SoilTeq (Luellan 1985) to create a spreader
that could change the blend and rate of fertilizer on-the-go, i.e. what we now know
as variable-rate application (VRT). The first VRT machines were used in 1985 by
CENEX. David Mulla (personal communication) worked with SoilTeq to write spe-
cialized GIS software for mapping spatial patterns in crop nutrients in 1986, and
the first maps were produced from this software in 1987. Robert (1999) said that
by the mid-1980s microprocessors made possible the development of computers for
farm equipment and controllers, positioning of machines with global positioning
systems (GPS), development of the first sensors, electronic acquisition and process-
ing of spatial data for farm geographic record keeping systems and the use of GIS to
produce site-specific management maps. Robert (1999) said that since the introduc-
tion of the concept of PA in the mid-1980s, it has spread rapidly and widely, albeit
the adoption has been variable. There has been a mushrooming of technology and
services in response to the needs of this approach to agriculture. Schueller (1997)
described how one major manufacturer of grain harvesters claimed that a third of
its new combines were equipped with yield monitors. At a similar time I recollect
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being told at the International Geostatistics Congress held in Avignon in 1988 that
tractors had onboard computers that would be able to use kriged maps to guide
fertilizer and other applications. At the time this seemed far-fetched and fanciful as
few people were even familiar with microprocessors which were essential for the
types of portable operations associated with agriculture.

It was during the 1980s that huge changes in the way that we perceive agri-
culture began (Cochrane 1993). There was a quiet revolution underway based on
information technology. One of the most significant steps was the introduction of a
yield meter by Massey Ferguson in 1982. This device was mounted on a clean grain
elevator of one of their combine harvesters. This meant that yield could be recorded
continuously for the first time. In 1984 Massey Ferguson carried out a field trial in
the United Kingdom to investigate whether the yield meter could be used to mea-
sure yield variation and whether yield varied within fields (http://www.fieldstar.dk/
agco/FieldStar/FieldStarUK/System/HistoryFeatures/YieldMapping.htm). At this
time GPS was not available, and the company did its experiment as follows. It set
out a 10-m grid in a field of wheat, and the start of each grid square was marked by
a pole in the ground. The field was harvested with two men on the combine; one
to drive and the other recorded the yield manually from the meter as they passed
over each grid square. The yield varied over the field by 10 t ha�1. In the 1990s
with the advent of GPS, yield mapping became fairly routine. The first GPS were
available on tractors in 1991, but they had an accuracy of only 100 m which was
not good enough for mapping (http://www.fieldstar.dk/agco/FieldStar/FieldStarUK/
System/HistoryFeatures/GPSBrings.htm). By the mid-1990s with differential GPS
(DGPS) accuracy improved to 5–10 m, and this has improved further since 2000
when the US Department of Defence turned off selective availability.

Before the 1990s maps, other than of the soil and possibly landscape, played lit-
tle part in agricultural management. Schafer et al. (1984) said at this time that maps
of soil type and topography could be used to control fertilizer and pesticide applica-
tions and tillage operations. The first yield map of Searcy et al. (1989) showed the
effect of compaction from farm machinery on yield (see Section 1.3.3.2).

The National Research Council (1997, p. 17) gave a clear definition of PA as
follows: “Precision agriculture is a management strategy that uses information tech-
nologies to bring data from multiple sources to bear on decisions associated with
crop production”. They suggested that PA has three components: obtaining data at
an appropriate scale, interpretation and analyses of the data, and implementation of a
management response at an appropriate scale and time. The intensity and resolution
of the spatial information involved in PA means that the revolution to modern PA is
essentially about a change in the scale of operation and management. The ability to
determine within-field variation and to manage it are central. The data used in PA
are often at a large spatial resolution, for example yield, proximal sensor data, re-
motely sensed data, digital elevation models and so on. A major stumbling block to
the wider spread and adoption of PA is the sparsity of soil and crop information, al-
though there have been examples of on-the-go measurement of pH (Viscarra Rossel
and McBratney 1997). The National Research Council (1997, p. 4) also makes the
point that “current mapping techniques are limited by a lack of understanding of
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the geostatistics necessary for displaying spatial variability of crops and soils”, and
on p. 59 “An increased knowledge base in geostatistical methods should improve
interpretation of precision agriculture data”.

It is clear from the quotations given above that the value of geostatistics had
already been established in PA. In fact, the early applications came from scientists
already conversant with geostatistical methods. The marriage of geostatistics and
PA was an easy one because geostatistics requires enough data at an interval that
resolves the variation adequately to compute reliable variograms. These demands
can be satisfied by the kinds of data widely available in PA, apart from some soil
and crop data.

1.1.3 A Brief History of Geostatistics in Precision Agriculture

David Mulla was the first person to apply geostatistics explicitly in precision agri-
culture (see Mulla and Hammond 1988). This paper describes a study that aimed
to: (i) introduce geostatistics for mapping patterns in soil P and K, (ii) determine
the nature and extent of spatial variation in these crop nutrients in a large irriga-
tion circle and (iii) determine what sampling intensity is necessary to identify the
major patterns in the soil. Mulla and Hammond stated that the variable-rate pro-
gramme needed appropriate sampling and an accurate map of the crop nutrients.
Their recommendations were that if the soil is variable farmers should avoid uniform
applications. They used geostatistics to interpolate between measured values based
on the work of Warrick et al. (1986) in soil science. Richard Webster (Chapter 9)
and his team, namely Burgess and McBratney, were applying geostatistics to soil
data in the early 1980s (Burgess and Webster 1980a, b; Burgess et al. 1981). Their
aim was to quantify the spatial structure in the variation with the variogram and
to use its parameters with the data for prediction by kriging to produce a map of
the variation in soil properties. Although their work was earlier than that of Mulla
and Hammond (1988) and was explicitly related to agriculture, it was not directed
towards the modern concept of PA.

During the same period Miller et al. (1988) and Webster and Oliver (1989) were
applying geostatistics in an agricultural context; they were on the track of PA, but not
in an explicit way. Miller et al. (1988) attempted to understand crop growth and yield
by examining the spatial relations of soil physical and chemical properties that were
altered by soil erosion. In addition to soil information, they also had data on above
ground biomass and the grain yield at each sampling site. Their aim was to provide
information that would enable better management. They computed variograms and
cross variograms of several properties and also used kriging to produce maps. They
showed the importance of landscape position in relation to soil properties and crop
growth. Webster and Oliver (1989) were the first to apply disjunctive kriging (see
Section 1.2.3.4) to an agricultural problem. At this time, however, we knew nothing
of the revolution in agriculture that was occurring in the USA.
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Mulla’s work during the late 1980s and early 1990s laid the foundations for the
adoption of geostatistics in PA (Mulla 1989, 1991, 1993; Bhatti et al. 1991). The last
paper in the list was presented at the first workshop on site-specific crop manage-
ment (Robert et al. 1993) held at the University of Minnesota. At this workshop there
were only 21 papers, and Mulla’s was the only one that referred to geostatistics. At
the second international conference on site-specific management for agricultural
systems (Robert et al. 1995) there were 67 papers. Two years later this conference
was renamed the international conference on precision agriculture (ICPA) and this
has since taken the form of a biennial meeting. At the first conference on precision
agriculture in Europe in 1997 (Stafford 1997), there were some 15 papers in which
geostatistics was used. By the fourth ICPA in 1998 there were 19 papers with geo-
statistical applications and in 2008 there were 23. There has been a similar increase
in the application of geostatistics in PA at the European conferences, culminating in
over 20 papers in the 2005 proceedings, but then it declined to about 12 in 2007and
8 in 2009. The decline might reflect that geostatistics has become more common-
place in PA and that authors no longer mention explicitly how their maps have been
obtained. It also indicates that many more types of analysis are now being used in
PA as researchers adapt to the needs of farmers.

The journal Precision Agriculture has had, and continues to have, a steady stream
of papers in which geostatistics is applied. The subjects in which it is applied have
broadened from soil and crop properties to remotely and proximally sensed data,
weeds, yields of tree crops and so on. A wide range of geostatistical techniques is
applied to these data, for example variogram analysis, ordinary kriging, cokriging,
simulation, intrinsic random function (IRF-k/ kriging and the indicator approach.

In the rest of this chapter I shall set the scene for what is to come in subsequent
chapters by summarizing the core geostatistical methods of the variogram and krig-
ing. I illustrate these with a case study from the Shuttleworth Estate, Bedfordshire,
England. In addition, I give a brief introduction to disjunctive kriging as a manage-
ment technique and illustrate its potential with the same case study.

1.2 The Theory of Geostatistics

Geostatistics as we now know it has developed from Matheron’s (1963) coher-
ent theoretical underpinning of Krige’s empirical observations (for more detail see
Journel and Huijbregts 1978; Goovaerts 1997; Webster and Oliver 2007). The spatial
variation of most properties on, above or beneath the Earth’s surface is so complex
that it led Matheron to find an alternative approach to the traditional deterministic
one for their analysis. The approach he adopted was one that could deal with the
inherent uncertainty of spatial data in a stochastic way. The basis of modern geo-
statistics is to treat the variable of interest as a random variable. This implies that
at each point, x, in space there is a series of values for a property, Z.x/, and the
one observed, z(x), is drawn at random according to some law, from some proba-
bility distribution. At x, a property Z.x) is a random variable with a mean, �, and
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variance, �2. The set of random variables, Z.x1/, Z.x2/, : : : , is a random process,
and the actual value of Z observed is just one of potentially any number of realiza-
tions of that process.

To describe the variation of the underlying random process, we can use the fact
that the values of regionalized variables at places near to one another tend to be
autocorrelated. Therefore, we can estimate the spatial covariance to describe this
relation between pairs of points; for a random variable this is given by

C.x1; x2/ D EŒfZ.x1/� �.x1/gfZ.x2/� �.x2/g�; (1.1)

where �.x1/ and �.x2/ are the means of Z at x1 and x2, and E denotes the ex-
pected value. As there is only ever one realization of Z at each point, this solution
is unavailable because the means are unknown. To proceed we have to invoke as-
sumptions of stationarity.

1.2.1 Stationarity

Under the assumptions of stationarity certain attributes of the random process are
the same everywhere. We assume that the mean, � D EŒZ.x/�, is constant for all x,
and so �.x1/ and �.x2/ can be replaced by �, which can be estimated by repetitive
sampling. When x1 and x2 coincide, Eq. 1.1 defines the variance (or the a priori
variance of the process), �2 D EŒfZ.x/ � �g2�;which is assumed to be finite and,
as for the mean, the same everywhere. When x1 and x2 do not coincide, their co-
variance depends on their separation and not on their absolute positions, and this
applies to any pair of points xi , xj separated by the lag h D xi � xj (a vector in
both distance and direction), so that

C.xi ; xj / D E
�fZ.xi/� �gfZ.xj /� �g�

D E
�fZ.x/gfZ.x C h/g � �2

�

D C.h/; (1.2)

which is also constant for a given h. This constancy of the first and second moments
of the process constitutes second-order or weak stationarity. Equation 1.2 indicates
that the covariance is a function of the lag, and it describes quantitatively the de-
pendence between values of Z with changing separation or lag. The autocovariance
depends on the scale on which Zis measured; therefore, it is often converted to the
dimensionless autocorrelation, �.h/, by

�.h/ D C.h/=C.0/; (1.3)

where C.0/ D �2, the covariance at lag 0.
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1.2.1.1 Intrinsic Variation and the Variogram

The mean often appears to change across a region and the variance will appear
to increase indefinitely as the extent of the area increases. Consequently, there is
no value for � to insert into Eq. 1.2 and the covariance cannot be defined. This
is a departure from weak stationarity. Matheron’s (1965) solution to this was the
weaker intrinsic hypothesis of geostatistics. Although the general mean might not
be constant, it would be for small lag distances, and so the expected differences
would be zero as follows:

EŒZ.x/ �Z.x C h/� D 0; (1.4)

and he replaced the covariances by the expected squared differences

E
�fZ.x/�Z.x C h/g2

� D var ŒZ.x/ �Z.x C h/� D 2�.h/: (1.5)

The quantity �.h/ is known as the semivariance at lag h, or the variance per point
when points are considered in pairs. As for the covariance, the semivariance depends
only on the lag and not on the absolute positions of the data. As a function of h, �.h/
is the semivariogram or nowadays more usually termed the variogram.

If the process Z.x/ is second-order stationary, the variogram and covariance are
equivalent:

�.h/ D C.0/� C.h/

D �2f1� �.h/g: (1.6)

However, if the process is intrinsic only there is no equivalence because the covari-
ance function does not exist. The variogram is valid, however, and it can be applied
more widely than the covariance function. This makes the variogram a valuable tool
and as a consequence it is at the core of geostatistics.

1.2.2 The Variogram

1.2.2.1 Estimating the Variogram

Matheron’s (1965) method of moments (MoM) estimator is the usual method of
computing the empirical semivariances from data, z.x1/, z.x2/, : : :. Its equation is

O�.h/ D 1

2m.h/

m.h/X

iD1

fz.xi /� z.xi C h/g2 ; (1.7)

where z.xi / and z.xi Ch/ are the actual values ofZ at places xi and xi Ch, andm.h/
is the number of paired comparisons at lag h. The experimental or sample variogram
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is obtained by changing h. If the data are on a regularly sampled transect or grid,
the semivariances can be computed for integral multiples of the sampling interval.
For a transect the lag becomes a scalar, h D jhj, and the maximum lag should be
no more than one third of the transect length. For irregularly sampled data in one or
more dimensions, or to compute the omnidirectional variogram of data on a regular
grid, the separations between pairs of points are placed into bins with limits in both
separating distance and direction (see p. 72 of Webster and Oliver 2007).

Webster and Oliver (1992) showed that at least 100 sampling points are required
to estimate the method of moments variogram reliably. Their results show clearly
the penalty of too few data. Pardo-Igúzquiza (1997) suggested the maximum like-
lihood (ML) approach as an alternative to Matheron’s estimator. He also suggested
that where the number of data is small (a few dozen), the ML variogram estimator
offers an alternative that gives an estimate of the variogram parameters and of their
uncertainty (Pardo-Igúzquiza 1998). Kerry and Oliver (2007a) have shown that with
about 50 to<100 data the residual maximum likelihood (REML) variogram estima-
tor (Pardo-Igúzquiza 1997) provides a more accurate variogram (see Section 2.5.1).
However, this estimator still performs better with about 100 data.

Although linear geostatistics does not require a normal distribution, the vari-
ogram is based on variances and any asymmetry in the distribution signalled by a
skewness coefficient >1 or < �1 should be examined. Departures from normality
can arise from a long tail of larger or smaller values in the underlying process or
from one or more extreme values from a secondary process that contaminates the
primary one. Box-plots and histograms should be examined to see which of these is
the cause because, as Kerry and Oliver (2007b, c) showed, they require a different
approach to computing the variogram.

1.2.2.2 Features of the Variogram

Most environmental variables vary in a spatially continuous way; therefore we
should expect �.h/ to pass through the origin at h D 0 (Fig. 1.1a). However, the
variogram often appears to approach the ordinate at some positive value as h ap-
proaches 0.jhj ! 0), Fig. 1.1b, which suggests that the process is discontinuous.
This discrepancy is known as the nugget variance. (The features described in this
section are illustrated in one dimension in Fig. 1.1 where h D jhj.) For properties
that vary continuously the nugget variance usually includes some measurement er-
ror, but it comprises mainly variation that occurs over distances less than the shortest
sampling interval. Figure 1.1c is a pure nugget variogram which usually indicates
that the sampling interval is too large to resolve the variation present. The semi-
variances increase with increasing lag distance (monotonic increasing) as shown
in Fig. 1.1a, b. The small values of �.h/ at short lag distances show that the values
of Z.x/ are similar, but as the lag distance increases they become increasingly
dissimilar on average. A variogram with a monotonic increasing slope indicates
that the process is spatially dependent or autocorrelated. Variograms that reach an
upper bound after the initial slope as in Fig. 1.1b describe a second-order stationary
process. This maximum is known as the sill variance. It is the a priori variance, �2,
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Fig. 1.1 Three variogram forms: (a) unbounded, (b) bounded and (c) pure nugget

of the process. The sill variance (cCc0/ comprises any nugget variance (c0) and the
spatially correlated variance (c). The finite distance at which some variograms reach
their sill is the range (a), i.e. the range of spatial dependence. Places further apart
than the range are spatially independent, Fig. 1.1b. Some variograms do not have a
finite range, and the variogram approaches its sill asymptotically. If the variogram
increases indefinitely (unbounded variogram) with increasing lag distance as in
Fig. 1.1a, the process is intrinsic only.

A variogram that fluctuates in a periodic way with increasing lag distance indi-
cates regular repetition in the variation. If the variation differs according to direction,
it is anisotropic and the variogram will be also. The anisotropy is geometric if the
initial gradient or variogram range change with direction and a simple transforma-
tion of the coordinates will remove the effect. Zonal anisotropy cannot be dealt with
as readily; it is present if the sill variance fluctuates with changes in direction, which
might indicate the presence of preferentially orientated zones with different means.
Variation in the environment may occur at several spatial scales simultaneously,
and patterns in the variation can be nested within one another. The experimental
variogram will appear more complex if more than one spatial scale is present (see
Fig. 1.7). Nested variation is often observed when there are many data, for exam-
ple from remote or proximal sensing or from yield data. A combination of two or
more simple models that are authorized (a nested model) can be used to model such
variation, Fig. 1.7.

1.2.2.3 Modelling the Variogram

The experimental method of moments variogram estimates the underlying vario-
gram, which is a continuous function, as a set of discrete points at particular lag
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intervals. These estimates often fluctuate from point to point because they are sub-
ject to error that arises largely from the sampling. To describe the spatial variation,
we fit a model to the experimental values. The model must be conditional negative
semi-definite (CNSD) so that it will not give rise to negative variances when random
variables are combined (see Webster and Oliver 2007 for more detail on this). The
function must also be able to represent the variogram features described above.

There are a few simple functions that satisfy the above conditions. They include
bounded functions, which represent processes that are second-order stationary, and
unbounded ones that are intrinsic only. Webster and Oliver (2007) give several func-
tions and there are many examples of the different models in the following chapters.
The most commonly fitted models are the exponential and spherical ones (Figs. 1.5a,
b and 1.6, respectively, and Eqs. 1.26 and 1.27, respectively).

Fitting models to the experimental values is controversial, and we recommend
practitioners to avoid fitting by eye. This is because the accuracy of the semi-
variances varies and the experimental variogram might fluctuate considerably from
point to point. Fitting a suitable model is fundamental in geostatistics because it af-
fects subsequent analyses (see Webster and Oliver 2007). A weighted least squares
approach is advisable for fitting because it takes account of the accuracy of the indi-
vidual semivariances and the residual sum of squares provides a means of selecting
the best fitting function.

1.2.3 Geostatistical Prediction: Kriging

Kriging is often known as a best linear unbiased predictor (BLUP); it is a method of
optimal prediction or estimation in geographical space. It is optimal in the sense of
unbiasedness and minimum variance. It is the geostatistical method of interpolation
of sparse data for random spatial processes. Most features of the environment (atmo-
sphere, ores, soil, vegetation, water and oceans) can be measured at any of an infinite
number of places, but for reasons of economy they are usually measured at few.
However, kriging has also been shown to be of value for reducing the point-to-point
variation or noise in intensive data, such as satellite imagery and yield, to gain in-
sight into the structure of the variation (Oliver et al. 2000; Oliver and Carroll 2004).

Several mathematical methods of interpolation are available, for example,
Thiessen polygons, triangulation, natural-neighbour interpolation, inverse func-
tions of distance, least-squares polynomials (trend surfaces) and splines. Laslett
et al. (1987) compared several of these methods with kriging, and showed that
kriging performed the best. Kriging overcomes many of the shortcomings of the
mathematical methods of interpolation by taking into account the way a property
varies in space through the variogram or covariance function. In addition, kriging
provides not only predictions but also the kriging variances or errors. Kriging can
be regarded simply as a method of local weighted moving averaging of the observed
values of a random variable,Z, within a neighbourhood,V . It can be done for point
(punctual kriging) or block supports of various size (block kriging), depending upon
the aims of prediction, even though the sample information is often for points.
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Kriging is now used in many disciplines that use spatial prediction and mapping,
such as mining, petroleum engineering, meteorology, soil science, precision agri-
culture, pollution control, public health, monitoring fish stocks and other animal
densities, remote sensing, ecology, geology, hydrology, and so on. As a conse-
quence, kriging has become a generic term for a range of BLUP least-squares
methods of spatial prediction in geostatistics. The original formulation of kriging,
now known as ordinary kriging (Journel and Huijbregts 1978), is the most robust
method and the one most often used.

1.2.3.1 Ordinary Kriging

Ordinary kriging is based on the assumption that the mean is unknown. Consider
that a random variable,Z, has been measured at sampling points, xi , i D 1; : : : , N .
We use this information to estimate its value at a point x0 by punctual kriging with
the same support as the data by

OZ.x0/ D
nX

iD1

�i z.xi /; (1.8)

where n usually represents the data points within the local neighbourhood, V , and
is much smaller than the total number in the sample, N , and �i are the weights. To
ensure that the estimate is unbiased the weights are made to sum to one,

nX

iD1

�i D 1; (1.9)

and the expected error is EŒ OZ.x0/ �Z.x0/� D 0. The prediction variance is

var
h OZ.x0/

i
D E

�n OZ.x0/�Z.x0/
o2

�

D 2

nX

iD1

�i� .xi ; x0/ �
nX

iD1

nX

j D1

�i�j �
�
xi ; xj

�
; (1.10)

where �.xi , xj / is the semivariance of Z between points xi and xj , �.xi , x0/ is the
semivariance between the i th sampling point and the target point x0. The semivari-
ances are derived from the variogram model because the experimental semivariances
are discrete and at limited distances.

Kriged predictions are often required over areas that are larger than the sample
support of the data for which block kriging is used. The estimate is still a weighted
average of the data, z.x1/, z.x2/, . . . , z.xn/, at the unknown block, B ,

OZ.B/ D
nX

iD1

�i z.xi /: (1.11)
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The estimation variance of OZ.B/ is:

var
h OZ .B/

i
D E

�n OZ .B/�Z .B/
o2

�

D 2

nX

iD1

�i N� .xi ;B/�
nX

iD1

nX

j D1

�i�j �
�
xi ; xj

� � N� .B;B/: (1.12)

where N�.xi ; B/ is the average semivariance between data point xi and the tar-
get block B , and N�.B;B/ is the average semivariance within B , the within-block
variance.

Equation 1.10 for a point leads to a set of nC1 equations in the nC1 unknowns:

nX

iD1

�i�.xi ; xj /C  .x0/ D �.xj ; x0/ for all j;

nX

iD1

�i D 1; (1.13)

where the Lagrange multiplier,  .x0/, is introduced to achieve minimization. The
weights, �i , are inserted into Eq. 1.8 to give the prediction of Z at x0. The kriging
(prediction or estimation) variance is then obtained as

�2.x0/ D
nX

iD1

�i�.xi ; x0/C  .x0/: (1.14)

Punctual kriging is an exact interpolator – the kriged value at a sampling site is the
observed value there and the prediction variance is then zero.

The equivalent kriging system for blocks is

nX

iD1

�i�.xi ; xj /C  .B/ D N�.xj ; B/ for all j (1.15)

nX

iD1

�i D 1;

and the block kriging variance is obtained as

�2.B/ D
nX

iD1

�i N�.xi ; B/C  .B/ � N�.B;B/: (1.16)

Block kriging results in smoother estimates and smaller estimation variances over-
all because the nugget variance is contained entirely in the within-block variance,
N�.B;B/, and does not contribute to the block-kriging variance.
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For many environmental applications, including PA, kriging is most likely to be
used for interpolation and mapping. The values of the property are usually estimated
at the nodes of a fine grid, and the variation can then be displayed by isarithms or
by layer shading. The kriging variances or standard errors can be mapped similarly:
they are a guide to the reliability of the estimates. Where sampling is irregular, such
a map may indicate if there are parts of a region where sampling should be increased
to improve the estimates.

1.2.3.2 Kriging Weights

The kriging weights depend on the variogram and the configuration of the sam-
pling. The distribution of the weights within the search radius is one feature that
makes kriging different from classical interpolators where the weights are applied
arbitrarily. Webster and Oliver (2007) illustrate how the weights vary according to
changes in the nugget:sill ratio, the variogram range, type of model, sampling con-
figuration and the effect of anisotropy. The weights are particularly sensitive to the
nugget variance and anisotropy. Weights close to the point or block to be estimated
carry more weight than those further away, which shows that kriging is a local pre-
dictor. As the nugget:sill ratio increases the weights near to the target decrease and
those further away increase. For a pure nugget variogram, the kriging weights are
all the same and the estimate is simply the mean of the values in the neighbourhood.
The effect of the range is more complex than for the nugget:sill ratio because it
is also affected by the type of variogram model. In general, however, as the range
increases the weights increase close to the target. For data that are irregularly dis-
tributed, points that are clustered carry less weight individually than those that are
isolated. The fact that the points nearest to the target generally carry the most weight
has practical implications. It means that the search neighbourhood need contain no
more than 16–20 data points.

1.2.3.3 Other Types of Kriging

As mentioned above, the term kriging is now used generically because the method
has been adapted to tackle increasingly varied problems that have arisen. Ordinary
kriging assumes that the mean is unknown and that the process is locally stationary,
whereas simple kriging assumes that the mean is known. As a consequence it is used
little because the mean is generally unknown. Simple kriging is used in indicator
and disjunctive kriging in which the data are transformed to have known means.
Lognormal kriging is ordinary kriging of the logarithms of strongly positively
skewed data that approximate a lognormal distribution. Kriging with trend (5.3)
enables data with a strong deterministic component (non-stationary process) to be
analysed; Matheron (1969) originally introduced universal kriging for this purpose,
followed by intrinsic random function kriging with drift of order k (IRF-k kriging),
Matheron (1973). The state of the art is empirical-BLUP (Stein 1999), which uses
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a variogram estimated by REML (Lark et al. 2006). Matheron (1982) developed fac-
torial kriging or kriging analysis for variation that is nested. It estimates the long-
and short-range components of the variation separately, but in a single analysis.
Ordinary cokriging (Matheron 1965) (Section 7.2.2) is the extension of ordinary
kriging to two or more variables that are spatially correlated. If some property that
can be measured cheaply at many sites is spatially correlated or coregionalized with
others that are expensive to measure and recorded at many fewer sites, the latter
can be estimated more precisely by cokriging with the spatial information from
the former. Disjunctive kriging (Matheron 1976) (Section 1.2.3.4) is a non-linear
parametric method of kriging. It is valuable for decision-making because the prob-
abilities of exceeding (or not) a predefined threshold are determined in addition to
the kriged estimates. Indicator kriging (Journel 1983) (Section 9.3.3) is a non-linear,
non-parametric form of kriging in which continuous variables are converted to bi-
nary ones (indicators). It can handle distributions of almost any kind and can also
accommodate ‘soft’ qualitative information to improve prediction. Probability krig-
ing was proposed by Sullivan (1984) because indicator kriging does not take into
account the proximity of a value to the threshold, but only its geographic position.
Bayesian kriging was introduced by Omre (1987) for situations in which there is
some prior knowledge about the drift or trend.

1.2.3.4 Disjunctive Kriging

Disjunctive kriging (DK), proposed Matheron (1976), is described here because it
is not applied in any other chapter, and also Webster and Oliver (1989) have shown
its suitability for agricultural management. Precision agriculture aims to apply suf-
ficient plant nutrients, lime and other agrochemicals, but no more, both to limit
damage to the environment and for economic reasons. Recommendations on the
amount of nutrients to apply are based on their concentrations in the soil, and for
lime on the soil’s pH. If a nutrient or the pH is less than a particular value or critical
threshold, zc, the farmer is advised to apply fertilizer or lime. The amounts recom-
mended may vary according to the nutrient concentrations and pH of the soil and
the type of crop. To apply fertilizer or lime at variable rates requires accurate local
information on the nutrient status of the soil and its pH, which is usually based on
estimates from sample information that are more or less in error.

The variogram and ordinary kriging can provide accurate local information if
the sampling is sound (Chapters 2 and 3). Kriged predictions, although optimal, are
smoothed, especially where there is a large nugget variance, and this can have an
adverse effect on their use for decision making. In general, decisions are easy where
the estimated values of the properties are much less than or much greater than the
specified threshold, or where the kriging variance is small, or both. Difficulty arises
where the estimate is close to the threshold. The consequence is that the farmer
might attempt to remedy a nutrient deficiency that does not exist or fail to remedy a
real one. The manager needs to know the risks of taking the estimates at face value.
In other words what is the probability that the true values exceed or fall short of the
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critical values. Disjunctive kriging provides a solution. For each estimate, it enables
the probability that the true value exceeds (or is less than) a threshold to be estimated
through non-linear rescaling of the original data.

Theory

Disjunctive kriging is a non-linear method of prediction based on transforming the
data to indicator functions in relation to a predefined threshold, zc . This dissects
the scale of a property of interest, Z, into two parts: one for which Z.x/< zc and
the other for which Z.x/ � zc, and we can assign the values 1 and 0 to these, res-
pectively. This is known as indicator coding. The indicator function, ˝ŒZ.x/< zc�,
is a random variable, Y.x/, which has a variogram �˝

zc
.h/. The most common type

of DK is Gaussian disjunctive kriging, which I use in the case study.
The assumptions underlying Gaussian DK are more stringent than those of OK.

The first is that z.x/ is a realization of a second-order stationary random process
Z.x/with a mean,�, and variance, �2. Therefore, the underlying variogram must be
bounded. Secondly, the bivariate distribution for nC1 variates, i.e. for the target site
and the sample locations in its neighbourhood, is known and it is stable throughout
the region. If the distribution of Z(x) is normal and the process is second-order
stationary then we can assume that the bivariate distribution for each pair of points
is also normal. Webster and Oliver (2007) describe the theory of Gaussian DK in
more detail, and Rivoirard (1994) provides a full account of non-linear geostatistics.

Hermite Polynomials Transformation to a standard normal distribution, Y (x), is
given by

Z.x/ D F ŒY.x/� ; (1.17)

where ˚ is a linear combination of Hermite polynomials. This transform is invert-
ible, which means that the results are expressed in the same units as the original
measurements. The transform can be expressed as

Z.x/ D ˚ŒY.x/� D '0H0fY.x/g C '1H1fY.x/g C '2H2fY.x/g C � � �

D
1X

kD0

'kHkfY.x/g: (1.18)

The Hk are an infinite series of Hermite polynomials and the �k are coefficients
that can be evaluated by Hermite integration. The Hermite polynomials are kriged
separately and have only to be summed to give the disjunctively kriged estimates:

OZDK.x/ D '0 C '1
OHK

1 fY.x/g C '2
OHK

2 fY.x/g C � � � : (1.19)

If there are n points in the neighbourhood of x0, the target point, the Hermite poly-
nomials are estimated by

OHK
k fY.x0/g D

nX

iD1

�ikHkfY.xi/g; (1.20)
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which are then inserted into Eq. 1.19. The kriging weights, �ik; are found by solving
the equations for simple kriging because we assume that the mean is known:

nX

iD1

�ikcovŒHkfY.xj /g;HkfY.xi/g� D covŒHkfY.xj /g;HkfY.x0/g� for all j:

(1.21)

The procedure enables us to estimate Z.x0) by

OZ.x0/ D ˚f OY .x0/g D '0 C '1Œ OHK
1 fy.x0/g�C '2Œ OHK

2 fy.x0/g�C � � � : (1.22)

The disjunctive kriging variance of Of ŒY.x0/� is

�2
DK.x0/ D

1X

kD1

f 2
k �

2
k .x0/: (1.23)

Conditional Probability Once the Hermite polynomials have been estimated at a
target point, the conditional probability that the true value there exceeds or is less
than the critical value, zc, is calculated. The transformationZ.x/ D ˚ŒY.x/� means
that zc has an equivalent yc on the standard normal scale. The probability of exceed-
ing the threshold is:

O	DKŒz.x0/ � zc � D O	DKŒy.x0/ � yc �

D 1 �G.yc/�
LX

kD1

1p
k
Hk�1.yc/g.yc/ OHK

k fy.x0/g; (1.24)

and of being less than the threshold it is

O	DKŒz.x0/ < zc � D O	DKŒy.x0/ < yc �

D G.yc/C
LX

kD1

1p
k
Hk�1.yc/g.yc/ OHK

k fy.x0/g; (1.25)

The probabilities can be mapped in the same way as the predictions and disjunctive
kriging variances.

1.3 Case Study: Football Field

Football field is an 11 ha field on the Shuttleworth Estate in Bedfordshire, England
(UK Ordnance Survey grid reference TL 142447). Physiographically the field com-
prises a gently sloping plateau in the south and a central portion with a steeper
slope that leads to a level area in the north. The Lower Greensand (Cretaceous)
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Fig. 1.2 Sampling schemes for soil properties at Football Field, Bedfordshire, England: (a) topsoil
properties (0–15 cm) and (b) sub-soil properties (30–60 cm)

underlies about two thirds of the field to the south and the Oxford Clay (Upper
Jurassic) underlies the rest to the north. The soil in the northern area is a clay loam,
whereas the texture for the rest of the field is a sandy loam. The sampling frame was
placed within the field to avoid the headlands. The topsoil (0–15 cm) was sampled
on a square grid of 20 � 20m with additional samples at an interval on 10 m from
randomly selected grid nodes (Fig. 1.2). The aim of the additional sampling was
to identify any local variation and to reduce the nugget variance of the variogram.
The additional samples were taken along both the eastings and northings to avoid
bias. Subsoil sampling was less intensive on a basic 40-m grid, but with additional
samples at 20 and 10 m. For the topsoil, 10 cores of soil were taken from an area of
5�2m around each grid node and were mixed to form a bulked sample. Three cores
of soil were taken from a 1m2 area around the sampling sites of the subsoil sam-
pling scheme and these were also bulked. Several soil properties were determined in
the laboratory, but top- and sub-soil extractable potassium (K) and topsoil pH only
are examined in this Chapter (see Oliver and Carroll 2004 for a full description of the
analyses). The analyses followed standard laboratory methods (MAFF 1986). The
yield for winter wheat 1999 is described for this Chapter, although other years of
yield were also available. The yield was measured with a Massey Ferguson system.

1.3.1 Summary Statistics

Table 1.1 lists the summary statistics. The range in values for topsoil K is larger
than that for the subsoil; however, the variance for subsoil K is substantially
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Table 1.1 Summary statistics

Statistic

Topsoil
(K mg l�1/

Subsoil
(K mg l�1/

Subsoil
(K mg l�1/

outliers
removed

Subsoil
(log10K
mg l�1/ Topsoil pH

Yield 1999
(t ha�1)

Number of
samples

244 112 108 244 244 7921

Mean 166:2 145:0 138:8 2:208 6:562 4:785

Median 165:0 139:5 136:0 2:218 6:600 4:679

Minimum 49:90 69:49 69:49 1:698 4:990 1:753

Maximum 356:7 335:7 239:1 2:552 7:590 7:742

Range 306:8 266:2 169:6 0:854 2:600 5:989

Variance 1636:1 2137:4 1140:2 0:011 0:138 1:425

Standard
deviation

40:45 46:23 33:8 0:107 0:372 1:194

Skewness 0:970 1:678 0:500 �0:536 0:682 0:249
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Fig. 1.3 Histograms of subsoil K mg K l�1: (a) raw data and (b) transformed to common loga-
rithms, log10 K

larger. The range for pH is large, 2.6 units, and also for yield for which it is
almost 6t ha�1. Table 1.1 shows that subsoil K has a coefficient of skewness >1
and is the only variable here that requires further investigation of its asymmetry.
The histogram, Fig. 1.3a, gives a weak indication that there are four outliers with
values >300mg K l�1 rather than a long tail of larger values.

1.3.2 Variography

Experimental variograms were computed for all the variables by Matheron’s es-
timator, Eq. 1.7. To explore the data for any anisotropy, i.e. directional variation,
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Fig. 1.4 Directional variograms computed over four directions with an angular discretization of
22:5ı for: (a) topsoil K and (b) pH

experimental variograms were computed in four directions on the raw data for
topsoil K and pH. With four directions I set the angular discretization to 22:5ı;
this angle can be decreased if there appears to be anisotropy. Figure 1.4 shows the
directional variogram for topsoil K and pH; there is no sign of any anisotropy and
the variation may be treated as isotropic.

Omnidirectional variograms were computed and h is replaced by h. Several mod-
els were fitted to the experimental values by least squares approximation in GenStat
(Payne 2008). The best fitting model was selected as the one with the smallest resid-
ual sum of squares (RSS). For topsoil K the variogram was computed first with a lag
interval of 10 m, which is the smallest sampling interval on the short transects. This
resulted in a somewhat erratic experimental variogram that can be difficult to model
(Fig. 1.5a). Therefore, the variogram was recomputed with a lag interval of 15 m
which is midway between the grid interval and the transects. This has resulted in a
much smoother variogram (Fig. 1.5b). The best fitting model to both experimental
variograms is an exponential function with no nugget variance; its equation is

�.h/ D c

�
1 � exp

	
�h
r


�
; (1.26)

where �.h/ is the semivariance at lag h, c is the a priori variance of the autocorre-
lated process and r is a distance parameter for this function. The exponential model
approaches its sill gradually and also asymptotically so that it does not have a fi-
nite range. In practice, an effective range is assigned as the distance at which the
function has reached 95% of c. The effective range, a0, is 3r . Table 1.2 gives the pa-
rameters of these models; there is little difference between them. The sill variance
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Fig. 1.5 Experimental variograms (symbols) and fitted exponential models (solid lines) for topsoil
K computed with a lag interval of: (a) 10 m and (b) 15 m

and distance parameter of the model fitted to the variogram computed with a lag of
15 m are a little larger than are those for variogram computed with a lag of 10 m.

For topsoil pH, a spherical model with a nugget variance provided the best fit to
the experimental variogram computed with a lag of 15 m, Fig. 1.6. The equation for
this function is

�.h/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

c0 C c

(
3h

2a
C 1

2

	
h

a


3
)

for h � a;

c0 C c for h > a;

0 for h D 0;

(1.27)

where c0 is the nugget variance, which represents the spatially uncorrelated vari-
ation at distances less than the sampling interval and measurement error, and a is
the range of spatial dependence or spatial autocorrelation. Table 1.2 gives the model
parameters.

The four outliers with values >300mg K l�1, Fig. 1.3a, were removed and sum-
mary statistics were computed on the remaining data. The removal of the four
large values (<4% of the data) has had a marked effect on the summary statis-
tics. The skewness coefficient has decreased to 0.5 (Table 1.1) and the variance has
also decreased markedly to almost half of that with all the data. The data were
also transformed to common logarithms (log10) and the summary statistics of the
transformed data are also given in Table 1.1. The skewness coefficient is again sub-
stantially smaller than that for the raw data, 0.536, nevertheless, the histogram of
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Table 1.2 Parameters of the models fitted to the experimental variograms

Model parameters

Nugget
Correlated Range

variance
component a1.m/ Sill variance

Variable Model type c0 c1; c
�
2 a2.m/

C or r.m/� c0 C c

Topsoil K Exponential 0 1683:0 20:70 1683:0

(0–15 cm) .62:10/

Lag 10

Topsoil K Exponential 0 1698:0 21:18 1698:0

(0–15 cm) .63:54/

Lag 15

Topsoil K Exponential 0 1:00 24:09 1:00

Hermite .72:27/

polynomials

Subsoil K Exponential 0 2447:0 25:49 2447:0

(30–60 cm) .76:47/

Subsoil K Spherical 201:3 1159 124:1 1360:3

No outliers

Subsoil Exponential 0 0:0178 33:13 0:0178

log10 K .99:39/

Topsoil pH Spherical 0:0292 0:0938 74:93 0:1230

Topsoil pH Penta. 0:1911 0:8089 83:20 1:00

Hermite
polynomials

Yield 1999 Double sph. 0:1975 0:4318 33:88 1:471

0:8415� 137:8C

Penta. is pentaspherical and sph. is spherical
� is the spatially correlated variance of the long-range spatial component.
Cis the range of the long-range spatial component.
�is the distance parameter of the exponential function; to obtain a working range a0 D 3r (values
in parentheses).

Fig. 1.6 Experimental
variogram (symbols) and
fitted spherical model (solid
line) for topsoil pH computed
with a lag interval of 15
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Fig. 1.7 Experimental (symbols) and model variograms (line) of subsoil K mg l�1 computed from:
(a) the raw data, (b) data with the four largest values >300mg K l�1 removed and (c) data trans-
formed to log10

log10 K shows that the outliers are still present (Fig. 1.3b). Experimental variograms
were computed on the raw data, the data with outliers removed and on data trans-
formed to log10 for subsoil K, Fig. 1.7a–c.

The variogram of the raw data is the most erratic, but only marginally so, and the
one computed on the transformed data is the most smooth. The exponential function
provides the best fit to the raw and log10 data; Table 1.2 gives the model parameters.
Both exponential models have a zero nugget variance, but the distance parameter of
the variogram of the transformed data is about 25% longer. The spherical function
provides the best fit to the experimental variogram with the outliers removed. The
range of spatial dependence for this function is considerably larger than for the raw
data, and the sill variance is also much less (Table 1.2).

I used cross-validation to determine the best fitting model for subsoil K. The
approach I used involved leaving a sampling point out and kriging the value at that
point with the model and the data within the search neighbourhood. The mean error
(ME), mean squared error (MSE) and the mean squared deviation ratio (MSDR)
were determined by the following equations, respectively:

ME D 1

N

NX

iD1

fz.xi / � Oz.xi /g; (1.28)

MSE D 1

N

NX

iD1

fz.xi / � Oz.xi /g2; (1.29)

and

MSDR D 1

N

NX

iD1

fz.xi /� Oz.xi /g2

O�2.xi /
: (1.30)
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where N is the number of data values, z.xi ) is the true value at xi and Oz.xi / is the
estimated value there, and O�2.xi ) is the kriging variance. The closer the MSDR is to
1 the better is the model for kriging. Table 1.3 gives the results of cross-validation
for the three models fitted to subsoil K. The mean errors are small because krig-
ing is unbiased, but there is a considerable difference in the MSEs between the raw
data and the data with the four largest values removed. The MSDRs, however, in-
dicate that the model fitted to the raw data is the best for kriging and the one fitted
to the variogram with the four largest values removed is the poorest, but by only
a small margin. Overall, the results show that all three models could be used for
kriging without incurring large errors. The results also illustrate the importance of
examining the model by cross-validation before proceeding to transform the data or
to remove values considered as outliers. Kerry and Oliver (2007b, c) showed that
transformation is not always necessary for skewness levels of the kind we have here
for subsoil K.

The experimental variogram computed on the yield data for 1999 suggests that
there might be more than one scale of variation present (Fig. 1.8). There is a change
in the slope of the experimental values at a lag of about 45 m that suggests more than

Table 1.3 Mean errors (ME), mean squared errors (MSE) and
the mean squared deviation ratio (MSDR) for subsoil K

Model ME MSE MSDR

Subsoil K raw data 0.4386 1365 1.014
Subsoil K raw data – 0.2735 664:4 1.178

outliers removed
Log10 subsoil K 0.0008766 0:009068 1.120

0 50 100 150
Lag distance / m

0.0

0.5

1.0

1.5

V
ar

ia
nc

e

Nugget variance

Short-range component 

Long-range component 

Fig. 1.8 Experimental variogram (symbols) and the fitted nested spherical model (solid line) of
yield 1999. The model was decomposed to illustrate the individual components as shown by the
ornamented lines
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one scale of variation might be present. A nested spherical model was fitted to the
experimental values and this function provided the best fit in terms of the residual
mean square (RMS). Its equation is given by

� .h/ D

8
ˆ̂
ˆ̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂
ˆ̂
:̂

c0 C c1

(
3h

2a1

� 1

2

	
h

a1


3
)

C c2

(
3h

2a2

� 1

2

	
h

a2


3
)

for 0 <h � a1;

c0 C c1 C c2

(
3h

2a2

� 1

2

	
h

a2


3
)

for a1 <h � a2;

c0 C c1 C c2 for h � a2;

0 for h D 0:
(1.31)

where c1 and a1 are the sill and range of the short-range component of the varia-
tion, respectively, and c1 and a1 are the sill and range of the long-range component
respectively. A nugget component can also be added as above. Figure 1.8 shows the
components of the nested model fitted to yield; the nugget, short-range and long-
range components.

1.3.3 Kriging

1.3.3.1 Ordinary Kriging

The models for topsoil K and pH were used for ordinary block kriging with the data;
this is the method that farmers would be most likely to use for precision agricul-
ture because they are dealing with areas. Although the kriging variances are much
smaller than for punctual kriging, the estimates are usually little different. Predic-
tions were made over blocks of 5 � 5m for topsoil K. An arbitrary block size was
chosen in this case, but a farmer would usually choose a size that relates to the op-
erating dimensions of the relevant machine. The map of block kriged predictions
(Fig. 1.9a) shows that there are large areas of the field with values of K that would
trigger the need for K applications. There are also other areas where there is no
need for any additional K. This map shows the potential in this field for variable-
rate (VRT) fertilizer applications. The predictions on which this map is based are
accurate because of the intensive sampling, and such maps have an important role
to play in VRT applications. The map of kriging variances (Fig. 1.9b) shows that the
smallest variances are along the short transects where sampling was at an interval of
10 m and the largest ones are near the field boundary where there are fewer samples
in the kriging neighbourhood.

The map of ordinary block kriged estimates of pH (Fig. 1.10) shows that there
is considerable variation in pH in this field and that there is scope for variable-rate
applications of lime. The map of kriging variances shows a similar pattern to that in
Fig. 1.9b and so is not included.
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variances
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The model parameters for the three sets of data for subsoil K were used for ordi-
nary block kriging, and Fig. 1.11 shows the resulting maps of the kriged predictions.
There is little difference in the three maps of predictions; the one based on the raw
data with the variogram computed on data with the four largest values removed is
the most different (Fig. 1.11c). Maps of the kriging variances, Fig. 1.11b, d, are more
different from one another. The map based on the raw data, Fig. 1.11b, has larger
kriging variances than the one in Fig. 1.11d where the variogram was computed on
data with the four largest values (>300mg K l�1) removed. The difference reflects
the larger variance of the data with the outliers present. The small kriging variances
associated with the sampling are very clear in Fig. 1.11b. These results suggest that
analysts should not adopt a mechanical approach to removal of either the largest or
smallest values, or to transforming their data. The variograms should be examined
for the various scenarios first. If that of the raw data is more erratic and difficult
to model than one computed from transformed data, it would be prudent to use the
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Fig. 1.11 Maps of ordinary block kriged estimates of subsoil K (mg K l�1/ from: (a) raw data
(112 sites), (c) raw data (112 sites) and variogram computed on data with the four largest values
(>300mg K l�1/ removed and (e) back-transformed values from log10. Maps of kriging variances
for: (b) raw data and (d) data with four largest values removed

transformed data. Oliver et al. (2002) showed that skewness values outside the en-
velope of the common limits of ˙1 do not necessarily signify a need to transform
data for further analysis in linear geostatistics, especially where the number of data
is large.
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1.3.3.2 Disjunctive Kriging

As the maps of ordinary kriged estimates showed the potential for VRT, I used dis-
junctive kriging to examine the probabilities that the true values would be less than
a threshold value for topsoil K and pH. The data were transformed first to Hermite
polynomials to ensure a Gaussian distribution (see Webster and Oliver (2007). The
experimental variogram was computed on the Hermite transformed data for K, and
the best fitting model is an exponential function (see Fig. 1.12a). Table 1.2 gives the
parameters of the model. The block disjunctively kriged estimates (the analysis was
done in ISATIS (www.geovariances.fr)) of K are not included because they are so
similar to those from ordinary kriging. Figure 1.12b shows the probabilities of the
true values’ being <181mg K l�1, which is equivalent to 2C in the MAFF RB209
(MAFF 2000) guidelines for cereal production. Areas of the field with probabili-
ties >0:3 would need additional K. They are in fairly well defined parts of the field
which would make variable-rate application feasible. This approach would reduce
fertilizer requirements compared with uniform application. The results show that
farmers could use this approach to decide between uniform and VRT application
(Fig. 1.12b).

The topsoil data for pH were also transformed to Hermite polynomials and the
variogram computed on the transformed data. Figure 1.13a shows the experimental
variogram and the fitted pentaspherical model; Table 1.2 gives the model parame-
ters. The equation for this function is given by
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Fig. 1.12 (a) Experimental variogram (symbols) and the fitted exponential function (solid line) for
the Hermite polynomials of topsoil K, (b) map of probabilities that the true values of topsoil K are
less than a threshold of 181mg K l�1
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Fig. 1.13 (a) Experimental variogram (symbols) computed on the Hermite polynomials of topsoil
pH and the fitted exponential function (solid line) and (b) probabilities that the true values of
topsoil pH are less than a threshold of 6.5

This model curves more gently as it approaches its sill than does the spherical one,
Fig. 1.6. The optimal pH for continuous arable cropping is 6.5. The probabilities of
the true values of pH being less than this threshold are shown in Fig. 1.13b. This map
shows very specifically where the farmer needs to apply lime and where applications
would be unnecessary. Areas with probabilities <0:3 would not require lime based
on the measured pH and this would represent a considerable saving in resources and
the farmer’s time. This map could also be used to prioritize management. The south
central and eastern parts of the field clearly have a pH that is too low for optimal
cereal growth; the farmer could focus attention here in the short term.

1.3.3.3 Factorial Kriging

As the variogram of the yield data indicates variation at two spatial scales, I used
factorial kriging to filter out and estimate the long- and short-range components
separately (see Webster and Oliver 2007 for more information on this method).
Figure 1.14a shows the ordinary kriged predictions of yield (1999); there is no
strong evidence of the two spatial scales of variation in this map. The map of long-
range estimates, Fig. 1.14b, is similar to the ordinary kriged map; it is slightly less
detailed however. The map of the short-range estimates, Fig. 1.14b, shows clearly
that this component of variation is the result of management. There are lines in
the variation that relate to tramlines that are parallel to the long axis of the field
and to the effect of traffic on the headlands in the southern part of the field. The
green lineations are where the yield is less because of compaction from the farm
machinery.
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Fig. 1.14 Maps of predictions of yield 1999 for the Yattendon Estate from factorial kriging:
(a) map of predictions based on the nested spherical model, (b) map of long-range component
of the variation and (c) map of short-range component

1.3.4 Conclusions

This case study describes the stages that a geostatistical analysis should go through.
First, an exploratory data analysis to determine the distribution of the data and
whether there is a need to remove outliers or to transform the data to obtain a near-
normal distribution. The choice of a suitable lag interval and the effects on the model
parameters are illustrated. The cross-validation analysis showed that transformation
or the removal of outliers when skewness levels are outside the usual bounds is not
always necessary. It is always better to work with the raw data if possible. When
data are transformed, they usually need to be back-transformed for mapping so that
the predictions are on the original measurement scale for the farmer to work with.
Disjunctive kriging provides an objective way of prioritizing management where
resources and or time are scarce. It also shows the farmer which areas really require



32 M.A. Oliver

treatment and which do not. In this way excess applications can be avoided to limit
environmental impact and improve the farm’s economy. Factorial kriging in the ex-
ample here could be used to identify localized areas for subsoiling where traffic
pressure has reduced yields in the vicinity of the tramlines.
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Chapter 2
Sampling in Precision Agriculture

R. Kerry, M.A. Oliver and Z.L. Frogbrook

Abstract This chapter considers the importance of spatial scale in sampling and
investigates various methods by which the variogram can be used to determine an
appropriate sampling scheme or interval for grid sampling. When no prior informa-
tion is available on the scale of variation, and the variable of interest is unlikely to
be strongly correlated to available ancillary data, a nested survey and analysis pro-
vides a first approximation to the variogram and the approximate spatial scale. If
the variable of interest appears related to ancillary data such as aerial photographs
or elevation, variograms of these data can provide an indication of the likely scale
of variation in the soil or crop. Existing variograms of soil or crop properties can be
used to determine how many cores of soil or samples from plants should be taken
to form a composite (bulked) sample to reduce the local noise. Such variograms can
also be used with the kriging equations to determine a grid sampling interval with
a specific tolerable error, or an interval of less than half the variogram range can be
used to ensure a spatially dependent sample. Finally, if the scale of variation is large
in relation to the field size, a variogram estimated by residual maximum likelihood
(REML) or standardized variograms from ancillary data can be used to krige data
from a small, but spatially dependent sample. Each of the methods investigated is
illustrated with a case study.

Keywords Sampling � Method of moments variogram (MoM) � Residual maximum
likelihood (REML) � Nested sample design � Bulking strategy � Soil data � Ancillary
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2.1 Introduction

Accurate information about the variation in soil and crop attributes within fields
is crucial for precise management in agriculture. This is the essence of precision
agriculture (PA) which began in the early 1990s, (see papers in Robert et al. 1995,
1996; Schueller 1997; Stafford 1997, 1999). The value of geostatistics to predict
accurately for digital mapping of soil and crop attributes was recognized at a sim-
ilar time (Blackmore 1994; Whelan et al. 1996; Oliver and Frogbrook 1998). The
accuracy of such predictions, however, depends on the quality of information on the
soil and crops. Many soil and crop attributes have to be determined physically from
samples in the field, which can be time-consuming and expensive. The geostatisti-
cal method of local prediction, kriging, depends on having accurate variograms and
spatially dependent data from which to predict. All methods of interpolation assume
implicitly that data are spatially dependent, which means that sampling should be
at an interval that is well within the correlation range of spatial variation. Despite
the popularity of geostatistics in PA, we have found that the methods have been,
and continue to be, applied to unsuitable data. Therefore, the aim of this chapter
is to guide potential users of geostatistics in precision agriculture on the sampling
requirements and cost effective approaches to sampling. Chapter 3 continues the
theme of sampling with examples of more elaborate methods.

Planning the sampling for surveys appears to be the ‘Cinderella’ of many en-
vironmental studies; the temptation is to rush into the field without adequate
preparation. However, sampling underpins the quality and accuracy of subsequent
analyses and decision making because these depend on the data being suitable
for the purposes intended. It is notable that there are few papers on sampling in
the proceedings of either the International or European Conferences on Precision
Agriculture and in the Journal of Precision Agriculture. We need a more objective
approach to sampling in PA to provide the quantitative information that is required.
McKenzie et al. (2008) reinforce the need for a clear and consistent conceptual
framework for sampling. Although much of the information used in agriculture in
the past was quantitative, it was based on field averages which were only adequate
for uniform applications and management at the field level. Management of the
variation within fields, however, requires more detailed knowledge, which can be
obtained only by intensive sampling.

The variation in soil and crop properties within fields comprises variation over
short distances of a few metres and that over longer distances of tens or hundreds
of metres. It is this last component of variation that the precision farmer wants to
resolve for management, and we can regard the short-range variation as ‘noise’ or a
sampling effect. Sampling for traditional farm surveys in the United Kingdom and
many other countries was at about one sample per hectare and sometimes it was
even more sparse. This approach has also become widely used in precision farm-
ing surveys (Godwin and Miller 2003) because it is considered a sampling density
that the farmer can afford. However, sampling at this density takes no account of
either the scale of variation or of how many sampling points might be needed for
further analyses. Geostatistics, and in particular the variogram, can be used to guide
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sampling. The importance of spatial scale in sampling is considered in Section 2.1.1.
For some attributes, especially of the soil where variation is complex and cannot be
observed at the surface, for example nematodes (see Chapter 9), and there is no
prior information, a nested survey and analysis can provide a first approximation to
the variogram. This approximation can then be used to determine the approximate
scale(s) of variation and a suitable sampling interval for a more detailed survey (see
Section 2.2). For other attributes, such as weeds, plant diseases, some soil properties,
etc., the variation might be evident visually in the field or in remote and proximally
sensed imagery. The latter types of data are often referred to as ancillary data and
variation in these is often linked to properties of the soil and of the crop. Variograms
computed from ancillary data can be used to determine the approximate scale of
spatial variation, and so can be used to guide sampling based on the ‘rule of thumb’
of sampling at less than half the variogram range (see Section 2.2.2).

Although we more or less dismiss the local sample to sample variation above
as ‘noise’, we cannot disregard it because it can affect the accuracy of any future
predictions. Local variation can be smoothed by mixing together several small cores
of soil or, for example, by taking several cotton bolls from one or more plants, etc.
over a given sample support to create a bulked or composite sample. The number of
samples to take for bulking can be optimized using the variogram (see Section 2.3).

Sampling should match the objectives of the survey; for precision farming this
is often to produce accurate digital maps. For this, a grid survey has been the usual
choice (Viscarra-Rossel and McBratney 1998) because of its efficiency for sample
collection in the field, prediction and mapping. If variograms of soil and crop prop-
erties from previous surveys exist for an area with a similar soil parent material and
similar crop, they can be used with the kriging equations to determine an optimal
grid interval.

If the sampling intervals recommended by the above methods are large, there may
be too few data from which to compute a reliable variogram by the usual method
of moments estimator. Kerry and Oliver (2007) showed that a variogram estimated
by residual maximum likelihood (REML) could provide more accurate predictions
with fewer data than one estimated by the conventional method of moments (see
Section 2.5.1). A standardized variogram based on ancillary data or existing vari-
ograms of soil properties can also be used to krige spatially dependent data that are
too sparse from which to compute a variogram (see Section 2.5.2).

2.1.1 The Importance of Spatial Scale for Sampling

Soil and crop properties can vary at markedly different spatial scales both within and
between fields. Therefore, it is essential when designing a sampling scheme that the
spatial scales of variation in the properties of most importance for PA management
are used to guide sampling. Figure 2.1a,b illustrates the effect of spatial scale in the
pixel maps of two random processes simulated with a spherical variogram. Consider
that each pixel represents information on a 5-m sampling grid and the area is a 25-ha
field. The variation in Fig. 2.1a occurs over short distances, whereas that in Fig. 2.1b
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Fig. 2.1 Fields simulated with a spherical (sph) function with zero nugget variance, a sill variance
of 1.0 and ranges of: (a) 50 m and (b) 125 m; (c) field simulated with pure nugget variogram;
variogram functions used to generate the simulated fields: (d) sph 50 m, (e) sph 125 m and (f) pure
nugget

occurs over much longer distances. The variation represented in Fig. 2.1c is ‘white
noise’. To sample to provide spatially dependent data would require quite different
sampling intensities for the fields in Fig. 2.1a,b, whereas for Fig. 2.1c the regional
mean only could be estimated. If these random processes were superimposed on
one another they would result in nested variation as described for yield in Chapter 1.
Therefore, we should need to choose which of the processes illustrated in Fig. 2.1a
or b was the more important to resolve, and how many samples to bulk from to
remove the effect of the ‘noise’ in Fig. 2.1c. Figure 2.1d–f shows the variograms
used to generate the simulated fields; for the short-range variation the range was
50 m and for the long-range variation it was 125 m. Figure 2.1c was generated by a
pure nugget variogram (Fig. 2.1f).

2.1.2 How Can Geostatistics Help?

Geostatistics embodies techniques to describe spatial autocorrelation of a region-
alized variable, Z, and that use this information for local prediction by kriging.
Kriging requires a model of the spatial correlation structure derived from either the
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covariance function or more usually the variogram. These functions are not known
a priori, and they must be estimated from sample data. Sampling for subsequent
geostatistical analysis must serve two purposes: first estimation and modelling of
the variogram and second local prediction by kriging. To satisfy the first purpose,
sampling must be sufficient to estimate the semivariances precisely.

2.1.3 How can the Variogram be Used to Guide Sampling?

Webster and Oliver (1992) showed that at least 100 samples are required to esti-
mate the variogram reliably, but for some agricultural fields this number might be
too few to resolve the variation present if the scale is short, whereas it might be too
many where the scale is long. In some situations there are no visible signs of vari-
ation because of the nature of the property of interest, and there are no clues to the
approximate scale of variation. So how can we deal with these situations?

1. In the absence of any prior information about the spatial scale of variation and
no visible signs of the variation in the property of interest, a nested survey and
analysis can provide a first approximation to the variogram. This approximation
can then be used to determine a suitable sampling interval for a more detailed
survey. This is described in Section 2.2.1 together with an example.

2. In the absence of existing variograms of soil or crop properties and the prop-
erty of interest appears related to ancillary data, such as those from remote and
proximal sensing, digital elevation models, etc., they could be used to compute
variograms from which to judge the approximate spatial scale of variation and a
suitable sampling interval.

3. If variograms of the soil or crop properties are available, they can be used to
determine how many cores of soil or samples from plants should be taken over a
given support to form composite samples for laboratory analyses. The aim is to
reduce local ‘noise’.

The sample support is the area or volume of material on which measurements are made.
It has size and shape, and it may have orientation. In crop surveys it might be a specified
area or a given number of plants (see Willers et al. 2009), and in remote sensing the
pixel is the support. In soil survey it is the volume or core of soil taken from the ground,
or it might be a specified area from which several cores may be taken.

4. If there are variograms of the soil or crop properties from previous surveys, they
can be used with the kriging equations to determine an optimal sampling interval,
for a future grid survey with a specified tolerable error to avoid over- or under-
sampling. Existing variograms can also be used with the ‘half variogram range
rule of thumb’ to ensure that survey data will be spatially dependent.

5. If the scale of variation is large and there are 50–100 samples, a variogram can
be estimated by residual maximum likelihood (REML) and could be used to
krige data from a small, but spatially dependent sample. Alternatively, existing
variograms of ancillary data, soil or crop properties could be used to compute
standardized average variograms to krige sparse data that have been standardized.
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2.2 Variograms to Guide Sampling

2.2.1 Nested Survey and Analysis: Reconnaissance Variogram

A nested survey and analysis is advantageous in precision agriculture when there are
few or no clues as to the spatial scale of variation in the property of interest and the
costs of management are large. The nested survey enables several orders of magni-
tude of spatial scale to be examined in a single analysis (Fig. 2.2a) to determine the
approximate scale of variation with no more than about 108 samples. Webster and
Oliver (2007) describe nested analysis in detail, and Section 9.3.2 provides some of
the theoretical background to the method. The idea underlying the model of nested
variation is that a population can be divided into classes at two or more categoric
levels or stages in a hierarchy. The population can then be sampled with a nested
scheme to estimate the variance at each stage, i.e. the components of variance. The
individual component for a given stage measures the variation attributable to that
stage, and the components sum to the total variance. Miesch (1975) showed that
there is a link between the results of a hierarchical analysis of variance and the
semivariances of geostatistics. If the components of variance are accumulated, start-
ing with the smallest spacing, they are equivalent over the same range of distances
to the semivariances of geostatistics.

The nested analysis provides a first approximation to the variogram (Oliver and
Webster 1986; Webster and Oliver 2007). It can indicate the range of spatial scales
over which most of the variation occurs making it a valuable reconnaissance tool.
It indicates the spatial scale at which most of the variation occurs and this informa-
tion can be used to guide sampling for an overall survey or to obtain a more accurate
variogram. For properties for which we have no clues about their scale of varia-
tion, such as nematode infestations, a reconnaissance variogram could avoid wasted
sampling effort and costs of analysis by indicating a suitable sampling interval for a
more detailed survey. The samples from the nested survey could be integrated with
the later samples provided the time interval was not too great for temporally vari-
able properties such as nematodes. For more permanent properties of the soil, the
temporal aspect would not be an issue.

2.2.1.1 Unequal Sampling

Youden and Mehlich’s (1937) sampling design was fully balanced with replication
at each stage; the sample size doubled for each additional stage. Oliver and Webster
(1986) showed that full replication at each stage is not necessary because the mean
squares for the lower stages are estimated more precisely than those of the higher
ones. Economy can be achieved by replication of only a proportion of the sampling
centres in the lower stages. Such a scheme is then unbalanced, which makes es-
timating the components more complex (see Gower 1962). Webster et al. (2006)
have shown that computing the hierarchical analysis of variance by residual maxi-



2 Sampling in Precision Agriculture 41

mum likelihood (REML), which is a general method of model fitting, is preferable
for unbalanced nested surveys because it gives a unique result, whereas there are
several methods for finding the components by the analysis of variance (ANOVA).
In general, the unbalanced approach would be preferable in PA because more stages
can be used with no more sampling effort.

Components of Variance by Residual Maximum Likelihood

For balanced designs ANOVA and REML give the same results, but for unbalanced
ones they do not in general (Pettitt and McBratney (1993). If the random effects are
assumed to be normally distributed, maximum likelihood estimates of the variance
components can be calculated from Eq. 9.6. Patterson and Thompson (1971) devel-
oped the method of residual maximum likelihood (REML) to adjust for the fixed
degrees of freedom before estimating the variance components. In the context here
there is only one fixed effect, the grand mean, �; therefore the differences between
the estimates from REML and ANOVA are small. Readers are referred to Webster
et al. (2006) for a full description of the method.

Case Study

Oliver and Webster (1987) used an unbalanced nested sampling strategy to deter-
mine the spatial variation in clay content of the soil in part of the Wyre Forest
(1440 ha) of central England. Their scheme had five stages covering sampling in-
tervals from 6 to 600 m increasing in a geometrical progression of approximately
threefold increments. The survey had nine main centres on a 3 � 3 square grid with
a spacing of 600 m; the grid was orientated randomly over the region. All other
sampling positions were located from these grid nodes on random orientations as
follows (see Fig. 2.2a for the plan at one main centre). From each main centre, a
second site was chosen 190 m away to provide the second stage. From each of the
now 18 points another site was chosen 60 m away (stage 3) and the procedure was
repeated at stage 4 to locate points 19 m away. At stage 5 only half of the stage 4 sites
were replicated by sampling 6 m away. The result was a sample size of 108 rather
than 144 for a balanced design. Since this survey Oliver and Badr (1995) applied a
nested design to a survey of soil radon concentration and Webster and Boag (1992)
to a survey of nematodes; both had seven stages with only 108 sampling sites.

We estimated the variance components by REML (Webster et al. 2006). Table 2.1
gives the accumulated components of variance and also the percentage variance ex-
plained by each stage. Figure 2.2b shows the accumulated components of variance
for clay content at each of four sampling depths plotted against distance on a loga-
rithmic scale to provide a first approximation to the variogram.

Figure 2.2 shows that about 80% of the variance occurs within 60 m, and that
stages 1 and 2, i.e. distances of 190–600 and 60–190 m, respectively, account for
less than 20%. For these variables and many others at this site, the components
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Fig. 2.2 Nested sampling scheme in the Wyre Forest, England: (a) sampling plan for one of the
main centres and (b) accumulated components of variance estimated by REML for clay content in
the soil at four depths in the profile, with the lag distance on a logarithmic scale

Table 2.1 Accumulated components of variance estimated by REML for clay content in the soil
of the Wyre Forest at four depths in the profile, and the percentage variance accounted for by each
stage

Accumulated components of variance estimated by REML
(percentage variance explained at each stage)

Stage Depth 0–5 cm Depth 10–15 cm Depth 25–30 cm Depth 50–55 cm

1 (600 m) 63.82 (17.02) 74.73 (6.25) 209.3 (7.72) 365.1 (10.57)
2 (190 m) 52.96 (�20:01) 70.06 (�16:82) 193.1 (�7:18) 326.5 (�14:93)
3 (60 m) 65.73 (23.38) 82.63 (34.59) 208.1 (14.56) 381.0 (58.97)
4 (19 m) 50.81 (46.44) 56.78 (41.69) 177.6 (42.63) 165.7 (4.60)
5 (6 m) 21.17 (33.17) 25.92 (34.69) 88.41 (42.24) 148.9 (40.78)

for stage 2 are negative. These suggest that either there is some repetition in the
variation of the property at that distance or there is no contribution to the variance at
this stage. At the lowest stage, there is a considerable contribution to the variance,
especially for clay at depths of 25–30 and 50–55 cm. This represents the unresolved
variation within 6 m plus any errors of measurement. This is similar to the nugget
variance in geostatistics (see Chapter 1). From this information we could design a
survey to estimate the variogram more precisely by sampling along transects or we
could design an overall survey with a maximum sampling interval of less than half
the correlation range of 60 m identified (see Oliver and Webster (1987) for a full
account of these results). Although this example is not agricultural, the principles
are the same and the study area here would be equivalent to doing a nested survey of
a whole farm. A case study described in Chapter 9 of this book shows an application
of nested sampling and analysis to determine a suitable grid sampling interval to
estimate the pattern of variation in the cereal cyst nematode, Heterodera avenae.
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2.2.2 Variograms from Ancillary Data

Many of the more permanent soil properties, such as soil texture, appear to co-vary
spatially with ancillary data, which are usually intensive and cheaper to obtain.
Ancillary data include digitized aerial photographs, electrical conductivity (ECa),
yield, remotely and proximally sensed data, and digital elevation models. Each type
of ancillary data is likely to be more strongly correlated with some soil properties
than with others. In other words they are coregionalized which suggests that we can
use these data to indicate the approximate spatial scale of variation in more expen-
sive variables. Variograms computed from intensive ancillary data can then be used
to guide sampling of the variables of interest. Chapter 7 describes how inexpensive
coregionalized secondary information can be used to improve the accuracy of pre-
dictions of the primary variable by cokriging and other multivariate geostatistical
methods. These approaches are likely to be of value to precision farmers because
they often have suitable ancillary data or they can obtain it with little additional
expense.

Experimental variograms computed from ancillary data and modelled can be
used to guide sampling with an often used ‘rule of thumb’ of sampling at less than
half of the variogram range (see Section 2.4.2). This use of ancillary data should
avoid over- or under-sampling, both of which will result in wasted effort. The case
study described below shows that the variogram ranges of the more permanent soil
properties and ancillary data are reasonably consistent.

2.2.2.1 Case Study

Data from a field at Wallingford with soil developed on the plateau gravels of the
Thames valley near to Oxford, England illustrate the above approach. The site was
sampled and observations were made in the winter of 2000 on a 30-m grid. Six
samples of the topsoil (0–15 cm) were taken from a 1m2 support and bulked at each
grid node. Several soil properties of the air-dried<2mm soil fraction were measured
using standard methods. The property of interest here is loss on ignition (LOI).
Ancillary data were obtained as follows. Aerial photographs of the bare soil from
aerial surveys were digitized to give a ground pixel size of 3:5� 3:5m. Apparent
soil electrical conductivity (ECa) was recorded with a Geonics EM38 instrument in
the vertical position about every 1 m along transects about 20-m apart. Elevation
data were obtained from the z coordinate of differential global positioning system
(DGPS) surveys of the fields, and yield data from several years were obtained with
the Massey Ferguson Fieldstar system (www.masseyferguson.com).

Omni-directional variograms were computed for each of the soil and ancillary
variables at the site. Multivariate variograms (Bourgault and Marcotte 1991) were
computed from the aerial photograph data by Eq. 2.2. The multivariate variogram is
defined by:

�.h/ D 1

2
EŒfZ.x/� Z.x C h/gTMfZ.x/ � Z.x C hg�; (2.1)
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where E is the expectation, Z.x/ and Z.x C h/ are vectors of random variables at
positions x and x C h separated by the lag, h, T is the transpose, and M is a p�p
positive-definite symmetric matrix defining the relations between the variables. The
experimental variogram was calculated by the standard formula adapted for the mul-
tivariate case:

O�.h/ D 1

2m.h/

m.h/X

iD1

fz.xi /� z.xi C h/gTMfz.xi/ � z.xi C h/g; (2.2)

where z.xi / and z.xi C h/ are the vectors of observations at xi and xi C h.
Table 2.2 gives the parameters of the models fitted to each experimental vari-

ogram. All soil properties and most ancillary variables have variogram ranges of
similar magnitudes, except for yield. Yield shows more complex variation with two
scales of variation for most years. The average variogram range for the soil proper-
ties is 238 m and for the ancillary data excluding yield it is 221 m. The difference in
the variogram ranges for yield can be explained by the fact that several factors other
than the soil, such as disease, weeds, pests, management practices, weather, etc.,
affect the yield in a given year. At Wallingford the physiography is fairly complex,
and the soil properties appear to vary in harmony with it. Our analyses at other sites
showed that in general aerial photograph and ECa data had variogram ranges that
were more similar to those of the soil properties than elevation and yield data. There-
fore, we do not recommend yield and elevation data to guide sampling unless there
is evidence that these data are consistently related to patterns of soil variation in the
field of interest.

Figure 2.3a, c shows the aerial photograph and ECa data for Wallingford, respec-
tively. The patterns of variation for both sets of data are similar. The paler areas
have smaller conductivities and vice versa; they indicate places where the soil is
particularly gravelly, or where the gravel is largely calcareous. The experimental
variograms and the fitted models for the aerial photograph and ECa data (Fig. 2.3)
have similar ranges. There are also some similarities in the patterns observed in the
aerial photograph, ECa and the soil data (compare Figs. 2.3a, c and 2.4a).

Based on the variogram results in Table 2.2 and sampling at an interval of less
than half the range of a variogram from appropriate ancillary data, grid intervals
of 100–120-m should suffice at the Wallingford site. Data on the 30-m grid were
sub-sampled to give a range of coarser sampling intervals: 60-m (70 sites), 90-m
(36 sites), 120-m (23 sites), 150-m (14 sites) and 120 C 60-m (50 sites). The sub-
sampled data were then used with the model parameters of the variogram computed
from the 30-m data for kriging. The variogram for the 30-m data was used because
it was computed from >100 data, whereas the sub-samples would provide too few
data from which to compute accurate variograms. Figure 2.4 shows the kriged maps
of loss on ignition (LOI) for the full and sub-sampled data. The main features of
the variation are preserved for sampling intervals of 120-m and less, although there
is some loss of detail for all sub-samples. The main features of the variation are no
longer evident when the sampling interval is 150-m (Fig. 2.4e). The results suggest
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Fig. 2.3 Wallingford field site: (a) aerial photograph, (b) multivariate variogram of the Red, Green
and Blue wavebands from the aerial photograph, (c) map of ECa, the bold line within the field is
the limit of the sampled area and (d) variogram of ECa

that a sampling interval of 100–120-m would be adequate for precise management
in PA, which corresponds with less than half the range of all ancillary variables apart
from yield (Table 2.2). Figure 2.4f suggests that additional sampling at half the grid
interval for randomly selected nodes has increased the observed detail. It would also
improve the accuracy of the variogram near to the origin.

As the pattern of variation is generally unknown at the sampling stage the im-
portance of any given sample location cannot be known. Taking additional samples
at shorter intervals reduces the potential loss of information and reduces the nugget
component. Additional samples can be targeted according to the variation in a key
ancillary variable to avoid missing important features in the soil variation. The fur-
ther samples are from one another, the larger the nugget is likely to be due to
unresolved variation at distances less than the sampling interval. Accurate kriged
predictions depend on accurate estimation of the nugget variance. The nugget vari-
ance can also be reduced by bulking soil or plant samples to reduce the effects of
variation at distances much less than the sampling interval.
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Fig. 2.4 Maps of kriged predictions of loss on ignition (LOI) at Wallingford based on the (a) 30-m
data and 30-m model, (b) 60-m data and 30-m model, (c) 90-m data and 30-m model, (d) 120-m
data and 30-m model, (e) 150-m data and 30-m model and (f) 120-m C60-m data and 30-m model

2.3 Use of the Variogram to Guide Sampling for Bulking

Soil and crop attributes can vary considerably over short distances. This local fluc-
tuation in values between points might mask the variation over the tens or hundreds
of metres that is of greatest interest to the precision farmer. The material taken or
the observations made at a sampling point are intended to represent the property
of interest reliably over the surrounding area, the size of which will depend on the
degree of spatial variation. If there is sufficient information from several cores of
soil or several plants then this short-range fluctuation can be smoothed by local av-
erages. However, obtaining so many individual measurements would be too costly
in practice. The alternative is to bulk several cores of soil from a small area (Oliver
et al. 1997) and mix them thoroughly for analysis or bulk material from several
plants (Willers et al. 2009). The concentration measured in a bulked sample should
equal the arithmetic mean of the individual cores or plants contributing to it, unless
some chemical reaction takes place within the sample.

The number of soil cores or plants to be bulked depends on the local variation
and the error that can be tolerated. Burgess and Webster (1984) described how to
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determine the number of cores or plants for bulking if the variogram of the prop-
erty is known. The variogram model is used to determine the variance for various
combinations of support and configuration of sampling points within the blocks.
The estimation variances (or errors) are calculated for a range of sample sizes and
configurations, and the combination that meets the tolerance can be determined.

For a small area B , we can estimate the average of propertyZ, O�.B/, in B from
n known values, z.xi /, at positions xi , i D 1; 2; : : : , n within B by

O� .B/ D 1

n

nX

iD1

�i z .xi /; (2.3)

where �i are the weights associated with positions xi (Burgess and Webster 1984).
The estimation variance of O�.B/ is

�2 .B/ D 2

nX

iD1

�i� .xi ; B/ �
nX

iD1

nX

j D1

�i�j �
�
xi ; xj

� � � .B;B/; (2.4)

where �.xi ; xj / is the semivariance between points xi and xj , N�.xi ; B/ is the av-
erage semivariance between data point xi and the block B , and N�.B;B/ is the
within-block variance.

In principle, bulking is equivalent to averaging the values at the positions from
which the individual samples of soil or plants are taken in B . Every sample is the
same size and shape, so the weights, �i , are equal. The number and positions of
the cores can be varied to achieve a particular precision expressed in terms of the
estimation variance. For practical purposes the estimation variance is minimized
for a given n when the sampling points are on a centred regular grid (Burgess and
Webster 1984). With the parameters of an existing variogram, Eq. 2.4 can be solved
for a range of n on a square grid. To determine the number of cores required for
a bulked sample, the calculated estimation variance or error is plotted against n.
The smallest value of n can be determined from the graph to satisfy a predefined
tolerable error. Tolerable errors can be determined with Eq. 2.5 as in Section 2.3.1 if
none is known beforehand.

2.3.1 Case Study

An arable field on a chalk plateau on the Yattendon Estate, Berkshire, England,
was sampled (Oliver et al. 1997). The sampling scheme comprised six nodes 100-m
apart. At each node there were two orthogonal transects, the mid-points of which
coincided with the node. The transects were 14 m long, and the soil was sampled
at 1-m intervals to a depth of 15 cm. Twenty nine samples were taken at each grid
node, giving 174 samples in total. The samples were air-dried and sieved, and the
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Table 2.3 Variogram model parameters for the soil survey on the Yattendon
Estate, Berkshire, England

Variogram model parameters

Property Model c0 c a .m/ w ˛

K Spherical 159.10 298.00 3.09
P Power 9.82 1.228 1.19
Mg Circular 5.24 6.43 4.38

The parameters are: c0, the nugget variance; c, the sill of the autocor-
related variance; a, the range of the spatial dependence; w and ˛ are
the intensity and exponent, respectively, of the power function. The equa-
tion for the spherical function is given in Section 1.3.2, Eq. 1.27. The
equations for the power and circular functions are: �.h/D c0 C wh˛ and

�.h/D c0 C c
n
1� 2=
 cos�1.h=a/C 2h=
a

p
1� h2=a2

o
, respectively.

available potassium (K), phosphorus (P) and magnesium (Mg) were determined by
the standard methods of MAFF (1986). Experimental variograms were computed
for the variables by the usual method of moments estimator, and models were fitted
in GenStat (Payne 2008).

The variogram model parameters for each property in Table 2.3 were used with
Eq. 2.4 to determine the estimation errors for three block sizes (of side 2-, 5- and
10-m) and sample sizes (n D 4, 9, 16, 25, 36, 49). The errors plotted against n for
each block size are shown in Fig. 2.5. All the blocks were square, and the results
are for square sampling configurations. There are no intermediate values of n with
these configurations; the lines are drawn to guide the eye and aid interpretation. In all
cases the estimation errors decrease roughly in inverse proportion to the sample size,
and as there is more variation in the larger blocks their errors are always somewhat
larger than those of the smaller blocks.

To determine the optimal number of cores for bulking, an acceptable margin of
error is needed. If this value is known, or has been determined by Eq. 2.5, it can
be represented as a horizontal line drawn across the graph at the specified tolerance
(Fig. 2.5). The intersections of the line with the graphs indicate the number of cores
from which to bulk. Since the block is square the next largest square number from
the intersection is used.

Recommended tolerance values were used for this study. For K, the value was
7mg l�1 and the line intersects the graph at n � 4 for the 2 � 2m block. Bulking
from this number of cores in a centrally placed square configuration will ensure that
the tolerable error is not exceeded. For the 5�5m block the line intercepts the graph
at n � 6 and the next largest square number, nine, would be used. The 10 � 10 m
block would also require a bulked sample of nine cores. For P the tolerance was
1mg l�1, and Fig. 2.5 shows that a sample of sixteen cores is needed for all block
sizes. A tolerance of 3mg l�1 was used for Mg (the line for this is not shown because
it is much larger than the largest error), and Fig. 2.5 shows that a bulked sample of
four cores would be sufficient.
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Fig. 2.5 Graphs of estimation error against size of sample to bulk from for P, K and Mg for a field
on the Yattendon Estate, Berkshire, England

If there are no recommended values for the tolerance then we suggest that the
departure from the mean for a 95% level of confidence is calculated by

L D 1:96�p
n
; (2.5)

where L is the tolerance, � is the standard deviation of the variate and n is the
sample number (Webster and Oliver 1990).

Different nutrients require different sampling schemes; therefore, the number of
samples should be based on the nutrient that has most effect on the crop to be grown.
In many instances, phosphorus may be limiting and, therefore, a bulked sample of
16 should be used. Although this number results in over sampling for potassium
and magnesium, it is clear from Fig. 2.5 that a sample of 16 reduces the variance
considerably and will improve the estimates of all these nutrients.

The results from other fields with different soil types showed that the sample
size needed for bulking also varies with soil type. On more variable soil, such as
the alluvium that Oliver et al. (1997) examined, the optimal number of cores was
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much larger. In the absence of prior knowledge, and no variogram from which to
compute the estimation variances, a reasonable ‘rule of thumb’ would be to bulk
from 16 cores.

2.4 The Variogram to Guide Grid-Based Sampling

Sampling on a grid is favoured in geostatistics and PA because it provides an even
cover of values and minimizes the maximum estimation variance (or error) for a
given grid interval. It is also easy to implement in the field. However, practitioners
must still decide how many sample sites are needed and what the interval between
them should be. The variogram can provide the answer to the latter. Two approaches
for identifying a suitable interval for grid-based soil sampling are considered here
and are illustrated with case studies.

2.4.1 The Variogram and Kriging Equations

McBratney et al. (1981) and McBratney and Webster (1981) showed how the var-
iogram and kriging equations could be used to determine an optimal sampling
interval for prediction by kriging before obtaining new data from a survey. The
basis of their approach is that the kriging weights, and also the kriging variances
(see Chapter 1) depend on the configuration of the sampling points in relation to the
target point or block and on the variogram. They do not depend on the observed
values at these points. If we have a variogram function from a previous survey of
a field then we can determine the kriging errors for any grid size before sampling.
It is possible to optimize the sampling by designing a scheme to meet a specified
tolerance or precision. Although a triangular grid is the most efficient, square or
rectangular grids are preferred because they are easier to implement, and there is
little difference in precision between them in practice.

Sampling can be optimized for punctual or block kriging (see Eqs. 1.8–1.16).
Webster and Oliver (2007) provide more detail on this; here we consider only block
kriging. Precision farmers want to manage areas (blocks) of their fields that relate
to their machinery. For block kriging practitioners must decide where to determine
the kriging variances, i.e. whether for blocks centred on grid cells or ones centred
on grid nodes. This is because the position at which the kriging variance is greatest
varies according to block size, and it is the largest variances that should be used.

2.4.1.1 Case Study

The topsoil (0–15 cm) of the same field on the Yattendon Estate in Section 2.3.1
(Frogbrook 2000) was sampled in December 1997 and 1998, and available K,
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Table 2.4 Variogram model parameters for K, Mg and P for a field on the Yattendon
Estate

Variable Model c0 c r a.m/ .3r .m//

K97 Spherical 411:1 450:1 171.4
K98 Spherical 648:5 299:1 150.0
Mg97 Exponential 0 55:49 22.02 (66.06)
Mg98 Spherical 12:01 21:13 50.68
P97 Spherical 49:26 132:0 206.6
P98 Pentaspherical 28:41 72:84 182.8

The model parameters are as given above. For the exponential function, the sill is asymp-
totic and an approximate range is determined as 3r , where r is the distance parameter
of the model.

Mg and P were determined. There was no anisotropy in the variation, and omni-
directional experimental variograms were computed from the measurements on a
bulked sample of 10 cores of soil from a support of 2 � 5m taken at the nodes of a
20-m grid. The experimental values were modelled, and the model parameters are
given in Table 2.4. The parameter values are similar for both years for each nutrient,
which suggests that a tolerance can be fixed in the absence of any marked temporal
variation.

The model parameters for K, Mg and P (Table 2.4) were used with the kriging
equations to provide estimates of the kriging standard errors associated with sam-
pling intervals on a square grid between 2- and 200-m and blocks of side 20-, 40-
and 60-m. These block sizes are ones that farmers might use to manage inputs and
are associated with the size of areas over which farm machinery operates. Figure 2.6
shows that for each nutrient and block size, as the grid spacing increases, the krig-
ing error increases until it reaches a maximum. For all examples in Fig. 2.6, when
the sampling interval is very short the maximum estimation variances decrease from
some small value and then increase again. This is an artefact that arises because only
observations nearest the centres of the blocks have been used for estimation.

Tolerable kriging errors of 2, 5 and 10mg kg�1 for P, Mg and K, respectively,
were used to determine sampling intervals for these nutrients. These concentrations
were considered to be limiting to cereal yield for each nutrient. Table 2.5 summa-
rizes the results for the various block sizes and tolerance values used in Fig. 2.6.
The sampling intervals indicated for K and P are consistent between years, they are
greater for K than for P and they increase as block size increases. Thus a variogram
from a survey done in a previous year could be used to improve sampling at a later
stage. For Mg, the largest interval is for the 40-m block in 1997; the tolerance ex-
ceeds the estimation error for the 60-m block in 1997 and for all blocks for 1998.
The variation of Mg in this field is small compared to the tolerable error and a large
sampling interval would achieve the specified error.

It is possible to take anisotropy into account by adjusting the grid spacing so that
sampling is more intense in the direction of maximum variation (see Webster and
Oliver 2007, for more detail). The intervals can be determined as above with the
model parameters of an anisotropic model.
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Table 2.5 Optimal grid spacing (m) for three different block sizes at
the Yattendon Estate

Property and
tolerance
.mg kg�1/

20-m block 40-m block 60-m block
1997 1998 1997 1998 1997 1998

K ˙ 10 35 32 45 42 55 52
Mg ˙ 5 43 � 130 � � �
P ˙ 2 10 12 15 20 22 28
�Tolerance exceeds the estimation error or the variation in the field
is smaller than the tolerable error so a large sampling interval would
suffice.

2.4.2 Half the Variogram Range ‘Rule of Thumb’ as a Guide
to Sampling Interval

The case study on ancillary data in Section 2.2.2.1 suggests that a sampling inter-
val of less than half the range of a variogram from such data can be used to guide
sampling. We tested this ‘rule of thumb’ on large fields simulated by the turning
bands method (Journel and Huijbregts 1978). Following the approach of Webster
and Oliver (1992) the fields were sub-sampled randomly 100 times for a given sam-
pling interval based on the variogram range. The sub-samples were designed to
use a datum no more than once and to cover the same area. The minimum sample
size was 144 so that we could discount the effects on the accuracy of too small
a sample to compute a reliable MoM variogram (Webster and Oliver 1992). Var-
iograms were computed for each random sub-sample, and confidence limits were
computed based on the 100 experimental variograms. These limits narrowed as the
sampling interval decreased (Fig. 2.7). The variograms computed on data with an
interval of 0.66 of the range appeared to be almost all pure nugget (Fig. 2.7a), and
the confidence intervals were almost twice as wide as those for the other sampling
intervals.

Standard deviations of the observed semivariances (not shown) were similar
for sampling intervals of 0.5 and 0.4 of the variogram range when there was no
nugget component. However, they were larger for 0.5 of the range when there
was a nugget component. Nevertheless, they were still markedly less than those
for an interval of 0.66 of the range. These results show that a sampling interval
of 0.66 of the range is too large and will result in large errors in the predic-
tions and probably a pure nugget variogram. An interval of 0.5 of the range
would give acceptably accurate predictions for site-specific management. The re-
sults for intervals of 0.4 and 0.33 of the range, which are similar, would give more
accurate predictions, especially when there is a nugget component. Therefore, sam-
pling at an interval of 0.4 of the variogram range or less should be adopted if
possible.
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2.5 Variograms to Improve Predictions from Sparse Sampling

2.5.1 Residual Maximum Likelihood (REML) Variogram
Estimator

We describe above how a suitable sampling interval can be determined from vari-
ograms of ancillary data or existing variograms of relevant soil properties. However,
if this interval is large compared with the extent of the field, then there will be too
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few data from which to compute Matheron’s (1965) method of moments (MoM)
variogram reliably (Webster and Oliver 1992). Some potential solutions to this situ-
ation are illustrated below with a case study.

2.5.1.1 Case Study

For the Wallingford site (see Section 2.2.2.1), variograms from ancillary data sug-
gested that an interval of 120-m would resolve the spatial variation in this 43.5 ha
field. This sampling interval results in only 23 sampling points, which is too few
data from which to compute a reliable MoM variogram. Pardo-Igúzquiza (1998a)
suggested that a reliable variogram could be computed from a ‘few dozen’ data by
maximum likelihood or residual maximum likelihood (REML). Lark (2000) and
Kerry and Oliver (2007) examined this idea further and suggested that 50–60 data
might suffice. Based on a simulation study, Kerry et al. (2008) showed that the accu-
racy of a variogram estimated from 100 data by MoM was similar to one estimated
from 50 data by REML. Nevertheless, the variogram estimated from 100 data by
REML was more reliable.

Figure 2.8 shows the variograms computed by MoM and REML from data with
sampling intervals between 30- and 120-m at Wallingford, and Table 2.6 gives the
model parameters. All variograms have been standardized to a sill of 1 so that the pa-
rameters can be compared with the approach in Section 2.5.2. The MoM variogram
for the 90-m grid is unbounded, and that for the 120-m grid appears as pure nugget,
whereas the variograms estimated by REML for these intervals are similar to that for
the 30-m grid. Table 2.6 shows that when data on the 120-m grid are supplemented
with additional points at 60-m to give 50 data, the model parameters for the MoM
and REML estimators are closer to those for the 30-m data. Although a plausible
model was fitted to the experimental MoM variogram computed from these data,
Fig. 2.8e shows that the semivariances are erratic and the model is a poor fit.

Table 2.7 gives the results of cross-validation for the standardized LOI data. Data
on the 30-m grid were used with the model parameters of variograms estimated
from the subsets to determine how appropriate these models were for representing
the variation in LOI. For the MoM variogram there is a marked increase in mean
squared error (MSE), Eq. 1.29, as the sampling interval increases and the mean
squared deviation ratio (MSDR), Eq. 1.30, is markedly less than 1. For the vari-
ogram estimated by REML the increase in MSE with increasing sampling interval
is less marked. The MSDRs for some sub-samples and the REML estimator are
around 2, which show that the kriging variance is underestimated by the relevant
model. The MSEs, however, indicate that sample size affects variograms estimated
by REML less and as a consequence there is less loss of accuracy in the predictions.
This result has important implications for PA because farmers often cannot afford
to sample intensively. Pardo-Igúzquiza (1998b) provides a published program to
compute the variogram by REML.

Loss on ignition was kriged using data from the various sub-samples and their
associated MoM and REML variograms, however, for pure nugget variograms
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Table 2.6 Variogram model parameters for residual maximum likelihood (REML), method of
moments (MoM) and standardized (Std) variograms of percentage loss on ignition (LOI) at
Wallingford

Grid interval
(number of data) Method Model c0 c1 w a .m/ r .m/; .3r .m//

30-m (296) REML Exp. 0.04 0.96 50.07, (159.2)
60-m (70) REML Spher. 0.41 0.59 227.8
90-m (36) REML Spher. 0 1 163.1
120-m (23) REML Spher. 0.36 0.64 205.9
120-m C 60-m (50) REML Spher. 0 1 170.6
120-m C HML Std (38) REML Spher. 0 1 206.8

30-m (296) MoM Penta. 0.10 0.89 226.1
60-m (70) MoM Penta. 0.27 0.73 344.4
90-m (36) MoM Linear 0.71 0.002
120-m (23) MoM Nugg.
120-m C 60-m (50) MoM Penta. 0.17 0.83 291.3
120-m C LMS (38) Std. Exp. 0 1 68.2, (204.6)

The models are: Exp. exponential, Spher. spherical, Penta. pentaspherical and Nugg. pure nugget.
The model parameters are: c0 the nugget variance; c the sill of the autocorrelated variance; a the
range of the spatial dependence and w the intensity of the linear function. For the exponential func-
tion, the sill is asymptotic and an approximate range is determined as 3r (values in parentheses),
where r is the distance parameter of the model, and LMS is large, medium or small digital numbers
(DNs).

Table 2.7 Cross-validation results for Wallingford for loss on ignition (LOI) data
with model parameters estimated by residual maximum likelihood (REML), the
method of moments (MoM) and standardized (Std) variograms

Variogram estimator Number of data MSE MSDR

30-m REML 296 0.471 0.970
60-m REML 70 0.505 0.887
90-m REML 36 0.478 2.091
120-m REML 23 0.497 0.929
120-m C 60-m REML 50 0.477 2.188
120-m C LMS REML 38 0.477 2.657

30-m MoM 296 0.477 1.504
60-m MoM 70 0.495 1.191
90-m MoM 36 0.543 0.661
120-m MoM 23 0.574 0.521
120-m C 60-m MoM 50 0.482 1.444
120 m C LMS Std 38 0.471 1.367

bilinear interpolation was used; Figs. 2.9 and 2.10, respectively, show the mapped
predictions. These maps contrast with those in Fig. 2.4 where the model for the
30-m data was used to krige the sub-sampled data. Figure 2.9 shows that there is
considerable loss of detail in the maps based on the sub-sampled data and that this is
much greater than in Fig. 2.4. The variation in Fig. 2.9e is the least degraded, which
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indicates the advantage of the additional sampling at half the grid interval (Fig. 2.4f)
when sampling is sparse. Figure 2.10 shows that the patterns of variation are far
less degraded for the small sample sizes when the variogram estimated by REML
is used.

2.5.2 Standardized Variograms

As an alternative to estimating the variogram by REML, Kerry and Oliver (2008)
suggested using standardized variograms from ancillary data with the sill scaled to
1 and nugget:sill ratios that were appropriate for different soil properties. These
authors found that the most reliable method of determining the nugget:sill ratio
was to compute a variogram by REML from the soil data, together with data from
15 additional sampling sites targeted to areas in an aerial photograph with large,
medium and small (LMS) digital numbers.

Figure 2.11a shows samples selected from the 30-m grid based on large, medium
or small (LMS) digital numbers (DNs) in Fig. 2.3a. Five samples were selected for



60 R. Kerry et al.

464.8

LOI (%)
Above   5.50

5.25 – 5.50

5.00 – 5.25

4.75 – 5.00

4.50 – 4.75

4.25 – 4.50

4.00 – 4.25

3.75 – 4.00

Below   3.75

465.0 465.2 465.4 

464.8 465.0 465.2 465.4

192.6

192.5

192.4

192.3

192.2

192.6

192.5

192.4

192.3

192.2

192.6

192.5

192.4

192.3

192.2

a b

c

e

d

Fig. 2.10 Kriged maps of LOI for Wallingford for sub-samples with grid spacings of: (a) 30-m,
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each of the three levels of reflectance. The data from these samples were used with
those from the 120-m grid (38 samples in total) to estimate the variogram by REML
to determine the nugget:sill ratio for the standardized variogram. Table 2.6 gives the
model parameters of this variogram and those of the standardized variogram (last
line). Table 2.7 gives the associated cross-validation results for comparison with the
other sub-samples. The MSE is small for the variogram estimated by REML from
data on the 120-m grid and targeted LMS data, but the MSDR is large. By contrast,
the MSE is slightly smaller and MSDR is markedly smaller (Table 2.7) using the
range and model type of the standardized variogram determined from ancillary data
and the nugget:sill ratio from the variogram estimated by REML from just 38 data.
The results for the standardized variogram are comparable to those for the 30-m
data and better than those for each of the other sub-samples. There was also a strong
correlation between the predictions based on the standardized variogram model and
those from the 30-m model. Figure 2.11b shows the variation in LOI using the stan-
dardized variogram model and the 38 data for kriging. The map from the 30-m data
(Fig. 2.9a) and that for the 38 data based on the standardized variogram (Fig. 2.11b)
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are more similar than for any of the other sub-sample results (Figs. 2.9 and 2.10).
These results support the need for some additional samples at shorter intervals, and
suggest that a targeted sample based on ancillary data might reduce the number
required.

2.6 Conclusions

This chapter has shown the importance of planning the sampling and analyses to
be done before going into the field and the problems of applying a prescriptive ap-
proach to sampling based on economic considerations (i.e. one sample per hectare).
This book focuses on geostatistical applications in PA and this chapter on sampling
for them. Readers should not forget, however, that the message is the same for other
types of data analysis although the requirements will be different. Nested sampling
and analysis provide a first approximation to the variogram when little or nothing is
known about the spatial scale of variation. If there is a relation between soil or crop
properties and ancillary data, variograms of the latter can indicate the approximate
scale of variation in the former. Existing variograms of soil or crop properties can
be used to determine how many samples to bulk from to reduce sampling effects
on predictions and also to design optimal sampling schemes on a grid for kriging.
The half variogram range ‘rule of thumb’ can guide sampling to provide predictions
that are accurate enough for management in PA. If the sampling intervals indicated
are large, there might be too few samples to estimate the variogram accurately by
MoM. Variograms estimated by REML and standardized variograms from ancillary
data, together with a few judiciously located additional samples, can improve the
accuracy of predictions. These approaches provide an interim solution until more
intensive information about soil and crop properties can be obtained more cheaply.
A general message that emerges from the case studies is that when sampling for
eventual geostatistical analysis there is a need for balance between overall cover of



62 R. Kerry et al.

the field, for which a grid survey at an appropriate interval is suitable, and resolution
of localized variation which requires some degree of nesting in the sample configu-
ration. This is discussed further in Chapter 3. When there are fewer than 100 soil or
crop data, the variogram should be estimated by REML rather than MoM.
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Chapter 3
Sampling in Precision Agriculture, Optimal
Designs from Uncertain Models

B.P. Marchant and R.M. Lark

Abstract If farmers are to manage the soil–crop system efficiently through variable
application of fertilizers within fields they require information of the within-field
variation of soil properties. To ensure that precision agriculture is cost-effective,
soil sampling must be as efficient as possible. This chapter demonstrates the poten-
tial to optimize the design of soil sampling schemes if the variation of the target
property is represented by a linear mixed model. If the parameters of the model are
known prior to sampling we see that it is possible to optimize the sampling design
with a numerical algorithm known as spatial simulated annealing. In general the pa-
rameters are unknown when the sample scheme is designed and the model is fitted
to the observations. However it can be sufficient to assume a model which was fitted
to a previous survey of the target variable over a similar landscape. When we do
not have existing information about the variation of the target variable multi-phase
adaptive sampling schemes may be used. We describe such a scheme for a survey
of top-soil water content. The data are analysed as they are collected, and the sam-
ple design is modified to ensure that it is suitable for the particular target variable.
The technologies described in this chapter represent the state of the art for sampling
design in the geostatistical context. We discuss the developments required for them
to be implemented as standard tools for precision agriculture.

Keywords Sampling � Linear mixed models (LMM) � Spatial simulated annealing �
Adaptive sampling � Residual maximum likelihood (REML)

3.1 Introduction

The objective of precision agriculture is to improve the management of crop pro-
duction by responding to variations of the soil–crop system at within-field scales.
An implication of this is that we shall require information on this soil–crop system
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at fine scales of resolution. Geostatistical prediction by kriging is an obvious way
to obtain such information from a set of observations. The observations must be
obtained by an appropriate sampling scheme.

There are considerable costs involved in observing soil properties at within-field
scales. These include travel expenses of visiting the field, time taken to move around
the field and extract soil cores, and the costs of laboratory analyses of the soil cores.
If within-field precision agriculture is to be cost-effective then these costs must be
minimized. In this chapter we describe ‘state of the art’ techniques for optimizing
sampling schemes to provide information of the required precision at the minimum
cost. Kerry et al. (Chapter 2) show that the sampling requirements are different for
different target variables. In general the optimal sampling scheme for a particular
target variable is not known prior to sampling. We discuss strategies for overcoming
this problem either by making the best use of limited information about the target
variable available prior to sampling or by dividing the sampling process into sev-
eral phases so that the sampling scheme may be modified as more information is
obtained.

One advantage of geostatistics over other prediction techniques is that, given a
variogram model, we can determine a sampling scheme that allows us to predict the
variable of interest with specified precision (McBratney et al. 1981). In geostatistics
we make the explicit assumption that the data can be treated as random because
they are a realization of a random model, rather than justifying this by the random
selection of sample locations (Brus and de Gruijter 1997). Hence the sample sites
need not be selected at random. Sampling can be optimized in various ways, de-
pending on the objective function that we choose to minimize or maximize and the
constraints that we impose. For example, we could minimize the average kriging
variance across our study region, given a fixed sample size. In practice we might
be more interested to find the sample size nopt such that a target kriging variance
across the study region is just achieved when a sample of this size is distributed
optimally. In this case we minimize our sampling costs to achieve predictions of
desired precision.

The problem with the simple approach of McBratney et al. (1981) is that it
assumes the variogram is known without error. In practice we must estimate the vari-
ogram from sample data. We might undertake an initial survey to obtain a variogram,
but this estimate will have errors that will make our sampling scheme suboptimal.
We need a framework for geostatistical estimation, inference and prediction that
allows us to handle uncertainty in the statistical model of spatial variability. Classi-
cal geostatistics does not do this, but geostatistics based upon linear mixed models
(LMMs) does (Stein 1999). A LMM is a stochastic model to describe the spatial
variation of our target variable, and the parameters of this model are estimated by
likelihood methods. In this chapter we outline this approach, and illustrate it with
examples in which sampling schemes are optimized for the prediction of soil prop-
erties at within-field scales.
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3.2 The Linear Mixed Model: Estimation, Predictions
and Uncertainty

3.2.1 The Model

The approach that we propose in this chapter is based on the LMM, rather than
on classical geostatistics. The LMM is so-called because it consists of both fixed
and random effects. The latter are equivalent to the random variables of standard
geostatistics, and the former consist of a linear combination of q covariates which
model the expected value of our target variable at any location. In the simplest LMM
q D 1, and the fixed effect is just a mean value constant at any location.

We may write the LMM as

z D Mˇ C Yu C ": (3.1)

The vector z contains N observations of our target variable from M locations.
Commonly N D M but this need not be the case. The matrix M (N � q) is called
the design matrix for the fixed effects in the model, and the vector ˇ, of length q,
contains the fixed effects coefficients. As an example, consider a simple case where
our target variable is crop yield and we also have measurements of a covariate such
as a remotely sensed vegetation index. If it is reasonable to predict yield as a linear
function of the vegetation index then we may treat the index as a fixed effect. Each
row of the design matrix, M, corresponds to one of our observations. In a simple
linear model the first column in row n of the design matrix will take the value 1
(for any n), and the second column will contain the value of the vegetation index
that corresponds to our nth observation. In this case the first value in ˇ will corre-
spond to the intercept of a linear regression of yield on the vegetation index, and the
second value is the regression coefficient. In more complex models we might pro-
pose different intercepts for K different management zones of a field. In this case
q D K C 1, and the entries in the design matrix for an observation in the second
management zone will be all zero except for a 1 in the second column and the value
of the vegetation index in the qth column.

The random effect, u, is a spatially correlated random variable with variance
c1, and the matrix Y is the design matrix for the random effects in the model. For
simplicity we will assume here that the target variable can be measured only once
at any location (i.e. it is a variable such as crop yield or soil pH that is measured
destructively). In this caseN D M and Y is anN �N identity matrix (all values are
zero except on the main diagonal where they are all 1). In general this assumption
is not necessary and the model can handle situations where duplicate measurements
are made at some or all locations (e.g. with a remote sensing device). In general Y
is an N � M matrix where M is the number of distinct sites at which the target
variable is measured and M � N . Each row of Y corresponds to one measurement
and containsM�1 zero entries and a 1 in the column corresponding the site at which
the measurement was made. The M � 1 vector u contains random effects at each
observation site. These have zero mean and a covariance matrix G. TheN �1 vector
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" contains the residuals, which have a covariance matrix R and are independent of
the random effects so that the overall covariance matrix of our variable is

V D YGYT C R:

When Y is an N � N identity matrix our usual assumption is that the term "

comprises both measurement error and the variance in the target variable that is not
correlated over distances equal to or larger than the smallest lag distances in our data
set. This is the nugget variance in classical geostatistics and so the matrix R has no
off-diagonal terms (the values in " are not correlated), and under assumptions of
second-order stationarity (Webster and Oliver 2007) all the elements on the main
diagonal are equal to the nugget variance, c0.

TheM�M spatial covariance matrix of the random effects in our model, G, may
be determined from an appropriate covariance function, C.h/, which gives the co-
variance for two elements of u separated in space by the lag distance h (we assume
here that the covariance depends on distance only, and not direction, but anisotropic
variation can be modelled). This depends on the assumption that the random effect
is a second-order stationary random variable so that the variance C.0/ exists (see
Section 1.2.1 for more explanation). We assume that most readers are more famil-
iar with the variogram than the covariance function, so note that the variogram of
a second-order stationary random variable is a function, �.h/, bounded at the sill
variance, C.0/. There are various parametric functions that can be used to represent
both the variogram and the covariance function, but in general, when the spatially
dependent variance of u is c1

C.h/ D c1 � �.h/: (3.2)

We can use this expression to compute any entry in the covariance matrix, G, given
the lag distance, h, between the corresponding observations. In a simple case, where
�.h/ is the familiar exponential variogram with distance parameter a,

�.h/ D c1

�
1 � exp

	
�h
a


�
for h > 0

D 0 for h D 0: (3.3)

We denote by � the vector of variance parameters in the LMM so in this case
� D .c0; c1; a/ but more complex models can be used, and � might include pa-
rameters to describe anisotropy.

3.2.2 Estimation

To apply the LMM we need to estimate the unknown fixed effects coefficients, given
our observations and known design matrices. If we know the variance parameters,
and so can compute V, then this can be done by generalized least squares

b̌ D �
MTV�1M

��1
MTV�1z: (3.4)
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The problem is to estimate the variance parameters. In the model-based approach
we do this by providing a likelihood function for z. The likelihood function is equiv-
alent to a probability density function (pdf) for z. Where the pdf is a function of z,
with parameters including the fixed effect coefficients and variance parameters, the
likelihood function is a function of these unknown parameters, with the observa-
tions z considered fixed. Maximum likelihood (ML) estimates of the parameters are
those for which this likelihood function is largest, given the data. We actually use
the log-likelihood, which is at a maximum when the likelihood is at a maximum.
Under an assumption of normality of the sum of the random effects and residuals,
the likelihood is

l.�;ˇjz/ D 1

.2
/n=2jVj1=2
exp

�
�1
2
.z � Mˇ/T V�1 .z � Mˇ/

�
; (3.5)

where jVj is the determinant of V. For convenience we generally work with the neg-
ative log likelihood function, L.�;ˇjz/ D � log f` .� ;ˇjz/g. To calculate L for a
possible value of � , we must compute the generalized least-squares estimate of the
fixed effects coefficients with Eq. 3.4, then substitute the resulting estimates, b̌, into
Eq. 3.5. The ML estimates of � and ˇ are obtained by iteration of this process in
a numerical optimization method to find the values that minimize the negative log-
likelihood. Thus the estimates of the variance parameters depend on the estimates
of the fixed effects coefficients. The latter are said, therefore to be ‘nuisance pa-
rameters’ for the estimation of the former because the variance parameter estimates
depend in a non-linear way on the estimated fixed effects coefficients their estimates
are subject to bias.

Consider a simple situation in which a variable, z, sampled at regular intervals
along a transect, comprises a linear trend along the transect together with super-
imposed random variation with a mean of zero. The mean of the variable, and the
slope of the trend (the fixed effects) are unknown. If we replace each observation
z.xi / with the difference d 0.xi / D z.xi / � z.xiC1/ it is easy to show that the ex-
pected value (i.e. the mean) of the resulting variable depends on the slope of the
trend, but not the mean of z. We say that the mean has been filtered out. If we repeat
the differencing operation to compute d 00.xi / D d 0.xi / � d 0.xiC1/ it is again easy
to see that both fixed effects have now been removed, the expectation of d 00.xi / is
zero. We do not need to estimate the fixed effects to filter them out in this way, we
simply need to know the design matrix. The principle of residual maximum likeli-
hood (REML), due to Patterson and Thompson (1971), is to generalize this filtering
procedure for any design matrix of a linear model to obtain a new variable of known
expectation (zero) which is a linear function of the observed variable. A likelihood
function can then be written down for this new variable in terms of the covariance
matrix of the original variable, V. This is called the residual likelihood, and the pa-
rameters for V, which maximize it, are the REML estimates. The REML estimates
do not depend on the unknown fixed effects, since the non-random component of
the new variable has known expectation (zero), so the estimates are substantially
less biased than ML estimates.
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For a given design matrix, M, the residual negative log likelihood is

LR .�jz/ D Constant C 1

2

�
log jVj C log

ˇ̌
MTV�1M

ˇ̌ C zTPz
�
; (3.6)

where
P D V�1 � V�1M

�
MTV�1M

��1
MTV�1:

The REML estimator is fully described by Diggle and Ribeiro (2007).
The likelihood functions in Eqs. 3.5 and 3.6 make the explicit assumption

that the random terms in the LMM are N -variate normal. We have only a single
N -variate realization, so cannot test this assumption directly; but the histogram of
our observations, or of the residuals if the fixed effects are more complex than
an overall mean, indicates whether the assumption is plausible. When it is not a
transformation should be found. However, Pardo-Igúzquiza (1998) argues that the
maximum likelihood criterion for estimation is generally a good one in a maximum
entropy sense even when we cannot verify assumptions of normality. Furthermore,
Kitanidis (1985) reports simulation studies in which maximum likelihood gave the
best estimates for spatial covariance parameters even for variables generated from
processes known to be non-normal.

3.2.3 Prediction

Once we have estimated � and ˇ we are in a position to obtain predictions of the tar-
get variable at unsampled sites. These predictions are empirical best linear unbiased
predictions (E-BLUPs), empirical because they are based on estimated variance pa-
rameters. These are equivalent to universal kriging predictions (sometimes called
kriging with external drift when the fixed effects are not terms in a model of spatial
trend). The E-BLUPs at a set of Np prediction sites, xp, are given by

Qz �
xp

� D �
Mp � VpoV�1M

� b̌ C VpoV�1z;

D
n�

Mp � VpoV�1M
� �

MTV�1M
��1

MTV�1 C VpoV�1
o

z;

D �z; (3.7)

where the Np � q matrix Mp is the design matrix for the prediction sites and Vpo

is an Np � N covariance matrix in which element fi; j g contains the covariance of
the i th prediction site with the j th observation site, computed from the covariance
function and estimated variance parameters by Eq. 3.2. In the same way we can
define the Np � Np covariance matrix of the prediction sites, Vpp. The covariance
matrix of the prediction errors is

C D �
Mp � VpoV�1M

�
H�1

�
Mp � VpoV�1M

�T C Vpp � VpoV�1VT
po; (3.8)
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where

H D MTV�1M;

so the diagonal elements of C are the prediction variances which are equivalent
to � 2

K, the kriging variances of classical geostatistics calculated at each of the Np

prediction sites.

3.2.4 Uncertainty

The LMM framework for estimating spatial models and predicting with them from
data has several advantages over classical geostatistics. One of these is the fact that
classical geostatistics has no general and theoretically satisfactory way of estimat-
ing variance parameters for the random effects and residuals when the fixed effect
is anything more complex than a simple mean (Lark et al. 2006). Of particular rele-
vance to our interests in spatial sampling is that an account of the uncertainty of the
variance parameters, and the implications of this uncertainty for sampling decisions
and estimation, is tractable in the model-based approach.

Consider a negative log-likelihood function L.�jz/, minimized to find an esti-
mate, b� of the parameters. Element fi; j g of the Fisher information matrix is defined
as follows

h
F

�
b�


i

ij
D �E

2

4
@2L

�
b�jz




@�i@�
T
j

3

5 : (3.9)

The inverse of this matrix is the covariance matrix of b� , as discussed in standard
texts such as Dobson (1990) and also the appendix to Marchant and Lark (2006).
Under an assumption of normality in the estimation errors of the parameters we can
compute confidence intervals from this matrix. However, Marchant and Lark (2004)
showed that the assumptions behind this approach may break down for parameters
in which the covariance function is non-linear (e.g. the range parameter), and that
the uncertainty of distance parameters may be underestimated as a result.

In practice we may compute the Fisher information matrix for a given � and set
of observation sites with an expression due to Kitanidis (1987)

ŒF .�/�ij D 1

2
Tr

�
V�1Vi V�1Vj

�
; (3.10)

where Tr Œ�� denotes the trace – the sum of the entries on the main diagonal – of the
matrix in the brackets and Vi denotes @V=@�i .
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3.3 Optimizing Sampling Schemes by Spatial Simulated
Annealing

3.3.1 Spatial Simulated Annealing

We observed above that to optimize a geostatistical survey we need to find a way to
distribute sample points across the area of interest that maximizes some measure of
the utility of the outcome (the objective function) subject to constraints. We might
find, for example, a sampling scheme that minimizes the average prediction vari-
ance at sites across a region subject to the constraint that only Nmax sample points
are used. Alternatively, we might find the most efficient way to ensure that the av-
erage prediction variance at sites across a region is no larger than some threshold,
which requires the minimization of the same objective function (average prediction
variance) for increasing values of Nmax until we find the smallest sample size that
meets our overall objective to be met.

Given an objective function, and constraints, how can the optimal sampling
scheme be determined? A practical solution to the problem is spatial simulated an-
nealing (SSA), proposed by Van Groenigen et al. (1999) and used subsequently in
various case studies. A detailed discussion of simulated annealing is beyond the
scope of this chapter and the reader is referred to Kirkpatrick et al. (1983), Aarts
and Korst (1989) and Press et al. (1992), for detailed information.

Simulated annealing is a method of numerical optimization to find the values of
a set of parameters of an objective function, �, that optimize (minimize or maxi-
mize) that function. In SSA the parameters are the co-ordinates of a set of sample
points, and the objective function could be the average prediction error variance
evaluated over a fine network of points in our sample area. Simulated annealing
proceeds by random perturbation of an initial set of parameter values, in SSA this
means moving each sample point randomly in turn. Perturbations that improve the
objective function are all accepted, whereas those that make it worse are accepted
or rejected at random where the probability of acceptance, pa, depends on a func-
tion (the Metropolis criterion) that simulates the statistical mechanics of atoms in a
molten metal. Thus, if the proposed change in the system results in a change in the
objective function from �i to �j , where �j > �i , then the probability of acceptance
of the change is

pa D exp

	
�i � �j






; (3.11)

where 
 is a parameter analogous to the temperature of the metal.
If the parameters are perturbed at random many times in sequence at a fixed

temperature, with changes accepted or rejected according to this criterion, then the
system approaches a thermal equilibrium such that the value of the objective func-
tion is a sample from Boltzmann’s distribution (Aarts and Korst 1989). In simulated
annealing the system is taken through many such sequences of perturbations, and
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at the end of each the temperature is reduced. Reduction of the temperature reduces
the probability of acceptance of a change in the parameters that makes the objective
function worse by some given amount. The aim is to emulate the slow cooling of
a molten metal that will cause it to ‘anneal’, i.e. to reach an energy state that is a
global minimum – a regular crystalline solid. The particular advantage of simulated
annealing as a method of optimization is that the Metropolis criterion allows the
system in effect to jump over a barrier that could trap it at a solution that is only
locally optimal. This could not be achieved by a procedure in which any change that
makes the objective function worse is rejected.

A successful simulated annealing requires a good ‘cooling schedule’. If the tem-
perature is reduced too quickly then the parameter estimates are likely to become
stuck at a solution that is only locally optimal, whereas if the temperature is reduced
too slowly then considerable computing time may be needed before the parame-
ter estimates converge to a solution. Most applications of SSA have used a cooling
schedule proposed by Kirkpatrick et al. (1983). The initial temperature of the sys-
tem, 
1 is chosen so that the proportion of proposed changes accepted before the
first reduction in temperature is in the range 0.90–0.99 and the new temperature of
the system 
mC1 after themth cooling step is ˛c
m where ˛c D 0:95. The cooling
step takes place after a fixed number of perturbations of each parameter of the objec-
tive function. Similarly the maximum distance that a sample point can be perturbed
may also be reduced at each cooling step. The algorithm stops when a given number
of successive cooling steps have taken place with no further change in the objective
function larger than some threshold. The lengths of the chains of perturbations and
the stopping criteria are found by trial and error; Lark and Papritz (2003) give some
diagnostics to help with this.

A particular advantage of simulated annealing as a method to optimize spatial
sampling is that an irregularly-shaped sampling region, and constraints on sampling
(e.g. ponds or buildings in the middle of the area to be sampled) are easily accom-
modated. If a random perturbation of a sample point takes it outside the region or
into an area that cannot be sampled then it is simply returned to its original position
and moved randomly again.

3.3.2 Objective Functions from the LMM

Lark (2002) illustrated the use of SSA to optimize spatial sampling for variogram
estimation in terms of an objective function based on the covariance matrix of the
variance parameters. He envisaged a prediction location at the centre of a cell in
a sample grid. Errors in the variance parameters of the LMM (i.e. variogram pa-
rameters) will lead to error in our computed value of the prediction variance at that
location. Lark (2002) gave an objective function that was the error variance of the
prediction error variance (i.e. the mean squared error of the kriging variance). This
can be computed from the covariance matrix of the variance parameters, computed
in turn by inverting the Fisher information matrix. Given the location of the sample



74 B.P. Marchant and R.M. Lark

points and a set of true variance parameters the Fisher information matrix is obtained
using Eq. 3.10. The objective function is

�E.SI �/ D
qX

iD1

qX

j D1

Cov
�
�i ; �j

� @�2
K

@�i

@�2
K

@�j

; (3.12)

where S is the vector of sampling locations.
Figure 3.1 shows sampling schemes that have been optimized for 49 points in a

square region with different underlying variance parameters. This example serves
two purposes. First, it illustrates SSA for a case where statistics obtained from the
LMM enable us to manage uncertainty in the variance parameters. Second, it mo-
tivates much of what follows. Figure 3.1 shows how optimal sampling schemes for
the variogram depend strongly on the underlying spatial covariance. If the distance
parameter is small relative to the sampled area, or the proportion of the overall vari-
ance that is spatially correlated is small, or both, then sampling points tend to be
clustered in the optimal arrays. If the distance parameter is large and the nugget
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Fig. 3.1 Surveys optimized by the criterion of Lark (2002) for exponential variogram estimation.
They are arranged according to the specified spatial structure (columns) and the ratio of spatial
dependence c1=.c0 C c1/ (rows)
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variance relatively small, then the sampling points tend to be dispersed, with a few
chains of close points. In intermediate conditions clusters of two points are dispersed
across the region.

Van Groenigen et al. (1999) optimized sample schemes for prediction. Their ob-
jective function was

�P.SI �/ D mean
�
� 2

K

�
; (3.13)

where � 2
K is the prediction variance calculated over a fine grid of prediction sites. An

example of the sampling scheme that results from this objective function is shown
in Fig. 3.2 (KV) for a spherical variogram with parameters c0 D 0:127, c1 D 1:0

and a D 240:0 m. Here and in all optimizations presented in this chapter the SSA
procedure was repeated five times to ensure that convergence to a global minimum
had occurred. By contrast to the schemes for variogram estimation, the sampling lo-
cations are dispersed evenly over the region and this pattern is generally insensitive
to changes in the variogram parameters. Brus and Heuvelink (2007) extended this
approach to prediction when there was a linear relationship between the property
of interest and an exhaustively sampled covariate. This may be applicable in pre-
cision agriculture if exhaustive electrical conductivity or remotely sensed data are
available. The resulting schemes were a trade-off between ensuring good spatial
cover and that the extremes of the covariate were well sampled so that the linear
relationship could be fitted. In practice a geostatistical survey of a region must be
suitable for estimating both the variogram and returning reliable local predictions. It
has not been clear how much of the sampling effort should be devoted to variogram
estimation and how much to prediction.

In the early days of the application of geostatistics to soil mapping it was sug-
gested that an exploratory survey might return information on the variogram to
plan the rest of the survey. For example, McBratney et al. (1981) suggested that
the variogram should be approximated from previous surveys of the target soil
property on cognate soil types or estimated from an exploratory survey, and that the
main survey should consist of measurements made on a regular grid with spacing,
I .�/, chosen to ensure that the kriging variance at the centre of each grid cell is
less than some pre-specified threshold. However, it is unlikely that we will often
have a prior survey that we can confidently assume represents the variation in our
region of interest. The results of Lark (2002) show that when we start in ignorance
of the variogram we do not know how best to select the number and location of
observations in an exploratory survey. Optimal sampling schemes to estimate the
variogram may differ markedly between different fields. Spatially nested sampling
may be used efficiently to identify the important spatial scales of variation in a
particular variable (see, for example Chapters 2 and 9), but considerable uncertainty
remains about the form of the variogram. We consider practical solutions to these
dilemmas in the following sections.
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Fig. 3.2 Sampling scheme optimized to minimize the mean kriging variance across the trial region
for a spherical variogram with parameters c0 D 0:127, c1 D 1:0 and a D 240:0 m (KV) and
schemes optimized to minimize the expected MSE across the trial region for spherical variograms
with the parameters listed in Table 3.1 (Cases 2–6)
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3.3.3 Optimized Sample Scheme for Single Phase Geostatistical
Surveys

We have seen above that optimal sampling schemes for variogram estimation
(Fig. 3.1) are quite different from those for prediction (Fig. 3.2, KV). When we
design a single sampling scheme to perform both of these tasks we must decide how
much of our sampling resources should be allocated to each.

Marchant and Lark (2006) and Zhu and Stein (2006) addressed this problem in a
similar manner. They optimized sampling schemes by SSA with an objective func-
tion that approximated � 2

T, the total prediction variance in a geostatistical survey.
This objective function was the sum of the kriging variance and the prediction vari-
ance due to variogram estimation. Zimmerman and Cressie (1992) approximated
the component of variance in predictions of the target variable due to variogram
estimation by

�2
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: (3.14)

The objective function of Marchant and Lark (2006) and Zhu and Stein (2006) was

�E;P .S/ D mean
�
� 2

T

� D mean
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where � 2
V and � 2

K are the vectors of prediction variances due to variogram estimation
and prediction, respectively, evaluated at the prediction sites. In general, the @�=@�i

derivatives in Eq. 3.14 must be approximated by numerical techniques which can
be computationally intensive. Marchant and Lark (2007) noted that an exact expres-
sion for these derivatives exists for the model with no fixed effects from classical
geostatistics as
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It can be determined without numerical approximation using analytical expressions
for the derivatives of the covariance functions with respect to their parameters.

The objective function used by Marchant and Lark (2007) was Eq. 3.15 with
the @�=@�i derivatives determined from Eq. 3.16. This approach might be consid-
ered as a compromise between the classical approach and LMMs as the variogram
uncertainty is determined assuming REML estimation, but the prediction variance
is determined assuming ordinary kriging. The approach of Zhu and Stein (2006)
assumed that LMMs were used for both variogram estimation and prediction.

Marchant and Lark (2007) optimized sampling schemes with 50 observations for
properties with different spherical variograms. The data were from a field of 42.3 ha
at Silsoe, Bedfordshire, UK. The optimized schemes are shown in Fig. 3.2 (Cases
1–6) and the variogram parameters are given in Table 3.1. The pattern of sampling
locations changes with the variogram parameters. In Case 1 where c0 D 0:127,
c1 D 1:0 and a D 240:0m the majority of locations are evenly dispersed across the
study region as required for local prediction. However there are also three close pairs
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Table 3.1 Specified spherical variogram parameters c0, c1 and
a and number of observations, N , for each optimized sampling
scheme featured in Fig. 3.2

Case c0 c1 a /m N

1 0.127 1.000 240.0 50
2 0.127 1.500 240.0 50
3 0.127 0.500 240.0 50
4 0.127 1.000 120.0 50
5 0.127 1.000 90.0 50
6 0.127 1.000 90.0 125

of points separated by 20.0 m, the minimum separation distance allowed in these
schemes. Kerry et al. in Section 2.5.1 demonstrate the benefit of a small number
of close pairs in their case study. The close pairs reduce the estimation variance of
the variogram parameters. The pattern of sampling locations is similar when the sill
parameter is increased to 1.5 in Case 2. However, when the nugget to sill ratio is
increased in Case 3 the number of close pairs increases.

The number of close pairs also increases when the range is decreased to 120 m
in Case 4 and 90 m in Case 5. Short transects of observations are evident in
these schemes. In Case 5 some portions of the study region close to the bound-
ary are unsampled. There are many close pairs to estimate the variogram parameters
adequately thus insufficient observations remain to ensure good local prediction ev-
erywhere. The objective function is a trade-off between both considerations. For
this variogram 50 observations are insufficient to manage the demands of both ef-
fectively. Therefore, in Case 6 a sampling scheme of 125 observations is optimized
for the same variogram parameters. Here there is both good spatial cover and suffi-
cient close pairs to estimate the variogram.

Thus the approach suggested by Marchant and Lark (2007) and Zhu and
Stein (2006) is suitable for optimizing sampling schemes for both estimating
the variogram parameters and for prediction. The resulting schemes have good
spatial cover and also generally contain several close pairs of sampling points to
aid variogram estimation. This approach requires the variogram parameters as an
input and the pattern of the optimized schemes is different for different variograms.
For example, the number of close pairs in the optimized schemes increases if the
range of spatial correlation of the variogram decreases. Therefore, if a scheme is
optimized based upon an assumed set of variogram parameters then it is likely to
be suboptimal. In the next section we explore strategies for ensuring that sampling
schemes are optimal for the particular soil property being measured.

3.3.4 Adaptive Exploratory Surveys to Estimate the Variogram

We have identified two problems with exploratory surveys to choose the grid spac-
ing in a geostatistical survey. First the optimal sampling scheme for estimation of
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the variogram depends upon that same underlying variogram. Thus if we were to de-
sign an optimal exploratory survey based on an assumed variogram then that survey
is likely to be suboptimal. Second, we do not know how to decide how many mea-
surements should be included in the exploratory survey. Marchant and Lark (2006)
suggested that both of these problems could be accounted for by a Bayesian adap-
tive sampling approach. The Bayesian approach considers a statistical distribution
of variogram parameters over all plausible parameter values. This distribution is
modified as successive stages of sampling provide new evidence about the spatial
variation of the variable of interest, and the integrated effect of this uncertainty on
our uncertainty about any quantity that depends on the variogram parameters can be
computed.

Bayesian adaptive sampling divides the exploratory survey into several phases.
Before the first sampling phase there are no data from which the variogram can be
estimated. The Bayesian approach requires a prior distribution for the parameters of
the variogram, which reflects our initial beliefs about what values these might take.
The prior distribution could be based on previous surveys of the same target vari-
able over similar study areas. Marchant and Lark (2006) initially assumed that, for
each variogram parameter, all values were equally likely over some plausible range
and that the values of the different parameters were independent of each other. The
bounded region of parameter space and the prior distribution are denoted ‚ and
p .�/, respectively. The objective function of Marchant and Lark (2006), to be min-
imized in the design of initial phases of the sampling scheme, was based on �E

(Eq. 3.12). This objective function is a measure of our uncertainty about the krig-
ing variance at the centre of a regular grid cell which arises from uncertainty about
the variogram parameters (it is an approximation to the estimation variance of the
kriging variance). The design of the initial phases of the sampling scheme therefore
aims to minimize our uncertainty about how good the kriging predictions based on
the resulting variogram will be. However, rather than minimizing �E for a single
assumed variogram, Marchant and Lark (2006) minimized it over the whole prior
distribution of variograms p .�/. Also, for each set of variogram parameters in ‚

they calculated �E for observations made on a grid with spacing I .�/ – the spacing
that leads to the threshold on the kriging variance being satisfied for parameter vec-
tor � – rather than for an arbitrary spacing. Thus the objective function was written

�B .S/ D
Z

‚

�E .SI �/ p .�/ d�: (3.17)

The integral in this objective function is approximated by discretizing ‚, the plausi-
ble region of the parameter space, on a regular mesh and calculating �E .SI �/ p .�/

at each node of this mesh.
If it is not practical to have more than one phase in the exploratory survey then

it may be optimized with Eq. 3.17. Such a survey is referred to as a Bayesian sur-
vey and is designed to ensure that the sample scheme is suitable for a variable with
any plausible variogram. However Marchant and Lark (2006) consider the situation
where several exploratory sampling phases are possible and do what we refer to as
a Bayesian adaptive survey. They use Eq. 3.17 to optimize the initial phase. Then
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having measured the target variable at each of the optimized sites they use the ob-
servations to update their prior distribution by Bayes’s rule (Pardo-Igúzquiza and
Dowd 2003)

Qp .�jz/ / p .�/ l .�;ˇjz/ ; (3.18)

where Qp .�jz/ is the conditional pdf of � given z. The conditional pdf is calculated
at each node on the regular grid which approximates ‚. The constant of proportion-
ality may be determined by integrating p .� jz/ over ‚ since

R
‚

Qp .�/ D 1.
Thus following the first phase of the exploratory survey one may estimate a dis-

tribution for the variogram parameters Qp .�jz/ rather than a single estimate. From
this distribution it is possible to calculate the distribution of the sampling interval
for the main survey since each � corresponds to a sampling interval I .�/. If, hav-
ing examined the distribution of I .�/, the practitioner is satisfied that he or she
knows the optimal sampling interval with adequate certainty then he may stop the
exploratory survey and select a sampling interval for the main survey. We suggest
that a conservative interval is selected such as I 95� the lower 95% confidence limit
of I .�/. If the practitioner is not satisfied with the certainty of their estimate of
I .�/ another exploratory phase may be optimized. The objective function is Eq.
3.17 with p .�/ replaced by Qp .�jz/. Thus as the exploratory survey proceeds the
sampling locations become more suited to the actual underlying variogram.

Marchant and Lark (2006) compared the performance of the Bayesian adaptive
design, the Bayesian design and the exploratory survey design of Lark (2002) in a
series of tests on simulated data. They found that the Bayesian adaptive design was
more efficient than the Bayesian one which in turn was more efficient than that of
Lark (2002). Figure 3.3 shows two examples of exploratory surveys that result from
the Bayesian adaptive design. Both are based on spherical variograms. The design
in (a) results when the underlying variogram has a range of spatial correlation of
10 units, whereas the underlying variogram leading to (b) has a range of 30 units.
Both optimized surveys gave comparisons between observations separated by both
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Fig. 3.3 Examples of the Bayesian Adaptive surveys for 124 observations resulting from the
‘short-range’ (a) and ‘long-range’ (b) spherical variogram functions
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short and long lags. Thus they are suitable for estimating the degree of spatial
correlation over all relevant scales. This is because the initial phase of sampling is
optimized to provide information about the form of the variogram, given consider-
able uncertainty (expressed in the prior distribution) about what this might be. In
this way the early phase in Bayesian adaptive sampling is comparable to the nested
sampling approach used in Chapters 2 and 9. There are differences between the
pattern of locations that result from the information gained during early phases and
from the adaptive nature of the survey designs. The survey for the ‘short-range’
variable contains some close pairs of observations and some short transects with
a small separation distance. Observations of the ‘long-range’ variable are more
evenly dispersed with fewer close pairs.

3.4 A Case Study in Soil Sampling

Marchant and Lark (2006) demonstrated their Bayesian adaptive sampling algo-
rithm in a survey of top soil water content .%/ over a 90 � 60 m field in Silsoe,
Bedfordshire, UK (lat.D 52ı00N, long.D 0ı240W). The aim of the entire survey
was to predict top soil water content across the field with a prediction variance of
less than 21%2 at each prediction site on a square grid with a spacing of 1 m. The
Bayesian adaptive sampling algorithm was run on a portable computer connected
to a GPS (Fig. 3.4). At the start of each sampling phase the locations were selected
by the algorithm, then the software directed users to each of these locations where
top soil water content was measured by a Theta probe (Delta-T Devices 1999) and
recorded in the computer. At the end of each sampling phase the pdfs of � and I .�/
were calculated. If the optimal value of I .�/ was known with adequate certainty,
the exploratory survey was halted and the main survey was designed. Otherwise
another phase of the exploratory survey was designed.

The main survey was made on a regular triangular grid. Topsoil water content
was a convenient target variable for this demonstration because it could be measured
rapidly in the field. The whole survey was completed in less than 3 h. Adaptive sam-
pling algorithms can also be practical for variables that are determined by laboratory
analysis (e.g. Demougeot-Renard et al. 2004) provided that the variable remains
reasonably constant over the time required for field measurement and laboratory
analysis. However, we envisage that the adaptive algorithm will be most effective
with soil sensors that return data in real time. Such sensors have been developed in
the context of precision agriculture. For example Adamchuk et al. (2005) evaluated
sensors based on ion-sensitive electrodes for soil pH, macronutrients (potassium
and nitrate nitrogen) and a micronutrient (sodium). Adsett et al. (1999) developed
an on-the-go sensor for nitrate based on ion-sensitive electrodes. Viscarra Rossel
et al. (2005) developed a system that uses ion-sensitive electrodes and on-the-go
processing and analysis to measure soil pH and lime-requirement.

The above survey resulted in 79 observations which ensured with 95% confi-
dence that the threshold on the prediction variance was satisfied. The exploratory
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Fig. 3.4 A field system for
adaptive sampling

portion of the survey consisted of 75 observations divided into four phases (Fig. 3.5).
The remaining four observations were required to complete the main survey. The cu-
mulative distribution function (cdf) of I .�/ after each phase is shown in Fig. 3.6.
Table 3.2 gives overall descriptors of confidence in the estimate of I .�/ after each
phase. These are I 95�, the lower 95% confidence limit on the optimal interval, and
N 95�

1 , the number of observations required to complete a regular survey with this
interval, I. O�/, the interval corresponding to the REML estimate of the variogram
parameters, and N R

1 , the number of observations required to complete a regular sur-
vey with this interval.

Phase 1 consisted of 30 observations. Following this phase I 95� D 6:4 m and
I. O�/D 15:6 m. In terms of sampling requirements for the main survey these in-
tervals corresponded to N 95�

1 D 142 for I 95� compared with N R
1 D 25 for I. O�/.

Thus if the exploratory survey had been halted after one phase and the main survey
designed with interval I 95� then there is potential for wasted sampling effort.
Therefore a second exploratory phase consisting of a further 30 observations was
designed.

After Phase 2 the value of N 95�
1 decreased to 37 compared with N R

1 D 0

(i.e. the exploratory observations are sufficient to complete the survey). Thus the
sampling intensity required in the main survey was still uncertain so a third phase
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Fig. 3.5 The locations of observations for: (a) Phase 1, (b) Phase 2, (c) Phase 3 and (d) Phase 4
of the exploratory survey for the Silsoe case study. The irregular solid line is the field boundary.
The dots denote previous observations and the crosses observations in that phase. Coordinates in
metres relative to an origin at 508 980; 235 670 on the UK Ordnance Survey National Grid

of 10 points was designed. Following the third phase N 95�
1 decreased further to 22,

but asN R
1 D 1 a fourth phase of five points was designed. This phase reducedN 95�

1

by four to 18, whereas N R
1 D 1. Since N 95�

1 had decreased by less than the sam-
pling effort that had been added to the exploratory survey in the fourth phase, the
exploratory survey was halted.

The Bayesian adaptive algorithm suggested a main survey with 18 observations
on a regular triangular grid. However Marchant and Lark (2006) considered how fur-
ther efficiencies could be made. First, they noted that some portions of the field had
already been sampled intensively during the exploratory survey and therefore some
of the main survey observations within these portions of the field may be superflu-
ous. They tested this by reducing the size of the main survey iteratively by one and
then using SSA to minimize the maximum prediction variance on the 1-m square
prediction grid whilst constraining the observations to positions on the triangular
grid with spacing I .�/. This algorithm used the variogram parameters c95�

0 , c95�
1

and a95�, which were those with the largest likelihood and corresponded to a sam-
pling interval equal to I 95�. In this way the number of main survey locations was
reduced to 15. The resulting sampling scheme is shown in Fig. 3.7a. Furthermore,
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Fig. 3.6 The cdf of the optimal sampling interval after each phase of the Silsoe case study

Table 3.2 Results from the Silsoe case study after each phase of
the exploratory survey

NE
a I 95� b N95�

1
c I

� O�



d N R
1

e

30 6.4 142 15.6 25
60 12.8 37 100.0 0
70 16.0 22 66.5 1
75 17.8 18 75.6 1
aNE the number of exploratory survey observations.
bI 95� the lower 95% confidence limit on I.�/ =m.
cN95�

1 the number of observations on a triangular grid with
interval I 95� required to cover the field.
dI. O�/ the REML estimate of I .�/ =m.
eN R

1 the number of observations on a triangular grid with
separation I. O�/ required to cover the field.

Marchant and Lark (2006) found that if the iterative SSA was repeated without
constraining points to the triangular grid then a survey of four observations could
complete the survey in a way that would ensure the prediction variance threshold
is satisfied with 95% confidence. Thus the Bayesian adaptive approach was able to
determine efficiently that relatively little sampling effort was required to predict soil
moisture content with the required precision and prevented costly over-sampling.
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Fig. 3.7 The suggested sampling positions for the complete survey of moisture content at Silsoe.
The dots denote the exploratory survey. The crosses in (a) denote the regular survey with super-
fluous locations removed and the crosses in (b) denote the irregular survey which ensures that the
kriging variance threshold is not exceeded anywhere in the field. Coordinates in metres are relative
to an origin at 508 980; 235 670 on the UK Ordnance Survey National Grid

3.5 Conclusions

In this chapter we have seen that we can optimize sampling schemes for geosta-
tistical surveys when we present the problem in terms of a LMM with param-
eters estimated by REML. The major advantage of this approach over classical
geostatistics is that such methods can approximate uncertainty in the survey due
to both variogram parameter estimation and prediction. Thus we are able to account
for this uncertainty when we optimize sampling schemes.

A major difficulty with optimizing geostatistical surveys is that the optimal sur-
vey depends on the variogram of the property being measured which is not known
prior to sampling. If the target property is amenable to multi-phase sampling we
have shown that a Bayesian adaptive sampling design can select the number and lo-
cation of observations required efficiently to ensure with a pre-specified confidence
(here 95%) that a threshold on the kriging variance is met. Often however multi-
phase surveys of soil properties are not cost-effective. In such cases it is necessary
to optimize the survey based upon an assumed variogram or an assumed distribution
of the variogram parameters. Such surveys may be suboptimal but by using the tech-
niques described in this chapter we can ensure that they are adequate for estimating
the expected variogram and predicting the target property across the region.

This chapter has described the ‘state of the art’ for sampling design in the geo-
statistical context. Various questions remain for further development in the context
of precision agriculture.

First, Chapter 2 suggests that ancillary variables commonly available in preci-
sion agriculture, such as apparent electrical conductivity of the soil, yield maps and
remote sensor imagery of the crop canopy, can be used to guide grid-sampling of
the soil by rules of thumb. It might be possible to use such ancillary variables more
formally, perhaps to define narrower prior distributions for the parameters of soil
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variograms than the uniform distributions used by Marchant and Lark (2006). More
informative prior distributions should reduce the sampling effort in the exploratory
phases, and so increase the overall efficiency of Bayesian adaptive sampling.

Second, all discussion of geostatistical sampling assumes that a target kriging
variance for predictions may be easily specified. We believe that this requires closer
attention in the context of precision agriculture. Increasing sample effort will reduce
the kriging variance averaged over a field. At what point does the cost of extra effort
match the benefit of improved predictions? This will depend on the form of a loss
function that describes how the cost to the farmer of uncertainty about the value
of a property at some location depends on the prediction variance of the property
at that location. This will depend, in turn, on the costs associated with under- or
over-application of an input at any location, and so on the costs of the input, crop
responses, prices of the crop and the costs of externalities (such as pollution from ex-
cessive application of a fertilizer or pesticide). Such a sophisticated decision model
is needed as a basis for the rational management of sampling in precision agri-
culture, and for the full exploitation of the power of geostatistical approaches to
sampling and prediction.
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Chapter 4
The Spatial Analysis of Yield Data

T.W. Griffin

Abstract Yield data are now recorded automatically for a wide variety of crops
including cereal grains, oilseeds, fiber, forage, biomass, fruits and vegetables. Yield
monitors for grain crops were developed in the 1980s and commercialized by 1992
before global positioning systems (GPS) had become fully operational for civil-
ian use. Since the initial agricultural use of GPS, farmers have made intensive
use of yield monitors. This chapter describes how yield data from monitors must
be calibrated and how measurement errors can be addressed. Yield data can be
used to target crop and soil investigations, nutrient applications and for on-farm
experiments. Challenges concerning the use of yield data for decision making are
considered; important amongst these are the difficulties associated with spatially
correlated data for traditional statistical analyses and the alignment of data in differ-
ent spatial layers. This Chapter uses spatial statistics rather than only geostatistics;
the latter comes within this broader category. Some links between the different ap-
proaches in spatial analysis are illustrated. Spatial statistics lends itself better to
econometrics than does geostatistics, and the importance of the economics of preci-
sion agriculture is discussed. The methods described are applied to a case study of
soya bean data.

Keywords Economics � Farm management � On-farm experiments � Profitability �
Site-specific � Spatial analysis � Spatial econometrics � Spatial statistics � Technology
adoption � Yield data � Yield monitor

4.1 Introduction

Site-specific yield data have been collected from crops including cereal grains,
oilseeds, fiber, forage, biomass, fruits and vegetables. Spatial variation in site-
specific yield data often reflects the variation in factors affecting yield, which may
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or may not be measured feasibly or managed effectively by cultural practices. Spa-
tial variation in yield provides an indication of whether there are potential benefits
in exploring the causes of variation with site-specific technology. In some cases
the marginal benefit of addressing the spatial variation may not necessitate the
investment of resources; in such cases the rational decision maker would avoid the
costs of site-specific sampling and manage the field uniformly. Since yield data tend
to be spatially variable and geographically dense, traditional methods of analysis
based on assumptions such as independence are precluded from the spatial ana-
lyst’s toolkit. In general, spatial statistical methods are appropriate for analysing
site-specific yield data especially from on-farm experiments. Spatial statistical anal-
yses provide a sound basis for exploring and understanding the causes of variation
in yield, leading to objective analyses. Spatial technologies have also been used
to examine yield quality, in particular the protein content of wheat and fiber qual-
ity of cotton. The focus of this chapter is on the spatial analysis of yield monitor
data of field-scale on-farm experiments. The spatial statistical analyses discussed in
this chapter are analogous to the geostatistical methods applied in the remainder of
this book. The differences between these two techniques of objective analysis are
discussed relative to nomenclature, development and estimation, and how each pro-
vides a sound basis for exploring and understanding the causes of variation in yield.
The chapter culminates with a case study adapted from Griffin (2006).

4.2 Background of Site-Specific Yield Monitors

Precision agriculture technologies can be categorized into one of two broad cat-
egories; information-intensive and embodied-knowledge. Information-intensive
technologies include those that provide more information, such as yield monitors,
but at the cost of requiring additional ability in management to make practical use
of the technology. Information-intensive technology has been readily adopted on
farms, but not as quickly as embodied-knowledge technologies. The latter include,
for example, global positioning system (GPS) automated guidance and automated
spray boom controls; they require less management ability to make effective use of
the technology.

Yield monitors have been used by farmers and researchers for the gamut of
crops; however most of data on adoption has focused on grains, oilseeds and cot-
ton. Precision agriculture technologies have spread rapidly around the world. In
the United States 28% of maize and 22% of soya bean areas were harvested in
2005 and 2002, respectively, with a yield monitor (Griffin 2009a). Griffin and
Lowenberg-DeBoer (2005) provided world-wide estimates of yield monitor adop-
tion, comparing the USA, EU and Latin America by estimating the number of yield
monitors per million arable hectares (Table 4.1). Germany is projected to have the
highest density of yield monitors in the world (523 M ha�1) followed by the United
States (335 M ha�1), Denmark (247 M ha�1), Sweden (119 M ha�1) and the United
Kingdom (107 M ha�1).
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Table 4.1 Number of yield monitors by country

Country
Estimated
number

Year of
estimate

Yield monitors per
million hectares

Americas
United States 30 000 2000 335
Argentina 4500 2008 180
Brazil 250 2008 5
Chile 12 2000 19
Uruguay 15 2000 12
Europe
U.K. 400 2000 107
Denmark 400 2000 247
France 50 2000 5
Germany 4250 2003 523
Netherlands 6 2000 27
Sweden 150 2000 119
Belgium 6 2000 17
Spain 5 2003 1
Portugal 4 2003 6
Other
Australia 800 2000 42
South Africa 15 2000 3

Source: Adapted from Griffin and Lowenberg-DeBoer (2005).

It is estimated that more than 90% of yield monitors in Argentina are associated
with a GPS (Instituto Nacional de Tecnologı́a Agropecuaria 2008), whereas in the
USA most are not (Table 4.2). It is likely that most yield monitors in the rest of the
world have GPS, although the gap may not be this wide. Although the value of yield
monitor data is greatly diminished without the georeferenced data, there are still
some practical uses for it.

The National Research Council defines yield mapping as “the process of collect-
ing georeferenced data on crop yield and characteristics, such as moisture content,
while the crop is being harvested” (Sonka et al. 1997, p. 137). The commercial-
ization of yield monitors has occurred at different times for each type of crop or
harvester. The first widely commercialized yield monitors for the grain combine be-
came available in 1992 (Griffin et al. 2004), over 2 years before GPS equipment
was fully operational for civilian uses (United States Naval Observatory). The cot-
ton yield monitor became commercially available in 1998, at a time when over 20%
of USA maize and soya beans were harvested with yield monitors. It has been ex-
pected that the adoption of yield monitors would occur more quickly for higher
valued crops that provide an opportunity to achieve greater net returns. Yield moni-
tors are most often associated with grain harvesters because of the relatively higher
adoption rates, and they were commercialized several years before yield moni-
tors for cotton (Vellidis et al. 2003), grapes (Bramley and Williams 2001), sugar
beet (Konstantinovic et al. 2007), tomatoes (Pelletier and Upadhyaya 1999), fruits
(Alchanatis et al. 2007; Ampatzidis et al. 2009), forages (Kumhala et al. 2005;
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Table 4.2 Percentage of planted hectares of crops on which yield monitor technologies were used
from 1996 to 2005 in the USA

Soya Durum Spring Winter
beans Cotton Barley wheat wheat wheat Maize Potatoes Sunflower Rice

Yield monitor without GPS
1996 14 9 3 2
1997 10 6 11 6 12
1998 15 a 4 6 6 12
1999 17 4 17 16 3 8
2000 21 1 a 9 10 18 18
2001 19
2002 22
2003 2 13
2004 16 14 10
2005 28
Yield monitor with GPS
1996 3 a a a
1997 4 a a 1 5
1998 6 a a 1 a 3
1999 6 a 7 6 3 a
2000 a a 3 6 6
2001 7
2002 8
2003 2 4
2004 7 4 2
2005
aLess than 1%.
Adapted from Griffin (2009a) using USDA-ARMS data.

Maguire et al. 2003; Wild et al. 2003; Wild and Auernhammer 1999), citrus
(Schueller et al. 1999), peanuts (Durrence et al. 1999; Vellidis et al. 2001), bal-
ing hay and other crops. Although yield monitors for grains (maize and wheat) have
been discussed in the literature more frequently than those for other crops (Griffin
et al. 2004), producers of higher value crops are relatively faster at adopting them
for production decisions.

With the commercialization of yield monitors and global positioning system
(GPS) equipment, many georeferenced yield observations can be recorded inex-
pensively. Data from yield monitors include yield measurements from mass flow or
volumetric methods, and may also include data on moisture. The data from GPS
provide location in terms of coordinates (latitude and longitude), time, elevation,
and their derivatives such as speed and heading.

Site-specific yield data provide farmers and their advisors with additional met-
rics to examine the factors that affect yield such as drainage, soil management and
planned on-farm experiments. These methods of analysis have included both sub-
jective visual observations as well as objective quantitative analysis with spatial
statistical methods. As with most other information technologies, the adoption of
yield monitors is influenced by how many other farmers use the technology and this
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is indirectly related to complementary services. Many potential users may not adopt
the technology until there are sufficient complementary services, such as consul-
tancy firms offering support for the hardware and or data analysis. Until a critical
mass of complementary support and data analysis services exist, many farmers per-
ceive no benefit in adopting yield monitor technology.

4.2.1 Concept of a Yield Monitor

In some parts of the World, yield is reported in volumetric units but crops are mar-
keted on standard sized volumetric units typically expressed as weight. For instance
in the USA, maize is sold by a volumetric unit (bushels), but is standardized to a ‘56
pound bushel’ (25.4 kg). In reality maize is marketed in 25.4 kg increments rather
than by the volumetric ‘bushel’ because grain density or test weight varies from field
to field as well as within fields. Test weight is the density of grain and is reflected in
the weight of the volumetric unit. Therefore, it is worth understanding the concept
of a yield monitor and how calculations are made. For grain yield monitors, yield is
expressed as in Eq. 4.1:

Y D K
M

W � S ; (4.1)

where Y is instantaneous yield reported as volume per unit area, M is grain flow
measured as mass per unit time,W is the harvester width (cutting width), S is travel
velocity in distance per unit time andK is a conversion coefficient. Grain harvesters
typically use physical sensors to measure grain flow, whereas remotely sensed data
have been somewhat successful for monitoring yield in biomass crops such as for-
ages, vegetables and fruits. Cotton monitors use microwave or near-infrared sensors
to measure volume.

Variation in test weight has an impact on volumetric units because the yield
monitor measures mass per unit time and farmers market crops based on weight.
However, test weight conversion issues are of no consequence to subsequent farm
management decisions.

Cutting width can be set by the operator or measured with a sensor. Software
has been developed to detect the effective swath width based upon whether the har-
vester has already passed over a particular area. Ultrasonic sensors are available for
measuring from the outside of the harvester width.

Travel velocity or ground speed can be measured by radar, ultrasonic measures,
a wheel or driveshaft rotation counter or GPS. In many cases, rotation counters
suffer from inaccuracies because of slippage and tyre distortion under varying loads.
Speed derived from GPS location also has limitations including momentary lack
of differential correction and the relatively lower refresh rate than is needed by the
velocity sensor. The preferred method of measuring travel velocity is with ultrasonic
speed sensors, which do not have the limitations of other methods.
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It should be noted that yield monitor data are recorded as points and are then con-
verted to aerial units rather than measuring the yield per areal unit as is the common
perception. The distinction between the two ideas is important when considering
methods of spatial analysis.

4.2.2 Calibration and Errors

Although calibration has been covered ad nauseum, it deserves to be reemphasized
because of its importance in relation to recording yield data that are suitable to make
the best farm management decisions possible. Even with a properly calibrated yield
monitor, several sources of potential error remain. The exact crop width entering
the harvester is likely to be unknown, except under the best case scenario. Another
source of error is the time lag of grain flowing from the header through the threshing
mechanism to the measurement area, especially for grain combines. The accuracy
of sensors depends on calibration and regular inspection. Excess dirt, plant residue
or moisture can result in inaccurate measurements from yield and moisture sensors.
Another source of error in yield monitor data originates from operator behaviour
or error. Changes in travel velocity is a leading cause of error in grain combines.
Although yield observations recorded while the harvester is changing velocity can
be removed using the ‘smooth velocity’ parameter setting of Yield Editor (Sudduth
and Drummond 2007), data are lost. Yield Editor can be downloaded free from the
USDA-ARS and is useful for researchers, industry and farmers to make the most of
yield monitor data. It is recommended that the harvester is operated as consistently
as possible to maintain a constant mass flow rate of grain, such as was entering the
harvester during calibration (Grisso et al. 2002; Shearer et al. 1999; Blackmore and
Marshall 1996).

Calibration of the harvester has been recommended at the beginning of the har-
vest season for each type of grain harvested (Grisso et al. 2002, p. 4). Grisso et al.
go on to say that recalibration may be needed as crop conditions, such as moisture
levels, change. Four elements are typically evaluated when calibrating a yield moni-
tor: distance, header height, mass flow rate and moisture content (Grisso et al. 2002;
Shearer et al. 1999; Blackmore and Marshall 1996). It is useful to understand what
the data are from the yield monitor.

Shearer et al. (p. 8–9) stated it appropriately as follows:

“The following ‘Advanced’ export data format is nearly universal:

ddd.dddddd,dd.dddddd,mm.mm,ttttttttt,n,lll,www,cc.c,kk,ppppp,ssssss,Fnn:bb

bbbbbb,Lnn:bbbbbbbb,ggggggggggg,sss, ppp,aaaa”,

where ddd.dddddd D longitude (degrees, C East and – West), dd.dddddd D
latitude (degrees, C North and – South), mm.mm D grain mass flow (mg per
second), ttttttttt D GPS time (seconds), n D cycle period (seconds), lll D distance
travelled in cycle period (cm), www D effective swath width (cm), cc.c D moisture



4 The Spatial Analysis of Yield Data 95

content (percent wet basis), kk D status (bits 0 to 4 – header down), ppppp D pass
number, ssssss D yield monitor serial number, Fnn:bbbbbbbb D field ID (num-
ber and name), Lnn.bbbbbbbb D load ID (number and name), ggggggggggg D
grain type, sss D GPS status, ppp D point dilution of precision (PDOP) and aaaa D
altitude (m).

This ‘advanced’ export data format is the same as that required by Yield Editor,
although other data formats can be used. Agricultural economists use yield data as
the basis for economic analyses and also use quality data for some crops such as
wheat, cotton and fruits where there is a difference in value between categories of
quality. Assessment of the profitability of precision agricultural technologies usually
includes data from instantaneous yield monitors.

4.2.3 Common Uses of Yield Monitor Data

Yield monitors were initially commercialized to document yields although farmers
have extended the frontier for how the data can be used to its potential. The most
common uses of grain yield data from monitors with a GPS are to monitor crop
moisture, conduct on-farm experiments and tile drainage management (Table 4.3)
(Griffin 2009b). In some areas, crop nutrient applications are based on crop removal
using yield data. Monitoring crop moisture at harvest is important for deciding
which storage facility to use. Another example of harvest logistics is the filling of
cotton modules by tracking overall volume of cotton in the harvester. Seed cot-
ton is stored temporarily in the field in a semi-compressed ‘module’ that holds a
certain volume of cotton. Cotton yield monitor data give information to the cotton

Table 4.3 Use of yield monitor data for selected crops with and without GPS, 2002–2005

Crop year
sampled

Soya
beans
(2002)

Cotton
(2003)

Barley
(2003)

Durum
wheat
(2004)

Spring
wheat
(2004)

Winter
wheat
(2004)

Maize
(2005)

With GPS? Yes No Yes No Yes No Yes No Yes No Yes No Yes No

Monitor crop
moisture

68 86 a a 68 67 100 52 60 63 60 85 91 83

Document yields 50 40 25 41 76 38 69 65 54 37 41 29 51 30
Conduct field

experiments
42 23 37 a 32 5 a 13 53 9 14 9 46 28

Tile drainage 32 8 5 3 6 6 a a 7 a 32 2 31 7
Negotiate new

crop lease
9 1 1 3 5 a 53 a 21 a a 1 5 2

Divide crop
production

6 7 7 54 12 11 a 48 a 3 7 8 12 11

Irrigation 4 a 4 8 24 3 a a a a a a 4 3
Other uses 7 13 1 19 15 8 53 a 6 20 a 7 7 5
aLess than 1%.
Adapted from Griffin (2009b) using USDA-ARMS data.
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picker operator to help decide whether to continue with the current module, or to
complete the module and begin another. Contrary to early anticipation from farm
managers, negotiating leases, apportioning crop shares and managing irrigation
were not leading uses of yield monitor data.

One common use of georeferenced yield data, especially for initial use after
adopting the technology, is to guide farmers and their advisors to specific locations
within fields based on relative differences in yield, i.e. directed scouting. At these
sites, they evaluate crop nutrient levels that correspond to relatively small and large
yields. In practice, many areas with small nutrient concentrations are associated
with larger yields than areas with large concentrations where the factor(s) limiting
yield is other than nutrient availability. Thus there is a probable inverse relationship
between crop yield and fertility level. Under conventional uniform rate applications,
fertilizer applied to areas where yield limiting factors are severe accumulate nutri-
ents because of limited nutrient uptake.

4.2.4 Profitability of Yield Monitors

The profitability of yield monitors depends on if, when and how the technology is
used. Studies on profitability should focus on how farm management decisions can
be improved with yield data, whether by quantifying the effects of poor drainage
or by conducting on-farm experiments to decide which inputs or production sys-
tem should be used in subsequent years. Assigning a value directly to yield monitor
technology is difficult. The value of farm management decisions attributed to the
yield monitor can be partly assessed, whereas ownership costs can be readily es-
timated by summing straight-line depreciation (Eq. 4.2) and interest expense costs
(Eq. 4.3). Straight-line depreciation is a frequently used method to estimate annual
depreciation of a fixed asset (Kay et al. 2008).

Depreciation D cost � salvage

ownership life
; (4.2)

Interest expense D cost C salvage

2
� interest rate: (4.3)

Two variables that deserve further mention are salvage value and ownership life.
The salvage value of spatial technology is often assumed to be zero. The debate
on ownership life has focused on whether it should be similar to the useful life of
the machinery or closer to that of computer technology. In addition to ownership
costs, taxes, insurance and operating costs such as repairs and maintenance should
be considered.

In addition to ownership and operating costs, costs of yield monitor use need
to be understood. The latter are primarily a function of calibration costs that can
best be described as a classic downtime model during harvest (Griffin et al. 2009).
Proper calibration requires time that could be used to harvest crops; if this causes
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Table 4.4 Costs of delayed
harvest resulting from yield
monitor calibration

Time (in days) to calibrate yield monitor
during October 11–31 time period

0 0.5 1.0
$0 $859 $1818
Adapted from Griffin et al. (2009).

the harvest to be delayed, yield penalties may occur. It was estimated that diverting
harvest equipment away from field operations for half a day reduced whole-farm
returns by nearly $900 USD (Table 4.4). It is plausible that two calibration events
could require half a day of good harvest days.

4.2.5 Quantity and Quality of Product

In addition to recording site-specific yield quantity, it is also possible to obtain
data on quality. Grain protein sensors based on near-infrared reflectance have been
used to estimate protein content of wheat (Stewart et al. 2002; Taylor et al. 2005).
Although instantaneous on-the-go quality sensors have not yet been commercialized
for cotton, it is possible to measure cotton lint quality at within-field locations us-
ing identity tracking and radio-frequency identification (RFID) (Griffin and Slinsky
2008). It is also expected that RFID technologies will enable georeferenceing of
quantity and quality for crops such as tomatoes and fruits.

4.3 Managing Yield Monitor Data

Applied researchers and consultants have to deal with yield monitor data from a
spectrum of yield monitor types, manufacturers and file formats. This is problematic
when the analyst requires access to the original unprocessed data, e.g. in ‘Advanced’
export format, in order to have more control over which observations are excluded.
To prevent maintaining multiple software packages to import, view and export the
raw data, the use of Field Operation Data Models (FODM) using FOViewer (Field
Operation Viewer, MapShots, Cummins, GA, USA) allows users to handle yield
data from different file formats.

4.3.1 Quality of Yield Monitor Data

Yield monitors have provided farmers and researchers with many georeferenced
yield observations at relatively lower costs compared to previous techniques.
Successful use of such data, however, typically requires more management ability
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to convert the data into information that is suitable for making farm management
decisions. Erroneous data from yield monitors result when some measurements
are made where the monitor cannot measure yield correctly (Noack et al. 2005;
Simbahan et al. 2004). For grain and cotton yield monitors, post-processing of the
data is possible with mapping or yield monitor software. Data analysts, however,
should be cautious when accepting default post-processing parameters imposed by
farm-level mapping software by understanding the parameters and how the default
settings affect the quality of the data. The post-processing of the ‘Advanced’ export
format data can be subjected to an objective correction procedure using Yield Ed-
itor. Data preparation procedures, referred to as ‘data cleaning’ or ‘data filtering’,
do little more than correct the location of observations and remove measurements
that are known to be erroneous because of harvester machine dynamics or operator
behavior and are not an unethical modification or manipulation of the data.

Standard parameter settings can be imposed to filter yield data, but this is not
recommended. The analyst’s intuition, experience, prior knowledge and skill should
guide the setting of parameters. No single parameter setting is likely to be univer-
sally appropriate, even with the same harvester and operator. The Yield Editor user
interface includes a map of the data points so that the analyst can assess the data
visually, albeit subjectively. The final Yield Editor parameter settings may or may
not be farmer or field specific and can vary between fields for the same harvester
and operator. Adjusting flow delay, start pass delay and end pass delay are the most
difficult and may be the most important to the quality of the data for spatial statis-
tical analyses. Since the grain yield monitor requires up to 30 m of harvester travel
and crop intake to make accurate measurements, start and end pass delays arise from
‘ramping up and down’ of the harvester at the beginning and end of rows (Arslan
and Colvin 2002).

Parameters do not have to be positive, negative values are sometimes correct
when the data have been previously subjected to processing by the farm-level map-
ping software. Setting the flow delay is easiest when the operator harvests three to
eight passes in one direction and alternates the pattern across the field (see Fig. 4.1
for an example of five adjacent passes before alternating the direction). This allows
a visual reference wide enough to be seen on the Yield Editor map. Although the
most dramatic differences are the start and end pass delays, within-field variability is
useful to assess visually the proper flow delay parameter values. Alternating direc-
tion between individual passes may not provide the required visual reference unless
the field has some distinct variation such as rice levees, tramlines or centre pivot
irrigation (see Fig. 4.2 for an example of how irrigation system tracks can assist in
adjusting flow delays).

It is assumed that filtering improves the quality of the data. Yield monitor data
filtered consciously with Yield Editor can lead to different production recommen-
dations from those based on data processed with the default correction parameters.
Griffin et al. (2008) analysed seven field-scale on-farm experiments conducted by
farmers and concluded that five experiments would have led to different farm man-
agement recommendations depending upon whether the yield data were consciously
corrected.
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Fig. 4.1 Yield Editor screen capture and example of a suggested harvest pattern

Fig. 4.2 Yield Editor screen capture and centre pivot irrigation system tracks
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4.3.2 Challenges in the Use of Yield Data for Decision Making

Precision agriculture data tend to be dense for yield and sparse for soil or other
factors affecting yield. Statistically significant differences can be estimated for yield
data because of the large number of data even though the true difference is arbitrarily
small or may not exist in reality (Hicks et al. 1997). The analyst must be aware of
the distinction between statistical significance and practical significance (Ziliak and
McCloskey 2008).

Spatially intensive data tend to result in spatially correlated residuals for ordinary
least squares (OLS) regression (Bell and Bockstael 2000, p. 72; Bockstael 1996).
Additional aspatial problems arise from measurement errors in attributes and loca-
tion. Inherent spatial autocorrelation and spatial heterogeneity of intensive data can
be disadvantageous for traditional statistical analyses. Data with spatial effects
contain less information than independent observations of the same sample size
(Anselin 1989; Florax and Nijkamp 2004). Anselin states that “the loss of informa-
tion that results from the dependence in the observation should be accounted for”
(1989, p. 68). Therefore, spatial statistical analyses are needed to model the spatial
structure of the data explicitly to improve inference based on the site-specific data.

4.3.3 Aligning Spatially Disparate Spatial Data Layers

Before statistical analysis of precision agriculture data, individual data points from
different attribute layers must align, especially when analysing data from several
years. A common grid (or other system of location) must be imposed on the data
for spatio-temporal analysis. Several methods have been used in research and in
commercial practice to remedy disparate spatial data layers and the modifiable areal
unit problem.

To integrate disparate data layers, observations from the denser data can be
averaged within the neighbourhood of locations of the most sparse data. The av-
eraged values then have the coordinates of the sparse data locations. Half the
average distance between adjacent sampling points can be used as the radius of
the neighbourhood. Values may be estimated with Thiessen polygons or alterna-
tively interpolation by kriging or inverse squared distance is often used to ensure
that all data layers align even though yield monitor data are more dense than other
site-specific data. If interpolation or Thiessen polygons are used to predict all values
in different data layers to a common grid a systematic error with spatial structure,
i.e. error increases in proportion to increases in distance to the measured location, is
introduced into the predictions (Anselin 2001). When the interpolations are fewer,
or the original number of observations of data are based on multiple original mea-
surements, then the systematic errors (Anselin 2001) may be at a reasonable level.
Although there are more cautions than solutions, the problem of disparate spatial
data layers must be addressed in the analysis of field-scale on-farm experiments.



4 The Spatial Analysis of Yield Data 101

When yield data, which tend to be spatially dense and variable, are used for farm
management decisions, they are suitable for rigorous geo-spatial statistical analysis.
Such analyses provide a sound basis for exploring and understanding the causes of
variation in yield and how to address them.

4.4 Spatial Statistical Analysis of Yield Monitor Data

A major use of yield monitor data is to evaluate planned on-farm experiments
(Griffin 2009b). The most current and rigorous analyses of data from on-farm
experiments use advanced spatial statistics to account for spatial effects such as
autocorrelation and heteroscedasticity. These spatial econometric techniques have
been used with site-specific data from yield monitors, small-plot harvest equipment
(Lambert et al. 2006), as well as hand harvested crops such as citrus and subsistence
millet production (Florax et al. 2002).

Spatial statistical analysis of yield monitor data has become more common than
for hand-harvested crops. Four studies provide examples of the appropriate use of
spatial statistical methods. The most influential field experiment for spatial analysis
is at Los Rosas in Argentina (see Anselin et al. 2004; Bongiovanni 2002; Lambert
et al. 2004), which evaluated the effects of nitrogen rates on maize. Parameters
estimated from the Los Rosas study were used in Monte Carlo simulations by Griffin
(2006) to evaluate experimental designs and spatial statistical methods for fields
with different levels of spatial autocorrelation. Ntsikane Maine (see Maine et al.
2007) has led the way in the use of spatial statistics in South Africa for her evaluation
of variable rates of phosphorus for maize production. In Europe, Andreas Meyer-
Aurich (see Meyer-Aurich et al. 2008) has been prominent in field-scale evaluation
of site-specific fertility applications using spatial econometric methods. In the USA,
Griffin et al. (2008) collaborated with farmers to analyse yield monitor data from
farmers’ field-scale experiments for crops such as corn, soya bean, popcorn, rice
and cotton.

4.4.1 Explicit Modelling of Spatial Effects

Two general approaches of addressing spatial autocorrelation are the simultaneous
approach, which models spatial autocorrelation explicitly with spatial process mod-
els, and the conditional approach in which observations are removed until there is no
spatial autocorrelation in the data. This distance at which observations are no longer
spatially autocorrelated is known as the spatial range and can be determined from
the correlogram or variogram. At distances greater than the spatial range, data can be
analysed with aspatial models although information is lost by omitting observations.

Spatial statistics were developed to deal explicitly with spatial effects. Several
spatial regression methods are available (Anselin 1988; Cressie 1993), and some
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have been available for many years (Papadakis 1937). There are two broad groups of
spatial statistical methods: the continuous geostatistical one (Cressie 1993) and spa-
tial process approaches (Anselin 1988). The geostatistical approach relies on data to
identify spatial characteristics by examining pair-wise observations (Cressie 1993).
The experimental variogram is based on the squared differences between all pairs of
data within a given distance or lag apart (see Section 1.2.2). The variogram function
describes how the differences between values change with increasing separation.
Spatial process methods rely on theory and an exogenously chosen specification of
a neighbourhood structure (Anselin 1988).

Dubin (2003) compared spatial statistical methods and showed that geostatistical
methods outperformed spatial process models when the true form of spatial varia-
tion was unknown. Lambert et al. (2004) compared ordinary least squares regression
and four spatial regression methods on the Los Rosas data (see Bongiovanni 2002
or Anselin et al. 2004 for details of the field study). Their results indicated that all
four spatial regression methods provided similar estimates, but the spatial process
and geostatistical techniques modelled the treatment effects better than aspatial re-
gression methods. The spatial process model has the advantages of being computed
in one step, it requires fewer observations than the variogram and can model spatial
autocorrelation in the dependent variable, error term or explanatory variables. How-
ever, a disadvantage is that the spatial interaction structure may be based on prior
knowledge or a priori theoretical assumptions. Geostatistics is familiar to many
agronomists and can be implemented with SAS software (Lambert et al. 2004),
whereas the spatial process models are less well known.

Site-specific yield monitor data, as with most other agricultural data obtained
at high resolutions, are expected to be spatially structured, i.e. autocorrelated and
heteroscedastic, which violates the assumptions of classical statistics such as in-
dependence of observations and homoscedastic error terms. To correct for spatial
effects in the residuals from a linear model estimated by OLS, methods that
adjust for spatial dependence and will give more accurate estimates should be cho-
sen. Anselin (1988) suggests two spatial process models: the spatial error model
(Eqs. 4.4 and 4.5) and the spatial lag model (Eqs. 4.6 and 4.7). The spatial error
model is given as

y D X“ C ©; © D œW© C �; (4.4)

or in reduced form as

y D X“ C .I � œW/�1�; (4.5)

where y is an n � 1 vector of dependent variables, X is an n � k matrix of ex-
planatory variables, “ is a k � 1 vector of regression coefficients, © is an n � 1

vector of residuals, � is a spatial autoregressive parameter, W is an n � n spatial
weights matrix and � is a non-heteroscedastic uncorrelated (well behaved) error
term (Anselin 1988). When the spatial autoregressive term, œ, is 0, the spatial error
model reverts to the aspatial model. The spatial error process can be characterized
by the autoregressive (AR) or the moving average (MA) error process resulting in
global and local spatial externalities or ‘spillovers’, respectively. When the spatial
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error model is appropriate, OLS estimates are unbiased but inefficient. A positive
value for œ implies that neighbouring values exert an influence on a particular lo-
cation’s outcome through some unobserved or otherwise unmeasured factor; and in
this case the structure of the unmeasured factor is ‘absorbed’ in the error term. In the
familiar linear model, the variation in the dependent variable that is not explained
by the explanatory variables is included in the error term, ©. When the unexplained
portion of the dependent variable has a spatial structure, then the residuals absorbed
in the error term will have spatial structure.

The spatial lag model is given as

y D �Wy C X“ C �; (4.6)

or in reduced form

y D .I � �W/�1ŒX“ C ��; (4.7)

where � is the spatial autoregressive parameter and the others are as above
(Anselin 1988). As above, the spatial lag model reverts to the aspatial model
when the spatial autoregressive term, �, is 0. A positive value for � implies that a
location’s observed value relates to those of its neighbours, i.e. spatially dependent.
Spatial lags result in global spatial externalities and have a substantive economic
interpretation. These models are sensitive to localized interventions that affect
the whole system through the spatial multiplier, .I � �W /�1. The OLS estima-
tor is inconsistent for purely spatial autoregressive processes (Lee 2002), i.e. the
unbiasedness of the estimate does not improve as sample sizes increase.

Both of the above models have been used with precision agriculture data. Anselin
et al. (2004), Lambert et al. (2004) and Griffin et al. (2008) used the spatial error
process model in their analyses, whereas Florax et al. (2002) used the spatial lag
process model. Theory and a priori information suggest that when yield is the de-
pendent variable, spatially autocorrelated error terms are expected rather than the
contagion existing in the dependent variables. This suggests that the spatial analyst
would opt to use spatial error process models to address the spatial effects explic-
itly. To determine empirically which model is more appropriate, spatial diagnostics
such as Moran’s I and Lagrange Multiplier tests of the OLS residuals provide in-
sight into the underlying contagion; however, the spatial interaction structure must
be specified first.

4.4.2 Spatial Interaction Structure

To model spatial autocorrelation explicitly in a spatial process model, the spatial in-
teraction structure is defined separately in a spatial weights matrix, W, such that
wij > 0 for neighbours and wij D 0 for non-neighbours where ij denotes lo-
cation. In general, the connectedness, or ‘relations’ among observations specified
by W influence the estimation and inference of the model. Under-specification
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of W, i.e. limited connectedness, causes more errors in estimation than over-
specification, i.e. more connectedness than is appropriate (Florax and Rey 1995).
Bell and Bockstael (2000) add that the specification of W affects parameter esti-
mates more than the choice of estimator. In practice, when the spatial weights matrix
is under-specified (i.e. spatial connectedness is too limited), spatial diagnostics may
inappropriately suggest the spatial process model, but when it is properly or over-
specified the spatial error process model tends to be identified as more appropriate.

The connectedness of W is influenced by the matrix form (e.g. binary contiguity,
binary distance, k-nearest neighbours, inverse distance) and the relevant distance
measure (e.g. first- or higher-order contiguity, distance, number of neighbours). In-
verse distance weights matrices are often chosen a priori for precision agriculture
data because they imply a smooth distance decay of spatial correlation, and the rel-
evant distance band can be determined empirically. Distance bands are based on
specified distances from a central location, similar to the layers of an onion.

4.4.3 Empirical Determination of Spatial
Neighbourhood Structure

Spatial autocorrelation is tested for in exploratory spatial data analysis and can be
useful for interpretation in intermediate analyses. Three distinct yet analogous tech-
niques based on spatial econometrics and geostatistics for determining empirically
the spatial range of data are compared. The techniques include the spatial correlo-
gram based on Moran’s I test statistic, Lagrange Multiplier test and variogram. The
de facto method of determining the spatial range has been the variogram; however,
Griffin (2006) used correlograms for his seven studies to determine the limit of the
spatial interaction structure.

The Moran’s I test statistic (Eq. 4.8) tests for global spatial autocorrelation in a
random variable (Anselin 1988; Cliff and Ord 1981) and is given by:

I D n

So

x0Wx
x0x

; (4.8)

where x is an n�1 vector of deviations from the mean, W is an n�n spatial weights
matrix as before and So is the sum of the elements of W (Anselin 1988; Cliff and
Ord 1981). If Moran’s I is positive, neighbouring values are interpreted as being
large (small), if it is negative neighbouring values are both large and small, and
if zero the distribution is spatially random. A local indicator of spatial association
(LISA) (Anselin 1995), or the so-called local Moran’s I , tests for local spatial au-
tocorrelation. Moran’s I test statistic of OLS residuals indicates whether estimation
could be improved by correcting for spatial structure in the data.

The Lagrange Multiplier (LM) test can be used to determine whether the spatial
error process or spatial lag process model should be used. Four LM tests for spatial
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autocorrelation diagnostics are commonly used on OLS residuals; they include LM
error (LM�), robust LM error (LM�

�
), LM lag (LM�) and robust LM lag (LM�

� ). The
LM� and LM� tests are unidirectional tests with the spatial error and lag models as
alternative hypotheses, respectively. The LM�

�
and LM�

� tests take into account the
potential presence of spatial lag and spatially correlated residuals, respectively, i.e.
they take into account spatial autocorrelation of the other spatial process form. The
LM�, LM�

�
, LM� and LM �

� all follow an asymptotic �2
1 distribution.

The LM test with the largest �2 value, or alternatively the smallest p-value, be-
tween LM� and LM� indicates whether the spatial error or lag model is appropriate.
The model parameters of the correlogram or variogram computed on OLS residuals
from the ‘full’ model define the spatial range (i.e neighbourhood) for each dataset.
Spatial correlograms of Moran’s I (Fig. 4.3) or LM test �2 values (Fig. 4.4) for au-
tocorrelation in OLS residuals indicate an appropriate distance band over which to
determine W.

Figure 4.4 shows the LM �2 coefficients for each iteration of contiguity orders
of a ‘queen’ weights matrix. Contiguity weights are defined based on the direction
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using the spcorrelogram function of spdep (Bivand 2009) contributed package to R (R Develop-
ment Core Team 2009)
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of their connectedness in relation to chess pieces; queen contiguity has neighbours
in all directions, rook has north–south or east–west neighbours only and bishop has
neighbours only in northeast–southwest and northwest–southeast directions. Correl-
ograms can be computed for lag intervals as well as contiguity orders. The general
shape and relationship of the function in Fig. 4.4 is that expected for site-specific
yield monitor data. For the LM tests, �2, the appropriate spatial range is determined
by the distance at which the test with the largest coefficient reaches its maximum.

The spatial econometric analyses discussed in this chapter are analogous to the
geostatistical methods applied in the remainder of this book; however there are
some differences in nomenclature and development. An experimental variogram
computed on the same residuals as those used for the correlogram (Fig. 4.3) and
Lagrange Multiplier �2 values (Fig. 4.4) is shown by the symbols in Fig. 4.5. The
variogram model was fitted by weighted least squares approximation (WLS).
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The spatial ranges were estimated by spatial correlograms, LM tests and
variograms. The spatial range is determined by identifying the distance at which
the Moran’s I test statistic goes to zero, i.e. lag 7, the peak of the LM test with
the largest value, i.e. lag 9, and where the variogram reaches its sill, i.e. lag 9.3.
The ranges determined by the three methods are similar (Figs. 4.3–4.5). The three
metrics (LM test, spatial correlogram and variogram) evaluate the residuals of the
full regression model estimated by OLS. The spatial structure of the correlogram
and LM tests rely on the exogenously chosen W, whereas the variogram uses a
pairwise comparison of all data pairs at a series of separating distances. The spatial
econometric technique is used in the following example.

4.5 Case Study: Spatial Analysis of Yield Monitor Data
from a Field-Scale Experiment

The data in this study include spatially correlated yield monitor data, treatments and
elevation; they have been adapted from Griffin (2006). Treatments of 198, 247, 297,
346 and 395 thousand seeds per hectare were planted in a strip-trial design; the strip
was 530 m long about 18.3 m wide with 24 rows 0.762 m apart (Fig. 4.6). This study
is pertinent because seed costs are becoming a larger proportion of variable costs,
there are changes in soya bean price to seed cost ratio and in cultural practices,
specifically weed control.

4.5.1 Case Study Data

The yield monitor data were filtered using Yield Editor; Table 4.5 gives the param-
eters for filtering and the number of observations deleted. These parameters were
based on prior experience and trial and error with these data. The resulting 3897
yield data are summarized in Table 4.6 by soil mapping unit and seeding rate treat-
ment, and in Fig. 4.6.

Before analysing the yield, it is important to have data that might explain the
spatial variation in the field. Soya bean seeding rates were assigned to each yield
observation to indicate which rate was represented by the yield measurement. For
each of the three soil mapping units in the field (USDA-NRCS soil map) (Fig. 4.6),
a binary variable was assigned to the yield observation. The number 1 was as-
signed if the yield observation was from the particular soil and 0 otherwise. The
soil series were: Soil A, a silt loam (Fine-silty, mixed, superactive, mesic Aeric
Endoaqualfs; Fine, mixed, active, mesic Aeric Epiaqualfs), Soil B, a silt loam
(Fine-silty, mixed, superactive, mesic Aeric Epiaqualfs; Fine-loamy, mixed, active,
mesic Oxyaquic Hapludalfs) and Soil C, a silt loam (Fine-loamy, mixed, active,
mesic Typic Hapludalfs; Fine-loamy, mixed, active, mesic Typic Hapludalfs). Soil A
was the predominant soil series followed by Soil B, representing 68.3% and 28.1%
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Fig. 4.6 Maps from the 2004 soya bean seeding rate study

of observations, respectively. Soil C was a minor component with only 3.6% of the
observations and was expected to have a lower yield potential than the rest of the
field. Since previous research indicated that small portions of a field may influence
whole field profitability, Soil C was analysed thoroughly.

Elevation data were obtained from the real-time kinetic (RTK) GPS measure-
ments of the combine harvester (Fig. 4.6 and Table 4.6) and were used as an
explanatory variable. Elevation data provide information that relates to depth of
topsoil, such as eroded hilltops, and relative position in the terrain. In addition to ele-
vation, the square of elevation was used to determine if yield responses differed over
the range of observed elevation. Relative elevation was calculated by identifying the
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Table 4.5 Parameter values and number of yield data points deleted
by filtering

Filtering parameter
Parameter
value

Number of points
deleteda

Maximum velocity (kph) 8.5 8

Minimum velocity (kph) 6.4 1802

Smooth velocity 0.2 408

Minimum swath (m) 0 0

Maximum yield (Mg ha�1) 5 49

Minimum yield (Mg ha�1) 0 0

Standard deviation filter 4 1524
bFlow delay (s) 3 561
bStart pass delay (s) 4 745
bEnd pass delay (s) 0 0

aPoints deleted are not cumulative, i.e. the ‘same’ point can be deleted
by several criteria.
bFlow delay, start and end pass delays of 12, 4, 4 were selected when
importing data into farm-level mapping software by the farmer with
additional filtering set as above.

Table 4.6 Descriptive statistics of selected continuous variables

Yield mean
(Mg ha�1)

Yield std dev
(Mg ha�1)

Elevation
mean (m)

Elevation std
dev (m)

Elevation
min (m)

Elevation
max (m)

Whole-field
(all treatments)

4.00 0.38 256.7 1.4 251.6 260.1

By soil mapping unit
Soil A 4.04 0.35 257.0 1.1 253.9 260.1
Soil B 3.99 0.40 255.8 1.5 251.6 259.1
Soil C 3.49 0.40 258.6 1.0 256.4 260.1

By seeding rate (000s ha�1)
198 4.01 0.44 256.5 1.5 252.1 259.7
247 4.00 0.36 256.6 1.6 251.6 260.1
297 4.02 0.36 256.6 1.4 252.6 260.1
346 4.02 0.38 256.8 1.3 252.6 259.4
395 3.97 0.33 257.2 1.1 252.7 259.7

localized weighted elevation (average elevation of immediate surrounding observa-
tions) and subtracting the elevation measurement for the given location. Relative
elevation provides the relative micro-scale elevation (measures whether the obser-
vation was higher or lower than neighbouring observations) (Lowenberg-DeBoer
et al. 2006).

Interaction terms between elevation, seeding rate and soil type were included
to determine if treatment response varied with elevation and or soil. All soya bean
seeding rates were represented across the whole range of topography and all soil
map units (Table 4.6 and Fig. 4.6); however, it is questionable if adequate yield ob-
servations were recorded for Soil C.



110 T.W. Griffin

Table 4.7 Description of variables

Variables Description

POP Seeding population in thousands
POP SQ Seeding population squared
Soil A Soil A binary variable
Soil B Soil B binary variable
Soil C Soil C binary variable
POP Soil C Population by Soil C binary variable interaction
POP Soil B Population by Soil B binary variable interaction
Elevation by Soil C Elevation by Soil C binary variable interaction
Elevation by Soil B Elevation by Soil B binary variable interaction
Elevation Standardized elevation (minimum elevation D 0) (m)
Elevation squared Elevation squared
POP by elevation Population by elevation interaction
Relative elevation Relative elevation

Average yield is consistent across seeding rate treatments, differing by only
0.044 Mg ha�1 across all five rates and only 0.005 Mg ha�1 for the four lowest seed-
ing rates (Table 4.6). Although the 395K seeding rate has the smallest mean yield, it
also has the smallest standard deviation (Table 4.6). The lowest seeding rate tested,
198K seeds, has the greatest variability with a standard deviation of 0.439 Mg ha�1

(Table 4.6).

4.5.2 Data Analysis

Precision agriculture data in general are spatially correlated and are not indepen-
dent. Traditional methods of statistical analysis cannot estimate the variability of
the estimate properly (predicted yield in this case) when observations are spatially
correlated, whereas spatial methods can model the spatial variation explicitly and
accurately to estimate reliable treatment responses. Analyses were done with both
traditional and spatial techniques to provide a comparison of results and to illus-
trate the decision that would have been made without adequate spatial analysis. The
spatial error process model was calculated using the 45-m inverse distance weights
matrix determined empirically by LM tests of OLS residuals. The regression output
from the spatial error process model is given in Table 4.8.

The economic analysis was based on the results of the spatial error process
model (Table 4.9). The estimated coefficients from the model output were put into
a quadratic yield response equation, and then converted into a profitability function
by transforming values from physical yield to monetary units. The price ratio was
based on the assumed soya bean price of $216.5 per Mg and soya bean seed costs of
$0.20 per thousand seeds (Table 4.9). Profit maximization occurs when the marginal
costs equate to the marginal revenue.
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Table 4.8 Regression output from the spatial error process modela

Variable Coefficient Standard error Z-value Probability (p)

Intercept 43:17 5.302 8:141 0
POP 0:292 0.067 4:335 0
POP SQ �0:001 0.000 �4:687 0
MeB �23:20 4.802 �4:830 0
FgB2 �3:545 2.229 �1:591 0.112
POP MeB 0:116 0.018 6:321 0
POP FgB2 0:020 0.009 2:196 0.028
Elevation by MeB 0:342 0.188 1:818 0.069
Elevation by FgB2 �0:051 0.109 �0:473 0.637
Elevation 1:089 0.296 3:673 0
Elevation squared �0:053 0.008 �6:828 0
POP by elevation 0:002 0.001 1:641 0.101
Relative elevation 0:957 0.156 6:134 0
aEvaluated at minimum relative elevation, i.e. zero (N D 3897). See Table 4.7 for a list of
abbreviations.

Table 4.9 Optimal agronomic and economic seeding rates

Portion of field

Field Soil A Soil B Soil C

Optimal seeding rates (1000 seeds ha�1/

Agronomic 319 309 329 420
Economica 284 274 294 385
aSoya bean price of $216.5 per Mg and seed cost of $0.20 per 1000 seeds.
Soils as defined by USDA-NRCS.

Yield response to soya bean seeding rates was estimated to have a quadratic func-
tional form which can be expressed as ys D popCpop2 where ys is soya bean yield
and pop and pop2 are seeding population and population squared. Regression coeffi-
cients were used to calculate yield maximizing soya bean population levels, or what
is commonly known as the agronomic maximum. Maximization of yield, however,
does not equate with profit maximization unless the input, soya bean seed, is free.
To calculate profit maximization levels, or the economic optimal levels, the profit
function, 
 D R � C , is used where 
 is profit, R is revenue and C is cost. The
profit function can be expanded to 
 D pyy � pxx, where px is the price of the
input, x. So the equation for profit from a soya bean population rate study may be

s D py

�
pop C pop2

� � ps .pop/ where 
s is profit from soya bean and ps is
the price of soya bean seed. Yield maximization and profit maximization levels are
found by setting the first derivative of the respective equation to zero and solving for
the optimum level of input use. The profit maximization level of soya bean seeds for
the generic equation is given by pop D ps�py

2py
.
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Fig. 4.7 Predicted yield response to soya bean seeding rate using spatial analysis

4.5.3 Case Study Results

The results of both traditional and spatial analyses were compared to show the differ-
ences in predicted yield and decisions that would have been made. Figure 4.7 shows
the quadratic yield response functions estimated by spatial statistical methods. Op-
timal seeding rates varied in relation to both elevation and soil for both traditional
and spatial statistical methods. The agronomic optimal seeding rate (the rate that
maximizes yield) for the field is 319K seeds ha�1 and ranged from 309K on Soil
A to 420K on Soil C (Table 4.6). It should be noted that the 420K seeding rate was
higher than the largest seeding rate included in the experiment and might not have
been properly estimated. Soil B has an agronomic optimal rate of 329K seeds ha�1

similar to Soil A. The economic analyses indicate a field profit maximization rate
(economic) of 284K seeds ha�1 (Table 4.9). The rates for Soil A and B are similar
at 274K and 294K seeds ha�1, respectively; however that for Soil C is 385K seeds
ha�1 (Table 4.9).

4.5.4 Case Study Summary

In general, soya bean yields were largest on Soil A and smallest on Soil C. Soil B
responded similarly to Soil A, although there were minor differences including a
slightly higher, but significantly different, optimal seeding rate. The results of this
study suggest that soya bean seeding rates may be as low as 272 to 297K seeds ha�1

and still maximize profits.
Caution must be used in making decisions on Soil C for two reasons. First, it

should be noted that Soil C may not have been a large enough portion of the field
to have an adequate number of yield observations. Second, higher seeding rates are
necessary to estimate the yield response properly on Soil C and to make appropriate
recommendations. Future research on a wider range of soil types with sufficient
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observations per soil type might provide information that is suitable for making
variable-rate application prescriptions for seeding. In addition, a precise delineation
of soil units or ‘management zones’ based upon soil characteristics affecting yield
response might enable greater precision in estimating yield response and making
decisions. Without spatial analysis, which explicitly modelled the spatial structure
of the error term, evaluation of this site-specific dataset would not have produced
practical results.

4.6 Conclusion

Yield monitors and GPS have provided farmers with a management tool with which
to make farm management decisions; albeit tools and data that require specialized
skills and more management ability. To make the most of yield data, appropriate sta-
tistical techniques are necessary. Spatial statistical methods provide the foundation
to develop techniques to analyse site-specific yield monitor data.

Yield monitor data have been used by many farmers to accomplish several
farmer-related tasks. Farmers have made use of the data in ways that the devel-
opers and manufacturers may not have anticipated. Researchers are beginning to
understand how yield monitor data can be useful and how best to make use of them
with spatial statistical techniques.
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Chapter 5
Space–Time Geostatistics for Precision
Agriculture: A Case Study of NDVI Mapping
for a Dutch Potato Field

G.B.M. Heuvelink and F.M. van Egmond

Abstract Many environmental variables that are relevant to precision agriculture,
such as crop and soil properties and climate, vary both in time and space. Farmers
can often benefit greatly from accurate information about the status of these vari-
ables at any particular point in time and space to aid their management decisions
on irrigation, fertilizer and pesticide applications, and so on. Practically, however,
it is not feasible to measure a variable exhaustively in space and time. Space–time
geostatistics can be useful to fill in the gaps. This chapter explains the basic ele-
ments of space–time geostatistics and uses a case study on space–time interpolation
of the normalized difference vegetation index (NDVI) as an indicator of biomass in
a Dutch potato field. Space–time geostatistics proves to be a useful extension to spa-
tial geostatistics for precision agriculture, although theoretical as well as practical
advances are required to mature this subject area and make it ready to be used for
within-season, within-field decision making by farmers.

Keywords Space–time geostatistics � Variogram � Kriging � NDVI � Interpolation �
Spatial variability � Temporal variability � Prediction � Uncertainty � Mapping � GPS �
Crop growth � Sampling

5.1 Introduction

Many of the soil properties that are relevant to precision agriculture vary both in
space and time. Examples are soil moisture, soil nutrient concentrations and pH.
Clearly, variation in space–time is not restricted to the soil, but extends to other do-
mains such as crops and climate. For instance, the biomass and protein concentration
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of the root, stem and leaves of a crop depend on location and time, and so do pre-
cipitation and temperature when the study area is large. Farmers can benefit greatly
from accurate information about the status of these variables at any particular point
in time and space. It can aid their management decisions on irrigation, fertilizer and
pesticide applications and so on. Practically, however, it is not feasible to measure a
variable exhaustively in space and time. For example, Snepvangers et al. (2003) used
time domain reflectometry to record about 100,000 observations of the topsoil water
content in a 0.36 ha grassland plot during a 30 day period, but the resulting data were
still sparse and interpolation was needed to describe the space–time variation ade-
quately. In many practical cases, even in precision agriculture where measurements
may be abundant, the size of the dataset will be much smaller than in the example
above and the space–time domain will be much larger. Thus, a common problem is
to construct a high-resolution space–time representation of a variable that varies in
space and time from a limited number of observations. Space–time geostatistics can
be useful for this.

Space–time geostatistics is a natural extension of ‘spatial’ geostatistics as de-
scribed in Chapter 1. It begins by characterizing the variation in space and time
with variograms. Next, these variograms are used to predict the target variable at
unmeasured points by kriging. The prediction error can be quantified and trends in-
corporated to reduce this error. Trends in space and or time are incorporated when
part of the variation in the target variable can be explained by explanatory variables,
such as when soil type is used to explain spatial variation in soil texture or when
precipitation is used to explain temporal variation in soil moisture. The difference
from ‘spatial’ geostatistics is that variation occurs in space and time, and both these
sources of variation must be modelled and their effects on prediction taken into
account. Variation in space might be much less than that in time. For instance, rain-
fall events are likely to pass over the entire field, but they vary considerably over
time. The opposite is also common; soil bulk density can differ markedly between
locations with different types of soil or landuse, but it changes little over a timespan
of a few years. In fact, the bulk density example hints at a situation where tempo-
ral variation may be negligibly small compared to spatial variation. In such a case
one might decide to disregard the temporal variation completely and return to con-
ventional ‘spatial’ geostatistics. When spatial variation is negligible a time-series
analysis will suffice. Thus, space–time geostatistics is required when neither spa-
tial nor temporal variation can be ignored, but this does not mean that both must be
equally large. Also, the lengths of spatial and temporal dependence will be different,
if only because space and time have different measurement units.

This chapter explains the basic elements of space–time geostatistics and uses
a case study on space–time interpolation of the normalized difference vegetation
index (NDVI) as an indicator of biomass in a Dutch potato field. We begin with
a description of the study site and discuss the positional correction of GPS data
from the field, followed by an exploratory data analysis of the NDVI data. Next we
present the theory of space–time geostatistics. We apply it to the case study, discuss
results and draw conclusions.
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5.2 Description of the Lauwersmeer Study Site
and Positional Correction of NDVI Data

The study site is near the village of Vierhuizen in the Lauwersmeer area to the North
of the Netherlands at 6:27ı longitude and 53:35ı latitude. The climate is temperate
maritime; the annual rainfall in 2006 was 661 mm with an annual average temper-
ature of 11:7ıC. In 2006, the growing season for potatoes was relatively warm and
dry except for August, which was colder and wetter than usual. The soil is char-
acterized as a fluvisol formed on young calcareous marine sediments. Soil texture
ranges from loamy sand to sandy clay loam with 1–4% organic matter. Elevation
ranges from 0.5 to 1.5 m above sea level with lower areas on the W and SE parts of
the field (Fig. 5.1). The lower parts of the field are more sandy. Typical crop rotations
consist of seed and consumption potatoes, sugar beet, wheat and onions.

A 10 ha field with two potato varieties, Innovator and Sofista, was studied during
the growing season of 2006. Innovator is a mid-early variety with fast and good
biomass development, whereas Sofista is classified as mid-late with good biomass
development.
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Fig. 5.1 Digital elevation map (metres above sea level) of the study site, obtained from the Dutch
AHN (Actueel Hoogtebestand Nederland 2009)
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A Crop Circle sensor (Holland Scientific 2008) measured spectral reflectance
each time the crop was sprayed against phytophtora, a potato disease. The active
spectral reflectance sensor has a spatial support of about 1m2. It emits at 650 and
880 nm and measures reflectance in the visible (between 400 and 680 nm) and near-
infrared part of the spectrum (800–1100 nm). The sensor calculates the NDVI based
on those reflectances. The sensor- and GPS data are logged every second. Data from
headlands are not taken into account. The number of tramlines recorded and the
driving speed differs with measurement date (Table 5.1).

The NDVI data were obtained from reflectances recorded on 16 different days
during the growing season of 2006. The Crop Circle sensor was mounted 8.5 m
behind the tractor on a spraying boom and 6.5 m left of the centre. The GPS was
located on the tractor roof. The difference in position between the sensor and GPS
caused an error in the positions of recorded values that depends on the driving di-
rection. The GPS coordinates logged were corrected for this difference (Fig. 5.2a).
The accuracy of a GPS is fairly constant during any one day, but locations may
shift slightly when measuring the same coordinates on different days. This effect
is clearly visible from the wide transects in Fig. 5.2a. The farmer measures NDVI
when he sprays the field and uses exactly the same tramlines each time to minimize
crop damage. Hence the corrected coordinates measured on different days should be
positioned along the same lines. The corrected coordinates were therefore corrected
a second time for the ‘temporal’ GPS error. When the coordinates of a tramline dif-
fered by more than 0.5 m from the centre of the tramline, they were corrected in a
perpendicular direction to the driving direction to match the centre of the tramline
and to minimize unwanted displacement of the coordinates in the driving direction.
The results are shown in Fig. 5.2b.

5.3 Exploratory Data Analysis of Lauwersmeer Data

The main interest of the farmer is in the distribution of the potato growth over time
and space. Accurate information on growth and variation in growth enables the
farmer to fine-tune fertilizer application and the timing and amount of chemicals
to remove above ground biomass at the end of the growing season. The space–time
distribution of below ground biomass, and hence tuber yield, is correlated to the
above ground green biomass, of which NDVI is an indicator (Baret and Guyot 1991;
Carlson and Ripley 1997). The values of NDVI range between 0 and 1. An NDVI
of 0.2 indicates bare soil, a value of 0.65 indicates that the crop canopy is closed
and a further increase in NDVI indicates an increase in the number of green leaf
layers. The index ‘saturates’ at 0.9 which represents a leaf area index (LAI) of 3–4.
Throughout the growing season NDVI increases until tuber formation starts and then
it decreases as the above ground biomass dies and becomes yellow (Wu et al. 2007).

Figure 5.3 shows a scatter plot of NDVI against day of year (DOY). The NDVI
increases rapidly in spring and gradually decreases towards the end of the summer.
The spatial variation is large for all dates, as indicated by the wide spread in values.
There appear to be outliers with small NDVI values when overall NDVI values
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Fig. 5.2 (a) The original GPS coordinates (dark grey) and the coordinates after the first correction
(black) and (b) GPS coordinates after second correction. Background colour represents the two
potato species (Sofista light grey; Innovator dark grey)
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Fig. 5.3 The NDVI observations (Innovator in red, Sofista in blue) against day of year in 2006.
The solid line is the fitted temporal trend

NDVI 29 May
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Fig. 5.4 Spatial distribution of NDVI observations for May 29 (DOY 149) and July 27 (DOY 208)

are large, showing that the crop was not fully developed in part of the field. This is
confirmed in Fig. 5.4, where the spatial distribution of NDVI is shown for two dates.
There are also a few small values in one area near the field boundary on July 27. Note
also that the Sofista crop has developed little biomass on May 29. Figure 5.3 shows
that the Sofista crop develops later than Innovator and starts to show a decline in
above ground biomass earlier. Innovator has a larger average NDVI in late summer
when Sofista has already started to decline.
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Factors that might influence crop growth, and hence NDVI, can be divided into
temporally constant but spatially varying factors and spatially constant but tempo-
rally varying factors. The first category includes soil properties, elevation and the
spatial allocation of the two different crop types. Soil properties that might influ-
ence potato growth are the amount of clay, sand and organic matter, median grain
size (M0), potential bulk density and potential water retention. Calculation of the
latter two is based on pedotransfer functions (Wösten et al. 2001). Summary statis-
tics of the NDVI, soil and elevation data are given in Table 5.1. Digital elevation
data are available at 1-m resolution from the AHN (Actueel Hoogtebestand Ned-
erland 2009) the national altitude dataset of the Netherlands, Fig. 5.1. The second
category of spatially constant explanatory variables includes precipitation, temper-
ature and fertilizer application. The crop received a spatially homogeneous nitrogen
application on 14 June 2006 (DOY 155).

5.4 Space–Time Geostatistics

Consider a variable z D fz.s; t/js 2 S; t 2 Tg that varies within a spatial domain S
and a time interval T. Let z be observed at n space–time points (si ; ti /, i D 1; : : : ; n.
In the case study described in Sections 5.2 and 5.3, these space–time observations
are transects of observations along the tramlines recorded at several instants in time.
Although the total number of observations, n, may be very large, to observe z at
each and every combination of time and space is not feasible. To obtain a complete
space–time surface of z requires some form of prediction. Therefore, the objective
is to obtain a prediction of z.s0; t0/ at a point (s0; t0/ at which z was not observed,
where (s0; t0/ typically is associated with the nodes of a fine space–time grid. To do
this, z is assumed to be a realization of a random function Z (Webster 2000). The
random function Z is characterized by a statistical model that must describe the
structure of dependence in space–time. Once the model is fully defined, Z.s0; t0/
may be predicted from the observations by kriging as described for the spatial
variables in Chapter 1.

The space–time variation of Z can be characterized by first decomposing it into
a deterministic trendm and a zero-mean stochastic residual " as follows:

Z.s; t/ D m.s; t/C ".s; t/: (5.1)

The trend m is a deterministic, structural component that represents large scale
variation. The residual is a stochastic component representing small scale, ‘noisy’
variation. Alternatively, the trend may be thought of as that part of Z that can be
explained physically or empirically by auxiliary information. The residual compo-
nent still holds important information on the variation when it is correlated in space
and or time. Note that the decomposition of Z into a trend and a residual is a scale-
dependent, subjective choice made by a modeller (Diggle and Ribeiro 2007).
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5.4.1 Characterization of the Trend

As noted in Section 5.1, often the behaviour of a variable over time is entirely dif-
ferent from its behaviour in space. This difference can be represented by the trend
in the specification of a space–time model. For instance, crop growth in an agricul-
tural field is causally dependent on factors such as soil, climate and management.
This information should be incorporated into the model if possible when predicting
crop growth or biomass accumulation in space and time. Ideally, the trend would
be a process-oriented, physical-deterministic model. However, when deterministic
modelling is not feasible due to a lack of understanding of the underlying governing
processes or because external forces and boundary conditions are unknown or unre-
liably known, one may rely on a regression-type model relating the dependent to the
explanatory variables in an empirical way. The simplest approach is to assume that
the trend is a linear function of the (possibly transformed) explanatory variables, as
in linear multiple regression:

m.s; t/ D
pX

iD1

ˇi � fi .s; t/; (5.2)

where the ˇi are regression coefficients, the fi are explanatory variables that must be
known exhaustively over the space–time domain and p is the number of explanatory
variables.

Estimation of the regression coefficients can be done using common least squares
algorithms that minimize the sum of squared differences between the observa-
tions and predictions (Montgomery et al. 2006), such as implemented in statistical
software packages. Alternatively, maximum likelihood methods may be used (see
Chapter 3, also).

After a trend has been specified and estimated, it may be subtracted from Z so
that attention can be directed to the space–time stochastic residual ". With this ap-
proach, uncertainties in the detrending procedure are not taken into account in the
subsequent analysis. As a consequence, in kriging this causes the uncertainty in
predictions to appear smaller than it is. This problem can be avoided by account-
ing for uncertainties in the trend coefficients, such as is done in universal kriging
(Diggle and Ribeiro 2007); this method is also referred to as regression kriging
(Hengl et al. 2004).

5.4.2 Characterization of the Stochastic Residual

Throughout this chapter, we assume that the zero-mean stochastic residual " is mul-
tivariate normally distributed. Although a distributional assumption (i.e. normality)
is not strictly needed for kriging, the assumption ascertains a completely-specified
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statistical model and allows us to compute prediction intervals from the kriging
results. Given this assumption, the only information lacking is the autocovariance
function, C ,

C.si ; ti ; sj ; tj / D EŒ".si ; ti / � ".sj ; tj /�; (5.3)

where E is the mathematical expectation. Alternatively, we may characterize the
second-order properties of " with the variogram, � , as follows (see also Chapter 1):

�.si ; ti ; sj ; tj / D 1

2
EŒ.".si ; ti / � ".sj ; tj //

2�: (5.4)

In practice, to estimate � from observations, some additional simplifying assump-
tions are necessary. A common approach is to introduce the assumption of second-
order stationarity, which posits that the semivariance of ".s; t) and ".s C h; t C u/
depends only on the separating distance in space, h, and that in time, u, between
the points: �.s; t; s C h; t C u/ D �.h; u/. Although h is usually a vector in two or
more dimensions, it can be replaced by Euclidean distance if isotropy is assumed
in space, allowing both h and u to be treated as scalars. In practice a further sim-
plification is needed to be able to estimate a space–time variogram from a set of
observations. Here we impose a sum-metric variogram model on the space–time
residual (Bilonick 1988; Dimitrakopoulos and Luo 1994; Snepvangers et al. 2003):

�.h; u/ D �S.h/C �T .u/C �ST

�p
h2 C .˛ � u/2



: (5.5)

The first two terms on the right-hand side of Eq. 5.5 allow for zonal space–time
anisotropies (i.e. variogram sills that are not the same in all directions). Zonal
anisotropy means that the amount of variation in time is smaller or larger than that
in space, and or that in joint space–time. If variation in space dominates variation in
time, then �S will have larger values than �T , which may be the case in the bulk den-
sity example given in Section 5.1. The opposite would hold for the rainfall example,
also mentioned above. The third term on the right-hand side of Eq. 5.5 represents a
joint space–time structure. It contains a geometric anisotropy ratio ˛ to match dis-
tance in time with distance in space. Geometric anisotropy is needed here because a
unit of distance in space is not the same as a unit of distance in time. For instance,
if ˛ D 20m per day, then two points that are separated by 100 m in space and zero
days in time have the same correlation as two points that are 5 days apart in time
and zero metres apart in space, or as two points that are separated by 60 m in space
and 4 days in time (Fig. 5.5).

The sum-metric model simplifies the space–time variogram to a form such that
its parameters can be estimated from a space–time dataset, but there are other ap-
proaches too. Among alternative models the product-sum model is often used (De
Cesare et al. 2001). Research into which models are most appropriate for which
situations is ongoing (see the discussion in Section 5.6).

Once the trend and variogram of the residuals have been specified, space–
time prediction can be done in the usual way by ordinary or simple kriging (see
Chapter 1). Kriging not only provides the best linear unbiased predictor of Z.s0; t0/
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Fig. 5.5 Graphical illustration of geometric space–time anisotropy with an anisotropy ratio of
20 m per day. All points on the ellipse have the same semivariance

at any space–time point .s0; t0/, but it also quantifies the kriging prediction error
with the kriging variance from which maps of the kriging standard deviation or
lower and upper limits of prediction intervals can be derived. In space–time krig-
ing, this gives results in three dimensions. These can be presented as a series of
two-dimensional maps by taking time slices (which may be presented as a moving
image when the distance between subsequent times is sufficiently small), or as time-
series of predictions and prediction error standard deviations at different locations.
The advantage of space–time kriging over spatial kriging for separate time points is
that all observations are used rather than just the observations at the particular point
in time, and that predictions in between measurement times can be made.

5.5 Application of Space–Time Geostatistics
to the Lauwersmeer Farm Data

5.5.1 Characterization of the Trend

The absolute value of the correlation coefficients between soil properties and NDVI,
and between elevation and NDVI are small (Table 5.1). Although these values were
larger when the correlation was computed for separate days, they remained small
(data not shown). However, the correlation between NDVI and crop type is greater
(0.085) and there is also a clear relationship between NDVI and time (Fig. 5.3). We
decided, therefore, to define the trend as a linear combination of crop type and a
time effect:

m.s; t/DˇS � ı.crop type D Sofista/CˇI � ı.crop type D Innovator/Cf .DOY/:

(5.6)
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Here, the function ı is an indicator transform that is one if the condition is satis-
fied and zero otherwise; and f is a double logistic function that has been applied
successfully to model temporal variation of NDVI (Fischer 1994):

f .DOY/ D vmin C vmax

	
1

1C em1�n1�DOY
� 1

1C em2�n2�DOY



: (5.7)

The six parameters of the double logistic function were fitted on the NDVI data
using a least squares minimization approach; the parameters are vmin D 0:091,
vmax D 0:689, m1 D 33:7, n1 D 0:2099, m2 D 28:1 and n2 D 0:1123. The graph
of the fitted temporal trend is shown in Fig. 5.3. Next, the remaining two regression
coefficients were estimated on the residuals after removal of the temporal trend by
unweighted least squares; the coefficients are ˇS D �0:0497 and ˇI D 0:0335.
Estimation of the trend could be improved by the simultaneous fitting of all param-
eters or by using residual maximum likelihood (REML) to estimate the parameters
(Chapter 3), however, this may be computationally difficult because Eq. 5.7 is non-
linear in its parameters. A more complex trend including interactions might also
have been used to take into account that the effect of crop type varies with time.
Absolute values of the correlation coefficients between the NDVI residuals and soil
properties and elevation were all smaller than 0.10, indicating that there was no
substantial predictive power left in the auxiliary information.

The histogram of the NDVI residuals is shown in Fig. 5.6. There are outliers to
the left of the distribution in Fig. 5.6b. These correspond to locations at the bound-
ary of the parcels where the crop did not develop fully (see Figs. 5.2 and 5.3, also).
We decided to remove all values < � 0:3 (214 observations, 0.6% of the total) be-
cause the outliers would impair the geostatistical analysis too much. The choice of
the �0:3 threshold was subjective, however, if a value had been chosen closer to
zero many more observations would have to be removed (Fig. 5.6b). As a conse-
quence of discarding these observations, the resulting maps will be biased to larger
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Fig. 5.6 (a) Histogram of NDVI residuals after removal of a double logistic temporal trend and
crop type means and (b) histogram of a subset of the same data with only values smaller than �0:3



130 G.B.M. Heuvelink and F.M. van Egmond

NDVI values at the boundary of the field. Alternatively, all the observations could
be retained and transformed prior to variogram estimation and kriging, for instance
using a disjunctive kriging approach with Hermite polynomial transformation as
described in Chapter 1.

5.5.2 Characterization of the Stochastic Residual

The experimental variogram of the NDVI residuals was calculated for various tem-
poral and spatial lags. The temporal lag size was chosen to be fairly large because
there were only 16 measurement dates. Six time lags were used, each having a width
of 10 days. The spatial lag size used was 15 m. Marginal spatial and temporal vari-
ograms were also calculated; these variograms are specific to only the space or time
dimension. For instance, the marginal spatial variogram is computed on NDVI resid-
uals for which the distance in time is zero (i.e. observations collected on the same
day). The marginal and space–time experimental variograms are shown in Fig. 5.7.
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Fig. 5.7 Marginal experimental variogram (dots) and fitted model (solid lines): (a) in time direc-
tion and (b) space direction. Perspective plots of: (c) 3D experimental variogram and (d) fitted
space–time variogram model
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Table 5.2 Parameters of the fitted space–time variogram model

Variogram component Nugget Sill Range Anisotropy ratio

Spatial 0 0.00283 100 m NA
Temporal 0 0.00114 8 days NA
Spatio-temporal 0 0.00047 120 m 6 m/day

The experimental variogram in the time direction, in particular, is noisy. Neverthe-
less, the variograms show convincingly that the NDVI residuals are correlated in
space and time. Near the origin, where distances in time and space are small, the
semivariances are smaller than at larger distances. Spatial and temporal variation
are of the same order of magnitude; there is somewhat more variation in space than
in time. Thus, after removal of the trend, the NDVI residuals tend to vary more
between locations in space than between instants in time.

The metric space–time variogram model was fitted using an exponential function
for all three variogram components. Fitting was done using a quasi-Newton method
with box constraints (Byrd et al. 1995). Quasi-Newton methods seek the minimum
of a function by setting its gradient to zero and box constraints impose minima and
maxima for the parameters in the search space (for instance, the nugget, sill and
range parameter must all be equal to or greater than zero). The results are shown
in Fig. 5.7b and also as the solid lines in Fig. 5.7a, b. The fitting was based on all
space–time lags, which explains why the fitted curves do not reproduce the marginal
variograms as well as might have been achieved if the only consideration had been to
reproduce the marginal experimental variograms. The parameters of the variogram
models are given in Table 5.2. The nugget variance is zero, which implies that the
NDVI residual is perfectly correlated at very short distances in time and space. The
spatial sill is the largest, which confirms that spatial variation in the NDVI resid-
ual dominates temporal variation. The space–time component has a moderate sill,
although its contribution is not negligible.

5.5.3 Space–Time Kriging

Space–time kriging was done using the Gstat library (www.gstat.org) within the R
statistical software (Bivand et al. 2008). A small subset only of the entire space–time
cube of predictions and prediction error standard deviations are shown here. Maps
of the predicted NDVI are shown for three time instants in Fig. 5.8. These show that
NDVI is small on DOY 165, especially for Sofista, large on DOY 200 for both crops
and small for Sofista and still large for Innovator on DOY 235. This agrees with the
results presented in Fig. 5.3. The boundary between the two parcels is clearly visible
in all the maps of predictions shown here, and so are the patches with small NDVI
values near the parcel boundaries. A stripe effect is also apparent, particularly for
DOY 165. This is probably an artefact caused by systematic measurement errors
between the NDVI observations of neighbouring tramlines, although true system-
atic differences between neighbouring crop rows cannot be ruled out. One kriging
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Fig. 5.8 Space–time kriged predictions for three arbitrary days: (a) DOY 165, (b) DOY 200 and
(c) DOY 235; (d) kriging standard deviations for DOY 235

prediction error standard deviation map is shown for DOY 235 in Fig. 5.8d. The
standard deviations are small compared to the predicted values (note the different
legend entries) and are smaller near observations than further away from them. Note
also that the standard deviation map indicates that only 9 of the 16 tramlines (see
Fig. 5.8) were used near DOY 235 (see also Table 5.1). The standard errors are small
because of the large number of observations and strong space–time correlations.

Space–time kriging results are also shown as time-series for three arbitrary loca-
tions in Fig. 5.9. Two of these are from the Sofista parcel where NDVI predictions
become smaller towards the end of the observation period. Note also that the inter-
vals between predictions are smaller near points in time where observations were
made (i.e. one of the 16 days where NDVI was measured). For the corner location
in the Sofista parcel, some observations fall outside the 95% prediction interval, and
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Fig. 5.9 Space–time kriging results for three arbitrary locations: (a) centre and (b) north-west cor-
ner of the Sofista parcel, and (c) centre of the Innovator parcel. The solid line is the regression krig-
ing prediction, dotted lines represent the 95% prediction intervals derived from the kriging standard
deviation. The dots are NDVI observations within a circular neighbourhood with radius 2 m

this happens more often than the expected 1 out of 20 cases. This might be caused
by the fact that there may be a separation distance of up to 2 m between the observa-
tion and prediction location (a tolerance of 2 m was used to ensure that each graph
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has observations), but may also be caused by the fact that outliers were removed
before computing and modelling the space–time variogram (see Section 5.2), which
led to a systematic underestimation of the variation.

5.6 Discussion and Conclusions

Space–time geostatistics is a useful extension to spatial geostatistics for precision
agriculture because many of the variables addressed in precision agriculture vary
in time as well as in space. Space–time kriging can provide predictions at a high
space–time resolution and can be used, for example, to produce a time-series of
spatial maps. When such maps are shown in animation mode these images may
be useful to farmers to gain insight into crop growth. The data and results of the
case study were only available after the growing season, but if available during the
growing season the results can aid the farmer’s understanding of how crop variety
and management practices affect crop growth. It will show where and when within
a parcel anomalies caused by drought, wetness or diseases occur. For instance, this
will enable the farmer to adjust the chemical spraying against the potato disease
Phytophtera in space and time according to the actual occurrence of the disease.
Compared to the current practice of weather dependent precautionary spraying, this
can reduce substantially the amount of chemicals needed for optimal crop growth.
The trend analysis, which is part of the development of a space–time model, might
also provide important insight into which factors influence the variation in space and
time in target variables. This can contribute to a better timing of the final fertilizer N
application, or to determine the best DOY to remove the aboveground green biomass
at harvest.

Space–time kriging is not intended to make forecasts in time. The primary pur-
pose of kriging is interpolation; it is not intended for extrapolation, be that in space
or time. Extrapolation would result in large uncertainties, as exemplified by the krig-
ing variance. However, when implemented in real-time mode, space–time kriging
can provide farmers with almost instant imagery of crop- and soil-related properties
for the past and present. Process-based modelling, possibly augmented with data
assimilation functionality (e.g. Hoeben and Troch 2000; Heuvelink et al. 2006), is
needed to make reliable forecasts. Data assimilation techniques merge information
from observations with information from models, taking the relative uncertainty
associated with each of the sources of information into account.

The Lauwersmeer farm case study addressed in this chapter was limited to NDVI,
but the methodology is generic and applies to many more properties that are relevant
to precision agriculture, provided sufficient observations are available. In addition,
the spatial extent and time period are not restricted. The case study addressed spatial
variation within a 10 ha field during the growing season, but much larger space–time
domains can be handled too. In the case study we assumed a trend that was a com-
bination of a constant-in-time crop variety effect and a constant-in-space seasonal
effect. A more elaborate model would let these effects vary in space and time, would



5 Space–Time Geostatistics for Precision Agriculture 135

consider interactions between effects and would make a more careful assessment of
the effects of other factors, such as soil type, previous crop growth variation and
terrain form. Also, effects from parcel boundaries and anisotropy resulting from
tillage, planting and fertilizer application may be included.

Practical application of space–time kriging is not as straightforward as it is for
spatial kriging. This is partly because modelling variation in space–time is more
difficult than modelling that in space, and because ‘off-the-shelf’ software is not
yet available. The software Gstat was used in the case study, but it is not tailored to
space–time geostatistics and cannot handle non-metric variograms or 3D space–time
prediction. For instance, some additional programming was needed to compute the
experimental variogram. More flexible alternatives are GSLIB (Deutsch and Journel
1998) extensions (De Cesare et al. 2002) and SEKS-GUI (Yu et al. 2007). The mod-
elling of space–time variation also needs further development, both in terms of the
choice of structure of the space–time variogram and in terms of the improved and
user-friendly estimation of its parameters. Recently, many advanced methods have
been published in the statistical literature to define classes of valid space–time co-
variance structures (e.g. Cressie and Huang 1999; Gneiting 2002; Huang et al. 2007;
Fuentes et al. 2008; Ma 2008). A comprehensive review of these methods is beyond
the scope of this chapter, but it is important to note that the variogram modelling
approach used in this chapter is only one of many possibilities. One particular prob-
lem that confronts the modelling is that observations are generally spread unevenly
over space and time. Data sets will be generally sparse in space and abundant in
time (e.g. Snepvangers et al. 2003). In precision agriculture applications, however,
data may be sparse in time and abundant in space: in the case study there were only
16 measurements in time and hundreds of spatial measurements for each instant in
time. The uneven spread of observations over the space–time domain complicates
the variogram modelling process and subsequent kriging. In the future the lack of
temporal data could well change in agriculture and other applications. For instance,
high resolution satellite or aerial imagery such as Ikonos and radar maps of rain-
fall may become readily available and instantly downloadable at affordable prices.
Also the application and further development of ‘smart dust’ soil temperature and
moisture sensors could provide a more even distribution of abundant data in space
and time in precision agriculture. Space–time kriging may become a valuable tool in
precision agriculture and other applications, combined with the current developing
practice of using continuous soil moisture sensors and high resolution soil maps to
fine-tune irrigation or the use of precise soil temperature data to determine sowing
and planting dates.

In parallel with the theoretical advances, practical application of space–time geo-
statistics also needs further development. More real-world applications of space–
time kriging will not only develop the maturity of this subject area and encourage
the development of user-friendly software, but it might also reveal stable patterns
in the type of model to be used for specific applications. If this were the case, then
a model structure developed in one year for a given area, soil type or crop variety
may be used in future years for similar areas, soil types or crop varieties, thus sav-
ing time on the cumbersome modelling stage. Thus, the farmer may use the model
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developed in the case study for future use on his farm to create space–time surfaces
of NDVI in near real-time. This will allow him to delineate those parts of the parcel
where additional management is required (e.g. parts where the NDVI has not in-
creased sufficiently during the past fortnight) and take action. The incentive for the
further development of space–time techniques must come primarily from the field
of applications. Data availability in precision agriculture is ever increasing and re-
liable methods are needed to distil useful information from the data and present
the information in a tangible and efficient way so that farmers and their advisers
can comprehend and use it. In this respect, precision agriculture may well be an
important application field that can stimulate and steer the further development of
space–time geostatistics.
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Chapter 6
Delineating Site-Specific Management Units
with Proximal Sensors

D.L. Corwin and S.M. Lesch

Abstract Conventional farming manages fields uniformly with no consideration
for spatial variation. This causes reduced productivity, misuse of finite resources
(e.g. water and fertilizers) and detrimental impacts on the environment. Site-specific
management units (SSMUs) have been proposed as a way of resolving the spatial
variation of various factors (i.e. soil, climate, management, pests, etc.) that affect
variation in crop yield. Mobile proximal sensors, such as those used to measure
apparent soil electrical conductivity (ECa/, can be used to characterize the spatial
variation of soil properties that affect crop yield. This Chapter provides an overview
of the work by the authors that has led to the delineation of SSMUs based on edaphic
and anthropogenic properties, with particular emphasis given to the geostatistical
techniques needed to direct soil sampling to characterize the spatial variation. The
approach uses geospatial proximal sensor measurements to locate the positions of
soil samples to characterize the variation in soil properties that affect crop yield
within a field. A crop yield response model is developed and maps of SSMUs based
on soil and crop yield information are produced. The methodology for delineating
SSMUs can be used whenever the proximal sensor measurements correlate with
yield. Maps of SSMUs provide the vital information for variable-rate technology
(e.g. site-specific fertilizer and irrigation water application).
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6.1 Introduction

6.1.1 The Need for Site-Specific Management

Tremendous strides have been made to expand the world’s supply of food. Even
though the world population has doubled over this time period, food production has
risen even faster with per capita food supplies increasing from less than 2000 calo-
ries per day in 1962 to more than 2500 calories in 1995 (World Resources Institute
1998). The rise in global food production has been credited to better seeds, expanded
irrigation, and greater fertilizer and pesticide use, commonly referred to as the Green
Revolution. However, the prospect of feeding a projected additional 3 billion people
over the next 30 years poses more challenges than have been encountered in the past
30 years. In the short term, global resource experts predict that there will be ade-
quate global food supplies, but the distribution of those supplies to malnourished
people will be the primary problem. Longer term, however, the obstacles become
more formidable, though not insurmountable. Although total yields continue to rise
on a global basis, there is a disturbing decline in the growth of yield with some
major crops such as wheat and maize reaching a ‘yield plateau’ (World Resources
Institute 1998).

Sustainable agriculture is viewed as the most viable means of meeting the food
demands of the projected world’s population, barring unexpected technological
breakthroughs. The concept of sustainable agriculture is predicated on a delicate
balance of maximizing crop productivity to keep pace with population growth and
maintaining economic stability while minimizing the use of finite natural resources
(e.g. water, fertilizers and pesticides) and the detrimental environmental impacts
of associated agrichemical pollutants. Arguably, the most promising approach for
attaining sustainable agriculture is precision agriculture or site-specific crop man-
agement.

Site-specific crop management, or more specifically site-specific management
(SSM) attempts to manage the soil, pests and crops based upon spatial variation
within a field (Larson and Robert 1991), whereas conventional farming treats a field
uniformly, ignoring the naturally inherent variability of soil and crop conditions
between and within fields. There is well-documented evidence that spatial varia-
tion within a field is highly significant and amounts to a factor of 3–4 or more for
crops (Birrel et al. 1995; Verhagen et al. 1995) and up to an order of magnitude or
more for soil (Corwin et al. 2003a). Specifically, SSM is the management of agri-
cultural crops at a spatial scale smaller than the whole field that takes account of
local variation to cost effectively balance crop productivity and quality, detrimen-
tal environmental impacts and the use of resources (e.g. water, fertilizer, pesticides,
etc.) by applying them when, where and in the amount needed. Spatial variation in
crops is the result of a complex interaction of biological (e.g. pests, earthworms,
microbes), edaphic (e.g. salinity, organic matter, nutrients, texture), anthropogenic
(e.g. leaching efficiency, soil compaction due to farm equipment), topographic (e.g.
slope, elevation) and climatic (e.g. relative humidity, temperature, rainfall) factors.
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6.1.2 Definition of Site-Specific Management Unit (SSMU)

Site-specific management units (SSMUs) have been proposed as a means of dealing
with the spatial variation of edaphic (i.e. soil related) properties that affect crop
productivity (or quality) to achieve the goals of SSM. A SSMU is simply a mapped
unit within a field that could be based on soil properties, landscape units, past yield,
etc. that is managed to achieve the goals of SSM. To manage within-field varia-
tion site-specifically, geo-referenced areas (or units) that are similar with respect
to a specified characteristic must be identified (van Uffelen et al. 1997). Ideally,
a site-specific management unit (SSMU) will account for the spatial variation of
all factors that affect variation in crop yield, including edaphic, meteorological,
biological, anthropogenic and topographic factors. To achieve this, the delineation
of SSMUs would be extremely complicated because all these must be considered.
One means of simplifying the complexity is to delineate SSMUs based on a single
factor, such as edaphic properties, and determine the extent of variation in yield
related to this factor.

The extent and conditions under which these spatial patterns are stable should
also be established. Yield maps provide information on the integrated effects of the
physical, chemical, and biological processes under certain weather conditions (van
Uffelen et al. 1997), and the spatial patterns of crop productivity provide a basis
for implementing SSM by indicating where varying crop inputs are needed (Long
1998). However, the inputs required to optimize crop productivity and minimize im-
pacts on the environment can be determined only if the factors that gave rise to the
observed spatial crop patterns are known (Long 1998). Yield maps alone cannot pro-
vide information to distinguish between the various sources of variation and cannot
give clear guidelines for management without information on the effects of varia-
tion in weather, pests and diseases, and soil physical and chemical properties on the
variability of a crop for a particular year (van Uffelen et al. 1997). Each factor that
affects within-field variation in yield needs to be characterized spatially to be able to
manage a crop on a site-specific basis. The spatial characterization of these factors
can be achieved with spatial measurements from a spectrum of proximal sensors.

6.1.3 Proximal Sensors

Ground-based proximal sensors generally include sensors that take measurements
from within a distance of 2 m from the soil surface. They may take measurements
of the soil, such as electrical, electromagnetic or radiometric sensors, or of plants,
such as crop yield or spectral sensors. Adamchuk et al. (2004) reviewed on-the-go
proximal soil sensors for precision agriculture and Barnes et al. (2003) provided a
concise review of ground-based sensor techniques as well as remote imagery sensors
for mapping soil properties.

According to Adamchuk et al. (2004), proximal sensors fall into six main catego-
ries: electrical and electromagnetic, optical and radiometric, mechanical, acoustic,
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Table 6.1 Selected recent references using proximal soil sensors to map soil properties for
applications in precision agriculture. Modification of tables from Adamchuk et al. (2004)

Category of
proximal sensor Review article Sensor Technical reference

Electrical and EMI Corwin and Lesch
(2005a)

ER Corwin and Lesch (2003)

EMI Corwin and Lesch
(2005b,c)

Capacitance Andrade et al. (2001)
Optical Ben-Dor et al.

(2009)a
Single wavelength Shonk et al. (1991)

Multi- or Hyperspectral Maleki et al. (2008),
Mouazen et al. (2007)

Radiometric Huisman et al.
(2003)

GPR Lunt et al. (2005)

Microwave Whalley and Bull (1991)
Mechanical Hemmat and

Adamchuk
(2008)

Draft Ehrhardt et al. (2001),
Mouazen and Roman
(2006)

Load cells and
penetrometers

Chung et al. (2003),
Verschoore et al. (2003)

Acoustic and
pneumatic

Microphone Liu et al. (1993)

Air pressure transducer Clement and Stombaugh
(2000)

Electrochemical ISFET Birrell and Hummel (2001),
Viscarra Rossel and
Walter (2004)

ISE Adamchuk et al. (2005),
Sethuramasamyraja et al.
(2008)

EMI, electromagnetic induction; ER, electrical resistivity; GPR, ground penetrating radar; ISFET,
ion-selective field effect transistor; ISE, ion-selective electrode.
aReview includes remote and proximal sensors.

pneumatic and electrochemical. Several studies have been conducted using proxi-
mal sensors with just a few of the more current ones listed in Table 6.1. The output
from each sensor is typically affected by more than one agronomic soil property.
Table 6.2 outlines the soil properties influencing each category of proximal sensor.

Electrical and electromagnetic sensors include electrical resistivity (ER), elec-
tromagnetic induction (EMI), time domain reflectometry (TDR) and capacitance
sensors. The most commonly used for field-scale on-the-go measurements are ER
and EMI (Corwin and Lesch 2005a). Electrical resistivity and EMI measure the
electrical conductivity of the bulk soil, which is referred to as the apparent soil
electrical conductivity (ECa). Corwin and Lesch (2005a) have provided a review
of ECa measurements in agriculture. Apparent soil electrical conductivity is af-
fected by a variety of soil properties including salinity, texture, water content,
organic matter, cation exchange capacity (CEC) and bulk density (Corwin and Lesch
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2005a). Capacitance sensors and TDR use the dielectric constant or relative per-
mittivity to infer the volumetric water content. There are commercially available
on-the-go ER (e.g. Veris 3100) and EMI units (e.g. Geonics EM38-MK2).

Optical sensors comprise single wavelength and hyperspectral reflectance
sensors, whereas radiometric sensors include microwave sensors and ground
penetrating radar (GPR). Like electrical and electromagnetic sensors, optical and
radiometric sensors are frequently influenced by a variety of soil properties (see
Table 6.2). However, there is a potential advantage of optical and radiometric mea-
surements in that the response in different parts of the spectral range may be affected
to varying degrees by different soil properties, enabling the separation of effects
(Adamchuk et al. 2004). As indicated by Baumgardner et al. (1985), soil reflectance
is influenced by a variety of properties including parent material, salts, iron oxides,
organic matter, particle size, moisture and mineral composition. Radiometric sen-
sors have been widely used to establish the spatial distribution of soil water content.

Mechanical sensors such as a strain gauge, load cell, or horizontal cone and
wedge penetrometer are used to measure soil mechanical resistance or soil com-
paction, which in turn provides information on soil moisture, texture and bulk
density. Similarly, acoustic and pneumatic sensors have been correlated to soil tex-
ture (Liu et al. 1993) and compaction (Clement and Stombaugh 2000).

Electrochemical sensors use either an ion-selective electrode (ISE) or ion-
selective field effect transistor (ISFET) to provide a direct means of measuring pH
or nutrient content (e.g. KC or NO3

�/ to evaluate soil fertility. Electrochemical
sensors have the distinct disadvantage of requiring a significant amount of time for
equilibrium between the sensor and the soil or soil solution.

To a varying extent from one field to the next, crop patterns are affected by
edaphic properties. Bullock and Bullock (2000) indicated that efficient methods for
measuring within-field variation accurately in soil physical and chemical properties
are important for precision agriculture. No single sensor will measure all the soil
properties that affect crop yield variation; therefore, combinations of sensors are
recommended, resulting in a mobile multi-sensor platform. Of all of the proximal
sensors, EMI and ER sensors are arguably the most thoroughly researched and com-
monly used for measuring the edaphic properties that affect crop yield (Corwin and
Lesch 2003, 2005a).

6.1.4 Objective

This chapter aims to provide the general knowledge and understanding to delineate
SSMUs based on edaphic and anthropogenic factors influencing crop yield that have
been identified and spatially defined using geo-referenced proximal sensor data.
Because the measurement of ECa is one of the most widely used and well-
understood soil measurements (Corwin and Lesch 2003, 2005a), it has been singled
out in this chapter to represent ground-based proximal sensors. However, the
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methodology that is described in this chapter for delineating SSMUs can be applied
to any of the sensors. In addition, this chapter illustrates the use of spatial and geo-
statistical analysis to calibrate and interpret geo-referenced proximal sensor data.

6.2 Directed Sampling with a Proximal Sensor

6.2.1 Complexity of Proximal Sensor Measurements
and the Role of Geostatistics

Numerous studies have related proximal sensors to crop yield (or quality) in a
precision agriculture context. A short list of some recent proximal sensor studies as-
sociated directly with SSM includes Adamchuk et al. (2007), Yan et al. (2007a, b),
Corwin et al. (2008), Vitharana et al. (2008), Morari et al. (2009), as well as those
listed in Table 6.1.

Corwin and Lesch (2003) warned of the complexity of proximal sensor mea-
surements, specifically spatial measurements of ECa, and provided guidance for the
application of ECa to precision agriculture. However, even now some of the most re-
cent proximal sensor studies demonstrate a lack of understanding of the complexity
of proximal sensor measurements. For example, the work by Yan et al. (2007a, b)
relates yield to ECa rather than to the edaphic properties affecting the ECa measure-
ment that concomitantly influence crop yield (or crop quality). By basing SSMUs
directly on ECa, rather than on the properties affecting its measurement at a field
site, SSMUs can be defined erroneously, in particular where more than one soil
property dominates the ECa measurement and affects crop yield or quality. In ad-
dition, basing SSMUs on ECa rather than on the properties that affect it does not
enable associated management recommendations because increases or decreases in
ECa involve changes in all the properties affecting it at a particular site.

Because proximal sensors are typically affected by more than one agronomic
property (i.e. soil- or plant-related properties), spatial measurements with proximal
sensors are best used to develop a sampling plan to characterize the spatial dis-
tribution of those properties that affect the sensor and that, in turn, influence crop
yield (or quality). The proximal sensor directed sampling approach aims to identify
sample locations that reflect the range and variability of agronomic properties that
affect the sensor measurement. Apparent soil electrical conductivity is not the prop-
erty that affects crop yield (or quality); rather it is the edaphic properties influencing
ECa (i.e. salinity, water content, texture, organic matter, bulk density) that directly
affect crop yield (or quality). Nevertheless, information from the proximal sensor
can be used to direct soil (or plant) sampling. Spatial statistics plays a crucial role in
establishing the sampling locations from geo-referenced proximal sensor data from
which soil (or plant) properties that directly affect yield are determined. It is these
latter data that enable the delineation of SSMUs with their associated management
recommendations to maximize yield (or quality).
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6.2.2 Practical Consideration of Differences in Support

Differences in support are important when using proximal sensors to direct soil
(or plant) sampling for site-specific management. First there is a difference in sup-
port between the proximal sensor (few m2 or less) and yield (generally tens of m2/

measurements, and between the soil (or plant) sample volume (0:075m3/ and the
proximal sensor’s volume of measurement (e.g. Geonics EM38 measures roughly
1–1.5 m3/. In many respects differences in support are strongly influenced by prac-
tical considerations of resources (i.e. time, labor and cost). As a rule-of-thumb, a
minimum number of samples needs to be taken at each scale to enable a comparison
of local (a few metres) and field-scale variation (tens to hundreds of metres). For ex-
ample, where local-scale variation is significantly less than field-scale variation sam-
pling directed by a proximal sensor will be viable, but as the scale of local variation
approaches the observed field-scale variation, the approach becomes less tenable. In
other words, the proximal sensor can resolve local variation because of its support
and intensity of measurement, whereas the yield monitor can resolve only the larger
scale variation that occurs within fields. For the soil and plant samples, regardless
of support, the variation that they resolve will depend on the intensity of sampling,
which cannot be as intensive as the sensor because of practical considerations.

6.3 Delineation of SSMUs with a Proximal Sensor

6.3.1 Geostatistical Mixed Linear Model

In a typical field survey where proximal sensor readings such as ECa are recorded,
the sensor data are often used to help predict a specific, unobserved soil property.
For instance, assume a dense grid of proximal sensor data has been acquired across
a field and soil samples have been taken at some locations so that the data from
both sources can be used to estimate a model that can predict the detailed spatial
pattern of the soil property measured by or correlated with the proximal sensor
measurement. Assume that the relationship between the soil property measurement
and sensor data can be approximated adequately using the following geostatistical
mixed linear model (Haskard et al. 2007):

y D Xˇ C �.s/C ".s/; (6.1)

where y represents an .n � 1/ vector of observed soil property data, s is the cor-
responding vector of paired (sx; sy/ survey location coordinates, X represents an
.n � p/ fixed data matrix that includes observed functions of sensor readings and
possibly also the coordinates, “ is a .p�1/ vector of unknown parameter estimates,
�.s/ represents a zero mean, second-order stationary spatial Gaussian error process
and ©.s/ is a vector of jointly independent normal (0, �2

n ) random variables. Typical



6 Delineating Site-Specific Management Units with Proximal Sensors 147

stationary spatial structures for �.s/ are well documented in the spatial statistical
and geostatistical literature; examples in two dimensions include the isotropic and
anisotropic exponential and spherical covariance structures, as well as the Matérn
class of covariance functions (Cressie 1993; Wackernagel 1998; Schabenberger and
Gotway 2005; Webster and Oliver 2007). Note also that the second ©.s/ error com-
ponent is usually referred to as the ‘nugget’ effect in geostatistics (Webster and
Oliver 2007).

Equation 6.1 represents a versatile spatial linear prediction model that can incor-
porate various types of modelling assumptions. The deterministic component of the
model (X“) can be defined to include trend surface parameters and or additional
collocated soil-property measurements, in addition to various hypothesized tar-
get property and sensor relationships. As noted above, the stochastic error terms
(�.s/C ©.s/) can be parameterized to match the geostatistical covariance functions
commonly used in kriging. Indeed, Eq. 6.1 is identical to universal kriging when
(X“) contains only trend surface parameters, and kriging with external drift when
(X“) contains only sensor readings. In addition, both ordinary kriging and regres-
sion kriging models can also be derived as special cases of Eq. 6.1 (Schabenberger
and Gotway 2005; Haskard et al. 2007).

In the most general case, (X“) may contain multiple fixed effects and the residual
errors are assumed to be spatially autocorrelated. Assume that the corresponding
residual errors follow a Gaussian (e.g. multivariate normal) distribution defined as

�.s/ � G.0; �2
s C.�//;

".s/ � G.0; �2
nI/;

cov f�.s/; ©.s/g D 0 (6.2)

)
var f�.s/C ©.s /g D �2

s C.�/C �2nI D †;

where† is assumed to be positive definite and C.�/ represents the correlation func-
tion of a second-order stationary error process (for example, C.�/ could represent an
isotropic exponential correlation function with range parameter �). When the covari-
ance structure is known up to a proportionality constant in the geostatistical mixed
linear model (i.e.† D �2V, where V is assumed to be known a priori), “ of Eq. 6.1
can be estimated by generalized least squares (Rao and Toutenburg 1995). How-
ever, the specific † hyper-parameter values are rarely known a priori. In practice, “

and the variance structure † are jointly estimated from the sample data, typically
by maximum likelihood (ML) or residual maximum likelihood (REML) estima-
tion (Littell et al. 1996; Lark et al. 2006). The ML or REML † hyper-parameter
estimates are then returned to the model to compute the fixed effect parameter esti-
mates, “, and model predictions.

Conditional on a known covariance structure, standard mixed linear modelling
theory (Cressie 1993) can be used to show that the best linear unbiased estimator
for ˇ is

O“ D .XT†�1X/�1XT†�1y; (6.3)
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with a corresponding variance of

var. O“/ D .XT†�1X/�1: (6.4)

Likewise, one can show that the best linear unbiased prediction for yz (where yz

represents the remaining (non-sampled) survey locations can be expressed as

Oyz D .Xz“ C†yz†
�1.y � X/ ; (6.5)

where Xz represents the design matrix associated with yz and †yz represents the
model-based covariance matrix between yz and the observed sample data y. In ad-
dition, the corresponding variance estimate associated with this prediction vector is

var.yz � Oyz/ D †z � †yz†
�1†T

yz

C �
Xz � †yz†

�1X
� �

XT†�1X
��1 �

Xz � †yz†
�1X

�T
; (6.6)

where †z represents the model-based variance matrix of yz (Cressie 1993). Once
again, these predictions and variance estimates are identical to those obtained from
universal kriging and or kriging with external drift models (when the design matrix
is specified appropriately to give such models).

6.3.2 Soil Sampling Strategies Based on Geo-Referenced
Proximal Sensor Data

A minimum number of sites for soil (or plants) must be sampled to calibrate the geo-
statistical mixed linear model following the proximal sensor survey. In general, the
most common strategies currently used can be classified as either probability-based
(design-based) or prediction-based (model-based) sampling approaches. A brief de-
scription of each of these approaches is given below.

Probability sampling includes techniques such as simple random, stratified ran-
dom and cluster sampling. Thompson (1992) provides a review of these. Probability
sampling has a well developed underlying theory (Thompson 1992; Brus and de
Gruijter 1993), but it was not designed specifically for estimating models. Indeed,
most probability sampling strategies explicitly avoid incorporating any parametric
modelling assumptions; they rely instead on the principles of randomization that are
built into the design for drawing statistical inference.

Prediction-based sampling strategies, which are adopted in geostatistics and
time-series analysis, are focused explicitly towards model estimation. The under-
lying theory behind this approach for finite population sampling and inference is
discussed in detail in Valliant et al. (2000). More generally, response surface and
optimal experimental design theory are closely related areas of statistical research in
which sampling designs are studied specifically from the viewpoint of model estima-
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tion (Myers and Montgomery 2002). Techniques from these two subject areas have
been applied to the optimal collection of spatial data by Müller (2001), the specifica-
tion of optimal designs for variogram estimation by Müller and Zimmerman (1999),
the estimation of spatially referenced regression models by Lesch et al. (1995) and
Lesch (2005), and the estimation of geostatistical linear models by Zhu and Stein
(2006) and Brus and Heuvelink (2007). Conceptually similar types of non-random
sampling designs for variogram estimation have been introduced by Russo (1984)
and Warrick and Myers (1987).

Sampling on a grid has been used for many years in soil science; however, it
is not strictly randomized even when a random starting point is used. As a conse-
quence there is no direct way of estimating the standard errors of the mean from a
design-based viewpoint. Grid sampling has generally been favored in model-based
sampling designs and has also been commonly used in precision agriculture because
it is easy to implement and results in an even distribution of sample sites. Grid sam-
pling is often used when kriging is to be used for analysis and mapping because it
is an effective way to minimize the average interpolation error (Burgess et al. 1981;
Burgess and Webster 1984).

Theoretically, any of the above sampling approaches can be used to estimate
a spatial or geostatistical model, although each approach has various strengths and
weaknesses. Lesch (2005) compares and contrasts probability- and prediction-based
sampling strategies in more detail, and highlights some of the strengths of the
prediction-based sampling approach.

The prediction-based sampling approach discussed by Lesch (2005) was de-
signed specifically for use with ground-based ECa sensor readings. A minimum
number of samples for calibration is selected based on the observed magnitudes
and spatial locations of the ECa data. These sites are chosen in an iterative, non-
random way to (i) optimize the estimation of a regression model (i.e. minimize
the mean square prediction errors produced by the calibration function) and (ii)
maximize simultaneously the average separation between adjacent sampling lo-
cations to reduce the possibility of spatially correlated residual errors. Intuitively,
this sampling approach represents a hybrid of a response surface sampling tech-
nique (Myers and Montgomery 2002) with a space-filling algorithm (Müller 2001).
Lesch (2005) demonstrated that such a sampling approach can substantially out-
perform probability-based sampling with respect to several important model-based
prediction criteria, particularly optimal estimation of the fixed-effect part of a spatial
(or geostatistical) linear model. Response surface sampling design software, known
as ESAP, has been developed specifically for use with ECa measurements and
other proximal sensors (Lesch et al. 2000). See http://www.ars.usda.gov/services/
software/software.htm for this open access software.

There are two main advantages of the response surface approach. First, the
number of samples required for estimating a calibration function can be reduced
substantially in comparison to more traditional design-based sampling. Response
surface designs are commonly used to minimize the estimation variance of lin-
ear statistical models in the non-spatial setting. Second, this approach lends itself
naturally to the analysis of proximal sensor data. Indeed, many types of ground-,

http://www.ars.usda.gov/services/software/software.htm
http://www.ars.usda.gov/services/software/software.htm
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airborne- and satellite-based remotely sensed data are often collected specifically
because one expects them to correlate strongly with some property of interest (e.g.
crop stress, soil type, soil salinity, etc.). Nevertheless, the exact parameter estimates
associated with the calibration model may still need to be determined by some type
of site-specific sampling design. The response surface approach explicitly optimizes
this site selection process.

6.3.3 Applications of Geostatistical Mixed Linear Models
to Proximal Sensor Directed Surveys

Geostatistical mixed linear models can be used effectively to delineate SSMUs using
one of two approaches. In the first (and more common) approach, the model is used
directly to map one or more specific soil (or plant) properties. Such an approach is
useful when the SSMU can be defined effectively by only a few properties, and each
of these properties correlates reasonably well with the sensor readings. Some well-
known examples of application include the mapping of field-scale soil salinity and
or soil texture patterns, typically for leaching or reclamation of the soil using ECa

measurements. Corwin and Lesch (2005b, c) and Lesch (2005) discuss the survey
protocols associated with this approach in detail, together with various case studies.

When a geostatistical mixed linear model is used to produce detailed maps of
just one or two primary soil (or plant) properties by direct prediction using proximal
sensor data, the delineation of SSMUs is straightforward. For a single property, the
resulting map defines the SSMU boundaries. Likewise, if two or three properties are
considered, a GIS overlay (or similar operation) of the predicted values can usually
be used to define and determine the SSMUs. Note that the ‘optimal’ boundaries
and or size of the units are nearly always application specific and subject to the
operational constraints of the associated farming management practices.

In the second approach, proximal sensor data are again used to direct soil (or
plant) sampling. Soil (or plant tissue) from the selected sampling locations is then
analysed for several secondary soil chemical and physical properties (or plant prop-
erties), and it is these measurements that are used for prediction in the geostatistical
model. This approach was originally suggested by Corwin and Lesch (2003); it is
well suited for determining the primary SSMUs influencing a crop response func-
tion. Note that in this case the proximal sensor data are not used directly in the
geostatistical model as explicit predictor variables. Rather, the model relates the
collocated soil chemical and physical properties (or plant properties) to the crop re-
sponse levels, which enables us to relate the SSMUs better to these individual prop-
erties. It is the secondary soil properties that affect ECa (i.e. salinity, water content,
etc.) that are used as the predictor variables, rather than the sensor data themselves.

If the geostatistical model is used to estimate a crop response equation, which
in turn is a function of measured soil chemical and physical properties, the de-
lineation of the SSMUs can become more complex. Crop response equations can
often include many different soil chemical and physical property effects, and these
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individual effects may not all be spatially well defined or easily predicted from the
sensor data. In addition, the overlaying of many soil properties tends to produce
overly complex mosaic maps that are not easily interpreted or delineated into con-
tiguous SSMUs (see Chapter 8). In such a situation, considerable subjective intuition
may be needed to define a useful set of SSMUs.

6.4 Case Study Using Apparent Soil Electrical Conductivity
(ECa/ – San Joaquin Valley, CA

The objective of this case study is (i) to use an intensive ECa survey to direct soil
sampling and to identify edaphic properties that affect cotton yield and (ii) to use
this spatial information to make recommendations for SSM of cotton by delineat-
ing SSMUs based solely on the edaphic and anthropogenic properties that affect
cotton yield. This paper draws from previous more detailed work conducted and
published by Corwin and colleagues (Corwin and Lesch 2003, 2005b; Corwin and
Lesch 2003).

6.4.1 Materials and Methods

6.4.1.1 Study Site

The study site is a 32.4 ha field in the Broadview Water District on the west side
of the San Joaquin Valley in central California. The soil at the site is a Panoche
silty clay (thermic Xerorthents), which is slightly alkaline with good surface and
subsurface drainage. The subsoil is thick, friable, calcareous, and easily penetrated
by roots and water. In the arid southwestern USA the primary soil properties influ-
encing crop yield are salinity, soil texture and structure, plant-available water, trace
elements (particularly B), and ion toxicity from NaC and Cl� (Tanji 1996).

6.4.1.2 ECa-Directed Soil Sampling Protocols for Site-Specific Management

General survey protocols for ECa-directed soil sampling developed by Corwin
and Lesch (2005b, c) were followed to characterize soil spatial variation. The
basic elements of a field-scale ECa survey applied specifically to precision agri-
culture include: (i) site description and ECa survey design, (ii) geo-referenced ECa

data collection, (iii) soil sampling strategies based on geo-referenced ECa data,
(iv) soil sample collection, (v) physical and chemical analysis of pertinent soil prop-
erties, (vi) statistical and spatial analysis, (vii) geographic information system (GIS)
database development and (viii) approaches for delineating SSMUs. The basic steps
within each component are outlined in Table 6.3 and discussed in detail in Corwin
and Lesch (2005b).
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Table 6.3 Outline of steps for an ECa field survey for precision agriculture applications. (Modified
from Corwin and Lesch 2005b)

1. Site description and ECa survey design

(a) Record site metadata
(b) Define project’s or survey’s objective
(c) Establish site boundaries
(d) Select GPS coordinate system
(e) Establish ECa measurement intensity

2. ECa data collection with mobile GPS-based equipment

(a) Geo-reference site boundaries and significant physical geographic features with GPS
(b) Measure geo-referenced ECa data at the pre-determined spatial intensity and record

associated metadata

3. Soil sampling strategies based on geo-referenced ECa data

(a) Statistically analyse ECa data using an appropriate statistical sampling design to
establish the soil sample site locations

(b) Establish sampling depth, sample depth increments and number of cores per site

4. Soil core sampling at specified sites designated by the sample design

(a) Obtain measurements of soil temperature through the profile at selected sites
(b) At randomly selected locations obtain duplicate soil cores within a 1-m distance of one

another to establish local-scale variation of soil properties
(c) Record soil core observations (e.g. mottling, horizonation, textural discontinuities, etc.)

5. Laboratory analyses of appropriate soil physical and chemical properties defined by project
objectives

6. Statistical and spatial analyses to determine the soil properties that affect ECa and crop yield
(provided ECa correlates with crop yield):

(a) Perform a basic statistical analysis of physical and chemical data by depth increment and
by composite depths

(b) Determine the correlation between ECa and physico-chemical soil properties by depth
increment and by composite depths

(c) Determine the correlation between crop yield and physical/chemical soil properties by
depth and by composite depths to determine depth of concern (i.e. depth with
consistently highest correlation, whether positive or negative, of soil properties to yield)
and the soil properties that have a significant effect on crop yield (or crop quality)

(d) Conduct an exploratory graphical analysis to determine the relationship between the
significant physical and chemical properties and crop yield (or crop quality)

(e) Formulate a spatial linear regression (SLR) model that relates soil properties
(independent variables) to crop yield or crop quality (dependent variable)

(f) Adjust this model for spatial autocorrelation, if necessary, using residual maximum
likelihood (REML) or some other technique

(g) Conduct a sensitivity analysis to establish dominant soil property affecting yield or
quality

7. GIS database development and graphic display of spatial distribution of soil properties
8. Approaches for delineating site-specific management units
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For the protocols to be applicable to SSM, ECa must be correlated to crop yield
(or quality), which would indicate that ECa is measuring some edaphic property (or
properties) that affect crop yield (or quality). The correlation coefficient (r) for yield
and ECa was r D 0:51 (p < 0:01).

6.4.1.3 Yield Monitoring and ECa Survey

Spatial variation of cotton yield was measured at the study site in August 1999
using a four-row cotton picker equipped with a yield sensor and global positioning
system (GPS). The yield sensors measured average seed cotton yield. All subsequent
references to cotton yield are with respect to seed cotton yield. A total of 7706 cotton
yield readings were recorded (Fig. 6.1a). Each yield observation represented an area
of approximately 42m2. From August 1999 to March 2000 the field was fallow.

On March 2000 an intensive ECa survey was conducted using mobile fixed-
array electrical resistivity equipment developed by Rhoades and colleagues
(Rhoades 1992; Carter et al. 1993) that measured ECa at 9-m intervals (4000
ECa readings). The fixed-array electrodes were spaced to measure ECa to a depth of
1.5 m using a Wenner array electrode configuration with an inter-electrode spacing
of 1.5 m. A map of the ECa measurements is shown in Fig. 6.1b.

Fig. 6.1 Maps of: (a) cotton yield and (b) ECa measurements including 60 soil sampling sites
(Modified from Corwin and Lesch (2003) with permission)
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6.4.1.4 Sample Site Selection, Soil Sampling and Soil Analyses

Data from the ECa survey were used to direct the selection of 60 sample sites. The
statistics software ESAP-95 version 2.01 (Lesch et al. 2000) was used to deter-
mine the sample sites from the ECa survey data. The software uses a model-based
response-surface sampling strategy. The selected sites reflect the observed signal
variation in ECa while simultaneously maximizing the spatial uniformity of the
sampling design across the study area. Figure 6.1b shows the spatial ECa survey
data and the locations of the 60 soil sampling sites. Soil samples were taken at
0.3-m increments to a depth of 1.8 m and were analysed for the physical and chem-
ical properties thought to influence cotton yield. They included gravimetric water
content (™g/, bulk density (¡b/, pH, B, NO3-N, Cl�, electrical conductivity of the
saturation extract (ECe/, leaching fraction (LF), % clay and saturation percentage
(SP). The laboratory analyses followed the methods outlined in Agronomy Mono-
graph No. 9 (Page et al. 1982).

The cotton yield data were not collocated with the ECa or soil data; therefore,
cotton yield was predicted at the 60 soil sampling sites by ordinary kriging. The ex-
perimental variogram computed by the usual method of moments on the yield data
was fitted by an isotropic exponential function with a large nugget effect (Fig. 6.2).
The considerable variation in yield over distances less than the sample spacing was
most likely due to large measurement errors caused by the yield-monitoring dynam-
ics (see Chapter 4). Nonlinear least-squares estimation was used to derive the three
variogram model parameter estimates (and standard errors): nugget (c0/ D 0:76

(0.02), partial sill .c/ D 1:08 (0.02) and distance parameter of the exponential func-
tion .r/ D 109:3 (6.0) (approximate range, 3r D 327:9m). The mean estimated

Fig. 6.2 Variogram of cotton yield. The points are the experimental variogram computed on all
7706 yield data and the solid line is the fitted exponential variogram model (see Section 1.3.2)
(Taken from Corwin and Lesch (2003) with permission)
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yield for the 60 sample sites was 5:95Mg ha�1, and individual estimates ranged
from 3.40 to 7:41Mg ha�1. The associated kriging standard errors were from 0.93
to 0:96Mg ha�1.

6.4.1.5 Statistical and Spatial Analyses

The statistical analyses done using SAS software (SAS Institute 1999) were:
(i) correlation analysis between ECa and interpolated cotton yield using data from
the 60 sites, (ii) exploratory statistical analysis to identify the significant soil
properties that affect cotton yield and (iii) development of a crop yield response
model using REML estimation techniques. Exploratory statistical analysis was done
to determine the soil properties that have a significant effect on cotton yield and to
establish the general form of the cotton yield response model. This required two
stages of analysis: (i) a correlation analysis in conjunction with scatter plots of yield
versus potentially significant soil properties and (ii) a preliminary multiple linear
regression (MLR) analysis.

The commercial GIS software ArcView 3.3 (ESRI 2002) was used to compile,
manipulate, organize and display all spatial data. The final delineation of SSMUs
was done using the GIS, after exploratory statistical analyses and estimating a crop
yield response model adjusted for spatial autocorrelation. A sensitivity analysis of
the adjusted crop yield response model was used to identify the most significant
property influencing crop yield. This analysis calculated how much the predicted
yield decreased when the value for each soil property was shifted up (or down) by 1
standard deviation from its mean (Corwin and Lesch 2003).

6.4.2 Results and Discussion

6.4.2.1 Correlation Between Crop Yield and ECa

The correlation between ECa and yield at the 60 soil sampling sites was 0.51
(r coefficient of correlation). The moderate correlation between yield and ECa

suggests that some soil property(ies) affect both ECa and cotton yield making an
ECa-directed soil sampling strategy potentially viable at this site. The visual simi-
larity in the spatial distributions of ECa and cotton yield in Fig. 6.1 confirms their
close relationship.

6.4.2.2 Exploratory Statistical Analysis

Both preliminary MLR and correlation analysis showed that the 0–1.5 m soil depth
resulted in the strongest correlations between yield and soil properties and best fit
of the MLR to the data for the various depths considered (i.e. 0–0.3, 0–0.6, 0–0.9,
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Table 6.4 Simple correlation coefficients between ECa and soil properties
and between cotton yield and soil properties. Modified from Corwin and
Lesch (2003)

Soil propertya Fixed-array ECa
b Cotton yield c

™g 0:79 0:42

ECe 0:87 0:53

B 0:88 0:50

pH 0:33 �0:01
% clay 0:76 0:36

¡b �0:38 �0:29
NO3-N 0:22 �0:03
Cl� 0:61 0:25

LF �0:50 �0:49
SP 0:77 0:38
aProperties averaged over 0–1.5 m.
bPearson correlation coefficients based on 60 observations.
cPearson correlation coefficients based on 59 observations.
™g; gravimetric water content; ECe, electrical conductivity of the saturation
extract (dS m�1); LF, leaching fraction; SP, saturation percentage.

0–1.2 and 0–1.5 m); 0–1.5 m was considered to correspond to the active root zone.
The correlation analysis indicated that the following soil properties are those most
significantly related to cotton yield: ECe, LF, pH, % clay, ™g and ¡b. Table 6.4 shows
that the correlation coefficients between ECa and ™g, ECe, B, % clay, ¡b, Cl�, LF
and SP are significant at the 0.01 level. The strongest correlations are between ECa

and ™g, ECe, B, % clay and SP. Note that B is not measured directly by ECa. The
strong correlation between B and ECa is an artifact due to its close correspondence
to salinity (i.e. ECe/ as a consequence of leaching. The strong correlation between
ECa and both % clay and SP is expected because it reflects the effect of texture on the
ECa. In this particular field, ECa is strongly correlated with salinity, ™g and texture.
Table 6.4 also gives the correlation between cotton yield and the soil properties; the
strongest correlation is with salinity (ECe/.

A scatter plot of ECe and yield indicates a quadratic relationship where yield
increases and then decreases (Fig. 6.3a). The scatter plot of LF and yield shows a
negative, curvilinear relationship (Fig. 6.3b). Yield shows a minimal response to LF
below 0.4 and it declines rapidly for LF > 0.4. Clay percentage, ™g and ¡b appear
to be linearly related to yield to various degrees (Figs. 6.3c, f, respectively). Al-
though there is clearly no correlation between yield and pH (r D �0:01, Table 6.4;
Fig. 6.3d); pH became significant in the presence of the other variables, which be-
came apparent in both the preliminary MLR analysis and final yield response model.

Based on the exploratory statistical analysis, an empirical cotton yield response
model was specified as:

Y D ˇ0 C ˇ1 .ECe/C ˇ2 .ECe/
2 C ˇ3 .LF/2

Cˇ4 .pH/C ˇ5 .% clay/C ˇ6
�
™g

� C ˇ7 .¡b/C ": (6.7)
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Fig. 6.3 Scatter plots of soil properties and cotton yield: (a) electrical conductivity of the satu-
ration extract (ECe, dS m�1/, (b) leaching fraction, (c) percentage clay, (d) pH, (e) gravimetric
water content (g g�1/ and (f) bulk density (g cm�3) (Taken from Corwin and Lesch (2003) with
permission)

In this model, the relationships between cotton yield (Y ) and pH, % clay, ™g and
¡b are assumed to be linear; the relationship between yield and ECe is assumed to
be quadratic; the relationship between yield and LF is assumed to be curvilinear;
ˇ0, ˇ1, ˇ2, . . . , ˇ7 are the regression model parameters and " represents the random
error component.

6.4.2.3 Crop Yield Response Model Development

The initial estimation of Eq. 6.7 by ordinary least squares resulted in the following
simplified crop yield response model:

Y D 20:90C 0:38 .ECe/� 0:02 .ECe/
2 � 3:15 .LF/2 � 2:22 .pH/C 9:27

�
™g

� C ":

(6.8)

In this initial analysis, the parameter estimates for % clay and ¡b were not significant
in the t-tests and were dropped from the regression model (all other parameters
were significant near or below the 0.05 level). The R2 value for Eq. 6.8 was 0.61
indicating that 61% of the estimated spatial variation in yield could be described
successfully by this model. However, a variogram of the residuals from the fitted
function (Fig. 6.4) indicates that the errors are clearly spatially correlated, implying
that Eq. 6.8 should be refitted using REML to adjust for spatial autocorrelation.
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Fig. 6.4 Variograms estimated on the residuals from the ordinary least-squares yield regression
model (Eq. 6.8) by residual maximum likelihood (REML) (dashed line) and method of moments
(MoM). The symbols are the experimental variogram estimated by MoM for the 59 calibration
locations and the solid line is the fitted model (Modified from Corwin and Lesch (2003) with
permission)

After re-fitting Eq. 6.8 using an isotropic exponential covariance structure without
a nugget effect, the following crop yield response model estimated by REML was
obtained:

Y D 19:28C 0:22 .ECe/� 0:02 .ECe/
2 � 4:42 .LF/2 � 1:99 .pH/C 6:93

�
™g

� C ":

(6.9)

The dashed line in Fig. 6.4 represents the variogram model estimated by REML
(sill D 0:39, distance parameter D 66.2 m (working range D 198.6 m)). Note that
the sill variance is larger than for the method-of-moments variogram of the residuals
because the residuals from the trend are biased and the variogram is underesti-
mated (Rao and Toutenburg 1995). The bias increases with increasing lag distance
(Cressie 1993); this occurs in Fig. 6.4 to the distance at which the asymptotic sill of
the exponential function is reached.

Figure 6.5 shows the observed versus predicted cotton yield estimates for Eq. 6.9.
Figure 6.5 suggests that the estimated regression relationship is reasonably success-
ful at reproducing the predicted yield estimates. A sensitivity analysis showed that
LF was the single most significant factor affecting cotton yield; the degree of pre-
dicted yield sensitivity to a one standard deviation change in the ECe, LF, pH and
™g resulted in % yield reductions of 4.6%, 9.6%, 5.8% and 5.1%, respectively. The
point of maximum yield with respect to salinity was calculated by setting the first
partial derivative of Eq. 6.9 to zero with respect to ECe. We note in passing that the
value of 7:17 dS m�1 obtained is quite similar to the salinity threshold for cotton
(7:7 dS m�1) reported by Maas and Hoffman (1977).
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Fig. 6.5 Observed versus predicted estimates of cotton yield using Eq. 6.9. Dotted line is a 1:1
relationship (Taken from Corwin and Lesch (2003) with permission)

6.4.2.4 Site-Specific Management Units

Figure 6.6a–d shows the ordinary kriged maps of the four significant soil properties
(0–1.5m) that affect cotton yield: (a) soil salinity (ECe, dS m�1/, (b) leaching frac-
tion (LF), (c) gravimetric water content (™g, kg kg�1/ and (d) soil pH. Ideally, if
each of these four soil properties can be suitably adjusted, then in theory an optimal
cotton yield could be achieved across the entire field. Based on Eq. 6.9, scatter plots
of cotton yield against soil properties (Fig. 6.2) and the corresponding soil property
maps (Fig 6.6), management recommendations were made that prescribed spatially
what could be done to increase cotton yield in those areas with less than the opti-
mal yield. Four recommendations can be made to improve cotton productivity at the
study site: (i) reduce the LF in highly leached areas (i.e. areas where LF > 0.5), (ii)
reduce salinity by increased leaching in areas where the average root zone (0–1.5 m)
salinity is > 7:17 dS m�1, (iii) increase the plant-available water in coarse-textured
areas by more frequent irrigation and (iv) reduce the pH where it is >7.9. The ratio-
nale for each recommendation is discussed in Corwin and Lesch (2003).

Corwin and Lesch (2005a) subsequently delineated the SSMUs shown in Fig. 6.7
that indicate those areas that are pertinent to the above recommendations. All four
recommendations can be accomplished by improving water application timing and
distribution with variable-rate irrigation technology and by the precise application
of soil amendments. Strongly leached zones were delineated where the LF needed to
be reduced to � 0:5; markedly saline areas were defined where the salinity needed
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Fig. 6.6 Kriged maps of the four most significant soil properties (0–1.5 m) that affect cotton yield:
(a) electrical conductivity of the saturation extract (ECe, dS m�1), (b) leaching fraction (LF),
(c) gravimetric water content (™g, kg kg�1) and (d) pH (Taken from Corwin and Lesch (2003)
with permission)

Management Recommendations

for Site-Specific Management

Units

ECa-directed soil sample locations

Leaching fraction: reduce LF to < 0.4

Salinity: reduce ECe to < 7.17 dS/m

Coarse texture requires more frequent

irrigation

pH: reduce pH to < 7.9

N

Fig. 6.7 Site-specific management units (SSMUs) for a 32.4-ha cotton field in the Broadview
Water District of central California’s San Joaquin Valley. Recommendations associated with the
SSMUs are for: (a) leaching fraction, (b) salinity, (c) texture and (d) pH (Taken from Corwin and
Lesch 2005a)
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to be reduced below the salinity threshold for cotton, which was established from
Eq. 6.9 to be ECe D 7:17 dS m�1 for this field; areas of coarse texture were defined
that needed more frequent irrigation and areas were identified where the pH needed
to be reduced below a pH 8 with a soil amendment such as OM. Although this
work has delineated within-field units where associated site-specific management
recommendations would optimize the yield, it still falls short of integrating meteo-
rological, economic and environmental impacts on within-field crop yield variation.

6.5 Conclusion

Since all proximal sensors can be, and generally are, influenced by more than one
property that can affect plant yield (or quality), the most appropriate use of geo-
referenced proximal sensor data is to direct soil (or plant) sampling to determine
the spatial distribution of properties affecting crop yield (or quality). Directed soil
(or plant) sampling with proximal sensor data provides a means of establishing the
properties that have most effect in crop yield (or quality) and of mapping the distri-
bution of these properties. In addition, it provides sufficient information to develop
a crop yield (or quality) response model that relates yield to edaphic or other prop-
erties affecting yield. The spatial distribution of the properties that have most effect
on yield (or quality) together with a crop yield (or quality) response model pro-
vide sufficient information to delineate SSMUs with associated recommendations
to increase yield (or improve quality).

Even though ECa-directed soil sampling provides a viable means of identifying
some soil properties that affect within-field variation of yield, it is only one piece of
a complicated puzzle of interacting factors that result in the observed within-field
variation in crops. Crop yield is affected by complex interactions of meteorologi-
cal, biological, anthropogenic, topographic and edaphic factors. Furthermore, SSM
requires more than just a myopic look at crop productivity. It must balance sus-
tainability, profitability, crop productivity and quality, optimization of inputs and
minimization of environmental impacts.

Mobile platforms containing multiple proximal sensors are currently being de-
veloped and tested to provide the full complement of spatial data needed to identify
and spatially characterize not only edaphic but anthropogenic, topographic, meteo-
rological and biological properties that influence plant growth. These platforms will
provide multiple layers of spatial information enabling the delineation of SSMUs
well beyond the capability of single proximal sensor platforms.
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Chapter 7
Using Ancillary Data to Improve Prediction
of Soil and Crop Attributes in Precision
Agriculture

P. Goovaerts and R. Kerry

Abstract This chapter describes three geostatistical methods to incorporate
secondary information into the mapping of soil and crop attributes to improve
the accuracy of their predictions. The application of the methods is illustrated in
two case studies. Cokriging is the multivariate extension of the well known ordi-
nary kriging. It does not require ancillary data to be available at all nodes of the
interpolation grid, whereas kriging with external drift and simple kriging with local
means do. Cokriging, however, is more demanding in terms of variogram inference
and modelling. The other two methods use ancillary data to model the spatial trend
of the primary variable. Kriging with an external drift can account for local changes
in the linear correlation between primary and secondary variables. Simple kriging
with local means, which applies kriging to regression residuals and adds the kriged
residual to the regression estimate, is the most straightforward of these methods
to implement. The prediction performance of each technique was evaluated by
cross-validation. As the results are site-specific, the choice of technique for a given
site should be guided by the results of cross-validation.

Keywords Cokriging � Cross-variogram � Kriging with external drift � Simple
kriging with local means � Soil � Ancillary data

7.1 Introduction

Contour maps that characterize the variation in soil and crop attributes accurately
within fields are a fundamental requirement for precise crop management. Chapter 2
in this book indicates that the accuracy of predictions used for such maps depends
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on the quality of sample information. Many soil and crop attributes, however, are
recorded by the time-consuming and expensive methods of sampling in the field
followed by laboratory analyses. Consequently, many precision farmers take only a
small number of samples. One sample per hectare has become almost an indus-
try standard (Godwin and Miller 2003), but this sampling intensity is governed
by economic concerns and bears no relationship to the sampling requirements to
resolve the variation present in a particular field. Often ancillary information is cor-
related with the soil and crop information and can indicate the approximate scale
of variation present in these. Chapter 2 describes how the scale of variation can be
characterized, with little additional expense, by ancillary data to determine an ap-
propriate sampling interval. It also examines approaches to minimize the number of
samples that need to be obtained, but it does not investigate the merits of ancillary
data to improve prediction. Ancillary data provide a dense cover of the field yet are
relatively inexpensive to obtain. Several sources of ancillary data such as yield data,
electrical conductivity (ECa/, remotely sensed images, digital elevation models and
information on soil series from polygon maps are available to the precision farmer.

This chapter is concerned primarily with the merits of various methods of in-
corporating ancillary data into the kriging procedure, namely by: cokriging (CK),
kriging with an external drift (KED) and simple kriging with local means (SKlm)
using soil type or other ancillary data. Each of these methods is explained in detail
by Goovaerts (1997). The existing literature shows that these methods of incorpo-
rating ancillary data into the kriging procedure have been widely adopted in the
geosciences, hydrology, soil science and climatology. They have not been widely
applied in precision agriculture, but there have been studies that illustrate the value
of these techniques. For example, Dobermann and Ping (2004) compared the merits
of each of the above techniques for improving yield maps with information from
remotely sensed images, and Ge et al. (2007) investigated regression kriging (RK)
and visible and near infrared spectroscopy (VNIR) for estimating soil properties.
Regression kriging is a name often used for SKlm. It has been used by Kravchenko
and Robertson (2007) with topographic and yield data to improve estimates of soil
carbon, and by Triantafilis et al. (2001), together with CK to estimate soil salinity
from electrical conductivity (ECa/ data. Kriging with an external drift and RK have
been used by Lesch and Corwin (2008) with ECa and remotely sensed imagery to
improve predictions of various soil properties, whereas Baxter and Oliver (2005)
used KED with elevation data to improve the prediction of soil nitrogen. Kozar
et al. (2002), Tarr et al. (2005) and Vitharana et al. (2006) used CK to improve the
mapping of selected soil properties with terrain information and ECa as the sec-
ondary data. Some of the studies mentioned above use only one covariate in the
interpolation process, but the use of more than one in combination may improve the
accuracy of prediction.

This chapter illustrates how several geostatistical methods that incorporate an-
cillary data can improve the accuracy of predicting soil properties. We provide a
short background to the geostatistical theory of CK, KED and SKlm. The results of
applying these methods for prediction are compared with those from ordinary krig-
ing (OK) and are illustrated with two case studies. The effects of decreasing sample
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size on the prediction performances of the various methods of kriging will also be
compared. The practicalities of using each method in terms of data and software
availability are also discussed.

7.2 Theory

The techniques described in this chapter use the spatial autocorrelation between soil
samples and their cross-correlation or coregionalization with ancillary data to pre-
dict at unsampled locations. The (co)kriging systems introduced below are written
in terms of covariances, but common practice tends to infer and model the variogram
(which measures the dissimilarity between observations) rather than the covariance
function because it requires a weaker assumption (intrinsic stationarity instead of
second-order stationarity). The covariance is easily retrieved from the variogram
model by subtracting the variogram values from the sill (bounded model) or pseudo-
sill (unbounded model). Regardless of the choice of interpolation algorithm, the first
step is to select the subset of covariates that is the most informative. Secondary vari-
ables should correlate well with the primary variable, but weakly among themselves
to avoid redundancy and associated collinearity issues.

7.2.1 Variogram and Cross-Variogram

The experimental variogram, O�Z.h/, of the soil attribute Z (primary variable) for a
given lag vector h is estimated as:

O�Z.h/ D 1

2N.h/

N.h/X

˛D1

Œz.u˛/� z.u˛ C h/�2; (7.1)

where N (h) is the number of data pairs within the class of distance and direc-
tion used for the lag vector h. A continuous function must be fitted to O�Z.h/ to
obtain semivariances for any possible lag h required by the prediction algorithms
(Goovaerts 1999).

Joint variation between primary and secondary variables Z and Y can be char-
acterized by the experimental cross-variogram defined as:

O�ZY .h/ D 1

2N.h/

N.h/X

˛D1

Œz.u˛/� z.u˛ C h/� Œy.u˛/ � y.u˛ C h/� : (7.2)

Note that to compute the cross variogram there must be locations in common where
both variables have been measured. If both attributes are positively correlated spa-
tially, an increase (decrease) in the values of Z from u˛ to u˛ C h tends to be
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associated with an increase (decrease) in the values of Y: Conversely, a negative
correlation between attributes would arise from an increase (decrease) in Z and
an associated decrease (increase) in Y: Modelling the coregionalization between
two variables Z and Y involves choosing and fitting functions to the two auto-
variograms O�Z.h/ and O�Y .h/ and to the cross-variogram O�ZY .h/. The three models
cannot be fitted independently from one another (Goovaerts 1997). The easiest ap-
proach is to model the three variograms as linear combinations of the same set of
basic variogram functions under the constraint that the matrix of sills of these mod-
els are all positive semi-definite. This is generally known as the linear model of
coregionalization (LMC); see Goovaerts (1997) and Wackernagel (1995) for a de-
scription of this. As for the direct variogram, the cross-covariance value is computed
by subtracting the cross-variogram value from its modelled sill.

7.2.2 Cokriging

One way to incorporate secondary information once the LMC has been fitted is to
use a multivariate extension of kriging known as cokriging. In the simplest case
of a single secondary attribute Y; the ordinary cokriging estimate is written as the
following linear combination of both neighbouring primary and secondary data:

z�
CK.u/ D

nX

˛D1

�˛.u/z.u˛/C
mX

˛0D1

�˛0.u/y.u˛0/; (7.3)

where some of the secondary data might have been measured at possibly different
locations u˛0 . As for ordinary kriging, the objective is to minimize the error vari-
ance under an unbiasedness constraint, which gives the following system of linear
equations:

nX

ˇD1

�ˇ .u/CZ.u˛ � uˇ /C
mX

ˇ 0D1

�ˇ 0.u/CZY .u˛ � uˇ 0/C �Z.u/

D CZ.u˛ � u/ ˛ D 1; 2; : : : ; n

nX

ˇD1

�ˇ .u/CYZ.u˛0 � uˇ /C
mX

ˇ 0D1

�ˇ 0.u/CY .u˛0 � uˇ 0/C �Y .u/

D CYZ.u˛0 � u/ ˛0 D 1; 2; : : : ; m

nX

ˇD1

�ˇ .u/ D 1

mX

ˇ 0D1

�ˇ 0.u/ D 0: (7.4)
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There are two Lagrange parameters, �Z.u/ and �Y .u/, to account for the con-
straints on weights of the primary and secondary data, and information from the
LMC provides values of the direct and cross-covariances for different lags.

The application of cokriging with Nv secondary variables requires the estima-
tion and joint modelling of (Nv C 1/.Nv C 2/=2 direct and cross-variograms; a
task that rapidly becomes daunting as the number of secondary variables increases.
A less demanding approach in terms of variogram inference and modelling is to
use the secondary information to estimate the local mean of the primary attribute Z
(e.g. through linear regression), and then krige the corresponding residuals. Unlike
the cokriging approach, only one residual variogram needs to be estimated and
modelled regardless of the number of secondary variables. However, the auxiliary
variables must be known at all locations where the primary variable is known, as
well as at all places on the prediction grid. If the secondary variables were not
sampled exhaustively, this requirement could be met by interpolating the secondary
variables to these additional locations at the outset. The two main geostatistical algo-
rithms for incorporating secondary information to model the local mean are simple
kriging with local means (SKlm) and kriging with an external drift (KED).

7.2.3 Simple Kriging with Local Means

This procedure starts by modelling the local mean of the primary variable Z from
the secondary information. Two variants of the linear regression model were applied
in this chapter: (1) a multiple linear regression model was fitted to ancillary data
(SKlm-h), i.e. EŒZ.u/� D f .Y1.u/; : : : ; YNv.u// D m�.u/ and (2) the local mean
within each soil series was assumed constant and equal to the arithmetic average
of the values of Z within a given soil series (SKlm-s). The kriging estimate is then
expressed as a linear combination of the neighbouring primary z-data and the local
mean estimated at these n locations and the location u being predicted:

z�
SKlm.u/ D

nX

˛D1

�˛.u/
�
z.u˛/ �m�.u˛/

� Cm�.u/

D
nX

˛D1

�˛.u/r.u˛/Cm�.u/ ; (7.5)

where r.u˛/ D z.u˛/�m�.u˛/ are referred to as residuals. The kriging weights are
obtained by solving the following simple kriging system:

nX

ˇD1

�ˇ .u/CR.u˛ � uˇ / D CR.u˛ � u/ ˛ D 1; 2; : : : ; n ; (7.6)

where CR.h/ is the covariance function of the residual random function R.u/, not
that of the variable Z itself.
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7.2.4 Kriging with an External Drift

There are two main differences between KED and SKlm. These are that in KED:
(1) the relationship between primary and secondary variables needs to be linear
(if it is not an appropriate transformation of the secondary variables could make the
relation linear) and (2) the coefficients of the linear model are determined implicitly
through the kriging system within each search neighbourhood (these coefficients
are assumed to be constant across the study area for SKlm). The KED estimate is
computed as follows:

z�
KED.u/ D

nX

˛D1

�˛.u/z.u˛/ : (7.7)

The weights �˛.u/, assigned to each observation, are computed by solving the fol-
lowing kriging system for the simple case with one secondary variable Y :

nX

ˇD1

�ˇ .u/CR.u˛ � uˇ /C �0.u/C �1.u/y.u˛/ D CR.u˛ � u/ ˛ D 1; 2; : : : ; n ;

nX

ˇD1

�ˇ .u/ D 1; (7.8)

nX

ˇD1

�ˇ .u/y.uˇ / D y.u/;

where �0.u/ and �1.u/ are two Lagrange parameters accounting for the constraints
on the weights. Inference of the residual covariance is not as straightforward as for
SKlm because to compute the residuals requires the kriging system, Eq. 7.8, to be
solved and prior knowledge of the residual covariance. Inference methods of varying
complexity are available (Wackernagel 2003), which range from maximum likeli-
hood estimation of the residual variogram to a straightforward method of computing
the variogram of the variable using only pairs of z-values that are unaffected or only
slightly affected by the trend. In this chapter, as in previous studies (i.e. Goovaerts
2000), KED was performed using the same covariance model as for SKlm.

7.3 Case Study 1: The Yattendon Site

7.3.1 Site Description and Available Data

The Yattendon site is a 15.3 ha field on the Chalk ridgeway in Berkshire, southern
England. The field comprises a plateau area to the north and a south-facing slope
with gradients of 8–15% in the south. A previous survey of the area identified six
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Fig. 7.1 Soil and ancillary data sampling schemes at the Yattendon site for: (a) the full soil data
(102 sites), (b) sub-sampled soil data (50 sites), (c) aerial91 data (14 683 points), (d) ECa and ele-
vation data (1927 points), (e) yield96 data (3106 points), (f) yield98 data (2136 points). Coordinates
are Eastings and Northings in kilometres

soil series within this field (Heming 1997). Topsoil samples (0–15 cm) were taken
on a 30-m square grid (Fig. 7.1a). At each grid node six samples of soil were taken
within 1m2 and bulked for further analyses. Several soil properties were measured
for each of the 102 samples. Percentage sand of the air-dry <2 mm soil fraction
determined by laser granulometry (Coulter LS 230 laser granulometer) is used here
as the primary variable.
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Several types of ancillary data were available at the Yattendon site and these are
typical of the information available to precision farmers. Aerial photographs of the
bare soil from standard surveys (Aerofilms Ltd., www.aerofilms.com) from 1986
and 1991 (aerial86 and aerial91/ were scanned at a resolution of 75 dpi to give a
ground pixel size of 3.4 m (Fig. 7.1c) and geo-corrected to British Ordnance Survey
coordinates using Erdas Imagine (www.Erdas.com). Digital numbers (DNs, 0–255)
were then extracted for the red, green and blue wavebands; the green DNs only are
used here because analysis of the individual wavebands by Kerry (2004) suggested
that this was the best of the visible wavebands to use. Electrical conductivity (ECa/

data were recorded every 1–2 m along transects spaced approximately 20-m apart
(Fig. 7.1d) using the Geonics EM38 instrument (www.geonics.com) in the vertical
position. Location and elevation were recorded with a differential global positioning
system (DGPS) which was attached to the EM38 (Fig. 7.1d). Yield data from 1996
and 1998 (yield96 and yield98/ (Fig. 7.1e, f) were available and were recorded using
the RDS Technology (www.rdstechnology.ltd.uk) ‘Ceres 2’ yield meter and DGPS.
This volume based sensor was calibrated with grain densities to determine the mass
of the yield. The yield data were also pre-processed to remove probable erroneous
data, for example, locations with very small yield values which had been passed
over twice by the combine (see Kerry 2004 for more detail). Figure 7.1c–f shows the
number and location of data points for each type of ancillary information. There are
about 20 times more observations for the ancillary data than for the soil (Fig. 7.1a);
the aerial image provides the most intensive data and the most complete cover of
the field.

7.3.2 Data Preparation

Experimental variograms were computed from the ancillary data by Eq. 7.1 and
modelled. Ordinary kriging was then used to predict the ancillary data to the nodes
of a 5-m grid which had points in common with the 30-m soil sampling grid. The
kriged maps are shown in Fig. 7.2 c–h. Pixel maps rather than contour maps are
used to show the complex spatial patterns and to avoid smoothing of the micro-scale
variation. The kriged ancillary values at the nodes of the 30-m soil sampling grid
were extracted and used for correlation analysis. Table 7.1 shows the correlations
between percentage sand and the various types of ancillary data at the Yattendon
site. Correlations were moderate for aerial91 and ECa, and weak for the other vari-
ables. Nevertheless, there are distinct similarities in the spatial patterns of all data,
in particular the contrast between the south and east of the field (the south-facing
slope) and the north and west (the plateau area) (Fig. 7.2). The main difference be-
tween the patterns in sand and the ancillary data is the size of patches of different
values in the northwest of the field. These are markedly smaller in Fig. 7.2e and f
than Fig. 7.2a for percentage sand; this suggests that more intensive soil sampling
might have resulted in the identification of smaller patches of small and large per-
centage sand, Fig. 7.2a. The patterns for aerial86 are similar to those for aerial91,
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Fig. 7.2 Maps of ordinary kriged sand (a) and available ancillary data at the Yattendon site:
(b) mean sand by soil series, (c) ECa, (d) elevation, (e) DNs for aerial86, (f) DNs for aerial91,
(g) 1996 yield data, (h) 1998 yield data

Table 7.1 Correlations between selected soil and ancillary variables at the Yattendon site

Elevation Aerial86 Aerial91 ECa Yield96 Yield98 Sand

Elevation 1:00

Aerial86 �0:30 1:00

Aerial91 0:01 0:28 1:00

ECa 0:48 �0:53 �0:32 1.00
Yield96 0:02 �0:08 �0:21 0.07 1.00
Yield98 0:80 �0:29 0:05 0.41 0.04 1.00
Sand 0:07 �0:16 �0:49 0.38 0.08 0.11 1.00
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but the former shows less detail in the east of the field, which probably explains
the weaker correlation with the soil data (compare Fig. 7.2e, f). Some of the lit-
erature cited above suggested that some authors had found elevation and yield
data useful. However, ECa and aerial imagery are the most strongly correlated
with sand in this field, but in addition elevation was used for SKlm-h and KED,
and yield96 for CK because the spatial patterns of all ancillary data are generally
similar.

The mean sand percentage for each soil series (Fig. 7.2b) was determined from
sand data on the 30-m grid using the aggregation procedure of Terraseer STIS
(http://www.terraseer.com/products stis.php) and the soil series boundaries. This
procedure was also used to assign the mean percentage sand by soil series to each
node of the 5-m interpolation grid.

7.3.3 Variograms

The usual method of moments variogram (Eq. 7.1) was computed on the raw sand
data. All variogram models were fitted by weighted least squares approximation
with more weight being assigned to the first few lags. The experimental variogram
of the raw sand data is shown as symbols in Fig. 7.3a and the fitted model as a solid
line. The parameters of the model are given in Table 7.2. Simple linear regression
and multiple linear regression were performed with sand as the dependent variable
and aerial91, ECa and elevation as independent variables, both separately and in
combinations of two or three variables. Both linear and squared terms (i.e. no inter-
action) were used for each of the ancillary variables in the regressions. The residuals
from these regressions (rr) of the 30-m soil and ancillary data were used to compute
variograms. These are shown in Fig. 7.3c–f and their model parameters are given
in Table 7.2. A variogram was also computed and modelled after subtracting the
soil series mean sand percentage from the observed sand data (soil series residuals,
Fig. 7.3b and Table 7.2).

Each of the variograms computed from the 30-m grid (Fig. 7.3) has a range be-
tween 50 and 70 m (Table 7.2), except the one for aerial91 and ECarr which shows
little spatial structure as >80% of the variance is nugget (Table 7.2). The nugget:sill
ratio for aerial91, ECa and elevation rr is also greater than 50% (Fig. 7.3c). The
large nugget:sill ratio suggests that using these combinations of ancillary data for
regression explains much of the spatially structured variation in the sand data. The
nugget:sill ratios for the raw soil data, elevation rr and aerial91, and elevation rr
variograms are 0% (Table 7.2 and Fig. 7.3f) and those for soil series residuals, ECa

rr, elevation rr and ECa, and elevation rr (Table 7.2 and Fig. 7.3e) are 20–40%. The
full 30-m soil dataset was sub-sampled to a 60-m interval and then supplemented
with additional samples at 30-m (usually along small transects) to give a sample size
of 50. Variograms computed on this sub-sample of 50 data (Table 7.2) have a slightly
longer range and generally smaller nugget:sill ratios (Fig. 7.3g–i and Table 7.2). This
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Fig. 7.3 Variograms for 30-m soil data: (a) sand (raw data), (b) soil series residuals, (c) aerial91,
ECa and elevation rr, (d) ECa rr, (e) ECa and elevation rr, (f) aerial91 and elevation rr. Variograms
for the subset of 30-m soil data with 50 samples: (g) soil series residuals (50), (h) aerial91, ECa and
elevation rr (50) and (i) aerial91 and ECa rr (50)

illustrates the effect of the number of observations on variogram estimation, and the
smaller nugget:sill ratio shows that regression with this smaller dataset explains less
of the spatially structured variation present.

Auto- and cross-variograms for sand and aerial91, ECa and yield96 were
computed and fitted with a linear model of coregionalization (LMC) in ISATIS
(www.geovariances.fr). As the variograms of elevation and yield98 are unbounded
and that for sand is bounded, the former were unsuitable for fitting the LMC with
sand. The auto- and cross-variograms for sand with aerial91 and ECa are shown in
Fig. 7.4 and their model parameters are given in Table 7.3. A spherical function with
a nugget component and range of 85 m was used for the LMC. This fits best for the
aerial91 data (Fig. 7.4f) and similarly well for the sand and ECa data (Fig. 7.4a,c).
Following Wackernagel (2003), the degree of coregionalization for each cross-
variogram can be assessed visually by plotting the hull of perfect positive and
negative correlation. The hull is obtained by replacing the cross-variogram sills by
the square roots of the product of the sills of the two corresponding auto-variograms.
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Table 7.2 Parameters of models fitted to variograms of raw data and regression residuals (rr)

Data Model c0 c1 a; 3r (m)

30-m data
Sand (raw data) Exponential 0 17:76 67.97
Soil series residuals Spherical 5:081 11:78 50.40
Aerial91 rr Spherical 0 14:42 54.71
ECa rr Spherical 6:253 9:154 58.22
Elevation rr Spherical 2:293 14:97 54.81
Aerial91, ECa rr Exponential 11:08 2:334 115.1
Aerial91, ECa, elevation rr Spherical 8:380 4:914 57.08
ECa, elevation rr Spherical 6:604 8:695 58.55
Aerial91, elevation rr Spherical 0 14:42 54.71
Sub-sample of 50 data
Sand (raw data) Spherical 1:295 16:80 80.95
Soil series residuals Spherical 0 19:38 75.26
Aerial91, ECa, elevation rr Spherical 0 15:09 68.51
Aerial91, ECa rr Spherical 0 17:59 77.18

The model parameters are: c0, the nugget variance; c, the sill of the autocorrelated variance; a, the
range of the spatial dependence. For the exponential model, because the sill is asymptotic an ap-
proximate range is determined as 3r;where r is the distance parameter of the model.

The hulls indicate that there is a weak-moderate positive spatial relationship be-
tween ECa and sand, and a moderate negative one between sand and aerial91. These
results confirm the patterns observed in the maps in Fig. 7.2 and the correlation
coefficients listed in Table 7.1.

7.3.4 Leave-One-Out Cross-Validation

The parameters of the various models given in Table 7.2 and the associated data were
used for leave-one-out (LOO) cross-validation by OK, KED, SKlm-h and SKlm-s
in Terraseer STIS. Each soil datum is removed in turn and its value is predicted
using all collocated ancillary data and the remaining soil data in the neighbourhood.
Accuracy of prediction can be evaluated using the mean error (ME, Eq. 1.28) which
should be close to zero, the mean absolute error (MAE, Eq. 1.29) which should
be as small as possible and the mean squared deviation ratio (MSDR, Eq. 1.30)
which should be close to one if an appropriate model has been used. The MSDR
is essentially the mean of the ratio of the squared prediction errors to the kriging
variance. If an inappropriate model has been used, the kriging variance will either
markedly under- or over-estimate the true squared errors. Finally, cross-validation
for CK was performed following the same procedure and using the same evaluation
statistics in ISATIS.

Cross-validation results for the various methods and combinations of ancillary
data are given in Table 7.4. In this table and hereafter, the ME is excluded as an
evaluation criterion as values for all methods were close to zero indicating little
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Fig. 7.4 Cross- (b, d and e) and auto-variograms (a, c and f) for soil and ancillary data at the
Yattendon site fitted using a linear model of coregionalization with spherical structure, nugget
component and range of 85 m. (a) sand, (b) sand and ECa, (c) ECa, (d) sand and aerial91, (e) ECa

and aerial91 and (f) aerial91

bias in the predictions. For reference, Table 7.4 shows the MAE (2.93) and MSDR
(0.996) for OK. For CK and all combinations of ancillary data the MSDR is close
to 1 and the MAE is smaller than that for OK, except when ECa and yield96 data
are used on their own. The MAE is smallest when aerial91 and ECa data are used
together in the LMC. Overall, the best MAEs for CK are generally smaller than
for the other methods and the smallest MAE was obtained for CK. For KED, the
MSDR values are generally further from one than for OK and CK, but they are still
reasonable. The MAEs for KED are less than for OK with only the ECa and aerial91,
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Table 7.3 Auto- and cross-variograms fitted using the linear model of coregion-
alization with a spherical function and a range of 85 m

Variable 1 Variable 2 c0 c

Sand Sand 8:274 10:12

Sand ECa �0:004 2:142

Sand Aerial91 �3:089 �31:30
ECa Sand �0:004 2:142

ECa ECa 1:133 1:145

ECa Aerial91 �1:517 �5:902
Aerial91 Sand �3:087 �31:30
Aerial91 ECa �1:517 5:902

Aerial91 Aerial91 15:52 223:5

Table 7.4 Leave-one-out cross-validation results for ordinary kriging (OK), cokriging (CK), sim-
ple kriging with local means (SKlm) and kriging with an external drift (KED) using the full soil
data at the Yattendon site

Method Ancillary variables

R2 for
regression
model

Mean absolute
error (MAE)

Mean squared
deviation
ratio (MSDR)

CK Aerial91 2.728 1.030
CK ECa 2.891 1.009
CK Yield96 2.945 1.007
CK Aerial91, ECa 2.674 1.046
CK Aerial91, yield96 2.722 1.080
CK Aerial91, ECa, yield96 2.684 1.062
CK ECa, yield96 2.855 1.009
KED Aerial91 0.182 2.955 1.248
KED ECa 0.172 2.865 0.954
KED Elevation 0.017 3.097 1.077
KED Aerial91, ECa 0.281 2.777 0.875
KED Aerial91, elevation 0.221 3.061 1.241
KED Aerial91, ECa, elevation 0.312 3.141 0.811
KED ECa, elevation 0.177 3.088 1.014
OK – 2.930 0.996
SKlm-h Aerial91 0.182 2.982 1.253
SKlm-h ECa 0.172 2.828 0.974
SKlm-h Elevation 0.017 2.971 1.003
SKlm-h Aerial91, ECa 0.281 2.813 0.942
SKlm-h Aerial91, elevation 0.221 2.982 1.254
SKlm-h Aerial91, ECa, elevation 0.312 2.805 1.078
SKlm-h ECa, elevation 0.177 2.834 0.964
SKlm-s Soil series 0.112 2.824 0.865

and ECa models (Table 7.4). The MSDR values for SKlm-h are similar to those for
KED, and the MAEs are slightly less than for OK for all combinations of ancillary
data apart from aerial91 and elevation on their own. Nevertheless, the MAEs are
generally not as small as those for CK. For SKlm-h, the best results are obtained for
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a combination of aerial91, ECa and elevation as ancillary data. As one might expect
for SKlm-h, because it assumes stationarity of the regression coefficients across the
entire site, there is a moderate negative relationship (�0.562) between the R2 of
the regression model and the MAEs from cross-validation, whereas for KED this
relationship is much weaker (�0.210). This suggests that the R2 of the regression
model can be used as a guide for choosing an appropriate combination of variables
for use with SKlm-h, whereas this is not advisable for KED where the regression
coefficients are locally re-evaluated.

The MAE for SKlm-s (2.824) is promising and less than that for OK. The MSDR
is less than one which indicates the prediction errors are over-estimated by the krig-
ing variance, nevertheless, the value is reasonable and of a similar magnitude to that
for KED (Table 7.4). These results show that SKlm-s using soil series data is also a
viable alternative to OK.

7.3.5 Patterns of Variation

Figure 7.5 shows the maps of percentage sand predicted at the nodes of a 5-m grid
by: (1) ordinary kriging of the 30-m sand data, (2) simple kriging of soil series resid-
uals followed by the addition of mean sand content for the corresponding soil series
at each node, (3) after determining the best combination of ancillary data by cross-
validation for SKlm-h (Table 7.4), and adding the kriged regression residuals to sand
values obtained using the coefficients from the appropriate regression model, (4) for
KED, the residual variogram (Table 7.2) for the best combination of ancillary data
(Table 7.4) was used with the appropriate ancillary data (external drifts) for kriging
sand content to the 5-m grid and (5) ordinary cokriging of the 30-m sand data using
the best combination of ancillary data (Table 7.4). All maps show similar patterns
of variation to those for sand predicted by OK (Fig. 7.5a), particularly those based
on SKlm-s and CK (Fig. 7.5c and e). The maps of KED and SKlm-h predictions
show the more detailed patterns present in aerial91 in the north and west of the field
(Fig. 7.1f). This level of detail might be unnecessary for precision farming because
it will depend on the smallest area the machinery can manage reliably.

The widespread application of CK has been hindered by the strict requirements
of the LMC. In the above analysis elevation and yield98 data could not be used for
CK because the variograms were unbounded, whereas those for sand and the other
ancillary data are bounded. If a significant proportion of the variation in a property
is accounted for by trend, even though a LMC can be fitted to the residuals from the
trend, there is often little or no improvement in prediction because the trend might
account for most of the coregionalization (Kerry 2004). Kerry (2004) analysed data
from seven fields, and fitted LMCs to trend residuals where >20% of variation was
accounted for by trend. She found that improved accuracy of prediction by CK over
OK was small for data with marked trend and greatest at the sites with least trend.
Cokriging is usually implemented with a local search window, and requires an as-
sumption of stationarity only within that neighbourhood (quasi-stationarity). Some
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Fig. 7.5 Maps of sand content at Yattendon produced using: (a) ordinary kriging (OK), (b) simple
kriging with local means (SKlm-h) with aerial91, ECa and elevation (c) simple kriging with local
means (SKlm-s), (d) kriging with an external drift (KED) with aerial91 and (e) cokriging (CK with
aerial91 and ECa).

authors such as Bishop and McBratney (2001) recommend the use of SKlm or KED
when there is marked trend in the ancillary data. Alternatively fit an unbounded
LMC and use CK with a local search window and then trend need not be removed
from the data prior to modelling the cross-variogram and cokriging.

The real test of methods that use ancillary data is the accuracy of prediction
when there are few data for the primary variable, for example 50 data, and when
parts of the field, the centre in Fig.7.1b, are sparsely sampled. Figure 7.6 enables
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Fig. 7.6 Maps of sand content at Yattendon produced using: (a) ordinary kriging (OK) and the
full data, (b) OK and 50 data, (c) simple kriging with local means (SKlm-hard data) using aerial91,
ECa and elevation with 50 data, (d) simple kriging with local means (SKlm-soft data) and 50 data,
and (e) kriging with an external drift (KED) using aerial91 and ECa with 50 data

a comparison of the maps of predictions produced by the above methods with only
50 data to that from OK with the 30-m data. Except for SKlm-h (Fig. 7.6c), the maps
of sand content based on 50 data and ancillary data are more similar to the reference
map created with the 30-m data, than is the ordinary kriged map of sand based on
50 data. This is especially so in the center of the field.
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7.3.6 How Small Can the Sample Size of Primary Data
be when Secondary Data are Available?

The best combination of ancillary data identified by cross-validation (Table 7.4),
namely aerial91 and ECa for KED and aerial91, ECa and elevation in combination
for SKlm-h was used in a jack-knife procedure. This involved making 100 random
selections of a given sample size from the original 102 soil data (Fig. 7.1a). The se-
lected points (the prediction points) and the associated ancillary data were used to
compute the appropriate regression model and residual variogram, and then SKlm-h
or KED was carried out at the remaining unselected points (the validation points).
The jack-knife procedure is valuable for determining the best methods of predic-
tion because 100 random samples of different size are investigated rather than just
one sample of a given size as in LOO cross-validation. This approach was taken
because if only one random sub-sample of a given size is selected, it does not nec-
essarily give a good indication of how other possible sub-samples with that number
of observations might perform. For OK, KED and SKlm-h the jack-knife procedure
was repeated for sample sizes of 10, 20, 30, 40, 50, 60, 70, 80 and 90 from which
to predict. The sample size of 10 was included to show that once the sample falls
below a certain size, the increase in errors is almost exponential. We suggest that
such a small sample size should not be considered for geostatistical analysis either
with or without secondary information. The statistics used to evaluate the results
from this are the same as those for LOO cross-validation, except that they were cal-
culated 100 times for each random sub-sample. The mean and standard deviation of
these are used in Figs. 7.7–7.10 to summarize the results.

For all methods the ME is close to zero for all sample sizes apart from 10, there-
fore it is not considered further here because it was of little value in determining
which methods performed best.

Fig. 7.7 Comparison of the
mean absolute error from
regression (MAE-reg) and
simple kriging with local
means (hard data)
(MAE-SKlm) for different
sizes of sub-sample from a
jack-knife procedure. Both
procedures use aerial91, ECa

and elevation as the ancillary
data
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Fig. 7.8 Graphs of mean absolute error (MAE) for different sizes of sub-sample in a jack-knife
procedure using (a) ordinary kriging (OK), (b) simple kriging with local means (SKlm-h) using
aerial91, ECa and elevation, (c) kriging with an external drift (KED) using aerial91 and ECa and (d)
a comparison of methods (a–c)

The MAE is consistently larger for regression than for SKlm-h (Fig. 7.7). Thus,
kriging the residuals and adding these predictions to the output of the regression
model is more accurate than simple regression for all sample sizes. The MAEs for
all methods follow the same pattern: as expected the statistic decreases sharply as
more data are added until there are 60 data at which point the benefit of adding more
levels off.

Figure 7.8 shows the MAEs for OK, SKlm-h and KED (Fig. 7.8a–c). For OK
the MAEs are relatively constant for sample sizes between 70 and 90, whereas for
SKlm-h and KED they are similar for sample sizes between 60 and 90. This result
suggests that similar prediction accuracy can be achieved with slightly smaller sam-
ple sizes when ancillary data are incorporated into the interpolation process. For all
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Fig. 7.9 Graphs of mean squared deviation ratio (MSDR) for different sizes of sub-sample in a
jack-knife procedure for: (a) ordinary kriging (OK), (b) simple kriging with local means (SKlm-h)
using aerial91, ECa and elevation, (c) kriging with an external drift (KED) using aerial91 and ECa

and (d) a comparison of methods (a–c)

methods the MAE increases greatly for a sample size of 10, but this also occurs
for a sample size of 20 for SKlm-h and KED. These results show, as one might ex-
pect, that these sample sizes are far too small even when ancillary data are available.
There is a marked increase in MAE with SKlm-h and KED for sample sizes <40.
Figure 7.8d shows that for sample sizes of 40 or more SKlm-h and KED result in
smaller MAEs than OK, but for sample sizes <40 OK performs better than SKlm-h
and KED. This result suggests the need for enough observations to calibrate the re-
lationship between ancillary data and the primary variable. The MAEs for KED are
consistently larger than for SKlm-h (Fig. 7.8d) for all sample sizes, which indicates
that the regression coefficients are reasonably stable across the field. Theoretically,
with the same ancillary variables and a global search window, KED will always per-
form better than SKlm-h (Papritz 2008). However, using a global search window is
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Fig. 7.10 Number of times three methods (OK, SKlm-h and KED) are the best performing in a
jack-knife procedure using 100 randomly selected samples of different size at the Yattendon site.
Jack-knife evaluation criteria: (a) mean absolute error (MAE) and (b) mean squared deviation ratio
(MSDR)

computationally inefficient, especially for large ancillary datasets. In addition, the
relationships between soil properties and other covariates typically change across
the site, which violates the assumption of stationarity of the regression coefficients
within the search window. A moving correlation analysis would establish whether
the correlation is stationary for the whole site before using SKlm-h or KED, and if
so KED could be used with a global search window rather than SKlm-h.

Figure 7.9 shows the MSDR values for various sample sizes and methods of pre-
diction. For OK, this statistic is close to one for all sample sizes other than 10 and
increases only slightly for sample sizes <50 (Fig.7.9a). For SKlm-h, the MSDRs
are close to one for sample sizes >30, but they are quite variable (Fig. 7.9b). For
KED, the MSDRs depart more from 1 as the sample size decreases (Fig. 7.9c) and
they are similar to those for OK for sample sizes of 60–90 (Fig. 7.9d). Although OK
appears to perform best overall based on its MSDRs, none of the values is vastly
different from one unless the sample size is <20 and so all models could be con-
sidered reasonable given the small sample size. The MSDR is slightly >1 for each
method.

The same random sub-samples were used by each method of prediction, there-
fore, it is possible to determine, for a given sample size, the proportion of times (i.e.
percentage of 100 subsets) one method outperforms the others. The criteria were
the smallest MAE and MSDR closest to 1. For MAE, SKlm-h is consistently the
best method (Fig. 7.10a) 45–70% of the time for all sample sizes except 10 and 90.
The smallest MAE is given more often for KED than OK when the sample size is
60 or greater. Ordinary kriging only performs best about 20% of the time for all
sample sizes greater than 40. Small sample sizes seem to affect the results of KED
and SKlm-h more than OK (Fig. 7.10a). For the MSDRs, all three methods perform
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similarly (Fig. 7.10b). However, OK is generally the best performing by a small
margin, and this margin increases for smaller sample sizes (Fig.7.10b). Again, this
result suggests the need to have enough observations to calibrate the relationship
between the ancillary data and primary variable; otherwise ordinary kriging might
be the most conservative choice.

The ME and MSDR values were generally best for OK, but the values of these
statistics for all methods were similar. The greatest contrast among methods was
observed for the MAE: SKlm-h was the best performing method for all sample
sizes and KED was preferable to OK for sample sizes greater than 60. The jack-
knife cross-validation results indicate that on average for a sample size of 60 and
ancillary data, the MAEs are similar to those obtained by OK with 90 data, but it is
not advisable to use fewer than 60 data.

Precision farming practitioners could use information from this analysis to de-
termine which methods to use for a given sample size. However as mentioned in
Chapter 2, simple random sampling (as used in the jack-knife procedure) is gener-
ally not a good sampling strategy for geostatistical analysis. Most precision farmers
sample on a square grid because it is practical to work with and can provide good
cover of the field. Chapter 2 suggests that some degree of nested sampling within a
grid will help to resolve the small scale variation.

7.4 Case Study 2: The Wallingford Site

The final step in evaluating the merits of the different interpolation methods is a
case study where LOO cross-validation results for KED, OK, SKlm-h and SKlm-s
are computed for sampling grids with different intervals and with some nesting.

7.4.1 Site Description and Available Data

The study site is a 43.5 ha field with soil developed on the plateau gravels of the
Thames valley near Wallingford in Oxfordshire England. The topsoil (0–15 cm)
was sampled using the same 30-m grid spacing and bulking strategy as at Yatten-
don. Anomalous areas of the field, such as a disused gravel pit in the far north-west
and the headlands, were not sampled. The soil property of interest was loss on ig-
nition (LOI), which is often used as an indication of soil organic matter content.
The LOI (500ıC) was determined for the air-dry<2 mm fraction of soil (Avery and
Bascomb 1974). Available ancillary data included aerial photographs from 1966
(see Fig. 2.3a in Chapter 2) and 1997 (aerial66 and aerial97, respectively), ECa (see
Fig. 2.3c in Chapter 2), elevation and yield for 1996–2000 (yield96 etc.). All an-
cillary data were recorded and processed as for Yattendon, except that the Massey
Ferguson Fieldstar system (www.masseyferguson.com) was used to record yield.
A soil series map from a previous survey (Fordham 1985) was also available; six
soil series were identified in this field.
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Table 7.5 Correlations between loss on ignition (LOI) and various ancillary data at the Walling-
ford site

Aerial66 Aerial97 ECa Elevation LOI Yield96 Yield97 Yield98 Yield99 Yield00

Aerial66 1:00

Aerial97 0:02 1:00

ECa �0:34 0:37 1:00

Elevation 0:16 �0:55 �0:65 1:00

LOI �0:14 0:37 0:12 �0:26 1.00
Yield96 �0:54 0:02 0:67 �0:35 0.03 1.00
Yield97 �0:41 0:09 0:63 �0:51 0.11 0.71 1.00
Yield98 0:10 0:13 0:32 �0:19 0.18 0.35 0.30 1.00
Yield99 �0:11 �0:03 0:10 0:11 0.09 0.29 0.20 0.21 1.00
Yield00 �0:30 0:32 0:65 �0:62 0.29 0.55 0.59 0.41 0.27 1.00

The 296 soil sampling points on a 30-m grid were sub-sampled to create 60-m,
90-m, 120-m and 150-m grids with 70, 36, 23 and 15 points, respectively. The var-
iogram ranges for soil and ancillary data, except yield, were consistently around
200–250 m (Table 2.2 and Fig. 2.3b, d in Chapter 2). Using half the range of the
variogram of ancillary data suggests that 120-m would be a suitable soil sampling
interval (see Chapter 2). As this is a large spacing, additional samples at shorter
intervals should be included as recommended in Chapter 2. Therefore, two other
sampling schemes were considered: (1) the 120-m soil sampling grid was supple-
mented with samples at a 60-m spacing to give 50 samples in total and (2) five
sample locations (Fig. 2.11a in Chapter 2) were selected in areas of large, medium
and small (LMS) DNs of an aerial photograph (Fig. 2.3a in Chapter 2) and added to
those on the 120-m grid, resulting in a sample size of 38.

Variograms were computed and modelled for each ancillary variable. Ordinary
kriging was then used to predict the ancillary variables at the nodes of a 5-m grid
which had points in common with the 30-m soil sampling grid. Ancillary data
were extracted at the grid nodes that coincided with the 30-m soil sampling grid
and correlation coefficients were calculated (Table 7.5). The results indicate that
all correlations with LOI are weak, but they are strongest for aerial97, yield00 and
elevation.

7.4.2 Leave-One-Out Cross-Validation Using Grid Sampled Data

Variograms were computed and modelled for LOI for each of the sub-samples. The
parameters of the fitted models and the associated sub-sampled soil data were used
for LOO cross-validation with OK. Table 2.6 shows how the form of the variogram
changes as the sampling interval increases and sample size decreases. The method
of moments variogram computed from spatially correlated data on the 120-m grid
is essentially pure nugget because 23 data are too few to compute a reliable var-
iogram (Webster and Oliver 1992). In cases where the variogram was essentially
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Table 7.6 Leave-one-out cross-validation results for ordinary kriging (OK), simple kriging with
local means (SKlm) and kriging with an external drift (KED) using the full and sub-sample data at
the Wallingford site

Sample
Number
of data

Mean absolute error (MAE) Mean squared deviation ratio
OK SKlm-h SKlm-s KED OK SKlm-h SKlm-s KED

30-m 296 0.41 0.37 0.43 0.41 1.05 0.87 0.95 0.88
60-m 70 0.45 0.42 0.46 0.52 0.99 0.82 0.88 0.81
120-mC60-m 50 0.23 0.22 0.39 0.26 0.60 0.40 0.80 0.31
120-mCLMS 38 0.42 0.37 0.40 0.58 0.92 0.60 0.69 0.56
90-m 36 0.46 0.43 0.41 0.60 0.91 0.75 0.72 0.75
120-m 23 0.71 0.50 0.52 1.02 0.93 0.63 0.72 0.81
150-m 15 0.50 0.14 0.40 0.01 1.74 0.46 0.62 0.05

pure nugget (120-m and 150-m data), an automatic weighted least squares algo-
rithm was used to fit unbounded models with a very low gradient and these were
used for cross-validation with OK. This practice enabled comparison of these re-
sults with the larger sub-samples; however, we do not recommend the use of such
small data sets for geostatistics.

A regression model with linear and squared terms for aerial97, yield00 and el-
evation was computed for each sub-sample of the soil data and variograms of the
regression residuals were also computed. The parameters of the models fitted to
these variograms were then used together with the appropriate soil and sub-sampled
ancillary data for LOO cross-validation with KED and SKlm-h. The mean LOI for
each soil series was also determined as described above for Yattendon for each sub-
sample, and the residual variograms were computed and modelled. These were then
used for cross-validation with SKlm-s for each sub-sample.

The results for the various methods of prediction and sub-samples are given in
Table 7.6. In general, the MSDR values are closest to one for OK, but depart in-
creasingly from one for all methods as the sample size decreases and grid spacing
increases. The MSDRs for the larger sample sizes using SKlm-h, SKlm-s and KED
are acceptable. The MAEs (Table 7.6) show that SKlm-h outperforms OK for all
sub-samples, and SKlm-s outperforms OK for small sample sizes such as for the 90-
m, 120-mCLMS DNs, 120-m and 150-m grids. Finally, KED has larger MAEs than
OK for all sub-samples. These results suggest that ancillary data improve prediction
with SKlm-h and SKlm-s when they are available, especially when the number of
soil samples is small.

7.4.3 Patterns of Variation

The LOI data from various sub-samples were interpolated to a 5-m grid by OK.
For SKlm-h the regression was applied to the 5-m grid of covariates and the re-
sulting mean values were combined with the kriged residuals according to Eq. 7.5.
Figure 7.11a shows the map of ordinary kriged predictions from the 296 data on
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Fig. 7.11 Maps of LOI at the Wallingford site from predictions by: (a) ordinary kriging (OK)
and the full data (296 sites), (b) OK and the 120-m data (23 sites), (c) ordinary kriging (OK) with
the 120-m plus 60-m data (50 sites), (d) simple kriging with local means (SKlm-h) using aerial97,
yield00, elevation and the 120-m data (23 sites), (e) SKlm-h using aerial97 , yield00, elevation and
the 120-m plus 60-m data (50 sites), (f) SKlm-s with the 120-m data (23 sites), (g) SKlm-s with
the 120-m plus 60-m data (50 sites)

the 30-m grid. This can be used as a reference to compare the variation resolved
by various sub-samples and interpolation methods. We focus on the 120-m sam-
pling interval and 120-m plus 60-m data as these would be recommended to the
practitioner based on the ancillary variograms (see Chapter 2 of this book). When
data on the 120-m grid (23 points) are used alone for OK (Fig. 7.11b), the main
patterns of variation are no longer evident. However, the main patterns of variation
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are preserved when the 120C60-m data (50 points) are used for OK (Fig. 7.11c).
Figure 7.11d shows that when SKlm-h is used to interpolate the 120-m data with an-
cillary data the patterns of variation are even more similar to those for the 30-m soil
data (Fig. 7.11a). There is little improvement over these results when the 120-m plus
60-m data are used for SKlm-h (Fig. 7.11e). The improvement with ancillary data is
most evident for the 120-m data and this is also reflected in the LOO cross-validation
results where the difference between the MAEs for OK and SKlm-h is greatest for
120-m grid and smallest for the 120-m plus 60-m data (Table 7.6). Figure 7.11f and g
show the predictions from the 120-m grid and 120-m plus 60-m data using SKlm-s.
More of the variation has been resolved than with OK for the 120-m data, but not for
the 120-m plus 60-m data. These results again confirm those from cross-validation
(Table 7.6). These results illustrate to practitioners that if the only ancillary data
available to them are soil series maps, they can be used to improve estimates from
sparse, spatially structured soil data.

The LOO cross-validation and jack-knife statistics give a good indication of
which method performs best. However, these cross-validation statistics do not con-
vey the full benefit of ancillary data for mapping soil properties, especially when
the sample size is small because only the ancillary data that are collocated with the
soil data are used and not the full dataset. When the sample size is very small, the
jack-knife results show that it can be difficult to calibrate the regression model on
which KED and SKlm-h are based using only the nearest ancillary data to the soil
data. The maps in Fig. 7.6 and particularly Fig. 7.11 show that when all the data from
ancillary variables are used to interpolate to a dense grid, it is generally beneficial
to use a multivariate technique rather than OK even when the sample size is small.

7.5 Conclusions

This Chapter has introduced the three most common geostatistical approaches for
incorporating ancillary data into the prediction of soil properties: cokriging (CK),
kriging with an external drift (KED) and simple kriging with local means (SKlm).
Each method has its advantages and disadvantages, and their prediction perfor-
mances are site-specific as illustrated by the two cross-validation studies. Cokriging,
unlike KED and SKlm, does not require the ancillary data to be at all locations on
the prediction grid, however, its application is more demanding in terms of com-
puting and modelling the variogram. It also becomes more complex when there
is significant trend in the primary or ancillary data; some authors recommend the
use of KED and SKlm if trend is present. Simple kriging with local means allows
the straightforward incorporation of both categorical and continuous attributes and
can be implemented using common geostatistical software once regression residuals
have been computed. Kriging with an external drift allows one to account for spatial
changes in the relationship between variables, but this relationship must be linear
and most software accommodates only a single covariate. Correlation or regression
analyses with a moving window could be used to determine whether KED or SKlm
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is the more appropriate. If the correlations between variables are stationary over the
field, then KED with a global search window outperforms SKlm, but this can be
computationally intensive. If the secondary variables are not sampled exhaustively,
practitioners should use either cokriging or predict the variables to the nodes of the
prediction grid before applying KED or SKlm.

Cross-validation should be used to select the method that provides the most
accurate predictions for a given site. The results described in this chapter suggest
that any method of prediction that incorporates ancillary data with only weak-
moderate (0.25–0.5) correlation with the soil property is preferable to ordinary
kriging, especially when there are few data. Such methods can improve the qual-
ity of the digital maps that farmers need based on sparse, yet spatially structured
soil data with little additional expense. Most farmers have some kind of ancillary
data and incorporating them into the prediction process would improve information
on the variation at little or no extra expense. We recommend that practitioners use
a practical approach to incorporating secondary information into the interpolation
process that considers the available data, the strength of correlation between pri-
mary and secondary variables, and their access to and expertise in using appropriate
software.
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Chapter 8
Spatial Variation and Site-Specific Management
Zones

R. Khosla, D.G. Westfall, R.M. Reich, J.S. Mahal and W.J. Gangloff

Abstract Many approaches have been proposed over the last two decades for
managing the spatial variation of soil and crops. In this chapter we discuss the im-
portance of quantifying and managing spatial variation in crop production fields
to implement site-specific crop management. We outline the challenges that soil
and crop scientists have addressed since the inception of precision agriculture (PA)
in terms of managing soil spatial variation, and the development of simple, sta-
ble and inexpensive techniques for quantifying and managing it with tools such
as site-specific management zones. This chapter summarizes and cites the work of
several scientists who have worked in the area of development and evaluation of site-
specific management zones from around the world. Geostatistics is being applied
increasingly in PA because of the need for accurate maps on which to base site-
specific management. For soil and crop properties that require costly sampling and
analysis, there are often insufficient data for geostatistical analyses and this chapter
shows how management zones can provide an interim solution to more comprehen-
sive site-specific management. Physical and chemical soil properties have been the
most widely used properties for delineating management zones, however, intensive
data from remote and proximal sensors are being used increasingly. The case study
describes methods of delineating and evaluating management zones.
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8.1 Introduction

Spatial variation in soil properties exists within fields, farms and across landscapes.
Although spatial variation in agricultural fields has received considerable attention
recently, its importance and impact on crop management has been discussed for
over a century. Mercer and Hall (1911) examined the variation in crop yields in
small plots in fields at Rothamsted Research, Harpenden, England. Later Waynick
and Sharp (1919) reported variation in soil nitrogen and carbon in field trials in
a series of studies and its impact on the accuracy of field trials. They found that
the differences between samples taken at shorter intervals were significantly less
than those for the population as a whole (Waynick and Sharp 1919). Several studies
since then have shown that soil properties, as well as many natural resource prop-
erties, vary continuously in space (Haradine 1949; Hammond et al. 1958; Peterson
and Calvin 1986; Cipra et al. 1972; Vieira et al. 1982). Likewise, crop producers
and farm managers have observed spatial and temporal variability in their fields for
a long time. Until recently, they did not have access to appropriate tools and tech-
nology to manage the variation. Since variation in soil properties greatly influences
crop productivity across a field, it was evident early on that successful implemen-
tation of precision agriculture technologies for managing agricultural fields would
require the spatial variation to be quantified accurately.

Geostatistical techniques have been adopted with some enthusiasm in PA be-
cause of their suitability for quantifying and predicting the spatial variation of soil,
crop and landscape properties (see Chapter 1 for some of the background). Natural
systems in the environment usually show structured or periodic variation in time or
space (i.e. spatial or temporal dependence, see Chapter 5). This is particularly true
for soil systems where patterns develop as a result of variation in topography, parent
material, climate and biology. The consequence of spatial dependence is that sam-
ples separated by small distances tend to be more similar than those further apart.
Classical statistical procedures on the other hand assume that data are spatially in-
dependent. Geostatistics is a collection of statistical methods that have been used for
some time in the geosciences. The basis of the methods is to describe and model spa-
tial dependence or autocorrelation among sample data, and to use this information
for various types of spatial prediction. There is some overlap with GIS (geographic
information systems) and spatial statistics more generally.

There are two major components of a geostatistical analysis: modelling spatial
dependence in the form of a correlogram or variogram, and predicting variable
values at unsampled locations with techniques such as kriging or cokriging (see
Chapters 1 and 7, in particular for more theoretical background to these tech-
niques). Geostatistics can provide accurate maps for the successful implementation
of variable-rate prescription for site-specific nutrient management and other appli-
cations in precision agriculture, such as irrigation.

If the objective is to quantify the spatial variation in a given field, the sample
design used to obtain data is important. Geostatistics places a different empha-
sis on the approach to sampling from that used in conventional statistics (see
Chapters 2 and 3). Classical methods of sampling based on randomization of the
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sampling positions aim to avoid spatial correlation because of the assumptions that
underpin many conventional statistical techniques. In geostatistics, the aim of sam-
pling is to ensure that the data will be spatially correlated and randomization is no
longer a requirement. Randomization in geostatistics is a feature of the model rather
than a property of the phenomenon of interest. Furthermore, geostatistics changes
the emphasis from the estimation of regional averages in classical statistics to the
local estimation of spatially distributed variables using techniques such as kriging
and cokriging.

The costs of obtaining enough data for geostatistical analysis often preclude its
application and there is a need for an alternative approach to site-specific manage-
ment that does not necessarily depend on spatially dependent information about the
soil. In the last decade there has been considerable research in PA on the delineation
of zones for crop management. They enable site-specific crop management without
the high costs associated with sampling and analysis for geostatistical analyses. The
basis for delineating management zones is to identify soil and crop properties that:
(i) are easy and or inexpensive to measure; (ii) are temporally stable (do not change
in the short term, i.e. year to year) and (iii) can characterize variation in crop yield
accurately. The resulting zones should be simple, stable, accurate and inexpensive
to identify, and enable within-field spatial variation to be managed. Zones within a
field can be classified into areas that need to be managed differently (Fig. 8.7), and
this is the main focus of this chapter.

8.2 Quantifying Spatial Variation in Soil and Crop Properties

To interpolate or predict spatially a continuous or discrete variable, it is important
to know how it changes throughout the area of interest. For example, if the variable
is distributed randomly, then the best local estimate would be the global mean. If, as
is usually the case, the variable shows some spatial structure, for example patches
of soil with large or small organic matter (OM) contents, it should be possible to
describe this change quantitatively. To describe the variation requires a suitable sam-
pling design, otherwise the results of statistical analysis and or interpolation could
be disappointing and sometimes misleading.

Several sampling designs have been proposed and tested to quantify the spatial
variation of soil properties in PA. For example, simple random sampling, systematic
sampling on a grid and stratified random sampling where a field is stratified into m
squares. The latter has been popular and widely reported in PA, and is sometimes
referred to as grid sampling as is systematic sampling (Thom et al. 2003). The scale
at which sampling is done commercially for soil surveys by agricultural service
providers is at about one sample per hectare or more due to economic constraints
(Landwise Inc. 2006; Thom et al. 2003; Rehm et al. 2001; Pachepsky 1998). How-
ever, an important consideration when designing a survey for spatial interpolation
is the scale of variation of the property at the level of investigation, i.e. the field for
PA. The main limitation of using such large separating distances between sample
locations is that the scales of variation associated with soil and crop variables are
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much smaller (Gangloff 2004). For example, if one soil sample per hectare is taken
in a field where variation is over distances of say 30–40 m, the sampling design will
not resolve the variation adequately for interpolation. It should be noted that any
method of interpolation, geostatistical or otherwise requires data that are spatially
correlated or dependent.

Mueller et al. (2001) concluded that a commercial sampling approach on a grid of
100�100m (1 ha) was inadequate for developing sound soil nutrient maps, whereas
Franzen and Peck (1995) found that distance of 65-m (0.42 ha) between samples was
necessary. Hammond (1993) also found that a 60� 60m (0.36 ha) grid was adequate
for developing nutrient concentration maps. Gangloff (2004) investigated the spatial
variation of selected soil properties using a stratified random sample with a grid of
76� 76m (0.58 ha) and a finer grid of 15� 15m (0.023 ha). Gangloff (2004) used
a G-statistic (Agterberg 1984) to evaluate the ‘goodness-of-prediction’ from krig-
ing selected soil properties. For the coarser grid the G-statistic was close to zero,
and Gangloff (2004) concluded that the poor results were because some sample
locations appeared to be anomalous making it difficult to predict accurately near
to them and the interval of the coarse grid was too large. Analysis of the data on
the fine grid indicated that the scale of spatial dependence for the soil properties
was 20–30 m, which is much smaller than the interval of the coarse grid. In practi-
cal terms, these results suggest that the grid size used by commercial practitioners
makes accurate prediction of soil properties impossible because of a lack of spatial
dependence among the sample data. McBratney and Pringle (1999) in a separate
study previously suggested that strata of 20- to 30-m are required for site-specific
applications of agricultural inputs. While it is difficult to suggest an ideal grid size
to characterize soil variation accurately, variation in soil properties appears to occur
at a much finer scale than the 1 hectare strata commonly used in PA.

A coarse grid also limits the number of samples available to estimate the vari-
ogram; sample sizes generally range from 35 to 76 observations. Small sample sizes,
such as these, affect the accuracy of the variogram estimated by the usual method
of moments (Webster and Oliver 1992). Residual maximum likelihood (REML)
(Cressie 1993) is a possible alternative when there are>50 and<100 data (see Kerry
and Oliver 2007). Irrespective of the method used to estimate the variogram, if the
resulting model does not describe the spatial structure of the variable adequately,
any kind of interpolation of soil or crop properties to produce maps is unlikely to
represent variation in the field accurately.

The difficulties associated with using geostatistical techniques to interpolate soil
properties in PA mean that most commercial software used by crop consultants and
other practitioners disregards the importance of spatial dependence. They rely on
deterministic techniques such as inverse distance weighting for interpolation with-
out considering that this method makes little sense without spatially dependent data.
The problem is that such software can interpolate from any set of data regardless of
whether they are spatially dependent, and so the resulting surfaces may or may not
reflect the true variation in the population. Discussions with consultants and practi-
tioners (personal communication) indicate that “sampling at scales needed to attain
spatial dependency is time consuming, laborious, expensive and not necessarily
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advantageous given the size of the large commercial farm equipment they work with
to apply variable rate nutrients across a field”. As sampling for geostatistics (or
interpolation more generally) requires skilled labour, is time consuming, labour in-
tensive and expensive (Khosla and Alley 1999; Khosla et al. 2002), there has been
a need for alternative techniques that are efficient, simple, accurate and economic
(Bullock and Bullock 2000) to characterize the spatial variation in soil and crop
properties accurately. This has been achieved with management zones.

8.3 Site-Specific Management Zones

The most widely cited definition of a management zone was provided by Thomas
Doerge in the late 1990s. According to Doerge (1999) “Management Zones” are
“sub-regions of a field that express a homogeneous combination of yield limiting
factors for which a single crop input is appropriate to attain maximum efficiency of
farm inputs”. This definition became a ‘mantra’ for those who started developing
and evaluating techniques for delineating management zones for precision nutrient
management and later for precision management of other inputs also (herbicides,
water, seeds, manure, etc.). Figure 8.7 shows a field classified into separate regions
of low, medium and high productivity. It illustrates some of the unique features
of management zones: (i) the areas of different productivity potential may or may
not be contiguous and (ii) the number of zones delineated is subjective and is a
function of the technique used to delineate them and the scale of variation observed
in that field. The overarching idea is to characterize within-field variation, identify
yield limiting factors and classify homogenous areas into zones to manage them
separately to enhance production, and to improve the efficient use of inputs and
economic returns (Khosla et al. 2002; Koch et al. 2004).

Based on the number of publications (>200) found in the Agricolar and other
scientific databases that reported work on some aspect of management zones, cou-
pled with the diversity of management zone techniques reported in the literature, it
may appear that they have been around for decades. However, the concept of manag-
ing crop production inputs within zones is relatively new. A review of the literature
indicates that Yost et al. (1982) delineated ‘zones of influence’, i.e. areas of soil with
similar properties based on the ‘range’ of the variogram. However, the focus of that
investigation was on mapping soil properties using geostatistics and not necessarily
to aid crop management decisions.

A review of the literature does not provide a clear indication of when the first
zone-based variable-rate nutrient management was initiated. Mulla et al. (1992) re-
ported the results of their study in the late 1980s on nutrient management based on
management zones in the Pacific Northwest of the USA. In studies prior to that by
Mulla et al. (1992), recommendations were made by soil scientists for variable rates
of fertilizer application based on patterns in soil fertility (Dow and James 1973).
However, such recommendations could not be implemented because of the limita-
tions associated with the technology available to map patterns in soil fertility and
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to apply fertilizer at a variable rate (Mulla et al. 1992). With developments in agri-
cultural equipment, new fertilizer applicators were introduced in the late 1980s that
were capable of map-based fertilizer application (Fairchild and Hammond 1988).
Around the same time advances were made in within-field mapping of soil prop-
erties with the aid of GPS and GIS, enabling map-based variable-rate fertilizer
application to become a reality (Mulla and Hammond 1988; Hammond et al. 1988;
Mulla et al. 1992). Grid sampling of the soil continued to play a major role in quanti-
fying within-field variation and producing variable-rate fertilizer prescription maps,
whereas management zones were in the early stages of development and evaluation.
It took several years and many studies to indicate the success of management zones
for quantifying within-field variation of soil and crop properties accurately before
they were recognized as a viable tool for precision nutrient management.

8.3.1 Soil Properties, Crops and Geographic Distribution
of Management Zones

Table 8.1 gives the frequency of various soil, crop and other properties that have
been used, individually or in combination, to delineate site-specific management
zones for crop management. The list of properties and frequency of their occurrence
(a total of 162) were collated from over 100 refereed publications from around the
world published between 1992 and 2008. Table 8.1 clearly reflects the diversity of
properties (46 in total) that have been used by researchers and practitioners to delin-
eate management zones. These properties can be divided into eight broad categories
(Table 8.1). It is evident that, both physical and chemical soil properties are the most
widely reported properties used for delineating management zones, followed closely
by those from sensing technologies, crop properties and landscape attributes. Al-
though sensing is a separate category in Table 8.1, the methods were used to measure
aspects of both soil and crop properties. In addition, sensing technologies, such as
the Veris soil electrical conductivity unit (Veris Tech., Salina, KS), remote-sensing
for bare soil imagery, normalized difference vegetation index (NDVI), etc., are re-
ported in more recent literature (Kitchen et al. 2005; Khosla et al. 2002; Inman
et al. 2008) and are a reflection of the progress that has been made (i.e. accessibility
to innovative sensors and tools) in the last decade in site-specific crop management.
Table 8.1 also gives a few of the rare properties that have been used for delineating
management zones, such as tillage depth, tillage force, weed populations and soya
bean cyst nematode densities, for site-specific crop management.

Tables 8.2 and 8.3 give the frequency of the various crops and geographical lo-
cations, respectively, where site-specific management zones have been developed
and evaluated or applied for site-specific crop management. Table 8.2 shows that
the majority of management zone research has focused on ‘row-crops’ primarily
maize (Zea mays), followed by soya beans (Glycine max), cotton (Gossypium hir-
sutum), wheat (Triticum aestivum), potatoes (Solanum tuberosum) and rice (Oryza
sativa). Inclusion of other crops, fruits, vegetables and tree species illustrate unique
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Table 8.1 A list of properties used in various techniques of delineating site-specific management
zones

Category
Properties used to delineate management
zones

Number of
occurrences

I. Soil properties [61]a

Chemical Soil organic matter and soil carbon 8
Nitrogen 7
Phosphorous 7
Potassium(4), Magnesium(1) and

Calcium(1)b
6

Cation exchange capacity 2
Grid sampling 2
Soil pH 1
Targeted sampling 1
Gypsum requirement 1

Physical Soil texture 13
Soil type 7
Soil colour 6
Soil moisture content 4
Aggregate stability in water test 1
Hard pan 1
Penetration resistance 1
Water content/holding capacity 2

II. Landscape attributes [18]
Topography 14
Aspect 2
Curvature 1
Other 1

III. Crop properties [28]
Yield map (Spatial) 14
Yield map (Temporal) 9
Shoot density 3
Ground based leaf area index (LAI) 1
Protein content (wheat) 1

IV. Sensing [40]
Soil electrical conductivity sensor 18
Satellite imaginary and other platforms 12
Normalized differential vegetative index

(NDVI)
5

Digital photography (crop canopy) 4
Electromagnetic induction sensors 1

V. Management practice [4]
No-tillage, chisel-plow, with and without

traffic
1

Tillage depth 1
Tillage force 1
Weeding, mulching and traffic-aisles 1

(continued)
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Table 8.1 (continued)

Category
Properties used to delineate management
zones

Number of
occurrences

VI. Weed and pest management [4]
Weed population 2
Soya bean cyst nematode densities 1
Silverleaf whitefly population 1

VII. Subjective approach [4]
Self made zones for soil management 4

VIII. Modeling [3]
Crop/simulation/GIS 3

Total 162
aTotal of each category is bracketed.
bNumber of occurrences for each nutrient is in parenthesis.

applications of management zones (Table 8.2). Proliferation in the use of manage-
ment zones around the world has been fairly rapid. Table 8.3 shows that research on
management zones has been reported from several countries across six continents.
While it comes as no surprise that the majority of research has been reported from
the USA, followed by Europe, it is still encouraging that use of management zones
is proliferating in other parts of the world.

Although the original primary purpose of management zones was to replace
grid sampling for site-specific nutrient management, a review of the literature
(Tables 8.1–8.3) indicates that management zones have been developed for man-
aging a wide variety of crop inputs. A partial list includes management of crop
irrigation, manure, weeds and pests, tillage, in addition to crop nutrients such as N, P,
K, Ca, Mg and Fe, ameliorants such as gypsum, and characteristics of crop quality
such as the protein content of wheat or wine quality from grapes, etc. Tables 8.1–8.3
provide an overview and insight into the diversity as well as the similarities among
the parameters used globally in developing and delineating management zones for
various crops that have been reported in the literature.

8.3.2 Techniques of Delineating Management Zones

There are numerous techniques for delineating management zones across a field.
Over the years, these techniques have evolved and have been transformed from
being primarily soil property based to minimally intrusive (i.e. do not rely strictly on
soil sampling) and, therefore, have the potential to be more economically feasible
than grid sampling for variable-rate management (Hornung et al. 2006). Manage-
ment zones may be delineated based on a single soil or crop property (such as soil
texture or yield) or a combination of several that are known to affect crop productiv-
ity and yield (Table 8.1). Likewise, some techniques are based on a simple process
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Table 8.2 Frequency distribution of crops, fruits, vegetables and trees, reported to be managed
with site-specific management zones in the literature

Category Name of crop Botanical name Number of occurrences

Crops [106]a

Maize Zea mays 34
Wheat Triticum aestivum 17
Soya beans Glycine max 15
Cotton Gossypium hirsutum 12
Potato Solamum tuberosum 6
Barley Hordeum vulgare 4
Rice Oryza sativa 4
Sugar beet Beta vulgaris 4
Rape Brassica compestris 2
Sunflower Helianthus annuus 2
Bean Phaseolus vulgaris 1
Flax Linum usitatissimum 1
Millet Pennisetum americanum 1
Sweet potato Ipomea batatus 1
Sorghum Sorghum bicolor 1
Sugarcane Saccharum officinarum 1

Vegetables [5]
Cassava Manihot esculenta 2
Arrow roots Maranta arundinacea 1
Cowpeas Vigna unguiculata 1
Tomato Lycopersicon esculentum 1

Fruits [3]
Banana Musa paradisiacal 1
Grapes Vitis vinifera 1
Pineapples Ananas comosus 1

Trees [2]
Oil palm Elaeis guineensis 2

Others [2]
Pasture 2

Total [118]
aTotal of each category is shown in brackets.

that involves only a clustering algorithm with one property, such as soil electrical
conductivity, to classify the field into zones (Fleming et al. 2004). Conversely, there
are other complex techniques that may involve a variety of GIS data layers (i.e. re-
motely sensed red, green and near infra-red bands; soil organic matter; soil cation
exchange capacity; soil sand, silt and clay content; and the previous year’s digital
yield data) to create the final management zone surface (Hornung et al. 2006).

Digital soil survey maps are becoming increasingly available in the USA and
have been investigated as a means of generating site-specific management zones
(Franzen et al. 2002; Kitchen et al. 1998; Anderson-Cook et al. (2002). Franzen
et al. (2002) found that although order 2 digital soil survey maps (i.e. map scales
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Table 8.3 Frequency distribution of countries where the site-specific manage-
ment zone approach has been reported in the literature

Continent Country name Number of occurrences

North America [59]a

USA 56
Canada 3

Europe [16]
England 5
Belgium 2
Italy 2
Austria 1
Czech Republic 1
Finland 1
France 1
Hungary 1
Germany 1
Spain 1

South America [2]
Argentina 1
Chile 1

Africa [2]
Kenya 1
South Africa 1

Australia [7]
Australia 6
New Zealand 1

Asia [11]
Bangladesh 2
China 2
Pakistan 2
Iran 1
Japan 1
Malaysia 1
Thailand 1
Papua New Guinea 1

Total [97]
aTotal of each category is shown in brackets.

of 1:15 840 to 1:30 000) are readily available to farmers, they were inadequate for
developing N management zones. However, Franzen et al. (2002) further reported
that order 1 soil survey maps (i.e. map scales of 1:5000 to 1:10 000) were useful for
developing N management zones. In a similar study, Kitchen et al. (1998) compared
soil survey maps of order 2, order 1 and enhanced order 1 with a scale of 1:5000.
They found that while order 1 soil survey maps (both, enhanced and standard) were
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Fig. 8.1 Soil surveys conducted on the research field. From left to right: order 2 soil survey
(1989–91), order 1 soil survey (1993), ‘enhanced’ order 1 soil survey (1997) and management
zones created by topsoil depth and elevation (modified and adapted from Kitchen et al. 1998)

unquestionably better (Fig. 8.1) than order 2 maps, they concluded that order 2 maps
were better than having no subfield delineation at all (Kitchen et al. 1998). It is im-
portant to note that order 1 soil surveys are generally not available free of charge to
the public, whereas order 2 soil surveys are. Therefore, a soil consultant would have
to generate a custom soil survey order 1 map of the area, which could be expensive
depending on the size of the area (Hornung et al. 2006). Although order 2 soil sur-
vey maps may be a starting point for sub-field management, order 1 or enhanced
order 1 soil survey maps would be needed for site-specific crop management.

As order 1 soil survey maps are expensive to generate, Anderson-Cook
et al. (2002) investigated an alternative technique for soil mapping. They compared
order 1 soil type maps with apparent soil electrical conductivity (ECa/ measure-
ments and found that it was possible to classify the soil type correctly 62–81% of
the time from ECa values alone. When ECa was used with crop yield data, the ac-
curacy increased to between 80% and 91% (Table 8.4). This is a major contribution
because soil ECa measurements are relatively inexpensive to record compared to
obtaining order 1 soil survey maps.

Previous studies with soil ECa have shown that in addition to identifying varia-
tion in soil texture, it relates closely to other properties that often determine a field’s
productivity (Lund et al. 1999). Heermann et al. (1999) found that soil ECa was
the best predictor of crop yield when compared with many other common soil and
crop properties. Fleming et al. (2004) used only soil ECa to delineate management
zones and found that it consistently identified areas of different productivity poten-
tial across a field. Johnson et al. (2003), however, indicated that the soil properties
that control soil ECa do not necessarily correspond to yield limiting factors. They
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Table 8.4 Percentage of correct classification of order 1 soil type maps
versus apparent electromagnetic conductivity (ECa) and combined ECa

and crop yield for four soil types

Number of
observations ECa alone

ECa and crop
yield

% Correctly classified
129 85.3 91.5
197 91.4 96.4
67 95.5 95.5

211 87.2 93.4
259 86.6 90.3

Modified and adapted from Anderson-Cook et al. (2002).

found that patterns on soil ECa maps were correlated weakly with variation in corn
yield and that there was no consistent relationship between ECa-based management
zones and corn grain yield (Johnson et al. 2003). It is evident that ECa alone may
not be appropriate under all crop production systems. However, there is a potential
for using soil ECa when it is combined with other soil and crop properties.

Variation in landscape attributes (topography, aspect, slope, curvature, etc.) have
also been a focus of investigation for the delineation of management zones. Even
before the advent of management zones, field topography was used to gener-
ate variable-rate nutrient application maps. Previous studies have described the
link between field topography and soil nitrogen content (Bruulsema et al. 1996;
Cassel et al. 1996) as well as topography and yield variation (Ciha 1984; Verity
and Anderson 1990). Kravenchenko and Bullock (2000) found that topography to-
gether with other data such as organic matter, cation exchange capacity, phosphorus
and potassium accounted for 40% of the variation in grain yield. Nolan et al. (2000)
found that management zones based on elevation, curvature and slope could account
for as much as 51% of the variation in crop yield. These are important findings be-
cause topography is a stable property and relatively easy and inexpensive to measure
with current high resolution GPS technology.

Crop yield can be mapped easily by yield monitoring devices and the result is
a reflection of within-field variation at a fine resolution. Hence, many have tried to
use this valuable information to classify fields into areas of different productivity
to aid management decisions. Most researchers who have used yield maps as a
data layer for management zone delineation have concluded that yield maps alone
are not a suitable basis for delineating zones, primarily because yield patterns are
inconsistent between growing seasons (Welsh et al. 2003a,b; Godwin et al. 2003).
Nevertheless, they provide valuable ancillary data (Stafford et al. 1998). For exam-
ple, combining grain yield data with other soil variables could potentially explain
variation associated with both crop and soil properties. This hypothesis was tested
by Hornung et al. (2006) with the previous year’s yield data and eight other data
layers (red, green and near infra-red bands; soil organic matter; cation exchange
capacity; sand, silt and clay content). They reported only marginal success with the
management zone technique, primarily because of the temporally unstable nature
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of the yield data. They concluded that perhaps a weighting system is needed in
the delineation process of management zones that would allocate different weights
to different data layers on the basis of their importance to the variation in crop
production. Nanna and Franzen (2003), in a separate study, considered a weighted
classification method for nitrogen zone delineation. Recently, studies have focused
on several years of yield data to generate management zones and have reported
significant success (Lauzon et al. 2005; Jaynes et al. 2003; Bakhsh et al. 2005). In
a previous study, Moore and Wolcott (2000) correctly suggested that management
zones based on several years of yield maps should be generated only after the
stability of yield zones within a specific field has been tested.

Remote sensing platforms (aerial and or satellite-based passive remote sensing
or ground based active remote sensing) are promising alternatives to intensive grid
sampling and analysis for characterizing the spatial variation of soil and crop prop-
erties for management zone delineation and variable-rate nutrient application. Bare
soil imagery, together with topography and the farmer’s experience of the farm were
used to delineate management zones by Khosla et al. (2002). This technique char-
acterized grain yields accurately (Fig. 8.2) into high, medium and low productivity
potential management zones in 9 out of 10 site years (Inman et al. 2005; Khosla
et al. 2008). The management zones also characterized the economic returns ac-
curately that followed the productivity potential of each zone closely (Fig. 8.3).
Mzuku et al. (2005) evaluated several soil physical and chemical properties across
management zones that were delineated using bare soil imagery. They found that
soil properties had a significant (p < 0:05) correlation with low, medium and
high management zones where bulk density decreased, organic carbon increased,
sand content decreased and silt content increased significantly from low to high
productivity potential zones (Fig. 8.4). More recent studies have focused on using
remote sensing for in-season crop management. Inman et al. (2005) compared NDVI
and relative maize grain yield with management zones and found similar spatial pat-
terns among the, low, medium and high potential yield zones. They concluded that
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Fig. 8.2 Mean grain yield for each N application rate across site-specific management zones.
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Fig. 8.3 Average differences in net returns (USD ha�1) between the uniform and variable-rate
nitrogen management that closely followed the productivity potential of management zones across
site years: (a) I, (b) II, (c) III and (d) all years. A positive difference in net returns indicates that
the variable-rate strategy performed better than the uniform rate. (Adapted from Inman et al. 2008)
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Fig. 8.4 Box plots of soil physical properties across site-specific management zones. Within a
plot, boxes with different letters are statistically different at p � 0:05 (modified and adapted from
Mzuku et al. 2005)

NDVI can potentially be used to model grain yield as early as the six- to eight-
leaf crop growth stage in irrigated maize. Remote sensing applications in precision
nutrient management with or without management zones continue to be important.
Ground based active remote sensing devices hold even further potential to optimize
crop nutrient management.
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Techniques of management zone delineation proposed in the literature are nu-
merous. However, to date there are few studies that have compared management
zone delineation techniques on the basis of their relative performance to characterize
areas of different crop productivity. A case study comparing four different manage-
ment zone delineation techniques that uses a diversity of properties and complex
geostatistical approaches is presented below.

8.4 Statistical Evaluation of Management Zone Delineation
Techniques: A Case Study

Irrespective of the technique used to create management zones, it must be possible
to characterize within-field spatial variation and classify crop yields correctly into
separate productivity classes, such as low, medium and high potential production
management zones. The best way to select the most appropriate management zone
delineation technique would be to compare several techniques on the same field,
replicated over time and space, yet few studies have done this (Fleming et al. 2004;
Hornung et al. 2006; Derby et al. 2007). Gangloff (2004) did a comprehensive study
on a maize field of 58 ha with centre pivot irrigation that compared four techniques
for delineating management zones.

Four techniques for delineating management zones were applied to create three
zones of low, medium and high productivity potential for each field. Management
zone techniques ranged from simple (technique 1) to complex (technique 4). Tech-
nique 1, referred to as the soil colour management zone technique (SCMZ), uses
bare soil imagery, field topography and the farmer’s past management experience
as three GIS data layers to delineate zones (see Khosla et al. 2002 for the detail).
Technique 2, uses apparent soil electrical conductivity generated by Verisr (model
3100 EC) as a single GIS data layer to delineate management zones (ECMZ) (see
Fleming et al. 2004 for the detail). Technique 3, referred to as yield based manage-
ment zones (YBMZ), uses several GIS data layers, which included: multi-spectral
bare soil imagery, OM, CEC, soil texture (sand, silt and clay content) and previ-
ous years’ yield monitor data (see Hornung et al. 2006). Technique 4 is new and is
referred to as the remotely sensed data and cluster sampling management zone tech-
nique (RCMZ). Geostatistics is used to analyse bare soil imagery and soil sample
data, which are combined to delineate management zones (see Gangloff 2004 for
more detail).

The RCMZ was the most complex technique among the four techniques that
were compared because it uses remote sensing, soil sampling and geostatistical
procedures to create the final zone map. Bare soil imagery was used to develop
a directed soil sampling procedure to characterize small scale variation associated
with selected soil properties (i.e. organic matter, nitrate-N (NO3-N), zinc, electric
conductivity and ammonium –N (NO4-N)). Soil reflectance for each bare soil image
was quantified into three distinct bands: blue (0:48–0:50 �m), green (0:55–0:60 �m)
and red (0:62–0:68 �m) with Imagine software (Leica Geosystemsr 2003). Bare
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soil imagery was used to identify regions or strata with similar spectral properties.
The number of strata delineated in a field was determined through a subjective iter-
ation procedure.

1. Ten strata were initially delineated over each field using an unsupervised classi-
fication algorithm.

2. If the image appeared too pixilated and lacked visually obvious and distinctly
contiguous regions, the clustering algorithm was run again after reducing the
number of strata by one.

3. This procedure was repeated until visually obvious and distinctly contiguous re-
gions were apparent.

After stratification, three sets of soil samples were obtained by sampling randomly
within each stratum. At each sample location, three soil samples were taken at the
vertices of an equilateral triangle and were about 5 m apart. The variation identified
by these small clusters of sampling points is the small-scale spatial variation in soil
properties, whereas the variation between clusters is the large-scale spatial variation.

A stepwise Akaike information criterion (AIC) was used to identify the com-
bination of satellite bands (red, green and blue) and x,y-coordinates to include in
the regression model to describe soil properties in the field. Regression and vari-
ance model parameters were estimated simultaneously by maximum likelihood
(O’Connell and Wolfinger 1997). The variogram model that minimized the AIC
was selected to krige the residuals from the regression model of a given soil prop-
erty (fit.geospatial; S-PLUS©, Reich and Davis 1998). A spherical function provided
the best fit to the experimental variograms of the regression residuals (Table 8.5
and Fig. 8.5). The variogram ranges of the soil properties have a similar magnitude,
with an average range of 131 m. Figure 8.6 shows the grey scale maps from regres-
sion kriging of the five soil properties for one field. The spatial variation in these
properties illustrates the difficulty of delineating management zones from several
properties at the same time.

Table 8.5 Model parameters of spherical variograms for regression residuals of soil properties
used as input to the RCMZ management zone delineation technique

Soil property
Regression
variablesa

Model parameters

Model Nugget

Spatially
correlated
component Range (m)

Organic matter Red, green X2 Spherical 0.0 0.034 141.0
Nitrate-N

(NO3-N)
X,Y Spherical 0.0 7.615 137.7

Zinc Green, blue, Y,Y2 Spherical 0.005 0.239 101.1
Electrical

conductivity
X,Y2 Spherical 0.0 0.003 150.0

Ammonium-N
(NH4-N)

Green, X,Y,X2 Spherical 0.243 1.694 126.9

aRed, green, blue – spectral bands of bare soil imagery; X,Y – geographical coordinates of soil
sample.
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Fig. 8.5 Experimental variograms (symbols) and fitted spherical model (solid line) for regres-
sion residuals of: (a) organic matter, (b) nitrate-N (NO3-N), (c) zinc, (d) electric conductivity and
(e) ammonium –N (NH4-N)

The predictions for the five soil properties were then analysed with a nonhier-
archical k-means clustering algorithm for spatial data to create three management
regions for each field (MSCA; S-PLUS©, Reich and Davis 1998). The algorithm
groups the sites in the field into management zones using spatial attributes. In k-
means clustering the grouping aims to minimize or maximize some criterion, in this
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Fig. 8.6 Pixel maps of predictions from regression kriging for: (a) organic matter, (b) nitrate-N
(NO3-N), (c) zinc, (d) electric conductivity and (e) ammonium –N (NH4-N)

case minimizing the sum of squares of distances between data and corresponding
cluster centroid. Regions of high productivity potential were identified as regions
with higher soil OM and NO3-N levels, and the converse was the case for low pro-
ductivity management zones. The resulting management zone surface map is a noisy
representation of the zones, which would be difficult for a farmer to work with prac-
tically. The minimum size and shape of a zone for management is limited by the
ability of the farmer and available implements to apply nutrients variably across a
field. Therefore, some form of spatial filtering or contiguity constraint is necessary
to reduce the fragmentation of the original classes to create smoother management
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SCMZ ECaMZ

RCMZYBMZ

Fig. 8.7 Four techniques of management zone delineated on one centre pivot irrigated field.
SCMZ, soil colour management zone technique; ECaMZ, apparent soil electrical conductivity
technique; YBMZ, yield based management zone technique; RCMZ, remotely sensed data and
cluster sampling technique. Low productivity zone is white, medium productivity zone is grey, and
high productivity zone is black (adapted from Gangloff 2004)

zones (Zhang et al. 2002; Kvien and Pocknee 2000). In this example, smoothing
was accomplished by applying a focal majority function to the three initial k-means
classes. The function finds the majority class value (the value that appears most of-
ten) for each location within a specified neighborhood and this become the class
value at the corresponding location for the smoothed management zone map. An
alternative method is to apply a contiguity constraint to the classification and this
can be done using the variogram as described by Frogbrook and Oliver (2007).

Figure 8.7 shows the management zones delineated by the four techniques for
one field. A visual comparison shows that there are similarities and differences
in identifying areas of different productivity potential in the same field (Fig. 8.7).
All four techniques delineated the north-west section of the field as a low produc-
tivity zone; similarly, high productivity zones were delineated in the south-central
and western section of the field. These correspond to some extent with the areas of
large and small values on the plots for the five soil variables (Fig. 8.6). Overall, the
medium productivity zones show the least correspondence from a visual compar-
ison. Quantitative assessments are needed, however, to identify the best technique
for delineating management zones.

To evaluate how accurately the four management zone techniques delineate
zones, a variety of statistical procedures were used (Gangloff 2004). First, an
S -statistic was used to test the null hypothesis that management zones consist of
a random collection of yields. The S -statistic is a median-based non-parametric, ab-
solute deviation statistic designed to evaluate whether the within-management zone
variability in yields is minimized over the field. If the zones differentiate yields
into low, medium and high productivity regions, one would expect the variation in
yield within management zones to be at a minimum and that the S -statistic would
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be small. By contrast, if yields were assigned randomly to management zones, one
would expect the variation in yield within management zones to be large, resulting
in a large S -statistic. The results of the analysis showed a significant organization
(p < 0:05) in grain yields in 30 out of 36 comparisons for the full analysis (three
fields, three zones, four techniques) indicating that the yield patterns under analy-
sis did not occur by chance and are worth classifying into low, medium and high
classes.

The delineation techniques were analysed further using areal association statis-
tics (Rees 2008), which determine how well the management zone delineation
techniques worked. Each delineated management zone (potentially low, medium
and high yield) was evaluated against spatially referenced yield data, which were
classified into three classes (i.e. low, medium and high) by the following three ap-
proaches. The first used an objective, k-means clustering algorithm to classify each
yield value as high, medium or low. The second approach used an objective, non-
parametric classification procedure. Yield values were sorted and classified as ‘high’
if they were greater than the 3rd quartile yield value; ‘medium’ if they were within
the 1st and 3rd quartiles; and ‘low’ if they were below the 1st quartile value. The
third yield classification approach was subjective and based on knowledge of maize
yields in the region; this was accomplished with the help of cooperating farmers.
Yield values were classified as high (>11.9 Mg ha�1), medium (8.8–11.9 Mg ha�1)
or low (<8.8 Mg ha�1) based on farmers’ knowledge.

The classified yield value at each location was compared with the associated
management zone classification, and summarized in square error matrices with clas-
sified yield in the columns and management zone in the rows, where the columns
and rows are the categories in the classification. The diagonal elements of the ma-
trix are the number of times the two data sets agree. Non-diagonal elements give
the number of misclassified times by category. The sum of the diagonal cells on the
matrix represents the total number of correctly classified yield observations The pro-
portion of the total number of correctly classified yield observations in the matrix
gives the overall aerial agreement for a given delineation technique. A chi-square
goodness-of-fit test and Kappa statistic were used to compare the areal agreement
against that which might be expected by chance. The Kappa statistic can be thought
of as a chance-corrected proportional agreement that ranges from C1 for perfect
agreement, to 0 for no agreement above that expected by chance and to �1 for
complete disagreement. The areal agreement analysis was done for all approaches
to yield classification, but only the results for the clustering approach that proved
superior to the traditional grid-sampling approach are discussed. Cluster sampling
accounted for, on the average, 34% (minimum D 1% and maximum D 74%) more of
the variability in soil properties compared to grid sampling. Estimates of bias were
small and estimates of the root mean squared error suggested that cluster sampling
captured more of the small-scale variation in soil properties than the traditional grid
sampling approach. Overall percentage agreement for the cluster sampling approach
ranged from 12% to 49% (Table 8.6). All comparisons were significant based on
the chi-squared goodness-of-fit test. Overall, the RCMZ technique has the greatest
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Table 8.6 Areal agreement (in percent) between yield classes (high, medium or low) using a clus-
tering approach to classify yield and four management zone delineation techniques as evaluated
with the chi-square goodness-of-fit test

Management Low yield vs Medium yield vs High yield vs
zone techniques low MZ medium MZ high MZ Weighted mean

Percentage
aSCMZ 36 46 32 42
bECMZ 33 40 39 36
cYBMZ 23 40 12 22
dSSMZ 49 49 45 49
aSCMZ refers to soil colour based management zone technique.
bECMZ refers to soil electrical conductivity based management zone technique.
cYBMZ refers to yield based management zone technique.
dRCMZ refers to remote sensing and soil sampling based management zone technique.

overall percentage agreement when compared with the other delineation techniques.
The SCMZ technique has the second highest percentage agreements. The RCMZ
was the only technique that used soil samples in the delineation process. The bare-
soil imagery was used to develop a directed soil sampling procedure to capture the
small-scale variation associated with soil properties. This information was used to
interpolate soil properties. The ability to interpolate soil properties was the main
reason the RCMZ technique was superior to other delineations techniques.

It is interesting to observe in the Gangloff (2004) study, that although the areal
associations between the grain yield classes are significant (Table 8.6), the agree-
ments in general may appear quite small (12–49%). This may be attributed to the
intentional smoothing or spatial filtering that is part of the process of management
zone delineation (Zhang et al. 2002). Smoothing removes the isolated islands of
low, medium and high zones distributed throughout the field, thereby decreasing the
areal association between management zones and yield classes.

When multi-sectional fertilizer sprayer booms with individual nozzle control
become economically feasible, perhaps there will be little to no need for spatial
filtering of management zones to create a smooth surface. Also, with the availabil-
ity of a suite of active remote sensors that can be mounted on tractors to assess
the health and vigour of the plant while ‘in-motion’ there is potential for further
improvements in the optimization of input applications for site-specific crop man-
agement. “Farming by the foot” as perceived from the early precision agriculture
concept may perhaps then become a reality.

8.5 Conclusions

Spatial variation in agricultural fields has been recognized worldwide. However,
there have been limitations associated with quantifying within-field spatial varia-
tion in an easy, inexpensive and accurate way. Site-specific management zones have
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been developed and evaluated as a successful tool that characterizes within-field
spatial variation, and groups homogeneous areas of a field into small regions (called
zones) so that each zone can be managed differently based upon the limiting fac-
tor of that zone. Some may argue that the concept of management zones may be
perceived as a setback from the original concept of precision agriculture, i.e. “farm-
ing by the foot” or micro-management (Zhang et al. 2002). However, site-specific
crop management across management zones has been shown to maintain or enhance
crop yields, nutrient use efficiency, to be environmentally suitable and economically
feasible. With the advent of new technologies and a suite of active sensors, when
coupled with management zones, there is a tremendous potential to improve further
the efficiency, economics and overall crop production systems. Nevertheless, man-
agement zones are probably an interim measure to fully variable-rate management.
The latter will be become more economically feasible when spatially intensive soil
and crop information become available cheaply from on-the-go measurement de-
vices for geostatistical analysis and mapping.
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Chapter 9
Weeds, Worms and Geostatistics

R. Webster

Abstract Weeds and plant-parasitic nematodes occur in patches in agricultural
fields. Farmers can control them with chemicals. They can do so precisely and pre-
vent competition (from weeds) and predation (by nematodes) provided they know
where the pests are early in the lives of their crops or before sowing or planting them.
Standard geostatistical methods have been used successfully to analyse counts of
both weed seedlings and nematodes in the soil and to map their distributions from
kriged estimates. The application is technologically sound. The most serious ob-
stacle to its application in farming is that sampling must be intense, with spacings
between sampling points of 20–40 m. This means that the cost of sampling and
counting the pests is greater than the savings from not applying herbicides or ne-
maticides. Only for potatoes is the effort and cost of estimating the burdens of the
parasitic cyst nematodes of the genus Globodera justified economically. For precise
control of weeds proximal sensing at the seedling stage seems more promising.

Keywords Pest control � Weeds � Nematodes � Potatoes � Soya beans � Cereal crops �
Geostatistics � Nested sampling � Analysis of variance

9.1 Introduction

Infestations of weeds, agricultural pests and diseases, which collectively I shall call
‘pests’, vary in intensity within fields and paddocks. In many fields their occurrences
are patchy, varying from none in some patches to numbers that seriously diminish
crop yields in others. In these circumstances farmers want to kill the offenders with
sprays etc. where they occur and not to treat land where they are absent. For weeds
they may also wish to vary the amount or type of herbicide according to the degree or
kind of infestation. Their desires clearly lie within the realm of precision agriculture.

The 1990s brought new opportunities for precise application of agricultural
chemicals. They saw the advent of global positioning systems (GPS) with local
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accuracies of 1–2 m on the farm and the development of sprayers capable of varying
the amounts pesticide applied ‘on the run’. These together appeared to enable farm-
ers to control pests selectively where they occurred. The 1990s were also a decade
during which society became increasingly concerned about the impact of excesses
of pesticide, fungicide and herbicide in the environment. Society wanted farmers to
use no more than necessary of these chemicals and not to use them where there were
no pests, diseases or weeds or too few to be of consequence.

To take advantage of the opportunities and to satisfy society’s concerns farmers
had to know where the pests were and how many; they needed maps of infestations.
So quantitative mapping became a third strand for success in this branch of precision
agriculture. As it happened, agronomists ‘discovered’ geostatistics also in the 1990s
and saw in it the means by which they could interpolate their sample counts and
scores of infestation so as to create maps.

Weed scientists had been making maps visually before that. Many weeds, once
grown, are readily distinguished from the crop. By that stage, however, they can
already have retarded the growth of the crop, and the need is to map them early
in their growth so that they can be treated before they have any serious effect. Au-
tomated detection of weeds is being investigated, and Gerhards and co-workers in
Germany in particular (see Gerhards and Oebel 2006) report some success, though,
in the view of Lutman and Miller (2007), their techniques are not yet practicable
on the farm. The only effective way of mapping for pre-emptive local control is to
count or otherwise estimate density at the seedling stage, or to count seeds in the
soil, in sample quadrats and to interpolate from those counts. Geostatistics would
play its part, and weed agronomists explored its suitability for the purpose.

Plant-parasitic nematodes are equally significant agricultural pests. Like weeds,
their distributions tend to be patchy. Unlike weeds, their presence becomes obvious
only after their damage has been done, either in sickly crop plants or poor yields.
Control patch by patch therefore depends on farmers’ knowing where the nema-
todes are before crops are sown. The chemicals for killing nematodes are expensive
and unpleasant, and this adds to farmers’ desires to treat the land only where the
pests are prevalent. Commercial companies have responded by offering packages
whereby they estimate nematode densities by sampling, typically, in hectare blocks
within fields and then treating (or not) the fields with nematicide block by block.
Several nematologists in collaboration with geostatisticians have investigated the
distributions of nematodes more rigorously, and for potato crops we can now see
the economic opportunities for more precise control.

Other agricultural pests, notably fungi, occur in patches. There are few accounts
of local control following any form of geostatistical analysis, however.

9.2 Weeds

By the mid-1990s several papers on the use of geostatistics for characterizing and
mapping the spatial distribution of weeds had appeared. Donald (1994), for exam-
ple, mapped the density of shoots and root growth of the thistle (Cirsium arvense),
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a perennial weed, in Dakota. The area was small, 12 � 12 m, and was sampled at
1.8-m intervals. Johnson et al. (1996) applied the standard technology for mapping
the weeds Helianthus annuus and Abutilon theophrasti in maize and soya beans in
Nebraska. The counts were strongly skewed, but the authors did not transform them.

Cardina et al. (1995) explored the technology more thoroughly. They took two
approximately 25 � 90 m areas in two adjacent soya-bean fields in Ohio and sam-
pled them on grids of 3 � 7 m (in 1990) and 3 � 6 m (in 1993) and counted seedlings
of Chenopodium album. They transformed their counts to logarithms to remove
skewness and stabilize the variances. Then they recognized trends, which they re-
moved before doing geostatistical analyses on the residuals. Finally, they added the
trends to their kriged estimates of the residuals and back-transformed the logarithms
to the original scales for their final maps.

Trend is often overlooked, and it will be well to consider it now. The basic model
underlying the usual geostatistical analysis is

Z.x/ D �C ".x/: (9.1)

Here Z.x/ is a random variable at a place x, � is the mean and ".x/ is a random
component drawn from a distribution with mean zero and variogram

�.h/ D 1
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h
f".x/� ".x C h/g2
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fZ.x/ �Z.x C h/g2

i
for all h; (9.2)

where h is the lag separating pairs of points. The model holds only if the mean
is constant, at least locally, i.e. if the process is intrinsically stationary. If there is
trend, i.e. if the mean changes systematically from place to place, then we have a
somewhat more complex model such as

Z.x/ D m.x/C ".x/ (9.3)

in which a trend term m.x/ has replaced the mean �. The equivalence in Eq. 9.2 no
longer holds, but we still need the variogram as defined there for analysis. There are
several ways of dealing with the problem, the most recent and satisfactory of which
is to estimate the variogram and the trend simultaneously by residual maximum
likelihood (REML) – see Webster and Oliver (2007). A feasible alternative in the
1990s was to remove the trend first and to compute and model the variogram of the
residuals for later use in kriging. The most popular method was to fit a global trend
surface, usually a low-degree polynomial, compute and model the variogram of the
residuals, krige the residuals with the fitted model and then add the trend surface
back to the kriged residuals. The resulting estimates were unbiased but usually with
underestimated variances.

Cardina et al. removed the trends from the logarithms of their counts in a different
way, namely by median polish. This technique, developed by Cressie (1993) for
gridded data, proceeds as follows. The medians of the values in each and every row
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and column of the grid are found. Denote these by Qzi: for the i th column and Qz:j for
the j th row, and denote the general median of all the data by Qz::. Then compute

yij D zij � Qz:j � Qzi: C Qz:: for all i and j: (9.4)

The resulting yij are effectively residuals, and one can compute and model their
variograms and krige from them by standard technique.

Cardina et al. computed experimental variograms of their residuals by the method
of moments and fitted isotropic spherical models to them. The spherical model is

�.h/ D c0 C c

(
3h

2a
� 1

2

	
h

a


3
)

for 0 < h � a

D c0 C c for h > a

D 0 for h D 0: (9.5)

Here c0 is the nugget variance, c is the sill of the correlated variance, and a is a
distance parameter, the range. Figure 9.1, redrawn from Fig. 3 of Cardina et al.
(1995), shows variograms for 1990 and 1993. The black discs are the experimental
values for the residuals of the natural logarithms of the counts, and the solid lines
are the fitted models. Table 9.1 lists the parameter values. The authors computed
and modelled the variograms of the logarithms of the counts with the trends still
present, and I have retained their results in Fig. 9.1 for completeness. As we should
expect, the variances are larger and so too are the fitted ranges. As above, the authors
used the models to estimate statistical surfaces of the residuals by ordinary kriging,
added the trends and then back-transformed the results. Figure 9.2 shows their final
estimated weed surfaces for the 2 years. The weed densities are exceptionally large
at the back left-hand corners as they appear in the figure, and it is easy to understand
that the original counts would be both strongly skewed and contain trend.

There were similar studies in Europe. One of the more thorough ones was that
of Heisel et al. (1996) on the weeds Lamium spp. and Veronica spp. in an arable
field in Denmark. They sampled at the intersections of a square grid at intervals of
10 m and counted seedlings in 0.25-m2 quadrats. The frequency distributions were
strongly skewed, and the authors took logarithms to stabilize the variances. They
then did a standard geostatistical analysis on the logarithms of the counts, and after
kriging on to a fine grid they back-transformed the kriged predictions to counts per
0.25 m2 and mapped the results.

The authors mention a feature that is common with counts: their records for some
species contained many zeros, and there was no way that they could transform those
distributions to approximate normality. They proposed an indicator approach for
modelling such data with a threshold at, for example, 4 weed plants per 0.25 m2,
and mapping the resulting indicator to identify patches that should be sprayed with
herbicide. They did not pursue the idea; but it is worth pursuing, and I return to the
idea below for nematode populations.
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Fig. 9.1 Variograms of the
natural logarithms of counts
of Chenopodium album in a
soya-bean field in Ohio. The
circles and dashed lines are
the experimental values and
fitted spherical models with
trend present; the black discs
and solid lines are the
corresponding values and
models after the removal of
trend by median polish. The
parameter values are listed
in Table 9.1. The figure is
redrawn from Figure 3 of
Cardina et al. (1995) with the
permission of the authors and
the Weed Science Society of
America, the publishers
of Weed Science
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Table 9.1 Parameter values of the spherical models fitted to the
variograms shown in Fig. 9.1. The symbols are c0 the nugget
variance, c the sill of the correlated variance and a the range,
see Eq. 9.5

ln(counts) Residuals
Year c0 c a/m c0 c a/m

1990 0.947 1.442 21.2 1.001 0.559 15.1
1993 2.309 3.731 26.1 2.400 1.320 16.6

Heisel et al. (1996) realized that sampling at 10-m intervals was time-consuming
and expensive. So to see whether they could economize they removed 5/6 of the
sampling points and analysed the counts for the remaining 38 points on what then
became a 30 � 20 m grid. As we might expect (see Chapter 2), the resulting
variograms were erratic. The authors mistrusted the models that they fitted, and
they judged their kriged maps to be poor representations of reality. Sampling would
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Fig. 9.2 Statistical surfaces of Chenopodium album in two soya-bean fields in Ohio made by
kriging. The vertical scales are in counts m�2, with means of 28 and 400 plants m�2 in 1990
and 1993 respectively. Reproduced from Cardina et al. (1995) in Weed Science, volume 43, with
permission of the authors and the Weed Science Society of America.

have to be at approximately their original intensity to produce reliable maps – un-
less they could take advantage of covariates. Somewhat later, Cousens et al. (2002)
found that even a 10-m grid was too coarse for reliably mapping weed seedlings in
a wheat field in Victoria, Australia.

In a second paper Heisel et al. (1999) explored the potential of cokriging with soil
variables as subsidiary predictors. They found that the abundance of Lamium spp.
was correlated with the soil’s silt content (r D 0:30–0.38) and that this was strong
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enough for them to use silt as a covariate and to cokrige Lamium with a reduc-
tion of 11–15% in the prediction variance. I find that result somewhat surprising
with such weak correlation, but perhaps the structural correlation was stronger; the
authors do not say. Despite their mention of modelling the coregionalization, the
authors appear not to have fitted such a model, and their back-transformation from
logarithms to the original scale seems wrong. We should treat their results with cau-
tion, therefore. The same idea of using the correlation between soil properties and
weed densities to help predict the latter was pursued by Walter et al. (2002), also
in Denmark. These authors sampled two arable fields each of approximately 10 ha
on 20-m grids in three consecutive years, 1993, 1994 and 1995. They found some
cross correlations between some species and the soil’s pH and phosphorus content
in some years and also between different years for some species. They appear not to
have attempted to fit a linear model of coregionalization, however. They concluded
that the correlations were neither strong enough nor sufficiently consistent for them
to cokrige reliably to advantage.

By the year 2000 it was clear that weed infestations could be sampled and
analysed by standard geostatistical methods to produce maps at scales suitable for
patch spraying. The question then became no longer whether it was possible, but
whether it was economic: was the cost of sampling, counting or otherwise measur-
ing the degree of infestation offset by the saving in herbicide?

Jurado-Expósito et al. (2003) explored one aspect of cost, namely that of the
herbicide. They sampled sunflower fields in Spain on grids of 7 � 7 m and counted
the weeds within quadrats at the grid nodes. From the data they kriged and mapped
infestations that exceeded the economic threshold for spraying. In one of their fields
this would have led to a reduction of 61% in herbicide. They make two points in
their final section. One is that if weeds are persistent then mapping in 1 year might
be used in subsequent years to guide control, so that the cost of mapping would be
discounted over several years. The second is that a cheap method of weed detection
is crucial for site-specific weed control ‘because conventional weed sampling in a
grid . . . is very time consuming and expensive’. The authors give no figures for the
cost of the sampling, but clearly they imply that it would be more than the savings
on herbicide.

The theme of economy was pursued by Rew et al. (2001) with grid surveys of
weeds in arable land on four farms in New South Wales. They sampled areas of
various sizes with spacings ranging from 1 � 1 m to 10 � 10 m, giving sample sizes
ranging from 395 to 841 quadrats according the areas covered. They counted the
weeds in each quadrat, and they recorded the time spent counting. The authors split
each set of their data into a ‘test set’ and a ‘real set’. They analysed their counts
in the test sets, transformed to logarithms where desirable, by standard geostatis-
tical methods to produce maps of weed infestations. They compared their kriged
predictions with the true values in their real sets of data.

As we might expect, the smaller were the proportions of sites retained in the
test sets, and hence the sparser sampling, the poorer were the variograms estimated
and the worse were the predictions. The authors could not say in general what sam-
pling intensity might be satisfactory, however, because the weed densities and the
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correlation ranges were unique to each field. Also, kriging underestimated the great-
est densities and overestimated the smallest. Such effects are well-known attributes
of the technique, but they could have important consequences for weed control.
Patches free of weeds were mapped as infested, albeit sparsely, so that farmers might
spray them unnecessarily; in contrast, farmers might apply too little herbicide to the
most infested patches.

The most serious criticism of the technology levelled by the authors concerns
the cost of sampling. The actual costs of sampling and counting varied from field
to field, depending on the sampling density and the numbers of weeds. The authors
give a figure of Aus$1200 for sampling an area somewhat larger than 1 ha on a
25-m grid, assuming a cost in labour of Aus$25 per hour; that was in 2000. If you
multiply this figure by the area of a field, say in the range 10–50 ha, you see that the
cost could be anything from Aus$12 000 to Aus$60 000 per field. This far exceeds
any possible saving in the cost of herbicide.

9.3 Nematodes

The plant-parasitic nematodes, of which there are many species, are serious agricul-
tural pests. They are responsible for losses to agriculture of the order US$100� 109

per year worldwide. The distributions of nematodes in the soil have for long been
studied by statisticians. Emphasis was originally on marginal frequencies and in-
dices of aggregation and their implications for sampling and estimation – see, for
example, Anscombe (1950) and Seinhorst (1982). Taylor’s power law (Taylor 1984)
has been much invoked to describe aggregated distributions. In the 1990s nematol-
ogists and statisticians turned their attention to geostatistics both to describe spatial
distributions and for mapping, and more recently with a view to local control of
nematodes by patch treatment within fields.

9.3.1 Lives of Nematodes

It might help readers to understand the precise control of plant-parasitic nematodes
in agriculture if I first summarize the life forms and cycles of the most damaging
genera.

The juvenile forms of these pests are small and wormlike; they are commonly
known as ‘eel worms’. They are typically 0.2–1.0 mm long, and they live freely in
the rhizosphere of the soil. They burrow into the soft tissues of plant roots where
they then live as parasites, thereby damaging and debilitating their hosts. They also
create lesions through which fungal pathogens can invade and further debilitate the
host plants. The females of several genera lay their eggs in the roots, and these eggs
then find themselves back in the rhizosphere when the roots die. The females of
the root-knot nematodes of the genus Meloidogyne lay their eggs into a gelatinous
matrix which forms canals through the outer root tissue, and so the eggs pass into
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the soil. Juveniles hatch from the eggs and they reinvade the roots of the host plants.
Another major group of plant-parasitic nematodes comprise the cyst nematodes,
e.g. Heterodera spp. and Globodera spp. They behave somewhat differently in that
in due course the mature females, after living and feeding within the roots expand
and break through to the roots’ outer surfaces. There they swell into spherical cysts,
typically 0.3–0.5 mm in diameter but sometimes larger, containing eggs, which are
destined to become the next generation. When the roots die the cysts, still contain-
ing the eggs, remain in the soil. If a new host crop is sown the eggs within the
cysts respond to substances exuded by the hosts and hatch to start the cycle afresh.
Otherwise, in the absence of a new host crop the cysts and their eggs eventually die.

Some nematodes that parasitize crop plants have alternative hosts. One such
species is the cereal cyst nematode Heterodera avenae. It lives not only on cere-
als but so too on many native grasses, and these help to maintain its population even
in the absence of a cereal crop. As it happens, there are also fungi in the soil that
prey on the nematodes and can keep their numbers acceptably small. In contrast, the
cyst nematode Heterodera glycines which parasitizes soya beans in the USA and
South America has no natural predators there. It can reduce yields by as much as
75% and causes huge financial losses to farmers. Chemical control is possible, but
the costs in relation to the benefits are prohibitive. However, because the nematode
has no alternative host in the Americas farmers can control it by rotating soya beans
with other crops.

Potatoes are parasitized by two other species of cyst nematode that were intro-
duced with them into Europe from South America. These nematodes are Globodera
rostochiensis and G. pallida. They are both persistent and cause substantial losses of
yield. In Europe they have no alternative host crops, though they can infect tomatoes
and aubergines. So, as with the soya-bean cyst nematode, farmers can eradicate them
simply by not growing potatoes for a long time or by growing resistant varieties that
trigger the eggs to hatch but on which the nematodes cannot subsequently feed. For
potatoes, however, the value of the crop is such as to justify chemical control with
nematicide, especially if farmers know where the nematodes are.

9.3.2 Geostatistical Applications

As with weeds, the first investigators wanted to see whether geostatistics could be
applied to nematode infestation at all. They already knew that nematodes were ag-
gregated at some scales, and, as above, they could see some of the effects as patchy
debilitation of crops. They sampled the soil, counted the nematodes, computed and
modelled variograms, and kriged to map the infestations. Wallace et al. (1993) and
Wallace and Hawkins (1994) did this for several plant-parasitic species in a field
under reed canary-grass in the USA. They sampled the topsoil at 10-m intervals
along transects by taking cores and extracting the nematodes from 116 cm3 of soil.
Six of the seven species they counted had bounded variograms with correlation
ranges between 40 and 160 m. In like vein, though at a much finer scale, Rossi
et al. (1996) analysed four species of parasitic nematodes in a sugar cane crop. They
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sampled the soil at 20-cm intervals between pairs of rows of the crop. Their mean
counts were in the range 53–316 per 100 cm3 of soil. From their counts they com-
puted variograms, but all were unbounded within the dimensions of their small plot,
and their kriged maps revealed strong trends with maxima under the rows.

Boag and I had similar ideas (Webster and Boag 1992). Unlike Wallace et al.
and Rossi et al., however, we did not presume to know how big or how far apart
any patches might be; i.e. we did not wish to guess the spatial scale of varia-
tion of any infestation. We wanted, therefore, to determine that scale first, and we
adapted the nested design and analysis of variance (ANOVA) devised by Youden and
Mehlich (1937) for the purpose (see Section 2.2.1 also).

The design is basically a hierarchy at the top of which is the whole region of
interest; in precision agriculture it is likely to be a particular field or part of a field.
The region is divided into segments; these form the first stage or level in the hier-
archy and in each is placed initially one sampling point. In a second stage one new
sampling point is chosen in each segment at a fixed distance and random direction
from the first point. In a third stage the process may be repeated for each point cho-
sen in the second stage, and so on for as many stages as desired. The resulting design
is balanced in the sense that all branches of the hierarchy are the same below any
given level. As the number of stages is increased so the number of sampling points
doubles at each stage. To avoid this and the concomitant expense one can economize
by replicating only a proportion of the sampling nodes in the lower branches of the
hierarchy. The result is an unbalanced design. Whether the design is balanced or not
observations are then made at every point in the scheme, and they can be analysed
by ANOVA.

The model for analysis with s stages is

Zijk:::m D �CAi CBij C Cijk C � � � C "ijk:::m: (9.6)

Here Zijk:::m is the value of the mth unit in : : : , in the kth class at stage 3, in the
j th class at stage 2, and in the i th class at stage 1. The quantity � is the general
mean; Ai is the difference between � and the mean of class i in the first stage,
Bij is the difference between the mean of the j th subclass within class i and the
mean of class i , and so on. The residual "ijk:::m represents the difference between
the observed value from its class mean at the last stage of subdivision. The effects
Ai ; Bij ; Cijk ; : : : ; "ijk:::m are assumed to be independent random variables with
means of zero and variances �2

1 ; �
2
2 ; �

2
3 ; : : : ; �

2
s . The latter are components of

variance, and when estimated by ANOVA they describe the variances attributable
to the distances, ds ; ds�1; ds�2; : : : ; d1, in the design. Further, when accumulated
from the lowest stage upwards they form a variogram, albeit somewhat crude, thus:

b�2
s D b�.ds/

b�2
s�1 C b�2

s D b�.ds�1/

b�2
s�2 C b�2

s�1 C b�2
s D b�.ds�2/; (9.7)
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and so on. By plotting the b�.ds/; b�.ds�1/; : : : ;b�.d1/ against the corresponding
distances one can see within which range of distance most of the variance lies.
Webster et al. (2006) and Webster and Oliver (2007) describe the analysis and its
interpretation fully.

9.3.3 Case Study

Boag and I (Webster and Boag 1992) designed a sampling scheme along the above
lines to discover at what spatial scales the nematode Heterodera avenae varied in ce-
real fields in eastern Scotland. Our design was an unbalanced one with seven stages
spanning distances from 70 mm to 50 m with intermediate spacings of 0.2, 0.6, 1.8,
5.6 and 16.7 m. We sampled five fields with this design, and at each sampling point
we took a core of topsoil (about 200 g) and counted the cysts of H. avenae in it.
By a hierarchical ANOVA of our counts we estimated the components of variance,
which we then accumulated to form variograms. Table 9.2 summarizes the statistics,
and Fig. 9.3 shows their accumulated components of variance. Note the geometric
progression of the sampling intervals and that the scale for distance on the abscissa
is logarithmic.

One finding from the study was that there is no common range of distance within
which most of the variance lies. Each field is unique, and the spatial scale of the
nematode burden in it must be estimated roughly before one can sample with confi-
dence to estimate the variogram accurately and to krige.

The field at Invergowrie, field E, was the one that most obviously lent itself to
such analysis at a practicable scale, and we sampled a portion of it to explore the
feasibility of mapping. The portion was a square of side 100 m, which we sam-
pled at 7.14-m intervals to give 225 cyst counts. Table 9.3 summarizes the data, and
Fig. 9.4a shows a conventional variogram for the counts with the sample estimates
shown by the black discs and an isotropic spherical model, Eq. 9.5, fitted to them
by the solid curve. The parameter values are c0 D 32:6 counts2, c D 36:5 counts2

and a D 29:7 m, and they are listed in Table 9.4. The distribution of the counts is
strongly skewed with many zeros. Transformation of the counts to common loga-
rithms (with the addition of 0.1) gives a more symmetrical distribution, summarized

Table 9.2 Summary statistics of counts of cysts of Heterodera avenae
per 200 g of topsoil of five Scottish fields each sampled with 108 cores
with a nested design

Field
A B C D E

Mean 43:4 23:7 15:9 28:9 17:4

Median 42 22 14 26 12

Standard deviation 20:3 12:7 8:6 18:9 20:5

Variance 412:02 161:12 74:35 358:11 420:47

Skewness 0:6 0:5 0:8 1:5 2:3
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Fig. 9.3 Variograms of counts of the cysts of the nematode Heterodera avenae per 200 g soil in
five Scottish arable fields

Table 9.3 Summary statistics of counts of cysts of
Heterodera avenae per 200 g soil and their logarithms
for the 1-ha plot at Invergowrie (in field E in Table 9.1)
sampled with 225 cores on a square grid

Count Log10count

Mean 4:15 �0:213
Median 0 �1
Standard deviation 8:01 0:910

Variance 64:89 0:8280

Skewness 2:6 0:5

in Table 9.3, and the variogram in Fig. 9.4(b). The model fitted is again spherical
with parameter values c0 D 0:309, c D 0:601 and a D 37:5m (Table 9.4). Note that
the proportion of nugget variance appears diminished by the transformation (0.31
instead of 0.47) and that the estimated range is greater. Figure 9.5 is a map of infes-
tation made from the data and the model by log-normal punctual kriging. It shows
two largish patches of infested soil and one small one. The more extensive area is
almost free of the nematodes.

The above part of the investigation is a standard application of geostatistics.
Maps such as that in Fig. 9.5 are subject to error, and farmers might reasonably
want to know the probabilities that there are nematodes in the soil and whether they
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Fig. 9.4 Variograms of the cysts of Heterodera avenae in 1 ha of an arable field at Invergowrie,
Scotland: (a) on the original counts per 200 g soil, and (b) on the their common logarithms.
The points are the sample estimates and the curves are of the best fitting spherical models. The hor-
izontal lines are the sample variances

Table 9.4 Parameter values, c0, c and a, of spherical models,
Eq. 9.5, fitted to variograms of counts of cysts of Heterodera
avenae, their logarithms and indicators for the 1-ha plot at In-
vergowrie (in field E in Table 9.1)

Indicator

Count Log10count I.h/ � 1 I.h/ � 4

c0 32.6 0:309 0:142 0:063

c 36.5 0:601 0:127 0:140

a/m 29.7 37:5 43:3 29:8

are present in sufficient numbers as to damage the crops. For continuous variables
such as the soil’s pH the probabilities are best estimated by disjunctive kriging (see
Section 1.2.3.4). The method involves transforming the data to approximate a nor-
mal (Gaussian) distribution or some other known distribution. This is not feasible
with count data with many zeros. One way that is feasible is by indicator kriging.

An indicator is a variable that takes values of 1 and 0 only. The values may indi-
cate presence and absence respectively. In geostatistics indicators are often created
by the division of a continuous scale or of a scale of counts at one or more specified
thresholds. If the original variable is assumed to be random then so is the indicator
variable. If therefore we define a threshold, zc, for the random variable Z.x/ then
we create the indicator variable I.x/ from it as

I.x/ D 0 if Z.x/ < zc

D 1 otherwise: (9.8)
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Fig. 9.5 Map of estimated numbers of the cysts of Heterodera avenae per 200 g soil in 1 ha of an
arable field at Invergowrie, Scotland

Variograms of indicators may be computed and modelled in the same way as are
those of continuous variables, and they may be used with the indicator data to krige.
The kriged results are effectively probabilities that the values of z at the target sites
exceed or not the defined thresholds.

The subject is a large one, and is covered in detail by Goovaerts (1997). Here
I take the study in field E at Invergowrie just one step further to show some of what
is possible.

Figure 9.6 displays the indicator variograms for H. avenae with (a) I.x/ � 1

and (b) I.x/ � 4. As before, the black discs are the sample values, b�.h/, and the
curves are the fitted models, which are again spherical. Table 9.4 lists the parameter
values. Figure 9.7a and b are the corresponding isarithmic (‘contour’) maps of the
punctually kriged estimates. Figure 9.7a shows rather little of the area where the
probability of the soil’s being free of the nematode is small (less than 0.2). If we
increase the threshold to four cysts per core then approximately half the area has a
probability less than 0.2, Fig. 9.7b.

9.3.4 Economics

By the end of the 1990s it had become clear that nematode infestations could
be analysed geostatistically and mapped by kriging. However, it is expensive to
sample the soil, to separate the nematodes and to count them, and this cost must
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Fig. 9.6 Indicator variograms of the cysts of Heterodera avenae in 1 ha of an arable field at
Invergowrie, Scotland: (a) with the threshold set at one cyst per 200 g soil core and (b) at four
cysts per 200 g. The points are the sample estimates and the curves are of the best fitting spherical
models. The horizontal lines are the sample variances

be set against the savings that can accrue from patch treatment with the knowledge
gained. So the question then became, as in weed agronomy: was the procedure cost-
effective?

Farias et al. (2002) attempted an answer for cotton growing in Brazil where dam-
age by the nematode Rotylenchulus reniformis in the 1990s was a principal cause
of the 50% reduction in cotton production. They took a field 48 � 32 m and sam-
pled its topsoil, both before germination of the cotton and at harvest, on a grid at
intervals of 6 m in one direction and 4 m in the orthogonal direction to give 64 sam-
pling points. Their variograms of the nematode counts seemed bounded, and they
fitted spherical models. In addition to mapping the infestations by ordinary punctual
kriging they did 100 conditional simulations to estimate the probabilities that the
damage threshold was exceeded and so identify patches that should be treated with
nematicide. They drew attention to the large nugget variances, which led to impre-
cise estimates and simulations and the need for some more closely spaced sampling
to estimate the variogram better at short lag distances. They could not complete a
risk–benefit analysis because they lacked the information on prices. Nevertheless,
their study of risk by simulation was clearly a step in the right direction.

Wyse-Pester et al. (2002) and Avendaño et al. (2004) recognized that the cost
of sampling and counting could militate against mapping nematode infestations
for site-specific management. They sought therefore to economize by taking ad-
vantage of correlations between nematode counts and more stable properties of
the soil. Wyse-Pester et al. considered the correlations with particle-size fractions
and organic matter. They sampled the topsoil of two large fields under maize, one
of 71 ha and the other 53 ha, at intervals of 76 m and counted the numbers of
Helicotylenchus spp., Tylenchorhynchus capitatus and Pratylenchus neglectus. They
recorded strong spatial dependence in the nematode counts and could fit spheri-
cal models with small nugget variances and with ranges between 140 and 630 m.
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Fig. 9.7 Maps of estimated probabilities that the soil contains (a) at least one cyst of Heterodera
avenae per 200 g soil and (b) at least four cysts per 200 g in 1 ha of an arable field at Invergowrie,
Scotland

However, the authors judged the correlations between the counts and the proportions
of sand, silt, clay and organic matter too weak for there to be any economic advan-
tage in substituting them for nematode counts. Avendaño et al. (2004) investigated
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infestations of Heterodera glycines in several fields growing soya beans. They found
significant linear correlations between nematode counts and the soil’s pH, with coef-
ficients, r , mainly between 0.2 and 0.5, and thought that farmers might divide their
fields according to pH and general fertility and manage each division separately.
Neither group of investigators seems to have considered using the subsidiary soil
variables for cokriging or kriging with external drift – perhaps fortunately in view
of the only weak to moderate correlations.

As mentioned above, potatoes are parasitized by two species of cyst nematode,
Globodera pallida and G. rostochiensis. These nematodes have no alternative hosts
in Europe, and farmers can control infestations simply by not growing the crop a
second time on the same land until the nematode population has declined to some
non-damaging size. That can take 10 or more years, and farmers are unwilling to
wait that long. Potato growing is highly specialized and requires expensive equip-
ment for planting, cultivation and harvesting, and it can be very profitable. Farmers
therefore want to grow the crop as frequently as they can on the land they have avail-
able to get the most out of their capital investment, and they are prepared to treat the
soil with nematicide to do so. The chemicals are expensive, and by applying them
only where necessary, i.e. only where the nematode burden exceeds some thresh-
old, potato farmers can save themselves a lot of money. The only question then is
whether that saving is more than the cost of sampling and counting the nematodes
to make maps.

Evans et al. (2002, 2003) studied this aspect of precise control of nematodes.
They monitored infestations of potato cyst nematodes (PCN) on several commer-
cial farms in eastern England by sampling the topsoil and counting the nematode
eggs both before and after the fields had grown potatoes. The fields, varying in size
from 6 to 10 ha, were sampled on square grids at 20-m intervals. The resulting vari-
ograms were similar in form to those in Fig. 9.4, and the fitted spherical models had
correlation ranges of 40–60 m. The authors could thus expect infestations to occur
in patches roughly 40–60 m across, and this was confirmed in the maps made by
ordinary punctual kriging.

In all instances except one the numbers of PCN eggs increased enormously as
a result of potato growing without nematicide, and they appeared to have done so
from isolated patches identified by the pre-cropping sampling. (The exception was
in a field where there seemed to be also the nematophagous fungus Verticillium
chlamydosporium D Pochonia chlamydosporia acting as a natural control.) One
example from Evans (2003), summarized in Table 9.5, illustrates what can happen.

Table 9.5 Summary of
counts (numbers of eggs g�1

soil) of potato cyst nematode
(Globodera spp.) at Ram
Farm before potatoes were
planted and immediately after
harvest, from Evans et al.
(2003)

Before planting After harvest

Minimum 0 0

Maximum 160:2 495:6

Mean 8:4 65:6

Median 2:5 45:3

Variance 522:3 5042:4

Standard deviation 22:8 71:0

Skewness 4:9 2:1
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Table 9.6 Proportions of a 10-ha field that a farmer would have to leave
untreated with nematicide to justify sampling at various intensities. Costs, at
1999 prices, are £360 ha�1 for granular nematicide, £560 ha�1 for fumigant
and £6 to take and process each sample of soil (from Evans et al. 2002)

Proportion of land left untreated
Sample Number of Cost of Granular Granular
spacing/m samples sampling/£ nematicide Fumigant C fumigant

20 250 1500 0.42 0.27 0.16
40 63 380 0.11 0.068 0.041
60 28 170 0.047 0.030 0.018
80 15 90 0.025 0.016 0.010
100 10 60 0.017 0.011 0.007

The median egg count in the field increased from 2.5 per gram of soil before planting
to 45.3 at harvest, and the maximum increased from 160.2 g�1 to 495.6. The rate
at which the nematode eggs die is about 30% per year, and so the farmer could
expect to wait 14 years before the count has declined to less than five eggs per gram,
the critical threshold in the tactical management for a single crop. Had the farmers
treated the patches with nematicide they would almost certainly have prevented the
increases in nematodes and loss of yield from those patches.

All the maps of pre-cropping infestations showed large areas where there were
fewer than five eggs per gram of soil. If the intensity is less than this threshold
then the farmer should not need to apply nematicide; if it is more then he should.
Using this information and knowing the cost of sampling and nematicide, Evans
et al. (2002) calculated the savings that were likely to accrue from the information
gained. They are summarized in Table 9.6 in terms of the proportion of a 10-ha
field sampled on grids of various intervals. The table shows that if a farmer applied
both granular and fumigant nematicide he could justify sampling at 20-m intervals
if only 16% of a field has fewer nematodes than the threshold, and even if he were
to apply only the granular nematicide he would save money if 42% did not require
treatment. The costs listed are those pertaining in 1999, and although prices have
changed since then, as have also the chemicals permitted, the costs of sampling and
chemical treatment relative to the value of the crop are likely to be much the same.

The table appears to show that much larger savings are possible with sparser
sampling. Evans et al. (2002) warn against such an inference. They successively
removed samples from the full set of data for one 8-ha field to leave counts at the
nodes of 40-, 60-, 80- and 100-m grids and mapped from them. As one might expect
for a correlation range of 40–60 m, important detail was lost. At an interval of 40 m
the essentials of the pattern were still evident; but the authors pointed out that small
patches of infestation would be likely to go undetected, and the nematodes in those
if untreated would significantly diminish crop yield. They concluded that, given the
potential economies, sampling should be at a 20-m interval.
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9.4 The Future for Geostatistics in Precise Pest Control

As numerous investigators have shown, the infestations of both weeds and nema-
todes are spatially correlated at scales varying from that between the rows of crops,
of the order of 1 m, to 10s of metres. Sample counts can be analysed geostatistically
and converted to maps of infestations by kriging, and the maps can be used for the
treatment with pesticides patch by patch. The basic geostatistical technology works
for counts of these pests.

We need to be cautious, however. We need to beware of looking into a mirror and
seeing ourselves, seeing what we want to see, as A.R. Ammons warns in his short
poem, Reflective. You can read this in full at http://poemfortoday.wordpress.com/20/
01/27/reflective-by-a-r-ammons/. We must recognize that the biggest stumbling
block to the application is not statistical but economic, largely because of the cost
of sampling. For weed control the sampling costs far exceed possible savings in
herbicides and gains from increased yields in treated patches. Now agronomists,
having realized this, have turned their attention to other methods such as compre-
hensive proximal sensing of weeds. Most recently Guillot et al. (2009) investigated
the combination of direct counting of weeds and estimates from digital images ob-
tained with a camera held at breast height above the ground. They fitted a linear
model of coregionalization to the two sets of data and cokriged to estimate weed
density. Their errors were smaller than estimates made from counts alone, but the
method is still expensive in that one needs counts and images from at least 100
quadrats in a field to estimate the variograms plus additional images to improve on
autokriging.

With nematodes the situation is less clear cut. For cereals and soya beans, for
example, the costs of sampling the soil, separating the nematodes or their cysts and
counting them outweigh any savings from patch treatment with nematicides. For
potatoes, however, a crop of much greater value, the costs can be more than matched
by savings on expensive nematicides.

There are in addition technical difficulties that most investigators have tended to
ignore. One is drift or trend. In many instances ordinary kriging is sufficiently robust
that trend can be ignored for a first mapping. But where trend dominates the spatial
distribution, as in the example of the nematodes between the rows of sugar cane, it
should be taken into account, nowadays by residual maximum likelihood (REML)
techniques (Webster and Oliver 2007).

Geostatistics works best for normally distributed variables. As investigators
have discovered, counts of weeds and nematodes are strongly positively skewed
in many instances. Some authors have transformed their counts to logarithms to
stabilize variances and analysed the logarithms geostatistically before finally back-
transforming their estimates to the original scales. Others have not.

One problem with counts has not been adequately explored and solved; it is that
caused by large numbers of zeros. A first line of attack on the problem is to use
indicator kriging with a threshold set at some count, say zc, at less than which dam-
age is unlikely; i.e. set the indicator, i.x/, to 0 if the count, z.x/, is less than zc, and



240 R. Webster

to 1 otherwise, as above. Heisel et al. (1996) suggested this for weeds, and I show
above how it might apply to nematode infestation. On the practical side, farmers do
not want to treat uninfested patches with expensive and noxious chemicals. So any
method of mapping should honour the absence of pests, and it is here that indicator
and disjunctive kriging could find application.
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Rossi, J.-P., Delaville, L., & Quénéhervé, P. (1996). Microspatial structure of a plant-parasitic
nematode community in a sugarcane field in Martinique. Applied Soil Ecology, 3, 17–26.

Seinhorst, J. W. (1982). The distribution of cysts of Globodera rostochiensis in small plots and the
resulting sampling errors. Nematologica, 23, 285–297.

Taylor, L. R. (1984). Assessing and interpreting the spatial distribution of insect populations.
Annual Review of Entomology, 29, 321–357.

Wallace, M. K., & Hawkins, D. M. (1994). Applications of geostatistics in plant nematology.
Journal of Nematology, 26, 626–634.

Wallace, M. K., Rust, R. H., Hawkins, D. M., & MacDonald, D. H. (1993). Correlation of
edaphic factors with plant-parasitic nematode population densities in a forage field. Journal
of Nematology, 25, 642–653.

Walter, A. M., Christensen, S., & Simmelsgaard, S. E. (2002). Spatial correlation between weed
species densities and soil properties. Weed Research, 42, 26–38.

Webster, R., & Boag, B. (1992). A geostatistical analysis of cyst nematodes in soil. Journal of Soil
Science, 43, 583–595.

Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists (2nd ed.).
Chichester: Wiley.

Webster, R., Welham, S. J., Potts, J. M., & Oliver, M. A. (2006). Estimating the spatial scales of re-
gionalized variable by nested sampling, hierarchical analysis of variance and residual maximum
likelihood. Computers & Geosciences, 32, 1320–1333.

Wyse-Pester, D. Y., Wiles, L. J., & Westra, P. (2002). The potential for mapping nematode distri-
butions for site-specific management. Journal of Nematology, 34, 80–87.

Youden, W. J., & Mehlich, A. (1937). Selection of efficient methods for soil sampling.
Contributions of the Boyce Thompson Institute for Plant Research, 9, 59–70.



Chapter 10
The Analysis of Spatial Experiments
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Abstract Anyone with an interest in precision agriculture has already formed a
hypothesis that the field is a sub-optimum management unit for cropping. The
role of experimentation is to test this hypothesis. Geostatistics can play an impor-
tant role in analysing experiments for site-specific crop management: put simply,
spatial autocorrelation must be accounted for if one is to draw valid inferences.
We provide here some background to the basic concepts of agronomic experimen-
tation. We then consider two broad classes of experimental design for precision
agriculture (management-class experiments and local-response experiments), and
show, with the aid of case studies, how each may be analysed geostatistically. Ul-
timately though, if farmers are compelled to use relatively simple designs and less
formal analyses, then researchers must follow and adapt their geostatistical analyses
accordingly.
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10.1 Introduction

Geostatistics can play an important role in the analysis of precision agriculture-
based agronomic experiments. It is commonly accepted that the principal role of
geostatistics in precision agriculture (PA) is to create maps of the different kinds
of data observed at different locations and supports (e.g. the results of soil testing,
the output of a yield monitor and so on). In addition to its mapping applications,
geostatistics enables the analysis of agronomic experiments in a spatially explicit
context. A spatial analysis should, as a matter of course, accompany a spatial
experiment.

But why should practitioners of precision agriculture be concerned with exper-
iments anyway? The influence of soil conditions on plant growth is well-known
(Russell 1976). It is also well-known that crop and soil attributes vary spatially
(e.g. Mercer and Hall 1911; Beckett and Webster 1971). Other environmental at-
tributes that affect the growth of a crop, such as topography and pest infestations,
also vary spatially. The impact of spatial variation in agriculture has been exacer-
bated by a long-term trend towards larger fields due to increased mechanization.
Consequently, it seems arbitrary for conventional agronomy to treat the field as an
indivisible unit for uniform management. An apparently logical improvement on
uniform management might be to sample soil and plants at various locations within
a field, and then manage crop nutrition spatially on the basis of laboratory recom-
mendations. Unfortunately this approach has its own inherent problem: the response
functions used by a laboratory will be spatially generalized, and possibly irrelevant
to the locations where the samples were collected (Cook and Bramley 2000). Even if
the response function is correct, how does one assess the benefit of site-specific nu-
trient management compared with uniform management? The only way to address
these issues is to conduct some form of experiment in the field of interest. Anyone
with an interest in precision agriculture has already formed a hypothesis that the
field is a sub-optimum management unit. The role of experimentation is to test this
hypothesis. Lark and Wheeler (2003) noted that it is a plausible hypothesis, which,
if correct, may lead to economic and environmental benefits.

It would be unrealistic to hope that, by reading this chapter, farmers and their
consultants will grasp the intricacies of experimental inference and geostatistics;
however, we can use this opportunity to demonstrate some practical applications of
geostatistics to experimentation, and the consequent insights it provided. In this
chapter we give some background to the basic concepts of agronomic experi-
mentation. We then consider two broad classes of experimental design for PA
(management-class experiments and local-response experiments), and demonstrate
with the aid of case studies how each could be analysed geostatistically. Our focus
is primarily on the geostatistical analysis of experiments that have been conducted
with the aid of variable-rate technology and a yield monitor; some alternative ap-
proaches are discussed at the end of the chapter.
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10.2 Background

An experimenter will, inevitably, view his or her observations and ask, “How much
of this overall variation can be attributed to the treatments I applied?” In an agro-
nomic context, an obvious treatment, due to its cost to the farmer, is the amount of
fertilizer. Let us say we have applied different amounts of fertilizer to various plots
scattered about a field. The yield of a crop is affected by a multitude of different
factors, just one of which is the applied fertilizer. The simplest way to separate the
effects of the treatment from the remaining variation is the decomposition:

zi;j D Nz C ıj C "i;j ; (10.1)

where zi;j is the yield of the i th plot that has been subjected to the j th level (of t lev-
els) of fertilizer, Nz is the mean yield for all plots, ıj is the change in yield attributed to
the j th level (the treatment effect) and "i;j is an error term that represents the com-
bined effect on yield of all other causal factors. The experimental design associated
with the above model is referred to as a completely randomized design. For much of
the twentieth century experimenters used the techniques pioneered by R.A. Fisher
(1890–1962), which we now know as design-based statistics, to estimate ıj . Central
to design-based estimation of ıj is the analysis of variance (ANOVA), performed
on the results of an experiment whose design has appropriate replication, random-
ization and in some cases blocking. Replication is required in any experiment to
ensure confidence that we can estimate the effect of a particular treatment, not con-
founded with other sources of variation. For example, in an experiment where we
simply divided a field in half and applied a treatment to one half and a control to
the other, we could not be confident that the difference between them reflected real
treatment effects and not just inherent differences between the two halves of the
field. Randomization justifies our assumption that our observations for each treat-
ment constitute a set of random variables, the mean of which is the treatment effect
(plus any other fixed effects such as Nz); thus the treatment effect can be estimated
from the data without bias. Furthermore, by appropriate randomization we ensure
that errors can be treated as independent random variables, which is a necessary
assumption for design-based estimation and inference about the treatment effects.
In a completely randomized design all inherent variation in the field contributes to
the error term. It is against this background variation that treatment effects must be
detected. If the error is large the power of the experiment to detect a treatment effect
is diminished. Blocking is used to address this issue. When a field is divided into
blocks, treatment effects are estimated from within-block comparisons only. As a
result, between-block variation is removed from the error term. In effect, blocking
alters Eq. 10.1 with a further decomposition:

zi;j;k D Nz C ıj C bk C "i;j;k; (10.2)

where bk is the component of variation associated with the kth block. The error
term now corresponds to within-block variation only. The experimental design



246 M.J. Pringle et al.

associated with Eq. 10.2 is referred to as a randomized block design. The between-
block component comprises the spatial variation of the experimental domain. The
ANOVA estimate of ıj will be the same as in Eq. 10.1 but, because "i;j;k is smaller
than "i;j , we have a better chance of detecting a statistically significant response.

For the best part of a century government departments and private companies
have analysed agronomic experiments with design-based statistics, and have ex-
tended the results to local farmers. Design-based statistics arose in part because
of contemporary constraints on the gathering and processing of information. In
Fisher’s time, agronomic experiments were necessarily small, partly because mech-
anization was a luxury and partly because what we now consider a ‘one-click’
analysis might have then meant hours of laborious calculations. In the field, spe-
cialists in white coats attempted to regulate the experimental conditions as much
as possible. In the office, design-based statistics, underpinned by a strong theoret-
ical foundation, offered a tool to interpret and extrapolate from small samples. In
general, these methods of experimental analysis have been tremendously successful
and have become the convention; however, they have two disadvantages with regard
to the extrapolation of results. First, the methods require that we assume additiv-
ity of treatment effects and block differences. Under this assumption the optimum
application of an input does not vary spatially; in other words the PA hypothesis is
excluded a priori. Second, the design-based approach requires complete control over
the experimental design – in the form of independent, random treatment allocation
– which might not always be possible.

With time, our ability to gather and process agronomic information has grown
enormously. This has brought two important developments: (i) on-farm experimen-
tation and (ii) model-based statistics.

On-farm experimentation actively involves the farmer and the farmer’s own
fields. The general goal of on-farm experimentation is to compare the results of
a new practice (i.e. something that offers the potential for improvement) with the
farmer’s current method, and to consider the economic and social consequences
of a change (Petersen 1994). The benefits of on-farm experimentation have been
recognized for over 30 years, but for a long time the concept was limited by data
collection and computing issues. In the mid-1990s, soon after the first yield maps
appeared, researchers realized that yield monitors and variable-rate input applicators
could be combined with experimental techniques. Reetz (1996) saw the potential:
“Treatments can be applied with field-scale equipment in large plots that can be har-
vested with field-scale harvesters equipped with yield monitors. Such capabilities
open new opportunities for farmers to do more reliable research on their own farms
and for researchers to move their studies to the farm”.

The difference between design-based and model-based statistics concerns how
randomness is incorporated into an experiment. In design-based statistics treatments
are allocated to plots at random, conditional on the blocking structure, but we con-
sider the value observed at each location to be fixed. In model-based statistics the
sampling locations are fixed, but we consider the values at the locations as a real-
ization of a modelled random function (Brus and de Gruijter 1997). The implication
of the latter point is that, in contrast to design-based analysis, sampling for model-
based analysis need not rely on randomization (Lark and Cullis 2004). In the context
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of agronomic experiments, model-based statistics are effectively a geostatistical sur-
vey of the treatment response; therefore we should prefer the relatively even spatial
cover that is offered by a systematic sampling design. We realize, however, that
relative to design-based analysis, a geostatistical analysis of an experiment is more
data-demanding, requires greater computational effort and does not have the advan-
tage of being design-unbiased. De Gruijter et al. (2006) note that to gain advantage
over design-based analysis, the data used for model-based statistical analysis must
satisfy three conditions: (i) the variable of interest must be spatially autocorrelated;
(ii) many samples must be taken at spatial intervals much smaller than the range of
the variogram and (iii) there must be many data. On-farm experimentation, when
used in conjunction with precision agriculture technology (e.g. variable-rate input-
applicators and yield monitors), satisfies these conditions.

Cook and Bramley (2000) drew a disturbing analogy between the decline of the
British steel industry in the second half of the twentieth century and the situation
experienced by many farmers today. The root of the problem for the former was
its inability to control a highly variable production process compared with its com-
petitors. Cook and Bramley described the lesson: “: : : improved control based on
sound information is an essential feature of industrial process. Few, if any, mod-
ern industries operate without knowing, in detail, about the processes which go
on within them. This knowledge enables managers to maximise efficiency and to
respond to external requirements.” Cook et al. (1999) likened the principles of PA-
based agronomic experimentation to those applied by modern industries, e.g. the
Taguchi philosophy (Peace 1993): a deliberate perturbation of a controllable input
to a system (e.g. a fertilizer experiment with a suitable design), followed by moni-
toring of the effect of the perturbation on the system’s output (i.e. a real-time yield
monitor) will provide vast magnitudes of response data that can aid decision-making
and help to improve control of the production process. With this in mind, a farmer
might approach experimentation with one of three aims in order of increasing com-
plexity (Lark and Wheeler 2003): (i) to find the optimum uniform treatment for a
field of interest (a whole-field experiment); (ii) to find the optimum treatment at
the spatial resolution of within-field management classes (a management-class ex-
periment) or (iii) to find the optimum treatment as it varies spatially across a field
(a whole-of-block or local-response experiment). With regard to management-class
and local-response experiments, different designs and model-based statistical tech-
niques are required for each, which we discuss in more detail below. We deal no
further with model-based analysis of a whole-field experiment; the analysis will
proceed as for a management-class experiment.

10.3 Management-Class Experiments

The principal goals of a management-class experiment are to compare how a crop
responds to the applied treatments, between and within classes. The agronomic in-
puts used as treatments in a management-class experiment may be categorical (such
as types of fertilizer, dates of sowing) or continuous (such as rates of fertilizer,
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depths of sowing). As long as we collect enough data to make an inference about the
results, the experimental design does not need to cover the whole area of interest.
Technically, we should refer to them as potential management-class experiments
until we are presented with evidence that site-specific crop management is justified.

When a farmer does a management-class experiment, an important issue to be
aware of is that each yield observation does not represent an independent source of
information. This lack of independence arises from two sources: (i) spatial autocor-
relation between plots (the stronger is the autocorrelation, the less is the information
provided by each additional observation, and vice versa) and (ii) the fact that har-
vesters generally record many more than one yield observation per plot. With regard
to the latter, each yield observation associated with an individual plot is not an
additional degree-of-freedom for the experiment; to consider the observations in
this way constitutes pseudo-replication (Hurlbert 1984), and increases the chance
of finding statistically significant treatment effects simply by virtue of the spatial
resolution of a yield monitor.

In the context of design-based analysis, we might analyse a management-class
experiment with a linear model:

z D M“ C e; (10.3)

where z is an n� 1 vector of observed crop yields resulting from an experiment and
M is an n-row design matrix that associates each observation with a value of one
of q fixed effects in the linear model. The fixed effects may include the class means
and terms of a polynomial function of the applied inputs. In a management-class
experiment that addresses the hypothesis of precision agriculture, it is necessary
that there are potentially different response functions in the different classes. In a
simple case of two classes with independent quadratic response functions, q D 6.
The coefficients of the fixed effects in “ will be the class means and coefficients of
the respective polynomial terms (by class). The n� 1 vector e contains independent
random errors. The parameters of “ are estimated conventionally by ordinary least-
squares (OLS), which is justified by the assumption that the errors are independent
identically distributed random variables.

In the context of model-based analysis, we re-define Eq. 10.3 as a linear mixed
model. Unlike Eq. 10.3, the linear mixed model deals explicitly with spatial autocor-
relation and pseudo-replication. According to the theory of geostatistics, crop yield
is now a random function of its spatial coordinates, with observations denoted z .x/.
The linear mixed model that we use is:

z .x/ D M“ C u .x/ ; (10.4)

where M and “ retain the same meaning as above; however, in contrast to Eq. 10.3
the error term has been replaced by the n� 1 vector u .x/, which contains a realiza-
tion of a second-order stationary, normally distributed, spatially correlated random
function,U .x/. Thus the variation in yield is divided into a deterministic component
(the fixed effects) and a random component (the random effects). The variation
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in u .x/ is described by an n � n covariance matrix, V, with individual elements
Vi;j D �2 � � .h/, where �2 is the a priori variance of U .x/ and � .h/ is the
variogram of u .x/ described with some bounded authorized function (Webster and
Oliver 2007).

We can estimate the coefficients in “ and the parameters of the variogram
of U.x/ (denoted ’) by residual maximum likelihood (REML) (Patterson and
Thompson 1971). Pardo-Igúzquiza and Dowd (1998) suggested that a second-order
stationary variogram could be fitted by finding ’ that maximizes a likelihood func-
tion, l .“;’jz/ (we herein drop the spatial coordinates from z for clarity). Parameters
of the linear mixed model could be estimated by this maximum likelihood approach,
although the estimates will be biased in the presence of a deterministic trend (Lark
and Cullis 2004). The REML approach reduces bias in the estimated variogram
parameters by projecting z into a residual space where all the fixed effects have
zero expectation. The residual log-likelihood of the projected data is (after Lark and
Cullis 2004):

lR

�
’j O“;“



D constant � 1

2
log jVj � 1

2
log jQj

�1
2

zTV�1.I � MQ�1MTV�1/z; (10.5)

where ‘constant’ represents terms in the likelihood that do not depend on ’ (and can
therefore be ignored); V is calculated from the estimates of the variogram parame-
ters, O’; Q is given by MTV�1M and estimates of the fixed effects, O“, are derived by
generalized least squares:

O“ D Q�1MTV�1z: (10.6)

The residual log-likelihood is generally multiplied by �1:0 and minimized by a
numerical algorithm to determine Ǫ (Lark and Cullis 2004).

Two studies that have used REML to analyse PA-based experiments are Lambert
et al. (2004) and Minasny and McBratney (2007). The latter described REML-
estimated yield response functions for an Australian cotton field subjected to a
nitrogen fertilizer management-class experiment. Unfortunately the design of the
experiment was flawed in that the smallest rate of nitrogen applied was not sub-
stantially different from the field’s average application. Consequently, the value of
the response functions was questionable. Lambert et al. (2004) found for a field in
Argentina statistically significant interactions between the yield of maize, the rate of
applied nitrogen (defined according to a quadratic response function) and the man-
agement class (defined according to the field’s topography). They showed that, by
using REML to account for spatially correlated model error, the profitability of PA
was greater than when the same model was implemented with OLS. We now present
a case study to demonstrate why, from a statistical viewpoint, we prefer to apply
a REML-based analysis rather than an OLS-based one for a management-class
experiment.
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10.3.1 Case Study I: REML-Based Analysis
of a Management-Class Experiment

Rosewood is a 75 ha field in northern NSW, Australia. Two management classes
were delineated for the field – based on data from yield mapping in 2003, a
profile-depth soil ECa survey and a digital elevation model – according to the pro-
tocol described by Taylor et al. (2007) (Fig. 10.1). A nitrogen fertilizer experiment
was established in Rosewood field in 2004. The crop was winter wheat. In each
management-class, six plots 100 m long and four harvester-swaths wide were estab-
lished and aligned in the direction of field operations. In each class the plots were
placed randomly, subject to the constraint that there was no overlap between plots
and no overlap with the class boundaries. Two replicates of the three treatments
(0, 27 and 83 kg N ha�1) were allocated randomly to the six plots in each class.

Treatment (kg N ha−1)

27

60 (Class 1)

60 (Class 2)

83

0 ≤ 1.2–3.1

Yield (Mg ha−1)

3.1–3.9

3.9–4.5

4.5–5.1

5.1– ≥ 6.4

100 m

N

a b

Fig. 10.1 Rosewood field: (a) the spatial arrangement of the nitrogen-fertilizer experiment and
locations of the management-classes and (b) the yield of wheat at the end of the growing season
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The rest of the area in both classes received a fertilizer application of
60 kg N ha�1, which was the uniform rate determined by the farm’s agronomist
to achieve the field’s targeted grain yield of 4.5 Mg ha�1. The 60 kg N ha�1 rate has
an important implication for the statistical analysis: it has no chance of being found
in the small plots (and conversely the rates applied to the plots have no chance of
being found in the rest of the field). The design as a whole is not truly randomized.
Design-based statistics are not appropriate, therefore, to analyse this experiment we
must use model-based statistics instead.

The specific null hypothesis that we wish to investigate is that each coefficient
of a polynomial yield response function (i.e. “ from the description above) for each
management-class is zero. We estimate the coefficients in “ with REML. Despite
the fact that OLS is inappropriate for the experiment, for comparison we use it
here also to estimate “. We implemented REML with the aid of the GeoR library
(Ribeiro and Diggle 2001) developed for the R software package (R Development
Core Team 2008). We considered only a spherical covariance function (Webster and
Oliver 2007) for use with REML.

There were 11 523 observations in the original yield map of the field. Unfortu-
nately, REML cannot handle this large number of data. Prior to our implementation
of REML and OLS we sub-sampled the data associated with the 60 kg N ha�1

treatment that covered the majority of the field. We divided the histogram of yield
associated with the 60 kg N ha�1 treatment into 1000 strata, and took one random
observation from each. It was not necessary to sub-sample the yield data associ-
ated with the 0, 27 and 83 kg N ha�1 treatments. Following sub-sampling, Class 1
comprised 1 343 yield observations and Class 2 comprised 1 209.

Table 10.1 gives the best-fitting polynomial response function for each
management-class, for each method of estimation. At a threshold of pD 0:05,
according to OLS a quadratic response function is justified for Class 2, but only a
linear function is justified for Class 1. The results for REML agree with the OLS
result for Class 1; however, for Class 2 REML shows that the quadratic term is not
justified. The OLS-estimate of ˇ2 in Class 2 leads us to reject the null hypothesis for
the coefficient, a false positive result. The corresponding coefficient estimates were
similar for each method, but the standard errors returned by REML are larger than
for OLS. This is because REML accounts for any autocorrelation, so consequently
one observation equates to something less than one piece of information about yield
response. Therefore, relative to the result from OLS, we remain more uncertain
about the true value of each REML-estimated parameter. The response functions
are presented graphically in Fig. 10.2. Assuming that the aim is to maximise yield,
in Class 1 the method that we use to estimate the response function has no effect
on the optimum fertilizer rate: both OLS and REML suggest that the optimum is
somewhat greater than the maximum used in the experiment (83 kg N ha�1/. In
Class 2 our choice of the optimum fertilizer rate varies according to the method
we used to estimate the yield response function: OLS suggests that 60 kg N ha�1

maximizes yield (i.e. the slope of the function at this input is zero), but REML
suggests 83 kg N ha�1. Thus OLS leads the farmer to think (incorrectly) that there
is a benefit in decreasing the amount of nitrogen applied to Class 2. As for Class 1,
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Table 10.1 Rosewood field. Polynomial yield-response functions estimated with ordinary least-
squares (OLS) and residual maximum likelihood (REML)

Class Method Coefficient Estimate Standard error t-statistic p

1 OLS ˇ0 3:70 � 100 6:98 � 10�2 52:98 <0:001

ˇ1 1:87 � 10�2 1:21 � 10�3 15:40 <0:001

REML ˇ0 3:83 � 100 1:80 � 10�1 21:28 <0:001

ˇ1 1:52 � 10�2 2:73 � 10�3 5:57 <0:001

2 OLS ˇ0 3:41 � 100 8:72 � 10�2 39:10 <0:001

ˇ1 2:20 � 10�2 4:04 � 10�3 5:44 <0:001

ˇ2 �1:80 � 10�4 5:00 � 10�5 �3:72 <0:001

REML ˇ0 3:54 � 100 1:87 � 10�1 18:95 <0:001

ˇ1 7:88 � 10�3 2:54 � 10�3 3:10 0:002
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Fig. 10.2 Wheat yield on Rosewood field as a function of applied nitrogen: (a) Class 1 and
(b) Class 2. The models for each class correspond to the coefficients given in Table 10.1

the REML-based estimates suggest that if the aim is to maximize yield, then further
experiments with applied nitrogen>83 kg N ha�1 would be justified.

Residual maximum likelihood has two disadvantages. The first is a disadvantage
also shared by OLS: the response function must be linear in its parameters (such
as a polynomial). This requirement disregards the common observation that yield
response, to nitrogen at least, is generally asymptotic, which would necessitate that
a model should have a non-linear parameter (such as an exponential term). The im-
plication is that polynomial response functions are convenient, rather than sensible
(Boyd et al. 1976). (Indeed, they are a convenience that recurs through this chapter!)
But a biologically sensible model need not preclude the use of REML, provided that
the user is careful: Lark and Wheeler (2003) showed how to combine successfully
a likelihood-based analysis and an asymptotic response function (discussed below).
The second disadvantage of REML is that it is limited by the number of data it
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can analyse in an acceptable time. This number will vary according to the com-
puter and the software available, and the time constraints on a given project. The
reason for the limitation is that every iterated value in O’ requires a computationally
expensive inversion of the covariance matrix, V (Eq. 10.5). A less-demanding ap-
proach is approximate maximum likelihood (Pardo-Igúquiza and Dowd 1997; Stein
et al. 2004), but it is unclear whether the principle can be translated successfully to
REML.

10.4 Local-Response Experiments

Unlike management-class experiments, local-response experiments must cover the
extent of the area of interest. The principal goal of a local-response experiment is to
examine the fine-scale spatial variation of crop response to one (or more) agronomic
input(s) and to derive a fine-scale, spatially-variable optimum application (e.g. Davis
et al. 1996; Bramley et al. 1999). In an arable field the inputs used as treatments
in a local-response experiment will almost certainly be continuous (e.g. rates of
fertilizer, depths of sowing); machinery constraints should preclude inputs that are
categorical (e.g. types of fertilizer, dates of sowing). (However, Panten et al. 2010,
have demonstrated that it is possible to devise a local-response experiment with
treatments of qualitative inputs for intensively managed horticultural crops – in their
case various ground-cover management strategies.) Statistical analysis of a local-
response experiment is complex because we must determine if there are significant
differences in the treatment effects at a particular location, subject to the constraint
that we can apply only one treatment per location. As well as dealing with inference
issues for a field-scale experiment, this is in addition an interpolation issue.

McBratney (1985) proposed that kriging be used to interpolate the yield observa-
tions of a particular treatment to the locations associated with other treatments. This
would create maps – one for each treatment – of what the yield would have been
had each treatment been applied uniformly to the extent of the experimental domain.
Bruulsema et al. (1996) used this idea on a local-response experiment. They fitted a
quadratic response function through each of the interpolated values, weighted by the
inverse of the kriging variance. Doerge and Gardner (1999) also interpolated across
treatments, but the interpolator was not specified.

Pringle et al. (2004) studied the response of wheat grain yield to various local-
response experiments. Their preferred interpolator was cokriging, with the yield
map of the previous season’s crop used as a covariate. Goovaerts (1997) and Webster
and Oliver (2007) show that cokriging can return more accurate estimates than ordi-
nary kriging, and does so with a smaller estimation variance. With this in mind, the
rationale of Pringle et al. was that, because they saw similar spatial patterns to yield
between seasons, the yield information of the first season could be used to guide
the interpolation of yield in the second season. (It is possible that a pair of con-
secutive yield maps may be related non-linearly due to strong inter-season climatic
variability, for example. In this case a prior yield map would not be a good choice
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Fig. 10.3 The yield of a hypothetical crop at four levels of a treatment j , obtained by kriging
across each treatment. The local yield response is estimated by the best-fitting polynomial response
function (adapted from Pringle et al. 2004)

of covariate – Cook and Bramley 2000.) The basic method of Pringle et al. (2004)
is shown in Fig. 10.3. Consider that we wish to estimate the local yield response to
an experiment with j D 1; : : : ; 4 treatment levels. The yield data associated with
the experiment are interpolated at the nodes of a grid. The yield data associated with
the yield map of the previous season are interpolated at the same nodes. Collocated
cokriging (Goovaerts 1997), a computationally fast variant of ordinary cokriging, is
then used to interpolate the yield associated with the locations of j D 1 at locations
j ¤ 1, and so on for all j . The grid nodes of the resulting maps are then ‘drilled’
so that the yield estimates can be modelled as a first- or second-order polynomial
function of the treatments, weighted by the inverse of the cokriging estimation vari-
ance for each treatment. The most parsimonious polynomial is chosen to describe
the treatment effect, which is taken as the difference between the observed yield at
the location of interest and the maximum yield according to the response function.

The method of Pringle et al. (2004) has four important shortcomings. First, they
interpolated their data twice to derive estimates of local yield response (once to a
set of common grid nodes, then again across treatments with collocated cokriging).
Consequently, much of the observed fine-scale yield variation would be smoothed
and only the strongest responses would remain. (The first interpolation is unneces-
sary if one manages to associate each yield monitor observation with a treatment;
this would be a relatively easy operation in a GIS.) The second shortcoming follows
from the first: the estimation variance associated with a collocated cokriging predic-
tion would be greater than that of an ordinary cokriging prediction (Papritz 2008),
so what Pringle et al. gained in computing efficiency they lost in statistical preci-
sion. Third, while their approach ensured optimum predictions of the response to
an individual treatment, optimum predictions for the difference between treatments
(i.e. the contrasts) were not considered. Fourth, Lark and Wheeler (2003) noted that
the hypothesis testing used by Pringle et al. was ad hoc because the latter’s method
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did not obtain correct estimates for the standard errors of the parameters of the yield
response functions.

An alternative approach was presented by Lark and Wheeler (2003) in an ex-
plicitly model-based context. Their central idea was to use raw yield-monitor
observations, rather than interpolated estimates. For a local-response experiment
with various nitrogen application rates, they considered that crop yield at any loca-
tion was a function of two models: (i) a model that described how the yield recorded
by the monitor related to yield on the ground (Whelan and McBratney 2002) and
(ii) an asymptotic yield-response function:

z D a C bRN ; (10.7)

where z is yield, N is the rate of applied nitrogen, and a, b and R are parameters
of the function. Lark and Wheeler used the first model to correct the yield monitor
data and to estimate a field-average value for the non-linear parameter (R) of the
yield-response function. They then estimated by maximum likelihood the (linear)
parameters a and b using only the nearest 90 yield observations to each node on
a fine grid across the field’s extent. The residuals of the localized yield response
functions were assumed to be a realization of a random function described by an ex-
ponential variogram, whose parameters were estimated simultaneously during the
maximum likelihood process. A bootstrap estimate of the standard deviation of b
enabled Lark and Wheeler to reject a null hypothesis that there was no spatial vari-
ation in the yield response functions across the field. A map of the economically
optimum N rate for the field, derived from the analysis, showed substantial spatial
variation.

Bishop and Lark (2006) improved on the interpolation procedure of Pringle
et al. (2004) to analyse local-response experiments. Their principle was to consider
the yield responses of each individual treatment as coregionalized variables that can
be mapped simultaneously by cokriging. This ensures that the estimates of individ-
ual treatment responses are optimal, as are the estimates of their contrasts. A further
advantage of the method of Bishop and Lark (2006) is that the information provided
by the responses at all treatment levels is used to improve the prediction quality of
any individual treatment.

From the cokriging prediction variances one can obtain the kriging variance
associated with a contrast; this could be a simple pair-wise contrast (Bishop and
Lark 2006) or a more complex contrast such as the comparison of a control with
the mean of two other treatments (Bishop and Lark 2007). A test statistic is derived
from the contrast kriging variance:

Osk .x0/ D
Odk .x0/q
O�2

k
.x0/

; (10.8)

where Osk .x0/ is the test statistic for location x0, Odk .x0/ is the cokriged esti-
mate of the kth contrast and O�2

k
.x0/ is the estimate of the kriging variance of

the kth contrast. The null hypothesis, i.e. that the contrast D 0, will be rejected if
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jOsk .x0/j > 1:96 (assuming normally distributed data). The relation between Odk .x0/

and the cokriged estimates of the response to the j th treatment, zj .x0/, for a simple
pair-wise contrast is:

Odk .x0/ D c2z2 .x0/C c1z1 .x0/ ; (10.9)

where c1 and c2 are coefficients equal to 1 and -1, respectively. Equation 10.9 can
be generalized to a form capable of accommodating contrasts that involve more than
two treatments:

Odk .x0/ D
tX

j D1

cj Ozj .x0/; (10.10)

where t is the number of treatments. For example, if we want to compare a control
treatment with the mean of two other treatments the contrast coefficients would be
�2 for the control and 1 for the other treatments, i.e. 1z2 C 1z3 � 2z1.

But which contrasts should be considered? For example, for an experiment with
four treatments there will be six simple pair-wise contrasts (Eq. 10.9) that can be
examined, in addition to other more complex linear combinations of the treatment
responses. Some contrasts are not independent so, without care, we will have trou-
ble in interpreting the results. Furthermore, the simultaneous testing of many (or
all) possible comparisons increases the chance of rejecting a null hypothesis incor-
rectly (a false positive result). One way to avoid these issues is to split the treatment
sum of squares (SS) into meaningful components in which each component is asso-
ciated with a particular independent (orthogonal) treatment contrast. The contrasts
should be pre-planned based on the specific hypotheses being tested, and should be
reflected in the choice of treatment structure for the experiment. The number of or-
thogonal treatment contrasts that are permitted is t � 1 (i.e. the treatment degrees of
freedom).

To have a set of orthogonal treatment contrasts, that is, to have the sum of the SS
for each treatment contrast equal to the treatment SS, we must satisfy two constraints
on the response parameters. First, the coefficients for a particular contrast must sum
to zero:

t�1X

j D1

cj D 0: (10.11)

Second, the sum of the cross-products for the set of orthogonal treatment contrasts
must equal zero:

t�1X

j D1

cp;j cq;j D 0; (10.12)

where cp;j and cq;j are coefficients for the pth and qth contrasts.
Bishop and Lark (2007) used orthogonal contrasts to compare means. In exper-

iments with quantitative treatments and continuity between treatment levels it is
better to examine the functional relation between the response and treatment levels.
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Table 10.2 Contrast coefficients (c) for a trend comparison with four
treatments

Treatment (kg N ha�1) Linear Quadratic Cubic

0: 0 �3 [�3] C1 [C1] �1 [�1]
1: 100 �1 [�0.58] �1 [�1.47] C3 [C4.37]
2: 170 C1 [C1.12] �1 [�0.75] �3 [�5.84]
3: 225 C3 [C2.46] C1 [C1.22] C1 [C2.47]

[] D coefficients used in Case study II.

This type of analysis is called a trend comparison. For t treatment levels, t � 2 is
the highest order polynomial whose pure contribution to the treatment effect can be
estimated. One additional comparison of the sum of squares can be estimated that
represents all higher-order components, e.g. for t D 4 this would be referred to as a
cubic trend comparison. A significant cubic trend indicates that the yield variation
is more complex than a quadratic trend. Table 10.2 presents coefficient values for a
trend comparison with t D 4. They are standard values that can be found in most
statistical textbooks (e.g. Gomez and Gomez 1984), and are appropriate when the
treatments have an even separation interval. Importantly, these coefficients satisfy
the constraints in Eqs. (10.11) and (10.12). The coefficients in Table 10.2 are just
one subset of all possible orthogonal contrasts that can be tested, except in this case
where the coefficients correspond to particular trends.

10.4.1 Case Study II: Analysis of a Local-Response Experiment

In 2000–2001 a nitrogen-response experiment was performed in a field of 8.9 ha,
known as ‘Bypass’, in Bedfordshire, United Kingdom. It was a randomized block
design with four treatments (0, 100, 170 and 225 kg N ha�1). Plots were approxi-
mately 12 � 15m. Wheat yield was measured with a yield monitor at the season’s
end. Figure 10.4 shows the locations of yield observations associated with each
treatment. Since the interval between the treatment levels is not even in the Bypass
experiment, the standard contrast coefficients (Table 10.2) cannot be used. In this
case a new set of coefficients must be solved for each order of polynomial, based on
Eqs. 10.11–10.12 and the basic form of linear, quadratic and cubic polynomial equa-
tions (see p. 229–233 of Gomez and Gomez 1984). The coefficients calculated for
the experiments are shown in square brackets in Table 10.2. Summary statistics of
yield for each treatment (Fig. 10.5) show that any application of nitrogen fertilizer
increases the mean yield by 1–1.2 Mg ha�1 compared with the 0 kg N ha�1 treat-
ment. Also, the addition of nitrogen results in a slight negative skewness compared
with an apparently normal distribution when no nitrogen is applied.

The treatment responses for both experiments were interpolated at the nodes
of a 2-m grid, using 2-m blocks and a 50 m search radius. The interpolator was
standardized cokriging, which returned local estimates of the treatment contrast
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Treatment
(kg N ha-1)

0
100
170
225

100 metres

Fig. 10.4 The locations of yield observations associated with the nitrogen fertilizer treatments for
Bypass field

(Fig. 10.6). Standardized cokriging is a variant of ordinary cokriging, but where the
latter accounts explicitly for the different means of the different treatments. Stan-
dardized cokriging essentially scales each treatment to the mean of the treatment
of interest (Goovaerts 1997). The method has been criticized strongly by Papritz
(2008), but this does not preclude us from illustrating our point. The choice of
dimension for a cokriging block is subjective. We used 2-m because it decreased
the estimation variance relative to point-based cokriging, but still preserved much
of the inherent variability of the data. The 2-m grid and block scheme effectively
creates raster-based maps for each treatment. The 0 kg N ha�1 treatment clearly has
the smallest yields, but there is less difference between the other treatment response
maps. Figure 10.6 shows that there are two distinct regions of yield variation in the
field that are common to all treatments: the north-east corner has the smallest yields,
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Fig. 10.5 Summary statistics for the yield observed for each nitrogen fertilizer treatment for
Bypass field: (a) 0 kg N ha�1, (b) 100 kg N ha�1, 170 kg N ha�1 and (d) 225 kg N ha�1

but in the rest of the field the yields are larger. Based on limited soil sampling, these
regions correspond to different soil series: the north-east region has a coarse texture,
possibly from glacial drifts overlying the Gault Clay, whereas the rest of the field is
a heavy clay.

Equation 10.8 was used to test the significance of the trend comparisons for each
2-m block, based on the coefficients in Table 10.2. The maps of Osk .x0/ are shown
in Fig. 10.7. The individual hypotheses being tested are whether the yield response
has a linear, quadratic or more complex component at each location of interest.
The maps of Osk .x0/ show that most of the field showed at least a linear response to
the nitrogen fertilizer (Fig. 10.7a). A significant quadratic trend is identified in many
parts of the field that exhibit a linear trend (Fig. 10.7b). Parts of the field also show a
more complex yield response than linear and quadratic trends (Fig. 10.7c). As noted
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Fig. 10.6 Yield associated with each treatment level, interpolated by standardized cokriging for
Bypass field: (a) 0 kg N ha�1, (b) 100 kg N ha�1, 170 kg N ha�1 and (d) 225 kg N ha�1

above, the cubic trend is a residual term and we can only state that in these regions
the trend contains higher-order terms than a quadratic.

The comparison of trend could be extended in two ways. First, we may use it
to derive polynomial coefficients. From these it would be possible to derive yield
response functions, perhaps following the method of Lark and Wheeler (2003). Sec-
ond, secondary information could be used as a covariate for cokriging or included
as a fixed effect.
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Fig. 10.7 Comparison of trend for Bypass field: (a) linear, (b) quadratic and (c) more complex.
The trend is significant when jOsk .x0/j > 1:96

10.5 Alternative Approaches to Experimentation

We have discussed the geostatistical analysis of PA-based agronomic experiments
conducted with the aid of variable-rate technology and yield monitors. In our expe-
rience this is the norm under which this kind of experimentation operates; however,
we acknowledge two important alternatives.
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First, what happens when a farmer has an interest in PA but does not have
variable-rate technology or a yield monitor? It is not necessary to possess either.
For example, Panten et al. (2010) analysed a viticultural experiment geostatisti-
cally that related under-vine ground-cover treatments to hand-gathered mid-season
crop attributes. This laborious and intense information-gathering was feasible for
a vineyard, but it is doubtful whether a similar approach could be applied to an
arable field. Undoubtedly the scope for experimentation in large-scale grain or fi-
bre cropping will be limited if a farmer does not invest in variable-rate technology
or a yield monitor. Nevertheless, there are still ways in which information can be
gathered that do not require a substantial financial outlay. For example, a farmer
might obtain a map of his or her farm and delineate those sub-regions believed
to be consistently large or small yielding for individual fields. A replicated strip
trial – which does not require variable-rate technology to apply – could then be
applied to the fields. In the absence of a yield monitor, the farmer may obtain a
mid-season aerial photograph or a satellite image of the farm (particularly now that
imagery such as Landsat can now be downloaded freely), and judge the results of
the trials. If these results agree with intuition, the farmer may decide to change
his or her operation accordingly in the following growing season; the benefit of
any changes made could be evaluated with another experiment. Some – particularly
statisticians – may be uncomfortable with this kind of informal approach to PA,
but others may find it empowering because it develops at a level of commitment
that the farmer is comfortable with, and requires little more than common sense to
implement.

Second, an alternative to geostatistical analysis, not easily categorized as ei-
ther a design-based or a model-based method, is discrete spatial autoregression
(Anselin 1988). This approach has been used to illustrate the economic benefits
of PA (e.g. Anselin et al. 2004; Lambert et al. 2004; Hurley et al. 2005). The
principal difference between the two methods concerns the definition of spatial co-
variance: in geostatistics the spatial covariance is considered to be a continuous
function of separation distance; in discrete spatial autoregression the covariance
arises through the inter-relationships between discrete units (such as management
classes), which have a pre-defined neighbourhood structure. In discrete spatial au-
toregression, in order to match the observations to the neighbourhood structure,
irregularly spaced data must be interpolated at the nodes of a regular grid, which
entails some loss of information. The studies of Lambert et al. (2004) and Hurley
et al. (2005) showed that, regardless of whether the PA-experiments were analysed
with discrete spatial autoregression or with geostatistics (in the form of REML), the
profitability of PA was similar. Discrete spatial autoregression is computationally
efficient compared with geostatistics; however, the continuous covariance model of
geostatistics is arguably more suitable for variables such as crop yield whose vari-
ation in space is clearly continuous. Furthermore, geostatistical models can be used
in a fully model-based way, which makes them less arbitrary and more suitable
for inference based on the uncertainty of the covariance parameters (Diggle and
Ribeiro 2007).
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10.6 Issues for the Future

A challenging area for future research concerns the optimum experimental design
for a particular situation. By optimum we mean a balance between the information
gained from the experiment and the inconvenience caused to the farmer. This kind of
optimization will inevitably require a forecast of the value of the information gener-
ated by the experiment – a notoriously difficult concept to quantify (Pannell 1998).

In a provocative paper, Whelan et al. (2003) dismissed local-response exper-
iments on the basis that they are overly invasive to farm operations; instead,
they preferred to concentrate on management-class experiments. They listed some
machinery-related issues that constrain designs for PA-based agronomic experimen-
tation. It is worth re-iterating the list here. First, plots must be aligned in the direction
of sowing and harvesting. Second, the width of a plot must be at least three times
the cutting-width of the harvester; the exact width will be a multiple of the narrow-
est machinery used on the field (variable-rate input-applicator or harvester). Third,
the plots must be long enough to counter spatial mixing of the crop as the harvester
moves from plot to plot; 80–100 m is recommended as a general rule, with the first
and last 20 m of the plot discarded from all statistical analysis. Whelan et al. (2003)
used spatial simulated annealing (Van Groenigen and Stein 1998), in conjunction
with prior knowledge about site variability and some simple economic assumptions,
to address simultaneously the physical constraints on an experiment and the afore-
mentioned information and inconvenience trade-off. They considered the resulting
‘fleck’ design (as it might be called) to be the economically, agronomically and
biometrically optimum experimental design for a field.

Whelan et al. (2003) were arguing in the context of arable cropping. Their
notions may not apply to horticulture. For example, Dr R. Bramley (personal com-
munication) has indicated that vineyard managers are surprisingly positive about
their experiences with local-response experiments: his view is that any cost to the
manager is outweighed by the experience of “being able to wander through the ex-
periment and see for himself how treatment responses varied spatially”. With regard
to the optimization of a local-response experiment, Bishop and Lark (2006) have
shown how the optimum spatial arrangement of the treatments can be very different
depending on whether the goal is to map the treatment response or the contrasts.
If we are interested in estimating the contrast then the plots of different treatments
should be placed as close together as possible; if, however, we wish to map the indi-
vidual treatment responses then the plots should be spread across the experimental
area. Spatial simulated annealing can be used to ensure an optimum spread of the
treatments. Bishop and Lark (2006) used the kriging variance as the criterion to de-
rive the optima; the value of the information generated by the experiment was not
considered.

An additional issue is Bayesian statistics. Consider REML; we have shown the
statistical benefit of REML above, but by definition it returns information about
only one point in the joint distribution of the model parameters: the point of max-
imum likelihood, which is then assumed to be known and ‘plugged in’ to further
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analyses. Bayesian statistics offer an alternative – arguably more easily interpretable
– framework by which one may examine yield responses from an entirely probabilis-
tic viewpoint. Besag and Higdon (1999) described the principles of the Bayesian
analysis of agricultural plot trials; the same principles are applicable to large-scale,
on-farm experiments, although some modifications may be needed to cope with the
greater volume of data. Bayesian statistics are especially adept at dealing with prior
knowledge, which farmers have in abundance. The Bayesian Maximum Entropy
(BME) approach (Christakos and Li 1998; Christakos 2000) may ultimately prove
to be more flexible than classical geostatistics or the linear mixed model. It is a
probability-based method that formally incorporates observed data, physical theo-
ries and prior knowledge into a map. In the context of experimental analysis for PA,
it seems like a perfect marriage. Unfortunately, at this time a lack of wide under-
standing about the underlying mathematics of BME constrains its application. (It is
probable that this was once said of kriging too!) To see PA experiments analysed in
a Bayesian context accounting for prior information and with yield responses quan-
tified for a range of probabilities would be an exciting development for precision
agriculture.

Finally, we have seen that, in Australia at least, farming groups often express a
desire to use experimental techniques to complement their PA activities, but they are
reluctant to use anything more complex than a strip trial. This risks creating an ab-
surd disconnection where academics continue research on efficient designs for spa-
tial experiments, but nobody uses the results. Ultimately, the onus is on researchers
to adapt their geostatistical analyses to the demands of the farming community.

10.7 Conclusions

Model-based statistical analysis is crucial for inference from experiments conducted
within the PA paradigm. Residual maximum likelihood is important for analysis of
management-class experiments, whereas trend comparisons are important for analy-
sis of local-response experiments. Geostatistics has an important role to play in each
of these. Put simply, spatial autocorrelation must be accounted for if one is to draw a
valid inference from a spatial experiment. The optimum experimental design to meet
a particular purpose, given the constraints on production and the spatial variability
of an area of interest, is an area that requires more research. Ultimately though,
if farmers are compelled to use relatively simple designs and less-formal analyses,
then researchers must follow, and adapt their geostatistical analyses accordingly.
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Chapter 11
Application of Geostatistical Simulation
in Precision Agriculture

R. Gebbers and S. de Bruin

Abstract Geostatistical simulation provides a means to mimic spatial and or
temporal variation of processes that are relevant to precision agriculture. Simulation
by computer models aids decision making when it is too difficult, time consuming,
costly or dangerous to perform real-world experiments. Spatio-temporal processes
are often considered as uncertain because it is impossible to make accurate and
comprehensive observations. Geostatistical simulation incorporates uncertainty
into modelling to obtain a more realistic impression of the variation. This chapter
provides a short introduction to the background of geostatistical simulation and
explains sequential Gaussian simulation in more detail because it is the method
most commonly applied. Three case studies demonstrate the application of geosta-
tistical simulation in precision agriculture. They deal with the risk of under- and
over-liming because of uncertainty about the accuracy of a pH map, the economic
costs of GPS errors and the identification of factors that are most relevant to the
accuracy of mapping.
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11.1 Introduction

Geostatistical simulation is a specific form of stochastic simulation that addresses
spatial and or temporal uncertainty. Simulation can be considered a part of mod-
elling. According to Shiflet and Shiflet (2006, p. 6), “modeling is the application
of methods to analyse complex, real-world problems in order to make predictions
about what might happen with various actions.” Simulation aims to imitate reality
with hypothetical situations; in scientific situations this is usually done by the ap-
plication of a given model with certain inputs. Simulation by computer models is
of particular value when it is too difficult, time consuming, costly or dangerous to
perform real-world experiments. They enable certain situations and alternatives to
be examined to aid decision making (Shiflet and Shiflet 2006). By simulating a pro-
cess, one can consider various scenarios and test the effect of each. Deterministic
models produce the same results with a given input, whereas stochastic models gen-
erate different results from the same input. Both of these basic types of model can
be combined. However, the output of a combined model will remain random. By
incorporating the element of chance into modelling it is possible to obtain more
realistic simulation results.

Geostatistical simulation is used to reproduce spatial and sometimes temporal
variation and uncertainty. In this respect it differs from kriging which is intended
to produce optimum, albeit smoothed, predictions. Variation is present everywhere
in the environment – agricultural fields are no exception. Uncertainty results from
the fact that we cannot measure entire populations or domains (like fields) and
that data can suffer from measurement errors. The simulation of spatial variation
and uncertainty can be useful for understanding the effects of certain precision
agriculture (PA) techniques and to identify components of PA that require im-
provement. For example, a farmer may want to assess the risk of applying the
wrong fertilizer rate because of uncertainty about the accuracy of a soil nutrient
map (Section 11.2), to quantify the benefits of using more accurate GPS for field
boundary survey (Section 11.3) or to determine whether sampling density or lab-
oratory error has the greater impact on the accuracy of predictions for mapping
(Section 11.4).

The first part of this chapter provides a short introduction to geostatistical simu-
lation and focuses on the most commonly applied method. The rest of the chapter
includes three case studies to illustrate the application of geostatistical simulation
in the context of precision agriculture. For those who want to learn more there
are two textbooks that provide excellent practical introductions to simulation by
Deutsch and Journel (1998) and Remy et al. (2009). Both books have associated
software: GSLIB by Deutsch and Journel (1998) is a collection of Fortran rou-
tines and SGeMS by Remy et al. (2009) is user-friendly software with a graphical
interface. There are more mathematical books by Chilès and Delfiner (1999) and
Lantuéjoul et al. (2002); the first contains examples mainly from geology and the
mining industry, whereas the latter is entirely theoretical. Goovaerts (1997) in-
cludes a large chapter on geostatistical simulation, which is recommended as an
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introduction. Other introductory books with shorter chapters on simulation are Web-
ster and Oliver (2007) and Leuangthong et al. (2008). Even though geostatistical
simulation has a value of its own, it should be seen in the broader context of er-
ror propagation. Heuvelink’s comprehensive book on error propagation in spatial
modelling (Heuvelink 1998) integrates these objectives.

11.1.1 Basics of Geostatistical Simulation

Geostatistical simulation was established more than 30 years ago (Remy et al. 2009).
Algorithms for geostatistical simulation were developed for a probabilistic assess-
ment of 2-D and 3-D representations of spatial processes, but they can be extended
easily to temporal or spatio-temporal processes. In geostatistical simulation random
numbers are drawn from a predefined probability distribution (the stochastic model).
The purpose is to generate equally probable realizations of a process described by
functions of spatial dependence, i.e. the variogram, and the cumulative frequency
distributions of the variables under consideration.

The most common methods of geostatistical simulation are based on the vari-
ogram, however, some methods do not use it to describe spatial dependence (see
later in this section). Simulation can be unconditional or conditional; the latter
integrates existing knowledge into the simulation. In this case, the simulation should
honour observations at the sampling points. Geostatistical simulation can be ap-
plied in all four dimensions provided that the generating function (variogram)
is conditional negative semidefinite for the relevant dimensions. By generating
one-dimensional realizations (Figs. 11.1f and 11.2f), for example, autocorrelated
time-series can be simulated. We return to this in Section 11.3. The typical out-
come of a geostatistical simulation is a map, sometimes called a stochastic image.
Figure 11.1a–c shows three realizations resulting from unconditional geostatistical
simulation, whereas those in Fig. 11.2a–c result from conditional geostatistical sim-
ulation in which data values at given locations are honoured. The unconditional
simulation results in Fig. 11.1 are based on the frequency distribution function of
pH, the variogram and the field dimensions of the case study in Section11.2. The
maps in Fig. 11.1 show different patterns of variation as do the transects (Fig. 11.1f),
which are the values along the row at a y-position of 316 m. The frequency distribu-
tions (kernel density plot, Fig. 11.1d) and variograms (Fig. 11.1e) of each realization
appear fairly similar. This is how it should be because each realization honours the
predefined statistical model given by the frequency distribution and the variogram,
but the variation in the maps and outcomes at single locations are random. The fre-
quency distribution at a given location can be assessed by evaluating the pixel values
there from a large number of simulations.

The maps of conditional simulation of the pH data in Fig. 11.2, based on the
same frequency distribution and variogram as above, appear much more similar to
one another than do those in Fig. 11.1f. In particular, readers should take a closer
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Fig. 11.1 (a) to (c) Three examples of unconditional geostatistical simulation based on a
non-normal distribution and an omni-directional exponential variogram function with a nugget,
c0, of 0.018, a spatially dependent component, c, of 0.106 and an approximate range, a0, of 65.5 m
(a0 is three times the distance parameter of the model), (d) the respective frequency distributions,
(e) empirical variograms and (f) values from transects along the 316 m y-coordinate

look at the transect plots in Figs. 11.1f and 11.2f. The transects were placed to cross
five conditioning data on the 316 m y-coordinate (see the line on maps in Figs. 11.1
and 11.2a–c). The pH values at these points are marked by dots on the transect
plot. Even though the values vary considerably, the conditioning data are honoured
by the line passing through them. The frequency distributions of the conditional
simulations are similar (Fig. 11.2d), whereas the variograms (Fig. 11.2e) are more
different from each other than are those in Fig. 11.1e.

As geostatistical simulation has not been widely used in PA, the reader might
ask what are the differences between kriging and simulation, and what are the
benefits? Kriging is intended to predict values of the target variable at unobserved
locations, whereas geostatistical simulation addresses the variance. Kriging is a best
linear unbiased predictor (BLUP), which tends to smooth values at unobserved lo-
cations, i.e. it overestimates values that are smaller than average and underestimates
those that are larger. As a consequence, the global variance of the kriged estimates
is much less (about half) than the original variance; in other words kriging loses
variance (see Webster and Oliver 2007 for the mathematical proof). Stochastic sim-
ulation, however, retains the global variance and reflects the variation present, but
the value simulated at a given location is, unlike kriging, not intended to give an
accurate prediction. Instead, repeated simulations at a given location can reveal
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Fig. 11.2 (a) to (c) Three examples of conditional geostatistical simulation defined by a
non-normal distribution and an omni-directional exponential variogram function with a nugget,
c0, of 0.018, a spatially dependent component, c, of 0.106 and an approximate range, a0, of 65.5 m
(a0 is three times the distance parameter of the model), (d) the frequency distributions, (e) empirical
variograms and (f) values from transects along the 316 m y-coordinate

the local probability distribution and the moments that can be derived from that.
Reproduction of the local and global variance is essential for the two main uses
of geostatistical simulation: uncertainty analysis of interpolated maps and error
propagation in complex models that use spatial or temporal data or a combination
of both. Other applications include scaling issues such as change of support and in-
verse modelling in which input data can be estimated from a given model and the
output data (Chilès and Delfiner 1999; Goovaerts 1999).

Section 11.2 gives an example of conditional simulation for uncertainty analy-
sis of interpolated values. Complex modelling with spatio-temporal input data can
use conditional and or unconditional geostatistical simulation; examples are given
in Sections 11.3 and 11.4. Other applications in agriculture are uncertainty in crop
yield response (Faechner et al. 1999), the effect of soil compaction on corn yield
(Lapen et al. 2001), design of field trials (Fagroud and Van Meirvenne 2002), soil
erosion (Favis-Mortlock et al. 2000), decision support (Pokrajac et al. 2002) and the
irrigation of maize (Zanolin et al. 2007).

The lack of user-friendly software and its poor integration into GIS might explain
why simulation has been little used in PA. However, SGeMS (Remy et al. 2009)
makes the application of geostatistical simulation more attractive to practitioners.
Examples of software for simulation are given in the Appendix to this book.
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11.1.2 Theory

11.1.2.1 Spatial Random Variable and Spatial Random Function

Geostatistical simulation is based on the same assumptions about random processes
as kriging (see Chapter 1). A spatial random function Z(x) could be characterized
by its multivariate distribution function, ProbfZ(x), x 2 Sg. However, an analyt-
ical description of such a multivariate distribution is usually impractical because
there might be parameters that vary from one location to another (Remy et al. 2009,
p. 34). Thus, several assumptions are necessary to simplify the modelling of the joint
distribution by the spatial random function. For example, instead of modelling the
probability function of all unknowns simultaneously this can be done individually
for each zi (x), step by step. This is exactly how the sequential simulation algorithm
works. For in depth discussion of the random function and the joint distribution the
reader is referred to Goovaerts (1997) and Remy et al. (2009).

11.1.2.2 Stochastic Simulation

Stochastic simulation is the process of drawing random numbers from a predefined
probability distribution. This kind of simulation is part of the Monte Carlo ap-
proach, which aims to solve mathematical problems by modelling random variables.
Stochastic simulation requires the generation of a large set of random numbers,
which has only become feasible with the advent of modern computers. However,
random numbers generated by computer are so called ‘pseudo-random numbers’
because they are not truly random. They are usually generated by sequential congru-
ential algorithms, which produce sequences that depend on an initial value known
as the ‘seed’. Using the same seed will reproduce the same sequence of numbers;
therefore, experiments based on pseudo-random number generators are repeatable.
Pseudo-random numbers can reproduce target distributions quite well, and cannot
be distinguished from real random samples by common statistical tests. Readers are
referred to Gentle (1989) for more information about pseudo random numbers and
Monte Carlo methods.

11.1.2.3 Overview of Methods for Geostatistical Simulation

There are several methods of geostatistical simulation and sometimes different
names are used for the same method. Thus, some categorization may help to distin-
guish the different algorithms and to identify the appropriate method for the problem
at hand. We follow the classification given by Vann et al. (2002) with some additions
by Deutsch and Journel (1998), Chilès and Delfiner (1999) and Remy et al. (2009).
Detailed explanations of the simulation methods are given in the last three refer-
ences and in the literature cited herein.
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� Pixel-based methods (variogram-based or two-point simulation methods)

In pixel-based methods simulations are generated point by point (or pixel by pixel
for simulating raster data). They are conditioned by two-point statistics as mod-
elled by the variogram or covariance functions. Pixel-based methods can be used
for continuous and categorical variables. Among these methods Gaussian-based
methods are the most popular (multiGaussian approach). They rely on Gaussian ran-
dom functions and the gradual transition between high and low values. Sequential
Gaussian, covariance matrix decomposition, turning bands, truncated Gaussian and
pluriGaussian methods belong to this class. Non-parametric pixel-based methods
do not require a Gaussian or some other distribution, e.g. sequential indicator
simulation is a non-parametric method.

� Object-based methods

Object-based methods simulate the occurrence of objects and their properties at
random points. Point processes or point patterns deal with the presence or absence of
objects, sometimes called ‘events’. An example would be the occurrence of weeds.
Boolean simulation is an extension of point process modelling. Here the object’s
geometry is attached to the points obtained by point pattern simulation. An example
might be the distribution and orientation of leaves in a crop’s canopy.

� Multi-point methods

Multi-point methods combine pixel- and object-based methods. They operate pixel-
wise and conditional probabilities for each pixel value are obtained as conditional
proportions from a training image that depicts the geometry and distribution of ob-
jects expected in reality (Remy et al. 2009). Multi-point methods can include soft
data. An application for PA would be the simulation of soil types with soil horizons
as categorical variables.

Pixel-based simulation algorithms should be the preferred option when it is
important to reproduce local data. However, such two-point methods can only repro-
duce the variogram and not shapes and patterns. Object-based simulation algorithms
are ideal for creating maps (or images) with strong spatial structures and patterns,
but they are notoriously difficult to condition to local data.

11.1.3 Sequential Gaussian Simulation

Sequential Gaussian simulation is the most straightforward algorithm for the
simulation of continuous variables. In the case of conditional simulation we have
k conditioning data Z.yk/ and m nodes at which we want to simulate a region-
alized variable ZSn.xm/. The mD 1; : : : ; l nodes will be visited in a sequence
n D 1; : : : ; l . In the case of unconditional simulation the algorithm will start with a
random value at a random location. The procedure for two-dimensional simulation
is presented as a flowchart in Fig. 11.3.
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Fig. 11.3 Flowchart of sequential Gaussian simulation in a two-dimensional domain

The procedure is described as follows:

0. Pre-processing (can be omitted in the case of unconditional simulation): examine
conditioning data Z.yk/ for normality. Transform Z.yk/ to a standard normal
distribution if necessary.

1. Initial definitions

1.1. Definition of a variogram: compute and model the experimental variogram
from the normally distributed conditioning dataZ.yk/ or select a model and
parameters if there are no conditioning data.

1.2. Definition of a random path: create a path nD 1; : : : ; l which passes through
all nodes xm, where n is ordered randomly.

2. Simulation at station n

2.1. Kriging: use simple or ordinary kriging with the variogram model at a node
xm to estimate OZ.xi / and the variance, �2

K.xi /. The estimate will be based
on conditioning data Z.yk/ and previously simulated data ZS.1:::n�1/.yk/

within the search radius.
2.2. Model a conditional cumulative distribution function (ccdf): use the kriged

estimate and variance to form a Gaussian cumulative distribution function.
2.3. Assign a random number: generate a pseudo-random number from the ccdf

and assign this number to ZSn.xm/. Proceed to station n C 1 on the path.
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3. Repeat steps 2.1 to 2.3 until all nodes have been visited.
4. Post-processing (optional): back-transform values if they are required on the

original scale of measurement.

Sequential Gaussian simulation can produce large fields of values because it is
not constrained to keeping the covariance matrix of the entire domain in memory.
It reduces the demand on memory by limiting the neighbourhood using a specified
search radius and or a limited number of points to be included in the kriging system.
In this case, the covariance is only approximated. Thus, the neighbourhood should
be large enough otherwise reproduction of the variogram will be poor. It is recom-
mended that the field being simulated is larger than the range of the variogram (Vann
et al. 2002). The approach can be extended easily to indicator kriging.

11.1.4 Transformation of Probability Distributions

Regionalized variables are sometimes non-normal. A normal distribution is required
for Gaussian simulation described above; this is usually achieved by a transforma-
tion to normal scores so that the target cdf is a standard normal distribution with zero
mean and unit variance (Fig. 11.4). Normal scores transformation and the reverse,
back-transformation, are critical steps in Gaussian simulation methods.

Common methods for transformation and back-transformation are described in
Deutsch and Journel (1998) and Remy et al. (2009). These methods include interpo-
lation to estimate probabilities where no raw values are available and extrapolation
for cases where the sample data may not cover the full range of possible values. We
demonstrate this in Section 11.2.2. In particular, the lower and upper tail of the dis-
tribution can be modelled by extrapolation with various functions (typically power,
exponential or hyperbolic, see Remy et al. 2009). This is a critical step because we
must make assumptions about the minimum and maximum values. Alternatively,
Bourgalt (1997) describes an extension of sequential simulation for non-Gaussian
distributions that avoids transformation and back-transformation.
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11.2 Case Study I: Uncertainty of a pH Map

Assessment of interpolation error in maps is one of the classical applications of
geostatistical simulation. Nevertheless, it has rarely been used for this purpose in PA.
This section describes an application of simulation and its benefits with a practical
example.

11.2.1 Introduction

In PA, maps of pH are required for making site-specific decisions on the ap-
plication of lime to correct soil acidity. Soil pH affects the availability of most
plant nutrients, which can be reduced where pH is either too low or too high
(MAFF 2000). The optimum pH of a soil depends on soil texture, organic matter
content and on the crop grown. In many countries ranges of optimum soil pH are
published by official advisory boards (e.g. in the U.K. by the Department for Envi-
ronment, Food, & Rural Affairs (DEFRA) or in Germany by the ‘Verband Deutscher
Landwirtschaftlichen Untersuchungs- und Forschungsanstalten’ (VDLUFA)). For
economic reasons, a farmer’s field cannot be sampled exhaustively to map the pH
and so values are predicted from a few samples by kriging or some other method of
interpolation. The predicted values are in error because they are based on a sample
and so there is a risk of under- or over-liming. This kind of uncertainty in the pre-
dictions can be addressed by geostatistical simulation. The objectives of this case
study are to:

� Compare the results of kriging with those of simulation.
� Determine the accuracy of an interpolated map of pH.
� Derive probabilities that a pH value is below or above the optimum.

11.2.2 Materials and Methods

The sampling site is on a commercial farm at Kassow in northeast Germany, about
30 km south of the Baltic Sea (lat. 53:8671ı, long. 12:0697ı). The landscape was
formed during the last ice age about 10 000 years ago and by post-Quaternary pro-
cesses. As a typical ground moraine area, the sampling site is undulating, has a
predominantly sandy soil and spatially variable soil properties.

Soil samples were collected within a sampling frame of 137 � 612m on a 73 ha
field (KSG 111). A basic sampling grid with a spacing of 30-m was established re-
lated to the average distance between the tramline-system of the field (Fig. 11.5a).
Samples were taken to one side of the tramlines, and were georeferenced by a high
precision RTK-dGPS. There were 85 sampling points and these will provide the test
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Fig. 11.5 (a) Sampling design, (b, c) plots of the statistical distribution of all observed pH values
and (d, e) experimental variogram and model of all data and of the conditioning data, respectively

data set in this study. In addition, 27 samples were taken at irregular intervals based
on a map of apparent soil electrical conductivity (ECa). Locations were chosen to
cover a representative range of ECa values and to obtain information at small sam-
pling intervals, which is important for variogram modelling. For convenience, global
coordinates of the sampling points were transformed into a local Cartesian system
with the sampling grid arranged in parallel to the x- and y-axis. Sampling depth was
30 cm, which is approximately equivalent to the depth of the plough horizon Ap. At
every location, six sub-samples were taken within a radius of about 1 m and bulked
to obtain 0.5 to 1 kg of soil. The samples were analysed for pH by a glass electrode
in a suspension of 10 g soil and 25 ml of 0.01 M CaCl solution (VDLUFA 2000a).

Data analysis included summary statistics, variography, sequential geostatistical
simulation and post-processing of the simulation results. In the preceding analysis,
summary statistics and Kolgomorov–Smirnov tests for normality were done with
SYSTAT (Systat Software Inc.). Transformation of the conditioning data to nor-
mality and back-transformation of simulated values (Fig. 11.4) were done by the
SGeMS function ‘trans’. We have used the power function, which produced the best
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results according to the statistical tests for normality (data not shown). The lower tail
of the cdf was approximated between the minimum zmin and the first threshold z1 by:

	
z1 � z

z1 � zmin


!

8 z 2 .zmin; z1/; (11.1)

where ! controls the decrease of the function, with the constraint ! � 1. The
greater is !, the less likely are small values close to zmin (Remy et al. 2009, p. 106).

The upper tail was modelled by:

	
z � zL

zmax � zL


!

8 z 2 .zL; zmax/; (11.2)

where zL is the upper threshold and zmax is the maximum. Parameter ! controls the
decrease of the function, with the constraint ! 2 Œ0; 1�. The smaller is the value, the
less likely are extreme values close to zmax (Remy et al. 2009, p. 106).

Parameters for the approximation of the normal scores for the lower tail were
zmin D �3, ! D 3 and were zmax D C3, ! D 0:333 for the upper tail. For approxi-
mation to the distribution of the raw data, the parameters were set to: 0 pH, ! D 3

for the lower tail and to C14 pH, ! D 0:333 for the upper tail.
The experimental omnidirectional variogram was modelled by ordinary least

squares approximation. Kriging and simulation were done on a 1-m grid using
SGeMS. The kriging standard errors were obtained for comparison with other
results. Conditional sequential Gaussian simulation (Section 11.1.3) was used to cre-
ate 100 realizations of pH from the normal score transform (SGeMS). The search
radius was set to 100 m and a maximum of 100 conditioning points. After back-
transformation the statistical moments of the simulated data were calculated and
mapped in MATLAB (The MathWorks Inc.). Kernel density estimation was used
instead of a histogram to describe the frequency distribution (Härdle et al. 2004).

11.2.3 Results and Discussion

There is little difference between the descriptive statistics for all of the data and
the conditioning data (Table 11.1). The median pH is 5.9 and 5.8, respectively. This
value is at the lower limit of the optimum pH range for loamy sand, which is be-
tween pH 5.8–6.3 for all crops according to VDLUFA (2000a, b). The minimum
pH in the data is 5.1, which indicates a need for liming, whereas the maximum is
6.7, which is higher than it should be on loamy sand. The kernel density and the
normal probability plots (Fig. 11.5b, c) show that the distribution is slightly skewed
and that it may also be bimodal. The skewness coefficients are given in Table 11.1.
The statistical test indicates significant deviation from normality (Table 11.1). Thus,
we decided to transform the raw data before proceeding with conditional Gaussian
simulation.
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Table 11.1 Descriptive statistics of all data and conditioning
data for pH

All data Conditioning data

Number of cases 116 87

Minimum 5:1 5:1

Maximum 6:7 6:6

Range 1:6 1:5

Median 5:9 5:8

Arithmetic mean 5:93 5:89

Standard deviation 0:36 0:37

Variance 0:13 0:13

Skewness 0:245 0:322

Kurtosis �0:466 �0:492
Kolmorogov–Smirnow
p-value

0:001 0:001

Table 11.2 Parameters of omnidirectional variogram models fitted to all data and to the
conditioning data for pH before and after normal scores transformation

Data Variogram model Nugget c0

Spatially
dependent
component c

Effective
range a0 [m]

All data, no
transformation

Exponential 0.0100 0.1107 70.6

Conditioning data,
normal scores

Exponential 0.0414 0.8641 59.6

a0 is three times the distance parameter of the exponential model.

Experimental variograms were computed and modelled for the complete set of
raw and conditioning data before and after transformation to normal scores. Figure
11.5d, e shows the variogram for these, and Table 11.2 gives the parameters of the
variogram models. The fit of the model for the conditioning data was constrained to
the nugget variance derived from the complete data because the separating intervals
of the conditioning data are too wide to obtain reliable estimates of the variogram
near the origin.

11.2.3.1 Simulation

Kernel density, quantile–quantile and experimental variograms of three realizations
are plotted to assess how well the simulations reproduce the conditioning data in
Fig. 11.6. Kernel density curves show some differences at the peak near the mean
and at the shoulder around pH 6.5 (Fig. 11.6a). They are, however, all close enough
for them to be assumed to come from the same distribution. The similarity between
the conditioning data and the realizations is confirmed by the quantile–quantile
plot overlaid by the 1:1 line (Fig. 11.6b). The variogram model of the conditioning
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ograms from three simulations, the mean of all runs of simulation and kriging of raw conditioning
data (note that the empirical variograms of the simulation mean and kriging are almost identical)

data and the empirical variograms from these realizations are also very similar
(Fig. 11.6c), which indicates that variation in the conditioning data was reproduced
sufficiently by simulation.

11.2.3.2 Comparison of Kriging and Simulation

Ordinary kriging was done with the raw conditioning data and the parameters of
the variogram model given in Table 11.2. A comparison of the empirical variograms
from the three realizations with that from the kriged predictions in Fig. 11.6c demon-
strates how kriging smoothes. The empirical variogram of the kriged predictions
approaches its sill at about half that of the empirical variogram of the simulated re-
alizations. The variogram of kriged predictions also has a longer range. However,
if simulations are averaged over a large number of realizations variance is also lost
and the shape of the empirical variogram becomes identical to that of the kriged
predictions. Hence, only single realizations from geostatistical simulation mimic
the variation in the observations.

Maps of kriged predictions and standard deviations are shown in Fig. 11.7a, c.
For further comparison of kriging with simulation the realizations have to be sum-
marized. This is done by so called E-type estimates (conditional expectation), which
are point-wise statistics computed at each simulation point (e.g. the arithmetic mean
or the variance) (Remy et al. 2009, p. 37). These E-type estimates were based on
100 realizations (Fig. 11.7b, d); they can be compared visually with their ordinary
kriging equivalents (Fig. 11.7a, c).

The contour lines of the kriged map are smooth, whereas those for the E-type
mean are irregular. Nevertheless, both maps show the same spatial structures, which
is confirmed by the scatter plot in Fig. 11.7e. Table 11.3 gives the summary statistics
of the kriged and E-type estimates, which show that overall the E-type mean is
slightly smaller.

The maps of standard deviation (SD) from kriging and E-type estimation dif-
fer much more than the kriged predictions and E-type mean. The map of kriging
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Fig. 11.7 Comparison of the results of kriging and simulation (the individual components of this
figure (a – h) are explained in the text)

Table 11.3 Summary statistics of kriged predictions and E-type estimates from simula-
tions of pH

Kriged predictions E-type mean Kriging SD E-type SD

Mean 5.87 5.84 0.26 0.40
Median 5.82 5.80 0.27 0.33
Variance 0.06 0.08 0.0009 0.04
Standard

deviation (SD)
0.24 0.29 0.03 0.21

Minimum 5.11 4.61 0.01 0.02
Maximum 6.59 7.40 0.31 2.03
Range 1.48 2.79 0.30 2.01

SD (Fig. 11.7c) indicates that kriging standard errors (derived from the kriging
variance) depend only on the distance from the sampling location; they are inde-
pendent of the kriged predictions as confirmed by the scatterplot (Fig. 11.7g). By
contrast, the plot of E-type SD versus E-type mean (Fig. 11.7h) shows a non-linear
trend with a decrease from pH 5 to 5.5 and an increase between pH 6.3 and 6.7.
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Fig. 11.8 Detailed results of kriging and geostatistical simulation from a transect along
y D 316m. (a) Average of 100 simulations and three examples of single simulations and
(b) comparison of means and standard deviations (SD) from 100 simulations with the estimates
and standard deviations from kriging

Values between pH 5.5 and 6.3 are associated with a smaller SD. Large SDs (dark
areas) are associated with high pH values near the upper and right-hand borders
(around y D 150–250m), Fig. 11.7a and b, and where pH is low around x D 75m,
y D 150m and x D 75m, y D 375m. The E-Type SD also (but not only) de-
pends on distance from the conditioning points; there is a regular grid of small SDs
(light values) near these points in Fig. 11.7d. The E-type SD is generally larger than
the kriging SD (Table 11.3), the latter is limited to 0.31 pH units as can be seen in
Fig. 11.7f, whereas the simulation SDs show more fluctuation.

Figure 11.8 provides a more detailed comparison of the kriging and simulation
results along a transect that crosses five conditioning points. Figure 11.8a shows the
large fluctuations in individual realizations of geostatistical simulation beyond the
conditioning points, whereas Fig. 11.8b shows the smoothing by kriging. Although
both methods honour the conditioning values they behave differently between the
conditioning points. That is, the E-type means show more roughness than the kriged
estimates.

11.2.3.3 Prediction Error of the Interpolated Map

To compare the estimation errors predicted by geostatistical stimulation and kriging
we used the 27 samples of the validation data zval.xi /. We obtained the true absolute
estimation error of ordinary kriging by:



11 Application of Geostatistical Simulation in Precision Agriculture 285

0 0.2 0.4 0.6 0.8
0.2

0.25

0.3

0.35

0.4

K
rig

in
g 

S
D

Absolute estimation error pH

r = 0.29

0 0.2 0.4 0.6 0.8
0

0.5

1

1.5

E
-t

yp
e 

S
D

Absolute estimation error pH

r = 0.65a b
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ˇ
ˇz�

OK.xi /� zval.xi /
ˇ
ˇ ; (11.3)

where z�
OK.xi / are the kriged estimates at the locations of the validation data. The

true absolute estimation error by geostatistical simulation is given by:

ˇ
ˇz�

mean.xi /� zval.xi /
ˇ
ˇ ; (11.4)

where z�
mean.xi / is the E-type estimate of the mean at the locations of the validation

data. These true estimation errors were compared with the kriging standard errors
and the E-type SD, respectively. The results are summarized in the scatter plot of
Fig. 11.9a, b. The linear regression line indicates a positive relationship between
predicted and true errors for both kriging and simulation. The correlation coeffi-
cients suggest that error prediction by simulation (r D 0:65) is better than that by
kriging (r D 0:29). However, the results are probably not as clear as expected
because of the small number and an unfavourable dispersion of the validation points
in this case study.

11.2.3.4 Probability that a pH Value is Outside the Optimal Range

Based on cumulative probability distributions from several simulated realizations,
the probabilities of pH values being below or above a threshold can be calcu-
lated. The optimum range of pH for loamy sand is 5.8–6.3 (VDLUFA 2000a, b).
The probabilities of pH being below 5.8 are shown in Fig. 11.10a. Areas with large
probabilities require lime and are likely to show a positive response to its addition.
The probability of exceeding pH 6.3 (Fig. 11.10b) highlights a few areas where no
lime is required and could be counter productive. The farmer might consider de-
creasing pH in these areas by the use of acid fertilizers.
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Fig. 11.10 Probabilities
based on geostatistical
simulation of pH being:
(a) below 5.8 and
(b) above 6.3

11.2.4 Summary and Conclusions

The kriging variances or standard errors are unsuitable indications of the errors in
interpolated maps. Geostatistical simulation allows one to generate probability dis-
tribution functions for every pixel in a map by producing many equally probable
realizations that honour the distribution and the variogram of the raw data. The
E-type estimates derived from these realizations can be used to calculate parametric
and non-parametric measures of dispersion, such as the mean, standard deviation,
median, interquartile range and probabilities of having values below or above a cer-
tain threshold. This can be used in decision making for soil remediation.

There are other methods that can determine probabilities in relation to thresholds
as described for sequential Gaussian simulation, such as disjunctive and indicator
kriging or indicator simulation. Sequential Gaussian simulation is often preferred
because it is easy to understand and implement, and because it can simulate large
fields of values. Although the application of this method has become easier with
the availability of user-friendly software such as SGeMS, there are problems that
the user must be aware of. First, conditional simulation results cannot be better
than the input data and the variogram derived from them. As with kriging, simu-
lation methods based on two-point statistics (Section 11.1) rely on the quality of
the variogram model. In Gaussian simulation the requirements for normality are
stricter than for linear geostatistics (Vann et al. 2002). Thus, transformation to nor-
mality and back-transformation are critical steps. Selection of the parameters for
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transformation can be difficult and may have a large effect on the realizations and
the uncertainty distribution derived from them (Gotway and Rutherford 1996). In
addition, even with modern computers, geostatistical simulation is computation-
ally demanding and depends on the choice of appropriate parameters. Reducing the
search radius and maximum number of conditioning data can accelerate the simula-
tion, but may lead to poorer results.

11.3 Case Study II: Uncertainty in the Position
of Geographic Objects

11.3.1 Introduction

Global positioning system (GPS)-based tracking, area measurement and machine
guidance are among the most widely adopted technologies in precision agriculture
(Bramley 2009; Reichardt et al. 2009). However, GPS-positions are not error free
and positional errors may propagate through precision agriculture operations and
result in wasted inputs, harm to the environment, unharvested crops, inefficient use
of the land and even accidents. Although GPS errors are often considered to be
independent and random, they are time-dependent which requires that temporal cor-
relation of errors is taken into account in the assessment of positional uncertainty.

The GPS measurement errors are dominated by systematic errors caused by clock
error, satellite orbit, atmospheric and multipath effects, which are different for each
satellite. Even after correcting for these errors, the residuals tend to change slowly
over time, which adds to the effect of temporal filtering that is applied within GPS
receivers (Bona 2000; Olynik et al. 2002; Wang et al. 2002; Amiri-Simkooei and
Tiberius 2007). Therefore, GPS measurement errors tend to be temporally corre-
lated. This is acknowledged by manufacturers of agricultural navigation systems,
who typically list different values for track-to-track accuracy and absolute accuracy
of GPS receivers. As an example of temporal correlation, Fig. 11.11 shows a scat-
terplot of GPS positions acquired at a stationary position over a period of 6 h at 2 s
interval by the Joint Research Centre (JRC) of the European Union in Ispra (Italy).
The plotted positions correspond to single frequency (L1) code phase GPS data
which were augmented using European Geostationary Navigation Overlay Service
(EGNOS) (European Space Agency et al. 2005). Observations close in time appear
more or less spatially clustered, which indicates temporal correlation.

This section considers propagation of positional errors in measured field bound-
aries that are used to guide field operations, for example on the headlands. Errors in
the field boundaries cause errors of commission and omission, where:

1. Commission errors correspond to areas outside the true field geometry which are
erroneously mapped as belonging to the field.

2. Omission errors refer to areas belonging to the field that are erroneously excluded
from the mapped field.
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Fig. 11.11 Scatterplot of
EGNOS-corrected GPS
positions acquired at a fixed
position over a period of 6 h.
Measurements were acquired
at 2 s interval and are
time-coded using different
shades of grey

Both types of error involve costs owing to ineffectual inputs and loss of net income,
as well as other effects. The propagation of positional error into these costs is
assessed following the three steps of error propagation, i.e. (1) definition of the
error model, (2) identification of the error model and (3) application of the model
(Heuvelink 1999). The paragraphs on methods of this section are largely taken from
(De Bruin et al. 2008), but the material differs in the data and the implementation
software used.

11.3.2 Methods

11.3.2.1 Definition of Positional Error Model1

Methods for defining positional uncertainties in geographic objects include partial
and full applications of probability theory to vector data. They range in complexity
from the simple ‘epsilon band’ approach, where a buffer of radius " is imposed

1 Reprinted from Computers and Electronics in Agriculture, 63/2, S. de Bruin, G.B.M. Heuvelink
and J.D. Brown, Propagation of positional measurement errors to agricultural field boundaries and
associated costs, pp 247–248, Copyright (2008), with permission from Elsevier.
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around each line segment, to map perturbation functions (Kiiveri 1997), and the
estimation of joint probability distribution functions for the elementary vertices of
line segments, which include the spatial correlation between the positional errors
of the vertices. Following the latter approach, the positional uncertainty of area
objects in a GIS is expressed as a function of uncertainty in the coordinates of their
elementary vertices (Shi and Liu 2000; Zhang and Kirby 2000; Bogaert et al. 2005;
Heuvelink et al. 2007). The coordinates of vertices are subject to observational
error which in two-dimensional Cartesian space can be represented by the random
variables X and Y , with marginal cumulative probability distribution functions
(MPDFs) FX and FY

FX .x/ D Prob.X � x/ and FY .y/ D Prob.Y � y/; (11.5)

where x and y are real numbers. When the errors in the x- and y-direction are
correlated, the joint (cumulative) pdf is required

FXY.x; y/ D Prob.X � x and Y � y/: (11.6)

The expectations or means �X and �Y can be estimated from repeated measure-
ments at a location with known coordinates to provide information on positional
bias. The standard deviations �X and �Y of X and Y are measures of the ran-
dom positional uncertainty in the x and y errors, respectively. A spatial object
is treated as ‘deformable’ if its component vertices can move with a degree of
independence (Heuvelink et al. 2007). Description of the positional uncertainty
of a deformable object composed of n vertices requires a 2n-dimensional joint
probability distribution function (JPDF). This JPDF contains the MPDFs for the co-
ordinates of the individual vertices, together with all the auto- and cross-correlations
between them

FX1Y1
: : :XnYn

.x1; y1; : : : ; xn; yn/

D Prob .X1 � x1; Y1 � y1; : : : ; Xn � xn; Yn � yn/: (11.7)

As explained above, GPS surveys may introduce temporal correlations of measure-
ment errors in the vector data sets, and these will affect the correlations represented
in Eq. 11.7.

11.3.2.2 Identification of the Model

Estimation of Eq.11.7 typically relies on the assumption of second-order station-
arity, whereby the second-order properties of the positional errors (means and
covariances) do not vary under translation. This usually involves modelling with a
joint normal distribution, which is completely defined by its means and covariances,
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and a covariance function that depends only on the relative distances between points
(Goovaerts 1997; Heuvelink et al. 2007).

Geostatistical error models typically consider spatial correlations of random
variables. However, as referred to above, in the case of GPS positional errors it
is more straightforward and realistic to model temporal correlations than the result-
ing spatial correlations, because the temporal lag between the recordings is the main
force behind the correlation. Therefore, our error model considers the temporal cor-
relation of positional errors. These were described by temporal variograms

�X .�/ D 1
2

varŒX.t C �/ �X.t/� ; (11.8)

where t is time, � is a time lag and �X.�/ is the variogram of positional errors in the
x-direction. The same function can be defined in the y-direction, whereas a cross-
variogram �XY.�/ (see Chapter 7) is needed to characterize the cross-correlation
between positional errors in the x- and y-directions.

Variogram analysis of the experimental data described below was performed us-
ing R (http://www.r-project.org) and the gstat package for R (Pebesma 2004; Bivand
et al. 2008). In the case of cross-correlations between the x and y errors, a linear
model of coregionalization was used (Goovaerts 1997). We assumed the errors to be
normally distributed as did Bogaert et al. (2005), however, unlike them we allowed
for different variances for the GPS errors in the x and y directions. This was con-
sidered relevant because GPS satellite orbits cross the equator at an angle of 55ı,
which reduces the signal availability from the northern (y) direction in the Nether-
lands (52ıN latitude), so that typically �Y > �X . This effect can also be appreciated
in Fig. 11.11.

11.3.2.3 Application

The areas (A) corresponding to errors of commission and omission errors were com-
puted using

ACommission D AMeasured � AMeasured \ AReference; (11.9)

AOmission D AReference � AMeasured \AReference; (11.10)

where \ denotes a spatial intersection, Reference refers to a true geometry and Mea-
sured is a measured geometry. The areas obtained in this way were multiplied by
the associated costs.

Heuvelink (1999) refers to two major error propagation methods: the Taylor se-
ries and Monte Carlo. The Taylor series method requires that the spatial operation is
continuously differentiable, which is not the case when computing the intersection
of polygon geometries. Therefore we applied a Monte Carlo method, as described
below.
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11.3.2.4 Data and Scenarios

Two GPS datasets were used to parameterize measurement scenarios for our error
model. The RTK-GPS comprises survey-quality data acquired with dual frequency
(L1 and L2) carrier phase Real Time Kinematic GPS equipment. The data were
acquired in Wageningen, The Netherlands at a stationary position on May 24, 2007
between 9:44:13 and 12:08:31 UTC time. The EGNOS GPS are augmented GPS
data from a stationary position in Ispra (Italy). These are single frequency (L1) code
phase GPS data, with differential correction based on networks of widely spaced ref-
erence stations and transmitted by geostationary satellites. The data were acquired
by JRC between August 25, 2007 at 00:00:01 and September 3, 2007 at 23:59:59
UTC time. Figure 11.11 shows a subset of the latter data set.

We also considered a scenario in which field geometry is acquired by manual
digitizing. Following Van Buren et al. (2003) and De Bruin et al. (2008) we assumed
zero mean positional errors in the x- and y-directions with a standard deviation
of 2 m in each direction (�X D �Y D 2m) and no temporal correlation or cross
correlation.

The financial consequences of errors of omission and commission (Eqs. 11.9 and
11.10) were assessed by multiplying ACommission with e 0.2023 m�2 and AOmission

with e 0.1923 m�2. The first value corresponds to the net return rate of a potato
crop (one season) in the Hoeksche Waard (Praktijkonderzoek Plant en Omgeving
2006). The second value represents loss resulting from inefficiently used inputs
(seed-potatoes, fertilizers, fungicides, herbicides, insecticides, fuel, soil analyses,
interest and crop insurance). This loss would be higher if the costs of labour, wear
of machinery, risks of damage to equipment, humans and the environment were also
included, but these were not considered here.

11.3.3 Study Site

Figure 11.12 shows our study site; an irregularly shaped field of about 16 ha in
the Hoeksche Waard, The Netherlands. The (xi ; yi ) coordinates in the Dutch grid
system of n D 59 vertices of this field were measured using RTK-GPS equipment.
The resulting coordinates and mapped field boundaries were used as the reference
geometry in this study. Note that any observation error in these locations is of no
consequence for the results because the reference geometry constitutes our ‘true’
geometry in all subsequent calculations.

Under the measurement scenarios mentioned above, however, the coordinates of
vertices are subject to observational error, which were considered at the original
59 vertices in all cases. The survey of reference geometry took 15 min; individual
vertices were assumed to be equally separated in time, at 15 s (unfortunately, the
time of the measurements was not recorded). Since the geostatistical software used
assumes coordinates are defined in two or three dimensions, a constant dummy time
coordinate was added.
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0 100 200m

Fig. 11.12 Reference geometry including 59 vertices of a 16 ha field in the Hoeksche Waard,
The Netherlands

11.3.3.1 Software

The geostatistical analyses were done in R (R Development Core Team 2008) using
the gstat and rgdal packages (Pebesma 2004; Bivand et al. 2008), and Python Script-
ing (http://www.python.org) using the GDAL/OGR library (http://www.osgeo.org/
gdal ogr) was used to compute the intersection required in Eqs. 11.9 and 11.10.
Note that the above software can be downloaded free from the internet. Self
intersections of the field boundary occurring under the manual digitizing scenario
were corrected using ArcGISr by adding vertices at intersections (Repair Geom-
etry tool), converting multiple geometries to single geometries and deleting sliver
polygons. We ran 1000 Monte Carlo simulations using sequential Gaussian simula-
tion (GPS scenarios) or by drawing from a bivariate Gaussian distribution (manual
digitizing scenario).

11.3.3.2 Results and Discussion

Model Identification

Figures 11.13 and 11.14 show the experimental variograms of the x and y errors
and their cross-correlations for the RTK-GPS and EGNOS GPS data. Parame-
ters of nested variogram models fitted using the linear model of coregionalization
(Goovaerts 1997) are listed in Table 11.4. Temporal cross-correlation between x
and y errors in the RTK-GPS data was ignored because of its small magnitude and

http://www.python.org
http://www.osgeo.org/gdal_ogr
http://www.osgeo.org/gdal_ogr
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Table 11.4 Fitted variogram models

EGNOS RTK

Element Model type

Partial sill or
amplitude
Œm2�a

Range or
wavelength
Œs�a

Model
parameters

Partial sill or
amplitude
Œm2�a

Range or
wavelength
Œs�a

X[1] Periodic 0.0225 86 164 Nugget 2.08e-06 –
X[2] Periodic 0.0398 43 082 Exponential 1.74e-06 85:2

X[3] Exponential 0.1470 1100 – – –
Y[1] Periodic 0.0925 86 164 Nugget 9.46e-06 –
Y[2] Periodic 0.0000 43 082 Spherical 8.38e-06 739:0

Y[3] Exponential 0.4700 1100 – – –
X.Y[1] Periodic 0.0353 86 164 – – –
X.Y[2] Periodic 0.0000 43 082 –
X.Y[3] Exponential 0.0263 1100 – – –
aSecond option for periodic structure.

erratic structure. The EGNOS GPS data show periodicity with a main period of
86 164s (almost 1 day) corresponding with the period over which the GPS satellites
complete two orbits and the Earth completes one revolution, so that the constellation
returns to the same geometry (Agnew and Larson 2007).

Model Application

Figure 11.15 shows histograms of simulated loss (1000 realizations) resulting from
positional uncertainty (three measurement scenarios) and summary statistics of the
distributions are given in Table 11.5. Recall that we assumed positional errors to be
normally distributed. The non-Gaussian distributions of the histograms of the output
of the GPS scenarios (Fig. 11.15a, b) are symptomatic of the non-linear operations
performed on the data. However, the histogram of the manual digitizing scenario
(Fig. 11.15c) appears more or less Gaussian.

For the 16-ha field considered here, a manually digitized map would involve an
expected loss of almoste 408 with respect to reference geometry. The expected loss
associated with RTK-GPS surveyed geometry is <1e. This implies that if an RTK-
GPS survey cost <e 407 the farmer would be better off using this than a manually
digitized map for machine guidance on the headlands. Table 11.5 also indicates that
there is more than a 99% chance that the farmer would benefit from a map acquired
under the EGNOS scenario rather than a manually digitized map of the field as
P90.EGNOS/ < P10.Manual/. The GPS survey would not need to be done every year
yet the benefits may last for several years. Note that the benefits of accurate map-
ping will increase if other risks such as damage to equipment and infrastructure and
externalities (e.g. environmental effects) are also taken into account.

Finally, Fig. 11.16 illustrates a shortcoming of the error model in which uncer-
tainty in area features is attributed solely to uncertainty in the coordinates of their
elementary vertices which are assumed to be connected by straight lines. As a
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Fig. 11.15 Histograms of the costs resulting from positional uncertainty for: (a) RTK-GPS, (b)
EGNOS and (c) Manual measurements

Table 11.5 Summary statistics of financial loss [e] with respect to error-free
geometry under three scenarios

Scenario Mean SD
Percentile
P10 P50 P90

RTK 0.74 0.16 0:56 0.70 0.96
EGNOS 154.4 70.34 76:70 139.3 255.4
Manual 408.0 47.58 347:4 405.8 471.8

0 100 200m

Manual digitising

Vertex reference geometry

Fig. 11.16 One thousand simulated field geometries of the manual digitizing scenario. Notice
that most uncertainty (largest spread) occurs at the vertices

consequence of this assumption, positional uncertainty is largest at the measured
positions of the vertices and diminishes with distance from the vertex points along
the line segments; the smallest value is midway between the measured locations.
Such an approach disregards uncertainty caused by sampling and approximation of
a curvilinear feature by a sequence of straight line segments. De Bruin et al. (2008)
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suggest a method that allows for the latter type of uncertainty by modelling random
rectangular deviations from the conventional straight line segments, but application
of that method was considered beyond the scope of the current chapter.

11.3.4 Conclusions

This case study has shown that geostatistical techniques such as variogram mod-
elling and stochastic simulation, which are typically used to model spatial corre-
lation of observed data, can also be used for modelling temporal correlation. Our
variogram analysis of stationary GPS time series revealed substantial temporal cor-
relation in the positional errors for RTK-GPS and EGNOS corrected GPS data. Our
data demonstrate considerable differences between the losses in PA associated with
specific accuracies of the position of field boundaries, even when only direct losses
for a farmer are considered. The expected benefits of accurate maps would proba-
bly be even larger if secondary losses (e.g. damage to equipment and environmental
pollution) were also taken into account.

11.4 Case Study III: Uncertainty Propagation in Soil Mapping2

11.4.1 Introduction

Uncertainty in the process of soil mapping can be caused by several factors. Some
sources of error can be modelled by geostatistical simulation, and this section il-
lustrates how it can be integrated with other methods to form a complex model for
assessing accuracy in soil mapping. Maps of the crop nutrients N, P, K and Mg, and
pH from which to derive site-specific fertilizer and lime recommendations are the
outcomes of several consecutive steps involving sampling design, sample location,
laboratory analysis and interpolation to create a digital map. We call this the soil
mapping process. The accuracy or uncertainty of the resulting maps is affected by
factors such as the choice of methods and instruments, and the inherent variabil-
ity of soil. Uncertainty is not only due to randomness (stochastic uncertainty), but
also to the lack of knowledge about the outcomes of alternative methods (structural
uncertainty). The effect of individual factors on map accuracy, such as sampling
density, the sampling scheme or method of interpolation, has been evaluated by sev-
eral researchers (Gotway et al. 1996; Demougeot-Renard et al. 2004; Hoskinson
et al. 2004; Mallarino and Wittry 2004; Farahani and Flynn 2007). However, there

2 Gebbers, R., Herbst, R., & Wenkel, K.-O. (2009). Sensitivity analysis of soil nutrient mapping.
In E. J. van Henten, D. Goense, & C. Lokhorst (Eds.), Precision Agriculture ’09. Proceedings of the
7th European Conference on Precision Agriculture (pp. 513–519). Wageningen, The Netherlands:
Wageningen Academic Publishers.
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have been few attempts to compare the effects of these factors on the accuracy of
maps of soil nutrient concentration (Mueller et al. 2004). To optimize soil mapping
it is essential to understand how the variation in these factors is propagated simul-
taneously through the mapping process. This will then help to identify the most
important factors with respect to errors in soil nutrient maps.

11.4.2 Materials and Methods

The effect of the factors above on the errors of mapping nutrient concentrations in
soil was investigated by modelling the mapping process by computer. The stochastic
uncertainty is simulated by Monte Carlo methods and inserted into the model. The
structural uncertainty, e.g. the use of different sampling designs, is implemented by
alternative algorithms (branches) inside the model.

Our model of the soil mapping process includes sample design and location,
chemical analysis and the creation of digital maps. Soil nutrient concentrations of
a 36 ha virtual field of 1 by 1 m pixels were created by geostatistical simulation
using Gstat (Pebesma 2001). These digital fields represented realistic nutrient con-
centrations and were regarded as the true dispersion that should be predicted by
the mapping process. Spherical variogram models with ranges of 30, 60, 90, 120,
150 and 180 m were used to model differences in spatial variation. These ranges
were representative of soil spatial variation in different regions of Germany for
plant available P, K, Mg and for pH (Herbst et al. 2001). Here we consider only K,
but the results of this uncertainty analysis can be extended to the mapping pro-
cess of other crop nutrients and pH. Field average nutrient concentration was set to
the optimum soil index for K of 11 mg K 100 g�1 (double lactate extract, accord-
ing to VDLUFA 1996). The standard deviation of K was set to 5 mg K 100 g�1

to obtain a variation of plus or minus one soil index class. A Gaussian distribu-
tion was assumed. Soil sampling was simulated by point queries on the simulated
fields. Two main sampling schemes were modelled: (a) subdivision of the field into
quadratic management zones and bulking 20 samples within each zone and (b) sen-
sor based online data collection by point sampling and instant chemical analysis.
Bulk sampling (scheme a) was either done on diagonal lines crossing each zone or
on circular lines of 10 m radius around the centre of each zone. The size of the sam-
pling zones was varied from 5 ha, which is the maximum size allowed in Germany
(Dungeverordnung et al., 2007), to 1 ha, which is a typical zone size in precision
farming practice, to 0.05 ha, which is a sampling density that can be achieved by
an on-line soil sensor such as the Veris MSP (Veris Technologies, Salina, USA), see
Adamchuk et al. (2007). To account for accuracy of the GPS, we simulated position-
ing errors of 2 m by pseudo random number generation using a zero-centred normal
distribution. A standard error of 2 m is typical for L1 band differential GPS with a
beacon or EGNOS correction. We did not account for temporal autocorrelation in
the GPS errors because this is less relevant in the context of soil mapping. Errors
in chemical analysis were obtained by simulating cases with normally distributed
errors of 0%, 4% or 20%. An accuracy of 2–4% is what our laboratory achieved.
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Fig. 11.17 Model inputs and the respective range of possible values (input parameter space) of
the model of the soil mapping process

An error of 20% is assumed to be a worst-case scenario (e.g. an on-line sensor with
poor calibration). Two methods were applied to create maps of predictions from the
samples: (a) attribution of the data to the previously defined zones and (b) interpo-
lation. For zone sampling, the centres of zones were used as reference points for
interpolation. Interpolation was done by biharmonic splines. Model inputs and the
respective range of possible values (input parameter space) are shown in Fig. 11.17.

The combination of six ranges of autocorrelation, three sampling schemes, three
sampling intervals, two levels of positioning error, three levels of laboratory error,
two methods of regionalization and two replications resulted in 1296 runs of the soil
mapping model. For each map simulation, the results were compared with the values
of the simulated ‘true’ nutrient distribution (Fig. 11.18). The standard deviation of
the differences between these values was calculated to summarize the mapping error.

11.4.3 Results and Discussion

Based on the standard deviation of the differences between the ‘true’ nutrient distri-
bution and the simulation of the mapping process, a sensitivity analysis as described
in Gebbers et al. (2009) was conducted to identify the most important factors affect-
ing the accuracy of maps based on sample information. The three most important
factors for accurate soil mapping were sampling interval, inherent spatial varia-
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Fig. 11.19 Relative mapping error as a function of sampling interval, range of spatial autocorre-
lation and regionalization method

tion of the soil property and method of prediction (in this order). These factors
were used to construct nomographs of the relative mapping error (Fig. 11.19). The
latter is the standard deviation of the mapping error divided by the standard devia-
tion of the simulated images, which represent the true K concentration. A relative
mapping error of <1 means that a map showing variation is more accurate than
a uniform value, which represents the average of the true K concentration of the
field. The reader can derive the potential mapping error from the nomographs in
Fig. 11.19 when the range of spatial autocorrelation of the variable, the sampling
interval and the prediction method are known. Conversely, if one decides to accept
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a certain mapping error, the respective contour line identifies the combination of
range parameter and sampling interval associated with it. In this way, the nomo-
graphs in Fig. 11.19 can help to determine the optimum combination of sampling
interval and prediction method given the range of spatial autocorrelation of the soil
property under consideration.

In addition, Fig. 11.19 provides insight into the interactions between the three
most important factors for mapping accuracy. The sampling interval has a larger
effect on the mapping error when interpolation rather than attribution of values to
zones is used, especially at intervals of <100 m. Therefore, interpolation should
only be used when samples are taken at small intervals.

11.4.4 Conclusions

The key to improving nutrient maps is an appropriate sampling density (see
Chapters 2 and 3). In the soil mapping scenario investigated here, errors of chemical
analysis were unimportant compared to inappropriate sampling density. Thus, more
reliable maps can be obtained by increasing sampling density even at the expense
of accuracy of chemical analysis. Our results advocate strongly the collection of
soil nutrient data by online sensors such as the Veris MSP pH sensor, which might
result in larger errors in the chemical analysis but enables small sampling intervals.
However, one problem remains: The range of spatial autocorrelation has to be
determined before one can decide on an appropriate sampling density. Kerry and
Oliver (2003) suggested the use of intensive ancillary data such as remotely sensed
images or soil electrical conductivity to determine an approximate spatial scale of
variation in the soil, but this approach requires that target parameters and ancillary
data are correlated.

11.5 Application of Geostatistical Simulation in Precision
Agriculture: Summary

Geostatistical simulation helps to optimise site-specific management by including
the inherent variation of natural processes in our models. The outcome can have
immediate practical implications. Farmers can benefit directly from the case studies
presented here. Section 11.2 shows how uncertainty of a pH map is translated into
maps of the risk of under- and over-liming. Section 11.3 quantifies the economic
costs of GPS errors. The modelling of soil mapping in Section 11.4 identifies the
factors that are most relevant to improving mapping accuracy.

Geostatistics offers a large variety of methods to simulate spatio-temporal pro-
cesses. It might be difficult to identify the appropriate methods for the problem at
hand and to find suitable software. However, PA can profit from geostatistical simu-
lation and an increasing demand by the PA community may promote the publication
of user-friendly texts and software.
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Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten (VDLUFA).
(Determination of lime needs for arable and grassland soils) (http://www.vdlufa.de/joomla/
Dokumente/Standpunkte/0-9-kalk.pdf, accessed August 18 2009).

VDLUFA (2000b). Bestimmung des Kalkbedarfs von Acker- und Grünlandböden. Appendix.
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Chapter 12
Geostatistics and Precision Agriculture:
A Way Forward

J.K. Schueller

Abstract Geostatistics became an integral part of precision agriculture (PA) early
in its history. The essence of this chapter is to identify some future trends in the
application of geostatistics to PA, but predicting the future of these subjects is
difficult because of their dynamic nature. There is a need to accommodate the
variation in weather and temporal changes in the theory and practice of geostatis-
tics. An important issue is to make space-time geostatistics more accessible to
practitioners. Geostatistics needs to be tailored better to the needs of the various
groups involved; farmers, advisors and researchers who have their own particu-
lar requirements. The book has raised several issues, ideas and questions, which
are summarized in this chapter. For example, data quality, more transparency in
the packages for analysis, more advanced methods of geostatistics and the use of
Bayesian techniques, more user-friendly software that is inexpensive, education in
geostatistics, more automatic soil and crop data recording, greater use of ancillary
data and better understanding of the relations with the soil and yield, and so on. The
potential for geostatistics and precision agriculture for the rest of the twenty-first
century appears great.

Keywords Agricultural community � Anisotropy � Spatial and temporal variation �
Education � Future � User-friendly

12.1 Introduction

Research in precision agriculture started to be documented in the mid-1980s, by
authors such as Lullen (1985) and Schueller and Bae (1987). As was shown by the
inclusion of Mulla (1989) in one of the first precision agriculture review papers
(Schueller 1992), geostatistics was soon an integral part of precision agriculture.
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This book takes on the daunting task of examining the intersection of a new and
changing field of operational agriculture (precision agriculture) with a fairly new and
changing set of techniques of analysis and prediction (geostatistics). The dynamic
nature of the new fields of precision agriculture and geostatistics make accurate
projections of their future interactions difficult. Nevertheless, some future trends
and needs can be identified.

The preceding chapters show how geostatistical methods can be applied in
precision agriculture and how geostatistics has contributed to its advancement.
Geostatistics is a relatively recent technology dating mainly from the 1960s. There-
fore, while technologies for applying geostatistics in precision agriculture are being
developed, geostatistics itself also continues to develop. Because there have not been
many years of experience with geostatistics in agriculture and geostatistical educa-
tion and training are not widespread, the application of geostatistics to precision
agriculture is more challenging than the application of conventional statistics.

The authors of the previous chapters do an excellent job of reviewing the past,
presenting the present and making some suggestions for the future. They do this in
addition to formalizing how precision agriculture can and should use geostatistics.
The purpose of this chapter is to provide further suggestions.

12.2 Weather, Time and Space

Crop production agriculture was treated historically as fixed and deterministic. For
example, the yield of a crop in a field or region was often expressed as ‘x tons
per hectare’. Of course, the yield at any particular position in the field or region
was almost never ‘x’; there was always variability. It is possible to characterize the
variability as having three dominant categories of cause: weather-related, temporal
and spatial.

The old canard that ‘climate is what you expect, weather is what you get’ applies
to crop production agriculture. Differences in weather are the main cause of varia-
tion from one growing season to the next. In many production situations where only
one crop is produced per year, this results in substantial annual differences in crop
production, even for the same commodity grown at the same place. Within each crop
growing season there is continuous variation in temperature, precipitation, solar ra-
diation, humidity and other features of the weather. This variation is confounded
with, and interacts with, temporal and spatial variation.

Agronomic and soil characteristics, such as yield, crop quality, crop moisture
content, soil moisture content and soil nutrient status change in time over both short
and long time periods. This gives rise to temporal variation. Understanding of the
different types of temporal variations is often absent and usually is not taken into
account in agronomic decision-making.

Spatial variation is essentially the reason for the development of precision agri-
culture. In fact, ‘spatially-variable crop production’ is one of the many names that is
better than ‘precision agriculture’ for these technologies. Precision agriculture
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attempts to maximize agronomic productivity and efficiency by consciously
considering spatial variation and acting accordingly. Spatial variation and the statis-
tical tools to deal with that variation are the focus of this book and of this chapter.
Nevertheless, it appears desirable, and perhaps necessary, that precision agriculture
should accommodate the other two dominant causes of variation. Scientists and
engineers in precision agriculture need to consider variation in both weather and
over time, and how they interact with spatial variation. It seems that this is a current
‘grand challenge’ for geostatistics and precision agriculture.

Studies, such as that by Colvin et al. (1997), show how the variation in yield
itself varies greatly from year-to-year. Bakhsh et al. (2000) point out that the lack
of temporal stability in variation requires the analysis of long series of yield data for
precision agriculture to gain insight into the weather conditions that have a major
effect from year to year. More studies are needed to determine the temporal nature
of spatial variation in agriculture.

Studies of yield usually assume that it is stationary with respect to time, but the
climate and technologies continuously change. The potentially rapid changes in cli-
mate, i.e. commonly referred to as climate change, may have effects on yield that
will lead to greater non-stationarity in yield data. In addition to climate, agricultural
management such as new seeds, techniques for applying inputs and other technolo-
gies, as well as effects such as salinization and erosion, changes the yield over time.
Spatio-temporal geostatistical techniques are needed in precision agriculture that
can detrend the temporal effects, and possibly prioritize recent (and therefore prob-
ably more relevant) data. Perhaps there should be an exponential decay weighting
of data over time.

It is known that certain weather events can have a localized spatial variability.
For example, summer thunderstorms in North America can produce very variable
patterns of precipitation. Another example is damage from freezing in Florida,
which can vary considerably depending upon the nature of the event and the
local topography. Localized variation in weather is not taken into account in cur-
rent precision agriculture or in geostatistical models. Given the advent of wireless
micro-climate sensors, however, the inclusion of localized weather information in
geostatistical models would be feasible and useful.

As mentioned above, the quantities of interest in agronomy and horticulture
change with time. Consider nitrogen, for example; elemental, nitrate, nitrite or
ammonium nitrogen forms can vary greatly both spatially and temporally. The
nitrogen available to a plant will depend upon where the nitrogen is in relation to
the plant’s roots and in what form it is present in at that time. Crop yield and quality
can also vary with time. For example, green pea quality and yield change drastically
within a day. The peas can be very tender in the early morning, but be hard ‘bullets’
by the evening on a hot day.

Time alone is not the issue. The issue is to put time and space together. Scientists
and engineers need to provide both spatial and temporal data. Experiments, tests,
and other data gathering should be planned so that geostatistical models can have
temporal components.



308 J.K. Schueller

Time also has an effect through the dynamics of the equipment. Dynamic effects
are well-known for yield mapping and variable-rate application. These dynamics
can be countered with proper adjustments. For example, there can be postprocessing
compensation for delays in yield and other mapping. Control theory concepts, such
as ‘feedforward control’ and ‘precommand’, can be used to counteract temporal
delays in application machines by issuing application rate commands the correct
small amount of time before the responses to these commands should be achieved.
Overall, the integration of time and space is a much needed and potentially very
rewarding area of understanding that is still in its infancy. Chapter 5 in this book
is an example of the developing discussion. Many models for precision agriculture
should include a temporal component.

12.3 Farmers, Advisors and Researchers

The potential of precision agriculture and geostatistics appeals to diverse groups
in the agricultural community. The expectations of precision agriculture and geo-
statistics also vary greatly because of the diversity of experiences and needs in
this community. There is a wide variation in crops, technological capabilities, ge-
ographic locations, educational backgrounds and job functions. It is difficult and
perhaps foolhardy to make broad generalizations, but such generalizations will be
made here to facilitate discussion. Accordingly, the users of precision agriculture
and geostatistics can be divided into three categories which may be roughly termed
‘farmer’, ‘advisor’ and ‘researcher’. When projecting into the future, it might be
instructive to examine what each can expect.

The ‘farmer’ category represents the agricultural producer who may be a fam-
ily farmer, a farm manager of a large farm or a worker on a farm. These people
are responsible for producing and harvesting the crop with physical or manage-
ment labour. They have to perform many different operational and management
tasks. They do not have the time, or often the inclination, to become experts in
geostatistics. Geostatistics must be essentially invisible to them. The use of geo-
statistics should be embedded in the generation of information. For example, maps
of yield, soil properties and crop conditions should be generated automatically with
the geostatistical and other technical details hidden from the farmer. Nevertheless,
the farmer must consider properly what kinds of data are required and the con-
straints involved in the underlying analysis. It means that the equipment designers
and software providers must make their interfaces ‘user-friendly’ so that the embed-
ded geostatistical capabilities and procedures are clear to understand and implement.

The ‘advisor’ category represents those practitioners in the public and private
sectors who provide advice to agricultural producers. This is a varied group, includ-
ing extension workers, private consultants and commercial salesmen. They must
understand more than the ‘farmer’ category in order to be able to help the farmer.
The advisors will often perform analyses and make recommendations. Because
they must be paid and their time is valuable, they need tools that can improve
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their efficiency and productivity. However, advisors will commonly have had more
training and experience in geostatistics, and have a clearer understanding of when
and how it will be of value. They will often want to do more sophisticated analyses.
Therefore, their tools must be more flexible. For example, an advisor doing yield
mapping may want to have more choice of geostatistical model than the average
farmer would want to consider.

The ‘researcher’ category represents those doing research to understand preci-
sion agriculture and to develop new techniques. This category is probably easier to
understand if it is divided into two sub-categories: users of geostatistics and experts
in geostatistics.

Many soil scientists, agronomists, economists and engineers who work in pre-
cision agriculture and wish to apply geostatistics do not have a strong geosta-
tistical background. This must be remedied by a twofold approach. First, new
researchers must have more training in geostatistics as part of their university
courses. Researchers in crop production agriculture must be expected to know more
statistics than just regression, ANOVA and simple experimental design. The agricul-
tural universities have been very slow to react to the need for training in geostatistics.
This must, and probably will, change in the near term. Instruction in geostatistics
will become the norm for the more respected courses in the agricultural sciences.
Secondly, the lack of knowledge about geostatistics among existing researchers in
crop production agriculture must be dealt with. Courses are available based upon
the instructors’ notes or books such as Goovaerts (1997), but such courses are of-
ten costly. Research administrators must realize that their staff needs this training
and the administrators should ensure that it is provided at little or no cost to the re-
searchers. Existing researchers need to understand geostatistical concepts and have
as much proficiency with the appropriate geostatistical tools as they have with the
conventional statistical tools in SAS, SPSS, R, etc. They need to have tools avail-
able that are appropriate for agriculture and that deal with weather, and temporal
and spatial variability.

For the farmers to have the necessary tools and techniques, they need to be taught
by advisors who have the necessary agronomic and statistical knowledge. The farm-
ers must have at least some conceptual knowledge of variation to fine-turn their
processes of production and to learn how to apply the tools and techniques. The
advisors, however, must know what variation there is in local crop production and
what hardware, software and management tools are available. These tools, in turn,
must come from the researchers who are users of geostatistics. Those researchers de-
pend upon the geostatistical and precision agriculture experts. So there is an order of
dependence from farmers to advisors to geostatistics users to experts. If the experts
in geostatistics and precision agriculture develop the necessary tools and techniques,
they will eventually percolate down to the farmers with appropriate assistance.

Hence, it is crucial that there are sufficient researchers with expertise in both
geostatistics and precision agriculture who are working at the intersection of those
two topics. Given the recognition of the importance of this intersection, it is likely
that such a community of researchers will eventually be developed, particularly if
university instruction in geostatistics becomes more widely available. Techniques



310 J.K. Schueller

and computerized tools will be likely to result from the work of these individuals.
Those researchers who are geostatistics experts will provide the foundation upon
which the integration of geostatistics and precision agriculture is based.

12.4 Issues, Ideas and Questions

The previous chapters of this book present many issues and ideas that suggest further
ideas, and also pose many questions.

Some of these are:

� One definition of precision agriculture is that it is a management strategy that
uses data from multiple sources to bear on decisions associated with crop pro-
duction. Is spatial variation a necessary condition for precision agriculture? Some
researchers now include all achievements of crop production excellence, such
as maintaining a consistent planting depth, as part of ‘precision agriculture’.
Therefore, the breadth of the term ‘precision agriculture’ should be established
by widespread consensus to facilitate more accurate communication and under-
standing.

� How will anisotropy be handled in widespread practice? Although there have
been some examples of effective handling of anisotropy, for example in
Chapter 11 of this book, eventually the preponderance of anisotropy in precision
agriculture will have to be reflected in the geostatistical tools and techniques that
are used in widespread practice by farmers and advisors. To achieve practical
implementation of anisotropy in commercial tools and techniques, researchers
must investigate how anisotropy can be more effectively and efficiently handled.

� Similarly, the importance and quality of sources of data vary widely. There needs
to be effective and objective weighting of data. This might be achieved first ac-
cording to general guidelines developed by researchers from local empirical data,
but later through automatic adaptive weighting based upon experiences with lo-
cal data. Different data are likely to have different impacts on the models and
these effects need to be understood.

� Mixed models, cokriging, indicator kriging, Bayesian and other relatively
advanced techniques must be developed further for application in precision
agriculture. As conventional statistics is becoming more complex and more
Bayesian, so must geostatistics. Nevertheless, concern about the reliability and
complexity of these approaches should be taken into account. Geostatistics in
precision agriculture must avoid the common plague of overfitting and over-
transforming data that is prevalent in conventional statistics. This plague affects
many of those who currently use conventional computer statistics package. Re-
searchers must develop appropriate procedures and guidelines that are clear,
straightforward and maintain a high standard of analysis. Many geostatistical
applications in mapping packages are treated as a ‘black boxes’ and so the user
has no idea whether the analysis is acceptable because the important intervening
steps are hidden. This approach should be avoided.
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� It was pointed out correctly in an earlier chapter that the analyst should not adopt
a mechanical approach to data analysis. This is especially true for the researchers.
However, to achieve widespread use in commercial production agriculture, geo-
statistics must be easy-to-use and user-friendly. Tools have to be developed that
have defaults that are robust and do not require many inputs. The defaults,
however, must be able to be changed permanently for permanent local conditions
and temporarily changeable for transient conditions.

� Besides ease-of-use, software cost is important. Increasingly, there is inexpen-
sive or free software available. But does that software have support and an
improvement path? There will probably be a range of software costs and related
performances and reliabilities. The various users need to make the proper choices
and this requires expert guidance.

� Soil and pest sampling should be automated to reduce cost. With advances in
robotics, automated robots should be able to scout fields and take soil and plant
samples and automatically process them. Initially, humans will be ‘in-the-loop’
planning sampling, setting up the analyses and studying the results. Eventually,
however, those aspects should be automated, including the geostatistical parts.
Geostatistics should drive sampling to facilitate analysis of both dependent and
independent data.

� Geostatistics requires enough data to establish a reliable variogram. For crop data
there has been much progress, but low-cost automated soil and pest sampling and
analysis is needed to facilitate the gathering of ample data for reliable geostatis-
tical analyses. The likely development of such automated systems will increase
the use of geostatistics.

� The variograms used in precision agriculture should use auxiliary data to sup-
plement sampled data as described in Chapters 2 and 7. The process of obtaining
and using such data should be automated. For example, dense remote sens-
ing and electrical conductivity data should aid the interpolation of sparse soil
sampling data.

� Accordingly, there needs to be significantly more research into the correlations
between measured values that are difficult or costly to obtain and cheaper covari-
ates. Applied researchers need to determine what the reliabilities of covariates
are for local conditions.

� A major problem in precision agriculture is how to merge space and time. Time
needs to be dealt with adequately, whereas at present it is largely disregarded.
Space and time vary in different ways and a further complication is that both
vary at several scales, i.e. multiscale variation. A profitable area for fundamental
research is to develop geostatistics so that it can handle the dynamics of time
more readily than at present.

� In addition, geostatistics and other precision agriculture analyses need to be able
to handle crop-to-crop, within-crop and equipment dynamics. The effects of
these dynamics should be removed. Variation in the weather must be dealt with
similarly.

� Great progress continues to be made in such fields as signal processing, image
processing and control theory with the development of new understandings,
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techniques and tools. These techniques and tools should be applied more widely
to precision agriculture. For example, pattern recognition could be used with
kriged data.

� There are times, such as in computer vision techniques and remote sensing, when
there are possibly too many data. Data reduction might then be guided by geo-
statistics (e.g. Oliver et al. 2005). This area has potential for further development.

� The techniques for making estimates of errors and uncertainties need to be
developed further in precision agriculture and geostatistics, and applied to rep-
resentative situations. Chapter 11 described how geostatistical simulation can be
used in this context. It is not widely known in precision agriculture at present.

Dealing with these various issues above should propel geostatistics to become an
even more integral part of precision agriculture.

12.5 Past, Present and Future

Pioneering innovators of the past developed the exciting and useful techniques of
geostatistics and precision agriculture in the late twentieth century. Diligent prac-
titioners, scientists and engineers have refined, expanded and further applied the
techniques in the first decade of the twenty-first century. The potential for geostatis-
tics and precision agriculture in the remainder of the twenty-first century is great.
Pressing forward enthusiastically to answer questions with further development and
widespread applications will realize that potential.
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A.1 Geostatistics in GenStat

R. Webster

Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom

GenStat is a powerful, flexible and numerically sound system for statistical analysis
programmed to the most up-to-date professional standards. The main geostatistical
tasks are built into it and can be accomplished from menus or with single commands.
Other tasks can be programmed in the GenStat language, and all can be combined
to run sequentially in single submissions. GenStat is a general comprehensive sys-
tem for analysing data from experiments and surveys. It was originally devised in
the late 1960s to analyse data from designed experiments. The system is marketed
by VSN International (www.vsn-intl.com). In due course geostatistical subroutines
were added to the system, and these now enable users to tackle the standard analyses
with confidence and to explore spatial data by ever more advanced techniques. The
current version of GenStat, released in July 2009, is the 12th.

The following basic tasks in geostatistical investigation and analysis can all be
readily accomplished in GenStat both by command and by menu.

1. Posting. These are maps of the positions of sampling points, and bounding out-
lines of regions can be added.

2. Statistical summaries and marginal distributions, and display as histograms and
box-and-whisker plots and of cumulative distributions.

3. Auto-variograms. Experimental, or sample, variograms can be computed from
univariate data on regular transects and grids and from irregularly scattered data.
Users can choose binwidths in both distance and direction (for two-dimensional
data). They can also choose whether to use the usual method-of-moments estima-
tor or one of the robust estimators of Cressie and Hawkins (1980), Dowd (1984)
or Genton (1998).
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The output consists of the estimated semivariances for the nominated lags (in dis-
tance and direction) and the numbers of paired comparisons (counts) contributing to
the estimates. The general graphics commands can be used to display the variograms
with semivariance plotted against lag distance.

4. Model fitting. Having computed experimental variograms users can fit models to
them. With a single command a user can fit all of the popular variogram functions
and several that are not so popular, including Whittle’s elementary correlation
function, the pentaspherical function and the cubic function, and take into ac-
count anisotropy. Estimates are weighted in proportion to the counts by default,
but users can weight the estimates equally or inversely as the expected values.
The experimental values and the fitted functions can be displayed graphically.

The command calls into play the more general routine for fitting non-linear func-
tions, and users may write their own code in the GenStat language. This enables
them to specify models that are not available with the single command.

The output from both approaches lists the fitted values of the parameters, includ-
ing standard errors of the non-linear ones, and an analysis-of-variance table. There
is the option to monitor the iteration, valuable if the procedure does not converge
properly so that the cause might be identified.

5. Kriging. Ordinary auto-kriging is the ‘workhorse’ of geostatistics, and it is the
basic form of kriging in GenStat. The user has many options to control the com-
putations. There are those such as the area within which kriged predictions are
required and whether estimates are required for points or blocks. In addition the
user can choose the search radius for data or the minimum and maximum number
of data points for each prediction. Universal kriging is a straightforward exten-
sion of it. Variograms may be any of the standard ones, though only the power
function is included at present for anisotropic cases. The output comprises prin-
cipally the predictions and their associated variances. Both can be mapped by
calls to graphics commands, but users may prefer to transfer the results to special
mapping programs for final display and printing. The Lagrange multipliers can
be saved; this enables users to back-transform predictions to their original scales,
in particular after log-normal kriging. There are other output options to enable
users to monitor the kriging process.

6. Cross-validation. Cross-validation proceeds by the leave-one-out principle. Each
data point is omitted in turn, the value there is predicted by kriging with the
chosen model and the other data in the neighbourhood, and the results are sum-
marized in terms of mean error, mean squared error and the mean ratio of the
squared errors to the kriging variances.

7. Coregionalization. For two or more variates, GenStat will compute all experi-
mental auto- and cross-variograms and fit to them a linear model of coregional-
ization. The user chooses the basic components of the model and starting values
for the non-linear parameters. The program fits the chosen model by iteration,
ensuring that the result is conditionally negative semi-definite at every stage. The
commands for forming all the experimental variograms and for fitting the models
to them are simple extensions of those for the univariate case.
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8. Cokriging. GenStat will predict the values of any one variate from values of it
and others coregionalized with it at points or in blocks by ordinary cokriging
using the models fitted by the coregionalization directive.

9. Nested analysis. Geostatisticians are recognizing the merits of nested sampling
and analysis for revealing the gross spatial structure of regionalized variables
(see Chapters 2 and 9). The data can be analysed by ANOVA, but the solution is
not unique; they are better analysed by residual maximum likelihood (REML) as
devised by Patterson and Thompson (1971). GenStat has a comprehensive suite
of facilities for analysing data from such designs.

Webster and Oliver (2007) provide examples of GenStat code for these tasks. The
standard operations can be done either by written commands in the GenStat lan-
guage or by menu. In the latter case GenStat generates the code and saves it in an
output log. This means that you have a full record, step by step, of what you have
done and that you can modify the code to create more comprehensive programs.

A.2 VESPER

Budiman Minasny, Alex B. McBratney and Brett M. Whelan

Australian Centre for Precision Agriculture, The University of Sydney, NSW 2006,
Australia

A.2.1 Background

VESPER (Variogram Estimation and Spatial Prediction plus Error) is a user-friendly
PC-windows software program that can calculate and model global local variograms
and do global and local kriging in either punctual or block form.

VESPER was developed to deal with the large volume of intensive data col-
lected by on-the-go proximal soil and crop sensors (approximately 5000–65 000
data points per km2). The purpose is to represent the data (yield data or soil electri-
cal conductivity, etc.) as a digital map at a regular grid interval. In most geostatistical
software, spatial interpolation usually involves two separate steps: calculating and
modelling of the variogram for the whole area followed by prediction at unsampled
points by kriging on a regular grid over the area. There are several shortcomings to
this approach: first the time taken to calculate an empirical variogram of the whole
area can be excessive (e.g. a variogram for 100 000 data points can take hours to
calculate), and secondly information is lost by assuming a single variogram model
for the whole area, and which results in a smooth map. VESPER can accommodate
the large number of data and take into account the local spatial structure.
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Kriging with local variograms, also known as kriging and automated variogram
modelling within a moving window, involves searching for the closest neigh-
bourhood for each prediction site, estimating the empirical variogram from the
neighbourhood, fitting a variogram model to the data automatically by a non-linear
least squares approach, kriging with local neighbourhood and variogram parameters
and calculating the uncertainty of kriging prediction. The program adapts itself spa-
tially in the presence of distinct differences in local structure over the whole field.
Local variogram estimation and kriging can preserve the true local spatial variation
in the predictions. In most cases, local variograms could circumvent the problems
of anisotropy and the need for trend analysis.

A.2.2 The Software

VESPER comes as executable files consisting of an interface (written in Visual ba-
sic) and a main computation program (written in Fortran). The execution of the
program is through the interface. Figure A.1a shows the main interface panel, where
input and output files are controlled. Input data containing Cartesian coordinates
and the variable of interest are required as an ASCII text file. The output files record
the specific session details, variogram model parameters, the prediction locations,
values and associated prediction error.

The variogram panel (Fig. A.1b) provides the choice of global (whole-area) or
local variogram estimation. The variogram is estimated by Matheron’s method-
of-moments. A comprehensive range of models (Fig. A.1c) can be fitted to the
empirical variogram using four possible weighting procedures (Fig. A.1c). Nonlin-
ear least-squares estimation is used in the model fitting process, minimizing (Jian
et al. 1996):
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where wi is the weighting option, O�.hi / is the estimated semivariance at distance hi

and O�.h�
i / is the semivariance predicted by the model. The ‘goodness of fit’ of the

models can be compared with the Akaike Information Criterion, AIC, and sum of
squared errors.

If a global variogram is required, the ‘Fit Variogram’ button provides access to
an interactive calculation and modelling panel (Fig. A.1d); model parameters can
be extracted for subsequent kriging. The global modelling panel also allows subjec-
tive model fitting through interactive parameter control bars. This is useful with
small data sets and applications where emphasis is needed at particular sample
separations.

Local variograms are calculated automatically for each neighbourhood during
the local kriging process, but the maximum distance and number of lags required
for estimating them may be set through the Variogram panel. Experience at the
Australian Centre for Precision Agriculture has shown that an exponential model is
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Fig. A.1 Operational panels of VESPER: (a) file input/output control panel, (b) variogram panel
showing available models, (c) weighting options for model fitting and (d) global variogram opera-
tion window

usually the best for local variogram estimation of yield data. More complex models,
e.g. Matérn models, often become unstable with automatic local fitting (the covari-
ance matrix can become non positive-definite in some local areas). We recommend
limiting model selection to either exponential or spherical models.

The kriging panel (Fig. A.2) provides punctual or block options. It is possible to
define the block size (if relevant), set neighbourhood limits based on radial distance
or number of data points and manipulate the kriging region. For yield data, a block
size close to the swath width is recommended (a 10 m2 block is sufficient for most
combine harvester fronts at present).
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Fig. A.2 Kriging panel of VESPER – showing controls for punctual or block kriging, neighbour-
hood definition, boundary, grid and advanced options

An interpolation grid is used to define the location of the points to which the data
will be predicted. The interpolation grid allows data that are collected at different in-
tervals to be collocated and analysed further. The interpolation grid can be specified
in one of the following options:

� When the field has a rectangular shape, a grid with regular distance can be
defined.

� When the field has an irregular shape, the boundary can be manually defined and
a grid with regular distance can be generated that is confined to the boundary
area.

� A file containing a pre-defined grid can be specified. Users can define the spatial
coordinates of the prediction.

For most precision agriculture applications, the field boundary will provide the lim-
its of the kriging region. VESPER provides the option of importing an existing
boundary file or describing the field boundary using an interactive drawing tool.
The prediction grid (at user-defined distances) may then be produced with the soft-
ware or an existing grid file can be imported. These features are important for the
continuity of prediction sites through time within a field.

In addition, for specific applications, VESPER can also perform:

� Lognormal Kriging – transforms lognormal data before performing the interpo-
lation process.
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� Non-negative weight – used to ensure ‘extreme’ values do not produce irrational
results e.g. negative yield values. VESPER uses the method of Deutsch (1996)
for correcting negative weights.

� Sigma2 (data uncertainty) – is a user-defined estimate of the variance or uncer-
tainty in the data.

In operation, VESPER provides a window displaying the operational progress
(Fig. A.3). For all forms of kriging a prediction progress map is produced together

Fig. A.3 Local variogram, data neighbourhood and prediction point progress map for an area
with: (a) low variability and (b) greater variability
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Fig. A.4 Output maps for: (a) kriged predictions and (b) kriging variances

with a count of visited versus total prediction sites. For local kriging, individual var-
iograms and the fitted models are displayed for the search neighbourhood around
each prediction point. Note in Fig. A.3a, b that this local method allows changes in
local variability to be reflected in the variogram parameters for each prediction. The
graphical progress facilities can be disengaged to increase the speed of the predic-
tion process.

The output for all kriging operations is an ASCII text file containing the pre-
diction point location coordinates, the predicted value and the kriging variance. An
input file detailing the exact settings for each prediction session is also saved to-
gether with a report file logging global variogram parameters or the parameters of
each local variogram depending on the operation. Other details of the data and krig-
ing session are also recorded in this file for future reference. Maps of estimates and
prediction variances (Fig. A.4) can be obtained at the end of kriging.

VESPER is available as freeware from the ACPA at www.usyd.edu.au/su/agric/
acpa The CSIRO Precision Viticulture group produces a PostVesper tool which au-
tomates the process of converting file output from the Vesper kriging program into
raster format in ArcGIS.

A.2.3 Applications

VESPER has been used both for research and practical applications. Google Scholar
identified about 135 papers that mentioned the use of VESPER for kriging. In Aus-
tralia, it is being used routinely for making yield maps with data from commercially
available yield monitors for cereals and grapes, for example. VESPER is used rou-
tinely to format multi-year and multi-sensor data onto a single grid for multivariate
analysis and the creation of potential management classes.

www.usyd.edu.au/su/agric/acpa
www.usyd.edu.au/su/agric/acpa
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A.3 SGeMS and Other Software

R. Gebbers

Department of Engineering for Crop Production, Leibniz-Institute for Agricultural
Engineering, Max-Eyth-Allee 100, D-14469 Potsdam, Germany

A.3.1 SGeMS

The Stanford Geostatistical Modeling Software (SGeMS) is an open-source com-
puter package developed by Nicolas Remy with contributions from Alexandre
Boucher, Jianbing Wu and Ting Li. SGeMS offers a wide range of functions and is a
successor to the well-known Geostatistical Software Library (GSLIB; (Deutsch and
Journel 1998, www.gslib.com). A Windows version of SGeMS can be downloaded
from http://sgems.sourceforge.net/. The SGeMS homepage provides additional re-
sources such as source code for developers and people who need to build SGeMS
on Linux or Apple OS. Although there is a manual at http://sgems.sourceforge.net/
old/index.html, the supplemental textbook by Remy et al. (2009) is recommended.
The strengths of SGeMS are its user-friendliness (a graphical user interface allows
access to every function), the 3-D data visualisation and range of kriging and simu-
lation methods (Fig. A.5).

Fig. A.5 Kriging panel of SGeMS – showing controls for kriging, image processing and simula-
tion

www.gslib.com
http://sgems.sourceforge.net/
http://sgems.sourceforge.net/old/index.html
http://sgems.sourceforge.net/old/index.html
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A weakness of this package is the variography; it provides only visual aids for
variogram fitting and it does not calculate any goodness-of-fit indicators. Four var-
iogram models only are available: nugget, spherical, exponential and Gaussian.
SGeMS loads and stores point and grid data in a binary format and the ASCII
GSLIB format. Tools for exploratory data analysis include histograms, QQ-plots,
scatter plots and descriptive statistics. Directional univariate and cross-variograms
can be calculated from point and grid data in two and three dimensions. SGeMS
provides univariate, indicator, co- and block-kriging. The point kriging options
include simple, ordinary, trend and local means kriging. For cokriging, the user
may choose from three coregionalization models (linear, Markov I and II). SGeMS
simulates smooth surfaces or volumes by variogram based methods such as LU
decomposition, sequential Gaussian, co-simulation, indicator, block and block error
simulation. Discrete spatial structures such as horizontal soil layers can be simulated
by multipoint methods. SGeMS allows for unconditional or conditional simulation.
Variography, kriging and simulation may require pre- and post-processing. SGeMS
can be automated and extended by its internal scripting language, plug-ins written
in Phyton and a MATLAB interface.

A.3.2 Other Software

Other software packages that include geostatistical functions or may be extended
by plug-ins are the Gstat library (www.gstat.org), SYSTAT (www.systat.com), SAS
(www.sas.com/software) S-PLUS (www.insightful.com), R (R Development core
team (www.r-project.org)) and Terraseer STIS (http://www.terraseer.com/products
stis.php). Among these, R is outstanding: it is freeware and there is a large num-
ber of extensions, in particular, there are specific classes and methods for spatial
data analysis (see Diggle and Ribeiro 2007; Bivand et al. 2008). ISATIS (www.
geovariances.fr) is dedicated geostatistical software. MATLAB (www.mathworks.
com) is frequently used for geostatistics and can be linked to SGeMS and Gstat by
the mGstat toolbox. The BMElib toolbox extends classical geostatistical simulation
with Bayesian approaches for space-time applications (Christakos et al. 2002).
Response surface sampling design software, known as ESAP, has been developed
specifically for use with ECa measurements and other proximal sensors (Lesch
et al. 2000; see http://www.ars.usda.gov/services/software/software.htm for this
open access software.
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