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ABSTRACT In this paper I will discuss the position of the Flemish 
mathematician and engineer Simon Stevin (1546–1620) in the rise of 
Archimedean mechanics in the Renaissance. Commandino represents the 
beginning of the Archimedean Renaissance in statics. The next steps were 
made by Guidobaldo Del Monte and Stevin. Del Monte and Stevin were 
contemporaries belonging to the generation preceding Galilei (1564–1642). 
Yet Stevin’s work in mechanics is superior to Del Monte’s. I will discuss 
the way in which Stevin’s mechanical work, like Del Monte’s, was 
influenced by the medieval science of weights. For example, the central 
notion “stalwicht” in Stevin’s work, translated as “apparent weight’ by the 
editors of Stevin’s Works, clearly corresponds to the notion of positional 
weight (ponderis secundum situm) in the science of weights. I will also 
argue that while Del Monte remained caught in the conceptual framework 
of the science of weights the use of the Dutch language helped Stevin in 
liberating himself from those ideas. For Stevin the use of Dutch was part 
of his success. Finally I will discuss Stevin’s work on windmills. Not only 
his original theoretical contributions to statics and hydrostatics but also the 
unity of theory and practice in Stevin’s work make him in mechanics the 
first true successor of Archimedes in the Renaissance. 
 
 
1. INTRODUCTION 

 
In the past decades the Archimedean Renaissance in Italy has been studied 
by several authors (e.g. [9], [11] and [13]). In this particular context the 
work of Simon Stevin (1546–1620) has received less attention. At first 
sight Stevin appears to be a rather isolated figure. He seems not to belong 
to one of the Italian traditions. Yet he must be seen against the background 
of the mechanical work of the authors that preceded him. He seems 
isolated because we only have his mature work and we do not know its 
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genesis. There are few references to others in his work. Moreover, he 
wrote in Dutch, creating his own terminology and his own way of 
presenting the subject.  

Yet Stevin is definitely part of the Archimedean Renaissance in 
mechanics. After Federigo Commandino of Urbino (1509–1575), the Archi-
medean Renaissance in statics continued with Guidobaldo Del Monte 
(1545–1607) and Simon Stevin (1548–1620). Del Monte knew Archimedes’ 
work and he was familiar with a summary of Hero’s Mechanics in the 
form it is given by Pappus in Book 8 of the Collection. Del Monte’s 
contribution to the theory of machines consists of his Mechanicorum liber 
of 1577 and its Italian translation by Pigafetta which appeared in 1581. 
After having explained how useful mechanics is Del Monte formulates his 
goal to build mechanics up “from its foundation to its very top” ([7]. p. 246). 
In the text he starts with properties of the balance basing himself on 
Archimedes and then he proceeds to the Heronean core of mechanics: the 
five simple machines, in the order lever, pulley, wheel and axle, wedge 
and screw. Several historians have written about Del Monte’s mechanics. 
See, for example, [11] and [21]. Duhem wrote:  

“sometimes erroneous, always mediocre, the Mechanics of 
Guido Ubaldo is often a regression from the ideas published in 
the writings of Tartaglia and Cardano” ([8], p. 226) 

This is somewhat unfair and it is certainly unreasonable to put the 
writings of Tartaglia and Cardano so much higher than Del Monte’s 
Mechanicorum Liber. On the other hand, although Del Monte’s starting point 
was good, in the execution the problems that Del Monte could not solve 
dominated. In his treatment of the balance he lost himself in long dis-
cussions with the proponents of the science of weights. Del Monte left the 
problem of the inclined plane unsolved and in the Italian translation of his 
book on mechanics the erroneous solution of this problem by Pappus was 
included. In this paper I will argue that with original contributions to statics, 
hydrostatics and the theory of machines, Stevin was truly Archimedes’ 
first successor in the Renaissance.  
 
 
2. THE BACKGROUND 

 
In the Renaissance there was a growing interest in machines and their 
theory: mechanics. The interest in machines is, for example, clearly reflected 
in the support of the French King for the publication, in 1571/72 by 
Jacques Besson (1540–1573), of one of the earliest theaters of machines.  
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The interest in the theory of machines is clear from the fact that several 
texts on mechanics from Antiquity and the Middle Ages were printed in 
the 16th century. 

What did the theory of machines look like in the 1570s when Del 
Monte and Stevin were in their twenties? Mechanical Problems (Quaestiones 
Mechanicae) contained in the Aristotelian corpus, was available in print in 
Latin quite early in the century. It contains the oldest theory of machines 
usually ascribed to a follower of Aristotle, although parts of it may come 
from Archytas (Cf. [10]). In the 13th century, Jordanus de Nemore and his 
pupils had created a scholastic science of weights. Nicolo Tartaglia (1500?–
1557) had access to some of the manuscripts and he published a version of 
this theory in his Various Questions and Inventions of Niccolò Tartaglia of 
Brescia (Quesiti ed inventioni diverse) of 1546. We will refer to this text 
as Tartaglia’s Quesiti. The medieval Latin text that he used appeared in 
1565 in Venice (See Figure 1).  

Then there was Archimedes’ work on statics and hydrostatics. In 1543 
Tartaglia published the Latin translations of On the Equilibrium of Planes 
(Book I and II), On the quadrature of the parabola, On the measurement 
of the circle and On floating bodies (Book I only). Tartaglia’s publication 
suggested that he had translated these texts himself. However, in 1881 it 
was discovered that they had been made by William of Moerbeke (circa 
1215–1286). This translation left a lot to be desired. Actually there is no 
evidence that Tartaglia knew Greek and some that he did not ([2], pp. 555–
556). In 1558 Federigo Commandino of Urbino (1509–1575) published a 
translation of several of Archimedes’ works far superior to Moerbeke’s 
translations. In 1565 Commandino published a translation of On floating 
bodies. Actually in On floating bodies Archimedes assumes properties 
without proof that led Commandino to publish his own Book on the Center 
of Gravity of Solid Bodies (Liber de centro gravitatis solidorum) in the 
same year ([3]).  

This was not all. Hero’s devices operated by water, air and steam were 
described in an encyclopedic work by Giorgio Valla printed in 1501. 
Hero’s Pneumatics was published in Latin by Commandino in 1575. For 
the general public a Latin summary of Hero’s Mechanics only became 
widely available in 1588 when Commandino’s Latin translation of Pappus’ 
Collection was published by Guidobaldo Del Monte ([7], p. 45). Com-
mandino had made the translation before his death in 1575 and Del Monte 
had access to it. Pappus’ summary of Hero’s Mechanics in Book 8 of the 
Collection introduced Renaissance scholars to the idea that the five simple 
machines were the basic components of all machines. Pappus wrote, 
referring to Hero: 
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“The names of these powers then are: the axle with a wheel 
turning on it; the lever; the compound pulley; the wedge; that 
which is called the endless screw” [14] 

 
 
3. THE SCIENCE OF WEIGHTS: DEFINITIONS AND POSTULATES 
 
Archimedes’ work is well known. The science of weights is less known. 
Yet it is an essential part of the background of Stevin’s work. That is why 
we will devote some attention to it.  

Although considerably less rigorous than Archimedes’s work, unlike 
Mechanical Problems, the science of weights shows influence of the Greek 
deductive traditions. Definitions are followed by theorems and the geo-
metry of the figures plays an actual role in the arguments. 

We will consider briefly some parts of the version of the theory that 
Tartaglia gave in his Quesiti. We will base ourselves on the English 
translation by Stillman Drake in [7]. The approach is deductive. Definitions 
and petitions (i.e. postulates) precede a series of propositions that are 
demonstrated on the basis of the definitions and petitions.  

Definition IX: Those bodies are said to be simply equal in 
heaviness which are actually of equal weight, even though of 
different material.  
Definition XIV: The heaviness of a body is said to be known 
when one knows the number of pounds, or other weight, that it 
weighs. 
Definition XIII: A body is said to be positionally more or less 
heavy than another when the quality of the place where it rests 
and is located makes it heavier [or less heavy] than the other, 
even though they are both simply equal in heaviness. ([7], p. 
114, Italics are mine) 

The distinction between the notions simple heaviness and positional 
heaviness is fundamental. Tartaglia relates positional heaviness to the 
obliqueness of the descent (or ascent) of the weight that takes place if the 
weight moves within the bounds of its mobility. 

The notion of obliqueness is defined in  

Definition XVII: The descent of a heavy body is said to be 
more oblique when for a given quantity it contains less of the 
line of direction, or of straight descent toward the center of 
the world. ([7], p. 115) 
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Fig. 1. 

 
The text has the form of a dialogue between Tartaglia and Mendoza, 

the imperial ambassador of Charles V at Venice. In the case of definition 
17, Tartaglia exemplifies the definition with a reference to Figure 2. 
 

 

 
Fig. 2. 

 
The descents AF and AE from the point A are oblique. Suppose that 

AF=AE. Then AH and AG are the vertical components of these descents, 
or, in Tartaglia’s words, AH and AG are what the two descents contain of 
the line of direction, that is by definition the straight descent towards the 
center of the world. So AF is more oblique than AE, because AH is 
smaller than AG. 

About positional heaviness Tartaglia says: 

Petition 4: Also we request that it be conceded that those 
bodies [bodies of equal simple weight – T. K.] are equally 
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heavy positionally when their descents in such positions are 
equally oblique, and that will be the heavier [positionally – T. 
K.] which, in the position or place where it rests or is situated, 
has the less oblique descent. ([7], p. 119) 

Clearly, a vertical line is not oblique. The positional weight in this case 
is equal to the simple weight. The positional weight of an object on an 
inclined plane depends on the slope: the more oblique the slope, the smaller 
the positional weight. 

One notices that right from the start the problem of the inclined plane 
concerning the precise dependence of the positional weight on the steep-
ness of the slope is implicitly present in the science of weights. As we will 
see below in the science of weights Jordanus and/or his pupils succeeded 
in precisely determining this relationship: they were the first ever to solve 
the problem of the inclined plane. 
 
 
4. THE SCIENCE OF WEIGHTS: THE FIRST PROPOSITIONS 
 
So far positional heaviness is determined by the simple weight plus the 
geometry of the situation. However, following the medieval science, Tartaglia 
relates positional heaviness to two other notions: power and speed. Essentially 
Tartaglia views positional heaviness as proportional to the power a weight 
can exert and in its turn this power is proportional to the speed, i.e. the dis-
tance covered in a certain period of time as a result of the power. Consider: 

Proposition 4: The ratio of the power of bodies simply equal in 
heaviness, but unequal in positional force, proves to be equal 
to that of their distances from the support or center of the 
scale. ([7], p. 123) 

Tartaglia’s proof is brief and from a modern point of view quite 
unsatisfactory. He looks at two bodies of equal simple weight positioned at 
unequal distances from the centre on the horizontal arm of a balance. 
When the arm moves the speeds or the distances covered by the weights 
are proportional to the distances of the weights to the center. Basically 
what Tartaglia is saying is the following: the power that a simple weight 
on the arm of a horizontal balance can exert is proportional to the length of 
the arm. He also implicitly assumes that with a particular arm length the 
power that a weight can exert is also proportional to the size of the weight.  
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Remarkable and revealing as for the problems that the in itself sound 
notion of positional weight brings about is the second part of  

Proposition 5: When a scale of equal arms is in a position of 
equality, and at the end of each arm there are hung weights 
simply equal in heaviness, the scale does not leave the said 
position of equality; and it happens that by some other weight 
[or the hand] imposed on one of the arms it departs from the 
said position of equality, then, that weight or hand removed, 
the scale necessarily returns to the position of equality ([7], 
p. 124). 

He first part is demonstrated by remarking that on the basis of 
proposition 4 the bodies of equal simple weight put at equal arm length on 
a horizontal balance have equally oblique descents, which implies equal 
positional force. The second part is remarkable. See Fig. 3. 
 

 
Fig. 3. 

 
We have two weights simply equal in heaviness in A and B. Suppose 

the arcs BL and AF are equal. The projections of the arcs on the vertical 
line are unequal. XY is bigger than DF. That is why Tartaglia concludes 
that the descent of B is more oblique that the decent of A, so B is 
positionally heavier than A and that is why he feels that the balance will 
return to its horizontal position. One notices that the obliqueness of a 
decent is measured by projecting the descent on a vertical line in 
accordance with Definition XVII. Clearly we do no longer except this 
result as correct. If Tartaglia had considered infinitesimal displacements, 
he would have drawn a different conclusion. 
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5. THE SCIENCE OF WEIGHTS: THE LAW OF THE LEVER AND 
THE LAW OF THE INCLINED PLANE 
 
The central results in the science of weights are the law of the lever 

and, more importantly, the law of the inclined plane. The law of the lever 
is phrased by Tartaglia as follows: 

Proposition 8: If the arms of the balance are proportional to the 
weights imposed on them, in such a way that the heavier 
weight is on the shorter arm, then those bodies or weights will 
be equally heavy positionally. ([7], pp. 132–134) 

The proof is based on Proposition 4, which is applied as saying: 

Positional heaviness on a balance = Simple weight x Length of arm. 

(Nota bene: Tartaglia cannot express it in this way, constrained as he is by 
Eudoxus’ theory of proportions, which was at the time generally excepted. 
In Eudoxus’ theory only ratios of quantities of the same kind can be 
considered: ratios of weights can be equal to ratios of lengths, but weights 
and lengths cannot be multiplied.) 

It is highly remarkable that in the science of weights Jordanus and his 
pupils succeeded in solving the problem of the inclined plane. Tartaglia 
almost literally follows Jordanus proof. Consider 

Proposition 15: If two heavy bodies descend by paths of 
different obliquities, and if the proportions of inclinations of 
the two paths and of the weights of the two bodies be the 
same, taken in the same order, the power of both the said 
bodies in descending will also be the same. ([7], p. 141) 

See Figure 4. It is clear that one can imagine the two heavy bodies E 
and H, on the slopes DC and DA respectively, connected by a rope EDH. 
The proposition says: We have equilibrium if  

Weight E : Weight H = DC : DA 

We consider that situation and we imagine a weight G equal to E on 
slope DK which has the same tilt as DC. Suppose now that E and H “are 
not in the same power” and let us suppose that E descends as far as point 
L. Then H ascends as far as M. Assuming GN equal to LE, we have also 
GN equal to HM, and one can easily prove by means of similarity 
considerations that 

MX : NZ = DK : DA. 
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Fig. 4 

 
We also have 

DK : DA = Weight G : Weight H 

Then 

MX : NZ = Weight G : Weight H. 

And Tartaglia concluded: 

Therefore, by however much the body G is simply heavier 
than the body H, by so much does the body H become heavier 
by positional force that the body G, and thus they become to 
be equal in force or power. ([7], p. 142)  

From a modern point of view what Tartaglia is basically doing is 
applying this rule with respect to an inclined plane: 

Positional heaviness = Simple weight x Obliqueness 

(Again Tartagia cannot put it in this way because he uses Eudoxus’ theory 
of proportions. For the modern reader this expression is somewhat more 
transparent.) 

arbitrary constant descent along the plane. Weight G and Weight H are 
simple weights. From a modern point of view we have: 

Positional weight G in its present position = Weight G x NZ 
Positional weight H in its present position = Weight H x MX 

Clearly the equality of these two positional weights implies equili-
brium.  
Q. E. D.  

Obliqueness is measured by means of the vertical component of an 
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6. STEVIN: FROM THE SCIENCE OF WEIGHTS TO THE 
PRINCIPLES OF THE ART OF WEIGHING AND THE PRACTICE 
OF WEIGHING 

 
In 1581 the Flemish engineer and mathematician Simon Stevin (1548–
1620) settled in Leiden a city in Holland, not very far from Amsterdam. He 
studied at the University of Leiden for two years matriculating in 1583. In 
1586 he published three books that would bring him everlasting fame: 

The Principles of the Art of Weighing (De Beghinselen der Weeghconst) 
The Practice of Weighing (De Weeghdaet) 
The Principles of the Weight of Water (De Beghinselen des Waterwichts). 

With these books Stevin wanted to develop mechanics along strict 
Archimedean lines and he wanted, which implied from his point of view a 
further development of what we nowadays call statics plus its application 

509) as Stevin called the book Quaestiones Mechnicae. As we will see 
below he must have been familiar with ideas from the medieval science of 
weights as well, but we do not know how. Cardano’s Opus novum de pro-
portionibus etc. Basilae 1578, is mentioned twice in Stevin’s works ([15], 
pp. 508–511). 

Stevin had also read Archimedes’ mechanical works and Commandino’s 
book on centers of gravity. Stevin refers to Pappus’ definition of the centre 
of gravity before Commandino’s translation of Pappus’s Collection had 
even appeared. Because Commandino quotes Pappus’ definition in Greek 
at the beginning of chapter 1 of his book on centers of gravity, Stevin 
probably has it from there. I think it is improbable that Stevin had read 
book 8 of Pappus’ Collection. So if I am right, Stevin was unaware of 
Hero’s notion of simple machines (Duhem hesitates at this point Cf. [8], 
p. 143). I think the fact that Stevin does not treat the screw at all is revealing. 
Had he known about the five simple machines, he would have treated 
them. This supposition implies that Stevin in 1586 had not had access to 
Del Monte’s work.  

Had he known about Pappus’ erroneous treatment of the inclined 
plane, the wedge and the screw, he would at least have shown the correct 
treatment of the screw. He did not. The only incorrect treatment of the 
inclined plane that he criticizes is Cardano’s. Cardano had argued that the 
force needed to move a weight upwards on an inclined plane is proportional 
to the angle that between the slope and the horizon, the maximum value 
being reached when the plane is vertical (Cardano, Opus Novum, Propositio 
LXXII, Basilea, 1570, p. 63).  

 

to actual machines. He had read Aristotle’s In Mechanicis ([15], pp. 508–



Simon Stevin and the Rise of Archimedean Mechanics in the Renaissance 95 

7. THE GENESIS OF STEVIN’S STATICS  
 

Stevin must have been familiar with the science of weights in some form. 
On the title page of the Practice of Weighing (See Figure 6, right) in small 
letters there is written in Latin “praxis artis ponderaria”. Obviously Stevin 
saw his art of weighing as a sequel to the science of weights. Stevin was 
familiar with Archimedes’ works as well. He may have used Tartaglia’s 
edition of On the Equilibrium of Planes (Book I and II). I propose the 
following speculative genesis of Stevin’s books on statics.  

i) Stevin realized that an Archimedean approach to the science of 
weights implied that all considerations concerning motion had to be dropped. 
Moreover, Archimedes’ treatment of the balance rigorously solves the 
problem of positional weight for what Stevin called vertical weights, but 
not for oblique weights. 

ii) Right from the start Stevin was thinking of situations suggested by 
actual machines. If one does so, the importance of forces (or weights) not 
acting vertically but obliquely, is obvious (See Figures 7 and 9). Stevin 
realized that the distinction between simple weight and positional weight 
made sense, but that it had to be preceded by the distinction between 
vertical weights and oblique weights.  

iii) While studying positional weight on an inclined plane Stevin found 
the most beautiful proof of his life: the key to the treatment of oblique 
weights. This discovery determined the structure of The Principles of the 
Art of Weighing. It consists of two books. Book I consists of a part 1 on 
vertical weights with the law of the balance as central result and a part 2 on 
oblique weights with the law of the inclined plane as central result. Book II 
is devoted to the centers of gravity of solids, taking Commandino’s book 
on the subject as a starting point.  

theory to real machines: The Practice of Weighing. In Stevin’s work theory 
and practice are developed separately, but the unity of theory and practice 
is a central dogma.  
 
8. STEVIN’S TREATMENT OF THE INCLINED PLANE: THE 

CRUCIAL PROOF 
 
Let us consider some details. From Commandino Stevin took Pappus’ 

definition of the center of gravity. It is worded by Stevin as follows:  

The center of gravity of a solid is the point through which any 
plane divides the solid into parts of equal positional weight 
([15], pp. 100–101) 

iv) Stevin decided to devote a separate book to the application of the 
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This definition is perfectly in accordance with Archimedes. By the 
way, the editors of Stevin’s works translated the word “euestaltwichtigh”, 
that Stevin uses, with “having equal apparent weight”. This hides the 
relation with the science of weights. I think that the word “stalt” (or else-
wher “ghestalt”) must in this context be translated with “position” and 
“euestaltwichtigh” then becomes “of equal positional weight”. See in the 
etymological dictionary [17] the lemma on “stede” and “stee”. 

Dijksterhuis interpreted “staltwicht” as “the component of an acting 
force which is actually exerting an influence” ([19], p. 52). This seems 
simply wrong to me. When Stevin uses the word “staltwicht” with respect 
to weights on a horizontal balance, this interpretation holds no water.  

Pappus’ definition of the center of gravity obviously implies that the 
second part of Proposition 5 in Tartaglia’s treatment of the science of 
weights cannot be correct. We discussed it above. Stevin does not even 
mention such errors. He simply dropped in the science of weights every-
thing that contradicted Archimedes.  

Consider, for example, the role of motion in the science of weights. 
Stevin wrote an appendix to The Art of Weighing in which he gave the 
following argument: 

That which hangs motionless does not describe a circle. 
Two (bodies) of equal positional weight hang motionless 
Conclusion: Two (bodies) of equal positional weight do not 
describe circles ([15], pp. 508–509) 

This is why Stevin rejects the view that the cause of the law of the 
balance resides in the fact that the extremities of the arms describe circles. 
More generally: the real causes of equilibrium are not to be found in the 
mobility of the weights involved. By the way, this argument has been 
criticized, for example, by Duhem. The point, however, is not whether the 
argument in itself is valid. The point is that without completely rejecting 
the notion of motion in statics Stevin would not have been able to liberate 
himself from the confusions that vexed his predecessors. 

As we have seen in the Quesiti in the science of weights equilibrium is 
linked to mobility via the Aristotelian view that the power that a weight 
can exert is proportional to the speed that is reached if the power can be 
exerted. Stevin rejected this element as well. Several years before Galilei 
possibly dropped the two weights from the tower of Pisa, Stevin executed 
a similar experiment in the city of Delft with two spheres of lead from  
a height of 30 feet. They reached the ground at the same moment. That 
Aristotle was wrong had in 1562 already been argued by Jean Taisnier. 
Stevin had read Taisnier’s book and he took a radical course here as well. All 
considerations concerning speed in the science of weights had to be ignored  
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Before turning to Stevin’s treatment of the inclined plane, let us briefly 
look at the core idea of Archimedes’ proof of the law of the lever. 
Archimedes’ takes the validity of the law in the symmetric case with equal 
masses and equal arms as obvious.  

See Figure 5 left. Suppose we have in A 6 white units of weight and in 
B 4 grey units of weight. The unit of weight should be chosen in such a 
way that the two numbers are even. Suppose, moreover, that for the arms 
we have OA and OB are, respectively, equal to 4/2=2 units of length and 
6/2=3 units of length. 

Fig. 5.  

In this way we have created a situation in which the weights are 
inversely proportional to the corresponding arms. Archimedes now extends 
the arms: OA is extended with the length of OB and OB is extended with 
the length of OA. We then divide the units of weight over the units of 
length on the extended balance as shown in the figure. The result is that the 
center of gravity of the white units remains in A and the center of gravity 
of the grey units in B. At the same time the center of gravity of the whole 
is in O. So we have equilibrium. The core idea of Stevin’s proof of the 
lever is similar.  

Stevin’s proof of the law of the inclined plane is also based on splitting 
the two weights in a number of units. See Figure 5 right. If Stevin knew the 
answer that the science of weights had given – there exists equilibrium if 
the two weights are proportional to the lengths of the two inclined planes -, 
which is from my point of view probable, splitting the two weights into 
numbers of units proportional to the length of the inclined planes would 
have been a rather natural move.  

The crucial idea must have come to Stevin suddenly. One considers 
the units as beads on a chain and one closes the chain by adding a lower 
part. The lower part is symmetrical and it will not disturb the relation of 
the positional weights on the inclined planes. That the positional weights 
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are equal is shown as follows by contradiction. Stevin assumes that the 
positional weight on the left hand side is bigger. Then the chain will start 
to rotate. All the time the chain of balls as a whole has the same position as 
before (“den crans der clooten sal alsucken ghestalt hebben als sy te voren 
dede” [15], pp. 178–179). Stevin concludes: “so the spheres will out of 
themselves perform a perpetual motion” (“ende de clooten sullen uyt haer 
selven een eeuwich roersel maken” [15], pp. 178–179). This Stevin finds 
impossible and he draws the conclusion that the chain will not start to 
rotate. We know that Stevin was extremely proud of this proof and he used 
the corresponding figure basically as his logo, accompanied by the text 
“The miracle is no miracle” (Wonder en is geen wonder). See Figure 6 
with the frontispieces of The Principles of the Art of Weighing and The 
Practice of Weighing.  

It has been assumed that Stevin rejected perpetual motion in the 
general sense of the word. Duhem has argued that Stevin must have read 
Cardano’s work. Cardano was apparently influenced by Da Vinci, whose 
manuscripts were at the time kept by Menzi in his villa close to Cardano’s 
hometown Milano. Cardano rejected the existence of a perpetuum mobile 
basically on Aristotelian grounds. Aristotle had indeed assumed that in 
order to maintain motion a constant force is needed. If Duhem is correct, 
this would be ironic, because Stevin rejected the Aristotelian views. How-
ever, another interpretation is possible. 

            
Fig. 6. The Principles of the Art of Weighing (left) and The Practice of Weighing (right). 
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Stevin wrote that eternal motion starting spontaneously was absurd. 
Such a motion under the influence of gravity would from a modern point 
of view necessarily be accelerated and excluding friction, which Stevin 
explicitly does, the circular character of the motion would imply the 
possibility of the spontaneous occurrence of an infinitely accelerated 
circular motion. This in itself does not imply inconsistency but it is 
something one would definitely want to exclude from one’s theory. See 
[18] for a subtle analysis of Stevin’s rejection of a perpetuum mobile by 
Van Dyck.  
 
 

 
Stevin’s book is characterized by extreme clarity. His approach is Euclidean, 
but there is a certain similarity with Tartaglia’s Quesiti. Where definitions 
and postulates in the Quesiti are often accompanied by explanations directed 
at Tartaglia’s partner in the dialogue, Stevin adds extensive explanations as 
well to his definitions and postulates, although the work is not in the form 

It is striking that The Principles of the Art of Weighing is preceded by 
a long introduction on the superiority of the Dutch language. There is more 
to it than that Stevin is part of an international trend to replace Latin by the 
vernacular and that he may have found it easier to express himself in 
Dutch. The Dutch language enabled Stevin to develop his ideas using his 
own Dutch technical terminology, thus liberating himself completely from 
the different terminologies that his predecessors had used. Certainly for 
Stevin the use of Dutch was part of his success. 

In part 1 of Book I some fundamental definitions are 

Definition II: The heaviness of a solid is the power of its descent in a 
given place. 
Definition III: A known heaviness is expressed in terms of a known 
weight.  

Compare with Definitions 9 and 14 in Section 3. A known weight is, 
for example, a pound or an ounce. Definition XII introduces the notions 
lifting weight and lowering weight. It is basically Stevin’s way to handle 
the positive or the negative effect of a weight. Definition XIV contains 
the fundamental distinction between vertical weight and oblique weight. The 
fundamental notion positional weight is not introduced in a separate 
definition. It occurs first in the explanation following the definition of the 
center of gravity: The center of heaviness is the point through which any 
plane divides the solid into parts of equal positional weight.  

9. THE PRINCIPLES OF THE ART OF WEIGHING 

of a dialogue. 
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See Figure 7 left for examples of vertical and oblique lifting weights. 
The Figure concerns Proposition XX, which says: “Like vertical-lift-line is 
to oblique-lift-line, so is vertical-lift-weight to oblique-lift-weight” The 
figure shows three examples of a prism supported in a point E. The prism 
can be kept in its position by vertical lifting weights G that apply at point 
F. However, G being taken away, equilibrium can also be established by 
means of the oblique weights H. Stevin concluded that in the three 
situations of Figure 7 we have 

Weight G : Weight H = Vertical lifting line IF : Oblique lifting line FK. 

This is correct and one notices that Stevin is here very close to the 
parallelogram of forces: segment IK represents the force that must be 
added to FI in order to get FK; it is the support by point E along the axis 
EC of the prism.   

 

  
Fig. 7. The Art of Weighing Book I [15], pp. 196–197). 

 
Actually Stevin was aware of the validity of the parallelogram of 

forces, as we will see below. With his work the principles of the statics of 
vertical and oblique forces had been defined. Others would elaborate on 
them and reformulate then, but the basis was there. Stevin brought con-
siderable conceptual clarity to the subject by means of these notions. The 
ease by means of which he could phrase his new conceptual franework in 
Dutch led him to believe in the superiority of Dutch. For example, in the 
dedication he refers to words like “Evestaltwichtich”, “Rechthefgewicht”, 
“Scheefdaellinie”, that literally stand for, respectively, “Equal-position-
weight-ly” (means: of equal positional weight), “Vertical-lift-weight” and 
“Oblique-lowering-line” ([15], pp. 84–85). He wrote about them: “[These 
words] do not exist [in other languages – T. K.], Nature has specially 
designed Dutch for it”. In the same vein he refers to his Proposition  
XX, “Ghelijck rechtheflini tot scheefheflini, also rechthefwicht tot 
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scheefhefwicht”, which means as we have seen “Like vertical-lift-line is to 
oblique-lift-line, so is vertical-lift-weight to oblique-lift-weight”. He wrote 
about it:  

“Such secrets have been hidden hitherto in all other languages. 
Let them try to do something similar in another language. You 
can safely promise them a cake and I assure you that you will 
get away without damage”. ([15], pp. 90–91)  

Stevin had a very clear mind. His exposition is admirable, but he 
confused the superiority of his concepts and approach with the alleged 
superiority of the Dutch language.  

Stevin called the science of weights an art, because he put it on the 
same level as arithmetic and geometry. In his dedication to the Holy 
Roman Emperor Rudolph II that precedes the Principles of the Art of 
Weighing he wrote, with an implicit reference to the Book of Wisdom: 

55). Arithmetic (rekenconst) and geometry (meetconst) were established arts 
(art=const in Stevin’s Dutch). The principles of the art of weighing, how-
ever, had according to the text of the dedication remained hidden from his 
predecessors. The law of the lever with respect to vertical weights was 
indeed known but, according to Stevin, incorrectly explained. Moreover, 
according to Stevin in the dedication preceding the art of weighing the 

we have seen this was not quite correct because the law of the inclined 
plane had been correctly derived in Jordanus’ school. Although it is clear 
to me that Stevin must have had some knowledge of the science of 
weights, this remark suggests the possibility that he had not seen or not 
understood Jordanus’ result on the inclined plane.  

Fig. 8. 
 

“number, magnitude and weight are in all things inseparable” ([15], pp. 54–

theory of oblique weights was completely unknown ([15], pp. 54–55). As 
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It is striking that Stevin feels no need to strengthen his own arguments 
with a criticism of his predecessors. Not bothered by the mistakes of his 
predecessors, without hesitations and completely sure of himself, he pro-
ceeds to a treatment of his own ideas.  

This paper does not allow a further discussion of Stevin’s work on 
statics. In a Supplement to the Art of Weighing he has the parallelogram of 
forces. See Figure 8 left ([15], pp. 532–533). This should not be surprising 
considering the results expressed by Figure 7. Figure 8 right ([15], pp. 276–
277) illustrates the major result in Book II of The Principles of the Art of 
Weighing on the center of gravity of a segment of a paraboloid: it is on the 
axis AD in a point I which is such that AI is equal to twice ID. Although 
his derivations are somewhat different, Stevin did not add anything sub-
stantial on centers of gravity to those of Archimedes and Commandino. 
 
 
10. A REMARK ON THE PRACTICE OF WEIGHING 

 
With Del Monte Stevin has in common the intention to combine 
Archimedean mechanics with a theory of actually existing machines. Stevin 
solved the problem of the gap between theory and practice by writing two 
volumes. The Practice of Weighing contains the application of The 
Principles of the Art of Weighing to machines.  

Figure 9 is from The Practice of Weighing (De Weeghdaet). The figure 
shows Stevin’s design of a machine he called the Almighty (Almachtich). 
Stevin refers at this point to Besson who had put a drawing in his book of 
the machine that Archimedes allegedly used to pull a ship from the shore 
into the sea, the Charistion (called polyspaston by others). Besson’s machine 
had at least one screw. 

Stevin said about his own design: 

“[it] is more suited to such work, for the following reasons: 
sturdier and more durable construction; of lower cost; by 
which is done more in shorter time, and (like the Charistion) 
of infinite power, that is to say: potentially, not actually”. 
([15], pp. 354–355) 

Stevin’s calculation of the mechanical advantage of the gear train is 
essentially based on a repeated application of the law of the lever, but he 
actually calculates the ratio of the number of revolutions of the crank 
DLMN and the axle S. Below we will se the same approach in Stevin’s 
analysis of windmills. 

This leads him to the conclusion that with a force of 25 pounds (he 
assumes that one man can exert such a force) a force of 5400 pounds can 
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be exerted. Because he assumes that the simple weight of the ship is 6 
times its positional weight, a ship weighing 32400 pounds can be pulled up 
the inclined plane ([14], pp. 358–365).  

It is questionable whether at the time a really reliably functioning 
Almighty could have been built. Yet Stevin meant business as for the 
application of his Art of Weighing. In order to see this it is god to look at 
his work on windmills. 
 

     
Fig. 9. Stevin’s Almighty. 

 
 
11. STEVIN’S ANALYSIS OF WINDMILLS 
 
The third important book that Stevin published in 1586 is called The 
Principles of the Weight of Water (De Beghinselen des Waterwichts). In the 
preface in which Stevin congratulates the States of the Unites Netherlands 
he remarks that because the Netherlands are permanently dealing with water, 
knowledge of the statical properties of water can yield great advantage 
([15], pp. 380–381). We will see below that this was more than rhetoric; 
Stevin meant it. A discussion of this book falls beyond the scope of this 
paper. However, one of the original results in the book concerns the pressure 
that water exerts on a vertical rectangular wall: the force is equivalent to 
the weight of a volume of water equal to ½ times the area of the wall times 
the height of the wall, exerted horizontally at 1/3 of the height of the wall. 
See [15], pp. 420–423; Figure 10 shows the accompanying image.  

As we will see, this result played a crucial role in Stevin’s work on 
windmills. A volume that could have had the title The Practice of the 
Weighing of Water and would have contained the application of the 
content of The Principles of the Weight of Water was certainly planned, 
but with the exception of a few pages (that contain among some other 
results the hydrostatic paradox) never appeared. The hydrostatic part of his 
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work on drainage windmills that we will discuss now, could easily have 
been included in such a volume.  

Already in 1586 and 1588 Stevin obtained patents on windmill 
designs. Stevin also actually built such mills. They were drainage mills 
meant to lift water by means of a scoop wheel from a basin with a low 
water level to a basin with a higher water level. Particularly interesting is 
the case of the mill he built in a polder near the city of IJsselstein, south of 
the city of Utrecht. The contract was signed on April 8, 1589 by Stevin’s 
business partner, Jan Hugo Cornets de Groot, with representatives of the 
polder (the polder Leege Biesen, Achtersloot, Meerloo and the Brouck in 
the land of IJsselstein).  

  

 
 

Fig. 10. The pressure exerted by water on a wall. 
 

Stevin promised to build a mill of wood and iron for 630 Carolus 
Florins ([16], p. 324). The mill, that “would draw as much water as two of 
the best mills of thereabouts could do”, would be ready in the fall of 1589. 
It soon became clear that the project was vexed with problems. In the end, 
after the polder refused to pay the last installment, De Groot and Stevin 
appealed to Princess Maria of Nassau, who while her brother was in 
captivity in Spain, was responsible for the barony of IJsselstein. After 
years a settlement was reached. The case is interesting because while Stevin 
accused the board of the polder of mismanagement, the representatives of 
the polder accused Stevin of mistakes in the design of the mill.  

We know a lot about Stevin’s ideas on windmills because Stevin left a 
manuscript called On Mills (Van de Molens) which contains calculations 
concerning both mills of the traditional type and mills of a different type 
based on Stevin’s new design. He also left a manuscript on the design of 
gear wheels: On the most perfect cogs and staves (Van Aldervolmaackste 
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Cammen en Staven, [16], pp. 48–63). The mill near IJsselstein was built 
on the basis of Stevin’s new design. 

Stevin’s considerations are based on an abstract kinematical model of 

of the following structure reduced to certain fundamental geometrical 
parameters:  

1. An oblique windshaft B turned by the sails. 
2. A vertical upright shaft K with an upper gear wheel S driven by a gear 

wheel C on the windshaft.   
3. A horizontal scoop-wheel shaft W with on it a gear wheel O, driven by 

a lower gear wheel N on the upright shaft, and a scoop-wheel R.  
4. A tower with a movable cap on top of it. The oblique windshaft B was 

fixed inside this cap. The cap could be turned to make the sails face the 
wind. Both upright shaft K and scoop-wheel shaft W were fixed inside 
the tower.  

5. The windshaft drives with its gear wheel C the upper gear wheel S of 
the upright shaft K and the upright shaft drives with its lower gear 
wheel N the scoop-wheel shaft W. 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
Fig. 11. The old design (left) and Stevin’s design (right). Nota bene: the names of the 
wheels in the text refer to the old design. 
 

the classical Dutch drainage mill See Figure 11 left. This model consists 
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He treats the gear trains in exactly the same way he had treated them in 
the Almighty. The dimensions of the mechanism and the number of teeth of 
the gears are the determining geometrical parameters of the kinematical 
model and he superimposes a chain of forces on the kinematical model: an 
input force brought about by the wind, transmission forces and an output 
force exerted on the water to be lifted. Subsequent forces are related to 
each other by means of the law of the lever.  

Stevin’s calculations all concern specific numerical cases and he does 
not give us general algebraic formulae. Yet he is fully aware of the generality 
of his method. Suppose that the wind exerts a force Fwind perpendicular to 
the wing and the wind shaft at a distance from the shaft equal to half the 
length of the wings, i.e. ½ RadiusWings. (In modern terms the force causes a 
moment about the shaft of Fwind x ½ RadiusWings). The gear train then is a 
chain of levers and given the dimensions by repeatedly applying the law of 
the lever we could determine the force Fwater exerted on the scoops (at, for 
example a distance ½ RadiusWings from the axle) needed to have equilibrium.  

Yet Stevin’s calculations are not based on this approach. For Stevin 
the numbers of teeth of the gears and the numbers of revolutions they bring 
about are the parameters he calculates with. Let the numbers of teeth of 
respectively C, S, N and O be NC, NN, NS and NO. Then we have for the 
number of revolutions Rwindshaft of the windshaft and the number of 
revolutions Rscoopwheelshaft of the scoop wheel shaft the following relation: 

Rscoopwheelshaft/Rwindshaft = (NC.NN)/(NS.NO). 

This is Stevin’s way to deal with the transmission of force in gears. He 
argues as follows. If the wings would rotate exactly as fast as the scoop-
wheel, we would have equilibrium if Fwater exerted by the water on the 
scoops (at a distance ½ RadiusWings) would be equal to FWind.  

However, in general in a situation of equilibrium we have the follow-
ing relation between FWind (exerted on the wings at ½ RadiusWings) and 
FWater (exerted on the scoops at ½ RadiusWings)  

Fwind  = (NC.NN)/(NS.NO) x Fwater 

I will call this the Fundamental relation. It is remarkable that this is a 
kinematical relation, while Stevin refers for its proof of it to a result in 
statics: the law of the lever. Yet it shows that he was aware of the validity 
of the principle of the conservation of work. 
 
 
 
 



Simon Stevin and the Rise of Archimedean Mechanics in the Renaissance 107 

12. CALCULATION OF THE WIND PRESSURE WITHOUT 
KNOWLEDGE OF AERODYNAMICS 

 
Stevin’s originality with respect to windmills does not lie in his insight in 
the fundamental relation. It lies in what he did with it. The authors who 
wrote on the subject, Dijksterhuis and Forbes, agreed on the originality of 
Stevin’s approach, but as for how good Stevin’s designs actually were, 
they seem to be hesitant. The remark “Stevin tried to calculate the 
minimum wind pressure needed to move his scoop wheel, but he failed to 
relate the wind velocity to the energy available on the scoop-wheel shaft, 
for in his days there were no means of measuring the speed of the wind” 
([16], pp. 319–320) suggests that Stevin failed somewhere in his analysis. 
From our point of view such a criticism is unjustified. It is true that Stevin 
was not capable of deducing Fwind on the basis of, for example, aero-
dynamic considerations. However, the originality of Stevin lies firstly in 
the fact that he realized that the Fundamental Relation can be used to 
determine Fwind in a completely different way. He first measured and 
counted the fundamental geometrical parameters of several existing and 
functioning windmills. Then he used his original hydrostatic results to 
determine Fwater for those windmills. And finally he applied the Fundamental 
Relation to calculate Fwind for those windmills.  

In order to determine the force Fwater (exerted on the scoop) at a distance 
½ RadiusWings) he models the scoop of the scoop wheel as a vertical 
rectangular board that separates high level water from low level water. His 
hydrostatical results enabled him to determine the moments exerted by the 
pressure of the high and the low level water. Fwater is the force needed at 
the distance ½ RadiusWings to create equilibrium with the high and low 
level pressures. In this way Stevin determined for all mills that he 
investigated the force Fwater and by means of the fundamental relation he 
calculated Fwind.  

Actually in On Mills, for all mills Stevin divides Fwind by the area of 
the four wings together. He finds answers like 2 480/1336 ounces per 
square foot of sail (for the Zuyt Nootdorp Mill) and 4 536/1230 ounces per 
square foot of sail (for the Pynacker Mill at the bridge) or 3 44/1020 
ounces per square foot (for the Cralingen Marsh Mill).  

In passing Stevin also calculated in the case of the Zuyt Nootdorp Mill 
the force that the teeth of lower gears N and O exert upon each other by 
means of the law of the lever, in the way described above.  
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His answer is: Flowergears= 1193 pounds. Without giving us the calculation 
he writes that the force between the teeth of the uppergears, Fuppergears, can 
be found by means of the relation:  

Flowergears/Fuppergears = RadiusS/RadiusN 

Of course Stevin does not use this formula. He writes: “I say: as the 
radius of the driven wheel against the radius of the wallower, so the 
pressure above to that below” ([16], pp. 338–339). 
 
 
13. A BRILLIANT NEW DESIGN? 

 
It is clear from Stevin’s work that the calculation of Fwind

of Stevin’s new design. The basic new element of Stevin’s design is a 
much bigger scoop wheel. As a result the resistance of the water that must 
be conquered is consequently much higher. In his calculations Stevin uses 
the following data as a starting point: length and width of the wings, the 
radius of the scoop wheel, the width of the scoop-wheel, the immersion of 
the spoons and the difference between the high-water and the low-water 
level. Moreover, he assumes that the wind yields a pressure of 3 ounces 
per square foot. This value is somewhat below the values he determined 
for the existing mills.  

By means of his hydrostatics Stevin calculated Fwater for his new design 
and used his model to calculate the dimensions of the gear wheels such 
that the force that the wind can apparently yield on the basis of his earlier 
calculations is enough to resist the pressure of the water on these big 
spoons. One of the consequences of the new design is that while in the 
traditional mill the transmission from the upper axis to the central axis 
speeds up the velocity of rotation and the transmission from the central 
axis to the lower axis slows it down again, in the new mill the big force 
needed to move the big spoons makes it necessary to use both trans-
missions to slow down the rate of rotation. In the traditional design the 
gear wheels on the central axis are both lantern wheels and the two other 
gear wheels, on respectively the upper shaft and the scoop-wheel shaft, are 
crown wheels. The need to slow down the rate of rotation immediately 
made it necessary to put the upper lantern wheel on the upper axis and the 
upper crown wheel on the central axis: the wheels S and C change places. 
In the new design the forces that the teeth of the gear wheels exert on each 
other are bigger than in the case of the traditional mills. That is why it is 

 was only a means 
 to design a more efficient windmill. Figure 11 (right) shows us one version 
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understandable that Stevin gave special attention to the position and shape 
of the teeth in On the most perfect cogs and staves.   
 
 
14. HOW SUCCESSFUL WAS THE NEW DESIGN? 
 
Understandably Dijksterhuis and Forbes give considerable attention the 
problems that Stevin encountered in the case of the IJsselstein mill. They 
studied the files in the IJsselstein Archive and there conclusion is the 
following: “The main point seems to have been that the upright shaft was 
made of too soft a timber and thus the thrust journal (‘onderijzer’ in Dutch) 
penetrated into the timber and the smooth turning in the thrust bearing was 
endangered.” ([16], p. 325). Dijksterhuis and Forbes add a second point 
concerning the greater forces that were generated in his design: “Stevin in 
increasing the size of the scoop wheel caused heavier load on the pit wheel 
(the diameter of which remained the same) and thus greater stresses on the 
cogs and staves of this wheel and the crown wheel. He was not able to 
solve this difficulty mechanically nor to cope with the greater stresses in 
other parts of the machinery” ([16], p. 325). These remarks all suggest that 
Stevin’s new design was a failure. Moreover Dijksterhuis and Forbes add: 
“Stevin encountered similar trouble in the case of the Kralingen mills” 
([16], p. 326). In this case the trouble concerned the pit wheel, a crown 
wheel on the scoop-wheel shaft, which was originally not strong enough.  

It is interesting that in the case of the IJsselstein mill Stevin felt it 
necessary to prove that his design worked well in other parts of the country 
and obtained a series of testimonials. The counsel of the polder may have 
felt that such testimonials were written by “disciples of Mr. Stevin”, it is a 
fact that they contain a very positive report on other mills built by Stevin 
([17], pp. 386–391). There is also a very positive report in which authorities 
from Kralingen declare their satisfaction with Stevin’s mills. It is remark-
able that Dijksterhuis and Forbes believe that this positive testimonial 
should be regarded as a conciliatory gesture ([17], p. 327) concerning the 
rebuilding and strengthening of the above-mentioned pit wheel, thereby 
suggesting doubt concerning the reliability of the testimonial. This is 
particularly strange, because the negotiations had ended with a contract in 
May 21, 1593 and the testimonial was accorded to Stevin in June 1594. 
Why would a conciliatory gesture be necessary more than a year after 
agreement had been reached?  

Yet, whatever the causes, the conclusion can only be that Stevin’s new 
design was not a big success.  
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15. CONCLUSION 
 
The essence of the Archimedean Renaissance in mechanics is the attempt 
to study mechanics or the science of machines in an Archimedean way. 
Because none of Archimedes’ works on mechanics had survived Renaissance 
scholars had to bridge the gap between, on the one hand, the highly 
theoretical treatises of Archimedes, in which he had turned statics and hydro-
statics into pure, strictly deductive sciences, and, on the other hand, the 
real machines.  

Del Monte saw the problem clearly. In his Mechanicorum Liber he 
derived the law of the balance or lever in an Archimedean way and then 
attempted to explain the functioning of the five simple machines on the 
basis of this law. Del Monte defined the problem but did not go far beyond 
what his predecessors had reached.  

Very probably without having read Del Monte Stevin was much more 
successful. With some new highly original contributions to statics and 
hydrostatics and an approach in which the unity of theory and practice was 
a central dogma Stevin showed that an Archimedean science of machines 
going beyond what had been reached in Antiquity was quite possible. Stevin 
thought and wrote in Dutch. I have argued that this probably helped him in 
his new and fresh approach to mechanics. It also meant a disadvantage. His 
work was not immediately noticed. Only in 1634 some of his important 
works were translated into French [20]. The importance of Stevin is still 
sometimes underestimated. In an extensive paper on the emergence of 
Archimedean mechanics in the Late Renaissance published in 2008 [11] 
Stevin is not even mentioned. 
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