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ABSTRACT We highlight the legacy of Simon Stevin and Gabriel Lamé 
and show how their work led to some of the most important recent develop-
ments in science, ultimately based upon the principles of balance and the 
act of weighing, virtual or real. These names are also important in the sense 
of a unique rational science and universal natural shapes.   
 
 
1. INTRODUCTION 
 
Since antiquity various geometers have strived to understand and expand 
the ideas and results obtained by Greek mathematicians. The foundations 
developed by Eudoxus, Euclid, Apollonius, Archimedes and many others  
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were characterized by a pulsation between geometry and algebra. This 
remains so today, in our era of calculation and algorithms (Atiyah, 2000). 
Shiing-Shin Chern wrote (2000): “While analysis and algebra provide the 
foundations of mathematics, geometry is at the core”.  

More analytic than synthetic, contemporary differential geometry follows 
the ideas of Riemann and Helmholtz, for whom measurements should be 
given priority, in accordance with our abstraction of our perception of the 
world, and very much in line with Greek thoughts on commensurability. 
The Greek origin for the word geometry is –μετρεω. The root –μετρεω 
(also in the word συμμετρια = symmetry, proportion or right balance) 
means: to measure, to correspond. Like κοσμεω (ordering) in ancient Greek, 
symmetry also has a verb (συμμετρεω) meaning to measure, to correspond, 
to be commensurate (Vlastos, 2005).   

A major task for geometers is to deepen the understanding of the 
legacy of the Greek geometers. Still much is to be learned from Bacon 
writings: “Solomon saith: “There is no new thing upon the earth”. So that 
as Plato had an imagination that all knowledge was but remembrance; so 
Solomon giveth his sentence, “that all novelty is but oblivion.” 

For Klein parabolic, elliptic and hyperbolic had precisely the same 
geometric meaning as it had in the application of areas of the Pythagoreans 
or in the conics of Apollonius, namely precise fitting, defect and excess 
respectively. Indeed, science still revolves around the same questions that 
interested Greek scholars, such as the finite versus infinite or the discrete 
versus continuous (in doing mathematics all these dualities act simul-
taneously; Thurston, 1994). Geometry (and its applications in the natural 
sciences) is still about the notion of going straight. On recent develop-
ments on curvatures and intrinsic and extrinsic symmetries see: Haesen 
and Verstraelen, 2009 and Chen, 2007.   
 
 
2. FROM RENAISSANCE TO THE ECOLE POLYTECHNIQUE 
 
2.1. Simon Stevin’s Wonder en is gheen Wonder 

Simon Stevin was one of the greatest mathematicians of the Renaissance 
and the greatest mechanician of the long period extending from Archimedes 
to Galileo (Sarton, 1934; Bosmans, 1923, 1926). His works were translated 
and edited by Snellius and Albert Girard and were available in Dutch, 
French and Latin and known to, amongst others, Gregory Saint-Vincent and 
Descartes.   
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Essential in Stevin’s work is the relation between spiegeling (“theory”) 
and daet (“practice”). Besides the necessary theoretical approach there always 
should be an experimental one, either concrete, or through a thought experi-
ment. In this way Stevin made valuable contributions in calculus, algebra, 
geometry, mechanics, hydrostatics, navigation, tides theory, fortification, 
the building of locks, economy, . . . On the theoretical side, he also solved 
the hydrostatic paradox and dropped two unequal weights from a tower in 
Leiden to prove that they would reach the ground level at the same time, 
well before Pascal and Galilei respectively.   

In De Thiende (1585) Stevin systematically showed how all calculations 
with real numbers are reduced to the standard operations with natural 
numbers. The importance of the real numbers for science is clear, not in 
the least since this very same method was used by Newton in his Method 
of Fluxions. In 1586 in the books De Beghinselen der Weegh-const (The art 
of weighing) and De Weeghdaet (The practice of weighing) the foundations 
of the mathematical vector calculus were provided with the rule of the 
parallelogram for the addition of forces as concrete application in physics. 
He introduced the impossibility of a perpetuum mobile as a method of 
proof in physics with the famous Clootkrans proof. 

For Stevin, when phenomena could be explained rationally, meaning 
geometrically, miracles where no longer miracles. Stevin’s motto (and epi-
taph; Feynman, 1963) was Wonder en is gheen wonder (Magic is no magic; 
Devreese & Vanden Berghe, 2008). He was a great admirer of Archimedes 
and Stevin’s vision was completely in line with rational mechanics, where 
balance and weighing are crucial. In Beghinselen der Weeghconst, he 
converted the method of weighing, which was a source of inspiration to 
Archimedes, into a method of proof, with the use of limits as culmination 
(figure 1 left; Bosmans, 1923; Sarton, 1936).  

 

                   
Fig. 1. Determining the centre of gravity of a triangle and a tetrahedron. 

Rational Mechanics and Science Rationnelle Unique 



32 J. Gielis et al. 

The use of limits in the elegant proofs of Stevin substituted for 
proofs using method of exhaustion involving a reductio ad absurdum by 
Archimedes. Stevin is thus an important link in the gradual transformation 
to modern methods of infinitesimal analysis in a chain involving Archimedes, 
Commandino, Stevin, Gregoire de Saint-Vincent, Boelmans, Tacquet, Pascal, 
Leibniz (Bosmans 1926: Sarton, 1934). 

Being at the crossroads of algebra and geometry Stevin was first and 
foremost a geometer. With geometrical numbers he thought of powers in a 
very practical way. 23 is a cube with volume 8, and 24 is simply two cubes 
of volume 8. This pulsation of thinking both geometrically and algebraically 
and about cubes, numbers and roots in different ways, is an art, which 
should be practiced in our era of specialization. 

2.2. From the Late Renaissance to Radical Enlightenment 

In the Renaissance a number of exciting developments took place, forming 
the basis of contemporary science. These would be developed more fully 
during the Enlightenment, supposedly in Italy, France and England. It has 
been forcibly argued however, that Radical Enlightenment in the Northern 
Low Countries well predated the development of Enlightenment in other 
regions of Europe (Israel, 2005). 

In the 17th century the Republic of the Northern Low Countries had 
become, under the patronage of Maurits van Oranje, a freehaven for science 
and religion. Many scholars from the Southern Low countries and France 
fled to the North and would provide the basis of the Golden Age (Struik, 
1981). One of the foremost persons was Simon Stevin, who became the 
Prince’s personal advisor. Stevin was co-founder of the Ingenieursschool 
in Leiden in 1600, where generations of Rekenmeesters (reckoning masters) 
were trained.  

Stevin’s early defense of the Copernican system was not appreciated 
by the clerics who ruled the universities. Stevin thus never held an academic 
position, but his influence on several generations of his “students” is very 
profound (Struik, 1981; Fig. 2). Among those we find, directly, Isaac 
Beeckman, Snellius (Sr. and Jr.) and Albert Girard, and indirectly Gregoire 
de Saint-Vincent, Descartes and Christiaan Huygens.  

His legacy and influence on further developments was enormous, but 
he did not receive the proper recognition. George Sarton (1934) wrote: 
“How could people truly admire one whom they do not understand, how 
could they consider great a man whose greatness they have not yet been 
educated to appreciate?”  

All in all, these developments in science in the first half of the 17th 
century would become the cornerstone of the Radical Enlightenment in the 
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second half of that century, when the mathematicians De Witt and Hudde 
would also take important political positions (Israel, 2005). The political 
and religious freedom would allow for the development of Radical 
Enlightenment with Baruch de Spinoza as central figure (Van Bunge, 
2001). His views were certainly influenced by the developments in mathe-
matics and science in the first half of the 17th century in the Northern Low 
Countries, and his discourse was very much in line with Stevin’s “Wonder 
en is gheen Wonder.” 
 

 
Fig. 2. Compiled from www.genealogy.ams.org. 

The most important mathematician of the Low Countries in the late 
17th century was Huygens, and the crucial encounter with Leibniz in Paris 
would be decisive for the development of science. The further develop-
ments in differential geometry initiated with Huygens and Leibniz would 
lead, through Basel, Berlin and Saint Petersburg and with the Bernoulli’s, 
Euler and Lagrange as the main figures in the 18th century, to Paris in the 
second half of the 18th century. Paris became a leading center of mathematics 
in the 19th and 20th century. The trunk of the genealogical tree initiated in 
the Low Countries was continued and replanted in the Ecole Polytechnique 
EP in Paris, with brilliant teachers and students like Monge, Lagrange, 
Laplace, Fourier, Poisson, Legendre, Cauchy, Delaunay, Lamé, Clapeyron 
and Chasles, and in full agreement with the idea of Spiegeling and Daet or 
theory and practice.   

Rational Mechanics and Science Rationnelle Unique 
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3. SCIENCE RATIONNELLE UNIQUE & NATURAL SHAPES 

3.1. Science Rationnelle Unique 

Gabriel Lamé (1795–1860) entered the EP in 1813, graduated in 1817, and 
became a very famous ingénieur savant. Like Archimedes and Stevin 
before him he was both engineer and mathematician. Gauss praised Lamé 
as the most important French mathematician of his time, but in France he 
was considered too theoretical for engineers and too practical for 
mathematicians (Bertrand, 1878).   

At the age of 21 he introduced equations of the type xn + yn = 1 in 
his book Examen de differentes méthodes employées pour résoudre les 
problèmes de géometrie (Lamé, 1818)1 and noted that a special choice of 
exponents gave a uniform description of all conic sections. These Lamé 
curves gave the possibility of defining metrics based on powers other than 
two. This was also suggested by Riemann in his Habilitationsschrift 
(1856), which led to the development of Riemann-Finsler geometry (the 
metric structure of Finsler manifolds is given by a collection of convex 
symmetric bodies in the various tangent spaces; Berger, 2000).  

During a decade in Saint Petersburg, Lamé and Clapeyron developed, 
amongst others, location theory (Franksen & Grattan-Guinness, 1989; 
Tazzioli, 1995; Gouzevitch & Gouzevitch, 2009). The development of the 
theory of optimal location was done with weights and balances based on 
machines that were used to demonstrate Stevin’s parallelogram of forces. 
As engineers Lamé and Clapeyron used methods of weighing construction 
of bridges using funicular polygons (Tazzioli, 1993).  

He returned to France to become professor of physics at the EP from 
1832 onwards. Lamé’s work on curvilinear coordinates was very influential 
(Struik, 1933) and his work was considered ‘immortal’ by Darboux (1878; 
“les immortels travaux de Lamé sur les coordonnées curvilignes”). This 
generalized the work of Euler on curves and of Gauss on surfaces. Elie 
Cartan (1931) considered Lamé as cofounder of Riemannian geometry, and 
his work opened the door for Ricci, Levi-Civita and Beltrami (Vincensini, 
1972; Tazzioli, 1993). His influence on science continues to be most 
impressive (Guitart, 2009).   

What connects all activities of Gabriel Lamé was his quest for a 
Unique Rational Science. Lamé foresaw “l'avènement futur d'une science 
rationnelle unique”, of a unique rational science, which essentially is 
mathematical physics. His method used curvilinear coordinates designed to 
                                                      
1 As a young student Gabriel Lamé’s interest in geometry was aroused by Legendre’s 

Géometrie. The profound impact of Legendre’s educational books on the development 
of science is illustrated further by the influence of “Théorie des Nombres” on Riemann. 
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adapt a physical situation to a system of curvilinear coordinates. This 
model then provided the ‘initial geometrical support’ for a physical 
system. In this sense differences between phenomena would no longer be 
an arbitrary choice of a certain parameter, but would organize itself to 
produce a natural intrinsic space of the system. 

Lamé thus envisaged that, from a mathematical point of view, the 
study of a physical system amounts to the study of a system of curvilinear 
coordinates, adapted to the given physical situation. The study of that 
physical problem, adapted with the appropriate system of curvilinear 
coordinates then becomes the characterization of the system of differential 
invariants or the calculation of the Laplacian in curvilinear coordinates. In 
his view this reduces to one equation only, namely the Poisson equation in 
curvilinear coordinates, with boundary conditions (Guitart, 2009).  

3.2. Universal Natural Shapes 

170 years after Lamé published his Examens, his writings on curvilinear 
coordinates and on Lamé curves have been united. Following attempts to 
describe natural shapes based on Lamé curves (Gielis, 1996) these curves 
were generalized as supershapes (Gielis, 2003; Equation (*); Fig. 3). This 
transformation can be applied to any planar function. Equation 0 in fact is 
a generalized Pythagorean Theorem, a conservation law for n-volumes.  

 
Equation (*): the Superformula with m, n2, n3 , A,B,n1 0
The names superformula and supershapes originate from the names  

superellipses and superquadrics. The name superformula was changed by 
mathematicians into Gielis Formula (Koiso and Palmer, 2008), and super-
shapes into Gielis’ curves and surfaces (Verstraelen, 2004, 2009).  

Fig. 3. Supershapes and natural analogues. 
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Nuphar luteum Scrophularia nodosa Equisetum rasp berry starfish



36 J. Gielis et al. 

As these transformations provide for a one-step extension of conic 
sections to the description of natural shapes they were referred to as 
Universal Natural Shapes (Gielis et al., 2005). The shape coordinates make 
shapes commensurable. Shapes of starfish, flowers, and pyramids and a 
wide variety of natural shapes can now be described using one common 
yard stick, turning asymmetry (incommensurable) into symmetry (to make 
commensurable) or: “From discord the fairest harmony” (Heraclitus), thus 
expresses one of the most fundamental goals of mathematics.  

Lamé-Gielis’ curves and (hyper-) surfaces turn out to be the “most 
natural curves and surfaces of Euclidean geometry.” A wide range of 
shapes in the natural sciences can all be produced in this rather universal 
way: first, impose some “Euclidean” geometrical principle, and second, 
apply a Gielis transformation to the shapes resulting from these geometric 
principles (Verstraelen, 2008). Using tangents, and tangent spaces based 
on supershapes as length indicatrices, could unveil the geometrical meaning 
of all curvatures in Minkowski and Riemann-Finsler geometry, and the 
natural processes that are modeled in this way.   

Shape description starting from a center using so-called Gielis curves 
and surfaces are in a natural way anisotropic, and induce a coordinate 
system of and on the surface, adapted to the problem. Generalized trigono-
metric or Fourier series can be defined (Gielis, 2009). This allows for stra-
tegies to develop computational tools, esp. those involving the Laplacian. 
Methods have been developed using stretched polar coordinates (Natalini 
et al., 2008; Caratelli et al., 2009), which allows for the use of Fourier 
series for boundary value problems combining the insights of Lamé and 
Fourier.   

 
 

4. THE DIRICHLET PROBLEM FOR POISSON’S EQUATION  
IN A STARLIKE DOMAIN  

 
Many applications of mathematical physics and electromagnetics are 
connected with the Laplacian (wave equation, heat propagation, Laplace, 
Helmholtz, Poisson and Schrödinger equations; Caratelli et al., 2009). Most 
boundary value problems (BVP) relevant to the Laplacian can be solved in 
explicit form only in domains with very special shapes or symmetries 
(Courant, 1950). The solution in more general domains can be obtained 
by using the Riemann theorem on conformal mappings, and the relevant 
invariance of the Laplacian.  

The use of stretched co-ordinate systems allows the application of the 
classical Fourier method to a wide set of differential problems in complex 
two-dimensional normal-polar domains (Natalini et al., 2008; Caratelli et al., 
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2009). Such domains can be approximated as closely as desired by the above 
equations and numerical results are in good agreement with theoretical 
results of Lennart Carleson (Natalini et al., 2008). Here the solution of the 
Dirichlet problem for the Poisson equation in two-dimensional natural-
shaped domains is presented. This differential problem is of great 
importance in different areas of scientific research, such as electrostatics, 
mechanical engineering and theoretical physics. 

Let 2D R⊂  be an open, bounded, star-like domain, with boundary 
1CD ∈∂  having outer normal unit vector )(= . Then, a general 

representation formula for the solution of the Poisson equation: 

 ),()( fu =Δ−     ,D∈  (1) 

subject to the Dirichlet boundary condition: 

 ),()( gu =     ,D∂∈  (2) 

for given continuous functions )(f , )(g  can be easily obtained by 
using Green’s function method. Under the assumption )(2 DCu ∈ , for 
any point D∈  it is not difficult to show that: 

 

where: 
 ln)( 2

1
π−=Φ  (4) 

denotes the fundamental solution of the Laplace equation satisfying 
)()( δ=ΔΦ− , )(δ  being the Dirac measure on 2R  giving unit 

mass to the origin. As it can be noticed, formula (3) allows us to evaluate 
)(u  once the values of )(uΔ  within D  and the values of )(u , 

ν∂∂ /)(u  along D∂  are known. Hence, for the application to the 
Dirichlet problem for the Poisson equation (1)-(2), we must slightly 
modify (3) by removing the term involving the normal derivative of the 
unknown function )(u  along the boundary D∂ . To achieve this, let us 
introduce for any fixed D∈  the corrector function ),(= φφ  solving 
the boundary-value problem for the Laplace equation: 
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Applying Green’s formula readily yields: 

 

As a consequence, Green’s function for the Poisson equation (1) can 
be evaluated as follows: 

 G( ,  ) = Φ(   − ) − φ( ,   ), ,D∈ .≠  (7) 

In fact, adding (6) to (3), we find: 

 

 

is the outer normal derivative of ),(G  with respect to the variable  
So, the solution of (1)-(2) can be derived by using (8), provided that we 
can construct Green’s function for the given domain D . To this end, let us 
firstly introduce in the real plane the stretched curvilinear coordinate 
system: 

 ( , ),x y=     ⎩
⎨
⎧

=
=

,sin)(
,cos)(

ϑϑ
ϑϑ

rRy
rRx

 (10) 

)(ϑR  denoting the polar equation of D∂ . Therefore, the domain D  is 
described by the inequalities πϑ 20 ≤≤ , 10 ≤≤ r .  
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where: 
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The following theorem provides an effective means to solve (5), and 
hence evaluate ),(G . 

Theorem – Let: 

 ( , ),x y′ ′=     
( )cos ,

( )sin ,

x r R

y r R

ϑ ϑ

ϑ ϑ

′ ′ ′=⎧⎪
⎨

′ ′ ′=⎪⎩
 (11) 

and: 

 
   
Φ( − ) = %Φ( ′ϑ , ) = αm ( )cos(m ′ϑ ) + βm ( )sin(m ′ϑ )⎡⎣ ⎤⎦

m=0

+∞

∑ ,  (12) 

with ,D∂∈  and: 

 ,
)sin(
)cos(

),(~
2)(

)( 2

0

ϑ
ϑ
ϑ

ϑ
π

ε
β
α π

′
⎭
⎬
⎫

⎩
⎨
⎧

′
′

′Φ=
⎭
⎬
⎫

⎩
⎨
⎧

∫ d
m
mm

m

m  (13) 

mε  being the usual Neumann’s symbol. Then, the boundary-value problem 

(5) admits a classical solution )(),( 2 DL∈φ  such that the following 
Fourier-like series expansion holds: 

 
[ ] [ ]

0
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The coefficients )(mΑ , (mΒ
the infinite linear system: 
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where: 

 
Xn,m

±{ } =
εn
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cos(n ′ ϑ )
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with 0, Nnm ∈ . 
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Proof – In the stretched coordinate system (10)-(11), the domain D  is 
transformed into the unit circle. Hence, we can use the eigenfunction method 
and separation of variables to solve the Laplace equation 0),( =Δφ . 
In this way, it is straightforward to show that the elementary solutions of 
the problem are given by: 

   φm( , ′r , ′ϑ ) = ′r R( ′ϑ )⎡⎣ ⎤⎦
m

Αm( )cos(m ′ϑ )⎡⎣ +Βm( )sin(m ′ϑ )⎤⎦ ,  (18) 

with 0m N∈ . So, enforcing the Dirichlet boundary condition 
φ( ,  ) = Φ(  − )  ( D∂∈ ) and using the usual Fourier’s projection 
method, equations (15)-(17) readily follow. □ 

Once the corrector function ),(φ  for the assigned domain D  is 
computed (Natalini et al., 2008), the solution of the boundary-value 
problem for the Poisson equation (1)-(2) can be obtained by applying 
suitable quadrature rules to Green’s function representation (8). 

 
 

5. OUTLOOK 
 

The solution to the boundary-value problem for the Poisson equation is 
presented here. This particular problem was selected because of G. Lamé’s 
preference. In the same way, canonical solutions to BVP of various types 
(also Neumann and Robin problems) can be obtained using Fourier series, 
avoiding cumbersome numerical techniques such as finite-difference or 
finite-element methods. It is also applicable in engineering since in three 
dimensions it allows for the development of computational solutions for 
mesh-free modeling, without the need for discretization in general. Almost 
200 years after Fourier and Lamé, their original contributions to science 
are now united in the spirit of a Unique Rational Science.   

We may go further, since from a purely geometrical point of view 
there is one and only one curve that can be expressed in a finite Fourier 
series only, and that is the circle itself, due to a theorem of B-Y Chen 
(1994). In the study of Riemannian submanifolds Chen introduced finite 
type functions of k-type. The circle is the only planar curve of finite type, 
namely of 1-type and any other curve is of infinite type (Verstraelen, 
1991).   

A generalized trigonometric series based on Eq. 1 can associate any 
term in the series with some anisotropic unit circle. It follows that all 
supershapes can be described in only one term (and in analogy with Chen 
finite type curves are of 1-type). As the set of Euclidean circles is a subset 
of the set of such unit circles, Fourier series reduce to a special case. Since 

ρρ ′

ρρρ

ρ′ρρ′ρ′ρ

ρ′ρ
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anisotropic unit circles can have cusps or singularities, analysis based on 
pure shape description incorporates such singularities a priori. 

In conclusion, with supershapes and Gielis transformations we are able 
to describe shape and development of a wide variety of basic shapes in 
nature using only pure numbers and we can begin to understand how other 
natural beings or objects “geometrize their world ” , with their own shapes 
as unit circles, and based on a generalized Pythagorean Theorem. We have 
called this program Universal Natural Shapes (Gielis et al., 2005).   

An extension of Euclidean geometry, with a conservation law for  
n-volumes (or in a 3D world the act of weighing and equilibrium in the 
spirit of Archimedes, Stevin and Lamé), provides for a uniform description 
of natural and abstract shapes. It stimulates geometric research in the natural 
sciences and the development of new computational methods to address a 
variety of open problems in mathematical physics and mechanics.  

“La mécanique est la science des forces et du mouvement” (Delaunay, 
1856). 
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