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PREFACE 
 
 
The idea of a Conference in Syracuse to honour Archimedes, one of the 
greatest figures in Science and Technology of all ages, was born during a 
Meeting in Patras, Greece, dealing with the cultural interaction between 
Western Greece and Southern Italy through History, organized by the 
Western Greece Region within the frame of a EU Interreg project in 
cooperation with several Greek and Italian institutions. Part of the Meeting 
was devoted to Archimedes as the representative figure of the common 
scientific tradition of Greece and Italy. Many reknown specialists attended 
the Meeting, but many more, who were unable to attend, expressed the wish 
that a respective Conference be organized in Syracuse. The present editors 
assumed the task of making this idea a reality by co-chairing a World 
Conference on ‘The Genius of Archimedes (23 Centuries of Influence on 
the Fields of Mathematics, Science, and Engineering)’, which was held in 

Archimedes’ birth.  
The Conference was aiming at bringing together researchers, scholars 

and students from the broad ranges of disciplines referring to the History 
of Science and Technology, Mathematics, Mechanics, and Engineering, in 
a unique multidisciplinary forum demonstrating the sequence, progression, 
or continuation of Archimedean influence from ancient times to modern era. 

In fact, most the authors of the contributed papers are experts in 
different topics that usually are far from each other. This has been, indeed, 
a challenge: convincing technical experts and historian to go further  
in-depth into the background of their topics of expertise with both 
technical and historical views to Archimedes’ legacy.  

We have received a very positive response, as can be seen by the fact 
that these Proceedings contain contributions by authors from all around the 
world. Out of about 50 papers submitted, after thorough review, about 
35 papers were accepted both for presentation and publication in the 
Proceedings. They include topics drawn from the works of Archimedes, 
such as Hydrostatics, Mechanics, Mathematical Physics, Integral Calculus, 
Ancient Machines & Mechanisms, History of Mathematics & Machines, 
Teaching of Archimedean Principles, Pycnometry, Archimedean Legends 
and others. Also, because of the location of the Conference, a special 
session was devotyed to Syracuse at the time of Archimedes. The figure on 
the cover is taken from the the book ‘Mechanicorum Liber’ by Guidobaldo 
Del Monte, published in Pisa on 1575 and represents the lever law of 
Archimedes as lifting the world through knowledge. 

Syracuse, Italy, 8–10 June 2010, celebrate the 23th century anniversary of 

v 
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The world-wide participation to the Conference indicates also that 
Archimedes’ works are still of interest everywhere and, indeed, an in-depth 
knowledge of this glorious past can be a great source of inspiration in 
developing the present and in shaping the future with new ideas in 
teaching, research, and technological applications. 

We believe that a reader will take advantage of the papers in these 
Proceedings with further satisfaction and motivation for her or his work 
(historical or not). These papers cover a wide field of the History of 
Science and Mechanical Engineering. 

The Editors are grateful to their families for their patience and 
understanding, without which the organization of such a task might be 
impossible. In particular, the first of us (M.C.), mainly responsible for the 
preparation of the present volume, wishes to thank his wife Brunella, 
daughters Elisa and Sofia, and young son Raffaele for their encouragement 
and support.  
 
Cassino (Italy) and Patras (Greece): January 2010 
 
Marco Ceccarelli, Stephanos A. Paipetis, Editors 
Co-Chairmen for Archimedes 2010 Conference 
 

We would like to express my grateful thanks to the members of the 
Local Organizing Committee of the Conference and to the members of the 
Steering Committee for co-operating enthusiastically for the success of this 
initiative. We are grateful to the authors of the articles for their valuable 
contributions and for preparing their manuscripts on time, and to the 
reviewers for the time and effort they spent evaluating the papers. A special 
thankful mention is due to the sponsors of the Conference: From the Greek 
part, the Western Greece Region, the University of Patras, the GEFYRA 
SA, the Company that built and runs the famous Rion-Antirrion Bridge in 
Patras, Institute of Culture and Quality of Life and last but not least the 
e-RDA Innovation Center, that offered all the necessary support in the 
informatics field. From the Italian part, the City of Syracuse, the University 
of Cassino, the School of Architecture of Catania University, Soprintendenza 

International Federation for the Promotion of Mechanism and Machine 
dei Beni Culturali e Archeologici di Siracusa, as well as IFToMM the 

Science, and the European Society for the History of Science. 
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1. LEGACY AND INFLUENCE IN MATHEMATICS 



 

S.A. Paipetis and M. Ceccarelli (eds.), The Genius of Archimedes – 23 Centuries of Influence 3 
on Mathematics, Science and Engineering, History of Mechanism and Machine Science 11,  
DOI 10.1007/978-90-481-9091-1_1, © Springer Science+Business Media B.V. 2010 

AN ARCHIMEDEAN RESEARCH THEME: THE 
CALCULATION OF THE VOLUME OF 

CYLINDRICAL GROINS 
 
 

Nicla Palladino 
Università degli Studi di Salerno 

Via Ponte don Melillo, 84084 Fisciano (SA), Italy 
e-mail: nicla.palladino@unina.it 

 
 
ABSTRACT Starting from Archimedes’ method for calculating the 
volume of cylindrical wedges, I want to get to describe a method of 18th 
century for cilindrical groins thought by Girolamo Settimo and Nicolò di 
Martino. Several mathematicians studied the measurement of wedges, 
by applying notions of infinitesimal and integral calculus; in particular  
I examinated Settimo’s Treatise on cylindrical groins, where the author 
solved several problems by means of integrals.  
 
KEYWORDS: Wedge, cylindrical groin, Archimedes’ method, G. Settimo.  
 
 
1. INTRODUCTION 
 
“Cylindrical groins” are general cases of cylindrical wedge, where the 
base of the cylinder can be an ellipse, a parabola or a hyperbole. In the 
Eighteenth century, several mathematicians studied the measurement of 
vault and cylindrical groins by means of infinitesimal and integral cal-
culus. Also in the Kingdom of Naples, the study of these surfaces was a 
topical subject until the Nineteenth century at least because a lot of public 
buildings were covered with vaults of various kinds: mathematicians tried 
to give answers to requirements of the civil society who vice versa sub-
mitted concrete questions that stimulated the creation of new procedures for 
extending the theoretical system. 

Archimedes studied the calculation of the volume of a cylindrical 
wedge, a result that reappears as theorem XVII of The Method: 

If in a right prism with a parallelogram base a cylinder be inscribed 
which has its bases in the opposite parallelograms [in fact squares], and 
its sides [i.e., four generators] on the remaining planes ( faces) of the  
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prism, and if through the centre of the circle which is the base of the 
cylinder and (through) one side of the square in the plane opposite to it  
a plane be drawn, the plane so drawn will cut off from the cylinder a 
segment which is bounded by two planes, and the surface of the cylinder, 
one of the two planes being the plane which has been drawn and the other 
the plane in which the base of the cylinder is, and the surface being that 
which is between the said planes; and the segment cut off from the cylinder 
is one sixth part of the whole prism. 

The method that Archimedes used for proving his theorem consist of 
comparing the area or volume of a figure for which he knew the total mass 
and the location of the centre of mass with the area or volume of another 
figure he did not know anything about. He divided both figures into 
infinitely many slices of infinitesimal width, and he balanced each slice of 
one figure against a corresponding slice of the second figure on a lever.  

Using this method, Archimedes was able to solve several problems 
that would now be treated by integral and infinitesimal calculus.  

The Palermitan mathematician Girolamo Settimo got together a part 
of his studies about the theory of vaults in his Trattato delle unghiette 
cilindriche (Treatise on cylindrical groins), that he wrote in 1750 about 
but he never published; here the author discussed and resolved four 
problems on cylindrical groins. 

In his treatise, Settimo gave a significant generalization of the notion 
of groin and used the actual theory of infinitesimal calculus. Indeed, every 
one of these problems was concluded with integrals that were reduced to 
more simple integrals by means of decompositions in partial sums. 

 
 

2. HOW ARCHIMEDES CALCULATED THE VOLUMES  
OF CYLINDRICAL WEDGES 

 
The calculation of the volume of cylindrical wedge appears as theorem 
XVII of Archimedes’ The Method. It works as follows: starting from a 
cylinder inscribed within a prism, let us construct a wedge following the 
statement of Archimedes’ theorem and then let us cut the prism with a 
plane that is perpendicular to the diameter MN (see fig. 1.a). The section 
obtained is the rectangle BAEF (see fig. 1.b), where FH’ is the intersection 
of this new plane with the plane generating the wedge, HH’=h is the height 
of the cylinder and DC is the perpendicular to HH’ passing through its 
midpoint. 
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Then let us cut the prism with another plane passing through DC (see 
fig. 2). The section with the prism is the square MNYZ, while the section 
with the cylinder is the circle PRQR’. Besides, KL is the intersection 
between the two new planes that we constructed.  

Let us draw a segment IJ parallel to LK and construct a plane through 
IJ and perpendicular to RR’; this plane meets the cylinder in the rectangle 
S’T’I’T’ and the wedge in the rectangle S’T’ST, as it is possible to see in 
the fig. 3:  

  
Fig. 1.a. Construction of the wedge. 

 
Fig. 1.b. Section of the cylinder with a plane 
perpendicular to the diameter MN. 

  

      
Fig. 2. Section of the cylinder with a plane passing through DC. 
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Fig. 3. Construction of the wedge. 

 
 

 
Fig. 4. Sections of the wedge. 

 
Because OH’ and VU are parallel lines cut by the two transversals DO 

and H’F, we have 

DO : DX = H’B : H’V = BF : UV (see fig. 4) 

where BF=h and UV is the height, u, of the rectangle S’T’ST. Therefore   

DO : DX = H’B : H’V = BF : UV = h : u = (h•IJ) : (u•IJ). 

Besides H’B=OD (that is r) and H’V=OX (that is x). Therefore  

(FB • IJ) : (UV • IJ) = r : x, and (FB • IJ) • x = (UV • IJ) • r. 
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Then Archimedes thinks the segment CD as lever with fulcrum in O; 
he transposes the rectangle UV•IJ at the right of the lever with arm r and 
the rectangle FB•IJ at the left with the arm x. He says that it is possible to 
consider another segment parallel to LK, instead of IJ and the same 
argument is valid; therefore, the union of any rectangle like S’T’ST with 
arm r builds the wedge and the union of any rectangle like S’T’I’T’ with 
arm x builds the half-cylinder.  

Then Archimedes proceeds with similar arguments in order to proof 
completely his theorem.  

Perhaps it is important to clarify that Archimedes works with right 
cylinders that have defined height and a circle as the base. 
 
 
3. GIROLAMO SETTIMO AND HIS HISTORICAL CONTEST 
 
Girolamo Settimo was born in Sicily in 1706 and studied in Palermo and 
in Bologna with Gabriele Manfredi (1681–1761). Niccolò De Martino 

He was also one of the main exponents of the skilful group of Italian 
Newtonians, whereas the Newtonianism was diffused in the Kingdom of 
Naples. Settimo and De Martino met each other in Spain in 1740 and as a 
consequence of this occasion, when Settimo came back to Palermo, he 
began an epistolar relationship with Niccolò. Their correspondence collects 
62 letters of De Martino and two draft letters of Settimo; its peculiar 
mathematical subjects concern with methods to integrate fractional functions, 
resolutions of equations of any degree, method to deduce an equation of 
one variable from a system of two equations of two unknown quantities, 
methods to measure surface and volume of vaults1. 

One of the most important arguments in the correspondence is also the 
publication of a book of Settimo who asked De Martino to publish in 
Naples his mathematical work: Treatise on cylindrical groins that would 
have to contain the treatise Sulla misura delle Volte (“On the measure of 
vaults”). In order to publish his book, Settimo decided to improve his 
knowledge of infinitesimal calculus and he needed to consult De Martino 
about this argument. 

In his treatise, Settimo discussed and resolved four problems: calculus 
of areas, volumes, centre of gravity relative to area, centre of gravity 
relative to volume of cylindrical groins. The examined manuscript of                                                         
1 N. Palladino - A.M. Mercurio - F. Palladino, La corrispondenza epistolare Niccolò de 

Martino-Girolamo Settimo. Con un saggio sull’inedito Trattato delle Unghiette Cilindriche 
di Settimo, Firenze, Olschki, 2008. 

(1701–1769) was born near Naples and was mathematician, and a diplomat. 
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Settimo, Treatise on cylindrical groins, is now stored at Library of Società 
Siciliana di Storia Patria in Palermo (Italy), M.ss. Fitalia, and it is 
included in the volume Miscellanee Matematiche di Geronimo Settimo 
(M.SS. del sec. XVIII). 

 
 

4. GROINS IN SETTIMO’S TREATRISE 
 

adding also Scolii, Corollari and Examples after the discussion of it.  

Problem 1: to determine the volume of a cylindrical groin; 
Problem 2: to determine the area of the lateral surface of a cylindrical 

groin; 

surface of a cylindrical groin. 

Settimo defines cylindrical groins as follows:  

“If any cylinder is cut by a plane which intersects both its axis and its 
base, the part of the cylinder remaining on the base is called a cylindrical 
groin”.  

Fig. 5. Original picture by De Martino of cylindrical groin (in Elementi della Geometria 
così piana come solida coll’aggiunta di un breve trattato delle Sezioni Coniche, 1768). 

 
Settimo concludes each one of these problems with integrals that are 

reduced to more simple integrals by means of decompositions in partial 
sums, solvable by means of elliptical functions, or elementary functions 
(polynomials, logarithms, circular arcs). 

 

 

cylindrical groin; 

The problems to solve are: 

Problem 4: to determine the center of gravity relative to the lateral 

introduces every problem by Definizioni, Corollari, Scolii and Avvertimenti; 
Settimo’s Treatise on cylindrical groins relates four Problems. The author 

Problem 3: to determine the center of gravity relative to the solidity of a 

On the whole, Settimo subdivides his manuscript into 353 articles, Fig. 5. 
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Settimo and de Martino had consulted also Euler to solve many 
integrals by means of logarithms and circular arcs2.  

Let us examine now how Settimo solved his first problem, “How to 
determine volume of cylindrical groin”.  

He starts to build a groin as follows: let AM be a generic curve, that 
has the line AB as its axis of symmetry; on this plane figure he raises a 
cylinder; then on AB he drew a plane parallel to the axis of the cylinder; 
this plane is perpendicular to the plane of the basis (see fig. 6).  

 

 
Fig. 6. Original picture of groin by Settimo. 

 
Let AH be the intersection between this plane and the cylinder; BAH is 

the angle that indicates obliqueness of the cylinder; the perpendicular line 
from H to the cylinder’s basis falls on the line AB. 

Let’s cut the cylinder through the plane FHG, that intersects the plane 
of basis in the line FG. Since we formed the groin FAGH, the line FG is 
the directrix line of our groin. If FG is oblique, or perpendicular, or 
parallel to AB, then the groin FAGH is “obliqua” (oblique), or “diretta” 
(direct), or “laterale” (lateral). To solve the problem: 

1. firstly, Settimo supposes that the directrix FG intersects AB obliquely;  
2. then, he supposes that FG intersects AB forming right angles;  
3. finally, he supposes that FG is parallel to AB.                                                         
2 In particular see L. Euler, Introductio in analysin infinitorum, Lausannae, Apud 

Marcum-Michaelem Bousquet & Socios, 1748 and G. Ferraro - F. Palladino, Il calcolo 
sublime di Eulero e Lagrange esposto col metodo sintetico nel progetto di Nicolò 
Fergola, Istituto Italiano per gli Studi Filosofici, Napoli, La Città del Sole, 1995. 
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The directrix FG and the axis AI intersect each other in I. On the line 
FG let’s raise the perpendicular line AK. Let’s put AI=f, AK=g, KI=h. 
From the generic point M, let’s draw the distance MN on AB and then let’s 
draw the parallel line MR to FG. Let us put AN=x e MN=y. Then, NI is 

equal to f-x. We have AK:KI=MN:NR and so NR =
hy
g

. Then, let’s draw 

the parallel MO to AB and MO = RI = f − x +
hy

g
. 

Let Mm be an infinitely small arc; let mo be parallel to AB and 
infinitely near MO; mo intersects MN in X. On MO let’s raise the plane 
MPO and on mo let’s raise the plane mpo, both parallel to AHI. MPO 
intersects the groin in the line PO and mpo intersects the groin in the line po. 

The prism that these planes form is the “elemento di solidità” (element 
of solidity) of the groin. Its volume is the area of MPO multiplied by MX 
(where MX=dy). So, we are now looking for the area of MPO. 

Let’s put AH=c. Since AHI and MPO are similar, we have a pro-

portion: AI is to AH as MO is to MP, and MP =
c

f
f − x +

hy
g

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ . The planes 

are parallel, MP is to the perpendicular line on MO from P, as radius is to 
sine of BAH. Let r be the radius and let s be the sine.  

The dimension of the perpendicular is MP =
cs

fr
f − x +

hy
g

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ . Let us 

multiply it by MO = f − x +
hy

g
 and divide by 2. Therefore the area of the 

triangle is 
cs

2 fr
f − x +

hy
g

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

. Finally, we found the element of solidity of 

the groin multiplying by dy: 
csdy

2 fr
f − x +

hy
g

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 
2

. 

Since we know the curve of the groin, we can eliminate a variable in 

our equation 
csdy
2 fr

f − x +
hy
g

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

 and the element becomes “integrable”.  

Then, Settimo applies the first problem on oblique groins and on the 
elliptical cylinder  

hy 2

a
= bx − x 2 ⇒ x = b

2
+ b2

4
− hy 2

a
. 
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He writes the differential term like 

csdy
2rf

p2 − 2p b2

4
− hy2

a
+ b2

4
+ hy2

a
+ 2phy

g
− 2hy

g
b2

4
− hy2

a
+ h2y 2

g2

⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
 

and says that the problem of searching the volume of the groin is 
connected with the problem of  squaring the ellipse. 

At last, he talks about lateral groins, by analogous procedures.  
In the second example, Settimo considers a hyperbolic cylinder and an 

oblique, direct or lateral groin. He says here that calculating volumes is 
connected with squaring hyperbolas. In the third example, he considers a 
parabolic cylinder and an oblique, direct or lateral groin, solving the 
problems of solidity for curves of equation ym=x that he calls “infinite 
parabolas”. 

We note that in the first problem, Settimo is able to solve and calculate 
each integral, but in the second problem, Settimo shows that its solution 
is connected with rectification of conic sections. He gives complicated 
differential forms like sums of more simple differentials that are integrable 
by elementary functions or connected with rectification of conic sections. 

In the “first example” of the “second Problem”, the oblique groin is 
part of an elliptical cylinder, where the equation of the ellipse is known; 
“the element of solidity” is the differential form: 

c
f

f − x + hy
g

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dy 2 + s2dx 2

r 2 ⇒ c
f

p +
b 2

4
−

by 2

a
+

hy
g

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

dy a2

4
−

ay 2

b
+

s2

r 2
y 2

a2

4
−

ay 2
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Settimo starts studying the second differential: when he supposes the 

inequality s2

r 2
< a

b , he makes some positions and then makes a trans-

formation on the differential that he rewrites like 
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bcm
afr

1
2 q5du − 1

2 q3u2du

q2 + u2⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  2

+ bcm
afr

1
2 q5du + 1

2 q3u2du

q2 + u2⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟  2

. 

Settimo “constructs the solution”, according to the classical method; 
i.e. he graphically resolves the arc that denotes the logarithm of imaginary 
numbers and shows that this solution solves the problem to search the 
original integral. 

He calculates the integral of the first addend and transforms the second 
addend, but here he makes an important observation:  

“[this formula] includes logarithms of imaginary numbers […]; now, 
since logarithms of imaginary numbers are circular arcs, in this case, 
from a circular arc the integral of the second part repeats itself. This arc, 
by ‘il metodo datoci dal Cotes’ [i.e. Cotes’ method] has q as radius and u 
as tangent”. 

Roger Cotes’ method is in Harmonia Mensurarum3; there are also 18 
tables of integrals; these tables let to get the “fluens” of a “fluxion” (i.e., 
the integral of a differential form) in terms of quantities, which are sides of 
a right triangle. Roger Cotes spent a good part of his youth (from 1709 to 
1713) drafting the second edition of Newton’s Principia. He died before 
his time, leaving incomplete and important researches that Robert Smith 
(1689–1768), cousin of Cotes, published in Harmonia Mensurarum, in 
1722, at Cambridge.  

In the first part of Harmonia Mensurarum, the Logometria, Cotes 
shows that problems that became problems on squaring hyperbolas and 
ellipses, can be solved by measures of ratios and angles; these problems 
can be solved more rapidly by using logarithms, sines and tangents. The 
“Scolio Generale”, that closes the Logometria, contains a lot of elegant 
solutions for problems by logarithms and trigonometric functions, such as 
calculus of measure of lengths of geometrical or mechanical curves, 
volumes of surfaces, or centers of gravity. 

We report here Cotes’ method that Settimo uses in his treatise (see fig. 7).  
Starting from the circle, let CA=q and TA=u the tangent; therefore 

CT = q2 + u2 . Let’s put Tt=du. Settimo investigates the arc that is the                                                         
3 R. Cotes, Harmonia Mensurarum, sive Analysis & Synthesis per Rationum & Angulorum 

Mensuras Promotae: Accedunt alia Opuscula Mathematica: per Rogerum Cotesium. 
Edidit & Auxit Robertus Smith, Collegii S. Trinitatis apud Cantabrigienses Socius; 
Astronomiae & Experimentalis Philosophiae Post Cotesium Professor, Cantabrigiae, 
1722. See also R. Cotes, Logometria, «Philosophical Transactions of the Royal Society 
of London», vol. 29, n° 338, 1714. 
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logarithm of imaginary numbers and showed that this solution solves the 

problem of searching the original integral bcm
afr

1
2 q3du

q2 + u2 . 

 

Fig. 7. Figure to illustrate Cotes’ method. 
 

The triangles StT and ATC are similar, therefore  

Tt : TS = CT : CA and TS = CA ⋅Tt
CT

= qdu

q2 + u2
. 

CTS and CMm are also similar, therefore 

TS : Mm = CT : CM and Mm = TS ⋅CM
CT

= q2du
q2 + u2

. 

Since the arc AM represents the integral of Mm, Cotes finds the 

original integral 
bcm
afr

1
2

q 3du

q 2 + u2 . From AM = αq  with α = arctan u
q , then  

bcm
afr

1
2 q × AM = bcm

afr
1
2 q 2 arctan u

q  

and its derivative is 
bcm
afr

1
2 q 3du

q 2 + u 2
. 

Becoming again to Settimo’s treatise, when Settimo supposes the 

inequality s2

r 2
> a

b , he solves the integral by means of logarithms of 

imaginary numbers, then (by using Cotes’ method) with circular arcs. 
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Finally, Settimo shows problems on calculus of centre of gravity 
relative to area and volume of groins. 
 
 
5. CONCLUSION 

 
Various authors have eredited Archimedes, but we know that Prof. 
Heiberg found the Palimpsest containing Archimedes’ method only in 
1907, and therefore it is practically certain that Settimo did not know 
Archimedes’ work. 

Archimedes’ solutions for calculating the volume of cylindrical wedges 
can be interpreted as computation of integrals, as Settimo really did, but 
both methods of Archimedes and Settimo are missing of generality: there 
is no a general computational algorithm for the calculations of volumes. 
They base the solution of each problem on a costruction determined by the 
special geometric features of that particular problem; Settimo however is 
able to take advantage of prevoious solutions of similar problems. 

It is important finally to note that Settimo, who however has studied 
and knew the modern infinitesimal calculus (he indeed had to consult 
Roger Cotes and Leonhard Euler with De Martino in order to calculate 
integrals by using logarithms and circular arcs), considers the construction 
of the infinitesimal element similarly Archimedes. 

Wanting to compare the two methods, we can say that both are based 
on geometrical constructions, from where they start to calculate infinitesimal 
element (that Settimo calls “elemento di solidità”): Archimedes’ mechanical 
method was a precursor of that techniques which led to the rapid develop-
ment of the calculus.  
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ABSTRACT In recent papers we analyzed the historical development of 
the foundations of the centres of gravity theory during the Renaissance. 
Using these works as a starting point, we shall briefly present a pro-
gression of knowledge with cultural and mathematical Archimedean roots 
in Torricelli’s mechanics.  
 
 
1. INTRODUCTION 
 
Archimedes (287–212 B.C.) was a deeply influential author for Renaissance 
mathematicians according to the two main traditions. The humanistic 

Commandinus (1509–1575). The pure mathematical tradition followed 
by Francesco Maurolico (1694–1575), Luca Valerio (1552–1618), Galileo 
Galilei (1564–1642), Evangelista Torricelli (1608–1647). 

The investigation into Archimedes’s influence on Torricelli has a 
particular relevance because of its depth. Also it allows us to understand in 
which sense Archimedes’ influence was still relevant for most scholars of 
the seventeenth century (Napolitani 1988). Besides there being a general 
influence on the geometrization of physics, Torricelli was particularly 
influenced by Archimedes with regard to mathematics of indivisibles. 
Indeed, it is Torricelli’s attitude to confront geometric matter both with the 
methods of the ancients, in particular the exhaustion method, and with the 
indivisibles, so attempting to compare the two, as is clearly seen in his 
letters with Cavalieri (Torricelli 1919–1944; see mainly vol. 3). Torricelli, 
in particular, solved twenty one different ways the squaring a parabola 
(Heath 2002; Quadrature of the parabola, Propositio 17 and 24, p. 246; 

van Moerbeke (1215–1286), Regiomontanus (1436–1476) and Federigo 
tradition, adhering strictly to philological aspects, followed by Willem

Via Antonio Gramsci 53, 00197 Roma, Italy 

e–mail: pisanoraffaele@iol.it
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p. 251), a problem already studied by Archimedes: eleven times with 
exhaustion, ten with indivisibles. The reductio ad absurdum proof is 
always present.  

Based on previous works (Pisano 2008) we can claim that the 
Archimedean approach to geometry is different from the Euclidean one. 
The object is different, because Archimedes mainly deals with metric 
aspects, which was quite new, also the aim is different, being more 
oriented towards solving practical problems. In addition, mainly the theory 
organization is different, because Archimedes does not develop the whole 
theory axiomatically, but sometimes uses an approach for problems, char-
acterized by reductio ad absurdum. Moreover, the epistemological status 
of the principles is different. Archimedean principles are not always as self 
evident as those of the Euclidean tradition and may have an empirical 
nature. Some of the Archimedean principles have a clear methodological 
aim, and though they may express the daily feeling of the common man, 
they have a less cogent evidence then the principles of Euclidean geometry.  

Knowledge of Archimedes’ contribution is also fundamental to an 
historical study of Torricelli’s mechanics. Archimedes was the first scientist 
to set rational criteria for determining centres of gravity of bodies and his 
work contains physical concepts formalised on mathematical basis. In 

studying the rule governing the law of the lever also finds the centres of 

1984; Heiberg 1881). By means of his Suppositio (principles) Archimedes 

2002, pp. 189–202) useful in finding the centres of gravity of composed 
bodies. In particular, the sum of all the components may require the 
adoption of the method of exhaustion.  

Archimedes’s typical method of arguing in mechanics was by the use 
of the reduction ad absurdum, and Torricelli in his study on the centres of 
gravity resumes the same approach. 

With regard to Torricelli’s works, we studied mainly his mechanical 
theory (Capecchi and Pisano 2004; Idem 2007; Pisano 2009) in the Opera 

“It is impossible for the centre of gravity of two joined bodies in a state of 
equilibrium to sink due to any possible movement of the bodies”.  

The Opera geometrica is organized into four parts. Particularly, parts 
1, 2, 3, are composed of books and part 4 is composed of an Appendix. 
Table 1 shows the index of the text: 
 

gravity of various geometrical plane figures (Heath 2002, Clagett 1964– 

Book I of the On Plane Equilibrium (Heath 2002) Archimedes, besides 

(Heath 2002, pp. 189–202) is able to prove Propositio (theorems) (Heath 

discourses upon centres of gravity (Pisano 2007) where he enunciated his
famous principle:

geometrica (Torricelli 1644), Table 1 and Fig. 1. We focused in detail on his 
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Table 1. An index of Opera geometrica (Torricelli’s manuscripts are now preserved at the 
o

De sphaera et solidis sphaeralibus, Liber primus, 3–46; Liber secondus, 47–94.  
De motu gravium naturaliter descendentium et proiectorum, Liber Primus, 97–153;
Liber secundus, 154–243.  
De dimensione parabolae Solidique Hyperbolici, 1–84. 
Appendix: De Dimensione Cycloidis, 85–92.  
De Solido acuto Hyperbolico, 93–135.  
De Dimensione Cochlea, 136–150.  

 Fig. 1. The front page of Torricelli’s Opera geometrica with the index of content. 
  

Torricelli in his theory on the centre of gravity, following Archimedes’ 
approach, uses  

a) 
proof.  

reference in geometrical form to the law of the lever.  
c) 

We focused mostly upon the exposition of studies contained in Liber 
primis. De motu gravium naturaliter descendentium, where Torricelli’s 

moves:  

Biblioteca Nazionale of Florence. Galilean Collection, n  131–154). 

present problems which, according to him, remain unsolved. His main con-

Empirical evidence to establish principles.  

cern is to prove a Galileo’s supposition, which states: velocity degrees for a 

Reductio ad absurdum as a particular instrument for mathematical 

body are directly proportional to the inclination of the plane over which it

b) Geometrical representation of physical bodies: weightless beams and 

principle is exposed, Fig. 2 and 3. In Galileo’s theory on dynamics, Torricelli 
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Fig. 2. Torricelli’s principle. Opera Geometrica. De motu gravium naturaliter descendentium 
et proiectorum, p. 99. 

 
The speeds acquired by one and the same body moving down planes of 

different inclinations are equal when the heights of these planes are equal (Galilei 
1890–1909, Vol., VIII, p. 205) 

Torricelli seems to suggest that this supposition may be proved 
beginning with a “theorem” according to which “the momentum of equal 
bodies on planes unequally inclined are to each other as the perpendicular 
lines of equal parts of the same planes” (Torricelli 1644, De motu gravium 
naturaliter descendentium et proiectorum, p. 99). Moreover, Torricelli also 
assumes that this theorem has not yet been demonstrated (Note, in the first 
edition of the Galileo’s Discorsi in 1638, there is no proof of the “theorem”. 
It was added only in 1656 to the Opere di Galileo Galilei linceo, (Galilei 
1656). However Torricelli knew it, as is clear in some letters from Torricelli 
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to Galileo regarding the “theorem”; Torricelli 1919–1944, Vol. III, p. 48, 
pp. 51, 55, 58, 61). 
 
 
2. ARCHIMEDEAN THINKING  
 
Torricelli frequently declares and explains his Archimedean background.  

Inter omnia opera Mathematics disciplinas pertinentia, iure optimo Principem 
sibi locum vindicare videntur Archimedis; quae quidem ipso subtilitatis miraculo 
terrent animos (Torricelli 1644, Proemium, p. 7). 

Archimedes, in the Quadratura parabolae, first obtains results using 
the mechanical approach and then reconsiders the discourse with the 
classical methods of geometry to confirm in a rigorous way the correctness 
of his results (Heath 2002). Similarly, Torricelli, with the compelling idea 
of duplicating the procedure, devotes many pages to proving certain 
theorems on the “parabolic segment”, by following, the geometry used in 
pre-history ancients (Torricelli (1644), Quadratura parabolae pluris modis 
per duplicem positionem more antiquorum absoluta, pp. 17–54)1 and then 
proving the validity of the thesis also with the “indivisibilium” (Heath 2002, 
Quadratura parabolae, pp. 253–252; pp. 55–84; Torricelli 1644, De solido 
acuto hyperbolico problema alterum, pp. 93–135). In this respect, it is 
interesting to note that he underlines the “concordantia” (Torricelli 1644, 
De solido acuto hyperbolico problema alterum, p. 103) of methods of 
varying rigour.  

Hactenus de dimensione parabolae more antiquorum dictum sit; Reliquum est 
eandem parabolae mensuram nova quedam, sed mirabili ratione aggrediamur; 
ope scilicet Geometriae Indivisibilium, et hoc diversis modis: Suppositis enim 
praecipui Theorematib. antiquorum tam Euclidis, quam Archimedis, licet de rebus 
inter se diversissimis sint, mirum est ex unoquoque eorum quadraturam parabolae 
facili negotio elici posse; et vive versa. Quasi ea sit commune quoddam vinculum 
veritatis. […] Contra vero: supposita parabolae quadratura, praedicta omnia 
Theoremata facile demonstrari possunt. Quod autem haec indivisibilium Geometria 
novum penitus inventum sit equidem non ausim affirmare. Crediderim potius veteres 
Geometras hoc metodo usos in inventione Theorematum difficillimorum quamquam 
in demonstrationibus aliam viam magis probaverint, sive ad occultandum artis 
arcanum, sive ne ulla invidis detractoribus proferretur occasio contradicendi 
(Torricelli 1644, Quadratura parabolae per novam indivisibilium Geometriam 
pluribus modis absoluta, p. 55, op. cit.).  

                                                      
1 In the original manuscripts of Opera geometrica there are some glosses to Eulid’s 

Elements, to Apollonius’ Conic sections, to Archimedes, Galileo, Cavalieri’s works, et al., 
autograph by Torricelli. 
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From the previous passage there appears not only the desire to give the 
reader results and methods, but also to say that the indivisibles technique 
was not completely unknown to the ancient Greek scholars. Besides, 
Torricelli seems to hold onto the idea that the method of demonstration of 
the ancients, such as the Archimedes’ method, was intentionally kept 
secret. He states that the ancient geometers worked according to a method 
“in invenzione” suitable “ad occultandum artis arcanum” (Torricelli 1644, 
Quadratura parabolae per novam indivisibilium Geometriam pluribus modis 
absoluta, p. 55).  

However the Archimedean influence in Torricelli goes further. The 
well known books De sphaera et solidis sphaeralibus (Torricelli 1644, Liber 
primus, 3–46) present an enlargement of the Archimedean proofs of books 
I–II of On the sphere and cylinder (Heath 2002, pp. 1–90).  

[…] In quibus Archimedis Doctrina de sphaera & cylindro denuo componitur, 
latius promovetur, et omni specie Solidorum, quae vel circa, vel intra, Sphaeram, 
ex conversione polygonorum regularium gigni possint, universalius Propagatur 
(Torricelli 1644, De sphaera et solidis sphaeralibus, p. 2). 

In other parts Torricelli faces problems not yet solved by Archimedes, 
or by the other mathematicians of antiquity. With the same style as 
Archimedes, he does not try to arrive at the first principles of the theory 
and does not limit himself to a single way of demonstrating a theory. 

Veritatem praecedentis Theorematis satis per se claram, et per exempla ad 
initium libelli proposita confirmatam satis superque puto. Tamen ut in hac parte 
satisfaciam lectori etiam Indivisibilium parum amico, iterabo hanc ipsam demon-
strationis in calce operis, per solitam veterum Geometrarum viam demonstrandi, 
longiorem quidem, sed non ideo mihi certiorem (Torricelli 1644, De solido 
hyperbolico acuto problema secundum, p. 116). 

We note that the exposition of the mechanical argumentation present 
in Archimedes’s Method was not known at Torricelli’s time because Johan 
Heiberg only discovered it in 1906 (Heath 1912). Therefore, in Archimedes’s 
writing there were lines of reasoning which, because a lack of justification, 
were labelled as mysterious by most scholars. Thus in such instances it 
was necessary to assure the reader of the validity of the thesis and also to 
convince him about the strictness of Archimedes’ approaches, particularly 
exhaustion reasoning and reductio ad absurdum, by proving his results 
with some other technique.  

The appearance of approximation [in Archimedes’s proofs] is surely a sub-

 

stantial innovation in the mathematical demonstrations and the difference between  
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Elements and Archimedes’ work is a sign of a mentality more opened towards 
applications, and perhaps that the classical epoch of geometry was closed (Marchini 
2005, pp. 189–190). 

3. ON PROOFS 
 

It is well known from the Method (Heiberg 1913) that Archimedes studied 
a given problem whose solution he anticipated by means of crucial 
propositions which were then proved by the reductio ad absurdum or  
by exhaustion. Indeed Archimedes’s himself did not attribute the same 
amount of certainty to his Method proofs, as he attributes to classical 
mathematical proofs. His reasoning on Quadratura parabolae (Heath 
2002, Proposition 24, p. 251) is exemplary. Addressing Eratosthenes (276–
196 B.C.), Archimedes wrote at the beginning of his Method:  

[…] I thought fit to write out for you and explain in detail in the same book 
the peculiarity of a certain method, by which it will be possible for you to get a 
start to enable you to investigate some of the problems in mathematics by means 
of mechanics. This procedure is, I am persuaded, no less useful even for the proof 
of the theorems themselves; for certain things first became clear to me by a 
mechanical method, although they had to be demonstrated by geometry afterwards 
because their investigation by the said method did not furnish an actual demon-
stration. But it is of course easier, when we have previously acquired, by the 
method, some knowledge of the questions, to supply the proof than it is to find it 
without any previous knowledge (Heath 1913, p. 13). 

One of the characteristics of Torricelli’s proofs was the syntactic 
return to the demonstration approach followed by the ancient Greeks, with 
the explicit description of the technique of reasoning actually used. 
Besides the well known ad absurdum there were also the permutando and 
the ex aequo. In De proportionibus liber he defines them explicitly: 

Propositio IX. Si quatuor magnitudines proportionales fuerint, et permutando 
proportionales erunt. Sint quatuor rectae lineae proportionales AB, BC, CD, DE. 
Nempe ut AB prima ad BC secundam, ita sit AD tertia ad DE quartam. Dico 
primam AB ad tertiam AD ita esse ut secunda BC ad quartam DE. Qui modus 
arguendi dicitur permutando (Torricelli 1919–1944, De Proportionibus liber, p. 313) 

Propositio X. Si fuerint quotcumque, et aliae ipsis aequales numero, quae binae 
in eadem ratione sumantur, et ex aequo in eadem ratione erunt. Sint quotcumque 
magnitudines A, B, C, H, et aliae ipsis aequales numero D, E, F, I, quae in eadem 

 

ratione sint, si binae sumantur, nempe ut A ad B ita sit D ad E, et iterum ut B ad  
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C, ita sit E ad F, et hoc modo procedatur semper. Dico ex equo ita esse primam A 
ad ultimam H, uti est prima D ad ultimam I. Qui modus arguendi dicitur ex aequo 
(Torricelli 1919–1944, De Proportionibus liber, p. 314). 

Torricelli seems to neglect the algebra of his time and adheres to  
the language of proportions. He dedicated a book to this language, De 
Proportionibus liber (Torricelli 1919–1944, pp. 295–327), where he only 
deals with the theory of proportions to be used in geometry. In such a way 
he avoids the use of the plus or minus, in place of which he utilizes the 
composing (Torricelli 1919–1944, p. 316) and dividing (Idem, p. 313). 
Such an approach allows him to work always with the ratio of segments. 
By following the ancients to sum up segments he imagines them as aligned 
and then translated and connected, making use of terms like “simul”, “et” 
or “cum” (Torricelli 1919–1944, Prop. XV, p. 318). In what follows we 
present a table which summarizes the most interesting part of Proportionibus 
liber where Torricelli proves again theorems by referring to reasoning in 

 
Table 2. Some Torricelli’s Archimedean proofs in Quadratura parabolae. 

Lemma II,V,VI, X–XI,XII–XIII, 
XVII – Propositio IV 

Ad absurdum proofs 
 

Lemma XIV Ex aequo et dividendo et permutando  
Lemma XVI, XVIII Ex aequo 
Lemma XIX Ex aequo et Ad absurdum  
Propositio III2 Componendo 
Propositio V Ad absurdum et Componendo 
Propositio IX Ex aequo et Ad absurdum  

 
We notice that proofs by means of indivisibles are not reductio ad 

absurdum. This is so because these proofs are algebraic. Instead, in nearly 
all other proofs Torricelli uses the technique typical of proportions, 
dividendo, permutando and ex aequo.  

                                                      
2 In proposition III Torricelli, referring to Luca Valerio, proves a Lemma differently from 

him: “Libet hic demonstrare Lemma Lucae Valerij, nostro tamen modo, diversisque 
penitus Mechanicae principijs. Ipse enim utitur propositione illa, qua ante demonstraverat 
centrum gravitatis hemisphereij. Nos autem simili ratione ac in praecedentibus [I–II], 
demonstrabimus et Lemma, et ipsam Valerij conclusionem” (Torricelli1644, Quadratura 
parabolae pluris modis per duplicem positionem more antiquorum absoluta, p. 33; 
Valerio 1604, book II, p. 12).  

the Archimedean manner, Table 2.  
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Fig. 3. Archimedes’ first suppositio: On plane equilibrium, Heiberg 1881, p. 142. 
 
 
4. CONCLUSION  
 
We focused on conceptual aspects of Archimedes’ and Torricelli’s studies 
of the centre of gravity theory based on previous investigations on 
Archimedes’ On the Equilibrium of Plane and Torricelli’s Opera geometrica. 
In the present work we have outlined some of the fundamental concepts 
common to the two scholars: the logical organization and the paradigmatic 
discontinuity with respect to the Euclidean technique. Indeed Archimedes’ 
theory (mechanical and geometrical) does not appear to follow a unique 
pattern. It maintains two kinds of organization, one problematic the other 
axiomatic deductive.  

In conclusion, to compare the science of Archimedes and Torricelli 

aspects of their theory organization.  
 

from an epistemological point of view, we resume in Table 3 the crucial 



26 R. Pisano and D. Capecchi 

Table 3. Archimedes’ and Torricelli’s foundations of theory. 

 Archimedes  Torricelli  
Organization of 
the theory  

– Problematic (mechanics) 
– Axiomatic (geometry) 

– Problematic (mechanics) 
– Axiomatic (geometry) 

Body systems  – Without explicating the type  
   of connection 

– Aggregate 
– Tied up way or untied  

Foundational 
concept  

– Centre of gravity  – Centre of gravity of 
    Archimedes 

Type of infinite  – Potential Infinitum  
– Toward Actual Infinitum 

– Potential Infinitum 
– Actual Infinitum  
   (indivisibles)  

Central problem 
of the theory  

– Criteria to determinate the  
   centre of gravity for single  
 and composed geometrical  

   bodie 

– Galileo’s ballistic theory  
    by means of  
    Archimedean  
    equilibrium theory  

Techniques of 
arguing 

– Reductio ad Absurdum  – Reductio ad Absurdum  
 

Techniques of 
calculus  

 

– Method of exhaustion – Archimedes’s method of  
   exhaustion 
– Indivisible method  

  
The breaking of the Euclidean paradigm, in the Khun sense (Khun 

1962), by Archimedes could offer, with the limitation implicit in the 
concept of paradigm, a first possible lecture key. We pass from a normal 
science composed of axioms and self–evidence to a new science where 
proof also means also to find a field of applicability of a new theory, the 
centrobarica.  
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ABSTRACT We highlight the legacy of Simon Stevin and Gabriel Lamé 
and show how their work led to some of the most important recent develop-
ments in science, ultimately based upon the principles of balance and the 
act of weighing, virtual or real. These names are also important in the sense 
of a unique rational science and universal natural shapes.   
 
 
1. INTRODUCTION 
 
Since antiquity various geometers have strived to understand and expand 
the ideas and results obtained by Greek mathematicians. The foundations 
developed by Eudoxus, Euclid, Apollonius, Archimedes and many others  
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were characterized by a pulsation between geometry and algebra. This 
remains so today, in our era of calculation and algorithms (Atiyah, 2000). 
Shiing-Shin Chern wrote (2000): “While analysis and algebra provide the 
foundations of mathematics, geometry is at the core”.  

More analytic than synthetic, contemporary differential geometry follows 
the ideas of Riemann and Helmholtz, for whom measurements should be 
given priority, in accordance with our abstraction of our perception of the 
world, and very much in line with Greek thoughts on commensurability. 
The Greek origin for the word geometry is –μετρεω. The root –μετρεω 
(also in the word συμμετρια = symmetry, proportion or right balance) 
means: to measure, to correspond. Like κοσμεω (ordering) in ancient Greek, 
symmetry also has a verb (συμμετρεω) meaning to measure, to correspond, 
to be commensurate (Vlastos, 2005).   

A major task for geometers is to deepen the understanding of the 
legacy of the Greek geometers. Still much is to be learned from Bacon 
writings: “Solomon saith: “There is no new thing upon the earth”. So that 
as Plato had an imagination that all knowledge was but remembrance; so 
Solomon giveth his sentence, “that all novelty is but oblivion.” 

For Klein parabolic, elliptic and hyperbolic had precisely the same 
geometric meaning as it had in the application of areas of the Pythagoreans 
or in the conics of Apollonius, namely precise fitting, defect and excess 
respectively. Indeed, science still revolves around the same questions that 
interested Greek scholars, such as the finite versus infinite or the discrete 
versus continuous (in doing mathematics all these dualities act simul-
taneously; Thurston, 1994). Geometry (and its applications in the natural 
sciences) is still about the notion of going straight. On recent develop-
ments on curvatures and intrinsic and extrinsic symmetries see: Haesen 
and Verstraelen, 2009 and Chen, 2007.   
 
 
2. FROM RENAISSANCE TO THE ECOLE POLYTECHNIQUE 
 
2.1. Simon Stevin’s Wonder en is gheen Wonder 

Simon Stevin was one of the greatest mathematicians of the Renaissance 
and the greatest mechanician of the long period extending from Archimedes 
to Galileo (Sarton, 1934; Bosmans, 1923, 1926). His works were translated 
and edited by Snellius and Albert Girard and were available in Dutch, 
French and Latin and known to, amongst others, Gregory Saint-Vincent and 
Descartes.   
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Essential in Stevin’s work is the relation between spiegeling (“theory”) 
and daet (“practice”). Besides the necessary theoretical approach there always 
should be an experimental one, either concrete, or through a thought experi-
ment. In this way Stevin made valuable contributions in calculus, algebra, 
geometry, mechanics, hydrostatics, navigation, tides theory, fortification, 
the building of locks, economy, . . . On the theoretical side, he also solved 
the hydrostatic paradox and dropped two unequal weights from a tower in 
Leiden to prove that they would reach the ground level at the same time, 
well before Pascal and Galilei respectively.   

In De Thiende (1585) Stevin systematically showed how all calculations 
with real numbers are reduced to the standard operations with natural 
numbers. The importance of the real numbers for science is clear, not in 
the least since this very same method was used by Newton in his Method 
of Fluxions. In 1586 in the books De Beghinselen der Weegh-const (The art 
of weighing) and De Weeghdaet (The practice of weighing) the foundations 
of the mathematical vector calculus were provided with the rule of the 
parallelogram for the addition of forces as concrete application in physics. 
He introduced the impossibility of a perpetuum mobile as a method of 
proof in physics with the famous Clootkrans proof. 

For Stevin, when phenomena could be explained rationally, meaning 
geometrically, miracles where no longer miracles. Stevin’s motto (and epi-
taph; Feynman, 1963) was Wonder en is gheen wonder (Magic is no magic; 
Devreese & Vanden Berghe, 2008). He was a great admirer of Archimedes 
and Stevin’s vision was completely in line with rational mechanics, where 
balance and weighing are crucial. In Beghinselen der Weeghconst, he 
converted the method of weighing, which was a source of inspiration to 
Archimedes, into a method of proof, with the use of limits as culmination 
(figure 1 left; Bosmans, 1923; Sarton, 1936).  

 

                   
Fig. 1. Determining the centre of gravity of a triangle and a tetrahedron. 

Rational Mechanics and Science Rationnelle Unique 
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The use of limits in the elegant proofs of Stevin substituted for 
proofs using method of exhaustion involving a reductio ad absurdum by 
Archimedes. Stevin is thus an important link in the gradual transformation 
to modern methods of infinitesimal analysis in a chain involving Archimedes, 
Commandino, Stevin, Gregoire de Saint-Vincent, Boelmans, Tacquet, Pascal, 
Leibniz (Bosmans 1926: Sarton, 1934). 

Being at the crossroads of algebra and geometry Stevin was first and 
foremost a geometer. With geometrical numbers he thought of powers in a 
very practical way. 23 is a cube with volume 8, and 24 is simply two cubes 
of volume 8. This pulsation of thinking both geometrically and algebraically 
and about cubes, numbers and roots in different ways, is an art, which 
should be practiced in our era of specialization. 

2.2. From the Late Renaissance to Radical Enlightenment 

In the Renaissance a number of exciting developments took place, forming 
the basis of contemporary science. These would be developed more fully 
during the Enlightenment, supposedly in Italy, France and England. It has 
been forcibly argued however, that Radical Enlightenment in the Northern 
Low Countries well predated the development of Enlightenment in other 
regions of Europe (Israel, 2005). 

In the 17th century the Republic of the Northern Low Countries had 
become, under the patronage of Maurits van Oranje, a freehaven for science 
and religion. Many scholars from the Southern Low countries and France 
fled to the North and would provide the basis of the Golden Age (Struik, 
1981). One of the foremost persons was Simon Stevin, who became the 
Prince’s personal advisor. Stevin was co-founder of the Ingenieursschool 
in Leiden in 1600, where generations of Rekenmeesters (reckoning masters) 
were trained.  

Stevin’s early defense of the Copernican system was not appreciated 
by the clerics who ruled the universities. Stevin thus never held an academic 
position, but his influence on several generations of his “students” is very 
profound (Struik, 1981; Fig. 2). Among those we find, directly, Isaac 
Beeckman, Snellius (Sr. and Jr.) and Albert Girard, and indirectly Gregoire 
de Saint-Vincent, Descartes and Christiaan Huygens.  

His legacy and influence on further developments was enormous, but 
he did not receive the proper recognition. George Sarton (1934) wrote: 
“How could people truly admire one whom they do not understand, how 
could they consider great a man whose greatness they have not yet been 
educated to appreciate?”  

All in all, these developments in science in the first half of the 17th 
century would become the cornerstone of the Radical Enlightenment in the 
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second half of that century, when the mathematicians De Witt and Hudde 
would also take important political positions (Israel, 2005). The political 
and religious freedom would allow for the development of Radical 
Enlightenment with Baruch de Spinoza as central figure (Van Bunge, 
2001). His views were certainly influenced by the developments in mathe-
matics and science in the first half of the 17th century in the Northern Low 
Countries, and his discourse was very much in line with Stevin’s “Wonder 
en is gheen Wonder.” 
 

 
Fig. 2. Compiled from www.genealogy.ams.org. 

The most important mathematician of the Low Countries in the late 
17th century was Huygens, and the crucial encounter with Leibniz in Paris 
would be decisive for the development of science. The further develop-
ments in differential geometry initiated with Huygens and Leibniz would 
lead, through Basel, Berlin and Saint Petersburg and with the Bernoulli’s, 
Euler and Lagrange as the main figures in the 18th century, to Paris in the 
second half of the 18th century. Paris became a leading center of mathematics 
in the 19th and 20th century. The trunk of the genealogical tree initiated in 
the Low Countries was continued and replanted in the Ecole Polytechnique 
EP in Paris, with brilliant teachers and students like Monge, Lagrange, 
Laplace, Fourier, Poisson, Legendre, Cauchy, Delaunay, Lamé, Clapeyron 
and Chasles, and in full agreement with the idea of Spiegeling and Daet or 
theory and practice.   

Rational Mechanics and Science Rationnelle Unique 
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3. SCIENCE RATIONNELLE UNIQUE & NATURAL SHAPES 

3.1. Science Rationnelle Unique 

Gabriel Lamé (1795–1860) entered the EP in 1813, graduated in 1817, and 
became a very famous ingénieur savant. Like Archimedes and Stevin 
before him he was both engineer and mathematician. Gauss praised Lamé 
as the most important French mathematician of his time, but in France he 
was considered too theoretical for engineers and too practical for 
mathematicians (Bertrand, 1878).   

At the age of 21 he introduced equations of the type xn + yn = 1 in 
his book Examen de differentes méthodes employées pour résoudre les 
problèmes de géometrie (Lamé, 1818)1 and noted that a special choice of 
exponents gave a uniform description of all conic sections. These Lamé 
curves gave the possibility of defining metrics based on powers other than 
two. This was also suggested by Riemann in his Habilitationsschrift 
(1856), which led to the development of Riemann-Finsler geometry (the 
metric structure of Finsler manifolds is given by a collection of convex 
symmetric bodies in the various tangent spaces; Berger, 2000).  

During a decade in Saint Petersburg, Lamé and Clapeyron developed, 
amongst others, location theory (Franksen & Grattan-Guinness, 1989; 
Tazzioli, 1995; Gouzevitch & Gouzevitch, 2009). The development of the 
theory of optimal location was done with weights and balances based on 
machines that were used to demonstrate Stevin’s parallelogram of forces. 
As engineers Lamé and Clapeyron used methods of weighing construction 
of bridges using funicular polygons (Tazzioli, 1993).  

He returned to France to become professor of physics at the EP from 
1832 onwards. Lamé’s work on curvilinear coordinates was very influential 
(Struik, 1933) and his work was considered ‘immortal’ by Darboux (1878; 
“les immortels travaux de Lamé sur les coordonnées curvilignes”). This 
generalized the work of Euler on curves and of Gauss on surfaces. Elie 
Cartan (1931) considered Lamé as cofounder of Riemannian geometry, and 
his work opened the door for Ricci, Levi-Civita and Beltrami (Vincensini, 
1972; Tazzioli, 1993). His influence on science continues to be most 
impressive (Guitart, 2009).   

What connects all activities of Gabriel Lamé was his quest for a 
Unique Rational Science. Lamé foresaw “l'avènement futur d'une science 
rationnelle unique”, of a unique rational science, which essentially is 
mathematical physics. His method used curvilinear coordinates designed to 
                                                      
1 As a young student Gabriel Lamé’s interest in geometry was aroused by Legendre’s 

Géometrie. The profound impact of Legendre’s educational books on the development 
of science is illustrated further by the influence of “Théorie des Nombres” on Riemann. 
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adapt a physical situation to a system of curvilinear coordinates. This 
model then provided the ‘initial geometrical support’ for a physical 
system. In this sense differences between phenomena would no longer be 
an arbitrary choice of a certain parameter, but would organize itself to 
produce a natural intrinsic space of the system. 

Lamé thus envisaged that, from a mathematical point of view, the 
study of a physical system amounts to the study of a system of curvilinear 
coordinates, adapted to the given physical situation. The study of that 
physical problem, adapted with the appropriate system of curvilinear 
coordinates then becomes the characterization of the system of differential 
invariants or the calculation of the Laplacian in curvilinear coordinates. In 
his view this reduces to one equation only, namely the Poisson equation in 
curvilinear coordinates, with boundary conditions (Guitart, 2009).  

3.2. Universal Natural Shapes 

170 years after Lamé published his Examens, his writings on curvilinear 
coordinates and on Lamé curves have been united. Following attempts to 
describe natural shapes based on Lamé curves (Gielis, 1996) these curves 
were generalized as supershapes (Gielis, 2003; Equation (*); Fig. 3). This 
transformation can be applied to any planar function. Equation 0 in fact is 
a generalized Pythagorean Theorem, a conservation law for n-volumes.  

 
Equation (*): the Superformula with m, n2, n3 , A,B,n1 0
The names superformula and supershapes originate from the names  

superellipses and superquadrics. The name superformula was changed by 
mathematicians into Gielis Formula (Koiso and Palmer, 2008), and super-
shapes into Gielis’ curves and surfaces (Verstraelen, 2004, 2009).  

Fig. 3. Supershapes and natural analogues. 

Rational Mechanics and Science Rationnelle Unique 
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Nuphar luteum Scrophularia nodosa Equisetum rasp berry starfish
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As these transformations provide for a one-step extension of conic 
sections to the description of natural shapes they were referred to as 
Universal Natural Shapes (Gielis et al., 2005). The shape coordinates make 
shapes commensurable. Shapes of starfish, flowers, and pyramids and a 
wide variety of natural shapes can now be described using one common 
yard stick, turning asymmetry (incommensurable) into symmetry (to make 
commensurable) or: “From discord the fairest harmony” (Heraclitus), thus 
expresses one of the most fundamental goals of mathematics.  

Lamé-Gielis’ curves and (hyper-) surfaces turn out to be the “most 
natural curves and surfaces of Euclidean geometry.” A wide range of 
shapes in the natural sciences can all be produced in this rather universal 
way: first, impose some “Euclidean” geometrical principle, and second, 
apply a Gielis transformation to the shapes resulting from these geometric 
principles (Verstraelen, 2008). Using tangents, and tangent spaces based 
on supershapes as length indicatrices, could unveil the geometrical meaning 
of all curvatures in Minkowski and Riemann-Finsler geometry, and the 
natural processes that are modeled in this way.   

Shape description starting from a center using so-called Gielis curves 
and surfaces are in a natural way anisotropic, and induce a coordinate 
system of and on the surface, adapted to the problem. Generalized trigono-
metric or Fourier series can be defined (Gielis, 2009). This allows for stra-
tegies to develop computational tools, esp. those involving the Laplacian. 
Methods have been developed using stretched polar coordinates (Natalini 
et al., 2008; Caratelli et al., 2009), which allows for the use of Fourier 
series for boundary value problems combining the insights of Lamé and 
Fourier.   

 
 

4. THE DIRICHLET PROBLEM FOR POISSON’S EQUATION  
IN A STARLIKE DOMAIN  

 
Many applications of mathematical physics and electromagnetics are 
connected with the Laplacian (wave equation, heat propagation, Laplace, 
Helmholtz, Poisson and Schrödinger equations; Caratelli et al., 2009). Most 
boundary value problems (BVP) relevant to the Laplacian can be solved in 
explicit form only in domains with very special shapes or symmetries 
(Courant, 1950). The solution in more general domains can be obtained 
by using the Riemann theorem on conformal mappings, and the relevant 
invariance of the Laplacian.  

The use of stretched co-ordinate systems allows the application of the 
classical Fourier method to a wide set of differential problems in complex 
two-dimensional normal-polar domains (Natalini et al., 2008; Caratelli et al., 
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2009). Such domains can be approximated as closely as desired by the above 
equations and numerical results are in good agreement with theoretical 
results of Lennart Carleson (Natalini et al., 2008). Here the solution of the 
Dirichlet problem for the Poisson equation in two-dimensional natural-
shaped domains is presented. This differential problem is of great 
importance in different areas of scientific research, such as electrostatics, 
mechanical engineering and theoretical physics. 

Let 2D R⊂  be an open, bounded, star-like domain, with boundary 
1CD ∈∂  having outer normal unit vector )(= . Then, a general 

representation formula for the solution of the Poisson equation: 

 ),()( fu =Δ−     ,D∈  (1) 

subject to the Dirichlet boundary condition: 

 ),()( gu =     ,D∂∈  (2) 

for given continuous functions )(f , )(g  can be easily obtained by 
using Green’s function method. Under the assumption )(2 DCu ∈ , for 
any point D∈  it is not difficult to show that: 

 

where: 
 ln)( 2

1
π−=Φ  (4) 

denotes the fundamental solution of the Laplace equation satisfying 
)()( δ=ΔΦ− , )(δ  being the Dirac measure on 2R  giving unit 

mass to the origin. As it can be noticed, formula (3) allows us to evaluate 
)(u  once the values of )(uΔ  within D  and the values of )(u , 

ν∂∂ /)(u  along D∂  are known. Hence, for the application to the 
Dirichlet problem for the Poisson equation (1)-(2), we must slightly 
modify (3) by removing the term involving the normal derivative of the 
unknown function )(u  along the boundary D∂ . To achieve this, let us 
introduce for any fixed D∈  the corrector function ),(= φφ  solving 
the boundary-value problem for the Laplace equation: 
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Applying Green’s formula readily yields: 

 

As a consequence, Green’s function for the Poisson equation (1) can 
be evaluated as follows: 

 G( ,  ) = Φ(   − ) − φ( ,   ), ,D∈ .≠  (7) 

In fact, adding (6) to (3), we find: 

 

 

is the outer normal derivative of ),(G  with respect to the variable  
So, the solution of (1)-(2) can be derived by using (8), provided that we 
can construct Green’s function for the given domain D . To this end, let us 
firstly introduce in the real plane the stretched curvilinear coordinate 
system: 

 ( , ),x y=     ⎩
⎨
⎧

=
=

,sin)(
,cos)(

ϑϑ
ϑϑ

rRy
rRx

 (10) 

)(ϑR  denoting the polar equation of D∂ . Therefore, the domain D  is 
described by the inequalities πϑ 20 ≤≤ , 10 ≤≤ r .  

⎩
⎨
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∈′=′
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∂
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where: 
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The following theorem provides an effective means to solve (5), and 
hence evaluate ),(G . 

Theorem – Let: 

 ( , ),x y′ ′=     
( )cos ,

( )sin ,

x r R

y r R

ϑ ϑ

ϑ ϑ

′ ′ ′=⎧⎪
⎨

′ ′ ′=⎪⎩
 (11) 

and: 

 
   
Φ( − ) = %Φ( ′ϑ , ) = αm ( )cos(m ′ϑ ) + βm ( )sin(m ′ϑ )⎡⎣ ⎤⎦

m=0

+∞
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mε  being the usual Neumann’s symbol. Then, the boundary-value problem 

(5) admits a classical solution )(),( 2 DL∈φ  such that the following 
Fourier-like series expansion holds: 
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Proof – In the stretched coordinate system (10)-(11), the domain D  is 
transformed into the unit circle. Hence, we can use the eigenfunction method 
and separation of variables to solve the Laplace equation 0),( =Δφ . 
In this way, it is straightforward to show that the elementary solutions of 
the problem are given by: 

   φm( , ′r , ′ϑ ) = ′r R( ′ϑ )⎡⎣ ⎤⎦
m

Αm( )cos(m ′ϑ )⎡⎣ +Βm( )sin(m ′ϑ )⎤⎦ ,  (18) 

with 0m N∈ . So, enforcing the Dirichlet boundary condition 
φ( ,  ) = Φ(  − )  ( D∂∈ ) and using the usual Fourier’s projection 
method, equations (15)-(17) readily follow. □ 

Once the corrector function ),(φ  for the assigned domain D  is 
computed (Natalini et al., 2008), the solution of the boundary-value 
problem for the Poisson equation (1)-(2) can be obtained by applying 
suitable quadrature rules to Green’s function representation (8). 

 
 

5. OUTLOOK 
 

The solution to the boundary-value problem for the Poisson equation is 
presented here. This particular problem was selected because of G. Lamé’s 
preference. In the same way, canonical solutions to BVP of various types 
(also Neumann and Robin problems) can be obtained using Fourier series, 
avoiding cumbersome numerical techniques such as finite-difference or 
finite-element methods. It is also applicable in engineering since in three 
dimensions it allows for the development of computational solutions for 
mesh-free modeling, without the need for discretization in general. Almost 
200 years after Fourier and Lamé, their original contributions to science 
are now united in the spirit of a Unique Rational Science.   

We may go further, since from a purely geometrical point of view 
there is one and only one curve that can be expressed in a finite Fourier 
series only, and that is the circle itself, due to a theorem of B-Y Chen 
(1994). In the study of Riemannian submanifolds Chen introduced finite 
type functions of k-type. The circle is the only planar curve of finite type, 
namely of 1-type and any other curve is of infinite type (Verstraelen, 
1991).   

A generalized trigonometric series based on Eq. 1 can associate any 
term in the series with some anisotropic unit circle. It follows that all 
supershapes can be described in only one term (and in analogy with Chen 
finite type curves are of 1-type). As the set of Euclidean circles is a subset 
of the set of such unit circles, Fourier series reduce to a special case. Since 

ρρ ′

ρρρ

ρ′ρρ′ρ′ρ

ρ′ρ
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anisotropic unit circles can have cusps or singularities, analysis based on 
pure shape description incorporates such singularities a priori. 

In conclusion, with supershapes and Gielis transformations we are able 
to describe shape and development of a wide variety of basic shapes in 
nature using only pure numbers and we can begin to understand how other 
natural beings or objects “geometrize their world ” , with their own shapes 
as unit circles, and based on a generalized Pythagorean Theorem. We have 
called this program Universal Natural Shapes (Gielis et al., 2005).   

An extension of Euclidean geometry, with a conservation law for  
n-volumes (or in a 3D world the act of weighing and equilibrium in the 
spirit of Archimedes, Stevin and Lamé), provides for a uniform description 
of natural and abstract shapes. It stimulates geometric research in the natural 
sciences and the development of new computational methods to address a 
variety of open problems in mathematical physics and mechanics.  

“La mécanique est la science des forces et du mouvement” (Delaunay, 
1856). 
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ABSTRACT In this work we present a twofold educational approach to 
the reflective properties of surfaces, starting from the historical context of 
Archimedes “burning mirrors”. The properties of the emerging surface 
known as “caustic” of a given smoothly shaped mirror are illustrated by an 
interactive multimedia. An experimental device is also proposed to visualize 
the geometrical principles underlying the formation of caustics. The pro-
posed didactical trail is intended also to contextualize the figure and work 
of Archimedes in a perspective tightly linked to modern technology, so to 
collect young learners’ interest. 

 
 

1. INTRODUCTION 
 
The name of Archimedes is, among other things, associated with the 
defense of the ancient city of Syracuse from Romans during the Second 
Punic War in 212 B.C. According to tradition, in fact, to face the roman 
naval attack Archimedes would have used a burning mirror to set fire to 
the roman ships. Regardless of the authenticity of this story, Archimedes 
surely studied the geometric properties of the reflection of light from 
mirror surfaces. This is a very interesting topic from a technological point 
of view: just consider, as an example, the parabolic reflectors used in 
microwave transmission and receiving or the variously shaped reflecting 
surfaces employed to concentrate the light in artificial lighting devices. 

 
 
 

Assunta Bonanno, Michele Camarca, and Peppino Sapia 
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Despite their ubiquity, the geometric properties of reflecting surfaces 
are barely known, nor are they illustrated in standard scholar curricula. 

In this context we present in the present work a twofold didactical 
approach to the reflective properties of surfaces, with particular regard to 
the emerging surface known as “caustic” of a given smoothly shaped 
mirror, i.e. the envelope of all reflected rays from it (properly speaking, 
this is the catacaustic; while the term diacaustic denotes the caustic obtained 
as envelope of refracted rays). The proposed approach is based both on a 
multimedia illustrating the properties of caustics, and an experimental 
device to produce them. The latter is built by employing easily found 
materials, such as laser diodes obtained from common laser pointers, and 
allows to explore caustics of most common reflecting conic profiles, i.e. 
circle, ellipse and parabola. The multimedia shows, in particular, the pro-
perties of the curve known as “cardioid”, which is the circle’s caustic. 
 

 
Fig. 1. Geometric construction of the caustic of a spherical mirror. 

 
 

2. CAUSTICS 
 
Let us consider a regularly shaped reflecting surface, such as a semi-
spherical concave surface. To characterize the reflective behavior of such a 
mirror two cases of incident light rays are usually considered: a point 

 
source from which rays diverge isotropically or a beam of parallel rays 
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(equivalent to the former one when the point source goes to infinity). The 
caustic of a surface is defined as the envelope of the rays reflected from 
that surface when the radiant point is put in front of it. Figure 1 shows the 
geometric construction of the caustic in the case of a spherical mirror with 
the radiant point on its symmetry axis at finite distance. Thanks to the axial 
symmetry of mirrors it is sufficient to consider a section of the rays’ 
pattern; so the caustics illustrated in the drawings presented are not 
surfaces, but lines that generate the corresponding surface caustics by an 
axial rotation. So, properly speaking, those presented, for example in Fig. 2, 
are the circle caustics not the sphere ones. The last are obtained by an axial 
revolution of the former ones. 

Figure 2 illustrates the circle caustics for various positions of the point 
source and have been obtained by employing Wolfram Mathematica® 
code freely available (Wesstein 2009). 
 

 
Fig. 2. Caustics of the circle for various positions of the point source: a) at infinite distance 
(parallel rays); b) outside the circle at finite distance; c) on the circle; d) inside the circle. 
The caustics obtained in cases a) and b) are named “nephroids” which literally means 
“kidney shaped”. The caustic obtained in case c) is a curve named “cardioid”.  
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3. COMPUTATIONAL CAUSTIC EXPLORATION 
 

The caustic curves of a circle are different, depending on the distance r of 
the light point source from the circle’s center, compared to the circle’s 
radius R. In particular, if r<R, i.e. the source lies inside the circle, the 
caustic is a curve named Pascal’s limaҫon, if the light source is outside, 
i.e. r>R, the caustic is a nefroid (term which means “kidney-shaped”); 
while one obtains a cardioid as a caustic when the point source is just on 
the circle’s perimeter. This last curve is a special case of the epicycloid in 
which the radius of the outer circle is the same as that of the inner circle.  

The didactical use of the computer allows the simulation of mechanisms 
to trace the aforecited caustic curves beginning from their properties. 

The cardiod, drawn by Roemer in 1674 while he was studying the 
form of a gear constituted by two toothed disks that can rotate one around 

 

Fig. 3. Cardiod. 
 

The name cardioid, was first used by de Castillon in Philosophical 
Transactions of the Royal Society in 1741 and derives from the Greek 

La Hire, architect, good mathematician disciple of Desargues, in 1708 
(Lockwood 1978). The cardiod is a splendid curve that contains a lot of 
geometric properties, therefore, she can be treated through the various 
typologies of equations (Cartesian, parametric, polar). 

The polar equation of the curve is: 

(1 cos )r a= − α  

While the Cartesian form is:  
2 2 2 2 2 2( ) ( )x y ax a x y+ + = +  

 
 

−1
−1

1

2

3

3

−2

−3

−2−3

terms καρδί (heart) and έιδος (figure). Its arc length was found by P. de 

the other, Fig. 3.  
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and the parametric equations are: 
cos (1 cos )
sin (1 cos )

x a t t
y a t t
= −
= −

 

 
Fig. 4. Cardiod envelope. 

 
Let the circle C be centered at the origin and have radius 1, and let the 

fixed point be A=(1,0). Then the radius of a circle centered at an angle α 
from (1,0) is: 

2 2 2(0 cos ) (1 sin )  = 2(1 sin ) r = − α + − α − α  

The cardiod, as envelop (Pedoe 1995), can be represented using the 
computer and an appropriate software tool, as the programming environ-
ment MatCos (Bonanno et al., 2006). Indeed, the following code reaches the 
purpose: 

 
Code MCl 
Q = punto;  
c1 = circ(Q,80); 
print("you choose a point A on the circumference"); 
A = punto; 
per(i da 1 a 220) esegui; 
o = puntoacaso_su(c1); 
m = distanza(A,o); 
Colorepenna(128,0,0); 
c2 = circ(o,m); 
fine; 
 

generated as follows: Draw a circle C and fix a point A on it. Now draw a 
set of circles centered on the circumference of C and passing through A. 
The envelope of these circles is then a cardioid (Pedoe 1995). 

The cardioid has a cuspid at the origin, Fig. 4. The curve may also be 
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If the fixed point A is not on the circle, then the resulting envelope is a 
limaҫon instead of a cardioids (Fig. 5). 
 

 

Fig. 5a. Output of Cardiod as envelope of circles. 
 

 
Fig. 5b. Output of limaҫon as envelope of circles. 

 
The nefroid is the catacaustic for rays originating at the cusp of 

cardioid and reflected by it. In addition, Huygens showed in 1678 that the 
nefroid is the catacaustic of a circle when the light source is at infinity, an 
observation which he published in his Traité de la Luminère in 1690 
(MacTutor Archive).  

The name nefroid (‘kidney-shaped’) was used for two- cusped epi-
cycloids by Proctor in 1878; a year later, Freeth used the same name for 
a somewhat more elaborate curve. The curve Nefroid can be defined as a 
trace of a point fixed on a circle of radius r/2 that rolls outside a fixed 
circle with radius r. Also, it is the trace of a point fixed on a circle of 
radius (3/2) r that rolls inside a fixed circle of radius r (by ‘inside’, it 
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means the curvature of both circles at the contact point face the same 

 
Fig. 6. Nefroid. 

 
The nefroid is given by the polar equation  

2 2 2 2
3 3 3 3cos sin

2 2
a

⎛ ⎞θ θ⎜ ⎟ρ = +
⎜ ⎟
⎝ ⎠

 

While the Cartesian equation is: 
2 2 2 3 4 2( 4 ) 108x y a a y+ − =  

and the parametric equations: 
0<t 2π(3cos cos3 )           

(3sin sin 3 )
x a t t
y a t t

≤= −
= −

 

The nefroid can be generated as the envelope of circles centered on a 
given circle and tangent to one of the circle’s diameters (Wells 1991). This 

 
Code MCl  
rifcart; 
f=leggifunz("radiceq(4-x^2)");  
g=leggifunz("-(radiceq(4-x^2))"); 
graficofunz(f);graficofunz(g); 
A=punto(0,2);B=punto(0,-2); s=segmento(A,B); 
A1=A.x; A2=A.y; 
B1=B.x; B2=B.y; 

x1=x; 

 

2

2

1

-1

-1-2

-2

direction), Fig. 6. The latter is known as double generation.  

can be easily done using the programming environment MatCos, Fig. 7. 

x=legginum("valore -1.99<x<1.99"); 

Indeed, the following code reaches the purpose: 
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 ESEGUI FINQUANDO (x1<2); 
x1=x1+0.1; 
y1=valutafunz(f,x1); 
Q1=y1; 
r=radiceq((x1-A1)^2+(y1-Q1)^2); 
C1=Circ(Punto(x1,y1),r); 

 FINE; 
ESEGUI FINQUANDO (x1>-2); 
x1=x1-0.1; 
y1=valutafunz(f,x1); 
Q1=y1; 
r=radiceq((x1-A1)^2+(y1-Q1)^2); 
C1=Circ(Punto(x1,y1),r); 

FINE; 
ESEGUI FINQUANDO (x1<2); 
x1=x1+0.1; 
y1=valutafunz(g,x1); 
Q1=y1; 
r=radiceq((x1-A1)^2+(y1-Q1)^2); 
C1=Circ(Punto(x1,y1),r); 

FINE; 
 

 
Fig. 7. Output of nefroid as envelope of circles. 

 
 

4. EXPERIMENTAL CAUSTIC EXPLORATION 
 
In this section an experimental device is presented aimed to really illustrate 
the way in which the emerging caustic curve is formed by the reflected 
rays. The proposed device is realized by employing easily found materials. 
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In fact, it is well known in the literature the learning potential either of 
experimental setup realized by means of common use stuffs that students 
know from everyday life or of informal learning (Jodl and Eckert 1998, 
Bosio et al., 1997, Michelini 2006). 

 

 
Fig. 8. Experimental device illustrating the geometry of the caustic formation. A parallel 
rays beam is obtained by using an array of small laser diodes. A flat box, having a reflect-
ing profile (either circular, elliptic or parabolic) is filled with a diffusive liquid medium that 
allows to visualize the rays’ pattern. 

 
The device, illustrated in Fig. 8 consists in a flat transparent box 

(approximate dimensions 20 cm x 35 cm x 3 cm) filled with a slightly 
diffusive liquid. This last, prepared as a 2% aqueous solution of Maalox®, 
the well known syrup used to treat heartburn, has the property of visualiz-
ing the pattern of light rays passing through it. In low cost optics experiments 
the visualization of light rays is usually obtained by an aqueous suspension 
of powder milk; however, this solution has the disadvantage that after a 
certain time the milk goes bad and smells. This unpleasant side effect is 
eliminated by employing Maalox instead! 

On one side of the flat box (on the left in Fig. 8) there is a reflective 
mirror strip fixed on a rigid support forged in a conical profile (either 
circular, elliptic or parabolic). 

On the other side (right in Fig. 8) a lighting module is fixed, generating 
a parallel red rays beam. This beam generator (Fig. 10) is constituted by an 
array of small laser diodes obtained by breaking some laser pointer key-

 
chains (Fig. 9). In this way, when lasers are turned on, a parallel rays beam 
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is visualized in the diffusive medium filling the box, together with the 
pattern of rays reflected from the mirror strip. Reflected rays tend to 
dispose following the strip profile caustic. In particular, in the case of 
parabolic mirror the reflected rays are nearly crossing through a single 
point: the focus. This last, in fact, is a degenerate case of caustic. We 
should emphasize a constructive detail: the narrow sides of the flat box are 
realized by opaque black PVC. This is to avoid further reflections from 
these walls, that otherwise would complicate the rays pattern in the liquid 
medium. 

 

 
Fig. 9. A laser pointer keychain (A) from which a laser diode module (B) has been 
extracted. The diode case is about 1 cm long, 5 mm wide. 

 

 

 
Fig. 10. A Laser diodes array for the generation of a beam of parallel light rays. The laser 
diodes, extracted from laser pointer keychains (Fig. 9) are fixed to a 12 cm long copper rod. 
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5. CONCLUSION 
 
In this work we present a learning path on caustics, starting from the 
legendary Archimedean “burning mirrors”. The proposed approach to the 
reflective properties of surfaces integrates the computational point of view 
with the experimental one. In particular, we propose an experimental device, 
realizable with low-cost and easy-to-find materials, that allows to visualize 
the geometrical principles underlying the formation of caustics. 

The proposed didactical trail is also intended to contextualize the 
figure and work of Archimedes in a perspective tightly linked to modern 
technology, so to collect young learners’ interest. In fact, whereas the 
Archimedean influence on present-day science and technology is well 
known as far as mechanics and hydrostatics are concerned, by far less 
known is the role of the Syracuse’s thinker in other modern technological 
areas. We make reference in particular to all those optic and electronic 
devices whose functioning is essentially based on the principles of Archi-
medean “burning mirrors”: radiotelescopes, reflecting optical telescopes, 
parabolic antennas for microwave-based telecommunications, and obviously 
the cars headlight reflectors. The study of the reflective properties of conic 
sections, together with the observation of the several technological con-
texts in which they are present, is useful to emphasize the Archimedes’ 
influence on present-day technology.  

As a concluding remark, we should note that the educational activity 
proposed is also aimed to highlight the role of Archimedes elaborations 
from the point of view of the history of mathematics. The Syracuse’s 
thinker, in fact, has been variously acknowledged throughout centuries as a 
father of the topic proposed in this work (the reflective properties of conic 
sections), as testified among others by an influential treatise published in 
1632 by the Italian mathematician Bonaventura Cavalieri (Cavalieri 1632), 
whose full title is: “The burning mirror, or a treatise on conic sections and 
some of their wonderful effects”. 
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ABSTRACT In the paper we discuss the three methods that Archimedes 
employs to deal with the problem of the quadrature of a parabolic segment. 
We characterize the three approaches as heuristic, mechanical and geo-
metric respectively. We investigate Archimedes’ own attitude towards the 
three methods, and we conclude with a critical presentation of the prevalent 
views concerning the matter, which have been expressed in the past by 
historians of mathematics.  
 
 
1. INTRODUCTION 
 

most prominent figures in the history of mathematics of Antiquity. Both of 
them are part of that group of Greek mathematicians who, through their 
work, deeply influenced the development of early modern mathematics. 
The fact that they lived geographically and chronologically close to each 
other could lead one to infer that their scientific work, too, is completely 
analogous in breadth and content and that Archimedes also worked, at 
least up to a point, within the framework of the research program that 
Euclid had initiated a few decades earlier. Such a conclusion, however, is 
far from the truth. More specifically, as far as mathematics is concerned, 
the study of the work of the two men reveals that Euclid and Archimedes 
belong to two mathematical traditions which, although not entirely irrelevant 
to each other, are nevertheless distinct from each other, while both of them 
can be traced back to the times of the classical Greek mathematics. 

The first was the “tradition of stoicheiôsis of mathematics.” It was a 
tradition which focused on studying the logical structure of mathematical 
reasoning, ensuring the rigor and simplicity of mathematical proof and 
generally organizing and systematizing the structure of the mathematical 
edifice. Euclid was the main representative of this tradition and his Elements 
was the crowning achievement of the researches in the field.  

Euclid ( fl. ca. 300 B.C.) and Archimedes (ca. 287–212 B.C.) are the two 
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Alongside the tradition of stoicheiôsis, a second one was developed 
among the Greek mathematicians, more or less in the same period, which 
would be called the “metric tradition”. Without being wholly unrelated to 
the former one, the metric tradition focused mainly on measuring geo-
metric shapes, that is on discovering techniques to develop formulas, as we 
would say today, in order to measure the area or the volume for two- and 
three-dimensional shapes, as well as on developing arguments to prove 
these formulas. The metric tradition was established by Eudoxus (390–337 
B.C. or 408–355 B.C.) although its origins can be traced even further back 
in time, in the second half of the 5th century, in the work of Democritus. 
Nevertheless, the tradition came to full fruition in the 3rd century, with the 
work of Archimedes. (Knorr 1993, 151–152) 

Archimedes is the foremost representative of the metric tradition 
among the Greek mathematicians. An important part of his work is about 
quadrature and cubature, and indeed most of his treatises are devoted to 
such issues. These treatises could be characterized, by analogy with the 

Among the works of Archimedes which survive in the Greek language, 
only Sand-Reckoner, Floating Bodies and The Cattle Problem are not 
related to the issue of quadrature and cubature, while the subject matter of 
his treatise Stomachion still remains uncertain, despite recent progress. It is 
worth noting, however, that even some of these works deal, in a way, with 
measurement issues. Thus, Sand Reckoner talks about the number of specks 
of sand which could fill the universe, The Cattle Problem is about deter-
mining the number of four sets of bulls and cows which satisfy certain 
conditions, while Stomachion is about the combinatory problem of the 
number of solutions to the problem of making a square out of the rearrange-
ment of the 14 puzzle pieces into which the square had originally been 
divided. (Netz, Acerbi, Wilson 2005) 

The statement that the mathematical work of Archimedes belongs to 
the “metric” tradition of Greek mathematics and that Archimedes is the 
leading representative of the tradition is by no means a new conclusion. It 
is common ground in the history of Greek mathematics nowadays, that 
Archimedes made use of the infinitesimal methods developed by Eudoxus, 
he refined and expanded them further and applied them skillfully to a great 
number of quadrature and cubature cases of geometric shapes.   

tradition to which they belong, as “metric,” and they are the following: 
“Measurement of a Circle, Quadrature of the Parabola, On the Sphere 
and the Cylinder, On Conoids and Sheroids, On Spirals, and The Method 
of Mechanical Theorems. Relevant to the above mentioned works, and more 
specifically to The Method of Mechanical Theorems and the Quadrature of 
the Parabola, is also the treatise On the Equilibrium of Planes”. 
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Of the multitude of quadrature and cubature cases included in the 
works of Archimedes, two of them are especially interesting. The first such 
case is the quadrature of a parabolic segment. What is interesting about 
this quadrature is the fact that Archimedes deals with it three times, in 
two different treatises: in the Quadrature of the Parabola (hereafter, the 
Quadrature) and in The Method of Mechanical Theorems (hereafter,  

quadrature of a parabolic segment, which Archimedes investigates using 
two different methods (a mechanical one and a geometric one), while the 
latter features the quadrature of the parabolic segment as an example of the 
application of the heuristic method, which Archimedes had devised in 
order to determine the surface area and the volume of geometric shapes, 
independently of the formal, rigorous proof of the conclusions he drew. 
The second such case appears in The Method. More specifically, in 
Propositions 12–15 of this treatise, Archimedes deals with the same pro-

three different ways. So, in Propositions 12–13 he investigates the problem 
using a mechanical method, in Proposition 14 he employs the use of 
“indivisibles” (which, as we shall see, is an essential part of his heuristic 

o

Obviously, the existence of multiple ways of handling these two 
problems in the works of Archimedes, even within the same work, poses a 
number of historiographical questions about the content, the role and the 
weight that the Syracusan mathematician placed on the various methods of 
quadrature that he employed. Later on in this paper, we shall draw on the 
example of the three ways which Archimedes employs to deal with the 
quadrature of a parabolic segment, as a means to investigate such questions 
raised by the historiographical research. Before doing so, however, it would 
be useful to mention a few facts concerning the two treatises in which 
Archimedes studies the quatradure of the parabolic segment. 
 
 
2. THE QUADRATURE AND THE METHOD: SOME FEATURES  

OF THE TWO TREATISES 
 

The Quadrature and The Method differ from each other both in style and 
use. The Quadrature has the style of a formal publication. It was written 
by Archimedes in order, as we would say, to have it published as a book 
addressing a reading public. The Method’s form, on the other hand, gives 
the impression of a text extracted from Archimedes’ personal records. It is 
attached to a letter to Eratostenes and it addresses, at most, a little circle 
of mathematicians associated with Eratosthenes. This work has a much 

The Method ). Indeed, the former is solely devoted to the subject of the 

blem of the cubature of a cylindrical segment (a “hoof ”) three times and in 

method) and in Proposition 15 by a geometric method. (Saito 2006, 36 n  3).  
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stronger personal touch. It’s more like an elaborate version of the notes 
a geometer keeps during his research project. Repeating a phrase by 
Dijksterhuis, we may say that, through this work, Archimedes allows us to 
have a look inside his mathematical study room. (Dijksterhuis 1987, 315) 
So, the two treatises have significant differences between them in form and 
intention. 

The second point worth mentioning is that the writing of the 
Quadrature chronologically precedes The Method. This derives directly from 
a passage in Archimedes’ letter to Eratosthenes, where he writes: “I now 
wish to describe the method in writing, partly, because I have already 
spoken about it before, that I may not impress some people as having 
uttered idle talk, partly because I am convinced that it will prove very 
useful for mathematics.” (Dijksterhuis’ translation) By saying that he has 
spoken in the past about it, Archimedes actually refers to a phrase in the 
preface of the Quadrature where he mentions that he first discovered  
the theorem about the square area of a parabolic segment by means of 
mechanics and then proved it by means of geometry. By juxtaposing the 
two extracts, it is concluded that Archimedes wrote the Quadrature before 
writing The Method. The same conclusion arises from the closing phrase 
of the first proposition of The Method, where, after stating that he found, 
by means of mechanics, the area of a segment of a parabola to be 4⁄3 of the 
triangle which has the same base as the segment and equal height, 
Archimedes adds: “This has not therefore been proved by the above, but a 
certain impression has been created that the conclusion is true. Since we 
thus see that the conclusion has not been proved, but we suppose it is true, 
we shall mention the previously published geometrical proof, which we 
ourselves have found for it, in its appointed place.” (Dijksterhuis’ translation) 
In this extract Archimedes once more refers to the Quadrature, which 
leads to the conclusion that the writing of this work chronologically pre-
cedes the writing of The Method. 

Of course, the chronological order of the writing of the two treatises 
does not coincide with the order in which Archimedes conceived what is 
included in them. On the contrary, the discovery of a theorem always 
precedes its formal, rigorous proof. The problem of the classification of 
Archimedes’ works according to the chronological writing order, from the 
one hand, and according to the order they occupied in Archimedes’ 
research agenda, on the other hand, is, indeed, a problem hard to solve, 
which still preoccupies the historians of Greek mathematics. (Knorr 1978; 
Vitrac 1992) 
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3. 

 
In this paper we shall not enter into the detailed technical presentation of 
the three methods Archimedes employs to deal with the problem of the 
quadrature of a parabolic segment. Such a presentation can be found in any 
book of the history of Greek mathematics, and, in particular, in (Dijksterhuis 
1987), which is still considered the best review of Archimedes’ complete 
works. We merely note that Archimedes investigates the problem in proposi-
tion 1 of The Method, by using an approach which can be characterized –
anticipating in a way the discussion which will now follow– heuristic; in 
propositions 14 and 16 of the Quadrature of the Parabola, by using an 
approach which can be characterized as mechanical; and in proposition 
24 of the same treatise, by using a geometric approach. We shall now 
examine Archimedes’ own attitude towards the three methods, in other 
words, how he perceives the role and the importance of each one, so as to 
conclude the article with a critical presentation of the prevalent views 
concerning the matter, which have been expressed in the past by historians 
of mathematics. (Knorr 1982; 1993; 1996; Dijksterhuis 1987; Netz, Saito, 
Tchernetska 2001; Saito 2006) 

Archimedes uses two pairs of terms to characterize, and distinguish 
from each other, the three methods which he employs in order to investigate 
the problem of the quadrature. These pairs could be rendered as: “heuristic” – 
“demonstrative”, and “mechanical” – “geometric”. It is true that not all of 
these words occur en personne in Archimedes’ texts. The word “heuristic,” 
for example, does not occur anywhere. Instead, other equivalent forms 
appear in expressions such as “dia mechanikôn heurethen,” “tou nun 
ekdidomenou theorêmatos tên heuresin,” “fanentôn mêchanikôs,” “fanen 
dia tôn mêchanikôn.” Similarly, instead of the word “mechanical,” the 
phrase “dia tôn mêchanikôn,” or the adverbial form “mechanikôs,” occur. 
In the same way, variants of the other two words, “demonstrative” and 
“geometric,” appear in the texts. For brevity’s sake, from now on we shall 
render all the variants using the word pairs that we mentioned above.  

Let us now see how Archimedes characterizes each method. The 
quadrature expounded in The Method is characterized as “heuristic” and 
“mechanical.” Its heuristic character lies, he notes, in the fact that it gives 
one the ability to know in advance, by means of mechanics, some 
mathematical properties, a knowledge which is useful in finding proof for 
the relevant theorem. For “it is easier to supply the proof when we have 
previously acquired, by the method, some knowledge of the questions than 
it is to find it without any previous knowledge.” (Dijksterhuis’ translation). 
Nevertheless, Archimedes is keen to point out that the quadrature achieved 

SEGMENT: A HISTORIOGRAPHICAL DISCUSSION 
THE QUADRATURES OF THE PARABOLIC 
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by this method does not constitute proof of the conclusion. This is deduced 
from the clarification at the end of the proposition 1 of The Method, 
where he mentions: “This has not been proved by the above, but a certain 
impression has been created that the conclusion is true.” (Dijksterhuis’ 
translation). There is no doubt, therefore, that Archimedes considers the 
first method of quadrature, that is the quadrature expounded in his treatise 
The Method, as mechanical, heuristic, but not demonstrative.  

Similarly clear is the way Archimedes treats the last of the two 
quadratures exposed in Quadrature. He characterizes it as geometric and 
demonstrative. This derives right from the following extract taken from the 
preface: “I have therefore written out the proofs (he is referring to the 
quadrature of the parabolic segment), and now send them, first as they 
were investigated by means of mechanics, and also as they may be proved 
by means of geometry.” (translation by Ivor Thomas) This extract is similar 
to another one taken from the same preface: “I set myself the task of 
communicating to you … a certain geometrical theorem, which had not 
been investigated before, but has now been investigated by me, and which 
I first discovered by means of mechanics and later proved by means of 
geometry.”  (translation by Ivor Thomas). In both extracts Archimedes is 
referring to the geometric proof exposed in the second part of the 
Quadrature of the Parabola, in which the main theorem is proposition 24. 
The fact that, in the latter he uses the expression “exhibited (epideichthen) 
by means of geometry,” instead of the expression “proved (apodeiknytai) 
by means of geometry” used in the former, does not, in any way, change 
the conclusion that Archimedes considers the method he employs to deal 
with the problem of the quadrature of a parabolic segment in the second 
part of his treatise, as both geometric and demonstrative. 

Now, as far as the method of quadrature expounded in the first part of 
the Quadrature of the Parabola is concerned, things are not so clear as in 
the previous two cases. Of course, there is no doubt about its mechanical 
nature. The problem lies in whether Archimedes believes that this reason-
ing constitutes a convincing and acceptable proof. As we shall see later on, 
this is exactly the point, which has led to disagreement among modern 
historians of mathematics. In our opinion, the extract quoted above (“I have 
therefore written out the proofs, and now send them, first as they were 
investigated by means of mechanics, and also as they may be proved by 
means of geometry”), in which Archimedes uses the plural form “proofs” 
to characterize both of the quadratures exposed in Quadrature, constitutes 
a piece of evidence which should not be overlooked.  

However, the matters concerning this last mentioned method of 
quadrature are more complicated than what we presented earlier on, 
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can a proof be which uses notions and reasonings taken from mechanics. 
The argument developed by Archimedes in this quadrature, is, in a way, a 
hybrid endeavor, which draws both on geometry and mechanics. It is true 
that the argument which is developed in the quadrature of The Method 
has similar characteristics. Archimedes, however, does not consider this 
quadrature as demonstrative; he considers it as heuristic, so, in this sense, 
no question of its demonstrative validity is raised. The quadrature, on the 
other hand, exhibited in the first part of Quadrature, does not have  
the characteristics of a heuristic procedure. Its development requires the 
conclusion to be known in advance. From the other hand, its mechanical 
character is indisputable and it consists in: a) considering the geometric 
magnitudes as physical (namely, as having weight), b) the use of the 
weighing balance, c) the application of the law of the lever, d) the use of 
properties concerning the centers of gravity. Is, however, the investigation 
of geometric properties, using arguments taken from mechanics, an accept-
able method? To the pure mathematician, imbued with the Euclidean ideal 
of the rigor of proof, it would be unacceptable. Vitrac writes about this: 
“Pour un puriste ceci n’est pas recevable comme démonstration géométrique 
car il y a un problème par rapport aux principes de la démonstration utilisée.” 
(Vitrac 1992, 75) Vitrac also refers to sections I, 6-7 from Aristotle’s 
Analytica posteriora, adding that, “Une figure en mécanique a poids et 
grandeur; en géométrie elle a seulement une grandeur.” (Vitrac 1992, 75 

scientific disciplines should not be used within the same proof; one should 
not enter a field of study using means and techniques belonging to another 
field. However, Archimedes himself, as it has been mentioned, calls, even 
if once, the quadrature demonstrative. Based on the above observations, it 
is clear that there are some open historiographical questions pertaining to 
the role and the character of the quadrature exhibited in the first part of the 
Quadrature of the Parabola. Let us now see how the historians of mathe-
matics approached this subject.  

The starting point of our investigation will be the quadrature set forth 
in The Method. As it has been mentioned, Archimedes always characterizes 
this method as heuristic, he adds that it does not constitute proof, and 
refers for its proof to his treatise Quadrature of the Parabola, which had 
been published earlier. The question which naturally arises is why the 
method employed in the quadrature of The Method is not viewed as suf-
ficient in order for the conclusion to be considered valid and rigorously 
proved. Is there some lack of mathematical rigor in the method, and, if so, 
where exactly is this lack traced? 

 

 56) Indeed, according to Aristotle, principles taken from different on

because the question is raised as to how valid and mathematically rigorous 
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A decoding of the method reveals that there are two different types of 
arguments used in it: 

1. Firstly, arguments taken from mechanics are used. The geometric 
magnitudes are considered as having weight, they are suspended from 
the beam of a hypothetical weighing balance, the law of the lever is 
applied to deduce relationships between the geometric magnitudes, and 
properties related to the centers of gravity are used.  

2. Secondly, a plane figure is considered as made up of “all” the parallel 
segments of straight lines drawn along a given direction and whose 
endpoints lie on the perimeter of the figure. So, the figure may be de-
composed into such parallel chords of a given length, and be recon-
structed again by them. The “sum” of the segments of straight lines 
gives the area of the plane figure. We shall call these segments of 
straight lines “indivisibles.” This notion can also be extended to solid 
figures, which can be decomposed into parallel cross-sections. 

Taking into consideration these two different types of arguments involved 
in Archimedes’ reasoning, let us now examine where, according to the 
historians of mathematics, the lack of mathematical rigor of this method of 
quadrature is located. The most frequently expressed view in the biblio-
graphy is the one formulated by E.J. Dijksterhuis. According to Dijksterhuis, 
the lack of mathematical rigor is due to the employment of the “indivisibles” 
and not, by any means, to the mechanical aspects of the method. (Dijksterhuis 
1987, 319, 336) On the contrary, Dijksterhuis says that Archimedes assigned 
demonstrative validity to the mechanical aspects of the method, and this is 
inferred, first of all, by the fact that Archimedes himself had established 
mechanics (statics) as a demonstrative science in On the Equilibrium of the 
Planes, and secondly by the fact that, in the first part of Quadrature, he 
proves the conclusion about the parabolic segment applying mechanical 
considerations, but not indivisibles. In the following years, Dijksterhuis’ 
point of view was adopted by other scholars and today it is considered as 
dominant. 

Apart from the scholars who embraced Dijskterhuis’ position, there 
were others who disagreed, claiming that the lack of rigor of the method is 
due not only to the use of indivisibles, but to its mechanical nature, as well. 
As a consequence, those scholars maintained that, because of its mechanical 
attributes, the quadrature in the first part of Quadrature does not constitute 
a valid and rigorous proof either, and that neither Archimedes considers it 
as such. An earlier historian who expressed such a view was Oskar Becker, 
from whom we quote the following extract: “Archimède ne tient pas 
cette méthode pour rigoureuse, tout d’abord à cause de considérations 
infinitésimales qui remontaient partiellement à Démocrite (B 155) …, mais 
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aussi à cause de l’emploi de la Statique. Ainsi dans la Quadrature de la 
parabole il remplace dans ses considérations par exhaustion (le segment de 
parabole est décomposé non en un nombre infini de segments mais en un 
nombre d’éléments qui, fini à l’origine, est progressivement porté à 
l’infini). Cela conduit encore à une démonstration purement géométrique 
au cours de laquelle il utilise en même temps que certaines intégrales 
définies des séries infinies convergentes.” (Becher, Hofmann 1956, 81–82) 
Becker repeated his view a year later, in a critique that he wrote on the 
English edition of Dijksterhuis’ book. (Becker 1957)  

The historian of mathematics, however, who most forcefully expressed 
his objections to the position of Dijksterhuis, was W.R. Knorr. (Knorr 1982; 
1996) According to Knorr, the main weakness of Archimedes’ method, as 
far as its mathematical rigor is concerned, is exactly its mechanical nature 
and not the indivisibles. As he notes, “in Archimedes’s account the 
indivisibles are merely a secondary aspect; for the essence of his method 
lies in its appeal to mechanical principles.” (Knorr 1982, 73) The arguments 
that Knorr appeals to in order to justify his view are the following:  
1) Archimedes always refers to the heuristic method using the expression 
“dia tôn mechanikôn;” he never uses anything which would imply the 
indivisibles. 2) In the extracts 218.11–12 and 220.17–20 from Quadra-
ture quoted above, Archimedes juxtaposes the “demonstrative” to the 
“mechanical.” In this setting, when he mentions in The Method that some 
of the theorems he originally found by means of mechanics, he later proved 
by means of geometry, because “the investigation using this procedure 
does not constitute proof,” he can only refer, Knorr claims, to the mechanical 
attributes of the method. 3) Finally, the inclusion of the geometric proof in 
the second part of the Quadrature of the Parabola, is due to Archimedes’ 
wish to forestall possible objections raised in the name of pure mathe-
matics about the legitimacy of the use of mechanical elements (such as 
weight, the weighing balance, equilibrium) in proofs which concern 
exclusively geometric properties of geometric figures, as in the case of the 
quadrature which takes place in the first part of the Quadrature of the 
Parabola.  

Our comments on the above arguments are the following: Archimedes 
uses the expression “dia tôn mechanikôn” both when he describes the 
heuristic method, and when he refers to the mechanical quadrature of the 
Quadrature of the Parabola. In the fist case, however, he is careful to 
always add to this expression a participle such as “heurethen” or “fanen” 
(found), something he does not do in the second case. The juxtaposition, 
therefore, is not between the “demonstrative” and the “mechanical” as 
such, as Knorr claims, but between the “demonstrative” and the “found dia 
tôn mechanikôn”, in other words between the “demonstrative” and the 
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“heuristic.” On the contrary, Archimedes by no means juxtaposes the 
“demonstrative” with the mechanical quadrature in Quadrature of the 
Parabola, since, as we have seen, he characterizes the latter as proof. 
Besides, the last argument does not state anything as to how Archimedes 
himself evaluated the mechanical quadrature of the Quadrature of the 
Parabola. The possibility that some mathematicians might raise objections 
over the legitimate use of mechanical elements in geometric proofs, does 
not mean that Archimedes himself shared their views. On the contrary, it is 
plausible to assume that Archimedes considered as legitimate and convinc-
ing the mechanical proof of the quadrature of the parabolic segment, which 
he himself invented, and that the inclusion of the geometric proof in  
the second part of the Quadrature of the Parabola, aimed at making the 
mechanical proof more easily acceptable by a public which might have had 
some disbelief and objections about the latter, but had no reservations 
whatsoever about the validity of the former.  

The main issue in the preface to Quadrature of the Parabola is not to 
juxtapose the mechanical with the geometric treatment of quadrature 
problems, as Knorr claims. The main issue is to address the question of 
what kind of propositions should be taken as lemmas (axioms) in order for 
the proofs to be considered as valid. Archimedes notes that, in the past, 
there had been geometers who tried to solve (and to justify the solution, to 
prove) problems such as the quadrature of the circle, the quadrature of a 
segment of a circle, or the quadrature of an area bounded by an ellipse 
section and the chord at its ends, using lemmas which were not easily 
acceptable. The use of such lemmas had the result that the solutions pro-
posed by those geometers were not recognized, by most of their colleagues, 
as having validity. However, nobody, Archimedes notes, had tried to square 
the parabolic segment, in the past. This problem was solved for the first 
time by himself, “and for the proof this lemma is assumed: given [two] 
unequal areas, the excess by which the greater exceeds the less can, by 
being added to itself, be made to exceed any given finite area.” (translation 
by Ivor Thomas) 

Archimedes explains that this lemma –often referred to as the “continuity 
axiom” in the bibliography–, had also been employed by earlier geometers, 
because, by its use or the use of similar lemmas, they showed several 
theorems that are included in Book XII of Euclid’s Elements. By saying 
that Archimedes refers, from the one hand, to Eudoxus, and, from the 
other, to Proposition X, 1 of Euclid’s Elements. So, after acknowledging 
the theorems which Eudoxus had proved, in the past, using a similar 
version to his continuity axiom, Archimedes adds the following critical 
phrase: “In the event, each of the aforesaid theorems has been accepted, no 
less than those proved without this lemma; and it will satisfy me if the 
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theorems now published by me obtain the same degree of acceptance.” 
(translation by Ivor Thomas). 

The first conclusion drawn from this phrase is that the broader subject 
matter which occupies Archimedes in the preface to the Quadrature is 
proofs and their validity. Secondly, the question which preoccupies him is 
not the validity of the mechanical, as opposed to the purely geometric 
proofs, but the validity of the proofs which make use of the continuity 
axiom (independently of whether they are mechanical or purely geometric) 
as opposed to those which do not make use of this axiom. Thirdly, 
Archimedes states that he himself believes that the proofs which make use 
of the continuity axiom (in any version) are no less valid than the common 
geometric proofs which are carried out without the use of the aforementioned 
axiom. 

In the context of the above discussion, Archimedes presents in the 
main body of his treatise two methods of treating the quadrature of a 
parabolic segment, a mechanical one and a purely geometric one, which he 
calls “proofs” and which, both of them, use the continuity axiom. Taking 
into consideration all of the above, we reach the conclusion that Archimedes 
included the mechanical treatment in the Quadrature of the Parabola as an 
entirely legitimate proof of the theorem of the quadrature of a parabolic 
segment, for which he only claims it to be considered as valid as the purely 
geometric proof, or proofs, of Eudoxus, which are included in the twelfth 
book of Euclid’s Elements. Finally, as far as the quadrature of The Method 
is concerned, we are in accord with Dijksterhuis’ view, namely, that its 
lack of rigor is due to the use of the indivisibles, and not to its mechanical 
aspects, and that this is the reason why Archimedes considers this method 
as heuristic and not demonstrative. 
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ABSTRACT Archimedes practices the heuristic method of analysis and 
synthesis only in Book II of his On the Sphere and Cylinder. This paper 
has a twofold objective. Firstly, the discussion of his analytical practice 
through the first problem of Book II, in relation to Pappus’ study of  
the method of analysis and synthesis in Book VII of his Mathematical 
Collection. The conclusion of this discussion is that Archimedes applies 
the analytical method in a way, which does not substantially differ from 
Pappus’ way. Secondly, the discussion about the missing part from the 
analysis of problem 4 of On the Sphere and Cylinder, II, combined with 
the above conclusion, lead us to advance a conjecture vis-à-vis a lost 
analytical treatise of Archimedes under the title Book of Data.  
 
 
1. INTRODUCTION 

 
It is widely accepted in the history of science that Greek mathematicians 
were very thorough in order to present a perfect form of their mathematical 
arguments in their writings through which they published their research. 
This goal, however, was being pursued at the expense of the reader’s 
possibility of getting a faint idea of the method through which the result 
was obtained. Euclid’s Elements, the most renowned work of Greek mathe-
matics, is the most representative example of a book that follows this 
approach of Greek mathematicians.   
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Archimedes is an exception to the aforementioned rule. In some of his 
works, Archimedes does not hesitate to register the method used to find the 
solution to the geometrical problems, before presenting their rigorous 
construction following the Euclidean model. Actually, in his Method of 
Mechanical Theorems, he presents the heuristic method he used in order to 
reach specific results, which are proved in a formal way elsewhere in his 
treatises. The value of this particular work has many times been exalted in 
recent historiography.   

It should be mentioned, however, that the undoubtedly great importance 
of this work and the justifiable interest of scholars for it, sometimes con-
tributed to the overlooking of the fact that the mechanical method was not 
the only method used by Archimedes in order to attain solutions to difficult 
problems or to prove theorems. It is widely known that Archimedes, as 
well as other Greek mathematicians of Plato’s era and onwards, had also 
used the method of analysis and synthesis to this end. Thanks to Pappus 
we know that at least twelve works were written in antiquity on the subject 
of the heuristic method of analysis, while in recent literature it has been 
supported that analysis is behind the entire corpus of Greek geometry 
(Knorr 1993). Discussing the importance of the mechanical method in 
Archimedes’ work, Dijksterhuis claims that: “In this exceptionally interest-
ing document Archimedes therefore vouchsafes us a much more intimate 
glimpse of his mathematical workshop than was ever granted by any other 
Greek mathematician” (Dijksterhuis 1987, 315). However, taking into con-
sideration the extent of the method of analysis in Greek geometry, this 
statement seems to be an exaggeration because like the mechanical method, 
analysis also reveals the mathematician’s way of thinking while solving a 
problem. Moreover, there are extant analyses not only from Archimedes 
but also from geometers such as Apollonius, Euclid, Diocles, Pappus and 
others, whose work and examples also –to use Dijksterhuis’ expression– 
vouchsafe us an intimate glimpse of their mathematical workshops.  

In the extant work of Archimedes, the method of geometrical analysis 
is applied only in Book II from his work On the Sphere and Cylinder. 
Moreover it is well-known that the most thorough study of the method of 
analysis preserved from Greek antiquity is traced back to the period of 
Late Antiquity and is found in Book VII of the Mathematical Collection 
by Pappus of Alexandria. In this book, Pappus presents three theoretical 
descriptions of analysis, which have been greatly discussed and argued 
upon by scholars, and proceeds by applying the method in a number of 
geometrical problems.  

This paper begins with a brief presentation of the basic principles of 
analysis, according to Pappus, followed by the discussion of an example 
from the analytical practice of Archimedes, and by conclusions arising 
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from the comparative study of the analytical practice of the two geometers. 
Finally, through the discussion of the missing part from the analysis of 
problem 4 of On the Sphere and Cylinder, II, a conjecture is advanced 
according to which Archimedes had written a work on analysis which 
unfortunately no longer exists.   
 
 
2. PAPPUS’ DISCUSSION OF GEOMETRICAL ANALYSIS 

 
Geometrical analysis, as described and practiced by Pappus in his Mathe-
matical Collection, and as discussed in (Fournarakis, Christianidis 2006), 
comprises two parts, the analysis and the synthesis. In the first part, the 
analysis, which is the heuristic part of the method, the geometer intends to 
find a solution to the problem, but also to confirm that the solution is valid. 
In the second part, the synthesis, he presents the construction and the 
demonstration of the found solution, according to the Euclidean model.  

The starting point of analysis is the admittance of the sought as if it 
were established and aims the noetic conception of the structure of the 
problem. In the aforementioned paper we argue that Pappian analysis 
includes two distinct parts. In each part, the analytical course follows a 
different main direction. The first part of analysis, that we called “hypo-
thetical”, is a course from the conclusion to the premises and therefore  
it is an upward movement. The second part of analysis, that we called 
“confirmatory,” is a deductive process and therefore it is a downward 
movement. This confirmatory part is characterised by the use of the terms 
“dothen” and “dedomenon.” 

The hypothetical part begins from what one is seeking as if it were 
established, and aims to reach something that is true independently of the 
sought. The geometer, through this part, intends to arrive to something 
from which he supposes that the sought can be produced and the problem 
can be solved. The steps of this search have hypothetical character, since 
they are all based on the initial assumption that the sought has been 
accomplished. This search is not blind or exhaustive; it includes a number 
of upward noetic leaps, the results of which cannot be foreseen. The first 
of those leaps is the assumption that the sought has been accomplished. 
However, making one of these leaps and producing some of its consequences 
(which are also hypothetical), does not univocally and surely lead to 
finding the next leap, but it demands the combination of elements such as 
the researcher’s knowledge, mental ability, experience and intuition. The last 
leap is the finding of something that is true independently of the sought. 
This is indeed a noetic leap because its admittance as the end of the 
hypothetical part includes two fundamental hypotheses: a) it can be 
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produced independently of the sought, and b) it can be the starting point 
of a syllogism that will produce the sought. This is our interpretation of 
Pappus’ understanding of the first part of analysis.  

The confirmatory part, on the other hand, aims to assure that those 
contained in the hypothetical part, if taken in (somehow) reverse order, 
constitute a deduction which can solve the problem. It is an elaboration of 
the previous conceptions, in a course of valid deductions, which confirms 
the validity of the syllogism as to whether or not it can produce the 
necessity of the sought from the elements of the problem, as well as from 
the axioms and theorems of geometry. The confirmatory part does not 
concern concrete objects but “potential objects” that can be produced 
through the valid steps of the syllogism. The “potentiality” of these objects 
(or relations) is revealed by the use of the “given” (dothen-dedomenon) 
terminology. This terminology is used by Greek mathematicians only in 
the second part of the analytical process. This is how we interpret Pappus’ 

According to the account presented above, Pappus’ analysis includes 
two directions, an “upward” and a “downward”. The two directions do not 
pervade both parts of analysis, since the former is presented in the first part 
(the hypothetical) and the latter is presented in the second part (the con-
firmatory). In (Fournarakis, Christianidis 2006) we also show, by means of 
a specific and representative example, that using this account, one can 
adequately interpret how Pappus practices his analyses.  
 
 
3. GEOMETRICAL ANALYSIS IN ARCHIMEDES 
 
As previously mentioned, in the extant Archimedean corpus the method of 
geometrical analysis is used only in Book II of the work On the Sphere and 

differ substantially from Pappus’ way. In fact, the practice of Archimedes 
includes the same elements previously remarked in the work of Pappus, 
specifically the admittance of the sought and the two parts of analysis, the 
hypothetical and the confirmatory. In addition, the second part of analysis 
can be identified, also in Archimedes, from the terms “dothen”–“dedo-
menon.” However, as we will see further on in this paper, the practice of 

with the practice of Pappus. 
We will corroborate the aforementioned claims through a representative 

example from the Archimedean analysis, and for this purpose we will 

analysis by Archimedes also displays some specific features in comparison 

6, and 7, Archimedes applies the analytical method in a way, which does not 

understanding of the second part of analysis. 

Cylinder, Fig. 1. In this work, and more specifically in propositions 1, 3, 4, 5, 
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discussion is limited to the hypothetical and the confirmatory part of 
analysis, despite the fact that Archimedes presents in his text not only the 
analysis but also the synthesis of the problem. However, a discussion of 
the analytical part of the method is sufficient for our purpose. The Greek 
text can be found in (Heiberg 1910, I, 190–194; Stamatis 1970, A.2, 164–
166) and for the English translation (Netz 2009) was used. 

 

 

his drawing of the diagram of proposition 1 of On the Sphere and Cylinder. 
 

 

Fig. 1. Page 192 of the first volume of Heiberg’s edition of Archimedes’ Opera omnia, with 

discuss the first problem from On the Sphere and Cylinder, II. Our 
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The problem is the following: Given a cone or a cylinder, to find a 
sphere equal to the cone or to the cylinder.  

The hypothetical part of this analysis includes the following steps:  

H.1 Let a cone or a cylinder be given, A, and let the sphere B be equal to A,   
Η.2 and let a cylinder be set out, ΓΖΔ, half as large again as the cone or 

cylinder A, and <let> a cylinder <be set out>, half as large again as 
the sphere B, whose base is the circle around the diameter ΗΘ, while 
its axis is: ΚΛ, equal to the diameter of the sphere B; 

Η.3 therefore the cylinder E is equal to the cylinder K. [But the bases of 
equal cylinders are reciprocal to the heights]; 

Η.4 therefore as the circle E to the circle K, that is as the <square> on ΓΔ 
to the <square> on ΗΘ so ΚΛ to EZ. 

Η.5 But ΚΛ is equal to ΗΘ [for the cylinder which is half as large again 
as the sphere has the axis equal to the diameter of the sphere, and the 
circle K is greatest of the <circles> in the sphere]; 

H.6 therefore as the <square> on ΓΔ to the <square> on ΗΘ, so ΗΘ to 
ΕΖ.   

H.7 Let the <rectangle contained> by ΓΔ, ΜΝ be equal to the <square> 
on ΗΘ; 

H.8 therefore as ΓΔ to ΜΝ, so the <square> on ΓΔ to the <square> on 
ΗΘ, that is ΗΘ to ΕΖ,   

H.9 and alternately, as ΓΔ to ΗΘ, so (ΗΘ to ΜΝ) and MN to EZ. 
 

The confirmatory part of the analysis includes the following steps: 

C.1 And each of <the lines> ΓΔ, ΕΖ is given; 
C.2 therefore ΗΘ, ΜΝ are two mean proportionals between two given 

lines, ΓΔ, ΕΖ; 
C.3 therefore each of <the lines> ΗΘ, ΜΝ are given. 
 

The hypothetical part of the analysis presented above, starts with the 
supposition that the problem has been solved. Accordingly, all the steps of 
this mental route have a hypothetical character, since they are all based 
on the initial assumption that the sought has been accomplished. The 
assumption (H.1) means that a sphere B, equal to the cone or cylinder A 
(see Fig. 2), is found [so VA = VB]. The next hypothetical step (H.2) is the 
hypothetical construction of two cylinders: E, which is equal to 3⁄2 A, and 
K, which is equal to 3⁄2 B. It is a noetic leap because Archimedes sees that 
if we could make another cylinder K equal to the cylinder E but such that 
its height EZ is equal to the diameter of its base ΗΘ, then the problem 
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Fig. 2. 

 
sphere whose diameter is equal to the diameter of the base ΗΘ of the same 
cylinder would be the required sphere (according to I.34 of On the Sphere 
and Cylinder). (H.3) declares the obvious equality of the cylinders E and 
K, but it leads the geometer to think the proposition XII.15 of the 
Elements: the bases of equal cylinders are reciprocal to the heights. It is 
exactly this relation, that, is, the proportion sq (ΓΔ) : sq (ΗΘ) :: ΚΛ : ΕΖ, 
that is “hypothetically produced” in (H.4). But (Η.5) reminds that ΚΛ was 
taken equal to ΗΘ because the cylinder K, which is 3⁄2 of the sphere B, was 
hypothesized with both its height and the diameter of its base equal to 
the diameter of the sphere B, and the circle K is greatest of the circles in 
the sphere. So in (H.6) the latter proportion is hypothesized as  

 sq (ΓΔ) : sq (ΗΘ) :: ΗΘ : ΕΖ. (1) 

3
2 A  V , and the would be solved because this cylinder K would be equal to ⁄
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Then comes the next noetic leap (H.7), that is, the supposition of MN 
as the one side of a rectangle (whose other side is ΓΔ) which equals the 
square on ΗΘ:  

 sq (ΗΘ) = rec (ΓΔ, ΜΝ).  (2) 

This supposition “produces hypothetically” in (H.8) the proportion 
ΓΔ : ΜΝ :: sq (ΓΔ) : sq (ΗΘ), and then the  

 ΓΔ : ΜΝ :: ΗΘ : ΕΖ. (3) 

The last supposition if combined with (2) “produces hypothetically” in 
(H.9) the proportions ΓΔ : ΗΘ :: ΗΘ : ΜΝ :: ΜΝ : ΕΖ. So the diameter of 
the required sphere B is the first of the two mean proportionals between 
ΓΔ and ΕΖ. 

This relation signals the end of the hypothetical part of the analysis but 
not the end of the analytical research. It is also a noetic leap as the 
geometer assumes, on the one hand, that he has reached something that is 
true independently of the sought and, on the other hand, it can be the 
starting point of a syllogism that will produce the sought. He still cannot 
answer whether his efforts were successful because the whole of it is based 
on the assumption that the sought has been accomplished, thus it is not 
deductive reasoning. Although in some parts of the hypothetical course the 
consequences of certain noetic leaps are produced, even this production is 
hypothetical as well, since it stands only if the sought is admitted to be 
true. But Archimedes assumes that it can evolve to a deduction, ending 
with the confirmation of the sought as “given”. If the claim in (H.8) and 
(H.9) was already deductively derived, as one might maintain by observing 
the beginning of it using the adverb “therefore”, there would be no reason 
for Archimedes to produce its result again in the steps C.1–C.3, using 
“potential” objects. If the last reached (H.9) in the hypothetical part, that 
is, the diameter ΗΘ of the required sphere was produced as the first of two 
mean proportionals between ΓΔ and ΕΖ, then the synthesis of the problem 
would be clear and must have started at exactly this point. But Archimedes 
goes on with three more steps (C.1–C.3), characterized by the “given” 
terminology, in order to confirm that ΗΘ can be produced with logical 
necessity. Only after that will Archimedes start the synthesis of the problem, 
as he declares after the confirmatory part of analysis.  

From the above discussion, we conclude that the Archimedean analysis 
includes the three elements described by Pappus, namely, the admittance 
of the sought, the hypothetical part and the confirmatory part. The latter is 
also formulated, like in Pappus’ analysis, with the “given” terminology. 
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This analysis of Archimedes raises a question in respect to the rather 
concise form of presentation of the confirmatory part. In fact, the con-
firmatory part confirms only the last proportion of the hypothetical part 
and not the entire hypothetical part or at least the major part of it (in 
reverse order), as in the case of Pappian analysis. One could propose that 
this is a specific feature of Archimedes that differentiates him from 
Pappus. However, a closer examination of the confirmatory part of the 
Archimedean analysis shows that nothing is missing from the essence of a 
confirmatory part of an analysis.  

Indeed, in the problem discussed above Archimedes reduces the initial 
problem to the problem of finding two mean proportionals between two 
given lines (apagôgê). The confirmatory part of this analysis also ends 
with step C.3, because of Archimedes’ confirmation that the diameter of 
the required sphere is the first of the two mean proportionals between two 
given lines (C.2), the first of which is given by the problem while the 
second, being the 3⁄2 of the first, can also be considered as given.  

Therefore, the confirmation of the potential construction, with logical 
necessity, of the mean proportionals, can fully produce the sought of the 
problem. 

From the aforementioned analysis, we can also infer that Archimedes 
uses as “given” (dedomena) propositions that are not included in Euclid’s 
Data (i.e. the problem of two mean proportionals). This observation is of 
great significance since it leads to the assumption that perhaps there were 
other works in antiquity with context similar to Euclid’s Data. As we will 
see in the last section of this paper, a work of this kind is attributed to 
Archimedes by an Arabic source.   

Another issue relative to the aforementioned analysis of the first 
problem of On the Sphere and Cylinder, II, but also of the fourth and the 
fifth problems, is whether propositions that include conic sections can be 
considered as “givens.” Archimedes’ response to this issue is without doubt 
that: conic sections can be used in analyses exactly like the propositions 
included in Euclid’s Data.  
 
 
4. A CONJECTURE ON THE MISSING ANALYSIS OF PROBLEM  

4 OF ARCHIMEDES’ ON THE SPHERE AND CYLINDER, II 
 

In problem 4 of On the Sphere and Cylinder, Book II, Archimedes solves 
the problem of dividing a sphere into two segments that have to each other 
a given ratio. The analysis of this problem presents certain characteristics 
that are not found in other analyses. More specifically, at the end of the 
confirmatory part, Archimedes uses as “given” a proposition, which has 
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not been proved in a previous work of his, neither was it obtained as 
prefabricated data from any other work known to us. Instead, he announces 
that he will deal with this proposition analytically and synthetically “at the 
end.” This statement was interpreted as referring to a lost addendum at the 
end of problem 4. However, this cannot be confirmed from the known 
manuscripts of the works of Archimedes neither from the copies of On the 
Sphere and Cylinder owned by Dionysodorus and Diocles, two geometers 
posterior to Archimedes by only a few decades. In fact, both geometers 
elaborated a different analysis of problem 4 from the start but do not deal 
with the proposition that Archimedes promises to present “at the end.” 
Eutocius, in the 6th century AD, claims to have discovered this analysis of 
Archimedes in an old book in deplorable condition, without revealing any 
other information about the identity or the origin of this book.   

Another feature of the analysis of problem 4 is that –according to the 
reconstruction of Eutocius– Archimedes does not treat the missing part per 
se, but he does so through the analysis of a more general construction 
problem, a special case of which is the missing analysis of problem 4. The 
way that Archimedes deduces the special case to be used in the solution of 
problem 4 from the analysis of a more general problem, presents a similarity 
to the way in which Pappus uses Euclid’s Data (which also includes 
analyses of a more general nature). Note that Data includes prefabricated 
geometrical analyses which are used by Pappus, stating when required the 
necessary limiting condition, in order to solve, using the method of analysis, 
the various problems that he deals with in his Mathematical Collection. 
This remark leads us to examine from a new point of view certain historio-
graphical issues as regards the problem 4 of On the Sphere and Cylinder, II. 

The analytical procedure that Archimedes follows in the more general 
problem is a complete (according to Pappus) analysis which includes the 
three basic elements that constitute the analysis of a geometrical problem: 
the admittance of the sought, the hypothetical part and the confirmatory 
part; the latter is accomplished using the terms “dothen” and “dedomenon.” 
Also, conic sections are used in this analysis. Furthermore, the hypothetical 
and confirmatory parts of this analysis are fully carried out, in a way that 
reminds us of Pappus’ analyses as well as of the confirmatory parts found 
in Euclid’s Data.  

In order to solve problem 4, Archimedes does not need to use the 
analysis and synthesis of the general problem but only a part derived from 
the confirmatory part of the analysis, and moreover under certain con-
ditions. However, in order to use this part, the complete analysis of the 
general problem should be presented first. This presentation could not be 
made in the middle of the analysis of problem 4 of On the Sphere and 
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problem. Therefore, he announces that the analysis and synthesis of the 
latter problem will be presented “at the end.”  

However, is it certain that the phrase “at the end ”  refers to the end of 
Proposition 4? Or at least, that it refers to the end of Book II of On the 
Sphere and Cylinder? In other words, was the analysis that was discovered 
and restored by Eutocius, a lost addendum in On the Sphere and Cylinder? 
Currently, there is no evidence that verifies this hypothesis. On the con-
trary, there is evidence, which can make us skeptical about this hypothesis. 
First of all, the alleged addendum was not included in the copies of On the 
Sphere and Cylinder that Dionysodorus and Diocles owned, a few decades 
after Archimedes. Therefore, if it existed it should have been lost shortly 
after the death of Arhimedes. Furthermore, Eutocius reports having found 
the lost analysis in an obscure old book, partially written in Dorian dialect, 
without mentioning whether this book was Archimedes’ On the Sphere 
and Cylinder. Netz claims that this book was “totally independent of the 
On the Sphere and Cylinder” (Netz 2009, 206). Moreover, we know that 
Archimedes used to announce his propositions to his colleagues first, and to 
present the complete proofs of them in a later time. For example, in the 
preface of the Method of Mechanical Theorems Archimedes, referring  
to the complete proofs of some propositions that had been announced in 
the past, uses a similar expression: “At the end of the book we give the 
geometrical proofs of the theorems the propositions of which we sent you 
on an earlier occasion” (epi telei de tou bibliou grafomen tas geômetrikas 
apodeixeis ekeinôn tôn theôrêmatôn, hôn tas protaseis apesteilamen soi 
proteron) (Heiberg 1910–1915, II, 430.23–26). In this extract Archimedes 
makes clear that he refers to the specific book he introduces, and he also 
uses present tense. On the other hand, the similar expression in problem 4 
of On the Sphere and Cylinder is: “And these will be, each, both analyzed 
and synthesized at the end” (hekatera de tauta epi telei analythêsetai te kai 
syntethêsetai) (Heiberg 1910–1915, I, 214.25–26). Here Archimedes does 
not clarify that he intends to write the analysis and synthesis he omits in 
the same book, and he also uses future tense. These differences in 
expression are in our view indicative of his intentions. 

All the above lead us to advance the conjecture that the analysis dis-
covered by Eutocius was not published as an addendum in On the Sphere 
and Cylinder but in a different work by Archimedes. Additionally, we could 
further extend this conjecture by supposing that this analysis was included 
on a book of analysis written by Archimedes, similar to Euclid’s Data. 
This conjecture is no more arbitrary than the hypothesis on the existence of 
an addendum. If the book Fihrist (Catalogue) of the 10th century Arab bio-
bibliographer al-Nadim, which mentions that Archimedes has written a 

Cylinder, II, since it is, in fact, the analysis of a completely different 
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book called Book of Data, is a reliable source, then the aforementioned 
conjecture should be further investigated.  
 
 
5. CONCLUSION 

 
In this paper we discussed the analytical practice of Archimedes through 
the first problem of Book II of his On the Sphere and Cylinder, in relation 
to Pappus’ study of the method of analysis and synthesis in Book VII of 
his Mathematical Collection. The conclusion of this discussion is that 
Archimedes applies the analytical method in a way which does not 
substantially differ from Pappus’ way. In fact, the practice of Archimedes 
includes the same elements as those of Pappus’, that is, the admittance of 
the sought, and the two parts of analysis, the hypothetical and the con-
firmatory. In addition, the second part of analysis can be identified, also in 
Archimedes as in Pappus, from the terms “dothen”–“dedomenon.” Further-
more, Archimedes uses Euclid’s Data propositions, under certain conditions, 
to solve problems with the method of analysis, like Pappus does, but he 
also uses propositions, which have to do with conic sections, and are not 
included in Euclid’s Data, as data. The above reached conclusions would 
of course be better argued if the whole of Archimedes’ and Pappus’ practices 
of analysis were discussed here.  

Secondly, the discussion of the missing part from the analysis of 
problem 4 of On the Sphere and Cylinder, II, and the various solutions of 
this problem that are preserved, combined with the above reached con-
clusions and the remark that Archimedes writes the analysis of the missing 
part of problem 4 in a general way, all these lead us to advance a reasoned 
conjecture vis-à-vis a lost analytical treatise of Archimedes written in the 
way Euclid’s Data is written. This treatise could be the Book of Data 
that the Arab bio-bibliographer of the 10th century al-Nadim attributes to 
Archimedes.  
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ABSTRACT In this paper I will discuss the position of the Flemish 
mathematician and engineer Simon Stevin (1546–1620) in the rise of 
Archimedean mechanics in the Renaissance. Commandino represents the 
beginning of the Archimedean Renaissance in statics. The next steps were 
made by Guidobaldo Del Monte and Stevin. Del Monte and Stevin were 
contemporaries belonging to the generation preceding Galilei (1564–1642). 
Yet Stevin’s work in mechanics is superior to Del Monte’s. I will discuss 
the way in which Stevin’s mechanical work, like Del Monte’s, was 
influenced by the medieval science of weights. For example, the central 
notion “stalwicht” in Stevin’s work, translated as “apparent weight’ by the 
editors of Stevin’s Works, clearly corresponds to the notion of positional 
weight (ponderis secundum situm) in the science of weights. I will also 
argue that while Del Monte remained caught in the conceptual framework 
of the science of weights the use of the Dutch language helped Stevin in 
liberating himself from those ideas. For Stevin the use of Dutch was part 
of his success. Finally I will discuss Stevin’s work on windmills. Not only 
his original theoretical contributions to statics and hydrostatics but also the 
unity of theory and practice in Stevin’s work make him in mechanics the 
first true successor of Archimedes in the Renaissance. 
 
 
1. INTRODUCTION 

 
In the past decades the Archimedean Renaissance in Italy has been studied 
by several authors (e.g. [9], [11] and [13]). In this particular context the 
work of Simon Stevin (1546–1620) has received less attention. At first 
sight Stevin appears to be a rather isolated figure. He seems not to belong 
to one of the Italian traditions. Yet he must be seen against the background 
of the mechanical work of the authors that preceded him. He seems 
isolated because we only have his mature work and we do not know its 
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genesis. There are few references to others in his work. Moreover, he 
wrote in Dutch, creating his own terminology and his own way of 
presenting the subject.  

Yet Stevin is definitely part of the Archimedean Renaissance in 
mechanics. After Federigo Commandino of Urbino (1509–1575), the Archi-
medean Renaissance in statics continued with Guidobaldo Del Monte 
(1545–1607) and Simon Stevin (1548–1620). Del Monte knew Archimedes’ 
work and he was familiar with a summary of Hero’s Mechanics in the 
form it is given by Pappus in Book 8 of the Collection. Del Monte’s 
contribution to the theory of machines consists of his Mechanicorum liber 
of 1577 and its Italian translation by Pigafetta which appeared in 1581. 
After having explained how useful mechanics is Del Monte formulates his 
goal to build mechanics up “from its foundation to its very top” ([7]. p. 246). 
In the text he starts with properties of the balance basing himself on 
Archimedes and then he proceeds to the Heronean core of mechanics: the 
five simple machines, in the order lever, pulley, wheel and axle, wedge 
and screw. Several historians have written about Del Monte’s mechanics. 
See, for example, [11] and [21]. Duhem wrote:  

“sometimes erroneous, always mediocre, the Mechanics of 
Guido Ubaldo is often a regression from the ideas published in 
the writings of Tartaglia and Cardano” ([8], p. 226) 

This is somewhat unfair and it is certainly unreasonable to put the 
writings of Tartaglia and Cardano so much higher than Del Monte’s 
Mechanicorum Liber. On the other hand, although Del Monte’s starting point 
was good, in the execution the problems that Del Monte could not solve 
dominated. In his treatment of the balance he lost himself in long dis-
cussions with the proponents of the science of weights. Del Monte left the 
problem of the inclined plane unsolved and in the Italian translation of his 
book on mechanics the erroneous solution of this problem by Pappus was 
included. In this paper I will argue that with original contributions to statics, 
hydrostatics and the theory of machines, Stevin was truly Archimedes’ 
first successor in the Renaissance.  
 
 
2. THE BACKGROUND 

 
In the Renaissance there was a growing interest in machines and their 
theory: mechanics. The interest in machines is, for example, clearly reflected 
in the support of the French King for the publication, in 1571/72 by 
Jacques Besson (1540–1573), of one of the earliest theaters of machines.  
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The interest in the theory of machines is clear from the fact that several 
texts on mechanics from Antiquity and the Middle Ages were printed in 
the 16th century. 

What did the theory of machines look like in the 1570s when Del 
Monte and Stevin were in their twenties? Mechanical Problems (Quaestiones 
Mechanicae) contained in the Aristotelian corpus, was available in print in 
Latin quite early in the century. It contains the oldest theory of machines 
usually ascribed to a follower of Aristotle, although parts of it may come 
from Archytas (Cf. [10]). In the 13th century, Jordanus de Nemore and his 
pupils had created a scholastic science of weights. Nicolo Tartaglia (1500?–
1557) had access to some of the manuscripts and he published a version of 
this theory in his Various Questions and Inventions of Niccolò Tartaglia of 
Brescia (Quesiti ed inventioni diverse) of 1546. We will refer to this text 
as Tartaglia’s Quesiti. The medieval Latin text that he used appeared in 
1565 in Venice (See Figure 1).  

Then there was Archimedes’ work on statics and hydrostatics. In 1543 
Tartaglia published the Latin translations of On the Equilibrium of Planes 
(Book I and II), On the quadrature of the parabola, On the measurement 
of the circle and On floating bodies (Book I only). Tartaglia’s publication 
suggested that he had translated these texts himself. However, in 1881 it 
was discovered that they had been made by William of Moerbeke (circa 
1215–1286). This translation left a lot to be desired. Actually there is no 
evidence that Tartaglia knew Greek and some that he did not ([2], pp. 555–
556). In 1558 Federigo Commandino of Urbino (1509–1575) published a 
translation of several of Archimedes’ works far superior to Moerbeke’s 
translations. In 1565 Commandino published a translation of On floating 
bodies. Actually in On floating bodies Archimedes assumes properties 
without proof that led Commandino to publish his own Book on the Center 
of Gravity of Solid Bodies (Liber de centro gravitatis solidorum) in the 
same year ([3]).  

This was not all. Hero’s devices operated by water, air and steam were 
described in an encyclopedic work by Giorgio Valla printed in 1501. 
Hero’s Pneumatics was published in Latin by Commandino in 1575. For 
the general public a Latin summary of Hero’s Mechanics only became 
widely available in 1588 when Commandino’s Latin translation of Pappus’ 
Collection was published by Guidobaldo Del Monte ([7], p. 45). Com-
mandino had made the translation before his death in 1575 and Del Monte 
had access to it. Pappus’ summary of Hero’s Mechanics in Book 8 of the 
Collection introduced Renaissance scholars to the idea that the five simple 
machines were the basic components of all machines. Pappus wrote, 
referring to Hero: 
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“The names of these powers then are: the axle with a wheel 
turning on it; the lever; the compound pulley; the wedge; that 
which is called the endless screw” [14] 

 
 
3. THE SCIENCE OF WEIGHTS: DEFINITIONS AND POSTULATES 
 
Archimedes’ work is well known. The science of weights is less known. 
Yet it is an essential part of the background of Stevin’s work. That is why 
we will devote some attention to it.  

Although considerably less rigorous than Archimedes’s work, unlike 
Mechanical Problems, the science of weights shows influence of the Greek 
deductive traditions. Definitions are followed by theorems and the geo-
metry of the figures plays an actual role in the arguments. 

We will consider briefly some parts of the version of the theory that 
Tartaglia gave in his Quesiti. We will base ourselves on the English 
translation by Stillman Drake in [7]. The approach is deductive. Definitions 
and petitions (i.e. postulates) precede a series of propositions that are 
demonstrated on the basis of the definitions and petitions.  

Definition IX: Those bodies are said to be simply equal in 
heaviness which are actually of equal weight, even though of 
different material.  
Definition XIV: The heaviness of a body is said to be known 
when one knows the number of pounds, or other weight, that it 
weighs. 
Definition XIII: A body is said to be positionally more or less 
heavy than another when the quality of the place where it rests 
and is located makes it heavier [or less heavy] than the other, 
even though they are both simply equal in heaviness. ([7], p. 
114, Italics are mine) 

The distinction between the notions simple heaviness and positional 
heaviness is fundamental. Tartaglia relates positional heaviness to the 
obliqueness of the descent (or ascent) of the weight that takes place if the 
weight moves within the bounds of its mobility. 

The notion of obliqueness is defined in  

Definition XVII: The descent of a heavy body is said to be 
more oblique when for a given quantity it contains less of the 
line of direction, or of straight descent toward the center of 
the world. ([7], p. 115) 
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Fig. 1. 

 
The text has the form of a dialogue between Tartaglia and Mendoza, 

the imperial ambassador of Charles V at Venice. In the case of definition 
17, Tartaglia exemplifies the definition with a reference to Figure 2. 
 

 

 
Fig. 2. 

 
The descents AF and AE from the point A are oblique. Suppose that 

AF=AE. Then AH and AG are the vertical components of these descents, 
or, in Tartaglia’s words, AH and AG are what the two descents contain of 
the line of direction, that is by definition the straight descent towards the 
center of the world. So AF is more oblique than AE, because AH is 
smaller than AG. 

About positional heaviness Tartaglia says: 

Petition 4: Also we request that it be conceded that those 
bodies [bodies of equal simple weight – T. K.] are equally 
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heavy positionally when their descents in such positions are 
equally oblique, and that will be the heavier [positionally – T. 
K.] which, in the position or place where it rests or is situated, 
has the less oblique descent. ([7], p. 119) 

Clearly, a vertical line is not oblique. The positional weight in this case 
is equal to the simple weight. The positional weight of an object on an 
inclined plane depends on the slope: the more oblique the slope, the smaller 
the positional weight. 

One notices that right from the start the problem of the inclined plane 
concerning the precise dependence of the positional weight on the steep-
ness of the slope is implicitly present in the science of weights. As we will 
see below in the science of weights Jordanus and/or his pupils succeeded 
in precisely determining this relationship: they were the first ever to solve 
the problem of the inclined plane. 
 
 
4. THE SCIENCE OF WEIGHTS: THE FIRST PROPOSITIONS 
 
So far positional heaviness is determined by the simple weight plus the 
geometry of the situation. However, following the medieval science, Tartaglia 
relates positional heaviness to two other notions: power and speed. Essentially 
Tartaglia views positional heaviness as proportional to the power a weight 
can exert and in its turn this power is proportional to the speed, i.e. the dis-
tance covered in a certain period of time as a result of the power. Consider: 

Proposition 4: The ratio of the power of bodies simply equal in 
heaviness, but unequal in positional force, proves to be equal 
to that of their distances from the support or center of the 
scale. ([7], p. 123) 

Tartaglia’s proof is brief and from a modern point of view quite 
unsatisfactory. He looks at two bodies of equal simple weight positioned at 
unequal distances from the centre on the horizontal arm of a balance. 
When the arm moves the speeds or the distances covered by the weights 
are proportional to the distances of the weights to the center. Basically 
what Tartaglia is saying is the following: the power that a simple weight 
on the arm of a horizontal balance can exert is proportional to the length of 
the arm. He also implicitly assumes that with a particular arm length the 
power that a weight can exert is also proportional to the size of the weight.  
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Remarkable and revealing as for the problems that the in itself sound 
notion of positional weight brings about is the second part of  

Proposition 5: When a scale of equal arms is in a position of 
equality, and at the end of each arm there are hung weights 
simply equal in heaviness, the scale does not leave the said 
position of equality; and it happens that by some other weight 
[or the hand] imposed on one of the arms it departs from the 
said position of equality, then, that weight or hand removed, 
the scale necessarily returns to the position of equality ([7], 
p. 124). 

He first part is demonstrated by remarking that on the basis of 
proposition 4 the bodies of equal simple weight put at equal arm length on 
a horizontal balance have equally oblique descents, which implies equal 
positional force. The second part is remarkable. See Fig. 3. 
 

 
Fig. 3. 

 
We have two weights simply equal in heaviness in A and B. Suppose 

the arcs BL and AF are equal. The projections of the arcs on the vertical 
line are unequal. XY is bigger than DF. That is why Tartaglia concludes 
that the descent of B is more oblique that the decent of A, so B is 
positionally heavier than A and that is why he feels that the balance will 
return to its horizontal position. One notices that the obliqueness of a 
decent is measured by projecting the descent on a vertical line in 
accordance with Definition XVII. Clearly we do no longer except this 
result as correct. If Tartaglia had considered infinitesimal displacements, 
he would have drawn a different conclusion. 
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5. THE SCIENCE OF WEIGHTS: THE LAW OF THE LEVER AND 
THE LAW OF THE INCLINED PLANE 
 
The central results in the science of weights are the law of the lever 

and, more importantly, the law of the inclined plane. The law of the lever 
is phrased by Tartaglia as follows: 

Proposition 8: If the arms of the balance are proportional to the 
weights imposed on them, in such a way that the heavier 
weight is on the shorter arm, then those bodies or weights will 
be equally heavy positionally. ([7], pp. 132–134) 

The proof is based on Proposition 4, which is applied as saying: 

Positional heaviness on a balance = Simple weight x Length of arm. 

(Nota bene: Tartaglia cannot express it in this way, constrained as he is by 
Eudoxus’ theory of proportions, which was at the time generally excepted. 
In Eudoxus’ theory only ratios of quantities of the same kind can be 
considered: ratios of weights can be equal to ratios of lengths, but weights 
and lengths cannot be multiplied.) 

It is highly remarkable that in the science of weights Jordanus and his 
pupils succeeded in solving the problem of the inclined plane. Tartaglia 
almost literally follows Jordanus proof. Consider 

Proposition 15: If two heavy bodies descend by paths of 
different obliquities, and if the proportions of inclinations of 
the two paths and of the weights of the two bodies be the 
same, taken in the same order, the power of both the said 
bodies in descending will also be the same. ([7], p. 141) 

See Figure 4. It is clear that one can imagine the two heavy bodies E 
and H, on the slopes DC and DA respectively, connected by a rope EDH. 
The proposition says: We have equilibrium if  

Weight E : Weight H = DC : DA 

We consider that situation and we imagine a weight G equal to E on 
slope DK which has the same tilt as DC. Suppose now that E and H “are 
not in the same power” and let us suppose that E descends as far as point 
L. Then H ascends as far as M. Assuming GN equal to LE, we have also 
GN equal to HM, and one can easily prove by means of similarity 
considerations that 

MX : NZ = DK : DA. 
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Fig. 4 

 
We also have 

DK : DA = Weight G : Weight H 

Then 

MX : NZ = Weight G : Weight H. 

And Tartaglia concluded: 

Therefore, by however much the body G is simply heavier 
than the body H, by so much does the body H become heavier 
by positional force that the body G, and thus they become to 
be equal in force or power. ([7], p. 142)  

From a modern point of view what Tartaglia is basically doing is 
applying this rule with respect to an inclined plane: 

Positional heaviness = Simple weight x Obliqueness 

(Again Tartagia cannot put it in this way because he uses Eudoxus’ theory 
of proportions. For the modern reader this expression is somewhat more 
transparent.) 

arbitrary constant descent along the plane. Weight G and Weight H are 
simple weights. From a modern point of view we have: 

Positional weight G in its present position = Weight G x NZ 
Positional weight H in its present position = Weight H x MX 

Clearly the equality of these two positional weights implies equili-
brium.  
Q. E. D.  

Obliqueness is measured by means of the vertical component of an 
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6. STEVIN: FROM THE SCIENCE OF WEIGHTS TO THE 
PRINCIPLES OF THE ART OF WEIGHING AND THE PRACTICE 
OF WEIGHING 

 
In 1581 the Flemish engineer and mathematician Simon Stevin (1548–
1620) settled in Leiden a city in Holland, not very far from Amsterdam. He 
studied at the University of Leiden for two years matriculating in 1583. In 
1586 he published three books that would bring him everlasting fame: 

The Principles of the Art of Weighing (De Beghinselen der Weeghconst) 
The Practice of Weighing (De Weeghdaet) 
The Principles of the Weight of Water (De Beghinselen des Waterwichts). 

With these books Stevin wanted to develop mechanics along strict 
Archimedean lines and he wanted, which implied from his point of view a 
further development of what we nowadays call statics plus its application 

509) as Stevin called the book Quaestiones Mechnicae. As we will see 
below he must have been familiar with ideas from the medieval science of 
weights as well, but we do not know how. Cardano’s Opus novum de pro-
portionibus etc. Basilae 1578, is mentioned twice in Stevin’s works ([15], 
pp. 508–511). 

Stevin had also read Archimedes’ mechanical works and Commandino’s 
book on centers of gravity. Stevin refers to Pappus’ definition of the centre 
of gravity before Commandino’s translation of Pappus’s Collection had 
even appeared. Because Commandino quotes Pappus’ definition in Greek 
at the beginning of chapter 1 of his book on centers of gravity, Stevin 
probably has it from there. I think it is improbable that Stevin had read 
book 8 of Pappus’ Collection. So if I am right, Stevin was unaware of 
Hero’s notion of simple machines (Duhem hesitates at this point Cf. [8], 
p. 143). I think the fact that Stevin does not treat the screw at all is revealing. 
Had he known about the five simple machines, he would have treated 
them. This supposition implies that Stevin in 1586 had not had access to 
Del Monte’s work.  

Had he known about Pappus’ erroneous treatment of the inclined 
plane, the wedge and the screw, he would at least have shown the correct 
treatment of the screw. He did not. The only incorrect treatment of the 
inclined plane that he criticizes is Cardano’s. Cardano had argued that the 
force needed to move a weight upwards on an inclined plane is proportional 
to the angle that between the slope and the horizon, the maximum value 
being reached when the plane is vertical (Cardano, Opus Novum, Propositio 
LXXII, Basilea, 1570, p. 63).  

 

to actual machines. He had read Aristotle’s In Mechanicis ([15], pp. 508–
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7. THE GENESIS OF STEVIN’S STATICS  
 

Stevin must have been familiar with the science of weights in some form. 
On the title page of the Practice of Weighing (See Figure 6, right) in small 
letters there is written in Latin “praxis artis ponderaria”. Obviously Stevin 
saw his art of weighing as a sequel to the science of weights. Stevin was 
familiar with Archimedes’ works as well. He may have used Tartaglia’s 
edition of On the Equilibrium of Planes (Book I and II). I propose the 
following speculative genesis of Stevin’s books on statics.  

i) Stevin realized that an Archimedean approach to the science of 
weights implied that all considerations concerning motion had to be dropped. 
Moreover, Archimedes’ treatment of the balance rigorously solves the 
problem of positional weight for what Stevin called vertical weights, but 
not for oblique weights. 

ii) Right from the start Stevin was thinking of situations suggested by 
actual machines. If one does so, the importance of forces (or weights) not 
acting vertically but obliquely, is obvious (See Figures 7 and 9). Stevin 
realized that the distinction between simple weight and positional weight 
made sense, but that it had to be preceded by the distinction between 
vertical weights and oblique weights.  

iii) While studying positional weight on an inclined plane Stevin found 
the most beautiful proof of his life: the key to the treatment of oblique 
weights. This discovery determined the structure of The Principles of the 
Art of Weighing. It consists of two books. Book I consists of a part 1 on 
vertical weights with the law of the balance as central result and a part 2 on 
oblique weights with the law of the inclined plane as central result. Book II 
is devoted to the centers of gravity of solids, taking Commandino’s book 
on the subject as a starting point.  

theory to real machines: The Practice of Weighing. In Stevin’s work theory 
and practice are developed separately, but the unity of theory and practice 
is a central dogma.  
 
8. STEVIN’S TREATMENT OF THE INCLINED PLANE: THE 

CRUCIAL PROOF 
 
Let us consider some details. From Commandino Stevin took Pappus’ 

definition of the center of gravity. It is worded by Stevin as follows:  

The center of gravity of a solid is the point through which any 
plane divides the solid into parts of equal positional weight 
([15], pp. 100–101) 

iv) Stevin decided to devote a separate book to the application of the 
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This definition is perfectly in accordance with Archimedes. By the 
way, the editors of Stevin’s works translated the word “euestaltwichtigh”, 
that Stevin uses, with “having equal apparent weight”. This hides the 
relation with the science of weights. I think that the word “stalt” (or else-
wher “ghestalt”) must in this context be translated with “position” and 
“euestaltwichtigh” then becomes “of equal positional weight”. See in the 
etymological dictionary [17] the lemma on “stede” and “stee”. 

Dijksterhuis interpreted “staltwicht” as “the component of an acting 
force which is actually exerting an influence” ([19], p. 52). This seems 
simply wrong to me. When Stevin uses the word “staltwicht” with respect 
to weights on a horizontal balance, this interpretation holds no water.  

Pappus’ definition of the center of gravity obviously implies that the 
second part of Proposition 5 in Tartaglia’s treatment of the science of 
weights cannot be correct. We discussed it above. Stevin does not even 
mention such errors. He simply dropped in the science of weights every-
thing that contradicted Archimedes.  

Consider, for example, the role of motion in the science of weights. 
Stevin wrote an appendix to The Art of Weighing in which he gave the 
following argument: 

That which hangs motionless does not describe a circle. 
Two (bodies) of equal positional weight hang motionless 
Conclusion: Two (bodies) of equal positional weight do not 
describe circles ([15], pp. 508–509) 

This is why Stevin rejects the view that the cause of the law of the 
balance resides in the fact that the extremities of the arms describe circles. 
More generally: the real causes of equilibrium are not to be found in the 
mobility of the weights involved. By the way, this argument has been 
criticized, for example, by Duhem. The point, however, is not whether the 
argument in itself is valid. The point is that without completely rejecting 
the notion of motion in statics Stevin would not have been able to liberate 
himself from the confusions that vexed his predecessors. 

As we have seen in the Quesiti in the science of weights equilibrium is 
linked to mobility via the Aristotelian view that the power that a weight 
can exert is proportional to the speed that is reached if the power can be 
exerted. Stevin rejected this element as well. Several years before Galilei 
possibly dropped the two weights from the tower of Pisa, Stevin executed 
a similar experiment in the city of Delft with two spheres of lead from  
a height of 30 feet. They reached the ground at the same moment. That 
Aristotle was wrong had in 1562 already been argued by Jean Taisnier. 
Stevin had read Taisnier’s book and he took a radical course here as well. All 
considerations concerning speed in the science of weights had to be ignored  
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Before turning to Stevin’s treatment of the inclined plane, let us briefly 
look at the core idea of Archimedes’ proof of the law of the lever. 
Archimedes’ takes the validity of the law in the symmetric case with equal 
masses and equal arms as obvious.  

See Figure 5 left. Suppose we have in A 6 white units of weight and in 
B 4 grey units of weight. The unit of weight should be chosen in such a 
way that the two numbers are even. Suppose, moreover, that for the arms 
we have OA and OB are, respectively, equal to 4/2=2 units of length and 
6/2=3 units of length. 

Fig. 5.  

In this way we have created a situation in which the weights are 
inversely proportional to the corresponding arms. Archimedes now extends 
the arms: OA is extended with the length of OB and OB is extended with 
the length of OA. We then divide the units of weight over the units of 
length on the extended balance as shown in the figure. The result is that the 
center of gravity of the white units remains in A and the center of gravity 
of the grey units in B. At the same time the center of gravity of the whole 
is in O. So we have equilibrium. The core idea of Stevin’s proof of the 
lever is similar.  

Stevin’s proof of the law of the inclined plane is also based on splitting 
the two weights in a number of units. See Figure 5 right. If Stevin knew the 
answer that the science of weights had given – there exists equilibrium if 
the two weights are proportional to the lengths of the two inclined planes -, 
which is from my point of view probable, splitting the two weights into 
numbers of units proportional to the length of the inclined planes would 
have been a rather natural move.  

The crucial idea must have come to Stevin suddenly. One considers 
the units as beads on a chain and one closes the chain by adding a lower 
part. The lower part is symmetrical and it will not disturb the relation of 
the positional weights on the inclined planes. That the positional weights 
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are equal is shown as follows by contradiction. Stevin assumes that the 
positional weight on the left hand side is bigger. Then the chain will start 
to rotate. All the time the chain of balls as a whole has the same position as 
before (“den crans der clooten sal alsucken ghestalt hebben als sy te voren 
dede” [15], pp. 178–179). Stevin concludes: “so the spheres will out of 
themselves perform a perpetual motion” (“ende de clooten sullen uyt haer 
selven een eeuwich roersel maken” [15], pp. 178–179). This Stevin finds 
impossible and he draws the conclusion that the chain will not start to 
rotate. We know that Stevin was extremely proud of this proof and he used 
the corresponding figure basically as his logo, accompanied by the text 
“The miracle is no miracle” (Wonder en is geen wonder). See Figure 6 
with the frontispieces of The Principles of the Art of Weighing and The 
Practice of Weighing.  

It has been assumed that Stevin rejected perpetual motion in the 
general sense of the word. Duhem has argued that Stevin must have read 
Cardano’s work. Cardano was apparently influenced by Da Vinci, whose 
manuscripts were at the time kept by Menzi in his villa close to Cardano’s 
hometown Milano. Cardano rejected the existence of a perpetuum mobile 
basically on Aristotelian grounds. Aristotle had indeed assumed that in 
order to maintain motion a constant force is needed. If Duhem is correct, 
this would be ironic, because Stevin rejected the Aristotelian views. How-
ever, another interpretation is possible. 

            
Fig. 6. The Principles of the Art of Weighing (left) and The Practice of Weighing (right). 
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Stevin wrote that eternal motion starting spontaneously was absurd. 
Such a motion under the influence of gravity would from a modern point 
of view necessarily be accelerated and excluding friction, which Stevin 
explicitly does, the circular character of the motion would imply the 
possibility of the spontaneous occurrence of an infinitely accelerated 
circular motion. This in itself does not imply inconsistency but it is 
something one would definitely want to exclude from one’s theory. See 
[18] for a subtle analysis of Stevin’s rejection of a perpetuum mobile by 
Van Dyck.  
 
 

 
Stevin’s book is characterized by extreme clarity. His approach is Euclidean, 
but there is a certain similarity with Tartaglia’s Quesiti. Where definitions 
and postulates in the Quesiti are often accompanied by explanations directed 
at Tartaglia’s partner in the dialogue, Stevin adds extensive explanations as 
well to his definitions and postulates, although the work is not in the form 

It is striking that The Principles of the Art of Weighing is preceded by 
a long introduction on the superiority of the Dutch language. There is more 
to it than that Stevin is part of an international trend to replace Latin by the 
vernacular and that he may have found it easier to express himself in 
Dutch. The Dutch language enabled Stevin to develop his ideas using his 
own Dutch technical terminology, thus liberating himself completely from 
the different terminologies that his predecessors had used. Certainly for 
Stevin the use of Dutch was part of his success. 

In part 1 of Book I some fundamental definitions are 

Definition II: The heaviness of a solid is the power of its descent in a 
given place. 
Definition III: A known heaviness is expressed in terms of a known 
weight.  

Compare with Definitions 9 and 14 in Section 3. A known weight is, 
for example, a pound or an ounce. Definition XII introduces the notions 
lifting weight and lowering weight. It is basically Stevin’s way to handle 
the positive or the negative effect of a weight. Definition XIV contains 
the fundamental distinction between vertical weight and oblique weight. The 
fundamental notion positional weight is not introduced in a separate 
definition. It occurs first in the explanation following the definition of the 
center of gravity: The center of heaviness is the point through which any 
plane divides the solid into parts of equal positional weight.  

9. THE PRINCIPLES OF THE ART OF WEIGHING 

of a dialogue. 
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See Figure 7 left for examples of vertical and oblique lifting weights. 
The Figure concerns Proposition XX, which says: “Like vertical-lift-line is 
to oblique-lift-line, so is vertical-lift-weight to oblique-lift-weight” The 
figure shows three examples of a prism supported in a point E. The prism 
can be kept in its position by vertical lifting weights G that apply at point 
F. However, G being taken away, equilibrium can also be established by 
means of the oblique weights H. Stevin concluded that in the three 
situations of Figure 7 we have 

Weight G : Weight H = Vertical lifting line IF : Oblique lifting line FK. 

This is correct and one notices that Stevin is here very close to the 
parallelogram of forces: segment IK represents the force that must be 
added to FI in order to get FK; it is the support by point E along the axis 
EC of the prism.   

 

  
Fig. 7. The Art of Weighing Book I [15], pp. 196–197). 

 
Actually Stevin was aware of the validity of the parallelogram of 

forces, as we will see below. With his work the principles of the statics of 
vertical and oblique forces had been defined. Others would elaborate on 
them and reformulate then, but the basis was there. Stevin brought con-
siderable conceptual clarity to the subject by means of these notions. The 
ease by means of which he could phrase his new conceptual franework in 
Dutch led him to believe in the superiority of Dutch. For example, in the 
dedication he refers to words like “Evestaltwichtich”, “Rechthefgewicht”, 
“Scheefdaellinie”, that literally stand for, respectively, “Equal-position-
weight-ly” (means: of equal positional weight), “Vertical-lift-weight” and 
“Oblique-lowering-line” ([15], pp. 84–85). He wrote about them: “[These 
words] do not exist [in other languages – T. K.], Nature has specially 
designed Dutch for it”. In the same vein he refers to his Proposition  
XX, “Ghelijck rechtheflini tot scheefheflini, also rechthefwicht tot 
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scheefhefwicht”, which means as we have seen “Like vertical-lift-line is to 
oblique-lift-line, so is vertical-lift-weight to oblique-lift-weight”. He wrote 
about it:  

“Such secrets have been hidden hitherto in all other languages. 
Let them try to do something similar in another language. You 
can safely promise them a cake and I assure you that you will 
get away without damage”. ([15], pp. 90–91)  

Stevin had a very clear mind. His exposition is admirable, but he 
confused the superiority of his concepts and approach with the alleged 
superiority of the Dutch language.  

Stevin called the science of weights an art, because he put it on the 
same level as arithmetic and geometry. In his dedication to the Holy 
Roman Emperor Rudolph II that precedes the Principles of the Art of 
Weighing he wrote, with an implicit reference to the Book of Wisdom: 

55). Arithmetic (rekenconst) and geometry (meetconst) were established arts 
(art=const in Stevin’s Dutch). The principles of the art of weighing, how-
ever, had according to the text of the dedication remained hidden from his 
predecessors. The law of the lever with respect to vertical weights was 
indeed known but, according to Stevin, incorrectly explained. Moreover, 
according to Stevin in the dedication preceding the art of weighing the 

we have seen this was not quite correct because the law of the inclined 
plane had been correctly derived in Jordanus’ school. Although it is clear 
to me that Stevin must have had some knowledge of the science of 
weights, this remark suggests the possibility that he had not seen or not 
understood Jordanus’ result on the inclined plane.  

Fig. 8. 
 

“number, magnitude and weight are in all things inseparable” ([15], pp. 54–

theory of oblique weights was completely unknown ([15], pp. 54–55). As 
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It is striking that Stevin feels no need to strengthen his own arguments 
with a criticism of his predecessors. Not bothered by the mistakes of his 
predecessors, without hesitations and completely sure of himself, he pro-
ceeds to a treatment of his own ideas.  

This paper does not allow a further discussion of Stevin’s work on 
statics. In a Supplement to the Art of Weighing he has the parallelogram of 
forces. See Figure 8 left ([15], pp. 532–533). This should not be surprising 
considering the results expressed by Figure 7. Figure 8 right ([15], pp. 276–
277) illustrates the major result in Book II of The Principles of the Art of 
Weighing on the center of gravity of a segment of a paraboloid: it is on the 
axis AD in a point I which is such that AI is equal to twice ID. Although 
his derivations are somewhat different, Stevin did not add anything sub-
stantial on centers of gravity to those of Archimedes and Commandino. 
 
 
10. A REMARK ON THE PRACTICE OF WEIGHING 

 
With Del Monte Stevin has in common the intention to combine 
Archimedean mechanics with a theory of actually existing machines. Stevin 
solved the problem of the gap between theory and practice by writing two 
volumes. The Practice of Weighing contains the application of The 
Principles of the Art of Weighing to machines.  

Figure 9 is from The Practice of Weighing (De Weeghdaet). The figure 
shows Stevin’s design of a machine he called the Almighty (Almachtich). 
Stevin refers at this point to Besson who had put a drawing in his book of 
the machine that Archimedes allegedly used to pull a ship from the shore 
into the sea, the Charistion (called polyspaston by others). Besson’s machine 
had at least one screw. 

Stevin said about his own design: 

“[it] is more suited to such work, for the following reasons: 
sturdier and more durable construction; of lower cost; by 
which is done more in shorter time, and (like the Charistion) 
of infinite power, that is to say: potentially, not actually”. 
([15], pp. 354–355) 

Stevin’s calculation of the mechanical advantage of the gear train is 
essentially based on a repeated application of the law of the lever, but he 
actually calculates the ratio of the number of revolutions of the crank 
DLMN and the axle S. Below we will se the same approach in Stevin’s 
analysis of windmills. 

This leads him to the conclusion that with a force of 25 pounds (he 
assumes that one man can exert such a force) a force of 5400 pounds can 
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be exerted. Because he assumes that the simple weight of the ship is 6 
times its positional weight, a ship weighing 32400 pounds can be pulled up 
the inclined plane ([14], pp. 358–365).  

It is questionable whether at the time a really reliably functioning 
Almighty could have been built. Yet Stevin meant business as for the 
application of his Art of Weighing. In order to see this it is god to look at 
his work on windmills. 
 

     
Fig. 9. Stevin’s Almighty. 

 
 
11. STEVIN’S ANALYSIS OF WINDMILLS 
 
The third important book that Stevin published in 1586 is called The 
Principles of the Weight of Water (De Beghinselen des Waterwichts). In the 
preface in which Stevin congratulates the States of the Unites Netherlands 
he remarks that because the Netherlands are permanently dealing with water, 
knowledge of the statical properties of water can yield great advantage 
([15], pp. 380–381). We will see below that this was more than rhetoric; 
Stevin meant it. A discussion of this book falls beyond the scope of this 
paper. However, one of the original results in the book concerns the pressure 
that water exerts on a vertical rectangular wall: the force is equivalent to 
the weight of a volume of water equal to ½ times the area of the wall times 
the height of the wall, exerted horizontally at 1/3 of the height of the wall. 
See [15], pp. 420–423; Figure 10 shows the accompanying image.  

As we will see, this result played a crucial role in Stevin’s work on 
windmills. A volume that could have had the title The Practice of the 
Weighing of Water and would have contained the application of the 
content of The Principles of the Weight of Water was certainly planned, 
but with the exception of a few pages (that contain among some other 
results the hydrostatic paradox) never appeared. The hydrostatic part of his 
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work on drainage windmills that we will discuss now, could easily have 
been included in such a volume.  

Already in 1586 and 1588 Stevin obtained patents on windmill 
designs. Stevin also actually built such mills. They were drainage mills 
meant to lift water by means of a scoop wheel from a basin with a low 
water level to a basin with a higher water level. Particularly interesting is 
the case of the mill he built in a polder near the city of IJsselstein, south of 
the city of Utrecht. The contract was signed on April 8, 1589 by Stevin’s 
business partner, Jan Hugo Cornets de Groot, with representatives of the 
polder (the polder Leege Biesen, Achtersloot, Meerloo and the Brouck in 
the land of IJsselstein).  

  

 
 

Fig. 10. The pressure exerted by water on a wall. 
 

Stevin promised to build a mill of wood and iron for 630 Carolus 
Florins ([16], p. 324). The mill, that “would draw as much water as two of 
the best mills of thereabouts could do”, would be ready in the fall of 1589. 
It soon became clear that the project was vexed with problems. In the end, 
after the polder refused to pay the last installment, De Groot and Stevin 
appealed to Princess Maria of Nassau, who while her brother was in 
captivity in Spain, was responsible for the barony of IJsselstein. After 
years a settlement was reached. The case is interesting because while Stevin 
accused the board of the polder of mismanagement, the representatives of 
the polder accused Stevin of mistakes in the design of the mill.  

We know a lot about Stevin’s ideas on windmills because Stevin left a 
manuscript called On Mills (Van de Molens) which contains calculations 
concerning both mills of the traditional type and mills of a different type 
based on Stevin’s new design. He also left a manuscript on the design of 
gear wheels: On the most perfect cogs and staves (Van Aldervolmaackste 
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Cammen en Staven, [16], pp. 48–63). The mill near IJsselstein was built 
on the basis of Stevin’s new design. 

Stevin’s considerations are based on an abstract kinematical model of 

of the following structure reduced to certain fundamental geometrical 
parameters:  

1. An oblique windshaft B turned by the sails. 
2. A vertical upright shaft K with an upper gear wheel S driven by a gear 

wheel C on the windshaft.   
3. A horizontal scoop-wheel shaft W with on it a gear wheel O, driven by 

a lower gear wheel N on the upright shaft, and a scoop-wheel R.  
4. A tower with a movable cap on top of it. The oblique windshaft B was 

fixed inside this cap. The cap could be turned to make the sails face the 
wind. Both upright shaft K and scoop-wheel shaft W were fixed inside 
the tower.  

5. The windshaft drives with its gear wheel C the upper gear wheel S of 
the upright shaft K and the upright shaft drives with its lower gear 
wheel N the scoop-wheel shaft W. 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
Fig. 11. The old design (left) and Stevin’s design (right). Nota bene: the names of the 
wheels in the text refer to the old design. 
 

the classical Dutch drainage mill See Figure 11 left. This model consists 
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He treats the gear trains in exactly the same way he had treated them in 
the Almighty. The dimensions of the mechanism and the number of teeth of 
the gears are the determining geometrical parameters of the kinematical 
model and he superimposes a chain of forces on the kinematical model: an 
input force brought about by the wind, transmission forces and an output 
force exerted on the water to be lifted. Subsequent forces are related to 
each other by means of the law of the lever.  

Stevin’s calculations all concern specific numerical cases and he does 
not give us general algebraic formulae. Yet he is fully aware of the generality 
of his method. Suppose that the wind exerts a force Fwind perpendicular to 
the wing and the wind shaft at a distance from the shaft equal to half the 
length of the wings, i.e. ½ RadiusWings. (In modern terms the force causes a 
moment about the shaft of Fwind x ½ RadiusWings). The gear train then is a 
chain of levers and given the dimensions by repeatedly applying the law of 
the lever we could determine the force Fwater exerted on the scoops (at, for 
example a distance ½ RadiusWings from the axle) needed to have equilibrium.  

Yet Stevin’s calculations are not based on this approach. For Stevin 
the numbers of teeth of the gears and the numbers of revolutions they bring 
about are the parameters he calculates with. Let the numbers of teeth of 
respectively C, S, N and O be NC, NN, NS and NO. Then we have for the 
number of revolutions Rwindshaft of the windshaft and the number of 
revolutions Rscoopwheelshaft of the scoop wheel shaft the following relation: 

Rscoopwheelshaft/Rwindshaft = (NC.NN)/(NS.NO). 

This is Stevin’s way to deal with the transmission of force in gears. He 
argues as follows. If the wings would rotate exactly as fast as the scoop-
wheel, we would have equilibrium if Fwater exerted by the water on the 
scoops (at a distance ½ RadiusWings) would be equal to FWind.  

However, in general in a situation of equilibrium we have the follow-
ing relation between FWind (exerted on the wings at ½ RadiusWings) and 
FWater (exerted on the scoops at ½ RadiusWings)  

Fwind  = (NC.NN)/(NS.NO) x Fwater 

I will call this the Fundamental relation. It is remarkable that this is a 
kinematical relation, while Stevin refers for its proof of it to a result in 
statics: the law of the lever. Yet it shows that he was aware of the validity 
of the principle of the conservation of work. 
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12. CALCULATION OF THE WIND PRESSURE WITHOUT 
KNOWLEDGE OF AERODYNAMICS 

 
Stevin’s originality with respect to windmills does not lie in his insight in 
the fundamental relation. It lies in what he did with it. The authors who 
wrote on the subject, Dijksterhuis and Forbes, agreed on the originality of 
Stevin’s approach, but as for how good Stevin’s designs actually were, 
they seem to be hesitant. The remark “Stevin tried to calculate the 
minimum wind pressure needed to move his scoop wheel, but he failed to 
relate the wind velocity to the energy available on the scoop-wheel shaft, 
for in his days there were no means of measuring the speed of the wind” 
([16], pp. 319–320) suggests that Stevin failed somewhere in his analysis. 
From our point of view such a criticism is unjustified. It is true that Stevin 
was not capable of deducing Fwind on the basis of, for example, aero-
dynamic considerations. However, the originality of Stevin lies firstly in 
the fact that he realized that the Fundamental Relation can be used to 
determine Fwind in a completely different way. He first measured and 
counted the fundamental geometrical parameters of several existing and 
functioning windmills. Then he used his original hydrostatic results to 
determine Fwater for those windmills. And finally he applied the Fundamental 
Relation to calculate Fwind for those windmills.  

In order to determine the force Fwater (exerted on the scoop) at a distance 
½ RadiusWings) he models the scoop of the scoop wheel as a vertical 
rectangular board that separates high level water from low level water. His 
hydrostatical results enabled him to determine the moments exerted by the 
pressure of the high and the low level water. Fwater is the force needed at 
the distance ½ RadiusWings to create equilibrium with the high and low 
level pressures. In this way Stevin determined for all mills that he 
investigated the force Fwater and by means of the fundamental relation he 
calculated Fwind.  

Actually in On Mills, for all mills Stevin divides Fwind by the area of 
the four wings together. He finds answers like 2 480/1336 ounces per 
square foot of sail (for the Zuyt Nootdorp Mill) and 4 536/1230 ounces per 
square foot of sail (for the Pynacker Mill at the bridge) or 3 44/1020 
ounces per square foot (for the Cralingen Marsh Mill).  

In passing Stevin also calculated in the case of the Zuyt Nootdorp Mill 
the force that the teeth of lower gears N and O exert upon each other by 
means of the law of the lever, in the way described above.  
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His answer is: Flowergears= 1193 pounds. Without giving us the calculation 
he writes that the force between the teeth of the uppergears, Fuppergears, can 
be found by means of the relation:  

Flowergears/Fuppergears = RadiusS/RadiusN 

Of course Stevin does not use this formula. He writes: “I say: as the 
radius of the driven wheel against the radius of the wallower, so the 
pressure above to that below” ([16], pp. 338–339). 
 
 
13. A BRILLIANT NEW DESIGN? 

 
It is clear from Stevin’s work that the calculation of Fwind

of Stevin’s new design. The basic new element of Stevin’s design is a 
much bigger scoop wheel. As a result the resistance of the water that must 
be conquered is consequently much higher. In his calculations Stevin uses 
the following data as a starting point: length and width of the wings, the 
radius of the scoop wheel, the width of the scoop-wheel, the immersion of 
the spoons and the difference between the high-water and the low-water 
level. Moreover, he assumes that the wind yields a pressure of 3 ounces 
per square foot. This value is somewhat below the values he determined 
for the existing mills.  

By means of his hydrostatics Stevin calculated Fwater for his new design 
and used his model to calculate the dimensions of the gear wheels such 
that the force that the wind can apparently yield on the basis of his earlier 
calculations is enough to resist the pressure of the water on these big 
spoons. One of the consequences of the new design is that while in the 
traditional mill the transmission from the upper axis to the central axis 
speeds up the velocity of rotation and the transmission from the central 
axis to the lower axis slows it down again, in the new mill the big force 
needed to move the big spoons makes it necessary to use both trans-
missions to slow down the rate of rotation. In the traditional design the 
gear wheels on the central axis are both lantern wheels and the two other 
gear wheels, on respectively the upper shaft and the scoop-wheel shaft, are 
crown wheels. The need to slow down the rate of rotation immediately 
made it necessary to put the upper lantern wheel on the upper axis and the 
upper crown wheel on the central axis: the wheels S and C change places. 
In the new design the forces that the teeth of the gear wheels exert on each 
other are bigger than in the case of the traditional mills. That is why it is 

 was only a means 
 to design a more efficient windmill. Figure 11 (right) shows us one version 
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understandable that Stevin gave special attention to the position and shape 
of the teeth in On the most perfect cogs and staves.   
 
 
14. HOW SUCCESSFUL WAS THE NEW DESIGN? 
 
Understandably Dijksterhuis and Forbes give considerable attention the 
problems that Stevin encountered in the case of the IJsselstein mill. They 
studied the files in the IJsselstein Archive and there conclusion is the 
following: “The main point seems to have been that the upright shaft was 
made of too soft a timber and thus the thrust journal (‘onderijzer’ in Dutch) 
penetrated into the timber and the smooth turning in the thrust bearing was 
endangered.” ([16], p. 325). Dijksterhuis and Forbes add a second point 
concerning the greater forces that were generated in his design: “Stevin in 
increasing the size of the scoop wheel caused heavier load on the pit wheel 
(the diameter of which remained the same) and thus greater stresses on the 
cogs and staves of this wheel and the crown wheel. He was not able to 
solve this difficulty mechanically nor to cope with the greater stresses in 
other parts of the machinery” ([16], p. 325). These remarks all suggest that 
Stevin’s new design was a failure. Moreover Dijksterhuis and Forbes add: 
“Stevin encountered similar trouble in the case of the Kralingen mills” 
([16], p. 326). In this case the trouble concerned the pit wheel, a crown 
wheel on the scoop-wheel shaft, which was originally not strong enough.  

It is interesting that in the case of the IJsselstein mill Stevin felt it 
necessary to prove that his design worked well in other parts of the country 
and obtained a series of testimonials. The counsel of the polder may have 
felt that such testimonials were written by “disciples of Mr. Stevin”, it is a 
fact that they contain a very positive report on other mills built by Stevin 
([17], pp. 386–391). There is also a very positive report in which authorities 
from Kralingen declare their satisfaction with Stevin’s mills. It is remark-
able that Dijksterhuis and Forbes believe that this positive testimonial 
should be regarded as a conciliatory gesture ([17], p. 327) concerning the 
rebuilding and strengthening of the above-mentioned pit wheel, thereby 
suggesting doubt concerning the reliability of the testimonial. This is 
particularly strange, because the negotiations had ended with a contract in 
May 21, 1593 and the testimonial was accorded to Stevin in June 1594. 
Why would a conciliatory gesture be necessary more than a year after 
agreement had been reached?  

Yet, whatever the causes, the conclusion can only be that Stevin’s new 
design was not a big success.  
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15. CONCLUSION 
 
The essence of the Archimedean Renaissance in mechanics is the attempt 
to study mechanics or the science of machines in an Archimedean way. 
Because none of Archimedes’ works on mechanics had survived Renaissance 
scholars had to bridge the gap between, on the one hand, the highly 
theoretical treatises of Archimedes, in which he had turned statics and hydro-
statics into pure, strictly deductive sciences, and, on the other hand, the 
real machines.  

Del Monte saw the problem clearly. In his Mechanicorum Liber he 
derived the law of the balance or lever in an Archimedean way and then 
attempted to explain the functioning of the five simple machines on the 
basis of this law. Del Monte defined the problem but did not go far beyond 
what his predecessors had reached.  

Very probably without having read Del Monte Stevin was much more 
successful. With some new highly original contributions to statics and 
hydrostatics and an approach in which the unity of theory and practice was 
a central dogma Stevin showed that an Archimedean science of machines 
going beyond what had been reached in Antiquity was quite possible. Stevin 
thought and wrote in Dutch. I have argued that this probably helped him in 
his new and fresh approach to mechanics. It also meant a disadvantage. His 
work was not immediately noticed. Only in 1634 some of his important 
works were translated into French [20]. The importance of Stevin is still 
sometimes underestimated. In an extensive paper on the emergence of 
Archimedean mechanics in the Late Renaissance published in 2008 [11] 
Stevin is not even mentioned. 
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ABSTRACT In the paper is discussed the possibility tat Archimedes built 
and used against the Roman fleet a steam cannon. 

It is well-known that Archimedes, during the siege of Syracuse, designed 
and built several war machines to fight against the Romans. Among these 
war machines, the legend about the large concave mirrors that concentrated 
the sun rays burning the Roman ships is rather interesting. On this topic 
are also interesting some drawings by Leonardo Da Vinci where a steam 
cannon is described and attributed to Archimedes.  

Starting from passages by ancient Authors (mainly Plutarchos, Petrarca 
and Da Vinci), the author investigates on the possibility that Archimedes 
built a steam cannon and used it to hit the Roman ships with incendiary 
proiectiles. 
 
 
1. INTRODUCTION 

 
Everybody knows the legend telling that Archimedes, during the siege of 
Syracuse (214–212 B.C.), designed and built several war machines to fight 
against the Roman fleet. Among these war machines, the legend about the 
burning mirrors is rather interesting. According to the legend, these burning 
mirror consisted in large concave mirrors that concentrated the sun rays in 
a point, a Roman ship, burning it; a scheme is reported in figure 1. 

There is not any doubt that a parabolic mirror can burn a piece of 
wood as it was demonstrated by a Greek engineer (Joannis Stakas) in 1974 
[1]; in addition such devices are commonly used nowadays in applications 
of the solar energy. In particular, by modern linear mirrors, it is possible to 
heat a fluid mix of salts flowing in a pipe (that is located in the locus of the 
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Fig. 1. Working principle of a burning mirror. 

 
parabola’s foci) up to 600°C. Nevertheless, the use of such mirrors as a 

the parabola. Hence if the ship moves forwards or backwards respect to 
this point, the only way to “adjust” the device could be to change the mirror’s 
curvature. As far as this aspect is concerned, some Authors  suggested the 
use of a device that consisted in a “composite burning mirror” made up by 
a number of (plain) mirrors that could be adjusted in order to concentrate 
the sun rays at different distances from the device itself. Experiments with 
such devices were carried on by some scientists (see e.g. [6,7]).  

was lighted, it is quite impossible to concentrate in this point enough 
energy to sustain the fire; in addition, the fire could be easily put out by 
few bucket of water. This aspect has been already remarked by other 
Authors (see e.g. [4,5]). 

At the end of the XV century, Leonardo Da Vinci drew a steam 
cannon that he ascribed to Archimedes and, for a tribute to Archimedes, 
was called “architronito” (Tunder of Archimedes); the drawing is reported 
in figure 2. 

On the same folio is reported also the working principle:  
Architronito è una macchina di fine rame, invenzione di Archimede, e gitta 

ballotte di ferro con grande strepito e furore. E usasi in questo modo. La terza 
parte dello strumento istà in fra gran quantità di foco di carboni, e quando sarà 
bene da quelle infocata, serra la vite d, ch’è sopra al vaso dell’acqua abc; e nel 
serrare di sopra la vite e’ si distopperà di sotto, e tutta l’acqua discenderà nella 
parte infocata dello strumento, e lì subito si convertirà in tanto fumo che parirà 
maraviglia, e massime a vedere la furia e sentire lo strepido. 

Questa cacciava una ballotta, che pesava un talento, sei stadi. … 

iron balls with great noise and fury. It is operated as follows. The third part of the 

device, in fact, can work only if the ship’s wood is located in the focus of 

Nevertheless, even if a point of the ship (made of rather wet wood) 

weapon against ships is rather difficult to believe [2–5]. The described 

Architronito is a machine of pure copper, invented by Archimedes, and throws 
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device is located in a big quantity of fire by coal, and when it is well made red-hot 
by it (coal), the valve d is closed, that is on the water reservoire abc; and by 
closing the valve above e’ it will be stopped below, and all the water will go down 
in the heated part of the device, and there suddenly will be converted in so much 
smoke (vapour) that it will appeas as astonishing, and even more by seeing the 
fury and hearing the noise. 

This (device) threw a ball weighting one talent (≈26÷38 kg), (with a range of) 
six stadia (≈1100 m). ... 

 

 

Fig. 2. Drawings by L. Da Vinci (Ms. B, f. 33 v) of the architronito. 

 
Several authors also described similar devices; among them we can 

cite Francesco Petrarca (1304–1374) that, in a minor work (De Remediis 
Utriusque Fortunae) describes a steam cannon about one century before Da 
Vinci: 

Straordinario, se non anche le palle di bronzo, che vengono scagliate con 
tuono orribile. Non era abbastanza l’ira di Giove che tuonava dal cielo, se il 
piccolo uomo (o crudeltà unita alla superbia) non avesse tuonato anche dalla terra: 
la violenza umana ha imitato il non imitabile fulmine, come dice Virgilio. E quello 
che di solito è scagliato dalle nuvole, e mandato con uno strumento sì di fuoco, ma 
infernale. Ed alcuni ritengono che questo sia stato inventato da Archimede, nel 
tempo in cui Marcello assediava Siracusa. Per la verità lo escogitò per difendere la 
libertà dei suoi cittadini, sia per allontanare sia per differire la rovina della patria; 
e voi vene servite, invece, per opprimere i popoli liberi o col giogo o con la 
distruzione. Questa peste non molto tempo fa rara, ora siccome gli animi sono 
succubi alle cose più malvagie, è comune come qualsiasi genere di armi. 

It is extraordinary, if not only the bronze balls, that are thrown with orrible 
thunder. It was not enough the anger of Jove that thundered from the sky if the 
little man (oh cruelty of the haughtiness) had not thundered also from the heart: 
the human violence imitated the non imitable lightning, as Virgil says. And what 
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usually is thrown by the clouds, is (now) thrown by a device that is also made by 
fire but hellfire. Some people believe that this (device) was invented by 
Archimedes when Marcellus besieged Syracuse. In truth he invented it to defend 
the freedom of his fellow citizens and to retard and defer the ruin of its Country; 
you, instead, use it to oppress free people with yoke or destruction. This plague 
not many time ago was rather rare, now, since the minds are dominated by the 
most wicked things, is common like any other kind of weapon. 

It must also be considered that parabolic mirrors were used during the 
Renaissance for brazing the copper. In addition, nowadays, parabolic mirrors 
are used to obtain energy from the sun; in some application a fluid mix of 
salts is heated (in a pipe located in the locus of the foci of a parabolic 
linear mirror) up to 600°C. 

The Greek historian Plutarchos (later Roman citizen as Lucius Mestrius 

14-15, tells that, during the siege of Syracuse, when the Romans saw 
something that was similar to a pole protruded from the walls ran away 
shouting :”Archimedes is going to throw something on us now”. Now, let 
us consider that no ancient throwing machine (such as onager, ballista or 
catapult) looks like a pole [8]. In the appendix, some examples of the main 
pieces of the Roman artillery are reported. 

Very interesting is also a piece cited by Simms [3]: in it, it is reported 

Valturius (Roberto Valturio, Italian engineer and literary man 1405–1475) 
in his treatise De re militari, “… States that … there are many references 
to Archimedes having designed a device made from iron out of which he 
could shoot, against any army, very large and heavy stones with an 
accompanying loud report.” 

Finally, as it was already remarked by several investigators, no mention 
about burning mirrors was made by the historians of the Greek-Roman era 
but this legend appears only during the middle age. 

For the all the reasons above reported it seems plausible to suppose 
that Archimedes used burning mirrors to heat the breech of steam cannons. 
In the next paragraphs the possibility to use a such device is investigated. 
 
 
2. A RECONSTRUCTION OF THE ARCHIMEDES’ STEAM 

CANNON 
 

In figure 3 is reported a possible scheme of parabolic mirror fitted to heat 
the breech of a cannon. 
 

Plutarchus ≈ A.D. 46–120), in his Vite parallele, vol. II, Pelopida e Marcello 

that Niccolò Tartaglia (Italian mathematician, about 1499–1557) wrote that 
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Fig. 3. Possible scheme of parabolic mirror heating the breech. 

 
In figure 4 is reported a scheme of the device that was probably used 

to inject the water in the breech. It is mainly based on the drawings and the 
brief description by Da Vinci’s manuscript and the steam cannon model 
built by I. Sakas [9]. It must be said that, the Sakas’ reconstruction of the 
Archimedes’ steam cannon, the ball was constrained down in the barrel by 
two wooden stick: a first stick is put inside the barrel, a second stick is put 
at the muzzle, orthogonal to the barrel axis and hooked to the muzzle by 
two rings. When the pressure was high enough to break the second stick, 
the ball could start. In this way rather high steam pressures and thereby 
high muzzle velocities could be achieved. This solution or similar ones 
invented by several modern steam cannon builders are rather dangerous 
and they could not be easily adopted by a military weapon of the age of 
Archimedes. 

Since neither in the drawings by L. Da Vinci nor in any other biblio-
graphical source the author could found any evidence of the equipment 
used by Sakas, in the following it was not considered. 

A proper amount of water is put in the reservoir A, then the valve B1 is 
opened and the water fills the tank C. Next the valve B1 is closed and the 
valve B2 is opened: the water flows in the chamber of the cannon and 
vaporizes. Through the pipe D, the pressure in the tank C is equalized to 
the one in the chamber of the cannon. The steam pressure throws the ball E 
outside the barrel. 

It must be pointed out what follows: 

1. By a burning mirror and the described working cycle, it is difficult to 
achieve high energy and hence high ball muzzle velocities. 

2. In order to shoot at a (moving) ship from a city wall it is necessary that 
the cannon ball has a rather flat trajectory; otherwise it is rather 
difficult to hit the target. 

Naturally, low muzzle energies could carry to a low muzzle velocity if 
the ball mass was about 30 kg as described by Da Vinci. This would 
permit only a parabolic trajectory that was unsuitable to hit a moving ship. 
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Fig. 4. Scheme of the Archimedes’ steam cannon. 

 
On the other side, we must remember that, up to the middle of the XIX 

century, the calibre of a gun was given as a weight; the latter indicated a 
barrel which diameter was the one of a ball (made of cast iron for cannons 
and of  lead for guns) having that weight. Also for the Archimedes’ steam 
cannon it could be the same. 

In this case, we can suppose that the cannon could throw rather 
lightweight hollow balls made of clay and filled by incendiary mixture that 
was well-known by the Greeks. These balls could reach an higher muzzle 
velocity and hence a flatter trajectory and, when hit the ship, they broke off 
spreading the incendiary mixture, setting fire on the ship. The possibility 
that the roman ships were burned by Archimedes by means of somewhat 
like the famous “Greek fire” is also suggested by Simms; in [4], in fact, it 
is reported that Galen (Aelius Galenus or Claudius Galenus or Galen of 
Pergamum 129–216) in his De Temperamentis says that “… Archimedes 
sat on fire the enemy triremes by means of πυρεια.” Now this word, in 
ancient Greek indicates something used to light fire or can be translated as 
“brazier” but can not be translated as “burning mirror”.  

As for the incendiary mixture known as “Greek fire” it has to be said 
that its exact composition is unknown; nevertheless, the main components 
very probably were sulphur, liquid bitumen, pitch and calcium oxide. It is 
also well-known the use of a mixture that could burn underwater or even 
be ignited by water (that the Byzantines named marine fire or Roman fire) 
and even the use of flamethrowers for sea warfare in the Greek-Roman 
era [10]. 
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It is also known the use incendiary projectiles (vasa fictilia) that 
consisted in “clay containers filled with flax soaked in a mixture of liquid 
bitumen, pitch and sulphur, with a sulphonated fuse. They were hurled 
using special machines. When they fell, the vase broke and the incendiary 
composition came into contact with the object it struck. These types of 
projectiles are mentioned by: Appiano, Dionysius of Halicarnassus, and 
Frontino. They were widely used in many locations, especially by Demeritus 
during his naval attack against Rhodes (304 B.C.), and in the naval battles 
that took place during the second Punic wars. They also launched porous 
rocks after filling their cavities with flammable material and setting them 
on fire”[10]. 

In figure 5 is reported a possible incendiary projectile made by hollow 
clay ball that was filled by incendiary mixture. From the proposed 
dimensions, that are reported in figure, the mass of such a ball could be 
round 6 kg; this could bring to reasonably flat trajectories, as it will be 
shown in the following paragraph. 
 

 
Fig. 5. Hollow clay ball. 

 
Balls like the one described are shown in figure 6. The one on the top 

left is from the fortress of Chania (X–XII Century) and presently are at the 
National Historical Museum, Athens, Greece, the picture at the top right is 
reported a representation of a gun (a fire lance) and a grenade (upper 
right), from the cave murals at Dunhuang, c. 950 A.D., those in the lower 
part of the image are ceramic bombs found on the 1281 shipwreck of the 
fleet who attempted to invade Japan. In the figure it is possible to observe 
an hole from which the incendiary mixture was filled and that was closed 
by a cork bringing the fuse. 
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Fig. 6. Incendiary projectiles. 

 
 
3. ROUGH EVALUATION OF ENERGIES AND TRAJECTORIES 
 
In this paragraph the possibility that the device described before could be 
effective against a ship is  roughly evaluated. It must be pointed out that all 
the assumptions and the computations are rough since the  main purpose is 
to asses whether such a device, conceptually, could “work” or not. 

3.1. The Projectile Muzzle Energy 

As it was told before, it was supposed that the projectile diameter was 200 
mm and it’s mass was 6 kg; moreover, the barrel length covered by the ball 
was 2,4 m. In the following paragraph it will be shown that a suitable 
ball’s muzzle velocity is 60 m/s. So, from these assumption and supposing 
that the ball’s acceleration in the barrel is constant, it is easy to obtain: 

Ball’s muzzle energy Eo = 10,8 kJ 
Ball’s time to cover the barrel length t = 0.08 s 
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Now lat us assume that: 

– the water temperature, when introduced in the breech, was 30°C, 
– the mean breech temperature during the vaporisation process was  

430°C (i.e. mean Δt = 400°C), 
– the surface wetted by the water was half the breech inner surface, 
– the heat transfer coefficient between the breech and the water spray 

can be assumed, very conservatively, K = 10 kJ/m2/s/°K [6], then the 
heat that was transferred from the breech inner surface to the water is: 
Q ≈ 53 kJ. 

Now, it seems reasonable that 20% of this energy was transferred to 
the ball; this means a ball’s muzzle energy Eo = 10,6 kJ and a ball’s 
muzzle velocity Vo = 59,44 m/s. 

It must be observed that in the scheme reported in fig. 4, the ratio 
between the barrel length and its diameter is only 12 (very little if 
compared to modern cannons and near to the ratio of the I WW howitzers) 
while from the table by L. Da Vinci it is possible to observe a ratio of 
about 30. This suggests that in ancient devices, probably, the time required 
by the ball to cover the barrel length was comparably higher and the steam 
worked more efficiently. 

3.2. The Projectile Trajectory 

In order to evaluate the projectile energy, because of it’s low speed, it was 
considered a simple model for the drag force R due to the air: 

AV  R 2
2
1 ρ=  (1)

Where: 

ρ is the mass density of the air = 1,225 kg/m3, 
V is the speed of the object relative to the air, 
A is the area of the projectile’s cross section.  

The equations of motion: 

0Rmgym
0Rxm

=±−−
=+−

&&
&&  (2)

were solved numerically. It must be observed that, naturally, the sign of R 
in the second of the equations (2) depends on the sign of the vertical 
component of the velocity. 
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In figure 7 is reported a simple scheme showing the gun position on 
the sea level, the gun elevation β and the range. 

In figure 8 is reported a trajectory that was computed by assuming a 
muzzle velocity Vo = 60 m/s, an elevation angle β = 10° and that the gun 
was 10 m above the sea level. 

From the figure it is possible to observe that the range is about 150 m 
and the trajectory is rather flat (the scales of the axes in fig. 7 are isometric); 
that is to say the maximum elevation of the projectile over the line of sight 
is very small if compared to the range. The range seems to be adequate to 
the use of the device while the rather flat trajectory is important for the 
anti-ship fire. 

 
Fig. 7. Scheme of the cannon shooting. 

 

 

 
Fig. 8. Projectile’s trajectory. 

 
In figure 9 are reported some other trajectories, near the target, with 

different muzzle velocities and gun’s elevation, all hitting the target.  
The latter is represented by a 6 m wide and 3 m high silhouette 

(approximately the dimensions of a Roman trireme’s cross section), placed 
at a distance of 100 m in the plane of the ball’s trajectory. 

It is possible to observe that if the muzzle velocity is Vo = 60 m/s the 
target is hit with elevations ranging from β = 3.1° to β = 5.1°, while if the 
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elevation is fixed to β = 4°, the target is hit with muzzle velocities ranging 
from Vo = 57 m/s Vo = 64 m/s. This means that at those ranges, it was not 
necessary a very high accuracy in the pointing neither was necessary a 
very high repeatability of the muzzle velocity. 

 

 
Fig. 9. Different trajectories hitting the target. 

 
It must be observed that, by assuming the target silhouette shown in 

fig. 9, it was supposed that the ship moved in a direction orthogonal to the 
plane of the projectile’s motion; this condition is the one in which the ship 
offers the smaller section in the plane of the projectile’s motion. This is 
shown in fig. 10, where a ship is represented in it’s plane of motion that is 
orthogonal to the plane of the projectile’s motion. 

In the figure the dashed dotted lines are the intersections between the 
projectile plane of motion with the ship’s plane of motion hence the lines 
A-B or A’-B’ represent the width of the silhouette reported in fig. 8. It is 
evident that if the ship moves in a direction non orthogonal to the cannon’s 
barrel, the “apparent width” of the target increases. 
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Fig. 10. Ship’s silhouette in it’s plane of motion. 

 
 

4. CONCLUSIONS  
 

A possible reconstructions of the performances of a steam gun by Archimedes 
was proposed. 

Computations and assumptions are rather rough since the main aim is 
to asses whether the device was capable to hit and burn a Roman ship or 
not. Naturally, if it was possible, this (alone) doesn’t mean that it happened. 

Nevertheless, it seems reasonable to believe that the only possibility 
that Archimedes had to burn Roman ships by mirrors was to use the 
described device for two main reasons: 

I) First of all is rather difficult to built a bursting mirror suitable for 
those applications; in fact a concave mirror having a diameter of (say)  
4 meters that concentrates the sunrays at a distance of (say) 100 meters has 
a concavity of few millimetres. In some experiments (1973 Sakas and 
Stamatis and 2005 MIT) were used a number of plane mirrors and little 
boats or mock-ups were really burned; nevertheless a practical use of such 
a device during a battle seems not very realistic. In fact it must be 
considered that in the experiment by Sakas and Stamatis about 50 sailors 
of the Greek Navy were necessary to point the mirrors and in the experi-
ment at the MIT 300 mirrors were used; in addition, in both cases, the 
target was absolutely motionless. Very different conditions take place during 
a battle, hence it is difficult to believe that a big number of mirrors can be 
pointed on a moving target efficiently. 

Then it must be considered that a fire lighted in this way could be 
extinguished very easily. Really the wood starts to burn at about 250°C 
and at temperatures a little higher than the latter burns with flames even 
without any further external supply of heat; but smoke and flames were 
clearly visible and, also, were the main threat for wooden ships. So, it is 
difficult to understand the reason why nobody had extinguished those 
initial fires, just by few buckets of water.  
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II) The second reason is that, as already told, there are no historical 
sources in the Archimedes’ age telling about the use of burning mirrors for 
warfare. Silius Italicus (~25-101 A.D.), about 3 centuries after the siege of 
Syracuse, in his poem “Punica” does not tell about any mirror but mentions a 
tower from which Archimedes threw incendiary projectiles against the 
Roman ships. Valerius Maximus (Factorum et dictorum memorabilium 

Later, Lucian of Samostata (~125 – after 180) refers about Roman ships 
burned but without indicating how the fire was set on them. Finally, as 
already mentioned, Galen of Pergamum says that Archimedes burned 
some Roman ships but the term he used can not be translated as “burning 
mirror”. The use of a set of articulated plain mirrors is supposed for the 
first time by Anthemius of Tralles (~474 – before 558 A.D.) in his treatise 
“Perì paradòxon mesantmaton” (On the paradoxes of the Mechanics) 
[5,12]. 

As for the steam cannon, it must also be remarked that the described 
technology (valves, pipes etc.) was available in those ages [10]. Also, 
steam cannons where used till in the XIX century [10]. Finally, a number 
of writings (e.g. Plutarchos, Francesco Petrarca, Leonardo Da Vinci etc.) 
strongly suggests that Archimedes built and used such a device. 
 
 
5. APPENDIX 

 
In the introduction a piece by Plutarchus has been cited in which the Roman 
Soldiers were frightened by a weapon, similar to a pole, that Archimedes 
used against them. Since, as already told, no heavy weapons looked like a 
pole, it could be interesting a very brief review on some examples of the 
main Greek-Roman artillery pieces. Since the Roman artillery was almost 
“copied” by Greek designs, some drawings of Roman artillery pieces will 
be shown. 

First of all it must be pointed out that in the III century B.C., thanks to 
Greek engineers, the motor of the throwing machines was mostly the 
torsion motor that was made generally by women’s hair or horse air [8, 10, 
15-18] as shown in figure 11. 

The main pieces were the catapult (and the scorpio that was a little 
catapult), the ballista and the onager (in Latin: onagrum), all powered, as 
told, by torsion spring motors. 

It must be pointed out that during the Roman Empire the word 
“catapult” (probably from the ancient Greek katà pelte = through the 
shield) was used for a machine that throws darts, while the word ballista 
(that also comes from the Greek word βαλλω (ballo = I throw) was used 

libri IX ~31 A.D.) is probably the first who mentions burning mirrors. 
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for a machine that throws balls. During the Middle Age the words were 
used with the opposite meaning : ballista for a dart throwing machine and 
catapult for a ball throwing one. 

In figure 12 is reported a pictorial reconstruction of a Greek-Roman 
catapult [10]. 
 

 
Fig. 11. Torsion motor: find (left) and reconstruction (right). 

 
 

 
Fig. 12. Pictorial reconstruction of a catapult. 
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In figure 13 are reported a pictorial reconstruction of an eutyntonon 
ballista on the left and a pictorial reconstruction of the large ballista found 
at Hatra (palintonon ballista) on the right [8]. 
 

 

 
It must be observed that while in the eutyntonon ballista the arms, 

during the run, are always in the same half-plane respect the frame, in the 

in figure 13. This permitted to the arms to rotate by a larger angle and, 
hence, an higher efficiency of the palintonon [8, 19, 20]. 
 
 

 

 

Fig. 13 a). Pictorial reconstruction of ballistae: eutyntonon (left) and palintonon (right). 

palintonon ballista the arms pass through the frame as shown in the sceme 

Fig. 13 b). Sceme of the eutytonon ballista and of the palintonon. 
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The studies on the throwing machines technology was certainly carried 
on till the I century B.C. when a repeating catapult [15, 16, 21, 22] was 
developed The device was described by Philon of Bizantium and attributed 
to Dionysius of Alexandria and, apparently, it was used around the I century 
B.C.; it was a part of the arsenal of Rhodes that may be considered as a 
concentration of the most advanced mechanical kinematic and automatic 
systems of the time, many of which show working principles and a con-
ceptions that still can be considered as “modern”. A pictorial reconstruction 
is shown in figure 14 and a cinematic reconstruction of the automatisms 
can be found in [23]. 
 

 
Fig. 14. A pictorial reconstruction of the repeating catapult [23]. 
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In figure 15 is reported a drawing of the fully automatic mechanism, as 
it was proposed in the reconstruction by the author [23]. 

on the author’s study of the description given by Philon of Bizantium, it is 
easy to understand the “modernity” of the Greek weapon designers. 

 

 
Fig. 15. The mechanism of the repeating catapult. 

 
 

From this figure, that is based on previous studies [15, 16, 23, 22] and 
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Finally, in figure 16 is reported a pictorial reconstruction of an onager. 
From the figure it is easy to understand that the projectiles (stones or 
similar round objects) thrown by this weapon could describe only parabolic 
trajectories like those of an howitzer and not flat ones.  

 
Fig. 16. Pictorial reconstruction of an onager. 

 
From the brief notes reported above, it is evident that the steam cannon 

was something of very different either for what the shape is concerned and 
(even more) from a conceptual point of view. As far as the latter aspect 
is concerned, the extraordinary modernity of the Archimedes’ cannon is 
evident. 
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ABSTRACT Starting from a previous model for the shift mechanics of 
rubber belt variators, this lecture elaborates practical design formulas for 
the torque and the axial thrust making use of the very close resemblance of 
the belt path to a linear spiral of Archimedes along a large part of the arc 
of contact. In addition, as an alternative to the modern calculus tools, it is 
shown how the drive variables can be equally calculated applying some 
propositions of Archimedes’ classical treatise περι ‘ελικων (On Spirals). 
 
 
1. INTRODUCTION 
 
The usual operation of the continuously variable transmissions (CVT) for 
vehicles or motorcycles consists in a random continuous change of the 
speed ratio, where a gross radial motion of the belt toward the inside or 
outside of the groove is superimposed to the circular motion. Only a few 
approaches to the CVT transient mechanics can be found in the literature 
(see references in [1,2]) and a practical formulary is still missing. The 
present paper resumes the theory of [1] and constructs useful design 
formulas for the torque and the axial thrust. The full equation system is 
strongly non linear and its exact solution requires complex numerical 
procedures. Attempts at approximate solutions were carried out for some 
applicative cases [2], achieving a very fine agreement with experiments. 
Here, a much simpler formulation will be developed, taking advantage of 
the Archimedean spiral shape of the instantaneous belt line. 

The involvement of Archimedes in the mechanics of machines was 
quite relevant and several ingenious devices are to be ascribed to him, both 
for the civil and military application, though such inventions arose more 
from practical occasional requirements than from his intimate disposition 
to this kind of activity [3,4]. Among many other interests, he was also 
concerned with the cable and belt mechanics and for example, his 
compound-pulley tackles (πολύσπαστα) for the launch of very big ships are 
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recorded by the historians. Nevertheless, he preferred the speculative 
aspects of the theoretical mechanics and the investigation on several 
mathematical and geometrical problems regarding plane and solid figures 
[3-7]. His treatise on spirals, though characterized by a limited divulgation 
in the past, may be recognized of a great modernity after more than two 
thousand years and may still yield alternative methods for the solution of 
today’s mechanical problems, as will be shown also in the following. 

The history of belt mechanics is traced by Gerbert in ref. [8]. Despite 
the extensive use of cable and rope devices in the antiquity, the theoretical 
analysis of the belt drives originates only in recent centuries, starting from 
the well known capstan formula of Euler-Eytelwein and proceeding with 
the fundamental distinction made by Grashof between the adhesive arc 
(Ruhebogen) and the sliding arc (Gleitbogen). The V-shaped belts were 
introduced by John Gates at the beginning of the 20th century. Their 
analysis and their use in variable speed drives date from more recent times 
(Lutz, Worley, Dittrich, Gerbert) and also the author of the present paper 
has been working in this research area during the last years. 

 
 

2. BELT-PULLEY COUPLING 
 
A scheme of the belt element with the wall forces is represented in Fig. 1a, 
while Fig. 1b shows some details about the geometry and kinematics of the 
belt path. These figures may be used as a reference for the notation. 

Putting θ = θ(t) and r = r[t,θ(t)] along the trajectory of a belt element, 
one has dr/dt = r& +θ& r', where dots and primes indicate the differentiation 
with respect to t and θ respectively. Moreover, letting x = (r∞ − r) /r∞ be 
the dimensionless elastic penetration of the belt, where r∞ is the nominal 
radius for infinite transverse stiffness of the belt, the self-evident 
geometrical relationship r' = − r tanχ gives 

    ( ) χtan1 xx −=′  (1)

The above formulas give rise to the relationship vsinδ = vcosδ tanχ − r& , 
while the triangle of velocities points out that vcosδ − ωr − vsinδ tanγ = 0, 
and such two relationships yield vcosδ(1 − tanχtanγ) = ωr(1 − ρ tanγ), 
where ρ = r& /(ω⋅r) ≅ ∞r& /(ω⋅r∞) is the dimensionless shift speed. There-
fore, if χρ tan= , then vcosδ = ωr and vsinδ = 0, i.e. there is adhesion 
between the belt and the pulley and one has x' = (1 − x)ρ by Eq. (1), so that 
the belt has the shape of a logarithmic spiral. Nevertheless, as x << 1, the 
instant path can be confused with a linear spiral of Archimedes. 
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Fig. 1a. Belt-pulley interaction. Tetrahedron of rotational (ACD), meridian (ABC), sliding
(BCD) and wall-tangent (ABD) planes. 
Fig. 1b. Control volume. Triangle of velocities. 

NOTATION 
dFn and fdFn = normal and frictional elementary wall forces 
α = groove half-angle, δ = belt velocity angle, χ = belt penetration angle 
γ = sliding angle in plane of rotation, γw = sliding angle on pulley wall (tanγw = cosα tanγ) 
r = belt radius, θ = angular coordinate 
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=  shift-to-peripheral speed ratio 

v = belt velocity, vslip = slip  velocity in rotation plane, ρ = dimensionless shift speed, 
ω  = pulley angular velocity 
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Indicating the longitudinal elongation with ε = T/Sl, T and Sl being the 
belt force and the longitudinal stiffness, the usual order of magnitude of x, 
χ, ε and ρ is of a few thousandths. Then, combining the Eulerian and 
Lagrangian formulations of the mass conservation condition with reference 
to the dihedral control volume of Fig. 1b and neglecting small terms, it is 
possible to arrive, as in [1], at the relationship 

( ) ( ) ρχχ
ε

ε
−⎥⎦

⎤
⎢⎣
⎡ ′−+
+
′

+=′ 1tan
1

1 uu  (2)

where u is the dimensionless slip velocity in the circumferential direction: 

γ
χγ

ρχγ
ω

tan
tantan1

tansinslip
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

⋅
=

r
v

u  → ( ) ρχ
γ

−+
=

tan1
tan

u
u  (3a,b)

Neglecting small terms, equilibrium yields (Td ib)' + F'w ≅ 0, where Td = 
T − μvb

2 is a “dynamic” belt force, μ the belt mass per unit length, μvb
2 the 

momentum flux along the belt and F'w the resultant wall force per unit 
angle. Likewise, it is possible to define the “dynamic” elongation εd = Td/Sl. 
Splitting the vectorial equilibrium equation in the directions tangential and 
normal to the belt, defining the transverse elastic modulus Ez and the 
transverse stiffness parameter St = 2tanαEzhr∞2 /w (h and w: belt height and 
width), formulating a transverse constitutive equation, one gets as a whole 

Sl dεd = 2 ( )[ ]χγχαγχα cossinsincoscossinsin wwf ++  dFn (4)

Slεd(1+χ')dθ = 2 ( )[ ]χγχαγχα sinsincoscoscoscossin wwf −+  dFn (5)

dFz = (cosα − f cosγw sinα) dFn = St x(1 − x) dθ /cosχ (6)

Eliminating dFn from Eqs. (4-5) and introducing the belt elastic 
parameter k = 2 tanα St / Sl, the momentum balance leads to 

( )( )

γα
β

χβε

tancos
tan1

tantan1

2−

+−
=′

xkx
d  

(7)

( )( ) 1

tancos
tan1

tantan11

2

−

⎟⎟
⎠

⎞
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⎝

⎛
−

−−
=′

γα
βε

χβχ

d

xkx  
(8)

where tanβ = f sinγ /( f  cosγ + sinα γα 22 costan1+ ). 
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We have thus collected four 1st order differential equations, (1), (2), 
(7), (8), and one parametric equation, (3 a or b), in the five variables x, εd, 
χ, u and γ, where the first four are very small, while γ may range between 
−π and +π. This differential system is “degenerescent”, as its order 
“degenerates” from four to three when neglecting all smaller terms, including 
χ' in Eq. (8). The problem is then of the boundary layer type, so that a 
rather smooth variation of the variables is expected along most of the 
contact, but with sharp gradients near the boundaries, and the equations 
must be applied in their unabridged form to match all boundary conditions. 
The numerical solution shows a short “seating” region at the contact 
entrance, where the belt slides inward (γ ≅ 0), and a short “unseating” 
region at the exit, where it slides outward (γ ≅ ±π). The belt force is nearly 
constant in both of them by Eq. (7), but the elastic penetration is subject to 
rapid changes, together with the belt curvature. Putting γ ≅ 0 at the seating 
region exit, one may obtain xin ≅ εd,in /k1 by Eq. (8), where k1 = k tan(α + 

in
the penetration at the start of the inner main region of contact. 

ADHESIVE SUB-REGION. As proven in [1], a wide adhesive region 
where tanχ = ρ must develop inside the arc of contact of the closing 
pulleys (ρ > 0), both driver and driven, next to the seating region and 
bounded by the endpoints U and D (Upstream and Downstream). Here, all 
the previous relationships hold, except that f must be replaced by a variable 
adhesion factor fa ≤ fs, where fs is the coefficient of static friction, and γ by 
the angle γa of the resultant adhesion force in the plane of rotation. The 
adherence limit is reached when fa = fs. The adhesive conditions, tanχ = ρ, 
u = 0, imply the constancy of the belt force, as ε'd = 0 by (2), while Eq. (1) 
gives x = (r∞ − r) / r∞ = 1 − (1 − xU) exp[−ρ (θ − θU)], where xU ≅ εin /k1,. 
Then, at a fixed time instant, the belt coils along a logarithmic spiral, 
which, since x and |ρ| are << 1, may be roughly confused with a linear 
spiral of Archimedes 

x ≅ xU + ρ (θ − θU) →  r ≅ rU − r∞ ρ (θ − θU) (9)

This spiral develops very slightly inward in the motion direction as ρ > 0 
and ρ << 1, but the belt radius increases at each fixed angular position due 
to the pulley rotation. 

The small variables x, εd, χ and u are obviously continuous when 
entering/leaving the adhesion region, while γ and f are always discontinuous 
with γa and fa at D, but are continuous at U if fa(U) = f. 

ADHESIVE-LIKE SUB-REGION. No adhesive contact may develop in the 
opening pulleys, but the growth of sufficiently large regions of contact 

arctanf )/tanα and this expression of x  gives a good approximation for 

V-Belt Winding along Archimedean Spirals 
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requires the presence of adhesive-like regions, where the adhesion 
condition tanχ = ρ is just approached but not fulfilled. Here, the slip 
velocity vslip and the sliding angle γ are rather small, whence we get ε'd ≅ ρ 
− tanχ ≅ constant and εd ≅ k1x by Eqs. (2) and (8). Moreover, as the trend 
of χ appears rather flat inside the adhesive-like region, the second 
derivative χ" must tend to vanish as well. Then, differentiating Eq. (8) and 
retaining only the dominant terms, it is possible to get χ" ≅ [tanχ − (ρ − 
tanχ) /k1] / x ≅ 0, whence tanχ ≅ ρ /(1 + k1) and the approximate gradients 
x' ≅ ρ /(1 + k1) and ε'd ≅ k1ρ /(1 + k1) are obtainable. These results permit 
constructing approximate solutions for the adhesive-like sub-regions: 

( )in
ind

kk
x θθρε

−
+

+=
11

,

1
 →  ( )inin k

rrr θθρ
−

+
−= ∞

11
 

( )inindd k
k θθρεε −
+

+=
1

1
, 1

 
(10a,b)

Summing up, spiral-shaped paths grow up in the closing and opening 
shift phases. In the former ones, the belt force keeps constant due to 
adhesion, while a slight tension variation occurs in the last ones due to a 
small creep motion. Moreover, it is noteworthy that the sum of the gradients 
of x and εd is roughly equal to ρ in both the shift operations. Figure 2 
shows two belt paths schematically for a shift up and a shift down phase 
respectively. The belt velocity vectors are such that the belt radius increases 
or decreases in the closing or opening pulley respectively. 

 
 

3. NUMERICAL RESULTS 
 

The shift model can be dealt with as an initial value problem, starting 
the integration from one of the contact endpoints, e.g. the exit point E, 
where of course the belt penetration xE must be zero, and moving back-
ward until x vanishes again and a complete solution has been achieved. 
A great care must be put in the control of the integration step, reducing 
its width on approaching the adhesive or adhesive-like regions to avoid 
numerical instability. An iterative procedure must be followed, correcting 
successively the starting values by a sort of shooting technique, until all 
the external boundary conditions are fulfilled, i.e. for the contact width 
Θ = θexit − θentrance, the applied torque (εd,exit − εd,entrance) Sl r∞ and the axial 
thrust Fz = ∫ arc  wrap zdF . Moreover, in the case of a closing pulley, the 
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the downstream adhesion boundary D, continues along the adhesive arc, 
according to the previous adhesive model until the condition fa = f is 
attained, assuming equal coefficients of static and sliding friction, and goes 
on upstream in the seating region. In general: 1) a decrease of the exit 
angle χE, which is always negative, produces an increase of the contact 
width; 2) a small increase of the sliding angle γE, which must be very close 
to ±π, tends to change the pulley behaviour from driven to driver; 3) an 
increase of the belt elongation εd,E produces an increase of the axial thrust. 

 

Figures 3 to 6 show examples of numerical results for the four possible 
operative conditions of a pulley: driver/driven, opening/closing. The solutions 
were obtained fixing the shift-to-peripheral speed ratio ρ, the “centrifugal 
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Fig. 2. Examples of shift-up and shift-down phases with magnified spiral shape of the belt
path. |ρR| ≅ |ρN| ≅ 0.05, k1,R ≅ k1,N ≅ 0.5. Subscripts R and N: driveR and driveN pulleys. 
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backward integration proceeds until the condition tanχ = ρ is attained at 
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141 

elongation” μvb
2/Sl and the exit values of γE and εd,E = (TE − μvb

2)/Sl, 
where TE is the belt tension in the free strand downstream. The third initial 
value χE (< 0) was corrected systematically to get a pre-fixed wrap width. 

The ratio fa / f  is  also  reported for the adhesive case (closing p.) and a 
jump Δγ is observable at the downstream boundary, due to the jump from 
fa to f. 

The belt angle χ is quite small everywhere, save in the seating and 
unseating regions, where it is affected by sharp negative gradients. More-
over, the sliding angle γ is close to 0 and to ±π in these short boundary 
regions, where thus the belt tension is nearly constant. Nevertheless, a 
sharp variation of γ occurs when passing from the main internal region of 
contact into the unseating region. Therefore, indicating with the subscripts 
…in and …out the ends of the wide inner region, the previous initial 
relationship εd,in ≅ k1xin is valid, but a similar relationship cannot be written 
at the end.  

Observing the diagrams of the closing pulleys, the belt tension Td is 
constant in the adhesive sub-region, where the elastic penetration x varies 
in practice linearly with θ according to Eq. (9). Likewise, linear trends of 
Td and x may be observed in the adhesive-like regions of the opening 
pulleys, according to Eqs. (10a,b). This suggests approximate solutions. 

 
 

4. PRACTICAL FORMULARY 

Considering the driver pulley and observing several solutions, this 
linear trend may be approximately prolonged inside the downstream main 
sliding region as far as its endpoint, both for the closing and opening 
phases. Since only the area under this plot is of interest and not the exact 
shape of the locus, this approximation may give an extraordinary tool for 
the practical calculation of the driver pulley performance: 
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V-Belt Winding along Archimedean Spirals 

Neglecting the short seating and unseating regions, the linear trend of x in 
the adhesive or adhesive-like sub-regions may be conveniently used for 
the approximate integration  of Eq. (6) for the axial thrust Fz = ∫ arc  wrap zdF  ≅ 

∫ arc wrap θdxSt .  
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where the subscripts …R and …T refer to the driveR behaviour and to the 
tight strand. Notice that the belt parameters vary during the shift phase 
and, in particular, St,R and k1R vary with the square of the radius. 

As regards the driven pulleys, it is better to divide the region of contact 
in two sub-regions: a first adhesive or adhesive-like sub-region, where 
Eqs. (9) or (10a) hold, and a second main sliding sub-region, where the 
solutions may be constructed according to the following reasoning, based 
on the observation that the penetration-to-elongation ratio x /εd and their 
differential ratio dx/dεd tend roughly to the same “asymptotic” value on 
approaching the endpoint: dxout/dεd,out → xout /εd,out → constant = m. 

Neglecting χ, χ' and putting 1 − x ≅ 1, Equations (7) and (8) change 
into ε'd ≅ εd tanβ ≅ cos2α tanγ (εd − k x) and one may solve for γout and ε'd,out 
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where the new parameter k2 = k tan(α − arctanf ) /tanα has been introduced, 
which is generally negative for rubber belts. Then, indicating the boundary 
point between the two sub-regions with O (O ≡ D if the first sub-region is 
adhesive), uO can be equated to zero because either γO ≅ 0 (opening p.) or 
tanχO = ρ (closing p.) and, integrating Eq. (2) from θO to θ and accounting 
for Eqs. (1) and (3), one obtains x' ≅ ρ + [εd − εd,O + x − xO − ρ(θ − θO)] / 
tanγ. Hence, considering that xin = εd,in /k1 and εd,O + xO = εd,in + xin + ρ (θO − 
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Minding that x'out /ε'd,out
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 = m, the division of Eq. (14) by Eq. (13) yields 

θ ) for both the adhesive and adhesive-like cases and using Eq. (12), one has 
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which is a sixth degree algebraic equation for m, that can be easily solved 
by a few iterations, in dependence on the drive data, Tin, Tout and Θ. 

Expressing the solution for x in the main sliding sub-region by a 
simple parabolic form x = xout + x'out(θ − θout) + x"out (θ − θout)2 /2, one may 
impose the exit conditions xout = mεd,out, x'out = mε'd,out and the connection at 
point O with the upstream adhesive or adhesive-like solution with the same 
slope x'in = ρ /{1 + 0.5k1[1 − sgn(ρ)]}. Such continuity conditions yield 
θO = θout − 2(mεd,out − x'inΘ − xin) /(x'out − x'in), x"out = (x'out − x'in)/(θout − θO) 
and, using the subscript …N for the driveN pulleys, the axial thrust Fz,N ≅ 
∫ arc wrap

θdxSt  turns out to be 
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where the ratio ε'd,out /εd,out is given by Eq. (13). 
Figures 3 to 6 report the above analytical approximations by dots. 

Their agreement with the solutions of the full equations is quite acceptable, 
also in consideration that what is more significant is the whole area under 
the diagrams and not the local elastic penetration along the arc of contact. 

The last equation for completing the formulary is the torque equation. 
Curtailing the torque values on the driver and driven sides of the torque 
losses in the bearings if the torque pickups are external to the housing, and 
averaging them in order take into account the inelastic bending stiffness of 
the belt, it is possible to write 
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The given operative data of a V-belt variator are generally the 
transmitted torque, the speed and the axial thrust on one of the two pulleys, 
exerted for example by a spring load. According to which axial thrust is 
given, on the driver or driven side, one has to associate Eq. (17) with either 
Eq. (11) or Eq. (16) and calculate the unknown belt forces TT and TS on the 
tight and slack strands. In the case of known driver load, Equation (11) 
gives the tighter tension directly and then Equation (17) permits calculating 
the slacker tension. If on the contrary the known axial load is on the driven 
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S
obtains a quadratic equation for the other tension, TT: 
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and the driven load can be easily treated as well. 
 
 
5. AXIAL THRUST CALCULATION USING THE PROPOSITIONS 

 
It is quite interesting that the axial thrust on the pulley can be alternatively 
obtained avoiding the integral calculus and using the findings of Archimedes 
about the areas enclosed by the various branches of a spiral line (see [5,6]). 
These areas were calculated by the Syracusan scientist through very elaborate 
procedures based on his exhaustion method, as described in the palimpsest 
of “The Method” (see [7]). 

o

comprehensum spirali prima circumactione descripta et linea prima earum, 
quae in principio circumactionis sunt, tertia pars est circuli primi. There-
fore, if R = aθ  is the polar equation of the spiral, Rj = 2πja the value of the 
radius after the jth revolution and Aj the area enclosed by the spiral branch 
between the points with angular coordinates θ = 2π(j − 1) and θ = 2πj and 
by the segment of the axis θ = 0 between the points with radial coordinates 
Rj−1 and Rj, we have A1 = πR1

2/3 = 4π 3a2/3. 
o

secunda circumactione descripta et linea secunda earum, quae in principio 
circumactionis sunt, ad circulum secundum eam habet rationem, quam 7:12, 

According to the Latin version, the proposition n  24 states: Spatium 

The following proposition n  25 says: Spatium comprehensum spirali 

side, eliminating one of the two tensions, e.g. T , from Eqs. (16–17), one 

24–27 OF ARCHIMEDES’ TREATISE “ΠΕΡΙ ΕΛΙΚΩΝ ”  
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A2 − A1 = 6A1, as also ascertained in the discussion of proposition 27, 
where the difference A2 − A1 is the area enclosed by the first and the second 
branches of the spiral line and by the segment between the points R1 and R2 
of the axis θ = 0. 

Furthermore, the proposition 27 states: Spatiorum comprehensorum 
spiralibus et lineis, quae in circumactione sunt, tertium duplo maius est 
secundo, quartum vero triplo maius, quintum vero quadruplo maius, et 
semper deinceps insequens spatium toties multiplex erit, quam spatium 
secundum, quoties indicant numeri ordine sequentes, primum autem spatium 
sexta pars est secundi. This means in practice that the areas enclosed by 
two subsequent spiral branches and the axis θ  = 0 are given by the recursion 
formula Aj − Aj−1 = ( j  − 1) (A2 − A1) = 8( j  − 1)π 3a2, which result is valid 
starting from j = 2. 

Summing A1 and all the area differences from j = 2 to j = n, it is thus 
possible to calculate the total area An: An = 4π 3a2[1/3 + 2(1 + 2 + 3 + … + 
n − 1] = 4π 3a2(1/3 + n2 − n). The difference of the nth circle and An is a 
curved triangular stripe, whose area is ΔAn = 4π3n2a2 − 4π3a2(1/3 + n2 − n) = 
4π3a2(n − 1/3) and, for very small slope a and very large n, as in the V-
belt winding, this area is approximately equal to ΔAn ≅ 4π3a2n. 

Since the radial width of this curved triangular area ΔAn increases 
linearly with the distance from its vertex, the area of a segment of angular 
extension Θ is ΔAnΘ = ΔAnΘ 2/4π 2 ≅ πΘ 2a2n = RnΘ 2a /2. Considering that 
Rn ≅ r∞ and that the spiral slope is a = r∞ρ /[1 + 0.5×k1(1 − sgnρ)] for the 
belt-pulley coupling, nearly in the whole arc of contact for driver pulleys 
and in a large part of it for driven pulleys, we get ΔAnΘ ≅ r∞2Θ 2 × ρ /[2 + 
k1(1 − sgnρ)]. 

Tracing a circle of radius Rn ± Δr, where Δr is the radial penetration at 
the beginning of the main arc of contact downstream of the small seating 
region and the positive or negative signs are valid for the closing or open-
ing phases respectively, the absolute value of the radial distance between 
this circumference and the spiral line gives the local radial penetration, 
variable along the wrap region. 

As the axial push per unit length between the belt and the pulley is 
obtainable multiplying the radial penetration by the compression-to-
penetration ratio 2tanα and by the axial elastic stiffness Ezh/w of the belt, 
the total axial thrust is given by the product of the above curved trapezoidal 
area, between the spiral and the circumference Rn ± Δr, and these two 
quantities: 

... (omissis). In practice, the result is that A2 = 7πR2
2/12 = 28π3a2/3 and 
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Minding that Δr = (Tentrance − μv2) r∞ / (Slk1), Equation (19) leads 
exactly to the same result of Eq. (11), valid for the driver pulleys. Clearly, 
some discrepancy appears in the case of a driven pulley, where a part of 
the winding arc is not spiral-shaped. 
 
 
6. CONCLUSIONS 

 
A very simple model may be derived from the results of a previous 
analysis of the author on the ratio shift of V-belt variators, whose findings 
were characterized by a very fine accordance with the experimental results. 

The observation of several numerical solutions points out the Archi-
medean spiral shape of the instantaneous belt path along an extended part 
of the winding region, with adhesive or adhesive-like conditions for the 
closing or opening pulleys respectively. In particular, the elastic belt 
penetration increases in the motion direction for the former and decreases 
for the latter, independently of the working condition, of driver or driven 
pulley, that may at most affect the trends of the belt force, of the penetration 
and of the sliding direction in the following sliding portion of the wrap 
arc, downstream of the adhesive/adhesive-like sub-region. An easy-to-use 
formulary has been reported, which may be very useful for design pur-
poses, permitting the evaluation of the axial forces exerted by the pulley 
walls or else the tension level produced by a given axial thrust on the 
loaded half-pulley. 

It is shown how these calculation may be worked out without recourse 
to the modern integral calculus, by simply using some propositions of the 
classical Archimedean treatise On Spirals, as evidence of the up-to-dateness 
of Archimedes’ thought. 
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ABSTRACT In the paper are proposed some mechanical systems, all 
certainly used in the Classic Age, that could be easily adopted to power the 
siege towers, devices invented by Greek engineers and called Helepolis. 
These ancient motors are made up by capstans, tread wheels like those 
used for Greek-Roman cranes and counterweight motors, all installed into 
the helepolis. 

The proposed motors are also analyzed from a mechanical point of 
view in order to examine, at least theoretically, their effectiveness in such 
applications. 

 
 

1. INTRODUCTION 
 

Among the siege devices and engines that were used in ancient times the 
siege towers or helepolis are particularly interesting. The term “helepolis” 
(ἑλέπολις ≈ “taker of cities”) probably comes from the ancient greek words 
elein (ελειν from the verb αιρεω = to take, to conquer) and polis 
(πολις=city). These machines were widely described from ancient times 
by many authors, see. e.g. Diodorus Siculus (I century B.C.) [1], Publius 
Flavius Vegetius Renatus (IV-V century A.D.) [2], Julius Caesar [3] and 
others and were commonly used till the Middle Age. The first documented 
use dates back to the siege of Rhodes (305 B.C.) when the machines built 
by Demetrius I of Macedon (337–283 B.C.), called Poliorchetes were used: 
incidentally, the word “poliorchetes” (πολιορκητης) can be etymologically 
translated as “besieger or town conqueror”. 

For the reconstructions of the helepolis, we started from several classics; 
among them it seems interesting to report a piece from the “Epitoma Rei 

 
Militari” (Liber IV, par. XVII), written by Publius Flavius Vegetius  
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Renatus among the end of the IV century and the first half of the V century 
A.D. in which these machines are well described. Generally the siege 
towers were mainly made by wood and higher than the walls of the 
besieged town; an average high of about 30 m can hence be considered, 
but much higher towers were also described. The base was rectangular or 

structure was generally tapered at the upper part. Inside the tower some 
stairs permitted to reach the intermediate floors and the loft. The front side 
and perhaps also the lateral ones were covered by metallic plates (Diodorus 
Siculus) to protect the tower from the projectiles thrown by the defenders; 
the “armour” was completed by a curtain of not tanned and wet leathers 
held loosen that defended the tower from the incendiary projectiles. Under 
the machine some wheels were installed. 

As for the helepolis moving, probably the ground was prepared by 
putting on it a track made by wooden boards. 

Several authors also think that the helepolis were pushed or pulled by 
oxen or by a system of ropes and pulleys, the latter were installed on poles 
that were ram down at the base of the town’s walls. We think that any 
system that pulled the tower (ropes, oxen etc.) was extremely vulnerable 
to the defenders’ fire and hence very few effective. With regards to this 
aspect we can remember a piece by the Byzantine historian Procopius of 
Caesarea (about 500–565 A.D.) that tells about the unsuccessful siege of 
Rome from the Goths: Vitige, the king of the Goths (Wittigeis, ? – 540 A.D.) 
used wooden siege towers that were pulled by oxen; the defenders, how-
ever, easily killed the oxen making of no use the towers. Moreover is also 
difficult to think that so wide and heavy machines could be moved by 
pushing them from their back.  

We think that external systems to move the towers could be used pro-
bably in the Middle Ages, but in the Classic Age more advanced systems 
were used. In fact, in the Classic Age, many knowledge about the Mecha-
nics (and not only) were much more advanced than those of the Middle 
Ages. To this end, we can consider a piece from the De Bello Gallico 
(liber II, par. XXX and XXXI [3]), in which Caesar describes the siege at a 
town of the Gauls Atuatuci. From this piece, we understand that the Gauls 
were surprised when they saw very big machines that moved without any 
external source. Hence, it seems to us reasonable that the old helepolis 
were moved by “motors” fitted inside themselves. 

In the following paragraphs some possible mechanical systems for the 
ancient helepolis propulsion are presented. 

 
 

square with sides length equal to about 1/5–1/3 of the tower height; the 
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2. POSSIBLE INTERNAL “MOTORS” FOR THE HELEPOLIS 
 

In this paragraph we propose some mechanical systems that were commonly 
used in the Classic Age or were perfectly compatible with the knowledge 
of the Mechanics of that age.  

In any case we suppose that the torque (from the motor) was applied to 
the wheel by a rope that was rolled on a drum connected to the wheel axle 
and was pulled by one of the devices described later. This system was 
certainly used in many lifting devices in those ages and is schematically 
shown in figure 1. 

 

 
Fig. 1. Scheme of the device to apply the motor torque to the wheels axle. 

2.1. The Force Required for the Traction 

In order to evaluate the force required for the traction of an helepolis, we 
considered a machine of average dimensions having the following technical 
characteristics: 

Helepolis height from the ground: 30 m; 
Full helepolis’ mass: 40000 kg, 
Radius of the wheel rim: rc = 1.5 m: 
Radius of the drum connected to the wheel axle on which is rolled the 
rope: rr  = 0.8 m; 
Slope: 2%; 
Coefficient of friction between helepolis and ground: f = 0.02. 

As for the data reported above, it must be pointed the followings: 

– The slope value was fixed to represent an almost level ground with 
some local bottomlands; 

– As for the coefficient of friction, it was considered wooden wheels on 
hard ground; it is evident that, if we had considered a track made by 
wooden boards, the friction would be rather lower. 
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With the above reported data it is easy to compute the force required to 
move the helepolis; it is given by the friction force and by the force 
required to climb the height difference. 

N 16000˜  0.02)(0.029.8140000  h/s)(f gM  R +××=+××=  (1)

This force, naturally, is the force that must be exerted on the wheel rim 
to move the helepolis at constant speed; hence, on the drum it is necessary 
to exert a force: 

         N 30000  1.5/0.816000  /rrR  F rcc =×=×=  (2)

A good rope made by hemp having 48 mm diameter made nowadays 
has a tensile strength higher than 150000 N (British Standard), that is to 
say 5 times higher. Obviously an high safety factor must be considered 
because it must be taken onto account both the rope wear and that 2000 
years ago the ropes were not manufactured as well as now. The latter 
aspect plays a less important role than it could be thought: the British 
Standards of the middle of the XX century for naval ropes, cited before, 
give the same tensile strength for ropes made by stationary stranding-
machine and for ropes made on the rope work train; the latter manufacturing 
technique is very similar to the one used from the age of Egyptians for 
medium and large ropes. 

So, it seems reasonable to assume that, on the drum, a rope having 50 
mm diameter was rolled. The force required to unroll the rope on a pulley 
can be computed by means of the following empirical equation [4]: 

           /Dd F 0.02  F 2
av =  (3)

If a rope diameter d = 50mm and a drum diameter D = 2 rr  = 1600 mm 
are considered, by using the units of eq. (3), we obtain: 

             N 937,5  (502/1600)300000.02  Fav =××=  (4)

That can be neglected since, for our purposes, the computing can be 
rather rough. Hence, it will be assumed that the force that must be exerted 
on the drum is the one given by eq. (2). 

In the following paragraphs the possible mechanical systems to exert 
this traction on the rope rolled on the drum will be presented. 

2.2. Capstan Motor 

The capstan is such a simple and well-known machine that it is not 
necessary to report any historical reference for it. The working principle is 
shown in figure 2. In the figure are indicated: 

C. Rossi, S. Pagano, and F. Russo 



Ancient Motors for Siege Towers 153 

 

 

Fig. 2. Scheme of the capstan. 
 

If we assume b1 = 1.5 m, b2 = 0.3 m and if we neglect the force F2, the 
force that is necessary to apply to the bars in order to obtain the force Fc 
given from eq. (2) is: 

         N 6000  0.3/1.530000  /rrF  F 12c1 =×=×=  

If we assume that a man can exert on the bar a continuous force of 200 
N average, we obtain that almost 30 men were necessary; this means that, 
for instance, we must suppose the presence of 2 capstan with 8 bars each 
and 2 men on each bar, that is to say 32 men. Since in the analysis we did 
not consider neither the force to unroll the rope nor the friction on the 
winch drum, the average force exerted by each one of the 32 men should 
be higher; this was possible but it seems not so easy. 

In figure 3 is reported an our possible pictorial reconstruction of the 
propulsion system by capstans. 

2.3. Tread Wheel 

The tread wheel (or tread mill) is a device used since the Greek-Roman 
era to power lifting machines such as cranes etc. and is very similar (but 
obviously much bigger) to a squirrel cage. In figure 4 are reported a draw-
ing from a bas-relief found at Capua (Italy) showing a crane of Hellenistic 
age, powered by a tread wheel, and the working principle of the latter. 
 

F1 the force exerted on each of the capstan bars; 
Fc the traction on the rope; 
F2 the force exerted on the other rope’s end, essentially in order to 

obtain the necessary friction between the rope and the capstan; 
b1 the distance from the capstan axis where the force F1 is exerted; 
b2 the radius of the rolled rope on the capstan. 
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Fig. 3. Authors’ pictorial reconstruction of the propulsion by capstans.  

 

 

Fig. 4. Tread wheel.  
 

 

Fig. 5. Pictorial reconstruction of tread wheels for Helèpolis’ propulsion.  
 
 

C. Rossi, S. Pagano, and F. Russo 
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In order to compute, roughly, the traction force on the rope that is 
possible to exert, let us assume the following data: 

Mass of a man (in those ages): m = 65 kg, hence: F1 ≈ 650 N; 
Mean radius of the rolling of the rope: r1 = 0.3 m; 
Mean radius of the tread wheel: r2 = 3 m; 
Mean level at which a man acts from the bottom: h = 0.5 m. 
From figure 4 it is: 

m66.1)hr(rb 2
2

2
2 =−−=  

Hence: 

N 3600  b/r F  F 112 ≈=  

Obviously F2 represents the force exerted on the rope by each of the 
men in the wheel. Hence, in order to obtain the traction computed by eq. (2), 
30000/3600 ≈ 8 men were necessary. So, it is possible to suppose the 
presence of 2 tread wheels, each one with 4 men, disposed as in our 
pictorial reconstruction reported in figure 5. This reconstruction seems 
more realistic than the previous one. 

2.4. Counterweight Motor 

The counterweight motor, as will be illustrated, seems to be the more 
effective motor, from many points of view, for the helepolis’ propulsion.  

2.4.1.  Historical references 

The use of counterweight motors is documented in the Roman age for 
several applications like to move the curtains in the theatres [5]. It is also 
well-known that Heron of Alexandria, in the I century A.D., used counter-
weight motors to move figurines representing animals in a sort of theatre 
in which the actors were automata moved by counterweight motors and a 
device that permitted, among other things, to program the law of motion of 
the automaton itself [5-8]. To this end it could be interesting to report 
the following piece from the Heron’s treatise Perì Automatopoietiches 
(Περι αυτοματοποιητικης = about automatics) [9, 11] in which figurines 
mechanically moved in an automata’s theatre are described:  

ς´δύνανται δὲ καὶ ἕτεραι κινήσεις ὑπὸ τὸν πίνακα γίγνεσθαι, οἷον πῦρ 
ἀνάπτεσθαι ἢ ζώιδια ἐπιφαίνεσθαι πρότερον μὴ φαινόμενα καὶ πάλιν 
ἀφανίζεσθαι. καὶ ἁπλῶς, ὡς ἄν τις ἕληται δυνατόν ἐστι κινεῖν μηδενὸς 
προσιόντος τοῖς ζωιδίοις. 
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Also other movements under the platform (of the theatre) can be 
present, like to light a fire or figurines representing animals that before 
were not visible suddenly appear and then disappear again. And simply, 
like one could touch them, it is possible that they move without anyone 
approaches to the figurines representing animals. 

In this one and in other pieces are described automata that move with-
out any action from outside.  

The treatise by Heron was translated during the Renaissance from 
Berardino Baldi, abbot of Guastalla, (Urbino, 1553–1617) [6]; in this work 
are described, among others, some examples of mobile automata, moved 
by a counterweight motor. In figure 6 are reported drawings from Baldi’s 
work; on the left the working principle of the counterweight motor is 
evident since the counterweight, the rope linked to the latter and rolled 
on the wheels axle are clearly observable. In the figure it is possible to 
observe also the third wheel that is idle and the counterweight that is 
located in a tank filled with millet or mustard seeds in order to regulate the 
counterweight motion. 

 

 

 
Also very interesting are the systems, invented by Heron and described 

by Baldi, to change the cart’s direction. In figure 6, on the right, are 
reported two Baldi’s drawings in which is shown a first system used to 
change the cart’s direction: in the drawing above it can be observed that 
two driving axles are used, each one is perpendicular to the other one; in 
the same way, also the axes of the idle wheels are perpendicular. 

C. Rossi, S. Pagano, and F. Russo 

Fig. 6. Counterweight motor and mechanism to change direction [6]. 
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During the running, two driving wheels and an idle wheel lean on the 
ground while the other wheels (which axes are orthogonal to the first ones) 
are lifted up. By means of screw jacks, shown in the lower drawing in 
figure 8, that are also operated by ropes, it is possible to take down the 
wheels which axis is orthogonal to the ones’ that lean on the ground. After 
this manoeuvre the chart will lean on these latter wheels and will move 
in a direction that is orthogonal to the previous one. To this end it is 
interesting to observe that the castle (or rook or tower) of the chessboard 
(that probably symbolize a siege tower) move on the chessboard just in the 
same way; it is well-known that the chess is a very ancient game that is 
described in Indian writings of the first centuries A.D. 

Another system to change direction seems even more interesting because 
it uses the programmability of motion concept; this system also is attributed 
to Heron and is described by Baldi. In figure 7, on the left, a drawing from 
the work by Baldi is reported. The axle of the driving wheels is divided in 
two axle shafts that are independent one from the other; on each one of the 
latter a rope is rolled. If the rope is rolled on one of the axle shaft in a 
different way from the other axle shaft, when the counterweight goes down 
pulling the rope, one of the two driving wheels will rotate in different way 
from the other one. Moreover, it is also possible that, during the counter-
weight’s run, one of the wheel stops while the other rotates; this is obtained 
by wrapping a piece of the rope in an hank like shown in figure 7, on the 
right. 

 

 
Fig. 7. Traction with independent axle shafts (left); scheme of rope rolling to program the 
motion (right). 

 
During the time in which the hank unleashes that axle shaft is stopped. 

It is also possible to obtain that one of the axle shafts rotates in the 
opposite sense respect the other one; this is simply obtained by rolling  the 
rope on one axle in the opposite sense respect the other one. Finally even a 
programming of the motion can be obtained by putting some knobs on the 
axle shaft like shown in figure 7; by means of these knobs it is possible to 
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modify the rolling of the rope, as described before, in order to obtain 
different laws of motion for each wheel. 

Some scholars (see e.g. [8,10]) have built, quite recently, models of 
charts moved by counterweight motors based on the works by Heron; they 
demonstrated, practically, the possibility of programming the motion. 

2.4.2.  The proposed reconstruction 

In order to verify, conceptually, the possibility that a counterweigh 
motor could move an helepolis, we assumed the following data: 

Counterweight mass = 1000 kg; 
Radius of the helepolis’ wheels: rc = 1.5 m; 
Radius of the drum that is the axle shaft: rr = 0.8 m; 
Block and tackle with 5 pulleys (Pentaspaston, described by Vitruvius 
in I century B.C.); 
With the data above, it is easy to compute that if the counterweight 
goes down 20 m, the helepolis will go ahead: 20/5·1.5/0.8 = 7.5 m. 

This amount seems reasonable with respect to the speed of a siege 
machine. 
 

 

 
It can also be supposed that the force Fc that must be exerted on the 

wheels ring to move the helepolis at a constant speed is the one computed 
by eq. (1) and that the force Ff that must be exerted on the drum is that 
given by eq. (2). 

C. Rossi, S. Pagano, and F. Russo 

In figure 8 is reported a scheme of our reconstruction. 

Fig. 8. Scheme of the helepolis’ counterweight. 
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Since the Block and tackle has 5 pulleys, and also two more pulleys 
are present as transfer case, if we suppose that manufacturing of pulleys 
and shaft was not very accurate, we can compute [12] an efficiency η≈0,7. 

So, the counterweight that exerts a force of about 10000 N, through the 
block and tackle will pull the rope rolled on the drum with a force:  

fF  N 34335  ·5·0,71000·9.807  F >==  

Therefore, conceptually, such a motor could be able to move an 
helepolis which mass is 40000 kg. 

It must be also observed that a counterweight, which mass is 1000 kg, 
can be easily made by a tank having a capacity of 1 m3, filled with water; 
the tank could be unloaded when it reached the lower end of its run, then 
brought empty at the top and there filled by water with a chain of buckets. 
In addition, at those ages, suitable reciprocating water pumps were avail-

in a piece (XX, 851) by Diodorus Siculus. 
The study of the helepolis’ movement with a counterweight motor can 

the simulation model and the results of a dynamical 2-dimensional simulation 
made by Working Model 2D ™.  

 

 

 
In the figure are reported: the velocity of the helepolis 1, the stress on 

the pulley system 2, the velocity of the counterweigh 3, the displacement 
of the helepolis 4 and the model of the helepolis 5. 

 

be carried on by means of a simulation software; in figure 9 is reported 

Fig. 9. Helepolis’ with counterweight motor WM2D model. 

able (see e.g. [5]). The presence of water on the helepolis was documented 
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As for the modelling, the following can be observed: 

1) The tower was modelled with a polygonal rigid body; the counter-
weight (1000 kg mass), running downwards, lifts a body (having negligible 

spring that presses the body on the cylinder is pre-charged and, in parallel, 
a damper was added to avoid that the body could bounce on the cylinder. 
The latter is moved, hence, by friction. The cylinder moves the wheel of 
the chart through a transmission having a gear ratio 0.2, in order to simulate 
the 5 pulleys block and tackle (pentaspaston). 

2) Naturally, the counterweight motion would be an uniformly 
accelerated motion. In order to adjust the counterweight motion a force 
proportional to the counterweight speed F=k·v was added. Since the 
weight is 9077 N, the constant k is simply: k=F/v=9807/v; so, if a speed of 
0.2 m/s is required, it will be k=49035Ns/m; 

3) The force against the motion (due to friction between wheels and 
ground and to a 2% ground slope) were considered by applying a resistance 
force R = 16000N (proportional to the tower’s weight) at the tower’s base. 
This force acts only if the towers goes forwards and is null if the tower stops. 

represent, from top left clockwise, the helepolis’ speed, the strain of the 
block and tackle rope, the counterweight speed and the helepolis’ dis-
placement. It must be observed that, in the presented simulation, we supposed 
that the counterweight motion was controlled. In the small counterweight 
motors (small self-propelled automata and similar devices) this control was 
obtained by putting the counterweight itself in a cylinder filled with millet 
or mustard seed and by regulating the seed’s flow by a valve, as described 
by Heron and reported by Baldi. Such a device, although theoretically 
possible, was not suitable for an helepolis but we can imagine that a brake 
could be installed on one of the mechanism’s ropes. In the reported 
simulation’s results we supposed that the counterweight maximum speed 
was set at 0.2 m/s at the run’s beginning, then was increased to 0.3 m/s and 

time when the manoeuvres to adjust the speed are made are clearly visible 
because in those instants the strain of the block and tackle rope becomes 
zero for a very short time. 

 
 

3. CONCLUSIONS 
 
Some possible reconstructions of motors that could have been used for the 
helepolis’ motion were examined. Among these, the one that seems more 
suitable and effective is the counterweight motor. 

mass) that is pressed against a cylinder which diameter is 1.6 m. The 

C. Rossi, S. Pagano, and F. Russo 

The scheme of the applied forces is reported in figure 8. These 

finally was decreased at 0.06 m/s till the stop. In figure 9 the instants of 
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We must admit that, while from the historical sources it clearly comes 
that the helepolis were self-propelled by internal motors (in which certainly 
mechanical devices were present), the “proofs” that counterweight motors 
were adopted for the helepolis are mostly circumstantial. It is sure, in fact, 
that such motors were adopted, rather widely, in ancient times to move 
self-propelled automata and charts; nevertheless as far as their use in the 
helepolis is concerned, we did not found, still, a deciding proof.  

Nevertheless it seems quite certain that the siege towers were self 
propelled; as for this aspect is concerned, it is also interesting to report the 
following piece from Julius Caesar (the De Bello Gallico, liber II, par. 
XXX and XXXI [3]), in which describes the siege at a town of the 
Atuatuci Gauls: 

XXX – …Ubi vineis actis aggere exstructo turrim procul constitui viderunt, 
primum inridere ex muro atque increpitare vocibus, quod tanta machinatio a tanto 
spatio instrueretur: quibusnam manibus aut quibus viribus praesertim homines 
tantulae staturae - nam plerumque omnibus Gallis prae magnitudine corporum 
suorum brevitas nostra contemptui est - tanti oneris turrim in muro posse conlocare 
confiderent? 

XXXI – Ubi vero moveri et adpropinquare moenibus viderunt, nova atque 
inusitata specie commoti legatos ad Caesarem de pace miserunt, qui ad hunc 
modum locuti: non se existimare Romanos sine ope divina bellum gerere, qui 
tantae altitudinis machinationes tanta celeritate promovere et ex propinquitate 
pugnare possent, se suaque omnia eorum potestati permittere dixerunt. 

XXX – … As soon as (the Gauls) saw that, having we pushed on the vinea 
(mobile roofs) and built an embankment, we started to built a tower, at first they 
derided and insulted us because a so big device was built so far (the walls): on 
what hands and on what force could ever the Romans rely, small as they were, in 
order to bring near the walls a so heavy tower? All the Gauls, in fact, scorn our 
height if compared with their large bodies. 

XXXI – As they saw that the tower was moved and was approaching their 
walls, frightened by the unusual sight, (the Gauls) sent ambassadors to Caesar to 
negotiate the peace; they said that they think the Roman make war with the help of 
the goods since they can move such big machines so fast, (hence) the put 
themselves and all their wealth under the power of Caesar.  

This study, anyway, demonstrates that the use of counterweight motors 
for the propulsion of the helepolis was certainly possible and probably the 
most effective. 

Finally this also is an example that shows how, in order to correctly 
understand the past, it is necessary a wider cooperation between scholars 
having humanistic knowledge and scholars having technical knowledge. 
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ABSTRACT Mathematics forms the common roof for Archimedean 
spirals on the one side and screw mechanisms on the other side. Moreover, 
Archimedes was a genius of mechanics and mechanisms and was famous 
for solving mathematical and mechanical problems. There is also a historical 
justification for the title of the present paper, because the technical notion 
“Archimedean water-screw” is well-known to those mechanical engineers 
who are fond of looking back to the ideas and inventions of some famous 
protagonists and forerunners in the past and still today want to learn from 
their successes and failures. 
 
 
1. INTRODUCTION 

 
Did Archimedes (287–212 BC) actually invent the screw, one of the known 
five “mechanical abilities” or “simple machines” of Antiquity? Apart from 
the screw we still have the lever, the wedge, the roll or wheel, and the 
pulley as shown for example by Guidobaldo del Monte (1545–1607), Fig. 1 
(left). On the right side of Fig. 1 we look at different types of screws (del 
Monte 1577). 

 
 
 
 
The first author is grateful to Mrs. Dr. Beate Elsen-Schwedler and Mr. Ludger Drüeke 

from the central archive of the company Adolf Würth GmbH & Co. KG in Künzelsau 
(Germany) for kind support when investigating literature and making copies. 
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Fig. 1. The five “mechanical abilities” of Antiquity (left) and different types of screws by 
G. del Monte (right). 

mentions the “mechanical abilities”, but the screw is missing. On the other 
hand, Heron of Alexandria (ca. 10–85 AD) describes in chapter 34 of his 
book “Dioptra” an odometer, a chariot device used for indicating travel 
distances. It is based on a series of worm gears and may have been 
inventted by Archimedes during the 1st Punic War, but the reference to 
Archimedes is missing. So, there is a real chance for Archimedes in the 
time between to have invented the screw. Salomon de Caus (1576–1626) 
offered a compromise by drawing the two famous protagonists in a 
common picture, Fig. 2 (de Caus 1615). 

 
 

 
Fig. 2. Archimedes (left below) and Heron of Alexandria (right below). 

T. Beck (Beck 1899) points to the fact that Aristotle (384–322 BC) 
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x = r · cosφ, y = r · sinφ (1)

 
in Cartesian x-y coordinates, where φ = ω · t (time t), p = v/ω, and r =  

velocity v along a semi-ray starting at the origin O of the coordinate 
system; the semi-ray itself turns around O with constant angular velocity 
ω. How can we derive the spatial screw curve from the planar spiral curve? 
We succeed by adding the third dimension z, i.e. 
 

x = r · cosφ, y = r · sinφ, z = p · φ (2)

 
taking any constant radius r and any constant pitch p. The sign of p marks 
either a left-hand screw (p < 0) or a right-hand screw (p > 0). 

For technical purposes the screw is applied in form of a regular surface 
or with simple geometrical cross-sections, as rectangle, trapezium, circle 
etc., twisted around a cylinder, and thus giving the pitch p, the translation 
along the screw axis during one full screw rotation. Screws for technical 
purposes can be roughly classified into “motion screws” and “fastening 
screws”. In the present paper we shall concentrate on motion screws and 
neglect fastening screws. Dealing with motion screws reminds the kine-
matician that screw mechanisms exist and that screw mechanisms once 
belonged to the group of elementary mechanisms in machinery at the 
beginning of the period of mechanization in mechanical engineering more 
than 100 years ago, independent from the fact whether Archimedes 
actually invented the screw or not. But first we will have a look back to the 
Renaissance period and its artist engineers. 

p · φ; its curve is generated by a point that moves with constant linear 

However, in accordance with W. Treue (Treue 1954) the historian  
T. Koetsier (Koetsier 1999; Koetsier, Blauwendraat 2004) declares that 
there is no reliable proof of the claim “Archimedes invented the screw”. 
But Archimedes undoubtedly knew the screw as a cylindrical helix (a wedge 
twisted around a cylinder) and also knew its mechanical properties. Further-
more, we surely know that the genius of mechanics and mechanisms 
(Chondros 2009), mathematics and geometry, namely Archimedes, inten-
sively dealt with spirals and their mathematical properties (Czwalina-
Allenstein 1922). He developed numerous theorems and equations for 
the type of spirals that were named after him, i.e. Archimedean spirals. The 
Archimedean spiral in the present form is a planar curve and follows the 
equation 
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2. MOTION SCREWS IN THE MACHINE BOOKS  
OF THE RENAISSANCE PERIOD  
 

The Roman architect and engineer Marcus Vitruvius Pollio wrote around 
25 BC his ten books under the main title “De architectura” (Beck 1899). 
From his work we take that the Romans did not only learn architecture and 
arts from the Greeks, but also mechanics and mechanical engineering. In 
the 6th chapter of his 10th book about machines Vitruvius describes very 
precisely the construction and function of a water-helix (Fig. 3, left), 
however, without mentioning Archimedes. The reference to Archimedes 
occurs later in the machine books of the Renaissance and the baroque 
period (15th to 17th century) (Hilz 2008): Agostino Ramelli (1530–1590), 
Italian military engineer from Ponte Tresa, presents a triple Archimedean 
screw in his famous illustrated book (Ramelli 1588) (Fig. 3, right) which 
set standards for machine books in this time. The German artist engineer 

use a triple Archimedean screw for the lifting of water (Böckler 1661) 
(Fig. 3, middle). 

Such a water-screw is driven by human muscle power (treading) or by 
water power, for example by means of water wheels. The early historian 
Diodor (1st century BC) from Sicily also mentions like Vitruvius that 
water-screws or water-helices were used in Egypt for water supply in cities 
and military camps near the river Nile. Very probably Archimedes came to 
know water-screws when travelling through Egypt. 

A very interesting survey of the development of Archimedean water-
screws is given by J. Hennze (Hennze 1992) in the catalogue of the 
Museum for Screws and Threads of the worldwide acting Würth Screw 
Wholesaling Company in Künzelsau (Germany). 

 

 
Fig. 3. Archimedean water-screws as recorded by Walter Ryff (German translator of 
Vitruvius´ books, 1548), Böckler and Ramelli. 

Georg Andreas Böckler (1648–1685) demonstrates in a similar way how to 
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Francesco di Giorgio Martini (1439–1501) of Siena was a very gifted 
designer of machines, architecture and fortifications. In the 7th book of his 
main treatise “Trattato di Architettura” we also find screws and worm 
gears (Moon 2007). The second famous artist engineer, contemporary to 
di Giorgio, Leonardo da Vinci (1452–1519) certainly owned a copy of di 
Giorgio’s work. He used the endless screw (helix) as an input unit in 
numerous mechanical prototypes because of the profitable mechanical 
reinforcement, often combined with a worm or pin wheel (Fig. 4, left) 
(Leonardo 1493). But Leonardo also drew machines taking screws as 
output units, e.g. for setting upright heavy columns (Fig. 4, right) (Hoepli 
1894–1904). 

 

 
Fig. 4. Screw input units (left) and output units (right) by Leonardo da Vinci. 

The idea of using a screw in combination with a lever or in combination 
with a lever and a gear wheel, single or multiple in series, is taken up by 
many artist engineers in the Renaissance. The lifting of loads was a very 
important task in a time of building monuments and fortresses and also of 

natural philosophy at the University of Orléans (France) and one of the 
successors of Leonardo as engineer and consultant at the French court, 
presents for example a screw-driven crane (Fig. 5, left) in his famous book 
“Theatrum instrumentorum et machinarum” and also a lathe for the manu-
facture of screws (Fig. 5, right) (Hartenberg, Denavit 1956). 

Besson also describes a press with three screws in parallel order for 
pressing grapes, clothes or lather (Fig. 6) (Treue 1954). Variants of presses 
with one or two motion screws were well-known since Antiquity and 
spread over in countries around the Mediterranean Sea. 

 

sea trading. Jacques Besson (1500–1569), professor of mathematics and 
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Fig. 5. Screw-driven crane and screw manufacturing lathe described by J. Besson. 

 

 
Fig. 6. Press with three parallel screws described by J. Besson. 

The invention of the book press in the first half of the 15th century 
augmented the supply of presses based on screws. The book press mainly 
originates from Johannes Gutenberg (1397–1468) from Mainz (Germany). 
In Fig. 7 (left) we look at a book press made in Padova (Italy) with screw 
and long nut, drawn by Vittorio Zonca (1568–1602) in his machine book 
published only in 1621 (Zonca 1621). However, already Leonardo had 
designed a press for printing wood engravings (Fig. 7, right) (Hoepli 1894–
1904). When the upper press board is lifted, the press table rolls down an 
inclined plane and comes out, so that the printed sheet can be removed 
easily and another one put on the table. When the screw is turned in opposite 
direction, the sheet goes back under the press table. 
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Heinrich Zeising (?–1613) wrote four volumes of a machine book titled 
“Theatrum machinarum” which were published between 1607 and 1613 
(Mauersberger 1993). He took up again an idea of Ramelli concerning a 
big machine for the horizontal moving of heavy loads by means of 
multiple pulleys in parallel order (Fig. 8). One or two men are able to 
operate such a machine using a wheel-screw-combination. 

Simpler and also more practicable seems to be a solution from Zeising 
for the lifting of trunks with a spindle which is operated by two men (Fig. 9). 

 

 
Fig. 7. Book presses by V. Zonca (left) and Leonardo (right). 

 

 
Fig. 8. Machine for horizontal moving of heavy loads by H. Zeising/A. Ramelli. 
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Fig. 9. Spindle hoist by H. Zeising. 

In 1586 Pope Sixtus V called for an engineering congress and invited 
experts in mechanics to discuss about the following problem: Which 
mechanical solution could be set into practice for the dislocation of a 
fragile obelisque of some hundred tons of weight on St. Peter´s place in 
Rome? This meant an enormous challenge for contemporary engineers. 
The winner became Domenico Fontana (1543–1607), chief architect of the 
pope. He proposed to use ground winches and pulleys (Fig. 10, left) (A). 
Other variants are also shown in this figure: Floating bodies (B) as pro-
posed by Francesco Masini (1530–1603) following the buoyancy principle 
of Archimedes, with screws (H), etc. 

Years later, the German architect and artist engineer Joseph Furttenbach 
(1591–1667) from Leutkirch also made a proposal to erect an obelisque 
by means of numerous screws in serial order and of a lever. Fig. 10 
(right) shows the mechanically extravagant solution taken from his book 
“Mannhafter Kunst-Spiegel” (Furttenbach 1663). Viewing and evaluating 
the variants of solutions in Fig. 10 the fantastic approaches concerning 
the pure as well as combined applications of the “mechanical abilities” 
of Antiquity are very surprising. But the mechanical engineer of today 
immediately discovers that there is a gap between the (virtual) models 
presented and a possible realization (Kerle et al., 2009). Proper materials 
were missing; time had not yet come in order to test original machines 
by means of physical models of minor scales. And there was hardly 
experience with mechanical energy losses caused by friction and wear, a 
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Fig. 10. Solution variants for erecting an obelisque. 

Therefore machinery evolution was waiting for Jacob Leupold (1674–
1727) from Leipzig, who wrote a ten-volume machine book titled “Theatrum 
machinarum” (Hartenberg, Denavit 1956). Not every machine in Leupold’s 
books was his own invention, but he added special views of machines 
whose functions and purposes he had studied and understood. He also 
drew details of machine parts and machine elements that could help to 
explain and to build the machine (Fig. 11). Leupold belonged to a new 
generation of mechanics who did not only want to describe a machine, but 
tried to dismantle it into its different parts of function and design. Leupold 
rejected Ramelli’s machine for moving heavy loads as shown in Fig. 8, 
mainly because of the considerable amount of friction between moving 
parts in counter directions. For the same reasons Leupold was also not 
fond of Furttenbach’s idea (cf. Fig. 10, right) to erect an obelisque by 
means of a multitude of screws.  

Therefore, we can take Jacob Leupold as the last artist engineer of the 
Renaissance who developed a more modern view of mechanical engineering 
combining theory with practice and thus opened the door to the pre-
industrial age. 

 

severe handicap for many traditional gigantic drafts of machines and 
mechanisms. 
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Fig. 11. Some machine element groups with screws by J. Leupold. 

 
 
3. FROM MOTION SCREWS TO SCREW MECHANISMS 
 
In the 2nd volume of his famous book “Lehrbuch der Kinematik” the 
pioneer kinematician F. Reuleaux (1829–1905) enumerates six typical 
groups of mechanism drives for use in machines (Reuleaux 1900): Screw, 
crank, gear, roll, cam and ratchet drives. From the systematic point of view 
simple (planar) screw mechanism with one DOF consist of three links and 
three joints/pairs; the complete version of such a screw mechanism con-
sequently has three screw pairs with coaxial screw axes. In Fig. 12 taken 
from Reuleaux the links are designated by the letters a, b, c and the pairs 
by the digits 1, 2, 3. Link a is the input link, link b the output link, and link 
c belongs to the frame or fixed link. 

 
Fig. 12. Reuleaux’s three-link coaxial screw mechanism with three screw pairs. 

With a screw pair the rotation around the screw axis is coupled to the 
linear displacement by the pitch p, i.e. the dof of the pair yields one. Screw 
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Instead of actual screw pairs with a finite negative or positive pitch 
value (p ≠ 0) it is possible to insert simple turning pairs (p ≡ 0) or sliding 
pairs (1/p ≡ 0). Thus, six different simple three-link screw mechanisms 
with one, two or three screw pairs are developed, Fig. 13 (Rabe 1958a, 
1958b).  

Fig. 13. Basic forms of three-link coaxial screw mechanisms: a, b, c one screw pair; d, e 
two screw pairs; f three screw pairs. 

Most of the machines (and instruments) based on screws and screw 
motions can be derived from the mechanisms systematically represented in 
Fig. 13. 

In the days of Reuleaux the fastening screw was a very well-known 
machine element. Screws of bigger size were made on forge machines; 
especially the heads of the screws being in a red-hot condition were jolted 
with the help of spindle-friction presses, Fig. 14 (left) (Georg, Ripke 1920). 
Another example with a crank press for metal parts is given by Reuleaux 
himself (Reuleaux 1900), Fig. 14 (right). The distance between the punch 
and its counterpart with the workpiece between can be continuously varied 
by a screw mechanism of the type e in Fig. 13 with two screws having the 
same pitch, but with different sign. 

The following last examples are taken from A. Widmaier’s catalogue 
(Widmaier 1954), a collection of mechanical solutions for the generation 
of motion on the base of mechanism theory. The catalogue was published 
at the beginning of a new industrialization period in Germany after World 
War II and was meant to be a practical source of knowledge in kinematics 
for the designer of machines and machine components, a knowledge that 
was created by generations of mechanical engineers before. 

 

mechanisms can be treated systematically like planar wedge-slider or 
prism mechanisms (Beyer 1958). 
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Fig. 14. Spindle-friction press (left) and crank press with a double screw-pair unit for 
adjustment (right). 

 

 
Fig. 15. Three modern mechanism examples based on screws by A. Widmaier. 

On the left side of Fig. 15 we find again a screw for lifting fluids (or 
also powder or grain), it is a double start helix and in contrast to the 
Archimedean screw a screw surface is used for transportation of the fluid 
(cf. also Rauh 1939). On the right side of Fig. 15 (above) we look at a 
clamping device for tubes or cylinders with six screws having the same 
pitch, but with different signs two by two; below there is a simple machine 
for peeling potatoes or fruit on a table in the kitchen. The potato is pinned 
onto the needle a1 which is turned manually by the crank (Antrieb). During 
crank rotation the nut b is moved along the screw axis a and makes rotate 
the knife m around the axis 3. 
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4. CONCLUSIONS 
 
The screw for transforming rotary motion into linear motion in combination 
with an input torque around and an output force along the screw axis was 
one of the five “mechanical abilities” in Antiquity. Motion screws of this 
kind were used in presses and hoists and could be operated by means of 
human or animal muscle power. The machine books of the Renaissance 
partly present motion screws with gigantic dimensions. Most of those 
drafts of machines never could be set into practice because of energy 
losses due to friction and wear. Only Jacob Leupold at the end of the 17th 
century regarded and classified screws as parts of mechanisms (motion 
screws) and as machine elements (fastening screws) and proposed ways of 
proper design. His studies were introductory for the later development of 
compact screw mechanisms in modern machinery inspiring following 
mechanical engineers like Franz Reuleaux. 
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ABSTRACT In this paper a relevant contribution of Archimedes is 
outlined as related to his developments in mechanics with application to 
mechanism design with a modern vision. He developed theoretical advances 
that were motivated and applied to practical problems with an enthusiastic 
behaviour with a modern spirit that can be summarized in his motto ‘Give 
me a place to stand and I will move the earth’.  

 
 

1. INTRODUCTION 
 
Since Renaissance Archimedes and his mechanics have been reconsidered 
together with a new attention to Greek-Roman machine designs with the aim 
and result to develop an early approach for modern theory of mechanisms, 
as outlined in [1]. 

The works of Archimedes, mainly in the aspects of mechanism design, 
has been rediscovered and studied during Renaissance, as for example in 
[2-5], up to be used as fundamental background for the first developments 
of early TMM (Theory of Mechanisms and Machines) by Guidobaldo Del 
Monte, [6], and Galileo Galilei, [7]. Even at the beginning of the modern 
TMM in 19th century Archimedes’ contribution was recognized in develop-
ing basic conceptual elements, like for example in [9, 10]. The modernity 
of Archimedes in MMS can be today still advised in his approach of 
classification for the variety of mechanism designs as function of a unique 
principle in the operation mechanics, as indicated in [11]. 

The mayor Archimedes’ contributions in the field of modern MMS can 
be recognized in: 

– identification and analysis of basic elements of machines and mecha-
nisms, as pointed out in [8] 

– analysis of machinery operation as function of a unique functionality 
of levers 
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– application of theory to successful practical designs that since his time 
gave dignity of discipline and profession to machine design 

– enthusiasm and optimism in mechanism design in developing techno-
logy for enhancing society and quality of life. 

From historical viewpoint, it is never too much stressed the achieve-
ment in defining and using an early concept of pair of force and its 
equilibrium rule for the design and operation of mechanisms in machines. 

In addition, the figure of Archimedes and his work have been 
investigated since Antiquity and still today they are of great interest in 
studies and investigations that are reported in publications and encyclo-
paedias, like for example in [12-20], and in congress discussions, like for 
example in [21, 22]. 

In this paper, attention is addressed in discussing the aspects and 
interpretation of legacy of Archimedes’ work and personality in the modern 
MMS (Mechanism and Machine Science) not only for a historical assess-
ment by also as an inspiration for future achievements. 
 
 
2. ARCHIMEDES AND HIS WORKS  

 
Archimedes (in classical Greek: Ἀρχιμήδης) (287 a. C.–212 a. C.), Fig. 1 a),  
was a Greek philosopher in the classical term as being mathematician, 
physicist, astronomer, inventor, and engineer, who lived in the core environ-
ment of Magna Grecia as Siracusa was, Fig. 1b).  

     
  a)        b)   

Fig. 1. a) Portrait of Archimedes; b) the peninsula of Ortygia as core of the ancient Siracusa 
with the Maniace Castle at its end. 
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Nevertheless little is known of his life. Very probably during his youth 
he spent a period of study in Alexandria, Egypt, where he had the chance 
to know Conon of Samos and Eratosthenes of Cyrene, since in his written 
works he cited them as friends. Archimedes was killed by a roman soldier, 
when a long siege of Siracusa during the Second Punic war (214–212 a. C.) 
was ended, although Marco Claudio Marcelo, the Roman commander, 
ordered to safe him. Cicero told that he saw the Archimedes’ tomb where a 
sphere was drawn inside a cylinder, as an indication of the main achieve-
ment that Archimedes recognized to himself. 

In general, Archimedes is reputed for his contributions in Mechanics 
and Hydrostatics. He is also a reference personality in the developments of 
Mathematics because of his calculations and theorems for figure volumes 
and the number pi. Since Antiquity, he is also considered a unique inventor 
of innovative machines, as applying his mathematical results to practical 
problems. The most celebrated ones are the screw pump and the war 
machines that Syracusans used against the Romans. 

However, although the inventions of Archimedes were known over the 
time, his written works were forgotten even in the last part of Antiquity 
and completely ignored during the Middle Ages. A first attempt to collect 
all his works was made by Isidor of Milete (c. 530 d. C.). During 
Renaissance those works were reconsidered, like in the Latin translation by 
Jacobus Cremonensis in 1458 from a collection made by Eutocius in the 
6th century. Only in 1906 a palimpsest was discovered with seven works 
by Archimedes in a better version than previously known. 

The works of Archimedes, that are today known even through a inter-
preted text, like for example in [20], are: 

– On the Equilibrium of Planes  
– Measurement of a Circle  
– On the Sphere and Cylinder 
– On Spirals 
– On Conoids and Spheroids 
– Quadrature of the Parabola  
– On Floating Bodies  
– Stomachion 
– Cattle Problem 
– The Sand Reckoner 
– The Method of Mechanical Problems  

In particular in the two-volume On the Equilibrium of Planes Archimedes 
introduced the Law of Levers by stating, “Magnitudes are in equilibrium at 
distances reciprocally proportional to their weights.”  Archimedes used it 
to calculate the areas and centers of gravity of several geometric figures. 
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His short work Measurement of a Circle consists of three propositions 
by which he computed number pi by approximations.  

The treatise On Spirals deals with study of curves and particularly 
spirals.  

In On the Sphere and Cylinder he computed volumes and areas of 
spheres and cylinders. A sculptured sphere and cylinder were placed on the 
tomb of Archimedes at his request, to remind of what he considered as his 
best achievement. In the fact that a sphere has a volume and surface area 
two-thirds that of a cylinder.  

In the treatise On Conoids and Spheroids Archimedes calculated the 
areas and volumes of cones, spheres, and paraboloids.  

In Quadrature of the Parabola he calculated the area of geometrical 
figures by using the concept of a geometrical series. 

In his work On Floating Bodies Archimedes introduced the law of the 
equilibrium of the fluids and used it to demonstrate the shape of water 
volumes. Then he calculated the equilibrium positions of sections of para-
boloids floating in the water. Archimedes’ principle of buoyancy is expressed 
as: Any body wholly or partially immersed in a fluid experiences an up-
thrust equal to, but opposite in sense to, the weight of the fluid displaced. 

Stomachion is a study for dissection of a puzzle by computing the area 
of pieces that can be assembled to obtain a square. 

In the Cattle Problem, Archimedes attached the problem to count the 
numbers of cattle in the Herd of the Sun by solving a number of simultaneous 
Diophantine equations. 

In The Sand Reckoner, Archimedes calculated  the number of grains of 
sand that can be inside the universe, along with considerations on Astronomy. 

The Method of Mechanical Problems introduced concepts of infini-
tesimal calculus by using geometric description of how to calculate areas 
and volumes by summing the small parts of a partitioning of the figures. 

Although is can be thought that Archimedes did not indeed invent the 
lever and its use, as many researchers point out, nevertheless he was the 
first in giving a rigorous explanation and formulation of the mechanics 
equilibrium law under which it operates. According to Pappus of Alexandria, 
while discussing the lever mechanics Archimedes commented the famous 
sentence ‘Give me a place to stand and I will move the earth’ (in Greek: 
δῶς μοι πᾶ στῶ καὶ τὰν γᾶν κινάσω). This sentence can be considered also 
a summarized thought on the optimism that Archimedes relied in the 
mechanism design. 

Plutarch described how Archimedes designed a capstan system as 
based on the lever operation to help the harbour workers to lift heavy loads 
in the ships. Furthermore, an anecdote reports how Archimedes designed 
and built a capstan system to move a large ship from the harbour in order 
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to gain a cultural challenge that the tyrant Hieron proposed to him. Thus, 
by means of a system with several capstans and pulley systems, while 
seated on a chair, Archimedes could lift the ship with great surprise of the 
people present. 

Additionally, Archimedes is credited to have increased power and 
precision of catapult machines used during the Punic war against the 
Romans. He also invented an odometer in a chariot by counting the miles 
with the number of small balls collected after a certain distance. 

Pappus of Alexandria mentioned that Archimedes wrote a treatise on 
how to build mechanisms for planetary models and for the construction of 
spheres, an important account of the technological skills of the time. 
Several such devices have been recently discovered, like for example the 
Antikethyra mechanism that is equipped with several differential gears, as 
a proof of technical achievements thought of as belonging to modern times 
only. 

The most relevant invention of Archimedes can be considered the 
screw pump, still known as Archimedes screw. Although there is some 
evidence that the pump already existed in some forms in Ancient Egypt, it 
is important that Archimedes based its design on theoretical principles, 
permitting a rational use of it.  

 
 

3. MECHANICS OF MACHINERY AND MECHANISM DESIGN  
 

The contribution of Archimedes in Mechanics of Machinery towards a 
development of an early Theory of Mechanisms can be recognized in the 
following aspects: 

– a theoretical study with a mathematical approach that was useful both 
for analysis and design of mechanisms and machines; 

– interest for an experimental activity in the theory and application of the 
mechanics of machinery; 

– application to engineering with invention of new machines. 

In addition, in all his works Archimedes expressed a strong believe 
and optimism in a practical application of science as demonstrated by the 
many inventions that are attributed to him. This is summarized in his motto 
‘Give me a place to stand on, and I will move the Earth’, as it was 
ascribed to him since Antiquity and it was considered the basis for the 
study of the mechanics of the machinery in Renaissance, with great 
emphasis as for example in the cover of the book by Guidobaldo Del 
Monte in 1577. 
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The theoretical mathematical approach by Archimedes is developed in 
depth but not only for pure mathematical interest. The study and formulation, 
that can be even deduced in modern terms, were deduced for their application 
both in explaining the attached problems and in providing suitable solutions 
for them. For this reason, the Archimedes’s treatises can be considered 
simultaneously the basis and complete of his activity as machine inventor 
and builder. This permits to link the theoretical activity and the mathe-
matician approach to his practice of experiments in mechanics as well as 
to his machine ingenuity. As it can be understood from the treatises, 
Archimedes considered as the basis of his study the observation of natural 
phenomena and the operation of existing systems. Once both the generalities 
and peculiarities of real events were understood, Archimedes studied and 
proposed a logic reasoning and theoretical development that he could use 
not only to forecast operations and events but even to deduce new ideas 
and possibilities in structures and functionalities of machines. From this 
perspective it is quite amazing how Archimedes was able to identify and 
formulate a unique principle in order to explain the operation of a large 
variety of machines that were already existing at his time. Thus, it is  
not only the identification of elementary machines (or mechanisms) by 
which it is possible to classify all the machine components, but even the 
identification of the lever mechanics (better known as the law of levers) as 
operation principle for any mechanism and machine. Through this study, 
Archimedes expressed first the equilibrium of rigid bodies as related to the 
momentum of forces.  

Relevant is also how he examined the mechanical phenomenon and its 
application in other existing devices by extrapolating the specific mechanics 
from the general principle and formulation. In Egypt, there were scales for 
measuring and comparing weights as it is also documented in several 
documents and even artistic representations like the one in Fig. 2, from 
which it is evident the lever mechanics was used in somehow conscious 
way. Most probably, Archimedes could know and appreciate the Egyptian 
technique in scales of several types. But he was the one who examined and 
formulated the mechanics of levers with deep insights and generality in 
his work ‘On the Equilibrium of Planes’ by assuming seven postulates that 
he identified for a careful analysis of experimental phenomena even in 
the diary experience and with other systems. Once assumed the natural 
evidence of the seven postulates, also in terms of determination of the 
center of gravity of rigid bodies, Archimedes formulated the static equili-
brium as due to conditions related to the weight and distance of the body 
from a point, about which the body can rotate. Thus, he indicated the 
equilibrium as function of torques of forces that are due to the weights 
from both sides of a lever. A graphical representation of the analysis 
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process from observation is reported in the scheme in Fig. 3a) that can lead 
to the modern mechanical-mathematical model in Fig. 3b). Fig. 3a) is 
taken from the book by Del Monte and Fig. 3b) is a modern interpretation 
of the law of levers by referring to the parameters used by Archimedes. 
The law of levers was used by Archimedes, but even more important is 
that it was extended in the books that rediscovered the Archimedes’s works 
during Renaissance, as mainly in the works by Del Monte and Galilei with 
the aim to determine a rational classification of the operation of machines.  

 

Fig. 2. An artistic representation of an Egyptian scales in a tomb of 1250 B.C. in Thebes. 

Fig. 3. The law of levers by Archimedes as viewed by Del Monte and Galilei: a) a scheme; 
b) a modern interpretation. 
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The law of levers was a great achievement as introduced and used 
by Archimedes both from theoretical and practical viewpoints in rational 
mechanics and machinery mechanics. Relevant is the introduction of the 
concept and use of the pair of a force, even if not yet in a clear form, to 
explain the static equilibrium but even dynamic rotational operation towards 
it. Archimedes used the law of levers in a descriptive form but with mathe-
matical means both to explain the machine operation as well as to conceive 
new  inventions.  

This was the case of the screw of Archimedes, Fig. 4, as Del Monte and 
Galilei described clearly as based on the law of levers in agreement with 
the scheme in Fig. 4a). The invention of the screw of Archimedes, as used 
extensively (even today) and widespread as fluid pump, shows also the 
experimental approach that Archimedes uses in developing new machines 
for practical applications still by using the law of levers. In general, it is 
used to elevate water, floor, or cereals. It is based on a screw that rotates 
within a hollow cylinder that is installed on an inclined plane so that the 
water in the bottom is elevated to the top of the screw. 

The scheme in Fig. 4 b) is an explanation of the pumping of the screw 
as an alternating inclined plane operating as mobile lever. This explanation 
with experimental and practical insights has attracted the interest of scientists, 
even for teaching purposes. Fig. 4b) shows an experimental setup of the 
18th century for laboratory practices to teach the screw operation. 

Indeed the study of the screw as in Fig. 4a) shows a clear example 
how Archimedes (and later Del Monte and Galilei) used the law of levers 
as a general principle to understand and explain the operation of a large 
variety of machines, also with the aim to provide a simple means of study 
and comparison of the operation and design of machines. This practical 
vision permitted Archimedes, who was motivated by the needs of his time 
and local circumstances (as even requested by the tyrant of Siracusa), to 
solve practical problems and to conceive new machine inventions. Thus, 
the studies of Archimedes were fundamental for the development of 
science and its engineering application in many fields. Relevant is the case 
of the Hydraulics in which Archimedes defined the law of buoyancy, that 
he used successfully in the design of large ships, as ascribed to him like for 
example in [22].  

In this paper the focus is on Archimedes’s ingenuity in machine 
design. Several machines are ascribed to Archimedes like chariot odo-
meters, cranes, screw, war machines, most of which were later perfected 
during the Roman Empire. All these inventions are based on the law of 
levers and on experiential activity from a previous mathematical study. 
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                          a)                                                         b) 

Fig. 4. The screw design by Archimedes: a) according to Del Monte and Galilei; b) as a 
machine model for lab activity in 18th century. 

 
Archimedes designed machines by merging mechanisms with pulley 

systems in cranes of different sizes. Some of them were used to build the 
Siracusa fortress and some others for moving ships in maintenance works, 
as examples of versatility of the design ingenuity of Archimedes. 

In the field of war machines, an example is shown in Fig. 5 where a 
catapult (as correctly named in ancient Greek) is illustrated for launching 
arrows to long distance. As shown in the scheme of Fig. 5a), the structure 
of this war machine is a combination of different components in an anti 
litteram mechatronic design, namely gears, prismatic slider, pulleys, and 
flexible bars. A capstan is used to tension the arc, made of flexible elements, 
to accumulate the elastic energy as in the launching motor for the two rods 
fixed in the machine frame. The platform on the prismatic guide allows a 
practical feeding of the arrows and a suitable moving body for the launching. 
An improved mechanism has been found that permitted even a repeated 
launching at high rates like a riffle, as pointed out in [23]. In the recon-
struction in Fig. 5b) the design is emphasized as made of materials of 
common use in antiquity, namely woods, cables of natural fibres, hairs for 
the torsion elastic motor (even human hairs), so that they permitted a rapid 
construction, usage, and maintenance of the war machine, as a result of a 
careful attention of the technology of available materials in a war campaign. 
This again shows the practical vision of Archimedes in designing and 
developing machines by combining mechanical theory, experimental 
experience, knowledge of technology with an approach that is today typical 
of modern MMS (Mechanism and Machine Science). 
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a) 
 

 
b) 

Fig. 5. Roman catapult as an invention of Archimedes: a) a scheme;  b) reconstruction in 
the Museum of Roman Culture in Rome. 

 
 
4. CONCLUSIONS 
 
In this paper, the modernity of the personality and work of Archimedes has 
been discussed as related to the mechanics of machinery, viewed from the 
engineering viewpoint of MMS. The modern relevance of Archimedes 
contributions can be recognized in a determination of theoretical bases, 
even through experimental activity, for a formulation of the mechanics of 
machines that was useful not only for a general theory but even for 
practical inventions of new machines of durable interest. In addition, his 
enthusiastic approach to apply science to practical engineering reveals 
Archimedes as a modern source of inspiration for future MMS researchers. 
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ABSTRACT From the end of the 16th century to the beginning of the 
18th century, Jesuit missionaries introduced Chinese the Western scientific 
knowledge and technology. In 1612, Archimedean-screw was introduced 
by Sabbathinus de Ursis and Xu guangqi. Since then, Part of Archimedean 
mecanical knowledge was transmitted into China. In this paper we will 
present an account about this transimission. The main points are as the 
following: in the 17th century, parts of both theoritical  were introduced to 
China; Chinese paid more attention to the practical knowledge then, 
Theoretical knolwedge was only studied becase that it is the base of 
making useful devices.  
 
 
1. THE CONTEXT OF TRANSMISSION OF WESTERN 

MECHANICAL KNOWLEDGE INTO CHINA 
 
From the end of 16th century to 18th century, Jesuit missionaries played a 
major role in the transmission of knowledge between the Europe and China. 
The reason why Jesuit missionaries decided to transmit European scientific 
and technological knowledge is two-fold. First, scientific and technological 
knowledge could be quoted to prove the validity of Christian theories. 
Second, scientific and technological knowledge could help in attracting the 
attention of Chinese scholars. The latter played a more important role in the 
transmission of Archimedean Mechanical Knowledge into China.   

In Matteo Ricci (1552–1610)’s own word, he “sought to make himself 
all things to all men, in order to win them all to Christ”1. He realized that 
literati played an important role and held a high standing in Chinese 

mechanical knowledge, especially practical mechanical knowledge was 

                                                           
1 Matthew Ricci. 277. 

society, hence, converting literati became his major concern. As for literati, 
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especially significant to them. At that time, there was an urgent need for 
devices used for irrigation and flood defense, while internal rebellions and 
external threats meant that there was a dire need for military devices. 
Further more, the calendar used in China failed to give exact prediction of 
special celestial phenomena, and Chinese astronomers worked in Imperial 
astronomical bureau were incapable in reform of calendar. In this context, 
Ricci and his fellow missionaries showed their ability in solving such 
problems to attract Chinese. 

In 1607, after finishing the translation of the first six volumes of Euclid’s 
Elements, Ricci showed his cooperator, Xu Guangqi (1562–1633), some 
models of European machines of irrigation made by Sabbathinus de Ursis 
(1575–1620) and suggested Xu to consult Ursis about such devices. In 
1612, Xu and Ursis translated Western text into Chinese and compiled a 
book the Taixi Shuifa (Hydraulic Methods of the Great West, Hydraulic 
Methods). It depicted some water-lifting devices such as Archimedean screw 
and devices similar to pump invented by Hero of Alexandria (See: Zhang). 

In 1623, Italian missionary Giulio Aleni (1582–1649), assisted by 
Chinese scholar Yang Tingjun, compiled Zhifang Wai Ji (Areas Outside 
the Concern of the Chinese Imperial Geographer, ZFWJ), which introduced 
geography, climate, situation of the people, celebrities, products and 
dextrous devices in the world. In which Archimedes and his inventions 
were mentioned (See: Aleni, pp. 76, 87). 

Calendar has a special significant in Chinese history. In Confucianism, 
it is believed that celestial phenomena have direct connection with the 
government and society. The Emperor, who was regarded as the son of the 
Heaven, should act as a coordinator between the heaven and the earth. An 
accurate calendar indicated the validity of the emperor’s governing. Thus, 
Chinese emperor paid great attention to calendar2 . When the Imperial 
astronomers failed to give exact prediction of the special celestial phenomena, 
Ricci showed that the European calendar is superior to the Chinese one. 
After realizing the fact that astronomy could be a great aid for the 
Christianization of China, Ricci suggested that Jesuits astronomers should 
be sent to China. In 1619, such experts arrived China, among the, there are 
Johann Terrenz (1576–1630), Johann Adam Schall von Bell (1592–1666) 
and Jacques Rho, (1590–1638), who later played great role in calendar 
reform in China. 

The European machines attracted a number of Chinese scholars, Wang 
Zheng (1571–1644) is one among them. Wang Zheng took an interesting 

                                                           
2 An emperor was looked upon as “the son of Heaven”. Emperor’s government organizes 

its astronomers to make an accurate calendar in order to indicate the validity of his 
regime. Mathematics, which was close related to astronomy, was rated as one of “six arts”. 
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in machine making from a young age. Round about the winter of 1615 or 
the Spring of 1616, he got acquainted with a missionary de Pantoja, and 
was converted by them afterwards (See: Song). He read Aleni’s ZFWJ and 
became interested in the machines mentioned in the book. Round about 
December, 1626 or January, 1627, Wang Zheng came to Beijing and met 
Nicclo Longobardi (1559–1654), Terrenz and Adam Schall von Bell. He 
consulted to them to have a good understanding of machines depicted in 
ZFWJ. They showed him the European books on machines. Even Wang 
could not read the text, he admired the machines contained in them, and he 
proposed to compose a book to introduce such machines to China. Accord-
ing to Wang’s record, Terrenz indicated connection between machines and 
such theoretical knowledge as mathematics (See: Terrenz & Wang, p. 603) 

After mastering the basic mathematical knowledge in a few days, 
Terrenz and Wang Zheng began to compose a book in mechanics and 
machines. Wang preferred to translate knowledge about “the most important, 
simplest and most ingenious” machines to serve Chinese people. In February 
or March, 1627, they finally compiled a 3-volumed book, Yuanxi Qiqi 
Tushuo Luzui (the Record of the Best illustrations and Descriptions of 
Extraordinary Devices of the Far West, For short, Extraordinary Machines), 
which was first printed in Yangzhou in the summer of 1628. 

The Extraordinary machines was the first book specially contributed 
to Western mechanical knowledge in Chinese. In the guide to its use, the 
authors expressed that man must study such disciplines as zhongxue 
(learning of weight), gewu qiongli zhi xue (a study to investigate things to 
attain knowledge, especially natural philosophy), arithmetic, geometry and 
perspective before he studies the art of making machine. They also wrote 
an introduction to discussed the nature and usage of mechanics. 

Following the introduction, there are three chapters that selectively 
expounded Western mechanical knowledge and machines from Archimedean 
time to the early 17th century. The first chapter contained the definition of 
the center of gravity and the way of finding the center of gravity of 
different geometric shapes, the definition of specific gravity, the numerical 
relation of the weight, specific gravity and volume of a thing, as well as the 
proportional relation among weights and volumes of things with different 
specific gravity, etc., and some theory concerned with fluids and buoyancy. 
The second chapter, named as Qi Jie (explanations of implements), dis-
cussed the principles of simple machines, such as balance, steelyard, lever, 
pulley, wheel, screw and so on. The third chapter is composed of illustrations 
and descriptions of 54 kinds of whole set of machines. We do not intend to 
deal with the content in detail, but we need to stress that the character of 
the two first chapters is in accordance with that of a European scholarly 
mechanical work. We believe that such a structure was designed by the 

Archimedean Mechanical Knowledge in 17
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European compiler, Terrenz. Even all the mathematical proofs in the 
European sources are all deleted, Terrenz’s stress on mathematics indicated 
that his understanding of mechanics was in according with Archimedean 
tradition. In the 17th century Europe, Archimedean tradition of mechanics, 
which stress the mathematical proof of mechanical theories is prevalent in 
scholarly studies. The main sources of Extraordinary machines, Simon 
Stevin’s Hypomnemata Mathematica (1605–1608) and Quidobaldo del 
Monte’s Mechanicorum liber are all following Archimedean tradition. 
Therefore, we may say that the theoretical part of the first mechanical book 
in Chinese was influence by Archimedean tradition (See: Zhang, Baichun. 
Tian Miao. Matthias Schemmel. Juergen Renn. Peter Damerow. 92–120). 

content of Archimedean mechanical knowledge transmitted to China in 
this paper.  

We already mentioned above that calendar making has special political 
significant in China. In 1629, a lunar eclipse occurred, which the Imperial 
Astronomical Bureau had failed to forecast exactly, the imperial astro-
nomers confessed that they did not have the ability to reform the calendar 
effectively. Xu Guangqi, vice-minister of the Board of Rites at the time 
and a convert of Catholicism, presented a memorial to the throne recom-
mending that the Jesuits reform the calendar. Besides working out a practical 
and comparatively exact calendar, Johannes Terrenz, Giacono Rho, and 
Adam Schall von Bell also translated a magnum collection of books con-
cerning the creation of a new calendar, Chongzhen Lishu (Calendar books 
of Chongzhen Reign, completed in 1634). Some branches of mathematical 
and mechanical knowledge concerned with calendar-making were also 
translated into Chinese in this work3. After a series of debates and exami-
nations about whether a calendar based on the European method could be 
used, in 1644, the Chongzhen emperor (r. 1628–1644) finally decided from 
1645 on that it should be used4. However, the Ming dynasty did not 
survive beyond the first half year of 1644, and the Qing dynasty began.  

The change of the ruling family did not bring misfortune to the 
Western missionaries. After providing an exact forecast of a solar eclipse, 
on, 30 October, the Shixian Calendar, based on Western astronomy was 
promulgated as the statutory calendar in China. Schall became the effective 
director of the Imperial Astronomical Bureau, and a personal acquaintance 
of the Shunzhi emperor. Thus, with the help of astronomical instruments, 
the Jesuits made a good start in the new court. From this time to the 
beginning of the 18th century, except a short period of interruption for Yang 

                                                           
3 An introduction about the content of Chongzhen Lisu, see: Hashimoto. 1988.  
4 For the debates and the examination on the calendar, see: Xu Guangqi and Li Tianjing.   

We will return to this book again in the detail discussion concerning the 
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Gangxian’s successful accusation of European missionaries, the European 
calendar making system was adopted by the court. In 1674, In order to 
fulfill the demands of the emperor, Belgian Jesuit Ferdinand Verbiest 
(1623–1688) compiled textbooks on the usage of the 6 astronomical and 
mathematical instruments he made for the court, Xinzhi Lingtai Yixiang 
Zhi (XZLTYXZ, A Record of the New-built Astronomical Instruments of 
Observatory). In this book, Verbiest use mechanical knowledge to explain 
the style and the structure of the instruments to show Chinese that the 
European construction is based on rational base, and further more, the 
missionaries are scholars rather than craftsmen5. In doing so, he introduced 
new mechanical knowledge, including parts of Galilean mechanics into 
China. (See: Golvers, pp. 112–114, 117–123, Chen Yue.).  

On the 16th October, 1683, Verbiest presented Emperor Kangxi a book, 
entitled Qiong Li Xue (a Thorough Inquiry into the Reason), in which, he 
collected some of the former works translated into Chinese by Jesuit 
missionaries and formulated a system of reasoning. Verbiest hoped that the 
emperor could be taken as a part of the curriculum for the Chinese state 
examination system. To his disappointment, the book was refused, hence 
not be published. Beside Aristotle philosophy, the book also included 
mathematical and mechanical content, the great part of the latter was derived 
from translated books, mainly from Extraordinary machines (See: Wang 
Bing, pp. 88–101. Ad Dudink. Nicolars Standaert.) 

Even Jesuit missionaries continually worked in the court until the 
beginning of the 18th century, and they introduced new mathematical and 
astronomical knowledge into China as well as constructed different kinds 
of devices for the Emperor Kang Xi it seems that there is no systemic 
attempt made in transmission mechanical knowledge to China after Verbiest. 
In the following parts, we will focus on the detail of the transmission of 
Archimedean mechanics into China.  
 
 
2. THE INTRODUCTION OF ARCHIMEDES 
 
Even Archimedean-screw was introduced in the Hysraulic Methods, 
Archimedean’s name was not mentioned. It is in the early 1620s, Aleni 
mentioned Archimedes (287–212 B.C.) as an astronomer in the section 
concerning the introducing of Sicilia in Italy of chapter 2 of ZFWJ: 

                                                           
5 Some of mechanical knowledge in XZLTYXZ may be regarded as a supplement. For 

example, there are some discourse on center of gravity and its use. Verbiest wrote: so-called 
center of gravity was a point in object. Two weights around this point has the same 
weights (See: Verbiest.1674, p. 98). 
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There was a famous astronomer Archimedes (Yaerjimode1). He had 
three unique skills. A few hundred ships of an enemy state once reached 
his island. His compatriots could do nothing about it. He made a large 
bronze mirror. When he focused sunlight with it on the enemy ships, they 
were emblazed. All ships were soon burned. Withal, the king ordered him 
to build a very large seagoing vessel. After it had been built, it should be 
launched. However, the vessel could not be moved although the country 
exerted itself to the utmost, namely applied tens of thousands of cattle, 
horses and camels to tow it. Archimedes (Jimode) invented an ingenious 
skill so that the vessel was launched just as a hill moving according the 
order of the king. In addition, he made an automatic armillary sphere with 
12 overlapping rings that corresponding to the sun, the moon and 5 planets. 
It could accurately demonstrate the movement of the sun, the moon, five 
planets and constellations. This transparent instrument was made of glass. 
Indeed, it was a rare treasure.” (See: Aleni, p. 87) Here, Archimedes’ name 
was phonetically translated as Yaerjimode1 and in a short form jimode. 

In the section concerning Egypt in Chapter 3 of ZFWJ, Archimedes 
was mentioned again.   

A king once sought a measure to combat a waterlogging. He found 
Yaerjimode, a clever and deft man, who invented a water-lifting device. 
It provided people with incomparable facilities. It is named longweiche 
(water-screw) now. The people in this country were very tactful. Many of 
them studied the learning of a thorough Inquiry into the Reason through 
the study of thing (Natural Philosophy) and were also accomplished in 
astronomy.” (See: Aleni, p. 110) 

Yaerjimode1 and yaerjimode2 were denoted by two different set of 
Chinese characters, any of which was made from five Chinese characters. 
As two transliterations of Archimedes, these two words have the same 
pronunciation although their correspond different Chinese characters. We 
have no idea why Aleni gave different translation of the same person, 
Archimedes, in two different way. There could be two reasons for that, one 
is possible that Aleni or his Chinese assistant regarded Archimedes as two 
persons, the other could be Chinese just denote the names according to 
Aleni’s pronunciation and Alein did not noticed the difference. 

The authors of Extraordinary machines retailed the story about 
Archimedes’ building seagoing vessel and armillary sphere in ZFWJ and 
mentioned another inventor: 

There was a great man who was named Yaximode. He invented water-
screw, small screw and other devices. He was able to depict the principles 
of all kinds of machines.” (See: Terrenz & Wang, p. 611) Yaximode here 
again can only be Archimedes. 
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the Extraordinary machines also mentioned the crown problem, named 
Archimedes Yaximode: 

Archimedes was once asked to solve a problem concerning the sub-
stitution of gold with silver, but he could not make it. While he had a bath, 
he suddenly thought out the reason. (See: Terrenz & Wang, pp. 614–615).  

This paragraph followed by a detailed narration about the crown 
problem.  

In the 17th century, the last volume of Ouluoba Xijing Lu (XJL, Records 
of the European Written Calculation) repeated this story, but the crown 
was changed to a cooking vessel (ding). The author named Archimedes 
Yaerribaila (See: Anonym, 17th century, p. 302)6. It is interesting that the 
fifth volume of Celiang Quanyi (CLQY, On Astronomical Surveying) 
named Archimedes “ajimide, a great personage in antiquity” or “Mode, a 
personage in antiquity”7. Afterward, Ajimide became a popular Chinese 
translation of “Archimedes”.  

Based on the world map composed by Ricci and Aleni, Verbiest wrote 
Kunyu Tushuo (KYTS, An Explanation of the Map of the Earth) in order to 
explain his Kunyu Quantu (KYQT, Complete map of the earth). KYTS was 
printed in 1674. This book repeated the stories of Archimedes in ZFWJ 
(See: Verbiest, pp. 6260, 6261, 6263). 
 
 
3. THE INTRODUCTION OF ARCHIMEDEAN MECHANICAL 

KNOWLEDGE 
 

3.1. Archimedean-screw 

Archimedes is associated with the invention of water-screw (Oleson, pp. 
291–301). In the first volume of Hyderulic Methods, de Ursis introduced 
the water-screw into China. Xu Guangqi, the Chinese partner in translation 
of the book vividly named it longwei che (vehicle with the shape as 
dragon’s tail)8: 

                                                           
6 So far, no printed edition of XJL has been found. We can only read a handwritten copy 

of it. A great part of is similar to TWSZ, but some of terms in two books are different. It 
is possible that their contents were derived from same book or books, and XJL was 
written not long after TWSZ had been finished. 

7 CLQY was translated by Rho in collaboration with Xu Guangqi and Li Zhizao and was 
first printed in 1631. The authors explained how Archimedes had calculated area of 
circularity, area of ellipse and so on. 

8 In Chinese, long means dragon; wei means tail; che means machine. Long wei che 
means a machine that is like the tail of a dragon. Since 1612, long wei che has been a 
special Chinese translation of water-screw, and was inherited by authors of ZFWJ, 
WONDERFUL MACHINES and other books. 

Archimedean Mechanical Knowledge in 17
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Following an description of the main parts of Archimedean Scew,, the 
shaft, the wall, the tube, the pivot, wheel and underprop, de Ursis and Xu 
Guangqi give further explaination about these parts, as well as their 
materials they are making of, the way of  manufacture and usage. (See: de 
Ursis & Xu, vol. 1) They presented the explanations of water-screw with 
five illustrations (figure 1). 

 
Fig. 1. 

 
Terrenz and Wang not only explained the structure and usage of water-

screw in the third chpater of Extraordinary machines, but also analyzed its 
geometrical principle in the second volume. They used the words such as 
vine line, the implement as vine line, snail line and the tail of dragon to 
denote helix, screw or spiral. Section 82 indicates the relation between a 
helix and a inclined plane: “an inclined plane wraps a cylinder, as a result, 
a helix or a screw comes into being”; sections 83–85 indicate relation 
between lead angle of helix and transmission effect of force (See: Terrenz 
& Wang, pp. 649–650). Sections 89–92 give a few examples to illustrate 
how force or lead angle is calculated. Section 74 emphasizes that tengxian 
qi has many advantages and usage; therefore Archimedes often used this 
kind of wonderful implement. Man can easily make all kinds of machines 
if he understand the why and wherefores of this implement (See: Terrenz 
& Wang, p. 648). This clearly shows that the Terrenz and Wang clearly 
know that the screw they are introduced to China comes from Archimedes.  
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3.2. Mechanical Propositions 

In Extraordinary machines, Archimedes’ theory concerning floating body, 
equilibrium and related calculations, as well as Archimedean propositions 
were also introduced into China. 

Section 36 of the first chapter: “Water floats along with surface of the 
earth, which is in large round shape. Water adheres to the earth, so water’s 

Archimedean proposition 2 in On Floating Bodies (See: Archimedes,  
p. 254). 

Section 40 of the first chapter: “There is an object. If its specific 
gravity is equal to water’s, it will neither sink nor float. Its top is at the 
same level as water’s surface.” (See: Terrenz & Wang, p. 626) It almost 
repeats the Archimedean proposition 3 in On Floating Bodies (See: 
Archimedes, p. 255). 

Section 41 of the first chapter: “There is an object. If its specific 
gravity is lighter than water’s, it will not totally sink; one part of it will be 
above water, while the other will be in water.” “Because water is heavier 
than the object, water may lift it up.” (See: Terrenz & Wang, p. 626) This 
is equivalent to the Archimedean proposition 4 in On Floating Bodies 
(See: Archimedes, p. 256). 

Section 43 of the first chapter: “There is an object. If its specific 
gravity is lighter than water’s, the weight of total object will be equal to 
the weight of water, the volume of which is the same as the volume of the 
part of object that sinks in water.” (See: Terrenz & Wang, p. 626) It is 
close to the Archimedean proposition 5 in On Floating Bodies (See: 
Archimedes, p. 257). 

Section 42 of the first chapter: “There is an object. If its specific 
gravity is heavier than water’s, it will not stop until it sinks to the 
bottom.” (See: Terrenz & Wang, p. 626) Section 46 of the first volume: 
“Solid in water is lighter than it in air. The difference is equal to the weight 
of the water of the volume equal to the part occupied by the solid.” (See: 
Terrenz & Wang, p. 627) It is almost equal to the Archimedean proposition 7 
in On Floating Bodies (See: Archimedes, p. 258). 

Sections 44–61 of the first chapter explain how to calculate weight and 
volume of an object in water, and discuss pressure of water. These 
calculations were scarce in ancient China. 

Section 19 of the second chapter (explanations of the steelyard): 
“There are two weights that are in a state of balance. The proportion 
between the large weight and the small weight is equal to the proportion 
between the length of the long section and the length of the short section of 
the beam that is in level position. Likewise, the proportion between the 

surface is round too.” (See: Terrenz & Wang, p. 625) This is similar to the 
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large weight and the short section’s length is equal to the proportion 
between the long section’s length and the small weight.” “This is the most 
cardinal principle of ‘study of weight’ (mechanics). All calculations are 
based on it.” (figure 2)9 ( See: Terrenz & Wang, p. 636) 

Section 36 of the second chapter (explanations of the lever) almost 
repeats that principle: “A lever is horizontally supported by a fulcrum. 
There is a weight at its head. A force acts on its handle. The proportion 
between the weight and the force is equal to the proportion of length 
between two sections of lever.” (figure 3) (See: Terrenz & Wang, p. 639) 
Here and in other sections, the authors used such concepts as force or 
capacity frequently, both of them are interchangeable (See: Terrenz & 
Wang, pp. 641–651). After section 36, this principle is applied to analyses 
and calculations of the pulley and wheel as well as other devices. 

The principle narrated in section 19 and section 36 actually is lever 
principle, namely Archimedean proposition 6 and proposition 7 in On the 
Equilibrium of Planes (See: Archimedes, p. 192). 

Section 16 of the first chapter: “There is a rectangle, center of gravity 
of which is at the midpoint of any radial line of two midpoints of sub-
tenses.” (See: Terrenz & Wang, p. 621) This may be regarded as a special 
example of Archimedean proposition 9 in On the Equilibrium of Planes 
(See: Archimedes, p. 194). 

Section 12 of the first chapter: “There is a triangle. Draw a line from 
an angle to the midpoint of its subtense, well then the center of gravity of 
the triangle must be at the line.” Section 13: “There is a triangle. Its center 
of gravity is the same point as its geometrical center.” (See: Terrenz & 
Wang, p. 620) These sentences should be equal to Archimedean pro-
position 13 in On the Equilibrium of Planes (See: Archimedes, p. 198). 

Section 14 of the first chapter: “The method to find the center of gravity 
of a triangle is as following: drawing a line from the midpoint of any side to 
its corresponding angle. The center of gravity is at the point of intersection 
of two lines.” (See: Terrenz & Wang, p. 621) This is Archimedean pro-
position 14 in On the Equilibrium of Planes (See: Archimedes, p. 201). 

Section 18 of the first chapter: “The geometrical center of circle or 
ellipse is the same as it’s center of gravity.” (See: Terrenz & Wang, p. 621) 
This is identical with Archimedean proposition 6 in The Method (See: 
Archimedes, supplement, p. 27). 

Section 20 of the first chapter: “The center of gravity of any regular 
prism is at its axis.” (See: Terrenz & Wang, p. 622) This is similar to 

                                                           
9 After section 23, some sections of the second volume of Wonderful Machines takes a 

beam for a weight, namely the weight of the beam has to be calculated. 
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Archimedean proposition 7 in The Method (See: Archimedes, supplement, 
p. 30). 

The way of expression in Extraordinary machines is in some extent 
different from the original proposition in Archimedes’ works. The reason 
is that mainly because Terrenz and Wang used some books printed and 
published in Europe in the 16–17th centuries instead of Archimedes’ works. 
In addition, they did not translate European texts literally. H. Verhaeren 
identified that the first two chapters of Extraordinary machines are derived 
mainly from Simon Steven’s Hypomnemata Mathematica…Mauritius, 
Princeps Auraicus, Comes Nassoviac…, (1608)10. (See: Verhaeren)  
 
3.3. The Crown Problem 

The first Chinese book that introduced the crown problem was Tongwen 
Suanzhi (Rules of Arithmetic Common to Cultures, 1614. TWSZ), but the 
problem was transformed to an arithmetic problem:11: 

. 
When it has been finished, man doubted that a craftsman stole gold and 
substituted partgold with silver. He dreaded the economic losses if he test 
it damage it to test it, but feared economic losses. How to find how much 
silver has been mixed into gold?  

The book XJL related the similar problem to Archimedes: 

A monarch ordered a craftsman to use pure gold of 100 ( jin) to make a 
cooking vessel (ding). The craftsman stole some of gold and mixed silver 
into gold. After the vessel had been finished, it was presented to the 
monarch. He noticed the gold’s colour was lighter [than it was expected], 
whereupon he order an astronomer Archimedes to calculate how much 
gold was stolen. The answer: gold of sixteen and two-thirds jin was stolen, 

th

p. 302) 
The calculating method in XJL is the same as in TWSZ.  
Section 29 and section 30 of the first volume of Wonderful  Machines 

introduced the theoretical base of the crown problem: “There are two 
                                                           
10 Iwo Amelung thought that Terrenz may have been aware of the original Dutch version 

of Stevin’s work, which had been published as De Beghinselen der Weeghconst beschreven 
duer Simon Stevin von Brugghe (Elements of the Science of Weighting described by 
Simon Stevin from Bruges) in 1586 and was probably also available in the Jesuit’s 
library in Beijing. It is possible that Terrenz, who was of Swiss origin and thus probably 
able to read Dutch, had consulted it when preparing the work. Zhongxue is a loan 
translation for scientia ponderibus (or for that matter a slightly modified loan translation 
for Stevin’s weeghconst) (See: Amelung). 

11 Lu is an estrade, on which a drinking vessel in a drinkery is emplaced. 
12 Jin was a unit of weight in China, Now one jin is equal 0.5 kilogram. 
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gold of eighty-three and one-third jin remains. (See: Anonym, 17  century, 

 12“Question: one hundred jin of gold is used to make a golden lu”
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objects. Becaues they have the same weight and the same volume, they 
must be the same kind of weight.” “The same kind of weights has the same 
specific gravity.” (See: Terrenz & Wang, p. 624) 

 
 

4. THE INFLUENCE OF ARCHIMEDEAN MECHANICAL 
KNOWLEDGE ON CHINA 
 

Being introduced as one of the greatest astronomer and engineer, Archimedes 
certainly roused the interest of Chinese scholars. At the end of the 19th 
century, Ruan Yuan (1764–1849) compiled Chouren Zhuan (Collection of 
biographies of astronomers and mathematicians), which is the first Chinese 
book specially focusing on mathematicians and astronomers. A biography 
of Archimedes was also included, which is based on the information con-
cerning Archimedes in CLQY (See: Ruan, p. 507).  

According to the previous discussion, in the 17th century, parts of 
practical and theoretical knowledge of Archimedean mechanics were trans-
mitted to China. The book contained such knowledge, such as Hydraulic 
Methods and Extraordinary machines were both reprinted several times 
before the end of the 19th century. From the study of such books, some 
Chinese get acquainted with Archimedean mechanics.  

Generally, Chinese scholars paid more attention to the practical part of 
Archimedean mechanics, because that such knowledge was useful for the 
society, and serving the society was one major concern of Confucians. 
Nevertheless, the theoretical knowledge was also studied by Chinese scholars. 
In his Lixue Huitong (Integrated Calendrical Studies, LXHT ), Xue Fengzuo 
(1600–1680) reconstructed the first two chapters of Extraordinary machines, 
as he think that this part provided the reason for the construction and 
invention of machines. Thus, it is important for scholars, as by learning 
this, one can invent and construct machines himself. Therefore, he selected 
part of the content from these two chapters including the above mentioned 
Archimedes’ knowledge concerning balance, lever and screw. (Tian Miao, 
Zhang Baichun).  

But from Xue Fengzuo’s example we may also conclude why he 
thinks that the mechanical theories were important is that it is the base of 
practical knowledge. He does not interested in philosophical inquire of 
mechanical knowledge or the system of the mechanics. He only chose the 
part of knowledge relating to machine making. The machines are really 
appreciated by Chinese people.   

Both Hydraulic Methods and Wondrful Machines were included in the 
Siku Quanshu (SKQS, Complete Library in Four Branches of Literature), 
which was compiled according to the order of the Qianlong emperor and 
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many important and famous scholars attended the compilation. The 
introduction of each book in the Siku Quanshu shows the common official 
and scholarly attitude toward the book. The introduction of HYDRAULIC 
METHODS provides us such information: 

The best part of Western learning is measurement and mathematics, 
and the (study of ) extraordinary machines take the second place. Among 
the extraordinary machines, their method of irrigation is the very important 
to people.  

People who deal with irrigation must use (this book). (Anonym. 18th 
century, introduction to HYDRAULIC METHODS, 1.) 

Similar idea was expressed in the introduction of Wonderful  Machines: 

Both Biaoxing Yan and Biaode Yan exaggerated marvellousness of 
those methods. (In fact,) most of them are absurd and unrestrained, and 
were not worth deep examining. But the method of machine construction 
in the book is actually the most ingenious. (See: Anonym. 18th century. 
Introduction of Extraordinary machines) 

The common attitude of Chinese scholars is that the European machines 
are very useful. But the theoretical knowledge, which usually mean European 
philosophy and religion are absurd. As Wang Zheng praised the religion in 
his Biaoxing Yan and Biaode Yan, these two parts were criticized.  

There were some accounts of manufacturing and use of the water-
screw in 18th and 19th centuries. Xu Chaojun, a descendants of the 5th 
generation of Xu Guangqi, had a good grasp of astronomy and clock-
making. A book, which printed before 1911, told us that he constructed a 
water-screw that could be driven by a child to irrigate crop in 1809.  
A procurator ordered some people to print the illustration of the water-
screw to popularize it in a few counties (See: Group, p. 213). 

Qi Yanhuai (1774–1841), who first held office as a county magistrate 
in Jinkui and afterwards as a prefect in Suzhou, also made a water-screw 
and a pump on the basis of HYDRAULIC METHODS. He believed that one 
water-screw is analogous to five square-pallet chain-pump (See: Group, 
pp. 205–206). Lin Zexu (1785–1850), a dignitary in Jiangsu province13, 
asked Qi to made one a screw for him, and afterward Lin suggested that 
this kind of machine should be spread in the countryside, but he failed. 

For craftsmen and farmers, the construction and using of water-screw 
also bring some inconvenience. Qian Yong told us a short story. A water-
screw was made in Suzhou in 18th century. It may irrigate cropland of 
thirty or forty mu (a traditional unit of area) every day. However, its very 
expensive in construction. And if it was damaged, it could not be repaired 
                                                           
13 Suzhou was and is a part of Jiangsu province, which was and is one of the most 

developed provinces in China. 
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and be used again. A majority of farmers was so poor that they were not 
able to make it (See: Group, p. 209). Zheng Guangzu recorded that a 
water-screw was made in an area nearby the Great Canal in Jiangsu 
province in 1836. It was so large that it needed one hundred people to 
carry it. People can use it to irrigate cropland very efficiently, but again, 
the construction and using of such a machine is too expansive for them.  

Craftsmen and farmers could skillfully manufacture, operate and repair 
traditional Chinese water-lifting devices that were actually not much inferior 
to the water-screw in function. Without an absolute advantage in function 
and efficient over the old ones, a new device is very difficult to be accepted 
in a mature technical tradition.  

In general, part of Archimedean mechanical knowledge exerted a 
limited influence on China in 17th century. It had partly been studied and 
practiced by Chinese by the mid-19th century. 
 
 
5. CONCLUSION 
 
In the 17th century, Jesuit missionaries introduced part of Archimedean 
mechanics into China. They and their Chinese partner selected and translated 
the water-screw, part of Archimedean mechanical propositions and relating 
calculations from western language into Chinese. Generally, very few 
Chinese are interested in the theoretical content of mechanics, and even 
some of them study the theoretical propositions. 

Some of them even made water-screws. But due to the inconvenience and 
high cost in construction and using, the water-screw was not popularly 
used in China.   

The transmission of European science and technology into China in 
the 17th and 18th century was shaped by multifold factors. The aim and 
think of the transmitter and the accepter played a major role in it. 
Concerning the transmission of Archimedean mechanics, the transmitter, 
the Jesuit missionaries, aim at using such knowledge in gaining Chinese 
scholars. While as the accepter, Chinese scholars are interested in practical 
knowledge which is useful to the society. The selection and the function of 
presentation of knowledge transmitted are shaped by the needs and interest 
of these two parts. After the knowledge was already transmitted to China, 
the social and technique condition decided whether it could be accepted or 
which part of it can be accepted and flourished. The transmission of 
Archimedean mechanics can serve as a case study of the research on the 
transmission of science and technology across culture boundaries, and the 

It was not only expensive but also delicate (See: Group, pp. 209–210). 

Chinese scholars and officials attached importance to Western machines. 
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relation between social context and the function of development and 
content of the knowledge. 
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ABSTRACT Archimedes is an author who is frequently quoted in Arabic 
texts in relationship with mathematics and mechanics, including hydraulic 
devices such as water-clocks. The present study traces transmission paths 
and evidence for an assessment of the impact of the Archimedean works 
on the Arabic tradition of mechanics and hydraulics. 
 
 
1. INTRODUCTION 

 
The impact of Archimedes of Syracuse (ca. 287 – ca. 212 BCE) on medieval 
mathematics, sciences and engineering has been discussed in several 
overviews (e.g. I. Schneider 1979) as well as in comprehensive studies 
(e.g. Clagett 1964) published during the last decades. The actuality of the 
Archimedean mechanical concepts and the contribution of Archimedes to 
what is called in modern terms design of mechanisms has been a frequent 
subject of current studies (e.g. Chondros 2009). 

Concerning the perception and tradition of the Archimedean works in 
the Arabic literature, scholar assessments and interpretations diverge con-
siderably. A first, although rather superficial, attempt to assess the influence 
of the works and the fame of Archimedes on the Arabic-Islamic science 
could be based on some kind of statistics with respect to (a) mentioning the 
name or the treatises of Archimedes, as well as to (b) copying, quoting, 
commenting or compiling the work of the Syracusian scholar in the Arabic 
grammatology. However, pseudepigrapha, corrupted texts, lost links in the 
tradition and difficulties in reconstructing the treatises scattered in several 
manuscripts or codices demand for more thorough and balanced consider-
ations. Most of the studies focus on the tradition of mathematics – perhaps 
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due to the fact that the study of the cultural transfer of mathematics from 
Greek into Arabic as well as the development of the science itself in the 
Arabic environment has a longer and broader scholar tradition. The present 
study will focus on Archimedean mechanics and engineering with a major 
goal consisting in revisiting and elucidating the relations among Greek, 
Arabic, Iranian, and Byzantine traditions or influences with respect to 
Arabic treatises attributed to Archimedes. 
 
 
2. ARCHIMEDES IN ARABIC TRANSLATIONS 

 
The most frequent and common transcription of Archimedes’ name in 
Arabic is Aršimīdis. In Arabic texts Aršimīdis is mentioned not as a certain 
author (somebody vaguely known under this foreign name), but as an 
author who is expected to be well-known to the reader. A conventional 
way of listing the Arabic translations of Archimedes’ works is given by 
Clagett (1964, pp. 3–4) in respect to the names of the treatises as known in 
modern scholarship: 

a) Works known also in Greek (Byzantine) tradition: “On the sphere and 
the cylinder” (with at least a portion of Eutocius’ commentary), “The 
measurement of the circle” (with perhaps Eutocius’ commentary), a 
fragment of “On floating bodies”. 

b) Some indirect material from the treatise “On the equilibrium of planes” 
found in mechanical works of other authors translated into Arabic (e.g. 
the “Mechanics” of Heron, nowadays extant only in Arabic). 

c) Works (perhaps) based on original treatises of Archimedes which are 
not extant in Greek: “Lemmata”, “Book of triangles”, “On the seven-
part division of the circle”, “On touching circles”, “On parallel lines”, 
“On data”, “On properties of a right-angled triangle” and the treatise 
“On the construction of water-clocks” which will be discussed below. 

Controversial on its philological and interpretative background is the 
last category – depending on the focus, the method of examining the extant 
manuscripts and the evidence available to the scholars. Folkerts (2009), for 
example, mentions only “Lemmata” and “On touching circles”, whereas a 
the treatise known under the title “On the construction of water-clocks” 
has been classified as pseudepigraphic or, at least, as a compilation of 
pseudepigraphic and Archimedean parts (s. below). 
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3. CATEGORIES OF IMPACT ON THE ARABIC-ISLAMIC 
SCIENCE 

 
In the 1990s Roshdi Rashed summarised the impact of Archimedes on the 
Arabic-Islamic science by proposing a threefold categorisation. The first 
group comprises the “inspiring legends”, to which Rashed counts the 
military triumph of the catoptrics marked by the story about Archimedes 
putting fire on the Roman fleet attacking Syracuse by means of gigantic 
mirrors, as well as the story about Hieron’s golden crone. These as well as 
similar stories were reported in Greek and Roman literary texts (e.g. 
Plutarch, Cicero), sources of minor interest for the Muslims in comparison 
to the higher estimated texts of purely scientific content. However, they 
should have undoubtedly accompanied and inspired Arab and Iranian 
scholars such as al-Kindī (9th century CE), Ibn Sahl (10th century CE) and 
al-Birūnī (10th century CE) in research activities on optics (catoptrics), 
mechanics and hydrostatics.  

The second category of scientific works comprises a large amount of 
Arabic treatises ascribed in the Arabic bibliography to Archimedes. These 
treatises are most probably – partial or complete – pseudepigrapha, 
occasionally considered erroneously as translations of lost Greek versions 
of Archimedean treatises. The most representative treatise of this category 
is the treatise on hydraulic clocks. Another group of texts of this category 
are related to cosmological models quoted by authors of the (Greek) late 
antiquity in the field of alchemy. In this context Archimedes was quoted 
as author of a treatise on “Pneumatics”, e.g. in texts ascribed to the 4th 
century CE alchemist Zosimos of Panopolis (Lippmann 1919, p. 85), an 
author who was very “popular” in Arabic alchemical and occult treatises. 

The third category comprises Arabic translations from the Greek of 
Archimedean treatises such as “The measurement of the circle” or “On the 
sphere and the cylinder”, which influenced considerably the Arabic 
geometry and mechanics. This influence has been demonstrated in the case 
of “The knowledge of the measurement of plane and spherical figures” of 
the brothers Banū Mūsā (9th century CE), as well as in the works of Thābit 
ibn Qurra (9th century CE) and the numerology of the Ikhwān as-Safā’, a 
group of Muslim scholars whose encyclopaedic activities are dated to the 
10th century CE in ‘Abbasid Basra in Iraq (Bafioni 1997). 

A close study of the specific traditions, however, renders the limiting 
lines among the above categories less visible. In the following some 
“interaction” modes among the above influence paths around works on 
mechanical devices will be presented. 
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4. ARCHIMEDES IN THE ARABIC TRADITION OF MECHANICS 
 
The admiration of Muslim (Arab, Persian etc.) mathematicians for 
Archimedes may mislead our modern expectation concerning the alleged 
perception of the mechanical treatises of Archimedes in the Arabic-Islamic 
environment. Whereas he was designed by the title of “leader” (al-imām) 
in mathematical sciences (Abattouy 1997, p. 13, no. 18), his reputation among 
the Muslim scholars in the field of mechanics is still controversial. Tracing 
his role in the Arabic tradition of mechanics depends not only on our 
knowledge about the direct translation of relevant Archimedean treatises 
into Arabic, but also on the compilation of excerpts from his works to-
gether with other texts – whereas original Arabic or translations from other 
Greek treatises. It is characteristic in this context that in the Arabic text 
of Heron’s “Mechanics”, a treatise extant only in the Arabic translation, 
Archimedes is quoted several times. Typical subjects in conjunction with 
these quotations are questions on equilibrium, of distribution of loads and 
of centres of gravity (Abattouy 1997, p. 12, no.16). Heron of Alexandria 
quotes in the Arabic text the unknown “Kitāb al-qawā’im (Book of the 
supports)”, in which Archimedes should have treated these questions. Heron 
provides also the reader with more references of Archimedean treatises 
under unknown names, e.g. “Kutub al-amhāl (Books of the levers)”– perhaps 
a problem of translating titles, of lost Greek originals, or of pseudepigrapha. 

On the other hand Arabic bibliographers of mechanical treatises do not 
mention relevant Archimedean treatises – although Arabic works on the 
balances, a typical subject of Arabic mechanics, contain parts that leave 
little doubt about the acquaintance of the authors (e.g. al-Khāzinī) with the 
Archimedean ideas (Abattouy 1997, p. 12). 

The perception of Archimedean mechanical concepts (e.g. levers) in 
Arabic is closely correlated with similar questions in the Arabic perception 
of the famous “Problemata mechanica (Mechanical questions)”, a Greek 
treatise ascribed to Aristotle. Although there is no extant Arabic translation, 
recent research has established relationship between this Greek pseudo-
Aristotelian text and works of Thābit ibn Qurra, especially his “Kitāb 
fī’l-qarastūn”, a treatise on the steelyard lever, as well as the Arabic text of 
Heron’s “Mechanics” (Abattouy 1997, p. 10). The establishing of the 
interdependence between this corpus and the translations of Archimedean 
treatises by Thābit ibn Qurra is a topic of current research (see also 
Abattouy 2002). 

A final remark concerns the relevance of the mechanical subjects for 
the corpus of Arabic treatises on ingenious mechanical devices (hiyal). 
These devices correspond to the Greek automata (e.g. those described by 
Heron in his “Pneumatica”). In the Arabic tradition the most common ones 
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are hydraulic clocks, one of which was ascribed by several authors to 
Archimedes. 
 
 
5. THE WATER-CLOCK OF (PSEUDO-) ARCHIMEDES 
 
In 1891 Carra de Vaux published an Arabic treatise attributed to Archimedes 
concerned with what the editor called “clepsydra”. Actually, the text of 
the edited, translated and commented manuscript treats a hydraulic clock. 
The treatise was re-examined and translated into German under the title 
“The clock of Archimedes” in 1918 by E. Wiedemann shortly after a 
treatment of the work in the more general context of clocks in the medieval 
Islamic world (Wiedemann 1915). The treatise was systematically collated 
by means of more manuscripts and published under the title “On the 
construction of water-clocks” by D. Hill (1976; 1981). 

One result of Hill’s study is that the treatise almost certainly contains 
Hellenistic and Byzantine material, as well as material from the Arabic-
Islamic tradition. The mechanisms described in the first two chapters, a 
water machinery and a ball-release mechanism for marking the hours, are, 
according to D. Hill, essentially the same as those presented by two other 
authors of Arabic treatises on water-clocks at the beginning of the 13rd 
century CE. Ridwān describes in a treatise dated 1203 CE the water-clock 
built by his father in Damascus. In his treatise on ingenious mechanical 
devices (hiyal) completed in Diyār Bakr in 1206 CE al-Jazarī describes – 
among others – similar hydraulic-mechanical machines. Hill suggests that 
the basic machinery should be an invention of the historical Archimedes 
(or, at least, it should go back to the Greek/Hellenistic tradition under this 
name). He points out that the outlook of the clock follows Iranian and 
Indian styles, but also Syrian-Byzantine construction models as reflected 
at the hydraulic-mechanic clock of Gaza described by Procopius (5th 
century CE). 
 
 
6. CONCLUSION 

 
Combining functional elements of hydraulics and mechanics of one cultural 
tradition with aesthetic models of another according to a plan of a third one 
in the case of the water-clock of Archimedes resulted presumably to a device 
for which the name of Archimedes offers more than a famous affiliation. 
This hypothesis about the design practice could also explain the patchwork 
composition of some manuscripts, in which the pseudo-Archimedean treatise 
is just one part of a group of device descriptions and, eventually, also just 
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one of several theoretical considerations. The assessment of the impact of 
the Archimedean tradition on Arabic mechanics still remains an on-going 
quest, in which new evidence on contributions to the development of the 
Arabic tradition of mechanics and hydraulic clocks inevitably contain new 
aspects of the connection of this development with the Arabic tradition 
under the name of Archimedes. 
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3. LEGACY AND INFLUENCE IN HYDROSTATICS



THE GOLDEN CROWN: A DISCUSSION

these and further inventions, real or supposed to be, there is the episode of 

hydrostatic balance. In this paper, we compare and discuss the two 
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ordinary inventions and to the legendary events that have been ascribed to 

of his works. Systems of levers and catapults, cochlea and other mechanical 
or hydraulic contraptions, water-clock, planetarium, heat rays. Among 

comparisons, mentioned by the roman architect Vitruvius, the second one 

Fig. 1. Reproduction of wood engraving of the late Middle Ages.
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ABSTRACT Archimedes’s fame is universally more connected to his extra-
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Hiero’s Crown, Fig. 1. The episode of the apparent fraud goes generally around 

reconstructions, both of them to be considered plausible.

him rather than to a deep and real knowledge of the historical personage and 

is anonymous, it is related by Priscian and it’s essentially based on the 

in  two  different  versions;  the  first  one,  which  is  based  on  the  volumetric 



the ancient  times and, at the same time, the most underestimated and 
misunderstood. Many elements have contributed to this paradoxical result: 
his brief style and the objective originality of some of his results (hardly 
mentioned or even lacking  proofs, references to non identified or missing 
works), (1) the troubled and sometimes risky vicissitudes of the works to 
which his thought has been committed, the contradictory and uncertainty 
of the various evidences which, through different centuries and cultures, 
have often left  us a transformed and phantasmagorical version of this 
personage. In a word, Archimedes has become more an icon of scientific 
mythology and of novelized history, than an author whose works we know 

dealing about the usual smallness of biographical information and the 
fragmentary quality of the original sources, which characterized almost 
any scientist belonging to classical ancient  times and, particularly, the 

an exclusivity of modern times. (2) Starting from his times, when, together 
with the refined Alexandrine culture, of wich he was a bright champion, 
Archimedes was swept away from the military preponderance of the 

translate him, and they just  limited theirselves to tell his magnificent 
achievements, incidentally and not  in a parallel to the Life of Marcellus, (3)  

times when the sloth of Italian publishing, together with the inattention of 
public, make us run the risk to loose his inheritance again. As a matter of 
fact, in comparison to the large number of the foreign editions of the  
complete works of Archimedes, the only, and late, Italian edition, though 
with the limits pointed out  by several authors, is still the one edited by 
Frajese, (4) who, with the few copies still existing in libraries, keeps in life, 

of power, ever and ever dedicated to the defense of the status quo  and of 
the «Reason of State», which loses sight  of its best brains. In ancient times, 
through killing the genius engaged in his country’s defense, yesterday 
forcing the best brains of all to emigrate, to escape from «concentration 
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1. INTRODUCTION

2.

Archimedes is per antonomasia the best  known and revered scientist  of 

Among scientists is generally accepted his relief, for someone even 
“Archimedes is the most important scientist ever existed” [...] The most 

«Hellenistic» ones. We’re speaking about the modern removal of ancient 

Romans who couldn’t  understand him, and so couldn’t  (or wouldn’t) 

Drain», away from one’s Country, who is trying to build a better future.

ARCHIMEDES, WHO’S THAT?

or a scientist whose results we understand. In his case, we’re not  only 

people’s scientific results, as if history were only progressive, and science 

also a peculiar event in a larger and recurrent phenomenon: the arrogance 

camps» a nd from extermination, and again today forcing to a «Brain 

beginning,  in  this  way, to  misinterpret and betray him. Coming to our 

in our country, an echo of the greatest genius’ thought. Nevertheless, this is 



certain general characteristic of european scientific tradition is that itself 
(5) Also 

among common people he is generally famous, though in a more disputed 
and paradoxical way. Surely he came to limelight  in collective imaginary, 

Gyro Gearloose (1)

along the streets shouting Eureka! He dipped crowns into the water, he 
drew geometrical figures while he was being killed and so on. The children 

mythological characters than to other thinkers. The result is that we 
remember him, but we do as a legendary character, completely out of 
history” (2) As for as the historical personage, only his death date is sure: 
212 BC, because he died in the fault of Syracuse, in consequence of the 

BC this deduction is based upon this note (reported by the Bizantine 

elderly age: 75 years old”. (5)

Archimedes as a thinker and his works, which survived fortunately and 
(5)

profeta in patria we could say. According version, 

enchanted by geometry,  [...]
domestic, so far as to forget even to eat and to take care of his own 
body.” (3)

since Archimedes was dead, ascribes to him  gratuitously his own Platonic 
(2)

the different  aspects of his own multiform intelligence, or if he made any 
preference between his «geometrical works» and his «mechanical works», 
today he is considered above all as a grand mathematical, a forecaster of 
the infinitesimal and combinatorial calculus while, in his times, he was 
considered above all as an engineer, a technologist, an inventor of 
wonderful and frightening machines, which memory caused the oblivion 
of his mathematical corpus which few people could really understand.

linked to amazing inventions and events, more than to his works. On the 
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3. CROWN OR WREATH

Then, starting from his death, his fame spread universally, and it  was 

 but “What does the modern cultured man know about 
embodying well the figure of a bizarre genius, in the shoes of Disney’s 

consists of a series of additional notes to Archimedes’s work.” 

philosopher Ioannes Tzetzes about fifteen centuries! after): he died “at an 
 In any case, it’s fairly probable that  he was 

based only upon the “opinion of a scientist who, more than three centuries 

Archimedes despised every technical activity and “lived continually 
to Plutarco’s 

 It’s still very doubtful the truthfulness of this opinion, that’s 
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him? [...] He just remembers that he did strange things: he ran naked 

anecdotes [. ..] equalize Archimedes more to the legendary and the 

roman siege, an epochal event  related in the Annales. It’s uncertain, on the 
contrary, his birth date, though it’s supposed to be usually placed in 287 

is still lacking an updated critical edition written in italian language: nemo 

(6)

often in a rocambolesque way,   many writings are now available, but  it 

 a mermaid who was to him  family and 

inclinations.”   Whatever was the relief that Archimedes himself gave to 

the Punic Wars, whose The Siege of Syracuse is a part. As for as 
an old man for his times, as reported by our most reliable source about



occasion of the launching of the famous ship Syracuse (later called 

himself, alone, launched the heaviest  ship, making it slip sweetly to the 
sea, using a polyspaston, (3)

(7) According to another testimony, 

(8)

result was the planetarium, described by the consul Caius Sulpicius Gallus 

a nephew of the plunderer of Syracuse. (9) In an Arabian manuscript is 
contained the description of a particularly ingenious water-clock he 
invented. (10) In his treatise The Sand Reckoner, Archimedes himself 
describes the dioptre, an instrument used in order to measure the apparent 

(4) 

Amazing and frightening were, finally, the war devices (iron claw and heat 
rays), designed and used by Archimedes in order to defend Syracuse from 
the roman siege, burning and sinking the roman ships. The event  is 
reported nor by Polibius, nor by Lyvy, nor Plutarch, but it is related only 
by several late sources as Galen, Dio Cassius and more authors among 

described as composed of a series of conveniently oriented flat  mirrors, 
able to focus sun rays in a single point: the wooden roman ships to be 
burnt out in Syracuse sea. The structure was probably formed by at least 
24 large flat  mirrors, disposed in a hexagonal shape over a grate, which 
spun over a pole fixed to the ground: the central mirror was used to direct 
sun rays on the target, while the side mirrors were focused with a belt 
system. A history or a legend? This episode has always been considered 
extremely unlikely, maybe impossible, but  an experiment, realized by MIT, 
showed for the first time it was at least practicable. (11) Anyhow, the 
episode that  excited most common imagination is the Golden crown of 

crown, as everybody usually says. [...] The difference is not so accessory, 
(8)

this event, while Vitruvius reports it 

a consequence of his successful exploits, to place in a certain temple a 

218 F. Costanti

4. IN THE MANNER OF VITRUVIUS

Plutarch scarcely mentions 

Hiero II. “It was, more correctly, a golden wreath (στέφανοϛ), and not a 

 that’s to say a two blocks tackle with a large 
number of mobile pulleys. This event is linked to the famous phrase  “give 
me a fulcrum, and I’ll lift the World up. 
during his Egyptian visit, he invented the cochlea, a spire pump, that’s 

Alexandris), the largest  vessel of ancient times, it’s told that  Archimedes 

called in fact «Archimedes’s screw», able to lift  water up, in a very 
efficient way, and with little effort.  Another very admired technical 

which the mentioned learned Byzantine man. The heat rays are here 

in one of his works, received by his colleague Marcus Claudius Marcellus, 

size of Sun. Also “the history of astronomy is a debtor to The Sand 
Reckoner: in this work we found, as a matter  of  fact, the  most ancient 
attestation of the «heliocentric system» by Aristarcus of Samos.” 

extensively. “Hiero after gaining the royal power in Syracuse, resolved, as 

because the wreath was a sacred object, and could be altered in no way”.



golden crown which he had vowed to the immortal gods. He contracted for 
its making at a fixed price, and weighed out a precise amount of gold to 
the contractor. At the appointed time the latter delivered to the king’s 
satisfaction an exquisitely finished piece of handiwork, and it appeared 
that in weight the crown corresponded precisely to what the gold had 
weighed. But afterwards a charge was made that gold had been abstracted 
and an equivalent weight of silver had been added in the manufacture of 
the crown. Hiero, thinking it an outrage that he had been tricked, and yet 
not knowing how to detect the theft, requested Archimedes to consider the 
matter. The latter, while the case was still on his mind, happened to go to 
the bath, and on getting into a tub observed that the more his body sank 
into it the more water ran out over the tub. As this pointed out the way to 
explain the case in question, he jumped out of the tub and rushed home 
naked, crying with a loud voice that he had found what he was seeking; for 
he as he ran he shouted repeatedly in Greek, «Εὕρηκα, εὕρηκα!»  
Vitruvius says. According to him, Archimedes “he made two masses of the 
same weight as the crown, one of gold and the other of silver. After making 
them he filled a large vessel with water to the very brim, and dropped the 
mass of silver into it. As much water ran out as was equal in bulk to that of 
the silver sunk in the vessel. Then, taking out the mass, he poured back the 
lost quantity of water, using a pint measure, until it was level with the brim 
as it had been before. Thus he found the weight of silver corresponding to 
a definite quantity of water. After this experiment, he likewise dropped the 
mass of gold into the full vessel and, on taking it out and measuring as 
before, found that not so much water was lost, but a smaller quantity: 
namely, as much less as a mass of gold lacks in bulk compared to a mass 
of silver of the same weight. Finally, filling the vessel again and dropping 
the crown itself into the same quantity of water, he found that more water 
ran over the crown than for the mass of gold of the same weight. Hence, 
reasoning from  the fact that more water was lost in the case of the crown 
than in that of the mass, he detected the mixing of silver with the gold, and 
made the theft of the contractor perfectly clear.” (12) According to an 

c
c o c

of gold and with the volume (Va) of the same weight  (Pc) of silver. So the 
relationship between the unknown weights of gold (Po) and silver (Pa) is 
immediately given (knowing their sum Pc) by

(13)  
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eminent American scientist, “Vitruvius’ method compares the volume (V )  

The Golden Crown: A Discussion

of a date weight (P ) crown with the volume (V ) of an equal weight  (P ) 

the
portionality:”  

following  pro-



anonymous Carmen de ponderibus et mensuris, where  also the «method 

first, surely the plainest among the descriptions of density contained in the 
(13) 

where the Parisian astronomer applied the volumetric method to the wreath 
problem, an eminent studious of mechanical medieval science warned 
readers about this method, because on his opinion it  was founded on the 

volumes of their components, [while] in mixtures (alloys included) there 
are often volumetric variations; therefore the assumption above is often a 
not very careful approximation” (13)  

scientific precision; and it will seem even more so to those who have read 
and understood the very subtle inventions of this divine man in his own 

are to Archimedes’s and what small hope is left to anyone of ever 
discovering things similar to his [discoveries]”. (14) So, starting from late 
ancient  times, and then also during the Middle Ages, it was resolved that 
this reconstruction «in the manner of Vitruvius» was not based at all «On 
Floating Bodies» and soon begun to spread alternative reconstructions, 
largely based on hydrostatic principles. Before inspecting these alternative 
ideas, it would be appropriate to verify if the relation (0) is really so far 
from the «buoyancy». It will be anyhow interesting to discuss, being it  an 
«exact» relationship, how it  could be obtained. Granted that, according to 

present [...] almost as in ours.” (4) Therefore, if the crown had really 
contained some silver mixed to gold, making a comparison in the water 
between it and a one with the same weight  (Pc) in gold, because of the 

o
a c

the volume of gold (Vo). If we made a comparison with the volume of an 
c
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hydrostatic» appears, about  which we’re going to speak largely in the next 
section. Here appears then “the definition of specific gravity (maybe the 

premise “that the volume of mixed materials is equal to the sum of the 

Frajese, “there’s not, in Archimedes, a term which literally corresponds to 

(γ ), there’d have been a difference between the volume of crown (V ) and 

This «volumetric method» is described, though in a generic way, in the 

Quadripartitum numerorum by Jean de Murs. Commenting to this work, 

Anyhow, Vitruvius’ version soon 

writings; from which one most clearly realizes how inferior all other minds 

appeared to be suspect  and, in Galilee’s words, “a crude thing, far from 

our «specific weight» or «density» but [that] the concept is with no doubt 

difference between the specific gravity of gold (γ ) and the one of silver 

equal weight in gold (P ), the crown’s volume would be:

humidum by the Pseudo Archimedes and in   
This method is also further developed

in De insidentibus i n
most ancient Latin works).” 



a
between the volume of the crown and the one of the equal weight (Pc) in 
gold would be:
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where we find, instead, the unknown amount  of gold (Po). If we divide the 
expression (4) with the expression (2), and we simplify some terms, we 
find the same expression we had at the beginning (0).
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water between the unit  weight in gold and silver, that’s to say:

The Golden Crown: A Discussion

where we  see  the  unknown  amount  of  silver (P ), while the difference 

And if, instead, the crown should be compared in the water with an equal 

and we’d  find a difference between the volume of the crown and the one 

In the process above, we can notice that, arranging the terms of the former 

a constant  value that’s exactly equal to the difference in terms of weight  in 



different  «hydrostatic thrust» that  they get from water, as a consequence of 

reconstruction is a guess, because it has been run with actual logics and 
notes. For a Greek scientist, in fact, the relationship between different 
amounts as weight  and volume wouldn’t  have had any meaning. 
Furthermore, a proof by Archimedes would be based on the «theory of 
proportions» among amounts of the same species and would have been 
developed through the «method of exhaustion». Making anyhow the 
hypothesis (taken from an exercise of an actual manual of physics) that the 
wreath would weight 5 kg and that it was made of gold (70%) and of silver 
(30%), the differences in terms of volume would have been expressed in 
deciliters, and so surely detectable by Archimedes who, among his many 
inventions, was also an improver of a water-clock. Sure, if we consider 
that the wreath for a «big head» had to be much larger than the little blocks 
of silver and gold of equal weight, the experiment  could have been 
realized only in a vase of 20 cm diameter. In this case the differences in 

great discoverer of volumes and areas determined with mathematical 
accuracy, is here forced to deal with this problem, using the practical 
measurement (necessarily imprecise) [...] of the amount of water 
displaced. (4)

another way to solve this crown problem, here improperly called  «in the 
manner of Priscian». “The general process, as Vitruvius writes it down, is 

completely different the story we can read in a poem which was for a long 
time ascribed to Priscian; in this freely translated version we read that 
Archimedes took a pound of gold, and one of silver, and he put them on the 
plates of a balance, where they were of course in equilibrium; then he 
dipped them into the water, but as they lost their equilibrium for the 
overflow of gold, he decided to add some weight of silver, for example 
three drachms, to restore it, and from this he noticed that one pound and 
three dramms of silver equalized one pound of gold when they were in the 
water. After this, he weighted the crown, which had to be completely made 
of gold, and when he discovered that it weighted, for instance, six pounds, 
he took six more pounds of silver, and put them on the balance together 
with the first ones, dipping all of them  into the water. If the crown had been 
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5. IN THE MANNER OF PRISCIAN

We resume the words of an authoritative Italian scientist  to  introduce 

level would be surely narrow, but not  paltry. It  is suggestive to think, “the 

” 

not considered to be the one the great scientist from Syracuse used, and it’s 

their specific gravity. It’s so possible to gather that, at  least  in principle, the 
reconstruction, «in the manner of Vitruvius» wasn’t extraneous to the spirit 

And this difference in weight between silver and gold is due exactly to the 

of Archimedes. It’s necessary, anyway, to warn that  all the former 



really completely made of gold, eighteen drachms of silver, added to the 
former six, should have been enough to put the plates in equilibrium, but 
any drachm less than the eighteen proofed the existence in the crown of 
one third of pound of silver” (15) The process mentioned above was related 
in the anonymous Carmen de ponderibus dated V century AC, which is 
present  in several codes by the Latin grammarian Priscian. (13)  In a section 
of the short poem we find two methods to solve the wreath problem, the 
former is essentially based on the principle by Archimedes. The technique 
is symbolically expressed by the following formula:

!!"
!
"

!
#

#
$
#
%$

$

$
$
%$

"

where can be noticed the losses of weight in water respectively of the  
crown (σc), of an equal weight  in gold (σo) of the same weight  in silver 
(σa), caused by the different push that different objects get from the water. 
The first  «modern» presentation on this method, entirely based on the laws 
of lever and of floating, is related in the book Magia naturalis published in 
London by the Italian scholar Giambattista Della Porta. About in the same 
years also Galileo strongly criticized the reconstruction made by Vitruvius 
and, in his juvenile work called «La bilancetta», exposed “a method came 

that this method is the same that Archimedes followed, since, besides being 
very accurate, it is based on demonstrations found by Archimedes 
himself.” (14)

genius from Syracuse (9) opts for the same version, explaining later the 

to be likely), it needs to be dipped in a vase which has a much larger 
volume than hers, and consequently with a wide surface, which makes very 
small the height difference to be compared and consequently increases 
more and more the chance of a mistake. [...]  In any case, in order to 
compare the overflowed waters, it would be better to weigh them. Why, 

where the objects are dipped; this seems to me the point!)  [...]  (3) 
Vitruvius presents the episode when he writes about Archimedes 

with the object of discussion, while the measures done with the 
«hydrostatic balance» would be a perfect introduction to it. All that lets us 
think that Vitruvius source exposed a measure based on a hydrostatic push 
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hydrostatics. The volume measures don’t have, in this case, any connection 
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 Also the author of a beautiful children’s book dedicated to the 

measure can be performed with great precision. [...] If the wreath has a 

to my mind which very accurately solves our problem. I think it probable 

reasons which brought him to this choice: “(1) I don’t think the volumetric 

complex structure (that’s to say a high ratio surface/volume, how it seems 

then, don’t we use a weight approach? (The mistake in measuring here, 
unlike volumetric measures, doesn’t depend on the dimension of the vase 



and that Vitruvius thought to «simplify» the argument (ignoring the 
precision of the measure itself ).” (16) If we wanted, anyhow, subject the 
same wreath of the former example (5 kg) to a control, using the above-
mentioned method, we could have noticed a difference in weight of about 
65 g. A clue definitely more important and much easier to grasp.

the same age, none is heavier than 1 kg. The golden wreath of Verginia, in 
Macedonia (IV century BC), for example, is just 700 g heavy. If we made 
a comparison between a 1 kg wreath, and a sample made of gold of equal 
weight, the «volumetric method» would show a difference of half a 
millimeter, while the «hydrostatic method» a difference of 13 g. This 
comparison allows us to say that the «hydrostatic method» is more careful 
and the easiest to be carried out
there's no chance to decide surely which was the process Archimedes 
really used, supposing that the episode called «The Golden Crown» is 
really reliable. This writer likes to think that  this anecdote really happened 

example the Quadrature of the 
Parabola, which was obtained and with a geometrical process, and with a 
mechanical one) Archimedes came to this result  in a double way: the first 
time with a  «volumetric method», the second one with a «hydrostatic 

scientist  can find, one day, under some miniature, the traces of another 
work, which, in the Doric Greek of Archimedes, reveals us some other 
aspects of his wonderful genius.
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6. CONCLUSION
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reconstructions are based on the same principles: the former measuring 
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as if they were antithetical one another. It’s instead proved that  both 

volume differences, the latter weight  ones. In short, let’s consider that 
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ABSTRACT Archimedes left to posterity his famous treatise “On Floating 
Bodies”, which establishes the physical foundations for the floatability and 
stability of ships and other maritime objects. Yet since this treatise was 
long lost and also simply ignored by practitioners, it took many centuries 
before Archimedes’ brilliant insights were actually applied in ship design 
and ship safety assessment. This article traces the tedious acceptance of 
Archimedes’ principles of hydrostatics and stability in practical applications. 
It will document important milestones and explain how this knowledge 
was passed down through the centuries and ultimately spread into ship 
design practice.  
 
 
1. INTRODUCTION 
 
Archimedes (ca. 287–212 B.C.) in his famous treatise “On Floating 
Bodies” [1, 2] laid the foundations of hydrostatics, especially for the 
equilibrium and stability of objects floating on the surface of a liquid or 
immersed in a liquid medium. Evidently his principles and brilliant 
theories are immediately applicable to ships and can thus form the basis of 
ship hydrostatics. These fundamental principles are apt to play a crucial 
role in ship design and ship safety assessment. Yet this knowledge from 
his treatise did not spread very far in Archimedes’ lifetime and was lost 
or ignored by practitioners for more than a millennium until it was 
rediscovered many centuries later during the late Middle Ages. It then still 
took until the 18th c. before the theoretical principles established by 
Archimedes were actually applied in ship design and stability assessment. 
Why did this long delay occur? 

This article will examine the long history of ship hydrostatics from 
Archimedes to the modern era and will document the most important 
milestones in this development. It will follow the route of knowledge 
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transfer from its classical origins to current practical applications in ship 
design and operations. It will also discuss other prerequisites for making 
the physical principles of hydrostatics applicable to practical applications 
in ship design and stability. Overall a critical mass of knowledge has to be 
brought together in order to raise the theoretical knowledge to maturity for 
applications in practice. The following subjects are essential elements of 
knowledge for an adequate solution: 

 Physical principles of hydrostatics for the equilibrium and stability of 
floating objects. 

 Ship hull geometry definition and representation in some reliable 
medium, preferably at the design stage. 

 Evaluation of ship geometry data by numerical calculation. 
 Stability criteria and risk evaluation. 

Archimedes firmly established the physical principles and took the 
opening moves in the other related topics. But it still took a long time 
before all other ingredients had reached sufficient maturity for actual 
application. We will describe this arduous road. 

This article does not claim to present a complete history of ship 
hydrostatics. Rather it focusses on how the ingenious ideas of Archimedes 
were passed down to posterity, were lost and resurrected again, and then 
supplemented by other fundamental knowledge until they found their 
application in ship design, which Archimedes perhaps foresaw and which 
we take for granted today. 

 
 

2. THEORIES 
 
Archimedes 

Precursors: Greek mathematics and Mediterranean shipbuilding, especially 
also in classical Greece, had reached an advanced level before Archimedes, 
on which he based his original achievements in the 3rd c. B.C. This back-
ground material which should be studied to appreciate the magnitude of his 
creative contributions can be found in the literature (e.g., Heath [3]), 
Nowacki [4]). 

Force Equilibrium: Buoyancy and Displacement: Archimedes in his 
famous treatise “On Floating Bodies” (OFB) pronounced the fundamental 
laws of hydrostatics, i.e., the physical laws of equilibrium for bodies 
floating in a liquid at rest. Book I deals with the force equilibrium between 
buoyancy and displacement forces and contains the Principle of Archimedes, 
which holds for bodies of any shape. Book II treats the moment equilibrium 

•

•

•
•
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and pertains to the stability of the floating condition, derived for the special 
case of a paraboloid of revolution. Indirectly hereby Archimedes also laid 
the foundations for ship hydrostatics since his approach is immediately 
applicable to ships, even if he did not mention ships anywhere in his treatise. 

How did Archimedes arrive at his Principle of Hydrostatics? This is 
described in his own words in this treatise [1, 2]. He makes two essential 
axiomatic assumptions. 
1. In Book I, preamble he states the properties of the liquid (Heath [1]): 

“Let it be supposed that a liquid is of such character that its parts lying 
evenly and being continuous, that part which is thrust the less is driven 
along by that part which is thrust the more; and that each of its parts is 
thrust by the liquid which is perpendicularly above it…” 

These lines infer a homogeneous, isotropic liquid whose parts are at rest 
when in equilibrium. Although the Greeks did not know the concept of 
pressure, the idea of a hydrostatic pressure distribution is implied here 
between the lines. 

2. In Book I, §5 Archimedes postulates his Principle as follows (Heath [1]): 

“Any solid lighter than the liquid will, if placed in the liquid, be so far 
immersed that the weight of the solid will be equal to the weight of the 
liquid displaced”. 

The proof is illustrated in Fig. 1 and described in more detail in 
Nowacki [4]. The surface of any liquid at rest is a spherical surface whose 
center point is at the center of the earth (section ALMND). The body 
EZTH be specifically lighter than the liquid. In two equal adjacent sectors 
of the liquid at rest the body EZTH floats in equilibrium on the surface 
such that its submerged volume BCTH is equal to volume RYCS in the 
neighboring sector. Since in equilibrium the total weight of the masses in 
each sector must be equal, the weight of the floating body EZTH must be 
the same as that of the volume of RYCS, hence must also be equal to the 
weight of the liquid volume it displaces. 

Note that this elegant proof of the Principle of Archimedes (buoyancy 
force is equal and opposite to gravity force or displacement) is based 
entirely on an experiment of thought. The proof is entirely deductive from 
a few axioms regarding the liquid properties, no observations are required. 
It holds for floating bodies of arbitrary shape in an arbitrary type of liquid 
and was derived for liquids at rest without explicit knowledge of local 
pressure anywhere. Buoyancy and displacement are force resultants, which 
in equilibrium are equal in magnitude and opposite in direction. This proof 
is an outstanding example of Greek logical thought and of the brilliance of 
Archimedes. 
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Archimedes has also shown that this Principle holds for a fully 
immersed object of equal specific weight as the liquid (neutral force 
equilibrium), but does not apply when the solid is heavier than the liquid 
because the object then is grounded and loses as much weight as the 
displaced volume weighs, the rest of the weight is taken up by the 
grounding support force (Book I, §7). 

 
 
 
 
 
 
 
 
 
 

Fig. 1. Proof of Archimedes’ Principle (from [2]). 
 

The Eureka Legend: This evidence sheds some special light on the 
famous “Eureka” legend, as reported by Vitruvius [5], Book IX.3. 
According to this account Archimedes was challenged by king Hieron of 
Syracuse to determine whether a wreath, made for the king by a goldsmith 
for a sacrificial offering, was of pure gold or fraudulently made of gold 
mixed with silver. Archimedes is said to have sat in a brimful bathtub 
when he discovered a method to measure the volume his body displaced 
in the water: After leaving the tub he could fill up the water to the brim 
again with a measured volume of water. He was elated at this discovery 
and spontaneously ran through the streets of Syracuse nakedly shouting 
“Eureka” because he had found a method to prove the fraud. Archimedes 
went on to sink the wreath and two equally heavy pieces of pure silver and 
gold each in a bowl full of liquid to the brim, then after removing each 
object to refill the bowls with a measured volume of liquid. Then since 
the weights were known, the different volumes gave an indication of the 
different densities of the objects and the fraud was revealed. 

Thus Archimedes thereby discovered a method for measuring the 
volumes of solid objects and, if their weights are known, their relative 
densities. But in this bathtub experiment he did not discover the law of 
equality of buoyancy and displacement, hence the principle of hydro-
statics, as is sometimes falsely claimed. This law does not hold there 
because the human body in the tub will usually touch the ground and the 
ground force must be taken into account (Fig. 2). 
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Moment Equilibrium: Hydrostatic Stability: In Book II of OFB 
Archimedes deals with the moment equilibrium of a floating solid para-
boloid of revolution when inclined from an initially upright position. 
Thereby he derives the righting moments of the inclined solid which he 
uses as a stability criterion: The equilibrium is stable, if - in the absence of 
any heeling moments – the inclined object restores itself to its upright 
position. How does Archimedes determine the righting moment in this 
case? 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Archimedes in the Bathtub. 
 

First he makes the same assumptions regarding the properties of the 
liquid as in Book I. The liquid domain is again unbounded, the liquid is at 
rest. Then the floating object, initially at rest in an upright position, is 
inclined by a certain, finite angle, but so that the base of the paraboloid is 
not wetted (Fig. 3). The homogeneous paraboloid segment is cut off per-
pendicularly to its axis, the paraboloid segment axis length is not greater 
than 1.5 times its half-parameter. For this case Archimedes demonstrates 
that the righting moments are positive. 

The actual proof applies several mechanical and geometrical principles, 
deduced in this treatise or derived by Archimedes in his earlier work (for 
details see Nowacki [4]): For the inclined paraboloid he disregards the 
underwater part under the water surface JS because its buoyancy and 
gravity forces are equal and opposite for the homogeneous solid and thus 
produce no moments. For the abovewater part he proves (by means of his 
centroid shift theorem [4]) that the vertical gravity force through its centroid 
C is equal to the incremental buoyancy force, due to the inclination, 
through B, but opposite in direction so that they form a couple or righting 
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moment, tending to bring the body back to the upright position. Thus this 
shape for a solid of this specific weight is in stable equilibrium. 

Although this derivation holds only for the homogeneous solid para-
boloid and is limited to the incremental righting moments contributed by 
the immersed and abovewater parts, respectively, it can be shown that a 
similar reasoning can be developed for a solid of any shape and with non-
homogeneous mass distribution, hence also for ships. The lever arm between 
the buoyancy and displacement forces in the paraboloid is thus the ancestor 
of the “righting arm”, which today is conventionally used for the same 
couple of forces in modern ship stability analysis. Positive righting arms 
are a necessary condition of upright stability. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Inclined Paraboloid (from [6]). 
 

Achievements and Deficits: Archimedes thus laid the physical 
foundations for ship hydrostatics. He defined the resultants of buoyancy 
and displacement and pronounced the equilibrium principle of their equality 
in the same line of action and in opposite directions. From moment equili-
brium he deduced a measure of hydrostatic stability by introducing the 
concept of righting moments based on the couple of buoyancy and dis-
placement. This has remained the physical basis for judging the floating 
ability and stability of ships in design and operations. To evaluate ship 
properties at the design stage and during ship operations some further 
information is required: 

– A reliable, complete hull form definition, in whatever medium (mould, 
model, drawing etc.). 

– A method to calculate the volume and volume centroid of the under-
water hull (center of buoyancy), for both the upright and inclined 
positions. 

– A practical scheme to determine the centers of gravity of the ship’s 
parts and therefrom the aggregate center of gravity of the entire ship. 
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– Criteria to assess the required safety margins in ship stability for 

According to the available historical evidence Archimedes was not yet 
able to meet these additional requirements. Thus in the practice of ship 
design for many centuries the estimate of the ship’s floating condition 
(draft and trim) and stability remained a matter of empirical judgment and 
approximation. 

As for the calculation of volumes and their centroids Archimedes 
frequently applied the method of Eudoxus (410–356 B.C.), later known as 
the method of exhaustion (Boyer [7]), to simple shapes. In this scheme a 
polygonal approximant to the curved surface (or curve) is constructed and 

approximation becomes as close as desired, but falls short of calculus for 
lack of a limiting process to the infinitesimal [7]. Despite that, a numerical 
approximation for ship geometries might have been constructed on similar 
grounds, even in antiquity. But a continuous, arbitrarily refinable hull form 
definition was not available to Archimedes and his generation. 

Some claim that Archimedes may have been involved in the conception 
of the famous Syrakosia, the giant ship ordered by Hieron, the ruler of 

by Pomey and Tchernia in [8]. Bonino [9] has performed a thorough 
reconstruction or redesign of the vessel, based on the limited data, and 
arrives at a size of ca. 3000 tons of displacement and principal dimensions 
of length x beam x draft = 80x15.5x3.9 m. He has also built a realistic 
model replica illustrating the feasibility of this design. He concludes from 
the overall context of the shipbuilding methodologies of that period that 
Archimedes was not directly involved in any responsible design decisions 
although he may have acted as a consultant and advisor to Archias and 
Hieron. I share this cautious opinion. 
 
History of Archimedes’ Manuscripts 

Today only 12 of Archimedes’ treatises are preserved, several more existed 
in antiquity. They stem from Greek copies of his manuscripts and Latin 
translations. The adventurous history of these texts has been thoroughly 
researched by Heiberg [10] and updated by Dijksterhuis [11]. Clagett [12] 
has carefully examined the mediaeval reception of Archimedes. The story 
of a recent rediscovery of a palimpsest with Archimedes’ texts is told by 
Netz and Noel [13]. This short survey will concentrate on events relevant 
to the history of “On Floating Bodies” (OFB). Much more detail is given 
by Nowacki [4]. 

successively refined until the error drops below a given bound. The 

Syracuse, or may have helped with engineering calculations, as e.g., suggested 

different operating conditions and environments. 
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The path of the preserved manuscript copies has followed a circuitous 
route. In essence only three master copies in Greek have existed, all 
stemming from mediaeval Byzantine sources in Constantinople, where 
Greek clerics collected the remainders of Archimedes’ dispersed works in 
the 9th c. and later took some along into exile to Sicily under Norman and 
Hohenstaufen rule. They were numbered Codices A, B and C by Heiberg [10].  

Codex A: In the papal libraries after 1266 with seven treatises by 
Archimedes, but not OFB. Copied several times, but the master irretrievably 
lost by 1564. 

Codex B: A Latin translation of 1269 prepared by Willem van Moerbeke, 
a Flemish Dominican monk and papal translator. This translation was 
based in part on Codex A, in part on another Greek master with OFB, then 
existing in the papal archives, but soon lost. Thus Codex B contains OFB 
in Latin. This text formed the basis of several Renaissance humanist 
reprints after 1500, above all a brilliant reconstruction by Commandino 
[14] (1565) with both books of OFB. Commandino purged the text of 
apparent errors, removed some lacunae and completed missing arguments 
in proofs. This version became the most respected reference after the 
Renaissance (Clagett [12]). After 1600 many other editions followed in 
Greek, Latin and modern languages (Dijksterhuis [11]). 

Codex C: Incredibly, a third Greek master copy was discovered in a 
Greek monastery in Constantinople in 1899 in a palimpsest, which contained 
the rinsed off and scraped off Archimedean text under a 13th c. prayer 
book, but still barely legible under a magnifying glass. This document was 
inspected, photographed, transcribed and immediately translated by Heiberg 
[15]. It did contain the only preserved Greek versions of both books of 
OFB. Codex C was lost during the Greek-Turkish wars in 1920–22, but 
resurfaced at an auction in New York in 1998, where the anonymous 
bidder who acquired it gave it to the Walters Art Museum in Baltimore for 
scientific reevaluation [13]. 

Thus OFB was accessible to scientists in Latin and increasingly in 
modern language translations since about 1600 and in the original Greek 
transcription by Heiberg [15] since 1907. 

 
 

3. TOWARD APPLICATIONS 
 
Late Antiquity and the Middle Ages 

While the knowledge of Archimedes in hydrostatics lay dormant for at 
least a millennium in late antiquity and the early Middle Ages, ship-
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specific is known about ship design methodology in antiquity, though it is 
evident in view of the complexity of some major shipbuilding projects that 
methods of advance planning and design must have existed (Pomey [16]). 
Archaeological sources from late antiquity show traces of prevailing 
practices, and later excavations of ship wrecks give indications of some 
basic reorientation in shipbuilding and ship design in the transition to the 
Middle Ages. This includes: 

Marking: Bockius [18] excavated several Roman shipwrecks dating 
from the 4th c. A.D., which lay buried in the silt of the harbour and river-
bed of the Rhine at Mainz, evidently river patrol boats of the Roman 
occupation period. He searched for traces of the shipbuildung process and 
found several transverse grooves on the inside of the keel planks, each 
sawed about 3 mm wide and arranged in uniform distances, as well as the 
remains of treenails or wooden pegs in the keel and side planking, care-
fully aligned in the same transverse planes. Since the hulls were built 
planks-first, he interpreted these findings as evidence of an assembly pro-
cess, i.e., as layout markings and attachment points for template fixtures to 
hold the planks in place during assembly, but later to be removed to make 
room for transverse ribs as passive frame reinforcements in the same 
planes. This suggests that the idea of shape predefinition in transverse 
planes may have already existed in plank-first shipbuilding. 

Skeleton-first assembly: Rieth [19] carefully describes the archaeological 
evidence for the important transition from plank-first to skeleton-first ship-
building in the Mediterranean countries occurring during the 7th c. Here a 
skeleton of structurally active frames was erected in numerous transverse 
planes before the planking of the outside shell was attached to it. This 
necessitated a reorientation of the hull shape design process defining the 
desired shape in terms of planar transverse sections. 

Moulding and lofting: While the use of templates or moulds for defining 
the shape of individual planar ship parts may be ancient, the use of unique 
master moulds, say, for the midship frame, from which all other transverse 
section shapes can be derived by a lofting process, was a new idea, apparently 
introduced in France just before 1300 (Rieth [20]). The individual section 
shapes at any longitudinal station of the ship can thus be deduced from the 
master mould (in French: Maître gabarit) by a transformation consisting of 
translation, rotation and clipping of shape elements (Nowacki [21]). Thus the 
shape of a single curve is sufficient to define the hull surface continuously 
at any desired point (except for the ship ends). This opens the door to the 
required volume and centroid calculations for ship hydrostatics. 

building technology did advance and underwent significant changes. Little 
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Venice and the Italian Renaissance 

During the Middle Ages and Renaissance Venice was a leading sea power 
in the Mediterranean and also a productive shipbuilding center, well-known 
for its Arsenal where many famous galleys were built. The contemporary 
written records on this shipbuilding activity are scarce. The earliest pre-
served documents stem from Michael of Rhodes (ca. 1435, McGee [22]) 
and Trombetta de Modon (ca. 1445). These are technical notebooks, written 
chiefly for specialists, with many illustrations, but little text. It was only 
much later by Drachio (1598, [23]) that explanations and commentaries 
were added that helped to understand this technology. In essence the 
Venetians had their own moulding and lofting techniques, based on a 
master mould (sesto) and rules for deducing section shapes at any desired 
longitudinal station (Alertz [24]). 

The methods of lofting for ship parts were similar to those applied  
in other Mediterranean yards in Italy, France and Spain. They ensured a 
unique definition of hull shape and efficient fabrication of ship parts, 
allowing room for shape variation. The written sources deal chiefly with 
ship geometry, but do not make reference to design calculations, let alone 
to any thoughts from Archimedes in OFB. 

This is disappointing since it was essentially during the same period that 
Italian humanists rediscovered OFB and made access to this classical know-
ledge feasible again. Van Moerbeke’s translation (1269) and Commandino’s 
brilliant revision [14] (Venice, 1565) were already mentioned. There are 
other indications that the ideas of buoyancy and displacement were at least 
intuitively known. Alberti, e.g., the famous Renaissance architect and writer, 
in one of his main works “De re aedificatoria” (ca. 1450), Book V, Ch. 12, 
alludes to his knowledge of the equality of buoyancy and displacement, at 
least for the cargo carrying capacity as an increment, though without 
giving any source. Leonardo likewise knew certain fragments of Archi-
medean thought. But in both cases they may also have run across some 
popularized pseudo-Archimedean text that was around since the 13th c. 
(Clagett [12]). 
 
The Treatisers 

Toward the end of the 16th and throughout the 17th c. a tradition developed 
in all major European seafaring nations to document the existing and 
evolving shipbuilding knowledge, whether practical or more theoretical, in 
more or less learned treatises for diverse purposes. The authors are often 
called treatisers. The treatises served as technical notebooks for insiders, as 
basic introductory texts for the general public or for the shipping com-
munity or even just as an opportunity to display scientific and technical 
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excellence. The authors came from shipbuilding practice or from some 
scientific background or were knowledgeable in both aspects. In view of 
the rapid transitions in Europe to new technologies and methodologies 
during this very period the treatises are most valuable as contemporary 
sources on the intensive changes in practical and scientific knowhow. We 
will take a short survey of the major sources in our search for traces of 
Archimedean heritage. See Barker [25] for a more detailed overview. We 
will note the dates of treatise appearance in parentheses. 

Portugal, riding on the wave of success of the age of exploration and 
possessing a strong position in shipbuilding, was also among the first to 
produce naval treatises. Pedro Nunes, a scientist, studied the theory of 
rowing (“O Comentario de Pedro Nunes à Navegação a Remos”, 1566) 
and criticized the errors in Aristotle’s approach in Problemata Mechanika 
(wrong conclusions from the law of the lever). Such publications challenged 
the scholastic dominance of Aristotle and paved the way for Archimedean 
thought. 

On the practical side the shipbuilding treatises by Oliveira (“Ars 
nautica”, 1570, “Livro da Fabrica das Naos”, 1580), Lavanha (“Livro 
primeiro da architectura naval” [26], 1614–1616) and Fernandes (“Livro 
da Traças de Carpinteria”, 1616) deserve to be noted. They deal essentially 
with ship geometry, moulding rules and ship construction. Lavanha cites 
Vitruvius and Alberti as precursors and raises the naval architect to com-
parable rank as the famous architects. He develops precise ship drawings 
and sketches. Fernandes already presents a rudimentary ship lines plan. 
These Portuguese sources contain no hydrostatic calculations or references 
to Archimedes. 

In England William Bourne (“Treasure for Travaylers”, 1578), one of 
the first treatisers there, already explains how to obtain a ship’s volume 
estimate by taking its offsets when on dry ground by means of measuring 
rods relative to some suitable reference plane on the outside of the hull 
and up to the desired waterline. The offsets are then connected by linear 
approximants for estimating cross-sectional areas and likewise linearly 
volumes of ship segments between measured stations. In the end a reason-
ably rough volume estimate is obtained to which the Principle of Archimedes 
is applied to derive the ship’s weight (or displacement) on that draft. 

Other famous early treatisers (Mathew Baker/ John Wells: “Fragments 
of Early English Shipwrightry”, 1570–1627, see Barker [27]; R. Dudley: 
“Arcano del Mare”, 1646; E. Bushnell: “The Compleat Ship-Wright”, 1664) 
deal chiefly with ship geometry, moulding methods and ship drawings up 
to first lines plans on paper. But they did not yet enter into Archimedean 
style calculations. However Anthony Deane (“Deane’s Doctrine of Naval 
Architecture”, 1670) resumed the subject of volume estimates by approximate 
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planimetry of section areas, using circular arc or triangular approximants, 
and segment volume calculation. He thus obtained the ship’s buoyancy 
force (= displacement) according to Archimedes for any desired draft. One 
motivation apparently was to provide enough freeboard to keep the gun-
ports above water. 

In Germany Joseph Furttenbach, a well-known architect and writer 
from Ulm, had traveled much in Italy as a young man and had picked up 
the basic naval architecture knowledge there. His treatise “Architectura 
navalis” (1629) concentrates on matters of ship geometry, ship construction 
and ship types, showing strong Italian influence, but not on hydrostatic 
calculations. His work remained rather solitary in Germany. 

Early French treatisers (Fournier: “Hydrographie”, 1643, Pardies: “La 
Statique ou la Science des Forces Mouvantes”, 1673) were interested in 
nautical matters for textbooks in seamanship. It was actually the Jesuit 
Père Paul Hoste who first took on the challenge of calculating the displace-
ment from lines plans (or offset measurement not unlike Bourne) and of 
defining a measure of ship stability on hydrostatic grounds, based on 
Aristotle and Archimedes. Unfortunately his stability analysis failed because 
he misinterpreted Archimedes’ derivation and missed the effects of the 
shift of volume centroids by heeling inclination. 

In the Netherlands, based on the pioneering work by Simon Stevin 
(1548–1620) to be discussed later, there existed an early understanding 
among practitioners for the principles of hydrostatics stemming from 
Archimedes. The Dutch mathematician Johannes Hudde (1628–1704) had 
proposed a method (1652), later called the difference-in-drafts method, for 
measuring the cargo payload (or tonnage) by taking the difference between 
the ship’s displacement fully loaded minus empty. Offsets were taken in 
both floating conditions and the volume of the layer between the two water-
lines was estimated numerically by means of trapezoids and triangles. The 
volume of this layer was converted to weight by Archimedes’ Principle. In 
Britain Bushnell (1664) devised a similar technique. 

Nicolaes Witsen (1641–1717) in his treatise [28] worked out a similar 
method (1671) in more detail, but also extended it to estimating the dis-
placement for the whole hull. Certain details cast doubt on whether this 
method was ever practiced. Witsen also explicitly gives credit to Archimedes. 
For ship stability he follows Stevin, whose criterion was flawed (see below). 

Cornelis van Yk in his treatise “De Nederlandsche Scheeps-Bouw-
Konst Open Gestelt” (1697) cites Witsen , but as a practitioner has a more 
practical orientation. He pursues the method of difference–in-drafts for 
applications in tonnage measurement. 
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This short survey has been confined to traces of a growing under-
standing in Archimedean ship hydrostatics. Much more detail on the 
treatisers and their work is found in Barker [25] and Ferreiro [29]. 

In summary it is fair to state that by 1700 Archimedes’ texts were 
known to scientists, but very little of his knowledge had found its way into 
ship applications. As for ship stability his criterion was not yet properly 
understood, let alone practiced in ship design or operations. 

 
The Rebirth of Hydrostatics: Stevin, Galileo, Huygens 

During the 17th c. the scientific discipline of hydrostatics was virtually 
reborn in a modern reincarnation. Although access to Archimedes’ texts 
had much improved by 1600 so that scientists were able to study him 
literally, it took a number of very creative thinkers and physicists to rein-
vent hydrostatics and hydrostatic stability on new fundamental grounds 
and to apply it to their own new applications. Such prominent scientists as 
Stevin, Galileo, Huygens and Pascal made important contributions to this 
rebirth. 

Simon Stevin (1548–1620), the famous Flemish/Dutch mechanician, 
astronomer and hydraulic engineer, worked on several fundamental problems 
of mechanics and also reestablished hydrostatics. He introduced the con-
cept of hydrostatic pressure, which the Greeks had not known, and thus 
was able to determine hydraulic loads acting on submerged surfaces. He 
axiomatically developed a body of propositions embracing the whole of 
hydrostatics in his treatise “The Elements of Hydrostatics” [30] (1586 in 
Dutch, 1608 in Latin translation). His premises are tantamount to the 
Archimedean properties of the fluid. In a fluid at rest the hydrostatic 
pressure increases linearly with depth in proportion to the specific weight 
of the fluid. This was a brilliant breakthrough. Stevin also dealt with the 
stability of ships in his supplement “On the Floating Top-Heaviness”, 
attached to [31], 1608. He had read Archimedes and praised him. But he 
had not fully understood the implications of the hydrostatic stability 
criterion so that he missed the influence upon stability of the volume shift 
from the emerging to the immersed side of the heeling ship, a stabilizing 
effect. Consequently he came to the erroneous conclusion that the ship’s 
center of gravity must always lie below the center of buoyancy for a stable 
ship. Actually this is a sufficient, but not a necessary condition for ship 
stability. 

Galileo Galilei (1564–1642), famous as an astronomer and physicist, 
especially in mechanics and strength of materials, also occupied himself 
with hydrostatics and its applications, which is less widely known. In fact, 
in 1612 he published a treatise “Discourse on bodies in water” [32], which 
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is explicitly founded on Archimedean thought and deals with the floating 
of bodies on the surface of the water. This work originated from a dispute 
with Aristotelian opponents in Florence about the causes of buoyancy of 
floating objects [33]. Galileo accepted the Archimedean axiom that a body 
floats on the water surface if it is specifically lighter than water, but denied 
the Archimedean Principle for the equilibrium position. Rather he soon 
drifted off beyond Archimedean hydrostatics by recurring to kinematic 
principles from his theory of motion. His main contribution from this 
dispute therefore must be considered to lie in refuting the false Aristotelian 
theory of buoyancy. 

Christiaan Huygens (1629–1695), the famous physicist, is little known 
for his excursion into hydrostatic stability. He never published his three 
volume treatise “De iis quae liquido supernatant” [34], which he wrote in 
1650 at the youthful age of 21, because he regarded it as incomplete, and 
later (1679?) as “of small usefulness, if any, although Archimedes in Book 
II of ‘On Floating Bodies’ spent work on not dissimilar topics”. Incidentally 
it is reported that Huygens used Commandino’s version of the Latin 
translation of Archimedes, based on codex B. He wanted most of this work 
of his to be burnt. The manuscript was found in his legacy and was first 
published in 1908 [34]. The modern reader is bound to admire Huygens’ 
deep insights into Archimedes’ work as much as his own creative 
extensions. Huygens rederived Archimedes’ results for the stability of the 
sphere and the paraboloid using his own method and he provided original 
solutions for floating cones, parallelepipeds and cylinders. He studied 
some of these solids through a full cycle of rotation. He recognized that for 
homogeneous solids their specific weight and their aspect ratio are the 
essential parameters of hydrostatic stability. In conclusion Huygens was 
the first modern physicist who understood and was able to apply and 
extend Archimedes’ theory of hydrostatic stability. He did not proceed to 
apply his theory to ships or similar floating objects because he did not 
possess a suitable definition of ship geometry, a final obstacle. 
 
Calculus 

Archimedes skilfully and routinely used a method of geometrical proof in 
the derivation of areas, volumes and centroids of figures of simple given 
shapes, which later became known as the “method of exhaustion”, usually 
attributed to Eudoxus, a pupil of Plato (cf. Boyer [7]). Here a known curve 
is approximated by a regular polygon whose edges are subdivided success-
ively, doubling the number of edges in each step, until the error between 
the curve and the polygon becomes as small as desired. After a finite 
number of steps the remaining error is estimated and the sum of the finite 



The Heritage of Archimedes in Ship Hydrostatics 241 

  

series with truncation error is taken. This proposed result is then confirmed 
by reductio ad absurdum of any differing assertions. 

However the method of exhaustion is not equivalent to integration by 
infinitesimal calculus (cf. Boyer [7]). It is limited to a finite sequence of 
steps and relies on geometrical constructions for the proof. It cannot easily 
be extended to objects of arbitrary shape like ships. It does not comprise 
the limiting process of calculus. Calculus is based on the concept of an 
infinite series and derives its results analytically. Thus calculus can be 
applied to any analytically defined shape, hence also to ships of given 
arbitrary shape. 

The invention of calculus had many precursors and contributors (cf. 
Boyer [7]). But it was the achievement of Newton and Leibniz to lay the 
foundations for consistent and procedurally well defined methods of 
calculus. These methods spread in Europe during the first few decades of 
the 18th c. Thus when the problems of ship hydrostatics after 1730 were 
revisited by two leading scientists, Bouguer and Euler, they had the 
mathematical tools at their disposal to reformulate the auxiliary quantities 
of areas, volumes and centroids in Archimedes’ approach in terms of the 
elegant and definitive notation of calculus. Developments had now reached 
the stage where a reformulation of Archimedean hydrostatics as an 
application of continuum mechanics had become feasible and was at the 
threshhold of its application to ships. 
 
Bouguer and Euler 

After the advent of calculus and with the new concepts of analysis and of 
functions of one or several variables it became possible to review and 
restate many classical problems of mathematics and mechanics in new, 
original ways. For ship hydrostatics and stability the credit for a new, 
completely modernized approach, based for the first time on calculus, goes 
to two contemporary scientists, Pierre Bouguer (1698–1758) and Leonhard 
Euler (1707–1783), who worked on these problems separately, independently 
and without knowing of the other’s work before their own large treatises 
were completed and ready to be published. Their original work can be well 
dated because they both participated in a prize contest held by the Parisian 
Academy of Sciences in 1727 on the optimum masting of sailing ships, 
where hydrostatics might have played a useful role to determine the 
equilibrium position of ships under sail. But they both failed to display any 
knowledge of Archimedean hydrostatics. However they continued to work 
on this issue during the 1730s, Bouguer essentially during a scientific 
expedition to the Andes in Peru from 1735 to 1744, Euler as a member of 
the Russian Academy of Sciences in St. Petersburg from 1737 to 1741. 
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Bouguer’s famous “Traité du Navire” [35] appeared in 1746 soon after his 
return to France, Euler’s fundamental “Scientia Navalis” [36] was published 
in 1749 after a major delay. But it is undisputed, also by both authors, that 
they had achieved their results independently and unaware of the other’s 
parallel work (cf. Nowacki and Ferreiro [37]). Their results are essentially 
equivalent, though expressed in uniquely distinct ways, and have remained 
a valid basis for ship stability until today. 

Bouguer in his pioneering treatise nowhere mentions Archimedes by 
name, but the spirit of his formulations leaves no doubt that he was 
familiar with Archimedes’ work. e.g., he began his introduction of hydro-
statics in Book II, section I, chapter I with this explanation of the buoyancy 
force: 

“The principle of hydrostatics, which must serve as a rule in this whole 
matter and which one must always have in mind, is that a body that floats 
on top of a liquid is pushed upward by a force equal to the weight of the 
water or liquid whose space it occupies”. 

This is tantamount to the Principle of Archimedes, only slightly 
rephrased. In the following chapter the same result is also derived by 
integration of the hydrostatic pressure distribution over the submerged part 
of the hull surface. The pressure resultant or buoyancy force is then shown 
to be acting upward through the volume centroid of the submerged hull (or 
center of buoyancy), equal and opposite to the downward weight force 
(displacement) through the center of gravity of the hull. 

For ship stability for infinitesimally small angles of heel (initial 
stability) Bouguer invented the metacenter as a stability criterion, i.e., the 
point of intersection of two infinitesimally adjacent buoyancy directions 
for a small angle of heel, the point g in Fig. 4. For a stable ship the center 
of gravity of the ship must not lie above the metacenter. This is a brilliant 
reinterpretation of Archimedes’ stability measure for small angles of heel 
in terms of a geometric bound. Bouguer evaluated volumes and centroids 
for this measure by calculus and numerical approximation, also relying on 
Archimedes’ centroid shift theorem. 

Euler in the introduction to his “Scientia Navalis” pays full tribute to 
Archimedes. He begins his axiomatic foundation of hydrostatics with the 
statement: 

“The pressure which the water exerts on a submerged body in specific 
points is normal to the body surface; and the force which any surface 
element sustains is equal to the weight of a vertical water column whose 
basis is equal to this element, whose height however equals the submergence 
of the element under the water surface”. 

All other results in ship hydrostatics can be derived from this axiom. 
e.g., the buoyancy force in the Principle of Archimedes is deduced by 
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pressure integration by means of calculus over the hull of an arbitrary body 
shape. Euler also applies Archimedean criteria to the hydrostatic stability 
of ships for infinitesimal angles of heel when he says: 

“The stability, which a body floating in water in an equilibrium 
position maintains, is measured by the moment of the restoring force if the 
body is inclined from its equilibrium position by a given infinitely small 
angle”. 

This stability criterion is formulated in terms of righting moments as 
by Archimedes, but unlike Bouguer. Physically the two formulations are 
equivalent. Euler calculates the righting moment taking into account the 
volume shift from the emerging to the immersed side and using Archimedes’ 
centroid shift theorem. Figure 5 for an inclined cross section shows the 
stabilizing effect of this volume shift, caused by the couple of gravity force 
through G and buoyancy force through the new shifted center of buoyancy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Bouguer’s Figure for the Derivation of the Metacenter (from [35]). 

Fig. 5. Euler’s Figure for Centroid Shift in An Inclined Cross Section (from [36]). 
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Note that both authors, Bouguer and Euler, have also addressed 
stability measures for finite angles of heel. Furthermore both also treated 
numerous other applications of ship stability in ship design and operations, 
e.g., ship loading and unloading, seaway motions, maneuvering under sail 
etc. which become amenable once the hydrostatic restoring reactions of the 
ship are known. Many more details about their achievements are presented 
by Ferreiro [29], especially on Bouguer, and by Nowacki [38], mainly on 
Euler. 

Thus Bouguer and Euler have shown that the practical application of 
sability criteria to arbitrary ship shapes has been made possible by means 
of calculus formulations and their numerical evaluation. 

After the publication of these fundamental treatises in ship theory 
Bouguer’s results soon were widely distributed, his French text, augmented 
by numerical examples, was readily understood, textbooks with his methods 
were soon prepared for colleges in France, and the French Navy soon 
made stability assessments by the metacenter criterion an official require-
ment. Euler’s Scientia was written in Latin, it was not widely circulated to 
practitioners, lacked numerical examples, and therefore remained relatively 
unknown in shipbuilding practice, though it made its mark on future scientific 
developments. 
 
Chapman and Atwood 

The Swedish naval constructor and scientist Frederik Henrik af Chapman 
(1721–1808) is the first and best witness for the actual application of the 
knowledge created by Archimedes, Bouguer and Euler being applied in 
actual ship design, construction and operation. Chapman, son of an English 
shipbuilder and immigrant to Sweden, grew up in an environment of 
practical shipbuilding and scientific openness. As a young man, practically 
trained and mathematically inclined, he spent a few years in England, 
Holland and France in a sort of “apprenticeship”, picking up not only some 
practical trade skills, but also the scientific knowhow then available in 
those leading shipbuilding nations. He became familiar with the work of 
the Bernoullis, Bouguer and Euler, and hence with the Archimedean tradition. 
After his return to Sweden in 1757 he soon acquired much responsibility in 
Swedish naval and merchant ship design, rose to high rank and remained 
in a leading position throughout his lifetime. At the same time he not 
only practiced his scientific insights in his own actual designs, but also 
developed an ambition to publish his fundamental assumptions and con-
clusions in scientific treatises, foremost in his “Treatise on Shipbuilding” 
[39]. This gives us an intimate insider view of his use of scientific know-
ledge in practical design. Chapman made it a routine matter to calculate 
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the displacement and a stability measure, the metacenter, at the design 
stage for every ship. For numerical integration he used the efficient qua-
drature rules acquired in private lessons from the mathematician Thomas 
Simpson in London. Chapman was also an excellent hull shape designer 
and lines plan draftsman. Thus he knew and discussed in his treatise how 
to influence hull shape design so as to achieve appropriate centroid locations 
and metacentric height. He also gave recommendations for the placement 
of ballast and cargo in ship operations in order to secure sufficient stability, 
but not too much metacentric height to avoid rough motions at sea. Further 
he had certain techniques for estimating the heeling moments by wind in 
sails, as already proposed by Bouguer and Euler, to derive the required 
safe margin for righting moments. Thus he rounded off the available 
physical knowledge, based on Archimedean thought, by further elements 
needed for safety assessment in practical design. This completed a cycle of 
2000 years from the basic theoretical insights to practical applications. 

Thomas Atwood (1745–1807), an English physicist and mathematician, 
assisted by the French naval constructor Vial du Clairbois, just before the 
end of the 18th c. added another missing piece to the puzzle of ship 
stability: They recognized that the initial stability for small angles of heel 
was not sufficient to ensure the ship’s safety [40], as of course Bouguer 
and Euler had also already suggested, but they also proceeded to investigate 
the ship’s righting moments at finite angles of heel, as Archimedes had 
done for the paraboloid. They used numerical quadrature rules again to 
calculate the “righting arm” of the vessel for a given draft, center of 
gravity and angle of inclination. Atwood also pointed out the nonlinear 
character of this function of heeling angle, which makes the rolling ship a 
nonlinear system. Thus by 1800 all prerequisites for hydrostatic displace-
ment and stability calculations were available in practice when entering 
into the age of steam-driven steel ships. 
 
 
4. CONCLUSIONS 

 
It took about two millennia before the fundamental theories of Archimedes 
in hydrostatics were actually applied in the practice of ship design and 
operations. Archimedes laid the physical foundations for this technical 
purpose, but a number of other knowledge elements were still missing 
before this crucial assessment of ship safety could be performed on sound 
theoretical and practical grounds. Moreover access to Archimedes’ manu-
scripts was interrupted for many centuries. The solution required further 
insights in hull geometry definition, mathematical analysis and data for 
physical criteria. 
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Geometry: While Archimedes still adhered to simple geometrical shape 
definitions, practical shipbuilding technology made many steps forward in 
hull geometry definition during subsequent centuries. After the skeleton-
first construction principle was introduced (around A.D. 700), the use of 
moulds and in fact single master moulds for the whole ship became feasible 
(around 1300). Lofting ship parts only in the mould loft was then followed 
by drafting ship lines plans on paper (since about 1600) with more flexible 
construction rules [21]. In the 18th c. in addition analytical representations 
of hull geometry evolved, derived from offset data or form parameters. 
This much facilitated the numerical calculation of hull form features, 
especially areas, volumes and centroids. Thereby arbitrary hull shapes could 
be evaluated hydrostatically. 

Analysis: Simple shapes in antiquity were often treated by the method 
of exhaustion to obtain area, volume and centroid information. But this 
approach had its limits when dealing with arbitrary practical hull shapes. 
Although numerical quadature rules were known and used to estimate 
tonnage since the Middle Ages and later applied to displacement calculations 
by some treatisers (by 1700), it is owed to the advent of calculus (by 1700) 
that first analytical and then numerical evaluations of all integral properties 
of ships could be performed for arbitrary hull shapes (following Bouguer 
and Euler after ca. 1750). Stability analysis for the metacenter also 
benefitted from the analytical concept of the center of curvature of a curve 
(Bouguer: Metacentric curve as an evolute). 

Physics: Archimedes had elegantly derived the resultant hydrostatic 
force of buoyancy without resorting to effects in the liquid. An important 
alternative, the hydrostatic pressure, was introduced by Stevin (by 1600) 
so that hydrostatics could be newly developed from the viewpoint of 
continuum mechanics. This became the dominant basis of modern develop-
ments, also by Bouguer and Euler. This facilitated the expression of hydro-
static effects by calculus. Stability criteria for small angles of heel were 
thus stated in terms of infinitesimals (by 1750), while righting arms for 
finite angles of heel were formulated by means of calculus and evaluated 
numerically (by 1800). 

Many further developments and insights were added to stability 
analysis during the 19th and 20th centuries before the current advanced 
level of risk-based ship design was reached [41]. But the foundations of 
our safety assessments of ships until today still rest on the principles and 
theories first pronounced by Archimedes. 
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ABSTRACT A recent hypothesis on the giant ship Syrakosia, built 
around 235 B.C under the rule of Jeron II of Syracuse, is presented. In this 
enterprise Archimedes was a minister or a supervisor of the architect 
(Archias from Corinth). Comparison is made about opinions on the 
possibilities Archimedes could have had to plan the ship and to foresee her 
stability properties. The reconstruction of the actual procedures available 
to him to evaluate volumes and centres of buoyancy of different solids is 
studied also with models of the volumes of the ship and of the geometric 
solids mentioned in the “Floating bodies”, to conclude that he could evaluate 
the stability properties on a quantitative basis only for the orthoconoid, the 
features of which were exhaustively studied in previous Archimedes’ works. 
Therefore he must have left to the architect the task of both planning and 
evaluating empirically the stability of the ship. The last propositions of the 
first book of the “Floating bodies” suggest that Archimedes may have 
taken the experience of the Syrakosia as a guideline to approach the problem 
of stability of sectors of spheres, as the ship was launched when the hull 
reached the floating line and then she was completed afloat. Stability features 
of these phases appear to be comparable to those of different portions of 
sectors of the same sphere as presented by Archimedes.  
 
 
1. INTRODUCTION 
 
The Syrakosia is one of the chapters of the great naval architectural season 
which followed Alexander the Great’s death and which interested in 
various examples Thracia, Greece and mainly the Ptolemaic reigns, which 
later became cultural references for all exceptional ships such as the Nemi 
ships or the obelisk carriers of Roman times. The analysis of the historical 
and cultural background to the Syrakosia and to Archimedes’ works 
brought recently, starting from the Nemi ships from 1996 and from the 
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exhibition “Eureka” held in Naples in 2005, to discuss and further study 
this aspect of the culture of the time. Different hypotheses have been 
proposed about Archimedes’ involvement in the project and construction 
of the Syrakosia and about a possible connection between the principles of 
stability of floating bodies as discussed by Archimedes and the Syrakosia 
herself. Careful reading of sources and of the treatise on the “Floating 
bodies” and due consideration to the geometric tools ancient naval archi-
tects probably had to shape their hulls (as we can deduce from recent naval 
archaeology) contribute to fix more realistically the above items under 
discussion. The picture becomes clearer if we use models of the volumes 
and the procedures suggested by the “mechanical methods” available to 
Archimedes and if we compare his statements with the calculations of 
immersed volumes, centres of buoyancy and metacentric heigth of the same 
floating bodies and of the hull of the Syrakosia in her different phases. 
Archias from Corinth was the architect in charge of planning and building 
the ship, he applied the methods used and developed in Hellenistic times, 
which did not allow to calculate exactly the immersed volumes. The result 
of this part of the research is that probably Archimedes took inspiration 
from the Syrakosia for the study of the principles of floating of known 
solids, from the simplest (cylinder, prism, sphere), to the paraboloid, which 
allowed him to calculate exactly the centres of gravity and of buoyancy. 
This was not possible for the shape of hulls, because the exhaustion 
method cannot be applied to their shapes. The practice of trimming ships 
with ballast after launching (like for the second Nemi and for oared ships) 
show that, although empirical and legal rules were available for estimating 
cargo capacity, Archimedes’ ideas could not be fully applied to ship’s 
stability until the 18th–19th centuries. 

 
 
2. THE SYRAKOSIA 

 
Jeron II of Syracuse, in the years around 235 B.C., wanted to show the 
power of his reign and his technical capacities also with this extraordinary 
ship. This date is suggested according to the age of Archimedes and to the 
time in which he may have come back from his visit to Alexandria, 
hypothetically around 240 B.C.; we have to exclude war periods, the first 
Punic war in particular. 

The ship kept her primacy until 220 B.C., when Ptolemy’s IV 
tesserakontere was built. 

The Syrakosia was described by Moschion in a long passage reported by 
Athenaeus from Naucratis in his “Deipnosophistai”, written after Commodus’ 
death (192 A.D.), in a chapter which includes the catalogue of Ptolemy’s II 
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fleet, the descriptions of Ptolemy’s IV thalamegos and tesserakontere, as 
written by Callixenus from Rhodes. In the case of the Syrakosia we have 
the longest description of a ship in ancient literature and notwithstanding 
some lacunae (like the dimensions) it is complete enough to challenge the 
curiosity of scholars. From 16th cent. on many trials to reconstruct her were 
attempted (from Witsen in 1671 to Köster in 1934), but only between 1960 
to 1970 precise and consistent deductions were drawn by Lionel Casson. 
After them the publication by Lucien Basch of a painting found in Crimea, 
showing a large ship comparable to the Syrakosia, a deeper knowledge of 
the naval culture in Hellenistic age, also after the further studies on the 
Nemi ships, other elements were added. These elements were basically 
the tonnage, the general aspect, the structure, the weight of the hull and 
the comparison with some ornamental parts, typical of Greek architecture 
in Sicily. A trial and error procedure allowed me to induce the displace-
ment and the other main features of the ship, in a first hypothesis which 
I produced in the Museo delle Navi Romane in Nemi in 2001, ad then  
I published it more extensively in 2003 with a translation of Athenaeus’ 
passage. Still it is an hypothesis, some adjustments are in progress and some 
details need still to be clarified, but the general reconstruction fits with all 
comparative documents and is accepted among the scholars (Fig. 1). 

 

 

Fig. 1. Reconstruction of the Syrakosia, model by M. Tumbiolo in scale 1:200, based on 
drawings by the author, Trapani 2009. 

Notes on the Syrakosia and on Archimedes’ Approach 
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The Syrakosia was planned by Archias from Corinth following Jeron’s 
aim to have a sailing grain cargo ship. The name Archias from Corinth 
may be suspicious as it recollects that of the founder of Syracuse in 734 
B.C. but the distinction of the roles of the architect (architecton), the super-
visor (epoptes) and the shipbuilders (naupegoi), as reported by Moschion, 
make think of a case of homonymy. Archias gave to the ship the shape of a 
supergalley with oaring teams made of 20, which are mentioned in Ptolemy’s 
II catalogue (eikoseres) some 35 years before, but he did not put any 
oaring system on the Syrakosia. In the years 1960–1970 Lionel Casson 
proposed for the “supergalleys”, having rowing teams of 16, 20, 30 and 40 
men, that they could have been made of twin hulls, like catamarans. This 
theory comes from an interpretation of double prow and double stern 
mentioned by Callixenus, but in the end it did not solve the problem of the 
oaring systems; a careful reading of the literary passages, calculations of 
the needed displacements and the enormous technical problems involved 
in this solution make us exclude it. Carrying capacity of the Syrakosia was 
about 1940 tons, for a displacement of 3010 tons, as reported in the para-
graph which follows. Athenaeus confirms the order of magnitude of her 
displacement when he states that the Isthmia (the ship with which Antigones 
Gonata won over the Ptolemies in 258 B.C) was about 1/3 or ¼ of the 
Syrakosia. Calculations of the reconstruction of the Isthmia give a displace-
ment of about 730 tons, i.e. about ¼ of that of the Syrakosia. Timber was 
collected from the Etna, an exceptional pine was found in Calabria for the 
main mast, pitch came from Marseille and ropes from Spain. 

The ship had three decks: hold deck, promenade deck and upper or 
combat deck. On the promenade deck there were the cabins in the middle, 
two open corridors aside, ending with rows of telamons, which were about 
3 m high and they were similar to those of the temple of Zeus Olympic in 
Agrigento. The telamons were leaning on the protruding outrigger, or 
apostis (like that of the second Nemi ship), at the ends of which there were 
20 stables for horses (probably in front), the galleys and relevant services 
astern. The inner part of the main level was divided into three corridors: a 
central passage and two rows of cabins for the passengers, which had 
mosaic floors, ending with a library, which had a planetarium or a sundial 
built by Archimedes, similar to that Marcellus brought to Rome from 
Syracuse in 212 B.C. The presence of this device suggests that the library 
had a sort of apse. The upper deck was open, dedicated to nautical 
manoeuvres and to fighting: three masts and eight towers (about 3 m high) 
rose over it. War machines, among which a type of balista expressively 
developed by Archimedes, were installed on them. On the upper deck there 
was probably the temple dedicated to Aphrodite (astern) and the cloak 
rooms of the gymnasium: the deck itself was the run track. 



255 

 

Building phases and details, like the lead sheathing, the mosaic floors, 
the fittings, the steering devices, wooden and iron anchors, water systems, 
etc. are comparable to those of the Nemi ships, while rigging was that 
typical of Hellenistic ships. Still we do not know how the bilge pumps 
could have worked, as Moschion refers of a screw pump applied by 
Archimedes, while the bilge pumps we know, including those of the Nemi 
ships, were scoop wheels.  

Archimedes was a superintendent (epoptes), or a sort of minister 
(phylos), probably in charge of the solution of logistic problems and of 
special applications, leaving to Archias the actual project and realization. 
When problems were found to launch the lowest part of the hull (that 
sheathed with lead, under the main wale) he applied compound pulleys he 
developed on purpose for this operation. 

The ship was a failure: she was too large for the harbour of Syracuse 
(clearly she was built outside that harbour): she was sent to Ptolemy III 
Euergetes as a present and during the trip to Egypt she brought a grain 
cargo to Athens. For this trip she was celebrated by Archimelocos with a 
pedantic piece of poetry. Once in Alexandria her name was changed into 
Alexandrìda and probably into Isis, as the painting discovered in Crimea 
shows: provided it is the same ship, the old Syrakosia could have been 
used for promoting the Ptolemy’s image, but we can think that soon she 
was demolished. 
 
 
3. TECHNICAL DATA OF THE SYRAKOSIA 
 
Athenaeus passage was known since the Renaissance, then: B. Graser, 
1864, calculated the load capacity of the Syrakosia in 4200 metric tons, 
considering the measure of grain in medimni, like his followers, who give: 
– C. Torr, 1894, rist. 1964, p. 27, 3650 metric tons  
– A. Köster, 1934,   3310 metric tons  

L. Casson, in 1971 considers the measure of grain in modii, in sacks, 
giving the final load capacity as 1940 metric tons. 

Other features, not mentioned in the previous paragraph:  
– Main water tank: 75 tonn. (so far difficult to locate),  
– 30 cabins 4 triklinoi (18 m2) large on the promenade deck, on two rows 

and around a central corridor, plus the capitain’s cabine (15 triklinoi 
large, 65 m2), a bathroom 3 triklinoi large (13 m2) and the library.  

– Other cabins on the hold deck. 
– The atlantes surrounding the promenade deck along the outrigger 

(apostis) were 6 cubits (2,7 – 3 m) tall.  

Notes on the Syrakosia and on Archimedes’ Approach 
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– Men aboard: about 825; 20 horses, needing stables 1,5 x 3 m each. 
– Combat deck with 8 towers 6 cubits high (2,7 – 3 m), with war machines.  
– Plumbing system 

CARGO: 

60.000 modii of grain, 400 metric tons, in sacks, not in amphorae 
(17,500 would have been necessary, for an extra load of about 260 tons) 

10.000 amphorae of fish 500 
20.000 talents of wool 520 
20.000 talents of mixed load 520 
TOTAL:              1940 metric tons 

No ballast is considered, as part of the cargo plays its role, as in Pliny, 
“Naturalis Historia”. XVI, 76. 

WEIGHTS: 

Cargo + tank + men aboard + horses: 1940 + 75 + 57 + 8 = 2080 m. 
tons, plus the weight of the hull (structures similar to those of the 
Nemi ships) and of fittings 930 metric tons 
TOTAL WEIGHT: 3010 metric tons 

POSSIBLE DIMENSIONS: 

Length at max floating (L): 80,0 m Total length: (tL) 87,0 m. 
Breadth at max floating (b): 15,5 m Total breadth:  17.5 m  
Draught (d): 3,85 m 
Height from keel to promenade deck:   5.6 m 
Block coefficient (φ):    0,615  
Height from promenade to combat deck:      3.5 m 
Total height at main section (h), from keel to combat deck:   9.1 m 
Displacement = L x b x d x φ = 80,0 x 15,5 x 3,85 x 0.615 =2936 m³  
i.e: 2936 x 1,026 = 3012 metric tons (1,026 is the density of sea water) 

The comparatively low height (tL/h = 9.56) is suggested by the design 
of the hull, similar to that of a 20 supergalley, by the comparison with the 
Crimean encaustus painting of the Isis and with the Nemi ships. 
 
 
4. ASPECTS OF ARCHIMEDES’ APPROACH TO THE STABILITY 

OF FLOATING BODIES 
 

L. Russo e F. Zevi extend Archimedes’ work also to planning the ship and 
to the possibility to evaluate the features of her hull, as he did for the 
orthoconoid; Zevi proposes also a cultural connection with the Isis 
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described by Lucian and a remind of his to Archimedes’ principle. 
Similarly C. B. Boyer gave the opinion that: he could have very well taught 
a theoretical course on naval architecture. P. D. Napolitani suggests that a 
possible interpretation of the treatise on the “Floating bodies”, in particular 
regarding the propositions on the equilibrium of segments of sphere and of 
the paraboloides, is that Archimedes was attempting to set out a mathe-
matical modelling of floating hulls. H. Nowacki excludes that Archimedes 
could have applied the evaluations of the centres of gravity and of uplift 
to the shape of hulls, even though he could have had the possibility to 
perform them. P. Pomey, with Tchernia, suggests that Archimedes could 
have evaluated the stability of the Syrakosia on the basis of the volumes 
calculated from sections taken from the project, which, he proposes, was 
based on the moulds of a 20er galley. He proposes also that, being the ship 
built in two phases (before and after launching) the same phases could 
have been useful also to keep under better control floating and stability. 

I wanted to review these positions on the basis of what we know and 
suggest about the Syrakosia, about project and building procedures used in 
Hellenistic times and trying to reproduce logical processes and calculations 
according to the methods used by Archimedes, with the help of models 
of the relevant volumes and then by comparing the results with those 
obtained with modern approach to centres of buoyancy and metacentres 
(the centres of oscillation of the hull), according to Normand’s (1835–1906) 
formulas. 

I think that P. D. Napolitani and H. Nowacki’s positions are the most 
realistic: the first can also be recollected to the experience with the 
Syrakosia and his discussions with Archias from Corinth, but after that his 
interest for the principles of equilibrium and stability of floating bodies 
remained at a theoretical level of personal research. It appears that he 
could not extend practically the concepts found for selected solids to the 
actual cases of floating hulls, due to the difficulties to evaluate the volume 
of the immersed part, its centres of buoyancy and of gravity.  
 
 
5. VOLUME OF THE IMMERSED PART OF THE HULL (Fig. 2) 

 
To calculate the volume of the bottom of a hull, the method of exhaustion 
is not applicable due to the shape, which is not geometrically defined. 
Therefore a “mechanical” method must have been used, like the evaluation 
by comparison of weights of models of the interested volumes made in 
exact scale and with a uniform material. This procedure is not reported 
expressively by Archimedes, nor by Heron from Alexandria (“Definitions” 
N. 74), but such calculation of the volume by comparing the weights of 

Notes on the Syrakosia and on Archimedes’ Approach 
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a scale model and a reference volume might have been possible and is 
reported occasionally in Arabic treatises, like Al-Farisi and Al-Kasi 
(13th–15th cent.). It has the advantage of being simple, moreover the centre 
of buoyancy and the metacentre of the model are in the same scale, being 
geometric features. In the case of the model of the bottom of the Syrakosia 
I simplified the operation by weighing the parallelepipedal wooden block 
having the dimensions corresponding to the length, breadth, draught of 
the immersed part of the hull, then I carved the shape of that part of the 
hull from the same block according to the plan of the lines of the 
reconstruction. Then I compared the weight of the carved part of the hull 
to the original weight of the block, giving therefore the block coefficient 
(φ = 0.615), or the ratio between the actual volume and that of the surround-
ing parallelepiped.  This method corresponds to the comparison of the 
weight of the body with that of a cube having reference dimensions, but it 
is more precise and I am sure Archimedes could have used it in many 
occasions.  
 

 
 
Fig. 2. Evaluation of the volume of the bottom part of the hull of the Syrakosia by weight, 
model by the author, in scale 1:200. 
 

The methods probably used in Hellenistic age to design hulls and to 
control their shape during construction did not allow to evaluate the 
volumes directly from the project, as this was not based upon all ortho-
gonal sections. The bases were the profile and the shape of the main 
transverse section, which had a rule for narrowing until the “active frames” 
towards the ends of the hull, together with the shape of the slices in which 
the shell was divided, corresponding to peculiar planks or wales, but not to 
orthogonal sections. These geometric operators were of practical nature, as 
shown by the use of traditional garbi, and not aimed at calculating the 
volume of the hull: only the method of drawing with orthogonal sections 
in connection to Bézoult or Simpson (17th cent.) approximations allow 
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to calculate the volume in a reasonable way. Empirical formulae were 
available to predict the cargo capacity in connection with the main 
measures, like those used in the Middle Ages, but they were fiscal for-
mulae approximated to a standard shape. For this reason, the graphical tools 
available in Hellenistic times did not allow to evaluate the volumes of 
hulls, nor was Archias from Corinth able to tell Archimedes what was 
exactly the volume of the hull of the Syrakosia, unless he had a scale block 
model of the bottom part of the hull. I think this chance is unrealistic, or at 
least we need more documents to induce it. 

It is clear that geometric solids, as those considered by Archimedes in 
his “Floating bodies” (cylinder, prisma, sphere, orthoconoid ), did not put 
these problems of volume evaluation, in particular the orthoconoid was the 
most available for such evaluations. 
 
 
6. CENTRE OF BUOYANCY 

 
To find out the centre of buoyancy of our model of the bottom of the hull, 
again a “mechanical” method is available: hanging the model from one 
side in order to find the intersection of the vertical at the main transverse 
section with the centre line. The findings with the model of the bottom of the 
hull of the Syrakosia in scale 1:200 gave the position of the centre in good 
agreement with that calculated with Normand’s formula (2.18 vs 2.11 m, 
see Fig. 3, 3–z, figure with the asterisk). With this experience we can induce 
that Archimedes could evaluate the position of the centre of buoyancy, 
or centre of gravity of the immersed part, as he calls it., provided he had 
a good model in scale of the bottom part of the hull. 

Archimedes evaluated quantitatively the centre of buoyancy only for 
the orthoconoid in the second book of his “Floating bodies”, in the first 
book he indicates the centres only qualitatively for the segments of sphere. 
 
 
7. CENTRE OF GRAVITY 

 
While for the geometric solids mentioned by Archimedes the evaluation of 
the centres of gravity follows the same method as that outlined for the 
centres of buoyancy, for a ship it becomes much more difficult a problem 
and, to my opinion, it could not be solved. The “mechanical” method 
would have implied two options: a model of the complete ship perfectly in 
scale and having the same buoyancy and trim as the original ship, or a 
model of the central section of the hull, with all structural elements in 
correct scale. Neither option can be suggested, as this approach appears far 

Notes on the Syrakosia and on Archimedes’ Approach 
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from Hellenistic culture. Moreover even the concept of centre of gravity of 
a ship was probably unknown: to improve stability ancient architects knew 
very well how to increase the breadth (raise the metacentre) or to ballast or 
generally to lower the weights.  
 
 
8. THE BUILDING PHASES OF THE SYRAKOSIA AND  

A POSSIBLE CONNECTION WITH BOOK I, PROPOSITIONS  
VIII AND IX OF THE FLOATING BODIES (Fig. 3) 
 

The Syrakosia was built in two phases: first the bottom (until the wale at 
the floating line) was built, sheathed with lead and launched, then the hull 
was completed afloat. The weight of this part of the hull was about 400 
tons, according to the proposed reconstruction and still this weight was 
such as to create problems with launching. Archimedes solved these 
problems with a special capstan, but he did not manage the whole ship, as 
sometimes it is imagined. This part of the hull buoyed about 85 cms and 
the lead sheathing contributed very little to its stability, as it weighed about 
15 tons (3.7% of the displacement of that section of the hull). When the 
hull was finished, but empty, it weighed a little less than 1000 tons and 
buoyed about 1.70 m. When the load was completed, the total weight 
could have reached about 3000 tons, with a correspondent buoyancy of 
3.85 m. During these phases, the parts of the hull under completion had 
different reactions to rolling, because, said in modern words, the metacentre 
comparatively lowers and therefore the completed and loaded ship rolled 
more easily than the bottom part of the hull (see Fig. 3, 1–3). 

Proposition VIII of the first book of the “Floating bodies” can suggest 
that Archimedes observed this behaviour of the ship when making the 
example of a segment of a sphere: if the floating body is a segment of a 
sphere smaller than a semisphere, metacentre is high over its upper sur-
face, if it is a semisphere it lies a little over the centre and if it is higher it 
falls under its upper surface. Archimedes had not the concept of metacentre, 
but his constructions allow to locate it. Geometrically it does not displace 
dramatically with respect to the shape of the curve, but its effect on 
stability is evident. Archimedes does not quantify the position of the centre 
of buoyancy of a segment of sphere, but he indicates anyway it as res-
ponsible for the righting moment. Similarly, while the building phases of 
the Syrakosia proceeded, he observed the different reactions of the hull to 
rolling and I like to think that he discussed with Archias these reactions 
and the ways to minimize rolling in a ship. Ancient hulls tended to have a 
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was launched, and in the case of oared ships the tholepins were fixed in the 
final phase; in the case of the Syrakosia part of the cargo played the role of 
ballast, as hinted by Pliny (“N.H.” XVI, 76). These thoughts, filtered 
through the principles soon discovered, may have induced Archimedes to 
compare his ideas how weights and centres of gravity and buoyancy could 
function and which limitations uprighting may have had.  

In book I Archimedes considers a generic solid (a prisma or a cylinder?) 
and then a sector of sphere, on a spherical water surface, the main points of 
which are indicated qualitatively (centres of gravity and of buoyancy). In 
book II he deals only with the orthotome, this time floating on a flat sur-
face; he could calculate all features (partial volumes, centres of gravity and 
of buoyancy) of that solid tanks to his previous researches.  
 

 

Fig. 3. The building phases of the Syrakosia  (1, 2, 3) compared to segments of sphere  
(A, B, C) according to Propsition VIII of Book I of Archimdes’ “Floating bodies”: 
calculations of heights of centres of buoyancy (B, z) and of metacentres (M, r) with 
Normand’s formulas (see Fig. 4). 

high metacentre and a certain oversizing of the hull allowed to assure the 
foreseen cargo and trim. Adjustments with ballast were done when the ship 

Notes on the Syrakosia and on Archimedes’ Approach 
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Moreover the different cases and limitations to buoyancy of the 
orthotome of book II appear to hint to parts of the stability curve. The 
passage from spherical to flat water surface is indicative of a passage from 
general concepts to specific evaluations. To verify this aspect, I applied 
Normand’s formulas for the height of the centre of buoyancy and of the 
metacentre to the mentioned sphere sectors (Fig. 3) and to an othotome, 
having a “parameter” equal to 3/2, considered as a floating hull (Fig. 4). 

Fig. 4. Main stability features of an orthoconoid, Proposition 2, book II of the “Floating 
bodies”, see following table. 

 
There are examples which show that in antiquity the immersed volumes 

were not evaluated scientifically; among these the second Nemi ship provides 
with a good example: she was ballasted with 250–300 tons of concrete. 
The shape of the hull did not require ballast, as shown by the first Nemi ship, 
but the oaring system made it necessary to adjust the buoyancy, to have 
the tholepins at the correct height over the water surface. To avoid too high 
an angle of the oars, it was sufficient to sink the ship by about 30 cms, 
with respect to the finished ship. Calculations showed that 30 more cms of 
buoyancy were given by about 250 tons: just the amount of the otherwise 
useless ballast and this confirms the tendency of the architects to oversize, 
in order to be on the safe side, with the possibility to adjust later the trim 
according to needs. 
 

 

 

M

H

CG

i´

O

E'D'

E i

K

Z

F

G

D

B

r

Data evaluated Geometrically evaluated data fit exactly.  
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Dotted line MB as r is extrapolated, as the concept of metacentre (M), or the 
centre of oscillation, is not present in Archimedes’ work.  
The Centre of Gravity (CG) is at 2/3 of the segment OH 
The Centre of Buoyancy (B) is at 2/3 of OK 
Diameters: FG = 121.5 mm, DE = 82 mm 
Height  HO =  50 mm   

Draught KO (i)  = 21 mm 

φ = 0.39,       α = 0.785,        see Fig. 3 

Geometric evaluation: 

Z = 14.0 mm,      r = MB = 43.5 mm 

Normand’s evaluation: 

Z = 14.0 mm,      r = MB = 43.9 mm 

Normand’s formulas (1839–
1909): 

 

Height of the centre of buoyancy 
B : 

z = (0,833 – 0,333.φ / α) . i 

 

Metacentric radius, MB: 

            (0,008 + 0,0745. α²). l²      
   r =   --------------------------------  
                         φ . i 

 
 
9. CONCLUSIONS 

 
Hypotheses on the Syrakosia still need rechecks and discussions, but the 
general view provided by them appears to be consistent. 

If the considerations developed here confirm Archimedes’ ingenuity 
in observing the behaviour of floating bodies, probably including the 
Syrakosia, they show that his concepts could not be applied directly to her, 
nor have they been developed for the application to other ancient ships, 
like the Nemi or the oared ships, for which only empirically estimated 
formulas could have been available. A scientific calculation of the volumes 
and of the centres responsible for stability was available to Archimedes 
only for geometric solids, whose characteristics were known in advance. 
Application of stability concepts to shapes different from those of 
geometric solids was possible only after the 18th century, when modern 
naval architecture was developed, in connection with naval drawing based 
on orthogonal sections.  
 
 
 
 

 

 

 

 
 

Table 1. Stability features of the above orthocooid compared on a model by the author. 

 

 

 

 

Notes on the Syrakosia and on Archimedes’ Approach 



264 M. Bonino 

REFERENCES 
 
Athenaeus, “Deipnosophistai”, Teubner, Leipzig 1887, 5. 206d–209b.  
L. Basch, Le museé imaginaire de la marine antique, Athens, 1987, chap. VIII, app. 1. 
H. Bellosta, in R. Rashed, (editor) La civiltà islamica, Storia della scienza, Vol. III, Istituto 

dell’Enciclopedia Italiana, Rome., 2002, cap. XLI, Geometria pratica, pp. 506–519. 
M. Bonino, cooperation to S. Firtinidis thesis, 1996. 
M. Bonino, Un sogno ellenistico: le navi di Nemi, Pisa 2003, App. to Chap. 7, reconstruction 

of the Syakosia and translation into Italian of Athenaeus’ passage. 
M. Bonino, Le grandi navi ellenistiche, una ricerca che parte dal Lago di Nemi, Documenta 

Albana, II series, No 25, Albano Laziale, 2003, pp. 15–25. 
M. Bonino, Argomenti di architettura navale antica, Pisa 2005, chap. 2, 3, 6. 
M. Bonino, Appunti sull’opera di Archimede nei riguardi dell’architettura navale, 

Archaeologia Maritima Mediterranea, No 6, Rome, 2009, pp. 89–108. 
C. B. Boyer, Storia della matematica, Milano 1990 (transl. from New York edition 1968). 
L. Casson, Ships and seamenship in the ancient world, Princeton, 1971, pp. 185–199. 
M. Clagett, Archimedes in the Middle Ages, Vol. III, part IV, Philadelphia, 1978. 
E. J. Dijksterhuis, Archimede, con un saggio bibliografico di W. R. Knorr, Florence 1989 

(it. translation), mainly pp. 301–320.  
S. Firtinidis, Das Schiff des Hieron II von Sirakus, doctorate thesis, presented by Prof. J. 

Borchardt, University of Wien, 1997. 
A. Frajese, Archimede, opere, Torino, 1974.  
J. L. Heiberg, Archimedis opera, Teubner, Leipzig, 1910–1915. 
P. D. Napolitani, Archimede, alle radici della scienza moderna, Le Scienze, I grandi della 

scienza, N. 22, Milan, October. 2001. 
E. Lo Sardo (editor), Eureka! il genio degli antichi, cathalogue of the exhibition, Naples 

2005. 
H. Nowacki, Archimedes and ships stability, Max Planck Institute for the history of 

Science, Preprint No 237, Berlin, 2002. 
P. Pomey/A. Tchernia, Archimede e la Syrakosia, in E. Lo Sardo (editor), Eureka! il genio 

degli antichi, 2005, pp. 228–232.  
R. Rashed, (editor), La civiltà islamica, in Storia della scienza, Vol. III, Istituto 

dell’Enciclopedia Italiana G. Treccani, Roma, 2001.  
L. Russo, Archimede e la rivoluzione scientifica, in E. Lo Sardo (editor), Eureka! il genio 

degli antichi, 2005, pp. 217–222.  
F. Salviat, Le navire géant de Syracuse, Tropis, II, Athens 1990, pp. 301–303. 
M. Tumbiolo, Ierone II e la Syrakosia graduation thesis, Facoltà di Conservazione dei Beni 

Culturali, Bologna University, Trapani, 2009, presented by N. Cusumano and M. 
Bonino, construction of the model in scale 1:200. 

F. Zevi, Le navi di Archimede, in E. Lo Sardo (editor), Eureka! il genio degli antichi, 
2005, pp. 223–227. 



 

S.A. Paipetis and M. Ceccarelli (eds.), The Genius of Archimedes – 23 Centuries of Influence 265 
on Mathematics, Science and Engineering, History of Mechanism and Machine Science 11,  
DOI 10.1007/978-90-481-9091-1_18, © Springer Science+Business Media B.V. 2010 

WHAT DID ARCHIMEDES FIND AT “EUREKA” 
MOMENT? 

 
 

Kuroki Hidetaka 
Okazaki city, Aichi Pref., 444-2137, Japan 

e-mail: kuro0909hide@wh.commufa.jp 
 
 
ABSTRACT Archimedes has been considered as he had found the Law 
of Buoyancy at “EUREKA” moment. Because, it seems to have been con-
sidered that the overflow water volume measurement that Vitruvius wrote, 
is impossible. After Archimedes, overflow volume measurements have not 
been done by using of a vessel having enough large opening to put in a 
practical size crown. Then, it is thought that Archimedes found the Law of 
Buoyancy at that moment and proved the theft of the goldsmith. 

In this paper, the measurement of the overflow volume by golden 
crown etc. has been tried. At a result, it is proved that the measurement can 
be done with enough accuracy by using a vessel having enough large 
opening diameter. 

Archimedes might have proved the theft of the goldsmith by almost 
the same method to this measurement. 

From this result, at “EUREKA” moment, Archimedes did not find the 
Law of Buoyancy but found the solution of the king Hiero’s problem and 
specific gravity of things. 

Also this moment must have been when Archimedes got an inspiration 
of the idea of the law of Buoyancy. 

 
 

1. INTRODUCTION 
 
Archimedes ran through a street in Syracuse naked with much joy shouting 
“EUREKA! (I found it)” repeatedly.  

After this moment, Archimedes made a silver lump and a gold lump of 
the same weight as the king Hiero’s golden crown. (“Crown” is in Latin 
“Corona”. Maybe its shape was a wreath.) Archimedes put them into a 
vessel filled with water one after another. And he proved the theft of a 
goldsmith of the golden crown by measuring the overflow water volume 
by these items. 

This episode is the world famous story as the moment that Archimedes 
found the Law of Buoyancy. This episode was written by Vitruvius, an 
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architect in BC 1st century, in the book “Ten books on Architecture”.[1][2] 
However he did not write that Archimedes had found the Law of Buoyancy 
at this moment though he seemed to know Archimedes’s achievements 
well. Of course, Archimedes did not write about this episode. 

More than 1500 years later, Galileo wrote his first short treatise entitled 
“La Bilancetta” (The Little Balance) in 1586.[3] He concluded that Vitruvius 
made a mistake in reporting the episode of Archimedes. (He did not mention 
the name “Vitruvius”.) Galileo might think that the measurement of the 
overflowed water volume by the golden crown etc. was difficult. (may be, 
impossible) Then, he reached the result that Archimedes had found the 
Law of Buoyancy at the moment and he made up “La Bilancetta”. 

Even in modern times, it may be believed that the measurement of 
overflow water volume is impossible. For example, the rationale is as 
follows. The golden crown is supposed to be 1000g. And 30% gold of the 
crown was replaced with silver. The difference of the volume between the 
golden crown and the same weight gold lump will be only 13cc. (“cc” or 
“cm3” is used in this paper) If the opening diameter of the vessel is 20 cm, 
the difference of 13cc is only 0.4mm in height. Such a small difference 
cannot be measured. 

In fact, any practical measurements along the Vitruvius’s story seemed 
not to have been done by using a vessel having enough large opening  
diameter to put in a practical size crown. 

If measurements of overflowed water volume by these items are 
possible, the mixed ratio of silver in the golden crown can be proved. 
There are not any contradictions in the story written by Vitruvius. 

In this paper, measurements of the overflowed water volume by the 
golden crown are tried by using of the equipments that Archimedes would 
use in ancient Greece era.  

The result of this trial is reported hereunder. 
 
 

2. DIMENSIONS OF GOLDEN CROWN etc. 
 
Archimedes Homepage by Prof. Chris Rorres of Drexel University was 
referred to.[4] The chosen conditions of the golden crown are as follows. 

Weight of golden crown                                 : 1000g 
Mixed ratio of silver in the crown                  : 25% 

From these conditions, dimensions of objects to be measured are 
shown in Table 1. And circular opening diameter of a vessel that Archimedes 
used, is decided to be 20cm. (Outside diameter of the crown is supposed to 
be less than 18cm). 
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Table 1. Dimensions of objects to be measured. 

Object Weight [g] Density [g/cm3] VO [cc] 
Silver lump 1000g 10.5 95.2 
Gold lump 1000g 19.3 51.8 
GCS  1000g 16.0 62.7 
GCS Golden crown mixed with 25% Silver, VO Volume of Object 

 
 

3. EXPERIMENTAL 
 
3.1. Method of Overflowed Water Volume Measurement  
3.2. Method According to the Vitruvius’s Story 

At first, a trial has been done according to Vitruvius’s story. 

1. A vessel having a round opening is prepared and its diameter is 
approximately 20cm(Vessel-a). It is filled with water up to nearly the 
highest point. At this point, any water does not overflow by water 
surface tension. And the surface level is higher than the brim. (Fig. 1, 
left) However, the real highest point cannot be known.  

2. When an object that has approx.80cc volume is put in, much water 
overflowed from the circumference of the vessel. (Fig. 1, center)  

3. After the overflow stopped, the object is taken out from the vessel. The 
water height of the vessel is slightly lower than the brim. (Fig. 1, right)  

4. Then water is added up to the near height in item 1 by using of a pint 
measure. 

Through these measurements, any water volumes could not be measured 
accurately. More than 50cc difference occurs at every measurement. From 
this result, through the method written by Vitruvius, it is understood that 
water volume will not be measured.  

However, this result was as expected formerly. 
 

Fig. 1. Vitruvius’s method is tested by using of vessel-a. 

 

 
 

What did Archimedes Find at “Eureka” Moment? 
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4. VESSEL HAVING A BEAK 
 
A vessel having a beak is prepared as shown in Fig. 2. (Vessel-b) It is 
made by Polypropylene and its circular opening diameter is 21cm.  

In ancient Greece, there were many kinds of ceramic wares, glass 
wares and metal wares. So, Archimedes would be able to use a vessel like 
this.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Vessel-b having a beak. 
 

Measurement of the overflowed water by the 80cc object is tried by 
using vessel-b through the Vitruvius method. At a result, two problems are 
found.  

• Even using this vessel-b, the highest point of water cannot be deter-
mined. 15cc or more difference is occurred by the water surface 
tension. 

• A part of overflowed water ran down along the vessel body. This also 
disturbs to achieve the accurate measurement. 

 
 
5. EFFECT OF TONGUE  

 
A triangle shape tongue is attached to the beak and tested. (It is made of 
Vinyl) Two effects were expected by attaching the tongue. 

• The disturbance of the water surface tension will be decreased. 
• The water flow is gathered to one stream along the tongue  

Even by using this condition, an accurate measurement could not be 
obtained through Vitruvius’s method. However, the overflow finish point 
seemed to make almost the same height repeatedly. Then this point is 
chosen as the basic point of measurements.  
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6. METHOD OF WATER VOLUME MEASUREMENT 
 
The measuring method using the Overflow Finish Point (OFP) is as follows. 

1. A container is put under the tongue to receive overflowed water. 
2. Water is added gradually to the vessel until overflow begins. (Fig. 3 left) 
3. At first, water flows out rapidly. The flow decreases slowly and turns 

into drops. 
4. The water drop intervals become longer and longer. Then the flow 

stops. (Fig. 3 right) This is the basic measuring point (OFP). This point 
may be able to be considered as “the very brim” point that Vitruvius 
wrote in his book.  

5. Next, the container is changed to an empty pint measure. (Vitruvius 

6. An object that is to be measured such as the crown is put into the 
vessel. The object should be put in not so roughly but not so quietly. 

7. At first, water flows out rapidly. The flow decreases slowly and stops 
at the OFP.  

8. The sextarius measure is taken off and the gathered water is removed 
to a 250cc mess-cylinder. And the volume is read by the scale. 

9. The measured object is taken out from the vessel. 

This is the measuring procedure by using of OFP. 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Water overflow and stop at the OFP. 
 

 
7. INVESTIGATION OF TONGUE SHAPE AND MEASURING 

CONDITION  
 
By a combination of some large and small glass balls, a volume of 52.0cc 
is arranged. 

Tongue’s shape, material and place have been investigated by using 
these balls through the procedure that is written in the upper clause.  

wrote as “sextarius measure”. It was about 540cc volume.)   

What did Archimedes Find at “Eureka” Moment? 
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The final chosen condition that enables an accurate measurement is as 
follows. 

• The vessel is inclined 12 degrees so that the internal groove of the 
beak becomes level. (A-A’ line in Fig. 4) 

• The tongue is attached outside of the beak. Better accuracy was 
obtained than it is attached inside. 

• 
• The tongue’s shape is thin triangle. At the end of the beak, the tongue 

width is 4mm. And the length is 20mm 
       

 
 

 
 
 
 
 
 
 
 

Fig. 4. Cow skin tongue. 
 

By using of these conditions, it is found that very accurate measure-
ment can be obtained. These conditions could be prepared by Archimedes. 
 
 
8. MEASUREMENT OF THREE OBJECTS 

 
The result of measurements of three objects is shown in Table 2. Their 
volumes are measured three times about each object by using of a mess-
cylinder. At a result, only within 2.0cc difference against the input volume, 
was obtained.  

SL Silver lump, GL Gold lump, GCM Golden Crown mixed with 25% Silver,  
VO Volume of Object, IV Input volume, LGB Large Glass Ball no.,  

A A’

Cow skin is chosen as the tongue material. (Fig. 4) 

SGB Small Glass Ball no., OV Output Volume  

Table 2. Result of overflowed water volume measurement. 

IV (cc) Object VO (cc) LGB SGB Total OV (cc) 

SL 95.2 1,3,4,7 1,2,3,5 95.0 95.5, 95.0, 96.0 
GL 51.8       4,7 1,2,3,4 52.0 51.5, 52.0, 52.5 
GCS 62.7    4,5,6 – 62.5 63.0, 64.5, 64.0 
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However, there will be one more problem remaining.  
The problem is that Archimedes seemed not to be able to express the 

volumes as numerical value. 
 
 
9. LIQUID MEASURE IN ANCIENT GREECE (SYRACUSE) 

 
In ancient Syracuse, they used “Attic measures”. And the smallest unit of 
liquid measure would be “cyathos”. Its volume was about 45.6cc. [5]  

A sextarius measure that Archimedes used was volume of 540cc. A cup 
is used in this paper as a sextarius measure. (Fig. 5) Its volume is about 
500cc. (A real sextarius measure might be approx. 10% larger than this.) 
This cup is graduated every 10cc.  

Even by using of this cup, it was difficult to prove the theft of the 
goldsmith. Because the difference of the water height between the gold 
lump and the golden crown is so little, the goldsmith would never admit 
his theft. To measure a little volume of water, sextarius measure should 
have following features. 

• Graduated at least every 1/10 cyathos. 
• Made by transparent material such as glass.  
• Much thinner and taller shape than the cup shown in fig. 5. 
 

 
 

 
 
 
 
 
 
 
 
 

Fig. 5. Sextarius measure. 
 

If a sextarius measure did not have these features, a small volume of 
water could not be measured by it. In ancient Syracuse, there would not be 
such kind of measure cup. They seemed to have no needs to measure less 
than a cathos (45.6cc) in their life. 
 

What did Archimedes Find at “Eureka” Moment? 
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10. MEASUREMENT OF OVERFLOWED WATER WEIGHT 

 
In ancient Syracuse, they had very small unit about weight. The smallest 
weight unit was “chalcus” of 0.091g. Then Archimedes must have used a 
balance to measure the weight of water.  

More than 1000 years before than Archimedes era, in ancient Babylonia, 
they measured time by weighing of dropped water weight from a water 
clock. Archimedes might have known this. 

In this paper, a digital scale or a Roberval’s balance are used. 
 
 
11. VOLUME MEASUREMENT OF GLASS BALLS 

 
Glass balls are measured their volumes by the Law of Buoyancy. A digital 
scale is used. (A & D co.ltd. Type HJ-150, max150g, 0.1g digits) 

A body in water will be lighter as the same weight as the water 
replaced by the body. The example of this measurement is shown in fig. 6. 

 
1. A water cup is placed on the digital scale. And set the display clear to 

2. A glass ball hung with a nylon thread is put into the cup. 
3. Read the weight. (The right picture shows 21.3g) 

 
 
 
 

 
 
 
 
 
 
 
 

Fig. 6. Glass ball volume measurement. 
 

Where the density of water is 1.00g/cm3. The result is shown in Table 3. 
From this result, some glass balls are combined to have the similar volume 
of objects to be measured. 

Of course this measurement was not needed for Archimedes. 

0.0g. (Fig. 6, left) 
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Table 3. Glass ball volume measurement (g=cc). 

 No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 
LGB 21.3 21.5 21.3 22.2 21.4 21.0 21.6 – 
SGB 2.4 2.4 2.2 2.4 2.6 2.5 2.5 2.5 
LGB Large glass ball, SGB Small glass ball, 

 
 
12. METHOD OF OVERFLOWED WATER WEIGHT 

MEASUREMENT  
 

A Roberval’s balance is used. (Murakami Kouki Co.ltd type:MS-1, max.1kg) 
At first, a sextarius measure is placed on the right dish. And a plastic 

cup is placed on the left dish and sand is put into the cup until make a 
balance with the sextarius measure. By using this sand cup as a counter 
weight, only weight of the water is measured at all measurement. The 
measurement procedure that was finally decided is as follows.  

From item 1 to 7 are just the same as clause 3.1 “Method of Water 
Volume measurement”. 

8. The sextarius measure is taken off and is placed on the right dish of the 
balance. 

9. The water is weighed by the balance. (see Fig. 7) 
10. The measured object is taken out from the vessel. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Water weight measurement. 

Now, the first measurement has completed. Before the next measure-
ment, glass balls and the sextarius measure are wiped out to dry.  

 
 

 

 
 

Counter weight against sextarius measure 

What did Archimedes Find at “Eureka” Moment? 
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Three objects are measured through this procedure. (The first: a silver 
lump. The second: a gold lump. The third: the golden crown mixed with 
25% silver) 
 
 
13. RESULT OF WATER WEIGHT MEASUREMENT  

 
The result is shown in Table 4. Each object is measured 5 times. 

According to this result, the difference between the put-in volume (IV) 
and the overflowed volume (OV) was only –1.1g to +0.2g. 

This result shows that this measurement has enough accuracy to prove 
the theft of the goldsmith. 

IV (g=cc) OV (g=cc) Object VO 
(cc) LGB  SGB Total  Ave. 

DV 
(g=cc) 

SL 95.2 1,3,4,6 1,2,3,4 95.2 94.1, 95.0, 95.2, 
94.9, 94.9 94.8 -0.4 

50.8, 50.7 51.1 -0.6 

GCS 62.7 4,5,6 62.6 62.2, 62.6, 62.0, 
61.6, 62.8 62.2 -0.4 

SL Silver Lump, GL Gold Lump, GCS Golden Crown mixed with 25% Silver,  
VO Volume of Object, IV Input Volume, LGB Large Glass Ball No., SGB Small Glass 
Ball No., OV Output Volume, DV Difference of Volume (OV-IV)  

 
These average values are changed from gram to chalcus (0.091g) as 

follows. 

• The silver lump                                           : 94.8g => 1042chalcus 
• The gold lump                                             : 51.1g =>   562chalcus 
• The golden crown mixed with 25% silver  : 62.2g =>   684chalcus 

The differences become very clear by these values expressed in chalcus. 
 
 
14. VERIFICATION BY ARCHIMEDES 
 
This verification by Archimedes might have done in front of the king Hiero II.  

After these measurements, Archimedes turned to the goldsmith and 
said. 

GL 51.8 1,6 1,2,3,4 51.7 50.6, 51.6, 51.7, 

Table 4. Result of overflowed water volume (by water weight). 

– 
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“The difference between the silver lump and the gold lump is 
480chalcus. And the difference between the gold lump and the crown is 
122chalcus though they are the same weight. This is one fourth of the 
difference between the silver lump and the gold lump. You must have 
stolen the one fourth of the gold that the king handed to you and mixed 
the equivalent weight of silver in it!!” 
 
 
15. CONCLUSION 
 
Archimedes had been considered as he had found the Law of Buoyancy at 
the “EUREKA” moment. Because, it seems to have been considered that 
the overflow water volume measurement that Vitruvius wrote, is impossible.  

However, in this paper, it is proved that the overflowed water volume 
measurement is possible with enough accuracy by using of a vessel having 
enough large opening to put in the golden crown. And by weighing the 
overflowed water weight, the volume differences of the objects become 
very clear. By using this method, Archimedes might have proved the 
goldsmith’s theft.  

The color of gold will change by mixing of 25% silver to greenish-
yellow-gold. So the goldsmith might have also mixed copper (and other 
metal) to adjust the color of the crown. He could get these metals easily 
from the coins which were used usually. As the density of copper is 8.9, 
the volume of the crown will be larger than silver only. So, the theft of the 
goldsmith would be more easily found out.  

In Archimedes era, the touch stone method had already been used. 
However, the crown is scraped off even a very little portion. Therefore 
Archimedes would never use this method. 

As a result, the Vitruvius’s story should be recognized as the fact. 
However, Vitruvius or some person might have made a mistake about the 
measuring procedure. He or someone could not record correctly with 
difficulties to understand Archimedes’s measuring method in details. 

As a conclusion of this paper, it is thought that Archimedes did not 
find the Law of Buoyancy at “EUREKA” moment.  

At this moment, He must have found the solution of the king Hiero’s 
problem and specific gravity of things. 

Also this moment must have been when Archimedes got an inspiration 
of the beginning of the Law of Buoyancy. 
 
 
 
 

What did Archimedes Find at “Eureka” Moment? 
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ABSTRACT In this paper the main developments in ship buoyancy, 
stability and subdivision of ships since the milestone formulation of the 
basic laws of floatability and stability of floating bodies by Archimedes are 
reviewed. The continuous progress in the safety of ships as most effective 
transportation means and the links of the fundamental Archimedean studies 
to the modern naval architectural approaches to ship stability, design and 
safety are critically commented. 
 
 
1. INTRODUCTION 
 
Man has travelled since thousands of years throughout the oceans without 
first knowing how and why it was possible. The basic laws of hydrostatics 
of floating bodies were introduced by the Great Archimedes in 300 B.C. 
It is well established that he was the first to formulate the basic law of 
buoyancy and eventually floatability; namely, the ability of a solid body to 
float is trivially related to the equilibrium and balance of the gravitational 
(weight) and the hydrostatic pressure (buoyancy) force. Modern time naval 
architects were until recently less aware of the fact that Archimedes had 
also set the foundations of ship’s stability; namely the ability of a floating 
(or fully submerged) body to regain its initial position after removing an 
applied disturbance, which is trivially related to the balance of a couple of 
forces (or moments), namely the couple of weight and buoyancy forces. 
The basics of ship stability are laid down in Archimedes’ most famous 
treatise On Floating Bodies (‘περί οχουμένων’, literally translated from 
Greek ‘on vehicles’), as has been recently elaborated by Nowacki, 2001.  
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Many centuries after Archimedes, they were the French P. Bouguer 
(1746) with “Traité du Navire” and the Swiss L. Euler (1749) with 
“Scientia Navalis”, who worked out (almost simultaneously) the principles 
of modern ship buoyancy and stability, of fluid resistance and a series  
of other specific problems of Ship Theory on the basis of Newtonian 
mechanics. The important notion of stability “metacenter” stems from 
Bouguer and was never used by Euler, who was not familiar with this 
terminology. But in fact both derived the magnitude of GM (the vertical 
distance between the ship’s center of gravity G and the metacenter M, a 
property of ship’s form) from the basic ship characteristics by the same 
expression in order to judge on the stability for small inclinations (initial 
stability). At the end of the 18th century and the years after, Atwood, Vial 
de Clairbois and Moseley set the foundations of ship stability at large 
inclinations and of dynamic ship stability (see Nowacki & Ferreiro, 2003).   

During the industrial revolution in the 19th Century, the first ironclad 
steam powered and very large ships were introduced (Great Eastern, 1858), 
thus, the demand for even more thorough and practical approaches to 
ship’s floatability and stability rapidly increased. Historical develop-
ments in ship’s subdivision (and damage stability, which is ship’s stability 
in case of loss of her watertight integrity, e.g., by collision, grounding etc.) 
in the 20th Century were marked by the most notable ship disaster, namely 
the dramatic loss of the Titanic on her maiden voyage (1912). This tragic 
accident mobilized the international maritime community and initiated the 
first international convention on the Safety Of Life At Sea (SOLAS) in 
1914, noting, however, that the first international regulatory provisions 
regarding ship stability and subdivision were actually introduced only after 
WWII, namely in SOLAS 1948. This convention led also to the foundation 
of the International Maritime Organization (IMO,), which is today the 
United Nations specialized agency responsible for improving maritime 
safety and preventing pollution from ships worldwide.  

More recent scientific and regulatory developments in the intact and 
damage ship stability concern the dynamic stability of ships in waves and 
considerations of ship’s overall safety against capsize and other hazards for 
the various types of merchant (and naval) ships, with emphasis on the 
stability of passenger ships, for which the risk of loss of many lives on-
board should be kept minimal. After the loss of Estonia in 1994, particular 
emphasis has been placed on improving the design of ferries (Roll-On 
Roll–Off or Ro-Ro ships, namely ships with large, unobstructed (car) deck 
areas) and to account for the possible flooding of the car deck which may 
have disastrous consequences on ship’s survivability. Also, the safety of 
recently introduced ultra large passenger/cruise ships, carrying close to 
9,000 passengers and crew (see the recently introduced Genesis class 
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cruise ships) is of particular concern to the maritime industry, regulatory 
authorities and researchers, because of their innovative character and un-
precedented size, requesting a thorough understanding of ship’s stability 
behaviour in case of loss of watertight integrity (and of other main hazards, 
like fire etc.) and provisions of highest safety standards.  

Developments in the methodology of ship’s stability show the traditional 
deterministic assessment methods more and more being displaced by 
probabilistic and first principles approaches to ship’s stability and safety, 
which are eventually integrated in risk-based design and operational pro-
cedures. For a recent review of developments in the intact and damage 
stability of ships, see reviews by A. Francescutto (2007) and A. Papanikolaou 
(2007). Nevertheless, the fundamental laws of buoyancy and stability of 
Archimedes are carried on as most important ingredients of scientific and 
regulatory approaches to ship’s floatability and stability over the centuries, 
as will be elaborated in the following sections.   

 
 
2. GENERALIZATIONS OF ARCHIMEDES’ PRINCIPLE 
 
Archimedes’ floatability principle may be derived from the simple, yet 
revolutionary, observation that a solid body floats in water (or at least has 
a reduced weight), although subject to its weight due to gravity because of 
an upward force, namely buoyancy, which is proportional to the displaced 
water mass. There is, however, an important difference in the characteristics 
of the two acting forces, i.e., the body’s weight and buoyancy: the first is 
a force acting at the center of mass of the body, while the observed 
buoyancy is the resultant of the pressure forces exerted on the wetted 

Archimedes’ principle in this form, complicated surface integrals of pressure 
forces are replaced by more convenient calculations of volumes and centers 
of volumes, which is a notable application example of Gauss’ theorem in 
Ship Geometry. 

An important departure from Archimedes’ principle is related to the 
buoyancy in a liquid in motion under the effect of some external disturb-
ance: typical is the case of a body floating in the presence of waves as 
more or less unavoidably happens to actual ships. This generalization does 
not allow us to use the simple calculations of volumes and centers of 
volumes of ship’s hull, when floating in calm water, because nor the 
instantaneous pressures on the body (which include hydrodynamic effects) 
nor the actually wetted ship surface can be easily expressed mathematically, 
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surface of the body, which is acting through the imaginary center of the dis-
placed water mass, or through the center of the immersed volume of the
body, named the center of buoyancy. When interpreting the validity of 
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thus an exact pressure integration over the wetted surface is actually 
necessary. Several approximations are used in practice to address this 
complicated problem, except in modern nonlinear numerical simulation 
approaches: typically, the resultant action (force and moment) is calculated 
assuming a decomposition of the total pressure acting on the wetted sur-
face in a principal part or the so-called Froude-Krylov component consisting 
of the pressure the actual wave would have exerted on the ship hull if the 
wave would not have been disturbed by the presence of the ship (ghost 
ship), and in other parts referring to the disturbance produced to the wave 
by the ship at rest (diffraction component) and by the motions of the ship 
(radiation). In typical modern approaches to ship motions in waves, these 
components are further decomposed and rearranged to give added (hydro-
dynamic) mass, hydrodynamic damping, restoring and forcing (wave 
excitation) terms in the equations of ship motion, which are obtained when 
applying Newtonian dynamics to the ship. 

For the purpose of the following discussion, focusing on buoyancy and 
stability, we just note that besides modern numerical simulation methods, 
present practical approaches to ship’s stability mostly focus on static stability 
characteristics in calm water, whereas those explicitly taking into account 
the effect of waves (ship dynamics) are based on the Froude-Krylov (Froude, 
1861, Krylov, 1898) hypothesis and may eventually consider further 
simplifications of the wave effects based on the assumption of hydrostatic 
dependence of pressure under the actual free surface or the so-called Smith 
effect (Smith, 1883) averaging the effect of the orbital motion on the 
pressure with respect to distance from the free surface. 
 
 
3. THE LINK OF SHIP BUOYANCY, STABILITY  

AND SUBDIVISION TO THE ARCHIMEDEAN WORK 
 

Sinking because of insufficient buoyancy and capsizing due to insufficient 
stability are two of the most important threats to ship’s survivability at sea. 
The safety from sinking and capsizing is thus an important part of the 
safety of navigation with the entailed safety of the life of people onboard, 
of carried cargo and with respect to the protection of environment in 
waterborne transportation. 

The most characteristic discipline of Naval Architecture known as 
Buoyancy and Stability is directly founded on the roots of the Archimedean 
buoyancy principle, while it is less clear if his early findings about the 
stability of floating paraboloids (in Archimedes’ treatise On Floating 
Bodies) remained unexploited for centuries (or were simply ignored or not 
referenced) and what was actually their impact on later developments in 
ship stability.  
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The development of Ship Stability as a science, came indeed much 
later, namely in the 18th century with approaches to ship stability on the 
basis of the concepts of metacenter and of uprighting moments. While ship 
buoyancy was and is a well defined notion, not the same can be said, in 
general, for ship stability. This is indeed a quite complex ship property, 
which is traditionally thought composed of the initial stability and the 
stability at large inclinations;  

The initial stability is the stability in the small region around the 
upright position in the sense of theoretical mechanics, and the boundedness 
within the prescribed limitation of the transversal inclinations, either static 
or as a result of roll motion. When a ship is in upright hydrostatic equili-
brium, weight and buoyancy constitute a couple of forces acting on the 
same vertical line through the center of gravity and the center of buoyancy 
respectively. Trivially, when the body is fully submerged (like a sub-
marine) and the center of the weight force is below that of the buoyancy 
force, the resulting moment is uprighting and the body stable, this being 
the only stable position for the body. For a floating body, like a ship, a 
(small) inclination φ gives rise to two wedges of immersion/emersion, 
whose result is to displace the center of buoyancy so that weight and 
buoyancy no longer act along the same line and their moment can be up-
righting or further overturning-heeling, so qualifying the ship as (initially) 
stable or unstable. The criterion of stability is here whether the center of 
the weight force G is below an imaginary center M (metacenter), or the 
distance GM is positive, noting that the position of the metacenter above 
keel-line KM is determined by ship’s wetted hull form properties, namely 
as the sum of the vertical distance of the center of buoyancy above keel-
line KB and the height of the metacenter above the center of buoyancy 
BM; the latter is determined by the ship’s waterplane area properties (and 
is trivially zero for fully submerged bodies). For small inclinations φ, the 
uprighting moment is simply proportional to ship’s displacement Δ times 
GM times φ. 

For the stability at large inclinations, it is not sufficient to look only at 
the sufficiency of the position of the metacenter; rather more, we need to 
control the uprighting moment at large heeling angles and in particular the 
behaviour of ship’s uprighting arm, which at small inclinations is equal to 
GM times φ, as a function of the heeling angle GZ(φ); the characteristics 
of the GZ(φ) curve (static righting lever) and of the underneath area 
(dynamical righting lever), which are unique for every ship hull form and 
loading condition, are then used in judging on ship’s stability at large 
inclinations and consequently in formulating the ship’s stability regulations.  

In Archimedes’ treatise On Floating Bodies the stability at large 
inclinations was addressed without use of the notion of metacenter, which 
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is anyway an artificial (imaginary) center, but applying correctly the 
concept of balance of the couple of weight and buoyancy force. This was 
at that time possible for a paraboloidal solid, due to previous notable 
findings of Archimedes in the geometry of shapes. It is noted, that the 
parabolic section, which is not so far from slender shiplike sections, has 
the notable geometric peculiarity that, in upright position, the metacentric 
radius BM, which is an important part of form stability, is independent of 
the immersion of the body. It took some centuries for the naval architects 
to mathematically capture satisfactorily the geometrical properties of more 
complicated 3D shiplike hull forms and to better quantify ship stability.  
The revisiting of the Archimedean studies on the stability of the paraboloid 
is still exciting many mathematicians until today (Rorres, 2004, Girstmair 
and Kirchner, 2008).  

The need of an internal watertight subdivision of the hull in 
compartments to resist the effect of damage (breach) of the hull and the 
subsequent flooding is in itself evident, but became more urgent when 
passing from wooden made ships to iron made ships and the ship size, as 
the number of people onboard, increased. Unfortunately, what we now 
consider evident in itself came into practice very slowly, too often as a late 
response to disastrous accidents. 

It is indeed important to recall the interrelations between the different 
aspects of ship safety: buoyancy, stability and subdivision. A ship shall be 
disposing sufficient reserve buoyancy and stability in the intact ship 
condition to resist the environmental actions and the effect of possible hull 
damage. In particular, the reserve buoyancy, which is ensured by a 
minimum freeboard to ship’s main deck constituting the upper limitation 
of the watertight ship body, has an important and positive effect not only 
on floatability, but also on the reserve (a margin) of stability at large 
inclinations. Two ships of similar dimensions, having the same initial 
stability (GM value) can have very different stability at large angles 
depending on their freeboard, as the tragic accident of the HMS Captain 
versus the comparable HMS Monarch (two ships having comparable GM 
but very different freeboard), demonstrated (Reed, 1870). It is fair to say 
that the problem of floatability and stability in damage condition was not 
addressed by Archimedes; however, the underlying basic concepts remain 
the same, namely the control of a balance of weight and buoyancy forces 
and moments, considering the effect of flooded water due to hull damage; 
this is commonly addressed as an added weight or lost buoyancy force, but 
else the Archimedean principles of floatability and stability fully apply. 

Concluding as to the impact of Archimedes on current stability con-
cepts, the various static stability quantities required for the assessment of 
compliance with present (large angles) stability criteria are still based on 
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hydrostatic calculations in calm water, exactly as it would have been done 
by Archimedes if he would have generalized his calculations passing from 
simple mathematical forms to generic ship forms. The new notion included 
in the assessment, namely the dynamic stability or righting arm curve of 
areas, was at that time far from the scientific developments, as the concepts 
of work and energy had to wait for some later centuries to be introduced. 

The present format of the assessment of initial stability is based on 
the concept of metacentric height GM and hence of metacenter. This is 
explained by the strong tradition in naval architecture and the fact that a 
single quantity/metric, like the metacenter, can effectively characterise the 
sufficiency of ship’s stability at small heel angles. For the assessment of 
ship’s stability at large inclinations, the characteristics of the uprighting 
moment arm lever GZ(φ) are employed, noting that trivially the slope of 
the GZ(φ) curve at φ = 0 is equal to GM.  
 
 
4. THE DEVELOPMENT OF INTERNATIONAL REGULATIONS 

FOR ADEQUATE BUOYANCY, STABILITY AND SUBDIVISION  
 

The first international regulations addressing in some way floatability and 
stability issues were the Minimum Freeboard and the Subdivision regulatory 
provisions. Relevant regulations concerning these parts of maritime safety 
have been previously developed in the frame of national bodies until the 
sinking of Titanic in 1912; this most remarkable accident in naval archi-
tectural history led to the first ever International Conference on the Safety 
of Life at Sea (SOLAS); that conference resulted to the first text of the 
SOLAS Convention, containing the basis of what was successively developed 
to become the so-called factorial subdivision; it was signed on January 
20th, 1914, in London. The Convention met again in 1929 and 1948 and it 
was then taken onboard by the newborn IMO.  

The Minimum Freeboard regulations have also a quite long history. 
They were first regulated in England in 1876 as a result of the efforts of 
J. Hall and S. Plimsoll, in an attempt to control ship’s overloading by 
specific a minimum clearance of ship’s open deck from her calm water 
draft. The first related international conference, however, was not convened 
until 1930 (1st International Load Line Convention).  

Quite different is the history of developments of the stability regulations. 
Damage Stability came practically first with SOLAS’48, in relation to 
ship’s subdivision and several decades after the loss of Titanic. Even later 
was the introduction of the first Intact Stability provisions, which were 
initiated by calls in the conclusions of SOLAS’60 and of SOLAS’74 
International Conventions. 

Floatability and Stability of Ships: 23 Centuries after Archimedes 
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An accelerated change in international maritime law is noted after the 
United Nations family of organizations came into life after WWII, and 
here particularly the IMO. Developments at IMO until the end of the 80ties 
were still quite slow, with relatively small changes initially agreed regulations. 

From the 90ties on, strong changes were triggered at IMO, first with 
respect to the Load Lines Convention through the findings about the sink-
ing of the young age British capsize bulk-carrier Derbyshire in the early 
80ties, which disappeared with all her crew in monster wave conditions. 
The Intact Stability Code was put in discussion in 2001 as a consequence 
of some inconsistency in the application of existing regulations to the 
design of large passenger vessels, continuously growing in size; also the 
spectacular accident of the containership APL-China in the Pacific 
revealed that Parametric Rolling of ships in waves may be a much more 
dangerous issue than expected.  

The revision of the Load Lines Convention ended in 2000. The newly 
introduced features are related to a major role given in the development of 
the new standard to ship’s seakeeping properties, to the requirements for 
the minimum bow height, the reserve of buoyancy, the height, strength and 
watertightness of the forecastle, of the cargo hold hatch covers and the 
strength of the forward compartment bulkheads. 

The present situation and trends as far as the intact and damage stability 
regulations are concerned will be briefly addressed in the following two 
sections. The reader interested in greater details is referred to Francescutto 
(2007) and Papanikolaou (2007). 
 
 
5. INTACT STABILITY OF SHIPS – RECENT REGULATORY 

DEVELOPMENTS AND TRENDS  
 

The latest revision of the International Intact Stability Code, which started 
in 2001, led to the 2008 IS Code. Further to this, the need for new criteria, 
based on more realistic physical approaches was stressed and a rational 
updated plan of action was decided, consisting in the development of: 

– vulnerability criteria to identify the possible susceptibility of a ship to 
partial (excessive roll angles/accelerations) or total (capsizing) stability 
failures for each mode; 

– procedures for direct assessment of: stability failures explicitly taking 
into account the dead ship condition, the stability variations in waves 
(pure loss of stability and parametric resonance) and the connections 
between stability and course-keeping qualities (manoeuvrability). 
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The idea of vulnerability criteria, to be developed in two levels 
(vulnerability and severity) is of paramount importance in the frame of 
criteria aimed at improving ship safety and making safety improvement 
more “cost-effective” against modes of failure not covered by present 
criteria. It could avoid the need for indiscriminate generalized application 
of heavy computational or experimental procedures (Bassler et al., 2009). 

It is generally accepted that the new criteria will require calculations of 
stability in the presence of waves, probably based on the Froude-Krylov 
approach. It is not clear at this point, however if the third level criteria, 
or direct assessment, will be based on the best available computational 
techniques, including CFD, or if they will retain some level of the empiricism 
that negatively characterised the present generation of criteria. 
 
 
6. DAMAGE STABILITY OF SHIPS – RECENT REGULATORY 

DEVELOPMENTS AND TRENDS 
 

Since the loss of Titanic in 1912 and the first SOLAS Convention in 1914, 
ship damage stability regulations and relevant compliance criteria for 
passenger ships were slowly but steadily modified over the years, adapting 
to findings of new ship losses and the continuously improving state of art 
in the field, though to a lesser satisfactory degree from the scientific point 
of view. Notably, there were no specific damage stability criteria or sub-
division requirements for cargo ships until the early 90ties, when SOLAS 
was amended to cater for dry cargo ships’ damage stability by use of the 
so-called probabilistic concept. 

The damage stability requirements for passenger ships, which were in 
force until very recently (namely, until the end of 2008), were deterministic 
or rules-based assessment concepts in nature; so, the so-called SOLAS 90 – 
two compartment standard, which was associated with stability criteria 
to ensure the survivability of the ship in case of flooding of up to two 
adjacent compartments; smaller passenger ships were in general of one 
compartment standard, whereas very large ships may have had 2+ and higher 
compartment standard, depending on their size and number of people carried 
onboard; the standard was practically a half-empirical concept developed 
continuously over the years, namely by the analysis of damage cases and 
of stability data of ships that led to ships’ capsize/sinking vs. the data of 
ships considered to be of “state of the art” in terms of stability/floatability 
properties.  

Two very tragic accidents of non SOLAS 90 European ships in the last 
two decades (Herald of Free Enterprise, 1987 and particularly Estonia, 
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deck, laid to an enhancement of the requirements of SOLAS 90 by the 
so-called Stockholm Agreement provisions, for all ferry ships operating 
regionally in NW Europe; these enhanced provisions were later on extended 
to all over Europe and to all developed countries, worldwide. [IMO, 
Resolution 14, 1995], [Vassalos-Papanikolaou, 2002].  

The modern probabilistic approach to the assessment of the damage 
stability of ships was introduced by the German Kurt Wendel in the late 
50ties [Wendel, 1960] aiming at introducing a more rational method for 
the assessment of the probability of survival of a ship in case of damage 
(breach of ship’s outer shell by collision or grounding). Additionally, the 
introduced assessment method allowed the definition of a global ‘safety 
factor’ (Sicherheitsgrad) through which the stability characteristics of 
ships of different size and type became directly comparable. The approach 
leads eventually to the determination of two characteristic safety factors 
for the ship under consideration. The first factor is the so-called attained 
subdivision index A, representing a measure for the probability of survival 
of the ship in case of a statistically probable damage. The second factor, 
namely to so-called required subdivision index R, is the minimum value 
for the attained index A and represents a generally accepted (imposed in 
regulations) survival level for the ship under consideration, corresponding 
to her size and the number of people onboard exposed to the collision 
hazard. The method allows conceptually through systematic application 
the optimization of the watertight subdivision of ships for the least number 
of watertight bulkheads at the greatest possible degree of safety against 
capsize and sinking. A fundamental property of the probabilistic damage 
stability method is the possibility to integrate a variety of general type of 
ship damages in a overall safety assessment risk-based concept (risk-based 
design, operation and regulation, see, SAFEDOR, 2005–2009, Papanikolaou 
et al., 2009). 

Though the new probabilistic damage stability regulations for dry cargo 
and passenger ships (SOLAS 2009), which entered into force on January 1, 
2009, represent a major step forward in achieving an improved safety 
standard through the rationalization and harmonization of damaged stability 
requirements, there are still serious concerns regarding the adopted for-
mulation for the calculation of the survival probability of passenger ships, 
particularly for ROPAX and very large cruise vessels. Furthermore, the 
SOLAS 2009 damage stability regulations account only for collision 
damages, despite the fact that accidents statistics, particularly of passenger 
ships, indicate the profound importance of grounding accidents. A recently 
initiated EU project (GOALDS, 2009–2012), with strong partnership 
representing all stakeholders of the European maritime industry and 

1994), in which both ships sunk because of the flooding of their main car 
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relevant R&D organizations, aims to resolve the above critical issues in the 
next few years.  
 
 
7. CONCLUSIONS 

 
Looking into the scientific and regulatory developments in ship floatability 
and stability 23 centuries after Archimedes, it is trivial to say that develop-
ments, introduced slowly, have been significant, thus greatly improving 
the safety of ships and the people and cargo onboard even in very harsh 
environmental conditions. Transportation by ship, especially of bulk cargo, 
remains the most efficient and environmental friendly mode of transport. 
The Archimedean principles of buoyancy and stability of floating bodies 
are still governing ship’s hull form development and design.  

Time scales of most recent related developments (last two decades) 
were reduced drastically, owing to the fact that scientific approaches to 
ship safety came to maturity and expectations of society regarding mari-
time safety are extremely high.  

An evident new development in maritime regulatory matters, including 
those related to ship’s stability and subdivision, is the introduction of pro-
active rather than reactive methods. This is entirely in the frame of so-called 
Formal Safety Assessment (FSA) procedures, in which safety regulations 
and properties (like ship stability) are assessed in terms of societal accept-
ance criteria, eventually postulating an acceptable number of fatalities for 
people onboard of ships per year. Related to FSA procedures are innovative 
holistic approaches to ship design, namely Risk-Based Ship Design (RBD), 
thus design for acceptable risk levels, and design for Goal-Based Standards 
(GBS), currently in the focus of discussions at IMO.  
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ABSTRACT In a very famous passage dealing with the life of Marcellus, 
Plutrarch says that Archimedes never wrote a text about mechanics and its 
practical applications (Plutarch, Life of Marcellus, 17): according to Plutarch, 
in fact, Archimedes would agreed with the classical Plato’s attack against 
the knowledge originating from technology and the practice of science 
because of their vague and inaccurate nature. This paper, focusing on the 
building of the famous ship “Syrakousia” and its description according to 
the only existing reference in Atheneus of Naucratis (Deipnosophistae, V, 
40–44), is an attempt to rethink Archimedes’ position about mechanical 
knowledge and the cultural relationship between Syracuse and Alexandria.  

 
 

1. INTRODUCTION 
 
This paper focuses on the “Syrakousia” (fig. 1), the biggest ship ever built 
in Antiquity. After a brief description following the ancient literary sources, 
its goal is to understand the possible meaning of such impressive, over-
sized boat. 

The “Syrakousia” story brings us to king Hieron II and Archimedes 
Syracuse (Midolo 1912; Favaro 1923; Dijksterhuis 1987; Geymonat 2006; 
Chondros 2007) and our knowledge of it relies upon literary sources. Even 
if the archaeological underwater discoveries have been adding new data to 
our ancient navy knowledge, the Syrakousia had to be an extraordinary, 
out of scale boat and the few existing illustrations of it are a product of 
fantasy. 

In Archimedes’ life ships seem to play an important role: enemies 
boats were the target of the “Manus ferrea” (fig. 2), the famous mechanical 
device, quoted by ancient authors, that Archimedes invented to lift and 
crash ships into the water during the second Punic war (Polybius, History, 
VIII, 6; Livy, History of Rome, XXIV, 34; Plutarch, Parallel lives. Marcellus, 



 

15; G. Tzetzes, Chiliades, II, 109–113; Zonara, Epitome ton istorion, IX, 4); 
moreover, Archimedes probably invented the burning mirrors, a scientific 
knowledge turned to become a new war technology used to burn the 
enemies ships (G. Tzetzes, Chiliades, II, 118–128; Di Pasquale 2004, pp. 
31–76); finally, his studies about the equilibrium of floating bodies into the 
water were the necessary introduction to any future practical application to 
ship building (Nowacki 2002).  

 

 
Fig. 1. The Hieron II Syrakousia ship (Witsen 1671). 

 

 
Fig. 2. The mechanical device of the manus ferrea, (J. G. Landels 1978). 

 
This story deals with another ship and begins with a very famous 

passage from the life of Marcellus: according to Plutarch, Hieron II asked 
Archimedes to give a public demonstration about his mechanical knowledge 
(Plutarch, Parallel lives. Marcellus, 17; see also Loria 1928). 
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The demonstration Archimedes decided for concerned the possibility 
of moving, by himself, an enormous object. According to some ancient 
and middle ages literary sources the object chosen by Archimedes was the 
Syrakousia ship (Drachmann 1958, p. 279); our knowledge about this ship 
relies on Moschion, an author whose writings have gone lost.1 The original 
Moschion’s description of the Syrakousia survives thanks to Atheneus, a 
Greek philologist who lived in Rome at the end of the II century A.D. and 
wrote the Deipnosophistae: being interested in ancient navy and big ships 
of the passed centuries, Atheneus quoted the passage Moschion describes 
the Syrakousia (Atheneus, Deipnosophistae, V, 40–44). 

The wood used to build the ship came from the forest of the Etna 
volcano, the same amount would have been sufficient to sixty normal size 
boats; moreover, the wood for the furniture came from Calabria, ropes 
from Spain, hemp and pitch from the river Rhone in France. Hundreds of 
artisans worked under the direction of the architect Archia from Corinth 
and they finished half the ship in six months: Archimedes superintended 
their work.  

The fabrication of the ship originated a great inquiry about the best 
method of launching into the sea, so Archimedes decided that this would 
be the public demonstration that the king Hieron was waiting for: “[…] 
and then drew it along, smoothly and evenly as if it was floating in water, 
not with great labour, but sitting down at a distance, gently swinging with 
his hand the end of a compound tackle” (Plutarch, Parallel lives. Marcellus, 
14; see also Proclus in Friedlein 1873, p. 63).  

After this incredible demonstration, Archimedes probably pronounced 
the famous Δος μοι που στω, και κινω την γην, that is “give me a place to 
stand and I shall move the world” (G. Tzetzes, Chiliades, II, 29–130).2 
King Hieron suggested that there must be some limit, but Archimedes had 
demonstrated the contrary to be true, above all if the mechanical device he 
used was a windlass turned by means of an endless screw (fig. 3). 

Now, why did Archimedes chose this experience? Why in Archimedes’ 
mind, this had to be his first public demonstration? Archimedes wanted to 
focus on a problem that Aristotle had considered impossible. According to 
Aristotle, the lever and every mechanical combination based on the five 

                                                 
1 According to Atheneus, Moschion wrote a book about Mechanics. In this book, 

Moschion demonstrated to be a keen observer and scholar in recording the history of 
mechanical inventions, when credited a certain Herakleids from Tarentum to be the 
inventor of a weapon called sambuké (Atheneus, Deipnosophistae, 14): “But Moschus, 
in the first book of his treatise on Mechanics, says that the sambuca is originally a 
Roman engine, and that Heraclides of Pontus was the original inventor of it”. 

2 Even if without pronouncing exactly these words, the first record of this famous 
Archimedes claim is to be found in Plutarch, Parallel lives. Marcellus, 14. 
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basic machines (winch, pulley, lever, screw and wedge) had no power in 
complicated situations such as the moving of huge loads; the example 
Aristotle choose dealt with a boat: in fact, according to him, one man, by 
himself, cannot launch or move a boat with a lever or a combination of 
basic machines; on the contrary, he declared that this operation was possible 
only if a team of workers do it (Aristotle, Physica, VII, 5, 250a, 1–19; 
see also Mugler 1951 and 1970–1972).  

 

 
Fig. 3. The endless screw according to Pappus of Alexandria (Pappi Alexandrini 1660,  
p. 482).  
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Plutarch does not tell us how far Archimedes moved the ship, but since 
it was only a demonstration, few yards would have been enough making 
the story more credible, and a little movement was enough, as Drachmann 
already pointed out (Drachmann 1958).  

The launching of the Syrakousia ship was the occasion Archimedes 
chose to demonstrate that Aristotle was wrong and, above all, to emphasize 
the wonderful and amazing power of the practice of science and the high 
educational value of the public demonstration.  

 
 

2. A BRIEF DESCRIPTION OF THE SHIP 
 

Summarizing directly from Atheneus’ description the most important 
elements of the Syrakousia, we have to figure out that it consisted of three 
levels and giant sculptures representing Atlas were the dividing pillars 
(Zevi 2005; Pomey–Tchernia 2005). The cabins were decorated with paint-
ings and wonderful mosaics representing the whole stories of the Iliad; 
there were eating rooms and baths with hot air circulation system and 
sweet water flowing from a 78 tons boiler through lead pipes; stables for 
horses were on each side of the boat, a salt water pool with fishes was on 
the prow; there were a gymnasium, promenades, gardens with all sorts of 
plants and a vineyard with an impressive water circulation system; next to 
the garden, there was a temple dedicated to Venus, “[...] containing three 
couches, with a floor of agate and other most beautiful stones of every sort 
which the island afforded” (Atheneus, Deipnosophistae, 41). 

The ship had three masts: the problem of transporting them from the 
mountain down to the seaside was solved by Phileas of Tauromenion, 
another mechanic involved in the fabrication (Atheneus, Deipnosophistae, 
43). The Syrakousia contained a library too, with a ceiling decorated with 
a painting representing the heavens: in the library there was another astro-
nomical reference, a sundial “imitated from the dial at Akradina” (Atheneus, 
Deipnosophistae, 42); a sculpture representing Atlas holding on his shoulders 
a heavenly globe was situated at the top of the central mast of the ship; all 
these artefacts had to underline the astronomical knowledge necessary to 
navigators and the meeting between maritime experience and science. 

The Syrakousia had a defensive apparatus too: on the upper level there 
were eight siege towers with catapults and boxes full of darts and stones; 
there was a deck too, with a new catapult capable of hurling a stone weighing 
thirty talents and an arrow twenty cubits long, invented by Archimedes 
himself. On each side of the boat there were mobile hooks used to catch 
enemies ships, a device forerunning the famous manus ferrea Archimedes 
will design and use during the second Punic war against the Roman fleet.  
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Technical apparatus of the ship consisted of twenty rows of oars, eight 
anchors and a set of screws to lift water. Finally, the ship transported sixty 
thousand measures of corn, ten thousand of Sicilian salt fish, twenty 
thousand talents weight of wool, for a total load amounting at 4000 tons 
(Casson 1971 and 1991; an expert in the field of ancient seafaring, L. 
Casson confirms the literary information and considers the Syrakousia the 
biggest ship of Antiquity). 

 
 

3. THE POSSIBLE MEANING OF THE “SYRAKOUSIA” SHIP 
 

Built in Syracuse after the middle half of the III century B.C., the Syrakousia 
not only was the symbol of the king Hieron II power, but also underlined 
the incredible fertility of the Sicilian land; above all, the Syrakousia let us 
understand the high level of both Archimedes’ and Syracuse scientific 
knowledge and practice of science. Not by chance, its final destination is 
Alexandria, the place where, thanks to the famous cultural institutions, the 
library and the museum, a new high technical and scientific knowledge 
had been developing (Di Pasquale 2004, Russo 1996).  

Archimedes had already spent some time in the Museum of Alexandria, 
being in touch with important scholars such as Eratosthenes, Conon and 
Dositheus; Dositheus was a friend or pupil of Conon, and on the latter’s 
death, Archimedes, who had been in the habit of sending his mathematical 
works from Syracuse to Conon for discussion in the scientific circles of 
Alexandria, chose Dositheus as the recipient of several treatises. We can 
imagine Archimedes spending his time into the famous library, acquiring 
the basic mechanical knowledge by reading the old texts written by Poleidos 
and his pupils Diades and Carias, the engineers following Alexander’s 
the great army, or by Biton and Architas of Tarentum (Thevenot 1693); 
above all, attending the library Archimedes learned the new development 
of mechanics in Alexandria. Ctesibius, the founder of the mechanical 
school, wrote at the beginning of the III century B.C. a Mechanikà, a 
mechanical encyclopaedia which clearly described the development of the 
practice of science at the moment (Ferrari 1984): theory of the lever, cata-
pults fabrication, harbours and fortresses building, pneumatics, automata 
making and stratagems were the main topics of the new mechanics develop-
ing in Alexandria (Marsden 1999).  

The Pseudo Aristotelic text on Mechanics, probably appeared at the 
beginning of the III century B.C., dealt with the hidden presence of the 
lever in a set of tools and devices, in order to explain their working thanks 
to the wonderful properties of the circumference (Micheli 1995). In 
Alexandria, it is now time for the transition to a new mechanics: as a 
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consequence, the theory of the lever ceases to be the whole mechanical 
knowledge, becoming a single chapter inside a more complete set of 
knowledge dealing with the new practice of science.  

In the middle of the III century B.C. Philon of Byzantium, another 
scholar in mechanics, writes a mechanical encyclopaedia dealing with the 
same Ctesibius’ topics: this time too, the theory of the lever occupies a 
single chapter of the text.3 We can imagine that once back to Syracuse 
Archimedes, even if he never wrote a text about ta mechanikà, started 
giving public demonstrations about his knowledge. From this point of view, 
the Syrakousia ship will be one of his most amazing public demonstrations, 
a mechanics summary sent from Syracuse to Alexandria by Hieron II and 
Archimedes.  

In fact, the Atheneus description records several objects dealing with 
mechanical knowledge. The ship contains eight siege towers: the siege 
tower design, scale model, fabrication and final equilibrium were the hard 
work of a generation of skilful engineers who, for the first time during the 
V and IV century B.C., decided to write treatises containing technical 
drawings too (gone lost), in order to make clear their knowledge and to 
introduce the practice of science into the high level of the official culture. 
The fabrication of the perfect siege tower was a very hard task and ancient 
literature tell us many stories about their sudden collapse due to a wrong 
construction practice. Actually, when Atheneus talks about the siege towers 
of the Syrakousia, he underlines that “their size was proportioned to the 
burden” (Atheneus, Deipnosophistae, 43).  

Even if the siege tower was overtaken by the invention of the catapult, 
its correct construction will be described, three centuries later, by Vitruvius 
(Vitruvius, De architectura, X, 19). The Syrakousia contained a set of cata-
pults and among them was the one invented by Archimedes, which was 
capable of throwing very heavy stone projectiles. Catapults were a success-
ful, significant invention: Hellenistic kingdoms and cities were in competition 
each other to obtain the most important engineers, whose services in terms 
of both money and prestige were great. Invented according to Diodorus 
(Diodorus of Sicily, XIV, 2, 2) in Syracuse during the IV century B.C., the 
catapult probably became a symbol of the innovative technological tradition 
developing in Syracuse. In any case, war industry was always supported by 
the Hellenistic kings, notably the Ptolemies of Egypt (Hacker 1968). Since 
                                                 
3 Perhaps, Archimedes too collected some of his writings in a kind of mechanical 

collection: in fact, in the Quadrature of the parabola (VI, 10) he defines his writing On 
planes equilibrium a Mechaniká treatise. As a consequenze, he might have intended his 
writings On planes equilibrium, and the lost texts on Sphere making and On beams 
(Heron D’Alexandrie 1988, I, 25), the topics of a different mechanical encyclopaedia 
(Di Pasquale 2004, pp. 91–103). 
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the time of their invention, catapults had become the object of new theoretical 
and practical studies: their fabrication and working will be one of the 
chapters of the new mechanical encyclopaedias written by Ctesibius and 
Philon of Bizantium during Archimedes’ life.  

The Syrakousia presented water and hot air circulation systems for 
gardens and baths: water and air were the secret moving power of several 
pneumatics devices, and pneumatics was one of the most popular topics 
of the new mechanical science developed in Alexandria (Ferrari 1985; 
Brumbaugh 1966; Di Pasquale-Paolucci 2007, pp. 58–71). Both, air and 
water, had found a practical application in baths and gardens with decorative 
elements like fountains: the gardens and baths of the Syrakousia introduce, 
again, another comparison with the famous Alexandria Museum garden. 

In fact, the philosophical schools of Plato and Aristotle had originated 
in green havens, the ideal spots for meditation, on the outskirts of Athens, 
and a garden was the meeting place and the title of the philosophical 
school of Epicurus (Repici 2007). From a place dedicated to otium and 
relaxing, the garden had later become a space devoted to study and 
experimentation mirroring the variety of nature suddenly discovered after 
the Alexander’s the Great expeditions to East and now summarized in the 
new Hellenistic passion for luxurious gardens. A wider nature, a wider 
flora and fauna existed in respect to the one recorded into the books of 
ancient libraries.  

The park of the Library and Museum of Alexandria, a real botanical 
garden abounding in plants and animals, was a true laboratory of nature, 
the ideal background for scholars involved in the study of botany, zoology 
and physical phenomena; microcosm mirroring the variety of the macro-
cosm, the park of the Museum of Alexandria was the most appropriate 
space for the innovative studies about plants carried out by Theophrastus 
and the ones by Aelian about the animals inhabits.  

The Syrakousia had got a library too; even if we do not have any 
information about its content, its presence remind us the ancient authors’ 
information relating the stories of the many ships entering the harbour of 
Alexandria to carry books from everywhere to fill the wonderful Ptolemies’ 
library. 

Some studies have recently demonstrated that it is a mistake to think of 
ancient libraries as places exclusively devoted to humanities and philosophy; 
scientific and high technological knowledge had its own place into the 
libraries, whose decorative elements often remind the reader both cultures: 
in the library of the Syrakousia there was a sundial and the ceiling was 
decorated with a painted representation of the sky introduced the passenger 
of the Syrakousia to the astronomical knowledge and its visual representation.  
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4. AFTER ALEXANDRIA 
 

We assumed that Archimedes spent some time in Alexandria and that he 
used to send his writings to scientists working in the library and museum 
asking them for the approval. The Syrakousia goal is the same: the ship 
brings the knowledge from Syracuse to Alexandria, conveying to an 
impressive public, practical demonstration of the new mechanical science 
produced in the city of Syracuse and from there sent to the place where 
mechanics was developing (Traina 2000, p. 33).  

A travelling encyclopaedia of mechanics, the Syrakousia seems to be 
the Syracuse and Archimedes answer to Alexandria and its developing 
mechanical knowledge. It is the equivalent of sending there a book, the 
mechanical treatise that Archimedes, according to Plutarch, never wrote. 
Archimedes and the future generations of mechanical scholars design the 
public scientific and technological demonstration as a crucial moment: if 
the growing mechanical knowledge could no longer be contained in a set 
of canonical texts, perhaps could be displayed thanks to impressive human 
artefacts (apart from the single case of the Syrakousia ship, it’s sufficient 
to consider the Hellenistic and Roman Imperial age impressive buildings, 
a meeting point between architecture and mechanics and a striking demon-
stration of the new public attitude of the practice of science).  

As a paradigm of knowledge, public demonstration contained the para-
meters of the known culture and its expanding possibilities. The decision 
of displaying the results of years and years of mechanical research led to 
define knowledge as consensual, shaped in relation to the audience around 
kings and patrons.  

It is a matter of fact that the Ancients had the greatest admiration for 
Archimedes and his inventions. The knowledge the Syrakousia ship 
embodied does not conclude its travel between the city of Syracuse and 
Alexandria. When Lucianus, being in Athens during the second half of the 
II century A.D., writes his dialogue “The ship, or the Wishes”, he tells the 
story of the giant ship Isis that survived a sea storm. Many scholars, today, 
read the description of the giant ship Isis to try to understand something 
more about the architecture of the Syrakousia. Nevertheless, there are 
other interesting information going to create a link between the two boats. 
In fact, Lucian tells us that the crowd that gathered at the Pireo Harbour to 
watch the arrival of the ship, stated that the mariners could survive because 
the boat was driven by the sure hand of an old man who moved the little 
rod of the enormous rudder (Lucian, The ship, 6).  
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Once again, four centuries after Archimedes, we find the story of the 
old little man capable of winning the giant dimension of the boat, the sea 
power and the storm thanks to a lever (for the diffusion of Archimedes 
myth in Rome see Jaeger 2008).  

And perhaps it is not by chance that in this dialogue the name of the 
old man capable of driving the giant rudder with a little stick, that is the 
perfect image of the lever, is Heron, the famous scholar in mechanics at 
Alexandria and a contemporaneous of Lucian. The Archimedean science 
appears in another part of the same dialogue, when one of the protagonists 
declares to find more interesting “anchors, and the cabestan and the wind-
lasses and the stern cabins” than the art ornaments (Lucian, The ship, 5); 
moreover, we find another important Archimedean echo when Adimantus, 
observing the ship, (Lucian, The ship, 18) Isis that was full of corn, starts 
dreaming to be the owner of it, but he wished it had been full of gold; as 
a consequence of this, his friend Lycinus claims (Lucian, The ship, 19): 
“Hey! The ship will sink. Corn and gold to the same bulk are not of the 
same weight”. 

Finally, the Syrakousia and its wonderful mechanical content sailed 
once again between the XVI and XVII century, when ancient texts became 
the pillars of the new science and the Archimedes’ myth exerted its 
influence in art too. When Ferdinand I of the Medici decided to move the 
family scientific instruments collection from Palazzo Vecchio to the Uffizi 
Gallery, the Gran Duke wanted the room to be painted with an appropriate 
decoration (Camerota 2008). Thus, at the end of the XVI century (1599 –
1600), the artist Giulio Parigi painted a series of images whose purpose 
was to underline the cultural value of mathematics and geometry in the 
new Tuscan state. The main actor of this decorative program is Archimedes: 
we find not only the famous stories about “Eureka”, his interest in geo-
metry even when spending some time at public baths, the manus ferrea  
and the burning mirrors, but also the new catapult he designed for the 
Syrakousia ship, the mechanical device to launch it (Fig. 4), and the lever 
with which, after that, he could have moved the hearth.  

The image describing Archimedes presenting the armillary sphere to 
Hieron remind us his astronomical studies and the astronomical references 
into the Syrakousia ship library. Finally, the cupids facing the sphinx with 
mathematical instruments summarize the meaning of the whole decoration: 
the victory of reason embodied in Archimedean science against the sphinx, 
that is the ancient superstition, magic and false belief, a set of knowledge 
grown up in Egypt, the place where the ship was sailing to, carrying the 
mechanical science of Archimedes and the city of Syracuse.  
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Archimedes and the mechanical device to move the “Syrakousia” ship.  

 
5. CONCLUSION 

 
According to the few existing sources dealing with Archimedes’ life, he 
spent his time between Syracuse and Alexandria, where he attended the 
prestigious cultural institutions of the Library and Museum. Archimedes 
was in Alexandria during the new development of the typical mechanical 
science and treatises were written down by Ctesibius and Philon of 
Byzantium. Even if Archimedes never wrote a book on “Mechanics”, he 
superintended the fabrication of the “Syrakousia”, the biggest ship ever 
built in antiquity, full of scientific, technological and mechanical items: 
like a travelling mechanical encyclopaedia, the final destination of the ship 
was the harbour of Alexandria, to show the high level of Archimedes’ 
mechanics. 
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ABSTRACT A letter preserved in a manuscript of the 16th century 
belonged to Gian Vincenzo Pinelli, shows the high esteem bestowed on 
Archimedes at that time. An anonymous philologist was working on the 
critical edition of Pliny the Elder’s Naturalis Historia and asked a mathe-
matician for help in amending a doubtful lectio of a passage in the 2nd book. 
The philologist’s interpretation is discussed and rejected by the mathe-
matician thanks to the use of Archimedes’ rule for the approximation of pi.  
 
 
1. INTRODUCTION 

 
The Biblioteca Ambrosiana in Milan houses a miscellaneous manuscript 
(R 94 Sup.), dating back to the 16th century; it is composed by 44 texts, 
written by different hands in Greek, Latin or Italian vernacular, about various 
subjects (geography, politics, mathematics, mechanics, ancient comedy, 
metallurgy, numismatics and alchemy) by well-known authors [1–3]. 

The manuscript belonged to Gian Vincenzo Pinelli (1535–1601) from 
Padua, the famous humanist and polymath owner of a huge library consisting 
of thousands of books and hundreds of manuscripts [4–7]. On some folios 
of R 94 Sup., he annotated his own remarks about the passages in the 
margin. 

 
 

2. THE MANUSCRIPT CONTENT 
 

F. 178 contains a text that could be either a letter, unfortunately undated 
and unsigned, without any indication of the recipient, apart from the fact 
that the sender addresses him in a very formal way, as My Lord («Vostra 
Signoria») or part of a dialogue, a very common Renaissance genre, 
modelled upon Plato’s works. The text subject is the emendation of a 

S.A. Paipetis and M. Ceccarelli (eds.), The Genius of Archimedes – 23 Centuries of Influence 305 



passage taken from Pliny the Elder’s Naturalis Historia (2, 21) and the 
discussion about the computation contained in two sentences. 

In the 2nd book of his work Historia naturalis [8], Pliny describes the 
world and in §21 he tries to estimate its circumference length including 
atmosphere, grounding on Ptolemaic cosmology and on geometry. Pliny is 
aware that not all scholars agree about the extension of this space, full of 
mist, clouds, and winds between the Earth and the Moon, and he admits 
that claiming to calculate it precisely would be an almost foolish pastime 
(«id enim velle paene dementis otii est»). The Latin author only wants to 
apply a simple geometrical rule, in order to roughly estimate that value; 
while doing this, he implicitly refers to Archimedes’ rule about the ratio 
between diameter and circumference, by saying that the diameter is always 
the third part and a little less than the seventh of the third of the circum-
ference («semperque dimetiens tertiam partem ambitus et tertiae paulo 
minus septimam colligat»). Some lines after, Pliny also gives a numerical 
(approximated) example: it is evident that, if a circumference is divided 
into 22 parts, its diameter length will be seven times the length of these 
parts («quantas enim dimetiens habeat septimas, tantas habere circulum 
duoetvicesimas … constet») and concludes that by this means we could 
measure the heaven as we could do with a plumb («tamquam plane a 
perpendiculo mensura caeli»). 

The two sentences above are quoted and analysed in the 16th century 
letter from both a linguistic and a mathematical point of view. The anony-
mous sender (in the following lines we will call him the mathematician, in 
order to simplify our expression), as we can easily argue from the text, 
must have been solicited by the recipient (the philologist) to discuss about 
his proposal of philological emendation about a passage of Pliny’s text. He 
proposes to correct the lectio «semperque dimetiens tertiam partem ambitus 
et tertiae paulo minus septimam colligate», by deleting the conjunction 
et and the final m in the word septimam, in order to obtain «semperque 
dimetiens tertiam partem ambitus tertiae paulo minus septima colligat» 
and to define an algorithm for the calculation of the diameter, once the 
circumference is known, and vice versa. The procedure he suggests is the 
following: if we divide the circumference length (let it be C) by 3 (let 
the result be C/3), C/3 again by 3 (C/9), and C/9 by 7 (C/63), and we subtract 
C/63 from C/3, we will have the diameter length (d ).  

Symbolically and in modern words: 

 CCCCCd
63
20

6337333
=−=

⋅⋅
−= , (1) 

where 20/63 = 0.317… = (3.15)–1: an approximation of pi –1. 
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The mathematician agrees with the philologist about the grammatical 
correctness of the proposed lectio, but he doesn’t agree about its mathe-
matical content, mainly referring to Archimedes’ rule, implicitly quoted by 
Pliny some lines after. Theoretically, he writes, the procedure appears to 
be correct, but it properly works only for the example quoted by Pliny; if 
we want to verify it with different values (i.e., 21 instead of 22) and we do 
the calculation according to Archimedes’ rule, we obtain 6 and 15/22. 
Assuming that the rounded down circumference/diameter ratio is 3 + 1/7, 
as the mathematician does, we have: 

 
22
156816.6

7
22
21

7
13

21
+===

+
=d . (2) 

On the contrary, the rule proposed by the philologist would yield 6 
and 2/3:  

 
3
266.6

3
2021

63
20

+===⋅=d . (3) 

In order to give further evidence of the correctness of his demonstration, 
the mathematician shows that calculating d starting from 22 will give the 
same result, regardless of the procedure: both the Archimedes’ rule and the 
other algorithm will yield 7 as diameter length. 

As a matter of fact, he shows that: 

 7
63
626...98.622

63
20

≈+==⋅=d . (4) 

So the mathematician concludes that «Though what you are saying, 
My Lord, is a subtle remark, nonetheless the numbers don’t agree with 
Archimedes’ rule» («Quantunque però quello che dice V.S. sia intelletto 
sottile, non dimeno non corrispondono i numeri con la regola d’Archimede»). 

 
 

3. ABOUT THE CONTENT 
 

The text content arises some comments; the first one is that the mathe-
matician doesn’t want to obtain the best approximation of the result value: 
he wants exactly the same result as given by Archimedes’ rule, probably 
because he knows that it has already been rounded down. As a matter of 
fact, according to Archimedes, the circumference/diameter ratio value, 
which nowadays is called pi, is the following: 
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70
103

71
103 +<<+ pi . (5) 

The second remark is that, if we do the same calculation with the 
currently used value of pi, we obtain a result (6.6845..) that is nearer to the 
one calculated by means of Archimedes’ rule than to the other one. 

From the point of view of historiography, it would be very interesting 
to identify the two persons involved in this dispute, although no explicit 
clues are present in the document. Not even the fact that the philologist is 
working on Pliny’s text can help in such an inquiry: the Naturalis Historia 
has been copied and abridged a lot during the Dark and Middle Ages, 
because it was the only ancient source of scientific topics, so, starting from 
the 15th century, some 50 Italian and European scholars passionately tried 
to amend the text, to correct content mistakes of the manuscript tradition, 
and to comment on the most interesting passages [9–12]. Even the marquis 
Lionello d’Este (1407–1450), who was taught in letters by the humanist 
Guarino Veronese and owned copies of Pliny’s book, took part in this 
work. As mentioned above, the sender addresses the recipient as «My 
Lord», an expression that may involve a social difference; while showing 
the incorrectness of the procedure suggested by his interlocutor, the 
mathematician is also very careful to emphasize its smartness («auenga 
che l’interpretatione sia sotialtiss.a, non dimeno non corrisponde col 
calcolo»*, «Quantunque però quello che dice V.S. sia intelletto sottile, non 
dimeno non corrispondono i numeri con la regola d’Archimede»), to avoid 
offending the sensibilities of the recipient. These remarks could lead to 
consider the possibility of identifying the recipient in the marquis of Este, 
but unfortunately at the moment no firm evidence is available. 

However, it is not surprising that some of the most distinguished 
philologists were humanists who lived at the Este’s court in Ferrara: in 
1492 Niccolò da Lonigo (1428–1524), better known as Leonicenus, wrote 
De Plinii et aliorum plurium erroribus about medicine [13], and in 1493 
Ermolao Barbaro il giovane (1454–1493) composed his Castigationes 
Plinianae, where he stated he had corrected more than 5,000 mistakes; 
Pandolfo Collenuccio (1444–1504) replied with his Pliniana defensio in 
1493.  

At the end of his volume, Barbaro advised his audience not to deal 
with ancient scientific works, as if they were untouchable real auctoritates, 
even if they were edited by an eminent humanist as he was; he urged his 
readers to look for the truth through a careful evaluation of the sources: 
precisely what the mathematician of the Ambrosiana manuscript does. 
                                                           
* «although the interpretation is very acute, it cannot find consistency in the calculation» 
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He shows without a doubt his great confidence in Archimedes’ results 
that lets the mathematician find a definitive answer to the philologist’s 
question. Such an attitude is not surprising. Those were the years when the 
ancient Greek scientific literature (unknown, little-known or misunderstood 
during the Middle Ages) was translated and published, first in Latin, and 
later in vernacular. That was the case of Ptolemy, but also of the Greek 
mathematicians, whose celebrated texts were translated and printed in the 
16th century: Archimedes, first, then Apollonius, Pappus, Heron. As under-
lined by relevant historians of science, such as Koyré and Ghidini [14, 15], 
the revival and the assimilation of Archimedes’ works during the Renaissance 
would be one of the roots of the 17th century’s scientific revolution. 
 
 
4. CONCLUSIONS 

 
This study aims to contribute to a fuller understanding of Renaissance 
culture, especially regarding its relationship with classical authors dealing 
with science, since it is an understudied issue.  

The shortage of useful clues to an explicit identification of the two 
scholars is a major problem not only for a more precise historical con-
textualization of the episode, but also for a possible thorough analysis  
of the study about the works of the two scholars (here arbitrarily named 
‘philologist’ and ‘mathematician’ solely on the basis of their apparent role), 
about their links with other scholars, about their training and their influence.  

It is rather difficult to speculate on what future discoveries may lead to 
their identification, particularly if we take into account that the lectio proposed 
by the philologist is accepted neither in contemporary nor in subsequent cri-
tical editions of Pliny’s work, and therefore the studied manuscript offers only 
a documentation of a preliminary phase of work, later allegedly discarded. 

However, what undoubtedly emerges from this study, is a proof that 
the gap between humanistic and scientific culture during the Renaissance, 
is thinner than it could be expected, if, browsing in a Renaissance philo-
logist’s toolbox, we find the Archimedes’ rule and, implicitly, an admission 
of the great esteem for this Greek mathematician and his valuable works. 
 
 
5. APPENDIX: THE TRANSCRIPTION OF THE TEXT 
 
<178r>Presupposta la regola d’Archimede et detta poco di sotto da Plinio 
con queste parole: “Quantas enim dimetiens habeat septimas tantas habere 
circulum duo et uicesimas, etc.” siegue ch’essendo la circonferenza uentidue 
il diametro sara sette et pero uolendo uerificare la correttione dirò se la 
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circonferenza essendo 22 da il diametro 7. Se la circonferenza fosse 21, 
che darebbe il diametro? Operando secondo la regola, uengono sei et 15/22 
di modo che il diametro abbraccia meno della terza parte della circonferenza 
<ossia tolto> poco meno della settima della terza parte [della terza parte 
della circonferenza]. Come uolesse inferire il diametro essere meno della 
terza parte della circonferenza in alcuni rotti. Come se la circonferenza 
fosse 22 il suo terzo sarebbe 7 et 1/3 et quel per il terzo e meno il diametro 
del testorzo della circonferenza, ma a questo modo non corrisponde con le 
parole di Plinio poi che egli non parla per settime et terze. Corregendo 
adunque al modo che l’gentilhuomo dice cioe leuando la \et/ et la m per modo 
che dica “semperque dimetiens tertiam partem ambitus tertiae paulominus 
septima colligat”. Il senso uiene a corrispondere co numeri 21 et 6 con 
15/22 ne in altri numeri si può facilmente uerificare si come appare in 22 
et 7. Et quantunque con lo scemamento della congiontione et, et della 
lettera m pare che ‘l luogo corra, a me pero da non poco da dubitare se 
Plinio hauesse scelto tra numeri che si posson dare alla circonferenza,  
il 21. Et però io stimarei ch’egli forse s’auuiluppasse nell’esplicare tale 
proportione et che l’hauerla detta à quel modo che sta senza essaminarla 
altrimente con numeri et senza uenirne alla prattica dell’operazione hauesse 
giudicato che stesse bene. Et po auuenire facilmente a chi non e essercitato 
molto nelle cose dell’arte, si come stimo che fosse Plinio hauendo hauuto 
il capo pieno di tante <178v> et tantae cose et diuerse et simili. Non nieghero 
la correttione non essere dotta et erudita, et corrispondere alla regola 
d’Archimede contratta pero à quei numeri ciò è del 21 et del 6 et 15/22. Al 
modo poi che uorrebbe V.S. che s’intendesse la correttione ciò è pigliare il 
terzo della circonferenza et di tal terzo la terza parte et di tal terza parte il 
settimo et sottrar poi questo settimo dal terzo della circonferenza, et il resto 
secondo lei uerrebbe il diametro: auenga che l’interpretatione sia sotialtiss.a, 
non dimeno non corrisponde col calcolo. Perche presuposto la circonferenza 
21 il terzo di quello e 7 o 21/3 operando con rotti et il terzo di 21/3 e 21/9 
et il settimo di 21/9 e 21/63 che tolto da sette cioè dal terzo della cir-
conferenza resta 6 et 42/63 che sono 2/3 et operando con numeri ridotti a 
minor dinominatione faremo cosi 7/1 et il terzo della circonferenza, et il 
suo terzo e 7/3 et il suo settimo e 1/3 che tolto da sette resta 6 et 2/3 cioe 
come prima et tanto uerrebbe ad essere il diametro, ma cosi non è il uero. 
Poiche 6 et 2/3 a 21 non ha quella proportione c’ha 7 a 22, ma si bene 6 et 
15/22 a 21 ha quella proportione che 7 a 22. Ma uariando i numeri et pig-
liando il terzo di 22 uiene ad essere 22/3 et il terzo di questo e 22/9 et il 
settimo di questo e 22/63 et questo scemato da 22/3 resta 6 et 62/63 et 
douerebbe restare 7 apunto. Quantunque però quello che dice V.S. sia 
intelletto sottile, non dimeno non corrispondono i numeri con la regola 
d’Archimede. 
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ABSTRACT Irony of fate! Democritus is the only philosopher mentioned 
in one of his works by Archimedes, and wrote about mathematical things, 
while neither Plato nor Aristotle are mentioned by him nor have they written 
about mathematics, but only witnesses scattered here and there in their 
writings and very often confused, yet they’re considered Archimedes’ 
inspirers! (Boyer 1939, Delsedine 1970, Frajese 1974, Gambiano 1992, 
Reymond 1979). But Archimedes violates the prohibitions of Plato and 
Aristotle and is inspired by the philosophy of Democritus. It is argued 
about Archimedes’ sections-weights (toma…-b£rea) and Aristotle’s and 
Democritus’ indivisible magnitudes (¥toma megšqh). (Luria 1970, Mugler 

 
 
1. INTRODUCTION 
 

unravels the mystery about his admirable geometrical demonstrations.  
In 212 B.C. during the sack of Syracuse from the Roman armed forces 

led by the consul Marcellus, Archimedes from Syracuse was dying at the 
hands of a Roman soldier; so narrates Plutarch, who adds that the consul 
Marcellus, faced with the devastation of Syracuse, couldn’t hide the pain 
and compassion felt in his heart when having seen in a flash of an eye that 

that with Archimedes ancient science reaches its highest peaks. 
Archimedes’ postulate, that denies the existence of indivisibles and 

infinitesimals, is still the basis of modern calculus. 
Archimedes enunciates his postulate in geometric terms: Further, of 

unequal lines, unequal surfaces, and unequal solids, the greater exceeds 
the less by such a magnitude as, when added to itself, can be made to 
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1970, Ver Ecke 1959, Furley 1967). 

kingdom of happiness and splendour completely erased (Plutarch). 
Syracuse was not only “kingdom of happiness and splendour”. It is there 

The discovery of the mechanical method of Archimedes of Syracuse 



exceed any assigned magnitude among those which are comparable with 
(it and with) one another”. (T.L. Heath 1912). 

Today it is considered as an assumption of the real numbers system, 
after the arithmetization of the analysis during the second half of the 19th 

with Cantor, Dedekind, and Weierstrass: “If a and b are two real numbers 
of the system and a<b, a real number n such as n a>b always exists.” 

In the sixteenth and seventeenth centuries, with the discovery and the 
study of Archimedes’ works, a certain aura of mystery surrounds his image. 
Studied by Galileo “with infinite stupor” (Galilei 1964) and admiration, 
venerated by all scientists of the time for his bold inventions and adopted 
as a strict model, Archimedes makes the conviction arise on his work, 
which also becomes a legend, that he purposely removed the tracks of his 
investigation, as if he had buried for posterity the secret of his method of 
research. (Heath S.T. 1981). 

It is only in 1906 that the aura of mystery is reduced, thanks to the J.L. 
Heiberg, a Danish philologist and editor of Euclid’s and Archimedes’ 
works. In an ancient palimpsest found in Constantinople at the St. 
Sepulchre’s Monastery, the scholar comes across Archimedes’ writings on 
top of which an euchology had been placed. An important work by 
Archimedes comes to light, directed to Eratosthenes from Alexandria, in 
which several mechanical theorems are shown and through which 
Archimedes reveals how he managed to calculate the area of the parabolic 
segment, the volume of the sphere, its surface area, the volumes of the 
right-angled conoid and of the spheroid, as well as their gravity centres, 
etc, through the use of mechanical principles and of the indivisibles, 
which were denied by his postulate geometry.  

This is what Archimedes writes to Eratosthenes:  

Seeing moreover in you, as I say, an earnest student, a man of 
considerable eminence in philosophy, and an admirer [of mathematical 
inquiry], I thought fit to write out for you and explain in detail in the same 
book the peculiarity of a certain method, by which it will be possible for 
you to get a start to enable you to investigate some of the problems in 
mathematics by means of mechanics. This procedure is, I am persuaded, 
no less useful even for the proof of the theorems themselves; for certain 
things first became clear to me by a mechanical method, although they had 
to be demonstrated by geometry afterwards because their investigation by 
the said method did not furnish an actual demonstration. But it is of course 
easier, when we have previously acquired, by the method, some knowledge 
of the questions, to supply the proof than it is to find it without any 
previous knowledge. This is a reason why, in the case of the theorems the 
proof of which Eudoxus was the first to discover, namely, that the cone is a 
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third part of the cylinder, and the pyramid of the prism, having the same 
base and equal height, we should give no small share of the credit to 
Democritus, who was the first to make the assertion with regard to the said 

With Archimedes’ direct testimony and from the examination of the 
“mechanical theorems” Archimedes’ the mystery is revealed, having found 
the secret way of his discovering admirable geometrical results. 
 
 
2. THE METHOD OF EXHAUSTION AND CRITICISM  

OF THE INDIVISIBLES OF ARISTOTLE 
 

Mathematicians of all times have always admired the rigor of Archimedes’ 
demonstrations, who in an admirable way succeeded in utilizing the so 

probably been introduced by Eudoxus of Cnidus in order to avoid the use 
of the so called “indivisibles”, which, still, in Archimedes’ days were said 
to be useless in mathematics, perhaps due to the “Zeno’s paradoxes”. 

but the method of exhaustion avoids their use. 
Instead we preserve a firm logical-philosophical closing speech against 

the indivisibles on the part of Aristotle. He denies that the line could be 
composed of points, the surface of lines and the solid of surfaces. The con-
tinuity of geometrical magnitudes, according to Aristotle, is constructed by 
more and more divisible magnitudes. 

In a passage from “On the Generation and Corruption” Aristotle asks 
himself: 

The primary <reals> are indivisible magnitudes? Or is no magnitude 
indivisible? For the answer we give to this question makes the greatest 
difference. And again, if the primary <reals> are indivisible magnitudes, 
are these bodies, as Democritus and Leucippus maintain? Or are they 
planes, as is asserted in the Timaeus? (Aristotle 1a).  

The absurd conclusion, according to Aristotle, whoever admits atomic 
or indivisible magnitudes (clearly referring this to Democritus) is that any 
magnitude composed from their disappears, being the components atomic 
necessarily nothing.  

If its constituents are nothings, then it might both come-to-be out of 
nothings and exist as a composite of nothings: and thus presumably the 
whole body will be nothing but an appearance (Aristotle 1b).  
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figure though he did not prove it (T.L. Heath 1912).

Nothing is known about Eudoxus regarding his conception of the indivisibles; 

called “method of exhaustion”(Appendix); a method which had most 



Aristotle denies that infinitesimal magnitudes of forces could even 
exist, dF, as it is written today, such that summed up could surpass any 
resistance data, as big as one wishes, but still always finite. 

In fact, he writes in his work “Physics”: 

If a given motive power causes a certain amount of motion, half that 
power will cause motion either of any particular amount or in any length 
of time: otherwise one man might move a ship, since both the motive 
power of the ship-haulers and the distance that they all cause the ship to 
traverse are divisible into as many parts as there are men. (Aristotle 2a).  

Aristotle denies that a point can describe, by its motion, a straight 
segment or a curve. 

He continues writing about this in his quoted work: 

It may be shown in the following way that there can be no motion of a 
point or of any other indivisible. That which is in motion can never 
traverse a space greater than itself without first traversing a space equal 
to or less than itself. That being so, it is evident that the point also must 
first traverse a space equal to or less than itself. But since it is indivisible, 
there can be no space less than itself for it to traverse first: so it will have 
to traverse a distance equal to itself. Thus the line will be composed of 
points, for the point, as it continually traverses a distance equal to itself, 
will be a measure of the whole line. But since this is impossible, it is 
likewise impossible for the indivisible to be in motion. (Aristotle 2b) 

The indivisibles expelled, thanks to Aristotle, from physics and from 
geometry, have taken on with time a considerable heuristic value in the 
research of mathematics and physics, as it has been demonstrated in 
centuries to come. 
 
 
3. THE MECHANICAL METHOD AND THE USE OF THE 

INDIVISIBLES. DEMOCRITUS AND ARCHIMEDES. 
 

According to the testimony of Archimedes himself Democritus had already 
made use of them exactly, and even Archimedes relies even on these, with 
his “mechanical method” and theorems on the balance of the bodies, in 
order to reach his so brilliant geometrical results. 

Dijksterhuis leaves no doubt of the fact that Archimedes, stating that 
the results achieved with the “mechanical method” didn’t constitute an 
actual demonstration, he didn’t really refer to the mechanical theorems, 
which he had already used in the Quadrature of the Parabola (an official 
publication satisfying all requirements of exactness), but rather to the use 
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of the indivisibles (the mathematical deficiency is exclusively a consequence 
of the use of indivisibles). (Dijksterhuis 1956). 

The historian of mathematics Boyer is of the same opinion, who, 
besides, writes: 

the strong transcendental imagination of Plato (Peano 1958) with the 

It was also written that by the discovery of the method, Archimedes 
allows us to look into his mechanical workshop (The phrase is of the 
historical mathematician H.G. Zeuthen). In our opinion, with the discovery 
of the mechanical method, Archimedes lets us look into his philosophic-
epistemological workshop, if it is true that the letter is addressed to “a 
man of considerable eminence in philosophy”, Eratosthenes, as stated in 
the quoted text of Archimedes.  

In Archimedes’ view there’s a relation between physical atomism and 
geometrical one; the same ratio that is valid for geometrical lines is also 
valid for physical ones, imagined homogeneously balancing themselves 
onto a lever. On the contrary, we can say that his physics and his geometry 
are built in contrast to Plato stated in the following passage by Plutarch: 

Eudoxus and Archytas had been the first originators of this far-famed 

illustration of geometrical truths, and as means of sustaining experimentally, 
to the satisfaction of the senses, conclusions too intricate for proof by 
words and diagrams. As, for example, to solve the problem, so often required 
in constructing geometrical figures, given the two extremes, to find the two 
mean lines of a proportion, both these mathematicians had recourse to the 
aid of instruments, adapting to their purpose certain curves and sections of 

it as the mere corruption and annihilation of the one good of geometry, 
which was thus shamefully turning its back upon the unembodied objects 
of pure intelligence to recur to sensation, and to ask help (not to be 
obtained without base supervisions and depravation) from matter; so it 
was that mechanics came to be separated from geometry, and, repudiated 
and neglected by philosophers, took its place as a military art. (Plutarch)  

We can find the two principles of Democritus’ philosophy of the full 

workshop.  
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lines. But what with Plato’s indignation at it, and his invectives against 

(tÕ plÁrej) and the void (tÕ kenÕn) in his philosophic-epistemological 

meticulously correct procedure of Euclid ” (Boyer 1939). 

only find Democritus with his physical and geometrical one. 

and highly-prized art of mechanics, which they employed as an elegant 

“Archimedes of Syracuse displayed two natures, for he tempered  

Thus, in such a workshop we find Plato or Aristotle no longer, but we 



Geometrical figures as a cone, a cylinder, a sphere, a spheroid, or 
conoid etc, idealized and imagined empty, are filled completely from time 
to time through circles-sections-weights, deemed full physical elements, 
putting them together (sumplhrwqšntoj, Archimedean term). Figures in 
their physical fullness, with unitary density like their elements, carried 
onto a lever, are in equilibrium, thanks to their weights according to a 
determined ratio.  

If these are the two physical principles, which have nothing to do with 
neither Plato’s nor Aristotle’s philosophy (and with which Archimedes 
built his mechanical demonstrations), then it is to avoid to read Archimedes 
through Aristotle’s eyes and with the criticism of his school of the so-
called indivisibles magnitudes or indivisible bodies (¥toma megšqh or 
¥toma sèmata), which we believe Dijsterhuis refers implicitly to in his 
quoted passage. 

In fact, these indivisible magnitudes are not mentioned in the Archi-
medean text, and the concept of atom (or better of full element, tÕ plÁrej) 
in Archimedes had a very different epistemological meaning. 

(In reality, writes S.T. Heath, they -parabolic segment and triangle - 
are made up of indefinitely narrow strips, but the width – dx, we might say - 
being the same for the elements of the triangle and segment respectively, 
divides out. (S.T. Heath 1981). And still Boyer writes: a collection of thin 
laminae or material strips (Boyer 1939). 

For Parmenides and Democritus’ rationalist tradition the real 
element is the thought thing, not the sensible thing, and it is thanks to the 
former we can observe (this is the meaning of qewre‹n of the mechanical 
trÒpoj of Archimedes) the sensible thing in a real way. 

Aristotle, an empiricist, confuses the physical thing with the thought 
thing, therefore it is clear that an indivisible magnitude, as a physical thing, 
is a contradictory thing, but if it is considered as theoretical element (as I 
think that was the atom-idea in Democritus, according to some testimony 

escapes the contradiction. 
(“Democritus calls the atoms the full” and “Democritus believed that 

indivisible bodies were principles of the things, but as theoretical elements, 
lÒgoi qewrht£.”) (Luria S, 1970). 

Atoms or the full elements are indivisible because they are con-
ceived in such a way, but, as they are full and fill a physical space, they 
have parts and are magnitudes. 

For Simplicius this is the meaning of atom in Democritus. (Luria S. 
1970). 
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This explains why Democritus, according to the testimony, argued that 
atoms could be both very small and big like a world. 

Only within this onto-epistemological framework the modern concepts 
of “material point”, of “rigid body”, incompatible with a type of 
Aristotelian philosophy, could develop. 
 
 
4. ARCHIMEDES VIOLATES THE PROHIBITIONS OF PLATO  

AND ARISTOTLE 
 

Archimedes violates the platonic prohibition of linking mechanics and 
geometry. It arises, on the other hand, from the reading of the quoted 
passage, the fundamental suspicion that Eudoxus himself had initiated the 
use of the mechanical method for solving geometrical problems, but was 
stopped by the platonic prohibition. 

Archimedes also challenges and violates Aristotle’s prohibition that 
infinitesimal quantities of forces can sum themselves up to overcome any 
finite resistance, as big as one wishes, introducing the concept of moment 
of a force with its law on the lever. 

In anti-Aristotelian function the famous episode of the ship launching 
told by Plutarch can be interpreted: 

Archimedes, however, in writing to King Hiero, whose friend and near 
relation he was, had stated that given the force, any given weight might 
be moved, and even boasted, we are told, relying on the strength of 
demonstration, that if there were another earth, by going into it he could 
remove this. Hiero being struck with amazement at this, and entreating 
him to make good this problem by actual experiment, and show some great 
weight moved by a small engine, he fixed accordingly upon a ship of 
burden out of the king’s arsenal, which could not be drawn out of the dock 
without great labour and many men; and, loading her with many passengers 
and a full freight, sitting himself the while far off, with no great endeavour, 
but only holding the head of the pulley in his hand and drawing the cords 
by degrees, he drew the ship in a straight line, as smoothly and evenly as if 

Describing how his spiral originated from the movement of a point on 
a straight line segment moving in a circular motion around one of its fixed 
extremities continues violating the anti-Aristotelian prohibition mentioned 
above. 
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she had been in the sea (Plutarch).  



5. CONCLUSION FROM THE MYSTERY OF ARCHIMEDES  
TO THE MYSTERY OF DEMOCRITUS  
 

Then we have not understood yet from where Dijksterhuis had received from 

if in it we read: I am myself in the position of having first made the 
discovery of the theorem now to be published [by the method indicated], 
and I deem it necessary to expound the method partly because I have 
already spoken of it and I do not want to be thought to have uttered vain 
words, but equally because I am persuaded that it will be of no little 
service to mathematics; for I apprehend that some, either of my con-
temporaries or of my successors, will, by means of the method when once 
established, be able to discover other theorems in addition, which have not 
yet occurred to me. (T.L. Heath, 1912). 

On the other hand, it isn’t it likely any more to maintain that Archimedes 
had matured the conviction that the philosophy of the indivisibles has 
nothing to be ashamed of, nor to hide from, it being perfectly in harmony 
with the demonstrations of Eudoxus’ method of exhaustion, and does all 
that brings us to fecund results in the field of science? 

Let us consent a bitter consideration here, does not the mystery of the 
disappearance of Archimedes’ method during the centuries recall the 
“mystery” of the disappearance of the very vast production of Democritus, 
who, as we know, is never mentioned by Plato, differing from all the other 
so called “pre-Socratics”? 

To conclude, Archimedes is not just a great mathematician or a great 
physicist, but is also a great philosopher, who has an organic conception of 
the universe, in which neither the concept of indivisible magnitudes is that 
of the Aristotle’s criticism nor the concept of m£qhma is that of Plato, 
since for Archimedes physics, geometry and philosophy are together, when 
we want to build the knowledge of real. 

In any case, in particular in my paper I have tried to show the thesis 
that “indivisible magnitudes”, or better Archimedes’ “sections-weights”, 
have not had a secret life of only in a workshop, as Dijksterhuis maintains, 
but have had a long existence inside a tradition of philosophical-
episthemological thought, which I call “Italic”, according to the doxo-
grapher D. Laertius. (D. Laertius 1925). That goes under the names of 
Pythagoras, Parmenides, Zeno, Archytas, Eudoxus, Democritus.  

On the basis of his own testimony Archimedes continues such tradition, 
but it is suffocated in the Alexandrian culture under the weight of Plato 
and Aristotle’s Ionic tradition (Boscarino 1999).  

By taking the “Italic” tradition again, Galilei could start physics as 
modern science. 
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APPENDIX 
 
The method of exhaustion 

By the method of exhaustion we prove that the measures of two mag-
nitudes A and B are equal, m(A) = m(B), if the following proposition is 
satisfied. Proposition: Let A and B be two homogeneous magnitudes. 

with elements Hn and H’n respectively, such that: 1) There exists an n such 
that A–Hn < E for all E (positive real numbers); 2) Hn ≤B for all n; 1’) 
There exists a n such that H’

n–A < E for all E (positive real numbers); 2’) 
B ≤ H’

n for all n. Then, we have m(A) = m(B). Proof. a) We first consider 
A and B such that A>B. Putting A–B = E, by 1) we get A- Hn < E = A–B, 
that implies B < H n in contradiction with hypothesis 2). Thus A cannot be 
greater than B. b) Analogously, we prove that A cannot be less than B. In 
fact, considering A<B and putting B–A = E by 1’) we get H’

n – A < E = 
B–A that implies H’

n<B in contradiction with 2’). Then, the statement  
A = B is now an immediate consequence of a) and b).  

In order to avoid confusing the modern methods of calculus, by its 
concept of limit, with the method of exhaustion, see C.B. Boyer, The 
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ABSTRACT This essay is meant to be a contribution to a philosophical 
interpretation of a letter from Archimedes to Eratosthenes. 
 
 
1. INTRODUCTION 

 
This essay implies the following parts: preliminary remarks, a synoptic ta-
ble, philosophical comments about the letter, informations about the names 
mentioned and references. 
 
 
2. PRELIMINARY REMARKS  

 

gree in philosophy who is devoted to scientifics and technical issues. 
The opportunity to be present at the world conference on “the genius of 
Archimedes” grew out of Archimedes’ letter where he wrote “think mathe-
matical questions by means of mechanics”. This did me idea to write an 
essay. “de Archimedis epistula sub specie philosophiae”. 

I quoted Vitruvius because “machinator” (latin term) is a word with 
metaphorical ideas and images. It is sufficient to say “deus ex machine” 
where “ex machine” denotes the machine that carries the god on the stage 
and the skillful device too on the part of the god, to find the solutions to 
puzzling situations (used by Aristophanes). I believe that those ideas show 
a link with statements contained in the letter written by Archimedes to 
Eratosthenes.  
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The writer is a mechanical engineer (machinator by Vitruvius) with a de-

e-mail: bragastini.roberto@alice.it 



The letter to Eratosthenes can be found in the book by E. Rufini [8] 
“the method of Archimedes” from wich I took only the most interesting 
passages. 

I would like to suggest the possibility for dialectic philosophical oppor-
tunities where the research of the truth is like an asymptotic curve to the 
straight line of knowledge. The philosophical angle is only an attempt 
wich may be called wishful thinking or, better, “thoughts in freedom”. 

 
 

3. THE SYNOPTIC TABLE SHOWS THE LIFES OF THE BELOW 
MENTIONED NAMES RELATED TO ARCHIMEDES 

 
 

Philosophers 
Mathematicians 
 
Teocritus 
Zeno 
Plato 
Aristeus 
Diofantos 
Archita 
Aristotle 
Eudoxos 
Eratosthenes 
Archimedes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Years b. C.     500           400           300            200             100           0 
Century              V             IV              III             II                    I 

 
 
4. PASSAGES FROM THE LETTER: 
 
The selected passages of Archimedes’ letter are: “I know Your reputation 
as a scholar and excellent teacher of philosophy” - “You can appreciate the 
research in mathematics” - “I thought to show You the peculiarity of a cer-
tain way for mathematical problems […] by means of mechanical solu-
tions” - “some things appeared to me first by mechanics and afterwards I 
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proved them geometrically” - “the research by this system is not a true 
demonstration […] so I decided to give You the demonstration by writing 
a letter […]”. 
 
 
5. ABOUT WORD: “METHOD” 
 
First I am searching for a definition of the word “method” to do a compari-
son with the meaning of normal term: “a logical continuous structure to 
give good results in the solutions of problems with regular and required 
means. A whole unity of regulations to take methodical proceedings to 
avoid errors”. 

I read seven translation of the letter (the first one, of course, in greek, 
the second in latin, see below). The most important passages are those 
pieces where Archimedes explains his concepts but (except in the title) 
Archimedes does not use the word “΄έφοδος” translate in “method”, Why? 

    “τρόπου τινός ιδιότητα” = the peculiarity of a certain way 
“methodi cuiusdam proprietatem perscribere tibi” = I will write to You 
the property of a certain method 
According to Napoletani [6]: “ such a particular way of ….” 
          “      “   Google : “ the peculiarity of a certain system for …” 
          “      “   Rufini [8] :  “ the particularity of a method for …” 
          “      “   Frajese [3]:  “ the characteristics  of a method for …” 
          “      “   Dijksterhuis [2] : “ a certain particular method to ….” 
 

It is noteworthy that only in the title appears the word greek method: 
The others sentences are circumlocutions. May be one can ask if the word 
which from the year 1906 has been translated with “method” (in quotes to 
avoid a logic tautology) can be correct and adequate. 

Plato wrote for people who are admitted to Academos garden “nobody 
can enter if he is unlearned in geometry”; so to pay a homage to Plato, I re-
searched the word: it is found in Sophista, in Phaedro, in Teethetos, but the 
word is μέθοδον, ΄οδω̃, καθοδόν, with μετά, μεθ’, κατά, or only ΄οδω̃. 

The word ΄οδός (walk, road, way) appears with several proposition but 
Archimedes uses it only with the prefix ΄επί, ΄εφ’. 

The word ΄έφοδος with ΄επί, ΄εφ’ (latin = de) has been used by Thucy-
dides, Xenophon, Euripides, Aristotle, with the meaning of expedient 
rather than method. 

During the search for a “something philosophical” I read the excellent 
work by P.D. Napoletani [6] where many of expressions have raised 
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doubts about the meaning of the word “method”.  



After which for avoid in order to fall into nominalism (see medieval 
philosophy) but altought impossible to modify the accepted use of “method” 
it seems appropriated to attribute to Archimedes a certain “metis” greek 
word that is shrewdness or cleverness (not the cunning!). I would suggest 
to the readers of the letter to keep in mind the word “stratagem”. 

I wish do a mention found in the book: by G. Granger[4] “the science 
and the sciences”: a certain Hansen says “the contest to justify a problem 

 
 

6. SOMETHING PHILOSOPHICAL? 
 
The genius of Archimedes shines in the examples listed in the letter when 
he makes use of scale lever, barycentre and static moment to mechanize 
geometry when, in his time, the greek geometry used only rule and com-
passes. It is a process with several applications; Archimedes works with 
deductive coherence of a construction by an engineer and he gives, by the 
accumulation of demonstrations, a great capacity that he can transmit to 
others after him. 

Archimedes does not say how he has arrived to use mechanical means 
but his works can be likened to a proposition by E. Mach: “the invention 
can not be born suddenly and the sensorial knowledge follows a logic 
course that shall meet in the deed of the human reason”. 

The technological tales about Archimedes have been magnified as 
cause and effect or viceversa for his unbelievable reputation: it is enough 
to think of the intuition he exhibited in the problem of Gerone’s golden 
garland, in any case it must be noted how much Archimedes did in devel-
oping and exploiting natural forces: it must be also point out what Pasini 
said: “there are in the world two powerful sources of forces: the first one is 
Nature which hides them jealously and the second one is human Genius 
which seeks them, reveals and applies them”. As Archimedes did. 

It is right to recall the idea that sense and reason contribute to the solu-
tion in two ways: from deduction through sensorial experiences to hy-
pothesis and viceversa from hypothesis to facts. Can I deduce (may be not 
totally correct) that this is the same way as when Archimedes says: “first 
by mechanics, then by geometry” ?. That is practice and theory, or experi-
ence and reason. Archimedes uses scale and level (it is well known that 
those was already used by workers but non geometrically) like a know 
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method of Archimedes is like a recipe for….” 
(may be like Archimedes?) is like a recipe”.—Napolitani also states “the 

situations—Archimedes did not have a method for all problems”.  
as a general word?—certain methods are used according to the different 

“the use of the term method has a particular peculiarity—can be used 
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how. Perhaps Archimedes thought of a mechanical improvement of com-
mon means starting from a idea and afterwards developing by technical 
way? It is sure that Archimedes preferred theory (also for intellectual and 
personal thinking typical of his time) but he never refused to make use of 
technical and empiric knowledges. 

From Basalla we know: “technology is nothing more than another name 
for applied science. Technology is as old as human kind. “and from Bache-
lard (if possible) we can point out the “phaenomenotechnics” (phenomene-
techniques) that are the sensible applications of the empirical knowledge. 

G. Loria thinks that Archimedes uses the most clever reasoning as if 
they were “disguised integrations” (mathematically speaking) and notes 
that he distinguishes between “ingenuity method” from “method of dem-
onstration” exempting his countrymen not from the “smallest” but from 
“the infinitely small”. Leonardo da Vinci writes that mathematic is like a 
tool for mathematic but instead Archimedes writes that the mechanic 
serves the purpose for the solution of mathematical problems.. The histori-
cal contest justifies both assertions. 

The few points mentioned above can be considered at the edge of the 
philosophical science but the try a place Archimedes inside comprehensive 
philosophical view, gives rise to some objective problems. For the subjec-
tive ones there is no difficulty because all that has been written about: 

from the exhaustion (so called in 1660 a.C. by Gregorio di San  

to the theory of the infinitesimal 
from the approximation  
to the limits of the integrals  
is all to be classified in the field of the “POST-CURSORI” as they 

have been called. 
All this we are dealing with a document of 2300 years with erasures 

and smodges, lost and after found (casually) and restored only in 1906 
when it was mathematically out of date. 

I too adopt a …. method: apofatic and catafatic (words well known in 
the middle age – patristica) that means: positive and negative opinions. 
May I write : on-off? 

Historical gradient would have been exceptional for the history of the 
sciencephilosophy if the letter have been found 500 years earlier. Altough 
several mathematicians, one for all Bonaventura Cavalieri drew from 
Archimedes’ works but many questions remained without answer and, for 
this reason, many things were hypotetical in merit and in substance. 

Was he a nature philosopher? No doubt but “artis philosophandi 
magister” is non applicable. In the western world philosophy as a special 
activity of the human thought can not definited once for all because only 
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unitary meaning can not be equal to all philosophers we have known from 
600 years b.C.; at the most we can consider philosophy as a whole (please 
don’t confuse with the logic formalism!). Archimedes did not deal with 
philosophical arguments but we can suppose (quae pro alio suppositio 
dicitur) and think (as the modern mathematicians) “a hidden variable” with 
research for a philosophical seam (mineral term is properly used). 

It can see in the geometric demonstration XVI and XVII of the letter 
to Eratosthenes. Archimedes gives to “stratagem” (= method) the value of 
research: the invention of a system of comparison between wellknown 
geometric figures (using scale and level) with a condition of equality bet-
ween two terms. 

Problem: (I cut off all that is mathematic): A = B: yes or not. 
Archimedes supposes A different in comparison of B that is A unequal 

B. We put first A < B; we can prove it impossible (ex absurdo). Therefore 
we put A>B; as before it impossible. So if we know that A can not be > or 
< than B it means that A = B. 

Is it a law of not contradiction or viceversa? One can not say: if A > B 
is false, the A < B is true, but A < B too is false, then both A and B are 
both false. May be that A is not “non A”?. 

Is it possible by syllogism to insert this?: if A implies B and B is true 
then A is true; and if A implies B and B is false, A too is false and also 
even worse if is not true for A and B but “equal” there is a “reduction ad 
absurdum” if A can not be> or <B. Contradiction of “tertium non datur”? 
Can the syllogism be applied? I do not know. 

But Archimedes’point of view is correct. 
I cite Poincarè: “geometry is not more true than another geometry, 

only it is easier” but Poincarè is the father of conventionalism!. 
Archimedes used technical and mechanical systems that are barely 

suitable to greek geometry. For instance: the grouping and the condensa-
tion of the section of the figures using the stratagem of compression 
(Napolitani writes that it is better to translate the compression in “indirect 
pass to the limit”) without forgetting that the successive approximations of 

Plutarch writes (about the superimposed sections): “if one cuts a cone 
with a plane parallel to the cone’s base and infinitely near to the base, the 
obtained circle can be equal or unequal to the base. If equal the cone be-
comes like a cylinder, in unequal the cone becomes like a staircase.” 

The greek general concepts are: to find a solution to a problem, it is 

cepts come to fore reading the Archimedes’ letter. 
Ghoete wrote: “what is ingenuity? the result which one is looking for”. 
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stratagem is not exhaustion.

better to consider it already solved—anlysis is the invention of demonstra-
tion—multiplication verifies what results from division: these three con-



Archimedes to Eratosthenes  

7. CLOSING 
 
I can not give remarks: this is up to the readers: the arguments of the 
abstract are concluded but it is my personal believe that the genius of 
Archimedes (and even without considering the letter to Eratosthenes) was 
worth an inquiry in the field of philosophy (the queen of the human dis-
ciplines) only the sake of showing his manifold genius and fame.  

In any case, after what has been said about Archimedes I wish that the 
homo sapiens sapiens to day also called “technologicus” could find the way, 
the ΄έφοδος to reach the poetry; not that of any poet but the “POETRY” 
itself because it is there if one wishes find it.  

 
 

INFORMATION ABOUT THE NAMES MANTIONED 
 

Eratosthenes: director of the Alexandria library 
Vitruvius Pollio: roman architect and engineer – first century a.C. 
Plato: philosopher 
E. Mach: scientist and philosopher – (1838–1916) 
L. Pasini: naturalist, geologist – (1804–1870) 
G. Bachelard: philosopher – (1884–1962) 

G. Basalla: scientist and inventor 
Leonardo da Vinci: scientist, engineer, inventor, painter – (1452–1519) 
B. Cavalieri: mathematician – (1598–1647) 
G. Loria: mathematician  
Plutarch: writer – (45–125) 
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ABSTRACT In this paper our aim is to examine the special interest that 
some major seventeenth century philosophical figures have shown in the 
achievements of Archimedean geometry. Given the excellence of the work 
of Archimedes, it is to his work that philosophers like Descartes, Spinoza 
or Pascal have been referring in order either to clarify some points of their 
own philosophies, or to find a sound basis for the modern mathematical 
conception of nature.  

 
 

1. INTRODUCTION 
 
The legacy of Archimedes’ work does not run short of brilliant pages. A 
lot of mathematicians as well as philosophers and scientists have 
acknowledged their debt to the work of the great Syracusan. In this respect 
the seventeenth century was no different. The work of Archimedes was 
well-known to every well-educated individual of that century and was 
praised as an exceptional and outstanding example not only of what 
mathematical science can achieve but also of what human intellect is 
capable of. What is of special interest for us here is the ways that leading 
figures of the new philosophical trend which is usually described in 
textbooks as “early modern philosophy” have been using Archimedes’ 
work for their own purposes. We should bear in mind that these philosophers 
were struggling to relieve seventeenth century philosophy of the heavy 
burden of the scholastic medieval philosophical tradition. To their eyes, 
the work of Archimedes stood as an example of sound thought and as such 
had a major impact on their new view of man as well as of the world that 
surrounds him. 
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2. ARCHIMEDES AND THE SCIENTIFIC REVOLUTION 
 

Let us be more precise and have a look at the impact that Archimedes’ 
work had on the great revolution that was taking place during the 
seventeenth century, namely the scientific revolution. To start with, let us 
consider the fact that Galileo’s work in physics was inspired to a great 
extend by the work of his Syracusan predecessor. In his attempt to modify 
what at the time was the well-established model of a closed world within 
which bodies are characterized by their qualitative features and to build 
a new geometrical science of motion, Galileo drew mainly from the 
Archimedean tradition of bringing together geometry with mechanics and 
finding solutions that satisfy both sciences (Koyré, 1978).  

It might be objected here that Galileo’s work is mainly focused on 
physical and astronomical problems and that the mathematical work of 
Archimedes never really treats problems concerning the reality of material 
things: at best his work treats idealized and abstract cases that may be 
projected upon the existing world (consider, for example, his treatment of 
a balance without any friction in his On Plane Equilibriums), so that all 
things considered, at least the part of Archimedes’ work that has survived 
through the ages, concerns purely geometrical theory. But this is exactly 
the point when someone is dealing with the problem of the relation 
between Archimedes’ and Galileo’s work. Galileo’s new physics and 
astronomy (that is, if one decides to leave aside the part of astronomy that 
has to do solely with observation) is in fact a kind of geometry that is 
based on the geometry of Archimedes. Galileo’s new science treats nature 
in a geometrical way because, according to him, nature is a text written in 
mathematical and geometrical terms and must be read in these terms 
(Galileo, 1957). Thus, Galilean science consists of a brand new way of 
conceiving the world that surrounds us and forms an essentially mathe-
matized view of nature. Archimedes and Galileo share in common their 
geometrical way of thinking about the world. 

 
3. THE SEARCH FOR A PREDECESSOR IN DESCARTES’ 

WRITINGS 
 

The new science that emerged during the seventeenth century was escorted 
by a whole new philosophical treatment of the questions concerning both 
the world and the human being. This new philosophy that emerged in 
ways that can be described as parallel with those followed by the new 
revolutionary science, was itself deliberately revolutionary in its effort to 
take the place of the scholastic conception of things. Such an endeavor 
led several leading philosophers of that century towards a search for 
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distinguished figures of the past who could be counted as models of sound 
argumentation.  

This search for a predecessor who could count as a reliable reference 
can be found in a crucial text of one of the greatest philosophers of the 
modern era, a philosopher who tried to build his philosophy solely by 
doubting about all that he had learned and by asking himself if there was 
anything that could be counted as capable of resisting such a doubt. It was 
Descartes, of course, who raised his deliberate and methodological doubt 
to the status of the first move towards the recovery of indubitable truth.  

As it is widely known, Descartes is one of the leading figures not only 
of early modern philosophy, but also of early modern science. He was 
the inventor of analytical geometry and he contributed largely to the 
construction of a worldview that is based on mathematical physics, despite 
the fact that Cartesian physics is not stricto sensu mathematical as long as 
it only provides a few mathematical laws of nature and is mainly occupied 
with the invention of mechanisms that explain natural phenomena. But 
Descartes’ major achievement is his metaphysical theory, a theory that 
sets the traditional problems of the theory of knowledge on new ground. 
This theory consists of a new way of defining and conceiving the essence 
of man and his ability to grasp certain knowledge. The completion of the 
enterprise is described in a text emblematic for seventeenth century 
metaphysics, the Meditations on first philosophy, published in latin in 1641 
under the title Meditationes de prima philosophia. This text, divided into 
six meditations that each mark a step towards the conception of indubitable 
knowledge, has as its starting point a systematic and well-organized leap 
into total uncertainty. This leap is based on some arguments that in 
Descartes’ philosophy are supposed to show that we cannot be sure even 
of the truth of simple mathematical propositions such as the sum of two 
and three.  

By contrast with what takes place during the first meditation of the 
Meditations on first philosophy, the second meditation introduces a new 
issue. Descartes, or the unidentified narrator in Descartes’ text, starts to 
ask himself if the universal doubt leads to some kind of knowledge, if he 
knows anything at all. This questioning will lead him to the famous “ego 
sum, ego existo”, but before that he defines in theory the kind of 
indubitable knowledge which he is seeking. In this context he does name 
Archimedes: “Archimedes used to demand just one firm and immovable 
point in order to shift the entire earth; so I too can hope for great things if 
I manage to find just one thing, however slight, that is certain and 
unshakeable.” (Descartes, 1984, p. 16). 

This allusion to the well-known story that relates to Archimedes’ 
famous ability with machines does not have to do only with Archimedes’ 
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ability as an engineer, but with Archimedes’ mathematical science, a 
science aiming at certainty at any cost. In order to grasp the full meaning 
of this allusion to Archimedean science we should not forget that for a 
seventeenth century scientist who belongs to the scientific revolution 
movement, the knowledge of nature and of her laws is a question posed in 
mathematical terms. Thus, the way in which man interferes with nature 
does not exclude mathematical practice and mathematical certainty. And 
this certainty is to be found above all in the rigid way of Greek geometrical 
thinking. In Descartes’ eyes such a scientist as Archimedes can, on a 
given stable basis, work towards a real revolution of what is taken to be 
true, of what is thought to be certainly known. It is in this sense that 
Descartes claims in this particular step of his metaphysical itinerary that by 
way of analogy with the Archimedean demand for a “firm and immovable 
point” he is seeking for an axis of certainty. It is to be noted that in 
Descartes’ correspondence (Letter to Mersenne, 27 May 1638 and Letter to 
Hyperaspistes, August 1641) Archimedes’ name figures in a textual context 
that implies the demand for absolute certainty.  

According to Archimedes, even the earth can be put in motion if an 
immobile point is given. In the same manner, all that Descartes’ 
metaphysics wants is to show that if I know certainly that I am (and, to 
be sure, such a knowledge according to Descartes’ meditational enquiry 
entails the knowledge of what I am, i.e. the knowledge of the property my 
essence consists of ), I can start building on firm foundations a new 
philosophy. When the Cartesian allusions to Archimedes are read from this 
point of view, Archimedean science can be seen as the inspirer not only of 
modern science, but also of modern philosophy, at least the kind of 
philosophy that Descartes thinks is the best to lay the foundations of a 
mechanical worldview.  

 
4. SPINOZA AND THE INFINITE 

 
It is time for us now to turn to an examination of the ways the legacy of 
Archimedes is treated in the work of another major philosophical figure 
of the seventeenth century: Spinoza. Spinoza’s work from many points 
of view can be seen as a turning point in the history of early modern 
philosophy. Whilst reading Spinoza one should keep in mind the fact 
that he, although generally counted amongst those philosophers who 
form the group of intellectuals usually covered under the umbrella of the 
so-called “post-cartesianism”, opposed many facets of Descartes’ work, both 
philosophical and scientific. It should be enough for the scope of our study 
to keep in mind that Spinoza’s thought moves towards a philosophical 
system that can be characterized as “pantheism” (although the word never 
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appears in his texts). According to this philosophical system neither God 
nor man are uniquely thinking substances. God must be considered as the 
only genuine existing substance, a substance that consists of infinitely 
many attributes (from this definition it follows that according to Spinoza, 
God is amongst other things an extended being given that God’s essence 
consists of the infinitely many attributes). As to man, his mind and body 
must be understood as finite modes of two of the divine attributes, namely 
the attributes of Extension and Thought. 

By treating human nature in such a way, Spinoza is opposing the 
Cartesian definition of man as essentially thinking substance. But he is 
also setting new standards as to what may count as of significant value for 
a philosophical theory, because considerations concerning the material 
extended world are, for such a philosophy, as important as considerations 
concerning the human soul. If it be so, it is of little wonder that Spinoza 
dedicated a lot of pages in his first publication to an exposition of 
Cartesian physics. This early work, whose full title is Descartes’ Principles 
of Philosophy demonstrated in the geometric manner, was published in 
latin in 1663 under the title Renati Des Cartes Principiorum Philosophiae 
pars I et II more geometrico demonstratae. In it Spinoza reiterates the 
basic dogmas of Cartesian natural philosophy as well as those of Cartesian 
metaphysics, while transforming their order into a deductive one and 
changing their demonstrative apparatus. Spinoza follows here a rigid 
geometrical method of proceeding. He, thus, sets forward the main steps of 
Cartesian metaphysics and physics in the form of theorems, themselves 
being demonstrated with the auxiliary invocation of a set of definitions and 
axioms. It should be clear by now that Spinoza feels at ease with ancient 
Greek geometry and its rigid method. 

Amongst other things in this work Spinoza presents the fundamental 
principles on which Cartesian physics build a consistent theory of inertial 
motion. In Proposition 16 of the second part of this work, Spinoza claims 
that “Every body which moves in a circle, as for example, a stone in a 
sling, is continuously determined to go on moving along a tangent” 
(Spinoza, 1988, p. 278). This theorem is followed by two demonstrations, 
each of them containing an allusion to a different geometrical theory of the 
past. The first one refers the reader to two propositions of the third Book of 
Euclid’s Elements, whilst the second one proceeds in a way supposedly 
borrowed from Archimedes who is mentioned incidentally. These two 
demonstrations have no equivalent in any of Descartes’ texts, so one might 
say that they constitute Spinoza’s contribution to the theory of inertial 
motion.  

The second demonstration of the theorem passes from the study of a 
special case to a generalization while using Archimedean techniques. The 
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special case consists of the study of the properties of a hexagon inscribed 
in a circle and makes use of the example of a body lying at rest on one of 
the hexagon’s sides. This body says Spinoza, when put into motion from 
an external cause, will be determined to continue its motion along the 
extension of the side of the hexagon. The same, according to Spinoza’s 
demonstration, may be attested concerning a figure of infinitely many 
sides, or, as the philosopher adds in a bracketed phrase, “a circle, 
according to Archimedes’ definition” (Spinoza, 1988, p. 280).  

It might of course be objected that Archimedes never states such a 
definition of the circle. The great Syracusan inscribes and circumscribes 
polygons and then makes use of the axiom of Eudoxus in order to show 
that with the use of polygons with very many sides one can get as close to 
the exact dimensions of the circle as he wishes to. Why, then, is Spinoza 
arguing here that a figure of infinitely many sides is what Archimedes 
defines as a circle? Why is he taking such liberties vis à vis the Archimedean 
way of thinking? 

As we have already seen, Spinoza knew very well the method of 
ancient Greek geometry and used it for his own purposes within his 
philosophical system (he wrote several philosophical texts using the 
geometrical deductive method). He thus knew for certain that a Greek 
mathematician would never accept such a definition of the circle, a 
definition much closer to the use of infinitesimals. It is early modern 
mathematics that introduced concepts such as these, leading to the 
infinitesimal calculus. Kepler, for instance, introduced geometrical elements 
that might allow the passage from a polygon to the curved line of the 
perimeter of a circle (Mancosu, 1996). But it is obvious that Spinoza 
prefers to show the way Archimedean geometry – a geometry that, as we 
have already seen, served as a model for the newly introduced mathematical 
physics – entails considerations concerning the infinite. Given that Spinoza 
already granted God the attribute of Extension, one can easily comprehend 
that, according to the philosophy of Spinoza, Extension should not be 
counted as a purely passive substratum. Considered as a divine attribute, 
Extension involves in Spinoza’s philosophy the divine productive power, 
i.e. the infinite itself. This is why Spinoza provides a demonstration based 
on the possibility of a passage from the finite to the infinite.  

It is in his Method of Mechanical Problems, for Eratosthenes that 
Archimedes takes the surface of a finite geometrical figure (for instance, a 
triangle) as composed of the segments contained in it, and he does it while 
making it clear that this way of proceeding is not a proper way of 
demonstrating. This Archimedean text was not, of course, available to 
seventeenth century readers, as it was published in the twentieth century 
by Heiberg. But the fact is that the use of Archimedean techniques allows, 

336 E. Vampoulis 



Archimedes in Seventeenth Century Philosophy 

  

under certain conditions, considerations concerning the infinite and its 
relation to the finite. In Spinoza’s philosophy this relation is a very close 
one, and according to him this relation is based on metaphysical foundations 
and has a lot to do with the construction of an adequate theory of mathe-
matical physics. 

 
5. PASCAL’S THREE ORDERS 

 
Pascal was one of the greatest mathematicians of his times. The solutions 
he brought to the problems of the conic sections and of projective 
geometry (a work inspired by the previous work on the same subject by 
Desargues) is enough to grant him the title of a mathematical genius – not 
to mention his pioneering probability theory. But it is the philosophical 
aspects of some leading figures of seventeenth century thought that is of 
some interest for the present study. 

Pascal has produced along with his scientific production a tremendous 
body of work on philosophy which was not published during his lifetime. 
This huge amount of notes was published posthumously under the general 
title “Pensées”. These notes were written as a preliminary study for what 
was meant to be an apology for Christian religion. Archimedes, nevertheless, 
is not absent from these notes; he is mentioned by Pascal in a passage 
dealing with the distinction of the three orders of things that he himself 
introduces. This tripartite scheme can also be found, for example, in the 
fragment 933 of the Pensées (the numbers of the fragments are given 
according to the Lafuma edition cited in the Bibliography) and must be 
related to the twofold scheme already introduced into the letter Pascal 
addressed to Queen Christine of Sweden. 

In this letter (Pascal, 1963, pp. 279–280) Pascal distinguishes two 
different empires, two different orders, the order of power or order of 
bodies, and the order of knowledge or order of minds. These two orders 
have nothing in common and each one is, considered in its autonomy, 
great. What we should keep in mind is exactly the fact that Pascal stretches 
out: between kings and geniuses there is no common measure. They may 
both be sovereigns, each one in their own domain, but science and 
authority form two distinct areas of excellence.  

This two-level division of human excellence is transformed into a 
three-level comparison of human activities in the Pensées in a quite 
different context. In this scheme, as was the case with the scheme 
proposed in the above mentioned letter, each one of the three orders is of a 
different and unique kind, that is, each order is incommensurable with the 
other two. Thus, the three orders now proposed are marked by the existence 
of a gap between them: there is no common measure between body and 
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mind, at least no more than between mind and heart (Pascal speaks in the 
Pensées indifferently of the order of the heart or the order of charity: see, 
for example, the fragment 298). Each one of these orders has his own 
representatives. According to Pascal kings and captains appertain to the 
first order, intellectual people to the second, Jesus Christ as well as saints 
to the third.  

Each order exercises no attraction to people whose interests belong to 
another order. Whatever is part of a certain order cannot produce any 
effect on what is of another order nor can it even be perceived by it: “All 
the brilliance of greatness has no attraction for people who are involved in 
pursuits of the mind. The greatness of intellectual people is invisible to 
kings, the rich, captains, to all those great in a material sense.” (Pascal, 
1995, p. 86).  

This whole scheme, a scheme regarding the existence of a number of 
incommensurable levels, is already to be found in Pascal’s mathematics. It 
is exactly this scheme that Pascal had in mind when he was working on his 
Arithmetical Triangle. In this scientific essay he points out that an entity of 
a lesser dimension – a point, for instance – does not at all augment the 
quantity of a higher level, a quantity with more dimensions than the 
aforesaid, when it is added to it. Therefore points add nothing at all to 
lines, lines add nothing at all to surfaces, etc. (Pascal, 1963, p. 94). 

It is obvious that it is by way of comparison to this sound geometrical 
argument that Pascal proceeds when he has to deal with the classification 
of the orders of human activities in the Pensées. In other words, he draws 
his inspiration from a commonplace geometrical problem, the problem of 
the constitution of the continuum and the relation of the latter to the 
existence of indivisible magnitudes (Cavalieri’s famous but also highly 
problematic indivisibilia; see Koyré, 1973). Pascal tries to establish an 
analogy between geometry and metaphysics and, of course, in order to 
illustrate his thought he chooses the work of Archimedes whom he 
obviously considers as the greater mathematician (or even scientist) of all 
times. Or, perhaps, things may be the other way around: he wants to establish 
an analogy between the highest achievements of human intellect and the 
achievements of divine charity – Archimedean mathematics being for him 
at the highest point of human capacities – and that is why he chooses a 
scheme inspired by the geometrical problem of the indivisibles.  

So, Pascal picks one single intellectual in order to show the gap that 
exists between greatness taken in a material sense (i.e. the greatness of 
kings and captains) and intellectual greatness. There is one man, who 
occupies, mutatis mutandis, in the intellectual order the same position as 
kings in the material order: Archimedes. The great Syracusan, according to 
Pascal, has given to those who work within the limits of the order of 
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intellectual greatness, victories that are not visible by kings and captains. 
Archimedes did not have to be a king or a prince in order to excel in his 
mathematics, he did not have to act the prince in his mathematical work. 
Pascal, following Plutarch’s testimony, points out that Archimedes was 
indeed a prince, but this was a fact totally irrelevant to the significance of 
his scientific production. “It would have been pointless for Archimedes to 
act the prince in his mathematical books, even though he was one.” 
(Pascal, 1995, p. 86). 

The true value of any achievement is to be appraised according to its 
belonging to a certain context that authorizes the comparison between 
what is of the same kind. The real difference between Archimedes’ 
production and what kings achieve in the order which is theirs is infinite, 
thus might not be counted as a difference taken in the same way as when 
we compare different things that are susceptible of less and more. Things 
pertaining to different orders have between them the same ratio as finite 
and infinite quantities. What is finite does not count in front of an infinite 
quantity and when added or subtracted to the latter does not add to its 
greatness or deduct from it something of any importance whatsoever. This 
is a persisting pattern in Pascal’s writings who insists on the fact that 
different kinds of quantities have nothing in common and cannot be added. 
Thus, in the famous fragment of the Pensées entitled “Infinity nothingness” 
he writes: “A unit added to infinity does not increase it at all, any more 
than a foot added to an infinite length. The finite dissolves in the presence 
of the infinite and becomes pure nothingness. So it is with our mind before 
God, with our justice before divine justice. There is not so great a 
disproportion between our justice and God’s justice as there is between 
unity and infinity.” (Pascal, 1995, p. 152).  

Unity-infinity-God. This tripartite scheme can guide us to a better 
understanding of the exact place of Archimedes’ figure in Pascal’s 
philosophy. Archimedes is for Pascal a scientist of outstanding greatness. 
His merit can be and must be distinguished from any other because his 
merits are infinitely superior to those of any king, given that they are not of 
the kind of merits that one can appreciate by looking at them with his eyes. 
“Archimedes in obscurity would still be venerated. He did not fight battles 
for the eyes to see, but he furnished every mind with his discoveries. How 
brilliantly he shone in those minds!” (Pascal, 1995, p. 86).  

Let us not forget that Archimedes has in his mathematical work made 
great use of the principle attributed to Eudoxus. According to this basic 
principle (stated in Euclid’s Elements, Book V, Definition 4 and Book X, 
Proposition 1) we can compare quantities of the same kind, but not of 
different kinds. Thus, Archimedes does not make use of planes in order to 
calculate, for instance, the volume of a “paraboloid of revolution” in his 
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On Conoids and Spheroids; he cuts the solid into volumes, instead. Pascal 
uses this principle not only in his mathematical work (we have already 
made an allusion to the way he refers to this principle in his mathematical 
treatise on the Arithmetical Triangle) but also in his philosophy. By 
distinguishing in the Pensées three different orders of human activities he 
sets the scene for an exact comparison of what can really bear an adequate 
comparison. In other words, Pascal promotes an idea according to which 
the three different orders must be treated just like different kinds of 
quantities; thus, Archimedes himself represents in this scheme a quantity, 
the greatest quantity that one can find in the order of intellectual power. 
This quantity, according to Pascal, should be compared only to what is of 
its own kind and not of a different one: “Out of all bodies together we 
could not succeed in making one little thought. It is impossible, and of 
another order. Out of all bodies and minds we could not draw one impulse 
of true charity. It is impossible, and of another, supernatural, order.” 
(Pascal, 1995, p. 87). By treating intellectual people as a special kind of 
order and by comparing them only with what is relevant to their special 
qualities, Pascal attests his deep conviction that the principle of continuity 
can and must be applied to all levels of reality. In other words, Pascal 
treats the magnitude that Archimedes represents in the mathematical 
domain in an Archimedean manner!  

It is not an accident that Pascal selected Archimedes as the highest 
point human intellect can reach by using its own powers. Geometry is the 
only human science capable of producing flawless demonstrations, as it is, 
according to Pascal, the only one to follow the true method. It possesses a 
method that one should apply to the entirety of human intellectual activity 
because, as Pascal points out, “we can see that in contests between minds 
that are equally strong in all other respects, the mathematical one wins.” 
(Pascal, 1963, p. 349). 

Archimedes, as one of the greatest mathematicians ever, has left such 
an impulse on the minds of mathematicians of all times that it is no wonder 
that Pascal chosen him as a figure of excellent brilliance in order to 
illustrate what he calls “the order of mind”. In a certain way Archimedes 
was well beyond his time, and his achievements bear the trace of a mind 
that has reached the limits of the capacities of inventiveness within the 
realm of rational deduction. 

If things are as clear as that, then on the level that is the level of purely 
human activity Archimedes has in Pascal’s eyes no other rival; that is not 
to say, of course, that this level of activity is the only one that Pascal cares 
about. Quite the opposite: there exists another level where human ability is 
powerless and unable to achieve any goals at all. This level is the level of 
charity, accessible only by supernatural intervention. The whole argument 
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about the existence of radically different orders makes it clear that what is 
of the domain of a certain order cannot be compared with things that are of 
the domain of another order: “It would have been pointless for Our Lord 
Jesus Christ, in order to shine in his reign of holiness, to come as a king. 
But he truly came in brilliance in his order. It is quite absurd to be shocked 
at the lowliness of Jesus Christ, as if that lowliness was of the same order 
as that of the greatness which he came to reveal.” (Pascal, 1995, p. 87). In 
the same manner, Archimedes stands out in the domain of intellectual 
capacities when he is compared with what is of the same kind as his. The 
work that he has produced is, in Pascal’s eyes, not just of infinite value for 
the science of mathematics, but of great importance when considered with 
purely philosophical criteria. It represents the highest point of human 
intellectual capacity, given that it consists of a collection of works forming 
the peak of mathematical craftsmanship, mathematical science being itself 
the summit of rational knowledge. 

 
6. CONCLUSION 

 
We have tried in our study to detect the main features that characterize 
the way some of the leading seventeenth century philosophical, but also 
scientific, figures have been referring to the work of Archimedes in their 
writings. Archimedes’ name is, according to them, connected to the search 
for truth not only in the domain of geometry but also in the domain of 
intellectual honesty and devotion to the ideal of truth. Seen from the 
perspective of Cartesian metaphysics, Archimedes is granted the status of a 
man in search of the absolute, of what is even impossible to find. The 
demand for a point in absolute rest in space is an example of such a request 
for what is, absolutely speaking, out of the reach of any kind of doubt. It is 
on a claim as absolute as this that the metaphysics of Descartes is based 
upon: what shall be considered as truth, says Descartes, must bear the trial 
of doubt and show that it can resist it. 

Considered from this point of view, Descartes’ claim as well as his 
reference to Archimedes is not totally irrelevant to the way Spinoza’s 
reference to the work of Archimedes is intended to be understood. As we 
have seen, the main point of this reference is the one that has to do with the 
Archimedean use of the “method of exhaustion” and its complications. It is 
mainly the problem of the infinite and of its nature that matters for 
Spinoza, and his quite free, it is true, interpretation of the Archimedean 
geometry allows him to introduce the notion of infinite in a theory 
concerning the nature of material beings. Spinoza appeals to the Greek 
mathematician in order to show that a physical theory is capable of 
integrating infinitesimal techniques and thus can be considered as compatible 
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with his philosophical theory. Spinozism, one should not forget, is a theory 
that builds God’s relation to nature on the model of an immanent causal 
relation.  

Pascal, on the contrary, pleads for the cause of Christian religion, but 
in a way that is a peculiar one. He distinguishes three different orders (the 
order of bodies, the order of the mind, and the order of charity alias the 
order of the heart). The nature of each of them does not bear any 
comparison with the other two, just like a finite magnitude cannot be 
compared to the infinite. Archimedes is for Pascal the man who has 
reached the highest point in the order of the mind. From this point of view 
the great Syracusan is somehow related to Pascal’s considerations concerning 
the two infinites (the infinitely small and the infinitely big) that surround 
man.  

What is impressing as an outcome of our analysis of these seventeenth 
century texts is that each one of them relates in one way or another the 
name and the mathematical work of Archimedes with a question regarding 
the infinite (the absolutely, thus infinitely, certain principle of knowledge, 
the infinite in nature, the relation between the infinite and the finite). 
Maybe this must be taken as indicative of the significance of Archimedes’ 
work, a work that contains just two mentions (both of them found in the 
opening lines of the Sand-Reckoner) of the word apeiron. In the eyes of 
the philosophers we have been studying, Archimedes’ geometry opens 
new perspectives for the science of nature as well as for the science of 
man.  
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ABSTRACT The mutually positive interaction between Science and 
Technology is first reminded, and the early traces of such a crossfertilisation 
are sought in Ancient Greece. Subsequently, this phenomenon is examined 
during the Hellenistic period. Several technical achievements are found to 
be inspired by scientific knowledge, whereas Technology did offer to Science 
some practical ideas and, above all, lots of measuring devices. Within this 
Alexandrian spirit, Archimēdēs was educated and has produced his mathe-
matical and engineering works. Some of his inventions, probably inspired 
by his own mathematical findings, are mentioned. A more detailed analysis 
is presented on the scientific bases of the archimēdean planetarium, admired 
by Cicero. Further on, the innovative views of Archimēdēs are presented 
on the hybrid demonstration of some geometrical theorems, via both 
mechanical and theoretical means. Besides, the strange view of Plutarch is 
critically examined, according to which Archimēdēs considered as “unworthy 
and vile” any activity related to machines. In conclusion, this assertion is 
found to be completely unsupported and arbitrary. Finally, the scientific 
rationality of the design of machines during the Italian Renaissance is 
mentioned as a confirmation of the validity of the crossfertilisation process. 
 
 
1. INTRODUCTION 
 
Empirical Technology appears very early – almost simultaneously with 
humans (animals too possess their own technology). The subject of this 
lecture is to examine the ways such a Technology may later on be fertilised 
by Science, and how Science itself may profit of available Technology; 
and, more specifically, how such a crossfertilisation has taken place during 
the 3rd cent. BCE, the period when Archimēdēs lived and published his 
scientific work. For this kind of historical investigation, one needs first to 
understand if such a crossfertilisation is feasible in principle. Subsequently, 
we need to follow the steps of such a process in Ancient Greece, before the 
examination of the related phenomena in the time of Archimēdēs. 
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2. HOW SUCH A PROCESS MAY WORK 
 
Let us consider this question first, independently of historical periods. In 
other words, we will try to identify the conditions under which Technology 
may enhance scientific thinking, and vice versa. To this end, it would be 
profitable to recall first the processes that generate Technology: Self-
preservation does impose some Needs1 that humans occasionally are unable 
to satisfy by means of their own natural forces; and they “invent” tools to 
intensify or lengthen their hands. Such inventions may be produced with 
the following procedure: Empirical trials (occasionally guided by imitation 
of the Nature) may lead by chance to the solution of the problem to 
“artificially” satisfy the given Need. This empirical process may be profitably 
enhanced by available previous knowledge or by additional knowledge 
purposely sought under the pressure of circumstances. Let us now describe 
the conditions under which Technology may influence Science, and vice 
versa. 

i) This “technological process” may favourably affect future scientific 
endeavours, along the following lines: 
– Trials may evolve in purposeful “experiments” – the basis of 

Science. 
– Empirically accumulated knowledge, may be subjected to 

systematic classifications2 – the basis for subsequent rational 
thinking. 

– Besides, available Technology may be used in order to produce 
measuring devices – the basis of scientifically proved observations. 

ii) On the other hand, as soon as scientific thinking is able to predict a 
physical phenomenon (qualitatively or quantitavely), technological 
innovation in the field may be drastically assisted. 

These seem in principle to be the possible interactions between Technology 
and Science. It remains to see if such was the case in Ancient Greece.  
 
 
3. EARLY INTERACTIONS BETWEEN SCIENCE  

AND TECHNOLOGY IN ANCIENT GREECE 
 
It seems relevant to start with the “mother science” (Geometry, that is) 
founded in Ionia during the 6th cent. BCE by Thalēs of Milētos: Thanks to 
                                                

2  This was also the case of Francis Bacon and Tycho Brahe... 
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cause for Technology to be generated (Moschion, 4th cent. BCE, fragm. 6 N2 sn.) 
 It is remarkable that early enough greek scholars have recognised that the “Need” was the 
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measuring distances between inaccessible points, Thalēs3 himself was able 
to divert the Alys river behind the army of the Lydian King, so that the 
army would continue its march forwards through a dry river-bed (Herodotus, 
I-70). Similarly, about the same time, Eupalinos the engineer of the 1km 
long tunnel of Samos, was able to design geometrically a lot of details of 
precisely driving the tunnel through two fronts. 

Another technological achievement was enhanced by the mathematical 
conceptualization of Music by the Pythagoreans: A distinguished Pytha-
gorean, Archytas (around 400 BCE), offered the possibility to construct 
stringed musical instruments (tetrachordon) by means of simple geometrical 
measurements.4 Similarly, Vitruvius (I, 1.9) reminds us that the knowledge 
of music theory is necessary in order to construct organs and other musical 
instruments. Besides, Plato himself clearly underlined the favourable 
consequences of Science on Technology: “In any Technique if you take 
apart Arithmetics, Maesurement and Statics, it would remain a superfluous 
residual” (Philēvos, 55 E). Such favourable influences of scientific 
developments on the Technology of the time, were to be made more clear 
during the Hellenistic period – the culmination of ancient greek Technology.  
 
 
4. CROSSFERTILISATION DURING THE HELLENISTIC PERIOD  
 
In fact, in the cosmopolitan world of the expanded greek civilisation, after 
Alexander the great, many more “philosophers” were now taking an 
interest in observation, measurement and indeed construction – being free 
of mythological thinking. That is why Alexandrian Technology flourished, 
together with Science – especially under the productive cover of the 
Mouseion of Alexandria. 

4.1. Enhancement of Technology thanks to Science 
The best way to introduce this subject would be to quote Vitruvius, the first 
Roman technical writer (and perhaps the last “Greek” technical writer): 
“Aristarchos, Plilolaos, Apollonios, Eratosthenes, Archimedes and Scopinas, 
have  bequeathed to future generations several machines, invented and 

                                                 
3  That is why Plato admired Thalēs as a “σοφός“, precisely because of this engineering 

achievement (Republica, 600 a) 
4  His lost book “Mēchanika” was based on mathematical principles. 
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constructed on the basis of calculus and physical laws”, (I, 1.17-26)5. The 
enhancement of Technology thanks to Science, was recognised two 
thousand years ago… 

In fact, after the classical period, Greek technology seems to flourish 
in a remarkable way. Let us only recall those developments that apparently 
were favourably influenced by scientific contributions. 

a) In Lavrion, counterweights were facilitating the lifting of excavated 
ore through double wells, whereas the invention of helicoidal washing-
channels substantially improved separation of mineral fragments. It is 
believed that such specific technological developments were inspired 
by scientific thinking. 

b) Ktēsibius (285–222 BCE, Alexandria), the inventor of Hydraulis and 

Straton of Lampsakos (ca. 300 BCE) on the compressibility of gazes. 
In fact, his disciple Philon of Byzantium mentions “Ktēsibius’ experi-

in the same time an Engineer – a happy wedding of Science and 
Technology. 

c) Philon of Byzantium (260–180 BCE, Alexandria), describes the 
“capacity” of a catapult, for the first time by means of a mathematical 
formula 

d=1,1 3 w  
where 
d = the diameter of the twisted sinew (the cord of the catapult), [in 
attic fingers, δ ά κ τ υ λ ο ι ] 
w = the weight of the spear to be thrown [in drachmas] 
whereas the numerical coefficient includes a 10% increase “against 
uncertainties”, according to Philon. 

d) Almost every writer of engineering subjects includes in his technical 
treatises chapters (or “books”) presenting Mathematics and Mechanics 
– indicating that it would not be possible for them to describe 
“machines” without a scientific background. 

 

                                                 
5

reliquerunt...” 

350 T.P. Tassios 

 

other words, in the new Alexandrian spirit, the physicist Ktēsibius was 

the compressed-air-catapult, most probably was aware of the theory of 

ments on the nature of air, its power and its velocity of motion”; in 

More precisely, here is the text of Vitruvius: “…qui multas res <mechanicas> organicas, 
gnomonicas, numero naturalibusque rationibus inventas atque explicatas, posteris 
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4.2. Enhancement of Science thanks to Technology 
On the other hand, Hellenistic Technology has offered to Science several 
counter services, briefly enumerated here-after. 

i) 6

central features of the new Alexandrian mechanical Technology are 
striking”. This is the opinion of H. von Staden (Yale university7), 
referring to the two chambers and valves of Ktēsibius’s double-piston 
water pump! 

ii) But the most important contribution of Hellenistic Technology to 
Science was the large number of measuring devices and instruments 
that allowed for further developments in Geography, Astronomy, 
Chemistry and Medicine of that time. It is worth to mention some 
examples of this category. 

– Thanks to his “spygmometer” Herophilos8 was able to quantify 
basic medical data. The instrument was a small scale special 
clepsydra, containing appropriate wedges in order to modulate it 
for various ages of the patient. Rhythm (vv, -v, –, v-), speed, size 
and vehemence of the pulse were measured. 

– Dioptras and chorobats were improved thanks to progresses in 
manufacturing more solid and malleable alloys. Similarly, fine 
and more precise balances were manufactured.  

– Thanks to water clocks (Ktēsibius, Archimēdēs), long time intervals 
were objectively measured, as opposed to the traditional sundials. 

– Similarly, long distances may now be accurately measured by 
means of hodometers or sea-dromometers (gearwheeled 
contrivances, Archimēdēs).  

– The construction of astrolabs was improved, and mechanically 
complicated planetaria were technically feasible (see §5). 

to Science, for the fertilisation of the first, thanks to the contributions 
of the second - the way we followed them in §4.1. 

                                                 
6  Alexandrian physician, 305–240 BCE 
7  “Body and Machine. Interaction between Medicine, Mechanics and Philosophy in early 

Alexandria” in “Alexandria and Alexandrianism”, J. Paul Getty Museum 1996, (p. 93) 
8  Alexandrian physician, 331–250 BCE 
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These technological devices were, so to say, a repayment of Technology 

nature) contribution of Engineers to Science is the consciousness of
iii) Last but not least, I will submit that another (epistemological in

u n c e r t a i n t i e s  of “scientific” results: Philon of Byzantium, in 

“The parallels between Erasistratos’  model of the h e a r t , and 



 
 
5. ARCHIMĒDĒS: SCIENTIST OR ENGINEER? 
 

a) I maintain we have proved that crossfertilisation between Science and 
Technology was established in greek regions as a normal procedure 

Archimēdēs studied in Alexandria, where both scientists and engineers 
were called sages “σοφοί”. (Besides, this was also the term Plato used 
for Thalēs when he was citing Thalēs’s technical achievements). In 
his book “Greek science after Aristotle” (1973), G. Lloyd explains 
how the technical writers did not merely describe complicated machines, 
but they also examined the principles of Mechanics intervening in the 
construction of these machines. This was the prevailing philosophy in 
Alexandria. We therefore maintain that, most probably, Archimēdēs 
had not faced the dilemma of the title of this chapter. In what follows, 
we will seek further evidence on this continuing crossfertilisation 
between Science and Technology in the work of Archimēdēs himself. 

b) I will use the neologism “Endho-fertilisation” for those technical 
inventions that are based on scientific findings of the inventor himself. 
Such is the case with the archimēdean helicoidal pump – an achievement 
of the 3rd cent. BCE in Egypt: This invention is entirely based on the 
knowledge of the mathematical curve “helix” – an archimēdean finding. 
The helicoidal “worm gear” is also based on the archimēdean helix. In 
this respect, Athenaeus (2nd cent. CE) in his book “Philosophers in 
dinner”, 5. 2006e, writes: “Hieron ordered [the hull] to be dragged 
down into the sea, […].Archimedes the Mechanicos alone has been 
able to drag it down with a few persons to help. He was able to launch 
such an enormous ship by means of a device involving a screw, for he 
was the first to invent devices employing the force of the screw”. Here 
we should note that a simple screw would be unable to move such a 
big ship, along a considerable distance. A “worm gear” should be used 
instead, i.e. a threated shaft (a “worm screw”), together with a toothed 
wheel meshing into it. We may therefore reasonably suppose that 
Archimēdēs, with his fundamental knowledge of helix and with his 
devotion to Mechanics, has in fact used an helicoidally threaded shaft 
and, most probably, in combination with gearwheels.  However, in the 
same context we must also consider the view of Plutarch (50–125 CE). 
In his book “Marcellus” (XIV), referring to the same ship and the 
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his Poliorkētika, 3.50.20, 
a problem only by means of the logic and the principles of Mechanics. 

explains why it is not always possible to solve

well b e f o r e  Archimēdēs (287–212 BCE). It is within this spirit that 
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same Engineer, he wrote: “A royal freighter (with three sails set) was 
dragged in the navy-yard with much effort […]. [Archimedes] being 
seated at a distance and without any effort, with his calm hand pulling 
the end of a compound pulley, brought the ship smoothly and precisely 
as if it were sailing to the sea”. I maintain however that there might be 
a contradiction here. The last and decisive phase of launching cannot 

9

c) Thanks to his engineering way of thinking, Archimēdēs made a 
rational revolution against scientific purism: He succeeded to be more 
productive in his pure mathematical endeavours, legitimising a fruitful 
introductory “mechanical” way of thinking. He clearly explains to 
Eratosthenēs (Mēchanika Theorēmata, H 428, 15 to 28) how “some 
Mathematics could be examined by means of Mechanics. And I am 
sure that this is not less useful for the demonstration of these theorems 
as well. Because some of these [theorems] that were disclosed to me 
mechanically, were later on demonstrated geometrically […]. Since it 
is easier to find a (geometrical) demonstration, having already some 
(mechanical) knowledge of these questions” – a thought experiment, 
that is. 

I maintain that this is a high moment in History of Science: The 
ultimate goal of objective understanding of the World is better served 
by such hybrid intellectual procedures, than it does by means of others. 
Such procedures are therefore preferable than any others – without 
platonic10 discriminations. That is why I subscribe to the following 
view of  H.C. Horst Nowacki11: “Archimēdēs, feeling as a physicist 

                                                 
9  A. I. Wilson: “Machines in Greek and Roman Technology”, in the Oxford Handbook of 

Engineering and Technology in the classical world”, Ed. J. P. Oleson, Oxford U.P., 
2008, (p. 340). 

10  I am referring here to the disagreements of Plato regarding the intellectual tools used by 
Eudoxos, Archytas and Menaichmos to solve the dēlian problem. 

11  “Archimedes and Ship Stability”, in “Int. Conf. on maritime research and technology”, 
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by whom? By a person seated in the sea? On the contrary, such a final 

the back of the ship. Perhaps Plutarch had confused this final stage
of launching with the initial stage of dragging the ship by means of

to conclude that, most probably, Athenaeus was right in saying that 
pulley-blocks, to bring it closer to the coast. I am therefore inclined

Archimēdēs used a screw (a worm gear actually), and I subscribe to the 

around 250 BCE - as another case of “endho-fertilisation”. 
opinion of A. I. Wilson  that the worm drive was invented by Archimēdēs

be effectuated by t r a c t i o n  applied in the front of a ship – and

stage of launching necessitates a p r e s s u r e  to be exercised to

Crete, Oct. 2001. 



and engineer, was able to bring his creative imagination to bear on 
scientific problems by allowing at least tentative conclusions from 
careful observation of nature, and from heuristic inductive reasoning, 
prior to rigorous proof. He was able to reconcile two methodologies 
and to combine observations with logic, inductive with deductive 
reasoning (in application to mathematics, mechanics and engineering)”. 

Nobody had before Archimēdēs dared that physical consideration of 
theoretical mathematics12 – and I wish to enlist this achievement too 
into the “endho-fertilisation” events we were describing in the above 
§b. 

d) The culmination of this mutual enhancement between Science and 
Technology is perhaps the archimēdean Planetarium described by 
Cicero (de republica, XIV, 22). Cicero is referring to two versions of 
Planetaria of Archimēdēs, brought to Rome by Marcellus, after the 
conquest of Syracuse (212 BCE). The first (placed in the temple of 
Virtue) was a solid and compact (“plenae”) sphere and it was a very 
early invention (“vetus inventum”) like those previously “constructed 
by Thales of Miletus and later worked by Eudoxus […], with the 
constellations and stars fixed in the sky”. We may assume that this 
earlier Planetarium was used for  demonstrations of instant and static 
positions of celestial bodies in the sky. On the second “sphere” Cicero 
is alluding to, “were delineated the motions of the sun, the moon and 
the five planets (more than could be shown on the solid globe). The 
invention of Archimēdēs deserved admiration because he found out, 
by means of one rotation, how it would be possible (in dissimilar 
motions) to maintain various orbits of unequal speed”. It is rather 
clear that such a complete differentiation of motions can be ensured 
only by means of gearwheels. The scenario of “pulleys and ropes” to 
achieve the same remarkable result in a portable device, is rather hard 
to be feasible. On the other hand, the latin expression “una conversio” 
(one rotation) as a cause of various unequal motions, may refer to an 
external knob. One may therefore maintain that this second version of 
the archimēdean Planetarium was most probably functioning by means 
of sets of gearwheels. Cicero is clear about the material this device 
was made of: bronze. And this was also the view of Lactanius13(3rd 
cent. CE), as opposed to Claudius Claudianus (4th cent. CE) maintaining 
that the contrivance was made of glass. But all of these later latin 

                                                 
12  R. Netz, W. Noel: “The Archimedes Codex”, Weidenfeld and Nicolson, 2007, (§6.c). 
13  In E. Stamatis: “Archimedes”, greek edition, Tech. Chamber of Greece, Athens 1970 

(four volumes). 
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writers, including Sextus Empiricus (2nd cent. CE), do admire Archimēdēs 
for the way he produced the motions of the celestial bodies. In 
conclusion, it is difficult to disagree with Oe. Wikander14, maintaining 
that “even though there is no explicit mention of gears in Archimede’s 
“globe”, we must presume that cogwheels transmitted the motion to its 
various different parts”.  

At the end of § XIV, Cicero describes the way one was able, by 
rotating the globe, to reproduce eclipses of the sun on the planetarium. 
If Cicero is right about the chronology of the device he describes15, the 
Antikythera Mechanism cannot be considered as unicum.  

The attribution of such an early achievement to Archimēdēs is also 
supported by the fact that he had devoted to the subject an entire book 
“On sphere making” (Σφαιροποιία)- one of the lost books that he has 
undoubtedly written16(and sphere-making was about Planetaria). 

For the purposes of this lecture, the main point of interest is that 
several Sciences could have contributed to the production of such a 
Planetarium: 

– Happily enough, astronomical knowledge of the time was sufficient 
for the purpose: Autolykos (ca. 300 BCE) has well established 
spherical astronomy, whereas the metonic cycle was known both 
to the Greeks and Persians since the 5th cent. BCE. 

– Besides, theoretical Geometry (at least since Euclid, ca. 300 
BCE) was well advanced for epicyclic motions of the Moon to 
be precisely described. 

– On the other hand, pseudo-Aristoteles17(ca. 270 BCE) had studied 
the cinematics of tangent cycles as a motion transmission 
contrivance, so that gearwheels to be appropriately designed. 

Such scientific inputs were probably amalgamated with the available 
Technology of the time18, for such an archimēdean Planetarium to be 

                                                 
14  In J. P. Oleson (Ed.): “The Oxford Handbook of Engineering and Technology in 

classical world”, op. cit., (p. 792). 
15  Unfortunately, from this point on (of § XIV), two and a half pages of the manuscript are 

lost: more technical details were probably offered in these pages. 
16  See i.a. G. Lloyd: “Greek Science after Aristotle”, 1973,(§4). 
17  Recent research however shows that “Mechanika Problemata” was a genuine work of 

Aristotle himself, according to M.E. Bottechia Deho (“Problemi meccanici”, Rubbetino, 
Univ. di Calabria), 2000. 

18  See i.a. Tassios T.P.: “Prerequisities for the Antikythera Mechanism to be produced in 
the 2nd cent. BCE”, 24th Int. Congress of the History of Science and Technology, 
Budapest, 2009. 
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produced, around the end of the 3rd cent. BCE. Historical data are not 
sufficient to offer further evidence on this happy wedding, but the 
double inclination of Archimēdēs towards science and technology is 
in favour of such an achievement. 

e) This view however was apparently objected by Plutarch (Marcellus, §§ 
XIV and XVII)- and by some modern scholars taking for granted 
Plutarch’s opinion. It is our duty to critically re-examine this opinion. 

– First, I will invoke the broader spirit of the Hellenistic times in 
favour of an amalgamation of science and technology, as I think 
we proved it in the previous §4. Archimēdēs, with his continuous 
connections with Alexandria, could hardly deviate from such a 
broad norm.  

– Second, Archimēdēs himself had repeatedly shown his deep 
knowledge and appreciation of Mechanics and its applications – 
as we have indicated in §5 b, c, d. 

– Third, Plutarch along his book on Marcellus describes in details lots 
of “marvellous” and “terrible” machines invented and personally 
used by Archimēdēs. The frequency of such references seems 
to be in serious contradiction with Plutarch’s assertion that 
“Archimēdēs considered as unworthy and vile any mechanical 
occupation”.  

– Four, almost all ancient writers express their admiration both for 
Archimēdēs mathematical and mechanical works. And Plutarch 
does not offer any foundation of his remarkable disagreement.  

– On the other hand, it does seem true that “Archimēdēs did not 
leave behind any book on his [works] for which he got divine 
fame”. If this passage of Plutarch referred to Archimēdēs’s 
technical writings, we should recall that several of his lost books 
belonged to this category: “On balances” (quoted by Pappus), “On 
mirrors” (quoted by Olympiodoros), “Sphere-making” (quoted 
by Pappus and Proclus), “Whinch, Water clocks, Pneumatics” 
(mentioned by Tzetzis), “On sea-dromometers”(mentioned by 
Tzetzis). Allthough there is no evidence on the fate of all these 
books, the testimonia about them are not in harmony with 
Plutarch’s contention.  

356 T.P. Tassios 



Cross-Fertilisation of Science and Technology 

In view of this rather extensive argumentation, we must conclude that 
“Plutarch’s, assertion […] is not only unsupported, but it is contradicted by 
earlier and later commentators”19. In fact, such a hypothetical, deeply 
philosophical, attitude of Archimēdēs, should have been personally 
declared by Archimēdēs himself – in as much as such an attitude would 
constitute a fundamental revolution against the great Ktēsibius and the 
entire Alexandrian School. But nowhere in his entire written work has 
Archimēdēs ever expressed such a dramatic statement. Nor in his very 
many personal letters to Eratosthenēs, Dositheos etc. 

I am afraid we have taken too seriously this arbitrary opinion of 
Plutarch under his “platonic predisposition”20. Yet, it seems to me that 
Plutarch had rather misunderstood Plato in this respect: Plutarch, in ch. 
XIV of “Marcellus”, introduces the (fake) archimēdean view “the sage did 
not consider seriously [his] machines”, and directly connects it with the 
case of the platonian disciples Eudoxos and Archytas, accusing them that 
“they initiated this beloved and famous endeavour with instrumental 
geometry”. It is precisely here that Plutarch’s misunderstanding lies. The 
instrument Plutarch is referring to, was foreordained to construct conic 
sections serving to solve the dēlian problem – a completely different scope 
than Archimēdēs’s machines: Machines serve Society – Archytas’s 
instrument served Mathematics. And it was precisely this second specific 
scope that Plato has condemned because of the risk “to destroy and corrupt 
the good of Geometry”. This understandable platonic purism has nothing 
to do with the ideal to defend the City or to feed the poor – noble and 
entirely platonic scopes! 

I therefore subscribe to the conclusion of Pappus on the same matter, 
saying that “Archimēdēs was considered a superman and enjoyed a general 
admiration precisely because of his achievements in Mechanics”21. 

 
 

6. INSTEAD OF AN EPILOGUE 
 
As a confirmation of the evident correctness of the idea of crossfertilisation 
we dealt with in this lecture, I will follow the thread of the Science / 
Technology dialogue after the period of the Late Antiquity, very briefly 
though. 

                                                 
19  D.C. Simms: “Archimedes: Nailing Plutarch’s lie”, in Cultural crossfertilisation of 

20  G.L. Lloyd: “Greek Science after Aristotle”, 1973 (ch. 7). 
21
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South Italy and Western Greece through history, Patras, Sept. 2007. 

  S. Cuomo: “Pappus of Alexandria and the Mathematics of Late Antiquity”, ch. 3. 



I will not comment here the much less documented Byzantine Period, 
and I will go directly to the Italian Renaissance. My first indication will be 
the fact that the last of the repetitive editions of the works of Heron of 
Alexandria appears in Venice, in the year of 1589 (“Gli Automati”, Trad. 
B. Bladi, Appr. G. Porro) - a possible indication of the continuous interests 
of the Italian Scholars on the hybrid (science/technology) orientation of the 
Greeks. Now, one should systematically observe the relevant developments in 
14th up to 15th century. But I will select only one emblematic case, related to 
the crossfertilisation issues: “Leonardo da Vinci developed several new 
machines. […]. Like many others, Leonardo concluded a [previous] process 
to give rigorousness and scientific dignity to mechanism design […] 
within an early scientific perspective”, (M. Ceccarelli 2008)22. 

Several data insinuate that L.d.V. was indeed aware of the Alexandrian 
spirit: 
– Interest for the work of Archimēdēs (manuscript B, Institut de France) 
– Investigation for a manuscript of Archimēdēs in Padova (L.25/1502) 
– Possession of the Philon’s book on waters (2nd

– Interest for the “Centers of Gravity” of Archimēdēs (Manuscript F/o, 
Institut de France, 1508) 

– Inspiration from Euclid (Ms B42b, CA 148 v-b, CA 283 v-e) 
– Reference to the honours the Romans offered to Archimēdēs after his 

death (BM 279 v) 
– Wish to meet J. Argyropoulos, professor of greek language (G. At. 

11b, 37b). 
– A possible crossfertilisation of centuries that is… 
– Sic transit Technē mundis! 
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ABSTRACT Cicero’s rediscovery of Archimedes’ tomb shows the 
interest for the Sicilian scientist in Rome, even if in Italy Archimedes’ 
geometry was put into practice only by architects and by Gromatici, a sort 
of practical technicians who worked primarily in military and agricultural 
fields (we have some clear information about their work in a wonderful 
manuscript of the sixth century now in Wolfenbüttel). Some poets of the 
classical period were interested in the combination of numbers (like 
Catullus’ 5 or 7 and Virgil’s Georgics 2), but they never did open 
references to Archimedes, for metrical difficulties and embarrassed by his 
astonishing killing during the Roman occupation of Syracuse. Archimedes’ 
life and death had an important part on the confluence of eastern and 
western culture in the third and second centuries B.C., but a good image of 
the scientist received serious obstacles by the difficulties of his theoretical 
works (Cicero also didn’t read and understand the mathematical and 
physical ones) and by his strong and open struggle against the Romans. 

 
 

1. INTRODUCTION 
 
Archimedes was the greatest mathematician of classical antiquity and 
among the greatest scientists of all time. Gifted with a prodigious and 
audacious intuition, he brought to completion his discoveries by subjecting 
them to a rigorous logic. He lived intensely bound to his people and to his 
time, so much that his involvement in civil life favored the growth and 
conservation of innumerable anecdotes about him. At more than two 
thousand years distance the stories are still enjoyable and full of 
fascination. The ancient Romans were upset for at least four or five 
hundred years by Archimedes’ extraordinary and seemingly contradictory 
personality. But it was difficult for them to accept that Archimedes - the 
scientist who disclosed unsuspected correspondences in the geometric 
figures (e.g. spirals, curved planes, characterized by infinite rotations 
growing in an arithmetic progression around a point), the investigator of 
some deep secrets of the nature, able to build powerful civilian and 
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military machines – was so much harsh against the Roman supremacy in 
Sicily and the south Mediterranean sea. Bound by kinship and friendship 
with the tyrant Hiero II and his young nephew Hieronymus, who succeeded 
him at the age of fifteen in 215 BC, shortly after the terrible defeat of 
Rome at Cannes, Archimedes was convinced by the elders of Syracuse to 
turn his art somewhat from abstract notions to material things, and by 
applying his philosophy somehow to the needs which make themselves 
felt, to render it more evident to the common mind, to prepare offensive 
and defensive engines to be used in every kind of siege warfare.  

In the most part of western Europe, two millennium later, similar 
conflicting attitudes were reserved to Galileo, by contemporaries and also 
by the general society of 18th  and 19th century: in fact, the scientist born in 
Pisa was admired for the revolutionary significance he gave to the new 
astronomical and physical researches, but was feared for his conviction by 
the religious Catholic power and the isolation he lived during the last years 
in Arcetri (only nowadays Roman Church recognised that his process was 
for herself a terrible mistake). It can be said that the contradictory and 
difficult relationship between Galileo and his contemporaries was the core 
reason that drew a veil of silence over the admiration mixed with fear that 
the Roman world held on Archimedes, a really controversial chapter too in 
the world history of science. 

Archimedes moved to Alexandria, then the intellectual capital of the 
world, around 243 BC, a little less than thirty years after Theocritus, 
Syracuse’s greatest poet and founder of the bucolic genre. For his own part 
Archimedes refused to settle down in Egypt, but in Alexandria he became 
a friend of the scientists of the generation that immediately followed 
Euclid. In particular he befriended the geographer Eratosthenes of Cyrene, 
to whom he dedicated the Method, the astronomer Conon of Samos, for 
whom he showed great esteem, and Dositheus, to whom he dedicated the 
treatise On the Sphere and the Cylinder and even Spirals and Conoids and 
Spheroids. With these colleagues Archimedes exchanged letters from 
Sicily, subjecting his own works to their judgment before producing the 
final draft, so that they could discuss them and suggest to him further 
modifications and improvements. But in contrast to Euclid’s works, those 
of Archimedes did not have a specific didactic intent: he omits the minutia 
and often trusts his reader to understand some passages of his reasoning 
that are anything but easy. It is not possible to find in geometry more 
profound and difficult questions treated in simpler and purer forms. 
Certainly the scientist from Syracuse was not content to give the ultimate 
refinement to subjects already known in whole or in part, rather he 
dedicated himself with passion to innovative discoveries and inventions. In 
the life and works of Archimedes science and technology are melded for 
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the first time, with surprising advantages for both. He never founded a 
school, but he cultivated science with the spirit of an engineer rather than 
of a professor. 
 
 
2. CICERO’S DISCOVERY OF ARCHIMEDES’ TOMB  
 
In ancient times (the period which Mary Jaeger [4] take into her 
investigation), Cicero’s enthusiasm for his discovery of Archimedes’ tomb 

was quaestor [in 75 BC] I tracked out his grave, which was unknown to the 
Syracusans (as they totally denied its existence), and found it enclosed all 
round and covered with brambles and thickets… So you see, one of the 
most famous cities of Greece, once indeed a great school of learning as 
well, would have been ignorant of the tomb of its one most ingenious 
citizen, had not a man of Arpinum point it out”. Figure 1, But it must be 
noted that about this finding there isn’t any other contemporary evidence. 
Besides, under the long Roman rule of Sicily there wasn’t any follow-up to 
Cicero’s discovery and all the monument’s trails got lost. 

 

 
 
Fig. 1. Cicero discovering Archimedes’ tomb in a painting by Pierre-Henry de Valenciennes, 
now in Toulouse (Musée des Augustins). (Courtesy of the Musée des Augustins)  

 

(Tusculanae Disputationes 5.64–66) represented a major event: “When I 
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In the Latin works the most consistency stories about Archimedes are 
about the tricky of the crown which we read in the 9th book of De 
architectura by Vitruvius – an important text, but not normally included in 
the studies of Roman intellectuals. It must be pointed out that in that story 
the witty aspects prevail on scientific observations, as we get from the 
treaty On Floating Bodies, a work that poses the scientific bases of all 
hydrostatics. 

 
 

3. PRESENCE IN ROME OF ARCHIMEDES’ MATHEMATICAL 
WORKS 

 
As I said, the reading and comprehension of Archimedes’ mathematical 
works were in fact relegated to the technical works of the Gromatici, as it 
appears, for example, in The Sand-reckoner (Ψαμμίτης) quoted by Hyginus 
at the end of the first century: Nam et Archimedem, virum preclari ingenii 
et magnarum rerum inventorem, ferunt scripsisse, quantum arenarum capere 
posset mundus, si repleretur (p. 148 Thulin: “It is said that Archimedes, 
man of the finest brain and inventor of imposing machines, calculated the 
grains of sand that the entire world could contain”). In my opinion, we can 
find echoes of Archimedes’ numbers also in some lines of well known Latin 
poets, like Catullus, Virgil and later Silius and Ausonius, but for metrical 
reasons the name of the scientist doesn’t appear openly, and at the beginning 
of Carmina 1.28 Horace carefully preferred to replace his name with the one 
of Pythagorean Architas, not so fearful for the Romans, but who never did 
researches in geometry (Robin G.M. Nisbet - Margaret Hubbard [8], p. 321). 

The drawing in Fig. 2 explains some of the most important discoveries 
of Archimedes in the difficult field of Mathematics (e.g. how to resolve the 
quadrature of the circle, the area and the volume of the sphere). They have 
been  very much appreciated by Galilei and the best scientists of 17th, 18th 
and 19th century.  
 
 
4. ARCHIMEDES’ MYSTERIOUS DEATH  
 
Lorenzo Braccesi [1], a classical very expert in ancient Sicilian history, 
recently sharply puts the accent on the Roman tradition about the death of 
Archimedes. He believes that the consolatory reconstruction of his death 
was done for political goals, following the stereotype of Roman clementia, 
as felt by Marcellus when he received the news of the tragic event: quem 
cum audisset interfectum permoleste tulisse (Cicero, Verr. 2.131: “when he 
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heard of his death, he was hardly moved”). Undoubtedly, that was not a 
glorious page for the history of Rome, also if Archimedes had been the 
most dangerous opponent to Marcellus’ army! 

 

 

Fig. 2. Table I from ‘Notizie istoriche e critiche intorno alla vita, alle invenzioni ed agli 
scritti di Archimede Siracusano’ by  Gian Maria Mazucchelli, Rizzardi, Brescia, 1737. 
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Studying with particular care the story told by Valerius Maximus 
(8.7.7), Braccesi reaches the conclusion that Archimedes’ death was really 
an execution of a task (with the head to produce as a proof to the Roman 
commander), a planned assassination to prevent him, once left alive, from 
placing himself at Hannibal’s service, at the time the most dangerous 
opponent to the Romans. 

On the other hand, for Marcellus, who desired a solemn triumph at 
home, it would be ridiculous to have a famous scientist 75 years old as a 
prisoner in irons after his own chariot of commander (imperator). Besides, 
at that time, the secret service of a conquering country was not so 
sophisticated as in our days and didn’t activate any action for protecting 
the technicians of the opponent side with the hope of a future collaboration 
(as happened in 1945 with the Germans scientists and technicians who 
went to American or Russian laboratories).  

 
 

5. TWO WONDERFUL PLANETARIUMS FROM SYRACUSE  
TO ROME  

 
An important presence, and testimony too, of Archimedes in Italy were the 
two great and complex planetariums made by himself (Cicero again left us 
an account of them in De republica 1.21), brought from Syracuse to Rome 
as spoils of war: one was set in Marcellus’ private house and the other in 
the temple of Virtus. Instead of offering an image of the Sicilian scientist, 
they were vivid images of Romans discovering, displaying, and manipulating 
artefacts associated with him. The images of the two spheres is emblematic 
of Cicero’s way of casting the Roman appropriation of Greek cultural capital 
as both inheritance and rediscovery. In the planetariums the movements of 
the Sun, the Moon, and the five planets then known (Mercury, Venus, 
Mars, Jupiter, and Saturn, visible to the naked eye) were imitated with 
precision and the formation of the eclipses was represented: “the invention 
of Archimedes deserved special attention because he had thought out a 
way to represent accurately by a single device for turning the globe those 
various and divergent movements with their different rates of speed” (in 
the same passage from Cicero). Arab sources cite a work of Archimedes, 
On the Construction of the Sphere, in which the scientist would have given 
specific instructions for building a planetarium.  
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6. CONCLUSIONS 
 
The relocation of the two planetaries in Rome will be a significant token 
“of the transfer of cultural capital from one people to another and from one 
generation to the next”, something similar to the transfer of a large amount 
of memories kept for centuries in Europe and now in American museums 
and universities, as subtly observed by Mary Jaeger: “Cicero’ story of the 
spheres anticipated the story of the later adventures of the Archimedes 
palimpsest, a scholarly work transferred from the Greek world to a new 
‘imperial’ center (the United States) and given new status as a prestige 
object and an object of scholarship” ([4], 67–68 and 152, 154). 

Archimedes’ fame holds even in late antiquity and the Middle Ages. 
Cassiodorus in the 6th century tells us that Boethius had translated some of 
his treatises, but not even fragments of them have survived. In particular it 
was the Arabs who produced translations of Archimedes already in the 9th 
century, and the Syracusan’s fame was so great in that culture that even 
works that did not belong to him were published in his name (and a range 
of fantastic inventions, such as the burning mirror, was attributed to him). 
During the Renaissance, the rediscovery, translation, and in-depth study of 
Archimedes’ works gave an extraordinary impulse to the foundation and 
development of all aspects of modern science, both in methods of research 
and in geometric concepts and has constituted an important basis for future 
developments in mathematics and geometry. Among the admirers of 
Archimedes in that time were the Medicis (rulers of Florence), Piero della 
Francesca, Leonardo da Vinci, Niccolò Tartaglia, Federico Commandino 
and lastly Galileo Galilei, who claims to have read and studied his works 
“with infinite stupor” and cites him explicitly more than one hundred 
times, defining him, depending on the occasion, as superhumanus, 
inimitabilis, divinissimus. I am sure that Archimedes will be a vivid 
example also in the future of science, everyday and everywhere. 
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ABSTRACT The short review of the most considerable Russian researches 
of engineering and scientific activity of Archimedes is given. Special attention 
is focused on Ivan Nikolayevich Veselovsky’s original research - one of 
the largest Russian experts in this area.  
 
 
1. INTRODUCTION  
 
The review and the analysis of works of Archimedes in areas of mathe-
matics and mechanics are included into all corresponding courses of 
history of all mechanic-mathematical and physical faculties of Russia. At 
all times the biography made by certain Heracleides of Oxyrhynchus, who 
lived in II century BC, had served for the ancient as the main source of 
biographic data on Archimedes and it had not reached us. Further the 
works of Titus Livy, Cicero, Diodorus, Silius Italicus, Valerius Maximus 
serve us as sources for Archimedes’s biography. In the list of the literature 
we imparted the enumeration of some popular scientific books, school 
literature, university textbooks and scientific editions in Russian. Consider-
ably the attitude to Archimedes’s works at various stages of development 
of Russia represents more interest. There is short review of the most 
significant Russian researches of engineering and scientific activity of 
Archimedes in the article. The special attention is given to the review of 
original research of I.N. Veselovsky – one of the largest Russian researchers 
of a life and Archimedes activity.  
 
 
2. THE REVIEW OF THE RUSSIAN RESEARCHES OF 

ENGINEERING AND SCIENTIFIC ACTIVITY OF ARCHIMEDES 
 

In the given review the data on the most interesting, in the authors’ opinion, 
works, devoted to Archimedes’s activity and simultaneously not being 
prefaces and comments to the translations of his works, are resulted.   
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Lourier S.J., “Archimedes” [1] In the book the sketch of a life and 
Archimedes’s activity is given in a traditional key. At that time, at least 
in Russian and Soviet literature, the history of discovering of «Εϕοδιχον» 
(Euphodic) was extracted in prime.  

In this case we see that good luck accompanies knowledge, and «has 
found» and «has discovered» are absolutely different concepts in a science. 
The private-senior lecturer of the St. Petersburg university P. Papadopulo-
Keramevs had found a parchment of a late origin not quite washed off 
Ancient Greek text (Palimpsest) of mathematical maintenance under the 
text of his interest in the library of a monastery of St. Sabas near Jerusalem. 
Not being the mathematician, Papadopulo-Keramevs has not given great 
value to the opening. In 1906 the Danish philologist and the mathematician 
of prof. Geiberg found small endurance from this manuscript in the cata-
logue of the Jerusalem library. In this short endurance prof. Gejberg [2] 
learnt ex ungue leonem («on claws of a lion») Archimedes product. He 
managed to find this manuscript and he found out in it the Greek texts of 
some Archimedes’s compositions. The manuscript was compiled in Х 
century. Between ХII and ХIV centuries, as it often happened, the same 
parchment has been used again for the theological text. The old text, thus 
tried to wash off, but, fortunately, not with full success. Archimedes’s 
book contains a statement of the method connected with mechanical 
theorems and is devoted to Eratosthenes - the Alexandria mathematician 
and astronomer. It was familiar to Hero of Alexandria (II century BC), 
who named it “Euphodic” (Εϕοδιχον) - method, guidance. Besides, there 
was the Archimedes’s work on hydrostatics “About floating bodies” stated 
in it.  

works the question on plausibility of legends on Archimedes engineering 
activity is discussed in the book, and the assumption that the stories about 
lifting of the Roman ships from water and moving a ship on sand  are no 
more than a legend which was born owing to natural desire of Archimedes’s 
descendants to give more shine to a figure of the greatest person.  

Ivanovsky M.P., Golden rule [4] This small book is written for school-
children. The review of historical background from the 1st Punic war till 
Archimedes’s activity is given and the condition of science and engineer-
ing of that epoch is shown in it. Activity of Ctesibius, Heron and Galileo, 
who were Archimedes’ followers, was examined. Special attention is given 
to the examples of Archimedes’s practical activities of: «Archimedes screw» 
and its application in the modern techniques, subtractive and differential 
collar and other examples. The analysis of technical possibilities of 

Kagan V.F., “Archimedes” [3] Besides known treatments of Archimedes’s 
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“artillery” of that time (ballistas, “scorpions”, catapults), ravens and beaks 
is given. Mechanisms from legends about Archimedes (overturning of the 
Roman ships etc.) are considered from the point of view of realisation. It is 
thought that it was the best book about Archimedes for schoolchildren.  

Veselovsky I.N.: Archimedes [5, 6] In some measure Veselovsky’s sights 
were naturally influenced by the fact that the graduate of Lomonosov 
Moscow State University, who worked at the largest technical university 
of the country – Bauman Moscow Higher Technical School, today Bauman 
Moscow State Technical University, and conducted a course of Theoretical 
Mechanics. Working at engineering university and constant acquaintance 
to practical problems has led him to the understanding of the role of 
engineering in formation of the exact sciences.  
 

 

On Fig. 1 the kind of a cover and the title page of the book [16] 
published by the State Publishing House of the Technical-Theoretical 
Literature in a series «Classics of physics» is resulted.  

Authors represent in compressed way I.N. Veselovsky’s position, 
hardly known to mechanicians and mathematicians, and furthermore to the 
engineers who do not do researches in history of science and technics, 
even within Russia. Difficulties of the analysis of  Archimedes’s life and 
activity consist in «having to scoop the data on his life from the writers 
mentioning Archimedes, or in the general historical works, as for example, 
at Polybius and Titus Livy, the historians, or writers who came across 
Archimedes as, for example, Plutarch». Actually, the information contains 
in descriptions of history of three Punic wars, Archimedes took part in two 
of which, that is events 264–146 BC. Two main purposes of this work are 
to give Archimedes characteristic which could add new lines to its figure; 

 

Fig. 1. The cover and title list of I.N. Veselovsky’s book “Archimedes”. 



372 A. Golovin and A. Golovina 

to offer experts in the history of physical and mathematical sciences field a 
new view on the facts of Archimedes’s biography of, exactly:  

The characteristics of development of antic mechanics in the pre-
Archimedes epoch;  
Establishment of the fact that all mathematical Archimedes’s products 
which have reached us completely were written  by him at mature age 
(about 50 years);  
Evolution of Archimedes’s method of exhaustion;  
Establishment of rather late occurrence of books «About balance of 
flat figures»;  
Analysis of books «About swimming».  

 
2.1. State of Engineering, Mechanics and Mathematics Before 

Archimedes  

In the review of condition of engineering, mechanics and mathematics 
before Archimedes Veselovsky notices that the Greek siege artillery – 
catapults and ballistas – were invented at that time. The distance which a 
stone could cover at identical degree of elastic element tension was 
considered proportional to its volume, what is the size of potential energy 
in modern understanding. Establishment of this fact promoted stereometry 
development: a series of solutions of the volumes measurement main 
task – volume contraction, exceeding available in the set number of times. 
In connection with finding of the solution of a cube doubling problem the 
theory of new curves, opened by Eutocius and his brother Menehemus, – 
so-called conic sections: an ellipse, a hyperbole, a parabola; began to 
develop. In engineering the theory of mechanical similarity began to 
develop: it was found out that the simple increase in volume does not 
always give corresponding increase in useful results. War becomes the 
expensive enterprise, feasible only to the large-scale state. At the end of IV 
century the siege machine started to play such role under the prosecution 
of war that one Spartan commander named them «a tomb of human 
valour». In the struggle of Syracuse against the Carthagin invasion industrial 
mobilization, first in the world history, was carried out.   
 
2.2. Archimedes’s Engineering Works  

The first Punic War had lasted from 264 till 241 BC. Syracuse took part in 
it firstly on the Carthaginians’ party, and then, having had been dropped 
out of the war, began to adhere to neutrality politics. That is why it is pos-
sible to assume that Archimedes worked on the “first” speciality – the 
military engineer – and his researches basically had special character, 
which reveals in Archimedes’s works in mechanics area, at this time. He 

1. 

2. 

3. 
4. 

5. 
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had already used the concepts  of the gravity centre and conditions of 
balance of a lever in «A parabola quadrature», and refers to the former 
works, which titles have strongly pronounced mechanical character. Many 
historians regarded as a merit to Archimedes that he had found time to 
help his native city in a trouble. However, attentive reading of the Polybius’ 
story gives one an absolutely other picture. First of all, the Roman risked 
to attack only one time and, besides, soon after the arrival so there was no 
time for preparation of protection. On the contrary, city defense had been 
prepared beforehand. During the process of the Roman approach to the 
city the long-range missile machines, went into action, then – the machines 
of closer action. For this purpose the action, called “square zeroing in” by 
modern artillerists, preliminary had to be done. It is impossible to make 
this “zeroing in” at the enemy’s sight; it should be necessarily made 
beforehand.  Polybius wrote absolutely definitely about the fact that the 
city was ready to the siege in advance: «… Hieron has given means on 
them (missile machines), and Archimedes has invented and masterful 
constructed machines». So, Archimedes’s participation in defense was not 
casual. An image of Archimedes - the main military engineer of Hieron, 
the Syracuse governor, appears instead of the absent-minded scientist-
mathematician in front of us. Of course, it should not be understood in the 
sense that Archimedes was the only military engineer. Anyway, the base, 
on which Archimedes mathematical and mechanical achievements were 
constructed, is opened by now.  
 
2.3. The Mechanic and Mathematician Archimedes  

On the basis of Archimedes’s epistle Veselovskiy offers the following 
possible chronological order of Archimedes’s produstion. Five epistles to 
Dosifeus (the student of Alexandrian astronomer and mathematician Conon 
of Samos, who Archimedes was in the habit of sending his compositions 
for criticism to): the mention in the message about Conon death allows us 
to establish the date before which all specified compositions could not be 
written, that is 246 year when Archimedes was 41 year old.   

• A parabola Quadrature;  
• Two books «About a sphere and a cylinder»;  
• About spirals;  
• About conoids and spheroids.  

The sequence of these compositions is established absolutely precisely 
on the basis of introductions to these books, and the book «About spirals» 
had to stand last and only the difficulties, which were met during working 
on “conoids”, had forced the delay of that book. Further:  
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• “About balance of flat figures”;  
• “Euphodic”. Two books «About floating bodies», the second of which 

assumes “Conoids” and “Euphodic” to be  written. Independently stand:  
• “Circle Measurement” (the problem, which geometrical solution is given 

in the book «About spirals», is sorted out. Some features of the proof 
method applied in it allow to think that, at least, it is simultaneous to 
two last epistle to Dosifeus);  

• “Psammite”. It is written after “Circle Measurement” and before 216 
BC (the year of Helon’s death, Hieron’s son and joint ruler).  

After 241 BC Archimedes had the chance to visit Alexandria – the 
centre of Hellenistic science of that time – and to strike up acquaintances 
local scientists, including Konon and Eratosthenes. Archimedes saw Konon 
if not as the teacher, than as the instructor which opinion he valued; he 
behaved as equal with equal with Eratosthenes, and even a little bit as with 
the higher. Two letters to Eratosthenes are known. These are “Euphodic” and 
the «Problem about bulls», opened in a XVIII century by German playwright 
and poet Lessing (the accessory to its Archimedes without the sufficient 
bases is challenged by some), where Archimedes does not ask Eratosthenes’s 
opinion any more. At the same time, as in accordance of Diodorus of 
Sicilia’s works (the historian, 2nd half of II after BC), Archimedes invented 
the “Archimedes’s screw”, which has been used to lift water.  

Archimedes, as we know it, was solving such problem of antique 
technics as those, which could be mathematically processed. At present 
time we have to economize materials, which a special field of mechanics – 
the resistance of materials – is looking after. Constructions of the antique 
world did not demand the economy of materials. Receipt of big force by 
means of small, which the ancient solved by means of machines, was the 
primary goal of antique technics. Of the two laws for two principal kinds 
of simple machines – the lever and an inclined plane – the ancient knew 
only the laws of balance of the lever.  

It is possible to make some representation about Archimedes’s early 
products on the fragments which have reached us. One of such products is 
a composition on mechanics which has not reached us, whether it was “about 
levers”, whether simply “mechanics”. Rod concept of all Archimedes’s statics 
is the concept about the center of gravity which, apparently, was established 
by Archimedes. He possibly got his understanding of the concept about 
the center of gravity on the basis of purely practical researches on load 
distribution between supports bearing it. There are some fragments from 
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beams. For a console beam he was not so lucky. For a console and three-
basic beam his reasoning led to an incorrect conclusion. However, as the 
sizes of Greek constructions were rather small, there was no need to achieve 
exact values for pressure upon support. The correct decision for a multi-
support beam was only received in XVIII after Euler’s works.  

In ancient Greece as well as in Europe  the physics had been making a 
part of philosophy and stated without big mathematical wisdom till XVII. 
Therefore, Archimedes’s attempt to state the balance theory strictly logically 
and to present it as mathematical science is possible to be considered as 
the beginning of mathematical physics.  

In the Polibius’s story it is said that Archimedes grasped the Roman 
swimming up ships by means of paws and tightened them upwards by 
machines. Archimedes could find the soil for establishment and working 
out of his law (the balance of floating bodies), in experiments with such 
cars, at least in very approximate calculations, in particular, if the fact that 
all preparations for defense of Syracuse it have been made beforehand is 
considered.  

“Euphodic - Εϕοδιχον” - “a way, means”. In “Euphodic” Archimedes 
presents the mechanical proofs with which help he had come to his 
theorems and also puts new problems before Eratosthenes. Besides, he gives 
new theorems (about the center of gravity of a semi sphere, any segment of 
a sphere, segments of a paraboloid, a hyperboloid, ellipsoid rotations). 
Geiberg had found about half of Greek text of the treatise «About floating 
bodies» on the same parchment. Before Geiberg found it that text was only 
known in the Latin translation made in XIII century by Belgian monk 
Wilhelm von Moerbecke for Foma Aquinatus, known Catholic theologian 
monk. It is needed to look for real Archimedes’s successors only in XVII 
when the works of Galileo, Huygens, Newton, marked the beginning of 
modern physical and mathematical sciences.  
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ABSTRACT According to Richard Westfall (Westfall, 1977) the Scientific 
Revolution of the seventeenth century was dominated by two themes: the 
Platonic-pythagorean tradition “which looked on nature in geometric terms” 
and mechanical philosophy “which conceived of nature as a huge machine”. 
This paper is an attempt to study the appropriation of Archimedean science 
in the Scientific Revolution in Western Europe. 
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1. INTRODUCTION 
 
The seventeenth century Scientific Revolution is a theme that continues to 
attract the attention of many historians of science. These scientists portray 
this process as occurring roughly in the following sequence: Copernicus’ 
reformulation (1473–1543) of Ptolemy’s solution (100–170) of the problem 
of planets with the need to restore their lost harmony; the acceptance by 
Kepler (1571–1630) and Galileo (1564–1642) of its realistic proposition; 
based on this perspective the development of mathematical tools to study 
the heavens; the mathematization of free fall and projectile motion to 
confirm the realistic basis of Copernicanism; and the development of a 
new inertial conception of motion, associating an abstract idealized 
concept of nature, linked to empirical and artificial means of experiment 
(Cohen, 1994). 

The main objective of this paper is to present and discuss how the 
Archimedean ‘legacy’ was received and transformed by the long process 
that occurred during the revolution in science which culminated with 
Galileo and Newton’s mechanicism (1642–1727) (Dugas, 1988). The paper 
pays special attention to the relationship between Archimedean techniques 
and the scientific method presented mainly by Galileo (Cohen, 1985). The 
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Galileo’s scientific method. 



origins of integral calculus are also referred as an important part of 
Archimedes’ ‘legacy’ (Urbaneja, 2008).  
 
 
2. A BIOGRAPHICAL NOTE ON ARCHIMEDES 
 
Archimedes (see Fig. 1) was born in Syracuse, Sicily around the year of 

of the sun and moon and their distance from the earth. In his youth 
Archimedes seems to have spent some time in Egypt, where he invented 
the water-screw as a means of pumping water out of the Nile to irrigate 
fields (Hutchins, 1952). 
 

 

 
He seems to have studied with Euclid’s pupils in Alexandria. It was 

discoveries to these two before they were made public and it was for 
Eratosthenes that he wrote the ‘Method’. After the death of Conon, 
Archimedes sent his discoveries to Conon’s friend and pupil, Dositheus of 
Pelusium, to whom he dedicated other treatises. 

Archimedes won great fame because of his mechanical inventions. At 
the request of King Hiero he made catapults, battering rams, cranes and 
many other engines and devices of war, which were later used with 
enormous success in the defense of Syracuse against the Romans. Another 
military story told by Lucian was that he used mirrors to set Roman ships 
on fire. 

constructed an astronomical machine sufficiently accurate to show eclipses 
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Fig. 1. Marble Bust of Archimedes in Naple Museum. 

287 B.C. His father was Phidias, an astronomer who investigated the size 

probably there that he became friends with Conon of Samos (280B.C.–
220B.C.) and Eratosthenes (285B.C.–194B.C.). He communicated his 

As described by Cicero (106B.C.–43B.C.) in his ‘Republic’ Archimedes 
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of the sun and the moon. This apparatus consisted of concentric glass 
spheres moved by water power and represents the Eudoxian system of the 
world. 

Archimedes only wrote about mathematical subjects, except in the lost 
work ‘On Sphere-making’. His work dealt with arithmetic, geometry, 
mechanics and hydrostatics (Heath, 2002). He wrote no text books, unlike 

have been lost the most important have survived. 
Archimedes’ concern with mathematics is considered to be the cause 

of his death in the invasion that followed the capture of Syracuse by 

intent on a mathematical diagram that when ordered by a soldier to attend 
the victorious general he refused. He was then slain by the enraged soldier. 
In accordance with Archimedes’ wishes, his family and friends inscribed 
on his tomb the figure of his favorite theorem, a sphere and a circumscribed 
cylinder and the ratio of the containing solid to the contained (Arquimedes, 
2006). 
 
 
3. ARCHIMEDES’ NEW SCIENCE 
 
Statics and Hydrostatics – Aristotle’s mechanics is integrated in a theory 
of physics which is part of a system of the world. Archimedes made statics 
an autonomous theoretical science, based on postulates of an experimental 
origin and supported by mathematical demonstrations (Serres, 1997). 

In Book One of the treatise ‘On the Equilibrium of Planes’ 
Archimedes developed the principle of the lever. He enunciated eight 
postulates which provided the foundation for fifteenth propositions. In 
Book One of his treatise ‘On Floating Bodies’ Archimedes developed his 
famous Principle. It originally appears in Proposition 3 which states: “Of 
solids those which, size for size, are of equal weight with a fluid will, if let 
down into the fluid, be immersed so that they do not project above the 
surface but do not sink lower”. In Book Two of the same treatise, 
Archimedes modified the principle which is the subject of Proposition 5, 
Book one, to the following form: “Any solid lighter than a fluid will, if 
placed in the fluid, be so far immersed that the weight of the solid will be 
equal to the weight of the fluid displaced” (Archimedes, 1952).  

Both principles became fundamental principles of mechanics. The 
principle of the lever gave rise to the principle of virtual velocities which is 
equivalent to the equilibrium conditions for a static problem. Also, Galileo 
uses the principle of the lever and quotes Archimedes in the Second Day of 
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Euclid and Apollonius (262B.C.–200B.C.). Although some of his writings 

Marcellus in 212 B.C. According to some historians Archimedes was so 
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the Discorsi. Archimedes’ Principle is the origin of the Galilean theory of 
motion, as we will see below (Archimedes, 1952). 

Historically it was perhaps Leonardo da Vinci (1452–1519) who 
recognized the importance of the general concept of moments in a static 
sense (Dugas, 1954). Galileo Galilei asserts that the moment was the 
inclination of the same body considered in the situation which it occupied 
on the arm of a lever or a balance (Drake, 1995). 

The principle of virtual works was formalized by Jean Baptiste Fourier 
(1768–1830), but the letter sent by Johann Bernoulli (1667–1748) to Pierre 
Varignon (1654–1772), written in January 26, 1717, needs to be 
acknowledged as a historical fact of great importance in the history of the 
principle (Fourier, 1798).  
 
The Geometrization of Mechanics and the Mechanization of Geometry – 
‘The Method Treating of Mechanical Problems’, is a treatise addressed to 
Eratosthenes in which Archimedes reveals the method used in his 
mathematical discoveries. In fact, the same method was applied in other 
treatises, such as ‘On the Equilibrium of Planes’, ‘Quadrature of the 
Parabola’ (Fig. 2) and ‘On Floating Bodies’. 
 

 
The essence of ‘The Method’ can be deduced by analyzing any 

problem solved by Archimedes. It is possible to identify three steps in its 
development. The first step is a pure geometrical approach, where the 
objects are selected in order to compare unknown quantities with known 
ones using the properties of the lever. In the second step, a mechanical 
approach is applied. The equilibrium laws of the lever regarding the 
fulcrum are used to make comparisons between geometrical quantities. In 
the final step the operations made in the second step are repeated but now 
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Fig. 2. Excerpt of propositions 16 and 17 of “On the Parabola Quadrature”.  
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positions of the center of gravity of figures and the volume of one of them 
are known, the equilibrium conditions permit the volume of the other to be 
found (Archimedes, 1952). 

‘The Method’ only survived on the Palimpsest discovered in 1906, as 
shown in Fig. 3. The most significant contribution made by the Palimpsest 
appears in proposition 14 of ‘The Method’ where Archimedes is measuring 
the volume of a cylindrical segment. In that proposition Archimedes pushes 
the discussion of the mathematical use of actual infinity approximately 
about 2000 years back in time. 
 

          

 
The Origin of Integral Calculus – It is possible to see in Eudoxus- 
Archimedes’ method of exhaustion the origin of integral calculus. This 
method is based on the theory of proportions presented by Eudoxus (408–

inside it a sequence of polygons whose areas converge to the area of the 
containing shape. If the sequence is correctly constructed, the difference in 
area between the nth polygon and the containing shape will become 
arbitrarily small as n becomes large. As this difference becomes arbitrarily 
small, the possible values for the area of the shape are systematically 
‘exhausted’ by the lower bound areas successively established by the 
sequence members (Eves, 1997). 

The idea behind ‘the Method’ is attributed to Antiphon, but the theory 
was given greater rigor by Eudoxus. The first use of the term exhaustion 
appeared in 1647 by George de Saint-Vincent in his ‘Opus geometricum 
quadraturae circuli et sectionum coni’. Archimedes used this method for 
several geometric purposes, such as the length, area, volume and center of 
gravity of many geometric figures. However, the method of exhaustion is 
unable to efficiently solve the problems which it suggests. Only after the 
development of analytic geometry by Fermat (1601–1665) and Descartes 
(1596–1650), as well as the appearance of the concept of limits, was it 

Fig. 3. Two Views of The Palimpsest. 
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in relation to the entire figures under consideration. This means, if the 

355A.C.) of Cnidus. It consists of finding the area of a shape by inscribing 
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possible to construct automatic algebraic operations to solve them 
(Descartes, 1991). 
 
 
4. THE RECEPTION OF ARCHIMEDES’ WORK  

IN WESTERN EUROPE 
 
Archimedes’ works were translated directly from Greek by William of 
Moerbeke (1215–1286), a Flemish Dominican. He was made Latin bishop 
of Corinth in Greece about 1286. At the request of Thomas Aquinas (1225– 
1274) he undertook a complete translation of the works of Aristotle. The 
reason for the request was the concern that by the thirteenth century Arabic 

Another concern was that the influence of the rationalist Averroes (1126–
1198) could be a source of philosophical and theological error. Thus, 
Moerbeke was the first to translate the ‘Politics’ into Latin, which unlike 
other parts of Aristotelian corpus had not been translated into Arabic. The 
translations of Moerbeke (Fig. 4) were already standard classics by the 14th 
century. He also translated mathematical treatises by Hero of Alexandria 
and Archimedes. Then, he translated almost all of Archimedes works 
except ‘The Method’ and ‘Stomachion’. In the early 1450s Pope Nicholas 
V (1397–1455) commissioned Jacobus de Sancto Cassiano Cremonensis to 
make a new translation of Archimedes with commentaries of Eutocius. 
This translation became the standard version and was printed in 1544 
(Arquimedes, 2007). 
 

 
Another translation of Archimedes was made by Niccolo Tartaglia 

(1500–1557) in 1543 in Venice. Tartaglia belongs to an important Italian 
school of mechanics. He published ‘Nova Scientia’ in 1537 and ‘Quesiti et 
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Fig. 4. Moerbeke’s Translation to Latin of Archimedes Works. 

versions had distorted the original meaning of Aristotle (384B.C.–322B.C.). 
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Inventioni Diversi’ in 1546, where dynamical problems were solved. In 
1544 the Editio Princeps of Greek and Latin versions of Archimedes 
appeared in Basel. 

Two new translations of Archimedes appeared in order to reconstruct 
his work. The authors of these translations were Frederico Commandino 
(1506–1575) and Francesco Maurolico (1494–1575). Because of the fruitful 
consequences of the translations by the former we will look at some of its 
details and implications. 

Commandino studied philosophy and medicine at Padua from 1534–
1544. He dedicated himself to studying the mathematical classics and he 
had the mathematical knowledge, as well as the language skills, to edit and 
translate these classics. He worked on the classic texts of Archimedes, 
Ptolemy, Euclid, Aristarchus, Pappus, Apollonius, Eutocius, Hero and 
Serenus. 

The first translation of his published was an edition of Archimedes in 
1558. In 1565 Commandino published his original work ‘De Centro 
Gravitatis’, described by Stillman Drake (Drake, 1981), Galileo’s bio-
grapher, as a “pioneer treatise on centers of gravity in the Archimedean 
tradition”. In the preface of this work Commandino refers to his edition of 
Archimedes’ ‘On Floating Bodies’. 

Commandino also has influenced his pupil Guidobaldo del Monte 
(1545–1607), an important mathematician who was part of Galileo’s circle. 
Guidobaldo studied at the University of Padua in 1564 and helped Galileo 
in his academic career. Under his patronage Galileo was appointed to a 
professorship of mathematics at the University of Pisa in 1589. Guidobaldo 
helped Galileo again in 1592 when he had to apply for the chair of 
mathematics at the University of Padua. He was a critic of Galileo’s principle 
of isochronisms of the pendulum, one of Galileo’s major discoveries which 
Guidobaldo believed was impossible.  
 
 
5. THE MATHEMATIZATION OF NATURE IN THE SCIENTIFIC 

REVOLUTION 
 
The supreme instance of abstraction in the scientific method is the use of 
mathematics, especially geometry, for the study of physical problems. 
Nature as mathematized by Galileo finds itself represented at a different 
level of abstraction than nature realized in daily experience. This 
difference appears to Galileo in a form of a problem of how to ensure that 
the mathematically expressed laws he found were valid in some way at the 
level of experience too. The necessary means to establish this were 
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discovered by Galileo in experiments. He had already used ‘mental 
experiments’ to heuristically explain mathematical regularities that are 
behind free fall and projectile motion. Experiments also appeared to 
Galileo to provide a means by which to bridge the gap between phenomena 
represented at an idealized and at an empirical level (Galileu, 1988). 

Kepler, with the fundamental help of Ticho Brahe’s accurate (1546–
1601) observations, mathematizes nature in the sense of creating a 
mathematical physics of the heavens, completely distinct from the model 
on which many astronomers’ best efforts had been expended since the time 
of Ptolemy, including Copernicus himself. Galileo realized the impossibility 
of ‘Archimedenizing’ the Aristotelian concept of motion and saw also that 
free fall and projectile motion were key phenomena and could be the 
cornerstones of a new science of motion. In addition, Galileo was 
convinced that this new science could support the heliocentric doctrine and 
to provide its realistic basis. Bringing Archimedean techniques to study 
these phenomena, he mathematized nature in a modest range of terrestrial 
phenomena (Hall, 1981). Both Galileo and Kepler established the universe 
of precision. The Scientific Revolution had begun. 

To study how Archimedean science was firstly used by Galileo, we 
have to focus our analysis on the return of Galileo to Pisa in 1589. In Pisa 
at that time philosophical discussions were greatly concern with motion. 
Francesco Buonamici (1533–1575), while he was one of Galileo’s 
professors completed an important work, ‘De Motu’, published in Florence 
in 1591. The text is directly influenced by Archimedean themes. He 
discussed the problem of Hiero’s crown and used Archimedes’ treatise ‘On 
Floating Bodies’. 

Despite this influence Buonamici states that the Archimedean analysis 
on the decrease of the weight of bodies immersed in water did not have a 
universal character because it was restricted as a mathematical explanation. 
The progress Galileo made by developing a theory of motion supported by 
natural causes is remarkable. Here he found in Archimedes the foundation 
on which to construct a realistic theory of motion. It seems that it happens 
in the period spent in Pisa, where he wrote the work known as the 
manuscripts of ‘De Motu Antiquora’, with the objective of describing the 
natural motion of bodies. Galileo never published this work. However, its 
subject appears later in his ‘Discorsi’, published in 1638. 

The development of Galileo’s ideas about motion considers gravity as 
the unique cause of motion (free fall and projectile motion) and the 
explanation of the upright motion of light bodies immersed in water is due 
to Archimedes’ principle. The fact that fluid is heavier than the bodies is 
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renewing the conceptual basis of the theory of motion and thus creating a 

Looking at the history of mechanics during the above mentioned 
period, it is important to note the contribution of Giovanni Benedetti 
(1530–1590) because he anticipates some of Galileo’s ideas (Koyré, 1973). 
He stated that the speed of a falling body would depend on its surface 
because of friction with the air, and only in a vacuum would bodies of 
different sizes fall at the same speed. He also stated that bodies composed 
of the same material fall at the same speed regardless of their weight. He 
justified his claim with an argument using Archimedes’ results on bodies 
in a fluid. 

Benedetti’s ‘Diversarum Speculationum’, which appeared in 1585, 
contains a section on mechanics, and in it circular motion is studied. He 
wrote that if a body is released from circular motion it will travel in a 
straight line which is tangent to the original circle of motion. This result 
also anticipates some of the achievements of Huygens (1629–1695) and 
Newton. 
 
 
6. CONCLUSION 
 
Archimedes was the first Greek mathematician to put into evidence the 
addition of terms of an infinite series. This result appears when he 
calculated the area under a parabola segment using the method of 
exhaustion. A good approximation to the ∏ number is obtained with this 
method (Heath, 2003). Archimedes also anticipates by several centuries the 
modern concepts of power series developed by Taylor (1685–1731) and 
MacLaurin (1698–1746). 

The questions that arise out of Archimedean problems show the 
impossibility of Greek mathematics being able to solve these problems 
with the classical theory of proportions. Neither the tools nor the general 
methods were available for this. Only the Scientific Revolution would 
provide the solution. 

After the appearance of a new mathematical language of analytic 
geometry with the pioneering work of François Viète (1540–1603) and 
Descartes the necessary innovation was introduced into the mathematical 
corpus creating new conditions and other possibilities for science. 
 

new science (Geymonat, 1997). 

Archimedean Science and the Scientific Revolution  

the cause of upright motion. While Buonamici saw only a mathematical 
explanation to this phenomenon, Galileo inverted the approach completely, 
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ABSTRACT This paper is devoted to the questions connected with 
«Archimedes’ burning mirrors» myth. The scientific disputes, no and con 
arguments concerning these death mirrors or helio-concentrators are 
considered. Possibilities of current usage of helio-energetics on the basis of 
geometrical optics are presented. 
 
 
KEYWORDS: Burning mirror, history of science, helio-energetics, geometrical 
optic. 
 
 
1. INTRODUCTION 
 
To stimulate economical growth and to develop the country without 
environmental damage, the modern world needs less expensive and 
ecologically safe energy. To provide an access to cheap, large, non-
polluting and stable energetic sources is the most important global 
problem. In the middle of the 20th century, thermal power stations were 
replaced by hydraulic and nuclear ones. The latters seemed to be more 
profitable and environmentally safe. However, after Chernobyl accident 
many countries refused to develop nuclear energy. Hydroelectric power 
stations have roused many censure, because water reservoirs take a lot of 
space and disturb the regular water drain, they also change the environment. 
The accident in Sajano-Shushensky hydroelectric power station has 
revealed another disadvantage of giant structures. 
 Among recoverable energy sources solar radiation is the most 
perspective, taking the size of resources, ecological safety and prevalence 
into consideration. Every second the Sun radiates energy, which is 
thousand billions times greater, than the output radiation at nuclear 
explosion of 1 kg U235. The best way of strengthening energetic safety is 
the introduction of non-polluting and cheap technologies in energetics. 
Solar technology is one of the ways of solution the given problem; helio 
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Fig. 1. The machine room of heliostation, built in 1985. 

devices are the most rational in terms of using solar energy. Different 
designs of heliostations have been offered. Some of them use semi-
conductor panels with photo elements; others due to the difference 
between temperature expenses create an air stream which rotates the 
generator turbine, the third ones work under the thermal power station 
scheme, using a solar energy for transformation water into steam. 

 
 In the USSR, the first industrial power heliostation was built in 1985, 
in the Crimea [1] (Fig. 1). 40 hectare area was covered with more than 2 
thousand flat mirrors, controlled by two coordinates and directed to the top 
of the tower, where the steam generator was placed. The resulting steam 
was transmitted to the machine room, towards the steam turbine. However, 
that energy was too expensive, so using the station was acknowledged 
financially invalid. After the disintegration of the USSR, the station 
became the property of the Ukraine. At present the wind power station is 
planned to be build in that country.  
 All Earth energy sources are known to come from the Sun. It is the 
solar energy that the people indebt for all their technological achievements. 
The water circulation is caused by the Sun. Unequally heating different 
parts of the world the Sun causes the circulation of the air. All fossil fuel, 
which is used in modern energetic, is formed from the solar rays. But is it 
actually possible to use the solar energy directly? It seems like not a 
difficult problem. In his childhood everyone tried to burn out pictures in 
small wooden planks, using magnifying glass. It takes less than a minute 
until we can see black dot and light smoke. Using exactly this method, in  
J. Verne’s novel “The Mysterious Island”, engineer Cyrus Smith saved his 
friends, when the fire turned off. Using two glasses from watches he 
created a lens, and got the fire. This easy method of getting high 
temperature was in common use even in Ancient Ages. By using mirrors 
ancient engineers introduced another way of concentrating solar rays.  
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Fig. 2. Archimedes ruling a burning mirror.  

 

2. ARCHIMEDES’ BURNING MIRRORS 

The topic of this paper is the first examples of using solar energy by 
Archimedes, the greatest ancient scientist. Among his fundamental works, 
which have not been brought to us, there was a work in geometrical optics, 
called “Catoptrics”. We do not know what exactly was described there, 
and we do not know how the legend about burning Roman ships originally 
appeared (Fig. 2). Researchers have different opinions on Archimedes’ 
burning mirrors. Some of them think that it is technically impossible; 
others think that if this is true, then igniting Roman ships at a large 
distance is a rumor; and just a few of them think that the actions, described 
in the legend, did exist in reality. Many explorers had been trying to 
investigate burning mirrors for a long time [2–8]. For the first time that 
legend was mentioned in ancient manuscripts, written in 902 A.D., and 
today they are kept in the Museum of Tareq Rajab [2]. Scientists divide 
researching burning mirrors into different stages. The first stage corresponds 
to the time, when people trusted any ancient sources and considered them 
as the absolute truth; also they tried to learn the theoretical reasoning of 
burning mirrors and how to reconstruct them. The second stage was based 
on the new achievements in optics of Johannes Kepler and Rene Descartes. 
They came up with the idea, which had doubted the opportunity of burning 
ships using mirrors. After their discoveries, this legend was acknowledged 
to be impossible. The third stage, started with Buffon’s experiments and 
refuted Descartes’ conclusion and recovered the possibility of existence of 
Archimedes’ invention. But Danish philologist Geiberg doubted the existence 
of burning mirrors. In 2005, the scientists of The Massachusetts Institute of 
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Technology carried out another experiment of “Archimedes’ death rays”. 
This experiment proved the technical possibility of burning wooden samples 
by using mirrors. However, it did not answer the main question whether 
Archimedes had realized that idea.  

 Professor Roshdi Rashid found the manuscript of 902 A.D., and now 
it is the most ancient source of Archimedes’ mirrors [2] (Fig. 3). It is 
considered to be the translation from more ancient Greek manuscript. 
Another copy written in 14th century in Cairo, is located in India at present. 
The manuscript provides a deep historical research of earlier works about 
geometrical optics. It also admits that the research of burning mirrors was 
one of the most important subjects of researching in Alexandria in the 2nd-
3rd centuries B.C. Conon of Alexandria, Archimedes, Dosithcus and 
Apollonitis were the main researchers. The manuscript refers to the earliest 
Greek sources and makes clear the fact, that Archimedes elaborated the 
theory of canonical sections and catoptrics. In the 2nd century he elaborated 
the fundamental work in catoptrics. Archimedes discovered two important 
fields of optics: investigation of burning mirrors and usage of parabolas 
and hyperboles in optical systems. After his death, Apollonitis continued 
working on canonical sections.  
 At the beginning of the 9th century scientists were not satisfied with 
the results of Greek and Byzantine predecessors, and they continued 
researching the rays, converging them to the dot at different distances from 
the mirror (Fig. 4). A century later this activity continued with geometrical 
research of the focal points with far-located sources using different types 
of mirrors, which resulted in developing double-convex and flat-convex 
lenses. That led to a new field of science – the dioptric. By the end of the  
10th century Arabian and Greek scientists working on oval and parabolic 
mirrors had developed basic conceptions of the dioptric. But even today, 

Fig. 3. Pages from the Arabian manuscript from A.D. 902 (translated from Greek). 
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there exist many arguments on possibility of Archimedes’ mirrors realiz-
ation. In that case the biggest doubt is the absence of any mention about 
the mirrors in the history of Syracuse siege from the works by Polybius, 
Tius Livius and Plutarch. None of them mentioned any form of fire being 
used as a weapon, let alone burning mirrors. The fact that Polybius, the 
most important authority, had never said or written anything about 
Syracuse even 50 years later its downfall seems to be an important reason 
against of the existence of Archimedes’ mirrors. Polybius usually described 
which military devices and technique had been used in the wars with all 
details. But he did not mention anything about using mirrors in his works 
about defense of Syracuse. However we should keep in mind another his 
peculiarity – his distrust [3]. The authority and popularity of Polybius were 
very great. His opinion meant a lot, so it is not surprising, that Tius Livius 
and Plutarch also did not mention anything about mirrors [3, 4, 5]. 

Later in the 2nd century A.D. Lucian, Greek satirist, stated that 
Archimedes had set the enemy’s triremes on fire by artificial means [6, 7]. 
This fact might imply that the latter had spouted burning substances into 
them. Lucian did not say, as some commentators suggest, that Archimedes 
had used burning mirrors, only that “he had burnt the enemy’s ships 
(triremes) by means of his science” [8]. Galen, a Roman doctor, clarified 
in his notes that burning Roman ships in the battle of Syracuse was well-
known fact (Fig. 4). This may also imply that Archimedes spouted burning 
substances into them. Galen wrote: “In some way, I think, Archimedes is 
said to have set the enemy’s triremes on fire by means of pyreia.” [9] 
There are three points to be noted about this sentence. First, it implies that 
Galen only heard of Archimedes’ feat as a story, a tale; second, he, like 
Lucian, wrote “triremes”; third, the Greek word pyreia means “flammable 
materials” and not “burning mirror.” However, the third point has given 
rise to a considerable controversy, or even to a different legend. 

Fig. 4. Engravings depicting set fire to a Roman fleet by mirrors. 
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The first statement about the burning mirrors Archimedes had used in 
Syracuse belongs to Anthemius, the Byzantine mathematician and the 
architect from Tralles [10]. In his work “Mechanical Paradoxes” he 
studied in details the creation of burning mirrors. He mentioned that there 
might have been at least 24 mirrors managed by a special mechanical 
device, which provided navigation to the object. The Byzantine authors 
such as Eustathius, Zonaras, and Tzetzes of the 12th century A.D. wrote 
about Archimedes’ burning mirrors. The earliest unequivocal statement 
available to us that Archimedes used a burning mirror to set the Roman 
fleet on fire was made by Anthemius living 700 years after the event, and 
he only referred to it according to the tradition. The earliest circumstantial 
available accounts of the use of a burning mirror are those by Tzetzes and 
Zonaras, nearly 1,400 years after the event. But these historical evidences 
aren’t convincing now. In the 17th century, Rene Descartes, a philosopher 
and mathematician, in his “The dioptrics” work gave a detailed theoretical 
analysis of burning mirrors and justified, that burning ships at a long 
distance was impossible. He wrote, that “only people, who do not know 
much in dioptrics are sure the fable to be true; as these mirrors had to be so 
huge, so they probably had never existed” [11].  

Did Archimedes have enough knowledge for designing these mirrors? 
Paraboloid of revolution is the most efficient form for the mirror (or a 
section of it, which includes the center and the axes of the mirror). He 
might have known the main property of parabola: a parabola has the focus; 
that is, parallel rays of light are concentrated at one point. It is extremely 
difficult to decide whether Archimedes had all this knowledge, although 
we know he did have some. It is well-known that he used the method of 
exhaustion [12] and he realized that a set of lines could give as close an 
approximation to a parabola as required. He had sufficient knowledge for 
inventing, designing and constructing burning mirrors. 

In 1747 Buffon (Fig. 5) published his 6th unknown memoirs called 
“The invention of mirrors for burning objects from long distances” [13]. In 
this work he described series of his experiments with burning mirrors. 
Firstly he made some calculations, and they showed that the size of mirrors 
might be very big – the diameter should be about 10 meters. Of course he 
could not make it by himself, that’s why for the next experiment he used 
the mirror 13 times smaller than the calculated one. The mirror, constructed 
contained 168 flat mirrors, with the total area of 5.85 m2. Using that mirror 
he could burn the tree, which was 50 meters away from him. 

 In 1741 M.V. Lomonosov wrote the work and called it “The reasoning 
about catoptrical and dioptrical burning devices” [14]. He described the 



Archimedes’ Burning Mirrors: Myth or Reality? 393 

device, made of several mirrors, which directed solar rays towards the 
lenses and concentrated them in the focal point. Lomonosov constructed 
his device during chemical experiments. The members of The Russian 
Academy also were interested in Buffon’s experiments. In 1747, before 
going abroad Tauberg I.I., the adviser, was told to learn about “the mirror 
invented in Paris”. Today the problem of researching Archimedes’ mirrors 
still exists. In 1973 Ioannis Sakkas, Greek scientist, made another experiment 
on burning ships using mirrors [15]. He lined 60 soldiers in Skaramangas 
harbor (near to Athens), each soldier holding a huge flat mirror 90x50 cm 
of size (Fig. 6). There was a resinous wooden boat, 50 meters away from 
the coast. By Sakkas’ signal the soldiers were navigating reflected solar rays 
from the mirrors at the boat. After a couple of minutes the boat was full of 
smoke, and then got burnt. That was another justification of burning ships 
using mirrors. In 2005 a group of scientists from The Massachusetts Institute 
of Technology, sponsored by the Discovery channel repeated the experiment 
of “Archimedes’ death ray” [16]. The experiment showed, that technically 
that was possible, but did not answer the question whether Archimedes had 
used the mirrors to burn enemy’s ships. David Wallace, the professor from 
MIT wrote: “Who can say whether Archimedes did it or not? He’s one of 
the great mathematical minds in history. I wouldn’t want to underestimate 
his intelligence or ability.” 

Fig. 5. Georges-Louis Leclerc, Comte de Buffon (1707–1788) and his burning mirror. 
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 3. CONCLUSION 

Today probably nobody is able to justify that Archimedes really made the 
arson of Roman ships during the defense of Syracuse. However, it is 
obvious, that the possibility of creating this kind of a weapon was 
described by Archimedes and many other scientists. Practically, we do not 
know much about Archimedes’ life and works. The historical evidence of 
Archimedes’ burning mirrors is feeble, contradictory in itself. Modern 
experiments suggest a burning mirror is highly unlikely to produce ignition 
on a moving ship, let alone a continuing fire [17]. We definitely can say 
that burning mirrors were not the basic weapon of defense of Syracuse, 
because there were more effective and reliable weapons. It is quiet 
possible that mirrors were used for blinding and putting burns to Romans 

Technology on burning mirrors. 
Fig. 6. The experiment of  Sakkas and the experiment of The Massachusetts Institute of 

Fig. 7. The solar tower (Seville, Spain) and V.S. Severyanin’s project on helioconcentrator.
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or as a device for pointing the target. The most information has the idea of 

experimental scientific researches. Fields of geometrical optics were based 
on the legend of burning mirrors, and today developing helio-energetics 

shows a new design of a helioconcentrator, assembled in Brest State 
Technical University, managed by Professor V.S. Severyanin [18] and a 
model of a modern electrical heliostation.  
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ABSTRACT The influence of Archimedes on the so-called theatre of 
machines books is reviewed using original manuscripts from the 15th to the 
19th centuries. The evidence shows continuity of knowledge of ancient 
Greek theory of machines as well as Archimedes principles of statics, 
hydrostatics and concepts of centers of gravity on the development of 
machine science.  
 
 
1. INTRODUCTION 
 
We know very little of the life of Archimedes (c. 287–212 BCE) except 
through the writings of later historians such as Polybius and Plutarch. 
There is also a lack of direct evidence for his technical contributions and 
inventions except through indirect commentaries and apocryphal stories 
of later chroniclers. There have been many scholarly interpretations of 
Archimedes works including those by Heath (1887), Dijksterhuis (1987), 
as well as Simms (1995). Our focus in this short paper is on the influence 
of Archimedes on the development of machine and mechanisms science 
and engineering. Many machine inventions have been attributed to 
Archimedes, such as the endless screw, the water screw pump, military hard-
ware etc. [See for example, Chondros, 2007, or Koetsier and Blauwendraat, 
2004 for a discussion of the screw pump.] We shall not attempt to revisit 
these interpretations. Instead we aim to examine the extent to which 
Archimedes’ ideas or those attributed to him, were acknowledged by later 
historians, engineers, architects and scientists in writings related to the 
history of machines. Our sources will be the class of so-called ‘theatre of 
machines’ books, especially those from the 15th to the 18th centuries as 
well as the textbooks and monographs appearing in the 19th century during 
the great age of machines related to the industrial revolution. 

 e-mail: fcm3@cornell.edu 
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When we refer to the ideas and inventions of Archimedes we cannot 
hope to determine whether in fact these inventions were created by the 
Syracusan. Throughout the history of science in western civilization, 
scholars and historians have often used the names of historical figures as 
a tag to identify scientific concepts and inventions such as ‘Archimedes’ 
screw pump’ or the ‘Watt steam engine’ or ‘Newton’s equations of motion’ 
even when we have evidence that the screw pump may have originated in 
Egypt before the time of Archimedes, or that James Watt had improved, 
not invented the steam engine of Newcomen. Thus we shall look at the 
influence of Archimedes-attributed technical ideas such as the screw-pump, 
pulleys, cranes, hydrostatics, buoyancy and others on later inventions and 
technical ideas in engineering.   

We must also acknowledge the fact that in technology, and especially 
in the theory and practice of machine construction, most advances have 
come about through evolution and through the accumulation of many 
centuries of experience as well as the development of new materials and 
the need to satisfy new demands of society, commerce and warfare. The 
development of a guild class of skilled craftspeople was another contributor 
to machine technology. Thus there is probably as much credit for new 
inventions due to workshop artisans. This evolution of machines also belies 
the trend in the past half century to attribute the development of technology 
solely to the development of science or the proof of mathematical theorems. 
[See e.g. Moon, 2007, Part II.]  

Archimedes is often cited in the machine books as classical Greek 
name-dropping, homage to the ancient past, in reference to his notable 
accomplishments such as lifting the great ship of Syracuse, or to his 
inventions such as the screw pump. Archimedes is also mentioned for his 
work in hydrostatics and his mathematical studies. 

In mathematics, Archimedes is especially noted for his “method” of 
formulating propositions in geometric quadrature, and center of gravity 
based on the principle of equilibrium and the lever. In both his studies of 
the lever and in hydrostatics his approach starts from statics: i.e. he uses no 
dynamical ideas. In hydrostatics, Archimedes introduced the idea of 
stability or the notion of immanent dynamics, but his work essentially 
avoids the notion of change. This is compatible with the early work  
in kinematics of mechanisms and machines that treated machines as 
constrained geometry of motion.  

Among the several references on Archimedes and his inventions and 

 
is the Archimedes story of moving the world with a lever. Dijksterhuis  
scientific work is Vitruvius (80–15 BCE). In his Books on Architecture, 
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discusses Archimedes’ use of the equilibrium concept to motivate theorems 
in geometry and quadrature (See also the edition of Heath, 1887). More 
recently Simms (1995) gives a detailed critique of claims by Plutarch, Livy 
and Polybius on the engineering achievements of Archimedes in the battles 
and siege of Syracuse by the Romans. The awareness of Archimedes work 
in western science began in the Renaissance as discussed by Sarton [A 
History of Science: Chapter V] The first printed edition of Archimedes in 
appeared in 1503 in Venice. The first important edition printed in Latin 
was in 1543 by Niccolo Tartaglia. Archimedes Statics was translated into 
Latin by Guido Ubaldi del Monte 1588. According to Sarton, Archimedes 
Method  was discovered in 1906 in a palimpsest i.e. as an erased work 
underneath writing of another manuscript. Our review is focused mostly on 
the European machine books from the Renaissance to the 19th century 
spanning the centuries over which Archimedes’ work were translated into 
Western languages. 

 

 

Fig. 1. Cover of Theatre of Machines book by Jabob de Strada, 1617–1618. Archimedes is 
shown on the left and Vitruvius on the right.  
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2. ARCHIMEDES IN THE THEATRE OF MACHINE  
BOOKS 1400–1800 

 
There are many reviews of the so-called ‘theatre of machines’ books that 

Bautista Paz et al. (2007)] A table of many of these works may be found in 
Moon (2007) Table II-4, p. 147. Many of these works have been scanned by 
Cornell University as part of a project to document the model collection of 
Franz Reuleaux. These books may be found in the website http://KMODDL. 
library.cornell.edu. [See Moon (2004) for a description of KMODDL.] 
They may also be found directly at the URL http://digital.library.cornell. 
edu/k/kmoddl/index.html. These books were not only scanned but were 
optical-character-scanned for search capabilities. For many of these works 
we were able to scan for the name “Archimedes”. This was not always 
successful in the case of old German script. Where possible, we have used 
original manuscripts and books related to the history of machines in the 
Rare Books Library at Cornell University. In all over 20 books were 
surveyed. Almost all the books were in their original languages. We have 
tried to read and understand how the author was influenced by Archimedes 
and to cite specific pages, folios and plates were the reader can find 
references to Archimedes. 

We begin our discussion with Vitruvius Pollio (c 27 BCE) because the 
architect-engineer Francesco di Giorgio Martini [1439–1501] was involved 
in one of the early attempts to translate Vitruvius into Latin in the 15th 
century and the published work of Francesco di Giorgio influenced many 
of the later machine book writers including Leonardo di Vinci. We end 
with the 19th century German engineer Franz Reuleaux and the American 
steam engine engineer, Robert Thurston. 
 
Vitruvius: De architectura (c. 15 BCE) 
In the English translation of 1929, based on the 8th century Latin 
translation, Archimedes is mentioned in several so-called books of 
Vitruvius. Referring to the Harvard University Press edition of 1931– 
1970, Ctesibius and Archimedes are mentioned in Book I (p. 13) in the 
context of ‘knowing the principles of nature’ in order to solve practical 
problems involving water. Also in Book I (p. 23) Archimedes is cited with 
others as having left “many treatises on machinery and clocks, in which 
mathematics and natural laws are used to discover and explain.” In the 
preface of Book VII (p. 75) Archimedes, Ctesibius and Philo of Byzantium 
are described as having written books on machinery. In Book VIII (p. 181) 
there is reference to Archimedes work on hydrostatics. In Book IX (p. 203) 
Vitruvius describes how Archimedes discovered a method to assess the 

catalog collections of machines, Fig. 1. [See e.g. Keller (1964), Moon (2007), 
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amount of gold in the King’s crown by using the concept of buoyancy. 
Oddly in the section on machines, Book X, there is no explicit mention of 
Archimedes except indirectly in the discussion of the water screw pump 
(pp. 307–311). 
 

There are several printings and editions of this work, each different perhaps 
because the copies were done in different scriptoria. In the facsimile 
edition of the Codice Torinese Saluzziano, there is a screw pump shown in 
Tav 85 f.46v along with three other water pumps. Archimedes name is not 
written here. However Francesco di Giorgio Martini made an attempt at 
translating Vitruvius and therefore was certainly aware of Archimedes and 
some of his accomplishments in the realm of machines. A similar screw 
pump may be found in the manuscripts of Leonardo da Vinci. (See below). 
It is known that Leonardo had a copy of one of Francesco di Giorgio 
Martini’s codices and may have been influenced by this more senior 
engineer. 
 

Valturio was not an engineer and this book was written for his patron as a 
summary of military techniques. There are 12 so-called books with many 
of the machines in Book X. 

There are three references to Archimedes in De Re Militari, two in 
Book 2, Chapter 5 (p. 31 in the Cornell scanned copy) and one citation in 
Book 10 Chapter 4 (p. 254). The citation in Book X likely refers to 
machines. 
 
Leonardo da Vinci: Codex Madrid, Codex Atlantico, (c. 1490–1515) 
The citation of Archimedes in the Notebooks of Leonardo has been 
documented by MacCurdy (1906). Leonardo made several lists of the 
books in his library. In Codex Madrid II [Folio 2 verso] he mentions 
“Euclid on geometry” and “Problems of Aristotle” and “Quadrature of the 
circle” which may refer to Archimedes. In the Notebooks, MacCurdy 
translates a passage from Leonardo noting that there are works of 
Archimedes in the library of the Bishop of Padua [Manuscript L Cover 1 
verso] implying that he had access to them. There is also a reference to the 
“complete Archimedes in the possession of the brother of Monsignor of 
Sant’ Agnosto in Rome”. Archimedes is also noted as the inventor of the 
steam cannon or ‘architronito’ in Notebook B 33 recto. In another 
Notebook, Leonardo refers to “Archimedes De Ponderibus”. There are 
other citations in the manuscripts of Leonardo to Archimedes’ work in 
mathematics. See also Hart (1961, 1925) for a discussion of Leonardo and 

Roberto Valturio: De Re Militari (c. 1455–1460) 

Francesco di Giorgio Martini: Trattato di architecttura (c. 1470–1480)  
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Archimedes. There is also a drawing of a screw pump similar to that of 
Francesco di Giorgio (Figure 2) suggesting that Leonardo may have been 
influenced by the latter. The influence of Archimedes on Leonardo may 
have been more on the subject of mathematics however.  
 

 
 

Fig. 2. Screw pump of Leonardo da Vinci. 
 
Jacques Besson: Theatre des instruments mathematique et mechanique 
(1569–1578) 
In the 16th century, when Latin editions of Archimedes work just began to 
appear, Jacques Besson’s “Theatre of Machines” has a plate [#54] with a 
sketch of a method to upright a capsized ship attributed to Archimedes. 
Clearly Besson must have read Plutarch’s description of Archimedes 
launching a ship for King Hieron. In addition, the cover page has an 
engraving with two bearded, robed, ancient men one of whom might 
represent Archimedes with a ship at his foot. (See Strada below) 
 
Agostino Ramelli: Le diverse et artificiose machine del capitano Agostino 
Ramelli (1588) 
The original was written in both Italian and French. This classic work has 
been translated into English in a 1976 Dover Edition. In the Preface (page 
50 of this edition), Ramelli pays homage to the Greek mathematicians 
including the ‘divine Archimedes’. Most of the book is devoted to engravings 
and descriptions of machines. In Ramelli we see the widespread use of the 
Archimedes screw pump without attribution (see plates 45–48) suggesting 
that it was common knowledge in contemporary engineering design, 
independent of the publication of Archimedes mathematical works. 
 
Vittorio Zonca: Novo teatro di machine et edificii (1607) 
Zonca is listed in the title as an architect of Padua. In his sources he 
mentions the “maestii’ Archimedes, Aristotle, and Vitruvius. The illustrations 
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of many machines have the quality of Besson and Ramelli, a generation 
earlier. 
 
Jacobus Strada: Künstlicher Abriss allerhand Wasser Wind Ross, und 

It is not clear who was the real author of this book (See Moon 2007, or 
Keller 1964). However, this handsome book of machines has a front cover 
with an engraving of Archimedes on the left and Vitruvius on the right. 
Archimedes carries a balance with two small spheres in his right hand and 
a glass jar of water in which to demonstrate the force of buoyancy. Clearly 
this was recognition of the debt inventors of machines has to Greek 
engineers. There is a section called “Wasser schrauben” or water screw 
pumps with a text reference to Vitruvius. Plates 30, 39 show the use of the 
water screw pump in two different machines. 
 

This is another 17th century theatre of machines book with 77 full page 
engraving plates. The engraving on the cover has Vitruvius on the left and 
Archimedes on the right, similar to that of Strada.  
 

In this classic work on the use on the use of the force of vacuum, there is a 
reference to Archimedes’ work on Geometry on page 66 of the Cornell 
scanned edition.  
 

On page 48 there is a reference in the text to Archimedes’ work in 
geometry. In Leupold’s work on water machines, Theatri Machinarum 
Hydraulicarum, there is another reference to Archimedes. It should be 
noted that James Watt studied German in order to read the work of Leupold at 
the time he was making improvements to Newcomen’s steam engine. Thus 
the trail of influence of the Greek engineers and mathematicians on the 
inventors of the industrial revolution of the 19th century remained unbroken.  
 
 
3. NINETEENTH CENTURY MACHINE BOOKS 
 
Written machine design theory in the 16th–18th centuries, is dominated by 
the ‘theatre of machines’ books written in Latin, Italian, French and 
German. In the 18th and 19th centuries the mode of transmission of written 
knowledge of machines evolves into popular lectures on practical science 
and finally into the technical textbook. This was especially true in the 

Handt Mühlen (1617–18)  

Giovanni Branca: Le Machine, 1629 

Jacob Leupold: Theatri Machinarum Generale 1724 

Otto von Guericke: Experimenta Nova, 1672 
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English speaking countries. The dominance of English hegemony in steam 
engine development was helped in part by the education of the ordinary 
public on the practical principles of mathematics and science. An example 
are the lectures of James Ferguson (1710–1776) that were published in 
many editions in the UK and North America into the early 18th century. 
Ferguson was a self educated Scotsman who excelled in astronomy and 
instrument making and was elected to the Royal Society.  
 
James Ferguson: Lectures on Select Subjects in Mechanics, Hydrostatics, 
Hydraulics and Optics, 1760 (7th edition in 1790.) 
Ferguson has references to Archimedes as well as Isaac Newton. One 
reference on page 138 (7th ed) cites Archimedes’ work in geometry of the 
circle and cylinder. In the section on “of Hydraulic Engines” (p. 153) he 
describes Archimedes use of the principle of buoyancy to check the purity 
of the King Hiero’s gold crown in Syracuse. Ferguson’s lectures had an 
influence on American inventors such as Oliver Evans who invented a 
high pressure steam engine as well as an automatic grain mill using an 
Archimedian Screw. 
 
Oliver Evans: The Young Mill-Wright and Miller Guide, 1795–1834 
Evans was a Philadelphian inventor whose initial fame was the invention 
of an automatic grain mill using a conveyor system. Part of this conveyor 
device used an Archimedes’ screw pump for dry grain. This may be the 
first use of this pump for granular material. His book is full of practical 
advice on mill construction, but is prefaced by popular lectures on 
mechanics and hydraulics in the style of James Ferguson of Scotland. He 
also describes the so-called mechanical powers, or simple machines first 
enumerated by the school of Aristotle [Wheel and axel, lever, screw, 
inclined plane and pulley]. This again follows the lectures of Ferguson. A 
detailed engraving of the Archimedes’ Screw conveyor is shown in Plate 
VIII, Article 89. Evans work on the automatic grain mill was known in 
Europe as well as North America. Evans also invented a high pressure 
steam engine circa 1790. 
 
Jose Maria de Lanz and Augustin de Betancourt: Analytical Essay on the 
Construction of Machines 1808, 1817:  
This is a classic book on the French classification of mechanisms that 
originated in the Ecole Polytechnique in the late 18th century. In the 
English translation, there is a reference to the “theory of the screw of 
Archimedes”, noting that a discussion may be found in the work of Daniel 
Bernoulli on hydrodynamics. 
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(1818) 
This work is clearly motivated by the classification scheme of Lanz and 
Betancourt (1808). In Borgnis (1818) Archimedes is mentioned in the 
introduction/preface in reference to his work in geometry and his inventions. 
He is mentioned later on page 71 with respect to Plate VI Figure 19 for the 

 

 
John Nicholson: The Operative Mechanic (1826) 
This book is subtitled ‘a practical display of the manufactories and 
mechanical arts of the United Kingdom’. Under the section on hydraulic 
engines there is a reference to the Archimedes Screw (p. 246, 228). There 
is also a description of “Ctesibes” Pump” [sic] on page 259. There are figures 
of the Archimedes screw or spiral pump on Plate 27, Fig. 218–220. It is 
interesting that this practical book has references to the Greek engineers, 
showing the author’s desire to establish the continuity of machine invention 
from the ancients to the 19th century. 
 
Robert Willis: Principles of Mechanisms (1841) 
Willis’s work is one of the first extensive textbooks on the kinematics of 
mechanisms and influenced the work of Franz Reuleaux. His only reference 
to Archimedes is on page 75 on the “Spiral of Archimedes”. 

J-.A. Borgnis: Traite Complete De Mecanique: Composition des Machines 

Fig. 3. Spiral of Archimedes in Borgnis (1818) Plate VI with its figures 18, 19, 20. 

spiral screw pump, Fig. 3. [See also Plate VI, Fig. 20, ‘Spirales a axe oblique’] 
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Julius Weisbach: Lehrbuch der Ingeniuer und Maschinen Mechanik 
(1848–49) 
This was a popular textbook in both the German states and North America. 
In the English translation, there is a reference on page 335, section 5 
(Vol. 1) to Archimedes and the problem of finding the specific gravity of a 
mixture. 
 
Henry T. Brown: Five Hundred and Seven Mechanical Movements (1868) 
Brown was a patent attorney who published a magazine on new 
technology. He gathered articles from this journal into a popular 19th 
century theatre of mechanisms with small figures and short descriptions. 
On page 107 he describes “an application of Archimedes screw to raise 
water,–.” The small sketch on page 106 (#443) is not very clear however.  
 
Robert H. Thurston: A History of the Growth of the Steam Engine (1878) 
Thurston was a famous mechanical engine with expertise in the steam 
engine. He taught at Steven’s Tech and Cornell University in the late 19th 
century. In his history of the steam engine he has a reference to both 
Archimedes and Hero in the introduction (p. 4) and another on page 12 
with reference to the ancient steam gun or Architonnerre. Towards the end 
of the book he describes a ship called the Archimedes, (125 feet long, 232 
tons)  built by the American firm  Ship Propeller Co.  
 
Franz Reuleaux: The Constructor (1893) 
Oddly there is no reference to Archimedes in volume 1 of Reuleaux’s 
famous Lehrbuch der Kinematik published in 1876, though he has a long 
list of references to other works in kinematics including Leupold. However 
in the English edition of his machine design book The Constructor, he has 
a reference to the Archimedian screw and the Archimedian Tympanon. 
 
Franz Reuleaux: Lehrbuch der Kinematik, Band 2 (1900) 
At the turn of the century, Reuleaux published the second edition of his 
earlier well-known work on kinematics. Here he has over 20 citations 
relating to Archimedes. (Pages XVII, 196, 197, 200, 206, 448, 449, 778). 
The citation on page 196, refers to Archimedes use of the principle of 
buoyancy to test the quality of the gold in King Hieron’s gold crown. 
 
 
4. CONCLUSION 
 
We have by no means compiled a complete list of all the influential books 
in the history of machines leading up to the industrial revolution of the 19th 
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century. But our survey provides detailed evidence of the influence of 
Greek science, mathematics and machine engineering through the work 
of Archimedes and others on the succeeding generations of machine 
theoreticians and engineering educators. We cannot know whether the artisans 
who built machines from the Renaissance to the early machine age of the 
19th century, were aware of or were influenced by Archimedes in any 
direct way. There were also ‘theatre of machines’ books as well as 19th 
century machine design textbooks such as Salomon de Caus (published in 
1624) where the author did not find any mention of Archimedes. 

The author as well as others, has made a case for an evolutionary theory 
of the development of technology, especially machine invention and design. 
(See, Moon 2007) In this model of human technical achievements, great 
mathematicians, scientists and engineers such as Archimedes, Leonardo, 
Galileo, Watt and Reuleaux were not singular but were the best of their peers 
and that the contributions of artisans and guilds were also important 
contributors to human advances in technology. 

In this short survey we found evidence that machine book authors were 
sometimes influenced as much by Archimedes writings in mathematics as 
in specific designs for machines. We can conclude however that the later 
codification of engineering and machine knowledge through the use of 
mathematics and scientific principles clearly owed a debt to the early 
knowledge of Archimedes and other ancient writers.     
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ABSTRACT Archimedes (ca. 287–212 BC) was born in Syracuse, in 
the Greek colony of Sicily. He studied mathematics probably at the 
Museum in Alexandria. Archimedes made important contributions to 
the field of mathematics. Archimedes discovered fundamental theorems 
concerning the center of gravity of plane geometric shapes and solids. He 
is the founder of statics and of hydrostatics. Archimedes was both a great 
engineer and a great inventor, his machines fascinated subsequent writers, 
and he earned the honorary title “father of experimental science”. 
Archimedes systematized the design of simple machines and the study of 
their functions and developed a rigorous theory of levers and the 
kinematics of the screw. His works contain a set of concrete principles 
upon which mechanics could be developed as a science using mathematics 
and reason. His contribution separates engineering science from tech-
nology and crafts, often confused for matters arrived at empirically 

and engineering from the Byzantine period to the Industrial Revolution 
and the New Era. 
 
 
1. INTRODUCTION 
 
Archimedes (ca. 287–212 BC) was born in Syracuse, in the Greek colony 
of Sicily (Fig. 1). His father was the astronomer and mathematician 
Phidias, and he was related to King Hieron II (308–216 BC). The name of 
his father – Pheidias – suggests an origin, at least some generations back, 
in an artistic background (Stamatis 1973). At the time of Archimedes, 
Syracuse was an independent Greek city-state with a 500-year history. The 
colony of Syracuse was established by Corinthians, led by Archias in 734 
BC. The city grew and prospered, and in the course of the 5th century BC 
the wealth, cultural development, political power and victorious wars 

through a process of long evolution. His works have influenced science 
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against Athenians and Carthaginians ensured for a long time the dominance 
of Syracuse as the most powerful Greek city over the entire south-western 
Mediterranean basin. 

 

 

 
The decline of Greek civilization coincides with the rise of Alexandria, 

founded in honour of Alexander the Great (356–323 BC) in the Nile Delta 
in Egypt. Alexandria was the greatest city of the ancient world, the capital 
of Egypt from its founding in 332 BC to AD 642, and became the most 
important scientific centre in the world at that time and a centre of Hellenic 

house of Muses, the protectresses of the Arts and Sciences) flourished a 
number of great mathematicians and engineers (Dimarogonas 2001). 
Euclid was one of the most well known scholars who lived in Alexandria 
and his Elements in Geometry with an elegant logical structure based on a 
small number of self-evident axioms undoubtedly influenced the work of 
Archimedes (Sacheri 1986). 

What we know of Archimedes’ life comes from two radically different 
lines of tradition (Bell 1965). One is his extant writings and the other is the 
ancient biographical and historical tradition, usually combining the factual 
with the legendary. The earliest source is Polybius a competent historian 
writing a couple of generations after Archimedes’ death and from the 

Plutarch and Polybius describe giant mechanisms for lifting ships from 

after his death. Due to the length of time between Archimedes’ death 
and his biographers’ inconsistencies among their writings may arise. 

histories authored by Plutarch, Cicero, and other historians several centuries 

Fig. 1. Archimedes portrait Courtesy of the MacTutor History of Mathematics Archive 

scholarship and science. In this University, the Museum (meaning, the 

Scotland). 
run by the School of Mathematics and Statistics at the University of St Andrews, Fife,
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According to some sources Archimedes went to Alexandria about 
250–240 BC to study in the Museum under Conon of Samos, a mathe-
matician and astronomer (the custodian of the Alexandrian library after 
Euclid’s death), Eratosthenes and other mathematicians who had been 
students of Euclid (Dijksterhuis, E.J. 1987, Landels 2000, Lazos 1995, 
Netz 2004, Simms 1995). According to Schneider (1979), we are not really 
sure that Archimedes actually was and studied in Alexandria. It is a 
supposition; he knew the Alexandrian mathematicians but there is no direct 
evidence that he ever was in Egypt. He knew Conon but theoretically it is 
possible that Conon visited Syracuse and Archimedes never was in Egypt. 
Also, the fact that Archimedes published his works in the form of 
correspondence with the principal mathematicians of his time is a serious 
reason to expect that he was able to study through this web network. The 
Method discovered in 2004 with the Palimpsest is a correspondence with 
Eratosthenes. 

The attribution of works to Archimedes is a difficult historical question. 
His works were preserved mainly through Latin and Greek-Latin versions 
handwritten and then printed from the thirteenth to the seventeenth 
centuries. Translations into modern European languages came later. The 
Works of Archimedes as well as other extant manuscripts had a difficult 
path to follow through the ages. (Stamatis 1973, Heath 2002, Netz 2004, 
Chondros 2007). The standard edition in Greek and Latin of the works of 
Archimedes with the ancient commentaries is that of Johan Ludwig 
Heiberg and Evangelos S. Stamates (eds.), Opera omnia, cum commentariis 
Eutocii, 3 vol. (1910–15, reprinted in 1972). According to Netz (Netz 
2004) in the corpus surviving in Greek – where Eutocius’ commentaries 
are considered as well 29 works may be ascribed to Archimedes. 

Archimedes’ contributions to mathematical knowledge were diverse. 
Archimedes was the first mathematician to introduce mechanical curves as 
legitimate objects of study (Fig. 2 left). In Spiral Lines Archimedes defines 
what is now called Archimedes’ spiral. This is the first mechanical curve 
(i.e., traced by a moving point) ever considered by a Greek mathematician. 

 
between 3.1408 and 3.1428. 

In Measurement of a Circle, he described his method for calculating the
ratio between the circumference of a circle and its diameter. By a method
that involved measuring the perimeter of inscribed and circumscribed poly-
gons Archimedes correctly determined that the value of π was somewhere 

the sea, ship-burning mirrors, and a steam gun designed and built by 
Archimedes.  
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Fig. 2. Left: Mechanical curve. From Heiberg, 1972, p. 99. Right: From the book On Conoids 
and Spheroids (Stamatis 1973 B p. 396). 

 
Archimedes settled in his native city, Syracuse, where he devoted the 

rest of his life to the study of mathematics and building machines and 
mechanisms. In addition to his mathematical studies, Archimedes was both 
a great engineer and a great inventor. He invented the field of statics, 
enunciated the law of the lever, the law of equilibrium of fluids, and the 
law of buoyancy, and he contributed to knowledge concerning at least 
three of the five simple machines – winch, pulley, lever, wedge, and screw 
– known to antiquity. He discovered the concept of specific gravity and 
conducted experiments on buoyancy. He is credited with inventing the 
compound pulley, the catapult, and the Archimedes Screw, an auger-like 
device for raising water. He conducted important studies on gravity, 
balance, and equilibrium that grew out of his work with levers and 
demonstrated the power of mechanical advantage (Drachman 1963, Heath 
2001, Archimedes–Apanta (The Works) Vols. 1–3 2002). 

Archimedes systematized the design of simple machines and the study 
of their functions and developed a rigorous theory of levers and the 
kinematics of the screw. (Dimarogonas 2001). He designed and built 
Syracusia (The Lady of Syracuse), the largest ship of his times, 80 m long, 
4,000 ton displacement, with three decks. The ship made only its maiden 
trip to Alexandria because it was too slow and there were no harbor 
facilities anywhere to handle her (Dimarogonas 2001, Archimedes–Apanta 
Vol. 6 2002). Archimedes was also known as an outstanding astronomer; 
his observations of solstices were used by other astronomers of the era.  

During Archimedes’ lifetime the first two of the three Punic Wars 
between the Romans and the Carthaginians were fought. The series of 
wars between Rome and Carthage were known to the Romans as the 
“Punic Wars” because of the Latin name for the Carthaginians: Punici, 
derived from Phoenici, referring to the Carthaginians’ Phoenician ancestry. 
During the Second Punic War (218–201 BC) – the great World War of the 
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classical Mediterranean, Syracuse allied itself with Carthage, and when the 
Roman general Marcellus began a siege on the city in 214 BC, Archimedes 
was called upon by King Hieron to aid in its defence and later worked as a 
military engineer for Syracuse (Plutarch ca. 45–120 AD). 

The historical accounts of Archimedes’ war-faring inventions are vivid 
and possibly exaggerated. It is claimed that he devised catapult launchers 
that threw heavy beams and stones at the Roman ships, burning-glasses 
that reflected the sun’s rays and set ships on fire, and either invented or 
improved upon a device that would remain one of the most important 
forms of warfare technology for almost two millennia: the catapult. 
Plutarchos and Polybios (201–120 BC) describe giant mechanisms for 
lifting ships from the sea, ship-burning mirrors and a steam gun designed 
and built by Archimedes. The latter fascinated Leonardo da Vinci, however 
the validity of these stories is questionable. The death of Archimedes by 
the hands of a Roman soldier is symbolical of a world-change of the first 
magnitude: the Greeks, with their love of abstract science, were superseded 
in the leadership of the European world by the practical Romans (Whitehead 
1958). 
 
 
2. ARCHIMEDES’ MACHINES AND MECHANISMS 
 
The first known written record of the word machine appears in Homer and 
Herodotus to describe political manipulation (Dimarogonas 1999, Chondros 
2004). The word was not used with its modern meaning until Aeschylus 
used it to describe the theatrical device used to bring the gods or the heroes 
of the drama on stage; whence the Latin term deus ex machina. Mechanema 
(mechanism), in turn, as used by Aristophanes, means “an assemblage of 
machines.” None of these theatrical machines, made of perishable materials, 
is extant. However, there are numerous references to such machines in 
extant Greek plays and also in vase paintings, from which they can be 
reconstructed. They were large mechanisms consisting of booms, wheels, 
and ropes that could raise weights perhaps as great as one ton and, in some 
cases move them back and forth violently to depict traveling through 
space, when the play demanded it. The designers and builders of these 
mechanisms were called by Aristophanes mechanopoioi (machine-makers), 
meaning machine designers in modern terminology. 

Archimedes’ mechanical skill, together with his theoretical knowledge, 
enabled him to design and construct many ingenious machines. Archimedes 
contributed greatly to the theory of the lever, screw, and pulley, although 
he did not invent any of these machines. Of these three, the lever is 
perhaps the oldest. The lever and the wedge had been used in various 
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forms for centuries prior to Archimedes. Levers appeared as early as 5000 
BC in the form of a simple balance scale (steelyard), and within a few 
thousand years workers in the Near East and India were using a crane-like 
lever, called the shaduf, to lift containers of water (Fig. 3).  
 

 
 

Fig. 3. The shaduf, first used in Mesopotamia in about 3000 BC. 
 

Where the lever was concerned, the law of the lever already appears in 
Mechanical Problems written by Aristotle or a pupil of his, and possibly 
based on work by Archytas, but definitely older than Archimedes’ work. 
Archimedes’ contribution lay in his theoretical explanation considering 
that a pulley operates according to much the same principle as a lever and 
the principle of the mechanical advantage was introduced. A single pulley 
provides little mechanical advantage, but by about 400 B.C. the Greeks 
had put to use compound pulleys, or ones that contained several wheels. 
This mechanism was crucial for the development of large cranes and 
artillery machines. Archimedes perfected the existing technology, creating 
the first fully realized block-and-tackle system using compound pulleys 
and cranes (Lazos C. 1995). This he demonstrated, according to one story, 
by moving a fully loaded ship single-handedly while remaining seated 
some distance away. In the late modern era, compound pulley systems 
would find application in such everyday devices as elevators and escalators 
(Zrnić 2007). 

Archimedes name is associated with the invention of a hand-cranked 
manual pump, known as “Archimedes’ screw” that is still used in many 
parts of the world. Archimedes provided the theory for the screw geometry 
and construction, in this case with a formula for a simple spiral. The 
invention consists of a metal pipe in a corkscrew shape that draws water 
upward as it revolves. Vitruvius in his book De Architectura (Book X, 
Chapter VI, The Water Screw) provides details for the construction and the 
operation of the water screw (Fig. 4). 

This idea of enclosing a screw inside a cylinder is in essence the first 
water pump. Its open structure is capable of lifting fluids even if they 
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reconstruction from Lazos (Lazos C. 1995). 
 

contain large amounts of debris. This device soon gained application 
throughout the ancient world. A screw-driven olive press was found in the 
ruins of Pompeii, destroyed by the eruption of Mount Vesuvius in 79 AD. 
Hero later mentioned the use of a screw-type machine in his Mechanica. 
The Archimedean screw has been the basis for the creation of many other 
tools, such as the combine and auger drills. Following Drachmann and 
others Koetsier and Blauwendraat (2004) argue that it is reasonable to 
assume that Archimedes invented both the infinite screw and the screw-
pump. They argue that these inventions can be related to Archimedes’ 
interest in the problem of the quadrature of the circle. Moreover, they 
discuss aspects of the development of the theory of the screw-pump. 

The Greeks from Syracuse developed the first catapults, a result of 
engineering research financed by the tyrant Dionysius the Elder in the 
early 4th century BC. Early catapults probably fired arrows from a bow not 
much stronger than one a man could draw. By mechanizing the drawing 
and releasing of the arrow, however, the catapult inventors made possible 
the construction of much more powerful bows. To mechanize the archer’s 
motions the catapult engineers incorporated a number of appropriate 
design features (Soedel and Foley 1979, Dimarogonas 1993, Dimarogonas 
1995, Rossi and Russo 2009). One of the crucial steps in designing the 
torsion springs was establishing a ratio between the diameter and the 
length of the cylindrical bundle of elastic cords. All the surviving catapult 
specifications imply that an optimum cylindrical configuration was indeed 
reached, and it could not be departed from except in special circumstances, 
such as the exclusively short range machines that Archimedes built at 
Syracuse. This optimization of the cord bundle was completed by roughly 
270 BC, perhaps by the group of Greek engineers working for the 
Ptolemaic dynasty in Egypt, Thera and at Rhodes. The investigations and 
the experiments of the catapult researchers were, according to Philo, 
“heavily subsidized because they had ambitious kings who fostered 

Fig. 4. The Water Screw, from Vitruvius “De Architectura” (Book X, Chapter VI) and 



418 T.G. Chondros 

craftsmanship.” This phase of the investigations culminated in quantified 
results of a distinctly modern kind. 

Archytas of Tarentum and Eudoxus of Cnidus had devised elegant 
theoretical solutions for the stone-thrower formula, but they were three-
dimensional, very awkward physically and of no use in performing 
calculations. There the matter stood until the advent of the torsion bow. 
Most of the next group of solvers of the cube-root problem had either a 
direct or an indirect connection with catapults. The next solver of the cube-
root problem was Eratosthenes, a friend of Archimedes and a native of 
Alexandria, which was then a centre of catapult research. Eratosthenes 
stated explicitly that the catapult was the chief practical reason for working 
on cube-root problems. Archimedes dedicated his book On Method to 
Eratosthenes, and thus we can assume that Eratosthenes was interested in 
engineering problems (Soedel and Foley 1979, Dimarogonas 1993). 

The catapult engineers having arrived at an optimal volume and 
configuration for the torsion-spring bundle continued their experiments 
until they had optimized the dimensions for the remaining pieces of the 
machine. Eventually the catapult engineers wrote their texts in such a way 
that the dimensions of the major parts were given as multiples of the 
diameter of the spring. Once this diameter had been calculated for the size 
of the projectile desired, the rest of the machine was automatically brought 
to the proper scale. The surviving texts that contain this information testify 
to a level of engineering rationality that was not achieved again until the 
time of the Industrial Revolution. The last major improvement in catapult 
design came in later Roman times, when the basic material of the frame 
was changed from wood to iron. This innovation made possible a reduction 
in size, an increase in stress levels and a greater freedom of travel for the 
bow arms. 

Gears were discussed in Aristotle and were well-known to Archimedes 
and the Alexandrian engineers. Almost concurrently with the decline of 
Alexandria, the differential gear was known to the Chinese (Dimarogonas 
2001). As an astronomer, he developed an incredibly accurate self-moving 
model of the Sun, Moon, and constellations, which even showed eclipses 
in a time-lapse manner. The model used a system of screws and pulleys to 
move the globes at various speeds and on different courses (Archimedes–
Apanta Vol. 6 2002). Cicero (106–43 BC) writes that the Roman consul 
Marcellus brought two devices back to Rome from the sacked city of 
Syracuse. One device mapped the sky on a sphere and the other predicted 
the motions of the sun and the moon and the planets. He credits Thales and 
Eudoxus for constructing these devices. For some time this was assumed 
to be a legend of doubtful nature, but the discovery of the Antikythera 
mechanism (De Solla Price 1975, Dimarogonas 2001) has changed the 
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view of this issue, and it is indeed probable that Archimedes possessed and 
constructed such devices. Also, Pappus of Alexandria and Sextus Empiricus 
(Archimedes– Apanta Vol. 6 2002) write that Archimedes had written a 
practical book on the construction of such spheres entitled On Sphere-
Making. 

Archimedes’ discoveries in catoptrics are reported (Lazos 1995, 
Archimedes–Apanta 2002). It is said that Archimedes prevented one 
Roman attack on Syracuse by using a large array of mirrors (speculated to 
have been highly polished shields) to reflect sunlight onto the attacking 
ships causing them to catch fire. Tests were performed in Greece by 
engineer Sakas in 1974 (Lazos 1995) and by another group at MIT in USA 
(MIT experiments web-site) in 2004 and both concluded that the mirror 

Archimedes discovered fundamental theorems concerning the center of 

used to determine the weight of a body immersed in a liquid. Based on this 

1586 Galileo Galilei invented a hydrostatic balance for weighing metals in 
air and water after apparently being inspired by the work of Archimedes. 
 

 
 

 
 
3. ARCHIMEDES INFLUENCE IN SCIENCE AND ENGINEERING 
 
Archimedes’ work was not as widely recognized in classical antiquity as 
that of Euclid, and some of his treatises are believed to have been lost 

gravity of plane geometric shapes and solids. His most famous theorem, 

weapon was a possibility. 

Archimedes principle, shipbuilders understood that a boat should have a 

Fig. 5. From The first book On Floating Bodies OXOYMENΩN A. Proof of the vertical 

large enough volume to displace enough water to balance its weight. Around 

equilibrium of a spherical body lighter than the liquid immersed in (Stamatis 1973

which traditionally became known as Archimedes’ Principle (Fig. 5), was 

B p. 287). 
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when the Library of Alexandria was damaged at various periods in its 
history. Some of his writings survived through Latin and Arabic translations 
made during the Middle Ages, and these documents provided Renaissance 
scholars with an influential source of ideas. The translation of many of 
Archimedes’ works in the sixteenth century contributed greatly to the 
spread of knowledge of them, and influenced the work of the foremost 
mathematicians and physicists of the next century, including Johannes 
Kepler, Galileo Galilei, Descartes and Pierre de Fermat (O’Connor and 
Robertson 2006). Archimedes together with Isaac Newton (1643–1727) 
and Carl Friedrich Gauss (1777–1855) is regarded as one of the three greatest 
mathematicians of all times (Bell 1965). The contemporary development 
of calculus and continuum mechanics led to the rapid development of 
mechanics by the mid 19th century. The fundamental contribution of 
Galileo and Newton is the revival and redefinition of classical physics and 
mechanics just as greater progress was being demanded from natural 
science. 

Archimedes established the principles of plane and solid geometry. 
Some of Archimedes’ accomplishments were founded with mathematical 
principles, such as his calculation of the first reliable value for π to 
calculate the areas and volumes of curved surfaces and circular forms. He 
also created a system of exponential notation to allow him to prove that 
nothing exists that is too large to be measured. Archimedes invented the 
field of statics, enunciated the law of the lever, the law of equilibrium of 
fluids, and the law of buoyancy. He discovered the concept of specific 
gravity and conducted experiments on buoyancy. He invented the entire 
field of hydrostatics with the discovery of the Archimedes’ Principle. 
Archimedes studied fluids at rest, hydrostatics, and it was nearly 2000 
years before Daniel Bernoulli took the next step when he combined 
Archimedes’ idea of pressure with Newton’s laws of motion to develop the 
subject of fluid dynamics (Dijksterhuis 1987, Stamatis 1973). 

Archimedes systematized the simple machines and the study of their 
functions. The lever and the wedge are our technology heritage from the 
paleolithic era. Archimedes first designed in a systematic way those 
machines and mechanisms and developed a rigorous theory of lever and 
the kinematics of the screw. His contribution separates engineering science 
from technology and crafts, often confused for matters arrived at empirically 
through a process of long evolution. “Give me a place to stand, and I shall 
move the Earth,” Archimedes is said to have promised (Dijksterhuis 1987). 
Archimedes was referring to the law of the lever, which (in the variant 
form of the law of the balance) he had proved in his treatise, Planes in 
Equilibrium. One can say that Archimedes moved the Earth – in principle 
– without standing anywhere. Also, Archimedes figured out that the Earth 
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and a pebble are the same kind of thing, differing only in size. This 
revolutionary idea yields to imagine a vantage point from which the earth 
and the pebble can both be seen for what they are. Archimedes went one 
better, and offered to move the Earth, if someone would supply him with 
this vantage point, and a suitable lever. 

A book collecting several treatises by Archimedes was prepared in the 
sixth century AD by Isidore of Miletus and Anthemios the Tralleus, the 
architects of Aghia-Sofia in Constantinopole. It is believed that this 
collection of works was a “State-of-the-Art” review for the construction of 
this huge building. This book was copied by Leo the geometer or his 
associates, once again in Constantinople, in the ninth century AD (Lazos 
1995, Archimedes–Apanta 2002, Netz 2004). 

The early modern era is highlighted by the works of Galileo (1564–1642) 
and Newton (1642–1727) and includes the early stages of mechanization and 
the Industrial Revolution. The subjects of Mechanical Engineering have 
attracted more and more interest since early Renaissance both for practical 
applications and from a theoretical viewpoint in response to an increase of 
societal needs (O’Connor and Robertson 2006). The contribution of 
Leonardo Da Vinci, Galilei and Newton, the redefinition of classical 
physics and mechanics, the separation of the study of kinematics and the 
study of machinery in the 18th century, the early mechanization and the 
progress during the Industrial Revolution yielded the development of 
engineering design as a systematic process in modern era. 

Archimedes earned the honorary title “father of experimental science” 
because he not only discussed and explained many basic scientific principles, 
but he also tested them in a process of trial and experimentation (Bendick 
1997). His works contain a set of concrete principles upon which design can 
be developed as a science using mathematics and reason (Dimarogonas 
2001). The aforementioned design principles can be traced to Filippo 
Brunelleschi, a Renaissance architect famed for designing the cupola for 
Santa Maria del Fiore in Florence in the 1420s (Salustri, Mechanical 
Engineering, 2004). He introduced a method of design based on a six-step 
design process, identical in essence to the design principles of Archimedes, 
consisting of 1. analyzing the design requirements, 2. making a concept 
design, 3. making a detailed design, 4. planning the manufacturing process, 
5. manufacturing the parts and 6. assembling the parts. Brunelleschi’s six-step 
design process is considered the first systematic design process in engineering 
history and was carried out for 500 years.  

In 1964 Sandor (Dimarogonas 2001) proposed a seven steps strategy 
for machine design that is similar to that of Brunelleschi. The seven steps 
proposed by Sandor are: formulation of the problem, design concepts, 
synthesis, analyzable model, analysis-experiment-optimization, presentation. 
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Similar sequential design procedures were in use until the 1970s, when the 
notion of engineers working on product design in teams manufacturing and 
mechanical engineers took hold, and by the 1980s many engineering firms 
adopted this concept, called concurrent engineering (Dimarogonas 2001). 
This switch to concurrent engineering has changed the way engineers do 
their work, and around that time the advent of computer aided design has 
revolutionized engineering design. 
 
 

 
It was among the Eleatic philosophers that important beginnings of logic 
were developed by Platon and Aristoteles into a science and served as an 
instrument for the parallel development of the natural sciences, especially 
mathematics and physics, by such pioneers as Pythagoras, Aristoteles, 
Euclid and Archimedes (Dimarogonas 2001). The search for Reason led to 
the development of a generalized science as distinct from a set of unrelated 
empirical rules. Pythagoreans, for example, sought the principles of geometry, 
originally practiced by Egyptians, in ultimate ideas and investigated its 
theorems abstractly and in a purely rigorous way (Proclos Diadochos A.D. 
410–485). The rigorous proof was introduced, based in deductive logic and 
mathematical symbolism. Experimentation was established as a method for 
scientific reasoning. 

Archimedes made important contributions to the field of mathematics. 
Plutarch wrote: “He placed his whole affection and ambition in those purer 
speculations where there can be no reference to the vulgar needs of life.” 
Some of his mathematical proofs involve the use of infinitesimals. His 
contribution to the calculation of an approximate value for π was a remarkable 
achievement, since the ancient Greek number system was awkward and 
used letters rather than the positional notation system used today. 

The Law of the Lever and the Law of Buoyancy are two of the most 
fundamental laws of nature and two of the first laws of nature articulated and 
quantified (Rorres 2001). Archimedes studies greatly enhanced mathematics, 
mechanics and engineering. His practical applications remain vital today. 
Archimedes earned the honorary title “father of experimental science” 
because he not only discussed and explained many basic scientific 
principles, but he also tested them in a process of trial and experimentation 
(Bendick 1997). His works contain a set of concrete principles upon which 
engineering was developed as a science using mathematics and reason. 
 
 
 

4. CONCLUSIONS 
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ABSTRACT In Akrai, a Syracusan archaic sub-colony, there is a rock-
relief in Intagliatella’s urban latomy. In this paper, after a trip around the 
history of studies related to the monument, we propose a new inter-
pretation on the ground of signs, drawn near its position to the town’s 
entrance, following relevant historical considerations about the figure of 

and worked in his court. 
 
 
1. INTRODUCTION 
 
During the 3rd 

Mediterranean political scene. Two new contenders, the Carthaginians and 
the Romans, fought for supremacy in the West. Italiotes and Siceliotes 
became second-rate actors and, entering into an alliance with either, lived 
their last years of independence. 

bright swan-song for Western Greeks [De Sensi Sestito 1977]. Archimedes, 
the greatest scientist of the Antiquity, lived and operated in his court [Voza 
C. 2002]

1
. 

His good relationship with the king Hieron, perhaps also due to the distant 
consanguinity2, provided him with the ideal tools for his restless researcher’s 
spirit. 

                                                           
1
  On the location of his grave to Syracuse, see at last Scirpo 2007. 

2 
V, 64) who called him humilem homunculum. 
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Hieron II (306–215 B.C.), the most important king of Hellenistic Syracuse, 
as well as a friend and protector of Archimedes (287–212 B.C.) who lived 

century B.C., Sicily found itself again at the centre of the 

In Sicily, the long reign of Hieron II (269–215 B.C.) represented the 

So Plutarch believes him (Vita Marcelli, XII) but not Cicero (Tusculanes disputationes, 
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herself for the ally Hieron II, who had faithfully helped her with troops and 
supplies in the hard fight with the Punics. Among the so many testimonies 
found in the sources on the King’s friendship for the Romans, suffice is to 
mention the support afforded after the battles of the Trebbia [Polybius, III, 
75], of the Trasimenus [Livius, XXII, 37] and of Cannes [Livius, XXXII, 
38]. A Senate decree established which Sicilians cities were assigned to 

Syracusan archaic sub-colony [Scirpo 2004; 2005], near today’s Palazzolo 
Acreide [Scirpo 1996–2004; 2005–2009 in press]. 
 

 
 

Fig. 1. Archaeological area of Akrai. The Intagliatella’s quarry is no. 5 (from Scirpo 2004, 
fig. 6). 
 
 
2. A DIFFICULT QUEST 
 
Akrai entered soon into 17th century’s antiquarian literature, as testified by 
many quotations that Europeans travellers, searching for a part of Magna 
Graecia, devoted her, since Greece, being under the Ottoman yoke, was 
still inaccessible. One for all was Jean Houel who, financed by the French 
Government, went to Sicily in 1776 and performed sketches that to Paris, 
where he returned over three years later, providing the necessary information 
to have the 264 tables of the his Voyage pittoresque des isles de Sicile, 
de Malta et de Lipari, engraved and published in four volumes between 
1782 and 1787 [Houel, III, 1785, pp. 111–112, 119, tavv. CXCVI-CXCIX]. 
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Hieron II [Diodorus Siculus, XXIII, 4.1]. Akrai was among them ( fig. 1), a  

At the end of the First Punic war (264–241 B.C.), Rome pledged 
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Recently was open to Palazzolo Acreide a Travellers’ Museum in Sicily 
[Gringeri Pantano 2008]. 

3

dimensions is found (2,13 x 0,83 m) that, since the beginning of local 
archaeological research, attracted scholars’ attention. 

 
Fig. 2. Urban Latomias of Akrai. (from Bernabò Brea 1956, tav. B). 

 
In fact the first to quote and present a sketch of it was Gabriele Judica 

[1819, pp. 91–92, tav. VII], in his monograph dedicated to the ancient 
Akrai. However, the Baron couldn’t read the figures, complaining about 
loss of heads ( fig. 3). 

 
Fig. 3. Rock relief. Engraving of G. Politi (from Judica 1819, tav. VII).  

                                                           
3

diffused in all the Ancient world, also used by the Greeks as jails. 
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In the Intagliatella’s latomy  ( fig. 2), a huge rock relief of great 

 With this name, from the Greek word (Λατομείον), we call the ancient stone quarries, 
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A few years later, the Duke of Serradifalco [1840, p. 155, tav. XXXV. 1] 
mentioned it among the memorable antiquities of Sicily and illustrated it 
(fig. 4), as Julius Schubring [1867, p. 665] also made it. 
 

 
 

Fig. 4. Rock relief. Engraving of F. Cavallari (from Serradifalco 1840, tav. XXXV, 1). 
 

Biagio Pace [1945, p. 513] was the first to analyzed its nature, trying 
to set it against his chronological and stylistic background. 

The stylistic and thematic analysis by Luigi Bernabò Brea [1956, pp. 
61, 63-65, tav. XII. 1], framed it artistically as a modest attempt of 
“adaptation of an eminently Roman motive to the service of an essentially 
Greek religious concept.” 

st

certainly before the establishment of the August’s principatum. Filippo 
Coarelli attended to the relief in two occasions. Firstly [1980, p. 168], he 

character as the pinakes of the zone, with parallel from Asia Minor’s rock-
sculpture, similar but chronologically anterior. In a second time [19974,  
p. 298], he postponed its creation to the 3rd century, considering it a function 
of celebration of the heroic cult of dead warriors. 

Moreover, Nicola Bonacasa mentions it twice: the first one [Bonacasa 
& Joly 1985, p. 309, fig. 351], in his long excursus on the Greek plastics of 
Sicily, reserving to it only a mediocre judgment. In a second time [1996,  
p. 429], he seems that to have attributed a heroic function to the lying dead. 

Recently Salvatore Distefano [2006, pp. 24–26; 2009, p. 233, note 
105] gave a new interpretation to the relief: in a scene of libation, there is 
a Roman judge in toga, the ones lying down are goddesses Aphrodite, 
Artemis and finally standing is perhaps Apollo. The cult seems to be 
related to the Akrai’s unknown oikistes. In the Thucy-dides’s passage (VI, 
5.2) where the foundations of Akrai and Kasmenai are mentioned, seventy 
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He then proposed to be dated it in the first half of the 1  century B.C., 

dated it after 300 B.C., and classified it certainty as a work of religious 
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probably even from his source, Antiochus of Syracuse). On the contrary, 
Daskon and Menekolos are quoted, oikistai of the rebellious Kamarina 

of the Metropolis are welcome to conclude the Syracusan infiltration in the 
south-eastern area of Sicily [Di Vita 1956]. 
 
 
3. A NEW INTERPRETATION 
 
Departing from this last suggestion, in my opinion, a new interpretation 
can be formulated, however keeping in mind some landmarks like:  

The relief ( figs. 5–6) is first of all situated at the entrance of the so 
called “hieronian” city area: in fact the surrounding public monuments 
(theatre and bouleuterion), already brought to light by Judica, are all 
together unanimously datable in the 3rd century b.C. [Bernabò Brea 1956, 
p. 39 - Distefano 2009, pp. 226–231]. The town urban plan shows a 
Hellenistic phase that traces a precedent archaic phase, going back to the 
foundation of the colony [Voza 1971; 1973; 1999, p. 139]. The eastern 
entrance, the «Syracusan Gate», had clearly to be placed to east of the 
theatre at a lower quota. The cave ground was probably «extra-moenia» 
and the western rocky face perhaps had to hold up the urban walls. The 
urban wall’s chronology, based on the comparison with the Syracusan one, 
goes to a period from the end of the 4rth to the first half of the 3rd century 

meaning, of welcome to the foreigner, as Akrai was thought to be the city 
of Hieron II. 

The style is the element that brings closer to the Hellenistic period. 
The stylistic comparisons proposed by Coarelli are pertinent for that it 
concerns the typology. The realization, expression of a handicraft rather 
than artistic sensibility, doesn’t certainly diminish however its importance 
in any way, made clear by non indifferent dimensions and above all by its 
position. 

the name of the founder is not preserved by the Athenian historian (and 

• The relief position  
• The style 
• The representation and its interpretation 
• The presence of divinities of the Hellenistic Syracuse and Akrai 

Pantheon. 

and ninety years after the Syrakousai’s foundation respectively (734 B.C.), 

(598 B.C.). In this colony of population, the most heterogeneous elements 

B.C. [Bernabò Brea 1956, p. 23]. So the relief’s position assumes a precise 
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It is then possible to read the relief as the representation of a libation 
for Hieron II, honoured as οικιστής in Akrai with heroic cult. The 
hypothesis of his birth in Akrai from Hierokles, an aristocratic Syracusan 
exile, is pursued on the grounds of the so many signs that tie the sovereign 
to the small Hyblean polis [Distefano 2009, pp. 217–219]. 

This relief could bring the Syracusan royal family (the son and 
successor, Gelon II in the foreground, his wife, Philistis, standing, the two 
daughters, Damareta and Heraklea, lying down and on the extreme right, 
Hieronymus, his grandson and future last king of the Pentapolis4) that 
assists to the libation on the altar, surrounded by three young people that 
could be the triakadarcheis. The institution of the triàkadis is testified in 
Akrai by three epigraphs (IG 209, 211, 212) [Sartori 1980, p. 279]. 

rd

perhaps, more precisely, at the end of the long Hieron’s basileia. If we 
reduce the period of time when all the members of the Syracusan royal 

To continue the tradition of town founders inaugurated by the 
Dinomenides, who he already wanted to attach it to with his royal title [De 
Sensi Sestito 1977, p. 183], Hieron II didn’t hesitate, therefore, to exhibit 
his benevolence toward all the cities of his kingdom, with the construction 
of great public buildings [Bell 1999] but also with by restructurings of 
some great sanctuaries, among them the one of Cybele in Akrai [Pedrucci 

                                                           
4  On the brief (only 1 year) kingdom of Hieronymus, see Ciancio 1972. 
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Fig. 5. Rock relief. Sketch of M. Scirpo. 

Consequently, the relief could be datable at the 3  century B.C. and 

B.C.  
family were in life, then the relief could be dated to the triennium 219–216
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2009]5. Moreover, the choice of gods from the Pantheon of Syracuse 
[Reichert Südbeck 2000] and Akrai would make the hieronian politics of 
sovereignty’s issue from the Gods. True political tool, the dynastic cult 
was born from the demand of the Hellenistic sovereigns to found a family 
pantheon that could admit the various social classes inside their multi-ethnic 
kingdoms together with the Greek traditional cults [Consolo Langher 2000]. 
Hieron II exploited the concept of the sovereignty’s origin from Zeus, 
indissolubly tying himself with the father of the Gods. This bond with the 
cult of Zeus is present in the hieronian coinage too [Germanà Bozza & 
Scirpo 2007 in press]. In his difficult politics of equilibrium, without 
making show of the diadem in private, but giving show of munificence and 
patronage, the Syracusan sovereign wanted to cut out for himself a place 
among the others Hellenistic monarchs. 

 
 

4. CONCLUSION 
 
The small Syracusan sub-colony that received honours from the basileus 
(perhaps also its fellow-citizen), wanted to thank him with the founder-
cult’s institution in the heart of the so-called Via Sacra, so that the futures 
generations of hard-working Acrenses could worthily honour the memory 
of the more wise and illuminated sovereign that Greek Sicily remembers.  

 

 
 

Fig. 6. Rock relief. Actual view. 

                                                           
5

press) and Scirpo 2009 (in press). 
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  For the existence of the sanctuary already in late-archaic period, see Scirpo 2007 (in 
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ABSTRACT The data on all known editions of Archimedes’s works in 
Russian from the middle of XVIII till the middle of XX centuries and the 
most interesting comments to Archimedes’s works and translations of 
them are presented.  
 
PREFACE 

Since the 7th May of 1960 the physical faculty of Moscow State University 
has been annually spending the «Day of the physicist», named «Archimedes 
Festival» in the beginning of academic year. Presence of two great modern 
physicists was important event of the 2nd

 
Archimedes Festival: Niles Bor and 

Lev Landau, as they were the Nobel Prize laureates. Andrey Slavnov, the 
known Russian physicist, academician of the Russian Academy of Sciences, 
who also was in the managing chair of theoretical physics of the Moscow 
State University, the chief of theoretical physics department in the Institute 
of Mathematics of the Russian Academy of Sciences (n.a. Stekloff), and 
student of the physical faculty in 1956–62 years, shot an amateur film 
about this event. Two frames from this film are shown in fig. 1  
 

 
 
Fig. 1. Autumn, 1956. The 1st Archimedes’s Festival. Left frame: the opening (the main 
entrance of the University); right photo – Niles Bor and Lev Landau.  
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1. INTRODUCTION  
 
It is hardly needed to enumerate Archimedes’s services to modern 
technique, sciences, education in schools and universities. Review and 
analysis of Archimedes’s works in the field of mathematics and mechanics 
is included in all the corresponding courses of history of all mechanic-
mathematical and physical faculties in Russia. In the list of literature we 
gave the references to a row of popular scientific books, school literature, 
university text-books and scientific publications in Russian. The relation to 
Archimedes’s works at various stages of development of Russia represents 
considerably more interest. According to I.N. Veselovskiy [11] the seven 
publications of Archimedes’s works in Russian were known near 1962. 
For the unknown reasons that list does not include publications [1] and 
[10], which will be mentioned here. It is essential that the attitude to 
Archimedes’s works was the bigger interest of researchers. Thus, the 
presented proceeding had two main targets. The first one is to introduce 
Russian editions of Archimedes’s works. And the second one is to 
emphasize the main reasons for publishing the Archimedes’s proceedings. 
In the paper some extracts from the prefaces to translations are quoted, 
which let us know the reasons for publishing of the works and the attitude 
of the publishers to them, and the meaning of Archimedes’s proceedings in 
school and higher education as well. Besides we gave some material which 
is hardly known or not known at all not only in Russia. 

In the first chapter of this paper the data on first publications of 
Archimedes’s works from the middle of XVIII till the first third of XIX 
are presented; in the second one – the data on the publications from the 

one – the data on publications after the Revolution in 1917 and till the 
middle of XX. All editions consist of preface, description of Archimedes 
biography, extensive commentary for all books or for each fragment of 
work. Most impressive fragments of comments are considered here.  
 
 
2. THE FIRST WORKS OF ARCHIMEDES  

 
The requirement of Russian scientific and technical community for studying 
of works on mathematics, physics, mechanics and engineering, including 
Archimedes’s works, arose at the beginning of XVIII in connection with 

industry and, as consequence, with formation of university and technical 
education. The first translations of Archimedes’s works to Russian were 
completed near 1745 [1] 1823 [2] and 1824 [3]. They were already 

Peter’s the Great reforms and was connected with development of the 

first third of XIX till the Great October Revolution in 1917; in the third 
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considered as a bibliographical rarity at the end of XIX. We managed  
to find them in the Russian State Library (Lenin Library in the past), 
Museum of Book. At all times the biography made by a certain Heraclitus 
of Oksoronikh, who lived in II BC, which has not reached us served as 
the main source of biographic data on Archimedes. Further the works of 
Titus Livy, Cicero, Diodorus, Valerius Maximus serve as the source of 
Archimedes’s biography. The same sources appear also in the Russian 
editions of Archimedes’s works. The translation of 8 Euclid’s geometry 
books into Russian was published in 1739:  
 
 
EUCLID’S ELEMENTS IN CHOSEN OF TWELVE NEWTON’S 
BOOKS  
The Academy of Navy was established in St. Petersburg at 1715. It was 
the first special marine high school in Russia. Under decree of Peter I, the 
Academy of Navy Publishing House was found at 2nd of January, 1721. 
Near 1722, the first book was published by it – “The Static Science or 
Mechanica”. Marine maps, guidelines and navigation aids, decrees, shipp-
ing orders, manuals, patents and ship passports were also published. 
Before XIX century the prints were usually made from copper (bronze?) 

who was professor of mathematics. The translation from Latin into Russian 
was made by Ivan Satarov, the surgeon. Book was printed in Printing House 
of the Nautical Academy, found in 1721, in St.-Petersburg in 1739 and 
contained 284 pages and 10 tables with 309 figures. Andrew Farhvarsson the 
professor of the Mathematics in the Aberdine University was invited by 
Peter I to Russia for teaching in the mathematical-navigation school.  

In 1745 in the same printing house the translation of Archimedes’s 
theorems from Latin was published for the first time.   
 
 

Translation of this work was also made by Ivan Satarov. That book 
contained 172 pages and 1 table with 32 figures. It should be noted that 
the data on the publication of 1745 is most likely to be included only  

Domicqio’s preface, in which he explained the reasons for choosing the 
themes for translation:  

 

engravers by hand stamps with lower quality.  

ARCHIMEDES’S THEOREMS CHOSEN BY ANDREA TACQUET 

in the publication of the year 1823 [2]. The statement anticipated G.P. 

The selection of Newton’s book was made by Andrew Farhvarsson, 

THE JESUIT AND ABRIDGED BY GEORGE PETER DOMICQIO [1].  
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• Concrete acquaintance to Archimedes works as “many praise them 
more, rather than read, admire more than understand”;  

• Archimedes theorems serve as continuation of studying of Euclid’s 
geometry, published in 1739;  

• The choice of translation was connected with practical advantage; 
therefore the material about the cylinder and sphere were added to the 
book.  

In the Fig. 2a–2b the title, fragment of the text and drawings to the 
theorems are represented. Translation language of the first editions is hard 
and archaic for modern readers, especially in terminology section. But the 
didactics was good for that text and graphs were made excellently.  

Fig. 2a. Title, of the “Archimedes’ Theorems”. 
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Fig. 2b. Fragment of the text and drawings for the “Theorems”. 

 
It should be noted that since 1726 till 1740 the quantity of books 

printed in Russia in comparison with the past reduced. At that time about 
12 names were printed per year, while at the 1st quarter of XVIII century 
about 19 of them, with the exception for church service books, were 
printed within the same time.  
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The next 2 publications of Archimedes’ works [2], [3] were fulfilled in 
1823 and 1824. They were the translations that is requested by Public 
Education Deputy, and they were publishes in Deputy Publishing House. 
All of these books, as well as book of 1745, were the bibliographic rarities 
even at beginnings of XX century. Language of their translation (although 
of its precision and quality) was archaic and very heavy for reading, and 
especially, for studying.  

 
 

ARCHIMEDES’S TWO BOOKS: ABOUT A SPHERE AND A 
CYLINDER, THE MEASUREMENT OF A CIRCLE AND A 
LEMMA/TRANSLATION FROM GREEK (LEMMAS - FROM 
LATIN) MADE BY F. PETRUSHEVSKY, WITH NOTES AND 
ADDINGS, THE DEPARTMENT OF PUBLIC EDUCATION, 1823.  
The book contains 240 pages of text, 7 tables with general number of 
figures of 83, 17 pages of preface, written by F. Petrushevsky1, texts of 

books were mostly taken by the translator from Eutocius’ interpretations of 
Archimedes’s compositions. In the Fig. 3a–3b the title page, tabs to the 
first book and lemmas are represented. It is noticed in the preface that  
in 1823 it was considered that “almost all Archimedes’s works are saved 
and has reached us”. This works are “About a sphere and a cylinder”, 
“Measurement of a circle”, “About conoids and spheroids”, “About snails 
and curls (about spirals)”; “About the balance of planes”; “About a parabola 

The translator notices that last two books “are found only in translation in 
Arabian, others are kept and published in the original, written in pure and 
decent Dorian syllable. However, in “Books about a cylinder and a sphere” 
and in “Measurement of a circle” Attic expressions are quite often met that 
allows to assume that they were entered by copyists”. 

                                                        
1 Petrushevsky Foma Ivanovich, (1785–1848) – the Russian metrology scientist, former 

beginnings, containing the bases of geometry” (St.-Petersburg, 1819), “Eight books of 
Euclid’s beginnings, containing the general theory of numbers of ancient geometers” 
(St.-Petersburg, 1835), “Archimedes’s two books about a sphere and a cylinder, measure-
ment of a circle and lemma” (St.-Petersburg, 1823), “Archimedes’s Psammit, or Calculation 
of sand in the space, equal to a sphere of stationary stars” (St.-Petersburg, 1824), having 
supplied them with additions and notes. Petrushevsky was awarded with Demidov prize 
in 1835 for translation of these compositions.  

 

quadrature”; “Psammite”; “About bodies shipped in water”; “Lemmas”. 

circle measurement (7 pages) and a lemma (17 pages). Notes to those 

student of St. Petersburg Pedagogical University. He translated “Eight books of Euclid’s 

two books about a sphere and a cylinder (141 pages), the book about the 
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Fig. 3a. Title page, of “Lemmas”. 
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 Fig. 3b. Tabs to the first book and tabs of “Lemmas”.  
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The book contains “Psammite” (32 pages), notes, and general theory of 

shown.   
 

 
Fig. 4a. Title page of Russian edition of Psammite. 

 

EQUAL TO A SPHERE OF STATIONARY STARS”. TRANS. FROM 

THE COMMON THEORY OF THE EXTENTS AND PROPORTIONAL
OF IMMEMORIAL GEOMETRICS. - S. PETERSBURG, DEPARTMENT

4a–4c the title page, dedication to count Novosiltsev and an insert are 

GREEK BY F. PETRUSHEVSKY, WITH NOTES AND ADDITION OF

PSAMMITE, OR THE “MEASUREMENT OF SAND IN THE SPACE, 

PUBLIC EDUCATION TYPOGRAPHY, 1824 [3]. 

sizes of proportional (54 page), preface of Petrushevsky as well. In Fig. 
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Fig. 4b. Dedication to count Novosiltsev on the first page of Psammite.
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Fig. 4c. Tab page of Psammite. 
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3. PUBLICATIONS SINCE FIRST THIRD 19TH CENTURY 
BEFORE REVOLUTION OF 1917 
 

The Treatise «About Measurement of a Circle» [4], the appendix to 
the translation of Euclid’s elements; translation and comments to the 
treatise are made by prof. Vashchenko-Zaharchenko of M.Е.2, News of 
the Kiev University, 1880. New composition of Archimedes: The Epistole 
of Archimedes to Eratosthenes about some theorems of mechanic/ 
[Publ.] Prof. J.L. Heiberg: With the preface of the private-senior lecturer 
I.O. Timchenko; Trans. from German, in the edition of “The reporter of 
experimental physics and basic mathematic” – Mathesis, Odessa, 1909 [5].  

In 1906 prof. J.L. Heiberg, the Danish philologist and mathematician, 
found a small endurance from one ancient manuscript of mathematical 
maintenance in the library catalogue of a monastery of St. Savvy near 
Jerusalem. This endurance was resulted by P. Papadopulo-Keramevs, 
the private-senior lecturer of the Petersburg University, from not quite 
washed off Ancient Greek text, which he had found out on a parchment 
of his interest under the text of later origin. Not being the mathematician, 
Papadopulo-Keramevs did not give great value to the opening, but prof. 
J.L. Heiberg recognized ex ungue leonem («on claws of a lion») 
Archimedes’s product in that short endurance. He managed to find that 
manuscript, and he found Greek texts of some Archimedes’s compositions 
in it. The manuscript was made in Х century. Between ХII and ХIV 
centuries, as it often happened, the same parchment was used again for a 

very successfully [12]. Archimedes’s book contains a statement of the 
method connected with mechanical theorems and is devoted to the 
Alexandrian mathematician and astronomer - Eratosthenes. It was known to 
Heron of Alexandria (II century BC), who named it “Euphodic” – method, 

stated in it. 
In Geiberg’s preface it is stated that eight mathematic compositions, 

rewritten by Archimedes, except newly opened “Euphodic”, have reached 
us to the present moment: two books about the balance of flat figures 
together with the book about the quadrature of a parabola; two books 
about a sphere and a cylinder; about the measurement of a circle; about 
spiral lines or spirals; about conoids and spheroids; Psammit, or the 
calculation of sand grains; two books about floating bodies, lemmas.                                                         
2 Vashenko-Zakharchenko, Mikhail Egorovich, the mathematician (1825–1912). He 

published “Euclid’s elements” with explanatory introduction and interpretation in 
“News of the Kiev University” (1878, 79, 80, and the separate edition).  

theological text thus tried to wash off the old text but, fortunately, not 

guidance ( ). Besides, the work “About floating bodies” was Εϕοδιχον
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Some books have reached us in the original, which means in the 
Dorian dialect of Greek, who ones spoke in Syracuse: books about the 
balance of flat figures; about spirals; about conoids and spheroids, 
Psammit. The books about a sphere and a cylinder have reached us in 
the latest editing, in which the Dorian dialect was replaced with general 
Greek. The book about floating bodies had been famous until the last 
time as Wilh.v. Moerbecke (East Flandrian monk) said. All Archimedes’s 
compositions, except Psammit, contain more or less of the latest insertions. 
“Lemmas” were translated from Arabian into Latin and in the editing, in 
which it has reached us, could not have been written by Archimedes; 

About quadrature of a circle – Archimedes, Huygens, Legandre, 
Lambert, with appendix of questions’ history, made by F. Rudio/Trans. 
from German under the red. and with notes of  S.N. Bronstein, the 
private-senior lecturer of the Kharkov University–Odessa, Mathesis, 
1911 [6].  
 
 
4. PUBLICATIONS AFTER REVOLUTION IN 1917  

 
Industrialization of the country demanded considerable number of scientific 
and engineering personnel (I. Stalin: “The personnel mean everything”). 
The series “classicists of natural science” (Aristotle, Descartes, Archimedes 
etc., including literature about sciences and techniques at antique and 

State technical-theoretical publishing house of USSR Scientific Academy.  
The quantity of scientific and technical editions grew great; there were 

(near A5) format, very cheap for good accessibility from students, and 
printed on middle-lower quality paper.  

ARCHIMEDES, CALCULATION OF SAND GRAINS (PSAMMITE). 
TRANSLATION, COMMENT AND SHORT SKETCH OF 
ARCHIMEDES’S SCIENTIFIC ACTIVITY WERE WRITTEN BY 

The first edition of Archimedes’s works after the Revolution, “Psammite” 
was published in E.V. Visotskiy’s “Sower” Publishing House in 1922. In 
1932 and 1933 Prof. G.N. Popov published processed edition of that work 
in the State Technical-Theoretical Publishing House [8]. He used the best 
in his opinion: the edition of Archimedes’s compositions for translation, 
which contained the Greek text with translation made by Prof. Geiberg. 

5000–10000 printed copies. They were (usually) the books of quadric 

middle centuries) was published. Most of these editions were published by 

PROF. G.N. POPOV [7].  

however, many of them are likely to belong to Archimedes.  
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The precondition for a choice of this work was that its maintenance did not 
demand much knowledge in mathematics, and, anyway, it was easier, than 
the main Archimedes’s treatises devoted to geometry. In fig. 5 the title 
page of the edition of “Psammite” (1932) [5] is presented.  
 

 
Fig. 5. Title page of the edition of “Psammite” (1932).  

In 1932 the State Technical-Theoretical Publishing House (Moscow-
Leningrad) published the book of the Beginning of a Hydrostatics: 
Archimedes, S. Stevin, Galileo, B. Pascal [9]/Translation and notes were 
written by prof. A.N. Dolgov. The book was republished in 1933. The 
translation was made using the text of the treatise, placed in volume of 
II full three-volume collection of Archimedes’s works, repeatedly published 
by Prof. Geiberg in the Greek and Latin languages (“Archimedes opera 
omnia cum commentariis Eutocius itrum editit J.L. Heiberg”, Leipzig, 

Prof. A.N. Dolgov gives a magnificent substantiation of the choice of 
authors: “… works of the ancient were based exclusively on empirical data 
and were not based on any revealed principles of hydromechanics. … 
the first absolutely exact and clear formulation of one of hydrostatics 
organic laws, with which the history of its development as a science in 

1910–1915). 
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mechanical argumentation, accessible to those, who are not familiar 
with higher mathematics. These reasoning have not have lost their value 
till present as they are extremely natural and do not differ much from 
modern methods of stating … Thereof they can serve as fine addition to 
both a little dogmatic formulations of hydrostatic principles in physics 
textbooks and formally exact and strict constructions, met in modern 
courses of hydraulics”.  

CZWALINA A., ARCHIMEDES, LEIPZIG-TEUNBER, 1925 [10]/THE 
TRANSLATION FROM GERMAN OF PROF. V.I. KONTOVT. THE 
STATE TECHNICAL-THEORETICAL PUBLISHING HOUSE, 

There was the list of the major Archimedes’s compositions: his life 
description, sketches of his works on algebra, geometry, mechanics, 
calculation of sand grains included into the book. Especially it is neces-
sary to note three cardinal services to modern science of Archimedes the 
author marked.  

1. Universe limits in the ancient’s conception were limited to ices, heat 
and ocean. Behind these limits was “divine”. So, in the ancient’s 
mathematics there were no concepts of continuity and infinity. The 
concept of continuity lies across the side of the Euclid’s mathematics. 
To come to continuity, it was necessary to take a step towards infinity. 
Archimedes took this step and operated with variable and continuous: 
at Euklid’s we do not meet a straight line or a circle being able to be 
received with a point movement.  

2. “Archimedes met spiral quadrature problems in a problem about  
a cone quadrature. Thus, huge synthesis grows from the analysis of 
separate problems. He does not have predecessors in it”.  

3. Archimedes had begun the mathematical physics, had found mechanics 
basic laws: he was the first mathematician to connect mathematics 
with other sciences meaningly.  

In the book there is a poetic essay about last hour of Archimedes: 
“… Syracuse are taken. Everyone is running to save their life. But the 
grey-haired 75 year old man is sitting by himself in a garden. He is 
drawing geometrical figures. Of what he was thinking – it is not known, 
but we will not be mistaken, if we say that he was thinking of what 
nobody had not thought of for another 1000 years”.  

 

 

MOSCOW-LENINGRAD, 1934. 

effect begins, we find only at Archimedes’s … hydrostatics general laws 
were found and strictly enough proved by elementary geometrical and 
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“ARCHIMEDES. COMPOSITIONS”. МOSCOW, 1962. TRANS-
LATION, INTRODUCTORY ARTICLE AND COMMENTS MADE 
BY I.N. VESELOVSKY [11]. 
It was the expensive book of large format (70x108 with 1/16), written for 
mathematical, mechanical scientists, physicists and historicians of 
science. The “Compositions” was printed at quantity of 4000 items.  

In this edition I.N. Veselovsky “tried to collect every Archimedes's 
work that had been left whole. The translation was made with use of 2nd 

[13]. Besides, the translator added all texts concerning Archimedes, 
which Pappus and Heron had, in comments. At last, the offered book 
included Archimedes’s Arabian texts, in particular the translation of the 
“Book about a heptagon”, which was published (1962) for the first time.  

I. Veselovsky wrote that while translating ancient classics it is 
possible, for example, to keep strictly to the character of the original 
statement (Ver Eecke) or to give it in a modern statement (T.H. Heath). 
He chose the third way: «having kept Archimedes’s statement as far as 
its reading will not complicate the reader, he had added modern algebraic 
formulations». Into the structure of Archimedes’s compositions were entered:  
• Mechanical fragments (made using citations of Archimedes’s com-

• A quadrature of a parabola;  
• About a sphere and a cylinder;  
• About conoids and spheroids;  
• About spirals;  
• Measurement of a circle;  
• About the balance of flat figures, or about the gravity centers of flat figures; 
• The Letter about mechanical theorems to Eratosthenes;  
• About floating bodies;  
• Psammite;  
• Katoptrika;  
• About the device of heavenly sphere;  
• The Problem, which Archimedes found in epigrams and sent to solve 

to Alexandrian scientists, working with similar problems in the letter 
to Eratosthenes;  

• Stomahius;  
• About polyhedrons;  
• Abu-El-Hasan Sabit ibn Hens’ Treatise about construction of a cor-

poral figure circumscribed about a sphere with fourteen bases;  
• The Archimedes’s Book of lemmas in translation of Tebit Ben Kora and 

with explanations of scientist Al-Mohtasso Gali Ben Ahmad the Nasuene;  

positions by Heron, Pappus, Simplicus, Eutocius);  

edition of the text of Archimedes’s compositions, published by Geiberg 
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• Archimedes’s book about plotting of the circle divided into seven 
equal parts. Translated by Abu-El-Hasan Sabit ibn Kuri Al-Harani;  

• Archimedes’s theorems remained in Al-Biruni’s statement;  
• The book about touching circles of Archimedes, who was killed in 212 

BC. 

In Fig. 6a–6c the title page and two pages of the book [11] are presented.  
 

 
Fig. 6a. The title page of the translation of “Book about spirals”. 
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Fig. 6b. Text fragment of the translation of “Book about spirals”. 
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Fig. 6c. Second text fragment of the translation of “Book about spirals”. 
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“Archimedes had a greater genius than  
can be compatible with human nature” 

Cicero, De republica, v.1 
 

 
ABSTRACT Steps in elaboration of teaching courses on the history of 
mechanics and mathematics are illustrated. The courses which are taught 
in Moscow University and in other universities in Russia, together with 
their respective textbooks, have always paid a great attention to Archimedes 
and his original manuscripts. The review of Archimedes’ works that are 
considered at the lectures on history of mechanics and mathematics in 
MSU, Department of Mechanics and Mathematics, is given and metho-
dological problems connected with evaluation of Archimedes’ creative 
ability are discussed. 
 
 
1. INTRODUCTION 
 
The history of mathematics and mechanics is a discipline that, on one 
hand, can be considered as a part of the history of science tightly connected 
with philosophy and, from the other hand, as a discipline studying the 
subject itself (mathematics or mechanics) in its historical observation.  

Archimedes’ role in science is highly evaluated both in pure mathe-
matics and mechanics, the theme “Archimedes” covering significant positions 
in the corresponding courses.  

This paper consists of three sections. The first section deals with 
teaching the history of mechanics and mathematics in Moscow University 
as well as in other universities in Russia; the second one provides a 
summary of Archimedes’ works that are considered in the “History of 
Mechanics” course at the MSU Department of Mechanics and Mathematics. 

Irina Tyulina, Vera Chinenova
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2. TEACHING THE HISTORY OF MECHANICS  
AND MATHEMATICS IN MOSCOW UNIVERSITY  
AND OTHER UNIVERSITIES IN RUSSIA  
 

Moscow St. University (MSU) is one of the largest centres on studying and 
teaching the history of mathematics and mechanics which is, first, an 
obligatory subject on mathematics and mechanics in the educational program 
for students, and, second, one of specialization courses at the Department, 
students being involved in respective researches when preparing their term 
papers and graduation dissertations and carrying out thesis investigations. 

an important position in the system of teaching and researching in higher 
educational institutions in the Soviet times1. 

In 1945, at the MSU natural science departments, systematic courses 
on the history of mathematics and certain yearly courses on the history  
of mechanics were included in the educational process (Mechanics and 
Mathematics Department), and so were some courses on the history of 
astronomy and physics (Physics Department)2. The theme “Archimedes” 
became of considerable importance in the courses, as well as in respective 

The evolution of the lecturing process will be shown in more detail by 
the example of the course on the history of mechanics in MSU where it has 
been taught as an obligatory course since 1945. 

Nikolai Dmitrievich Moiseev (1902–1955), a famous specialist in 
celestial mechanics and theory of stability, being in charge of the Celestial 
Mechanics Chair at the Astronomy Department in 1938–1955 [1], was the 
first lecturer of the subject. He was a scientist having encyclopedic scope 

languages. In his course on the history of mechanics, Moiseev considered a 
lot of tractates and separate works, included epistolary fragments from the 
letters between prominent scientists where the analysis of Archimedes’ 
discoveries was on essential positions. As a rule, N.D. Moiseev used his 
                                                           
1 Before 1917, however, many mathematicians revealed vivid interest to the history of 

their science. Historical data were conveyed in lectures and monographs. In the period 
from 1882 to 1919, privat-docent V.V. Bobynin lectured in Moscow University a 
facultative course on the history of mathematical sciences. 

2
 The history of chemistry at the Chemistry Department, the history of geology at the 

Geology Department, and the history of geography at the Geography Department were 
lectured. Lecturing the history of biology at the Biology Department was entirely 
prohibited for 5–6 years because of ‘lysenkovshchina” (the term introduced after the 
name of Academician Lysenkov). In the years 1970–80, Prof. N.N. Polyakhov, Dean of 
the Mathematics and Mechanics Department in the University, was teaching a term 
course on the history of mechanics in former Leningrad (now city of Saint-Petersburg).  

textbooks which appeared later.  

of knowledge, revealing competence in many European and classic 

The history of mathematics and mechanics acquired, as a discipline, such 
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own translations from original languages. An idea on Moiseev’s course 
can be obtained from his well-known “Essays on Mechanics Elaboration” 
[2]. It is worth noticing that Archimedes’ works, in translation by Prof. 
I.N. Veselovsky who added his own valuable comments to them [5], were 
not published in Russian until 1962. For that moment, N.D. Moiseev was 
already late, and his textbook [2] could only appear owing to the activity 
of his apprentices I.A. Tyulina and E.N. Rakcheev. After N.D. Moiseev’ 
death, the course on the history of mechanics at the MSU Mechanics and 
Mathematics Department has been irremovably lectured by I.A.Tyulina. 
In recent years, V.N. Chinenova3 has joined to the lecturing process.  
Traditionally, the key role in the course has belonged to Archimedes and 
his works. While telling on Archimedes’s biography, we do not con-
centrate on numerous mythological and legendary facts from the life of 
this unordinary scientist; those who are interested in them are referred  
to popular literature, for example, to the headliner by N. Vitkovsky and 
S. Ortoly “Archimedes’ Bath”. The most attention in lectures is paid to his 
inventions and discoveries, his methods of scientific analysis. It is emphasized 
that the main property of Archimedes’s creations is keeping close connection 
between mathematical methods and problems in mechanics and physics. 

In 1960s and 70s “The History of Mechanics” course (covering 
Archimedes’s activity) was lectured in the universities of Rostov, Voronezh, 
Dnepropetrovsk, Saransk, and in 1980s, in the universities of Tbilisy and 
Alma-Ata. Since 1960s, the specialized course on the history of mechanics 
was lectured in Bauman Moscow Higher Technical School by the prominent 
specialist in this field, Prof. I.N. Veselovsky, who translated Archimedes’s 
works into Russian [5] and published the monograph “Essays on the 
History of Theoretical Mechanics” [7]4. In Vilnius Pedagogical Institute 
there was a course on the history of mechanics which was lectured by the 
assistant professor L.L. Kulvetsas since 1970. 

In the courses on the history of physics (lectured at MSU Physics 
Department as well as in other universities, for instance, in Tambov) 
Archimedes’ life and creative activity were also illustrated. Prof. P.S. 
Kudryavtsev (Tambov) developed a periodic system for researching the 
history of physics that was linked with personalities; see, for example, the 
chapter “Ancient Mechanics and Archimedes” in his monograph [8].  

In MSU, Prof. K.A. Rybnikov prepared the course on the history of 
mathematics and produced a textbook [9] which provided Archimedes’s 

                                                           
3 In 1979 the monograph by I.A. Tyulina, “The History and Metodology of Mechanics” 

[3], and in 2002 the textbook by I.A. Tyulina and V.N. Chinenova, “The History of 
Mechanics”[4], were published. 

4 Later this course was lectured by assistant professor  G.I. Gataulina. 
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detailed scientific biography and considered his infinitesimal methods. 
Lecturers involved in teaching this course were repeatedly giving reports and 
publishing articles with analyses of Archimedes’ mathematical works [10]. 
 
 
3. ARCHIMEDES’ WORKS IN THE MSU COURSE “HISTORY 

OF MECHANICS”  
 

Archimedes’s works on statics and hydrostatics are considered to be mathe-
matical physics of the ancient world. These works based on geometry are 
an example of geometrical deductive method. In each separate case, for 
instance, for the theory of lever or theory of body flotation, the needed 
physical postulates (axioms) are introduced and a corresponding theoretical 
proposition is developed with the help of geometry. 

Before providing the main aspects of the theory concerning equili-
brium of weights, developed by Archimedes, which are lectured in the course 
on the history of mechanics at the Mechanics and Mathematics Department, 
specific properties of the 3rd century B.C. are given, technical requirements 
of the time and cognitive preconditions of Archimedes’ barycentric 
teaching are considered. Since another approach was also applied at the 
same time to the problems of statistics (considering possible velocities of 
weights) it is made comparison of particularities in technical problems 
which generated these two directions in developing the statics (geometrical 
and kinematical). Such a comparison helps students to deepen their 
understanding the subject. Definition of “centre of gravity” was known to 
be introduced by Archimedes in his works “Book of Supports” and “On 
Balance” which did not survive till our time and of which little trace 
remained5. The concept of “Centre of Gravity” appears in a natural manner 
when resolving the mechanical problems connected with the equilibrium 
of heavy bars and plates which are supported in one or more points, centre 
of gravity being such a point that supports a body and keeps its equilibrium 
even if other supporting points are deleted. A general criterion for 
equilibrium of a suspended heavy body is formulated as follows: “If the 
centre of gravity of a heavy suspended body is situated on the vertical line 
passing through the fulcrum, then the body is in the equilibrium” [2, p. 47]. 
Archimedes defined a centre of gravity of a body as a point where various 
vertical lines crossing the body in corresponding equilibrium positions and 
passing through different fulcrums intersected each other [4, p. 37].  

                                                           
5 We know about these works only from references that are cited in other Archimedes’ 

compositions and in works belonging to such Alexandria school representatives as 
Heron and Pappus who were well familiar with Archimedes’ teaching.  
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A strict aspect in teaching on equilibrium of loads (in Euclid’s style)  
considered in Archimedes’ works is more easily conceived by students 
than a pragmatic approach from which a principle of possible displace-
ments later originated. 

Archimedes’ work “On the Equilibrium of Planes, or on the Centre of 
Gravity of Plane Figures” contains seven postulates and is cited according 
to the work [2, pp. 48–53]. When providing the gist of this work, we follow 
main Archimedes’ considerations.  

Since N.D. Moiseev’s book is a bibliographic rarity and his fragmentary 

scientific literature, some of these postulates are worthwhile to be cited: 

1. 
equilibrium. 

2. Two equal weights suspended at different distances are not in  
equilibrium; the weight suspended at a longer distance will fall down. 

3. If two weights suspended at certain distances are in equilibrium, and 
something is added to one of them, they will no longer be in 
equilibrium; the greater weight will fall down. 

4. Similarly, if something is taken off from one of those weights, they 
will no longer be in equilibrium; the lighter weight will fall down. 

6. If certain weights suspended at certain distances are in equilibrium, 

equilibrium” [2, p. 48]. 

Postulates 5 and 7 mean that equal and coinciding and homogeneous 
figures, when they are superpositioned, have the centres of gravity which 
also coincide under superposition of figures, the commensurable figures 
have the centres of gravity located in a similar manner and, finally, a 
centre of gravity of a convex figure is inside the figure. 

The following three theorems, in fact, serve to explain the substance 
and sense of the postulates. 

The subsequent group of theorems, 4 and 5, describes the possibility 
for loads, suspended to a lever, to be concentrated and deconcentrated, 
their common centre of gravity being unchanged, so that the equilibrium 
occurred before the operation is not upset. The main condition for keeping 
the equilibrium is considered to be the fact that the centre of gravity of the 
suspended body is located on a vertical line passing through a fulcrum. 

Thus, theorem 4 affirms that “the centre of gravity of the magnitude 
made up of two magnitudes is the point situated at the middle of the line 

“Equal weights suspended at equal distances (from a fulcrum) are in 

which joins the centres of gravity of these two equal magnitudes”. Theorem 

equivalent weights suspended at the same distances will also be in 

translation of Archimedes’ works is seldom mentioned in educational and 

5 considers “the magnitude made up of three equal magnitudes” located
in such a manner that the centre of gravity of the central magnitude is 
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extreme magnitudes. The theorem affirms that the centre of gravity of the 
combined magnitude will coincide with the centre of gravity of the middle 
magnitude. 

On the assumption of these postulates, Archimedes proves the law of 

able, keep the equilibrium at distances which are inversely proportional to 
the magnitudes themselves. Theorem 6 deals with the equilibrium of a 
direct lever with unequal arms: “the commensurable magnitudes situated at 

equilibrium”6. 
Let us produce the proof of this theorem in the form that is proposed to 

Given: the magnitudes of loads are reciprocally proportional to their 

 

 
OA
OB

=
β
α

 (1) 

 
It is necessary to prove that the system is in equilibrium. 

Fig. 1. 
 

. The intervals 1Aa  

and OB
A . Similarly, two  intervals, 1Bb  and , each 

. Thus, a new 
lever with double extension ABab 2=
O
loads α α

                                                           
6 Archimedes. Works, p. 274. 

Aa, which are equal to the arm , are plotted  to the right and to 

the loads equal to the half of the unit of weight each over the unit of length 

  AB

 is substituted by 

On the extension of the horizontal lever line 

 and β  according to proportion (1): the load 

Bbthe left from the point 

the students (it is very close to Archimedes’ proof) [4, p. 38]. 

being equal to the arm OA , are plotted from the point 

distances from the fulcrum O  (Fig. 1) along the lever straight line: 

  B
 is produced, the fulcrum point 

 being at the middle of the lever. Archimedes deconcentrated the given 

distances which are reciprocally proportional to their weights are in 

situated at the middle of the line joining the centres of gravity of the two 

lever according to which two magnitudes, commensurable or incommensur-

A Ba a1(b1)

α

b
0
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1aa ; the load β 1
homogeneous heavy  bar, ab, is produced which is supported at the 
middle, O
equilibrium state by itself. The system of weights distributed along the bar 
ab  is equivalent to the system of two original weights located at the 
direct lever AB
weights, α  and β ,  could not upset the equilibrium of the original lever. 

α  
and  β
of the bar), then the original lever AB ,  should necessarily be in 
equilibrium7 . 

The following, seventh theorem extends this proposition to the case 
when weights and arms are incommensurable, the proof being given with 
the help of “the method of exhaustion” (the passage to the limit). 

The other theorems of Archimedes’ treatise “On the equilibrium of 
Planes” are devoted to the problem concerning the location of the centres 
of gravity of particular plane figures with homogeneous distribution of 
surface specific weight. It was there that Archimedes set the location of the 
centres of gravity for a parallelogram, a triangle, a trapezium, and a parabolic 
segment. 

Barycentric concept was also utilized by Archimedes in his work 
“Message to Eratosthenes on the Mechanical Theorems” which appeared 
after the treatise “On the Equilibrium of Planes”. In this work, Archimedes 
abided by the heliocentric hypothesis of the Universe, according to the 
views of Aristarchus from Samos. This work developed the mechanical 
method of solving geometrical problems.  

Archimedes proved some theorems concerning correlations between 
certain parts of volumes for homogeneous bodies: a sphere, a cylinder, and 
a cone. This correlation is interpreted mechanically, in terms of the lever 
rule, that is, two-arm balance.  

The same method of mechanical analogy was utilized by Archimedes 
in his work “On the Quadrature of Parabola”.  

These are the main principles contributed by Archimedes to the 
foundation of the scientific theory concerning the equilibrium of supported 
and suspended bodies.  

                                                           
7 Sometimes we provide the proof in that well-known manner which was used by Galileo 

in his second Day of Discources [11, pp. 220–222]. 

 is analogously  distributed along the segment bb . A 

, or at the centre of gravity, and is not capable to break its 

 with unequal arms because distribution of two given 

If the equilibrium is maintained (the centres of gravity of the weights 
 keep their original positions when distributed along the length 
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As to the theory of the equilibrium of heavy fluid and floating bodies, 
Archimedes’ treatise “On Floating Bodies” is of fundamental significance. 
The second lecture in our course on the history of mechanics is devoted to 
this work. It is worth noticing that in doing so we use both the translation 
by I.N. Veselovsky [5] and the translation by A.N. Dolgov which is given 
in the compilation “The Foundations of Hydrostatics” [12].  

The following hypothesis is fundamental for Archimedes’ conclusions: 

continuous with each other, that which is the least compressed is driven 
along by that which is the more compressed. Each part of the fluid is 
compressed by the fluid which is above it in a vertical direction, provided 
the fluid is not contained in a vessel and not compressed by something 
else” [5, p. 328]. 

The first two propositions of Archimedes’ treatise state that the surface 
of any fluid at rest surrounding the Earth is spherical and that the centre of 
this circumferential sphere coincides with the centre of the Earth. On the 
base of these experimental premises, Archimedes proves propositions III – 
VI.  Propositions V, VI, VII state the so-called basic Archimedes’ law.  

Proposition VII reads as follows: “If a body is placed in a fluid which 
is lighter than itself, it will fall to the bottom. In the fluid the body will be 
lighter by an amount which is the weight of the fluid which has the same 
volume as the body itself ” [5, p. 332]. 

After that, we concentrate our students on the problems of equilibrium 
and stability of floating bodies which were considered by Archimedes. The 
basic method of the investigation is perturbation of an equilibrium state. 

All the propositions of the treatise are proved by means of the unique 
method in which the centre of gravity of the entire body and that of the 
immersed part of the body are determined. The body is in equilibrium if 
these points are situated on one vertical line when the gravity of the body 
and the force of hydrostatic pressure act in opposite directions along the 
same line. The equilibrium is stable if the body, when being declined from 
the equilibrium state, tends to return into this state [2, p. 52]. 

The second part of the treatise considers particular cases of equili-
brium and stability of spherical segments and paraboloids of revolution 
floating in the fluid.  

We also fix our students’ attention on the idea of hydrostatic balance 
and later, in the section of mechanics, on medieval East conceptions where 

composition by Abd al-Rahman al-Khazini, “The Book of the Balance of 
Wisdom”).  

Subsequently, the works of Archimedes’ followers who lived in 16th 
and 17th centuries are described, for instance, those of Guidobaldo del 

this idea was developed and  used  by Arabic scientists (see, for example, 

“The nature of a fluid is such that if its parts are equivalently placed and 
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Monte, Simon Stevin, Galileo (in his young years), and G. Personne de 
Roberval. 

the 3rd year, however, certain term papers which analyze the works by 
Archimedes and his followers are performed by students in their earlier 
years.  

mechanics derived by Archimedes were revealed especially well in his 
work “Message to Eratosthenes (Ephod)”. A detailed review of this work 
is provided [9, pp. 56–57]. 

The same barycentric method was applied by Archimedes in his work 
“On the Quadrature of Parabola”. 

History of mathematics considers the following opinion on the ancient 
science, which seems to us to be unjustified, according to which the whole 
science was dramatically divisible into two parts, theoretical “pure” science 
and applied one, any adherent points between them being hardly traced. 
Many philosophers and historians of the époque pronounced that mechanics 
and other applications of mathematics belonged to a number of dishonor-
able occupations. It is sufficient to recollect Plutarch who tended to assure 
his readers that Archimedes himself had believed his researches in mechanics 
and theory of mechanisms to be something peripheral, that “Archimedes 
did not attach much importance to all machines constructed by him, he 
considered them to be simple mechanical toys for enjoyment in free time 
mostly because tyrant Hiero insisted who permanently persuaded Archimedes 
to occupy not only with pure intellectual subjects but also with certain 
material things” [7, p. 16]. I.N. Veselovsky cites this argument with the 
reference to “Vitae parallelae” by Plutarch. 

In the history of mathematics, however, few examples could be found 
when problems of theory and applications were coupled in such a close 
and inextricable connection as they were in Archimedes’ creative work. 
I.G. Bashmakova, in her course of the history of mathematics at our 
Department, has analyzed Archimedes’ work “On Floating Bodies” [10]. 
She demonstratively showed that for investigation of the equilibrium 
stability of floating bodies, Archimedes brightly elaborated and used both 
integration methods and the geometry of conics. “In doing so, Archimedes 
exposed and treated the problem of stability in a perfectly strict manner, in 
the spirit of his purely mathematical compositions… In his work, “On the 
Method”, Archimedes alternatively used the lever principle for new 
mathematical factors to be established” [10, p. 787]. We absolutely agree 

of ancient world, the course on the history of mathematics lectured in
MSU analyzes Archimedes’ works. Connections between mathematics and 

Many students carry out their essays and graduation papers particularly 

When considering infinitesimal methods applied in the mathematics

on the basis of Archimedes’ works. Specialization occurs beginning from 
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Floating Bodies” is the most profound among other Archimedes’ com-
positions.  

Not without reason, Lagrange in his “Analytical Mechanics” wrote: 

it contains the theory of stability of floating bodies to which very little was 
added by contemporary scientists” [13, v.1, p. 135]. The scientists did not 
put forward the theory till the 19th century when Archimedes’ methods 
themselves were elaborated as well. 
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“This book is one of the most excellent memorials of Archimedes’ genius, 
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ABSTRACT This article is focused on the way Archimedes’ works and 
inventions are covered in the academic curricula in Russia. The authors 
consider different education levels: from the elementary school to the 
higher technical education. Archimedes’ biography, his inventions and the 
laws discovered by him are described in a great number of educational 
literature, both for schoolchildren and for the students of technical 
universities. Archimedes’ works on hydrostatics, geometry, center of 
gravity, mechanics of simple machines (levers, pulleys) and the structure 
of the machines he created are described there. 
 
 
KEYWORDS: Archimedes works and inventions, primary school, higher education. 
 
 
1. INTRODUCTION 
 
Descriptions of Archimedes’ inventions and discoveries and calculation 
methods are included in school curriculum of all levels, from elementary 
to high school. His name and his works are mentioned both in children’s 
books and cartoons and in the university textbooks. Students can learn 
about Archimedes and his works at the lessons of physics, mathematics, 
history, and astronomy. His inventions are widely used in today’s world 
and students in all countries study his works until now.  

In the time of Archimedes scholars developed science solving both 
theoretical and practical problems, which required knowledge in various 
scientific fields: mechanics, hydraulics, mathematics. Science was not yet 
divided into branches and scientists did not have a narrow specialization. 
This is the explanation of the diversity of spheres where Archimedes used 
to work and where he developed new methods or made discoveries. 
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2. ARCHIMEDES IN ELEMENTARY SCHOOL  
 
In really young age Russian children get to know about Archimedes, his 
inventions and life in ancient Greece.  

All Russian children love the story told in the book “Kolya, Olya, and 
Archimedes” (Fig. 1) by L. Zavalnyuk where two schoolchildren, a boy 
and a girl, find themselves in Ancient Greece.  

 
 

 
Fig. 1. Book “Kolya, Olya, and Archimedes”. 

 
There they meet Archimedes who tells them about his inventions. 

There is a cartoon based on the book where one can see a large number of 
Archimedes’ mechanisms and his other inventions. The cartoon is oriented 
towards younger audience, it arouses children’s interest and develops their 
creative thinking. 
 
 

3. ARCHIMEDES IN SCHOOL MATHEMATICS  
 
The majority of Archimeses’s inventions are fundamential for many 
branches of science. That’s why the name of Archimedes is so often 
mentioned in school education because its aims are to teach children basic 
knowledge. 
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The most famous Archimedes’ discovery in mathematics is the 
calculation of the π number. Some math textbooks describe a way of π 
computation using regular polygons inscribed in a circle, according to 
Archimedes’ method [1]. Planimetry books use problems named after the 
great scientist; thus, in [2] two problems are given: 1) “Archimedes’ 
problem: The polyline AMB consisting of two segments (AM >MB) in 
inscribed in the arc AB of a circumference. Prove that the foot of the  
perpendicular KH dropped from the middle point K of the arc AB onto the 
segment AM divides the polyline in half, i.e. AH = HM + MB.” 

 
 

 
Fig. 2. Scheme for problem of Archimedes of polyline. 

  
In the 80ies of the last century a series of school books called 

“Encyclopedia of young ……” was published, where omission points 
stand for “mathematician”, “physicist”, “historian”, etc. These books 
featured issues beyond the school curriculum. In one of the books from the 
math line quite a number of chapters deal with Archimedes: geometry 
axioms, integral calculus (exhaustion method), progressions, calculation of 
the π number. The authors mention that Archimedes considered his main 
discovery to be the relationship between the volume of a cylinder and the 
volume of the inscribed sphere (their ratio is 3 : 2). According to his will, a 
cylinder with the inscribed sphere was placed on his tomb (Fig. 3). 
 

And 2) “The problem of Archimedes’ arbelos: Prove that the radius of  
a circumference tangent to S1, S2 and segment BD is equal to the radius of a 
circumference tangent to S2, S3 and segment BD.” 
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Fig. 3. Sphere inscribed in cylinder. 

  
4. ARCHIMEDES IN SCHOOL PHYSICS  
 
Modern physics textbooks tell a legend of the golden crown and king 
Hiero whom Archimedes helped to find out whether the crown was really 
made of solid gold. This anecdote is often given as an illustration of 
Archimedes’ law and as a practical means to find the volume of bodies 
having intricate shape [5, 6]. 

 “Give me a place to stand on, and I will move the Earth!” One can 
find this quotation almost in every textbook chapter devoted to levers 
(Fig. 4). In one of physics textbooks there is an amusing calculation of a 
possibility to move the Earth: “A legend says that that Archimedes, excited 
by the discovery of the law of the lever, exclaimed, ‘Give me a place to 
stand on, and I will move the Earth!’ Archimedes certainly could not have 
fulfilled this task even if he had been given a pivot (which would have to 
be outside the Earth) and a lever of the required length. To raise the Earth 
even by 1 cm the long arm of the lever would have to describe an arc of 

 
Fig. 4. Archimedes moves the Earth (antique print). 
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Nowadays there are a lot of Internet resources devoted to school 
physics. Many of them provide additional materials for “the curious” and 
non-typical problems focused on developing creative thinking and keen-
ness of wit. Teachers and students often share their experience. The website 
called “Cool Physics for the Curious” has an interesting article on the two 
mechanisms created by Archimedes: the movable pulley and the fixed 
pulley. From the article by the 7th grade students [7] one can learn how 
these devices are used today.  

Every Russian school student associates Archimedes’s name primarily 
with the force named after him, i.e. with Archimedes’ expulsive force. On 
physics websites one can often come across lessons devoted to this law.   

The website called “Physics for Teachers and Students” has a great 
number of articles on all parts of physics. Take, for example, the article on 
hydrostatics [8] describing interesting physical experiments. There the 
students get acquainted with Archimedes’s principle and investigate how 
the expulsive force acts in their experiments. In the first experiment a glass 
of water is placed on one of the pans of the balanced scales, with a load 
hanging above the glass from the support. The students have to guess what 
will happen to the scales if the thread holding the load is made as long as 
to submerse the load into the water. Another experiment: there is a glass 
with a small ball in it floating in a vessel with water. The students have to 
say how the water level will change if the ball - a) made of wood and b) 
made of steel – is removed from the glass into the water. (Fig. 5b). 

Fig. 5. Scheme of school experiment. 
 

Another website, in an article on hydrostatics [9], there is an 
interesting description of Archimedes’ principle in the following wording: 

B

A

a. b.
c.

enormous length. It would take millions of years to move the long arm of 
the lever along this trajectory at a speed of 1 m/s.” [6] 
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displaced volume), is directed upwards and is applied in the center of 
gravity of the volume.”  The experiment with ‘Archimedes’ bucket proves 
the correctness of this law: “Let us suspend to the dynamometer an empty 
bucket A (Archimedes’ bucket) and a solid cylinder B having a volume 
equal to the capacity of the bucket. Then, let us put a vessel with water 
under the cylinder and immerse the cylinder in the water; the balance will 
be upset and the tension of the dynamometer will decrease. If now we fill 
the bucket with water the dynamometer spring will stretch up to its former 
length. The weight loss of the cylinder is equal to the weight of the water 
in the volume of the cylinder.” 
 

 
5. ARCHIMEDES IN THE MECHANICS OF HIGHER SCHOOL  
 
The aims of higher school education is to teach special knnowlege in 
branches of science chosen by a student. Education in higher school is a 
profound study of the required academic disciplines. 

Simple mechanisms like a movable and fixed pulley, a crab and a lever 
were used in construction - for load lifting, in the military – for stone 
throwing. They considerably increase human resources, that’s why in 
modern textbooks we can find their description. There is a separate chapter 
called “Archimedes the Engineer” in the book [10], which is devoted to 
mechanisms invented by him (Fig. 6). In this book, there is a detailed 
description of the use of stone-throwing and other siege machines. Pictures 
of these machines  can be found on the pages of school textbooks [5]. The 
book also describes other inventions, for example, Archimedes screw. It 
was used for water pumping from mines and holds of ships, it for irrigation 
systems and for grain loading. 
 

 

 
Fig. 6. Pictures from textbooks on Mechanics with schemes of mechanisms of Archimedes. 
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“The buoyant force acting upon a body immersed in a fluid is equal in 
modulus to the gravity acting upon the fluid in the volume of the body (the 
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The textbook on Theoretical Mechanics characterizes Archimedes in 
the following way, “Archimedes became the founder of mechanics as a 
science. Archimedes produced an accurate solution of the problem on the 
balance of forces applied to the lever and created a teaching of the center 

law on hydrostatic pressure on the fluid on the immersed body, the law 
that is named after him.” In the course of lectures on the Theory of 
machines and Mechanisms [12] it is mentioned that Archimedes invented 
the screw, improved the cog-wheel, built water-lifting structures and a 
number of military machines. 

The kinematic approach to the solution of problems used by Archimedes 
[13] became the prototype of the principle of possible displacements in 

ratio of the distances covered by the bodies within the same periods of 
time is inverse to the ratio of their weights”. 
 
 

6. A COURSE ON MATHEMATICS  
 
In math textbooks [4] Archimedes is often mentioned in connection with a 
number of methods he developed for calculating the volume and area of 
figures: 

– exhaustion method used to calculate figures’ area (Fig. 7), volume of 
solid bodies and length of curves.  (Though his invention is ascribed to 
Eudoxus this method is described in some of Archimedes’ works); 

– method of mechanical analogies described in the Letter to Eratosthenes 
(Ephod) and using mechanical analogies to calculate the volume of the 

– method of integral sums described in his works On the Sphere and the 
Cylinder, On Spirals, On Conoids and Spheroids. This method was 
used to calculate the volume of the ellipsoid.  

Archimedes’ spiral is mentioned in connection with the polar frame of 
reference [13]. Archimedes did not only described this curve but also 
calculated the area of its coil and learned how to plot a tangent to it. 

In the course of Theoretical Mechanics Archimedes’ methods are used 
to determine the center of gravity of a geometrical figure and of a body 
[12]. This method is mentioned in the section on balancing rotors and 
static balancing of lever mechanisms [11]. 

of gravity of bodies. Besides, Archimedes discovered and formulated the 

sphere; the same method of mechanical analogy is used by Archimedes 

theoretical mechanics. Later it was put by Galileo Galilei as follows: “the 

in his work On the Quadrature of the Parabola: 
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just involved with the “high theory” but also widely used it in the practical 
work of a military engineer [15]. Archimedes’ works are translated into 
Russia and have been published repeatedly, and his scientific and engineer-
ing activity has been studied by Russian historians [16]. 

Fig. 7. Picture from textbooks on Mathematics (exhaustion method). 
 
 

7. CONCLUSION 
 
As is shown in the article, Russian school and university students get 

inventions in the course of their study. In the animated film “Kolya, Olya, 
and Archimedes” Archimedes says, “The descendants’ memory is a great 
award for a scholar”. This world conference is another proof of this idea. 
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ABSTRACT The aim is to propose, at various levels in secondary schools, 
Archimedes’ idea for calculating π using the computer as programming 
tool. In this way, it will be possible to remember the work of one of the 
greatest geniuses in history and, at the same time, carry out an inter-
disciplinary project, particularly relevant to the current debate on the Math 
curriculum.  
 
 
1. INTRODUCTION AND PRELIMINARY 

 
In the current teaching practice in Italian secondary education, as is 
apparent from available textbooks, there is little evidence in the math 
curriculum, bar a few exceptions, of reference to the genius of Archimedes 
(Syracuse 287–212BC). This is a serious gap not merely on account of the 
fact that he was one of the greatest mathematicians of all time, but also, 
and above all, because such omission deprives students of an opportunity 
to investigate vital areas of debate in an interdisciplinary context. One 
argument linked to the name of Archimedes, of great interest to mathe-
maticians ever since, is the calculation of π [Beckmann, 1971], in other 
words the constant ratio between the length of the circumference and its 
diameter. Archimedes’ contribution [Frajese, 1974] to this constitutes a mile-
stone that lends itself for its simplicity to explanation and experimentation 
at various levels within secondary schools. For its infinite mathematical 
depth, Archimedes’ idea has a didactic relevance that goes beyond its 
practical utility; indeed, it can be proposed as a problem and approached 
from various angles with diverse instruments, also including the formulation 
of an algorithm to be tested in a programming environment tailored to the 
capabilities of the students. Thus a link can be formed not only between 
the different branches of Mathematics such as algebra, geometry, trigono-
metry and calculus, but also with information science, in particular with 
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the computer as programming tool. In his book “Regarding the Measure-
ment of the Circle” [Frajese, 1974] Archimedes establishes that the ratio 
between the surface of a circle and the square of its radius is equal to the 
ratio between its circumference and diameter; then, considering the polygons 
inscribed and circumscribed with 6, 12, 24, 48, and 96 sides he calculates 
the successive approximations of π that lead him to the following values: 

10 13 3
71 7

π+ < < +   o 
223 22
71 7

π< <  

In other terms, he obtains: 3.1408<  <3.1429. π This is an extraordinary 
achievement because at the time there were no algebraic notations avail-
able; moreover, Archimedes did not use our positional system to elaborate 
his calculations nor any calculating instrument. The geometrical method 
used by Archimedes involves pure abstract calculations (not measure-
ments!). He considers a circle of radius 1 circumscribed and inscribed with 
polygons of 3×2n sides. Let us indicate an the semi-perimeter of the 
circumscribed polygon and bn that of the inscribed polygon. Geometrically, 
it can be demonstrated [Delahaye, 1997] that for n=1 (hexagon) 
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By utilizing this recurring formula, it is possible to approximate π with 
the desired precision, provided that we are capable of calculating the 
square roots (that which, at that time, was realizable only by ‘trial and 
error’). Archimedes’ calculations stop at the values a5 and b5. 

On the basis of these considerations, the rest of the work is organized 
as follows: in the second section an exemplification is proposed for lower 
secondary school (age of student 10–13) and in sections 4 and 5 for higher 
secondary school - for the first two year and second three year period, 
respectively. Finally, the article is concluded with a number of didactic 
reflections. 
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2. EXEMPLIFICATION FOR LOWER SENCODARY SCHOOLS 
 
After the pupils have understood (for instance through basic experiments 
with simple materials) that the ratio between the length of the circum-
ference and its diameter is constant, that is, indicated with c the length 
of the circumference and with r its radius, the ratio does not vary with the 

2
c
r

varying circumference. There remains the problem of numeric calculus of 
such constant. The said constant value has been traditionally indicated with 
the Greek letter π (pi), so we have 

2
c
r

π=

circumscribing regular polygons to the circumference and of approximating 
the length of the circumference with the perimeters of these polygons. 
Bearing in mind the actual level of learning, as a first step we propose to 
circumscribe a square to a circumference. This can be easily done using 
the programming environment MatCos [Costabile and Serpe, 2003 and 

CCooddee  MMCC11:: square circumscribed to a circumference 
axe=straightlineNum; A=Point_su(axe); B=Point_su(axe); 
r=straightline(A,B); cancel(axe); PenStyle(5);  
m=distance(A,B);p=Perpendicular(r,A); 
p1=Perpendicular(r,B); 
PenColour(128,0,0); PenThickness(2); PenStyle(1); 
l=segment(A,B); l1=segment(A,m,p); l2=segment(B,m,p1); 
C=l2.extreme(2); D=l1.exstreme(2); l3=segment(D,C); 
PenStyle (5); PenThickness(1); cancel(P,P1,r); 
s=straightline(A,C); s1=straightline(B,D); 
Q=intersection(s,s1); 
PenStyle(1); PenColour(0,0,255); PenThickness(2); 
g=circ(Q,M/2); f=diameter(g); cancel(s,s1); 

                                                       (2.1) 

                                                  (2.2) 

Archimedes in Secondary Schools

Archimedes’ idea, as we have mentioned, consists of inscribing and 

Indeed, the following programming reaches the goal: 
2009; The MatCos software can be in demand to the first author], Fig. 1.
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Fig. 1. Output of a square circumscribed to a circumference. 

 

with practical verifications using the software, that the side of the square is 
equal to the diameter. Moreover, observing that the length of the circum-
ference is less than the perimeter of the square we can write the following 
inequality: 

8c r<  and thus 8 4
2 2
c r
r r
< =  

that is in (2.2) we have the first result: 

4π <

This result can be improved considering the regular hexagon inscribed 

CCooddee  MMCC22:: hexagon inscribed and circumscribed to a circumference 
P=point; r=readnumber("radius"); c=circ(P,r); 
A=list; B=list; D=list; A(1)=point_on(c); 
  for(i from 2 to 6) execute; 

  end; 
PenColour (128,0,64); polygon(A); segment(A(1),P); 
segment(A(2),P); PenStyle(5);  
r=straightline(a(1),a(2)); 
s=perpendicular(r,p); h=intersection(r,s); 
B(1)=intersection(c,s); t1=tangent(C,B(1)); 
  for(i from 2 to 6) execute; 
  b(i)=rotation(b(i-1),P,60,anticlockwise); 

                                                 (2.3) 

It can be easily ascertained, both with geometrical considerations and 

  A(i)=rotation(A(i-1),P,60,anticlockwise); 

following program:  
and circumscribed to the circumference, Fig. 2. This can be done with the
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  t2=tangent(c,b(i)); t3=tangent(c,b(i-1)); 
  d(i-1)=intersection(t2,t3); 
  cancel(t2,t3); 
  end;  

n=distance(d(1),d(2)); 
print(“the side of the circumscribed hexagon is" , "  
",n); 
t4=tangent(c,b(6)); d(6)=intersection(t1,t4); 
cancel(r,s,t1,t4); PenColour(128,0,64); polygon(d); 

 

 

Fig. 2. Output of the hexagon inscribed and circumscribed to a circumference whit radius 
r=100. 

 
By executing this program many times it becomes apparent that the 

length of the side of the hexagon inscribed is the same as the radius, thus 
the perimeter is 6r, from which the inequality: 

      3
2 2
p cp c
r r

π π< ⇒ < = ⇒ <

As far as the side of the circumscribed hexagon is concerned, we can 
obtain the measurement directly with the software. For example, for a 
circumference with radius 100 we find l=115 and so the perimeter equals: 

6 115p = ×

Keeping in mind that in this case the inequality is c p< , one easily finds  
6 115 3, 4
2 100
×

= ≈
×

π  

Thus, the regular hexagon inscribed and circumscribed produces the 
inequality 

3 3,4π< <

                            (2.4) 

                                             (2.5) 

                                            (2.6) 

Archimedes in Secondary Schools
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The theoretical justification that the radius of the circumference equals 
the side of the regular hexagon inscribed can be obtained also for lower 
secondary schools. The measurement of the side of the circumscribed 
hexagon is more difficult. A better result can be obtained inscribing and 
circumscribing a regular dodecagon. The code of the program follows the 
previous idea, though it should be noted that in this case the angle of 

Thus we have the following code: 

CCooddee  MMCC33:: dodecagon inscribed and circumscribed to a circumference 
P=point; r=readnumber("radius"); c=circ(P,r); 
A=list; B=list; D=list; A(1)=pointatrandom_on(c); 
for(i from 2 to 12) execute; 
  A(i)=rotation(A(i-1),P,30,anticlockwise); 
end; 
m=distance(a(2),a(3)); print(m*6/r); 
PenColour(128,0,64);polygon(A); PenColour (0,0,255); 
segment(A(1),P); segment(A(2),P); 
PenStyle(5); r1=straightline(a(1),a(2)); 
s=perpendicular(r1,p); h=intersection(r1,s); 
B(1)=intersection(c,s); t1=tangent(C,B(1)); 
for(i from 2 to 12) esecute; 
  b(i)=wheel(b(i-1),P,30,anticlockwise); 
  t2=tangent(c,b(i)); t3=tangent(c,b(i-1)); 
  d(i-1)=intersection(t2,t3); 
  cancel(t2,t3); 
end; 
m1=distance(d(2),d(3)); print(m1*6/r); 
t4=tangent(c,b(12)); d(12)=intersection(t1,t4); 
cancel(r,s,t1,t4); PenColour(128,0,64); PenStyle(1); 
polygon(d); 

 
By analogy with what has been said so far, we find the inequality 

3,1 3,2π< <

which is narrower than (2.6). 
 

Didactic activity in the lower secondary school can thus be concluded 
stating that π is an irrational number, that is, it has unlimited non periodic 
decimal representation, whose approximation to the cents is 3,14. 

 

                                        (2.7) 

rotation should be 30°, Fig.3. 
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Fig. 3. Output of a dodecagon inscribed and circumscribed to a circumference with radius r=130. 
 
 

3. EXEMPLIFICATION FOR HIGHER SECONDARY SCHOOL: 
FIRST TWO YEAR PERIOD 
 

In the first two year period of higher secondary school the topic of calculus 
of π should be dealt with, and can be thoroughly investigated using 
Archimedes’ idea with the aid of the computer as a programming tool. 
Indeed, especially in the ‘Liceo Scientifico’ (Scientific Lyceum), you can 
first of all demonstrate with the Method of Exhaustion that the ratio 

                                               is constant
2
c
r

                                       (3.1) 

Thus, inscribing and circumscribing to the circumference regular 
polygons with an increasing number of sides, indicating with pn e Pn the 
perimeters of the polygons inscribed and circumscribed respectively, with 
n sides, we have the inequality 

2 2
n np P

π< <                                               (3.2) 

where, to simplify, the radius of the circumference has been supposed 
equal to 1. 

The inequality (3.2) enables the calculation, at least in theory, of 
increasingly accurate approximations of π. In order to calculate pn e Pn you 
obviously need to know the measure of the side of the regular polygon 
with n sides inscribed and circumscribed. In broad terms, it is not easy to 
approach a similar problem in the first two year period of secondary 
school. Nevertheless, we can still reach our aim with a useful simplification 
which takes into consideration polygons of 3 2n×  n=1,2,…sides, as originally 
suggested by Archimedes. 

Archimedes in Secondary Schools
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In fact, with simple applications of Pythagoras and Euclid’s theorems 
one can demonstrate recurring formulae which are equivalent to (1.1) and 
easy to program. In more precise terms, with the use of Pythagoras’ 
theorem alone we have: 

Theorem 1 [see e.g. Costabile, 1992] - If ln (n=3,4,5,…) indicates the 
side of the regular polygon of n sides inscribed in the circumference with 
radius 1 (for convenience), then the side l2n of the regular polygon 
inscribed of 2n sides is given by: 

2
2 2 4n nl l= − −                                        (3.3) 

This recurring formula, keeping in mind that the side of the hexagon 
inscribed in the circumference is equal to the radius, enables us to calculate 
the side of the polygon of 12, 24, 48, 96,…. sides. For example we have: 

6

12

24

1

2 3

2 2 3
..............................

=

= −

= − −

l

l

l
 

As regards the side of the regular polygon of n circumscribed to the 
circumference, using Euclid and Pythagoras’ theorems we can demonstrate 
the following: 

Theorem 2 [see e.g. Costabile, 1992] - Let Ln be the side of the regular 
polygon of n sides circumscribed to the circumference with radius 1 and ln 
the side of the regular polygon with the same number of sides inscribed, 
then we have the following relation 

2

2
4

n
n

n

lL
l

=
−

                                            (3.4) 

Combining (3.3) and (3.4) we derive the inequality 

22 4
n n

n

nl nl
l

π< <
−

                                          (3.5) 

which enables us to calculate easily approximations -rounding up and 
rounding down- of π, starting from n=6 and doubling the number of sides 
at each step. The formulae (3.3) and (3.4) give the same results as formula 
(1.1), that is with the Archimedes method. We can obtain an alternative 
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(3.5) we can construct an algorithm which calculates π with a previously 
established precision; we can assume as estimate of the error:  

1 ( )
2 n nP p−  

that is                                 
2

2

2 4

2 4
n

n

n

l
nl

l

⎡ ⎤− −
⎢ ⎥
⎢ ⎥−⎣ ⎦

                                          (3.6) 

The codification in MatCos of the algorithm in question can be the 
following: 

CCooddee  MMCC44:: Archimedes’ algorithm 
n=6; L=1; eps=readnumber("desidered precision"); 
d=10; 
Execute Until (d>eps); 
   Pinf=n*L/2;  Psup=n*L/SquareRoot(4-L^2); 
   d=(Psup-Pinf); 
   n=n*2; 
   L= SquareRoot(2-SquareRoot(4-L^2)); 
   end; 
Print("for n= ",n, " the rounding down value is 
",pinf); 
Print("per n= ",n, " the rounding up value is ",psup); 
Print("Pi is comprised between ", Pinf, " and ", Psup); 

 
Assuming 310−=ε  we obtain the following values in output (Fig. 4): 

 

 
Fig. 4. Output of π with (2.6) and precision ε=10 . 

 
The precision can be increased up to 1310ε −= , thus the following 

values in output can be obtained (Fig. 5): 
 

–3

demonstration of (1.1) with trigonometric identities [see e.g. Weisstein, 
2010 – From MathWorld – A Wolfram Web]. On the chain of inequalities 

Archimedes in Secondary Schools
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Fig. 5. Output of π with (2.6) and precision ε=10 . 

 
For 1410ε −=

the algorithm or in the MatCos code, but for cause of the error of rounding 
and his propagation. This gives us the chance to introduce and investigate 
the relevant topic of the error of rounding which is due to the nature of 
numbers and the use of Finite Arithmetic. In fact, substituting the formula 
(3.3) with the other equivalent 

2
22 4

n
n

n

ll
l

=
+ −

                                       (3.7) 

the previous program (Code MC4) produces positive results also for 
1410ε −= , that is it gives 15 exact digits. 

 

 
Fig. 6. Output of π with (2.7) and precision ε=10 . 

 
 

4. EXEMPLIFICATION FOR HIGHER SECONDARY SCHOOL: 
THREE YEAR PERIOD 

 
During the three year period it is advisable to go back to the calculus of π 
after the fundamental notions of trigonometry have been acquired, as well 
as the Taylor series, if a more in depth study of error is required [see e.g. 
Costabile, 2003]. Applying the Law of Sines and well-known trigonometric 
identities, the side of the regular polygon inscribed in the circumference 
with radius 1 is: 

–13

–14

 the result we obtain is wrong, Fig. 6. This is not due to errors in 
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2sinnl n
π

=  

and thus:                            sin
2 2

n np nl n
n
π

= =                                         (4.1) 

Taking into account Taylor – McLaurin’s development of the function 
sin x  we have: 

3 51 1 .........
2 3! 5!

np n
n n n
π π π⎡ ⎤⎛ ⎞ ⎛ ⎞= − + +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
                        (4.2) 

from which    ( )2

2
np O nπ −− =                                   (4.3) 

which provides the asymptotic development of the error. Finally, keeping 

0x >  
3

sin
6
xx x> − , from (4.1) we can obtain the increase 

of the error: 
3

3

2 2 2

22
5.177

2 6 6
np

n n n
ππ

⎛ ⎞
⎜ ⎟
⎝ ⎠− < < ≈                              (4.4) 

Combining (4.1) and (4.4) we can obtain an algorithm with a-priori 
estimate of the error, which is easy to implement in MatCos since the 

sin( )α

Code MC5:
n=readnumber("number of sides of initial polygon"); 

d=10; p=n*sin(180/n); 
Execute Unitile (d>eps); 
n=n*2; 
p=n*sin(180/n); d=5.17/(n^2); 
end; 

print(" number of sides is ", n); 
print(" effective error is ", pi-p); 
print(" estimated error is ", d); 

Archimedes in Secondary Schools

eps=readnumber("required error"); 

print(" the approximated value is ", p); 

code is the following: 

Code MC5: Archimedes’ algorithm with a-priori estimate of the error 

command 

in mind that for 

 is available with α  allocated in degrees, Fig. 7. A possible
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Fig. 7. Output with n=24 assigned and precision 510ε −= . 

 
 

5. CONCLUSION 
 
The outlined process appears to reach the aims set out in the introduction. 
The suggested didactic activity is varied, with ideas ranging across different 
branches of Mathematics. Furthermore, the use of the computer within a 
programming environment on the one hand explores an interdisciplinary 
approach between Mathematics and Information Technology, while on the 
other it offers a modern approach which connects the past to the present 
and is in line with recent scientific-technological innovations. Also, the 
high educational value of programming, albeit at a simple level, in terms 
of the development of logical-rational skills, creativity, deduction and 
intuition are well-known. Finally, the themes proposed here represent the 
opportunity for an historical overview of mathematical thought, and point 
out how Archimedes can still be a master in the field of Mathematics, and 
how his genius still inspires modern science. 
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ABSTRACT Archimedes’ genius was derived in no small part from his 
ability to effortlessly interpret problems in both geometric and mechanical 
ways. We explore, in a modern context, the application of mechanical 
reasoning to geometric problem solving. The general form of this inherently 
Archimedean approach is described and it’s specific use is demonstrated 
with regard to the problem of finding the geodesics of a surface. Archimedes’ 
approach to thinking about problems may be his greatest contribution, and 
in that spirit we present some work related to teaching Archimedes’ ideas 
at an elementary level. The aim is to cultivate the same sort of creative 
problem solving employed by Archimedes, in young students with nascent 
mechanical reasoning skills. 
 
 
1. INTRODUCTION 

 
Perhaps the most unique and significant aspect of Archimedes’ genius was 
his ability to interchangeably interpret problems in both geometric and 
mechanistic contexts. This is most evident in his Method of Mechanical 
Theorems [Heath][Netz], where geometric problems were viewed through 
the lens of mechanical principles. Specifically, the law of the lever and the 
concept of center of gravity were used as conceptual tools, in conjunction 
with the idea of infinitesimals, to evaluate areas and volumes of specific 
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insight into a geometric problem. Further, it provided an intuitive way of 
acquiring an answer to a problem, which he could later formally prove by 
another method, such as the method of exhaustion. While this mechanistic 
reasoning may not have been considered by Archimedes to be sufficiently 
rigorous, as Alan Hirshfeld suggests in Eureka Man: The Life and Legacy 
of Archimedes, it would “pass muster today as an acceptable form of proof 
in mathematics” [Hirshfeld]. 

Archimedes approach of applying mechanical reasoning to mathematical 
problem solving, pioneered in the Method, continues to have relevance 
over two thousand years after his death. While the science of mechanics 
has advanced significantly since Archimedes’ study of statics, his approach 
of using mechanical metaphors to address mathematical problems has been 
highly applicable in the intervening centuries and up to the present day. Its 
philosophical legacy can be seen in, among other places, the 17th century 
mechanical philosophy of René Descartes and Pierre Gassendi [Westfall]. 
Whereas Archimedes interpreted abstract mathematical problems in terms 
of mechanical metaphors, the mechanical philosophers interpreted all 
natural phenomena in terms of hidden mechanisms. That same thematic 
thread of mechanical interpretation persists today in modern science. 

In this paper we will explore, in a modern context, the application of 
mechanical analogy to geometric problem solving. A concrete problem in 
the field of differential geometry will be addressed. While the mathematics 
and mechanics to be presented post-dates Archimedes by over two thousand 
years, the Mechanic of Syracuse is still very present in the method to be 
pursued. It is in fact this method (and his Method), spanning two millennia, 
that attest to Archimedes’ genius more so than any particular problem he 
solved. Archimedes’ approach to thinking about problems may in fact be 
his greatest contribution. 

Regarding Archimedes’ approach to solving problems, we will present 
some work related to teaching Archimedes’ ideas at an elementary level. 
The aim is to imbue an understanding of Archimedes’ ideas in a young 
audience, with the ultimate aim of cultivating the same sort of creative 
problem solving skills employed by Archimedes. Imparting an Archimedean 
approach to problem solving is particularly important at an elementary 
stage since children are already in possession of nascent mechanical reason-
ing skills (what better example of a lever is there than a playground see-saw?). 
If honed, these skills can form a template for solving more advanced 
problems throughout their educational life. 

 

geometric forms. While he did not consider this approach mathematically 
rigorous Archimedes, nevertheless, viewed it as a vital step toward gaining 
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2. MECHANICAL ANALOGS TO GEOMETRIC PROBLEMS 
 
Archimedes’ approach of applying mechanical thought devices to geometric 
problems can be viewed in a more general way than he demonstrated in 
the Method. In this view, a mechanical analog is constructed that can be 
reasoned about more intuitively than the abstract reasoning required to 
solve the original problem [Levi]. In constructing this mechanical analog a 
mechanical surrogate must be chosen that relates to the original problem 
through a binding principle. The binding principle asserts a set of truths 
about the behavior of the mechanical surrogate, that connect the surrogate 
to the original problem. As a consequence we can solve the mechanical ana-
log as way of arriving at the solution to our original problem (see Fig. 1). 
This mechanical reasoning does not need to replace geometric reasoning to 
be effective but, rather, can complement it and offer new conceptual 
insights. 

 

 
Fig. 1. The original geometric problem is re-interpreted using a mechanical analog. The 
analog is related to the original problem through a binding mechanical principle. Using 
mechanical reasoning we can solve the analog to arrive at the solution to our original 
problem.  

 
2.1. A Case Study: Finding Geodesics 

We turn our attention to the problem of computing the shortest line (curve) 
between two points on a surface. Such a line is referred to as a geodesic. 
For a given surface there is a family of geodesics that represent the shortest 
lines between any two points on the surface. This is a problem that can be 
addressed using the tools of differential geometry and, as we shall see, 
mechanics. While this problem can be formulated in any dimension we 
will focus on the case of a surface embedded in . 
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2.2. An Approach Using Differential Geometry 

In 3 dimensions geodesics can be computed by solving a set of second 
order nonlinear differential equations. If we parameterize our surface as 

, the differential equations are given by [Do Carmo], 

  (1) 

  (2) 

where the Christoffel symbols, , are found by solving the linear system, 

  (3) 

  (4) 

  (5) 

  (6) 

  (7) 

  (8) 

Equations (1) and (2) can be expressed in compact form as, 

  (9) 

 
2.3. A Mechanical Analog: Hertz’ Principle 

We will know construct a mechanical analog to the problem of finding 
geodesics on a curved surface. This approach was described in [De Sapio] 
and is considered here in the context of mechanical re-interpretation. 
Consider the case of a particle moving in 3 dimensions, ,  under 
holonomic constraints but no applied force. That is, 

  (10) 

The holonomic constraint, , restricts motion to a surface 
, where  is an implicit representation of the surface 

which is represented parametrically by . The gradient of  yields 
the constraint Jacobian matrix, . 

To connect this mechanical system to the problem of finding geodesics 
on a surface we begin by restating a little known basic axiom of classical 
mechanics, Hertz’ Principle of Least Curvature [Hertz][Lutzen]. This 
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principle is equivalent to other formulations of classical mechanics 
(Newtonian, Lagrangian, Hamilitonian, etc.) and can be derived as a special 
case of Gauss’ Principle of Least Constraint [De Sapio]. It states that 
under force-free constrained motion a system will follow the line of least 
extrinsic curvature, , on the constrained motion surface, . Further, this 
constrained minimization implies , where  denotes 
the tangent space of  at the point . We note, 

  (11) 

So, 

  (12) 

This implies that the covariant derivative, , of the tangent 
vanishes, 

  (13) 

where  denotes the projection of a vector onto the tangent space. 
The intrinsic geodesic curvature, 

  (14) 

is thus zero. This implies that under force-free constrained motion a 
system will follow geodesics (lines for which ) on the constrained 
motion surface. This is illustrated in Fig. 2. 

Since a geodesic minimizes arc length the condition of zero geodesic 
curvature is equivalent to finding a line that minimizes the action defined 
in terms of arc length. That is, 

  (15) 

subject to the constraints. Equivalently, for a system with no external 
forces this fact can be concluded from Jacobi’s form of least action 
[Goldstein] which states that, 

  (16) 
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Fig. 2. Force-free geodesics on a constrained motion surface. Force-free motion minimizes 
the extrinsic curvature, , subject to the constraints, yielding zero geodesic (intrinsic) 
curvature, .  
 
subject to the constraints. In this case the Lagrangian has been replaced by 
the kinetic energy alone (no potential energy). Since, 

  (17) 

we have, 

  (18) 

Because T is constant for this system (18) implies that arc length is 
minimized on the constrained motion surface. 

Returning to our mechanical system, the Principle of Least Curvature 
states that the particle will trace out geodesics on the constrained motion 
surface, . Thus, to find the geodesics of a surface we can solve the 
analogous mechanical system of (10). The Principle of Least Curvature 
acts as the binding mechanical principle used to re-interpret the geometric 
problem of finding geodesics (Fig. 3). 

We can recast the differential-algebraic equations of (10) as a set of 
differential equations [De Sapio]. Using the acceleration form of the con-
straint equations, , the system of (9) can be solved to 
yield the differential equations, 

  (19) 
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Fig. 3. The original problem of finding geodesics is re-interpreted using the mechanical 
analog of a particle constrained to move on a surface. Hertz’ Principle of Least Curvature 
acts as the binding principle. 

 
or, incorporating constraint stabilization [De Sapio], 

  (20) 

Thus, (20) represents a set of mechanically derived equations that can 
be solved, in the same manner that the geodesic equations of (9) can be 
solved, to compute geodesics for a surface. Equation (20) is not limited to 

 and can be used to compute geodesics in . 
An Example 
We can apply (20) to the problem of computing geodesics for the 

surface, 

  (21) 

The constraint Jacobian is computed directly from  as, 

  (22) 

and (20) yields a system of 3 second order nonlinear differential equations 
in x, y, and z, 

  (23) 

Specifying the point  as one initial con-
dition we can solve (23) using different departure directions, . 
The resulting geodesics are shown in Fig. 4. It is noted that the specific 
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time parameterization used does not affect the shape of the curves, only the 
speed at which they are traversed. Therefore, only the direction (not the 
magnitude) of the initial velocity dictates the curve. 
 

 
Fig. 4. Solving the system of (20), force-free geodesics were computed for a surface (21). 
All geodesics were chosen to emanate from a single point. 
 
 
3. TEACHING ARCHIMEDES AT AN ELEMENTARY LEVEL 

 
Having exercised, at a fairly advanced level, the Archimedean approach of 
applying mechanical reasoning to geometric problems, it is worthwhile to 
take a step back and approach Archimedes’ ideas at an elementary level. 
Addressing a young audience affords the opportunity to begin cultivating 
problem solving through mechanical reasoning. This methodology, when 
introduced at a young age, can form a framework for effective problem 
solving in mathematics and science through later more advanced stages of 
educational development. 

3.1. Children and Movement 

Children have an intuitive understanding of movement. The toys of today 
push sand out of sandboxes, lift stuffed animals out of glass cages at fairs, 
and fancy see-saws grace the playgrounds of schools worldwide. Children 
are familiar with catapults, slingshots, and the way in which a bow and 
arrow projects items into the air with force and speed. On a daily basis 
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students witness how a swing set can transfer movement depending on the 
push it receives from a helping hand. How better to study the basic principles 
of Archimedes then to begin by teaching children his rudimentary ideas in 
their mechanical context? 
 
3.2. The Archimedes Study at Sleepy Hollow School 

Located in Orinda, California, Sleepy Hollow School, is one of the highest 
performing elementary schools in the state of California. According to the 
school’s accountability report card in 2007, 96% of the students scored 
advanced on the mathematics state standardized test (STAR) and 94% of 
the students scored advanced on the science STAR test. Sleepy Hollow 
participates in a diversified teaching program where the students’ own 
level is assessed and their needs are addressed weekly in a targeted teach-
ing math group.  

In a project open to fourth grade students, teachers encouraged specific 
students to participate in a hands-on project focussed on learning about 
Archimedes. Three candidate students who achieved advanced scores on 
the state math and science tests and demonstrated an eagerness to learn 
were chosen. The three girls each demonstrated critical thinking skills during 
interviews. According to the faculty coordinator, “All of these young 
ladies spoke with confidence, but also with a desire to find out more. Each 
wanted to know the whys and the hows behind Archimedes’ ideas and 
inventions”.  

The three students participated in athletics and possessed an under-
standing of the basic concepts of movement, force, resistance, and balance. 
Additionally, each student scored above 85% on a short number sense test, 
demonstrating that they had sufficient skills and schema necessary to make 
logical reflections. They also scored at an advanced level on their 2008 
third grade mathematics state exam. Each student participates in a weekly 
extension math group for accelerated students. Moreover, given a chance 
to challenge themselves each of them eagerly volunteered for the study, 
were willing to do additional work, and expressed an enthusiasm for 
collaborating with each other. 

Using the mentor text Archimedes and the Door of Science by Jeanne 
Bendick the children first learned who Archimedes was [Bendick]. They 
were fascinated that Archimedes grew up in a world with no concept of 
zero! His world was one of constant discovery and discussion; so much 
had not yet been established. The children began to relate to his creativity 
and desire to discover things. Using Bendick’s book the children reviewed 
some of his most notable discoveries. He pioneered the science of mechanics 
and hydrostatics, introduced the laws of levers and pulleys, the principal of 
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buoyancy, and the principal of specific gravity. Most notably, they learned 
that Archimedes gave the world a logical way to think about mathematics. 
Keeping this in mind the students and faculty coordinator decided to model 
their investigations after Archimedes’ exploratory style.  They would read, 
learn, and then try to logically relate the information to their day-to-day life.  

Using Bendick’s text as a guide the students reviewed Archimedes’ 
contributions to the study of motion. In a chapter dedicated to the Archi-
medean screw, the text and diagrams provided ample explanation of how 
Archimedes moved water from the ground to arid places. In the discussions 
the students were asked, “Why was this invention necessary?” and “How 
does this invention demonstrate movement?”. The students’ answers 
demonstrated a practical understanding: “This is useful because everyone, 
whether living on desert lands or on good soil, get to have access to the 
water”. 

The investigation of the Archimedean screw related directly to an 
independent classroom study on the Cahuila tribe of California Indians 
who used similar innovative techniques to irrigate their land. This pro-
voked thoughtful conversation on the development of technological ideas 
in geographically and culturally diverse civilizations. One student observed 
that, “This is like the Cahuila Tribe, they also had to move water to grow 
food”. Another student made an observation relating to the modern world, 
“It’s almost like sprinklers”. It was also noted that, “The screw is useful 
because it gets the right amount of water you want to your land … you can 
spin it fast to get a lot, or spin it slow for a little”. 

The students then focused on Archimedes’ investigation of the lever. 
They learned that Archimedes began to experiment with force and machinery, 
and that he used a pulley to reign in a ship for King Hiero of Syracuse. The 
concept of a machine as any device that helps one do work more easily 
was emphasized, as was the notion that a lever is a machine that allows a 
person to multiply their force. This was intriguing to the students. Bendick’s 
illustrations of first, second, and third class levers helped communicate the 
function of levers in daily use. One student wrote in her journal that levers 
are important because “you can shift weight, do work, and understand 
movement”. Each student learned the term “fulcrum” and realized that 
balance, resistance, force, and work affect the way in which things move.  

More significant than appreciating individual inventions the students 
reflected on Archimedes’ ability as a critical thinker and role-model for his 
peers. One student wrote, “He took an idea and put it into a machine. By 
understanding how one machine worked he was able to learn about others”. 
Another wrote, “He took one idea and made others. By understanding how 
motion worked he could make other machines”. These observations echo 
the thoughtful analysis that Archimedes encouraged during his life.  
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The final part of the Archimedes project involved reasoning about geo-
metry. The students at this level understand the concepts of perimeter and 
area for simple shapes like rectangles, however, they have not yet learned 
about the perimeter and area of circles. Using the method of exhaustion, 
applied at a simple level, they could reason about the area of a circle and 
approximate it with no a priori knowledge of the formula or of . They 
were shown how a circle of radius  fits neatly between an inscribed square 
and a circumscribed square (see Fig. 5).  

 

 
Fig. 5. Approximating the area of a circle by examining an inscribed square and a circum-
scribed square. 

 
They easily knew how to compute the area of the circumscribed square 

in this example. Familiar with the Pythagorean theorem they were able, 
with a little more effort, to compute the area of the inscribed square. They 
understood that the area of the circle had to be somewhere in between the 
areas of the two squares, or that, . With the area of the 
small square being  and the area of the large square being , they 
guessed that the area of the circle was . They were impressed with how 
close their approximation was when they were told that the actual answer 
was , and that  is a special number that is approximately . With a 
little help they could see how even better approximations could be made 
by using polygons with more sides. 

The students were then introduced to thinking about geometric problems 
using mechanical devices. This connected Archimedes’ mechanical ideas 
with his geometric ideas. When considering the volume of a sphere they 
immediately suggested using the idea of exhaustion, but with inscribed and 
circumscribed boxes. They were then presented with the problem whose 
solution Archimedes was very proud of, the sphere inside a cylinder. They 
were asked, “How much bigger is the cylinder than the sphere?”.  

To answer this question they were instructed to think about Archimedes’ 
lever. They knew that another name for it was a balance and that it could 
compare the weight of two objects; “if one object was twice as heavy as 
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another it would balance at half the distance to the fulcrum as the other 
object”. Using a balance with adjustable lever arms they experimented 
with wooden blocks of different shapes and sizes and adjusted the lever 
arms to get them to balance. They know that objects with shorter lever 
arms were “heavier by that same amount”. By making carefully measured 
clay models of a sphere and cylinder and by adjusting the lever arms they 
guessed that a cylinder is 1½ times as big as the sphere that sits inside it 
(see Fig. 6). They were reminded that the materials that the objects were 
made of needed to be the same, since a “small object made of something 
heavy could weigh more than a big object made of something light”. 

 
 

 
Fig. 6. Comparing the volumes of a cylinder and an inscribed sphere. The concept of the 
lever provided an intuitive way of reasoning about volumes.  
 
 
4. CONCLUSION 

 
The Archimedean approach of mechanical reasoning, as an aid to problem 
solving, has been our central theme in this paper. Archimedes’ use of this 
technique in his Method of Mechanical Theorems is one of his most 
fundamental contributions. It is of vast utility in addressing modern problems 
over two millennia after Archimedes’ time. We have described its general 

V. De Sapio and R. De Sapio 



505 

  

form and demonstrated its specific use with regard to the problem of 
finding the geodesics of a surface. The Principle of Least Curvature was 
used to re-interpret the geometric problem as a mechanical problem. 

Mechanical reasoning in mathematical problem solving, with its ancestry 
in Archimedes’ Method, complements mathematical reasoning and offers 
new intuitions and insights into abstract problems. It is a technique that, as 
Mark Levi [Levi] observes, “was responsible for some fundamental mathe-
matical discoveries from Archimedes, to Riemann, to Poincare, up to the 
present day”. However, as is also noted this initial intuitive reasoning tends 
to be forgotten and “students are often unaware of the intuitive foundations 
of subjects they study”.  

While this is unfortunate there is constantly the opportunity to introduce 
an Archimedean approach to problem solving to students at an early age. 
In this spirit, we have presented work with elementary school students that 
was aimed at teaching some of Archimedes’ fundamental mechanical 
ideas. It is hoped that with an early introduction to Archimedes’ ideas into 
the educational system, students can embrace and practice an intuitive 
approach to problem solving that will be preserved well into the future. 
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ABSTRACT The conquest of Syracuse, which to begin with the Romans 
expected to lead to a speedy victory, soon turned into a long hard war 
thanks to Archimede’s extraordinary military defence machines. During 
the war the scientist was killed - probably by mistake - by a Roman soldier 
who infringed Marcello’s orders. The author analyses historical sources 
and outlines some discrepancies that give a totally different reading of the 
events, a reading more in agreement with Roman politics. 

 
 
1. INTRODUCTION  
 
Was it a tragic mistake or a state-sponsored assassination? The flow of 
historical events seems to lead inevitably towards this fatal outcome: the 
death of Archimedes and the conquest of Syracuse. 

This single tragic event actually heralded what was to be a change in 
direction in Roman politics, one which involved the legacy of the Greek 
world of which Archimedes appeared to be a “pivotal point” or a “nerve 
centre” for this fundamental transition.   

How did Rome contend with this legacy? How did it assess the figure 
of Archimedes who seems to have been the quintessence of Hellenistic 
civilisation?   

With hindsight, a reconstruction of the events seems to generate causes 
and effects which certainly did not seem to be so carefully thought out and 
planned when they occurred, even if they responded to an ideology of 
conquest and power, directed and predetermined. 

If a reconstruction of the events is carried out on the basis of all the 
documents at our disposal, primarily the account of the events given by 
historians, the truth should emerge. However, there are some crucial points 
in the narration about which these historians seem to disagree and of which 
they give different versions, though they appear to agree on everything 
else. 
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And this, we know, is a sign of falsehood, designed to hide feelings of 
guilt. 

1.1. The Bibliographic Sources  

But why the falsehood and what guilt?   
The accounts of the death of Archimedes given by Greek and Roman 

historians are those in Latin by Cicero, Livy, Silius Italicus, Valerius 
Maximus and Pliny the elder and in Greek by Plutarch, while the relative 
passage, again in Greek, by Polybius is full of gaps.   

Cicero tells us in De finibus that Archimedes was so passionately 
dedicated to his studies that, concentrating on tracing signs in the dust, he 
did not notice that his country had been conquered. Then in In Verrem he 
says that when the consul Marcellus was informed that Archimedes had 
been killed, he was filled with sadness and arranged for his burial, seeking 
out his relatives, honouring them and giving them assistance.   

Livy too presents him as being intent on tracing geometrical figures in 
the sand, saying that he was killed by a Roman soldier who did not know 
who he was. He even mentions how troubled and upset Marcellus was, 
“supermoleste tulisset” (he had borne it with the greatest difficulty) when 
he learnt what had happened and also how the consul arranged the funeral 
and helped his relatives (all details that reinforce and add plausibility to the 
idea that he had meant to allow the scientist to be spared).   

Silius Italicus also underlines the fact that Archimedes was killed by a 
soldier who was unaware of his identity “while he was intent on studying 
geometrical figures traced in the sand, not at all disturbed by the terrible 
ruin of the city”. Valerius Maximus illustrates his account with important 
details, pointing out that Marcellus had ordered Archimedes life to be 
spared, fascinated as he was by his genius, even if he was aware that the 
victory had been delayed by his “machinations”. However, the crazed 
greed of a soldier who violently broke into the house of the scientist while 
he was intent on tracing figures on the ground meant that instead of obey-
ing the order to give his name “quisnam esset interrogabat”, Archimedes 
expressed his desire to protect his drawing, at which point, “contrary to the 
orders of the victor” he was killed.   

Pliny the elder also notes that when Syracuse was taken, Marcellus 
“had ordered that only one should be spared”, Archimedes, “and that the 
mean ‘imprudentia’ of a Roman soldier meant that the order was given in 
vain”.   

Plutarch goes even further in three versions of the death of the scientist. 
In the first of these, Archimedes seems so immersed in solving a problem 
that he does not notice the conquest of the city. When the Roman solder 
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appears and demands that he follow him, Archimedes asks him to be 
“patient” and wait because he does not want to leave what he is studying 
incomplete without proof: so the soldier, overcome by anger, ran him 
through. In the second version everything happens more rapidly because 
the soldier appears with his sword unsheathed and following the same 
sequence of questions and answers, becomes angry and stabs him. In the 
third, however, there are a number of soldiers who meet him “while he was 
carrying in a chest to Marcellus” one of his scientific instruments made up 
of dials, spheres and quadrants with which the size of the sun could be 
measured. Believing that he was carrying gold, they killed him for plunder.   

Plutarch concludes his versions, however, by saying that “all the 
historians agree in saying that Marcellus was greatly aggrieved by the 
death of Archimedes and refused to look upon his killer, as if it were 
sacrilege; having found his relatives, he honoured them”.   

1.2. The Absent-minded Scientist  

The accounts given so far by Roman sources and supporters of Rome need 
to be examined together as a whole in order to underline a few essential 
facts: firstly, that concerning the consul Marcellus who shows integrity and 
prudence with his order to save Archimedes and his subsequent desire to 
honour his memory. Another fact concerns the conventional image of the 
scientist who goes down in history with a very powerful iconography as a 
person shut up in an inner world which totally cuts him off from reality to 
the extent that he is so preoccupied that he fails to notice the conquest of 
the city. The third element highlights the figure of the Roman soldier: the 
descriptions first of his foolishness and subsequently of his coarseness and 
brutal desire for conquest become increasingly negative. All these accounts 
end with the sorrow of Marcellus at the destruction of the Greek metropolis, 
sorrow made even more intense and grievous by the unexpected killing of 
the scientist.   

Was this suffering real? There are those who, ever since, have rightly 
questioned the truthfulness of the accounts, above all the order to spare 
Archimedes, which was so lightly disobeyed by the Roman soldier, how-
ever uncouth and carried away by events he may have been. (In one 
version – that of Tzetzes – it is said that Marcellus immediately grabbed an 
axe and killed the offender.)   

How were the orders given? What description of Archimedes was 
given to the troops? Surely they should have been able to recognise him 
even at a some distance, when his appearance alone made people quiver 
and shake!   
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What soldier, however stupid and uncouth, would have vented his 
anger on an old man meditating over drawings and diagrams, without 
hesitation and contrary to precise orders from the consul? And shouldn’t 
these orders have been to spare precisely an old man meditating over 
drawings and diagrams? And if he had been captured would Archimedes 
have been forced to follow the victor’s triumphant procession as a 
magnificent prize from Syracuse and would his genius have been put at the 
service of the Roman senate and people? Is all this plausible?   

We obviously incline towards the idea that it was highly improbable, 
since we can imagine the peremptory nature of military orders and the fear 
of disobeying them.   

And even if, despite this, the soldier were a complete imbecile, how is 
it possible that Archimedes was also oblivious to reality?   

And what about what was said elsewhere? Has it been forgotten that 
he and he alone was the heart of the defence, a Briareus with a hundred 
arms, one capable of the impossible, one who had transformed what should 
have been a quick victory into a dreadful defeat and exhausting siege? 
When all is considered with everything that came into play, the violence, 
cunning and betrayal, wasn’t Archimedes himself the real objective that 
had to be struck down?   

If there was only one verdict of the Roman senate on Carthage, one 
without appeal, “Delenda Carthago” (Destroy Carthage), what must have 
been decided for Syracuse, an enemy for too short a time to be defined an 
arch-enemy, but whose unexpected resistance and above all its unexpected 
capacity for resistance demonstrated by Archimedes was in reality the only 
real obstacle to Rome’s political plans in Sicily, solidly based on the 
conquest of territory and therefore of land to be exploited for the good of 
the senate and the Roman people according to Roman law? And let us 
remember that with the fall of Syracuse, once Archimedes was dead, Sicily 
was to become the first province of Rome.   

We have seen much of an anecdotal nature wrapped around little 
nuggets of truth. The various layers of the original accounts overlap and 
are channelled into the conventions of the narrative style of contemporary 
writers or writers that came immediately after them, and so the account is 
added to and embroidered with those details that were introduced and 
codified in the form of a plausible and decorous narration.   

Livy, Valerius Maximus, Silius Italicus and Plutarch all underline the 
same characteristic in Archimedes which divorces him from reality. 
Biographies will also have been written of Archimedes at the time and we 
know from Eutocius of Ascalon, who wrote a commentary on Archimede’s 
Quadrature of the Circle, that his contemporary Heraclides did write his 
biography.   
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In reality what is noticed is the traditional and cultural attitude of the 
Romans to the killing of Archimedes, for which Rome was responsible, 
however it happened. The obfuscation of the facts and their “correction” is 
only found on some points that thus become a clear gauge of the mechanism.  

What is the justification for that stereotype pushed to the point that it 
becomes a bizarre caricature, that of the scientist totally divorced from 
reality, while at the same time he is seen as being “concretely” and “fully” 
involved in the defence of the city, and therefore appears as a person to be 
feared and certainly not harmless? How then could the story of Archimedes’ 
death be told, if not by taking a step back from it and inventing a vile 
person on whom to lay the blame and on whom the loathing and regret of 
right-minded people might be poured?   

One has the impression that the pretence of respect for Archimedes’ 
greatness arises more from his fame, already established and unexpectedly 
experienced by the Romans themselves, than from any appreciation of the 
scientific contribution of this Syracusan.   

In this perspective, it can also be understood why virtually no mention 
is made of his most sensational feat, that of burning the ships with mirrors, 
because it was indisputable proof that science could actually have practical 
applications.   

1.3. A State Murder   

What we have here is a grievous crime which pro-Roman sources recount 
in a misleading manner to hide the real facts with the aim of justifying the 
crime or embroidering on it to cover up the true, decidedly political, res-
ponsibilities. They invented and exploited the convenient image of a genius 
divorced from reality, immersed in the lofty thoughts of an investigator 
and thinker. This perspective pushes into the background his almost legendary 
role as the heart of the defence of Syracuse with his fearful inventions 
against which no effective counter-action could be found. It was inevitable 
that if victory were to be won, such an enemy had to be eliminated.   

Then as now, “state-sponsored assassination” went hand-in-hand with 
a state funeral: great emphasis is given to the description of Marcellus’ 
grief along with the decision, reported by the sources, to fully honour his 
death in an official way. This detail undoubtedly reflects the reality of 
what happened, a hypocritical touch to the carefully contrived falsehood of 
a tragic death at the hand of a brutal soldier.   

The state-sponsored assassination was cleverly camouflaged as an 
accident and the way it happened was reported with shrewd realistic details 
supported by the account of the only thing which we believe really occurred, 
the state funeral. This was reported truthfully, as it really was grandiose 
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and monumental, but it is emphasised in such a way as to cover up the 
tragic truth which they wanted to hide.   

We are therefore looking at a “version” of the death of Archimedes, 
knowingly given the official seal where political strategy is concerned but 
unknowingly accepted by the scientific world. For the latter, however, it 
creates and in fact establishes for the future expectations of what science 
should be: pure speculation and theory, divorced from any practical 
application.   

1.4. An Alternative Story  

In order to gain a better grasp of the facts and to reinforce and give credit 
to what is not just a suspicion aroused by the lack of perfect agreement 
between the accounts compared, it is worth examining a source which 
presents a version that is again different and which we might define as 
sympathetic to Carthage.   

This source is Cassius Dio, who provides the basis for Zonaras’ and 
Tzetzes’ extracts. Cassius Dio, like Diodorus Siculus, according to Tzetzes, 
told the story of Archimedes’ death. Now Dio’s source was Coelius Antipater 
who lived close to the time in which the events he narrated occurred and 
he in turn based his account on those of writers who supported the 
Carthaginians, writers such as Silenus of Calacte, the author of a history of 
Hannibal or other biographers of the time such as Sosilus who was the 
Carthaginian general’s tutor.   

In this version, which we know about thanks to the summaries of 
Tzetzes and Zonaras, we are given a few details, which initially hardly 
seem important, but stand out against what is basically the same back-
ground. They concern the attitude of Archimedes at the moment in which 
the city is conquered and therefore at the moment of his death. In these 
desperate moments, surprised by a soldier in his house, Archimedes is said 
to have exclaimed in anger, “My head, but not my drawing!” and the 
advancing enemy soldier then told him to move away from the drawing, 
after which he was killed.   

The account in Tzetzes follows the same format up to the point where 
the soldier tells him to move away from the drawing, but then adds  
that having realised that this was a Roman, Archimedes started to shout, 
“Somebody give me one of my machines”, clearly to defend himself by 
striking the enemy who had dared to confront him. Then he was killed.   

Tzetzes adds that Marcellus’ wept and perhaps killed the assassin 
himself with an axe and then arranged for an illustrious funeral to be held 
for the scientist, who was buried among the tombs of his countrymen with 
full funeral rites.   
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This offers us a different vision of Archimedes, this time angry, still 
immersed in defence projects, and ready to take material action against the 
enemy.   

It is in this version that we see a plausible account of the man who was 
solely responsible for the strenuous defence of the city, whose action, 
effective to the end, and hardly absent minded, could only have been 
reported by “non aligned” sources, who had acquired their material from 
elsewhere.   

 
 

2. CONCLUSION  
 

A reanalysis of the literary sources forces one to reflect deeply on the 

Archimedes. That which appears to have been a state-sponsored assassination 
resulted not only in the death of an indomitable enemy of Rome and the 
end of the power of Syracuse itself, it also represented a serious blow to 
the progress of science which, with the work of the great Syracusan, had 
reached one of the highest peaks in its development.   
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