
141A.J. Heppenstall et al. (eds.), Agent-Based Models of Geographical Systems, 
DOI 10.1007/978-90-481-8927-4_8, © Springer Science+Business Media B.V. 2012

  Abstract   This chapter discusses the process of designing and building an 
 agent-based model, and suggests a set of steps to follow when using agent-based 
modelling as a research method. It starts with defi ning agent-based modelling and 
discusses its main concepts, and then it discusses how to design agents using 
different architectures. The chapter also suggests a standardized process consisting 
of a sequence of steps to develop agent-based models for social science research, 
and provides examples to illustrate this process.      

    8.1   What Is Agent-Based Modelling? 

 Agent-based modelling is a  computational  method that enables a researcher to  create, 
analyze, and  experiment  with  models  composed of  agents  that interact within an 
 environment . Let us shed some light on the core terms italicized in this defi nition. 

 A  model  is a simplified representation of a “target” system that expresses 
as clearly as possible the way in which (one believes) that system operates. 
This  representation can take several forms. For example, in mathematical and 
 statistical  modelling, the model is a set of equations (e.g., a regression equation). 
A graphical network of nodes and edges can model a set of friendships. 
 Computational  methods, such as agent-based modelling, involve building 
models that are computer programs. The program (i.e., the model) represents 

    M.   Abdou   (*)
     Department of Social Science Computing, Faculty of Economics and Political Science , 
 Cairo University ,   Cairo ,  Egypt    
e-mail:  moabdou71@yahoo.com 

      L.   Hamill   •     N.   Gilbert  
     CRESS, Department of Sociology ,  University of Surrey ,   Guildford ,  UK    
e-mail:  lynne.hamill@surrey.ac.uk; n.gilbert@surrey.ac.uk   

    Chapter 8   
 Designing and Building    an Agent-Based Model       

       Mohamed   Abdou      ,    Lynne   Hamill,       and    Nigel   Gilbert         



142 M. Abdou et al.

the processes that are thought to exist in the social world (Macy and Willer  2002  ) . 
For example, we might build a model to study how friends (“agents”) infl uence 
each other’s purchasing choices. Such processes are not easy to represent using 
mathematical equations because what one agent buys will infl uence the purchasing 
of a friend, and what a friend buys will infl uence the fi rst agent. This kind of 
mutual reinforcement is relatively easy to model using agent-based modelling. 

 Another advantage of agent-based modelling when doing social research is 
that it enables a researcher to use the model to do  experiments . Unlike natural 
sciences, such as physics and chemistry, conducting experiments on the real 
system (people for example) is impossible or undesirable. Using a computer 
model, an experiment can be set up many times using a range of parameters. 
The idea of experimenting on models rather than on the real system is not novel. 
For example, it is a better idea to use a model of an aeroplane to test fl ying under 
various conditions than to use a real aircraft (where the cost of experimentation 
is very high). 

 Agent-based models (ABMs) consist of  agents  that interact within an  environ-
ment . Agents themselves are distinct parts of a program that represent social actors 
(e.g., persons, organizations such as political parties, or even nation-states). They 
are programmed to react to the computational environment in which they are 
located, where this environment is a model of the real environment in which the 
social actors operate. 

 In the following, we present two simple examples of ABMs, Sugarscape and 
Schelling’s model of residential segregation, to illustrate the main concepts of agent-
based modelling used in the remaining sections of this chapter. A general introduction 
to agent-based modelling is presented in Crooks and Heppenstall  (  2012  ) . 

    8.1.1   Sugarscape 

 Sugarscape (Epstein and Axtell  1996  )  is a simple example of an ABM that yields a 
range of interesting results about the distribution of wealth in a society. The model 
represents an artifi cial society in which agents move over a 50 × 50 cell grid. Each 
cell has a gradually renewable quantity of ‘sugar’, which the agent located at that 
cell can eat. However, the amount of sugar at each location varies. Agents have to 
consume sugar in order to survive. If they harvest more sugar than they need imme-
diately, they can save it and eat it later (or, in more complex  variants of the model, 
can trade it with other agents). Agents can look to the north, south, east and west of 
their current locations and can see a distance which varies randomly, so that some 
agents can see many cells away while others can only see adjacent cells. 

 Agents move in search of sugar according to the rule: look for the unoccupied 
cell that has the highest available sugar level within the limits of one’s vision, and 
move there. Agents not only differ in the distance they can see, but also in their 
‘metabolic rate’, the rate at which they use sugar. If their sugar level ever drops to 
zero, they die. New agents replace the dead ones with a random initial allocation 



1438 Designing and Building    an Agent-Based Model

of sugar. Thus there is an element of the ‘survival of the fi ttest’ in the model, since 
those agents that are relatively unsuited to the environment because they have 
high metabolic rates, poor vision, or are in places where there is little sugar for 
harvesting, die relatively quickly of starvation. However, even successful agents 
die after they have achieved their maximum lifespan, set according to a uniform 
random distribution. 

 Epstein and Axtell  (  1996  )  present a series of elaborations of this basic model in 
order to illustrate a variety of features of societies. The basic model shows that even 
if agents start with an approximately symmetrical distribution of wealth (the amount 
of sugar each agent has stored), a strongly skewed wealth distribution soon develops. 
This is because a few relatively well-endowed agents are able to accumulate more 
and more sugar, while the majority only barely survive or die.  

    8.1.2   Schelling’s Model of Residential Segregation 

 Another simple example is Schelling’s model of residential segregation  (  1971  ) . 
Schelling was interested in the phenomenon of racial residential segregation in 
American cities, and he aimed to explain how segregation could happen, and how 
these segregationist residential structures, such as ghettos, may occur spontane-
ously, even if people are relatively tolerant towards other ethnic groups, and even 
when they are happy with being a minority in their neighbourhoods. 

 A city in Schelling’s model is represented by a square grid of cells each repre-
senting a dwelling. A cell can be in any of three colours: white, black, or grey 
according to whether it is occupied by a white agent, a black agent, or is empty. 
The simulation starts by randomly distributing the agents over the grid. Schelling 
supposed that people have a ‘threshold of tolerance’ of other ethnic groups. That 
means that agents are ‘content’ to stay in their neighbourhood as long as the 
proportion of their neighbours (which are the eight cells to the north, north-east, 
east, south-east, south, south-west, west and north-west) of the same colour as 
themselves is not less than this threshold. For example, with 50% threshold of 
tolerance, agents would be happy to stay in place as long as at least four of their 
eight  neighbours are of the same colour; otherwise, they try to move to another 
 neighbourhood satisfying this proportion. 

 Figure  8.1  shows the result of the simulation with 2,000 agents. The upper-
left panel shows the starting random allocation of black and white agents over 
the grid, and the other three panels show the fi nal confi gurations after running the 
simulation with tolerance thresholds of 37.5% (at least three of an agent’s eight 
neighbours must be of the same colour for the agent to be content), 50% 
(four of eight), and 75% (six of eight). Clustering emerges even when agents 
are happy to be a minority in their neighbourhood (with 37.5% threshold), and 
the sizes of these emergent clusters increase with increasing levels of tolerance 
threshold.  

 In the following, we discuss the core concepts of “agents” and their “ environment” 
in more detail.   



144 M. Abdou et al.

    8.2   Agents 

 Applied to social science research, the concept of agency is usually used to indicate 
the purposive nature of human activity. It is thus related to concepts such as inten-
tionality, free will, and the power to achieve one’s goals. In agent-based modelling, 
agents are conventionally described as having four important characteristics:

    • Perception . Agents can perceive their environment, including other agents in 
their vicinity. In the Sugarscape model, for example, agents can perceive the 
amount of sugar the current cell has.  
   • Performance : They have a set of behaviours that they are capable of performing 
such as moving, communicating with other agents, and interacting with the 
environment. In the Sugarscape model, they move and consume sugar.  

  Fig. 8.1    The result of the simulation of the Schelling model       

 



1458 Designing and Building    an Agent-Based Model

   • Memory.  Agents have a memory in which they record their previous states and 
actions.  
   • Policy . They have a set of rules, heuristics or strategies that determine, given 
their present situation and their history, what they should do next, e.g. looking for 
cells with the highest level of sugar.    

 Agents with these features can be implemented in many different ways. Different 
architectures (i.e. designs) have merits depending on the purpose of the simulation. 
Nevertheless, every agent design has to include mechanisms for receiving input 
from the environment, for storing a history of previous inputs and actions, for 
devising what to do next, for carrying out actions and for distributing outputs. In the 
following, we describe three common approaches to agent architecture: using an 
object-oriented programming language directly, using a production rule system, and 
using learning approaches. 

    8.2.1   Object-Oriented Programming 

 The idea of object-oriented programming (OOP) is crucial to agent-based model-
ling, which is why almost all ABMs are built using an OOP language, such as 
Java, C++, or Visual Basic. A program developed in an OOP language typically 
consists of a collection of  objects . An object is able to store data in its own 
 attributes,  and has  methods  that determine how it processes these data and interacts 
with other objects. As you might have noticed, there is an affi nity between the idea 
of an agent and an object; it is natural to program each agent as an object. 

 The concept of ‘class’ is basic to OOP. A class is an abstract specifi cation of an 
object. For example, a program might include a class called “Customer” to 
represent a customer of a firm in a model of business. A Customer might have 
a set of attributes such as name, address, and types of product (s)he likes. In the 
Sugarscape model, we can create a class named “Agent” with attributes such as 
 age ,  wealth  (the amount of sugar),  life-expectancy  (the maximum age that can be 
reached),   metabolism  (how much sugar an agent eats each time period), and  vision  
(how many cells ahead an agent can see). A class also usually has some methods to 
describe its activities (e.g., move, eat sugar, save and die). 

 As the program runs, classes are  instantiated  to form objects. For example, the 
Customer class might be instantiated to yield two objects representing two 
customers: the fi rst with name John Smith and the other with name Sara Jones 
(along with their other attributes). Although the two customers have the same 
methods and the same set of attributes, the values of their attributes (e.g., their 
names and addresses) differ. 

 When using OOP to design an ABM, one creates a class for each type of agent, 
provides attributes that retain the agents’ past current state ( memory ), and adds 
suitable methods that observe the agents’ environment ( perception ) and carry out 
agent actions ( performance ) according to some rules ( policy ). In addition, one needs 



146 M. Abdou et al.

to program a scheduler that instantiates the required number of agents at the 
beginning of the simulation and gives each of them a turn to act.  

    8.2.2   Production Systems    

 One of the simplest, yet effective, designs for an agent is to use a production system. 
A production system has three components:

    1.     A Set of Rules of Behaviour . These rules determine what an agent will do. 
Usually, a rule consists of two parts: a condition, which specifi es when the rule 
is to be executed (‘fi re’), and an action part, which determines what is to be the 
consequence of the rule fi ring. Example of rules in Sugarscape include:

   IF there is any sugar at the current cell, THEN eat it;  • 
  IF  • sugar level  of the current cell exceeds  metabolism,  THEN add the extra 
sugar to  wealth;  and  
  IF age exceeds  • life-expectancy,  THEN die .      

    2.     A Working Memory . An agent’s memory is represented by variables that store its 
current or previous states. For example, an agent’s memory might store its current 
location and wealth (the amount of sugar). Rules can include actions that insert 
facts into the working memory (e.g. I am holding some sugar) or conditions that 
test the state of the working memory (e.g. IF I am holding sugar, THEN eat it).  

    3.     A Rule Interpreter . The rule interpreter considers each rule in turn, fi res those for 
which the condition is true, performs the indicated actions for the rules that have 
fi red, and repeats this cycle indefi nitely. Different rules may fi re on each cycle 
either because the immediate environment has changed or because one rule has 
modifi ed the working memory in such a way that a new rule begins to fi re.     

 Using a production system, it is relatively easy to build reactive agents that 
respond to each stimulus from the environment with some action. A simple pro-
duction system can be constructed from a toolkit such as JESS (the Java Expert 
System Shell,   http://www.jessrules.com/    ) (Friedman-Hill  2003  ) . There are also 
some much more elaborate systems that are based on psychologically plausible 
models of human cognition, such as Soar (Laird et al.  1987 ; Wray and Jones  2006 ; 
Ye and Carley  1995  ) , CLARION (Sun  2006  ) , and ACT-R (Taatgen et al.  2006  ) .  

    8.2.3   Learning 

 Production-system-based agents have the potential to learn about their environment 
and about other agents through adding to the knowledge held in their working 
memories. The agents’ rules themselves, however, always remain unchanged. For 
some models, it is desirable to create agents that are capable of more fundamental 



1478 Designing and Building    an Agent-Based Model

learning: where the internal structure and processing of the agents adapt to 
changing circumstances. There are two techniques commonly used for this: 
 artifi cial neural networks (ANNs)  and evolutionary algorithms such as the  genetic 
algorithm (GA) . 

 ANNs are inspired by analogy to nerve connections in the brain. An ANN 
consists of three or more layers of neurons, with each neuron connected to all other 
neurons in the adjacent layers. The fi rst layer accepts input from the environment, 
processes it and passes it on to the next layer. The signal is transmitted through 
the layers until it emerges at the output layer. Each neuron accepts inputs from the 
preceding layer, adjusts the inputs by positive or negative weights, sums them and 
transmits the signal onward. Using an algorithm called the  back propagation of 
error , the network can be tuned so that each pattern of inputs gives rise to a different 
pattern of outputs. This is done by training the network against known examples 
and adjusting the weights until it generates the desired outputs (Garson  1998  ) . Using 
ANNs, it is possible to design agents and train them to identify objects such as 
letters or words, or recognize voices and pictures. 

 In contrast to a production system, an ANN can modify its responses to stimuli 
in the light of its experience. A number of network topologies have been used to 
model agents so that they are able to learn from their actions and the responses of 
other agents (e.g. Hutchins and Hazlehurst  1995 ; Terna  1997  ) . 

 Another way of enabling an agent to learn is to use an evolutionary algorithm. 
These are also based on a biological analogy, drawing on the theory of evolution by 
natural selection. The most common is the genetic algorithm (GA). This works with 
a population of individuals (agents), each of which has some measurable degree of 
‘fi tness’, using a metric defi ned by the model builder. The fi ttest individuals are 
‘reproduced’ by breeding them with other fi t individuals to produce new offspring 
that share some features taken from each parent. Breeding continues through many 
generations, with the result that the average fi tness of the population increases as the 
population adapts to its environment. 

 Sometimes, it is desirable to use both techniques of learning, GAs and ANNs, 
in the same ABM. For example, one may need to create a large population of 
ANNs (each corresponding to one agent). The agents are initialized with a random 
set of connection weights and are set a task such as gathering “food” from a 
landscape. An agent’s perception of whether there is food in front of it is fed into 
the ANN inputs, and the outputs are linked to the agent’s action, such as move and 
eat. The agent is given an initial quantity of energy, some of which is used on every 
time step. If the energy declines to zero, the agent “dies” and it is removed from the 
simulation. An agent can boost its energy by eating food, which is scattered around 
the landscape. 

 Because of the random connection weights with which an agent’s ANN is 
initialized, most agents will not succeed in fi nding and eating food and will quickly 
die, although some will succeed. Those more successful agents reproduce, giving 
their offspring similar connection weights as their own (but with slight mutation). 
Gradually, the population of agents will learn food harvesting behaviour (Acerbi 
and Parisi  2006 ; Gilbert et al.  2006  ) .  



148 M. Abdou et al.

    8.2.4   The Environment 

 The environment is the virtual world in which agents operate. In many models, the 
environment includes passive objects, such as landscape barriers, “roads” down 
which agents may travel, resources to provide agents with energy or food (as in the 
Sugarscape model), and so on. These can be programmed in much the same way as 
agents, but more simply, because they do not need any capacity to react to their 
surroundings. For example, the environment in the Sugarscape model can be imple-
mented by creating a class, called “Cell”, which has two attributes:  location , which 
is the  xy  position of a cell, and  sugar level , which indicates the amount of sugar the 
cell has. Then 2,500 (50 × 50) objects of this class are instantiated at the start of 
the simulation with their proper locations and random values for their sugar levels. 

 Environments may represent geographical spaces, for example, in models 
concerned with residential segregation where the environment simulates some of 
the physical features of a city, and in models of international relations, where the 
environment maps states and nations. Models in which the environment represents 
a geographical space are called  spatially explicit . In other models, the environment 
could represent other types of space. For example, scientists can be modelled 
in “knowledge space” (Gilbert et al.  2001  ) . In spatial models, the agents have 
coordinates to indicate their location. Another option is to have no spatial represen-
tation at all but to link agents together into a network in which the only indication of 
an agent’s relationship to other agents is the list of agents to which it is connected by 
network links (Scott  2000  ) . It is also possible to combine both. Think, for example, 
of a railway network.   

    8.3   Developing ABMs in Social Science Research 

 Research in agent-based modelling has developed a more or less standardized 
research process, consisting of a sequence of steps. In practice, several of these 
steps occur in parallel and the whole process is often performed iteratively as ideas 
are refi ned and developed. 

    8.3.1   Identifying the Research Question 

 It is essential to defi ne precisely the research question (or questions) that the model 
is going to address at an early stage. The typical research questions that ABMs are 
used to study are those that explain how regularities observed at the societal or macro 
level can emerge from the interactions of individuals (agents) at the micro level. 
For example, the Schelling model described earlier starts with the observation that 
neighbourhoods are ethnically segregated and seeks to explain this through 
modelling individual household decisions.   



1498 Designing and Building    an Agent-Based Model

    8.3.2   Review of Relevant Literature 

 The model should be embedded in existing theories and make use of whatever 
data are available. Reviewing existing theories relating to the model’s research 
question is important to illuminate the factors that are likely to be signifi cant in 
the model. It is also useful to review comparable phenomena. For example, when 
studying segregation, theories about prejudice and ethnic relations are likely to be 
relevant. 

 All ABMs are built based on assumptions (usually about the micro-level). These 
assumptions need to be clearly articulated, supported by the existing theories and 
justifi ed by whatever information is available.  

    8.3.3   Model Design 

 After the research question, the theoretical approach and the assumptions have been 
clearly specifi ed, the next step is to specify the agents that are to be involved in the 
model and the environment in which they will act. 

 For each type of agent in the model, the attributes and behavioural rules need to be 
specifi ed. As explained in Sect.  8.2 , an attribute is a characteristic or feature of the 
agent, and it is either something that helps to distinguish the agent from others 
in the model and does not change, or something that changes as the simulation runs. 
For example, in Sugarscape, an agent’s  life-expectancy  (the maximum age that an 
agent can reach),  metabolism  (how much sugar an agent eats each time), and  vision  
(how many cells ahead an agent can see) are examples of attributes that do not 
change, while  age  and  wealth  (the amount of sugar an agent has) are changeable 
attributes. 

 The agent’s behaviour in different circumstances also needs to be specifi ed, often 
as a set of condition-action rules (as explained in Sect.  8.2 ). This specifi cation can 
be done in the form of two lists: one which shows all the different ways in which 
the environment (including other agents) can affect the agent, and one showing all the 
ways in which the agent can affect the environment (again, including other agents). 
Then the conditions under which the agent has to react to environmental changes 
can be written down, as can the conditions when the agent will need to act on the 
environment. These lists can then be refi ned to create agent rules that show how 
agents should act and react to environmental stimuli. 

 It will also be necessary to consider what form the environment should take 
(for instance, does it need to be spatial, with agents having a defi nite location, or 
should the agents be linked in a network) and what outputs of the model need to be 
displayed in order to show that it is reproducing the macro-level regularities as 
hoped (for example, the wealth distribution in the Sugarscape model, and the size of 
clusters of dwellings of the same colour in Schelling’s model). 

 Once all this has been thought through, one can start to develop the program code 
that will form the simulation.  



150 M. Abdou et al.

    8.3.4   Model Implementation 

 After the model has been designed, and when the agents and environment are fully 
specifi ed, the next step is to convert the design into a computer program. Most 
ABMs involve two main parts or  procedures :

    • Setup Procedure . The Setup procedure initializes the simulation (and is therefore 
sometimes called the initialization procedure). It specifi es the model’s state at 
the start of the simulation, and it is executed once at the beginning. This part of 
the program might, for example, lay out the environment and specify the initial 
attributes of the agents (e.g., their position, wealth and life expectancy in the 
Sugarscape model).  
   • Dynamics Procedure . This procedure is repeatedly executed in order to run the 
simulation. It asks agents in turn to interact with the environment and other agents 
according to their behavioural rules. This will make changes in the environment 
and invoke a series of action-reaction effects. For example, in Schelling’s model of 
segregation, the dynamics procedure may ask all ‘unhappy’ agents to move from 
their neighbourhood. When an unhappy agent moves to a new place (where it feels 
happy), this may make some other agents (that were happy in the previous step) 
unhappy and want to move, and so on. The dynamics procedure may contain a 
condition to stop the program (e.g., if all agents are happy in Schelling’s model).    

 An important decision is whether to write a special computer program (using 
a programming language such as Java, C++, C#, or Visual Basic) or use one 
of the packages or toolkits that have been created to help in the development of 
simulations. It is usually easier to use a package than to write a program from 
scratch. This is because many of the issues which take time when writing a pro-
gram have already been dealt with in developing the package. For example, writing 
code to show plots and charts is a skilled and very time-consuming task, but most 
packages provide some kind of graphics facility for the display of output variables. 
On the other hand, packages are, inevitably, limited in what they can offer, and they 
are usually run more slowly than specially written code. 

 Many simulation models are constructed from similar building blocks. These 
commonly used elements have been assembled into  libraries  or  frameworks  that can 
be linked into an agent-based program. The fi rst of these to be widely used was Swarm 
(  http://www.swarm.org/    ), and although this is now generally super seded, its design 
has infl uenced more modern libraries, such as  RePast  (  http://repast.sourceforge.
net/    ) and  Mason  (  http://cs.gmu.edu/~eclab/projects/mason/    ). 

 Both RePast and Mason provide a similar range of features, including:

   A variety of helpful example models  • 
  A sophisticated scheduler for event-driven simulations  • 
  A number of tools for visualizing on screen the models and the spaces in which • 
the agents move  
  Tools for collecting results in a fi le for later statistical analysis  • 
  Ways to specify the parameters of the model and to change them while the model • 
is running  



1518 Designing and Building    an Agent-Based Model

  Support for network models (managing the links between agents)  • 
  Links between the model and a Geographic Information System (GIS) so that the • 
environment can be modeled on real landscapes (see Crooks and Castle  2012  ) .  
  A range of debugged algorithms for evolutionary computation (Sect.  • 8.2.3 ), the 
generation of random numbers and the implementation of ANNs.    

  Modelling environments  provide complete systems in which models can be 
 created, executed, and the results visualized without leaving the system. Such envi-
ronments tend to be much easier to learn, and the time taken to produce a working 
model can be much shorter than using the library approach, and so they are more 
suited to beginners. However, the simplicity comes at the price of less fl exibility and 
slower speed of execution. It is worth investing time to learn how to use a library 
based framework if you need the greater power and fl exibility they provide, but 
often simulation environments are all that is needed. 

 NetLogo (Wilensky  1999  )  is currently the best of the agent-based simulation 
environments. (NetLogo will be briefl y introduced in Sect.  8.4 ). This is available 
free of charge for educational and research use and can be downloaded from 
  http://ccl.northwestern.edu/netlogo/    . It will run on all common operating systems: 
Windows, Mac OS X and Linux. Other simulation environments include StarLogo 
(  http://education.mit.edu/starlogo/    ) and AgentSheets (  http://agentsheets.com    ), 
which are more suited to creating very simple models for teaching than for building 
simulations for research. 

 Table  8.1  provides a comparison between Swarm, RePast, Mason, and NetLogo 
on a number of criteria. The choice of the implementation tool depends on several 
factors, especially one’s own expertise in programming and the complexity and the 
scale of the model. NetLogo is the quickest to learn and the easiest to use, but may 
not be the most suitable for large and complex models. Mason is faster than RePast, 
but has a signifi cantly smaller user base, meaning that there is less of a community 
that can provide advice and support. A full discussion of the environments is pre-
sented in Crooks and Castle  (  2012  ) .   

    8.3.5   Verifi cation and Validation 

 Once we have a ‘working’ simulation model, it has to be verifi ed and validated 
before using it to answer the research questions or to build theories about the 
real social world (model verifi cation and validation are discussed in detail by Ngo 
and See  (  2012  ) ). As Balci  (  1994  )  explains,  “model validation deals with building 
the right model … [while] model verifi cation deals with building the model right”  
(pp. 121–123). 

 It is very common to make errors when writing computer programs, especially 
complicated ones. The process of checking that a program does what it was planned 
to do is known as ‘verifi cation’. In the case of simulation, the diffi culties of 
 verifi cation are compounded by the fact that many simulations include random 
number generators, which means that every run is different and that it is only the 



152 M. Abdou et al.

   Table 8.1    A Comparison of Swarm, RePast, Mason and NetLogo      

 Swarm  RePast  Mason  NetLogo 

 License a   GPL  GPL  GPL  Free, but not open 
source 

 Documentation  Patchy  Limited  Improving, but 
limited 

 Good 

 User base  Diminishing  Large  Increasing  Large 
 Modelling language(s)  Objective-C, 

Java 
 Java, Python  Java  NetLogo 

 Speed of execution  Moderate  Fast  Fastest  Moderate 
 Support for graphical 

user interface 
development 

 Limited  Good  Good  Very easy to create 
using “point 
and click” 

 Built-in ability to create 
movies and 
animations 

 No  Yes  Yes  Yes 

 Support for systematic 
experimentations 

 Some  Yes  Yes  Yes 

 Ease of Learning and 
Programming 

 Poor  Moderate  Moderate  Good 

 Ease of Installation  Poor  Moderate  Moderate  Good 
 Link to geographical 

Information System 
 No  Yes  Yes  Yes 

  Source: Gilbert  (  2008  )  
  a  GPL  General Public License,   http://www.gnu.org/copyleft/gpl.html      

distribution of results which can be anticipated by the theory. It is therefore essential 
to ‘debug’ the simulation carefully, preferably using a set of test cases, perhaps of 
extreme situations where the outcomes are easily predictable. 

 While verifi cation concerns whether the program is working as the researcher 
expects, validation concerns whether the simulation is a good model of the real 
system, the ‘target’. A model which can be relied on to refl ect the behaviour of the 
target is ‘valid’. A common way of validating a model is to compare the output of 
the simulation with real data collected about the target. However, there are several 
caveats which must be borne in mind when making this comparison. For example, 
exact correspondence between the real and simulated data should not be expected. 
So, the researcher has to decide what difference between the two kinds of data is 
acceptable for the model to be considered valid. This is usually done using some 
statistical measures to test the signifi cance of the difference. While goodness-of-fi t 
can always be improved by adding more explanatory factors, there is a trade-off 
between goodness-of-fi t and simplicity. Too much fi ne-tuning can result in reduction 
of explanatory power because the model becomes diffi cult to interpret. At the 
extreme, if a model becomes as complicated as the real world, it will be just as 
 diffi cult to interpret and offer no explanatory power. There is, therefore, a paradox 
here to which there is no obvious solution. Despite its apparently scientifi c nature, 
modelling is a matter of judgement.  



1538 Designing and Building    an Agent-Based Model

    8.3.6   Some Practicalities 

 Two important practical issues to consider are how big the model should be and how 
many runs should be done. 

    8.3.6.1   How Big? 

 How many agents should be used? Over how big a space? There is little guidance 
on this question, because it depends on the model. The model must be suffi ciently 
large to permit enough heterogeneity and opportunities for interaction. But more 
agents mean longer run times. 

 It is often best to start programming with just a few agents in a small  environment. 
Then, when the program is working satisfactorily, increase the scale until one feels 
there is a satisfactory balance between the size and the stability of the output. 
Some ABMs use millions of agents (see Parry and Bithnell  2012  ) , but for most 
purposes, this is unnecessary and impractical. One should probably aim for at least 
1,000 agents unless there is good reason to use fewer.  

    8.3.6.2   How Many Runs? 

 Because of the stochastic nature of agent-based modelling, each run produces a 
 different output. It is therefore essential to undertake more than one run. The question 
is, how many runs? The more runs, the more confi dence one can have in the results, 
but undertaking too many runs wastes time and there is more data to analyze. Basic 
statistical theory suggests 30 is suffi cient and frequently, 30 or 50 runs are under-
taken, e.g.  Epstein (2006) . Again, there is no clear guidance on this topic. However 
many runs are done, it is worth quoting the standard deviation to provide some 
indication of the variability.    

    8.4   Examples 

 This section presents two simple models based on models in NetLogo’s library: 
Traffi c Basic and Segregation (Wilensky  1997a,   b  ) . The models are taken from 
NetLogo version 4.0.2. 

    8.4.1   A Basic Traffi c Model 

 This is a very simple model developed from Wilensky’s basic NetLogo traffi c 
model  (  1997a  ) . It is not possible to give a full introduction to NetLogo here: there are 
tutorials on the NetLogo website and books such as Gilbert  (  2008  ) . However, for 



154 M. Abdou et al.

those unfamiliar with NetLogo, an explanation of what the program is doing is 
provided alongside the code (see Box A). 

 Sect.  8.3  identifi ed fi ve stages to developing a model: identifying the research 
question, reviewing the literature, designing and implementing the model and fi nally 
verifying and validating it.

    Stage 1:  Identifying the research question 
 The research question to be addressed is the relationship between the level of 
congestion and the speed and smoothness of traffi c fl ow.  

   Stage 2:  Reviewing the literature 
 Because the main purpose of this model is to demonstrate agent-based modelling, it 
is suffi cient to note here that it is a well recognised fact that traffi c jams can arise 
without any obvious cause. In general, a good literature review is  essential to 
support the model.  

   Stage 3:  Model design 
 The environment is a road and the agents are drivers represented by cars. The drivers 
change their speed according to whether there are other cars in front so as to remain 
within set speed limits. The program records the speed of the vehicles and the number 
of vehicles queuing at any one time.  

   Stage 4:  Model implementation 
 The set-up procedure involves setting the parameters and creating the agents and 
their environment. The environment – the road – is built and the cars are created, 
distributed randomly along the road and randomly allocated a speed, determined by 
three parameters, set by sliders on the interface:

   the number of cars (nOfCars): minimum 2, maximum, 30  • 
  the minimum speed (minSpeedLimit): 0–0.5  • 
  the maximum speed (maxSpeedLimit): 0.5–1.    • 

 The details are shown in Box A, and a sample of the result is illustrated in Fig.  8.2 .  

  Box A: Setting up the model       
 Explanation  Code 
 Agents are cars 
 Agents’ attributes 

 Set everything to zero 
 Make the road. 

  to setup
breed [cars car ]  
  cars-own [speed queuing]  
  to setup  
   clear-all  
   ask patches  
    [ if ( pycor  <  1 ) 
    and ( pycor  >  −1)  

     [ set pcolor white ] ]  

(continued)



1558 Designing and Building    an Agent-Based Model

  Fig. 8.2    Road with cars distributed randomly along it       

 Explanation  Code 
 Generate required number of cars 
 Set the cars’ shape. 
 Distribute them randomly along 

road. Set direction of movement. 

 Set speed randomly within the 
speed limits. Call up procedure. 

 Procedure to ensure only one car 
occupies the same patch of road. 

   create-cars nOfCars  
   ask cars  
   [ set shape “car”  
    setxy random-xcor 0  
    set heading 90  
    set speed  
     minSpeedLimit +  
     random-fl oat
    ( maxSpeedLimit ) 
separate-cars  

   ]  
  end  

  to separate-cars  
   if any? other cars-here  
    [ fd 1  
    separate-cars ]  

Box A: (continued)

 



156 M. Abdou et al.

 Next the dynamic processes must be defi ned. All the cars move forward in the 
same direction. If the drivers see another car not far in front, they decelerate, at a rate 
set by the slider on the interface (decelerate), and if they catch up with the vehicle in 
front, slow to its speed, which may require rather abrupt deceleration! If they see no 
car within a specifi ed distance, they accelerate again, set by a slider on the interface 
(accelerate). The rate of acceleration is small but suffi cient to allow the cars to speed 
up to the maximum speed limit if the road is clear. Both deceleration and acceleration 
are allowed to vary between 0 and 0.001 in increments of 0.0001. The simulation is 
halted after 250 steps. The details are shown in Box B.  

  Box B: Running the model       
 Explanation  Code 
 Stop the program after 

250 steps. 

 Reset queuing 
indicator at start 
of each step 

 If a car catches 
up with the one 
in front it slows to 
match its speed. 

 If there is no car 
immediately in 
front but there is 
one a little further 
ahead, the car 
decelerates. 
Otherwise, it 
accelerates. 

 To keep the cars 
within speed limits. 

 Cars move forward 
at the speed 
determined. 

 Time moves forward. 

  to go  
   if ticks  >  250 [ stop ]  

  ask cars [ set queuing “No” ]  
  ask cars  
    [ if any? cars-at 1 0  
     [ set speed  
      ( [speed] of one-of cars-at 1 0 )  
      set queuing “Yes” ]  
   ]  
  ask cars with [queuing  =  “No” ]  
   [ ifelse  
   any? cars-at 5 0  
    [ set speed speed - deceleration ]  
    [ set speed speed  +  acceleration ]  
   ]  
    ]  

  ask cars  
    [ if speed < minSpeedLimit
   [ set speed minSpeedLimit ]        
    if speed > maxSpeedLimit
   [ set speed maxSpeedLimit ]        
  fd speed   
   ]  

  tick  



1578 Designing and Building    an Agent-Based Model

  Stage 5: Verifying and validating 
 To verify and validate the model requires outputs to be produced. Here three graphs 
are drawn:

   to show the minimum, average and maximum speeds  • 
  to show the number of queuing cars, and  • 
  to plot the number queuing against the average speed.    • 

 The details are in Box C. 
 Verifi cation and validation are discussed in Sect.  8.3.5  above and in detail in 

Ngo and See  (  2012  ) . In this example, one simple method of verifi cation is setting 
the minimum and maximum speeds to the same value and checking that all the 

   Box C: Generating the output (continuing the ‘go’ procedure)       
 Explanation  Code 
 Name the plots 

 End the “to go” 

   plot-speed  
   plot-jams  
   plot-both  
  end  

 Plots minimum, 
mean and maximum 
speeds. 

  to plot-speed  
   set-current-plot “Speed”  
   set-current-plot-pen “Min”  
    plot min [speed] of cars  
   set-current-plot-pen “Mean”  
    plot mean [speed] of cars  
   set-current-plot-pen “Max”  
    plot max [speed] of cars  
  end  

 Plots the number queuing.   to plot-jams  
   set-current-plot “No. in jams”  
    plot count cars with 
 [ queuing = “Yes” ]    

  end  

 Plots the mean speed 
against the number 
queuing. 

  to plot-both  
   set-current-plot “Both”  
    plotxy  
     count cars with 
    [ queuing = “Yes” ]    

     mean [speed] of cars  
  end  



158 M. Abdou et al.

drivers do adopt the same speed. By watching the movement of the cars on 
the screen, it can be seen that, for example, there is no overtaking, as there should 
not be. Also the queuing status of individual cars can be checked: if there is no car 
immediately in front, it should not be “queuing”. 

 Even a simple model like this can produce a wide range of scenarios and 
reproduce observed characteristics of traffi c fl ows. For example, Fig.  8.3  shows 
what can happen if the road is near full-capacity with 30 cars, speeds are allowed to 
vary from 0 to 1, and drivers accelerate and decelerate at the maximum rates. The top 
right plot shows that the maximum speed drops quickly, but maximum, average and 
minimum speeds fl uctuate. As a result, the number queuing constantly changes, 
albeit within a small range, as shown in the bottom left hand panel. However, a 
reduction in the number queuing does not necessarily increase the average speed of 
the traffi c: the bottom right hand panel shows that there is no clear relationship 
between the average speed and the number queuing.           

    8.4.2   Segregation Model 

 The segregation model can be found in the Social Science section of NetLogo’s 
library (Wilensky  1997b  ) .

    Stage 1:  Identifying the research question 
 As explained in Sect.  8.1.2 , Schelling tried to explain the emergence of racial resi-
dential segregation in American cities. The main research question of Schelling’s 

  Fig. 8.3    Sample of results       

No. in jams Both

Speed

0

30

1

0
0

0 No. queuing 30
0

1

Time

Min
Max

Mean

S
pe

ed

250

0 Time 250

N
o.

 q
ue

ui
ng

A
ve

ra
ge

 s
pe

ed

No. of cars = 30
Acceleration = 0.001
Deceleration = 0.001
Minimum speed = 0
Maximum speed = 1

Settings 



1598 Designing and Building    an Agent-Based Model

models can be formulated as:  can segregation be eliminated (or reduced) if people 
become more tolerant towards others from different ethnic/racial groups?   

   Stage 2:  Reviewing the literature 
 Theories of intergroup relations (Sherif  1966  )  are relevant when discussing the 
emergence of residential segregation. Some of these theories are Social Identity and 
Social Categorization Theories (Tajfel  1981  ) , Social Dominance Theory (Sidanius 
et al.  2004  ) , and System Justifi cation Theory SJT (Jost et al.  2004  ) . The Contact 
Hypothesis (Allport  1954  ) , which implies that inter-group relations decrease stereo-
typing, prejudice and discrimination, is also relevant. Reviewing literature on how 
to measure segregation is clearly essential (Massey and Denton  1988  ) .  

   Stage 3:  Model design 
 As explained in Sect.   1.2.2    , the environment is a city that is modelled by a square grid 
of cells each representing a dwelling. A household (agent) would be ‘happy’ to stay 
at its place as long as the proportion of its neighbours of the same colour as itself is 
not less than its threshold of tolerance. Agents keep changing their places as long as 
they are not happy. Box D presents the complete code of the segregation model. 1   

   Stage 4:  Model implementation 
 Lines 1–30 of Box D initialize the model. The fi rst line creates an agent type (breed 
in NetLogo’s language) called ‘household’ to represent the main agent of the model. 
The attributes of agents (households) include the following (lines 2–7):

    • happy?:  indicates whether an agent is happy or not  
   • similar-nearby:  how many neighbours with the same colour as the agent  
   • other-nearby:  how many neighbours with a different colour  
   • total-nearby : total number of neighbours.    

 There are two global 2  variables (lines 8–12): the fi rst is  percent-similar,  which is 
the average percent of an agent’s neighbours of its own colour. This variable gives a 
measure of clustering or segregation. The second variable,  percent-unhappy , reports 
the number of unhappy agents in the model. There are another two variables deter-
mined by sliders (so that the model user can change their values on each run as 
desired): the number of agents,  number ; and agent’s threshold,  %-similar-wanted  
(which is the same for all agents). 

 The  setup  procedure (lines 14–30) (which is triggered when the user presses 
the  setup  button, see Fig.  8.4 ) creates a number of agents (households), half black 
and half white, at random positions. The  setup  procedure also calls another two 
procedures:  update-variables  that updates the agents’ variables, and  do-plots  that 
updates the model’s graphs (both procedures will be explained later).  

   1   There are minor differences between the code of the original model in NetLogo’s library and the 
code presented here.  
   2    Global  variables are defi ned (or declared) outside any procedure, and they can be accessed or refer 
red to from any place in the program. In contrast,  local  variables are defi ned inside a procedure, and 
can be accessed only within this procedure. The variables  similar-neighbors  and  total-neighbors  
(lines 75–76) are local variables.  



160 M. Abdou et al.

   Box D: Code of Segregation Model    

 1 
 2 
 3 

 4 

 5 

 6 
 7 
 8 
 9 

 10 
 11 

 12 
 13 
 14 

 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 

 30 
 31 
 32 
 33 
 34 

  Breed [households household]  
  households-own[  
   happy?    ;indicates whether the house-
hold is happy or not  

   similar-nearby ;how many neighbours with 
the same colour as mine?  

   other-nearby ;how many neighbours with 
different colour?  

   total-nearby ;sum of previous two variables  
  ]  
  globals[  
   percent-similar ;average percent of a 
household’s neighbours  

     ;of the same colour as that household?  
   percent-unhappy ;percent of the households 
are ‘unhappy’  

  ]  

  to setup  
   clear-all ;clear any variables or plots from 
previous runs  

   if number > count patches  
    [ user-message (word “This pond only has 
room for “ count patches “ households.”)  

     stop ]  
   ;; create households on random patches.  
   ask patches [set pcolor 7] ;; patches are 
initialized in grey  

  set-default-shape households “square”  
   ask n-of number patches  
    [sprout-households 1  
     [ set color black ] ]  
   ask n-of (number / 2) households  
    [ set color white ]  
   update-variables  
   do-plots  
  end  

  to go  
   if all? households [happy?] [ stop ] ;keep 
running as long as 
there              ;are unhappy 
agents  

(continued)



1618 Designing and Building    an Agent-Based Model

 35 
 36 
 37 
 38 
 39 
 40 
 41 
 42 

 43 
 44 

   move-unhappy-households  
   update-variables  
   tick  
   do-plots  
  end  

  to move-unhappy-households  
   ask households with [ not happy? ];; only 
moves unhappy agents  

    [ fi nd-new-spot ] ; fi nd new patch to move to  
  end  

 45 
 46 
 47 
 48 
 49 
 50 
 51 
 52 
 53 
 54 
 55 
 56 
 57 
 58 
 59 
 60 
 61 
 62 

 63 
 64 

 65 
 66 

 67 
 68 

 69 

 70 
 71   

  to fi nd-new-spot  
   rt random-fl oat 360  
   fd random-fl oat 10  
   if any? other households-here  
    [ fi nd-new-spot ] ;; keep going until we 
fi nd an unoccupied patch  

   move-to patch-here ;; move to center of patch  
  end  

  to update-variables  
   update-households  
   update-globals  
  end  

  to update-households  
   ask households [  
    ;; in next two lines, we use “neighbors” 
to test the eight patches  

    ;; surrounding the current patch  
    set similar-nearby count (households-on 
neighbors)  

     with [color = [color] of myself]  
    set other-nearby count (households-on 
neighbors)  

    with [color ! = [color] of myself]  
    set total-nearby similar-nearby + other-
nearby  

    set happy? similar-nearby >   = ( %-similar-
wanted * total-nearby / 100 )  

   ]  
  end        

(continued)

Box D: (continued)



162 M. Abdou et al.

 The dynamic process (which starts when the user presses the  go  button, see 
Fig.  8.4 ) is implemented using a simple behavioural rule for an agent in this model: 
 IF I’m not happy THEN I move to another place.  As the  go  procedure (lines 32–38) 
shows, the simulation will continue to run until all agents became happy with their 
neighbourhood (or the user forces it to stop). 

 The model provides two plots to present the two global variables  percent-similar  
and  percent-unhappy  visually. Figure  8.4  shows the user interface and plots of the 
segregation model.  

  Stage 5: Verifying and validating 
 Like the previous traffi c example, a simple verifi cation method is to use extreme 
values for the model’s parameters. For example, when setting the agents’ threshold, 
 %-similar-wanted,  to zero and running the model, no agents move as they are all 
happy regardless of the percentage of neighbours of the same colour. On the other 
hand, setting this parameter to 100 makes most of the agents unhappy and they keep 
moving from their places. 

 Regarding validation, the main objective of the basic Schelling model is to 
explain an existing phenomenon rather than to replicate an existing segregation pat-
tern in a specifi c city, and the model was successful in this regard. It provides a 
plausible answer to a puzzling question:  why these segregation patterns are so 

 72 
 73 

 74 

 75 

 76 

 77 
 78 
 79 
 80 
 81 
 82 
 83 
 84 
 85 
 86 
 87 

  to update-globals  
   let similar-neighbors sum [similar-nearby] 
of households  

   let total-neighbors sum [total-nearby] of 
households  

   set percent-similar (similar-neighbors / 
total-neighbors) * 100  

   set percent-unhappy (count households with 
[not happy?]) / (count households) * 100  

  end  

  to do-plots  
   set-current-plot “Percent Similar”  
   plot percent-similar  
   set-current-plot “Percent Unhappy”  
   plot percent-unhappy  
  end  

Box D: (continued)



1638 Designing and Building    an Agent-Based Model

persistent regardless of the observed decline in ethnic prejudice . However, some 
attempts have been successful in extending the basic segregation model to replicate 
existing city segregation structures.       

    8.5   Conclusions 

 In this chapter, we discussed the process of designing and building an ABM. 
We recommended a set of standard steps to be used when building ABMs for social 
science research. The fi rst, and the most important, step in the modelling process is 
to identify the purpose of the model and the question(s) to be addressed. The impor-
tance of using existing theories to justify a model’s assumptions and to validate its 
results was stressed.      

   Recommended Reading 

    Edmonds, B., & Scott, M. (2005). From KISS to KIDS – An ‘anti-simplistic’ modelling approach. 
In P. Davidson, B. Logan, & K. Takadema (Eds.),  Multi-agent and multi-agent-based simulation. 
MABS, 2004 . New York/Berlin: Springer.  

    Epstein, J. M. (2006a).  Generative social science . Princeton: Princeton University Press.  

  Fig. 8.4    User interface and plots of the segregation model       

 



164 M. Abdou et al.

   Epstein, J. M. (2008). Why model?  Journal of Artifi cial Societies and Social Simulation ,  11 (4), 12. 
Available at:   http://jasss.soc.surrey.ac.uk/11/4/12.html      

    Gilbert, N., & Troitzsch, K. G. (2005).  Simulation for the social scientist . Milton Keynes: Open 
University Press.  

    Gilbert, N. (2008a).  Agent-based models . London: Sage.  
   Moss, S. (2008). Alternative approaches to the empirical validation of agent-based models.  Journal 

of Artifi cial Societies and Social Simulation ,  11 (1), 5. Available at:   http://jasss.soc.surrey.
ac.uk/11/1/5.html      

   References 

   Acerbi, A., & Parisi, D. (2006). Cultural transmission between and within generations.  Journal 
of Artifi cial Societies and Social Simulation 9 (1). Available at:   http://jasss.soc.surrey.ac.
uk/9/1/9.html      

    Allport, G. W. (1954).  The nature of prejudice . Cambridge, MA: Addison-Wesley.  
    Balci, O. (1994). Validation, verifi cation, and testing techniques throughout the life cycle of a 

simulation study.  Annals of Operations Research, 53 , 121–173.  
      Crooks, A. T., & Castle, C. (2012). The integration of agent-based modelling and geographical 

information for geospatial simulation. In A. J. Heppenstall, A. T. Crooks, L. M. See & 
M. Batty (Eds.),  Agent-based models of geographical systems  (pp. 219–252). Dordrecht: 
Springer.  

   Crooks, A. T., & Heppenstall, A. J. (2012). Introduction to agent-based modelling. In A. J. Heppenstall, 
A. T. Crooks, L. M. See & M. Batty (Eds.),  Agent-based models of geographical systems  
(pp. 85–105). Dordrecht: Springer.  

    Epstein, J. M. (2006b).  Generative social science . Princeton: Princeton University Press.  
    Epstein, J. M., & Axtell, R. (1996).  Growing artifi cial societies: social science from the bottom up . 

Cambridge, MA: MIT Press.  
    Friedman-Hill, E. (2003).  Jesss in action: Rule-based systems in Java . Greenwich: Maning.  
    Garson, D. G. (1998).  Neural networks: An introductory guide for social scientists . London: Sage 

Publications.  
    Gilbert, N. (2008b).  Agent-based models . London: Sage.  
   Gilbert, N., Pyka, A., Ahrweiler, P. (2001). Innovation networks: A simulation approach.  Journal 

of Artifi cial Societies and Social Simulation, 4 (3). Available at:   http://jasss.soc.surrey.ac.
uk/4/3/8.html      

   Gilbert, N. et al. (2006). Emerging artifi cial societies through learning.  Journal of Artifi cial 
Societies and Social Simulation, 9 (2). Available at:   http://jasss.soc.surrey.ac.uk/9/2/9.html      

    Hutchins, E., & Hazlehurst, B. (1995). How to invent a lexicon: The development of sharedsymbols 
in interaction. In N. Gilbert & R. Conte (Eds.),  Artifi cial societies: The computer simulation of 
social life  (pp. 157–189). London: UCL Press.  

    Jost, J. T., Banaji, M. R., & Nosek, B. A. (2004). A decade of system justifi cation theory: 
Accumulated evidence of conscious and unconscious bolstering of the status quo.  Political 
Psychology, 25 (6), 881–919.  

    Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence. 
 Artifi cial Intelligence, 33 (1), 1–64.  

    Macy, M., & Willer, R. (2002). From factors to actors: Computational sociology and agent-based 
modeling.  Annual Review of Sociology, 28 , 143–166.  

    Massey, D. S., & Denton, N. A. (1988). The dimensions of residential segregation.  Social Forces, 
67 (2), 281–315.  

   Ngo, T. A., & See, L. M. (2012). Calibration and validation of agent-based models of land cover 
change. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.),  Agent-based models 
of geographical systems  (pp. 181–196). Dordrecht: Springer.  



1658 Designing and Building    an Agent-Based Model

   Parry, H. R., & Bithnell, M. (2012). Large scale agent-based modelling: A review and guidelines 
for model scaling. In A. J. Heppenstall, A. T. Crooks, L. M. See & M. Batty (Eds.),  Agent-based 
models of geographical systems  (pp. 525–542). Dordrecht: Springer.  

    Schelling, T. C. (1971). Dynamic models of segregation.  Journal of Mathematical Sociology, 
1 , 143–186.  

    Scott, J. (2000).  Social network analysis  (2nd ed.). London: Sage.  
    Sherif, M. (1966).  In common predicament; social psychology of intergroup confl ict and cooperation . 

Boston: Houghton Miffl in.  
    Sidanius, J., Pratto, F., van Laar, C., & Levin, S. (2004). Social dominance theory: Its agenda and 

method.  Political Psychology, 25 (6), 845–880.  
    Sun, R. (2006). The CLARION cognitive architecture: Extending cognitive modeling to social 

simulation. In R. Sun (Ed.),  Cognition and multi-agent interaction: From cognitive modeling 
to social simulation  (pp. 79–99). New York: Cambridge University Press.  

    Tajfel, H. (1981).  Human groups and social categories: Studies in social psychology . Cambridge: 
Cambridge University Press.  

    Taatgen, N., Lbiere, C., & Anderson, J. (2006). Modeling paradigms in ACT-R. In R. Sun (Ed.), 
 Cognition and multi-agent interaction: From cognitive modeling to social simulation  (pp. 28–51). 
Cambridge: Cambridge University Press.  

    Terna, P. (1997). A laboratory for agent based computational economics. In R. Conte, R. Hegselmann, 
& P. Terna (Eds.),  Simulating social phenomena  (pp. 77–88). Berlin: Springer.  

   Wilensky, U. (1997a) . NetLogo traffi c basic model . Evanston: Center for Connected Learning and 
Computer-Based Modeling, Northwestern University. Available at:   http://ccl.northwestern.
edu/netlogo/models/Traffi cBasic      

   Wilensky, U. (1997b).  NetLogo segregation model . Evanston: Center for Connected Learning and 
Computer-Based Modeling, Northwestern University. Available at:   http://ccl.northwestern.
edu/netlogo/models/Segregation      

    Wilensky, U. (1999).  NetLogo . Evanston: Center for Connected Learning and Computer- based 
Modeling, Northwestern University.  

    Wray, R. E., & Jones, R. M. (2006). Considering Soar as an agent architecture. In R. Sun (Ed.), 
 Cognition and multi-agent interaction: From cognitive modeling to social simulation  (pp. 53–78). 
New York: Cambridge University Press.  

    Ye, M., & Carley, K. M. (1995). Radar-Soar: Towards an artifi cial organization composed of 
intelligent agents.  Journal of Mathematical Sociology, 20 (2–3), 219–246.      


	Chapter 8: Designing and Building an Agent-Based Model
	8.1 What Is Agent-Based Modelling?
	8.1.1 Sugarscape
	8.1.2 Schelling’s Model of Residential Segregation

	8.2 Agents
	8.2.1 Object-Oriented Programming
	8.2.2 Production Systems
	8.2.3 Learning
	8.2.4 The Environment

	8.3 Developing ABMs in Social Science Research
	8.3.1 Identifying the Research Question
	8.3.2 Review of Relevant Literature
	8.3.3 Model Design
	8.3.4 Model Implementation
	8.3.5 Verification and Validation
	8.3.6 Some Practicalities
	8.3.6.1 How Big?
	8.3.6.2 How Many Runs?


	8.4 Examples
	8.4.1 A Basic Traffic Model
	Box A: Setting up the model
	Box B: Running the model
	Box C: Generating the output (continuing the ‘go’ procedure)

	8.4.2 Segregation Model
	Box D: Code of Segregation Model


	8.5 Conclusions
	Recommended Reading
	References



