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  Abstract   We address the question of when the relative complicatedness of spatial 
agent-based models (ABMs) compared to alternative modelling approaches can be 
justifi ed. The spectrum of ABM types from simple, abstract models to complicated 
models aspiring to realism makes a single answer impossible. Therefore we focus 
on identifying circumstances where the advantages of ABMs outweigh the 
additional effort involved. We fi rst recall the reasons for building  any  model: to 
simplify the phenomena at hand to improve understanding. Thus, the representa-
tional detail of ABMs may not always be desirable. We suggest that critical aspects 
of the phenomena of interest that help us to assess the likely usefulness of ABMs 
are the nature of the decisions which actors make, and how their decisions relate 
to the spatio-temporal grain and extent of the system. More specifi cally, the hetero-
geneity of the decision-making context of actors, the importance of interaction 
effects, and the overall size and organization of the system must be considered. We 
conclude by suggesting that there are good grounds based on our discussion for 
ABMs to become a widely used approach in understanding many spatial systems.      
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    6.1   Introduction 

 In this chapter we critically examine the usefulness of agent-based models (ABMs) 
in geography. Such an examination is important because although ABMs offer some 
advantages when considered purely as faithful representations of their subject matter, 
agent-based approaches place much greater demands on computational resources, 
and on the model-builder in their requirements for explicit and well-grounded 
theories of the drivers of social, economic and cultural activity. Rather than assume 
that these features ensure that ABMs are self-evidently a good thing – an obviously 
superior representation in all cases – we take the contrary view, and attempt to 
identify the circumstances in which the additional effort that taking an agent-based 
approach requires can be justifi ed. This justifi cation is important as such models are 
also typically demanding of detailed data both for input parameters and evaluation 
and so raise other questions about their position within a broader research agenda. 

 One inspiration for our approach is found in a brief but challenging commentary 
by Helen Couclelis  (  2002  ) . Noting that ABMs add to “the well-known problems of 
modeling a highly complex, dynamic spatial environment” (pp. 4–5), the additional 
diffi culties of “modeling highly complex, dynamic decision-making units interacting 
with that environment and among themselves in highly complex, dynamic ways”. 
She continues:

  The question is whether the benefi ts of that approach to spatial modeling exceed the consid-
erable costs of the added dimensions of complexity introduced into the modeling effort. 
(Couclelis  2002 , pp. 4–5)   

 Couclelis offers her own answer, when she goes on to say: “The answer is far 
from clear and, in my mind, it is in the negative” (p. 5). However, Couclelis does 
leave the door open to further discussion. Others such as Gross and Strand  (  2000  )  
have argued that capturing micro-scale complexity requires models with the complex 
micro-structures that the agent-based approach incorporates; in short, a complex 
world requires structurally complex models. These contrasting perspectives make it 
clear that an open question remains: under what circumstances is the extra effort of 
these data- and theory-intensive models rewarded, and why? The aim of this chapter 
is therefore to establish under which circumstances ABMs really are worth it!  

    6.2   Horses for Courses: Different Agent Models 
for Different Purposes 

 There are many possible ways of classifying ABMs (see Crooks and Heppenstall 
 2012  for a brief overview). In geographical applications, at the most abstract level, an 
ABM consists of agents interacting with and in an environment. Various typologies 
can be constructed on the basis of the nature of the agents and of the environmental 
representation. Couclelis  (  2002 , p. 4) offers one such classifi cation based on whether 
the agents and the environment are ‘designed’ or ‘analyzed’. This terminology is 



1116 Agent-Based Models – Because They’re Worth It?

somewhat confusing (it derives from an engineering perspective), but may be clearer 
if we replace ‘designed’ with  theoretically derived  and ‘analyzed’ with  empirically 
derived . Couclelis goes on to consider the purpose of these different possible 
combinations of agent and environment type. 

 An alternative approach to classifying ABMs is to consider three broad styles of 
model (see O’Sullivan    2008   ). Arguably, the bulk of academically orientated work to 
date using ABMs continues to be in the realm of simple abstract models where the 
focus is on exploring the collective implications of individual-level decision making. 
Schelling’s book title  Micromotives and Macrobehaviour  (Schelling  1978  )  captures 
the intention of this approach well (and is discussed by Birkin and Wu  2012  ) . The 
‘Schelling model’ of residential segregation is the most familiar example of this style 
(Schelling  1969  ) , and has spawned a cottage industry of variants and explorations of 
how various minor changes to the assumptions underlying the model affect the 
outcomes (see Fossett    2006   , for a detailed exploration of some aspects of the model). 
In the same vein are Epstein and Axtell’s  (  1996  )   Sugarscape  models, Axelrod’s work 
on iterated game theoretic models (Axelrod  1997  )  and many ABMs of economic 
behaviour (see Tesfatsion and Judd  2006  ) . Examples of this abstract approach in an 
urban context include Batty’s work on how simple movement and resource exploita-
tion actions on heterogeneous landscapes produce characteristic settlement size dis-
tributions (Batty  2005 , Chap. 8), and a preliminary model of sprawl presented by 
Brown and Robinson  (  2006  ) . The abstract approach is also common in other fi elds 
such as biology (see, for example, Ehrlich and Levin  (  2005  ) ). It is this style of work 
which is largely responsible for excitement in some quarters around the potential of 
‘complexity science’ to answer general questions about the nature of systems in a 
wide range of specialist fi elds (e.g. Bar-Yam    1997  ) . 

 A second type of ABM is more detailed and locates virtual model agents in a 
representation of the real world setting of interest. Typically, such models operate at 
a regional or landscape scale, although this is dependent on the issue(s) that a par-
ticular model is addressing. A common application for this fl avour of ABM is land-
use and cover change (LUCC), often in the context of climate-change scenarios. 
A recent special issue of  Landscape Ecology  (Milne et al.  2009  )  gives a sense of the 
diversity of models in this context, and also of the importance of integrating ABMs 
with those other approaches. Examples of the type we have in mind are the work of 
Millington et al .   (  2008  )  and Matthews  (  2006  ) . Here, the goal of developing a model 
is to understand how expected or possible changes in the behaviour of individual 
entities arising from the changing policy environment affect landscape-level vari-
ables that feedback to both agent behaviour and resulting system-level outcomes 
(such as, for example, climate change). A different context for models of this kind 
is the attempt to understand how an urban streetscape or a complicated building 
design affects the behaviour and paths followed by pedestrians interacting in that 
environment (Haklay et al .   2001 ; Helbing et al .   2001 ; Kerridge et al .   2001  ) . The 
common thread linking these settings is that the interactions among agents may 
have more or less dramatic effects on the overall outcomes of the model. In both 
cases, agent actions change the decision-making environment of other agents, albeit 
at different spatio-temporal scales, and in different ways. In a LUCC model, more 
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or less permanent changes in the environment are made by agent actors, and these 
collectively affect future decision-making for all agents at the scale of the whole 
model. In a pedestrian model, the urban or built environment is fi xed, and the agents 
themselves are a salient and rapidly changing feature of the environment, which 
affects agents, often only locally. 

 Thirdly, some of the most ambitious models aim at detailed (i.e. “realistic”, 
although see Dietrich et al .     2003 , pp. 7–8, for a more extended consideration of real-
ism in models) representations of both the geographical setting and the processes 
unfolding in that setting. Such models tend to be driven by the concerns of policy- 
and decision-makers and revolve around urban, economic, and demographic man-
agement applications. The most obvious example of this style of model is the 
TRANSIMS ABM of urban traffi c where every individual vehicle in a large urban 
system is represented second-by-second (Cetin et al .   2002  ) . Closely related to 
TRANSIMS is EpiSims, which takes the same approach to epidemic processes in 
detailed representations of social networks (Toroczkai and Guclu  2007  ) . When 
models become this large, it becomes diffi cult to get to grips with their overall struc-
ture, or even to consider them as truly single models. The ‘model’ becomes a frame-
work in which subsystem models are integrated. An example of this approach which 
has evolved over many years is the SIMPOP family of urban growth models (Sanders 
et al .   1997 ; Bretagnolle et al .   2009  ) . The modular and extensible structure of such 
models is an attempt to cope with the diffi culties inherent in extending the scope of 
individual-based models as they grow to encompass large scale continental or global 
systems, a problem which is also encountered in using and interpreting general 
circulation models of global climate. 

 This last category makes it clear that any typology of ABMs is necessarily highly 
schematic. The three types of ABM we have discussed are more like points along a 
continuum of increasing size and complexity than discrete categories. The value of 
developing such a typology at all is to realize that ABMs are built for a wide variety 
of reasons across a wide range of disciplines. ABMs, like all models, may be used to 
explore theories and their possible implications, to understand how particular theories 
may play out in particular contexts, and to assist in risk-assessment, or policy- and 
decision-making. This complicates answering the question of whether or not ABMs 
are useful in any particular application, although it suggests that the answer is “it 
depends!” (on context, on purpose, on application, and so on). Even so, it is possible 
to be more specifi c about the situations where agent approaches are likely to justify 
the additional effort and cost that their development, analysis and use entail.  

    6.3   Are Modellers Agent-Based Because 
They Should Be or Because They Can Be? 

 While there has been a lot of excitement in recent years about the potential of 
agent-based methods, it is important to remember that none of the cases cited above 
is one where agent models are the only possible approach. In most cases, ABMs 
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are a relatively late arrival in a fi eld where there is considerable previous experience 
with styles of model that adopt a more aggregated approach, and these aggregated 
models continue to be widely used. Thus, for example, land-use transport models, 
which are calibrated and run based on transport analysis zones, are much more 
widely deployed by city governments worldwide than ABMs at the individual 
vehicle level simulating morning and evening rush hours; see Wegener  (  2004  ) . 
What, if anything do ABMs add, and by extension, when should we prefer ABMs 
over more traditional methods? 

 At times, it appears that the main motivation for adopting an agent-based 
approach is simply because it can (now) be done. While the tools available for 
ABMs (Railsback et al .   2006  )  are not yet as accessible or as well developed as those 
for more established approaches such as systems dynamics (Muetzelfeldt and 
Massheder  2003 ; Deaton and Winebrake  2000 ; Eberlein and Peterson  1994  ) , ABMs 
have surprisingly quickly become a viable approach for the spatial model builder. 
The increasing ease with which ABMs can be developed, coupled with their 
intuitively satisfying representational approach, in which each software agent 
represents an ‘actor’ whether an individual person (or animal or plant) or an institu-
tion (often the barely more aggregated household) has led to widespread enthusiasm 
for the approach. The appeal is undeniable: it appears obvious that individual-level 
decision making is the fundamental driver of social systems, or more broadly that 
the individual-level behaviours of plants and animals drive environmental change. 
Setting to one side the thorny question of whether or not social phenomena are dis-
tinctive in kind from the merely aggregate actions of individuals (see O’Sullivan 
and Haklay    2000   ), and hence also the question of whether it is the case that social 
and environmental systems really are driven entirely by individual-level decision-
making, if we  can  represent systems at the ‘atomic’ level on which they operate, 
then surely we  should ? 

 In our view this stance ignores the motives for developing models in the fi rst 
place. Put simply, the need for a model arises when understanding the world itself is 
too hard! The danger of wholesale adoption of ABMs is that we simply replace one 
diffi cult to understand phenomenon – the world itself – with an equally hard to 
understand model. This is the diffi culty that Couclelis identifi es in her commentary. 
A model that advances our understanding is one that represents what are considered 
in a particular context the key features of a system and thus enables us to improve our 
understanding of how that system works. Any gain in understanding of the system 
resulting from the modelling process derives from our ability to analyze the model 
and experiment with it. If the model is too complicated to analyze, all we have done 
is to replace one poorly understood object of study with another, which we know to 
be incomplete! There are good reasons to believe that using disposable ‘fast-and-
frugal’ models will result in more rapid learning than highly detailed ones (Carpenter 
 2003  ) , and in most, if not all cases, ABMs are not a ‘fast-and-frugal’ option. 

 Considering such issues is at the heart of all model building. However, ABMs are 
one aspect of a recent trend towards more complicated and detailed models. This 
trend fl ies in the face of longstanding conventions in modelling and simulation, 
which hold that simpler, more parsimonious models are preferable to complicated 
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ones, all other things being equal. The search for parsimony in models is often 
presented as a logical consequence of Ockham’s razor (see Perry    2009   ). That is not 
a position we wish to defend. First, it is clear that Ockham’s admonishment to avoid 
the ‘unnecessary multiplication of entities’ was never intended to guide the development 
of simulation models! Second, there is no  a priori  reason for assuming that the 
world is a simple place, when it is patently not! 

 Careless application of the principle of Ockham’s razor might lead us to conclude 
that a less complicated model is more convincing, just because it is less complicated, 
although this is not a logically defensible point of view. Ockham’s razor is an 
argument about the capacity of different descriptions of reality to explain observed 
phenomena, not grounds for always preferring simpler explanations to more 
complicated ones. Even so, there are good pragmatic reasons for preferring parsimo-
nious models. Such models are much easier to learn from than models with many 
parameters and sub-models. They are easier and more cost-effective to parameterize, 
and they are also much less vulnerable to the propagation of errors due to the uncer-
tainties in estimating multiple interrelated parameters (again, see Carpenter    2003   ). 

 Based on this observation, the important question is to determine what features 
agents bring to a model  which make a difference that matters . This concern is 
similar to the argument made by Andrew Sayer in his consideration of “the differ-
ence that space makes” in explaining social systems (Sayer  1985  ) . Although he is 
discussing the role of space in social theory, Sayer’s arguments seem to us to 
apply with equal force to the evaluation of models. The basis of the argument is 
the distinction to be made between  necessary  and  contingent  features of a theory. 
Some aspects of any phenomena we wish to explain are absolutely central – that 
is, necessary – to the nature of that phenomena, while others are peculiar to occur-
rences of those phenomena in particular contexts – that is, contingent on those 
particular occurrences. A less philosophical way to express the same idea is simply 
to ask, which features of the phenomena we are interested in are essential? Asking 
this question is really what building a model is all about. Answering this question 
in the context of ABMs should focus our thinking on the issue of what the agents 
in a model are, what they do, and following from this, when they are necessary to 
any representation of the phenomena of interest. In the remainder of this chapter, 
we sketch out the circumstances in which agents are more likely to be necessary 
to an adequate model. In our conclusions, we briefl y revisit the idea of contin-
gency and its relevance to this issue.  

    6.4   What Are Agents? And What Do They Do? 

 These considerations bring us to the basic question of what adopting an agent-based 
representation in a model achieves in terms of a simulation. There is general agreement 
(amidst much debate about fi ner points!) on the basic characteristics of agents in spatial 
models. More detailed consideration of the meaning of the defi ning characteristics of 
such agents can be found in Crooks and Heppenstall  (  2012  ) . We consider the most 
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fundamental characteristics of agents in spatial models to be goal-direction and 
autonomy (Jennings et al .   1998  ) . However, more specifi c defi nitions of the concept 
may add any of fl exibility, ‘intelligence’, communication, learning, adaptation or a 
host of other features to these two. In practice, whatever way we describe their 
characteristics, agent actions in models revolve around exercising  choice  among 
available options in order to achieve defi ned  goals . 

 The outcome of an agent making a particular choice is some difference in 
either the location of the agent (i.e. the agent moves) or in the environment. In 
the latter case, the agent alters the attributes of its current location in some way. 
Depending on the model context, this may involve the agent exploiting resources 
at its current location (and hence depleting the supply of those resources at that 
location); altering the state of the location (e.g. changing the land use); acquiring 
the land at its present location; or, perhaps simply updating its current ‘map’ of 
the environment. In each case, there may be an accompanying change in the state 
of the agent itself, such as when resource exploitation increases the agent’s 
wealth or energy resources. 

 This account of spatial ABMs (and it is important to note that there are many 
examples in the literature of aspatial ABMs) has several implications:

   Agents may be mobile, but this is not a necessary feature (models of trees in • 
forests are among the most common types of ABM). However, it is important that 
each agent has a different relationship with the spatial environment, most simply 
in terms of a location in the environment. If all agents have the same spatial 
relationship with the environment (if, for example, every agent has an equal 
capability to alter every location in the model regardless of the agent’s specifi c 
location or every agent sees and responds to an aggregate ‘average’ of the envi-
ronment), then it makes little sense to formulate the model as an agent model;  
  Agents may change their spatial relationship with the environment over time, • 
which may be by moving, or it may be by alteration, acquisition or disposal of 
locations; and  
  Agents are able to evaluate spatial confi gurations. This ability may be as simple • 
as determining that the availability of some resource at the current location is 
suffi cient for some purpose, or is greater than at neighbouring locations. 
Alternatively, it may involve a complicated evaluation of the spatial distribution 
of resources (including other agents) with respect to the current location, relative 
to a number of alternative locations.    

 This framework for thinking about agents in a spatial ABM may be illuminated 
by considering some examples (see also Fig.  6.1 ): 

    1.     Pedestrian or other mobile agents  in a model of an urban streetscape or complex 
building. The primary choice made by such agents is to determine, with respect 
to their intended destinations, which among the possible next locations they 
should move to. In most models of this kind, the location of other agents is an 
important element in the choice, but the decision will also be affected by the 
agents’ local physical environments (e.g. building geometries).  



116 D. O’Sullivan et al.

    2.     Residential agents  in a ‘Schelling-style’ model are also primarily concerned with 
movement, although it is movement of a rather different kind. They evaluate 
their current and potential new locations, and if one of the new locations consid-
ered is preferable in some way to their current location, then they may move 
there. Again, the locations of other agents in this model infl uence the choices 
made by each agent, but the nature of the environment itself does not.  

    3.     Hunter-gatherer agents  in a model of resource exploitation in which establish-
ment of permanent settlements is an outcome will probably combine aspects of 
the two previous types of agent, in that they evaluate competing locations, and 

  Fig. 6.1    Schematic illustration of the choices facing agents in fi ve different types of model. See 
text for details       
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will choose to stay or go depending on the resources at those locations. Rather 
differently to the previous two cases, however, the actions of these agents will 
alter the environment directly, not just in terms of the location of the agents 
themselves.  

    4.     Farmer/land-use change agents , like the previous type, alter the environment 
itself, but unlike them are unlikely to move in the process. They may alter their 
relationship with the spatial environment by acquiring or disposing of land as 
one aspect of the management of their resources.  

    5.     Property developer agents  in an urban growth or development model are unlikely 
to be explicitly spatially located in the way that agents in the previous examples 
are. Like farmer agents, they will have some attachment to a ‘territory’, which 
they are able to grow, change, or reduce by acquisitions, development actions, or 
sales into a property market. Such agents are likely to have a relatively sophisti-
cated ability to evaluate spatial confi gurations of currently owned locations rela-
tive to the various land uses and land values in the model.     

 Aspects not explicitly considered in these examples, but highly relevant in 
practice, are the spatial and temporal  grain  of the model representation, and the 
relationship between the two. By grain we mean the extent of the smallest units of 
space and time which are explicitly represented in a model. A fi ne-grained model 
might represent second-by-second developments at spatial resolutions of a metre 
or less; traditionally, such models have been seen as unable to consider extended 
spatio-temporal domains. A coarse-grained model might operate on large units of 
space (say several square kilometres) over time periods of a year or more. Grains 
much coarser than this seem unlikely in practice because ABMs are about the 
choice-making behaviour of individual living actors. While contemporary societ-
ies occasionally aspire to decision-making that takes into account time horizons 
longer than a year or so (and simulation models are seen as central to this decision-
making; see Clark et al .     2001   ), it is rare for choices to be ‘locked in’ over much 
longer time frames than this. Similarly, it is diffi cult to imagine an ABM model 
that would be recognizable as such where spatial agents act on ‘local’ spatial 
knowledge more wide-ranging than a few kilometres. 

 Note that we adopt the concept of grain here in preference to spatio-temporal scale 
because the latter often also implies the overall extent or scope of a model. While the 
grain of the representation in a model and its overall scope are not independent, it is 
increasingly common to see unexpected combinations particularly of fi ne grains with 
wide extents (for example, Epstein    2009,    refers to an epidemic model that explicitly 
represents the whole population of the Earth as individual agents). 

 Although as geographers we might wish to grant representation of the spatial 
aspects priority over temporal aspects, temporal considerations are of at least equal 
importance, not least because the two are interlinked (both conceptually and compu-
tationally). Decisions are usually made by agents over some timeframe of interest, 
which may in turn imply a relevant spatial grain. 

 In a pedestrian model this timeframe might be second-by-second, as pedestrians 
adjust their course to avoid obstacles (including other agents). More generally, 
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mobile agents (whether human or some other animal) will be making decisions at 
time scales dictated by their mobility on the one hand and their perception of the 
nature of the spatial distribution of resources on the other. The decision-making 
timeframe combined with the speed of movement of the agents then effectively 
dictates a sensible spatial grain for a model of this type – with plausible models 
capturing spatial detail down to or below the metre range for human agents. In 
resource exploitation models the timeframe of interest is dictated by context. In a 
model of hunter-gatherer behaviour with only limited storage of resources, daily or 
weekly activity patterns and decisions will predominate, and this, combined with 
rates of movement, will govern how we represent spatial aspects of both the agents 
 and  their environment. In cases where the mobility of agents is less dominant, as in 
the farmer or property developer examples above, the linkage between the temporal 
and spatial grain is less direct, but nevertheless remains important. The key issue in 
these cases is how rapidly agents change the environment, and how quickly those 
changes affect the later decisions of other agents. A monthly, seasonal or annual 
timeframe is likely to be the most appropriate in these cases, since the outcomes of 
planting or development decisions that take appreciable times to unfold will affect 
further decision making. In these cases the spatial grain is a product of the amount 
of change which can be effected by individual agents over the chosen time frames. 
This in turn will be dependent on organizational features of the agents themselves 
in particular if they are institutional actors. For example, where property developers 
are small businesses, we may be interested in development at the level of individual 
land parcels. Where we are interested in larger corporate actors, the spatial extent of 
agent actions may be much larger. 

 In the one highly abstract case we consider above, that of ‘Schelling-style’ resi-
dential relocation models, these considerations are a lot less clear-cut. In such cases, 
questioning the spatial and temporal grain can contribute to conclusions that may be 
considered very unfl attering to the model under examination; see, for example, 
Goering  (  2006  ) . The essentially theoretical, abstract nature of the model comes to 
the fore and the spatio-temporal grain of the representation is of less relevance than 
its structure and the overall system tendencies it points to.  

    6.5   So When Do Agents Make a Difference? 

 The emphasis we have placed on decision making by agents and the related choice of 
the spatial and temporal grain in a model helps to address our original question 
about when it is appropriate to adopt an agent-based representation in a model. If the 
decisions at the heart of a model are made in local contexts, which depend in turn on 
the spatio-temporal grain of the model in such a way that every agent decision reduces 
to the same decision, then an aggregated statistical or mathematical representation 
may be suffi cient. The classic examples from game theory, such as Prisoner’s Dilemma 
and the Tragedy of the Commons fi t this template well, and continue to shed light on 
the overall structure of many social systems and coordination problems. 
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 Where agents’ preferences and (spatial) situations differ widely, and where 
agents’ decisions substantially alter the decision-making contexts for other agents, 
there is likely to be a good case for exploring the usefulness of an agent-based 
approach. This argument focuses attention on three model features:  heterogeneity  
of the decision-making context of agents, the importance of  interaction effects , and 
the overall  size  and  organization  of the system. 

 If agents are the same throughout the system, then, other things being equal, an 
aggregate approach is likely to capture the same signifi cant features of the system 
as an agent-based approach. However, it is important to extend our concern with 
heterogeneity to encompass not just agents but to agents in their (spatial) decision-
making contexts. A population of identical agents in diverse contexts can produce 
somewhat unexpected outcomes as a result of different choices being made in those 
different contexts, which then alter the options available to all agents at subsequent 
times. ‘Schelling-style’ models exemplify this. The opposite case, where every 
agent makes its choices in the same context but heterogeneity in the agents may 
produce dramatically different results depending on the degree of heterogeneity, is 
less familiar. An example is provided by Rand et al .   (  2002  ) , whose abstract model 
of urban growth shows that the existence of even small numbers of households 
with a preference for aesthetic over urban amenity can dramatically accelerate 
exurban sprawl. 

 In both of these cases, agent actions result in changes to the decision making 
context for other agents, an indirect and weak form of agent-to-agent interaction. 
Some form of agent interaction is necessary at a minimum if an agent-based 
approach is to be justifi ed. If each agent’s decisions make no difference to the 
subsequent decision-making contexts of other agents, then the generalized pay-off 
matrices of classical game theory are again likely to provide a suffi cient representa-
tion of social systems. The stronger any interaction effects are, then the more 
important it will be to consider agent-based or other disaggregated approaches. In a 
pedestrian model, interaction is direct. Each pedestrian agent is a signifi cant element 
in the local environment of many other agents, and decisions made by one agent 
immediately alter the local decision-making environment of nearby agents. Where 
the contexts for decision-making are more general, based on aggregate system 
measures, so that each individual’s decisions make only minor differences to the 
choices of others, then the case for an agent-based approach is less clear. 

 By the system size, we mean the total number of agents in the system. This aspect 
relates to the previous point. In large systems, other things being equal, unless inter-
action effects are strong and direct, it may not be necessary to adopt ABM approaches. 
In such cases, mean-fi eld approaches provide appropriate representations of system 
dynamics (Berec  2002  ) . This consideration is closely related to one of the earliest 
characterizations of the idea of system complexity by Warren Weaver  (  1948  ) , who 
distinguishes middle-sized systems of “organized complexity” from small systems 
of only a few elements on the one hand, and large systems of disorganized complex-
ity explicable in statistical terms (gases are the obvious example) on the other. 
Systems of organized complexity are those where interaction among elements – more 
than that, iterative or hierarchical  organization  of the elements – renders statistical 
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explanation inadequate. He wryly notes that the size range of such systems is very 
broad: “large compared to two, but small compared to the number of atoms in a pinch 
of salt” (Weaver  1948 , p. 539). Taking only system size into account, this aspect may 
appear redundant in determining the viability of agent-based approaches since all 
social systems (that we know of!) fall into this broad ‘middle’ range. 

 To resolve this issue, we must delve more deeply into the idea of system organi-
zation. Where systems are suffi ciently ‘organized’, it may be that intermediate 
levels of organization are durable enough to form the atomic units on which we 
should focus in a model, rather than individuals. This fact is already implicit in 
cases where households rather than individuals are the agents in a model. Similarly, 
in economic models, fi rms are often recognized as the appropriate units for repre-
sentation. In models of large collections of individual actors, perhaps the most 
important question for the would-be agent-based modeller to ask is not “is an ABM 
appropriate?” (where the presumption often is that agents should represent indi-
vidual actors). A more important question may be, “what should the agents in an 
ABM of this system represent?” If the interactions among individual actors in the 
real world are substantially channelled via institutions or other social or spatial 
structures, perhaps it is those institutions or social or spatial structures that should 
be represented as agents in an ABM rather than the individuals of which they are 
formed. One way to think about this is to see that in choosing to represent not 
individual actors as agents but instead some other intermediate level aggregate 
entity, we are effectively reducing the system size to a point where actions of 
individual agents make a difference, thus justifying the approach. 

 All three of our system criteria favouring the adoption of ABM – heterogeneity, 
interaction, and the combined effects of system size and organization (‘middle-
numbered-ness’) – call for considerable prior knowledge and insight about system 
characteristics on the part of those developing models. Thus, it would be wrong to 
draw any universal conclusions from our account to a statement about the useful-
ness of agent-based approaches in general. Instead, we strongly recommend careful 
consideration of the system features we have discussed before simply assuming that 
an agent-based representation is inherently superior. Where consideration of these 
aspects suggests that an agent-based representation is indeed necessary, then it is 
worth noting that the resulting model is often one where a full explanation of the 
model behaviour calls for a historical account of the events in the model. If agents 
are necessary in the model because they are differentiated from one another, because 
they interact meaningfully with one another, and because they are able to make a 
difference to system level outcomes, then in describing and understanding the 
model, it is likely that Sayer’s  (  1985  )  contingent effects will be signifi cant. Thus 
particular agent-agent interactions will matter, and a detailed account of the model 
‘history’ may be necessary for a complete understanding of any particular model 
run. The difference from the real world target system we seek to understand, is that 
a model allows repeated runs and enables a probabilistic or general account of the 
system behaviours and tendencies to be developed. 

 Our discussion relies on  a priori  understanding or analysis of the system struc-
ture, or  post hoc  assessment of whether the resulting model demonstrates the 
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historical-contingent features that would suggest it was the right choice of 
approach. Neither is a particularly satisfactory or systematic way to decide 
whether or not to embark on the demanding and potentially costly development of 
an ABM approach in a particular case. Given the complex nature of the systems 
and problems involved, it is diffi cult to see how at least piloting ABM and alterna-
tive approaches can be completely avoided (another reason for preferring simple 
models to complicated ones?), but recent approaches do suggest ways in which 
the usefulness of ABMs can be assessed, such as pattern-oriented modeling 
(Grimm et al .   2005 ; Grimm and Railsback  2012  )  and the comparison of mean-fi eld 
and individual-based models (Iwasa  2000  ) . 

 While we cannot make sweeping general claims from our discussion, it seems 
clear that human settlement systems are often strong candidates for agent-based 
representations. This claim is based on the criteria for the usefulness of ABMs that 
we have identifi ed: heterogeneity, interaction, and system size and organization. 
Similar arguments can be made about human-environment systems more generally, 
even in prehistoric settings where the degree of organization of the social systems 
may be rather more limited. While other approaches remain useful, arguments 
against building ABMs based on the extra effort involved can be countered because 
the potential for insight and understanding from building and using such models 
makes those efforts worth it.      
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