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  Abstract   Cities and urban dynamics are today understood as self-organized 
complex systems. While the understanding of cities has changed, also the paradigm 
in modeling their dynamics has changed from a top-down to a bottom-up 
approach. Cellular automata models provide an excellent framework for urban 
spatial modeling of complex dynamics and the accumulation of local actions. 
The fi rst part of this chapter describes the basic concepts of cellular automata. 
The second part discusses the defi nition of complexity and the complex features 
of cellular automata. The history and principles of urban cellular automata models 
are introduced in the third part.      

    4.1   Preliminaries 

 The contemporary city, consisting of numerous strongly interconnected structures, 
multiple centers and continuous fl ows, although spatially scattered, has developed 
into a complex structure that cannot be understood with traditional methods. The 
interpretations about this new urbanity of the third modernisation (metapolisation) 
emphasizes continuous mutual competition between cities. Fast communication 
technologies, on one hand, connect cities and their districts together stronger than 
ever, and on the other hand, it enables scattering of their physical structure so that 
global centers do not by defi nition determine their development. Thus local 
dynamics has increasing meaning for competitiveness of cities (Ascher  2004  ) . 
Cities of third modernity are considered as entities pursuing dynamic change in a 
state of continuous disequilibrium (Batty  2005  )  rather than entities pursuing some 
equilibrium state. For example, economic activity driven by comparative advantage 
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searches continuously for new locations and modes, and thus produces a polycentric 
recentralized structure that disperses the traditional monocentric city. 

 Accompanying these new concepts and city structure, the paradigm has also 
changed in urban modeling: from aggregates to individuals and from equilibrium to 
far-from equilibrium. Complex models and concepts of Cellular Automata (CA) 
offer tools for understanding these dynamics. 

 The history of computing and CA are intertwined with each other and this affi nity 
makes the foundations of CA-based modeling particularly fi rm. Attractiveness of CA 
is largely based on the simplicity of its basic concepts that are accessible to a wider 
audience but are still also intellectually fascinating. Due to the digital revolution 
through the 1990s when competent computing capacity and graphics became 
accessible for almost anyone, there was a rise in computational modeling of urban 
development. Numerous CA-based simulation methodologies for urban dynamics 
have been created during the past few decades. The process begun in the geographi-
cal sciences in the 1960s with so called raster models and continued as development 
of truly cellular models that were based on the idea of complexity. Understanding of 
urban entities as self-organizing systems, and the demand for tools to discern, control 
and predict these emergent phenomena, ensures interest towards computational 
modeling of urban development.  

    4.2   Basic Concepts of CA 

    4.2.1   Origins of CA 

 The history of CA leads back to John von Neumann’s (1966) theory of self-
reproducing automata and his co-operation with Stanislaw Ulam at the time when 
they were working with concepts of artifi cial life and idealizations of biological 
systems. The theory of self-replicating automata describes conceptual principles 
of a machine that was able to self-replicate. Alan Turing was also already working 
with automata in the 1930s and defi ned in his paper “On computable numbers, 
with an application to the Entscheidungsproblem”, a simple abstract computer later 
known as the  Turing machine  (Turing  1936  )  where the idea of the automaton comes 
close to what we today consider as CA. 

 A cellular automaton is a dynamic discrete system and can be defi ned as a lattice 
(or array) of discrete variables or “cells” that can exist in different  states . Usually 
the lattice is considered as infi nite and the number of different states is fi nite. Cells 
change their states in discrete time steps according to local rules which defi ne the 
cell’s state on the basis of states of the cell itself and the neighboring cells in previous 
time steps. These  transition rules  are deterministic. Graphically, simpler forms of 
the cellular automaton lattices are represented as grid format but also other tessella-
tions have been used. Due to the conditions described above, three fundamental 
features of CA have been defi ned: uniformity, synchronicity and locality.  Uniformity  
means that all cell states are transformed by the same set of rules.  Synchronicity  
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means that all the cell states are transformed simultaneously.  Locality  means that all 
the transformation rules are local in nature (Schiff  2008  ) . In the next section, the 
characteristics of CA are discussed using one-dimensional CA as an example.  

    4.2.2   One-Dimensional CA 

 The simplest form of CA, i.e. elementary CA as Stephen Wolfram defi nes it, is 
usually considered as a one-dimensional CA consisting of an array of cells that can 
exist in two states 1/0 (or black/white or alive/dead) in which local rules are applied 
in the neighborhood of the cell itself and its immediate adjacent cells (r = 1). Thus 
the neighborhood of one cell consists of three cells, and since they are varying in 
two values, there are 2 3  = 8 different neighborhood states. For each neighborhood 
state, a transition rule is defi ned. These rules can also be presented as eight-digit 
binary numbers, and thus 2 8  = 256 possible transformation rules exist in a one-
dimensional two state ‘r = 1’-neighborhood cellular automaton. 

 Wolfram was one of the fi rst who really systematically generated and examined 
the behavior of one-dimensional CA. In this work, which started in the early 1980s, 
he classifi ed CA in four universality classes mostly according to the qualitative 
complexity in their behavior (Wolfram  1984  ) . An analysis of the qualitative features 
of CA rules was mainly based on visually observable properties of CA evolution 
patterns (Wolfram  2002  ) . The four Wolfram classes (Fig.  4.1 ) are as follows:  

  The class I  – fi xed – CA evolve to the homogenous state after a fi nite number of time 
steps independently from the initial state. Hence this class of automata is irrevers-
ible, which means that after a certain convergence point where all the cells have the 
same value, it loses all the information from the initial state. However, some excep-
tional confi gurations can be found that do not converge to a homogenous state, but 
the number of these exceptions approaches zero as the size of the automaton 
approaches infi nity. Class 1 CA are comparable with dynamical systems that tend to 
a fi xed-point attractor. 

  The class II  – periodic – CA evolve to periodic structures that repeat after a fi xed 
number of time steps. The size of the possible periods increases while the number 

  Fig. 4.1    Wolfram classes of 1-D CA dynamics       
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of possible states increases. This class is naturally analogous with periodic behavior 
in dynamical systems. 

  The class III  – chaotic – CA evolve to aperiodic patterns almost regardless of the 
initial states. In these chaotic automata, the number of initial cells that affect the 
value of a particular cell increases as new generations evolve. The class III CA are 
analogous with chaotic dynamical systems that are converging to strange attrac-
tors (Wolfram  1984  ) . 

  The class IV  – complex – CA evolve to complex localized structures. This class, with 
a mixture of chaos and randomness, is the most interesting one of the Wolfram 
classes. However, the defi nition for this class is not as rigorous as for the other classes. 
Localized structures that arise as the automaton progresses can move and interact, 
but the exact prediction of this behavior is impossible. For this class, no equivalent 
can be found in dynamical systems. The class IV CA behavior can also be defi ned as 
emergent, which is typical for complex systems in general (Wolfram  1984  ) . 

 In his book “A New Kind of Science”, Wolfram  (  2002  )  discusses the possibility that 
all CA can be divided into these four classes, which have been discovered by exploring 
one-dimensional CA. He also states that results obtained from idealized mathematical 
models can tell us some more general results about complex systems in nature.  

    4.2.3   Two-Dimensional CA 

 After discussing one-dimensional CA, one can ask: what happens if more dimen-
sions are added? Wolfram discusses this question in his papers and his book “A New 
Kind of Science” and concludes that there is no remarkable difference in occurrence 
of complex phenomena as dimensions are added (Wolfram  2002  ) . At least from a 
spatial modeler’s point of view, two dimensions naturally look more interesting 
because of its similarity with maps. If the complexity of two dimensional CA are 
perceived by taking one dimensional slices, then the behavior of the automaton 
resembles pretty much pure one-dimensional CA. But what is maybe more interest-
ing and a new feature after increasing the number of dimensions, is the  overall 
shape  of the pattern that emerges. There are many two-dimensional CA whose 
overall shape approximates a circle, but also rules that lead to more complicated 
overall shapes and it seems that usually these differences in overall shape are very 
sensitive to the initial confi gurations. Even more fascinating is when these shapes 
start to move in two dimensional space as in the most famous CA, John Conway’s 
“Game of Life”, which is discussed later. 

 Another thing that changes with the dimension of the automaton is the space of 
possible rule sets, and also the form of the neighborhood can vary in more than 
one dimension. The most typical form of two-dimensional CA is an orthogonal 
square lattice of cells. In this space, the locality is typically defi ned as two alternative 
neighborhoods:  von Neumann  and  Moore neighborhoods  (Fig.  4.2 ).  
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 Also, a few typical rule categories have been defi ned:  general ,  symmetric  and 
 totalistic  rules. General rule type means all the possible combinations in a given 
neighborhood, e.g. in a fi ve-cell von Neumann neighborhood with two possible cell 
states, there are 2 32   »  4 × 10 9  possible transition rules. The number of possible rules 
can be reduced if different symmetries – like rotational, refl ectional or complete – 
are adopted. Sometimes only sums of cell values in the neighborhood are considered 
as in the Game of Life. This group of rules is called totalistic rules. If the value of 
the cell itself is taken into account, then the rule set belongs to the category of outer 
totalistic rules.  

    4.2.4   Game of Life 

 Developed by British mathematician John Horton Conway, the popular CA applica-
tion the Game of Life was fi rst published in Martin Gardner’s ( 1970 ) column in the 
October  1970     issue of Scientifi c American. Operating in a two-dimensional lattice, 
the rules of the game are defi ned by two cell states and the eight-cell Moore neigh-
borhood. The Game of Life belongs to the Class IV category of CA, and its rule set 
is an example of outer totalistic rules. There are three rules in the Game of Life:

   Rule 1 – Survival: a live cell with exactly two or three neighbors stays alive  • 
  Rule 2 – Birth: a dead cell with exactly three live neighbors becomes a live cell  • 
  Rule 3 – Death: owing to overcrowding or loneliness, in all other cases a cell dies • 
or remains dead.    

 The popularity of the Game of Life rests on the outstanding variation of the 
behavior and in the patterns it can produce with these simple rules. It is also easily 
accessible to the general public through the internet. Several applications of the 
Game of Life in other tessellations, e.g. triangular, hexagonal, have been developed 
but they have not surpassed the original one in richness of behavior.  

  Fig. 4.2    Typical neighborhoods in 2D CA: ( 1 ) von Neumann 1-neigborhood; ( 2 ) Moore 
1-neighborhood; and ( 3 ) von Neumann 2-neighborhood       
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    4.2.5   Life Forms 

 Since the invention of the Game of Life, a signifi cant amount of work and creativity 
has been devoted to the development of different “life forms” (Fig.  4.3 ). The very 
simple patterns, like one or two cell confi gurations, disappear after one generation 
in the Game of Life but there are a huge amount of patterns that continue their lives. 
Life forms that reach an unchangeable state are called  invariant  forms. Patterns 
showing periodic behavior between a fi xed number of confi gurations are defi ned as 
 oscillators . Oscillators with two periods are the most common but oscillators with 
more periods have also been developed. Confi gurations that not only repeat 
themselves but also move in the lattice are called  gliders . One step more complex in 
the structure and behavior in the Game of life is represented by  glider guns  that are 
confi gurations constantly producing new gliders. Some of the glider like behavior is 
called  puffer trains  which are objects moving vertically and leaving stable confi gu-
rations behind them.  Methuselah confi gurations  are initial patterns that achieve 
stable states after a remarkably long evolution, say after several hundreds of 
generations (Schiff  2008  ) . There are still more mathematically interesting features 
of the Game of Life, which are not discussed here.  

 The life forms have proven that the Game of life is capable of self-reproduction. 
The self-reproducing system exploits the information that has been stored in it, in 
the form of instructions and the data to be copied (Casti  1997  ) . In urban spatial 
modeling, this means that the occurrence of certain initial states is copied to other 
locations as the system evolves. 

 What makes CA a special case within other automata and agent based models 
is the stationary structure of the agents (cells). The automata offer a framework 
for abstraction of “behaving systems” in which agents, behaviors, relationships 
and time can be represented formally (Benenson and Torrens  2004  ) . A number of 
defi nitions and characteristics of CA have been represented in the previous sec-
tions. However, it is not necessary to fulfi ll all of these conditions to achieve cer-
tain system dynamics. In spatial modeling, many conditions have been relaxed to 
achieve a better correlation with the system. CA have been tested in varying 

  Fig. 4.3    Different life forms: ( 1 ) invariants, ( 2 ) oscillator ( 5 steps ), ( 3 ) glider ( 5 steps ) and 
( 4 ) glider gun       
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 spatial tessellations, like triangular and hexagonal, as well as a graph form CA. 
The usage of different spatial tessellations has not shown any remarkable differ-
ence in automata behavior except some cellular automata classes (or types). In 
these (exceptional) classes, the neighborhood relations (i.e. tessellation) can 
change (or vary) as the system evolves (i.e. CA proceeds) (Benenson and Torrens 
 2004  ) . The L-systems (Lindenmayer  1968  )  are an example of this kind of CA.   

    4.3   CA as Complex Systems 

 CA have become a standard example of complex systems, although there are no 
rigorous defi nitions of complex systems. However, among different disciplines 
under the umbrella of complexity science, the principle of emergence as an indi-
cation of a complex phenomenon is widely agreed (Holland  1998 ; Casti  2002  ) . 
The emergence arises when simple interaction rules of objects at lower level 
 create unforeseeable phenomena that cannot be derived straight from the objects’ 
qualities at a higher level. As we have seen earlier, the CA obey this kind of self-
organizing behavior. Despite fl uctuating initial states, the class IV CA systems 
organize themselves through dynamical evolution, spontaneously generating 
complicated structures (Wolfram  1988  ) . Irreducibility is another distinguishing 
characteristic of complex systems. They must be studied as a whole, as there are 
no means to explore the system or predict the behavior of the system by looking 
separately at the parts. 

 Casti  (  2002  )  describes three kinds of complex systems. The fi rst one has a 
complex structure but the behavior of the system is simple; as an example he 
gives a mechanical clock. The second system has a simple structure but complex 
behavior, where the toy rotator is provided as an example. In the third type, both 
the structure and the behavior are complex, as in a human brain. Obviously it is 
the second type that is interesting and CA belong to this category. Casti  (  2002  )  
also presents four “fi ngerprints of complexity”: instability; irreducibility; adapt-
ability; and emergence. 

  Instability  refers to the modes of behavior of the system. For the complex system 
it is typical to have different modes of behavior depending upon small changes in 
the initial conditions or the interactions of the system. The four classes of CA 
can be interpreted as well as modes of behavior, and thus CA fulfi ll this criterion 
of complexity. 

  Irreducibility  means that the system is infrangible, i.e. if the system is dismantled, 
it loses some of its essential characteristics. This is against the classical view of 
science where typically properties of the higher level system can be explained by 
properties of the parts and laws governing the behavior of the parts. In CA systems, 
irreducibility is engaged with the capability of universal computing. If some algo-
rithm is used to effectively predict the behavior of the system, it should perform 
more sophisticated computation than the system itself, which is impossible for 
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universal computers. Thus, because the class IV CA – the complex class – is 
 considered to be a universal computer, they are computationally irreducible. 

  Adaptability  becomes apparent in systems that consist of several intelligent agents. 
Typically these agents change their interaction rules on the basis of information rules. 
For example, in traffi c models, one agent such as a driver can change one’s decision 
rules according to the information about the environment. With CA, it is also 
possible to create adaptive agents by considering a cell as an agent and by creating 
for them an internal mechanism that controls the behavior of the cell. 

  Emergence  is often considered to be the most fundamental property of complex 
systems. The organized behavior or structure that is generated at a global level as 
the system evolves according to simple local rules is an emergent phenomenon. 
This self organization cannot be predicted or derived from the properties of the 
isolated parts of the system. In CA this is a feature of the class IV systems, and self-
organization is intrinsic (Casti  2002 ; Wolfram  1988  ) . 

 Efforts have also been made to measure complexity. Ilachinski  (  2001  )  discusses 
a list of different measures of complexity that fall into static and dynamic classes. 
The four static measures are graph complexity, hierarchical complexity, Shannon’s 
information and simplicial complexity, while the four dynamic measures are algo-
rithmic complexity, computational complexity, logical depth and thermodynamic 
depth. The static measures refer to structural properties of an assembly of the sys-
tem and the dynamic measures refer to the dynamic or computational effort that is 
required to describe the information content of an object or a state of the system 
(Ilachinski  2001  ) . However none of these measures alone, or even together, delin-
eate complexity unambiguously. Defi ning and observing is largely based on the 
human ability of visual perception regardless of all the mathematical and technical 
analysis that has been developed. If our standard methods of perception and analysis 
cannot fi nd a short description of the phenomenon, it is considered complex 
(Wolfram  2002  ) . Wolfram also discusses human pattern and texture recognition and 
goes even further by comparing this process to simple computer programs. The 
strong visual nature of the representations of CA models is clearly a strength and 
also one of the reasons for the success of CA in spatial and urban modeling. 

 From a wider perspective, complexity has infl uenced the predominant scientifi c 
world view. Kauffmann  (  2007  )  challenges the reductionist way of doing science 
and offers emergence instead. He discusses the power of creativity in nature, in the 
“biosphere” and in the “econosphere”. Moreover, ontological phenomena, which 
exist in the universe, cannot be deduced from physics. He also states that “our inabil-
ity to state how novel functionalities come to exist in nature is an essential limitation 
to the way Newton taught us to do science” (Kauffmann  2007  ) . This comes close to 
the world of urban planners and architects, who under the functionalist tendency 
have dismantled the intermeshed traditional city structure to monofunctional enclaves. 
What was lost was the rich spectrum of connections in neighborhoods with mixed 
use and diverse functions that, for example, Jane Jacobs has written about in her book 
“The Death and Life of Great American Cities” (Jacobs  1961  ) .  
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    4.4   Urban CA 

 CA include intrinsic spatiality and therefore offer an excellent instrument for  simulations 
of urban spatial dynamics. The huge number and popularity of urban simulation mod-
els based on CA is evidence of this usefulness. With a relatively simple structure and 
model construction, CA also provide support for large parameter spaces (Torrens 
 2009  ) . A self-evident advantage is also the natural affi nity with raster data in GIS and 
alternatively different urban morphological or functional tessellations, e.g. plots of land 
can be quite easily represented as cells in simulation models. 

 In urban modeling, the concept of CA is mainly understood in quite a broad 
sense, and the majority of the applications do not follow all of the conditions of 
strict CA. Some of the rigorously defi ned components of CA can be relinquished 
according to the requirements of the phenomenon that is being examined. Benenson 
and Torrens  (  2004  )  have defi ned these extensions as follows:

   Neighborhoods can vary in size and shape.  • 
  The cell states can be defi ned in different ways: nominal, ordinal, continuous, • 
fuzzy or multi-parameterized.  
  Transition rules can be deterministic, stochastic, fuzzy, given by equations or • 
other predicatives.  
  Factors above-neighborhood level urban hierarchy can be used to control develop-• 
ment in the model.    

    4.4.1   History of Urban CA 

 The history of urban and geographical CA models dates back to the 1950s and 
1960s. Already in  1952    , Hägerstrand ( 1952 ) had developed a high-resolution model 
of spatial diffusion, in which the dynamics were already based on local interaction. 
But the crucial step towards CA was not yet realized while geographical modeling 
concentrated on regional models. However, during the 1960s, some cell space 
models and raster models were introduced (Lathrop and Hamburg  1965 ; Chapin 
and Weiss  1968  ) . Most of the models applied cellular presentation of urban space, 
and their principles were close to the idea of CA models. In cellular space, there 
was a certain state defi ned for each cell, which was updated at every time step. 
However, the raster models did not follow the bottom-up approach, at least not in 
the sense of how we understand this today. The transition rules in those models 
were mainly based on higher level functions and only some of them were based on 
neighborhood relationships. 

 The fi rst true CA model was introduced by Tobler in his article “Cellular 
Geography”  (  1979  ) , where he classifi ed fi ve types of models using a geographical 
array. The fi rst four models were representations of earlier models, but the fi fth 
model – the geographical model – had a new feature: the transition of a cell state 
was based on the von Neumann neighborhood. He also mentions the complex 
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properties of Conway’s Game of Life as an example of CA dynamics. Nevertheless 
the boom of CA based modeling did not begin until the late 1980s when the formal 
background of CA was established within mathematics, computing and natural 
sciences. Also, the development of computer graphics was crucial for CA to become 
common in spatial and urban modeling. One of the central papers was written by 
Helen Couclelis  (  1985  )  where she stated that CA combined with progress in system 
theories can be utilized in studying urban systems. She realized the possibilities of 
emergent characteristics of the global structure that arises from the dynamism of 
local events and presented a framework for cellular modeling of land use. By the 
end of the 1980s, several other papers concerning CA as simulation methods in 
urban dynamics were published (Itami  1988 ; Phipps  1989  among others). 

 The next level in the development of CA models took place when White and 
Engelen  (  1993  )  published the fi rst constrained CA model. The idea of the con-
strained CA model was to combine micro and macro scale mechanisms in cell 
state transition rules. The constrained model enabled merging of traditional top-
down and emerging bottom-up methodology. After this development stage, the 
interest towards the paradigm exploded rapidly. Numerous models based on CA 
have now been developed. There is no rigorous classifi cation of models although 
Santé et al .   (  2010  )  have made a recent attempt at classifying over 30 urban CA 
models. In this chapter, some areas for distinguishing different models are outlined. 
More theoretical models, which focus on the fundamentals of the modeling 
mechanisms, can be distinguished from the more realistic simulation models 
whose intention is to generate plausible scenarios for real environments. The 
modeling methodologies used and the examined phenomena defi ne their own 
reference groups.  

    4.4.2   Theoretical Urban CA Models 

 The development of theoretical urban CA models concentrates on revealing the 
properties and effects of the modeling techniques, where the interest is in the theory 
of CA in an urban context. Michael Batty writes in his book Cities and Complexity 
 (  2005  )  about hypothetical models. He has developed an extensive variety of models 
in this category with his collaborators. These models are simple idealized city mod-
els in which the growth starts from reduced initial conditions, typically from a single 
seed. The idea of the simple models is to reveal special features of growth mecha-
nisms in their purest form in laboratory-like conditions. 

 One of the interesting and salient features of these theoretical models is how 
the concept of geographical potential appears in them. Lots of dynamics in urban 
development is based on “action at a distance” and Batty discusses “action at a 
distance” as an emergent phenomenon that arises as the infl uence of cell transi-
tions propagates in the lattice as the system evolves (Batty  2005  ) . This is a key 
issue in the theory of urban dynamics and in differences between strict CA models 
and more general urban models. The demand for simple strict CA models arises 
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from the “action at a distance” question that can be enlightened by examining 
single cells in those models.  

    4.4.3   Real City CA Models 

 Several urban CA models have been developed with the intent to create future sce-
narios for real urban environments. Therefore, many of their features have a prag-
matic explanation. For instance, they can be confi gured according to the availability 
of data. The division between models into a theoretical or real category is not that 
rigorous. Rather there is a spectrum of models between these extremes. The differ-
ences between urban CA models can be differentiated by how they are confi gured to 
the fi ve basic elements of CA: spatial tessellation, cell states, neighborhoods, transi-
tion rules and time (Liu  2009  ) . The most signifi cant differences between urban CA 
models seems to be based on differences in the transition rules, as they actually 
defi ne the logic of how the modeled phenomena are handled. All these features have 
been stressed differently depending upon the purpose for which the simulation model 
was created. In the following sections we will discuss some examples of models 
developed for the simulation of urban growth, land use, sprawl, gentrifi cation, etc. 

    4.4.3.1   Land Use Change in Constrained CA 

 The constrained CA model developed by White and Engelen  (  1993,   2000  )  has been 
used to simulate land use change. The operational principle of the model is based on 
the transition potential of the cell, which is derived from the properties of the cell 
and its neighboring cells. The potential is based on the intrinsic properties of the cell 
and the infl uence of the neighbors weighted by distance from the central cell. All 
cells are then ranked by their potential and the macro scale mechanisms are applied 
by determining the overall amount of cells to be transformed according to demand 
for certain land use at an aggregate level. The aggregate level transition operations, 
which utilize population data, were developed separately from the CA model. 

 The land use change is represented as a transition of 16 different cell states that 
are classifi ed as active, passive or fi xed state categories. The transition potential of 
the cells is defi ned as the vector sum of the components of attraction or repulsion 
of other land uses, accessibility to transportation networks, and the intrinsic suitability 
for the particular land use and zoning regulations. In the model, the size of the 
neighborhood is relaxed to a circular template of 113 cells. The cell size in the 
model is 500 m × 500 m (White and Engelen  2000  ) . 

 The principle of combining the above neighborhood structures into transition 
functions has also been introduced by others (Xie  1996 ; Batty and Xie  1997 ; Phipps 
and Langlois  1997  ) . How the constraints are formulated varies between the different 
models. The challenge in constrained modeling is how to implement the constraints 
so that the local dynamics are not destroyed.  
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    4.4.3.2   Diffusion-Based Urban Growth 

 The  Sleuth  model represents a diffusion-based view of urban development 
(Benenson and Torrens  2004  ) . The model was developed to simulate urban growth 
for the San Francisco Bay area by Keith Clarke and colleagues during the 1990s 
(Clarke et al .   1997 ; Clarke and Gaydos  1998  ) . The model is based on a self-modifying 
cellular automaton and can be calibrated according to predominant trends of 
urban development. The growth dynamics consist of four growth rules executed in 
the following order in every growth cycle: (1) spontaneous; (2) new spreading 
centre; (3) edge; and (4) road infl uenced growth. The spontaneous growth defi nes 
the random urbanization of a cell by giving a certain probability to every cell 
regarding urbanization. The new spreading centre growth determines with certain 
probability the newly urbanized cells to become a spreading center. The edge 
growth defi nes the growth on the edge of the existing urban structure by giving a 
certain probability to a cell to be urbanized if it has at least three neighbors. The 
road infl uenced growth is based on the urbanization in earlier steps, on the input 
data of the transportation infrastructure and a random walk component. 

 The model also includes an optional  Deltatron -module, which simulates land use 
change. The core model can be used without this module. The number of newly urban-
ized cells, generated in the core model, is the driver for land use transitions. However, 
the  Deltatron -module generates only nonurban land use transitions (Clarke  1997  ) . 

 The calibration is carried out by using historical cross-sectional data as input to 
the model, and the Monte-Carlo method is used in iteration. The calibration phase 
produces fi ve growth coeffi cients as a result. These growth coeffi cients control the 
growth rules that are typical for each simulation area and the input data used in the 
simulation. The input data needed for the model consist of fi ve (or six if the 
 Deltatron -module is implemented) layers: slope, land use ( Deltatron ), excluded, 
urban, transportation and auxiliary hill shade. The name  Sleuth  is comprised from 
the fi rst letters of the layer names. After the calibration phase, the predictions 
(Fig.  4.4 ) can be executed using growth coeffi cients (Clarke et al .   1997  ) .  

 The  Sleuth -model combines a CA approach with different statistical methods to 
achieve higher realism in simulations. The features of the excluded layer enable the 
top-down control of growth to be combined with the bottom-up growth dynamics in 

  Fig. 4.4    Sleuth-model simulations of Helsinki city region. Three predictions for the hypothetical 
year 2040 with different input data. Taken from Iltanen  (  2008  )        
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a way that the level of top-down regulation can be defi ned by the user. The defi nition 
of urban and non-urban areas can be utilized in terms of density to catch sprawl like 
development (Iltanen  2008  ,  2011 ) .  

    4.4.3.3   Urban Sprawl in CA 

 One interesting exploration concerning urban growth and polycentricity was intro-
duced by Batty and Xie  (  1997  ) . Their model was based on the idea of development 
potential, which is a driving force of urban growth. The positive feedback in land 
use transformations creates growing clusters that break the monocentric structure. 
This model was implemented in cellular space where the potential of the cell evolves 
on the basis of itself. 

 Different grades of urbanization and growth were modeled by Batty and Xie 
 (  1997  ) . They also used an epidemic model and generalized it to a spatial context 
(Batty  2005  ) .The model exploits aggregate models as a part of the simulation pro-
cess, embedding them in the CA model  Duem  (Batty et al .   1999  ) . The  Duem  model 
is a CA model that simulates urban growth and the land use change of fi ve different 
categories. The fi ve land uses of the model are housing, industry, commerce, services 
and vacant land. The transport network is also represented in cellular form. The 
model utilizes different decision methods and life-cycle processes of land use.  

    4.4.3.4   Fuzzy Urbanization 

 Fuzzy logic and fuzzy set theory have also been utilized in modeling urban growth. 
It has been argued that fuzzy methodologies are suitable for urban modeling since 
both physical factors and human decision making are characterized by uncertainty 
and fuzziness (Wu  1996 ; Liu  2009  ) . Many urban conditions are continuous rather 
than discrete by their nature, which points to the appropriateness of using fuzzy 
logic in modeling urban dynamics. Fuzzy set theory has been developed to extend 
crisp set theory by defi ning membership of a set gradually instead of through a 
binary defi nition; 0 (=non member) or 1 (full member). Wu  (  1996  )  developed a 
methodology that utilized fuzzy logic in CA transition rules. He applied linguistic 
modeling with the idea to couple behavioral considerations of decision making to 
the simulation process. Liu  (  2009  )  developed an urban fuzzy constrained CA model 
in which fuzzy set theory has been used in the defi nition of cell states and their 
grade of urbanity. Liu  (  2009  )  found that more realistic simulation results were pro-
duced in terms of the human decision-making process. Moreover, fuzzy logic has 
been used in the representation of drivers and in the transition rules for an urban 
growth model in the city of Riyadh, Saudi Arabia (Al-Ahmadi et al.  2009a ;  2009b ; 
 2009c  ) . One of the main advantages of using fuzzy logic was the ability to interpret 
the resulting model and the rulebase, and to understand which drivers are important 
and which rules fi re most frequently during different periods of urban growth.    
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    4.5   Conclusions 

 The increasing connectedness of urban structure, both locally and globally, makes it 
more and more diffi cult to understand and control the development of cities. CA 
models, as part of the modeling toolkit, can enlighten the complex interactions and 
relations in networked urban structure. The better we know the theoretical behavior 
of our models, the better we can adjust them to real world situations. Thus, there is 
still space for both theoretical and applied explorations of the models of urban 
dynamics. The knowledge concerning theoretical aspects of the model also enhances 
their transparency. This transparency is required for keeping the basis of the model 
simple enough to catch the complex features in the system. 

 The strength of CA models is fast processing of information and the illustrative 
nature of the results, which can be effectively interpreted by human visual percep-
tion. Many possibilities also lie in the exploitation of the urban morphological 
elements in CA modeling. New dimensions could be added to the modeling scheme 
by using suitable urban morphological elements to add more coherence between 
the model and reality. The quantitative analysis of urban morphological objects 
and confi gurations could be incorporated within the automata models and also the 
utilization of suitable morphological tessellations could be developed to achieve 
more sensitive representation of the environment. 

 Simulations do not necessarily represent the behavior of real urban systems, yet 
they reveal to us some essential mechanisms that are part of the overall dynamics. 
The models can be used as tools within urban planning to produce unforeseeable 
development paths and to help generate scenarios for the basis of decision making. 
By exploiting simulation models, suitable boundary conditions can be outlined to 
achieve eligible development, although the modeling always leaves the fi nal state 
open. The challenge in the wider utilization of simulation models is a tradeoff 
between the ease of accessibility and understanding the inner logic of these models.      
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