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  Abstract   Land markets are characterized by spatially distributed exchanges of 
 heterogeneous goods and decision-making by heterogeneous, adaptive partici-
pants. Land market dynamics infl uence and are infl uenced by spatially varying 
demands for residential housing through housing markets. This chapter describes 
a spatially disaggregated, economic agent-based model for exploring ex-urban 
growth patterns emerging from coupled interactions between housing and land 
markets (CHALMS). CHALMS simulates the conversion of farmland to housing 
development over time, through the actions of the agents in the land and housing 
markets. Three types of agents—consumers, farmers and a developer—make deci-
sions based on microeconomic principles, and use stylized expectation formation 
models to adapt to dynamic market conditions. The location, price, and density of 
housing are represented explicitly, as are the location, price, and productivity of 
individual farms. The possibility of many possible system states, due to agent and 
landscape heterogeneity, stochastic processes, and path-dependence, requires mul-
tiple model runs, as does the expression of the spatial distribution of housing types, 
overall housing density, and land prices over time in terms of the most likely, or 
‘average’, patterns. CHALMS captures stylized facts of diminishing population 
density and land prices at greater distances from the center city, increasing land 
prices over time, and dispersed leapfrog patterns of development evident in most 
suburban areas of the U.S.      
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    27.1   Introduction 

 As urban sprawl and other undesirable development patterns become more  prevalent, 
policy-makers and researchers alike are coming to grips with the complexity of 
forces that generate such patterns (Atkinson and Oleson  1996 ; Brown et al.  2005 ; 
Brown and Robinson  2006 ; Magliocca et al.  2011  ) . Land-use patterns on the urban 
fringe emerge from many individual landowners’ conversion decisions in response 
to changing economic opportunities and landscape features. With such complexity, 
land-use change simulation models have become valuable tools to understand pro-
cesses of land conversion and development, and for analyzing the effects of land use 
policies. Various modeling methodologies have been applied in a wide range of 
disciplines, such as urban planning, landscape ecology, geography, and economics, 
to build the current understanding of land-use change (Irwin  2010 ; Parker et al. 
 2003 ; Veldkamp and Verburg  2004  ) . 

 However, most models represent either spatially detailed development patterns 
or individual-level decision-making—rarely integrating both elements explicitly. 
For example, models that provide spatially explicit representations of land-use pat-
terns may lack an equally rigorous representation of agent decision-making processes 
(Fernandez et al.  2005 ; Parker and Filatova  2008 ; Parker et al.  2012  ) . Models that 
take into account microeconomic agent decision-making, on the other hand, may 
fail to capture the full heterogeneity of those agents and inadequately describe spa-
tial characteristics of model outcomes (Irwin  2010  ) . 

 This chapter describes the Coupled Housing and Land Markets model—CHALMS. 
It is an economic agent-based model (ABM) of housing and land markets that cap-
tures the conversion of farmland to residential housing of varying densities over time 
in a hypothetical, growing ex-urban area. The primary goal of this study is to develop 
some general theoretical insights into the individual-level processes that drive regional 
development patterns. CHALMS is unique among ABMs of land-use for its integra-
tion of: (1) microeconomic decision-making rules for consumer, farmer, and devel-
oper agents in a spatially explicit framework; (2) representation of heterogeneous 
agent characteristics and spatial goods (e.g. land productivity and housing sizes and 
densities); and (3) direct linkages between adaptive price expectations and demand 
and supply decisions of developer and farmer agents through housing and land mar-
kets. The model demonstrates how patterns in development density and land prices 
predicted by traditional urban economic theory can be reproduced in an ABM frame-
work. In addition, it shows how disconnected, leapfrog development patterns emerge 
from the simulation of individual price expectations and market transactions. 

 Section  27.2  reviews the capabilities and limitations of current land-use model-
ing approaches, and describes how integrating the insights from recent economic 
and non-economic ABMs can provide a more complete representation of the pro-
cesses driving urban growth. Section  27.3  details the structure of CHALMS, agent 
representations, and market interactions. Section  27.4  presents baseline results and 
outcomes of preliminary sensitivity analysis. Finally, Sect.  27.5  concludes with a 
discussion of model capabilities and limitations and directions for future research.  
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    27.2   Some Previous Land-Use Modeling Approaches 

    27.2.1   Spatial Equilibrium Economic Models 

 Economic models of urban land use are typically built on the assumption of spatial 
equilibrium. These models assume that over the long run housing rents will reach 
equilibrium and offset differences in spatially heterogeneous attributes such as 
transportation costs to the central business district (CBD), neighborhood amenities, 
and access to employment. Early models in the urban economics literature used a 
monocentric city framework in which location is defi ned purely by distance to a CBD 
where all jobs are located (Alonso  1964 ; Muth  1969 ; Mills  1972  ) . Decreasing hous-
ing rent and density gradients are a feature of these monocentric models—i.e., rents 
and housing density fall as distance to the CBD increases. The basic monocentric 
framework has been expanded to incorporate growth and uncertainty, include envi-
ronmental and open space amenities, evaluate zoning and other regulations, and 
study a variety of other issues (Capozza and Helsley  1990 ; Mills  2005 ; Wheaton 
 1974 ; Wu and Plantinga  2003  ) . In recent years, economists have relaxed the mono-
centricity assumption (e.g. Epple and Sieg  1999 ; Walsh  2007  ) . 

 Although spatial equilibrium models have many desirable features—a rigorous 
representation of agent behavior and capitalization of spatial differences in ameni-
ties and other factors into land values (Irwin  2010  ) —several strong assumptions are 
made to ensure analytical tractability. First, spatial equilibrium is a particularly 
restrictive assumption, because out-of-equilibrium dynamics, such as path depen-
dence of development location, are important drivers of urban systems (Arthur 
 2006 ; Brown et al.  2005 ; Irwin  2010 ; Tesfatsion  2006  ) . Second, in order to ensure 
analytical tractability, agent heterogeneity is typically quite limited. 1  More detailed 
discussions of the limitations of these assumptions are available elsewhere for a 
wide range of applications (Arthur et al.  1997 ; Arthur  2006 ; Axtell  2005 ; Kirman 
 1992 ; Filatova et al.  2009 ; Irwin  2010 ; Parker and Filatova  2008 ; Tesfatsion and 
Judd  2006  ) . Since the intent here is to investigate the spatial and temporal dynamics 
of housing density patterns, a framework that can account for both agent prefer-
ences for spatially heterogeneous goods and idiosyncratic differences in decision-
making processes is necessary. Path dependence of land-use patterns can then be 
explicitly linked to individual-level motivations of land conversion decisions.  

    27.2.2   Agent-Based Models 

 Agent-based modeling (ABM) has emerged as an alternative method for modeling 
urban growth and land use change (see Crooks and Heppenstall  2012  for an 

   1   Some models include more heterogeneity than others. See, for example, Anas and Arnott  (  1991  )  
and Epple and Sieg  (  1999  )  for models with heterogeneous consumers.  
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 overview). Parker et al.  (  2003  )  provide a detailed review of the different types and 
applications of ABMs for modeling land use change. Although ABMs differ widely 
in their focus, assumptions, and formalizations of agent interactions (e.g. Benenson 
and Torrens  2004 ; Ettema  2010 ; Filatova et al.  2007,   2009 ; Ligtenberg et al.  2004 ; 
McNamara and Werner  2008 ; Otter et al.  2001 ; Parker and Filatova  2008 ; Robinson 
and Brown  2009  )  they all rely on interactions between many distributed agents to 
form emergent larger-scale patterns (Manson  2001  ) . Thus, microeconomic funda-
mentals can be incorporated into individual agents’ decision-making rules to simulate 
emergent trends in a spatially explicit framework. 

 However, examples of incorporating microeconomic decision-making rules into 
ABMs are few. Filatova et al.  (  2009  )  and earlier papers (Filatova et al.  2007 ; Parker 
and Filatova  2008  )  present the fullest, economically-based implementation of an 
agent-based land market to date. The authors relax the conventional spatial equilib-
rium assumption by explicitly modeling decentralized, bilateral transactions 
between land buyers and sellers. Transaction prices for land are determined by spec-
ifying a buyer’s and seller’s willingness to pay and willingness to accept, respec-
tively, which are then adjusted to form bid and asking prices accounting for different 
market power scenarios (Filatova et al.  2009 ; Parker and Filatova  2008  ) . The authors 
have provided valuable insights into methods for relaxing spatial equilibrium 
assumptions and incorporating microeconomic decision-making into the ABM 
framework. However, their model lacks a housing market and cannot capture the 
feedbacks between land and housing markets that infl uence spatial rent structures. 

 Ettema  (  2010  )  presents an economic ABM of a housing market, which explicitly 
simulates relocation and price setting processes. Housing prices are produced 
through bilateral transactions between a buyer and seller, and are constrained by the 
agents’ perceptions of market conditions and by the buyer’s budget constraint and 
housing preferences. The buyer’s opportunity costs are explicitly considered by 
comparing utility derived from housing dwellings available in the current period to 
the maximum expected utility of potential housing in the future. Expectation forma-
tion, executed using Bayesian updating, is a key advance from this model design. 
However, the expectation formation process only accounts for price changes driven 
by changing consumer preferences attributed to life cycle effects. For the purposes 
of simulating spatially explicit development patterns—which the author acknowl-
edges is beyond the scope of his current model—the model’s design cannot accom-
modate spatial characteristics of housing goods or the formation of spatially 
heterogeneous price expectations. 

 Robinson and Brown  (  2009  )  present a detailed spatial representation of regional 
development patterns in a GIS-based ABM named dynamic ecological exurban devel-
opment (DEED). Land and housing markets are integrated by the conversion of farm 
parcels to residential subdivisions of different densities by developers, and the acqui-
sition of deeds to subdivision lots by residential household agents. In addition, town-
ship agents are able to specify zoning and land acquisition polices to alter development 
patterns. However, land conversion events are not based on microeconomic decision-
making. Farm and residential parcel sales probabilistically occur on the basis of land 
or lot characteristics. No markets are represented in which  competing land uses can be 
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valued, and the economic constraints or opportunity costs of the acting agents are not 
considered. Although the authors make a valuable contribution towards empirically 
grounding ABMs, this approach makes it diffi cult to gain general insights into the 
underlying economic forces that drive land conversion decisions. 

 CHALMS builds upon the above ABMs by integrating many of their innovations 
into one framework capable of simulating development density patterns through cou-
pled housing and land markets. Similar to Robinson and Brown  (  2009  ) , housing and 
land markets are linked through the supply and demand functions of the developer and 
consumer households, respectively; however, our agents respond directly to and create 
market prices subject to economic constraints. Mechanisms of land and housing trans-
actions in CHALMS are built upon the bilateral transaction framework developed by 
Parker and Filatova  (  2008  ) , but are expanded to link the developer’s rent expectations 
in the housing market to his bid prices in the land market. Price expectations play a 
similar role in CHALMS as they do in Ettema’s model  (  2010  ) . Adaptive expectations 
of future prices and market conditions are used to compare the utility of present and 
potential future transactions—directly infl uencing the timing of transactions. In addi-
tion, our agents’ price expectation models are designed to capture spatially dependent 
price trends that directly affect the location of housing and land sales. These advances 
allow us to investigate both the supply- and demand-side forces driving spatial patterns 
of land conversion and development density over time.   

    27.3   Model Description 

    27.3.1   Model Structure 

 A growing exurban area is represented in which land is converted from farming to 
residential housing of varying densities over time. Farmland differs randomly in its 
productive capacity across farms, and farmers differ in how they form expectations 
about future prices of their land. Farmers compare the returns from farming to 
expected profi t from selling their land to a single representative developer and make 
the decision each period whether to continue farming or enter the land market. 
Inequality between farmers’ total supply and the developer’s demand for land estab-
lishes the bargaining power of farmers, which infl uences land transaction prices. 

 The developer determines the profi tability of different types of housing that vary 
by both structure and lot size. He sells a housing good (i.e. a combination of a given 
house and lot size) to consumers who prefer to be close to the urban area to mini-
mize transport costs, and are differentiated by both income and preferences over 
different housing types. CHALMS tracks development over time incorporating ele-
ments of path dependence and stochastic uncertainty that determine spatial develop-
ment. A schematic of agent decision-making and market interactions, along with 
the sequence of events, is shown in Fig.  27.1 . Price prediction models for farmers 
and the developer are used to form expectations of future land and housing prices, 
respectively, and are described in detail in the Appendix.   
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    27.3.2   Formation of Agent Price Expectations 

    27.3.2.1   Consumer Utility, Willingness to Pay (WTP), 
and Willingness to Bid (WTB) 

 A consumer  c  calculates standard Cobb-Douglas utility derived from the  consumption 
of a general consumption good and a housing good. Each housing good can be con-
sidered a ‘bundle’ of 1 of 18 different housing types, which are distinguished by 
different combinations of three different house sizes ( h )—1,500, 2,000, and 2,500 
square feet—and six different lot sizes ( l )—¼, ½, 1, 2, 5, and 10 acre; these lot and 
house sizes are meant to represent a typical ex-urban area. Consumer  c’ s utility 
function is assumed to have a Cobb-Douglas form:

     ( )|( , )
c

c c

c ask n n n nU c n I P h l
a b gy= − −

   (27.1)  

where  I  
 c 
  is income,   y   

 n 
  is the travel cost from the location of house  n  to the CBD, and 

  b   
 c 
  and   g   

 c 
  are the consumer’s idiosyncratic preferences for house and lot sizes, 

respectively.  P  
 ask/n 

  is the developer’s asking price for house  n , which is determined 
by Eqs.  27.15  or  27.16  below, depending on whether the house is being re-sold or is 
newly constructed, respectively (see Sect.  27.3.4.1 ). 

 The WTP of consumer  c  for any given house  n  is then equal to the portion of the 
consumer’s income that he/see is willing to pay for housing as given by the Cobb-
Douglas structure:

     ( )( )( , ) c n c cWTP c n I y b g= − +
   (27.2)   

 Although this functional form for the utility function implies that consumers 
would pay the same amount for all housing net of transportation costs, consumers 
identify the housing option with the greatest utility and adjust their bids on other 

  Fig. 27.1    Conceptual map of agent and market interactions in CHALMS. The  numbers  indicate 
the (counter-clockwise) sequence of events within one simulated time period (t). Agents ( italics)  
are labeled with the underlying conceptual model that governs their behavior. Inter-temporal pro-
cesses (t + 1) shown include updating developer’s rent prediction models, updating the farmers’ 
land price prediction models, and exogenous growth of the consumer population (Taken from 
Magliocca et al.  2011  )        
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houses relative to this most preferred option. First, the maximum utility possible 
across all houses,  U* , is found. Holding  U*  constant for all housing options, the 
rent,  R   *   ,  that would produce the same utility to the consumer as the most preferred 
choice (i.e. an optimal rent such that the consumer would be indifferent among 
housing options) is calculated for each housing option.

     

1
*

* ( , )
c

c cc n

n n

U
R c n I

h l

a

b gy
⎛ ⎞

= − − ⎜ ⎟⎝ ⎠
   (27.3)   

 Second, the difference between the rent being asked by the developer,  P  
 ask|n 

 , 
and the optimal rent,  R   *  , is used to form a willingness to bid (WTB) from WTP for 
each house.

     ( )*
|( , ) ( , ) ( , )ask nWTB c n WTP c n P R c n= − −    (27.4)   

 Consumers therefore bid more or less than the constant share of income for 
housing depending on their income and idiosyncratic preferences for house and lot 
size, and on the seller’s asking prices for the houses actually available at a point in 
time. It is important to note that the full heterogeneity of consumer preferences is 
captured, and bids refl ect the relative utility of each housing option offered.  

    27.3.2.2   Developer’s Rent and Return Projections and Willingness 
to Pay (WTP) for Land 

 The developer is assumed to use housing information, such as incomes and utilities 
of residents and records of past housing prices, to form rent expectations, which in 
reality would be available from a ‘real estate agent’ or similar source. Housing 
information is recorded in discrete ‘zones’ of fi ve by fi ve blocks of cells, which seg-
ment the entire simulated landscape. This information includes the average expected 
rent, lot size, house size, number of bidders before sale, percent that sale price was 
above/below the original asking price, the number of houses of each type in the 
zone, and residents’ income and utility levels for all houses in each zone. For any 
given house, the developer uses fi nancial prediction models (see  Appendix , 
Eqs.  A.1 – A.6 ) to form a rent expectation ( R  

 expt 
 ) for that house in  t  + 1 given past 

price information from the neighboring zones. Based on rent expectations for exist-
ing housing, the developer makes spatially explicit rent projections for all housing 
types for all undeveloped cells. 

 Rent projections are made by one of the three different methods described below. 
Projected rents are a combination of weighted local and regional (city-wide) rent 
information. For a given housing type to be built in a given location, a similar hous-
ing type within a local geographic area provides rent information from which a 
direct extrapolation can be made based on distance and local price trends. However 
when a similar housing type does not occur locally, the developer must rely on rent 
prediction methods that draw from similar housing types in a larger geographic 
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region. In this ‘regional case’, rent predictions are less direct than in the ‘local case’. 
Thus, the appropriate rent projection method is adopted based on the amount of rent 
information available in a given area. For each undeveloped cell, a rent for each 
housing type is projected taking into account the distance of the given cell from the 
CBD and associated travel costs. 

 For a given undeveloped cell, the distance to every other grid cell is calculated 
and mapped. The specifi ed parameter,  n  

 close 
 , sets the number of closest cells to be 

considered as a local search area for rent information. Using  n  
 close 

  developed cells, a 
distance-from-the-CBD-weighted average rent is calculated for each housing type 
present. This subset of local houses,  n  

 close 
 , is the basis of rent projections so that high 

demand in particular areas (e.g. due to desirable housing types and/or a relative 
shortage of housing in close proximity to the CBD) can be capitalized into rents that 
may exceed what is predicted based on only the travel cost gradient. Depending on 
whether the housing type for which a rent projection is being made is present in  n  

 close 
  

search cells, one of the following methods for projecting rent is used:

    1.    If the housing type for which a projection is made  is present  in the  n  closest 
cell:

     ( , ) ( , )loc loc loc
proj ltR i lt R mcD i lt= −    (27.5)  

  where    loc
ltR    is the local distance-weighted average rent for housing of type  lt  

within he closest developed cells,  mc  is the travel cost per cell (converted from $/
mile), and    ( , )locD i lt    is the distance from the cell  i  to the closest developed cell of 
the same housing type  lt .

     ( )( , )reg reg reg
proj lt i ltR i lt R mc D D= − −    (27.6)  

  where     reg
ltR   is the regional average rent for housing type  lt ,     iD    is the distance 

from the CBD of cell  i , and     reg
ltD    is the average distance from the CBD of all 

housing of type  lt  in the region. The resulting rent projection is given by:

     ( , ) ( , ) ( , )loc reg
proj loc proj reg projR i lt w R i lt w R i lt= +    (27.7)  

  where  w  
 loc 

  and  w  
 reg 

  are local and regional weights of 0.3 and 0.7, respectively.  
    2.    If the lot type for which a projection is being made  is not present  in the  n  closest 

cells, but exists somewhere in the city, the rent projection is solely based on 
regional rental information and is given by Eq.  27.6  for     ( , )reg

projR i lt   .  
    3.    If the lot type for which a projection is being made  is not present  in the  n  closest 

cells, and it  does not exist  anywhere else in the city, then rent projections are 
made based on average utilities:

     

1

( , )
n

n n

loc
loc loc n
proj n i

U
R i lt I

h l

a

b gy
⎛ ⎞

= − − ⎜ ⎟
⎝ ⎠    (27.8)  
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  where    loc
nI    is the average income (available from zonal housing information, see 

above in Sect.  27.3.2.2 ) households located in the  n  closest cells, and     loc
nU   is the 

average utility of households located in the  n  closest cells.

     

1

( , )
reg

reg reg
proj i

U
R i lt I

h l

a

b gy
⎛ ⎞

= − − ⎜ ⎟⎝ ⎠    (27.9)  

  where     regI   and    regU    are the average household income and utility, respectively, 
over the entire region. The rent projection for housing type  lt  in cell  i  is then 
given by Eq.  27.7 .     

 Based on projected rents, potential returns are calculated for every housing type 
in every undeveloped cell by subtracting the costs of construction and infrastructure 
(Table  27.1 ), which vary by housing type, and the price of land for the given cell. 
The maximum return for each cell is calculated as the housing type with the maxi-
mum return over all possible housing types (subject to zoning constraints) for the 
given cell. Maximum returns are then projected onto the gridded landscape to be 
used by the developer to determine the type and location of housing construction 
that maximizes profi t across all vacant holdings.  

 Given the rent projections for every undeveloped cell, the rent associated with 
the housing type that produces the maximum return in each cell  i  of farm  F  is 

   Table 27.1    Selection of model parameters   

 Mean (Std. dev) farm size, in acres  128 (70.67) 

 Mean (Std. dev) agricultural return, in $/acre  $2,486 ($249) 
 Building cost per square foot  $85–$165 

 Infrastructure costs per housing unit    a  
  One acre lots or smaller  $6,000–$17,000 
  2 acre lots  $11,000–$20,000 
  5+ acre lots  $13,000–$25,000 

 Share of income on housing expenditure, ß +  g  
  Low income  .35–.42 
  Middle income  .27–.34 
  High income  .18–.26 
 Proportion of housing expenditure on land,  g /(ß +  g )  .10–.90 

 Transportation costs (costs/mile) 
  Time b   $1.30 
  Out of pocket (   BTS  2007 )  $0.54 
 Exogenous rate of population growth  10% 

   a Based on Frank  (  1989  ) and Fodor  (  1997  )  
  b We assumed time costs to be a function of average road speed (30 mph), average number of work-
ers per house (2), average wage per person ($30/h), value of time as a percent of wage (50%), and 
the road network indirectness coeffi cient (0.3) (this is the ratio of network distance to the Euclidean 
distance)  
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 specifi ed as  R  
 max|i 

 . The developer’s WTP for a given farm  F  is the average  R  
 max|i 

  over 
the extent of the farm:

     

max|

( , ) i

j
j F

F

R

WTP F t
A

==
∑

   (27.10)  

where  A  
 F 
  is the total acreage of farm  F .  

    27.3.2.3   Formation of Farmer’s Willingness to Accept (WTA) 

 Farmer expectations of land prices are formed using a randomly allocated set of 20 
prediction models. Each prediction model uses one of six different methods for 
forming predictions based on up to 10 years of past land prices from which to 
extrapolate the next period’s price expectation (Eqs.  A.1 – A.6  in Appendix). A farm-
er’s decision to sell to a developer or continue farming is based on the expected 
return from selling his farm relative to the value of the farm’s agricultural return per 
acre in perpetuity,  V  

 agr 
 . The projected land price for cell  i  on farm  F ,  P  

 Lproj|Fi 
 , which 

consists of spatially discounted (Eq.  A.10  in Appendix) and predicted (Eqs.  A.1 – A.6  
in Appendix) price components, is compared to the farmer’s baseline WTA.

     { }| |( , ) max ,
i ii Lproj F agr FWTA F t P V=    (27.11)   

 The farmer’s WTA is dynamically set to the greater of the two values. This 
enables the farmer to capture speculative gains from sale of his/her land when devel-
opment pressure is high, while enforcing a rational threshold below which the 
farmer would be better-off farming.   

    27.3.3   Land Market Interactions 

    27.3.3.1   Bargaining Power 

 If the developer’s WTP for a given farm is greater than the farmer’s WTA for his 
land, then the two enter into bilateral negotiation to determine the fi nal transaction 
price of each parcel. Bargaining power in the land market,  e , is adapted from Parker 
and Filatova  (  2008  )  and captures differences in the developer’s demand for and the 
farmers’ supply of land at the initial WTP of the developer.

     

( )
( )

*

*

Land F

Land F

d A

d A
e

−
=

+
   (27.12)  

where  d  
 Land 

  is the acreage demanded by the developer and  A  
 F* 

  is the acreage supplied 
by participating farmers.  F*  is the subset of all farmers for which the condition 
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WTP > WTA is true. If the developer demands more land than farmers supply,  e  is 
positive and farmers bid above their WTA (see Sect.  27.3.2.3 ). If farmers supply 
more land than is demanded by the developer,  e  is negative and the developer will 
bid below his initial WTP (see Sect.  27.3.2.1 ). Bargaining power is dynamic because 
the amount of land supplied by farmers depends on the initial WTP of the developer. 
Also, the developer’s WTP for a given farm depends on the level of rents in the 
housing market. Thus, housing and land markets are explicitly linked.  

    27.3.3.2   Formation of Farmer’s Asking Price (P ask|L ) 

 After bargaining power is observed (Sect.  27.3.3.1 ), farmers participating in the 
market ( F* , i.e. WTP > WTA for their farm) form an asking price in response to 
market conditions to maximize their gains from trade (Parker and Filatova  2008  ) .

     { }*

* *
| |

( , ) max ( , )* (1 ),
i

ask L i i agr F
P F t WTA F t Ve= +    (27.13)   

 The asking price of the market-participating farmer,     *
iF   , is equal to or greater than the 

value of his land in agriculture. If the developer demands more land than farmers supply, 
each farmer will mark up his asking price to potentially maximize gains from trade.  

    27.3.3.3   Formation of the Developer’s Bid Price (P bid|L ) 

 After bargaining power is observed (Sect.  27.3.3.1 ), the developer forms a bid price 
for each farm for which the condition, WTP > WTA, is true.

     { }* * *
| ( , ) min ( , )* (1 ), ( , )bid L i i iP F t WTP F t WTP F te= +    (27.14)   

 The developer’s bid price for the farm of a market-participating farmer (    *
iF   ) is 

equal to or less than his initial WTP for the farm. If farmers supply more land than 
the developer demands, the developer will mark down his bid price for each farm to 
maximize both gains from trade and profi t from sales of houses in that location.   

    27.3.4   Housing Market Interactions 

    27.3.4.1   Formation of Asking Prices for Houses (P ask|H ) 

 Houses enter the housing market as either new construction or as pre-existing, 
recently vacated houses. For existing housing, the asking price equals the develop-
er’s expected rent, which is formed using the price expectation models described in 
Sect.  27.3.2.2  and the Appendix (Eqs.  A.1 – A.6 ). For newly constructed houses, the 
asking price equals the developer’s projected rent subject to varying levels of rent 
information, as described in Sect.  27.3.2.2  and specifi ed by Eqs.  27.5 – 27.9 .  
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    27.3.4.2   Housing Market Competition 

 The set of houses on which consumer  c  bids,  H  
 j 
  ,  are identifi ed by the criteria:

     { }|: ( , )j n ask j ltH H WTB c j P∈ ≥ Ω    (27.15)   

 Consumer  c  will bid on houses for which his  WTB  is greater than or equal to the 
developer’s asking prices,  P  

 ask|j 
 , multiplied by the bid level,   W   

 lt 
  for housing type  lt . 

The bid level is the running average percentage that sale prices have been above/
below the original asking prices for houses of type  lt  in the past. 

 The housing market competition factor,  HMC , describes the competition for 
housing that each consumer faces in the housing market. It is calculated by compar-
ing the number of houses consumer  c  will bid on to the number of other consumers 
bidding on the same houses:

     
( )
( )c

NC NH
HMC

NC NH

−
=

+    (27.16)  

where  NH  is the number of houses in  H  
 j 
  and  NC  is the number of other consumers 

bidding on  H  
 j 
 .  

    27.3.4.3   Formation of Consumer Bidding for Housing 

 After  HMC  is observed (Eq.  27.16 ), consumer  c  sets his bid price for each particular 
house  j  in the set  H  

 j 
  in relation to his optimal rent for that house,  R*(c, j) , in response 

to market conditions:

     [ ]*( , ) ( , ) ( ) ( )bid c askP c j R c j HMC WTP c P j= + −    (27.17)   

 If  HMC  
 c 
  is positive, competition for housing for consumer  c  is high and his bids 

will be set above his optimal rents. If  HMC  
 c 
  is negative, competition for housing for 

consumer  c  is low and his bids will be set below the asking prices. If  HMC  
 c 
  is zero, 

the number of consumers bidding on consumer  c ’s set of houses is the same as the 
number of houses  c  is bidding on, and his bids will equal his optimal rents. The 
adjustment of the consumers’ bid prices in response to market conditions allows 
consumers to try to simultaneously maximize their gains from trade and the likeli-
hood that they will be the highest bidder.  

    27.3.4.4   Rules for Matching Consumers with Houses 

 After the bidding process is completed, the highest bidder on each house is identi-
fi ed. Consumers possessing at least one ‘winning bid’ are put into a subset of ‘win-
ning bidders’. For each consumer in the set of winning bidders, the set of houses for 
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which the consumer owns the highest bid is identifi ed. The consumer’s utility is 
recalculated (using Eq.  27.1 ) for each of these houses using his winning bid instead 
of the initial asking price. Given these new levels of utility, the consumer is matched 
with the house for which he is the highest bidder and derives the highest utility. 
Once a consumer is matched with a house, both the consumer and house are removed 
from the market. The matching process is repeated with the remaining bids (which 
are kept constant) until all consumers are matched, all houses are occupied, or all 
positive bids are exhausted. This process ensures consumers are matched to houses 
that generate their maximum possible utility levels given competitive bids from 
other consumers and discrete housing options provided by the developer.    

    27.4   Model Experiments 

 CHALMS was run on an 80 × 80 gridded landscape with each cell representing an 
acre for a total region of 6,400 acres, or 10 square miles. The CBD was set in the 
middle of the top row at coordinates (1,40) with an established ex-urban developed 
area shown as the dark blue half-moon at the top of Fig.  27.2 . Although CHALMS 
was able to replicate 18 different housing types, where type is defi ned by lot and 
housing size, initial development only consisted of randomly placed housing types 

  Fig. 27.2    Initial landscape confi guration. Each polygon represents the location of one of 50 farms. 
The semi-circle (top center) represents the initial ‘city’ location       
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1 through 12 (see Table  27.2  for a description of the housing types). Fifty farms 
 surrounded the initial development and are shown as different colored patches in 
Fig.  27.2 . 2  Initially, 334 consumers participated in the housing market, and an exoge-
nous growth rate of 10% a year was assumed. Incomes of incoming households are 
assumed to vary from $20,000 for the lowest quintile to $200,000 for the highest quin-
tile. 3  Travel costs for households were assumed to depend both on time and monetary 
costs (Table  27.1 ). As new households moved to the region, they demanded housing; a 
single developer for the region responded by buying land from farmers and building 
houses. Thus, farmland was gradually converted to developed uses over time.   

 CHALMS was run 30 times 4  and each run tracks growth over a 20-year period. 
Farmers’ locations and agricultural returns were held constant across all runs, as 
were the distribution and location of housing types in the initial city. Draws from 
income and consumer preference distributions and the initial assignment of all pre-
diction models (i.e. for farmers’ price predictions and distance discounting, and 

   Table 27.2    Number of lots by type of house/lot combination, at t = 20   

 Housing 
type 

 Lot size 
(acres) 

 Housing type 
description 

 Mean 
number 
of lots  Std. dev. 

 Mean annual 
rents (2007 $)  Std. dev. 

 1  ¼ ac lots  Small house  87  58  7,737.35  797.10 
 2  Medium house  51  41  12,156.92  883.71 
 3  Large house  104  77  14,502.24  788.30 
 4  ½ ac lots  Small house  144  110  9,252.51  1,426.78 
 5  Medium house  173  124  12,382.07  1,430.72 
 6  Large house  155  76  15,946.08  981.74 
 7  1 ac lots  Small house  429  185  12,218.53  689.40 
 8  Medium house  231  110  14,786.07  605.53 
 9  Large house  141  76  18,559.56  856.78 
 10  2 ac lots  Small house  475  88  19,653.39  629.50 
 11  Medium house  358  77  21,342.20  653.40 
 12  Large house  183  40  24,739.68  716.58 
 13  5 ac lots  Small house  0  0  –  – 
 14  Medium house  0  0  –  – 
 15  Large house  0  0  –  – 
 16  10 ac lots  Small house  30  32  30,461.25  4,374.33 
 17  Medium house  12  26  32,581.86  3,424.89 
 18  Large house  1  3  33,047.47  2,959.10 

   2   Colors are used in Fig.  27.2  to delineate the farms but have no other meaning.  
   3   These data were based on median household incomes for suburban counties in the Mid-Atlantic 
region (Delaware, Maryland, Pennsylvania, and Virginia) from the 2000 Census. In general, the 
model is meant to represent a hypothetical community on the urban fringe in one of these states; 
we parameterize the model using data from this region.  
   4   Thirty runs were determined to be a suffi cient sample size as given by     

2
2

2
n zα

⎛ ⎞σ
= ⎜ ⎟δ⎝ ⎠

   for estimates 
of mean rents and number of lots (Table  27.2 ) at the 95% confi dence level.  
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developer’s price predictions) were allowed to vary randomly across each of the 30 
runs. Holding landscape features constant across runs eliminates sources of geo-
graphic variability, while exploring the effects of path-dependence and stochastic 
processes on development patterns that result from agent heterogeneity. 

 Stochastic elements in CHALMS (i.e. random draws from consumer income and 
preference distributions and assignment of prediction models) limit the insight of 
any single model realization. Instead, maps of the most likely, or ‘average’, devel-
opment patterns were constructed (Fig.  27.3a–d ). For each time step displayed, the 
development pattern consists only of cells that were developed above a threshold 
frequency, which was calibrated to produce an ‘average’ development pattern that 
closely approximated the calculated average percent-developed area and dispersion 
across 30 runs. Within each of those cells, the housing type with the highest prob-
ability of occurrence is mapped. In addition, Fig.  27.4  shows the probability of 
development at any density occurring across 30 runs.   

    27.4.1   Results 

 Table  27.2  provides a description of housing and lot sizes associated with each 
housing type, and summary statistics of fi nal outcomes across 30 model runs. Even 
though the initial landscape confi guration was held constant across runs, the  housing 

  Fig. 27.3    ‘Average’ development pattern maps for time steps ( a ) 5, ( b ) 10, ( c ) 15, and ( d ) 20. 
Housing types are color-coded from 1 ( dark ) to 18 ( light )       
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types built across runs showed a good deal of variation. This variation refl ected the 
importance of heterogeneity in consumer demand. The most frequently developed 
housing types were those with small or medium sized houses on 1- and 2-acre lots, 
which were affordable for most consumers. No 5-acre lots were built over the entire 
period, but 10-acre lots show up. The absence of 5-acre lots was due to the com-
bined effects of high construction costs relative to expected rents, and the wealthiest 
consumers demanding houses on 10-acre lots. 

 The results exhibit a general development pattern that is consistent with urban 
economic theory: as shown in Fig.  27.5 , housing density tends to decrease, and 
average lot sizes increase, as distance from the CBD increases (Mills  1972 ; 
Brueckner and Fansler  1983  ) . Also consistent with urban economic theory, land 
prices tend to decrease with distance from the CBD (Fig.  27.6 ) and increase over 
time as population grows and demand for land increases (Fig.  27.7 ). The results also 
show a pattern that is typical of urban “sprawl” (Fig.  27.8 ): a divergent relationship 
over time between the number of lots and acreage developed (Heimlich and 
Anderson  2001  ) .     

 In the fi rst fi ve time steps, development density and location were primarily 
driven by consumer demand and relative farm productivity. From the initial housing 
stock, consumers generally derived higher utility from 1- to 2-acre lots than from 
other lot sizes. This resulted in strong competition for those housing types and a 
subsequent bidding up of their rents. Relatively high rent levels prompted the devel-
oper to purchase land and capitalize on the strong demand for 1- and 2-acre lots. 

  Fig. 27.4    Probability of fi nal development patterns of any density occurring at t = 20 across 
30 runs. Land that was always developed is color-coded as  white , while land that had a low prob-
ability of developing is color-coded as  black    
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The development pressure fi ltered through to the land market, where farmers 
adjusted their WTA levels upward attempting to capture gains from sale above their 
return from agriculture. This price signal was strongest close to the initial develop-
ment, resulting in high land prices that decreased with distance. Thus, the fi rst farms 
sold were those with relatively low asking prices, distant from initial development 
(weak price signal) and comparatively low productivity (low initial asking price). 
As a result, early development progressed in a ‘leapfrog’ pattern (Fig.  27.3a, b ) with 

  Fig. 27.5    Mean density by zone after 20 time steps. Zones form concentric circles at equal inter-
vals away from the CBD. Rounded interval values are shown in miles       

  Fig. 27.6    Average price of farmland sold for development over 30 runs, at any time step, as a 
function of distance from the CBD       
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farms far from initial development sold fi rst. Furthermore, because of strong demand 
and high returns net of land prices and construction costs, 1- and 2-acre lots were 
built on the fi rst farms sold. 

 As time progressed, increased land prices coupled with consumer demand 
prompted the construction of houses on comparatively small (1-acre or less) or large 
(10- acre) lot sizes. Rents for these relatively scarce housing types rose faster than 
those of other housing types in the existing housing stock and prompted a shift in 
construction. Concurrently, development pressure and land scarcity drove land 
prices upward as population growth spurred competition for housing and farmers 
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  Fig. 27.7    Average price of farmland sold for development over 30 runs in each time period       

  Fig. 27.8    Comparison of number of lots versus acreage developed over time       
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reacted to an upward trend in past land prices. Faced with higher asking prices 
from farmers and consumer demand for scarce housing options, the developer 
shifted lot sizes and location. Generally, smaller lots—i.e., higher density hous-
ing—occurred on expensive land closer to the initial ‘city’, while lower density 
housing was built on remaining land far from the initial ‘city’. Spatial and temporal 
variability around this general pattern were due to heterogeneity in farmers’ expec-
tations of selling prices and consumer housing demands and the resulting profi t-
ability in each particular location. 

 Figure  27.4  provides a sense of the probability distribution of spatial outcomes 
across model runs. Comparisons between Figs.  27.3a , b and  27.4  demonstrate that 
several farms have a greater than 85% probability of being developed early in any 
given run. Those farms have relatively poor land and suffi ciently low expectations 
of land prices to prompt early development consistently across runs. After time step 
10, however, the remaining farms shown as developed in Fig.  27.3c , d generally 
have much lower probabilities of being developed in any given model run. At this 
point in the simulations, land prices are determined more by the agents’ price expec-
tation models than by differences in agricultural land productivity. Thus, develop-
ment patterns are less dependent on landscape features and become more directly 
infl uenced by stochasticity inherent in agents’ price expectation models (Brown 
et al.  2005  ) . This leads to increased stochasticity in development patterns in the last 
half of the simulations.   

    27.5   Discussion and Conclusions 

 CHALMS is an ABM of urban growth and land-use that integrates microeconomic 
fundamentals into a framework capable of capturing full heterogeneity and spatially 
explicit development patterns. Optimizing behavior of heterogeneous consumers, 
farmers, and a developer, a spatially differentiated landscape, population growth, 
and a variety of housing and lot types are included as part of the development pro-
cess. At the same time, bounded rationality, or the lack of perfect foresight, is 
assumed on the part of all agents. CHALMS describes the dynamics and spatial 
outcomes of the development process in a hypothetical ex-urban locale. 

 CHALMS as it currently exists has some limitations. The current version is simu-
lated on a simplifi ed landscape that lacks natural features such as water bodies, 
topography, or soil quality, which would infl uence a particular location’s attractive-
ness for development and/or suitability for agriculture. In the real world, many of the 
features that constitute good agricultural land are often favorable for development, 
which compounds their infl uence on development patterns. In addition, proximity-
based valuation of natural amenities or publicly provided goods by consumers is not 
represented, which has been shown to signifi cantly infl uence development patterns 
(Filatova et al.  2007 ; Irwin and Bockstael  2002 ; Wu and Plantinga  2003  ) . Future 
model iterations will incorporate more detailed natural landscape features and asso-
ciated proximity-based valuation to explore their effects on development patterns. 
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 Another limitation is the representation of only one developer. This was a 
 simplifi cation made to ease interpretation of simulated interactions and outcomes 
in both the land and housing markets. The introduction of competition between 
developers may change current development patterns. Although incorporating the 
above elements into the model’s structure would likely improve its realism, such 
elements would also add further complexity into an already complex model. 
Moreover, the existing framework allows us to establish baseline development pat-
terns subject to heterogeneous consumer preferences and incomes and farm pro-
ductivity without the added complexity of a more detailed landscape. Thus, further 
testing of model sensitivities and outcomes will take priority before additional 
landscape features are introduced. 

 Our results demonstrate qualitative behaviors consistent with urban economic 
theory that emerge from explicitly coupling housing and land markets in the ABM 
framework. The interplay between markets and agents’ heterogeneous preferences 
and perceptions reproduces many trends predicted by conventional urban eco-
nomic models but also shows a dispersed, “leapfrog” development pattern that is 
common in ex-urban areas. This has three important implications. First, CHALMS 
demonstrates that housing and land markets infl uence and are infl uenced by one 
another. Thus, simulating feedbacks that emerge between markets is critical for 
understanding the forces that drive urban growth patterns. Second, our formaliza-
tion of economic agents shows that microeconomic decision-making can be incor-
porated into an ABM framework to reproduce regional patterns consistent with 
those produced by conventional spatial equilibrium approaches. Finally, by simulat-
ing urban growth from the ‘bottom-up’, ABMs allow the researcher to represent full 
agent and environment heterogeneity and build an individual-level understanding of 
the dynamics of growing urban systems—a combination of advantages unique to 
the agent-based modeling approach.      
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      27.6 Appendix       

      27.6.1 Prediction    Models 

      27.6.1.1 Financial Prediction Models 

 Developers and farmers make pricing decisions informed by expectations of future 
housing and land prices, respectively. Adapted from price expectation models used 
in agent-based fi nancial literature (e.g. Arthur  1994,   2006 ; Axtell  2005  ) , agents try 
to predict the next period’s price based on current and past price information. An 
agent is given a set of 20 prediction models. Each prediction model may use one of 
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six different prediction methods, and there may be more than one model applying 
the same prediction method in the agent’s set of 20 models. Some of these predic-
tion methods map past and present prices (P) into the next period using various 
extrapolation methods.

    1.     Mean model : predicts that P(t + 1) will be the mean price of the last  x  periods.

     ( )
( )

:1
i

i t x t

P t

P t
x

= −+ =
∑

   (A.1)    

    2.     Cycle model : predicts that P(t + 1) will be the same as  x  periods ago (cycle 
detector).

     ( ) ( )1P t P t x+ = −    (A.2)    

    3.     Projection model : predicts that P(t + 1) will be the least-squares, non-linear trend 
over the last  x  periods.

     ( ) ( ) ( )2
1 ;s sP t aP t bP t c+ = + +    (A.3)  

  where  t  
 s 
  is the time span of  t−x  to  t , and  a ,  b , and  c  are coeffi cients of fi t. Other 

methods translate changes from only the last period’s price to next period’s 
price.  

    4.     Mirror model : predicts that P(t + 1) will be a given fraction  x  of the difference in 
this period’s price, P(t), from last period’s price, P(t−1), from the mirror image 
around half of P(t).

     ( ) ( )( )⎡ ⎤+ = + − − − −⎣ ⎦1 0.5 ( ) 0.5 ( ) (1 ) ( ) 1P t P t P t P t P tx    (A.4)    

    5.     Re-scale model : predicts that P(t + 1) will be a given factor  z  of this period’s price 
bounded by [0,2].

     ( )+ =1 ( )P t P tz    (A.5)    

    6.     Regional model : predicts that P(t + 1) is infl uenced by regional price information 
coming from neighboring agents. 

 For farmers, land prices are a function of land scarcity as measured by the num-
ber of remaining farmers,  N  

 f 
  ,  in the region at time  t .

     ( ) 1
1 ( ) 1

f

P t P t
N

⎛ ⎞
+ = +⎜ ⎟

⎝ ⎠
   (A.6)   

 For developers, the expected price of house types with size,  h , on lot size,  l , in a 
given neighborhood,  N  

 b 
 , is the mean of the prices of the houses and lots of the same 

sizes in adjacent neighborhoods,  N  
 nei 

 .  N  
 nei 

  are neighbors in the cardinal directions.
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     ( ) ( ){ }| |, 1 ,b hl nei hlP N t mean P N t+ =    (A.7)       

 All models in the agent’s set of prediction models are used to predict the price in 
the next time period ( P(t + 1) ). In time  t  + 1, the actual price is known and an error 
squared is calculated for each model by squaring the difference between the pre-
dicted price and the actual price. The prediction model with the least error is used to 
make the agent’s pricing decisions in the current period. This same process of pre-
diction and evaluation is used every period so that the most successful prediction 
model is used every time.  

    27.6.1.2   Developer’s ‘New Consumers’ Prediction Models 
and Demand for Land 

 Adapted from Arthur’s  (  1994  )  “El Farol Problem”, the developer attempts to predict 
the population at time  t  using past population information from the last 10 years. 
Population information for time  t  is not known until new consumers bid for houses 
on the housing market (Sect.  A.2 ). Just as agents are allocated 20 fi nancial predic-
tion models, developers are allocated 20 population prediction models. However, 
instead of receiving six different predictions methods, developers receive only the 
fi rst fi ve prediction methods listed above in Sect.  A.1.1 . For trends in population 
from time  t−x  to  t −1 (where  x  ranges from 2 to 10 years in the past), developers 
attempt to predict how many new consumers will enter the market in time  t . 

 The developer uses this prediction as the number of new consumers in time  t , 
which corresponds to the number of new houses that need to be supplied in time  t  
for new consumers,  N  

 new 
 . In addition, the developer observes the number of consum-

ers who bid on houses but were not the highest bidder on any house in  t −1 and 
therefore did not locate in the region,  N  

 old 
 . By combining the number of houses 

needed for new consumers ( N  
 new 

 ) and consumers from the last period that did not 
locate ( N  

 old 
 ), the number of new houses that need to be constructed in the current 

period ( H  
 new 

 ) is calculated.

     ( ) ( ) ( 1)new new oldH t N t N t= + −    (A.8)   

 Based on the developer’s rent projections (Sect   .  A.1.2 ), the  H  
 new 

  most profi table 
houses are chosen for construction later in the period. Given this housing set and the 
associated land required to build each, the developer calculates how much land will 
be needed in the current period. The developer’s demand for land is then the differ-
ence between the amount of land needed for new construction and the amount of 
vacant land already owned by the developer from previous land purchases (if any). 
For example, if the developer calculates ten new houses are needed in time  t  and the 
ten most profi table houses require 2 acres each, but the developer already owns 5 
acres that are vacant, then the developer’s demand for land in the current period will 
be 15 acres.  
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    27.6.1.3   Farmer’s Spatial Discounting Models 

 Land is an immobile good with spatially heterogeneous attributes, thus land prices 
vary in space and time. Farmers observe the price and location of one or more land 
transactions through time. A farmer then attempts to discount the observed transac-
tion price(s) based on the distance from his location. The spatially discounted 
price(s) accounts for spatially variable land values and enables an adjustment of 
land prices based solely on trends in the market land price. 

 A coeffi cient of spatial discounting is predicted using a genetic algorithm that 
enables the farmer to ‘learn’ the best coeffi cient over time. Initially, each farmer is 
allocated a ‘population’ of 100 random coeffi cients bounded by [−200, 200]. After 
the transaction price(s) is observed, it is discounted using each coeffi cient in the 
farmer’s ‘population’ of the coeffi cients and compared to the farmer’s current ask-
ing price to evaluate the ‘fi tness’ of each coeffi cient.

     

−⎛ ⎞
χ = χ − + −⎜ ⎟⎝ ⎠

| |( ) ( )
( ) ( 1) ;ask F L F

i i i
F

P t P t
t t

D
b

   (A.9)  

where the fi tness,   c   
 i 
 , of coeffi cient   b   

 i 
  is the absolute value of the difference between 

the current asking price of farmer  F ,  P  
 ask | F 

 , and the average of the transaction price(s), 
    LP   , divided by the average distance,     FD   , of the observed transaction price(s) from 
farmer  F . ‘Fitness’ is measured as such so that the ‘most fi t’ coeffi cient will be the 
one with the least error. The ‘most fi t’ coeffi cient is designated as ‘active’ and is 
used as   b   

 L 
  in Eq.  A.10  to spatially discount observed transaction prices. 

 The farmer spatially discounts the observed transaction price(s) by predicting the 
coeffi cient of spatial discounting in a linear extrapolation to give the spatially dis-
counted price,     |L FP   , faced by farmer  F .

     = +| ( ) ( );L F L F LP t D P tb    (A.10)   

 The coeffi cient of spatial discounting,  b  
L
 , represents the marginal discount of the 

observed transaction price(s) per cell away from farmer  F . The spatially discounted 
price,     |L FP   , is then given as an input into the farmer’s fi nancial prediction models 
(Sect.  A.1.1 ).   

    27.6.2   Housing Market Competition Factor 

 The housing market competition factor has several characteristics that demand fur-
ther explanation.  HMC  can change over time based on the income distribution of 
new consumers and the type and price of new houses that come onto the market. 
Holding incomes of existing and new consumers constant, if relatively more expen-
sive homes are introduced to the market, the number of consumers that can afford to 
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bid on the most expensive housing is reduced. This affects the amount of  competition 
faced by consumers of varying income levels. For example, the wealthiest consumers 
would face reduced competition (i.e.  HMC  is only slightly positive or even negative), 
because fewer consumers can afford to bid on the most expensive houses. Conversely, 
lower income consumers would face increased competition for the remaining houses 
(i.e.  HMC  becomes increasingly more positive), because there are comparatively 
fewer houses per lower income consumer to bid on. 

 This interaction between housing prices and incomes can occur with a change in 
the distribution of incomes too. Holding housing prices constant, if the income dis-
tribution skews towards lower incomes, competition for housing would increase for 
lower income consumers, but it would not change for higher income consumers. If 
the income distribution skews towards higher incomes, competition for housing 
would increase for all consumers. Wealthier consumers would experience compara-
tively more competition for the most expensive houses. Lower income consumers 
would also experience increased competition for housing, because higher income 
consumers that were not the highest bidders on more expensive houses would likely 
outbid most lower income consumers for the remaining housing.    
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