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  Abstract   Simulation models are historically vital to epidemiology and have recently 
become more common in social sciences such as geography, where the aim is to 
understand underlying causes of population health inequalities. Traditionally the 
methods used to estimate health outcomes at the local level rely heavily on regression 
techniques and are restricted by data availability. One possible way forward is to 
take the best elements of current methods to model interactions between individuals 
at multiple scales, and extend such models to predict changes in health over time. 
Complex systems dynamics models and agent-based models in particular are one 
methodological improvement that would realise both of these goals.      

    24.1   Introduction 

 Little is known about population health at the local level. Although there is knowl-
edge of trends towards changing health behaviours and outcomes in the national 
population as a result of regular surveys, the focus on health at such a coarse scale 
can mask local variation. For instance, the UK is known to have very high rates of 
child and adult obesity as a nation, but there are likely to be areas where rates are far 
above or below the mean values (Moon et al.  2007  ) . Understanding how these rates 
might change and what might be driving the change among different populations in 
disparate areas are questions often asked by epidemiologists and health professionals. 
Social and spatial variation in health has remained a focus of health geography 
over the previous decades, particularly in wealthier nations as the gaps between 
the wealthy and poorer members of society has become clearer. Recent research 
addressed this issue in The Widening Gap, a book which clearly illustrated the 
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evolving geographies of health inequalities in Britain through extensive data analysis 
and detailed maps of health outcomes over time and space (Shaw et al.  1999  ) . 
This work and similar publications (Macintyre et al.  1993  )  have highlighted the 
importance of geography, and the potential infl uence of local environments, in under-
standing public health variation within a country. 

 The fascination with social and spatial variation in health has extended beyond the 
exploration of historical patterns to include present-day trends in non-contagious and 
infectious disease, health behaviours and the introduction of predictive models that aim 
to estimate how the spread of disease or health-related outcomes may adjust over time 
in relation to a changing population. The predictive aspect of many models is especially 
relevant in countries where health care is provided by the state rather than through 
individual health insurance schemes. If health professionals and policy makers have an 
idea of the current and future patterns in smoking, obesity, or cardiovascular disease, 
then they are better prepared to allocate resources to areas of greatest demand. 

 The utility of dynamic models is clear in the wake of recent infectious disease 
outbreaks across the world (H1N1, H5N1 fl u) as discussed in a recent article appearing 
in Nature (Epstein  2009  )  and later in this book (Simoes  2012  ) . Both authors show 
how agent-based models (ABMs) of the disease diffusion can be used to formulate 
policy response to current and future infectious disease outbreaks at the macro scale. 
This chapter will outline the development of public health models in epidemiology 
and the social sciences such as geography, and focus particularly on the microspatial, 
local-level element of any models. The current options available for static models, 
which estimate health characteristics of populations for one point in time, will fi rst 
be outlined to give readers an overview of the various techniques and algorithms used 
by researchers and health organisations to model public health. The chapter concludes 
with a discussion of the advancement towards dynamic models, which consider 
population change and observed predictors of disease/behaviours to estimate future 
public health trends. ABMs, already suggested by epidemiologists to be the best 
way forward in modelling public health (Auchincloss and Diez Roux  2008  ) , are one 
strong alternative to the traditional regression-based models.  

    24.2   Individual Level Models of Health Outcomes 

 Few geographical health-oriented models deal with individuals; most are prevalence 
models which look at aggregate local area population characteristics (from a popu-
lation census) to identify the likelihood of various health outcomes occurring at the 
population level. Often these models are simply identifying the population-level 
attributes which are known to infl uence the disease or health outcome of interest, for 
instance, the risk of type 2 diabetes increases with age so is more prevalent among 
retirees than university students. Implicitly all of the models outlined in the following 
section will consider the relationship between geographic place and health, the 
intersection of context and composition. This place/person relationship has become 
a central interest in the study of spatial inequalities; if you remove people from one 
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environment and place them in another, will it impact their health? How can these 
associations be identifi ed and quantifi ed? 

 Epidemiologists and geographers have developed several modelling approaches 
which use some type of regression equation to derive probabilities of behaviours or 
disease in relation to the local population and/or environment. Most methods are a 
type of direct standardisation, where the predictors of a disease/outcome in a repre-
sentative population (such as a national level health survey like the annual Health 
Survey for England [HSE] or the periodic New Zealand Health Survey [NZHS]) 
are statistically identifi ed through regression analysis to estimate the likelihood of 
individuals with certain predictive traits to experience a health condition. The regres-
sion may take into account only the individual-level (compositional) characteristics, 
or it may be extended to include area-level (contextual) attributes. The probabilities 
created from the regression process can then be applied to the local population. 

 Indirect standardisation methods take the opposite approach, which is to look at 
the predictors of a heath outcome in a sample population such as a local health 
survey and apply it upwards to the national population. This is much less frequently 
used in spatial public health models due to the prohibitive cost associated with 
carrying out comprehensive local level health surveys which provide the health data 
for this technique. 

 The focus in this chapter is to consider models with fi ner spatial scale, and usu-
ally these models may be categorised into one of the following groups: epidemio-
logical, synthetic population estimation (multilevel or spatial microsimulation) or 
Empirical Bayesian. The next section outlines these main types of static estimation 
models and gives examples of their application within the United Kingdom. There 
is an evolution from the earliest estimation models as computational power and data 
collection has improved, as will be shown later in this section, where the line 
between more traditional static models has begun to blur into the dynamic micro-
simulation models (Wu and Birkin  2012 ; Portz and Seyfried  2011  )  that can be seen 
as predecessors of ABMs. 

    24.2.1   Multilevel Models 

 One of the most inherently geographical approaches to creating local-level estimates 
of health outcomes or behaviours is the use of multilevel, or hierarchical models, 
to develop local prevalence estimates (Moon et al.  2007 ; Pearce et al.  2003 ; Twigg 
and Moon  2002  ) . The structure of multilevel models is described in the name; peo-
ple are ‘nested’ within multiple area levels, such as neighbourhoods, schools or 
work environments. Multilevel models have gained substantial popularity in the 
social sciences as they allow researchers to quantify the magnitude of the infl uence 
that place-based characteristics might have on population health. For example, how 
might neighbourhood deprivation affect mental well-being? (Fagg et al.  2006  ) . 

 Prior to the implementation of a multilevel model, relevant predictors for the health 
outcome need to be identifi ed. Each of the predictors need to be relevant to the 
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health outcome and present in both the survey dataset and the small-area population 
data (Twigg and Moon  2002  ) . Logistic regression models are preferable in situations 
where the outcome is a dichotomous value (not diabetic/diabetic; non-smoker/
smoker) and the predictors are either a continuous scale (such as age) or categorical 
(such as ethnic groups) (Gatrell  2002  ) . 

 One example of the multilevel modelling framework is the creation of nationwide 
probabilities for smoking status based on data (age, sex, smoking status, home Output 
Area [OA]) from the Scottish Health Survey and the 1991 Census (Pearce et al. 
 2003  ) . Each of the 13,784 respondents are grouped into 12 age-sex bands to calcu-
late the probability of smokers in each band; the age-sex distribution is available 
from the 1991 Census. Using the known smokers/non-smokers and their area of 
residence alongside age and sex bands at the individual level, the authors were able to 
estimate additional data from the census about each OA’s population characteristics, 
including 16 ‘person’ variables (including % unemployed) and 9 ‘household’ 
variables (e.g., % owner occupied households). There were also two variables at the 
next largest area (pseudo postcode sector), deprivation and an Offi ce of National 
Statistics (ONS) Ward classifi cation (Pearce et al.  2003  ) . 

 After testing a series of multilevel models and identifying the signifi cant variables 
infl uencing smoking at the individual and area level, the parameter estimates from 
the fi nal multilevel model were used to calculate new probabilities for smoking 
in each of the age/sex groups, based on several new variables; these probabilities 
were then applied to all of the output areas (where all of the predictive variables 
were available) across Scotland. The results showed a wide range of smoking preva-
lence, but the predictor variables which proved most signifi cant were consistent 
with previous studies (Pearce et al.  2003  ) . The combination of small-area data with 
survey responses is very similar to the epidemiological modelling approach; 
however, the multilevel framework allows researchers to clearly identify signifi cant 
predictors at more than one scale. In addition, the inclusion of cross-level interac-
tions between predictor variables adds greater accuracy to the resulting estimates 
(Twigg and Moon  2002  ) . 

 One limitation of the multilevel modelling framework for the creation of preva-
lence estimates is the need for data on predictor variables to be available at the 
geographic scale for the resulting estimates. As will be explained later in this 
section, spatial microsimulation techniques are not as limited by data to create 
estimates. Where the multilevel modelling approach assigns the parameter estimates 
to individuals matching a multifaceted profi le (for instance, white males aged 
30–39 years in social class AB), the microsimulation method assigns probabilites 
for behaviours iteratively to each of the four attributes in turn (ethnicity, sex, age 
and social class). 

 The results from this prevalence estimation approach can be tested for accuracy 
by comparing the outputs against known local-level surveys. Previous results 
have indicated that the method is quite robust when used for tobacco smoking 
estimation, although less reliable in accurately predicting alcohol consumption 
(Twigg and Moon  2002  ) .  
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    24.2.2   Epidemiological Models 

 The primary difference between epidemiological models and the alternative 
options for static estimation processes is the use of multiple datasets to generate 
probabilities. The challenge with this type of model is that the user is limited to 
only estimate outcomes on typically small-scale studies for derivation of reference 
rates. However, one particular application of this method has been used extensively 
by the National Health Service (NHS) as a way of fi rstly estimating the national 
(English) prevalence of type 2 diabetes, which is often undiagnosed, and to 
also create these estimates at a more local level (Forouhi et al.  2006  ) . Because 
these models are dependent on relatively small local surveys, they may use data 
from sources that are far apart in time and place. In the case of the model of 
Forouhi et al.  (  2006  )  model, they used reference rates based on age, sex and 
ethnicity from six datasets ranging from 1986 to 2000. The authors created a set of 
time and place adjustments to correct for differences between the study populations 
and locations. 

 Once the reference rates are created from the epidemiological datasets, they can 
be applied to crosstabulated 2001 Census data (age-sex-ethnicity) at the smallest 
area level where such crosstabulations are available. The benefi t of this modelling 
approach is that all the data are based on a variety of real-world datasets. However, 
users are constrained by the need for crosstabulated census data to build up the esti-
mates. In the case of diabetes, the lack of data fl exibility meant that socioeconomic 
status was not used as a predictor in the model, although this variable is known to 
infl uence diabetes incidence (Connolly et al.  2000 ; Evans et al.  2000  ) . Unlike the 
multilevel modelling framework, there is no scope for adding area-level predictors 
such as land use mix. 

 A different type of synthetic population estimation similar to the epidemiological 
models described above, but with greater fl exibility in how the predictor variables 
are included in the model, is through the incorporation of Bayesian estimates. 
As with the epidemiological method, the models are designed to be used at a 
scale where crosstabulations of the necessary attributes are available. This method 
has been used to estimate coronary heart disease (CHD) and diabetes in England 
(Congdon  2006,   2008  ) . 

 The diabetes estimates created in this way are similar to the epidemiological 
model described above, but the initial data come from the 1999 and 2003 HSE to 
calculate age by sex by ethnic group specifi c prevalence rates for both type 1 and 2 
diabetes. The estimated rates are then applied to the 2001 Census wards, where the 
age-sex-ethnic group population distributions are known. The Bayesian methods 
employed by Congdon include a 1999 diabetes risk factor to create accurate predic-
tions of diabetes prevalence and confi rm the probabilities for diabetes created from 
the regression of 2003 data. There is signifi cant overlap in the modelling techniques 
between Congdon’s model and those implemented using a multilevel approach or 
epidemiological method.  
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    24.2.3   Microsimulation 

 Spatial microsimulation techniques offer the ability to link non-spatial datasets, 
such as national health surveys, with spatial data such as sociodemographic attributes 
from the population census. Unlike the other approaches, the microsimulation model 
is not dependent on having cross-tabulated data at each area level where the 
estimates are being created. Instead, the purpose of spatial microsimulation is to 
iteratively replicate known characteristics of the population which predict the health 
outcome of interest reliably at the local level. There are several different computa-
tional algorithms for spatial microsimulation, which are outlined elsewhere in this 
book (Birkin and Wu  2012  ) . Deterministic reweighting has been used in a suite 
of models for health behaviours and outcomes including smoking, diabetes and 
obesity (Tomintz et al.  2008 ; Smith  2007  ) . Other options include stochastic methods 
such as simulated annealing and combinatorial optimization. With deterministic 
reweighting, a probability for each person who responded to the non-spatial survey to 
live in each local area is calculated, based on a reweighting algorithm that takes each 
of the predictive variables in turn (Smith et al.  2009 ; Ballas et al.  2006  ) . The sums 
of all the probabilities generated for each area will add up to the census-based 
population total. These probabilities can be used to generate prevalence estimates as 
they will give an indication of the proportion of the population affected by the health 
outcome/behaviour. 

 Where microsimulation differs strongly from the alternative methods outlined 
above is that multiple outcomes or behaviours may be estimated for a local popula-
tion at one time rather than creating a series of outcome-specifi c models which have 
to be re-run for every desired characteristic. For example, if the prevalence rates 
of adult obesity and type 2 diabetes were created using a multilevel modelling 
framework, this would require two separate modelling runs for each health condition 
rather than only one with spatial microsimulation. However, the lack of specifi city 
in the synthetic population creation from microsimulation may mean that resulting 
estimates are not as accurate as alternative methods because different health con-
ditions may be best predicted by very different sociodemographic characteristics. 
The predictors of smoking behaviour and high levels of physical activity are quite 
different, so it is unlikely that one model might provide the most accurate estimation 
of both outcomes. If the conditions are predicted by similar characteristics, such as 
with obesity and diabetes, then the use of one model is appropriate. 

 As with the other static prevalence models, validation of prevalence estimates 
is diffi cult due to the lack of real-world data. Options to test the reliability of the 
model predictions can include comparing the model estimates against a related 
outcome with known prevalence at the same scale, or aggregating the estimates up 
to a geography where the prevalence is known (Tomintz et al.  2008 ; Congdon  2008  ) . 
All of the models are only estimating health based on observed relationships between 
the modelled health outcome and the local populations’ sociodemographic profi le 
that is associated with that outcome (Moon et al.  2007  ) . 

 Static models, like the dynamic models described in the next section, are limited 
by the available data that can be included in them. One of the biggest challenges 
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with any type of prevalence estimation is the use of older data for the baseline 
population (to include attributes such as age, sex, ethnicity). The UK census of 
population takes place every 10 years but the tables with population characteristics 
are not immediately available for researchers, so the models are never based on 
real-time population characteristics. Depending on the country, the larger/national 
health surveys, which can be used to create the estimates, may not be collected 
every year; the Health Survey for England is annual but the Scottish Health Survey 
has only recently been conducted each year (2008 through 2011).  

    24.2.4   Dynamic Models 

 Dynamic models attempt to create health outcomes not only for one point in time 
but also for future populations, by taking into account potential population changes 
such as an aging population. The utility of predictive models for future planning is 
particularly important for countries where health care is funded by the government 
and future budgets must be allocated in advance. Dynamic models can take the form 
of the regression analysis described above (dynamic microsimulation) or may be 
based on more intricate relationships, like the complex systems dynamics models 
which consider individual and environmental level interactions. The systems 
dynamics models are iterative in nature, building on the baseline data and creating 
new data as the populations evolve and interact; one specifi c example of this type of 
model is an ABM.  

    24.2.5   Dynamic Microsimulation Modelling 

 Dynamic microsimulation modelling is described in detail elsewhere in this book 
(Birkin and Wu  2012  ) . Briefl y, this method is an advance beyond the simple static 
models outlined earlier, often including a stochastic element to the population 
generation process. Similarly to the static models, health outcomes are estimated 
based on previous observed associations with demographic characteristics in a type of 
regression analysis. However, with the dynamic models, the baseline populations are 
allowed to change in line with expected demographic evolution within an area. For 
example, aging populations or migration of different ethnic groups between areas 
will affect the model’s estimated outcomes, as will possible changes to government 
policy related to the behaviour, such as tobacco taxation and smoking policies. 

 Dynamic microsimulation models have already been created to estimate the future 
prevalence of obesity (Kopelman et al.  2007  ) . However, the models are still con-
strained by linear relationships defi ned by regression analysis. Using obesity prev-
alence as an example, these models may fail to accurately represent how real people 
would react to a variety of infl uences such as less expensive food, better access to 
fi tness facilities, or increased education about the risks associated with obesity.  
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    24.2.6   Complex Systems Dynamics Models 

 Newer methods in disease estimation approach the health outcome as a complex 
system, with the aim of including as many potential infl uences as possible. Gatrell 
has recently acknowledged the diffi culty of accurately modelling health outcomes 
using predictive models. However, the means of dealing with complexity is not 
strongly developed in public health applications (Gatrell  2005  ) . Many of the issues 
raised by Gatrell are intuitive: the inability of the models to account for interac-
tions between variables (beyond the simplistic methods in multilevel models); the 
simplifi ed, linear nature of the models that are unable to account for non-linear 
relationships (which, arguably, are widespread in health research); the inherently 
complex nature of relationships between people and place; the idea of epidemiology 
as a ‘web’ of inter-connected mechanisms, which uniquely combine in individual 
lives (Gatrell  2005  ) . 

 A recent issue of the American Journal of Public Health was devoted to exploring 
potential approaches to modelling complex systems, with several authors who echo 
Gatrell’s call for improved models. One of the models, developed in the United 
States to estimate the impact of various governmental policy on diabetes prevalence, 
is created using systems dynamics (Jones et al.  2006  ) . This is perhaps the closest 
that researchers have come to acknowledging the true complexity of public health. 
However, the model is currently only feasible at the national scale. This particular 
model, created by health planners at the Centers for Disease Control in the United 
States, was designed specifi cally to understand population dynamics related to 
diabetes. The intention was to inform public health strategy by predicting the future 
prevalence of diabetes through 2050. The model incorporated factors such as 
death rates, health insurance, diabetes diagnosis and medication. This model, along 
with others currently under development at the CDC, promises to improve health 
planning by better predicting the effects of interventions on public health (Jones 
et al.  2006  ) . 

 There appears to be a trade-off in terms of the level of complexity allowed in a 
model and the unit of geographical analysis for which it can estimate disease preva-
lence. As complexity studies continue to gain momentum (and computational powers 
increase), this ‘choice’ may be resolved, leading to more robust models which can 
accurately depict current and future health trends at a fi ner spatial scale. 

 Complex systems dynamic models are a general category of advanced simula-
tion models that includes ABMs (see Crooks and Heppenstall  2012  ) . The benefi t 
of this family of models is their ability to incorporate multiple scales of infl uence 
(like a multilevel model) as well as considering the changing relationships between 
infl uences on agents’ health within the model. The inherent complexity in person-
environment interactions is best modelled using this type of approach because the 
agents (people) in the model are allowed to react to changes in causal factors for 
disease from the local environment or each other. The environment may not be such 
an obvious causal factor in non-communicable disease as it is for illness such as 
malaria or Dengue fever, but much of the recent work that aims to investigate the 
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increasing trends in obesity suggests that a person’s local environment plays a key 
role (Egger and Swinburn  1997  ) . 

 An ABM has the unique ability to combine multiple scales/types of infl uence as 
well as interactions and feedback loops to ideally replicate interactions that cannot 
be represented in regression-based models (Auchincloss and Diez Roux  2008  ) . 
The dynamic nature of ABMs is a great asset to health planning; people vary over 
time and are infl uenced by any number of factors at different ages, and this method 
is the best way to address such complexity. ‘Agents’ in the models do not necessarily 
have to be individuals but this is the most common confi guration. Attributes and 
behavioural rules are assigned to the agents based on available data (commercial 
data, qualitative studies) to begin the simulation, and there is the option to add a 
random element to the evolving interactions that will dictate how the agents may 
respond to different situations. The model is then run numerous times to generate a 
variety of outcomes (Auchincloss and Diez Roux  2008  ) . The model is usually created 
in a computer programming language like Java, but there are several ready-made 
programmes such as Recursive Porous Agent Simulation Toolkit (REPAST) that 
may be adapted by individual users who have less programming experience. 

 Obesity is a good example of how ABMs can move the epidemiological research 
forward (Galea et al.  2009  ) . With the wealth of research devoted to studying 
obesity-promoting (obesogenic) infl uences at the personal and area level, the com-
plexity of obesity aetiology is well documented (Kopelman et al.  2007  ) . A recent 
example of agent-based modelling of BMI with regards to local stores and varied 
strength of an individual’s social networks gave one illustration of a possible policy 
scenario (Galea et al.  2009  ) . In this simplistic model, created in a ready-made ABM 
framework, the results suggested that people with weaker social network ties had a 
greater decrease in BMI. However, they were also more likely to have an increase 
from baseline BMI after the food stores had returned to normal. 

 A more ABM to predict the evolution of BMI at local levels would likely 
incorporate much more data. A good basis for a comprehensive ABM for obesity 
would be to include the obesogenic environment framework outlined by Egger and 
Swinburn  (  1997  ) . Their ecological model of obesity breaks the ‘environment’ into 
four distinct types (physical, economic, political and sociocultural) and further 
subdivides these types into the micro (i.e., neighbourhoods, schools, homes) and 
macro (transport, health regulatory system). Then the individual factors could be 
introduced in the model (age, sex, ethnicity, social class, marital status, educational 
attainment, etc.). All of these individual attributes and their relative importance in 
predicting obesity may be identifi ed from the same types of surveys used to inform 
the regression-based models. It would be best to isolate aspects of the different 
infl uences to understand the relative importance of certain parameters on different 
people. For instance, women may be less likely to use parks for physical activity 
than men, or men may make less healthy choices with regards to available food. 

 ABMs, as one of the complex systems dynamics models, are clearly a big step 
forward for epidemiological research. However, as with all methods, there are limi-
tations to be considered. The rules that govern agent behaviour are often infl uenced 



508 D.M. Smith

by the assumptions of the researchers creating the model, or may be overly simplistic. 
The parameters that are included in the model may not be based on large samples of 
observed data, particularly with regards to interactions (Galea et al.  2009  ) .   

    24.3   Conclusion 

 Increasing computational power has changed the available methods and allowed for 
the evolution of complex models to more accurately capture the behaviours that 
contribute to health outcomes. While early prevalence models were restricted in 
power to a static population, the new developments in systems dynamic models and 
agent-based modelling have led to more fl exible and powerful choices for social 
scientists and policy analysis. 

 As discussed elsewhere in this book, advanced computational methods are 
valuable in predicting the spread of infectious disease and have historically been used 
by many governments and health organisations to this end. The increasing ability to 
capture population health dynamics for non-communicable disease may have a 
signifi cant role in protecting public health in the future as limited funds and resources 
may be allocated to areas of greatest need. Alternatively, the models will enable users 
to test the effi cacy of various policies to reduce the prevalence of tobacco use, binge 
drinking or obesity among heterogeneous populations in disparate areas. 

 Although there are clear challenges to the use of a systems dynamic or agent-
based approach to the simulation of population-level spatial health outcomes, the 
advancement beyond regression based models is a signifi cant addition to the 
toolbox available for public health and social science. With careful consideration 
for the data included in the models, including rules of behaviour for the agents, 
ABMs provide a great improvement from previous methods that took little or no 
account of individual variation and interactions (Galea et al.  2009  ) . Researchers 
are encouraged to be aware of limitations to this method. As with any new approach, 
the outputs must be interpreted with an understanding of the underlying processes that 
are used to generate them. However, the shift towards complex systems dynamics 
modelling is a move towards true individual-based modelling in non-infectious 
epidemiology.      
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