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  Abstract   With an increasing world population and with more cost effective 
transportation, mass gatherings become ever more frequent. The total size of such 
gatherings is often as large as millions of people. Furthermore, everyday life in cities 
becomes increasingly crowded with people. This development has prompted better 
solutions to mitigate crowded places and make them safer as well as more effi cient 
in terms of travel time. One way to approach this crowd problem is to use crowd 
modeling tools to assess and optimize locations where pedestrian crowds move 
around. Within the last decade, crowd modeling has become a mature science and 
there now exist well calibrated pedestrian models that can reproduce empirically 
observed crowd features. In this chapter, we will introduce the fi eld of crowd modeling, 
explain how crowd models can be calibrated with empirical data, and expand a bit 
on how navigation works in these models.      

    21.1   Introduction and Motivation 

 In the past, pedestrian simulations have mainly been used to  qualitatively  reproduce 
and understand various aspects of crowds. Nowadays however, neither the computing 
performance nor the amount and detail of available empirical data restrict us from 
aiming at reproducing crowd dynamics  quantitatively  as well. 

 One of the reasons why the microscopic simulation of pedestrians as a fi eld of 
research has taken off as late as about 1985, and has gained pace only during the last 
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decade, is the availability of computing power. The simulation of pedestrians and 
especially real-world applications related to simulation of pedestrians has been at the 
edge of available standard computational power and will remain there for some more 
years to come. Compared to vehicle simulations that are effectively 1 dimensional, 
crowd simulations are 2D or even 3D, and this increase in dimensionality results in 
more degrees of freedom, which requires more sophisticated models with higher 
temporal and spatial resolution. Therefore, computing power (in terms of speed as 
well as RAM) plays a more decisive role in the simulation of pedestrians. 

 This has at least three implications: (1) Pedestrian modelers have often implicitly 
or explicitly restricted their creativity in using mathematical tools to make the model 
results more realistic with respect to computational costs. (2) While refi ned models 
successively replace more coarse-grained models for medium-scale applications, 
applications such as iterative approaches in large-scale projects only recently became 
possible to carry out with spatially continuous microscopic models. (3) Using pedes-
trian modeling for large-scale urban planning and transport projects often turns 
out to be a highly challenging task, since the right balance has to be found between 
computational time, model complexity and scale, and accuracy of results.  

    21.2   Modeling Approaches 

 There are various different ways to approach pedestrian modeling, and among 
the fi rst ideas to simulate interacting agents in a swarm-like way, was proposed by 
Reynolds  (  1987  )  with his  Boids  model. Different approaches to pedestrian modeling 
can be classifi ed in various different ways, for example according to their level of 
abstraction:

    • Microscopic  models describe each pedestrian as a unique entity with its own 
properties.  
   • Macroscopic  models delineate the average or aggregate pedestrian dynamics by 
densities, fl ows, and velocities as functions of space and time.  
   • Mesoscopic  (gas-kinetic) models are in between the two previously mentioned 
levels, taking into account the velocity distribution. Mesoscopic models often 
include individual entities but model interactions between them with common 
fi elds.    

 Alternatively, models can also be classifi ed by their respective detail of 
description:

    • Discrete space  models sub-divide the environment into a lattice, and the spatial 
resolution of the model is limited by the cell size of the lattice.  
   • Continuous space  models describe the spatial resolution down to an arbitrary 
level of detail.    

 Also time in the model can be either discrete or continuous. The latter can be 
achieved if there is no fi xed time step in the model. If instead time is advanced until 
the next  event  occurs, then that requires non-trivial calculations. 



45321 Applied Pedestrian Modeling

    21.2.1   Agent-Based Models 

 A class of models which is especially popular in the computer science community 
is agent-based models (ABMs) (O’Sullivan and Haklay  2000 ; Musse et al.  1998  ) . 
These models are characterized by a high level of autonomy of the simulated pedes-
trians, where each pedestrian is controlled by a set of rules (see Crooks and 
Heppenstall  2012  for an overview). The advantages with these kinds of models 
are that the motion can look very realistic and that the agents can be adaptive and 
possess a high degree of artifi cial intelligence, with emergent phenomena arising 
from simulations. This also makes ABMs suitable for crowd animation (Treuille 
et al.  2007 ; Popovic et al.  2003  ) . 

 A disadvantage is that these kinds of models tend to be very complicated, which 
makes it hard to approach them analytically, and they typically also need a lot of 
computational effort. However, the separating line between ABMs and other types 
of microscopic models is not that clear, and in a sense, most models could be referred 
to or reformulated as ABMs.  

    21.2.2   Social-Force Model 

 The social-force model (Helbing and Molnar  1995 ; Helbing and Johansson  2009  )  
is a microscopic model, which is continuous both in space and time. It is infl uenced 
by Newtonian mechanics, generalized to the motion of pedestrians. The forces con-
sist of repulsive forces with respect to other pedestrians and boundaries, friction 
forces, attractive forces among group members, and driving forces related to desired 
velocities. A superposition of all these forces gives a resultant force which determines 
the acceleration of the pedestrians. Finally, by integrating over time, velocities and 
positions are obtained from the accelerations.  

    21.2.3   Cellular Automata Models 

 Another popular approach to pedestrian modeling is based on cellular automata (CA) 
(Bolay  1998 ; Blue and Adler  2000 ; Meyer-König et al.  2002 ; Batty et al.  2003 ; 
Nishinari et al.  2004 ; Kretz  2007 ; Iltanen  2012  ) , which is a microscopic model, 
discrete both in time and space. 

 The exact specifi cation of these models differs, but the common idea is to divide 
the walkable space into a lattice, where each cell has an area corresponding to the size 
of a human body projected onto the fl oor, approximately 40 × 40 cm. Each cell can 
either be occupied by  nobody  or by  one pedestrian . The movements of pedestrians 
are carried out by iterating the time in steps in intervals of about 0.3–1.0 s. In each 
time step the pedestrians can move to unoccupied neighboring cells. However, even 
though the basic idea of CA models is simple, it often becomes complex with many 
rules for how the movement should be performed. 
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 Since CA models are discrete in both time and space, and due to the fact that 
they use only local interactions, they are often used for simulating large crowds. 
One drawback of CA models, however, is the central role of the underlying lattice, 
which introduces artifi cial symmetries and tends to cause problems. An example is 
the tendency for deadlocks in counterfl ow situations at relatively low demand. The 
reason is that the grid structure promotes exact head-on movement. It is possible to 
solve this problem at the cost of giving up a part of the advantage of CA models, 
namely their computational effi ciency. The grid structure itself poses a limit to the 
spatial precision. A bottleneck with a width of three cells can represent a real width 
just above 80 cm to just below 160 cm. Conversely, a real width of 100 cm can end 
up as a bottleneck with two or three cells in the model.  

    21.2.4   Fluid-Dynamic Models 

 When the crowd density is high, fl ows of pedestrians resembles fl uid fl ows. Therefore, 
a macroscopic approach to crowd modeling is to use fl uid-dynamic models (Helbing 
 1992 ; Hughes  2003  )  adapted to the simulation of pedestrian crowds. 

 An advantage of fl uid-dynamic modeling of pedestrians is that it becomes 
possible to make analytical evaluations of changes in the infrastructure or changes 
in the boundary conditions.  

    21.2.5   Queuing Models 

 Queuing models (Watts  1987 ; Lovas  1994  )  make further simplifi cations to crowds. 
They are used to analyze how pedestrians are moving around in a network of mod-
ules, where the nodes and links can, for example, be doors and rooms, or intersec-
tions and roads. It is important to stress that the dynamics inside each node is not 
explicitly taken into consideration. 

 The idea is rather to grasp how the different modules are interacting with each 
other, by analyzing queues in the system. Each node has a certain ‘service rate’ and 
pedestrians move to the next queue as soon as they have been ‘served’.   

    21.3   Calibration 

 No matter on which principles a pedestrian model is built, there is probably no 
model in existence without parameters. This opens the possibility and imposes the 
necessity to calibrate the models by comparison with empirical data. Calibration 
can be approached in at least three different ways: one is to measure pair-wise 
interactions of pedestrians in different situations, calibrate the model such that it 
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reproduces these interactions and assume that the model with these parameters yields 
realistic results when pedestrians move in crowds (Johansson  2009  ) . See Fig.  21.1 .  

 The second approach is to measure aggregated macroscopic properties of moving 
crowds and calibrate the parameters according to these (Fischer  1933 ; Hankin and 
Wright  1958 ; Older  1968 ; Navin and Wheeler  1969 ; Fruin and Strakosch  1971 ; 
Predtechenskii and Milinskii  1978 ; Weidmann  1993 ; Virkler and Elayadath  1994 ; 
Muir et al.  1996 ; Hoogendoorn and Daamen  2005 ; Kretz et al.  2006a,   b ; Seyfried 
et al.  2009 ; Chattaraj et al.  2009 ; Seyfried et al.  2010a,   b  ) . The third approach is to 
calibrate the parameters for minimal deviation of individual trajectories of pedes-
trians moving in a crowd (Johansson et al.  2007 ; Hoogendoorn and Daamen  2009 ; 
Bauer and Kitazawa  2010  ) , where the borderline between the second and third 
approach is fuzzy (Portz and Seyfried  2011  ) . 

 These approaches are different methods of calibration, but they can also be com-
bined, e.g. using method 3 for calibration and method 1 for validation to make sure 
that the model reproduces empirically obtained patterns on a macroscopic scale. 

    21.3.1   Shortest Path vs. Quickest Path 

 One aspect of pedestrian motion that has received very little attention is in terms of 
calibration work. It is this aspect which distinguishes most pedestrians from vehicles: 
pedestrians often choose between slowing down to walk a shorter path within a dense 
crowd or take some detour to keep the walking speed higher in a less dense region 
of the crowd (see Fig.  21.2 ). There is some theoretical and modeling work available 
on this issue (Kretz  2009a,   b ; Kirik et al.  2009 ; Steffen and Seyfried  2009 ; Dressler 
et al.  2010 ; Venel  2010 ; Rogsch and Klingsch  2010 ; PTV Planung Transport Verkehr 
AG  2010  ) , but the empirical data are much sparser than for corridor movement.  

  Fig. 21.1    Resulting trajectories from a simulation of two pedestrians who are approaching each 
other at a 180-degree angle. The simulation is carried out with the social-force model, with two 
different model specifi cations. The  dashed lines  are the resulting trajectories for an isotropic model 
and the  solid lines  are the resulting trajectories for an ‘elliptical’ anisotropic model, which gives 
smoother evading maneuvers and also a better fi t to empirical data       
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 The current state of empirical crowd research is that it has even sometimes 
taken one step back and explicitly excluded this degree of freedom (evading vs. 
decelerating) in pedestrian motion by measuring the speed density relation for 
single fi le movement. This has yielded fruitful results (Chattaraj et al.  2009 ; Portz 
and Seyfried  2011 ; Seyfried et al.  2005,   2010b  ) .  

    21.3.2   Principle of the Weakest Elements 
in Real-World Projects 

 Neither a model that perfectly describes single fi le movement nor a model that is 
perfectly calibrated for straight and wide corridor movement offers suffi cient help 
to a project manager who is faced with a project that includes one or more corners 
and the movement around corners is corrupted in all models available to him, as the 
precision level of the entire project will normally be set by the worst precision of all 
elements of the simulation. Movement of a large crowd around a corner is the sim-
plest situation one can think of where a pedestrian has to choose between trying to 
walk the quickest or the shortest path or something in between. Empirical efforts in 
the science of pedestrians need to and will turn to this aspect soon in the future.  

    21.3.3   Other Infl uences and Effects 

 The option set of travel time vs. travel distance can be generalized to a concept of 
generalized costs, as it has been done in a number of the utility-based models. Then 
not only travel time and travel distance can be combined to a utility for an individual 
pedestrian, but also, for example, the discomfort of walking on a bicycle lane or over 
muddy terrain or the comfort of walking shaded from rain or sunshine can be inte-
grated in just the same manner. It is well known that the free speed (or desired speed) 

  Fig. 21.2    A snapshot from a simulation with the social-force model. If the pedestrians take the 
shortest path ( left ), they gather in front of the bottleneck, and do not use the second path. When 
the pedestrians use the fastest path instead ( right ), they balance over the two possible routes       
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of pedestrians depends on their demographics, e.g. age, sex, air temperature, trip 
purpose (e.g. commuting or leisure time), time of day, trip circumstances (e.g. early 
for a train or late), culture and probably some more factors (Weidmann  1993 ; 
Chattaraj et al.  2009 ; Buchmüller and Weidmann  2006  ) . Some of these factors are 
correlated (e.g. certain trip purposes occur not distributed equally over a day, air 
temperature has a typical course during a day, etc.). As the desired speed is relevant 
in any other movement situation, we may infer that these parameters also infl uence 
all other movement situations.   

    21.4   Navigation 

 A crowd simulation project is set up by defi ning the relevant boundaries: the spatial 
boundaries of the walkable area (i.e. the geometry of the model) and the boundary 
between external knowledge about the dynamics of the pedestrians and where the 
model needs to take over – in other words the localized demand, which is the infl ow 
into the model, and how it varies over time. The last elementary defi nition a modeler 
needs to do is to set the destinations for the agents, which are set in the model. 

 The fi rst and most basic element that a dynamics model then needs to include is 
a navigation or wayfi nding method from the positions of the infl ow (‘sources’) of 
the pedestrians to the given destinations (‘sinks’). The remainder of the section will 
deal with that task. 

 One way to achieve shortest route navigation to the destination is to make use of 
a visibility graph (de Berg et al.  1997  ) . Simply speaking, a visibility graph is the 
graph of mutually visible corners of obstacles of a pedestrian movement geometry. 
With Dijkstra’s algorithm (Dijkstra  1959  ) , the shortest path from the agent’s current 
position to the closest corner point of the destination polygon can be found. When 
using this method, one is faced with the diffi culty of where to place the navigational 
points exactly: if only individual agents are moving through the geometry in low 
density, the navigation points can be very close to the corners of the obstacles. If the 
agents are moving in large groups, then the navigation points need to be placed 
further away. Moreover, there has to be some minimum distance that allows agents 
to come close to these points such that an agent can proceed toward the next naviga-
tion point. 

 As an example in the social-force model (Helbing and Johansson  2009  ) , the 
beeline direction from the current position of an agent toward the next navigation 
point would then typically use the direction of the desired velocity (the absolute 
value of the desired velocity is an external parameter). 

 A method that avoids this diffi culty, but which requires more computational 
effort, is that of a fl oor fi eld (also called “static potential”), which is a grid placed 
over the geometry, where the distance towards the destination (under consideration 
of the obstacles) is written to each grid point. Plainly spoken, it is a localized look-up 
table of distances. There are numerous methods to calculate this static potential. 
Typically the calculation time rises when the deviation from the Euclidean distance 
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is reduced (Kimmel and Sethian  1998 ; Jeong and Whitaker  2008 ; Kretz et al.  2010  ) . 
The negative gradient of the static potential at the position of an agent gives the 
direction of the shortest path from that agent to the destination. Thus, the negative 
gradient of the static potential is used as the direction of the desired velocity. Recently 
a method has been proposed that directly and effi ciently calculates the gradients 
without the need to calculate the static potential (Schultz et al.  2010  ) . 

 The Fast Marching Method (Kimmel and Sethian  1998  )  and Fast Iterative 
Method (Jeong and Whitaker  2008  )  are well suited to also calculate a fl oor fi eld, 
which contains the estimated remaining travel time from a grid cell to the destina-
tion (PTV Planung Transport Verkehr AG  2010  ) . Contrast this with the method 
employed in Sect.  21.3.1 . As the distribution of agents has a major impact on the 
estimated remaining travel time, and as the distribution of agents naturally changes 
in each simulation time step, such a fl oor fi eld needs to be recalculated frequently. 
Therefore, it is called the ‘dynamic potential’. In this way it is possible to make 
agents in the social-force model evade groups of other agents dwelling around or 
being jammed at a bottleneck or the inner side of a corner early on, already by the 
direction of their desired velocity (see Fig.  21.3 ). For the dynamics of the whole 
system this means that jams do not grow endlessly and that agents distribute better. 
Therefore this method can be seen as a kind of non-iterative assignment in two 
continuous spatial dimensions.  

 Let us assume that an agent wants to reach its destination as quickly as possible. 
In principle the ‘bee line’ would be the quickest way. An agent walking the shortest 
path under consideration of obstacles is modeled as someone, who accepts that 
inevitably obstacles prevent one from walking along the bee line. In principle the 
shortest path under consideration of obstacles would also be the quickest path under 
consideration of obstacles. An agent walking into the direction of the estimated 
quickest path under consideration of all other agents is modeled as someone 
who accepts that jams will inevitably cause delays and therefore might prevent the 
shortest path from being the quickest. 

 While real pedestrians can be assumed to have a very good comprehension of the 
situation around them, and while there are situations where it is safe to assume that 

  Fig. 21.3    A static potential fi eld ( left ) compared to a dynamic potential fi eld ( right ). The snapshots 
are taken at the same time instant in two identical simulation scenarios. Notice how pedestrians get 
stuck and delayed at the corner when a static potential fi eld is used       
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early arrival is the single-most important movement criterion (passengers in a 
station who are late for a train), modeling pedestrians to walk on the shortest path 
under consideration of obstacles can nevertheless be justifi ed in many situations. 
First there are situations in which the quickest path is not much different from the 
shortest and where inter-pedestrian forces can reproduce these differences. 

 Second, there can be situations, where the shortest path is valued more than the 
quickest. As has been stated above the quickest path/shortest path trade-off can be 
seen as a special case of a generalized cost. Instead of calculating a fi eld of estimated 
remaining travel time to the destination, it is also possible to calculate a fi eld of 
generalized cost to reach the destination associated with the fi eld. This shows 
that by using the gradient of such a fi eld as the direction of the desired velocity in 
the social-force model, it is possible to connect the force-based approach with the 
utility-based approach. This can be interpreted such that the information entering 
the direction of the desired velocity models the free planning process of an agent, 
while the forces act according to their name, and they force the agent to evade other 
agents at rather small distances to avoid collisions.  

    21.5   Conclusions 

 Pedestrian crowd modeling has emerged as a mature and active fi eld of research, 
where models are challenged on their ability to reproduce empirically observed 
features. This has resulted in crowd simulation tools, both commercial and freely 
availably ones, that are routinely used in the planning of major events, and also for 
optimizing transport systems, assessing building evacuations, optimizing the orga-
nization of airports and train stations, etc. Some of the challenges ahead are to reach 
consensus as to which modeling approaches yield the most realistic results. Another 
ongoing challenge is to make crowd modeling tools more autonomous. Earlier 
crowd modeling tools relied heavily on the user to specify every single detail in the 
model scenario, whereas in more recent models, pedestrians fi nd their way around 
complex spaces, they queue, and they even interact with and use public transport.      
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