
435A.J. Heppenstall et al. (eds.), Agent-Based Models of Geographical Systems, 
DOI 10.1007/978-90-481-8927-4_20, © Springer Science+Business Media B.V. 2012

  Abstract   The fi eld of geosimulation represents one of the most innovative attempts 
to revitalize the usefulness and application of spatial modeling. With its generative 
emphasis on micro-dynamics of complex systems and its fl exible treatment of space, 
time, pattern, and process, it marks a signifi cant departure from traditionally employed 
coarse, static approaches. The primacy of geography in geosimulation also repre-
sents a departure for spatial simulation from its reliance on modeling methods bor-
rowed from economics and physics, which were often ported to spatial applications 
because of tractability, but without consideration of the suitability of the fi t. Research 
in geosimulation, while still nascent in its development, has been particularly active 
in urban applications, where the technique has considerably expanded the range of 
questions and ideas that can be explored in simulation. This chapter reviews the ori-
gins of urban geosimulation, discusses the state-of-the-art relative to urban applica-
tions, and speculates about potential future avenues of inquiry in the fi eld.      

    20.1   Introduction 

 Geosimulation represents an innovative approach to constructing spatial simula-
tions, building on the successes of previous generations of spatial simulation within 
the relatively unique context of a conventional era of ‘big data’, rapid advances in 
computing hardware and software, the convergence of modeling and simulation 
technologies across applications, and the growing utility of Geographic Information 
Science (Torrens  2010  ) . Geosimulation has been developed in several disciplines, 
although much of its usefulness has been proven for  urban applications . In essence, 
the geosimulation approach is characterized by information processing, and in that 
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way, it is no different than most conventional computer simulation schemes. 
However, the novelty, in geosimulation, is in using  geography  to map information 
processing directly to individual system elements and the processes that determine 
their dynamics in a massively interactive systems context, such that complete, real-
istic models of complex phenomena can be built, generatively, from the spatial 
atoms that comprise them. The emphasis in establishing such mappings, is on how 
geography – geographic processes, patterns, and context – can enable and advance 
more useful information processing. 

 In this chapter, I will describe the development of geosimulation for urban appli-
cations: its origins in the early introduction of computing to urban modeling in the 
1970s, an overview of the current state-of-the-art, and a discussion of potential 
future avenues for research and development in the fi eld.  

    20.2   The Origins of Geosimulation 

 The  premise  for geosimulation has quite a distinguished history. It dates back to 
Alan Turing’s ideas for the digital computer, which were pioneered in his efforts to 
design devices that could crack the German Enigma code during World War II. In 
his original paper, Turing  (  1936,   1938  )  introduced the idea for an automaton (a term 
which had historically been associated with anthropomorphized but mechanical 
 machines ) that, given enough storage, power, and the right rule-set could automati-
cally and effi ciently compute solutions to mathematical problems. His later devel-
opment of the idea to ascribe machine intelligence to such devices (Turing  1950  )  
established the origins for modern-day artifi cial intelligence. Turing’s use of neigh-
borhood fi lters for information processing in these ideas was of key relevance to 
geography. Turing originally suggested that information processing could be treated 
as a quadruple of interacting factors: a serialized set of cells as containers for data 
on a tape-like manifold; state information which described data in the context of its 
unique location in space and time along the tape; a tape-reading head that could 
shift cell-by-cell along the tape to interpret neighboring state information on adja-
cent cells; and a table of rules that determined how states and neighbors should be 
contextualized. This introduced some core geographical concepts – space-time, 
relationships between pattern and process, action-by-proximity, neighborhood fi l-
tering, and perhaps even the trained eye of the geographer – into the early evolution 
of information processing. 

 The signifi cance was not lost on geographers and the idea of using automata to 
formally treat geography in computer models of spatial process surfaced as early as 
the fi eld began. Indeed, Waldo Tobler’s  (  1970  )  concise expression of one of the 
tenets of exploration in the geographical sciences, the idea that near things are 
related to each other, neatly encapsulates the core components of Turing’s automata 
and the heuristic was at the foundation of one of the fi rst examples of automata 
modeling (and geosimulation), Tobler’s model of the urbanization of Detroit. Other 
early examples included the land-use transition models developed by Chapin and 
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Weiss  (  1962  ) , an urbanization model introduced by Nakajima  (  1977  ) , and Peter 
Allen’s work on modeling settlement hierarchy (Allen and Sanglier  1979  ) . 

 The actual  term  geosimulation was introduced by Torrens in 1999 to describe 
efforts underway at the time in the Centre for Advanced Spatial Analysis (CASA) 
at University College London to build a next generation of spatial simulation meth-
ods, which were essentially building on the foundation introduced by Chapin, Weiss, 
and Tobler decades before. In a time before the popularity of Weblogs, Torrens 
launched a Website,   http://www.geosimulation.com     (later, .org) devoted to the topic 
(Fig.  20.1 ). Torrens outlined the idea for geosimulation in a talk at the 2000 
Geocomputation meeting in Greenwich co-authored with David O’Sullivan (Torrens 
and O’Sullivan  2000  ) . This was further developed in a 2004 special issue of the 
journal,  Computers, Environment and Urban Systems  by Torrens and Itzhak 
Benenson (Benenson and Torrens  2004b  ) , who also co-authored a book on the topic, 
which was published in 2004 (Benenson and Torrens  2004a  ) .  

 Many people at CASA were doing work in this area at the time, following the 
interests of Michael Batty and Yichun Xie in developing new forms of urban model-
ing around cellular automata (CA) (Batty and Xie  1994  ) . Michael was building 
several extensions of the idea, for urbanization (Batty     1997a,   b,   1999,   2001 ; Batty 
et al.  1999 ; Batty and Xie  1997  )  and movement of walkers within (Batty et al.  1998  )  
and around (Batty et al.  2003  )  built spaces. Bin Jiang was collaborating with Michael 
on CA models for pedestrian simulation (Batty and Jiang  1999  ) ; David O’Sullivan 
was researching graph-based CA for gentrifi cation modeling (O’Sullivan  2001  ) ; 
and Torsten Schelhorn, Muki Haklay, and David O’Sullivan were building the 
STREETS movement model for town centers (Schelhorn et al.  1999  ) . 

  Fig. 20.1    The geosimulation.com website in 1999, complete with horrendous graphics, as befi t-
ting web design of the time       
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 Several other groups were also developing the essential components of urban 
geosimulation in parallel at other sites. In North America, Keith Clarke’s group at 
the University of California, Santa Barbara had long been developing an extensible 
urban growth model based on CA and his ideas for deltatrons (Clarke  1997 ; Clarke 
and Gaydos  1998 ; Clarke et al.  2007  ) . This, perhaps, built on earlier work in apply-
ing CA to wildfi re modeling (Clarke et al.  1994  ) . Helen Couclelis, also at Santa 
Barbara, had experimented with CA modeling in the 1980s (Couclelis  1985  )  and 
her interest in the intersection between CA and GIS was revived around this time 
(Couclelis  1997 ; Takeyama and Couclelis  1997  ) . Geographer, Michel Phipps  (  1989  )  
at the University of Ottawa, developed the idea for the neighborhood coherence 
principle – initially used in biology, not urban analysis – using cellular automata. In 
the early-2000s, the land-use and land cover change modeling community in North 
America also began to pick-up CA modeling as a mechanism for developing what 
they referred to as spatially-explicit models, continuing the tradition started by 
Chapin and Weiss in the 1960s (Manson  2000 ; Brown et al.  2003 ; Evans and Kelley 
 2004 ; Lim et al.  2002  ) . However, this work was mostly focused on  non-urban  areas, 
where ecologically signifi cant canopies manifested as land cover. 

 In Europe, Roger White, at the Memorial University of Newfoundland was 
developing what would become the MURBANDY models (Engelen et al.  2002  )  
with Guy Engelen and colleagues at the Research Institute for Knowledge Systems 
(RIKS) in the Netherlands (Engelen et al.  1995 ; White and Engelen  1994,   1997  ) . 
From the outset, these were developed with the intention of becoming operational 
planning support systems (White and Engelen  1993  ) . Denise Pumain and Lena 
Sanders at the Université Paris I were building the original SIMPOP model of 
demographic geography based around agent automata (Sanders et al.  1997  ) . Itzhak 
Benenson and Portugali at Tel Aviv University were also working on urban segrega-
tion models based on the idea of agents in CA cells (Benenson  1998 ; Portugali 
 2000  ) , echoing the idea of the “particle in a cell” (p. 99) introduced by Gipps and 
Marksjö  (  1985  ) . Chris Webster and Fulong Wu were also building CA models of 
urban growth at Cardiff University, using fuzzy approaches and linguistic rule-sets 
(Webster and Wu  1998 ; Wu  1996  ) . Ferdinando Semboloni at the University of 
Florence was developing 2.5 dimensional (land-use and height) urbanization mod-
els based on CA functionality (Semboloni  1997 ;  2000  ) . Peter Mandl at Alpen-Adria 
Universitat in Austria was pursuing CA modeling research and adopted the term 
geosimulation for his work (Mandl  2000  ) . Harry Timmermans and Jan Dijkstra at 
the Delft University of Technology in the Netherlands were also developing 
CA-based pedestrian models at the time (Dijkstra et al.  2000  ) . Related work was 
ongoing in European physics and biophysics research, with some crossover in urban 
applications (Nagel and Schrekenberg  1995 ; Schweitzer  1997 ; Helbing and Molnár 
 1995 ; Ermentrout and Edelstein-Keshet  1993  ) . Transport modelers in Europe had 
also begun to look at CA as a vehicle for simulating pedestrian traffi c along 
streetscapes (Blue and Adler  2001  ) , following early infl uential work by Gipps and 
Marksjö  (  1985  ) . 

 In Asia, Anthony Gar-On Yeh and Xia Li at the University of Hong Kong 
were developing CA models of urbanization with GIS output functionality 
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(Li and Yeh  2000  ) . Takashi Arai’s group at the Tokyo University of Science was 
also developing well-calibrated CA models of urbanization on the basis of the 
White & Engelen model (Arai and Akiyama  2004  ) . 

 In Australia, Robert Itami had long been developing agent automata models of 
hikers’ movement along trails (Itami  1988  ) , which although not urban was one of 
the fi rst (as far as I know,  the  fi rst) introductions of  agent  automata in geography. 
Martin Bell at the University of Adelaide developed a CA-like graphic model of 
urbanization that was coupled to geographic information systems (GIS) and that 
considered adjacency rules (Bell et al.  1999  ) . Doug Ward, Stewart Phinn, and Alan 
Murray, then at the University of Queensland, also developed a CA-based urbaniza-
tion model, which considered the role of road-building in fostering urban growth 
(Ward et al.  2000  ) . 

 CA models rely on checking the information contained in automata through 
neighborhood fi lters and so geography featured implicitly in many of these models. 
Similarly, many of the models relied on GIS for data management and for visual-
izing model output. However,  geographical science , which sits at the heart of the 
geosimulation approach, was not necessarily treated  explicitly  in the models. The 
contribution of geosimulation is mainly in reawakening interest in the developments 
introduced by early pioneers in the 1960s and 1970s, but also in infusing anew the 
idea of using geography to advance urban simulation amid more recent develop-
ments in computing technology. In this sense, geosimulation also draws upon the 
early work of Stan Openshaw in developing the fi eld of geocomputation at the 
University of Leeds (Openshaw et al.  1987 ; Batty  1998  )  at the intersection of com-
puting (rather than simply using computers) and geography (Longley et al.  1998  ) . 

  Geography-specifi c  automata modeling actually forms a smaller sub-set of the 
activity I have just described. Early work by Waldo Tobler really exemplifi es a  dedi-
cated  geographic consideration of the utility of employing automata for spatial 
modeling. His initial paper on the topic introduced variable neighborhood consider-
ations as a vehicle for exploring the relationship between action and distance (Tobler 
 1979  ) , perhaps following from his interest in automated cartography and projec-
tions (Tobler  1959  ) . Later work by Couclelis extended geographic ideas, exploring 
the fundamental nature of information-gathering in geographic automata (Takeyama 
and Couclelis  1997  ) . Similar ideas had been pursued by Phipps, in examining the 
utility of the neighborhood as a vehicle for spatial interaction (Phipps  1989  ) . 
Clarke’s careful exploration of suffi cient geographic (and GIS) processes for the 
SLEUTH model (Clarke and Gaydos  1998  )  was also critical in laying the founda-
tion for the development of dedicated geographic algorithms for urban automata: an 
area of research which still does not enjoy the attention that it deserves (Torrens and 
O’Sullivan  2000  ) . Although not specifi cally urban, Robert Itami’s work on ascrib-
ing spatial cognition as artifi cial intelligence for agent automata was pioneering in 
its early exploration of the role of spatial intelligence in allying automata models to 
human geography (Itami  2002,   1988  ) . Recently, Bernard Moulin’s group at 
Université Laval have developed a series of geosimulation applications, ranging 
from shopping behavior (Ali and Moulin  2005  )  and crowd modeling (Moulin et al. 
 2003  )  to disease propagation (Bouden et al.  2008  ) . 
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 Of course, much of the geography that fi nds its way into urban automata fi lters 
through GIS. Many of the urban automata modeling schemes built in the 1990s and 
early-2000s had components that  connected  to GIS. Usually, this was for simple 
data input and cartographic visualization of results. Many CA models, for example, 
would read-in polygonal, raster, or graph lattices as a cellular structure for autom-
ata. Similarly, the graphic user interface (GUI) components of GIS were often used 
to visualize model output cartographically, allowing for on-screen querying of 
results through brushing and other geovisualization procedures. For some time, 
there was debate about whether urban automata models should be run within stan-
dard GIS toolboxes (Wagner  1997 ; Batty et al.  1999 ; Park and Wagner  1997  )  and 
automata-based extensions for commercial GIS software were developed (Strout 
and Li  2006 ; Brown et al.  2005  ) , as were GIS input-output functionality for popular 
open source (Dibble and Feldman  2004  )  or freeware automata model development 
packages (Blikstein et al.  2005  ) . Similarly, there was debate about whether the two 
should be loose-coupled or tight-coupled (Brown et al.  2005 ; Clarke and Gaydos 
 1998 ; Torrens and Benenson  2005  ) .  

    20.3   Geosimulation: A Primer 

 Geosimulation goes beyond issues of getting GIS data in and out of simulations. 
However, at its core, it deals with fl exible handling of geographic information 
through process modeling (Torrens  2009  )  and matching those processes as realisti-
cally as possible to ideas, theory, hypotheses, or knowns of the system being consid-
ered. Geosimulation has several key components in interfacing geography with 
information processing generally and automata particularly. 

 First, traditional treatment of geographical units as average, spatially-modifi able 
geographical units, or (statistically) mean individuals (Openshaw  1983  )  in spatial 
modeling is expanded in geosimulation. This coarse approach is instead replaced 
with a regard for spatially non-modifi able entities, replete with individual descrip-
tions and independent functionality. If spatial aggregates are indeed treated in simu-
lation, they are handled generatively (Epstein  2006  ) , as being built from the bottom 
up through assembly of individual entities and their connecting interactions for the 
purposes of producing aggregate behavior, phenomena, processes, or structures. 
This introduces a signifi cant advantage as it allows for exploration of the genesis of 
spatial phenomena as the ‘atoms’ of the process. Additionally, it permits for the 
emergence of complexity from these assemblies across complicated mechanisms 
such as non-linearity, path-dependence, self-organization, feedback, scaling, bifur-
cation, fractality, and so on (O’Sullivan  2004  ) . 

 Second, geosimulated entities are usually endowed with autonomy and indepen-
dence in their behavior, even when collaborating or confl icting. This individuality is 
important as it shifts the attention in model-building and in exploring simulations to 
treatment of singular behavior in the context of larger systems (O’Sullivan and 
Haklay  2000  ) . It also marks a departure from physics-based or economics-based 
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modeling methods, from which spatial modeling has traditionally pilfered, in that 
the behavior of entities in simulation is not necessarily considered as being homog-
enous across the system, i.e., the spatial uniqueness of the behavior and the unique 
geography of its context matters, whether spatial, temporal, social, technical, envi-
ronmental, built, economic, and so on. Moreover, these behaviors are not consid-
ered as being static within a simulation. Even if a transition rule is applied 
mechanically in the same way for each modeled entity, the unique experience of that 
entity will infuse the rule with unique information, producing variation in outcomes 
over space and time. This sort of sensitivity to micro-specifi cation is one of the 
hallmarks of complexity studies (Arthur  1990  ) . The computational fl exibility of 
geosimulation also means that the approach is agnostic in its consideration of the 
sorts of behaviors, phenomena, agency, or processes that it can handle. 

 Third, geosimulations are usually designed as event-driven systems, as compared 
to the traditional approach of building time-driven (or even cross-sectional) models. 
Specifi cally, geosimulations generally treat interactions among modeled entities as 
events, with discrete bundles of change in space-time. These could be one-off 
events, or cyclical, seasonal, chain reactions, serials, and so on. They can also be 
considered synchronously or asynchronously among entities and spaces within the 
simulation. Treatment of timing in this manner has a number of advantages. It 
allows for representation of entities’ internal ‘clocks’ (whether these are actual, 
mechanical within a simulation, or conceptual). This allows, for example, for the 
‘thought calculus’ of a modeled entity to be worked through before it produces an 
interaction within the simulation, and for diversity in these calculi to be reconciled 
and scheduled parsimoniously across many interacting entities. When put together 
to form a system, update of modeled entities’ clocks may be fl exibly defi ned and the 
methodology can reconcile diverse temporal scales. Events can also be constructed 
heterogeneously per simulated entity with the result that the characteristic timing of 
a process, phenomenon, thought, collaboration, confl ict, and so on can be repre-
sented in simulation. In essence, this allows for the treatment of entities at both their 
spatial and temporal atoms of behavior or process. 

 Fourth, geosimulation has a natural symbiosis with Geographic Information 
Science, GIS, spatial analysis, and related geospatial technologies. This connection 
to Geographic Information Science extends to spatial data models, including entity-
relationship, object-oriented, raster, graph, hierarchical and so on. It also allies 
automata with spatial data access heuristics. This is perhaps not surprising, given 
the origins of geosimulation in  information processing  and the fundamental consid-
eration of space, time, process, and neighborhood in relating information dynamics 
within the automata framework. It is, however, quite a signifi cant development over 
traditional spatial modeling approaches, which quite often were designed for read-
ing-in variables and parameters, but not for handling input data, output results, and 
the internal information processing dynamics of simulation with dedicated data 
models. Fundamentally, it increases the opportunities for information diffusion and 
interaction in models. 

 Fifth, with origins in the birth of digital computing, geosimulation is comfort-
ably allied with computer science with the result that geosimulation models can be 
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docked with other forms of computational modeling, including computer graphics 
and animation (Torrens  2007a  ) , parallel and high-performance computing (Guan 
et al.  2006 ; Phipps and Langlois  1997  ) , artifi cial neural networks (Li and Yeh  2002  ) , 
Bayesian computing (Kocabas and Dragi evi   2006  ) , swarm optimization (Liu et al. 
 2007  ) , evolutionary computation (Manson  2005  ) , and so on. 

 Sixth, because of its fundamental emphasis on dynamics and interaction, geo-
simulation is well-suited to representing complexity in simulation, and associated 
phenomena of feedback and path-dependence, non-linearity, emergence, fractality, 
allometry, bifurcation, autopoiesis, self-organization, and so on (see Batty  (  2005  )  
for an overview).  

    20.4   Geographic Automata as a Vehicle for Geosimulation 

 The introduction of  geographic automata  has perhaps represented the most explicit 
conventional treatment of geosimulation. Development of the idea has come from a 
variety of sources, mostly organized around geographic CA, with extended (usually 
derived from GIS and spatial analysis) geographic functionality for relating cells to 
other cells through neighborhood fi lters. Often, these are developed to handle spe-
cifi c cellular geometries, such as layered rasters (Takeyama and Couclelis  1997  ) , 
vectors (Moreno et al.  2008 ; Stevens and Dragi evi   2007  ) , and graphs (networks) 
(Dibble and Feldman  2004 ; O’Sullivan  2001  ) . Other approaches have used the geo-
graphic attributes of CA to accelerate computing in simulation (Guan et al.  2006 ; 
Liu et al.  2007  ) . 

 The development if  geographically-enabled  CA has introduced fantastic geo-
graphic functionality to urban automata models, but in many ways they are extensions 
of existing CA approaches through spatial analysis. In the early-2000s, Torrens  (  2001  )  
introduced a dedicated geographic automata system (GAS), designed to treat geogra-
phy inherently in an automata framework. Starting with a basic, stripped-down autom-
aton with processing capability (states, input, state transition), the approach infused 
geographic functionality into the basic working elements of the automaton. This 
included dedicated processing capabilities for space-time movement, malleable loca-
tion conventions, dedicated neighborhood process rules that dictate how neighbor-
hood fi lters should transform over space and time, and ontology of spatial primitives. 
In a paper with Itzhak Benenson (Torrens and Benenson  2005  ) , Torrens demonstrated 
the concept with a working demonstration of the classic Schelling/Sakoda segregation 
model (Sakoda  1971 ; Schelling  1971  ) , worked as a GAS, and a review of how all 
urban automata models at the time could be accommodated in the framework. The 
GAS framework goes beyond simply allying automata models with GIS, as it allows 
the model-designer to infuse core geographic principles into the essential functional-
ity of the automata. These geographic primitives can then be used to build spatial 
entities or phenomena from the bottom-up. In essence, knowledge is created in model-
building and simulation by experimenting with the geographical building-blocks of 
geographic complexity, from fi rst principles. 
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 Torrens has since published a series of demonstrations of the approach for urban 
geosimulation, including models of urbanization (Torrens  2006a  ) , suburban sprawl 
(Torrens  2006b  ) , residential location behavior (Torrens  2007b  ) , gentrifi cation dynam-
ics (Torrens and Nara  2007  ) , and behavioral geography (Torrens  2007a  ) . Itzhak 
Benenson also developed the idea into a software package (Benenson et al.  2006  ) . 

 The GAS framework has also been adopted for geosimulation in other fi elds. 
Shawn Laffan at the University of Queensland and Michael Ward at Texas A&M 
have developed a series of infection propagation models for veterinary studies using 
geographic automata (Doran and Laffan  2005 ; Ward et al.  2007 ; Laffan et al.  2007  ) . 
Shen and colleagues  (  2009  )  have used geosimulation and geographic automata for 
land-use modeling. Hammam and colleagues  (  2007  )  developed an extended concept 
for geographic automata with geometry displacement. A series of related concepts 
for geographic automata have also been developed by Moreno and Marceau, with at 
least partial inspiration from the GAS approach (Moreno et al.  2008,   2009  ) .  

    20.5   Epilog: The Future of Urban Geosimulation 

 The fi eld of geosimulation is still quite nascent and developments are almost inex-
tricably tied to the emergence of new forms of modeling and simulation in science 
generally. The emergence of new forms of dataware for modeling and simulation 
and the growth in computational social science around those developments could 
have a transformative impact on the future research trajectory for urban geosimula-
tion. In particular, a set of promising avenues for future research are relevant. 

 The fi rst is the development of semantic search on the Web (Berners-Lee et al. 
 2001  ) , semantic computing (Egenhofer  2002  ) , and the evolution of the “GeoWeb” 
(Elwood  2010 ; Haklay et al.  2008  ) . The basic components of geosimulation are 
naturally amenable to ontological representation, which lends geosimulation inter-
operability with semantic computing. Coupled with the popularity of semantic 
approaches, there has been a recent swelling in the volume, availability, and seman-
tic organization of geographic information on the Web. Already, applications that 
use geosimulation-like process functions are being used to extract and interpret 
space-time data on the Web or data generated using mobile devices tethered to the 
Web. These include so-called predestination models (Krumm and Horvitz  2007  )  
that couple geosimulation-like modeling with location-based services to provide 
application to users of mobile devices based on their position in space and time and 
models of their (and others’) past trajectories (Torrens  2010  ) . Indeed, there exists 
great potential for the development of more sophisticated semantically-operable 
and Web-enabled geosimulation processing services, which can feed on a steady 
stream of newly-emerging geographic information (Goodchild  2007  ) . The emer-
gence of geoagents as Web-scraping tools has already shifted Geographic Information 
Science in this direction (Yu and Peuquet  2009 ; Zhang and Tsou  2009  ) . 

 Geosimulation-like schemes are also being introduced in computer graphics 
research, specifi cally to endow synthetic characters in special effects and games 
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with realistic behavioral geography (Pelechano et al.  2008  ) . Thus far, the spatial 
intelligence afforded these synthetic (usually automata-based) characters has been 
relatively simple, but signifi cant advances are being made, in ascribing them realis-
tic vision (Terzopoulous et al.  1994  ) , activity (Paris and Donikian  2009  ) , behavior 
(Ulicny and Thalmann  2003  ) , collective geography (Nieuwenhuisen et al.  2007  ) , 
and even emotions (Badler et al.  2002  ) . Cross-fertilization of ideas between com-
puter graphics and geosimulation could catalyze signifi cant gains in the comput-
ability of geosimulation models (which developers of computer graphics often excel at) 
while maintaining rich behavioral fi delity (which geographers often excel at). 
Several geographers have already made initial forays into this area from the per-
spective of Geographic Information Science, geovisualization (Crooks et al.  2009  ) , 
and geosimulation (Torrens  2007a  ) . 

 There also remains a relatively untapped potential for connecting urban geosimu-
lation with geodemographics and related business intelligence. Geodemographics, as 
a fi eld of study, concerns itself with classifying and grouping consumers based on the 
geography of their activity patterns and spending habits (Singleton and Longley 
 2009 ; Harris et al.  2005  ) . It is used widely and practically in marketing and business 
analysis, for political polling, consumer testing, advertising, and actuarial analysis. 
Much of the spatial analysis used in geodemographics is relatively primitive, how-
ever, and would benefi t substantially from the infusion of geosimulation, which 
would allow for more sophisticated models of individuals and their space-time activ-
ity and behavior to be developed (Kurose et al.  2001 ; Hui et al.  2009  ) . Given the basis 
for geodemographics in data-collection and data-generation (Longley and Harris 
 1999  ) , there also exists potential for calibration of geosimulation models. Of course, 
the potential for unwelcome uses of such systems and function creep beyond simple 
customer analysis is great (Dobson and Fisher  2003  ) .      
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