Chapter 2
A Generic Framework for Computational
Spatial Modelling

Michael Batty

Abstract We develop a generic framework for comparing spatial models whose
dynamics range from comparative static equilibrium structures to fully dynamic
models. In the last 40 years, a variety of spatial models have been suggested. Until
the mid 1980s, most models were static in structure and tended to embrace detailed
mechanisms involving spatial economics and social physics. Typical examples were
Land Use Transportation Interaction (LUTI) models that embraced theories of
spatial interaction and discrete choice modelling. During this earlier period, the
problems of making these models dynamic and more disaggregate was broached
but progress was slow largely because of problems in collecting requisite data and
problems of increasing the complexity of such models to the point where they could
be properly validated in traditional ways. 20 years or more ago, new modelling
approaches from very different sources came onto the horizon: in particular, dynamic
models based in Cellular Automata (CA) which were largely physical in nature and
Agent-Based Models (ABM) providing explicit behavioural processes that often
rested alongside these automata. Systems Dynamics Models (SDM), Spatial
Econometric Models (SEM) and Microsimulation Models (MM) all informed the
debate. It is tempting to see these models as all being of different genera but here we
attempt to see them as part of an integrated whole, introducing a framework for their
elaboration and comparison. After the framework is introduced, we review these six
model types and choose three — CA, ABM and LUTI models — that we then work
up in more detail to illustrate these comparisons. We conclude with the conundrums
and paradoxes that beset this field.
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2.1 Antecedents: The Origins of Spatial Models

Digital computers appeared in the late 1940s largely as a result of developments in
the logic of computing and the notion that large-scale numerical processing could
be massively speeded up by reducing routine tasks to binary equivalents operating
on equivalent electrical devices. Right from the beginning, scientific applications
involved spatial as well as temporal problems and by the mid-1950s, rapid advances
in digital computation led to computable problems in the human applications
domain involving spatial systems such as cities and transportation. Mathematical
theories of such spatial systems were slowly developing prior to the invention of
the digital computer but there had been little focus on how such theories might be
operationalised, tested through validation, and then used in forecasting. Digital
computers were to provide the spark for such applications and in 1955, the first
models of traffic flow were implemented in a digital environment in the Chicago
Area Transportation Study (Plummer 2007).

These first models, unlike many if not most that have followed them, were
specifically tailored to the problems in question and the way those problems were
perceived. Transport flows were critical as the problems in question involved
providing for new transport capacity, while land use location too was essential in
a period of relatively rapid economic growth which involved the search for new
locations for urban development. These early models were equilibrium-seeking
rather than dynamic, aggregate at the level of populations involving spatial inter-
actions, and built on conceptions of the city articulated using ideas from urban
economics and social physics. They are usually now referred to as Land Use
Transportation Interaction (LUTI) models. From these early attempts, as computers
and their software developed, new generations of computable spatial models have
become more generic in that the software developed for general classes of model
has become ever more significant, thus elevating generic ideas about modelling
through their software to a point where specific model types now tend to defer to
generic modelling styles. In this chapter, indeed in this book, this notion of generic
models and generic software is very much to the fore because agent-based models
(ABM) and their close relatives cellular automata (CA) models represent classes
and styles that are much wider in scope and applicability than the sorts of spatial
systems to which they are applied.

Here we will outline as wide an array of spatial models as is possible in an
integrated fashion, setting the scene for many of the more specific applications
and developments in the chapters that follow. As it is rare in this field to see highly
standardised applications which barely differ from case to case, each model
application tends to be tailored in some specific way to the problem and its context
such that model styles and structures become mixed. However what we will do is
identify six distinct styles of spatial model that cover most of this array beginning
with the original social physics and urban economic models that kick-started the
field half a century ago. But before we introduce specific model types and show how
these relate and evolve from one another, we will begin this review by examining



2 A Generic Framework for Computational Spatial Modelling 21

model structures, identifying the key characteristics and themes that dominate
model development. We will first focus on questions of abstraction and representa-
tion, noting the difference between the substantive components of any spatial model
which we define as its population in contrast to the environment with which it
interacts. In one sense, all models can be so defined and this serves as a basis on which
to characterise the way populations which provide the objects or components of the
spatial system under question, interact with one another and with their environ-
ment through a series of key processes. We will examine issues of representing
spatial and temporal scale, aggregation, and constraints, and then we will look at
processes of change, feedback, and dynamics. Many of these features and themes
merge into one another and to an extent, any such categorisation of the key charac-
teristics of spatial models is arbitrary. But these categories do enable us to sketch
out the array of ideas that dominate the field which appear time and again in this
book. Once we have introduced these ideas to set the context, we will examine six
model types beginning with the simplest cellular automata, defining agent-based
models, noting econometric, systems dynamics and microsimulation all of which
involve generic approaches, concluding with notions about specific models that
contain their own styles and features such as those that were the first to be developed
in the land use transportation domain. To give focus to this review, we will then
outline examples of CA, ABM and LUTI models in more detail, providing the
reader with ideas about how such models are designed and used in practice.

2.2 Modelling as Computation: Abstraction
and Representation

Half a century ago, the idea of a model was in its infancy. Scientific theory essentially
was based on formal and systematic theories, often represented mathematically,
whose testing was confined either to controlled experiments in the laboratory or to
various categories of thought experiment. Computation changed all that. The idea
that a scientific theory could then be translated into an intermediate form — called a
‘model’ — represented a way of enabling controlled experiments to be carried out not
on the actual system of interest but on a computable abstraction of that system. The
term model quickly entered the lexicon and it is now widely used to describe any
kind of experimental context in which the computer is used as the medium for its
exploration and testing. In fact, the term is now used even more generally to refer to
any kind of abstraction that represents an obvious ‘simplification of the real thing’
and in this sense its meaning is no longer exclusively associated with computation
(Lowry 1965; Batty 2007).

When computer models were first developed, the general assumption was that
these were simply representations of the system on which testing would take place
so that the theory on which the model was based could be tested against data. In
general, it was assumed that the traditional canons of the scientific method in which
theory was successively refined to withstand its falsification and to engender greater
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parsimony of explanation, would apply. Most spatial models from the 1950s onwards
were predicated on the basis that their predictions would be tested against data taken
from the system of interest and that the model would be tuned in such a way as to
reproduce the system of interest within the computational environment in a way that
was closest to the real thing. Goodness of fit was the main means of validation while
calibration of the parameter values ensured that the model might be tuned most
effectively to the system in question. The quest originally was thus to find some
minimalist explanation for the system of interest in the belief that models should be
as simple as possible while also generating predictions closest to our observations
of the ‘true’ system. In fact, as in all science, this involves a trade-off.

Yet the complexity of human systems has meant that right from the first applica-
tions, there was continued pressure to develop greater and greater detail — to disag-
gregate the model’s variables to the point where sufficient heterogeneity of the system
might be represented in a manner useful to those who sought to use the model to
make predictions. There were limits on what computation could offer and data
concerning social systems has always been a problem but as computers got more
powerful and as the world moved to a point where computation became all pervasive,
our ability to model in detail changed by an order of magnitude. As the world moved
online, new and richer data sources are becoming ever more available and this
computational power combined with access to new and different data, meant that
what we could model and represent began to change. Moreover, the key challenge
in social systems is to know how much detail to represent and it would appear that
the sorts of average behaviour that are characteristic of physical systems are rather
different in the social world. Heterogeneity and hence greater detail is what seems
to be required so that ever more plausible models can be constructed.

At the same time, as bigger and richer models have been built, their software has
become more generic with general purpose simulation processes being articulated
in software that can be adapted to many different types of problem. All this is fast
leading to significant doubt that the scientific method taken from the classical
traditions of physics has the same relevance to the social world as it does in the
physical. Indeed even in science itself there is substantial questioning of the traditional
canons of scientific inquiry as the quest for parsimony, simplicity, and homogeneity
is increasingly being confronted by the need for plausibility, richness, and hetero-
geneity. The question turns on whether or not a simple, parsimonious model that
can completely explain a limited set of system characteristics is as useful as one
which contains many characteristics which are plausible in terms of the functioning
of the system but cannot be proven as being of definitive explanatory value. In fact
the problem is complicated by the predictability of many parsimonious models that
are able to explain spatial behaviour as it can be observed but are unable to predict
future behaviours which do not admit the same stability as those that are observed
in the past. This is a deep problem that suggests that what we observe is considerably
more ordered and structured at any point in time than that same set of observations
at a future time. This is not just a problem in dynamics or equilibrium but one
which is intrinsic to our ability to disentangle true explanation from the way we
observe the world. Currently the received wisdom is that different models apply to
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different kinds of problem and problem context and that in the last analysis, models
are useful to inform the debate through crystallising ideas.

In designing any model, the builder must decide what constitutes the structure
of the system as distinct from the environment in which the system functions. In
fact, this boundary problem is highly significant for it defines how the system
relates to other systems and to the rest of the world in general. Very often the same
model can be applied to different conceptions of the same system which is defined
differently with respect to its environment. Here we will define the term environ-
ment rather more narrowly than its general use in systems theory where it refers to
the rest of the world or the problem context. We will make a distinction between
the wider environment within which the system sits relative to the rest of the world,
and the local environment of the system which is the space-time nexus that pertains
to the functions in question. In short, the system’s environment here is the spatial
tessellation of its cells or its locational referents which change through time. In
contrast, we define the system in terms of its population, meaning its components
and their functions that operate within this local environment. In essence, it is the
population that constitutes the structure of the system and its functioning which
operates in its space-time environment. The functioning takes place between the
population and its environment and there are feedbacks in both directions, that is
the population can influence the environment just as the environment can influence
the system but these two aspects of the model are qualitatively quite different as we
will see. In terms of how this population-environment system relates to the outside
world often called the environment too, then the usual assumption is that although
the environment of the outside world can influence the system, the system does not
influence the outside world in terms of the operation of its model. This is the usual
convention in systems theory.

In this review, we will attempt to represent all our models no matter how different
using the same notational structure and to this end, we define an index of space as i
or j and any interaction or relation between them as ij while we use k to define
some attribute or feature of the population which pertains to different sectors. Time
is indexed as f. Where we need to refer to more than two locations or two attributes
or two time periods, we will define appropriate additional symbols as we proceed.
We first define a spatial unit i at time ¢ within the environment as A,, and then an
attribute or segment of the population at the same coordinates as N,. The two matri-
ces A and N contain the key elements of the system which interact with one
another in ways that we make specific when we detail models of how populations
function, interact and change and how these relate to the spatial system. We can
write these feedback loops as A < N to give some sense of the symmetry of these
relations but at the same noting that A and N are generically different.

We can easily aggregate these discrete quantities into larger spatial units that we
call Z, where I is a spatial index to the number of cells i that are within Z , or
into larger temporal units Q, where T is the aggregate temporal index. Note that
there are continuity and contiguity constraints that we need to be aware of when we
aggregate over space and/or time. We thus define the appropriate units at larger
scales as
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where there are likely to be conservation constraints in terms of size such as
A= ZiAint and N = Zith”, the particular form of which are usually speci-
fied when the model is implemented. Functions defined on the population and the
environment and the relations between them constitute the structure of the system
and usually specify the dynamics of change through time. However to provide some
sense of closure to this rather abstract form of representation, at any cross section in
time, it is possible to define interactions between these components over space. For
example, the populations might interact which we can specify in the following way
without detailing the mechanisms. Then the interaction between spaces i and j
can be written as A; = A, ® A, where the concatenation is specified according to
some behavioural or physical principle embodied in the model.

It is worth noting that functions like this tend to be specified in systems theory
independently of time so that the structure of the system is laid bare. There may be
many such functions and before anything further can be said about a model structure,
the mechanisms must be specified. What is important is that this framework is seen
as being generic in that it can apply to a variety of different problems and problem
contexts, to different systems be they physical or human, material or conceptual but
with a slight bias towards the subject matter of this book which is agent-based
models in the social sciences, particularly the geographical social sciences. Whether
or not this is the best representation is not particularly relevant. Each model is
developed in its own formal style and the purpose of this framework is to provide a
template for assessing how different the array of models that we define here are
from one another, not in terms of their substantive or behavioural similarities or
differences. In this sense, the population and the environment can be very different.
The only common point of reference is the fact that we make this distinction between
these two sides of the model and specify space and time in the formal notation of
cells and time instants, rather than in the continuous fashion that is often used to
couch more theoretical statements of spatial models.

2.3 Feedback, Dynamics and Processes of Change

During the sweep of history over which spatial models have evolved, there has been
a shift from simple, parsimonious models that simulate systems at a cross section in
time and represent populations in aggregate form to more complex, richer models
that deal directly with the time dimension and specify model functionality in terms
of processes of change at a much more disaggregate level than their earlier counter-
parts. The switch has been occasioned by many forces. Already we have noted the
growth in computation and the emergence of online data sources which have made
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much richer models possible but there has also been a sea change in the way we
think about human systems. Complexity theory has raised the notion that systems
are never in equilibrium, in fact their predominant condition is far-from-equilibrium
and disequilibrium is their normal state. Moreover human systems have become
ever more complex due to technological change, the demographic transition and
increasing wealth, at least in the west and many newly developed countries. This
has made spatial behaviours more complex, certainly in terms of movement and
communication as well as locational preferences. All in all, dynamics has come
firmly onto the agenda while the notion of explanation has shifted from aggregates
to much more heterogeneous populations composed of individuals and groups that
need to be understood at a much finer level of detail.

In generating behaviours, feedback is an important mechanism where we might
specify this in functional terms as a dependence of population on itself or on the
environment, that is A,,, = f(N,), N, =f(N,), or N,,, =f(A,) and so on.
Negative feedback tends to damp activity so that departures from some norm are
restored, the classic example being a thermostat which controls the heat from a boiler
to some environment. Positive feedback on the other hand accelerates the degree of
change, sometimes with catastrophic consequences, but usually with beneficial
impacts if some quantity such as income or even population is increasing. The best
way to illustrate the effect of feedback is in terms of population growth and the
basic equation which can be used to simulate positive feedback is
N, =anN,, (2.2)
where o is the rate of change defined as N,,,, / N, . If the growth rate ¢r is greater
than 1, then this leads to exponential growth as we show in Fig. 2.1. If less than 1
then this leads to a decline to zero population but in both cases, the change is due to
the compounding effect which can be easily seen if we generate a recursion on
Eq.22uptotime r+7T as

N

it+T

=o'N,. (2.3)

Negative feedback can be shown when change is damped according to some
threshold but it is more appropriate to show this as a moderation of exponential
growth as encapsulated in the logistic equation. Then if we define a limit to popula-
tion as say N ., then we write the logistic as

Nit+1 :ﬁNit(ﬁi_Nit)’ (24)

where the rate § is moderated with respect to the scale of the growth. We also show
this form in Fig. 2.1 where it is clear that the population grows exponentially at first
and is then damped by the effect of the constraint N, . In fact if the damping effect is
lagged leading to an oscillation around the limit value of N, , then the growth of popu-
lation mirrors the sort of behaviour characteristic of systems dynamics models that
were developed by Forrester (1969) in cases where resource limits dominate.
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Another form of dynamics relates to variations across space in the manner we
illustrated for spatial interaction in the previous section. If we add time to this kind
of dynamics which involves spatial relations, associations, correlations or move-
ments, then we can represent these as flows from i to j between times ¢ and
1+T . In fact the interaction N, which we associate with cross-sectional static
models in the previous section does take place through time although the time is
much shorter than the usual periods that are associated with spatial modelling. Only
quite recently has our concern in understanding cities shifted to thinking of cities in
real time for such a real time focus has previously been captured as a static snapshot
of movements in the city as, for example, in transport and traffic modelling. However
longer time periods are associated with flows such as migration where the variable
N, ;.7 s now associated directly with time. Mechanisms for such models are only
specified when the precise form of model is defined and these are often based on
activity patterns, distance, travel time and related cost structures that determine spa-
tial associations. In fact, flows of this kind are also associated with networks which
scale from topological relations down to physical infrastructures. Currently there is
substantial activity in embedding such flow structures in their networks and this is
beginning to be reflected in spatial models as is implicit in some of the contributions
in this book. In the three examples we use to illustrate the computational model
types below, flows and networks are significant. It is worth noting too at this point,
that in spatial modelling, most focus has been on measurable physical and hence
observable quantities that change through time but increasingly there are hidden
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flows and relations associated with the electronic world that are influencing how
spatial systems change and develop. This too is a major challenge for spatial
modelling.

Before we move the discussion on to classify different kinds of dynamics, it is
worth noting that all the variables that we have introduced so far can be disaggre-
gated down from their aggregate populations to more disaggregate components.
Ultimately the disaggregation is down to individuals where we denote such atomic
elements by the subscript & on populations, that is Ni'j is the k’th individual or
group in the appropriate space and at the relevant time in the system. In fact this
notation can also be extended to any group which is a subset of the aggregate
population such that the sum of the groups and/or individuals adds to the relevant
aggregate variables, that is Zkle = N,. In the models, particularly the agent-
based models that follow, individuals will form the focus of the simulation where
processes are specified for a class of individuals but are operated at the level of
each individual in the simulation, usually specific to the space and time within
which the individual is located as well as individuals ‘proximal in some way’ to
the object in question.

As the concept of equilibrium has fallen into disrepute and as the spatial models
have become more explicitly dynamic, different kinds of time scale and change
have been identified which characterise spatial systems. In particular the notion of
smooth change has given way to systems that clearly have discontinuities in their
behaviour through time (as well as space) where such discontinuities represent
thresholds that are crossed, for example, the step function also shown in Fig. 2.1.
Here once the growing population reaches the limit, it precipitously declines to its
initial value. This classification of dynamics extends all the way to behaviours that
generate endogenous discontinuities as is characteristic of catastrophe and bifurca-
tion theories. This portfolio of dynamic behaviours has also been enriched by
smooth changes that lead to chaos, systems that behave in entirely unpredictable
ways in terms of their initial conditions but are nonetheless deterministic and por-
tray smooth and continuous change. Into this nexus has come the notion that change
can generate surprising and novel behaviours. For example, edge cities that sud-
denly appear around well established metropolitan areas, segregation patterns that
do not appear to be embedded in the logic of change but suddenly manifest them-
selves, and repercussions from changes in one element of the system that cascade
and grow as they diffuse to other sectors are all examples of the sort of changes that
many models of spatial systems now take as routine.

Dynamics in all these senses has added to the burden of modelling. Like disag-
gregation, dynamics enriches the model in that data demands become severe and
often much of the change that needs to be simulated is hard to observe and match to
data. In fact, the notion that dynamics leads to surprising changes is part and parcel
of the insights that are coming from complexity theory where the routine operation
of space-time processes from the bottom up leads to emergent patterns that only in
hindsight can be explained. Such unanticipated behaviour is quite counter to the
traditions of well-behaved dynamic systems that tend to converge to an equilibrium
or steady state, that is where N, — N, in the limit of ¢.
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The last feature of dynamics that we need to note before we begin to classify
spatial models in these terms involves relationships to the external environment,
either to the rest of the world or indeed exogenous changes to the population and/or
environment that comprise the system in question, for it is by these means through
which unusual dynamics can be stimulated. For example the population equation
might be subject to external shocks, that is from Eq. 2.1 we might add a shock such
as X, leading to

N

it+1

=aN, +X, (2.5)

which basically removes a degree of predictability from this particular model,
dependent on the size and frequency of the external input. If the external input is
once-for-all, its effects may die away but sometimes these kinds of shocks feed on
one another and are enough to push the system into uncharted waters with quite
unpredictable consequences. Moreover changes in the environment of the system,
such as the addition of new capacity a, in terms of land available, say, which we
might mirror as

A, =4, +a,
(2.6)

N, =f(A,)

can lead to equivalent unpredictability. Even in these simple cases, we can easily
complicate the dynamics through additional functions that immediately show that
any movement to a steady state is likely to be the exception rather than the rule.

2.4 Six Styles of Spatial Model

It is exceptionally hard to provide a completely comprehensive overview of spatial
models in the human domain even with as narrow a focus as we adopt here which
is mainly on cities. This is largely because model types shade into one another and
many of the features that we have identified in the previous sections appear in
more than one model. Different modelling styles merge into one another.
Nevertheless various researchers have attempted to classify such models and it is
worth noting some of these attempts before we outline our own focus on this field.
In general as noted earlier, there has been a sea change from aggregate cross-sec-
tional comparative static models of spatial systems to models that are disaggre-
gate and dynamic. This has marked the transition from land use transportation
interaction models (LUTI) to cellular automata (CA) and agent-based models
(ABM). This has also represented a change in scale and focus and in the case of
CA models, these shift the focus from social and economic processes to physical
land development. ABM models are more generic still but in terms of urban mod-
elling, most applications are at the fine spatial scale at the level of pedestrians, for
example, and local movement, with only a handful of such models being developed
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for metropolitan areas. In fact as LUTI models have been disaggregated, then
some of these such as ILUTE and UrbanSim have features that can be described
as agent-based (Hunt et al. 2005).

The other four types of model that we will classify and define here are those
based on less well entrenched applications and methodologies. Spatial economet-
ric models (SEM) have been widely applied but often at a larger scale involving
regions while systems dynamics models (SDM) have been proposed and imple-
mented in some contexts but these have not found widespread application largely
because they have not been generalised to spatial systems in any consistent man-
ner. Last but not least there are microsimulation models (MM) of which there are
several spatial variants and these also tend to merge into ABM at one level of
specification. There are no general reviews of all six modelling styles but the author
(Batty 2008) provides a discursive discussion of how LUTI models made the tran-
sition to CA and ABM during the last 30 years. The short review of LUTI, ABM
and CA models also by Batty (2009) focuses on their structure, dynamics and
aggregation properties. There are comprehensive reviews of ABM, CA, SDM, MM
and some LUTI models by Haase and Schwartz (2009) and there are a series of
reviews of operational land use models mainly in the US agencies such as the EPA
(see Southworth 1995 for example). However apart from the review of CA models
by Liu (2008), most of the reviews tend to be of LUTI models. In particular the
chapters by Wegener (2005), Iacono et al. (2008) and Hunt et al. (2005) are good
summaries of the state of the art to which the reader is referred. The essence of the
models which are the subject of this book — mainly ABM, CA and MM - are con-
tained in the relevant chapters in this section by Birkin and Wu (2011) (MM),
Dearden and Wilson (2011) (LUTI-spatial interaction), Iltanen (2011) (CA) and
Crooks and Heppenstall (2011) (ABM). In fact the focus is much more strongly on
ABM than any other model type in this book although CA models, as we will see,
provide an implicit form of ABM. This chapter and more generally this section, do
however provide a useful overview of the field with the focus very much on situat-
ing ABM in the wider context of spatial modelling.

We will begin with generic models and only when we have reviewed most of
these will we look at specific models with methodologies that are precisely config-
ured to the systems and problems at hand. We will treat each model in terms of the
eight characteristics which we identified in the previous two sections, namely,
environment and population, scale and aggregation, conservation and constraint,
disaggregation, feedback in space-time, dynamic type, emergence and conver-
gence, and external inputs, and we will begin with CA models which are by far the
simplest. In fact CA models are explicit and simple spatial dynamic models with
little or no presumption about the form of the dynamics and rather simple notions
about the effect of space. In their strictest form they simulate the spatial diffusion
around a point where the diffusion is to immediate neighbours and time and space
are treated as one. In this sense, the environment is treated as being synonymous
with the population with each state of the system — i.e. the population — being
directly associated with a spatial location at a point in time, in short A, =N, .

Scale and level of temporal and spatial aggregation tend to be quite flexible in these
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models although for urban and land cover systems, both scales are large — often land
parcels and census tracts and above, while temporal intervals are at least for one
yearly periods. This however is not a major constraint. Such models do not strictly
conserve quantities of population in that there is nothing intrinsic to such models
that limits their growth or decline although often such models are subject to more
macro-constraints provided by other models in their wider environment. The models
can be fairly disaggregate but most applications divide the cell states into land use
types limited to no more than a dozen. Feedback in space is extremely simplistic
and often unrealistic in that the CA nearest neighbour influence principle which is
essential for physical diffusion processes is often not a good analogue for spatial
effects where there is action-at-a-distance. Such models do not tend to fall into any
particular dynamic class, for if they produce unusual and discontinuous dynamic
behaviours, this is likely to be due to external inputs rather than anything built into
the model dynamics. Emergence is possible with such models, indeed essential to
their original formulation although in urban applications this is generally not a
specific focus. All in all, such models tend to simulate land development processes
from the supply side or at best models of the balance between demand for and
supply of land. They are not strongly socio-economic in that they do not embrace
detailed demographics, and in this sense are essentially physicalist in tone.

ABM models have many of the characteristics of CA models except that the
environment and population sides of the system are kept apart. The population
sector is essentially that which contains these agents whose behaviour is specified
in considerable detail. Agents tend to be mobile in a spatial sense and even if they
do not physically move in space, they can be associated with different spaces and
their change over time can reflect an implicit process of movement. In this sense, the
environment is treated more passively than the population with the population
driving any change in the environment, although in principle there is no priority for
one or the other. A detailed specification of ABM in these terms is contained in
Batty’s (2005) book where the idea of an agent having a specific behavioural profile
and acting on this purposively is central to their definition. In terms of aggregation
and scale, ABMs tend to be at smaller scales than the region or the metropolis
although some land cover models based on ABM are predicated at these larger
scales. They tend not to be constrained in terms of conserving any key quantity
although they may be structured to generate or conserve a certain level of popula-
tion, especially if the focus is on movement in a fixed space as in pedestrian models.
Their dynamics and relationships to the wider environment are similar to CA and
they tend to be highly disaggregate down to the point where individuals constitute
their basic units. Problems emerge when individuals are aggregated to groups or when
the agents become agencies for then such models tend to be of more conceptual
interest than of predictive practical use.

Like CA and ABM models, microsimulation models (MM) tend to be loosely
structured in terms of their dynamics. Such models may even be cross-sectional
rather than dynamic but the fact that the populations tend to be represented in terms
of their basic units means that such models are usually temporally dynamic, i.e.
individuals are represented in terms of their behaviour which is intrinsically
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dynamic. These kinds of models work on the premise that a population is described
in terms of a distribution of characteristics — for example, an income distribution,
and individuals are then selected from that distribution so such models are essentially
random samples from a much larger universe or population. In this sense, the
models can be at any scale but the distributions are usually composed of individuals
in that any point sample from a distribution is associated with an individual. Point
samples can of course be aggregated into large groups in space and time. There is
not much more that can be said about such models for all their other characteristics
will depend on the specific model characterisation once it has been worked up to the
system in question. Quantities do tend to be conserved and sampling can be subject
to some constraints while feedbacks depend on how different sectors in the model
are configured in relation to one another. The model dynamics again tends to be
straightforward and most models to date (see Birkin and Wu 2012) do not tend to
reflect discontinuities of the kind associated with emergence of new structures.
External inputs into such models are usually extensive as many of the drivers of
such behaviour are reflected in the wider environment. Microsimulation models
are essential tools for sampling large-scale populations where it is impossible to
represent all the individuals explicitly and where some sense of the heterogeneity of
the population needs to be represented in the model. The MoSeS model designed by
Birkin and Wu (see this volume) is a good example of how MM is applied to human
spatial systems where the focus is on demographics and its relationships to the
provision of health and related social facilities at a fine spatial scale.

Spatial econometric models (SEMs) have been widely developed in the tradi-
tion of aggregate modelling (Anselin 1988). To an extent such models do not
really distinguish between population and environment although the focus in such
models is more on subsuming the environment into the population than the other
way around in contrast to CA models. Such models are usually developed at a
scale where statistical averages are stable and this means that the spatial and tem-
poral units must be such that the data are appropriate for standard statistical infer-
ence. Quantities in such models tend to be conserved but within statistical limits
although increasingly constraints are put on statistical models where it is essential
to keep predictions within bounds. SEMs tend to be structured along rather formal
lines where the standard model is linear, often simultaneous in that feedbacks
between different model sectors are associated with different model equations,
and the dynamics is often well-defined with the equilibrium properties of such
models being well-known in terms of their stationarity. Emergent behaviours are
not usually a feature of such models but the distinction between exogenous and
endogenous variables as in much economic modelling is strong. In this book,
these kinds of models are not reported although occasionally, econometric tech-
niques are used in ABM, SDM, and MM.

Systems dynamics models (SDM) are very much in the tradition of the discrete
population models that we illustrated earlier in Egs. 2.1-2.4. In fact these models
are based largely on coupled difference equations whose structure is such that
they lead to exponential growth followed by damped oscillations around fixed
resource limits. In this sense such models are heavily constrained. They can be
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quite disaggregate dealing with different sectors but the environment is entirely
absorbed in the population as there is usually no spatial variation although some
models have simply applied what happens in one space to many others. In terms
of feedbacks, the entire behaviour of these models is structured around damped
logistic growth reflecting repercussions through the model structure which leads
to oscillations around the resource limits. In this sense, the dynamic behaviour of
these models is well-defined. Links to the wider environment are structured in
terms of control over resource limits. Progress with these models has been quite
slow with only a limited number of applications largely due to the difficulty of
articulating space within their structure. In fact as soon as space is introduced,
these models begin to look rather different from traditional SDM and in this
sense, they change in focus. Many of these model structures are more like model
methodologies that can be merged together in the construction of more elaborate
models, as for example, in models such as UrbanSim.

Our last class of models — land use transportation interaction or LUTI models —
are quite different in structure. These models are essentially fashioned around ideas
in spatial interaction and discrete choice theory, merged with notions about eco-
nomic input-output analysis, multipliers and demographic modelling that all come
together in what are largely aggregate cross-sectional model structures simulating
the location of activities and their interactions at a single point in time. These mod-
els, like SEM, tend to merge environment into population and since their inception,
they have become more disaggregate. Spatial constraints and the concatenation of
activities are central to such structures. Various feedbacks between the sectors are
incorporated but these usually reflect spatial not temporal effects. In terms of dynam-
ics, such models struggle to embrace the wider portfolio of possibilities being, at
best, incremental which essentially involve static models being applied to incre-
ments of time. That is, static model structures are used to model incremental change
and such models do not attempt to explore longer term dynamics. In fact there are
extensions of such models into dynamic frameworks such as those developed by
Wilson (2008) but in general, the practicalities of limited temporal data have con-
strained such models in terms of dynamic simulation. This is an important issue as
most of the other models we have described in this section simply assume that the
lack of temporal data is not a constraint on their specification and application. In
short, LUTT models build on social physics and urban economics which are essen-
tially atemporal.

These model types and styles provide a wide range of possible structures from
which to select appropriate forms for specific problems. Our summary shows at a
glance the array of model types that we might draw upon in simulating spatial systems
in the human domain. In the rest of this review, we will not detail all of these but
we will focus on CA, ABM and LUTI models to give some flavour of how they
might be developed and the way they are calibrated, validated, and verified in practice.
This will set the scene for the rest of the review chapters in this section which take
these models types further and develop specific issues with respect to their design
and construction.
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2.5 Cellular Automata: Physical Simulation Models
of Urban Morphologies

CA models are by far the simplest of any urban model in that they merge entirely their
populations with their environment. In essence, the components of the environment
are identical to the objects comprising the population in the sense that the locational
spaces that define the environment at any point in time, are equivalent to each
elements of the population. In the simplest case, one cell in the environment is equiv-
alent to one object in the population which in formal terms means that A, = N,.
Now each cell in a CA model can take on more than one state which means that the
population object can vary in its attributes. Again, the simplest form is that a cell
can take on one of two states — it can be switched on or off which in urban terms
might be compared to the cell being developed or not developed. This is often
represented as

1if i is developed
" {0, otherwise @7

In slightly more complicated CA models, there may be more than one population
object in one cell but this probably is the interface between CA and ABM. If a cell
has one population object only but that object can take on different attributes or
changes in state, then this is still a CA model. In short, when a cell can take on more
than two states, then this is usually used to reflect different changes in land cover
such as land use types but it could also be associated with different changes in the
population object such as its level of income, its age and so on. The formulation is
entirely generic.

CA models in their strict sense have no action-at-a-distance except in the most
restrictive sense. A cell is deemed to influence or be influenced by its nearest neigh-
bours where near is defined as physically adjacent if the application is to some
spatial system. This is the only way in which emergence can be charted in such
models in that if the field of influence is wider than nearest neighbours in a regular
sense, then it is impossible to trace any emergent effects on the ultimate spatial
structure. Essentially CA in this manner is used to implement procedures that lead
to fractal structures where patterns repeat themselves at different scales which only
emerge when the system in question grows and evolves. We can illustrate strict CA
in the following way. Assume that the set Z, is the set of immediate neighbours
on a regular square lattice. The usual neighbourhood is defined as the Moore
neighbourhood — all cells at the eight compass points around the cell in question or
the von Neumann neighbourhood which are the cells N, S, E and W of the central
cell. Then we define a function F, as the concatenation of effects in the Z, neigh-
bourhood, and if this function takes a certain value, this generates a change in state
of the cell in question, cell i . Imagine that the rule — and there can be many, many
different rules — is that if this function is greater than a certain threshold ¥ which
is a count of the developed cells in the neighbourhood, then the cell changes state.
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In the simplest case, it is developed if it is not already developed or its stays
developed if already developed. Using the definition in Eq. 2.7, then

F,=) A, and (2.8)

JjeZ;

if F,>Y then A

it+1

=1. 2.9)

It is very easy to show that this process leads to a regular diffusion starting
from a single cell. If we assume that the threshold ¥ =1, all the cells in original
Moore neighbourhood around the seed cell get developed first, then all cells
around those that have just been developed, and so on with the recursion simply
leading to the growth of a square cellular region around the starting cell. In fact in
this instance, space and time are collapsed into one which is the key criteria of
regular physical diffusion. These ideas are developed in more detail in Batty
(2005) to which the reader is referred for many illustrations of such basic strict
CA models.

If the CA models are slightly more complicated in terms of their neighbourhood
rules then various geometric fractals result while there can be key spatial orienta-
tions and biases introduced into the structures that are generated. However it is
usual in CA modelling for the neighbourhoods, the rules and the process of genera-
tion to be entirely uniform. As soon as the notion of varying neighbourhoods over
space and varying rules over time is introduced, the models are no longer CA. In
fact many urban applications are not strictly CA models at all but cell-space models,
motivated by physical land development problems and raster based GIS map
algebras in that they do not generate emergent patterns in any recognisable form and
they usually relax the constraints placed on both size of neighbourhood and unifor-
mity of cell transition rules. In Fig. 2.2, we show three typical CA models generated
using the Moore neighbourhood. The first is the simple diffusion from a source
where any development in any adjacent cell spurs development of the cell in question,
the second is simple diffusion from a source using a fractal generating rule where
the pattern of cells developed determines the rule, and the third is based on a
more complicated pattern of cells in the neighbourhood that steers the growth which
in this instance is stochastic in a given direction. These are the kinds of structures
that form the basis of such automata and all applications to real systems contain
mechanisms of recursion built along the same lines as those used to generate the
patterns in Fig. 2.2.

There are several ways in which the strict CA model has been relaxed in devel-
oping spatial applications. First it is easy to control the growth of developed cells
by imposing some sort of growth rates with respect to different cells. If growth is
one unit cell, then various external constraints can be used to control the growth
but as in all cases where the homogeneity rules are relaxed, then the CA no longer
can generate emergent patterns in quite the simple way in which those in Fig. 2.2
are generated. Moreover to introduce variety and heterogeneity into the simplest
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Fig. 2.2 Classic CA models (a) Nearest neighbour physical diffusion on a grid (b) Koch-like
fractal diffusion (c) Oriented diffusion limited aggregation

models directly, sometimes the cellular count or concatenation of cells performed
in the neighbourhoods is converted to a probability function which is then used
to condition the development using a random number generator. For example the
structure in Eqgs. 2.8 and 2.9 now becomes
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P,=YA,/8 0<P <1 and (2.10)
i€z,

if rand (¥) < P, then A,

it+1

=1 @2.11)

where P, is a probability of development and rand(¥') is arandom number between
0 and 100, say which if less than the probability, implies the land should be devel-
oped. There are many adaptations that can be made in this manner but the most
significant is related to relaxing the strict neighbourhood rule replacing this with
some sort of action-at-a-distance. For example replacing F; in Eq. 2.8 with the
gravitational expression for accessibility leads to

F,=3A,[d; (2.12)
J

and this provides a model which can predict development in proportion to acces-
sibility, that is

A (2.13)

i1 < Fy

This almost converts this cellular automata model to an accessibility potential
models which lies at the core of spatial interaction theory and was first developed
for these purposes at the very inception of land use transportation modelling (Hansen
1959). The question of course is how such a model might related to the extensive
tradition of LUTI models that are in general far superior in their explanatory and
predictive power than these kinds of CA model.

One of the major developments of these cellular models is to specify different
cell states in terms of different land uses which we will disaggregate and notate as
k, A,-f being the appropriate land use k in cell i at time . In several models,
these land uses relate to one another as linkages which determine, to an extent, the
locational potential for a site to be developed. Then we might write the change in
state of the cell in question as a function of several land uses in adjacent cells
where we use a functional notation to simply indicate that the change in question
has to be specified in more detail once the model application is implemented. Then
the new state of cell i at time ¢ would be

AL, = (A dy) v (2.14)

where jeZ; is a neighbourhood defined entirely generically and the field over
which distance is defined is again specific to the zone in question. In fact this
relaxes the strict CA quite dramatically and is characteristic of many applications
(for reviews see Batty 2005, and Liu 2008). It is worth noting that the rules to
define land use transitions generally vary the definition of the neighbourhood from
the strict no action-at-a-distance principle to the gravitational one. This links different
land use states and their densities and types to each land use in question, and also
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relates these links to different action-at-a-distances effects. These rules also pertain
to constraints which are hard and fast on whether a cell can be developed or not.
Above a given level, they define how land uses cannot relate to one another. Rules
extend to the development of transport links in cells that ensure land use is
connected, and structure the regeneration of cells according to various life cycle
effects. All of these rule sets are featured in CA models and they are central for
example to the SLEUTH, DUEM, METRONAMICA and related model packages
that have been developed (Batty, and Xie 2005). They will feature in our brief
reference to the DUEM model below.

A more generic CA like structure which is a lot closer to the differential model
that dominates the dynamics of physical phenomena at much finer scales is based
on a reaction-diffusion structure which might be written in the following way:

A =0A,+BY A +(1-a-Pp)X, (2.15)

Jj€Z;

where o0 and B are normalising parameters between 0 and 1 and X, is an exog-
enous variable that reflects changes from the wider rest of the world environment
that might be treated as error or noise in the system but more usually is treated as an
exogenous shock or as an input that is not predictable by the model. To operationa-
lise this structure, it may be necessary to impose various other constraints to ensure
that variables remain within bounds but the essence of the structure is one where the
first term on the right hand side is the reaction, the second the diffusion and the third
the external input or noise. If we assume that X, =0, the evolution or growth is
purely a function of the trade-off between how the system reacts and how activity
within it diffuses. In fact, this is rather an artificial structure as change in absolute
terms always needs to be controlled and in this sense, external inputs are always
likely to be the case. Many CA models do not explicitly adopt this more general
structure and a lot of applications have tended to simply scale the outputs of the
developed cells to meet exogenous forecasts rather than introducing such exogeneity
in more consistent and subtle ways as in the reaction diffusion model in Eq. 2.15.
There are many variants of CA models, examples of which are contained in the
last section of this book but as we will see these do tend to merge into ABM. To
conclude this section it is worth outlining a model that the author has worked with
(see Batty et al. 1999, and Batty 2005). This is the Dynamic Urban Evolution Model
(DUEM) which is a fine scale cellular model with several cells states reflecting land
use as well as transport and a series of decision rules for changing states that relate
one land use to another through its density and accessibility as well as their position
in the life cycle of development. The model is largely a pedagogic tool rather than
one which can be finely tuned to real situations although a number of applications
have been made to the Ann Arbor region and the wider region of South East
Michigan which is largely metro Detroit. The model is based on several land
uses — residential, commercial, industrial, open space, vacant land and transport/road
space — which are functions of the different density and accessibility rules as well as
plot sizes which determine how land is developed. We have developed the model for
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Fig. 2.3 Application of a typical CA model to simulating land use change 1985-1990 and 1990—
1995 in Ann Arbor MI

the changes between 1985 and 1990, calibrating the model in a rather crude way.
The rule set is large and thus we have not engaged in any kind of exhaustive calibra-
tion to find the best fit, although the fit to 1990-1995 from the calibration between
1985 and 1990 is reasonable. We show a segment of the typical interface to the
models, showing developed land use in Ann Arbor in 1990, and changes predicted
by the model from 1990 to 1995 in Fig. 2.3.

The real critique of CA models relates to their highly physicalist approach to
urban structure and dynamics. Essentially these are supply side models, simulating
the supply of land based on physical constraints. The notion of demand is foreign to
these models as is the notion of interaction as reflected in transport. By abandoning
the principles of uniformity, restricted neighbourhoods and homogeneity of states
which it is often necessary to do once one applies these ideas, then the models often
become poor equivalents to LUTI and other models. However in their favour is the
fact that they are explicitly dynamic although dynamic processes other than physical
land development do not feature very much in their formulations. Their dynamics is
also rather straightforward and if surprising and novel forecasts do emerge, this is
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more by accident than design in the sense that these models tend to simulate a rela-
tively smooth dynamics. There are not many points at which the kinds of disequilib-
rium crises and discontinuities which plague the modern world can enter into such
models. They also owe a lot to GIS and remote sensing and it is no accident that they
have been almost entirely developed by a very different set of researchers from those
still working with traditional urban models in the LUTI tradition.

2.6 Agent-Based Models: Purposive Behaviour, Physical
Movement and Temporal Change

As we have argued, at one level CA models can be seen as simplified varieties of
ABM where the cells form the agents and the states their attributes. Unlike ABM,
however, cells do not move and if they change their state, this change might be
attributed to some movement but this movement remains implicit and is not for-
mally simulated. ABM implies some form of movement or at least change between
agents. Agents as objects in the population are defined individually as k but are
made specific in terms of the locations where they exist i at time z. In fact agents
may not physically move or indeed in non-spatial models, they may not even be
defined in terms of location. If the model is simply one of examining relations
between agents at a cross section in time, then such relations might solely be defined
in terms of say N*and N', the relation between them defining a link in a social
network N* = f(N*,N"). In fact throughout this book, the agents that are defined
by various authors, exist in terms of location and time but very different kinds of
relations exist across space. These imply movement or interaction from i to J,
from time ¢ to 41 or a later time period #+ T, from individual object k to ¢ as
we have just defined in terms of social network links and any higher order combina-
tions such as: links across space and time, space and different individuals, time and
different individuals and across all three — space, time and individuals.

The key difference between CA and ABM is that the system is driven by the
ABM where each individual object is endowed with purposive behaviour which
conditions their specific and individual behaviour in contrast to aggregate models
where this behaviour is part of an aggregate or collective. In this sense, the environ-
ment of the system is the space-time frame A, which is relatively passive in com-
parison to the behaviour of the agents N! . Nowhere in such models does A, = N,
or vice versa but as we have already implied earlier there are certainly feedback
loops A, & N, as well as the core loops between agents themselves which we
define generically as N} < Njf,+l . We assume in ABM models for spatial systems
that the environment is not purposive, that is, no loops such as 4, < A, exist. If
such loops are required then the model would need to be reformulated and part of
the environment may then enter the population. The movement of an agent is par-
ticularly important in spatial models because whereas in CA, these models tend to
be bereft of spatial interaction, ABM models have found extensive application as



40 M. Batty

models of fine scale movement at the pedestrian level for example (Batty 2003).
We can formulate such a model in functional terms as

Nja =f(N,.NLALA L 2€ Z) (2.16)

where the superscript a relates to some characteristic attribute of the cell. The func-
tional Eq. 2.16 suggests that agents move through space across time but are influ-
enced by other agents and other locations during such a move. The object Nj'ft isin
a different location from the moving object k and when the move takes place, a
whole series of relations might exist between these two objects such as the visibility
of one from another, avoidance of physical contact between one and the other, the
clustering of the two or more objects through some social network, or the attributes
of the other object being of importance to the locational move, and so on. In terms
of the cells themselves, then an object moving from one cell to another would also
take account of related cells in the system, usually in the neighbourhood of the
move itself.

A good example might be shopping behaviour. An agent enters a shopping centre
with a specific purpose to buy goods, encounters other agents along the way, avoids
them, or follows them in terms of the crowd. The agent would be influenced by the
provision of goods in different cells of the system and in this sense would move in
relation to the existence of materials and products that were located in different cells
of the system. This kind of characterisation can provide a baseline for movement
with visibility, obstacle avoidance, the search for a location which matches the
purpose for which the object or agent is moving, and so on. The agent may have a
budget and when visiting different cells would exhaust this budget and end the trip
once the movement had achieved its purpose. In terms of other moves, then if the
agent were migrating over a longer time span in search of a job or house, then the
characteristics of the job or house location would be encoded into the environment,
in A; but the job itself and maybe the actual house would also be part of the set of
agents. In this sense, an agent need not be a human individual but an object in the
built environment that in and of itself might be subject to change in type and
location.

It is worth sketching a simple model of the development process to show how
generic this kind of thinking can be. First we make a distinction between consumers
k and producers ¢ with N the individual demanding to be housed and N; the
developer producing or supplying the housing. The characteristics of the site or cell
under consideration for the production of housing is defined as A;, where z is a
different location but all the locations i, j,z define the cells in the system where
consumers and producers carry out their activities. The sequence of actions in any
one time period can be orchestrated as follows: first a producer examines all the
sites in question which in terms of each site can be represented by N; < A7 . The
decision to produce a house in cell J is then made with respect to the attributes of
J but also the potential demand for site J which might be based on previous
demand at that site NfH . The decision is made and the house produced which alters
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the characteristics of the site A;, . The production of the house at this site can be

defined as a unit of development or level of development D, ,, which a potential
house buyer — consumer — will now react to. When the house has been developed,
potential residents will examine its location and then decide to occupy it or not, that
is N;.‘,H — D,,,, and if an evaluation threshold is crossed then the individual will
occupy the house, that is the house will be occupied O,,, . Formally the consumer
might evaluate a function which works out a new level of the attribute of the site

Afm which can be formalised as

Al =0> 0,40 AL+ D, +€,,, (2.17)

JjeZ; JeZ; JeZ;

where the parameters ¢, 8,7 determine the relative weighting and normalisation
while the error term ¢, is a way of introducing some noise or uncertainty into the
locational choice. If the cell attribute value is now above a certain threshold I', then
the house is occupied; if not it remains unoccupied and the systems move into the
next time phase where the process begins once again. Then

L if A,=0 and Y A, 2T
0,1 = = (2.18)

0 otherwise

In this way demand adjusts to supply and vice versa if the system is well speci-
fied. Of course this simple model could not be programmed from this formulation
for there are other decisions that need to be made to make the process computable
but this sketch suffices to show how demand and supply agents interact with their
cell space environment to produce and then consume housing. Immediately it is
clear that in such a model, although the rules are quite plausible, it is extremely
difficult to collect data on such a decision-making process. Moreover at this level of
disaggregation, there are many features of the development process that cry out
for specification; for example, issues about housing finance and finance for land
development, issues about distance from home to work and to other facilities,
provision of budgets, life style issues, all crowd into such a model. In a sense, this
is why ABMs are so hard to build and test because once this level of detail is
broached, it is hard to control the aggregation in such a way as to produce testable
propositions. It is worth noting that spatial interaction effects fall out of this model
quite easily, thus connecting ABM directly to the LUTI models that we will deal
with in the next and final section of this review. The gravitational model of trips can
be specified in agent form as

k 14
w _ Nl
2

- (2.19)
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Fig. 2.4 Simulations from Ward’s ABM pedestrian model of Covent Garden. From top left to
bottom right: model control panel, visual lines of sight from a single pedestrian, flow intensity of
all pedestrians, navigation panel, interactions of walkers, part of the map of the stalls in the shop-
ping area

where we define k in terms of residence and o in terms of workplace. T,-;” is the
flow from i to J at the cross section and this can be lagged across time if so speci-
fied. We can also sum trips over i and J in terms of spatial interaction accounting
and this serves to link these models to their aggregate equivalents. In fact, a sequence
of locational decisions involving work and residence location in terms of an ABM
might actually generate trips of these kinds through individual decisions rather than
through this aggregate distance model. This does show that it is possible to begin to
introduce social physics ideas into ABM with such connections to discrete choice
modelling and microsimulation appearing extremely promising. Similar ideas of
movement and spatial interaction are briefly introduced in Batty (2005) to which
interested readers are referred.

The last thing we will do in this section is illustrate a typical example of ABM
at the pedestrian movement level. In Fig. 2.4, we show a model built for the Covent
Garden Market complex in central London by Ward (2007). This model is based on
a simple social forces model in which agents have certain tasks to perform such as
shopping and entertainment. They have two specific functions: to navigate in
search of their goals which involves either purchasing entertainment or goods as
efficiently as possible; and to move around the complex in more casual fashion.
Most behaviour in this market is a combination of the casual and the formal but a



2 A Generic Framework for Computational Spatial Modelling 43

key feature is the learning behaviour that must be built into navigating the space.
This set of agents — walkers — is divided into different types dependent on purpose
and how much exposure they have already had to the area. A substantial proportion
of walkers are tourists. We do not have time to detail the model but it is clear that
the nature of the problem imposes quite substantial differences between this appli-
cation and others in terms of the composition of the agent population and the nature
of the facilities in the complex. Again ABM is appropriate because of the rule-based
behaviours in this kind of context and because navigation, obstacle avoidance and
visibility calculations are important in simulating this type of mobility.

2.7 Land Use Transportation (LUTI) Models: Aggregate
Behaviour in Spatial Equilibrium

Our last examples which are not part of the mainstream applications in this book
except in the contribution below from Dearden and Wilson (2012), revert back to
the origins of computational modelling in spatial systems which are in a rather
different tradition from the new paradigms explored in the various contributions
that follow. In fact, LUTI models have continued to be developed and strengthened
and as we noted earlier, there has been a long quest to retain the advantages of
simple aggregate models that can be calibrated against available data in contrast to
the need for ever greater detail through disaggregation with the specification of
temporal dynamics which move these models outside the equilibrium paradigm. In
essence, when the time dimension is suppressed, the representation of environment
and system is greatly simplified. The environment is simply indexed by space as
A, while the population is indexed as P! where different activities k now refer to
aggregates of populations covering employment, residential population, retail
activity and so on. Just as CA models collapse population into the environment,
LUTTI models tend to collapse the environment into population: all the action in
such models is, like ABM, focused on the aggregate with the environment in terms
of cells, or zones as they are commonly called, being only relevant when various
constraints on land availability and physical features of the space influence the
simulation. In short, we can represent such models purely in terms of populations
although distance and the attributes of space do occasionally enter the model
framework from the environment.

We already have a simple form of LUTI model where spatial interactions are
implicit in our development of CA in an earlier section. Equation (2.12) determines
the function that converts a cell from one state into another, from undeveloped to
developed for example, in terms of gravitational potential and we can write this
more generally for any sector k as

NE=EY Ad* (2.20)
J
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where & is the relevant scaling constant, and A* is the friction of distance param-
eter for the gravitational potential. Equation (2.20) might apply to any sector
although it is strongly physicalist in form being a function of only land (cell or zone)
area A; and geometric distance (or travel time/cost) d,; . Without any obvious
coupling, any LUTI model composed of several different population sectors such
as types of residential housing, employment and so on would simply be a series
of disconnected models. The most obvious way to connect sectors is to make each
sector a function of all others in terms of composite accessibilities that might be
written as

Nf =&Y Y Nid* .21
toj

where we note that the scaling constant is suitably adjusted and that the summation
over sectors ¢ may or may not include the self-sector k, a decision that would
depend on the precise model specification. In this sense then, the sectors are coupled
through their relative spatial distributions.

In fact most LUTI models developed in the last 40 years have specified popula-
tion as a function of explicit spatial interactions although the first models such as
Lowry’s (1964) were based on accessibility potentials as in Egs. 2.20 and 2.21.
Using an explicit spatial interaction model, then one of the simplest forms can be
written as

M:Zﬁ:@@Qﬁ%‘%ZZMM%ﬂ (2.22)
J J J

We should note again that the summation is over sectors, that the scaling
constant must be suitably adjusted and that there is immediate circularity in the
model as the predicted variable appears on both sides of the equation. We do not
have time here to dwell on this circularity but it can be resolved in many ways
through model specification, balancing and iteration but in essence it reflects the
reality of breaking into the spatial system at a cross section in time. In fact, in
real applications, the use of appropriate balancing constraints resolves the issue
(Batty 1976, 2008).

However the usual way of coupling such models is by assuming that the self-
sector is not a function of the model or using another variable such as land area of
the zone or cell A’ . Then substituting this for N} in Eq. 2.22 and noting now that
we will specify a two sector model where k=1 is the first sector and /=2, the
second sector, then we can write equations for these two sectors as

1 _ 1 _ glgyl 2 5-27 1
N; —ZT,.j.—iA,-Zde,j +X;
J J (223)

i

2 _ 2 g242 1 -2 2
Ny =T =EA Y Nd" +X,
J J
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Here we have extended the coupled model even further adding an exogenous
input to each sector in the same manner that we did for the reaction-diffusion
model earlier in Eq. 2.15 for the CA model. This structure is generic. It can be
extended to many other sectors and it is at the basis of a whole class of LUTI
models. For example the extended MEPLAN models developed by Echenique
(2004) are based on this structure where there are explicit links to input-output
models. The original extensions to the Lowry (1964) model were couched in these
terms. The first equation in (2.23) was defined for total employment N; where
X! was basic employment and the second equation was defined for total population
N,-2 where there was no exogenous population, that is Xf =0,Vi. In short, this is
the model structure suggested by Garin (1966) and Batty (1976).

This structure has been exploited in many ways. First it has been disaggregated
to embrace many different classes of population with respect to residential popula-
tion, housing and house types, industrial employment, retailing, commercial and
related sectors such as education and health care. Second, relationships between the
environment and population have been made in terms of land and density con-
straints, while third, the spatial interaction models have been extended in terms of
utility maximising and route choice building on much more disaggregate individ-
ual-based models. In this sense, versions of LUTI models such as UrbanSim
(Waddell 2002), ILUTE (Miller 2004) and DELTA (Simmonds 1999) begin to
approach ABM illustrating that the line between modelling types and styles can
become very blurred. Fourth, the models have been disaggregated to treat ever more
zones and spatial units but of course, once these approach ABM, then locations are
collapsed directly into individuals within the population and the notion of agents
defined by zones has less relevance. Fifthly in many of these models, rule-based
algorithms to sort out allocation as in CA models appear alongside more formal
equation systems that determine locational distributions. Particularly where demand
and supply are explicitly represented, then market clearing and the determination of
prices that indicate how the model is balancing are often structured through rule-
based mechanisms. As these models have extended their scope, then their formal
parsimonious structures have been compromised. Their operation has become more
ad hoc and pragmatic which appears to be a consequence of adding more and more
detail and more and more sectors.

Dynamics has also been added to such models. At first, such static models were
applied to forecast increments of change; that is the static model structure is used to
assume that increments or decrements of change observed between two points in
time such as AN, =N, —N, become the focus of the prediction. In fact this is
often simply a matter of scaling the equations to deal with net change. Many vari-
ants of this structure have been developed but there has not been much attention to
breaking up the static structure into activities with different propensities to move.
There are no models (to the authors knowledge, that is) where populations are
divided into movers and stayers and these components dealt with in comparative
static terms as different specifications of the equilibrium. Most extensions to dynamics
have thus been ad hoc and in fact, there have been few developments of nonlinear
dynamics of the kind described earlier involving catastrophes and bifurcations
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embedded directly into the structure of these models. There are examples where
static models are embedded into dynamic frameworks but these are largely for
pedagogic use and have never been fitted to real systems (see Dearden and Wilson
2012, this volume). The same might be said of Allen’s (1997) work where embedding
spatial interaction models into dynamics that lead to bifurcating behaviours in terms
of locations are largely illustrative.

In terms of applications, the dominant model in urban and transport planning is
still the LUTI model variant, largely because it deals explicitly with transport and
housing in terms of their markets and the way they clear. Urban sprawl, for example,
which CA models have attempted to simulate is highly dependent on transport and
thus LUTI models are preferable as they deal directly with the drivers of sprawl. In
North America, the dominant model was DRAM-EMPAL until quite recently
when UrbanSim appears to have been more widely applied. Elsewhere MEPLAN
and TRANUS have been developed, particularly in South America (Echenique
2004) while in Europe, there has been a mix of models. The focus is less on growth
there and thus engagement with these kinds of formal model has been less intense
although recently new waves of such models are being applied particularly in
the London region. We will conclude our review with a brief summary of some of
these models.

The MEPLAN structure developed as the LASER model has been used for
20 years for examining major transport proposals in the South East of England
and this is now being supplemented with the LonLUTI model built on the back of
the Delta model by Simmonds (1999). We have been developing residential location
models as part of the integrated assessment of climate change, specifically flooding
and pollution issues, in the Greater London region. This model is a standard
structure of the kind presented here with a focus on heavy visualisation. A screen
shot of typical output is shown at the top left of Fig. 2.5 where the focus on trip
movements and their modal split is clear. It has now been extended using the
structure in Eq. 2.23 where there are now three sectors being handled: population,
retail and internal population-orientated employment with exogenous employ-
ment handled as a separate sector. This model is applied to the outer metropolitan
area based on nearly 2,000 zones making the model quite large in spatial scale.
The focus is still on fast and immediate visualisation and the current plan is for
the model to be disaggregated and different modes to be added. The model is
subject to capacity constraints in all sectors including trips and in this sense
is quite comprehensive. We show a screen shot of the region in Fig. 2.5 at the top
right and below, where it is clear that we are dealing with a complex polynucleated
urban system based on a world city with some 14 million population. In contrast
to the sort of pictures that we showed earlier for CA models in Ann Arbor
(Fig. 2.3), it is clear that these models operate at a higher spatial scale although in
the climate change applications, a CA-like model at 50 m grid square scale has
been added to the integrated assessment to deal with populations at a much finer
spatial scale than the LUTI configuration which is based on zones with an average
of 10,000 persons. There is much more we could say about these models but inter-
ested readers are referred to this detail in Batty (2011), and Batty et al. (2011).
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Fig. 2.5 LUTI models for the London region. Top left: Work trips from Heathrow in the Greater
London residential location model: Top right: The nested model applications: Bottom: The inter-
face to the 1767 zone London region model showing population histograms

2.8 Conclusions: Modelling Using Generic or Purpose-Built

The model framework developed in this chapter is designed so that readers might
see the connections between a variety of model types at different levels of sectoral
and temporal disaggregation. It is almost a non-sequitur that static cross-sectional
models tend to be simpler to notate than dynamic models but what dynamic mod-
els add in terms of temporal richness, static models tend to compensate for in
terms of sectoral feedback and strongly coupled activities. The framework we
have introduced is certainly generic for the distinction between environment
which is the space-time nexus and population which tends to be the driving force of
all these models, is common to all spatial models of the kind developed in this book.
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The level of aggregation although exceptionally important in terms of applications,
is less important in terms of model structure. What we have not done here is dwell
on methods of fitting different models within this framework to data and it is
worth concluding with some remarks for this serves to polarise differences
between the various models.

As the level of detail in terms of sectors, spatial-locational resolution, and tem-
poral resolution increases, data demands generally increase and models become
increasingly difficulty to validate in terms of being able to match all the model
hypotheses — functions — to observed data. As temporal processes are added, this
can become exceptionally difficult but even with cross-sectional static models,
when we add mechanisms for coupling and for market clearing as is the case in
many LUTI models, we face a severe problem of validation. Many processes in
these models cannot be observed and in principle some of these may simply be
unobservable. Thus the model-builder faces problems of convincing client and
stakeholder groups, which may comprise other scientists, of the veracity of their
simulations. This tends to force modelling back to the traditional canons of scientific
inquiry where parsimonious and simple models are the main goal of scientific expla-
nation. Occam’s razor may still be the ultimate quest but in many social systems,
evident complexity is so great that plausibility rather than validity may be the real
quest. This tension is felt very heavily throughout this book although it is broached
only gently by many of the authors who are clearly conscious of the weight of
scientific credibility that these new approaches to social systems impose.

In fact cutting across this dilemma is the notion that as we improve our under-
standing of spatial systems, we might be able to generalise models to the point
where generic software becomes dominant. In fact, quite the opposite is happening.
As we learn more we consider each problem context to be more individualistic
where the model has to be specifically tailored to the task in hand. Software engi-
neers have in fact sought to develop ever more generic packages but these are often
frameworks which guide the modeller rather than establish complete frameworks
for the development of a specific model. Most general frameworks for ABM for
example such as RePast and Netlogo, even MATLAB and Mathematica, do not
extend to the point where very detailed spatial models can be built within their
structures. LUTT models are a case in point. 30 years ago when spreadsheets were
first developed it was perfectly possible to develop pedagogic versions of such
models using that software but no real application would ever fit into such
structures. To date, there is no standard software for such models. In fact herein is
the dilemma. Most serious applications rather than proofs of concept or pedagogic
demonstrations require specific software applications. Insofar as generic software
can be used, this provides many of the basic routines but these still have to be
assembled in situ by skilled programmers, notwithstanding the fact that downstream
applications may emerge which are generic. But then such applications tend to be
pedagogic, showing what has been done and any new application requires purpose-
built software development. It is hard to see this situation changing in that the
problems that we need to engage with always seem to outstrip previous applications
and software already developed for these. The various contributions on this book
clearly demonstrate this point.
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