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  Abstract   Designing, formulating, and communicating agent-based models (ABMs) 
poses unique challenges, especially how to choose the right level of complexity and 
how to describe – and, even, think about – a model in a way that captures both its 
essential characteristics and its complete detail. Two techniques for dealing with 
such challenges have become established among agent-based modellers. The 
“ODD” (Overview, Design concepts, Details) protocol is a standard for describ-
ing ABMs in publications, but also provides design patterns for the model devel-
oper. ODD starts with an overview of what the model is and does, and then 
describes how the model implements ten “design concepts” that capture essential 
and unique characteristics of ABMs. Last come all the details needed to com-
pletely replicate the model. “Pattern-oriented modelling” (POM) is a set of strate-
gies for using patterns observed in the systems to ensure that an ABM captures the 
right “essence” of the system. POM starts with identifying multiple patterns of 
behaviour in the real system and its agents that seem to capture the essential inter-
nal mechanisms for the problem being modelled. These patterns are then used to 
decide what kinds of entities, state variables, and processes need to be in the 
model; compare and test alternative “theory” for key agent behaviours; and fi lter 
potential parameter values to limit uncertainty. ODD and POM are important 
steps toward the acceptance of agent-based approaches as established, credible 
ways to do science.      
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    17.1   Introduction 

 Agent-based models (ABMs) can be hard to communicate. They usually include 
different types of agents and spatial units, each distinguished by a suite of state 
variables, attributes, behaviours, and environmental processes. Model results can 
depend strongly on how model entities are initialised, how processes and events are 
scheduled, the data used to drive the simulated environment, and the details of how 
submodels represent model processes. As a consequence, many, if not most, descrip-
tions of ABMs are lengthy but nevertheless incomplete. 

 Communication is, however, part and parcel of using ABMs as a scientifi c tool. 
Models are the “Materials and Methods” used by modellers to obtain scientifi c 
results. Thus, as with any other method used in science, the very feature that renders 
an ABM “scientifi c” is replicability: that the same results can be obtained by peers 
if they use exactly the same materials and methods. But most published ABMs 
would be impossible, or at least challenging, to replicate. This situation cannot be 
tolerated because it undermines the credibility of ABMs as a scientifi c method. 
Moreover, because ABMs are increasingly built to support real-world decision 
making, model structure and assumptions need to be transparent to decision makers; 
otherwise the models are likely to be (justifi ably) ignored, or used inappropriately. 

 Incomplete and ineffi cient communication is linked to a second challenge of 
agent-based modelling: the lack of a framework for designing ABMs. Current prac-
tice is that most ABMs are developed from scratch and that the choice of model 
structure and process representation is more or less  ad hoc . Model design and for-
mulation often refl ect the disciplinary background, experience, and personal prefer-
ences of the modeller more than general principles of model design that would lead 
to similar model designs for similar problems. 

 Lack of effi ciency and coherence in design and communication is to be expected 
for an emerging scientifi c approach. But agent-based modelling is no longer in its 
infancy: hundreds of ABMs have proven the potential of this approach, both in 
theory and application, in a wide array of disciplines; many research projects and 
programs dealing with complex systems include ABMs in their portfolio of 
approaches; and the issues of standardisation, communication, and transparency 
have increasingly been addressed over the last 10 years. 

 There are several examples of the drive for a general framework for ABMs. 
Railsback  (  2001  )  listed design concepts that are important for designing ABMs, in 
particular when adaptive behaviour is included. Grimm and Railsback  (  2005  )  
devoted their book on individual-based modelling in ecology to making this 
approach more “coherent and effi cient”. A series of workshops addressed the issue 
of model replication (e.g., Hales et al.  2003  ) . Standards for model development 
(Richiardi et al.  2006  )  and communication were proposed (Grimm et al.  2006, 
  2010  ) , and a community has been established with the mission to “foster the agent-
based modelling development, communication, and dissemination for research, 
practice and education” (Janssen et al.  2008  ) : the Open Agent Based Modelling 
Consortium (  www.openabm.org    ). 
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 Standardisation is an indicator for a maturing approach: the approach has been 
used enough to understand its strengths and weaknesses, what decisions have to be 
made when using it, and how standards can make its use more effi cient and coher-
ent. Standards must of course avoid restricting the approach’s fl exibility and 
usefulness. 

 Here we present the ODD protocol, a standard for communicating and formulat-
ing ABMs; and pattern-oriented modelling (POM), a general strategy for tying 
model structure to multiple observed patterns to make model design and analysis 
less  ad hoc . Both approaches were formulated in ecology but are relevant in any 
discipline using ABMs. Since both ODD and POM have been described in detail 
elsewhere, we focus here on what these approaches are, how they can be used, and 
what benefi ts they provide to the agent-based modeller.  

    17.2   The ODD Protocol 

 The ODD protocol was developed as a standard format for describing individual- 
and agent-based models (Grimm et al.  2006 ; Grimm and Railsback  2005  ) . The 
acronym stands for the three blocks by which ODD’s elements are grouped: 
Overview, Design concepts, Details. ODD is designed to be used for  all  ABMs, 
independent of their domain, purpose, complexity, and computer implementation. 
The main idea of ODD is to present ABMs in a hierarchical way: an overview of 
model structure and processes fi rst, with details on processes last. Between over-
view and details is a checklist that explains how important general concepts for 
designing ABMs have been taken into account. This checklist ensures that mod-
ellers make important design decisions consciously and that readers understand 
how and why certain design decisions were made. 

 Using ODD implies referring to this standard explicitly by stating: “The model 
description follows the ODD (Overview, Design concepts, Details) protocol for 
describing individual- and agent-based models (Grimm et al.  2006,   2010  ) ” and 
then presenting the seven elements of ODD (Table  17.1 ) using exactly the given 
sequence and element labels. By using ODD always in this way, writers do not 
waste time fi guring out how to organise their model description and readers avoid 
frustration by knowing exactly where to fi nd information about a model. Moreover, 
understanding of a model is greatly facilitated by fi rst providing an overview of its 
structure and processes. For most readers, this information is suffi cient to grasp the 
overall rationale of the model and to understand its results. Readers hooked by the 
overview can go into more detail and see how certain processes have been repre-
sented. Finally, an ODD description should be complete enough to allow the 
model’s replication.  

 For complex models, the Details and possibly also the Design concepts parts 
may be too long, so they can be moved to an electronic appendix, or the full ODD 
model description could be published in a separate report. 
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    17.2.1   Design Concepts 

 The design concepts of ODD were fi rst summarised by Railsback  (  2001  ) , then 
discussed in detail in Grimm and Railsback  (  2005  ) , and most recently updated by 
Grimm et al.  (  2010  ) . The ten concepts are not actually needed to replicate a model, 
but they are important for communicating the essence of how (and why) an ABM 
has been designed—because traditional formats such as equations and diagrams 
cannot capture the essence of most ABMs. For example, the fi rst design concept is 
“emergence”. Its discussion should explain whether key model results are imposed, or 
whether instead they emerge from agent behaviours and other processes – information 
that is the key to understanding the rationale of the model. Here “imposed” means 
that model rules and equations force the model to behave in a predictable way. For 
example, if a model is designed so that an event like a traffi c jam occurs with a 
constant probability of 5%, then it is no surprise that on average the model produces 
traffi c jams 5% of the time. If, however, traffi c jams emerge from the behaviour and 
decisions of the agents and the roads they follow, there is no simple way to predict 
how often traffi c jams occur: we have to run the model and see what emerges. 

   Table 17.1    The seven elements of the ODD protocol (See also the ODD webpages at   www.ufz.
de/oesatools/odd    )   

 ODD  ODD element  Questions to be answered 

 Overview  Purpose  What is the purpose of the model? 
 Entities, state variables, 

and scales 
 What kind of entities are in the model? By what 

state variables, or attributes, are these entities 
characterised? What are the temporal and 
spatial resolutions and extents of the model? 

 Process overview and 
scheduling 

 Which entities do what, in what order? 
When are state variables updated? How is 
time modelled — as discrete steps or as a 
continuum over which both continuous 
processes and discrete events can occur? 

 Design concepts  Design concepts  There are  ten design concepts  (see text). How 
have these concepts been taken into account 
in the model’s design? 

 Details  Initialisation  What is the initial state of the model, i.e. at time 
 t  = 0? 

 Input data  What input does the model use from external 
sources such as data fi les or other models to 
represent processes that change over time? 

 Submodels  What, in detail, are the submodels that represent 
the processes listed in “Process overview and 
scheduling”? What are the model parameters, 
their dimensions, and reference values? How 
were submodels designed or chosen, tested, 
and parameterised? 



36517 Designing, Formulating, and Communicating Agent-Based Models

 In many descriptions of ABMs, it is not entirely clear what the authors wanted to 
emerge and what they imposed. Similar “ad hoceries” often occur with the other 
design concepts. The following description of the concepts is adopted from Grimm 
et al.  (  2010  ) :

    • Emergence . What key outputs of the model are modelled as emerging from the 
adaptive behaviour of its agents? Are there other outputs that are more tightly 
imposed by model rules and hence less dependent on what individuals decide 
to do?  
   • Adaptation . What rules do agents have for changing behaviour in response to 
changes in themselves or their environment? Do these traits explicitly aim at 
increasing some measure of individual objectives or success? Or do they instead 
cause individuals to reproduce observed behaviours that are implicitly assumed 
to convey success?  
   • Objectives . If adaptive behaviour is represented as explicitly seeking some objective, 
what is the objective and how is it measured? Examples of “objectives” are “fi tness” 
for organisms, “utility” for economic reward in social models, or simply “success”.  
   • Learning.  Do individuals change their adaptive behaviour over time as a conse-
quence of their experience? How?  
   • Prediction . To make decisions, model agents often need to predict future conse-
quences of their alternatives. What internal models are used by the agents to 
estimate future conditions or consequences of their decisions? What “tacit” or 
hidden predictions are implied in these internal models?  
   • Sensing . What information (state variables of other model entities and them-
selves) can agents sense and consider in their adaptive decisions? Are the mecha-
nisms by which agents obtain information modelled explicitly, or are agents 
simply assumed to “know” these variables?  
   • Interaction . What kinds of interactions among agents are in the model? Are there 
direct interactions, or are the interactions indirect, e.g. via competition for a 
mediating resource? How do agents interact with their environment?  
   • Stochasticity . What processes are modelled by assuming that they are random or 
partly random? Why is stochasticity used – to represent variability in a simple 
way, or to cause events or behaviours to occur with a specifi ed frequency?  
   • Collectives . Are there aggregations of agents that affect, and are affected by, the 
agents? Examples include social groups, fi sh schools and bird fl ocks, human 
networks and organisations, or cells constituting an organ. Are collectives repre-
sented as emergent properties of the agents or as a separate kind of entity with its 
own state variables and traits?  
   • Observation . What data and patterns must be observed from the ABM for test-
ing, understanding, and analyzing it, and how are they collected?    

 ODD model descriptions should describe how these design concepts were taken 
into account. It is possible to leave out some of the concepts if they are not included 
in the ABMs design at all (e.g., if adaptive behaviour is simple, then Objectives, 
Learning, and Prediction may be irrelevant). Four concepts are relevant to almost 
every ABM: emergence, interaction, stochasticity, and observation.  
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    17.2.2   Examples 

 As a simple example, we apply the ODD protocol to the “Segregation” model 
published as part of NetLogo (Wilensky  1997  ) , which was inspired by the work of 
T. Schelling (e.g., Schelling  1971  ) .

    Purpose.  The model addresses segregation of households in cities: why members 
of two different groups tend to separate into different neighbourhoods. The model 
explores the relationship between how tolerant individuals are of the opposite group 
and how segregated neighbourhoods are, when individuals express intolerance by 
moving.  

   Entities, state variables, and scales.  The model entities include mobile agents that 
represent households, and square grid cells that represent houses. Households are 
characterised by their location (which house they occupy) and their colour, which is 
either blue or red. Households also have a state variable “happy?”, a boolean vari-
able set to false if the household is intolerant of its neighbours. The grid cells make 
up a square 51 × 51 cells in extent, with no depiction of roads or other spaces between 
them. The space is “toroidal”: if an agent moves off one edge of the space, it reap-
pears on the opposite edge; and the neighbours of a household on one edge of the 
space include those on the opposite edge.    

 The length of a time step is unspecifi ed but represents the time in which a house-
hold would decide whether to move. The number of time steps in a model run is an 
emergent outcome: the model runs until no households are intolerant of their neigh-
bours and want to move (see submodel  move ).

    Process overview and scheduling . The following actions are executed, in this order, 
once per time step.

   If no households are intolerant of their neighbours (“happy?” is true for all • 
households), then the model stops.  
  The households who are intolerant of their neighbours (“happy?” is false) execute • 
the submodel  move . The order in which these households execute is randomly 
shuffl ed each time step.  
  All households update their “happy?” variable (see submodel  • update ).  
  Outputs for system-level results are updated.     • 

   Design concepts . The key outcomes of the model are segregation patterns, espe-
cially how strongly segregated the entire system is; these outcomes  emerge  from 
how tolerant households are to unlike neighbours. The households’  adaptive behav-
iour  is to move when their  objective  – to live in a neighbourhood with the fraction 
of unlike neighbours below their tolerance threshold – is not met. The behaviour 
does not involve learning, or prediction other than the implicit prediction that mov-
ing will lead to a neighbourhood where the tolerance objective is met. Households 
 sense  the colour of other households on the eight surrounding grid cells.  Stochasticity  
is used in only two ways: to initialise the model so that it starts unsegregated; and to 
determine the new location of households when they move, because modelling the 
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details of the movement is beyond the scope of this model.  Observations  include a 
visual display of which colour household is on each grid cell, and two numerical 
results: the mean (over all households) percent of neighbours of similar colour, and 
the percent of households with “happy?” false.  

   Initialisation . A user-chosen number (typically, 2000) of households are initialised. 
They are each placed on a random empty grid cell and given a colour randomly, 
with equal probability of red and blue.  

   Input data . The model does not use input from external models or data fi les.  

   Submodels . The submodel  move  is performed by individual households if they are 
not tolerant of their neighbours. The household chooses a direction randomly from 
a uniform real distribution between 0° and 360°, then moves forward a distance 
drawn randomly from a uniform real distribution of 0–10 grid cell widths. If there 
is already a household on the grid cell at this new location, the household repeats the 
move. If the new grid cell is empty, the household moves to its centre.    

 The submodel  update  is conducted by all households, to determine whether they 
tolerate their neighbourhood. The tolerance of households is determined by a param-
eter “%-similar-wanted”, the value of which ranges from 0 to 100 and applies to all 
households. A household’s “neighbours” are all households on the eight surround-
ing patches. The household’s variable “happy?” is set to false unless the number of 
neighbours with the household’s colour is greater than or equal to “%-similar-
wanted” divided by 100 and multiplied by the number of neighbours. 

 Using ODD for such simple models may look overdone. However, the ODD 
model description has a clear hierarchical structure, different elements of the model 
are easy to fi nd, and all information required for implementation is provided. 
Moreover, the design concepts provide some explanation of why the model was 
designed as it was. 

 An important benefi t of ODD is that any ABM can be described in exactly the 
same format as the segregation model. ODD thus provides a unifying format. 
Consequently, using ODD to rewrite model descriptions made it much easier to 
compare three different models of land use/land cover changes (Polhill et al.  2008a  ) : 
SLUDGE (Parker  1999 ; Parker and Meretsky  2004  ) , SOME (Brown et al.  2004, 
  2005  ) , and FEARLUS (Polhill et al.  2001 ; Gotts et al.  2003  )  with the ELMM exten-
sion (Polhill et al.  2005,   2008b  ) . 

 Just identifying the entities and state variables of the three models made it easy 
to see the conceptual similarities of these models, but also their differences in com-
plexity, resolution, and scope (Table  17.2 ). Obviously, SLUDGE and SOME are 
conceptually very simple and similar, whereas FEARLUS + ELMM can represent 
quite complex landscapes and scenarios. FEARLUS + ELMM could, however, 
probably be mapped to the two simpler models by choosing simplifi ed parameteri-
sations and initialisations. Model-to-model comparison, and thus transfer of ques-
tions, model designs, and results, is greatly facilitated by using ODD. This applies 
also to comparing process overviews and schedules, and design concepts (Polhill 
et al.  2008a  ) .   
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    17.2.3   ODD as Design Patterns for Formulating ABMs 

 Since 2006, ODD has been used for over 70 individual- and agent-based models. 
ODD has mainly been used by ecologists, but recently applications are appearing in 
other domains as well, e.g., microbiology (Hellweger et al.  2008  ) , socio-ecology 
(Guzy et al.  2008  ) , biomedical research (Galvão and Miranda  2009  ) , and anthropol-
ogy (Premo and Hublin  2009  ) . After reviewing most of these applications of ODD 
and summarising the questions and comments from many ODD users, Grimm et al. 
 (  2010  )  revised ODD slightly but completely rewrote its description and explanation 
to make its use easier. 

 Reviewing these applications of ODD revealed unexpected benefi ts, including 
that ODD provides a general format for thinking about and designing ABMs. ODD 
makes us ask questions about model structure and design in a hierarchical way: 
structure and overview fi rst, processes and details later. This facilitates translating 
the often confusing and vague conceptual models which are the starting point of any 
modelling process (Grimm and Railsback  2005  )  into model formulations. Scientists 
with no background in agent-based modelling found ODD helpful for understanding 
what would be involved to implement an ABM of their system and problem. 
Likewise, communication between students who develop ABMs and their supervi-
sors is made much more effi cient by using ODD. ODD also facilitates communi-
cation between different domains, which usually have their own styles of modelling 
and communicating models. 

 Last but not least, ODD corresponds to “design pattern” in software engineering 
(Gamma et al.  1994  ) , which describe “recurring solutions to common problems in 
software design” (Wikipedia  2009  ) . In agent-based modelling, ODD is a design pat-
tern for formulating new models, and for re-formulating existing models.   

    17.3   Patterns and Stylized Facts 

 While ODD has proven very important and useful, it provides only a general struc-
ture for formulating ABMs. It cannot, by itself, prevent “ad hocery” in the choice 
of entities and state variables. ABMs can still be too simple or too complex to be 
useful for inferences about how their real counterparts are working. We need a 
strategy for increasing the chance that our models explain the internal organisation 
of real complex systems by guiding our choices of what to include in a model and 
in what detail. 

 Such a strategy emerged in ecology over the last 15 years: pattern-oriented mod-
elling (POM). It is based on the notion that complex systems provide indicators of 
their internal organisation: patterns, signals, or regularities that cannot be explained 
by random processes and therefore call for an explanation (Heine et al.  2007  ) . For 
example, if vegetation in semi-arid regions shows a characteristic banded structure 
(Fig.  17.1 ), we can take this pattern as an indicator of how vegetation is affected by, 
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and affects, the distribution of water. Our task thus is to “decode” the patterns 
observed in the real systems. We do this inversely by trying to fi nd models that 
produce the same patterns.  

 This approach is certainly not new but just the basic idea of science, or infer-
ence (Platt  1964  ) . Patterns were key to revealing the internal organisation of atoms 
and the universe (spectral patterns), identifying quasars (periodic signals), and 
proposing asteroids as the cause of mass extinctions (unusual Iridium concentra-
tions in geologic strata). However, one important and often neglected point in the 
science of agent-based complex systems is that a single pattern is rarely enough 
to decode the internal organisation. Many different models are, for example, able 
to reproduce cycles in the population dynamics of small mammals (Czárán  1998  ) . 
How can we select the right model or falsify models that produce cycles for the 
wrong reasons? 

 The basic and simple idea of POM is to use multiple patterns, observed at differ-
ent scales and hierarchical levels, as multiple criteria for selecting among alternative 
model structures, submodel formulations, and parameter sets. One single pattern 
might be relatively “weak” and contain little information so that still, say, half of the 
models considered would reproduce it. But by adding a second pattern, we possibly 
reduce the degrees of freedom in model structure. Thus, every single pattern serves 

  Fig. 17.1    Banded vegetation pattern in semi-arid regions produced by a simple grid-based model 
(Thiery et al.  1995 ; model reimplementation courtesy of U. Berger). The 100 × 100 cells each have 
the size of a tree.  Dark cells  are covered by woody vegetation,  white cells  are not. Implicitly, the 
landscape is assumed to have a gentle slope so that runoff from rain fl ows from  top  to  bottom        
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as a fi lter. Again, this method of inference is old and regularly used by detectives 
who use motives, alibis, witness statements, and evidence to fi lter possible suspects. 
Or, in the famous story of the discovery of the structure of DNA (Watson  1968  ) , 
X-ray diffraction patterns indicated a spiral structure, but many such structures were 
compatible with this patterns. Only after two additional patterns, Chargaff’s rule 
and the geometry of purine and pyridimine bases, were taken into account was the 
real structure identifi ed. 

 In social sciences and in particular in economics, the notion of “stylised facts” 
(after Kaldor  1961  )  corresponds to what we here mean by patterns. In the modelling 
literature of these domains, stylised facts often seem to be disregarded as too vague 
to use for rigorous inferences. The point of POM is, however, to increase inferential 
power by  combining  multiple vague, weak, or qualitative patterns or stylised facts 
(see also the discussion of ‘middle range models’ by Gilbert  (  2008 , pp. 41–44)).  

    17.4   Pattern-Oriented Modelling 

 In POM, multiple patterns are used for three elements: designing model structure 
(what entities, state variables, and processes to include); selecting among alternative 
submodels; and determining parameter values. 

    17.4.1   Patterns for Model Structure 

 The key question of POM’s fi rst element is: what do experts who know the system 
well consider to be characteristic features, or essentials, of the system? For example, 
in growing cohorts of trees, competition among neighbouring trees increases as the 
trees grow. Initial differences in size and the trees’ spatial distribution cause some 
trees to be more suppressed by competition so they die, which is called “self-thinning” 
in ecology. The resources used by the trees that die (space, light, nutrients) become 
available to survivors, who can grow further until competition is again strong enough 
that more trees die. 

 A characteristic pattern of this process is that the relationship between average 
tree biomass and tree density follows a power law: a straight line on a log-log graph. 
Moreover, the slope of this line is similar for virtually all plant species and environ-
ments. Until about 2000 it was believed that the slope has to be, for theoretical 
reasons, –3/2 but a new theory predicts a slope of −4/3 (Enquist et al.  1998  ) . 

 The consequence of this pattern for modelling self-thinning was that models 
focussed on tree density and average biomass as state variables. Different models, 
however, can each produce a power law with the right slope. So, what other patterns 
characterise self-thinning? This question is not fully answered yet, but it seems that 
the spatial distribution of trees is quite regular during the entire process, which indi-
cates that neighbour competition, depending on local tree density, is important. 
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 To potentially explain this regular spatial distribution, a model should be individual-
based so that space and local interactions can be represented. Trees might be repre-
sented just by their biomass, which corresponds to a certain “zone of infl uence” 
over which they interact with neighbours (Berger and Hildenbrandt  2000  ) . No further 
patterns seem to be known yet that would suggest including further state variables 
of the trees, e.g. height, crown shape, etc. Interestingly, power laws are also found 
in the size distribution of cities, where probably similar mechanisms of neighbour 
competition are the underlying mechanism (Batty  2005  ) . 

 To use POM to design a model structure, we identify multiple patterns, typically 
two to fi ve, which seem to characterise the system and problem being modelled. 
Making it possible for the model to reproduce each pattern requires adding some 
state variables and processes. These make the model more complex but also rich 
enough in structure to be tested against not only one, but multiple patterns. The 
models are also “mechanistically rich” (DeAngelis and Mooij  2003  )  so that they can 
be checked for patterns that were not used for model formulation and calibration. 

 An example of a mechanistically rich model is the natural beech forest ABM of 
Rademacher et al.  (  2004  ) , who found characteristic patterns in the age structure and 
spatial distribution of canopy trees in model results. These patterns were not at all 
considered during model formulation and verifi cation, which were driven by other 
characteristic patterns, but agreed very well with observations (Rademacher et al. 
 2001  ) . This discovery indicated that the model captures essentials of the system’s 
internal organisation instead of just being fi t to observations. One generic feature of 
structurally realistic models is that they reproduce observed patterns at different 
hierarchical levels simultaneously. They capture essential behaviours of both the 
system and its agents. 

 Quite a few ABMs have been oriented towards reproducing sets of observed 
patterns, but usually this is not stated explicitly. POM means to use multiple patterns 
systematically and explicitly.  

    17.4.2   Patterns for Selecting Submodels 

 ABMs usually comprise a set of submodels that describe the model entities’ behav-
iour. The segregation model described above, for example, has two submodels, 
 move  and  update . Formulating submodels includes many degrees of freedom. The 
decision of whether and where to move could, instead of being very simple and 
partly random, have been a complex algorithm using knowledge about distant loca-
tions and prediction of future changes in neighbourhoods. Submodels, like entire 
models, must compromise between being simple and unrealistic vs. more realistic 
and harder to understand. How much detail, and what detail, must we have to solve 
a particular problem? 

 The idea of POM for selecting submodels is to use the entire ABM as a virtual 
laboratory in which we separately test alternative submodels: which submodel, or 
theory (Grimm and Railsback  2005  ) , is able to reproduce multiple observed patterns 
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simultaneously? If more than one submodel can do so, which is the most simple one? 
For example, Railsback and Harvey  (  2002  )  distilled from the literature six broad pat-
terns in the habitat selection behaviour of trout; their ABM was designed so these 
patterns  could  emerge but were not  forced  to emerge. Three alternative habitat selec-
tion submodels were tested, and only one could reproduce all six patterns. 

 Contrasting alternative submodels or theories by their ability to reproduce sets of 
patterns corresponds, in principle, to more formal model selection algorithms from 
information theory, which are used to select among alternative simple descriptive 
models (Piou et al.  2009  ) . 

 One important advantage of contrasting alternative submodels is also that it helps 
communicate that “the model can be wrong” (J. Goss-Custard personal communi-
cation) and thus counter the widespread notion that complex ABMs cannot be 
wrong because you can fi t them to any result you want. The segregation model, for 
example, does  not  reproduce segregation if the decision to move is entirely random. 
Likewise, Janssen et al.  (  2009  )  found that two ‘naïve’ models of behaviour in a 
common dilemma game, random walk and greedy agents, did not reproduce all four 
patterns identifi ed in controlled laboratory experiments. 

 Of course, this kind of high-level, pattern-oriented submodel selection cannot be 
applied to all submodels of an ABM but only to those that represent key behaviours; 
examples from ecology are habitat selection (Railsback and Harvey  2002  )  and for-
aging strategy (Goss-Custard et al.  2006  ) .  

    17.4.3   Patterns for Parameterisation 

 Pattern-oriented models are usually of moderate complexity with typically 10–20 
parameters. Ideally, all parameter values could be determined directly from informa-
tion about the agents being modelled, but this is virtually never the case. Estimating 
parameter values from expert knowledge is often suffi cient to get the qualitative behav-
iour of the model right, because experts often know much more than can be expressed 
by hard numbers. One important benefi t of POM is that this qualitative knowledge can 
be included via empirical if-then rules and tested against multiple patterns. 

 Nevertheless, if models are to be used to make inferences about the real world 
and support decision-making, “guestimated” parameterisations can be too uncer-
tain. For example, Wiegand et al.  (  2004  )  developed a spatially explicit ABM of 
brown bears re-invading the Alps from Slovenia. Uncertainty in the predicted popu-
lation growth rate in a certain area was very high (Fig.  17.2 ). Wiegand et al. there-
fore used multiple patterns in spatial distributions and census time series to reduce 
uncertainty in parameter values.  

 They created a large number of parameter sets by sampling values of the uncer-
tain parameters from their assumed ranges. Then, each observed pattern was used as 
a fi lter: parameter sets leading to model output which did not reproduce the pattern, 
according to quantitative criteria, were discarded. Some patterns could be repro-
duced by many parameter sets, others contained more information and reduced 
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the set of possible parameterisation more. In combination, however, only a few 
(typically 10–30) parameter sets fulfi lled all patterns. Using only these “fi ltered” 
parameterisations strongly reduced uncertainty in the model output (Fig.  17.2 ). 

 Again, this technique of “Monte Carlo fi ltering” is not new and is used in other 
domains under the name “inverse modelling”, but Wiegand et al.  (  2004  )  fi rst dem-
onstrated its power for parameterising ABMs and linked it to the other two elements 
of POM. Inverse parameterisation, like the entire POM strategy, is independent of 
its origin in ecology (Grimm et al.  2005  )  and applicable to ABMs in general (e.g. 
Janssen et al.  2009  ) .   

    17.5   Discussion 

 ABMs are fundamentally different from the traditional models of many fi elds, espe-
cially from models based on system-level equations. We now have enough experi-
ence to know that the processes of designing, building, and doing science with 
ABMs are different from traditional approaches. Traditional system-level models 
are designed and described using established “languages” such as differential equations 
and fl ow diagrams, and have their complexity determined mainly by mathematical 
tractability. With ABMs, we need new standards and strategies. This chapter 
describes two such standards and strategies that have already proven very useful. 

 The ODD standard addresses the need for a way to describe both the essential 
characteristics and the full details of an ABM. The value and success of ODD is 
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  Fig. 17.2    Population growth rate ( red bars ) and its coeffi cient of variation ( black bars ) of a brown 
bear population as predicted by the model of Wiegand et al.  (  2004  ) . Each  pair of bars  represents 
one set of model parameterisations, as ( left to right ) more patterns are used as “fi lters”: parameteri-
sations that do not reproduce the pattern are no longer used. Uncertainty decreases greatly as more 
patterns are used       

 



37517 Designing, Formulating, and Communicating Agent-Based Models

illustrated by how widely and rapidly it has been adopted. Benefi ts of ODD include 
allowing readers to quickly get an overview of a model’s most important character-
istics, providing suffi cient detail for replication, and providing the modeller with a 
framework for thinking about and designing an ABM from the start. 

 The POM strategy addresses three needs in the process of designing and using an 
ABM. First, it helps with the fundamental model design problem: determining what 
entities, variables, and processes must be in a model, so it is complex enough but not 
unnecessarily complex. Second, it provides a way to develop and test theory: rules 
for how individual agents behave that are shown, via pattern-oriented analysis, to 
reproduce essential dynamics of the system. Finally, POM can be used to fi lter 
potential parameter values in an effi cient and rigorous way. 

 Both ODD and POM seem “messier” than the standard techniques of traditional 
modelling, but that is simply a refl ection that ABMs are messier than simpler mod-
els: if we want to model complex systems, we must use more complex models. But 
the messiness of ABMs is exactly why we need techniques like ODD and POM: to 
help us cope with the complexity. We can view these techniques as evidence of the 
establishment and acceptance of ABMs as a way of doing science.      
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