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  Abstract   Errors in input data, parameterisation, and model form cause errors and 
uncertainty in model outputs. This is particularly problematic in non-linear systems 
where small changes propagate through models to create large output differences. 
This chapter reviews the issues involved in understanding error, covering a broad 
range of methodologies and viewpoints from across the spatial modelling sciences.      

    15.1   Introduction to Error and Its Terminology 

   There are known knowns. These are things we know that we know. There are known 
unknowns. That is to say, there are things that we know we don’t know. But there are also 
unknown unknowns. There are things we don’t know we don’t know. 

 Donald Rumsfeld: February 12, 2002   

 The quote above outlines, as best as it can, an important truth in modelling the 
real world: that the ramifi cations of ignorance can be tempered by meta-information 
on the level of that ignorance. Whatever the appropriateness of Donald’s statement 
at the time (on which, see Žižek  2004  ) , the Rumsfeld ‘Ladder of Ignorance’ never-
theless summarises nicely that it is one thing not to know something, and it is quite 
another to be able to quantify that ignorance and to summarise it. 1  While there are 
things we know with perfect accuracy in modelling the real world, in general these 
are few and far between. It is much more the case that we know that there is some  error  
in our understanding, and this leads to  assumptions  in our models and  uncertainty  
about our model results that need to be communicated to users of the results. If we are 
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lucky, we can quantify this error and/or the resultant uncertainty. If we are very unlucky 
we either can’t do this, or we don’t know about the error in the fi rst place: we have 
an unknown unknown, a situation to be avoided at all costs. 2  

 Generally in agent-based modelling we have a diffi cult job, as we tend to deal 
with concealed and non-linear systems which may be infl uenced by multiple vari-
ables. Some of these variables we may not recognise as important (an error of 
understanding, that is, an  epistemic error ; see Faber et al.  1992  ) . Indeed, we are 
often uncertain as to how closely the broader model form which these variables slot 
into replicates the system in the real world. It is often the case that we have data and 
need to infer at least part of the model from it. It may be that other models would do 
the same quality job against the data we have, and a better job against new data: the 
so-called model  equifi nality  problem (Beven and Binley  1992  ) . Even if we have the 
right form and variables, we may have multiple options for the weights of particular 
variables within the model (the  inverse problem ). These diffi culties have led many 
to suggest that such models should be regarded as grand “thought experiments”, not 
so much designed to predict accurately as to allow us to refl ect on the systems we 
are studying and our understanding of them (Di Paolo, Bullock and Noble  2000  ) . 

 Traditionally, however, modellers tend to feign confi dence in their model forms 
and concentrate on error issues associated with another feature of dealing with 
real-world multivariate systems: that some of the variables we don’t want to use 
will cause  noise  in the real data records of those we do. Noise is essentially varia-
tion in our variables of interest around the values we expect to represent their ‘true’ 
or ‘important’ value, but it is diffi cult to defi ne objectively. At best ‘true’ in this 
context means, tautologically, uninfl uenced by the variables causing the noise, 
while ‘important’ means, equally tautologically, the signal that we need to under-
stand the system given the variables we’ve chosen to include. Noise produces a 
 sampling error , as we hope sampling for our model inputs will generally give us 
the ‘true’ or ‘important’ behaviour of a sampled system, but what we get instead is 
varied by outside infl uences, including the mechanics of the measurement process. 
If we use the data as the foundation of a model prediction, such an error will 
plainly cause problems. 

 Noise is frequently treated as an  aleatory  [i.e. random]  error  (which may be 
regarded as, a type of  ontological  (Walker et al.  2003  )  or  phenomenological  (Faber 
et al.  1992  )   uncertainty ), added to an underlying signal. The apparently random 
nature of noise is both problematic and of use. More often than not our defi nition of 
something as ‘random’ is an admission of our ignorance of the infl uences on a 
system, or our inability to model them directly and deterministically. However, even 
though the acknowledgement of noise represents something of an admission of 
failure, if we know something of the form of the errors involved we can build a 
description of them into our model. If our model is also a perfect representation of 

   2   Here we will largely deal with ignorance from the viewpoint of uncertainty. For more detailed 
discussions of wider types of ignorance in modelling see: Faber et al.  (  1992  ) , Walker et al.  (  2003  ) , 
and Brown  (  2004  ) .  
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the bit of the system we are interested in, this gives us the so-called  Perfect Model 
Scenario . As noise-based errors can usually be treated as random, one simple way 
we can include such errors is by developing  stochastic models , which include some 
randomisation of the key variables within strictly controlled ranges or distributions. 
This is usually achieved through  Monte Carlo testing : the distribution of each input 
variable and/or parameter in the model is sampled randomly, but with an emphasis 
on more probable values appearing proportionally more often (so-called  Monte 
Carlo sampling ); the model is then run and the process repeated multiple times. 
Such stochastic models will give a distribution of results if run enough times, and 
this is often treated probabilistically (for a clear agent-based example centred on 
generating uncertainty statistics, see Bobashev and Morris  2010  ) . However, for 
social modellers at least, the top-down analysis of fi nal aggregate results isn’t facili-
tated by the fact that, by-and-large, we lack the very large samples over time other 
modelling disciplines have and therefore struggle to understand whether the fi nal 
probabilistic results match the real world well or poorly. This data scarcity some-
times perversely encourages social modellers to abandon randomisation and make 
one-number ‘dart-board’ predictions that attempt to hit the few real-world points we 
have as closely as possible. The alternative to top-down probabilistic assessments of 
results are bottom-up attempts to delimit the effects of different sources of error as 
they  propagate  through the system. Unfortunately these are far from simple in non-
linear systems. There is a large body of literature on understanding the propagation 
of error from model inputs, through the model, to outputs/predictions, and for lin-
ear/linearisable mathematical models there are well-trodden solutions. However, 
these solutions usually rely on us being able to characterise the distribution of the 
noise or other error involved. For social modellers the lack of data highlighted above 
often makes this problematic. Moreover, many of the techniques assume the distri-
bution is Gaussian/normal. For non-linear systems like ours this need not be the 
case – indeed, noise may additionally have a changing character ( heteroscedasticity ), 
and the system may have inputs that vary in importance (i.e. be  non-stationary ) – all 
of which render many of the traditional methods for dealing with the propagation of 
errors problematic. 

 In some cases, then, we may be limited to following some traditional non-linear 
systems analysis (e.g. Smith et al.  2010b  )  in bounding worst-case scenarios. This is 
the position that non-linear uncertainty analysts have endeavoured to move away 
from for years, not least because identifying and quantifying a “worst” case is 
usually diffi cult (Suter et al.  1987  ) . Moreover, it may be that the error propagating 
through our systems renders even that approach problematic. Non-linearities tend to 
accentuate small initial data fl uctuations (Lorenz  1963  )  until the small differences 
between our noisy model input data and the ‘true’ signal we were hoping for at the 
start have exploded to cause wild behaviour in our fi nal model results. In such situa-
tions, the resultant uncertainty range swamps the range of predictions we suspect the 
system might have given if presented with the ‘true’ data. Such errors bloom equally 
where the  digital precision  with which we can deal with numbers in computer 
systems fails us and we get initially small changes to our fi gures through, for example, 
truncation. If our model is predictive over time, such exploding differences will only 
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increase as we move further from the starting conditions. As such, a nuanced approach 
to error at different stages of the model process seems critical. However, the 
peculiarly untraditional architecture of agent-based systems, and their complicated 
interactions and iterations, do create diffi culties in applying the techniques developed 
for segregating and quantifying errors in more traditional non-linear systems 
modelling. For example, one standard technique used to more easily understand how 
errors are propagated is to linearize non-linear models at particular points of 
equilibrium (for example, with a Taylor expansion), under the assumption that these 
equilibria are the key modes of operation of the system. The view is taken that the 
loss of accuracy at these points due to (often low-order) linearization is a worthwhile 
sacrifi ce to make to understand the propagation. In agent-based systems, however, 
the large number of interactions between elements with mixed-method rulesets make 
any such approach diffi cult, on top of which most agent-based modellers see non-
linear dynamics and a lack of equilibrium in a far more positive light than those 
working in alternative modelling paradigms. 

 Along with errors of the types above, uncertainty is also produced by  biases  in 
our system or inputs: systematic shifts in our model or results away from the ‘true’ 
picture. Although traditional modellers make a clear distinction between bias and 
error, for most models of any complexity the distinction is not always so clear – a 
missing variable from a model, for example, may be an error of understanding and 
a systematic bias, but may display as a set of variations that appear to be noise; each 
problem is related but often handled separately before the overarching issue is 
appreciated. 

 This chapter will outline some of the errors and uncertainties associated with 
modelling the real world, and introduce some of the techniques to deal with such 
issues. It is worth noting that the chapter only really deals with error from the point 
of view of uncertainty (the assessment of error in the calibration, verifi cation, 
sensitivity testing, and validation of models is dealt with more fully in Ngo and See 
 2012  ) . This chapter is broadly divided into the sources of error and uncertainty, 
following through the modelling process from inputs to outputs, and ends on an 
optimistic note with a discussion of why we stand some chance of dealing with this 
diffi culty. It is probably beholden of the author to note that the size and scope of 
the uncertainty literature is signifi cant beyond the limitations of a single chapter in 
a book, so this review, by necessity, is more selective in some areas than others.  

    15.2   Uncertainty Associated with Input Data 

 Most agent models are based, in some manner, on the real world. Even the most 
abstract models contain rulesets built on qualitative or quantitative data collection. 
Real world data can be directly used as an input during formation of a model’s 
structure, the calibration of parameters, or for driving the model. This section looks 
at the errors that result from the recording process for this data; having insuffi cient 
data; missing data within a dataset of otherwise continuous values; and errors that 
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result from the pre-processing of data, such as classifi cation binning. Generally 
it has to be noted that the complexities of dealing with sources of data mean that 
we often assume little error in our input data, any prediction error being usually 
attributed to our parameterisation. This is far from ideal. 

    15.2.1   Data Measurement and Transcription Errors 

 Plainly, however data is measured there will generally be errors associated with 
the process, including transcription errors. 

 Input error is most successfully quantifi ed for instrumental noise, where the 
instrument can be checked against multiple readings of the same physical property. 
In this situation, errors are represented by metrics of  accuracy  (closeness of the 
sample or a derived statistic to the real value) and  precision  (the tightness or lack of 
variance of a sample repeated under the same set of conditions). Provided there is 
no consistent bias in the sample, levels of accuracy will largely be determined by the 
measurement precision. Standard measures of variance will provide a representa-
tion of the error associated with a lack of precision, and, as most instrument errors 
are Gaussian, the usual fi gures reported are the standard deviation of the sampling 
distribution (the  standard error ) and the sample mean, in the form mean ±SD (see 
Nagele  2001  ) . Such reported fi gures may be useful in the remaining modelling pro-
cess provided the error distribution is Gaussian or the fi gures adapted to a reported 
alternative distribution. The JCGM/ISO GUM methodology (  http://www.bipm.org/
en/publications/guides/gum.html    ) is the standard in this area, and utilises a probabi-
listic treatment of the belief one might hold in a measurement and standard propaga-
tion of error techniques (see Sect.  15.5.1 , below). 

 For spatially located data, particularly data that arrives without a clear error 
distribution associated with it, more care has to be taken that the data error is not 
heteroscedastic. That said, information about the spatial fi eld, for example that all 
points within an area should be the same, or there is positive spatial autocorrelation 
(i.e. points should be more similar to nearer neighbours), can allow estimates of the 
distribution of errors to be made. Heuvelink  (  1998  )  gives details (see also, for 
spatio-temporal autocorrelation, Powers  2005  ) . Spatial/locational uncertainties in 
spatial data are covered by an extensive literature, but Zhang and Goodchild  (  2002  )  
provide a very comprehensive overview of standard techniques in raster, vector, 
and spatial object uncertainty modelling. Research issues in semantic uncertainty 
associated with objective and subjective spatial data are reviewed in Fisher et al. 
 (  2004  )  and Evans and Waters  (  2007  ) , respectively. 

 Measurement errors that are non-instrumental, for example errors encouraged 
by qualitative survey design, are complicated issues of psychology and semiotics. 
They are one of the most important areas of concern for agent-based modelers 
wishing to deal with qualitative rulesets and decision making. Good survey design 
can go a long way – a good starting point on minimizing errors in quantitative 
judgments is Poulton  (  1989  ) , while Groves et al.  (  2009  )  concentrate on minimizing 
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errors in surveys more generally. In addition, the use of fuzzy sets defi ned from 
surveys as model inputs can at least acknowledge and embrace the problem (Zadeh 
 1975,   1976 ; Verkuilen  2005 ; see Evans and Waters  2007 , for a spatial example). 

 If we are lucky, such issues are simple and systematic biases we can recognize 
and may, infact, be of interest: for example, a bias from mis-understanding the 
intended levels of a Likert scale survey, or a genuine attempt at fraud. Issues of 
genuine fraud during data collection might be revealed by comparison with normal 
(or other) distributions, or through comparison of chosen digits in the data with the 
Benford distribution  (  Kiesling undated ; Cho and Gaines  2007 ; Mebane and Kalinin 
 2009  ) , but more usually they require detailed stakeholder knowledge and trust to be 
developed during the modelling project to solve them. 

 Transcription errors should become increasingly rare as more data is collected 
electronically at source. Most will be treated as noise, unless we are lucky enough 
to have a consistent bias, though some will be recognisable as outliers. The standard 
source on recognising and dealing with outliers is Barnett and Lewis  (  1994  ) . For an 
updated treatment in multivariant space, see Cerioli and Farcomeni  (  2011  ) , while 
López  (  1997  )  and Rogers et al.  (  2009  )  give good starting points for recognising 
geographical/spatio-temporal outliers.  

    15.2.2   Appropriate Sample Size 

 The inherent complexities of most of the systems agent-based modellers deal with 
mean than there is a complicated, multivariant, and non-linear relationship between 
variables of interest and system predictions. To capture the complete set of potential 
combinations of variables would involve considerable sampling efforts, in systems 
that are often hard, if not impossible, to sample well. In addition, we have the problem 
of noise distorting our samples. To understand noise we need repeated measurements 
of the same quantity/system state, with enough samples taken to defi ne the distribu-
tion of the measurements under the infl uence of the noise sources. Once we have this 
distribution we may use it probabilistically (see above), or we may try to estimate 
what the noiseless data would look like. In general, to get as close to the noiseless 
value as possible, we have to pick a representative statistic to estimate that is as noise-
less as possible: for example, if the noise is Gaussian, the arithmetic mean of the popu-
lation. Where we want continuous data we may smooth out the noise.    Keesman and 
van Straten (1989) summarise some of the opportunities for data smoothing, while 
Beck  (  1987  )  summaries some of the issues. However, it isn’t especially clear whether 
treating data to remove noise is always appropriate. We generally try to minimise the 
effects of noise on inputs, especially with systems that explode errors non-linearly, as 
it is usually regarded as a detrimental infl uence from things we’d like to exclude from 
our models. However, this needs to be determined on a case-by-case basis; if the real 
systems suffer from such noise, are we correct to exclude it by, for example, statistical 
pre-processing? A better approach (Sect.  15.6 ) may be to build systems that show the 
same resilience to noise that we see in real world systems. 
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 If we are going to try to remove noise, and we’ve identifi ed our statistic of interest, 
we need to sample suffi ciently highly that we can estimate that value in the popula-
tion accurately from the samples. But how do we decide how large a sample is 
‘suffi cient? Traditionally this has come down to trading off expensive increases in 
sample size against inherent risk that with small samples your value of interest may 
be unrepresentative. For situations where the value of interest has a well character-
ised, independent, and constant variation, we can directly calculate the size of sample 
needed for us to be able to make the estimate of the true value at some level of 
precision within some pre-defi ned levels of confi dence. For example, with random 
independent samples, the standard error of the sample mean is the population 
standard deviation, divided by the square root of the sample size. By adjusting the 
sample size, we can reduce the error by a known degree. It is usual to trade off 
sample error and size for a specifi c confi dence, such that if multiple samples were 
taken the number for which the true value of the statistic would fall within the range 
of the sample-based estimate ± the sample error would be, say, 95%. 

 However, this process is not so simple when the data/noise is non-normal and not 
independent, as it frequently is in non-instrumental noise cases. For basic non-normal 
distributions, appropriate sample sizes can be estimated for a given confi dence using 
Kolmogorov-Rényi statistics (Spear  1970  ) . However, for time series and spatial data, 
this process becomes more complicated. Spatial and temporal autocorrelation (where 
nearby points have related values) can have a signifi cant effect on the apparent sample 
size of sampled datasets by introducing sample redundancy (Getis  2007  ) . These issues 
become particularly important when datasets for validating models against are drawn 
from the same area by sample splitting (Araújo et al.  2005 ). Signifi cance testing based 
on autocorrelated data should take autocorrelation into account (though rarely does). 
A summary of some of the general methods for dealing with spatial autocorrelation 
can be found in Legendre ( 1993 ) and Getis  (  2007  ) . Kelejian and Prucha  (  2010  )  outline 
something of the size of the problem facing spatial modellers in their discussion of the 
relationships between sample size, spatial correlation, and missing data, in regression 
models with spatial lags. 

 Where non-spatial data suffers from heteroscedasticity or non-independence of 
noise, it can be treated (see Gallagher and Doherty  2007 , for details) which helps 
with some issues. Spatial heteroscedasticity can further complicate the picture 
though (see    Lauridsen and Kosfeld  2007  ) ; for example, positive autocorrelation in 
errors can falsely reduce error levels (Araújo et al.  2005 ; Getis  2007  ) . With more 
complicated non-linear systems, we often have to take a slightly wider viewpoint 
and concentrate instead on how input variation affects the modelling we are trying 
to do. When we are trying to model a non-linear system, and the function that we 
are trying to estimate parameters for is known, it is possible to sample repeatedly to 
simultaneously build up a picture of the error and the resultant sample size needed. 
Methodologies can be found in the comparison provided by Malinarič and Ďuríšek 
 (  2004  ) . If we know something of the variation in the model error at key points, we 
can sample these more frequently (O’Neill et al.  1980 ; Beck  1987  ) . However, with 
complex systems and limited sampling budgets it is sometimes more practical to 
use more distribution-free methods, for example ‘sampling to redundancy methods’, 
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like species area curves, where sample novelty across multiple samples is plotted 
against sample numbers or size to determine when sampling is suffi cient to capture 
all new elements in a population (Lyman and Ames  2007  ) . While such methods give 
a poor statistical confi dence, they do at least ensure a sample across the potential 
range of values has been taken. A fi nal issue is that in many of the systems we study 
the relationships are non-Markovian, that is their future may be infl uenced by the 
specifi c pathway the system has taken historically, rather than just the current instan-
taneous, autocorrelated, state. This introduces considerable complications into the 
process of determining appropriate sample sizes. 

 Adequately sampling the set of potential combinations of variables and predictands 
is diffi cult in complex and non-linear systems with non-normal and interdependent 
variables, and it is doubly so if we also wish to understand the errors in the data. As 
such, we are generally thrown back on validating models at output, rather than trying 
to statistically validate the representativeness of the inputs.  

    15.2.3   Missing Data 

 Missing data is usually a result of disrupted sampling, or the repurposing and 
combination of previously collected datasets. For traditional models missing data 
can often be problematic, especially where data is iteratively re-fed into the model. 
Artifi cial intelligence systems based around weight-adjusted learning (like artifi cial 
neural networks) and/or case-by-case decision making (like agent-based models) 
tend to respond better to missing data in both calibration and prediction than 
traditional models. Nevertheless, sometimes it is necessary to deal directly with 
missing data for computational or predictive purposes. 

 Where data is reasonably well distributed it is sometimes possible to interpolate 
new data into the gaps using a function based on the data we have. For simple 
datasets with well-known statistical properties, the techniques used for developing 
the functions (such as linear least-squares regression) have well-known error 
assessments that utilise all the data brought in to calculate the function. However, 
for complex non-linear datasets – especially spatial datasets – where the error and 
function are not easily characterised, it is more common to assess the error by 
rotational cross-validation (repeated removal of known data points, construction of 
the interpolation, and comparison of the interpolation against the removed points). 
This has the strengthening advantage of maintaining some distinction between the 
datasets used to construct and validate the function. A short but useful review of 
the relevant literature on missing spatial data can be found in Kelejian and Prucha 
 (  2010  )  and interpolation in Isaaks and Srivastava  (  1990  ) . When a distribution of 
new data points is needed, rather than values on a continuous surface, popular 
techniques revolve around resampling what is already present to generate larger 
datasets. For example, in bootstrapping, systems are trained on data derived by 
sampling a distribution multiple times to generate a training set, unselected data 
giving a validation dataset. Such techniques are common when datasets are too 
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small to use as-is. In addition to generating new data with its own or inherited error, 
where data limitations are known resampling can be used to constrain errors, par-
ticularly where based on Bayesian or error-led assessments (Luoto et al.  2010  ) . 

 Where data is poorly distributed, missing data can lead to biases. Such biases can 
be quite subtle, particularly when dealing with spatial autocorrelation. Where a sur-
face is needed, it is sometimes possible to adjust the importance of samples to 
account for an inappropriate sample distribution. For example, spatially clustered 
data can be declustered to reduce the importance of over-sampled areas by weight-
ing each value by a function of the distance to its neighbours (for techniques, see 
Dubois and Saisana  2002  ) . When a distribution is required, resampling can remove 
some kinds of biases (for example, autocorrelation in sequential, or spatial, samples) 
if the sampling is carefully randomised (Luoto et al.  2010  ) . However, ultimately 
biases caused by missing data usually necessitate additional data collection exercises 
to resolve the problem. 

 In the absence of good data, models often rely on strongly believed deterministic 
relationships or qualitative theory, where they might be better off including Bayesian 
entities in the relationships so that they can be updated as information comes in, and 
uncertainty can be properly quantifi ed (Young et al.  1996  ) . Bayesian approaches 
are, of course, only really worthwhile where we know more data may be forthcom-
ing. This is not always the case in the kinds of systems agent-based modellers deal 
with, at least currently.  

    15.2.4   Classifi cation Discretisation Error 

 Almost all data is an aggregation or interpretation of facts about the world. Direct 
measurements of unique physical properties are very rare, even in such apparently 
concrete subjects as physics. There will, therefore, always be some loss of informa-
tion in data recording and use. Even in the event that our instruments are recording at 
an accuracy/precision we are happy with, we generally add an additional uncertainty, 
or fi nd one introduced in post-production, through data classifi cation into bins. 

 Binning data into classifi cations can be problematic, especially where classifi ca-
tion schemes are multivariate and prototypical (that is, very broadly, objects are 
classed by, and into, examples). Real-world membership of a set is usually fuzzy, and 
fuzzy sets are generally a more realistic way of dealing with the world. Where crisp 
sets are needed, entropy statistics can be used to represent multivariate classifi cation 
uncertainty, and their relative simplicity provides a useful option for spatial mapping 
(van der Wel et al.  1996  ) . The more common uncertainty, however, usually concerns 
the granularity of the bins and where the original data point fell within the bin. Data 
that has already been binned appropriately is not usually problematic where we have 
control over it (the uncertainty is easily quantifi ed, and can be included in with other 
assessments of precision). It is only where we wish to use the data for other classifi -
cation systems or as a continuous dataset, that binning causes issues. For numerical 
data, there is the possibility of shifting the data back into a continuous sequence by 
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stochastically distributing the data within each class to match an overall distribution 
fi tted to the totality of the classifi ed data. However, once such a distribution has been 
identifi ed, sampling directly from the distribution becomes simpler. 

 Redistributing the original sample is only really worthwhile if the classifi ed data 
is n-tuples, carrying ancillary data with the data that was originally binned. One 
common use of such a redistribution is within spatial microsimulation (Ballas et al. 
 2005  ) , in which a population of individuals, which have been lumped together at 
some geographical scale (say a national bin) are redistributed to smaller areas 
(say electoral districts bins) such that their distribution matches some statistic 
(say, employment) in that area. If people can broadly be divided into socio-
economic types, with correlated traits, we might expect ancillary traits (say, news-
paper readership) to be recreated in the smaller areas (with an error associated with 
the strength of correlation between the two traits). Such models are increasingly 
used as the starting conditions for agent-based models where individual-level cen-
sus data is unavailable, though assessing the accuracy of the recreation of ancillary 
variables is not easy without detailed new sampling, because we’re usually trying 
to recreate distributions which are essentially unknown. Generally even where we 
are just trying to recreate the location of individuals with a set of traits which we 
have constraining distributions for, the geographical location is rarely accurate; 
commonly individuals are assigned to the smaller geographical boundary set itself 
or randomly allocated a home within the area. More sophisticated pycnophylactic 
(Tobler  1979  ) , or other types of reallocation, are rarely completed, meaning there 
is also a considerable distribution error within each area. 

 A further major error during classifi cation is caused by conversion between 
classifi cation schemes, for example the placing of classifi ed and geographically 
binned census data into new classes and geographical boundaries (Martin et al.  2002  ) . 
Usually error can only be avoided by aggregating up bins or spatial boundaries to 
some common aggregate level (for example, Martin  2003  ) .   

    15.3   Uncertainty Associated with Model Choice 

 As well as errors and uncertainty associated with data, we recognise that there are 
also epistemic uncertainties: those associated with our knowledge of the system. 
Essentially we may regard ourselves as being on a fruitless quest: languages (com-
puter code included) are not the physical real world. Not only does this mean that 
we are unlikely to ever get a perfect computational representation of the real world 
(what Faber et al.  1992 , call  hermeneutic ignorance ), but it also means we’re 
unlikely to ever understand it properly, as we simply don’t have the tools to do so 
(Faber et al.’s  axiomatic ignorance ), and those we do have may be fatally fl awed 
(Faber et al.’s  logical ignorance , following Gödel’s incompleteness work). Not only 
this, but we essentially have to limit our modelling attempts in a way that the inter-
connected real systems are not limited (the  closure problem : Lane  2001  ) . 
Nevertheless, as languages, and mathematics in particular, have shown, we can get 
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a useful approximation that carries us forward. This is especially true for real 
systems that are mediated though language. In this section we examine some of the 
epistemic uncertainties we will have to deal with to do so. We shall assume a simple 
model where input variables are utilised via some kind of weighting against each 
other, or mathematical relationship, or ruleset, and the component  parameters  of 
these forms control the conversion of the variable inputs to one or more model 
outputs. The parameters are  calibrated , that is fi xed based on the real world to give 
as realistic output as possible. The parameterised section of the model may include 
actions by one or more agents. 

    15.3.1   Error in Choosing Variables 

 Simultaneous with fi nding data for our models is the process of deciding which 
data we are going to use, and which we are going to exclude. The tendency to load 
a model with variables is a particular problem with those branches of agent-
based modelling where the model is developed to accurately replicate reality. An 
increased number of variables may lead to a more realistic model, but it also leads 
to increased levels of error through the need to calibrate more parameters (the so-
called  Information Paradox , O’Neill  1973 ; Rowe  1977  ) . Moreover, added detail 
often adds little to a model, and a shift from parsimony can obscure simpler mod-
els that perform just as adequately. Generally measures of model quality trade off 
accuracy of representation against model complexity (see Spiegelhalter et al. 
 2002 , for a discussion of classical and Bayesian methods for achieving this 
tradeoff). This said, however, the option for adding additional variables is some-
times worth investing effort in early in the modelling process. Flexible code that 
allows for the addition and removal of variables through a well-structured object 
hierarchy and generic programming (parameterized types: Gamma et al.  1994  )  
will pay considerable dividends on its investment in the longer term. 

 While we would hope that the choosing of variables was part of a linear progres-
sion, from thinking about the system we are interested in, to deciding how to model 
it, to picking data, it rarely works out so simply. Investigating our data often suggests 
we may have to settle for different, less than ideal, proxies for the data we would like 
to have, or, indeed, different data altogether. It may also be that we are using too 
small or too large a number of variables to represent the system (O’Neill 1973’s 
 aggregation error ). To some extent having too many variables should reveal itself 
through covariance, but having too few variables, or the wrong type of variables, will 
result in errors or biases. In addition, there are often problems of scale: we may 
misunderstand the boundaries between objects in the real world (Suter et al.  1987  ) , 
or, more simply, have the wrong time or spatial scale for the model. 

 There are broadly two sets of techniques for choosing/excluding variables. We 
can either examine the real system statistically, independent of the model, to see 
which variables might be appropriate, or we can run the model and use its ability to 
predict the real system to determine how well we’ve identifi ed the variables needed. 
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The former methodologies have the advantage that we are dealing directly with the 
system. However, for agent-based models they have the issue that they tend to assume 
aggregate statistical tests on lumped data can identify variables acting at the indi-
vidual level. With model-testing, we often assume our model form is appropriate, 
and any differences between the model outputs and the real world are due to poorly 
chosen variables/parameters, which is plainly untrue. However, the advantage with 
this approach is that testing is achieved at the same scale as the fi nal model. 

 In both cases, the choice of variables is often (though not always) compared 
with a single dependent predictand, with the strength of the relationship being used 
to exclude variables. It should be noted that is not necessarily ideal. Utilisation of 
a single output statistic (or, indeed, multiple statistics) is always going to be prob-
lematic, as it will fail to calibrate the system to the nuances of the detailed indi-
vidual characteristics of the system (Wagener et al.  2003  )  even if the model is at the 
individual level. Optimisation against a single output may only be suffi cient to 
identify between three and fi ve parameters with any accuracy. It may be necessary 
to consider multiple outputs to gain any further distinction (Wagener et al.  2003  ) . 
Moreover, following Benjamini and Hochberg  (  1995  ) , there is an argument that 
more attention should be given to the false-positive (Type I) errors when variables 
are kept, to ensure than random variation doesn’t allow in variables that could be 
trimmed out (Green and Babyak  1997  ) . The probability of Type I and II errors in 
multi-model assessment can usefully be balanced with reference to the costs to 
policy makers that result from the different errors (Hartley et al.  2006  ) . 

 In the fi rst category of techniques, examining the real system, the simplest 
method is just to examine the size of the variables. For linear models, variables 
can be removed on the basis that smaller variables are less likely to have an effect 
than larger ones, and small co-varying variables, particularly those on the same 
time-cycles, can be removed or aggregated (O’Neill and Rust 1979). However, 
this is less possible for non-linear models, where small variations in variables can 
have large effects. Looking in more detail at the relationships rather than the size, 
Stepwise Linear Regression has been used since the 1940s to exclude insignifi -
cant variables (Glahn and Lowry  1972  ) . Although the core technique is broadly 
distribution-insensitive, it does assume variables are uncorrelated and related to 
the fi nal dependent variable linearly. Stepwise variables really need to be on a 
common range to avoid size effects. While there are issues with this (see King 
 1986  ) , a range transformation can aid when working with some non-linearities. 

 Where there is co-linearity between variables it may be that an underlying variable 
or process may be responsible. While we may be able to tease apart the relationships 
with an instrumental variable approach, the usual method for proceeding in such cases 
is to use Principle Components Analysis (PCA) to combine variables into indepen-
dent components representing the latent variables. This can both indicate variables 
that are essential/non-essential and provide combined-variable components that rep-
resent the missing ‘true’ variable infl uencing the system. PCA analysis of model 
parameter sets following calibration runs can additionally reveal potential points of 
investigation for new processes not directly captured by the model (Keesman and van 
Straten  1990  ) . Plainly, we may also fi nd ourselves in the situation of having ‘known 
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unknowns’ – knowing a variable is missing, but being unable to discover what it is. 
Provided we know something of the part played by the variable we may still be able 
to represent such unknowns as latent variables within an agent based model, as they 
are within Bayesian (Kavetski et al.  2006  ) , Hierarchical Bayesian (Clark  2005  ) , or 
Structural Equation Modelling. In these techniques the explicit representation of 
uncertainty usefully shifts the models away from only assessing uncertainty at the 
level of inputs (through Monte Carlo sampling) and outputs (Clark and Gelfand  2006  ) . 
However, embedding Bayesian techniques themselves, for example, is not always 
simple in agent-based models, not least because Bayesian assessments of any detail 
often rely on an assumption of independent Gaussian output noise (see, for example, 
Kavetski et al.  2006  ) . 

 In general, for non-linear systems that are sensitive to small variable changes, it is 
usually the case that attempts to identify variables statistically from the original data are 
of limited success. For such systems we really need to consider all possible variable 
combinations and their effects on model runs, though generally a subset of the combi-
notronic space is used. There is a large literature on variable selection that utilises 
models. George  (  2000  )  provides an overview of the key issues. Statistical representa-
tions of the model may suggest the number of parameters that can reasonably be 
extracted from the data (e.g. Young et al.  1996  ) , but more usually selection proceeds by 
running the model with a set of variables and assessing how well it runs, either through 
signifi cance testing (for example, in Structural Equation Modelling: Green and Babyak 
 1997  )  or, more commonly, by ranking the errors associated with different selections. 

 The spread of values of parameters that match model inputs to model results can 
tell us if the associated variables are important to the sensitivity of the model. If we 
are confi dent in our model structure, parameters which vary a great deal between 
calibrations while still producing viable results may not be especially  important  to 
the detailed behaviour of a system (Spear  1970 ; though see below) and might be 
discarded. The Generalised/Regional Sensitivity Analysis (GSA/RSA) Hornberger-
Spear-Young Algorithm utilises this  rejection sampling  and Monte Carlo testing of 
inputs and parameters to determine which variables a model should contain 
(Hornberger and Spear  1981 ; see Beck  1987 ; Young et al.  1996  for summaries of 
developments). Although such techniques tend to be tied to statistical models, the 
general principles are applicable in agent-based systems. A popular alternative to 
GSA, sometimes merged with it in hybrid methodologies, is to allow the weighting 
of variables to be dynamically set during single model runs, and to prune weight-
ings associated with the variables dynamically as model calibration moves towards 
highlighting some variables over others (essentially the non-linear equivalent of the 
above pruning of small-sized variables). This pruning can, for example, be done 
with a Bayesian approach (George  2000  ) . Of course, the danger with this is that 
parameters extracted from the real-world system may not be stable, and the 
 relationships as represented may vary (Matott et al.  2009  ) . In one hybrid example, 
Wagener et al.  (  2003  )  suggest that by splitting up the parameters’ range and  different 
modelling time-windows it should be possible to identify which parameters are 
important at specifi c model periods. This also allows an assessment of the  sensitivity 
of specifi c model components formed by combining parameters. 
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 Looking at parameter variation has another useful by-product: variation over 
time may also tell us whether variables are  missing . When we think that variables 
should be related in a stable fashion, variation may result from the current param-
eters adapting to make up for missing parameters (Beck  1987  ) . Moreover, Beck 
 (  1987  )  and (for an agent-based system) Heppenstall et al.  (  2007  )  have suggested 
that for recursive estimation and Genetic Algorithm based parameter calibration 
respectively, trajectories through parameter space may reveal underlying processes 
in the real data. Beck notes that calibration can often clash with model forms, 
suggesting adjustment is necessary.  

    15.3.2   Model Representation – Is This the Right 
Functional Form? 

 Even if we can correctly identify the variables involved in our model, we still have 
the potential for  model error , that is, error in our fi nal outputs resulting from a 
structural problem with our model. We need to tackle the  identifi ability problem , 
for both variables and the relationships between them captured in the model. In 
general this is not an area of error much investigated by agent-based modellers. 
This perhaps refl ects our general feeling that we are better placed than most 
modellers to claim our models match reality and are directly representative of true 
objects and relationships in the world. Even if we believe our agents represent 
active agencies in the real world, we can be much less certain that we have no 
 functional error  (van der Sluijs et al.  2003  ) , that is, that we are using the correct 
relationships between them. 

 In general agent rulesets will be built up from other studies that generate/test 
hypotheses about relationships in the real world, and give them a signifi cance value 
that, broadly, represents the likelihood that the relationships are not falsely identifi ed 
as real. Plainly there are potential errors here associated with identifying the 
incorrect hypothesized relationships, and most statistical tests include terms to allow 
for sample size and degrees of freedom, and will have a particular power representing 
the likelihood of false positives and false negatives. The question then, really, is how 
these sub-models/rulesets are combined when no, or relatively little, information on 
the combination process exists. Frequently this combination in agent systems is 
achieved through choosing weighted elements based on a ranking process, or 
combining them arithmetically, but there are many alternatives (see, for examples, 
Wooldridge  2009  ) . This problem arises beyond areas of, for example, decision 
making – we may lack a coherent understanding of even relatively deterministic 
elements of the model. 

 On the simplest level, we can examine the performance of a single model run 
under different starting conditions and parameterisations to gain an idea of the range 
of probabilistic outcomes. Differences between the space of model responses and 
the real data may allow us to explore model defi ciencies and even go some way to 
separating out model structural error from input uncertainties (Keesman and van 



32315 Uncertainty and Error

Straten 1989). Alternatively, we can build our models by evolving them to have the 
right components, through Genetic Programming, with sub-models as genes (see 
Poli et al.  2008  as a starting point). 

 However, multiple model testing is now becoming the preferred option in many 
modelling fi elds. Indeed, if one looks at subject areas where models are entrenched 
in the testing of hypotheses, multiple model testing is replacing single model vs null 
hypothesis testing as the standard methodology (Johnson and Omland  2004  ) , with 
the likelihood of gaining a correct hypothesis considerably enhanced by multiple 
hypothesis testing as signifi cances can be ranked and fi ltered, and likelihoods 
enhanced through Bayesian techniques (see Farcomeni 2008). 

 A general methodology for multiple model testing of parameters was developed 
by Hornburger, Spear, and Young (see Sect.  15.3.1 , above). We shall come back to 
examine this in detail when we look at calibration, however, the basic idea is that 
multiple models with different parameters are run and only those models that can hit 
a given set of targets are kept (so called  rejection sampling ). This algorithm was 
developed into the GLUE (Generalised Likelihood Uncertainty Estimation) proce-
dure by Bevan and Binley  (  1992  ) . This utilises multiple model runs which may vary 
in form or parameterisation, and assigns a likelihood to each. Results can then be 
ranked by likelihood and/or summary statistics generated by weighted combina-
tions of the predictions. Poor models sets can be removed when new data from the 
real world is available to validate against. O’Neill et al.  (  1980  )  have suggested that 
by fi ltering out model runs by validation criteria at different stages of the model 
evolution (e.g. days 10, 20, and 30 of a model run) it is possible to constrain the 
error of the fi nal models that survive. The days for this fi ltering are best taken when 
the inter-model variation is high (O’Neill et al.  1980  ) . By adjusting the parameters 
on the basis of their co-variance it is possible to reduce their error further (O’Neill 
et al.  1980  ) . Gupta et al.  (  1998  )  extend these broad techniques to multi-objective 
(~output) models and review alternative developments. 

 The potential for combining model results under GLUE marks it out as an early 
basic example of a broader set of methodologies for  Multimodel Ensemble Forecasting.  
With ensemble modelling the issue of which model to run is avoided, to an extent, by 
running multiple models and then selecting the best or combining their results. In 
ensembles, one can either run very different models, or the same model can be run 
multiple times with a variety of initial states drawn from the potential distribution of 
real conditions and their potential errors. Once ensemble models have run, they can be 
combined to give an overall prediction including an uncertainty measure dictated by 
not only within-forecast variation, but between forecasts as well, for example, using 
Bayesian Model Averaging (Raftery et al.  2005  ) . In general, combining multiple pre-
dictions will improve forecast reliability in the same way that generating the mean of 
noisy data is usually a better estimate of the true value than picking a single sample 
(Leith  1974  ) . The combination of predictions means that forecast  sharpness  (close-
ness of forecasts) can be assessed as an additional uncertainty measure (Gneiting and 
Raftery  2005  ) . A good review of multi-model selection criteria and combination tech-
niques can be found in Johnson and Omland  (  2004  ) . Generally multiple-model 
ensemble methods are most frequently used in climate/weather studies and hydrology. 
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They are rarer elsewhere, where single models with randomisation of key components 
and a probabilistic assessment are more likely (Brown  2010 ; for a review in meteorol-
ogy, see Gneiting and Raftery  2005  ) . This refl ects the considerable costs involved in 
multiple model development and the limited number of researchers working in very 
specifi c fi elds, particularly in the social sciences.  

    15.3.3   Picking Scale 

 One of the problems with data-driven identifi cation of models/variables is that the 
system explicitly represents the spatial and temporal scales at which the data is 
sampled, rather than that most appropriate for the system (Young et al.  1996  ) . To 
an extent this is mitigated in agent-based systems which have the potential for 
modelling different components at the appropriate spatio-temporal scales with less 
of the cross-scale errors that creep into other kinds of models. Multi-scale model-
ling and validation where there was any doubt would be an ideal solution, but data 
and computational effort are strongly limiting factors in this. To an extent the issue 
can be investigated by using cross-scale validation techniques (Costanza  1989  )  
both during calibration and to examine key scales at which the model best repre-
sents the system (Malleson  2010  ) .  

    15.3.4   Model Fitting – Picking Parameters 

 For any given sub-component of a model there is usually a need to estimate param-
eters from the real world as represented in training datasets. Such parameters are 
almost certainly going to be a ‘fudge’ on real-world processes, and therefore be 
associated with errors of verisimilitude, and there will be additional errors associ-
ated with accurately estimating them: inversion errors of picking the correct weights 
from the vast number that may model training datasets, and accuracy errors associ-
ated with picking them well. A large number of parameters can potentially lead to 
cryptic equifi nality, with erroneous models matching training data simply by pro-
viding so many tunable parameters that they can match any function. Having a wide 
variety of parameters may also enhance overfi tting unless care is taken to prevent it, 
that is, model weights may be adjusted to the point that they very accurately model 
training datasets, but don’t have the fl exibility to capture the alternative behaviours 
of the real system. There is a perverse relationship between the number of parame-
ters and overfi tting because poor models with lower levels of parameters won’t 
overfi t, whereas those with the right number are more likely to do so. The usual 
solution to overfi tting is to reserve some data as a test set not involved in training, 
but this is often diffi cult to justify where data is thin on the ground or critical and 
unique, as it tends to be in social sciences, and, as mentioned above, spatial and 
temporal autocorrelation can cause problems in determining the appropriate size of 
dataset necessary to do a good calibration job. 
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 More generally the errors associated with parameters are adjusted largely by 
minimising the error of the output of the model, either assuming that the error is 
entirely due to the parameters being mis-calibrated, or trying to segregate the 
errors from different sources, i.e. inputs, parameter calibration, and the model 
form. A key element of this may be  sensitivity testing : perturbing inputs and/or 
parameters to see what the result is on the fi nal model output. This allows an assess-
ment of the importance of the input/parameter on the model behaviour, and, if the 
perturbation is drawn from an input error distribution using Monte Carlo sampling, 
an idea of how much those errors change the range of results ( uncertainty testing ). 
The standard text on sensitivity testing is Saltelli et al.  (  2000  ) , but a good introductory 
review is Hamby  (  1994  ) . 

 Once errors are assessed they can be used to adjust the parameters to improve the 
match, either statically, at the end of the model run, or dynamically as the model is 
running. The estimate/adjustment of unknown weights associated with variables 
can be achieved in a variety of ways:

    1.    through expert/stakeholder advice,  
    2.    real-world experimentation in aggregate,  
    3.    or automatic fi tting to known input–output data.     

    15.3.4.1   Expert Advice 

 There are a wide range of methodologies for involving experts and stakeholders in 
model design and assessment. At the simplest, this involves expert  face validation  of 
parameters determined automatically, that is getting experts to agree the model looks 
ok. Seminal work on the process and problems of eliciting uncertainty assessments 
from experts was presented by Spetzler and von Holstein  (  1975  ) . More recently a 
sophisticated expert-analysis process, which includes quantitative sensitivity testing, 
was developed by Funtowicz and Ravetz  (  1990  ) . Their NUSAP (Numeral Unit 
Spread Assessment Pedigree) methodology builds up a ‘pedigree’ for a model based 
on evidence including expert opinion on proxy use, the empirical basis of parameters, 
theoretical understanding, methodological rigour, and model validation (Van der 
Sluij et al.  2002 ;   http://www.nusap.net    ). Alternatively expert advice can be incorpo-
rated at one remove from the assessment process, by getting experts to design the 
metrics for uncertainty assessment, rather than completing the assessment them-
selves (Bevan and Binley  1992  ) . 

 At the other end of the scale, experts can directly choose parameters. Because of 
the complication of most models and the lack of absolute verisimilitude, it is rare for 
experts to choose the values that parameters are fi xed at. It is more usual for expert 
advice to be used in initialising weights that are then adjusted through calibration 
against the real world. For example, expert advice can be: incorporated into the 
development of priors in Bayesian treatments of parameters/parameter uncertainty 
(for a summary, see Clark  2005 ; for a clear discussion on options for very non-
informed priors, see Kavetski et al.  2006  ) ; used to constrain the ranges parameters 
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are sampled from (Lutz et al.  1996  ) ; or alternatively incorporated though the 
development of inputs or parameters as fuzzy sets (Janssen et al.  2010  ) . The balance 
between automatic calibration and expert input can vary considerably, with attempts 
made to integrate expert calibration into an otherwise automatic procedure (Gupta 
 1999  )  and to replicate the actions of experts automatically (Boyle et al.  2000  ) .  

    15.3.4.2   Real-World Experimentation in Aggregate 

 Sadly governments seem strangely unwilling to give agent-based modellers the 
complete control over national policies they need and deserve. Real-world experi-
mentation in aggregate is more common in the physical sciences, where ethical 
issues play out less. For social science modellers, such parameters are usually taken 
from the quantitative literature outlining statistical treatments of society, but these 
more rarely generate laws and sets of parameters that can be built directly into 
larger-scale models in the same way. Large scale experiments to derive rulesets are 
rare, even in these days of internet data collection and citizen scientists.  

    15.3.4.3   Fitting to Known Input–Output Data 

 Most commonly models follow a process of  data assimilation , in which forecasts 
(or, more rarely, backcasts) are generated and compared with real-world data, with 
the model being adjusted automatically on the basis of the difference. With agent-
based models this adjustment is commonly a static process – the model runs to some 
completion and then the adjustment takes place. This is because agent-based systems 
are generally initiated and allowed to run on their internal dynamics without the 
injection of external driving data as the model progresses. However, sequential/
dynamic data assimilation (that is, adjustment as the model runs) is common in other 
fi elds and likely to become an increasingly important element of agent-based modelling 
as it attempts to take on predicting large scale and dynamic socio-economic systems 
(as we shall see, machine learning does represent a middle-way taken by many 
agent-based systems). 

 The calibration process has to fi nd optimal parameter weights in a variable 
space of potential solutions. For simple mathematical functions with a limited 
number of variables, the technique used is usually to assume the function includes 
one or more error terms, and then to fi t the function to the data by minimising the 
error term. The classic example of this is linear least-squares fi tting, which seeks 
to place a line representing data through scattered data points by minimising the 
residual error between the line and the points along its length. Such techniques 
make a number of assumptions, not least that the errors are random and limited to 
specifi c variables. For example, the standard least-squares method assumes there 
is only an error on the independent variable, not the dependent variable that is 
being predicted. This is rarely the case where two datasets are being used to derive 
model rules. 
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 Unfortunately for most agent-based models the non-linearities and considerable 
interactions involved render mathematical treatments impossible for almost all 
components. The solution spaces involved are complicated and too extensive to try 
all parameter combinations. In the absence of expert advice and experimental 
results, we are usually left with imputing the parameters from data. The worse-case 
scenario is where we have clear input data, but only a very qualitative understanding 
of what potential outputs might look like (for example, in predicting urban form). 
Choosing parameters by manually manipulating their values to see what gives 
appropriate-looking results is generally to be avoided. The inversion problem plays 
out particularly badly against researchers with limited time on their hands and it is 
likely that local or sub-optima will be chosen. Nevertheless, this technique is fre-
quent in agent-based modelling, as the computational resources needed for model 
runs are high (removing automated checking as an option), and the variables are 
often interdependent in non-linear manners (rendering mathematical optimisations 
inappropriate/impossible). Experts should always be involved in the face validation 
process where it can’t be avoided to limit the potential errors. 

 Where the computational demands are less restrictive, but still prevent a full 
characterisation of the solution space, we have the option of adjusting the parame-
ters through either a greedy algorithm (adjusting the weights by some rule and keep-
ing those changes that improve the fi nal fi t) or some mathematical equivalent 
(distributing the error to individual components and adjusting them to reduce the 
local error). As part of this data-led process we usually have to identify some opti-
misation function to minimise (usually the error between reality and the model out-
put, but not always), and heuristics to control the selection of adjustments. 

 Standard treatments in non-agent-based models are, at their simplest, recursive 
greedy treatments with parameters updated on the basis of new data (Gupta et al. 
 1998 , review standard methods for multi-input/multi-output calibration). Many mod-
elling techniques rely on transfer functions to convert between input sources and 
output objectives (one can visualise a matrix that stores the functions that convert 
between the two). Given output errors, it is possible, if we know the form of the rela-
tionship between input parameters and outputs, to estimate the error in the functions’ 
parameters (Beck  1987  ) , in a manner similar to back-propagation in neural-networks 
(though with a more fl exible set of functional relationships). A great many tech-
niques rely on linearising these functions through Taylor expansions for key condi-
tions or dynamically, as a precursor to allocating error to the parameters. As one can 
imagine, the mathematics of updating the associated parameters becomes quite com-
plicated. Many models rely on Bayesian methodologies to cope with the updating 
process, though this is still far from simple. Furthermore as many inputs and param-
eters are non-normal and cross-correlated, inputs and parameters are often sampled 
using Monte Carlo techniques when looking at the error in the model due to noise 
and calibration issues. Generally the sensitivity of non-linear models to small changes 
in parameters means that multiple parameter sets need to be tested uniquely (Smith 
et al.  2010a  ) . Multiple runs of the same model utilising different starting conditions 
and parameter sets allows for the quantifi cation of the error and its effects and the use 
of this information in the updating process. The full adjustment process is therefore 
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of considerable complexity. While most such techniques are heavily embedded in 
statistical modelling, it is nevertheless worth considering the application of their core 
ideas to agent-based modelling. 

 The standard technique used is the  Extended Kalman Filter . The idea behind an 
Extended Kalman Filter is essentially that we know the output (real predicted values 
plus model-caused error) is a function of the model components, i.e. the model 
inputs and parameters, along with errors associated with both. Knowing the output, 
real values, input values, parameters, and the error associated with the input mea-
surements, we can estimate the remaining missing element, the parameter errors, 
and adjust them on this basis. The parameter error is only an estimate, and (with an 
adaptive Kalman fi lter: see Evensen  1992  or Young  2002  for an introduction) will 
change with each new input/output pair, but if we know the parameter error, even 
roughly, we can adjust the parameters to remove that error. When, as usually is the 
case, there are multiple outputs from the model and multiple parameters, the adjust-
ment is in the form of a Kalman gains matrix, which is used to adjust the parame-
ters’ actions in the next iteration along with the error value. The process generally 
moves recursively. The uncertainty is usually represented through Bayesian-like 
probabilities (as the error cannot be assumed Gaussian, these are usually dealt with 
through Monte Carlo methods: see Young  2002  for an introduction), and the adjust-
ment takes place preferentially when we know more about the real world than we do 
about the model (i.e., there’s no adjustment if we’re more sure about the model than 
the current real-world values). Beck  (  1987  )  gives a summary of both this technique, 
and recursive estimation techniques in general, along with a summary of the issues 
with Extended Kalman Filters, chief of which, from our point of view, is the usual 
assumption of Gaussian input noise throughout. To gain a best estimate of parame-
ters where there is error, assumptions must be made about the variables the error 
relates to directly and the error distribution (Smith et al.  2010a  ) , but this is 
frequently not well characterised for social-science models. 

 Generally when multiple model runs are used with an algorithm from the 
Hornburger/Spear/Young family the spread of results gives a minimal estimate of the 
parameter uncertainty (Gupta et al.  1998  ) . However, with multiple models there is the 
potential for intelligently utilising cross-model comparison to further limit the param-
eter uncertainty. The Ensemble Kalman fi lter, after Evensen  (  1994  ) , can be utilised on 
single-model multiple-run ensembles to reduce the combinatorial load needed to 
characterise the parameter change. It uses Monte Carlo sampling (commonly Markov 
Chain Monte Carlo) to take an initially naive distribution for each parameter and 
update it using a Bayesian treatment of new data to gain a better parameter distribu-
tion. An alternative methodology by Toth and Kalnay  (  1993  )  utilises the differences 
between perturbed and unperturbed ensemble models to adjust the unperturbed mod-
els, removing potential errors caused by specifi c system instabilities. Of promise is 
also the SIMEX methodology (Cook and Stefanski  1994  )  in which a system that has 
well-understood input errors has increments of those errors added to the inputs across 
multiple model runs, and the output error assessed. As the output error increases tell 
us about the relationship between the stepped input and output errors, the remaining 
output error due to poor parameterisation can be identifi ed as the equivalent of the 
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intercept on a graph of input vs. output errors (in a perfectly modelled system). By 
building a relationship between the fi nal and input errors, it is therefore possible to 
estimate the parameter error, and, thereafter, to correct the parameters. Chowdhurya 
and Sharma  (  2007  )  review the literature on this technique, the adjustments necessary 
under a variety of conditions, and compare it with methodologies like GLUE. More 
generally, ensemble re/starting conditions can be subjected to a variety of algorithms, 
including evolutionary algorithms, to constraint the errors and lower computational 
effort (see NRC  2006 , for a review). 

 In general, however, agent-based social and ecological modellers don’t tend to 
follow the techniques generated in other fi elds of similar complexity. Instead, they 
are turning to artifi cial intelligence (AI) mechanisms to calibrate their models. In 
part this is because most agent models are extremely computationally expensive to 
run, but the subject area doesn’t have the computational, personnel, or data resourc-
ing seen in, for example, climate modelling. AI represents a sound and relatively 
fast method of calibration. It is usual for most models to be a mix of parameters 
fi xed on the basis of the literature, parameters fi xed by an AI method like a Genetic 
Algorithm, and parameters that vary stochastically across a distribution, picked with 
Monte Carlo sampling. Such multi-method models are diffi cult to assess for param-
eter quality except by validation of their outputs, though there is no reason some of 
the algorithms above could not be applied to elements of the models. 

 In addition to fi xed parameters, most agent-based techniques include some form 
of machine learning, essentially doing the same job as dynamic data assimilation for 
a limited sub-set of parameters; parameters are derived by experiencing the system 
and optimising behaviour based on one or more objective functions. These objective 
functions are generally more internalised than simply the error between model out-
puts and the real world. In many senses agent-based modellers would rather see a 
model that learns well, than one that minimises an output error, but which has unre-
alistic internal dynamics. The problem is, of course, that such learning is hard to 
assess for reliability, except to the degree to which the overall model works. 

 Where information comes from experimentation or the literature, rather than 
model testing, confi dence intervals are usually used to represent input and parame-
ter uncertainty because inter-relationships are rarely known (Young et al.  1996  ) . 
Confi dence intervals for model parameters are more diffi cult to calculate properly 
when there is covariance between inputs/parameters, when the solution surface is 
complicated, and where input errors are poorly understood (Gallagher and Doherty 
 2007 ; who give some indications of ways forward). Under these conditions, and for 
relatively simple parameterisations, uncertainty associated with inputs can be repre-
sented through a sensitivity coeffi cient matrix – more detail on these will be given 
below, but essentially they are the covariance matrix showing how the output/s 
change as each input varies. In terms of parameter uncertainty, for large numbers of 
more complicated tests statistical signifi cances can be generated to reduce parame-
ter errors, with signifi cances adjusted to pare down the potential for Type I and II 
errors, which would be high using traditional one-test  p -values (Farcomeni 2008). 
The variation during parameterisation can also be used to give uncertainty statistics 
(see Matott et al.  2009 , for a review). Equally, some calibration tests, notably those 
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based on Fuzzy or Baysian and/or Monte Carlo techniques can give uncertainty 
estimates (Keesman and van Straten  1990 ; Kennedy and O’Hagan  2001 ; Clancy 
et al.  2010 ) and assign likelihoods to parameter sets (Mitchell et al  2009  ) . However, 
while such tools exist, it is nevertheless more common in model calibration to simply 
take the best result without considering the potential identifi cation error. 

 So far we’ve dealt with uncertainty as something that is outside of the model and 
to be assessed for reduction. A more realistic way of dealing with it may be to build 
it into the model, so that the model reacts as more information comes online (through 
Baysian probabilities or more general Dempster–Shafer methodologies, or by includ-
ing a more explicit error distribution in the model) or, furthermore, to assume that 
such an uncertainty is inherent in reality through the use of Fuzzy Sets and Logic (see 
Hassan et al.  2010 , on agent-based systems; also Zadeh  2005  which goes further in 
handling modelling uncertainty explicitly using methods including Fuzzy Logic). 

 More generally, however, there is a fundamental question to be asked about many 
of these calibration techniques, including those used currently by many agent-based 
modellers. Many traditional model calibration/inversion techniques fail to cope with 
agent-based systems simply on the basis that they adjust parameter weightings to an 
average across a system, which isn’t what an individual agent would respond to. 
Ideally each agent needs calibrating separately, rather than picking up average behav-
iours. However, if traditional calibration is to be utilised, the space to explore for 
individual calibration is considerable and the number of parameters fi tting the system 
very large. In this sense, giving each agent some degree of machine learning may be 
the closest we can get to appropriate parameterisation in agent-based systems.    

    15.4   Model Mechanics – Errors Generated 
by Running the Model 

 In general, agent-based modellers assume models run well, not least because pro-
cessor time renders multiple-platform runs diffi cult. Our confi dence in this matter 
may be misplaced.  Model-fi x Errors  come in when elements are added to the model 
that are not in the real system, either for simplifi cation or because an element of the 
real system is not understood (van der Sluijs et al.  2003  ) . These errors can be distin-
guished from  Process Error , in which a complex element of the real system is sim-
plifi ed to make calculation tractable (van der Sluijs et al.  2003  ) . On top of such 
accepted errors, it may be that our software is not well formed, either because of 
software bugs, or because the digital precision needed is not suffi cient. 

    15.4.1   Model Bugs 

 It is an unpleasant truth that many of our models probably contain coding errors. 
Les Hatton produced a devastating report on the quality of coding in industrial 
programs infl uenced by academia (Hatton  1997  ) . He noted that on average the C 
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programs he looked at contained 8 lines hiding serious faults per 1,000 lines of 
code. Programs written in the academic favourite Fortran were generally so over-
parameterised and poorly written that the average rose to 12 lines in 1,000. 
Moreover, the situation with Fortran wasn’t helped by the fact that software written 
in Fortran contained 2.5 times as many lines as the equivalent C software. When a 
single algorithm for seismic processing was tested with the same data across multiple 
programs and platforms, Hatton found that the results were only comparable to 
within one signifi cant fi gure. Before anyone gets too smug about this never happening 
in their code, let us not forget that these programs, albeit starting out as academic 
software, were fi nalised by software houses who work to specifi c quality standards 
and testing regimes. Some recent changes in programming will have reduced these 
issues: the removal of some error prone areas of code, such as pointers, from 
languages like Java will have helped considerably, as will the rise of Programming 
by Contract, Unit Testing, and the inclusion of Assertions. However, it remains 
true that most academic code, particularly that written in older versions of lan-
guages like Fortran, is likely to be replete with issues. Galán et al.  (  2009  )  offer 
practical advice, for agent-based modellers specifi cally, on model verifi cation and 
code-checking.  

    15.4.2   Uncertainty Due to Representation 

 Computers can only usually hold memory-limited binary representations of numbers. 
As such, some numbers are, by necessity, stored as approximations. Such digital 
imprecision can, if unchecked and/or propagated, result in catastrophic macro-scale 
errors (see, for an example, Hayes  2003  ) . Good, programmer-centred, discussions on 
mitigating this issue can be found in Warren  (  2002  )  or Hyde  (  2004  ) , while Izquierdo 
and Polhill  (  2006  )  and Polhill et al.  (  2006  )  provide sound practical advice and con-
centrate specifi cally on the propagation of these errors in agent-based modelling. 
Ultimately, however, the issue is constraining. The unifi cation of most platforms 
around IEEE 754 as the standard for fl oating-point arithmetic has helped coders at 
least tackle the issue consistently (though utilising IEEE 754 standard routines in 
some languages is still far from direct – yes, Java, I’m talking about you). Nevertheless, 
one still has to take care with the transfer of code involving other data types between 
platforms (for example, the maximum integer size can change considerably). In general 
it is good practice to assess model error due to differences in processor, complier, and 
memory architecture, by transferring models to different platforms. However, the 
implementation of such transfers is limited by the lack of common code representa-
tion schemes of suffi cient detail and the coding time needed. Common runtime envi-
ronments such as the Java and .Net virtual machines mitigate the effort required to 
some extent, but don’t stress-test code to a great enough degree as some issues that 
usually play out more apparently on different platforms are ameliorated at the virtual 
machine level. For problems of representation specifi cally, efforts to work using 
 Interval Computation  (essentially arithmetically treating the potential upper and 
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lower bounds of representations as they interact) seem promising, if at an early 
stage for complex models. A good introduction can be found in Hayes  (  2003  ) , while 
further material can be found at   http://www.cs.utep.edu/interval-comp/    . 

 Related issues for spatio-temporal modellers include the granularity within 
which space and time are represented, which controls the  resolution  of the data – the 
size of the smallest useful object. These issues stretch from the appropriateness 
of different styles and sizes of neighbourhood in Cellular Automata (see Moreno 
et al.  2008  ) , through to the synchronous or asynchronous updating of agent states 
(see Schönfi sch and Roos  1999  ) . This is a vast area of potential error; however, in 
general, the most recognised response is to build up models across a variety of 
tested landscapes, starting with abstract plains, and to test models on multiple 
systems as above.   

    15.5   Output Uncertainties 

 More often than not, the problems involved in quantifying input and parameter 
uncertainties mean that agent-based modellers deal with uncertainty at the point of 
model output. While outputs can be assessed for overall uncertainty, it is also at 
output that we most often consider the representation of uncertainty to stakeholders, 
and the recording of uncertainty in metadata. 

    15.5.1   Assessing Overall Uncertainty 

 In general a large number of agent-based studies either make no direct comparison 
with the real world (in the sense that they are abstract behavioural models), or 
treat the error between predictions and reality as the single expression of model 
uncertainty. If this error is low, the assumption is that inputs are realistic and para-
meters well estimated. While there is some truth to this, such characterisations give 
us little idea of how a model will respond to change, or where the model or data 
needs investment. If, instead, we can examine the contribution of specifi c input, 
parameter, and model-form errors to the fi nal prediction we stand a better chance 
of commenting on, and tackling, these issues. Of course, if a model isn’t sensitive 
to errors, it matters less if they are present; but if a model changes in a strongly 
non-linear fashion under error, then that has important ramifi cations for its pre-
dictive power. 

 Traditionally the contribution of errors in mathematical models is examined by 
tracking the noise from the inputs and using the difference between model outputs 
(including the noise) and the real world (the, so-called,  prediction error ) to estimate 
the errors due to parameters. Generally a traditional error propagation/sensitivity 
analysis utilises the following formula (commonly after Ku  1966  ) , which gives the 
standard deviation of the results  Y  of a function, based on the standard deviations 
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( s )/ variances ( s   2  ) of the input variables ( X, Z …), and the relationship between each 
variable and Y:
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X    is 
the partial derivative of the function  Y  with respect to  X , known in this context as the 
 sensitivity coeffi cient  (see NIST/SEMATECH  2010  for a summary). Where more 
than one output value is predicted, the equation needs expanding to Jacobean matrices 
(that relate each variable to each output via a partial derivative). Even when the 
relationship between Y and each variable is poorly characterised, as long as the 
variables can be shown to be independent (i.e. with no covariance), input variation 
can be empirically correlated with outputs individually to give the sensitivity coef-
fi cients (O’Neill et al.  1980  ) . For independent variables and relatively simple rela-
tionships this leads to reasonably simple predictors for error which can be used 
within models and which can give rankable information on the importance of 
variables to the model sensitivity and confi dence intervals (Walker  1982  ) . 

 However, there are considerable issues in applying this methodology in the kinds 
of systems agent-based modellers deal with, and the kinds of models they generate. 
Variables are rarely completely independent in non-linear systems, and in such 
cases a more sophisticated development based around variance-covariance matrices 
is necessary (O’Neill et al.  1980 ; van Straten  1985 ; for developed details, see Beck 
 1987  ) . In combination the error terms can gain strange distributions if the same 
variables link together multiple mathematical representations within a model (Tang 
and Wang  2001  – see references therein). If these relationships vary with time, the 
matrices may need updating with new input data iteratively (see parameter 
estimates, Sect.  15.3.4 ). In addition, spatial systems have their own problems, both 
with spatial autocorrelation of errors, and with large combinotronic spaces when 
multiple spatial locations contribute to a fi nal prediction at one or more points. 
Heuvelink  (  1998  )  details the use of this technique when mathematically modelling 
simple spatial systems with well-known input errors, however, there are consider-
able issues with more complex non-linear spatial models. 

 In general, non-linear relationships are usually linearized in such treatments 
through Taylor expansions. This may be limited to points of assumed equilibrium, 
that is, where it is assumed that if there is no change in inputs there is no change in 
outputs (Young et al.  1996  ) ; but, as mentioned above, this is not always appropriate 
in the kinds of systems agent-based modellers tackle. Alternatively the linearization 
may be around dynamic model points, but such schemes do not cope well with the kinds 
of relationships modelled by agent-based systems, which tend not to be continu-
ously differentiable, if, indeed, they can be represented mathematically at all, and 
where function-changing relationships between two variables and a third can make 
partial differentials diffi cult to work with consistently. Either way, for more compli-
cated functions under large variances the fi rst-order linear approximations generally 
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used introduce their own errors. Replacements for this technique, which take more 
account of the non-linear nature of most systems, still tend to rely on an overly 
mathematical treatment in which noise is regarded as an additional component to a 
signal (see, for example, Smith et al.  2010a , and for a review Matott et al.  2009  ) . 

 Given these problems, for models of any level of complication it is usual to resort 
to Monte Carlo Sensitivity (MCS) testing, in which the model is run multiple times 
with input data perturbed in some fashion. In uncertainty testing the perturbations 
are usually drawn from the error distribution of the appropriate inputs, and the 
parameter distributions are usually also sampled to provide the parameters for each 
run. Although sensitivity testing can proceed by targeted ‘manual’ manipulation of 
the inputs, automated Monte Carlo sample selection based on input/parameter 
distributions is needed for full output distribution uncertainty testing. There are 
some broad variations on the scheme: Bayesian models, for example, generally 
explore uncertainty by sampling their parameter distributions, and then adding white 
noise to the inputs, while GLUE simply varies the parameter values (Kavetski et al 
 2006  ) . Either way, multiple model runs using such carefully selected inputs and/or 
parameters allow for an assessment of the variation in the model outputs on the 
basis of their errors, and statistical summaries can be generated, along with con-
fi dence statistics. In this way, the technique avoids the middle stage of traditional 
error assessments: the stage of directly calculating the error propagation. A good 
introduction to Monte Carlo techniques in a spatial context can be found in Walker 
et al. ( 2003) , along with references to work on sensitivity testing, while a clear detail-
ing of the technique from the point of view of tracking input errors can be found in 
JCGM  (  2008a  ) . A more generic study of uncertainty testing, concentrating on sta-
tistical summaries, can be found in Bobashev and Morris  (  2010  ) . 

 Because the run-time of models can be long, Monte Carlo simulation of thou-
sands of runs length may be inappropriate, even with parallel processing. Some 
spatial analysts have claimed that much of a distribution can be determined with a 
small number of runs (up to a hundred: Openshaw  1989 ; Bobashev and Morris 
 2010  ) , but this is of considerable contention (Heuvelink  1998  ) . Given this, more 
restricted tests have been devised which control the sampling of inputs to ensure a 
small but representative sample of their distributions is taken into account. One 
could, for example, sample the parameter space regularly: a so-called  Grid Sample . 
While this has the advantage that it is easy to see the sensitivity of one parameter 
against others (Urban and Fricker  2010 ), this still generates large numbers of runs. 
More notable is the Latin Hypercube sampling technique (see McKay et al.  1979  ) , 
in which each input is divided up into  n  number of sections, each with an equal 
probability of occurring (i.e. for a normal distribution the sections are larger at the 
distribution limbs, where probabilities are generally lower). Each section is then 
Monte Carlo sampled once and only once. Each value from the series of sections for 
one variable is then combined with an equivalent value from each of the other vari-
ables, generating  n  sets of input values. Essentially this ensures the full range of 
sample distributions will be sampled, but only generates  n  tests. The combination of 
samples from each distribution can be random, or the combination can be chosen to 
enhance or dampen correlations between the values (for a discussion, see Wyss and 
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Jorgensen  1998 ; Urban and Fricker 2010). An excellent summary and pointers to 
the literature on sensitivity testing can be found in Wyss and Jorgensen (1998) 
which is associated with software for generating both Monte Carlo and Latin 
Hypercube input sample datasets. Of course, the use of this technique in testing 
output variation based on input error assumes the modeller has some idea of the 
distribution of errors in their inputs, which may not always be true. 

 Increasingly, in climate modelling, researchers are avoiding the use of full mod-
els in parameter sweeps. Instead, they train an emulator (for example, an Artifi cial 
Neural Network) on the outputs of a sub-set of parameter sweeps, and then use the 
emulator to predict the results of a more comprehensive sweep through parameter 
space with appropriate signifi cance values for the predictions. Of particular interest 
is Gaussian Process emulators, which use the equivalent of Bayesian kriging to 
estimate the form of a solution space, in the same way that kriging can be used to 
estimate missing data in geographical space (Urban and Fricker 2010; see also 
Young et al.  1996 , for a statistical approach that provides a statistical linearization 
of complex deterministic models). As with kriging, it may be appropriate to feed in 
training samples in areas of particular variation, worrying less about other areas 
(Urban and Fricker 2010). 

 In addition to quantifying uncertainty and error using the outputs, it is also pos-
sible to process outputs to reduce the uncertainty by redefi ning the objective func-
tion we are aiming at. For example, where thresholds are involved, uncertainty in 
models can be reduced by predicting event occurrences rather than continuous prob-
abilities; indeed, generally the prediction of statistical aggregations of outputs, or 
aggregations related to model outputs can reduce the uncertainty if the relationships 
are more robust to variance (Glahn and Lowry  1972  ) . More generically,  Forecast 
Post-Processing  can include interpolation and adjustment for biases and local con-
ditions (NRC  2006  ) . If the outputs are to be used in sequential/dynamic data assimi-
lation (i.e. as the model runs and real data comes in) they will plainly have an effect 
on the non-linear behavior of the model, and fi ltering results to remove small-scale 
instabilities can stop non-linearities getting out of hand (Evensen  1992  ) . 

 Finally, it is worth noting that in agent-based systems there is interesting work 
to be done at the meta-assessment level. One direction here is the push towards 
more objective and automatic hands-off model assessment by allowing meta-agents 
to assess the models (Li et al.  2007  ) . A second area of interesting potential is the 
broadening of our criteria of assessment. It is worth noting, with Mearns  (  2010  ) , that 
even with the best models, metrics of uncertainty may well increase in some model-
ling efforts before they decrease. The improvement of models is not always about 
improving very specifi c error metrics; structural change may bring greater verisimili-
tude and future error constraints, without these resulting immediately. We have to be 
wary of measuring success on the basis of error metrics. Indeed, it may be that with our 
software, like any engineered solution, we might actually wish to trade error off against 
alternative values, such as model versatility, adaptability, evolvability or interopera-
bility, and there are a number of techniques from engineering that allow us to manually 
examine these trade-offs on a cost basis (see Hasings and McManus  2004 , for an 
introduction). This may be an interesting area for meta-agents to additionally explore.  
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    15.5.2   Representing Uncertainty 

 In general model error is calculated as the total absolute difference between the 
real and predicted values, normalised in a variety of ways. The bias of a model can 
be examined by using the total non-absolute difference, as this will highlight con-
sistently great or lesser predictions (if our inputs are reliable, a consistent bias is 
usually indicative of an issue with the model form). Despite these relatively simple 
outlines, where the error between a model and reality is given, the statistic used in 
detail needs considerable and careful thought, especially where the error is het-
eroscedastic. Gupta et al.  (  1998  )  summarise some of the measures commonly used 
for aspatial value predictions, especially multi-objective predictions that need 
combining, while Knudsen and Fotheringham  (  1986  )  discuss errors in the context 
of spatial predictions. 

 Uncertainty itself is usually reported as an estimated statistic (like the mean of 
model runs) and an uncertainty or set of confi dence intervals. For Gaussian sample 
data, for example, this is usually the sample mean ± standard error. As Smith et al. 
 (  2010a  )  point out, this type of representation is appropriate for linear systems where 
behaviour varies predictably and slowly with a shift from the mean, but means con-
siderably less in sensitive non-linear systems. In addition error measures like the 
standard deviation of a sampling distribution drawn from a Gaussian population are 
well understood for standard statistical estimators like sample means, and the biases 
between them and population fi gures are well characterised. The biases in the statis-
tics can therefore be taken into account by readers or augmented when reporting 
results. For complex and novel model errors, however, this is less easy, and gener-
ally it is simpler to quote the distribution-free summaries of model runs. For exam-
ple, model 95% output ranges are quoted more often than formal 95% confi dence 
intervals (for reasonably clear details of generating confi dence intervals from Monte 
Carlo runs, see Lodwick  1989 ; Heuvelink  1998 ; or Bobashev and Morris  2010  ) . 
However, almost all simple metrics can hide considerable useful information; for 
example, with Bayesian predictions summary statistics usually hide the fact that 
forecasts are infl uenced by the prior belief used to initialise the system. 

 The relationships between model inputs and outputs can be represented, as dis-
cussed above, by sensitivity coeffi cients. Where the relationship is linear, standard 
regression between the inputs and outputs, along with a correlation coeffi cient, is 
useful, but this becomes more complicated with non-linear non-normal data. For 
non-linear but independent variables there are less powerful representations of the 
relationships between inputs and outputs that allow the contribution of the inputs to 
be quantifi ed, such as the Importance Index, and Relative Deviation Ratio. For more 
co-linear variables, there is the partial correlation coeffi cient. A wide range of such 
basic sensitivity statistics are reviewed in Hamby  (  1994  ) . 

 For spatial modellers, it is key to understand the distribution of uncertainty 
in space and time. Uncertainty can, therefore, usefully be displayed on maps. 
For example, based on output confi dence limits, maps displaying all possible 
results within 95% confi dence limits can be displayed (e.g. Hartley et al.  2006  ) . 
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For ensemble predictions, Bayesian Model Averaging (Raftery et al.  2005  )  will 
produce uncertainty maps that take into account both intra and inter-model vari-
ation. Laffan  (  1999  ) , Reinke and Hunter  (  2002  ) , Drecki  (  2002  )  and Kardos et al. 
 (  2003  )  explore some of the theoretical issues and solutions associated with 
communicating uncertainty using 2D maps. Uncertainty representation in 3D 
spatial datasets is explored by Viard et al.  (  2011  ) . 

 However, it is plainly important that we consider not only the display of uncer-
tainty to other scientists, but also to policy makers and the public at large. This is 
equally plainly problematic, and an area in which contentions about the relationship 
between science, decision-making, the public, and trust are extremely likely to arise 
(see Brown  2010  for a review). Scientifi c uncertainty can be converted into policy 
reticence, even when the science points strongly to action. Equally, however, the 
exposition of uncertainty can lead to increasingly targeted investment in areas with 
high uncertainty (Suter et al.  1987  ) . Agent-based systems, with their individual-
level processes, may be well placed to bring policy-centred discussions of uncer-
tainty back to a more detailed level of treatment (Zellner  2008  ) , arguably lost for 
non-linear systems since the move to Monte Carlo assessments. 

 Shackley and Wynne  (  1996  )  discuss some of the mechanisms by which scientists 
mitigate the effects of uncertainty, while Walker et al.  (  2003  )  subdivide some of the 
uncertainties in ways more pertinent to the interaction of modellers and policy-
makers (for example, they identify  scenario uncertainty , in which it is not clear 
what scenario is going to occur). Specifi cally spatial uncertainties and decision 
making are examined from a policy-makers’ viewpoint by Cornélis and Bruet 
 (  2002  ) . Morss et al. ( 2008 ) give a useful template study for determining how the 
public understand uncertainty and want it displayed, while a detailed discussion of 
stakeholder engagement (a very large area) is provided by Dewulf et al.  (  2005  ) . 
A formal approach to uncertainty in decision making may be formulated by embed-
ding uncertainty representation within the demands of Quality Assurance (QA) 
guidelines (see, for examples, Refsgaard et al.  2005 ; van der Sluijs et al.  2003 ; 
JCGM  2008b  ) , potentially including schemes designed under the ISO 9000 stan-
dards family. Such guidelines can also include detailed frameworks for decision-
making under uncertainty (for an example of a formal quantitative decision-making 
framework centred on risk and uncertainty see Marin et al.  2003  ) . On the fl ip-side, 
Brown  (  2004,   2010  )  and Couclelis  (  2003  )  provide usefully discussions on the place 
of uncertainty in science as a social process, and uncertainty’s place in scientifi c 
self-refl ection and knowledge production, while some of the more cognitive uncer-
tainties associated with science-led decision making are described in van der Sluijs 
et al.  (  2003  ) . 

 While we have dealt here with uncertainty associated with the advancement of 
knowledge, there is one further uncertainty or error that doesn’t impact the quality 
of knowledge advancement, but is nevertheless important for scientists and society 
because it reduces the speed of progress: the uncertainty that scientifi c work is 
novel. Smithson  (  1989 , 3) identifi ed the diffi culty of constructing models in a world 
in which scientifi c pursuits are becoming increasingly swamped by knowledge and 
separated into different areas. Recent developments have suggested that scientists 
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are already starting to “re-invent the wheel” (Monaco and Anderson  1994  ) . With 
over 1,350,000 scientifi c papers a year published (Björk et al.  2009  ) , this novelty 
error or (at best) uncertainty can only increase, and represents a very real threat to 
modelling, if not a signifi cant barrier science needs to avoid as it becomes a mature 
human endeavour.  

    15.5.3   Metadata Systems 

 A structured meta-framework for uncertainty may be built into the model itself, as 
it is in Bayesian treatments (see Clark  2005  )  or, for example, through Zadeh’s 
 (  2005  )  GTU (Generalized Theory of Uncertainty). However, there are increasing 
efforts to develop separate metadata systems that focus on uncertainty assessments 
(Dassonville et al.  2002 ; Gan and Shi  2002  ) . Such efforts are key to the chained 
interoperability of models, and the transmission of uncertainty with results. In par-
ticular, eXtensible Markup Language schemata that encapsulate uncertainty prom-
ise to take uncertainty recording and manipulation from the current level of the 
dataset down to the specifi c datum, storing detailed uncertainty information with 
each data point. A notable example for spatial modellers is UncertML (Williams 
et al.  2008 ;   http://www.uncertml.org/    ) which has the potential to be used with the 
Geographical Markup Language (Cornford  2011  ) , along with the web-based 
framework supplied to aid in its more general use, UncertWeb (  http://www.
uncertweb.org/    ).   

    15.6   Conclusions 

   To be able to predict only that all things are more or less equally probable is not a useful 
basis for decision making 

 M.B.Beck  (  1987  )    

 All the above may seem terribly depressing. We work with non-linear, non-
normal, high-combinatronic-space, models, highly demanding of computing power 
and memory storage. Why, then, do we believe we can do any better at modelling the 
world than astrology or the I-Ching? Are we not generating just the same kinds of 
largely random outputs and imputing meanings to them beyond rational boundaries? 
I don’t think so, and part of the reason for this confi dence comes down to the way 
the world works. By and large, at the scale at which we deal with it, the world is not 
completely random; rivers do not leap 50 m into the air and turn into a shower of 
goldfi sh; economic systems do not contrive to feed everyone bullion from ATMs. 
Systems are, generally, very stable compared with the wide range of potential states 
they could be in. Self-regulatory elements in the systems act to dampen the effect of 
noise and constrain the propagation of errors. However, my confi dence rests in mod-
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elling that concentrates to a far greater degree than we currently do in identifying 
elements that act to dampen systems and drive them towards attractors; elements 
like social negotiation, averaging, buffering, and thresholding. If we can centre our 
investigations of the real world on these, and then represent them in our models, we 
stand a much greater chance of building reasonable models of our apparently highly 
unpredictable systems. 

 Finally, it is also worth highlighting an alternative viewpoint put forward by 
Beck  (  1987  ) , who suggests that rather than asking what the future will be, given 
parameters now, we instead ask what parameters would be necessary now, to create 
a reasonable future. It is generally true that as agent-based modellers we usually 
model current systems to predict what they might be like in the future, with very 
little refl ection on our duty as academics to imagine a better world, and critique the 
fundamental components of the systems we are modelling. It is easy to point out 
when current policies will be disastrous, and even to see how small tweaks may 
mitigate this, but it is much harder for us to consider wholesale changes that might 
make the world a notably better, if stranger, place.  

    15.7   Further Reading 

 For a good overview of the subject area, which weights scientifi c methodology and 
stakeholder engagement, see Refsgaard et al.  (  2007  ) . NRC  (  2006 : Climate models) 
reviews uncertainty assessment and control methods, with good sections on uncer-
tainty and decision making, while a formal strategy for conveying uncertainty to 
policymakers can be found in van der Sluijs et al.  (  2003  ) . Funtowicz and Ravetz 
 (  1993  )  provide a solid attempt to place uncertainty in the context of both critical 
theory and the democratization of science. 

 The Royal Society special issue “Ensembles and probabilities: a new era in the 
prediction of climate change” (Collins and Knight  2007  )  gives an insight into the 
state of the art in much of the fi eld of complex systems modelling outside of agent-
based modelling, including the use of emulators, while Brown  (  2010 : Physical 
models) and Matott et al.  (  2009 : Environmental models) provide good technical 
overviews of these areas. 

 Matott et al.  (  2009  )  additionally give a very complete review of uncertainty soft-
ware, broken down into data analysis, identifi ability analysis, parameter estimation, 
uncertainty analysis, sensitivity analysis, multimodel analysis, and Bayesian networks. 
This is supplemented by an ongoing website at: http://www.epa.gov/athens/research/
modeling/modelevaluation/index.html 

 A good review of Monte Carlo techniques, with a meta-review of other sensitiv-
ity and uncertainty testing techniques, is Helton et al.  (  2006  ) , and Hamby  (  1994  )  
gives a good review of sensitivity statistics. Finally, Bobashev and Morris  (  2010  )  
provide a very clear walkthrough of one such sensitivity/uncertainty analysis for an 
agent-based system.      
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