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  Abstract   This chapter provides a review and examples of approaches to model 
scaling when constructing large agent-based models. A comparison is made between 
an aggregate ‘super-individual’ approach, as run on a single processor machine, and 
two different approaches to parallelisation of agent models run on multi-core hard-
ware. Super-individuals provide a straightforward solution without much alteration 
of the model formulation and result in large improvements in model effi ciency 
(speed and memory use). However, there are signifi cant challenges to using a super-
individual approach when relating super-individuals to individuals in time and 
space. Parallel computing approaches accept the requirement for large amounts of 
memory or CPU and attempt to solve the problem by distributing the calculation 
over many computational units. This requires some modifi cation of the model soft-
ware and algorithms to distribute the model components across multiple computa-
tional cores. This can be achieved in a number of different ways, two of which we 
illustrate further for the case of spatial models, an ‘agent-parallel’ and an ‘environ-
ment-parallel’ approach. However, the success of such approaches may also be 
affected by the complexity of the model (such as multiple agent types and agent 
interactions), as we illustrate by adding a predator to our example simulation. 
Between these two parallelisation approaches to the case study, the environment-
parallel version of the model, written in C++ instead of Java, proved more effi cient 
and successful at handling parallel processing of complex agent interactions. 
In conclusion, we use our experiences of creating large agent-based simulations to 
provide some general guidelines for best practice in agent-based model scaling.      

    H.  R.   Parry   (*)
     Department of Entomology ,  Commonwealth Scientifi c and Industrial Research Organisation 
(CSIRO) ,   Canberra ,  Australia    
e-mail:  Hazel.Parry@csiro.au 

      M.   Bithell  
     Department of Geography ,  University of Cambridge ,   Cambridge ,  UK    
e-mail:  mike.bithell@geog.cam.ac.uk   

    Chapter 14   
 Large Scale Agent-Based Modelling: A Review 
and Guidelines for Model Scaling       

       Hazel   R.   Parry       and    Mike   Bithell         



272 H.R. Parry and M. Bithell

    14.1   Introduction 

 In agent-based simulation (ABS), the term ‘large scale’ refers not just to a simula-
tion that contains many agents, but also refers to the problem of managing the com-
plexity of the simulation (Parry  2009  ) . Another term also used for such simulations 
is ‘Massively Multi-agent Systems (MMAS)’ or ‘Massive Agent-based Systems 
(MABS)’ (Ishida et al.  2005 ; Jamali et al.  2008  ) , the term ‘Massive’ being used in 
the general computing sense where it implies extremely large numbers (i.e. mil-
lions) of agents. 

 Resource limitations in ABS may be encountered as the modeller adds more 
agents to investigate whole system behaviour, as the modeller adds complexity to 
each agent in the form of rules and parameters, or when the modeller wishes to 
examine the response of an agent in a more realistic and complex environment. 
Haefner  (  1992 , pp. 156–157) had the foresight nearly 20 years ago to identify 
aspects of ecological individual-based models that would benefi t from advanced 
computing: multi-species models; models of large numbers of individuals within a 
population; models with greater realism in the behavioural and physiological mech-
anisms of movement; and models of individuals with ‘additional individual states’ 
(e.g. genetic variation). The introduction of a spatial dimension also adds complex-
ity and puts demands on computing resources, yet many agent-based models 
(ABMs) are spatial. 

 In this chapter we focus on spatial ABMs. We compare the aggregate ‘super-
individual’ approach as run on a single processor machine with two different 
approaches to parallelisation of agent models run on multi-core hardware, using 
Message-Passing Interface (MPI) libraries to achieve communication between 
cores. We use a model of insect population dynamics to provide specifi c examples 
of each approach. We point out the potential pitfalls that arise from aggregation of 
individuals in a spatial context and from communication complications that arise 
when moving from serial to parallel code. The advantages and disadvantages of 
each approach for speeding up computation and managing memory use will be 
discussed.  

    14.2   Review of Large-Scale Modelling Techniques 

 A number of methodologies have arisen to deal with the problem of ‘large scale’ 
simulations in the agent-based literature in a number of disciplines, ranging from 
molecular physics, social science, telecommunications and ecology, to military 
research. Some of these methods are given in Table  14.1 . This chapter focuses on 
the last two entries in the table, as the most common types of solution found in the 
literature: (1) model software restructuring; (2) computer hardware and software 
programming solutions, including the use of vector computers, Graphics Processing 
Units (GPUs) and parallel computing.   
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   Table 14.1    Potential solutions to implement when faced with a ‘large scale’ ABM (Adapted from 
Parry  2009  )    

 Solution  Pro  Con 

 Reduce the number of 
agents, or level of 
agent complexity, 
in order for model to 
run on existing 
hardware 

 No reprogramming 
of model 

 Assumes dynamics of a smaller or less 
complex system are suffi ciently identical 
to larger systems, or that there is a simple 
scaling relationship deducible from the 
reduced model 

 Revert to a population-
based modelling 
approach 

 Could potentially 
handle any 
number of 
individuals 

 Lose insights from agent approach. Effects 
of diversity in agent population lost. 
Emergent properties from simulation of 
non-linear interactions at agent level 
diffi cult to capture. Construction of 
entirely new model (not agent-based) 

 Invest in a larger 
or faster serial 
machine 

 No reprogramming 
of model 

 High cost. CPU speeds limited to gains of 
only a few percent (CPU speeds no 
longer increasing with Moore’s law). 
Most gain likely for large memory 
problems, but again maximum machine 
memory is limited. Multi-threading or 
parallelism would increase the utility of 
this approach (see last entry in the table) 

 Run the model on a 
vector computer 

 Potentially more 
effi cient as more 
calculations may be 
performed in 
a given time 

 High cost. Vector hardware not easy to 
obtain (although Graphics Processing 
Units (GPU) may compensate this 
somewhat – see below). This approach 
works more effi ciently with SIMD (see 
glossary), possibly not so suitable for 
ABMs with heterogeneous model 
processes 

 Super-individuals 
(model software 
restructuring) 

 Relatively simple 
solution, keeping 
model formulation 
similar 

 Restructuring of model. Aggregation can 
change dynamics. Potentially inappropri-
ate in a spatial context (Parry and Evans 
 2008  )  

 Invest in a large scale 
computer network 
and reprogram the 
model in parallel 

 Makes available high 
levels of memory 
and processing 
power 

 High cost (although lowering with advent of 
multi-core and GPU computing). 
Advanced computing skills required for 
reprogramming of model software. 
Algorithms need to be modifi ed to cope 
with out-of-order execution on different 
cores. Communication effi ciency 
between cores becomes important. 
Solutions required are problem 
dependent 
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    14.3   Model Software Restructuring: ‘Super-individuals’ 

 A relatively simple option is to implement an aggregation of the individual agents 
into ‘super-agents’, such as the ‘super-individual’ approach in ecological model-
ling (Scheffer et al.  1995  ) . Other terms coined for this approach in ecology are 
the ‘Lagrangian Ensemble’ method (Woods and Barkmann  1994 ; Woods  2005  )  
and ‘generalised individuals’ (Metz and de Roos  1992  ) . A similar approach has 
been termed ‘agent compression’ in social science (Wendel and Dibble  2007  ) , 
which is derived from an earlier ecological paper (Stage et al.  1993  ) . In many 
ways these approaches are analogous to the concept of ‘cohorts’, which has been 
used for a long time in entomological modelling (e.g. Barlow and Dixon  1980 ; 
Ramachandramurthi et al.  1997  ) . There are a number of examples of the super-
individual method in relation to ABMs in a wide range of literature, with examples 
in ecology (Schuler  2005 ; Parry and Evans  2008  )  and social science (epidemiology) 
(Dibble et al.  2007 ; Rao et al.  2009  ) . The basic concept of this approach is shown 
in Fig.  14.1 .  

 The challenge to using a super-individual approach is relating super-individuals 
to individuals in time and space (Parry and Evans  2008  ) . Some solutions to manag-
ing super-individuals spatially have been proposed, e.g. to maintain a constant num-
ber of super-individuals within a spatial unit or cell, so that individuals migrate from 
one super-individual in one cell to become part of a super-individual in another cell. 
However, these solutions still affect model behaviour and it comes down to a ‘trade-
off between error and computing costs’ (Hellweger  2008 , pp 148). This approach is 
still likely to have some limitations when behaviour at low densities is important 
and there is a strong spatial effect on the individuals. 

 Recent work has proposed a dynamic approach to the creation of super-individuals 
(Wendel and Dibble  2007  ) . Compression algorithms are applied to homogenous 
super-individuals to selectively compress their attributes. The algorithm can maintain 
the integrity of the original data; however, it can be an advantage for the algorithm 
to combine similar pieces of information to produce a more compact representation. 
The result is super-individuals that contain varying numbers of similar or identical 
individuals, from just a single individual to many, depending on the uniqueness of 
the individuals. The attributes of the individuals contained within the super-individual 
are monitored over time, so that if individuals differentiate themselves from the 
group (e.g. they change spatial location, perhaps to another spatial cell), they are 
extracted from the super-individual and become separate individuals. If the attri-
butes of the uncontained agent now match another super-individual, they may join 
that super-individual (e.g. they are added to a super-individual at their new spatial 
location). Although there is some computing overhead for this ‘dynamic agent com-
pression’, it has been show that it may give some effi ciency gain over an individual-
based model whilst promising to preserve heterogeneity as necessary (Wendel and 
Dibble  2007  ) . In general, the fewer unique agents in the simulation the more effec-
tive this approach will be.  
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    14.4   Parallel Computing 

 Instead of attempting to reduce the computational load by agent-aggregation, parallel 
approaches accept the requirement for large amounts of memory or CPU and attempt 
to solve the problem by distributing the calculation over many computational units. 
One sense in which such distribution can be used is for parameter-space exploration 
or Monte-Carlo simulations, in which many runs of a small serial (i.e. single-CPU) 
code may be required. In such cases, effi cient use of computer clusters can be made 
by running identical copies of the code on many separate machines using solutions 
such as CONDOR (  http://www.cs.wisc.edu/condor    ). While these are in a sense 
‘large-scale’ and make good use of multi-core or distributed computer resources on 
heterogeneous hardware, here we discuss the use of parallel computing to address the 
issue of models that require signifi cant resources even for a single model run. 

 Reprogramming a model in parallel is challenging. Despite this, over the last 
10 years or so it has become a popular solution for agent-based modellers in many 
different fi elds of research. These range from ecology (Lorek and Sonnenschein 
 1995 ; Abbott et al.  1997 ; Wang et al.  2004,   2005,   2006a,   b ; Immanuel et al.  2005 ; 
Parry et al.  2006a  )  and biology (Castiglione et al.  1997 ; Da-Jun et al.  2004  )  to social 
and economic science (Massaioli et al.  2005 ; Takeuchi  2005  )  and computer science 
(Popov et al.  2003  ) , including artifi cial intelligence and robotics (Bokma et al.  1994 ; 
Bouzid et al.  2001  ) . In the early 1990s, work in the fi eld of molecular-dynamics 
(MD) simulations proved parallel platforms to be highly successful in enabling 
large-scale MD simulation of up to 131 million particles – equivalent to very simple 

  Fig. 14.1    ‘Super-agents’: grouping of individuals into single objects that represent the collective 
(Taken from Parry and Evans  2008  )        
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‘agents’ (Lomdahl et al.  1993  ) . Today the same code has been tested and used to 
simulate up to 320 billion atoms on the BlueGene/L architecture containing 131,072 
IBM PowerPC440 processors (Kadau et al.  2006  ) . ABS in ecology and social science 
tend to comprise more complex agents. Therefore, distributed execution resources 
and timelines must be managed, full encapsulation of agents must be enforced, and 
tight control over message-based multi-agent interactions is necessary (Gasser et al. 
 2005  ) . ABMs can vary in complexity, but most tend to be complex, especially in the 
key model elements of spatial structure and agent heterogeneity. 

    14.4.1   Multi-core Architectures 

 ‘Parallel computing’ encompasses a wide range of computer architectures, where 
the common factor is that the system consists of a number of interconnected ‘cores’ 
(processing units), which may perform simultaneous calculations on different data 
(Wilkinson and Allen  2004  ) . These calculations may be the same or different, 
depending upon whether a ‘Single Instruction Multiple Data’ (SIMD) or ‘Multiple 
Instruction Multiple data’ (MIMD) approach is implemented (see glossary). Large-
scale shared-memory vector processing machines operating via SIMD are now 
something of a rarity (although individual processors will usually use such methods 
internally). On the other hand, desktop machines now typically have multi-core 
processors (with each core essentially acting as a separate CPU), and large-scale 
high performance computer (HPC) clusters built from such machines with fast low-
latency network inter-connects allow the same code to be tested on a desktop and 
then deployed to a larger system with little or no modifi cation. As there is no longer 
a trend toward increasing individual CPU speeds, increases in computing power are 
mostly coming from higher numbers of cores per chip, so that building parallel 
applications will be a necessary part of exploiting hardware improvements. By 
designing models that exploit local desktop parallelism and scale to HPC machines, 
one can not only benefi t from desktop speed improvements but also thoroughly test 
parallelization before making larger runs on more expensive systems. In practice 
MPI-based applications fulfi l this role well, but alternative architectures are begin-
ning to compete with this approach.  

    14.4.2   Graphics Processing Units (GPUs) 

 Recent advances in the power of Graphics Processing Units (GPU) now make it 
easier for modellers to take advantage of data-parallel computer architectures on 
desktop machines (Lysenko and D’Souza  2008  ) . Multi-core graphics cards can be 
used not just for display purposes, but also for more general numerical computing 
tasks (sometimes referred to as GPGPU (General Purpose GPU)). The need for high 
levels of inter-agent communication and agent movement can make it diffi cult for 
cluster-based parallel computing to be effi cient, an issue that may be addressed by 
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tighter communication within a GPU as these devices have been designed with very 
high memory bandwidth (although this comes at the cost of higher memory latency). 

 Essentially GPUs are similar to vector computers (see glossary). The structure of 
agent simulations (often with asynchronous updating and heterogeneous data types) 
could mean that running a simulation on a vector computer may make little differ-
ence to the simulation performance. This is because an ABM typically has few 
elements that could take advantage of SIMD: rarely the same value will be added 
(or subtracted) to a large number of data points (Nichols et al.  2008  ) . In particular, 
vector processors are less successful when a program does not have a regular struc-
ture, and they do not scale to arbitrarily large problems (the upper limit on the speed 
of a vector program will be some multiple of the speed of the CPU (Pacheco  1997  ) ). 
GPUs offer some advantage over vector processors – their operation is single 
process multiple data (SPMD) rather than SIMD, so that all processing units need 
not be executing that same instruction as in a SIMD system (Kirk and Hwu  2010  ) . 
Although it is diffi cult to keep the advantages of object-oriented code in a GPU 
environment, there can be considerable benefi ts in terms of speed. 

 The architecture of GPUs is rather different from traditional cluster systems. 
Groups of stream processors are arranged with their own local shared memory, plus 
access to global memory that resides on the GPU. To make use of this, data must be 
copied from the CPU-accessible memory into the graphics card. Then the data can 
be processed by invoking one of a number of ‘Kernel functions’ that run on the 
GPU. Lysenko and D’Souza  (  2008  )  reformulated two ABMs (Sugar-scape and 
Stupid Model) to operate on a GPU by the use of large, multi-dimensional arrays to 
contain the complete state of an agent. Kernels were programmed to run update 
functions on these arrays. A different kernel was created for each update function, 
which operated one at a time on the dataset. Some careful coding was required when 
handling mobile agents (see below), but good performance was obtained for models 
with a few millions of agents on a domain of up to 2,048 × 2,048 cells. However, 
their approach required explicit use of the graphics card’s texture maps and pixel 
colour values – such technical details make it awkward for the general programmer 
to easily access and exploit hardware of this type. Since that time, further develop-
ments have made it more straightforward to use GPUs for general computation with 
the advent of better hardware and libraries designed for the purpose such as 
NVIDIA’s CUDA (  http://developer.nvidia.com/object/cuda.html    ). These libraries 
relieve the programmer of some of the previous awkwardness involved in convert-
ing code for use on a GPU, although awareness of the hardware layout is still 
required in order to get good performance. Other similar libraries such as Apple’s 
openCL (Khronos  2010  ) , Intel Ct and Microsoft Direct Compute also exist, but as 
of the time of writing, seem to be in a less advanced state of development. These 
latter libraries also seek to incorporate some level of hardware independence and 
are therefore likely to be somewhat more involved to code with than CUDA (Kirk 
and Hwu  2010  ) . Object-oriented Molecular Dynamics (MD) code already exists 
that can exploit the CUDA library (Stone et al.  2007  ) , so that the prospect for 
making individual-based or agent-based code that exploits these libraries in the 
future would seem to be good. Typically for MD codes, a 240 core GPU seems to 
be able to deliver similar performance to a 32 core CPU cluster (see for example 
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  http://codeblue.umich.edu/hoomd-blue/benchmarks.html    ). Simulations of cell-level 
biological systems using FLAME (Richmond et al.  2009a,   b  ) , a fi nite-state machine 
agent architecture designed specifi cally to exploit parallel hardware, seem to bear 
out the potential for simulation speedup that a GPU can offer. However, problems 
with very large memory requirements may still be challenging for these architec-
tures (as of the time of writing the largest GPU memories are of order 4 GB). The 
solution in such cases is likely to require running on multiple GPUs, possibly dis-
tributed over many independent nodes, with the result that the message passing 
techniques described below will still be needed.  

    14.4.3   Challenges of Parallel Computing 

 Several key challenges arise when implementing an ABM in parallel, which may 
affect the increase in performance achieved. These include load balancing between 
cores, synchronising events to ensure causality, monitoring of the distributed sim-
ulation state, managing communication between nodes and dynamic resource 
allocation (Timm and Pawlaszczyk  2005  ) . Good load balancing and inter-node 
communication with event synchronisation are central to the development of an 
effi cient parallel simulation, a full discussion of which is in Parry  (  2009  ) . Notable 
examples of load balancing strategies can be found in Pacheco  (  1997  ) , including 
‘block mapping’ and ‘cyclic mapping’ (see glossary). 

 A further major hurdle is that many (perhaps most) ABMs are constructed with 
the aid of agent toolkits such as RePast or NetLogo. These toolkits may not be able 
to handle this conversion to another program representation (particularly an issue 
for GPU). Recently, Minson and Theodoropoulos  (  2008  )  have used a High Level 
Architecture (HLA) to distribute the RePast Toolkit for a small number of highly 
computationally intensive agents over up to 32 cores with signifi cant improvements 
in performance. Rao et al.  (  2009  )  express reservations about the general availability 
of such HLAs, however. In the examples that follow, we show an instance of RePast 
parallelised using a library (MPIJava 1 ) that adds external Message Passing Interface 
(MPI) 2  calls to Java, but use of this library required extensive restructuring of the 
original model code, as it was originally designed for serial execution. Since this 
work was carried out, a facility for making MPI-parallel models using C++ has been 
added to RePast. Conversion of existing Java code to C++ is usually fairly straight-
forward, (we will use an alternative C++ library later in this chapter) but the algo-
rithmic considerations regarding the changes needed to ensure correct functioning 
of parallel code discussed below are still relevant.  

   1   Message Passing Interface for Java (MPIJava)   http://www.hpjava.org/mpiJava.html     is no longer 
available for download online. It has been super-ceded by MPJ-Express   http://mpj-express.org/      
   2   See glossary for defi nition of MPI  
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    14.4.4   Approaches to Agent Parallelism 

 Parallel agent modelling requires that agent computation is distributed in a way that 
allows model updates to be carried out on many computational cores simultane-
ously. This can be achieved in a number of different ways, two of which we will 
illustrate further for the case of spatial models. In both cases the idea is to send the 
whole data-structure involved with each agent out to processor cores for updating. 
In the ‘agent parallel’ approach, this is done without reference to any spatial struc-
ture, but is needed for carrying out update tasks. The ‘environment parallel’ approach 
instead divides up the spatial domain between cores and carries the agents associ-
ated with each spatial unit along with the spatial sub-division. 

    14.4.4.1   The ‘Agent-Parallel’ Approach 

 This approach focuses on the agents and divides them between the cores, which 
keep track of the individual agents’ properties and spatial location. Thus, each core 
must keep up-to-date information on the complete environment and surrounding 
agents. Communication with other cores is necessary to update the actual agent 
densities for a given location as a result of movement, birth and death. This form of 
parallelisation is similar to ‘functional decomposition’ (Foster  1995  ) , which divides 
various model processes or calculations, though not necessarily agents, between 
cores. The advantage is that load balancing is more straightforward, as cores can be 
loaded with agents symmetrically so that each core bears as nearly as possible an 
equal share of the computation. However, since the spatial data are not included in 
this process, an extra overhead is implied in ensuring that spatially localized agent 
interactions are dealt with consistently, as co-location on a core does not guarantee 
co-location in space. 

 Examples from ecology:

   Aphids and hoverfl ies (Parry and Evans  • 2008  ) , the example used in this 
chapter.  
  Schools of fi sh (Lorek and Sonnenschein  • 1995  )  – includes an extension where 
fi sh are dynamically redistributed according to their neighbourhood to improve 
effi ciency.  
  Trees (one processor per tree) (Host et al.  • 2008  ) .  
  Landscape vegetation model (functional decomposition) (Cornwell et al.  • 2001  ) .  
  Daphnia, distributing individuals between processors as cohorts or ecotypes, • 
similar to super-individuals (Ramachandramurthi et al.  1997 ; Nichols et al. 
 2008  ) .    

 Examples from social science:

   Financial markets (Massaioli et al.  • 2005  ) .  
  Crowd simulation (Lozano et al.  • 2007  ) .     
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    14.4.4.2   The ‘Environment-Parallel’ Approach 

 This approach divides the geographical space between cores. The parallelisation 
focuses on a point in space (e.g. a grid cell), which is assigned to each core. The 
core then keeps track of all agent activity within that space. This has also been 
termed ‘geometric’ or ‘domain’ decomposition (Foster  1995  ) . Local spatial inter-
actions between agents are now likely also to be local to a single core, with poten-
tially easier co-ordination of agent updates. However, when the agents are highly 
mobile, or when the density of agents varies spatially over time, balancing the load 
between cores becomes more of an issue, as the allocation of agents to cores must 
be re-calculated at intervals that depend upon the model dynamics. 

 Examples from ecology:

   Parallel individual-based modeling of everglades deer ecology (Abbott et al. • 
 1997  ) .  
  Design and implementation of a parallel fi sh model for South Florida (Wang • 
et al.  2004  ) .  
  Fire simulation (Wu et al.  • 1996  ) .  
  Forest modelling (Chave  • 1999  ) .    

 Examples from social science:

   Parallel implementation of the TRANSIMS micro-simulation model (Nagel and • 
Rickert  2001  ) .  
  Abstract agent model ‘StupidModel’ (Lysenko and D’Souza  • 2008  ) .  
  Traffi c simulation (Dupuis and Chopard  • 2001  ) .  
  Disaster Mitigation (Takeuchi  • 2005  ) .       

    14.5   Model Software Restructuring Example: 
Spatial Super-Individuals 

 This example uses a spatially-explicit individual-based aphid model detailed in 
(Parry  2006 ; Parry et al.  2006 b); see also Sect.  14.6.1 . Turning the individuals in 
this simulation into ‘super-individuals’ involved only a small alteration of the 
model’s structure; for details see Parry and Evans  (  2008  ) . A variable was added to 
record the number of individuals that all super-individuals actually represent. 
Equations that were dependent on density (such as morphology determination) were 
altered so that the density values were related to the real number of individuals in 
the simulation, not the number of super-individuals. 

 Movement of super-individuals followed the same rules as that of individuals; 
however, this produced spatial clustering of the populations. The model was tested 
by Parry and Evans  (  2008  )  using varying populations of individuals (100, 1,000, 
10,000 and 100,000 and 500,000 individuals) represented by varying numbers of 
super-individuals. A brief summary of the fi ndings in this paper follow. 

 The super-individual model runs on a cellular landscape of 50 × 50 25m cells, 
with the initial population of apterous adult aphids initiated at the central cell. 
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    14.5.1   Temporal Results 

 The temporal comparison of super-individuals (representing 10,000 individuals) 
given in Parry and Evans  (  2008  )  is shown in Fig.  14.2 . The results for 1,000 super-
individuals (scale factor ten individuals per super-individual) are the only results 
that fall within the 95% confi dence limits of the original model for the duration of 
the simulation period. This is due to excessive discretization of mortality in the 
model for the super-individuals. Therefore, super-individuals composed of large 
numbers of individuals as shown here with low scale factors may be the only accept-
able way to use this approach, in this case.   

    14.5.2   Spatial Results 

 The spatial results given in Parry and Evans  (  2008  )  are summarised in Fig.  14.3 . 
Clustering is evident in the spatial distribution. The super-individuals are contained 
in fewer cells, closer to the origin, than the individual-based simulation for all 
instances of super-individuals, even those with a low scale factor. Thus, it is an 
important consideration for spatially-explicit models to test super-individual scaling 
approaches spatially as well as temporally, as temporal testing will not show the 
more sensitive spatial errors.    
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  Fig. 14.2    10,000 individuals: comparison between individual-based simulation, 1,000 super-
individual simulation (each represents 10 individuals), 100 super-individual simulation (each 
represents 100 individuals) and 10 super-individual simulation (each represents 1,000 individuals), 
showing 95% confi dence limits derived from the standard error (Taken from Parry and Evans  2008  )        
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    14.6   Parallel Computing Examples: ‘Agent-Parallel’ 
and ‘Environment-Parallel’ Approaches 

    14.6.1   Example of the Use of an Agent-Parallel Approach 

 This example uses a spatial predator–prey (hoverfl y-aphid) model to show how an 
agent-parallel model can be established. The model was constructed with the RePast 
2.0 agent-based software development toolkit for Java (  http://repast.sourceforge.
net/    ). The example illustrates how spatial interactions between predators and prey 
can lead to diffi culties in reproducing the results from serial code. 

  Fig. 14.3    Spatial density distributions for individual-based versus super-individual simulations 
(10,000 aphids) at (a) 2 days (b) 20 days and (c) 40 days. The distribution further from the central 
cell is infl uenced by the constant westerly wind direction to result in a linear movement pattern 
(Taken from Parry and Evans  2008  )        
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 The basic overall structure of the model system is similar to the structure used by 
Tenhumberg  (  2004  ) , which refers to two interacting sub-models for syrphid larvae 
and aphids. The model describes the population lifecycle of an aphid,  Rhopalosiphum 
padi . However, in the individual-based model presented here, the movement of 
adult female syrphids across the landscape is also modelled. This includes spatial as 
well as temporal population dynamics within a fi eld. Full details of the aphid sub-
model can be found elsewhere (Parry  2006 ; Parry et al.  2006 b), with a highly sim-
plifi ed model fl ow diagram shown in Fig.  14.4 .  

 The basic rules followed in the syrphid model are given in Fig.  14.5 , with more 
detail on the rules used in the hoverfl y model given in the Appendix, as this sub-
model is unpublished elsewhere. The two sub-models (aphids and hoverfl ies) are 
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connected to one another, by the consumption of aphids by hoverfl y larvae. The 
relationship between the two models is simplifi ed in Fig.  14.6 .   

 The simple model landscape is as shown later in this chapter, two rectangular 
fi elds split by a central margin (see Fig.  14.11 ). The space is divided into a set of 
square cells, each of area 1 m 2 . The model is initiated with one apterous adult aphid 
in each fi eld cell and one female adult hoverfl y in each cell at the fi eld margin. 

 In order to parallelise the model to distribute the agents to different cores in a 
cluster, a Message Passing Interface (see glossary) for Java was used   http://www.
hpjava.org/mpiJava.html     (no longer available for download, see footnote 1), run on 
a Beowulf cluster (see glossary). At each time step, agents are updated on the worker 
cores (see Fig.  14.7 ), as the control core maintains global insect density and aphid 
consumption information and controls the simulation fl ow.  

 Testing just the aphid model, simple tests of the parallel code versus the original 
model (without hoverfl y larvae) showed the parallel model to replicate the original 
serial model accurately. 

 However, when hoverfl y larvae were introduced, the parallel implementation did 
not replicate the original, non-parallel version. The added complexity of including 
predators gave rise to two major problems. The most complex element of the model 
to program was the interaction between the hoverfl ies and the aphids (i.e. aphid 
consumption). This involved additional message passing, as the hoverfl y might 
attempt to consume aphids allocated to another processor (although in the same cell 
geographically). Therefore, consumption for each cell had to be totalled on the con-
trol core and then messages passed to each core to instruct the core to remove a 
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given number of aphids in each cell. However, as these messages are only sent once 
per iteration, it was possible for more than one hoverfl y larvae to consume the same 
aphid (as the hoverfl y larvae would only have information from the previous model 
iteration on the total aphid densities within the cell, and would be unaware if an 
aphid had been consumed by another hoverfl y larva on another core). 

 The result was that, occasionally, the total calculated consumption of aphids per 
iteration per cell was greater than the total density of aphids per cell in that iteration. 
A simple fi x was added to recalculate the total consumption, so that when the total 
aphid consumption was greater than the total aphid density, the consumption was 
reduced to the total aphid density. However, the problem still remained, and it gave 
rise to lower aphid populations in the parallel model than in the non-parallel model, 
as shown by Fig.  14.8 .  

 In addition, more hoverfl ies were born into a cell than should be. During the 
same iteration, different female hoverfl ies on different processors may perceive a 
cell to have no larvae present, and then both lay in that cell. However, the model 
rules state that once larvae are present in a cell, no more larvae should be laid there. 
The result is likely to be higher numbers of larvae throughout the simulation, as 
shown in Fig.  14.9 . This also acts to reduce the aphid population below that of the 
non-parallel simulation.  

 The knock-on effect is that, although higher populations of larvae are present in 
the non-parallel model due to the artifi cial reduction in the aphid population and 
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artifi cial increase in the larvae population, these larvae are less likely to reach adult-
hood as there are not enough aphids to consume so that they undergo the transition 
to adulthood in the model before dying (a combination of higher competition due to 
the higher larvae density and lower aphid populations due to the higher consump-
tion rate) (Fig.  14.10 ).  

 These problems are not experienced in the non-parallel model, as it is straight-
forward to re-set the number of hoverfl y larvae present within a cell during a time-
step so that further hoverfl y larvae are not introduced mid-iteration, and the 
consumption of aphids does not confl ict as information on the number of aphids 
present can also be updated easily mid-iteration. 

 Such programming issues need to be resolved before the agent-parallel model 
can be used further in scenario development. However, the comparisons provide a 
valuable insight into the diffi culties that may arise when simulating increasingly 
complex ABMs in parallel. One possible solution may be the use of ‘ghost’ agents, 
as done by Nichols et al.  (  2008  ) . However, until tested with this particular model, 
it is uncertain if this would fully resolve the issues. More generally, this indicates 
that as the complexity of an ABM increases, it may be more effi cient to distribute 
the model environment (as described in the next section), rather than the agents, 
so that local agents may interact directly and update parameters within a single 
model iteration.  
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    14.6.2   Example of the Use of an Environment-Parallel Approach 

 The environment-parallel approach is essentially a form of domain-decomposition 
in which spatial units are passed out for processing by remote cores, rather than 
individual agents. Two challenges are: fi rstly, to effi ciently distribute the environ-
ment across cores so as to keep the processor load as even as possible and secondly, 
how to handle the interaction between, and movement of, the agents. 

 For the hoverfl y-aphid model described here, handling interactions is relatively 
simple – the landscape (see Fig.  14.11 ) is divided into a regular cellular grid, which 
is used to organise the search process by which hoverfl ies discover their prey. Note 
that this particle-in-cell approach need not constrain the actual spatial locations of 
agents, which may still take on values to a much higher level of precision than cell 
locations (c.f. Bithell and Macmillan  (  2007  ) ) – the cells can simply act as agent 
containers. Since the hoverfl y larvae are relatively immobile their search process is 
approximated as involving only the cell that they currently occupy (as opposed to 
having to search nearby cells – this introduces further complication as noted below). 
Cells can then be handed off to remote cores, for processing of all parts of the model 
that do not involve movement beyond cell boundaries (egg-laying by hoverfl y 
adults, predation by larvae, progression of larvae to adult hoverfl y, production of 
young by aphids, calculation of movement by either type of insect) during the fi rst 
part of the model timestep. Since all cells are independent at this point, this results 
in a high degree of effi ciency in the use of the distributed cores (provided that the 
cell distribution gives equal numbers of insects per core) whilst also resolving the 
issues arising in the agent-parallel methodology described above.  

 For the current simulation, cells are 1 m 2  – this means that typical movement per 
timestep (1 day) exceeds the cell size (see the Appendix) – insect movement may 
therefore necessitate transfer of agents from their current core to a remote core upon 
which their new cell is located. At the end of the above predation timestep, there-
fore, all the cells are synchronized across cores (to ensure that the same stage of 
calculation has been reached) and then a communication step is performed to move 
agents to their correct new locations (see Fig.  14.12 ). As this communication step is 
relatively expensive, it reduces the level of speedup achievable somewhat.  

 In order to implement the above scheme, the model was re-cast into C++, so that 
advantage could be taken of an existing data-parallel formulation (the graphcode 
library – Standish and Madina  2008  ) , in which the MPI-parallel part of the code is 
encapsulated in the formulation of the model grid, along with a utility program 
(named classdesc) that allows packing and unpacking of arbitrarily structured agents 
for transfer between cores, making it possible to defi ne the agent dynamics indepen-
dent of the details of the MPI libraries. 

 The serial model, when re-coded into C++, produces essentially identical results 
(barring very small variations introduced by the use of random number generators) 
to the original Java version. The parallel version of the code in this case shows 
negligible differences from the serial version. The re-coding of the model into C++ 
might be expected to have effi ciency gains before any parallelisation of the model 
(as shown for a similar individual-based model of a plant-aphid-disease system by 
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  Fig. 14.11    Snapshots of spatial distributions of aphids, hoverfl y larvae and hoverfl y adults showing 
spatial distribution over a 100 m × 200 m domain       
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Barnes and Hopkins  (  2003  ) ). However, at least for the current implementation, 
using Java openjdk 1.6.0 and gnu C++ 4.3.2, runtimes of the serial version of the 
code in the two languages proved to be comparable. The parallel versions of the two 
implementations are not compared as the Java simulation had signifi cant errors 
introduced by the parallelisation, as discussed in the preceding sections. An analysis 
of the speed-up of the Java model (when simulating aphids only) is given later in 
this chapter, which also draws comparisons with the speed of the super-individual 
model implementation and the effi ciency of the C++ environment-parallel model. 

 While the environment-parallel version of the model successfully reproduced the 
results of the serial code, the example presented so far has two simplifi cations that 
in practice side-step two of the more awkward issues that need to be addressed in 
creating parallel agent code – namely (a) domain decomposition is performed only 
once at the start of the run, where in principle it should be a dynamic process that is 
adaptive depending on agent density, in order to ensure a balanced load and (b) 
the interaction between agents takes place only within a single cell, thereby limiting 
the necessary processes to a single core. We discuss each of these in the following 
sections.

    (a)    Balancing loads in the spatially decomposed case 
 When the density of agents does not vary signifi cantly across the spatial domain 
(or the density is uniform but the internal computation within each agent is not 
spatially variable), then the decomposition of the domain can be achieved at the 
start of the run by allocating equal area blocks of cells to different processors; see 
e.g. Abbott et al.  (  1997  ) . However, where there are mobile agents, the density of 
occupation of the domain need not be uniform either spatially or temporally. 
Figure  14.11  shows two snapshots from the run of the aphid-hoverfl y model – one 
at day 2 and the other after 45 days. Note that initially the aphids are completely 
uniformly distributed, but hoverfl ies and larvae are concentrated near the middle 
of the domain. However, once signifi cant predation has taken place, aphids are 

  Fig. 14.12    Schematic to show the sequencing of the environment-parallel model. Note that here 
there is no distinction between workers and control – all cores are treated equally and all run the 
same set of processes       
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almost entirely excluded from the domain centre, with a similar distribution to the 
larvae, whereas the hoverfl y adults are almost uniformly spread. Since the aphids 
constitute the bulk of the computational load, a simple block decomposition of 
the domain with cores being allocated horizontal strips of cells across the domain 
from top to bottom would lead to cores near the domain centre spending much of 
their time idle compared to those nearer the upper and lower boundaries. 

 Since the evolution of the density is not necessarily known from the start of 
the run, a re-allocation of the cell-to-core mapping should be recomputed 
automatically as the run proceeds. In practice this is not always a simple 
thing to do effi ciently. Standish and Madina  (  2008  )  use the parallel graph 
partitioning library PARMETIS (  http://glaros/dtc/umn.edu/gkhome/metis/
parmetis/overview    ). Other methodologies exist based on space fi lling curves, 
e.g. Springel  (  2005  )  – see Fig.  14.13 . The latter has the advantage of being 
straightforward to code directly, but unlike PARMETIS, does not explicitly 
take into account communication overhead, and has the added disadvantage of 
requiring a domain that can be easily mapped by a self similar structure (e.g. in 
the example shown, the grid has to have a number of cells in each dimension 
that is a power of 2), making irregular regions with complex boundaries more 
diffi cult to handle.  

 In addition, any domain re-partitioning implies an overhead in re-building 
the allocation of cells to processor cores. How often this needs to be done and 
whether it is worth the time is problem dependent. For example, the C++ ver-
sion of the example code on a 200 × 100 m domain runs 124 days on 32 cores in 
just 7 s. A much larger domain or a larger number of days would likely be 
required before load-balancing the code would provide a practical benefi t.  

  Fig. 14.13    Spatial domain decomposition using a Peano-Hilbert space fi lling curve. A self-similar 
path is drawn connecting all the cells in the grid. The path is then traversed (as shown by the 
arrows), counting up the computational load, and the grid is then segmented along sections of 
the curve so that equal loads can be distributed to each core (here load is assumed proportional 
to the number of agents, shown as red dots)           
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    (b)    Dealing with non-local agent interactions 
 As mentioned above, we can overcome the problem of predators on different cores 
accessing the same prey by using the environment-parallel approach when the 
predators do not look beyond their own local cell. However, once a region of inter-
action exists that extends across many cells, the problem of co-ordinating agent 
actions on different cores re-surfaces. Indeed the typical particle-in-cell code uses 
at least a four or eight cell interaction region about a central cell; see e.g. Bithell 
and Macmillan  (  2007  ) . Once the spatial domain is split across cores, such interac-
tion regions also get subdivided. Typically the fi rst level required to deal with this 
problem is to maintain a ‘halo’ or ‘ghost’ region on each core, in which copies of 
the boundary cells that lie on a neighbouring core, together with  passive  copies of 
their contained agents, are kept on the local machine (Fig.  14.14 ).  

 This allows any independently computable symmetrical or uni-directional 
interactions to be accounted for immediately (examples would be molecular, 
smooth particle hydrodynamic or discrete element models, where forces 
encountered between interacting particles are equal and opposite, or are possibly 

  Fig. 14.14    Domain decomposition where agents interact with others outside their own local cell. 
The circled agent interacts with those in its own cell, but also those in the eight-member neighbour-
hood outlined by the blue square. On decomposition, part of this neighbourhood lies on a remote 
core. A halo region is therefore defi ned around the boundary of each decomposed part of the grid, 
into which passive copies of the appropriate remote cells can be placed. Locally active agents can 
then examine these copies in order to make decisions about interaction with the remotely stored 
agents. In this case, the circled agent can see one active agent on its own core, and 4 passive copies 
that are active on core 2. Agent copies in the halo cells are updated whenever their corresponding 
active counterparts on a remote core are changed           
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determined by an external fi eld, or disease models where contact with infectives 
leads to susceptibles acquiring disease, but the nature of the interaction is uni-
directional, with no feedback to the infecting agent). Update of the passive 
agent copies can be performed at the end of each timestep as required. However, 
for typical ecological or social simulations, this is unlikely to be suffi cient. 
Figure  14.15  illustrates a typical case. Here agent A is a predator that can see 

  Fig. 14.15    Predator–prey interaction taking place across cores.  Prey P  can see both  predator A  and 
the passive copy  B’ .  Predator A , however, only knows about  P , and not about  B’ . Active  predator B  
on core 2 can see two prey, one of which is the passive copy of  P . Predators and prey need to set and 
communicate fl ags to ensure consistency of action (see text). Once fl ags are consistent (fl ag on  P  
labels it with  A , fl ag on  A  labels it with  P ), then prey can be consumed as indicated by the  arrow        
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only the prey (P) on its own core. Agent B can see a prey on its own core, but 
also the passive copy of the prey visible to agent A. Suppose both A and B 
choose to attack prey P. Since the passive copy at fi rst knows nothing of the 
attack of agent A, potentially A and B could independently attempt to consume 
the whole of P, leading to over-counting of the available prey. Any solution 
of this problem must additionally take account of the fact that the order of 
execution on different cores cannot be guaranteed.      

 Lysenko and D’Souza  (  2008  )  encountered a similar problem in the allocation of 
single-occupancy spatial cells in their implementation of Stupid Model (Railsback 
et al.  2005  )  – they overcame this using a two-pass method in which the agents ini-
tially attempted to place a fl ag in the cell they wish to occupy – a pre-allocated pri-
ority allowed agents to compute independently which would succeed – and on a 
second pass, those agents with highest priority got to occupy the cells of their choice. 
However, in general, it will not be known a priori which agent should have priority 
over others, requiring some form of confl ict resolution to be performed: in the pred-
ator-prey case a competition between predators needs to ensue, and the outcome of 
this may not be known ahead of time. Mellott et al .   (  1999  )  discuss such a case in 
their implementation of deer predation by panthers, an extension of the earlier work 
by Abbott et al .   (  1997  ) . In essence, a further layer of communication is needed in 
order to ensure consistency between the cores. Looking back at Fig.  14.15 , we can 
envisage a three-pass algorithm in which the initial exchange is for each predator to 
mark itself with a fl ag indicating their interest in prey P. This fl ag is then copied 
across to the passive copy of the predator (in this case B’) on the neighbouring core. 
Prey P then examines predators that are within range and runs a confl ict resolution 
process (which may involve a more or less elaborate chase sequence involving A 
and B’) to resolve the winner of A and B’, setting a fl ag on itself with the identity of 
the winner. This fl ag can then also be copied across cores, and the predators can 
compare the fl ag on P with their own identity in order to fi nd the outcome. Clearly 
this kind of algorithm may need to be extended in the case of more complex preda-
tor strategies (hunting as groups, for example) or more complex cognitive agents 
able to take account of a more extensive view of their surroundings and the available 
options for attack or escape. Again the result would seem to be that a general algo-
rithm for dealing with this kind of parallel consistency issue is unlikely to be pos-
sible – the necessary solution is dictated by the problem at hand.   

    14.7   Potential Effi ciency Gains 

 This section fi rstly compares the super-individual model with a parallel implemen-
tation of the aphid model only, described in Parry and Evans  (  2008  ) . The aphid-only 
model parallelised well using the agent-parallel method as it lacked the complexity 
of the hoverfl y interactions. This shows how parallelisation and super-individuals 
can both help deal with increasing numbers of agents. 
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 The second part of the section presents the effi ciency gains in terms of memory 
and speed with increasing numbers of processors for the environment-parallel ver-
sion of the aphid-hoverfl y model, to illustrate how effi cient this method has been in 
parallelising this more complex model. 

    14.7.1   Model Speed and Increasing Numbers of Agents 

 Super-individuals always improve the model speed with increasing numbers of 
agents (Fig.  14.16 ). This improvement is linear (shown here on a log-log scale). The 
speed improvement is enormous for the largest simulations: 500,000 individuals 
simulated with super-individuals using a scale factor of 100,000 increases the model 
speed by over 500 times. However, it was shown above that only large simulations 
with a low scale factor (10–100) may benefi t from the super-individual approach. 
Thus for these scale factors, an improvement in model speed of approximately 
10,000–30,000% (100–300 times) the original speed would result for simulations of 
100,000–500,000 individuals.  

 For the agent-parallel implementation, adding more processors does not neces-
sarily increase the model speed. Figure  14.16  shows that for simulations run on two 

  Fig. 14.16    Plot of the percentage speed up from the individual-based (non-parallel) model against 
number of agents modelled: comparison between super-individuals of scale factor 10, 100, 1,000, 
10,000, 100,000 and 500,000       
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cores (one control core, one worker core) the simulation takes longer to run in 
parallel compared to the non-parallel model. Message passing time delay and the 
modifi ed structure of the code are responsible. As the number of cores used increases, 
the speed improvement depends on the number of agents simulated. The largest 
improvement in comparison to the non-parallel model is when more than 500,000 
agents are run across 25 cores, where model speed does scale linearly as the number 
of individuals increases. However, the parallel model is slower than the serial code 
for fewer than about 30,000 individuals. When only fi ve cores are used, the relation-
ship is more complex: for 100,000 agents, fi ve cores are faster than the non-parallel 
model, but for 500,000, the non-parallel model is faster. This is perhaps due to the 
balance between communication time increasing as the number of cores increases 
versus the decrease in time expected by increasing the number of cores. Overall, 
these results seem to suggest that when memory is suffi cient on a single processor, 
it is unlikely to be effi cient to parallelise the code unless the number of individuals 
is suffi ciently large.  

    14.7.2   Model Memory Use and Increasing Numbers of Agents 

 The individual-based model has a linear increase in the memory used as agent num-
bers increase (shown here on a log-log scale, Fig.  14.17 ).  

 Super-individuals always reduce the memory requirements of the simulation 
(Fig.  14.17 ). The relationship between the number of (real) individuals in the simu-
lation and the memory used is linear for each scale factor (number of individuals 
represented by each super-individual). The memory requirement for a simulation of 
super-individuals has a similar memory requirement to that of an individual-based 
simulation with the same number of agents as super-individuals. For simulations of 
100,000 agents, this can reduce the memory requirement to less than 10% of the 
memory required for the individual-based simulation with a scale factor of 10,000. 
For simulations of 500,000 agents, this may be reduced to around 1% with the same 
scale factor. Thus, when large scale factors are used and as agent numbers increase, 
there is very little extra demand on memory. 

 The mean maximum memory usage by each worker core in the agent-parallel 
simulations is signifi cantly lower than the non-parallel model, for simulations using 
more than two cores (Fig.  14.17 ). The relationship between the number of agents in 
the simulation and the memory used is linear for each number of cores. The two 
core simulation used more memory on the worker core than the non-parallel model 
when the simulation had 100,000 agents or above. This is probably due to the mem-
ory saved due to the separation of the visualization of the output onto the control 
core being over-ridden by the slight additional memory requirements introduced by 
the density calculations. However, when 5 and 25 cores are used, the memory 
requirements on each core are very much reduced, below that of the super-individual 
approach in some cases. The super-individual approach uses the least memory for 
500,000 individuals, apart from when only a scale factor of 10 is used (after which 
the 25 core parallel simulation is more memory effi cient).  
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    14.7.3   Hoverfl y-Aphid Model Environment-Parallel 
Programming Effi ciency 

 The C++ programmed environment-parallel version of the hoverfl y-aphid model 
was run on a dedicated cluster at CSIRO Black Mountain, Canberra. Each node in 
this network has 28x dual 3.2 GHz Xeon, with 2 or 4 Gbytes per node. 

 The speed-up of the model approximates a power law for up to 32 cores in 
comparison to the non-parallel serial model code run on a single processor 
(Fig.  14.18 ). At 64 processors the speed-up drops, probably due to the overhead 
required for each processor to run the model and the time taken for processors to 
communicate now exceeding the time take for the distributed model to run (at 32 
processors the model takes less than 7 s to run) – if tested with a longer or larger 
(more agents) run of the model, 64 processors would perhaps continue to show 
increased effi ciency as this would remove the effect of this overhead. In terms of 
memory, the parallel model uses much less memory per processor than the serial 
implementation, again approximately following a power-law decay up to 32 pro-
cessors (Fig.  14.19 ). Overall, of the two parallel approaches, the environment-
parallel version of the model, written in C++ instead of Java, proved more effi cient 
and successful at handling parallel processing of complex agent interactions in 
this case study.     

  Fig. 14.17    Plot of the mean maximum memory used in a simulation run against number of agents 
for the model, for different scale factors for super-individuals       

 



298 H.R. Parry and M. Bithell

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70

Number of Processors

S
p

ee
d

-u
p

 (
%

 o
f 

se
ri

al
 C

++
 m

o
d

el
 s

p
ee

d
)

Up to 32 processors 64 processors Power (Up to 32 processors)

  Fig. 14.18    Environment-parallel hoverfl y-aphid model: percentage speed-up from the individual-
based (non-parallel) model against number of processors. Under 32 processors, this approximates 
a power law relationship, as shown       

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35
Number of Processors

M
em

or
y 

us
e 

pe
r p

ro
ce

ss
or

 (M
B

)

Parallel code Serial code Power (Parallel code)

  Fig. 14.19    Environment-parallel hoverfl y-aphid model: Plot of the mean maximum memory used 
per processor in a simulation run against number of processors       

    14.8   Guidelines for Agent-Based Model Scaling 

 There is no standard method for the development of ABMs, although there are a 
number of agent modelling toolkits and recently some design protocols have arisen, 
e.g. Gilbert  (  2007  ) , Grimm et al.  (  2006  )  and Grimm and Railsback  (  2012  ) . Therefore, 
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as stated in Parry  (  2009  ) , there is no standard method with which a large scale ABM 
can be best developed. Instead, Parry  (  2009  )  puts forward some key questions to 
consider at this stage of model development, from Parry  (  2009 , pp 152):

    1.    What program design do you already have and what is the limitation of this 
design?

   (a)    What is the memory footprint for any existing implementation?  
   (b)    What are your current run times?      

    2.    What are your scaling requirements?

   (a)    How much do you need to scale now?  
   (b)    How far do you need to scale eventually?  
   (c)    How soon do you need to do it?      

    3.    How simple is your model and how is it structured?  
    4.    What are your agent complexities?  
    5.    What are your output requirements?     

 The answers to these questions will help to determine the kind of solution you 
might seek to the problems of scale. By initially investigating the ‘bottlenecks’ 
in your model, you will be able to understand whether it is memory availability 
or processor speed that is limiting your model. If simple adjustments to your 
model code are insuffi cient to solve this, other solutions will then need to be 
sought. Perhaps a hardware upgrade may be suffi cient, but if anything other than 
moderate scaling is required a more drastic but longer term solution might be 
necessary. 

 Question 3 is important to help decide which method may be optimal to scale up 
the model. Model complexity, agent interaction and spatial model environments 
will all pose challenges to the use of any method presented here. Some suggestions 
are made in this chapter as to how best to use some popular solutions when scaling 
a complex model. However, this cannot be exhaustive and a great deal of experi-
mentation, creativity and development of solutions appropriate to the individual 
model is likely to be necessary. 

 Model outputs may also pose limits on the model, in terms of memory for data 
storage or the way that the output is handled (which may become critical as the 
model is scaled up). This should be considered when scaling-up an ABM and alter-
ing the model structure. 

    14.8.1   A Protocol 

 In relation to the key considerations highlighted above, a simple protocol for devel-
oping a large scale ABS was defi ned by Parry  (  2009 , pp 153):

    1.    Optimise existing code.  
    2.    Clearly identify scaling requirements (both for now and in the future).  
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    3.    Consider simple solutions fi rst (e.g. a hardware upgrade).  
    4.    Consider more challenging solutions.  
    5.    Evaluate the suitability of the chosen scaling solution on a simplifi ed version of 

the model before implementing it on the full model.     

 The main scaling solution to implement (e.g. from Table  14.1 ) is defi ned by the 
requirements of the model. Implementation of more challenging solutions should be 
done in stages, where perhaps a simplifi ed version of the model is implemented on 
a larger scale using some of the techniques described here. Also, as demonstrated 
here, it is best to initially test the model with numbers lower than perhaps required 
for realism, to allow for faster run times when testing and experimenting with dif-
ferent approaches. Agent simulation development should originate with a local, 
fl exible ‘prototype’, and then as the model development progresses and stabilises 
larger scale implementations can be experimented with (Gasser et al.  2005  ) . For 
complex solutions, such as parallel computing, a simplifi ed model is often nec-
essary to experiment with large numbers. Improvements to model effi ciency are not 
necessarily linear and optimal solutions tend to be model specifi c. Thus solutions 
demonstrated here will work for some ABMs but perhaps not so well for others. 
A key point, however, is to devise a set of test cases against which the code modifi -
cations can be validated at every stage. Although this should be a standard part of 
any software development programme, it becomes even more vital in developing 
parallel solutions, where subtle issues to do with timing of agent updates and access 
to data across cores can lead to diffi cult debugging problems.       
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       Appendix: Rules for Hoverfl y Sub-Model 

      Development 

 Development of hoverfl ies is highly simplifi ed, and birth and death is minimised 
(see below). The only development that occurs in the model is the transition of 
larvae to adults. In this, there is a 50% probability that the hoverfl y will be female 
(determined at birth) and male hoverfl ies are not included in the model from this 
stage onwards as their activities are assumed not to infl uence the distribution of 
larvae and thus the mortality of the aphids. 

 The transition from larvae to adult is modelled with the assumption that the 
larvae need to eat a minimum of 120 aphids in total to reach a weight at which they 
are able to pupate (28 mg) (Ankersmit et al.  1986  ) . Thus, once this number of aphids 
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has been consumed by an individual larva it pupates and becomes an adult (if male, 
it is then removed from the model).  

      Reproduction 

 In this model oviposition occurs once within a single 1 m 2  area (i.e. grid cell) per 
day. This occurs providing aphids are present and the location has no other larvae. 
It is assumed only one egg is laid per day within the cell, and the egg is assumed to 
become a larva the next day. This is probably an underestimate; however, it can 
easily be modifi ed at a later stage. A suggested estimate may be up to 49 eggs within 
a 1 m 2  area per day, based upon Harmel et al.  (  2007  ) , where a high oviposition rate 
of  E. balteatus  was observed when aphid-infested potato was studied (a mean of 
48.9 eggs per laying and per female). This study also found that no eggs were pro-
duced by the hoverfl y on healthy aphid-free plants.  

      Mortality 

 The scenarios shown here do not include adult hoverfl y mortality. Experiments with 
mortality in the model showed that adult mortality has a high impact upon the popu-
lation dynamics of the syrphids and should be included in further developments of 
the model. 

 Mortality of larvae occurs when no aphids are present to feed them (possible if aphids 
are consumed or are alate and fl y away); otherwise there is no mortality of larvae.  

      Movement and Dispersal 

 Movement of syrphids and oviposition is key to this model. A number of rules govern 
the oviposition of larvae by female adult syrphids:

   Search for prey is not random (Kindlmann and Dixon  • 1993  ) .  
  Refrains from ovipositing in the presence of conspecifi c larvae (Hemptinne et al. • 
 1993  ) .  
  Avoids laying eggs close to old aphid colonies, recognized by the presence of • 
winged aphids (Hemptinne et al.  1993  ) .    

 In this model, rules govern a non-random search for prey, where eggs are only laid 
where aphid colonies are present and oviposition does not occur where larvae are already 
present. The model does not include a rule to recognise old aphid colonies at present, but 
this information is available in the model and could be included at a later stage.  
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      Basic Movement 

 A model of syrphid predator movement proposed by Kareiva and Odell  (  1987  )  is 
that predators move at constant speed but change direction of movement more often 
when satiated (area restricted search), and that increase in prey density increases the 
feeding rate and satiation of the predators (applied to  Uroleucon nigrotuberculatum  
and  Coccinella septempunctata ). However, this may have restricted applicability to 
the early stages of aphid colony development (Kindlmann and Dixon  1993  )  and it 
has not been proved that this strategy is optimal (it was arbitrarily chosen). 

 This model will use a simplifi ed movement rule based upon this principle – the 
adult female hoverfl ies move in a random direction, but move a greater distance if 
no aphids are present or the crop is early in season. It has been shown that crop 
growth stage and habitat type may infl uence syrphid movement patterns and ovipo-
sition (Powell et al.  2004  ) , providing the foundations for this behavioural rule. 

 It is assumed that hoverfl ies move between 4 and 6 m a day (given that a mark-
recapture study of Holloway and McCaffery  (  1990  )  found hoverfl ies moved between 
20–30 m in a 5 day period). Thus, in the model, ‘focused’ movement in favourable 
habitat (margins or late season crop) or around aphid colonies is set between 0 and 4 m, 
and in unfavourable habitat (early season crop), movement is set at 4–6 m per day.  

      Foraging Optimisation 

 It has been suggested that the model of Kareiva and Odell  (  1987  )  can be improved 
by adding terms to describe foraging optimisation (Kindlmann and Dixon  1993  ) . 
This will enable the model to function at later stages of aphid colony development. 
The ability of the predator to assess the present and future quality of an aphid colony 
for their larvae should be included in the model. The effect of more than one aphid 
colony present in a landscape should also be considered – the presence of other 
colonies is likely to reduce the optimal number of eggs laid by the predator in a 
particular aphid colony (Kindlmann and Dixon  1993  ) . 

 This is applied in the model through a simple behavioural rule: if there are aphids 
present within a given 1 m 2  location but other larvae are also present, the hoverfl y 
does not oviposit but moves on a short distance.  

      Parasitation/Predation 

 A very simple model of aphid consumption was constructed based on the research 
of Ankersmit et al.  (  1986  ) :

     
× ×= × +0.0337( 24) 0.0253( 24)(0.3119 (2.512 )A AMORT e D e    (14.1)  
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where  MORT  is the predation rate per day;  A  is the age of the Syrphid larvae in days; 
and  D  is the density of aphids per cm 2  (which is scaled down from 1 m 2  in the 
model). More recent, complex models exist, e.g. the use of a Holling type-III func-
tion by Tenhumberg  (  1995  ) . However, the nature of the model presented here at this 
stage does not require this level of complexity.    

  Glossary 

     Please note this glossary is largely taken from Parry  (  2009  ) .   

  Beowulf cluster    A scalable performance computer cluster (distributed system) 
based on commodity hardware, on a private system network, with open source 
software (Linux) infrastructure (see   http://www.beowulf.org/    )   

  Block Mapping    A method of partitioning an array of elements between cores of a 
distributed system, where the array elements are partitioned as evenly as possible 
into blocks of consecutive elements and assigned to processors. The size of the 
blocks approximates to the number of array elements divided by the number of 
processors.   

  Central Processing Unit (CPU)    May be referred to as a ‘core’ or ‘node’ in paral-
lel computing: computer hardware that executes (processes) a sequence of stored 
instructions (a program).   

  Cyclic Mapping    A method of partitioning an array of elements between cores 
of a distributed system, where the array elements are partitioned by cycling 
through each core and assigning individual elements of the array to each core 
in turn.   

  Grid    Computer ‘Grids’ are comprised of a large number of disparate computers 
(often desktop PCs) that are treated as a virtual cluster when linked to one 
another via a distributed communication infrastructure (such as the internet or 
an intranet). Grids facilitate sharing of computing, application, data and storage 
resources. Grid computing crosses geographic and institutional boundaries, lacks 
central control, and is dynamic as cores are added or removed in an uncoordi-
nated manner. BOINC computing is a form of distributed computing where idle 
time on CPUs may be used to process information (  http://boinc.berkeley.edu/    )   

  Graphics Processing Unit (GPU)    Computer hardware designed to effi ciently per-
form computer graphics calculations, particularly for 3-dimensional objects. It 
operates in a similar manner to a vector computer, but is now widely available as 
an alternative to the standard CPU found in desktop computers.   

  Message passing (MP)    Message passing (MP) is the principle way by which parallel 
clusters of machines are programmed. It is a widely-used, powerful and general 
method of enabling distribution and creating effi cient programs (Pacheco  1997  ) . 
Key advantages of using MP architectures are an ability to scale to many proces-
sors, fl exibility, ‘future-proofi ng’ of programs and portability (Openshaw and 
Turton  2000  ) .   
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  Message passing interface (MPI)    A computing standard that is used for program-
ming parallel systems. It is implemented as a library of code that may be used 
to enable message passing in a parallel computing system. Such libraries have 
largely been developed in C and FORTRAN, but are also used with other 
languages such as Java (MPJ-Express   http://mpj-express.org/    ). It enables devel-
opers of parallel software to write parallel programs that are both portable and 
effi cient.   

  Multiple Instruction Multiple Data (MIMD)    Parallelisation where different 
algorithms are applied to different data items on different processors.   

  Parallel computer architecture    A parallel computer architecture consists of a 
number of identical units that contain CPUs (Central Processing Units) and func-
tion as ordinary serial computers. These units, called cores, are connected to one 
another. They may transfer information and data between one another (e.g. via 
MPI) and simultaneously perform calculations on different data.   

  Single Instruction Multiple Data (SIMD)    SIMD techniques exploit data level 
parallelism: when a large mass of data of a uniform type needs the same instruc-
tion performed on it. An example is a vector or array processor and also a GPU. 
An application that may take advantage of SIMD is one where the same value is 
being added (or subtracted) to a large number of data points.   

  Stream Processing    Stream Processing is similar to a  SIMD  approach, where a 
mathematical operation is instructed to run on multiple data elements simulta-
neously.   

  Vector Computer/Vector Processor    Vector computers contain a CPU designed 
to run mathematical operations on multiple data elements simultaneously (rather 
than sequentially). This form of processing is essentially a SIMD approach. The 
Cray Y-MP and the Convex C3880 are two examples of vector processors used 
for supercomputing in the 1980s and 1990s. Today, most recent commodity CPU 
designs include some vector processing instructions.    
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