
271A.J. Heppenstall et al. (eds.), Agent-Based Models of Geographical Systems,
DOI 10.1007/978-90-481-8927-4_14, © Springer Science+Business Media B.V. 2012

 Abstract This chapter provides a review and examples of approaches to model
scaling when constructing large agent-based models. A comparison is made between
an aggregate ‘super-individual’ approach, as run on a single processor machine, and
two different approaches to parallelisation of agent models run on multi-core hard-
ware. Super-individuals provide a straightforward solution without much alteration
of the model formulation and result in large improvements in model effi ciency
(speed and memory use). However, there are signifi cant challenges to using a super-
individual approach when relating super-individuals to individuals in time and
space. Parallel computing approaches accept the requirement for large amounts of
memory or CPU and attempt to solve the problem by distributing the calculation
over many computational units. This requires some modifi cation of the model soft-
ware and algorithms to distribute the model components across multiple computa-
tional cores. This can be achieved in a number of different ways, two of which we
illustrate further for the case of spatial models, an ‘agent-parallel’ and an ‘environ-
ment-parallel’ approach. However, the success of such approaches may also be
affected by the complexity of the model (such as multiple agent types and agent
interactions), as we illustrate by adding a predator to our example simulation.
Between these two parallelisation approaches to the case study, the environment-
parallel version of the model, written in C++ instead of Java, proved more effi cient
and successful at handling parallel processing of complex agent interactions.
In conclusion, we use our experiences of creating large agent-based simulations to
provide some general guidelines for best practice in agent-based model scaling.

 H. R. Parry (*)
 Department of Entomology , Commonwealth Scientifi c and Industrial Research Organisation
(CSIRO) , Canberra , Australia
e-mail: Hazel.Parry@csiro.au

 M. Bithell
 Department of Geography , University of Cambridge , Cambridge , UK
e-mail: mike.bithell@geog.cam.ac.uk

 Chapter 14
 Large Scale Agent-Based Modelling: A Review
and Guidelines for Model Scaling

 Hazel R. Parry and Mike Bithell

272 H.R. Parry and M. Bithell

 14.1 Introduction

 In agent-based simulation (ABS), the term ‘large scale’ refers not just to a simula-
tion that contains many agents, but also refers to the problem of managing the com-
plexity of the simulation (Parry 2009) . Another term also used for such simulations
is ‘Massively Multi-agent Systems (MMAS)’ or ‘Massive Agent-based Systems
(MABS)’ (Ishida et al. 2005 ; Jamali et al. 2008) , the term ‘Massive’ being used in
the general computing sense where it implies extremely large numbers (i.e. mil-
lions) of agents.

 Resource limitations in ABS may be encountered as the modeller adds more
agents to investigate whole system behaviour, as the modeller adds complexity to
each agent in the form of rules and parameters, or when the modeller wishes to
examine the response of an agent in a more realistic and complex environment.
Haefner (1992 , pp. 156–157) had the foresight nearly 20 years ago to identify
aspects of ecological individual-based models that would benefi t from advanced
computing: multi-species models; models of large numbers of individuals within a
population; models with greater realism in the behavioural and physiological mech-
anisms of movement; and models of individuals with ‘additional individual states’
(e.g. genetic variation). The introduction of a spatial dimension also adds complex-
ity and puts demands on computing resources, yet many agent-based models
(ABMs) are spatial.

 In this chapter we focus on spatial ABMs. We compare the aggregate ‘super-
individual’ approach as run on a single processor machine with two different
approaches to parallelisation of agent models run on multi-core hardware, using
Message-Passing Interface (MPI) libraries to achieve communication between
cores. We use a model of insect population dynamics to provide specifi c examples
of each approach. We point out the potential pitfalls that arise from aggregation of
individuals in a spatial context and from communication complications that arise
when moving from serial to parallel code. The advantages and disadvantages of
each approach for speeding up computation and managing memory use will be
discussed.

 14.2 Review of Large-Scale Modelling Techniques

 A number of methodologies have arisen to deal with the problem of ‘large scale’
simulations in the agent-based literature in a number of disciplines, ranging from
molecular physics, social science, telecommunications and ecology, to military
research. Some of these methods are given in Table 14.1 . This chapter focuses on
the last two entries in the table, as the most common types of solution found in the
literature: (1) model software restructuring; (2) computer hardware and software
programming solutions, including the use of vector computers, Graphics Processing
Units (GPUs) and parallel computing.

27314 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

 Table 14.1 Potential solutions to implement when faced with a ‘large scale’ ABM (Adapted from
Parry 2009)

 Solution Pro Con

 Reduce the number of
agents, or level of
agent complexity,
in order for model to
run on existing
hardware

 No reprogramming
of model

 Assumes dynamics of a smaller or less
complex system are suffi ciently identical
to larger systems, or that there is a simple
scaling relationship deducible from the
reduced model

 Revert to a population-
based modelling
approach

 Could potentially
handle any
number of
individuals

 Lose insights from agent approach. Effects
of diversity in agent population lost.
Emergent properties from simulation of
non-linear interactions at agent level
diffi cult to capture. Construction of
entirely new model (not agent-based)

 Invest in a larger
or faster serial
machine

 No reprogramming
of model

 High cost. CPU speeds limited to gains of
only a few percent (CPU speeds no
longer increasing with Moore’s law).
Most gain likely for large memory
problems, but again maximum machine
memory is limited. Multi-threading or
parallelism would increase the utility of
this approach (see last entry in the table)

 Run the model on a
vector computer

 Potentially more
effi cient as more
calculations may be
performed in
a given time

 High cost. Vector hardware not easy to
obtain (although Graphics Processing
Units (GPU) may compensate this
somewhat – see below). This approach
works more effi ciently with SIMD (see
glossary), possibly not so suitable for
ABMs with heterogeneous model
processes

 Super-individuals
(model software
restructuring)

 Relatively simple
solution, keeping
model formulation
similar

 Restructuring of model. Aggregation can
change dynamics. Potentially inappropri-
ate in a spatial context (Parry and Evans
 2008)

 Invest in a large scale
computer network
and reprogram the
model in parallel

 Makes available high
levels of memory
and processing
power

 High cost (although lowering with advent of
multi-core and GPU computing).
Advanced computing skills required for
reprogramming of model software.
Algorithms need to be modifi ed to cope
with out-of-order execution on different
cores. Communication effi ciency
between cores becomes important.
Solutions required are problem
dependent

274 H.R. Parry and M. Bithell

 14.3 Model Software Restructuring: ‘Super-individuals’

 A relatively simple option is to implement an aggregation of the individual agents
into ‘super-agents’, such as the ‘super-individual’ approach in ecological model-
ling (Scheffer et al. 1995) . Other terms coined for this approach in ecology are
the ‘Lagrangian Ensemble’ method (Woods and Barkmann 1994 ; Woods 2005)
and ‘generalised individuals’ (Metz and de Roos 1992) . A similar approach has
been termed ‘agent compression’ in social science (Wendel and Dibble 2007) ,
which is derived from an earlier ecological paper (Stage et al. 1993) . In many
ways these approaches are analogous to the concept of ‘cohorts’, which has been
used for a long time in entomological modelling (e.g. Barlow and Dixon 1980 ;
Ramachandramurthi et al. 1997) . There are a number of examples of the super-
individual method in relation to ABMs in a wide range of literature, with examples
in ecology (Schuler 2005 ; Parry and Evans 2008) and social science (epidemiology)
(Dibble et al. 2007 ; Rao et al. 2009) . The basic concept of this approach is shown
in Fig. 14.1 .

 The challenge to using a super-individual approach is relating super-individuals
to individuals in time and space (Parry and Evans 2008) . Some solutions to manag-
ing super-individuals spatially have been proposed, e.g. to maintain a constant num-
ber of super-individuals within a spatial unit or cell, so that individuals migrate from
one super-individual in one cell to become part of a super-individual in another cell.
However, these solutions still affect model behaviour and it comes down to a ‘trade-
off between error and computing costs’ (Hellweger 2008 , pp 148). This approach is
still likely to have some limitations when behaviour at low densities is important
and there is a strong spatial effect on the individuals.

 Recent work has proposed a dynamic approach to the creation of super-individuals
(Wendel and Dibble 2007) . Compression algorithms are applied to homogenous
super-individuals to selectively compress their attributes. The algorithm can maintain
the integrity of the original data; however, it can be an advantage for the algorithm
to combine similar pieces of information to produce a more compact representation.
The result is super-individuals that contain varying numbers of similar or identical
individuals, from just a single individual to many, depending on the uniqueness of
the individuals. The attributes of the individuals contained within the super-individual
are monitored over time, so that if individuals differentiate themselves from the
group (e.g. they change spatial location, perhaps to another spatial cell), they are
extracted from the super-individual and become separate individuals. If the attri-
butes of the uncontained agent now match another super-individual, they may join
that super-individual (e.g. they are added to a super-individual at their new spatial
location). Although there is some computing overhead for this ‘dynamic agent com-
pression’, it has been show that it may give some effi ciency gain over an individual-
based model whilst promising to preserve heterogeneity as necessary (Wendel and
Dibble 2007) . In general, the fewer unique agents in the simulation the more effec-
tive this approach will be.

27514 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

 14.4 Parallel Computing

 Instead of attempting to reduce the computational load by agent-aggregation, parallel
approaches accept the requirement for large amounts of memory or CPU and attempt
to solve the problem by distributing the calculation over many computational units.
One sense in which such distribution can be used is for parameter-space exploration
or Monte-Carlo simulations, in which many runs of a small serial (i.e. single-CPU)
code may be required. In such cases, effi cient use of computer clusters can be made
by running identical copies of the code on many separate machines using solutions
such as CONDOR (http://www.cs.wisc.edu/condor). While these are in a sense
‘large-scale’ and make good use of multi-core or distributed computer resources on
heterogeneous hardware, here we discuss the use of parallel computing to address the
issue of models that require signifi cant resources even for a single model run.

 Reprogramming a model in parallel is challenging. Despite this, over the last
10 years or so it has become a popular solution for agent-based modellers in many
different fi elds of research. These range from ecology (Lorek and Sonnenschein
 1995 ; Abbott et al. 1997 ; Wang et al. 2004, 2005, 2006a, b ; Immanuel et al. 2005 ;
Parry et al. 2006a) and biology (Castiglione et al. 1997 ; Da-Jun et al. 2004) to social
and economic science (Massaioli et al. 2005 ; Takeuchi 2005) and computer science
(Popov et al. 2003) , including artifi cial intelligence and robotics (Bokma et al. 1994 ;
Bouzid et al. 2001) . In the early 1990s, work in the fi eld of molecular-dynamics
(MD) simulations proved parallel platforms to be highly successful in enabling
large-scale MD simulation of up to 131 million particles – equivalent to very simple

 Fig. 14.1 ‘Super-agents’: grouping of individuals into single objects that represent the collective
(Taken from Parry and Evans 2008)

276 H.R. Parry and M. Bithell

‘agents’ (Lomdahl et al. 1993) . Today the same code has been tested and used to
simulate up to 320 billion atoms on the BlueGene/L architecture containing 131,072
IBM PowerPC440 processors (Kadau et al. 2006) . ABS in ecology and social science
tend to comprise more complex agents. Therefore, distributed execution resources
and timelines must be managed, full encapsulation of agents must be enforced, and
tight control over message-based multi-agent interactions is necessary (Gasser et al.
 2005) . ABMs can vary in complexity, but most tend to be complex, especially in the
key model elements of spatial structure and agent heterogeneity.

 14.4.1 Multi-core Architectures

 ‘Parallel computing’ encompasses a wide range of computer architectures, where
the common factor is that the system consists of a number of interconnected ‘cores’
(processing units), which may perform simultaneous calculations on different data
(Wilkinson and Allen 2004) . These calculations may be the same or different,
depending upon whether a ‘Single Instruction Multiple Data’ (SIMD) or ‘Multiple
Instruction Multiple data’ (MIMD) approach is implemented (see glossary). Large-
scale shared-memory vector processing machines operating via SIMD are now
something of a rarity (although individual processors will usually use such methods
internally). On the other hand, desktop machines now typically have multi-core
processors (with each core essentially acting as a separate CPU), and large-scale
high performance computer (HPC) clusters built from such machines with fast low-
latency network inter-connects allow the same code to be tested on a desktop and
then deployed to a larger system with little or no modifi cation. As there is no longer
a trend toward increasing individual CPU speeds, increases in computing power are
mostly coming from higher numbers of cores per chip, so that building parallel
applications will be a necessary part of exploiting hardware improvements. By
designing models that exploit local desktop parallelism and scale to HPC machines,
one can not only benefi t from desktop speed improvements but also thoroughly test
parallelization before making larger runs on more expensive systems. In practice
MPI-based applications fulfi l this role well, but alternative architectures are begin-
ning to compete with this approach.

 14.4.2 Graphics Processing Units (GPUs)

 Recent advances in the power of Graphics Processing Units (GPU) now make it
easier for modellers to take advantage of data-parallel computer architectures on
desktop machines (Lysenko and D’Souza 2008) . Multi-core graphics cards can be
used not just for display purposes, but also for more general numerical computing
tasks (sometimes referred to as GPGPU (General Purpose GPU)). The need for high
levels of inter-agent communication and agent movement can make it diffi cult for
cluster-based parallel computing to be effi cient, an issue that may be addressed by

27714 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

tighter communication within a GPU as these devices have been designed with very
high memory bandwidth (although this comes at the cost of higher memory latency).

 Essentially GPUs are similar to vector computers (see glossary). The structure of
agent simulations (often with asynchronous updating and heterogeneous data types)
could mean that running a simulation on a vector computer may make little differ-
ence to the simulation performance. This is because an ABM typically has few
elements that could take advantage of SIMD: rarely the same value will be added
(or subtracted) to a large number of data points (Nichols et al. 2008) . In particular,
vector processors are less successful when a program does not have a regular struc-
ture, and they do not scale to arbitrarily large problems (the upper limit on the speed
of a vector program will be some multiple of the speed of the CPU (Pacheco 1997)).
GPUs offer some advantage over vector processors – their operation is single
process multiple data (SPMD) rather than SIMD, so that all processing units need
not be executing that same instruction as in a SIMD system (Kirk and Hwu 2010) .
Although it is diffi cult to keep the advantages of object-oriented code in a GPU
environment, there can be considerable benefi ts in terms of speed.

 The architecture of GPUs is rather different from traditional cluster systems.
Groups of stream processors are arranged with their own local shared memory, plus
access to global memory that resides on the GPU. To make use of this, data must be
copied from the CPU-accessible memory into the graphics card. Then the data can
be processed by invoking one of a number of ‘Kernel functions’ that run on the
GPU. Lysenko and D’Souza (2008) reformulated two ABMs (Sugar-scape and
Stupid Model) to operate on a GPU by the use of large, multi-dimensional arrays to
contain the complete state of an agent. Kernels were programmed to run update
functions on these arrays. A different kernel was created for each update function,
which operated one at a time on the dataset. Some careful coding was required when
handling mobile agents (see below), but good performance was obtained for models
with a few millions of agents on a domain of up to 2,048 × 2,048 cells. However,
their approach required explicit use of the graphics card’s texture maps and pixel
colour values – such technical details make it awkward for the general programmer
to easily access and exploit hardware of this type. Since that time, further develop-
ments have made it more straightforward to use GPUs for general computation with
the advent of better hardware and libraries designed for the purpose such as
NVIDIA’s CUDA (http://developer.nvidia.com/object/cuda.html). These libraries
relieve the programmer of some of the previous awkwardness involved in convert-
ing code for use on a GPU, although awareness of the hardware layout is still
required in order to get good performance. Other similar libraries such as Apple’s
openCL (Khronos 2010) , Intel Ct and Microsoft Direct Compute also exist, but as
of the time of writing, seem to be in a less advanced state of development. These
latter libraries also seek to incorporate some level of hardware independence and
are therefore likely to be somewhat more involved to code with than CUDA (Kirk
and Hwu 2010) . Object-oriented Molecular Dynamics (MD) code already exists
that can exploit the CUDA library (Stone et al. 2007) , so that the prospect for
making individual-based or agent-based code that exploits these libraries in the
future would seem to be good. Typically for MD codes, a 240 core GPU seems to
be able to deliver similar performance to a 32 core CPU cluster (see for example

278 H.R. Parry and M. Bithell

 http://codeblue.umich.edu/hoomd-blue/benchmarks.html). Simulations of cell-level
biological systems using FLAME (Richmond et al. 2009a, b) , a fi nite-state machine
agent architecture designed specifi cally to exploit parallel hardware, seem to bear
out the potential for simulation speedup that a GPU can offer. However, problems
with very large memory requirements may still be challenging for these architec-
tures (as of the time of writing the largest GPU memories are of order 4 GB). The
solution in such cases is likely to require running on multiple GPUs, possibly dis-
tributed over many independent nodes, with the result that the message passing
techniques described below will still be needed.

 14.4.3 Challenges of Parallel Computing

 Several key challenges arise when implementing an ABM in parallel, which may
affect the increase in performance achieved. These include load balancing between
cores, synchronising events to ensure causality, monitoring of the distributed sim-
ulation state, managing communication between nodes and dynamic resource
allocation (Timm and Pawlaszczyk 2005) . Good load balancing and inter-node
communication with event synchronisation are central to the development of an
effi cient parallel simulation, a full discussion of which is in Parry (2009) . Notable
examples of load balancing strategies can be found in Pacheco (1997) , including
‘block mapping’ and ‘cyclic mapping’ (see glossary).

 A further major hurdle is that many (perhaps most) ABMs are constructed with
the aid of agent toolkits such as RePast or NetLogo. These toolkits may not be able
to handle this conversion to another program representation (particularly an issue
for GPU). Recently, Minson and Theodoropoulos (2008) have used a High Level
Architecture (HLA) to distribute the RePast Toolkit for a small number of highly
computationally intensive agents over up to 32 cores with signifi cant improvements
in performance. Rao et al. (2009) express reservations about the general availability
of such HLAs, however. In the examples that follow, we show an instance of RePast
parallelised using a library (MPIJava 1) that adds external Message Passing Interface
(MPI) 2 calls to Java, but use of this library required extensive restructuring of the
original model code, as it was originally designed for serial execution. Since this
work was carried out, a facility for making MPI-parallel models using C++ has been
added to RePast. Conversion of existing Java code to C++ is usually fairly straight-
forward, (we will use an alternative C++ library later in this chapter) but the algo-
rithmic considerations regarding the changes needed to ensure correct functioning
of parallel code discussed below are still relevant.

 1 Message Passing Interface for Java (MPIJava) http://www.hpjava.org/mpiJava.html is no longer
available for download online. It has been super-ceded by MPJ-Express http://mpj-express.org/
 2 See glossary for defi nition of MPI

27914 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

 14.4.4 Approaches to Agent Parallelism

 Parallel agent modelling requires that agent computation is distributed in a way that
allows model updates to be carried out on many computational cores simultane-
ously. This can be achieved in a number of different ways, two of which we will
illustrate further for the case of spatial models. In both cases the idea is to send the
whole data-structure involved with each agent out to processor cores for updating.
In the ‘agent parallel’ approach, this is done without reference to any spatial struc-
ture, but is needed for carrying out update tasks. The ‘environment parallel’ approach
instead divides up the spatial domain between cores and carries the agents associ-
ated with each spatial unit along with the spatial sub-division.

 14.4.4.1 The ‘Agent-Parallel’ Approach

 This approach focuses on the agents and divides them between the cores, which
keep track of the individual agents’ properties and spatial location. Thus, each core
must keep up-to-date information on the complete environment and surrounding
agents. Communication with other cores is necessary to update the actual agent
densities for a given location as a result of movement, birth and death. This form of
parallelisation is similar to ‘functional decomposition’ (Foster 1995) , which divides
various model processes or calculations, though not necessarily agents, between
cores. The advantage is that load balancing is more straightforward, as cores can be
loaded with agents symmetrically so that each core bears as nearly as possible an
equal share of the computation. However, since the spatial data are not included in
this process, an extra overhead is implied in ensuring that spatially localized agent
interactions are dealt with consistently, as co-location on a core does not guarantee
co-location in space.

 Examples from ecology:

 Aphids and hoverfl ies (Parry and Evans • 2008) , the example used in this
chapter.
 Schools of fi sh (Lorek and Sonnenschein • 1995) – includes an extension where
fi sh are dynamically redistributed according to their neighbourhood to improve
effi ciency.
 Trees (one processor per tree) (Host et al. • 2008) .
 Landscape vegetation model (functional decomposition) (Cornwell et al. • 2001) .
 Daphnia, distributing individuals between processors as cohorts or ecotypes, •
similar to super-individuals (Ramachandramurthi et al. 1997 ; Nichols et al.
 2008) .

 Examples from social science:

 Financial markets (Massaioli et al. • 2005) .
 Crowd simulation (Lozano et al. • 2007) .

280 H.R. Parry and M. Bithell

 14.4.4.2 The ‘Environment-Parallel’ Approach

 This approach divides the geographical space between cores. The parallelisation
focuses on a point in space (e.g. a grid cell), which is assigned to each core. The
core then keeps track of all agent activity within that space. This has also been
termed ‘geometric’ or ‘domain’ decomposition (Foster 1995) . Local spatial inter-
actions between agents are now likely also to be local to a single core, with poten-
tially easier co-ordination of agent updates. However, when the agents are highly
mobile, or when the density of agents varies spatially over time, balancing the load
between cores becomes more of an issue, as the allocation of agents to cores must
be re-calculated at intervals that depend upon the model dynamics.

 Examples from ecology:

 Parallel individual-based modeling of everglades deer ecology (Abbott et al. •
 1997) .
 Design and implementation of a parallel fi sh model for South Florida (Wang •
et al. 2004) .
 Fire simulation (Wu et al. • 1996) .
 Forest modelling (Chave • 1999) .

 Examples from social science:

 Parallel implementation of the TRANSIMS micro-simulation model (Nagel and •
Rickert 2001) .
 Abstract agent model ‘StupidModel’ (Lysenko and D’Souza • 2008) .
 Traffi c simulation (Dupuis and Chopard • 2001) .
 Disaster Mitigation (Takeuchi • 2005) .

 14.5 Model Software Restructuring Example:
Spatial Super-Individuals

 This example uses a spatially-explicit individual-based aphid model detailed in
(Parry 2006 ; Parry et al. 2006 b); see also Sect. 14.6.1 . Turning the individuals in
this simulation into ‘super-individuals’ involved only a small alteration of the
model’s structure; for details see Parry and Evans (2008) . A variable was added to
record the number of individuals that all super-individuals actually represent.
Equations that were dependent on density (such as morphology determination) were
altered so that the density values were related to the real number of individuals in
the simulation, not the number of super-individuals.

 Movement of super-individuals followed the same rules as that of individuals;
however, this produced spatial clustering of the populations. The model was tested
by Parry and Evans (2008) using varying populations of individuals (100, 1,000,
10,000 and 100,000 and 500,000 individuals) represented by varying numbers of
super-individuals. A brief summary of the fi ndings in this paper follow.

 The super-individual model runs on a cellular landscape of 50 × 50 25m cells,
with the initial population of apterous adult aphids initiated at the central cell.

28114 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

 14.5.1 Temporal Results

 The temporal comparison of super-individuals (representing 10,000 individuals)
given in Parry and Evans (2008) is shown in Fig. 14.2 . The results for 1,000 super-
individuals (scale factor ten individuals per super-individual) are the only results
that fall within the 95% confi dence limits of the original model for the duration of
the simulation period. This is due to excessive discretization of mortality in the
model for the super-individuals. Therefore, super-individuals composed of large
numbers of individuals as shown here with low scale factors may be the only accept-
able way to use this approach, in this case.

 14.5.2 Spatial Results

 The spatial results given in Parry and Evans (2008) are summarised in Fig. 14.3 .
Clustering is evident in the spatial distribution. The super-individuals are contained
in fewer cells, closer to the origin, than the individual-based simulation for all
instances of super-individuals, even those with a low scale factor. Thus, it is an
important consideration for spatially-explicit models to test super-individual scaling
approaches spatially as well as temporally, as temporal testing will not show the
more sensitive spatial errors.

14000

12000

10000

8000

6000

4000

2000

0
266 286 306 326 346 366 386

10000

10 super individuals

100 super individuals

1000 super individuals

Julian day

M
ea

n
 p

o
p

u
la

ti
o

n
 c

en
tr

al
 c

el
l

 Fig. 14.2 10,000 individuals: comparison between individual-based simulation, 1,000 super-
individual simulation (each represents 10 individuals), 100 super-individual simulation (each
represents 100 individuals) and 10 super-individual simulation (each represents 1,000 individuals),
showing 95% confi dence limits derived from the standard error (Taken from Parry and Evans 2008)

282 H.R. Parry and M. Bithell

 14.6 Parallel Computing Examples: ‘Agent-Parallel’
and ‘Environment-Parallel’ Approaches

 14.6.1 Example of the Use of an Agent-Parallel Approach

 This example uses a spatial predator–prey (hoverfl y-aphid) model to show how an
agent-parallel model can be established. The model was constructed with the RePast
2.0 agent-based software development toolkit for Java (http://repast.sourceforge.
net/). The example illustrates how spatial interactions between predators and prey
can lead to diffi culties in reproducing the results from serial code.

 Fig. 14.3 Spatial density distributions for individual-based versus super-individual simulations
(10,000 aphids) at (a) 2 days (b) 20 days and (c) 40 days. The distribution further from the central
cell is infl uenced by the constant westerly wind direction to result in a linear movement pattern
(Taken from Parry and Evans 2008)

28314 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

 The basic overall structure of the model system is similar to the structure used by
Tenhumberg (2004) , which refers to two interacting sub-models for syrphid larvae
and aphids. The model describes the population lifecycle of an aphid, Rhopalosiphum
padi . However, in the individual-based model presented here, the movement of
adult female syrphids across the landscape is also modelled. This includes spatial as
well as temporal population dynamics within a fi eld. Full details of the aphid sub-
model can be found elsewhere (Parry 2006 ; Parry et al. 2006 b), with a highly sim-
plifi ed model fl ow diagram shown in Fig. 14.4 .

 The basic rules followed in the syrphid model are given in Fig. 14.5 , with more
detail on the rules used in the hoverfl y model given in the Appendix, as this sub-
model is unpublished elsewhere. The two sub-models (aphids and hoverfl ies) are

Post-step

Output results

Pre-step
Update the

environment

Immigration

Create nymphs
Update agents

(lifestage increase, mortality,
movement)

Update densities

Step

 Fig. 14.4 Simplifi ed fl ow chart for the aphid model

Start

Is hoverfly
adult?

YES

YES

YES

YES

YES

Finish

Move away
short distance

YES

Is crop early in
season?

NO

NO

Has larvae
consumed > 120

aphids?

Move away larger
distance

NO

Are enough
aphids

present?

Larvae
dies

Larvae pupates
(becomes adult)

NO

NO

Oviposit

Does location
have other

larvae?

NO

Does location
have aphids?

Consume
aphids

 Fig. 14.5 Flowchart of the syrphid model

284 H.R. Parry and M. Bithell

connected to one another, by the consumption of aphids by hoverfl y larvae. The
relationship between the two models is simplifi ed in Fig. 14.6 .

 The simple model landscape is as shown later in this chapter, two rectangular
fi elds split by a central margin (see Fig. 14.11). The space is divided into a set of
square cells, each of area 1 m 2 . The model is initiated with one apterous adult aphid
in each fi eld cell and one female adult hoverfl y in each cell at the fi eld margin.

 In order to parallelise the model to distribute the agents to different cores in a
cluster, a Message Passing Interface (see glossary) for Java was used http://www.
hpjava.org/mpiJava.html (no longer available for download, see footnote 1), run on
a Beowulf cluster (see glossary). At each time step, agents are updated on the worker
cores (see Fig. 14.7), as the control core maintains global insect density and aphid
consumption information and controls the simulation fl ow.

 Testing just the aphid model, simple tests of the parallel code versus the original
model (without hoverfl y larvae) showed the parallel model to replicate the original
serial model accurately.

 However, when hoverfl y larvae were introduced, the parallel implementation did
not replicate the original, non-parallel version. The added complexity of including
predators gave rise to two major problems. The most complex element of the model
to program was the interaction between the hoverfl ies and the aphids (i.e. aphid
consumption). This involved additional message passing, as the hoverfl y might
attempt to consume aphids allocated to another processor (although in the same cell
geographically). Therefore, consumption for each cell had to be totalled on the con-
trol core and then messages passed to each core to instruct the core to remove a

Alate movement,
Death due to
environmental factors or
hoverfly consumption.

Death due to
environmental factors or
hoverfly consumption.

Spatial individual-based
aphid population model

Nymphs Adults

Birth

Final Moult

Death due to lack
of aphids.

Larvae consume aphids, until
number consumed = pupation
threshold…then larvae become adult
hoverflies.

Larvae Spatial individual-based
hoverfly population model

Adult
females

Eggs laid according to crop
stage, presence of aphids
and presence of conspecific
larvae.

Pupation

Birth

Larvae
Adult

females
Larvae

Adult
females

 Fig. 14.6 Key processes of the hoverfl y-aphid model

28514 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

given number of aphids in each cell. However, as these messages are only sent once
per iteration, it was possible for more than one hoverfl y larvae to consume the same
aphid (as the hoverfl y larvae would only have information from the previous model
iteration on the total aphid densities within the cell, and would be unaware if an
aphid had been consumed by another hoverfl y larva on another core).

 The result was that, occasionally, the total calculated consumption of aphids per
iteration per cell was greater than the total density of aphids per cell in that iteration.
A simple fi x was added to recalculate the total consumption, so that when the total
aphid consumption was greater than the total aphid density, the consumption was
reduced to the total aphid density. However, the problem still remained, and it gave
rise to lower aphid populations in the parallel model than in the non-parallel model,
as shown by Fig. 14.8 .

 In addition, more hoverfl ies were born into a cell than should be. During the
same iteration, different female hoverfl ies on different processors may perceive a
cell to have no larvae present, and then both lay in that cell. However, the model
rules state that once larvae are present in a cell, no more larvae should be laid there.
The result is likely to be higher numbers of larvae throughout the simulation, as
shown in Fig. 14.9 . This also acts to reduce the aphid population below that of the
non-parallel simulation.

 The knock-on effect is that, although higher populations of larvae are present in
the non-parallel model due to the artifi cial reduction in the aphid population and

Output results

Reset arrays to 0
Receive local densities

from nodes
Send global density to

nodes

Worker
nodes

Receive local values and send
global values to nodes:

•Densities
•Consumption

•Nymphs

Update the environment

Control
node

Pre-step

Step Post-step

Update
consumption

•Create nymphs
•Update global densities

with consumption info
•Update agents

•Send local densities to
node 0

•Receive global density
from node 0

Send local values to control
node.

Receive global values from
Control Node.

Update the environment

Pre-step
Step

Post-step

 Fig. 14.7 Parallel model fl ow chart where blue text indicates interaction between the two sub-
models and red arrows indicate interaction between the control core and the worker cores

286 H.R. Parry and M. Bithell

0.1

1

10

100

1000

10000

0 20 40 60 80 100 120

Day

T
o

ta
l P

o
p

u
la

ti
o

n

Mean Hoverfly Larvae: Non-parallel

Mean Hoverfly Larvae: Parallel

 Fig. 14.9 Comparison of the temporal dynamics of the total population of hoverfl y larvae between
parallel and non-parallel simulation implementations

10000

100000

1000000

10000000

0 20 40 60 80 100 120

Day

T
o

ta
l P

o
p

u
la

ti
o

n
Mean Total Aphids: Non-parallel

Mean Total Aphids: Parallel

 Fig. 14.8 Comparison of the temporal dynamics of the total population of aphids between parallel
and non-parallel simulation implementations (error bars show standard error)

28714 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

artifi cial increase in the larvae population, these larvae are less likely to reach adult-
hood as there are not enough aphids to consume so that they undergo the transition
to adulthood in the model before dying (a combination of higher competition due to
the higher larvae density and lower aphid populations due to the higher consump-
tion rate) (Fig. 14.10).

 These problems are not experienced in the non-parallel model, as it is straight-
forward to re-set the number of hoverfl y larvae present within a cell during a time-
step so that further hoverfl y larvae are not introduced mid-iteration, and the
consumption of aphids does not confl ict as information on the number of aphids
present can also be updated easily mid-iteration.

 Such programming issues need to be resolved before the agent-parallel model
can be used further in scenario development. However, the comparisons provide a
valuable insight into the diffi culties that may arise when simulating increasingly
complex ABMs in parallel. One possible solution may be the use of ‘ghost’ agents,
as done by Nichols et al. (2008) . However, until tested with this particular model,
it is uncertain if this would fully resolve the issues. More generally, this indicates
that as the complexity of an ABM increases, it may be more effi cient to distribute
the model environment (as described in the next section), rather than the agents,
so that local agents may interact directly and update parameters within a single
model iteration.

100

1000

10000

0 20 40 60 80 100 120

Day

T
o

ta
l P

o
p

u
la

ti
o

n

Mean Adult Female Hoverfly: Non-parallel

Mean Adult Female Hoverfly: Parallel

 Fig. 14.10 Comparison of the temporal dynamics of the total population of adult female hoverfl y
between parallel and non-parallel simulation implementations (no mortality)

288 H.R. Parry and M. Bithell

 14.6.2 Example of the Use of an Environment-Parallel Approach

 The environment-parallel approach is essentially a form of domain-decomposition
in which spatial units are passed out for processing by remote cores, rather than
individual agents. Two challenges are: fi rstly, to effi ciently distribute the environ-
ment across cores so as to keep the processor load as even as possible and secondly,
how to handle the interaction between, and movement of, the agents.

 For the hoverfl y-aphid model described here, handling interactions is relatively
simple – the landscape (see Fig. 14.11) is divided into a regular cellular grid, which
is used to organise the search process by which hoverfl ies discover their prey. Note
that this particle-in-cell approach need not constrain the actual spatial locations of
agents, which may still take on values to a much higher level of precision than cell
locations (c.f. Bithell and Macmillan (2007)) – the cells can simply act as agent
containers. Since the hoverfl y larvae are relatively immobile their search process is
approximated as involving only the cell that they currently occupy (as opposed to
having to search nearby cells – this introduces further complication as noted below).
Cells can then be handed off to remote cores, for processing of all parts of the model
that do not involve movement beyond cell boundaries (egg-laying by hoverfl y
adults, predation by larvae, progression of larvae to adult hoverfl y, production of
young by aphids, calculation of movement by either type of insect) during the fi rst
part of the model timestep. Since all cells are independent at this point, this results
in a high degree of effi ciency in the use of the distributed cores (provided that the
cell distribution gives equal numbers of insects per core) whilst also resolving the
issues arising in the agent-parallel methodology described above.

 For the current simulation, cells are 1 m 2 – this means that typical movement per
timestep (1 day) exceeds the cell size (see the Appendix) – insect movement may
therefore necessitate transfer of agents from their current core to a remote core upon
which their new cell is located. At the end of the above predation timestep, there-
fore, all the cells are synchronized across cores (to ensure that the same stage of
calculation has been reached) and then a communication step is performed to move
agents to their correct new locations (see Fig. 14.12). As this communication step is
relatively expensive, it reduces the level of speedup achievable somewhat.

 In order to implement the above scheme, the model was re-cast into C++, so that
advantage could be taken of an existing data-parallel formulation (the graphcode
library – Standish and Madina 2008) , in which the MPI-parallel part of the code is
encapsulated in the formulation of the model grid, along with a utility program
(named classdesc) that allows packing and unpacking of arbitrarily structured agents
for transfer between cores, making it possible to defi ne the agent dynamics indepen-
dent of the details of the MPI libraries.

 The serial model, when re-coded into C++, produces essentially identical results
(barring very small variations introduced by the use of random number generators)
to the original Java version. The parallel version of the code in this case shows
negligible differences from the serial version. The re-coding of the model into C++
might be expected to have effi ciency gains before any parallelisation of the model
(as shown for a similar individual-based model of a plant-aphid-disease system by

28914 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

 Fig. 14.11 Snapshots of spatial distributions of aphids, hoverfl y larvae and hoverfl y adults showing
spatial distribution over a 100 m × 200 m domain

290 H.R. Parry and M. Bithell

Barnes and Hopkins (2003)). However, at least for the current implementation,
using Java openjdk 1.6.0 and gnu C++ 4.3.2, runtimes of the serial version of the
code in the two languages proved to be comparable. The parallel versions of the two
implementations are not compared as the Java simulation had signifi cant errors
introduced by the parallelisation, as discussed in the preceding sections. An analysis
of the speed-up of the Java model (when simulating aphids only) is given later in
this chapter, which also draws comparisons with the speed of the super-individual
model implementation and the effi ciency of the C++ environment-parallel model.

 While the environment-parallel version of the model successfully reproduced the
results of the serial code, the example presented so far has two simplifi cations that
in practice side-step two of the more awkward issues that need to be addressed in
creating parallel agent code – namely (a) domain decomposition is performed only
once at the start of the run, where in principle it should be a dynamic process that is
adaptive depending on agent density, in order to ensure a balanced load and (b)
the interaction between agents takes place only within a single cell, thereby limiting
the necessary processes to a single core. We discuss each of these in the following
sections.

 (a) Balancing loads in the spatially decomposed case
 When the density of agents does not vary signifi cantly across the spatial domain
(or the density is uniform but the internal computation within each agent is not
spatially variable), then the decomposition of the domain can be achieved at the
start of the run by allocating equal area blocks of cells to different processors; see
e.g. Abbott et al. (1997) . However, where there are mobile agents, the density of
occupation of the domain need not be uniform either spatially or temporally.
Figure 14.11 shows two snapshots from the run of the aphid-hoverfl y model – one
at day 2 and the other after 45 days. Note that initially the aphids are completely
uniformly distributed, but hoverfl ies and larvae are concentrated near the middle
of the domain. However, once signifi cant predation has taken place, aphids are

 Fig. 14.12 Schematic to show the sequencing of the environment-parallel model. Note that here
there is no distinction between workers and control – all cores are treated equally and all run the
same set of processes

29114 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

almost entirely excluded from the domain centre, with a similar distribution to the
larvae, whereas the hoverfl y adults are almost uniformly spread. Since the aphids
constitute the bulk of the computational load, a simple block decomposition of
the domain with cores being allocated horizontal strips of cells across the domain
from top to bottom would lead to cores near the domain centre spending much of
their time idle compared to those nearer the upper and lower boundaries.

 Since the evolution of the density is not necessarily known from the start of
the run, a re-allocation of the cell-to-core mapping should be recomputed
automatically as the run proceeds. In practice this is not always a simple
thing to do effi ciently. Standish and Madina (2008) use the parallel graph
partitioning library PARMETIS (http://glaros/dtc/umn.edu/gkhome/metis/
parmetis/overview). Other methodologies exist based on space fi lling curves,
e.g. Springel (2005) – see Fig. 14.13 . The latter has the advantage of being
straightforward to code directly, but unlike PARMETIS, does not explicitly
take into account communication overhead, and has the added disadvantage of
requiring a domain that can be easily mapped by a self similar structure (e.g. in
the example shown, the grid has to have a number of cells in each dimension
that is a power of 2), making irregular regions with complex boundaries more
diffi cult to handle.

 In addition, any domain re-partitioning implies an overhead in re-building
the allocation of cells to processor cores. How often this needs to be done and
whether it is worth the time is problem dependent. For example, the C++ ver-
sion of the example code on a 200 × 100 m domain runs 124 days on 32 cores in
just 7 s. A much larger domain or a larger number of days would likely be
required before load-balancing the code would provide a practical benefi t.

 Fig. 14.13 Spatial domain decomposition using a Peano-Hilbert space fi lling curve. A self-similar
path is drawn connecting all the cells in the grid. The path is then traversed (as shown by the
arrows), counting up the computational load, and the grid is then segmented along sections of
the curve so that equal loads can be distributed to each core (here load is assumed proportional
to the number of agents, shown as red dots)

292 H.R. Parry and M. Bithell

 (b) Dealing with non-local agent interactions
 As mentioned above, we can overcome the problem of predators on different cores
accessing the same prey by using the environment-parallel approach when the
predators do not look beyond their own local cell. However, once a region of inter-
action exists that extends across many cells, the problem of co-ordinating agent
actions on different cores re-surfaces. Indeed the typical particle-in-cell code uses
at least a four or eight cell interaction region about a central cell; see e.g. Bithell
and Macmillan (2007) . Once the spatial domain is split across cores, such interac-
tion regions also get subdivided. Typically the fi rst level required to deal with this
problem is to maintain a ‘halo’ or ‘ghost’ region on each core, in which copies of
the boundary cells that lie on a neighbouring core, together with passive copies of
their contained agents, are kept on the local machine (Fig. 14.14).

 This allows any independently computable symmetrical or uni-directional
interactions to be accounted for immediately (examples would be molecular,
smooth particle hydrodynamic or discrete element models, where forces
encountered between interacting particles are equal and opposite, or are possibly

 Fig. 14.14 Domain decomposition where agents interact with others outside their own local cell.
The circled agent interacts with those in its own cell, but also those in the eight-member neighbour-
hood outlined by the blue square. On decomposition, part of this neighbourhood lies on a remote
core. A halo region is therefore defi ned around the boundary of each decomposed part of the grid,
into which passive copies of the appropriate remote cells can be placed. Locally active agents can
then examine these copies in order to make decisions about interaction with the remotely stored
agents. In this case, the circled agent can see one active agent on its own core, and 4 passive copies
that are active on core 2. Agent copies in the halo cells are updated whenever their corresponding
active counterparts on a remote core are changed

29314 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

determined by an external fi eld, or disease models where contact with infectives
leads to susceptibles acquiring disease, but the nature of the interaction is uni-
directional, with no feedback to the infecting agent). Update of the passive
agent copies can be performed at the end of each timestep as required. However,
for typical ecological or social simulations, this is unlikely to be suffi cient.
Figure 14.15 illustrates a typical case. Here agent A is a predator that can see

 Fig. 14.15 Predator–prey interaction taking place across cores. Prey P can see both predator A and
the passive copy B’ . Predator A , however, only knows about P , and not about B’ . Active predator B
on core 2 can see two prey, one of which is the passive copy of P . Predators and prey need to set and
communicate fl ags to ensure consistency of action (see text). Once fl ags are consistent (fl ag on P
labels it with A , fl ag on A labels it with P), then prey can be consumed as indicated by the arrow

294 H.R. Parry and M. Bithell

only the prey (P) on its own core. Agent B can see a prey on its own core, but
also the passive copy of the prey visible to agent A. Suppose both A and B
choose to attack prey P. Since the passive copy at fi rst knows nothing of the
attack of agent A, potentially A and B could independently attempt to consume
the whole of P, leading to over-counting of the available prey. Any solution
of this problem must additionally take account of the fact that the order of
execution on different cores cannot be guaranteed.

 Lysenko and D’Souza (2008) encountered a similar problem in the allocation of
single-occupancy spatial cells in their implementation of Stupid Model (Railsback
et al. 2005) – they overcame this using a two-pass method in which the agents ini-
tially attempted to place a fl ag in the cell they wish to occupy – a pre-allocated pri-
ority allowed agents to compute independently which would succeed – and on a
second pass, those agents with highest priority got to occupy the cells of their choice.
However, in general, it will not be known a priori which agent should have priority
over others, requiring some form of confl ict resolution to be performed: in the pred-
ator-prey case a competition between predators needs to ensue, and the outcome of
this may not be known ahead of time. Mellott et al . (1999) discuss such a case in
their implementation of deer predation by panthers, an extension of the earlier work
by Abbott et al . (1997) . In essence, a further layer of communication is needed in
order to ensure consistency between the cores. Looking back at Fig. 14.15 , we can
envisage a three-pass algorithm in which the initial exchange is for each predator to
mark itself with a fl ag indicating their interest in prey P. This fl ag is then copied
across to the passive copy of the predator (in this case B’) on the neighbouring core.
Prey P then examines predators that are within range and runs a confl ict resolution
process (which may involve a more or less elaborate chase sequence involving A
and B’) to resolve the winner of A and B’, setting a fl ag on itself with the identity of
the winner. This fl ag can then also be copied across cores, and the predators can
compare the fl ag on P with their own identity in order to fi nd the outcome. Clearly
this kind of algorithm may need to be extended in the case of more complex preda-
tor strategies (hunting as groups, for example) or more complex cognitive agents
able to take account of a more extensive view of their surroundings and the available
options for attack or escape. Again the result would seem to be that a general algo-
rithm for dealing with this kind of parallel consistency issue is unlikely to be pos-
sible – the necessary solution is dictated by the problem at hand.

 14.7 Potential Effi ciency Gains

 This section fi rstly compares the super-individual model with a parallel implemen-
tation of the aphid model only, described in Parry and Evans (2008) . The aphid-only
model parallelised well using the agent-parallel method as it lacked the complexity
of the hoverfl y interactions. This shows how parallelisation and super-individuals
can both help deal with increasing numbers of agents.

29514 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

 The second part of the section presents the effi ciency gains in terms of memory
and speed with increasing numbers of processors for the environment-parallel ver-
sion of the aphid-hoverfl y model, to illustrate how effi cient this method has been in
parallelising this more complex model.

 14.7.1 Model Speed and Increasing Numbers of Agents

 Super-individuals always improve the model speed with increasing numbers of
agents (Fig. 14.16). This improvement is linear (shown here on a log-log scale). The
speed improvement is enormous for the largest simulations: 500,000 individuals
simulated with super-individuals using a scale factor of 100,000 increases the model
speed by over 500 times. However, it was shown above that only large simulations
with a low scale factor (10–100) may benefi t from the super-individual approach.
Thus for these scale factors, an improvement in model speed of approximately
10,000–30,000% (100–300 times) the original speed would result for simulations of
100,000–500,000 individuals.

 For the agent-parallel implementation, adding more processors does not neces-
sarily increase the model speed. Figure 14.16 shows that for simulations run on two

 Fig. 14.16 Plot of the percentage speed up from the individual-based (non-parallel) model against
number of agents modelled: comparison between super-individuals of scale factor 10, 100, 1,000,
10,000, 100,000 and 500,000

296 H.R. Parry and M. Bithell

cores (one control core, one worker core) the simulation takes longer to run in
parallel compared to the non-parallel model. Message passing time delay and the
modifi ed structure of the code are responsible. As the number of cores used increases,
the speed improvement depends on the number of agents simulated. The largest
improvement in comparison to the non-parallel model is when more than 500,000
agents are run across 25 cores, where model speed does scale linearly as the number
of individuals increases. However, the parallel model is slower than the serial code
for fewer than about 30,000 individuals. When only fi ve cores are used, the relation-
ship is more complex: for 100,000 agents, fi ve cores are faster than the non-parallel
model, but for 500,000, the non-parallel model is faster. This is perhaps due to the
balance between communication time increasing as the number of cores increases
versus the decrease in time expected by increasing the number of cores. Overall,
these results seem to suggest that when memory is suffi cient on a single processor,
it is unlikely to be effi cient to parallelise the code unless the number of individuals
is suffi ciently large.

 14.7.2 Model Memory Use and Increasing Numbers of Agents

 The individual-based model has a linear increase in the memory used as agent num-
bers increase (shown here on a log-log scale, Fig. 14.17).

 Super-individuals always reduce the memory requirements of the simulation
(Fig. 14.17). The relationship between the number of (real) individuals in the simu-
lation and the memory used is linear for each scale factor (number of individuals
represented by each super-individual). The memory requirement for a simulation of
super-individuals has a similar memory requirement to that of an individual-based
simulation with the same number of agents as super-individuals. For simulations of
100,000 agents, this can reduce the memory requirement to less than 10% of the
memory required for the individual-based simulation with a scale factor of 10,000.
For simulations of 500,000 agents, this may be reduced to around 1% with the same
scale factor. Thus, when large scale factors are used and as agent numbers increase,
there is very little extra demand on memory.

 The mean maximum memory usage by each worker core in the agent-parallel
simulations is signifi cantly lower than the non-parallel model, for simulations using
more than two cores (Fig. 14.17). The relationship between the number of agents in
the simulation and the memory used is linear for each number of cores. The two
core simulation used more memory on the worker core than the non-parallel model
when the simulation had 100,000 agents or above. This is probably due to the mem-
ory saved due to the separation of the visualization of the output onto the control
core being over-ridden by the slight additional memory requirements introduced by
the density calculations. However, when 5 and 25 cores are used, the memory
requirements on each core are very much reduced, below that of the super-individual
approach in some cases. The super-individual approach uses the least memory for
500,000 individuals, apart from when only a scale factor of 10 is used (after which
the 25 core parallel simulation is more memory effi cient).

29714 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

 14.7.3 Hoverfl y-Aphid Model Environment-Parallel
Programming Effi ciency

 The C++ programmed environment-parallel version of the hoverfl y-aphid model
was run on a dedicated cluster at CSIRO Black Mountain, Canberra. Each node in
this network has 28x dual 3.2 GHz Xeon, with 2 or 4 Gbytes per node.

 The speed-up of the model approximates a power law for up to 32 cores in
comparison to the non-parallel serial model code run on a single processor
(Fig. 14.18). At 64 processors the speed-up drops, probably due to the overhead
required for each processor to run the model and the time taken for processors to
communicate now exceeding the time take for the distributed model to run (at 32
processors the model takes less than 7 s to run) – if tested with a longer or larger
(more agents) run of the model, 64 processors would perhaps continue to show
increased effi ciency as this would remove the effect of this overhead. In terms of
memory, the parallel model uses much less memory per processor than the serial
implementation, again approximately following a power-law decay up to 32 pro-
cessors (Fig. 14.19). Overall, of the two parallel approaches, the environment-
parallel version of the model, written in C++ instead of Java, proved more effi cient
and successful at handling parallel processing of complex agent interactions in
this case study.

 Fig. 14.17 Plot of the mean maximum memory used in a simulation run against number of agents
for the model, for different scale factors for super-individuals

298 H.R. Parry and M. Bithell

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70

Number of Processors

S
p

ee
d

-u
p

 (
%

 o
f

se
ri

al
 C

++
 m

o
d

el
 s

p
ee

d
)

Up to 32 processors 64 processors Power (Up to 32 processors)

 Fig. 14.18 Environment-parallel hoverfl y-aphid model: percentage speed-up from the individual-
based (non-parallel) model against number of processors. Under 32 processors, this approximates
a power law relationship, as shown

0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35
Number of Processors

M
em

or
y

us
e

pe
r p

ro
ce

ss
or

 (M
B

)

Parallel code Serial code Power (Parallel code)

 Fig. 14.19 Environment-parallel hoverfl y-aphid model: Plot of the mean maximum memory used
per processor in a simulation run against number of processors

 14.8 Guidelines for Agent-Based Model Scaling

 There is no standard method for the development of ABMs, although there are a
number of agent modelling toolkits and recently some design protocols have arisen,
e.g. Gilbert (2007) , Grimm et al. (2006) and Grimm and Railsback (2012) . Therefore,

29914 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

as stated in Parry (2009) , there is no standard method with which a large scale ABM
can be best developed. Instead, Parry (2009) puts forward some key questions to
consider at this stage of model development, from Parry (2009 , pp 152):

 1. What program design do you already have and what is the limitation of this
design?

 (a) What is the memory footprint for any existing implementation?
 (b) What are your current run times?

 2. What are your scaling requirements?

 (a) How much do you need to scale now?
 (b) How far do you need to scale eventually?
 (c) How soon do you need to do it?

 3. How simple is your model and how is it structured?
 4. What are your agent complexities?
 5. What are your output requirements?

 The answers to these questions will help to determine the kind of solution you
might seek to the problems of scale. By initially investigating the ‘bottlenecks’
in your model, you will be able to understand whether it is memory availability
or processor speed that is limiting your model. If simple adjustments to your
model code are insuffi cient to solve this, other solutions will then need to be
sought. Perhaps a hardware upgrade may be suffi cient, but if anything other than
moderate scaling is required a more drastic but longer term solution might be
necessary.

 Question 3 is important to help decide which method may be optimal to scale up
the model. Model complexity, agent interaction and spatial model environments
will all pose challenges to the use of any method presented here. Some suggestions
are made in this chapter as to how best to use some popular solutions when scaling
a complex model. However, this cannot be exhaustive and a great deal of experi-
mentation, creativity and development of solutions appropriate to the individual
model is likely to be necessary.

 Model outputs may also pose limits on the model, in terms of memory for data
storage or the way that the output is handled (which may become critical as the
model is scaled up). This should be considered when scaling-up an ABM and alter-
ing the model structure.

 14.8.1 A Protocol

 In relation to the key considerations highlighted above, a simple protocol for devel-
oping a large scale ABS was defi ned by Parry (2009 , pp 153):

 1. Optimise existing code.
 2. Clearly identify scaling requirements (both for now and in the future).

300 H.R. Parry and M. Bithell

 3. Consider simple solutions fi rst (e.g. a hardware upgrade).
 4. Consider more challenging solutions.
 5. Evaluate the suitability of the chosen scaling solution on a simplifi ed version of

the model before implementing it on the full model.

 The main scaling solution to implement (e.g. from Table 14.1) is defi ned by the
requirements of the model. Implementation of more challenging solutions should be
done in stages, where perhaps a simplifi ed version of the model is implemented on
a larger scale using some of the techniques described here. Also, as demonstrated
here, it is best to initially test the model with numbers lower than perhaps required
for realism, to allow for faster run times when testing and experimenting with dif-
ferent approaches. Agent simulation development should originate with a local,
fl exible ‘prototype’, and then as the model development progresses and stabilises
larger scale implementations can be experimented with (Gasser et al. 2005) . For
complex solutions, such as parallel computing, a simplifi ed model is often nec-
essary to experiment with large numbers. Improvements to model effi ciency are not
necessarily linear and optimal solutions tend to be model specifi c. Thus solutions
demonstrated here will work for some ABMs but perhaps not so well for others.
A key point, however, is to devise a set of test cases against which the code modifi -
cations can be validated at every stage. Although this should be a standard part of
any software development programme, it becomes even more vital in developing
parallel solutions, where subtle issues to do with timing of agent updates and access
to data across cores can lead to diffi cult debugging problems.

 Acknowledgements Much of this work was undertaken whilst the lead author was at the Food and
Environment Research Agency, UK and the School of Geography at the University of Leeds, UK,
funded by Defra. Many thanks to the Advanced Scientifi c Computing team at CSIRO for their
assistance in running the models on the cluster, particularly Aaron McDonagh and Tim Ho, and also
to Dr Andrew Evans at the University of Leeds for assistance in the early stages of this work.

 Appendix: Rules for Hoverfl y Sub-Model

 Development

 Development of hoverfl ies is highly simplifi ed, and birth and death is minimised
(see below). The only development that occurs in the model is the transition of
larvae to adults. In this, there is a 50% probability that the hoverfl y will be female
(determined at birth) and male hoverfl ies are not included in the model from this
stage onwards as their activities are assumed not to infl uence the distribution of
larvae and thus the mortality of the aphids.

 The transition from larvae to adult is modelled with the assumption that the
larvae need to eat a minimum of 120 aphids in total to reach a weight at which they
are able to pupate (28 mg) (Ankersmit et al. 1986) . Thus, once this number of aphids

30114 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

has been consumed by an individual larva it pupates and becomes an adult (if male,
it is then removed from the model).

 Reproduction

 In this model oviposition occurs once within a single 1 m 2 area (i.e. grid cell) per
day. This occurs providing aphids are present and the location has no other larvae.
It is assumed only one egg is laid per day within the cell, and the egg is assumed to
become a larva the next day. This is probably an underestimate; however, it can
easily be modifi ed at a later stage. A suggested estimate may be up to 49 eggs within
a 1 m 2 area per day, based upon Harmel et al. (2007) , where a high oviposition rate
of E. balteatus was observed when aphid-infested potato was studied (a mean of
48.9 eggs per laying and per female). This study also found that no eggs were pro-
duced by the hoverfl y on healthy aphid-free plants.

 Mortality

 The scenarios shown here do not include adult hoverfl y mortality. Experiments with
mortality in the model showed that adult mortality has a high impact upon the popu-
lation dynamics of the syrphids and should be included in further developments of
the model.

 Mortality of larvae occurs when no aphids are present to feed them (possible if aphids
are consumed or are alate and fl y away); otherwise there is no mortality of larvae.

 Movement and Dispersal

 Movement of syrphids and oviposition is key to this model. A number of rules govern
the oviposition of larvae by female adult syrphids:

 Search for prey is not random (Kindlmann and Dixon • 1993) .
 Refrains from ovipositing in the presence of conspecifi c larvae (Hemptinne et al. •
 1993) .
 Avoids laying eggs close to old aphid colonies, recognized by the presence of •
winged aphids (Hemptinne et al. 1993) .

 In this model, rules govern a non-random search for prey, where eggs are only laid
where aphid colonies are present and oviposition does not occur where larvae are already
present. The model does not include a rule to recognise old aphid colonies at present, but
this information is available in the model and could be included at a later stage.

302 H.R. Parry and M. Bithell

 Basic Movement

 A model of syrphid predator movement proposed by Kareiva and Odell (1987) is
that predators move at constant speed but change direction of movement more often
when satiated (area restricted search), and that increase in prey density increases the
feeding rate and satiation of the predators (applied to Uroleucon nigrotuberculatum
and Coccinella septempunctata). However, this may have restricted applicability to
the early stages of aphid colony development (Kindlmann and Dixon 1993) and it
has not been proved that this strategy is optimal (it was arbitrarily chosen).

 This model will use a simplifi ed movement rule based upon this principle – the
adult female hoverfl ies move in a random direction, but move a greater distance if
no aphids are present or the crop is early in season. It has been shown that crop
growth stage and habitat type may infl uence syrphid movement patterns and ovipo-
sition (Powell et al. 2004) , providing the foundations for this behavioural rule.

 It is assumed that hoverfl ies move between 4 and 6 m a day (given that a mark-
recapture study of Holloway and McCaffery (1990) found hoverfl ies moved between
20–30 m in a 5 day period). Thus, in the model, ‘focused’ movement in favourable
habitat (margins or late season crop) or around aphid colonies is set between 0 and 4 m,
and in unfavourable habitat (early season crop), movement is set at 4–6 m per day.

 Foraging Optimisation

 It has been suggested that the model of Kareiva and Odell (1987) can be improved
by adding terms to describe foraging optimisation (Kindlmann and Dixon 1993) .
This will enable the model to function at later stages of aphid colony development.
The ability of the predator to assess the present and future quality of an aphid colony
for their larvae should be included in the model. The effect of more than one aphid
colony present in a landscape should also be considered – the presence of other
colonies is likely to reduce the optimal number of eggs laid by the predator in a
particular aphid colony (Kindlmann and Dixon 1993) .

 This is applied in the model through a simple behavioural rule: if there are aphids
present within a given 1 m 2 location but other larvae are also present, the hoverfl y
does not oviposit but moves on a short distance.

 Parasitation/Predation

 A very simple model of aphid consumption was constructed based on the research
of Ankersmit et al. (1986) :

× ×= × +0.0337(24) 0.0253(24)(0.3119 (2.512)A AMORT e D e (14.1)

30314 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

where MORT is the predation rate per day; A is the age of the Syrphid larvae in days;
and D is the density of aphids per cm 2 (which is scaled down from 1 m 2 in the
model). More recent, complex models exist, e.g. the use of a Holling type-III func-
tion by Tenhumberg (1995) . However, the nature of the model presented here at this
stage does not require this level of complexity.

 Glossary

 Please note this glossary is largely taken from Parry (2009) .

 Beowulf cluster A scalable performance computer cluster (distributed system)
based on commodity hardware, on a private system network, with open source
software (Linux) infrastructure (see http://www.beowulf.org/)

 Block Mapping A method of partitioning an array of elements between cores of a
distributed system, where the array elements are partitioned as evenly as possible
into blocks of consecutive elements and assigned to processors. The size of the
blocks approximates to the number of array elements divided by the number of
processors.

 Central Processing Unit (CPU) May be referred to as a ‘core’ or ‘node’ in paral-
lel computing: computer hardware that executes (processes) a sequence of stored
instructions (a program).

 Cyclic Mapping A method of partitioning an array of elements between cores
of a distributed system, where the array elements are partitioned by cycling
through each core and assigning individual elements of the array to each core
in turn.

 Grid Computer ‘Grids’ are comprised of a large number of disparate computers
(often desktop PCs) that are treated as a virtual cluster when linked to one
another via a distributed communication infrastructure (such as the internet or
an intranet). Grids facilitate sharing of computing, application, data and storage
resources. Grid computing crosses geographic and institutional boundaries, lacks
central control, and is dynamic as cores are added or removed in an uncoordi-
nated manner. BOINC computing is a form of distributed computing where idle
time on CPUs may be used to process information (http://boinc.berkeley.edu/)

 Graphics Processing Unit (GPU) Computer hardware designed to effi ciently per-
form computer graphics calculations, particularly for 3-dimensional objects. It
operates in a similar manner to a vector computer, but is now widely available as
an alternative to the standard CPU found in desktop computers.

 Message passing (MP) Message passing (MP) is the principle way by which parallel
clusters of machines are programmed. It is a widely-used, powerful and general
method of enabling distribution and creating effi cient programs (Pacheco 1997) .
Key advantages of using MP architectures are an ability to scale to many proces-
sors, fl exibility, ‘future-proofi ng’ of programs and portability (Openshaw and
Turton 2000) .

304 H.R. Parry and M. Bithell

 Message passing interface (MPI) A computing standard that is used for program-
ming parallel systems. It is implemented as a library of code that may be used
to enable message passing in a parallel computing system. Such libraries have
largely been developed in C and FORTRAN, but are also used with other
languages such as Java (MPJ-Express http://mpj-express.org/). It enables devel-
opers of parallel software to write parallel programs that are both portable and
effi cient.

 Multiple Instruction Multiple Data (MIMD) Parallelisation where different
algorithms are applied to different data items on different processors.

 Parallel computer architecture A parallel computer architecture consists of a
number of identical units that contain CPUs (Central Processing Units) and func-
tion as ordinary serial computers. These units, called cores, are connected to one
another. They may transfer information and data between one another (e.g. via
MPI) and simultaneously perform calculations on different data.

 Single Instruction Multiple Data (SIMD) SIMD techniques exploit data level
parallelism: when a large mass of data of a uniform type needs the same instruc-
tion performed on it. An example is a vector or array processor and also a GPU.
An application that may take advantage of SIMD is one where the same value is
being added (or subtracted) to a large number of data points.

 Stream Processing Stream Processing is similar to a SIMD approach, where a
mathematical operation is instructed to run on multiple data elements simulta-
neously.

 Vector Computer/Vector Processor Vector computers contain a CPU designed
to run mathematical operations on multiple data elements simultaneously (rather
than sequentially). This form of processing is essentially a SIMD approach. The
Cray Y-MP and the Convex C3880 are two examples of vector processors used
for supercomputing in the 1980s and 1990s. Today, most recent commodity CPU
designs include some vector processing instructions.

 References

 Abbott, C. A., Berry, M. W., Comiskey, E. J., Gross, L. J., & Luh, H.-K. (1997). Parallel individual-
based modeling of Everglades deer ecology. IEEE Computational Science and Engineering, 4 ,
60–78.

 Ankersmit, G. W., Dijkman, H., Keuning, N. J., Mertens, H., Sins, A., & Tacoma, H. M. (1986).
 Episyrphus balteatus as a predator of the aphid Sitobion avenae on winter wheat. Entomologia
Experimentalis et Applicata, 42 , 271–277.

 Barlow, N. D., & Dixon, A. F. G. (1980). Simulation of lime aphid population dynamics .
Wageningen: Centre for Agricultural Publishing and Documentation.

 Barnes, D. J., & Hopkins, T. R. (2003). The impact of programming paradigms on the effi ciency of
an individual-based simulation model. Simulation Modelling Practice and Theory, 11 , 557–569.

 Bithell, M., & Macmillan, W. (2007). Escape from the cell: Spatial modelling with and without
grids. Ecological Modelling, 200 , 59–78.

 Bokma, A., Slade, A., Kerridge, S., & Johnson, K. (1994). Engineering large-scale agent-based
systems with consensus. Robotics and Computer-Integrated Manufacturing, 11 , 81–91.

30514 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

 Bouzid, M., Chevrier, V., Vialle, S., & Charpillet, F. (2001). Parallel simulation of a stochastic
agent/environment interaction model. Integrated Computer-Aided Engineering, 8 , 189–203.

 Castiglione, F., Bernaschi, M., & Succi, S. (1997). Simulating the immune response on a distributed
parallel computer. International Journal of Modern Physics C, 8 , 527–545.

 Chave, J. (1999). Study of structural, successional and spatial patterns in tropical rain forests using
TROLL, a spatially explicit forest model. Ecological Modelling, 124 , 233–254.

 Cornwell, C. F., Wille, L. T., Wu, Y. G., & Sklar, F. H. (2001). Parallelization of an ecological
landscape model by functional decomposition. Ecological Modelling, 144 , 13–20.

 Da-Jun, T., Tang, F., Lee, T. A., Sarda, D., Krishnan, A., & Goryachev, A. (2004). Parallel computing
platform for the agent-based modeling of multicellular biological systems. Parallel and distrib-
uted computing: Applications and technologies. Lecture Notes in Computer Science, 3320 , 5–8.

 Dibble, C., Wendel, S., & Carle, K. (2007). Simulating pandemic infl uenza risks of US cities. In
 Proceedings of the 2007 winter simulation conference , Vols 1–5 (pp. 1527–1529). New York:
IEEE Press.

 Dupuis, A., & Chopard, B. (2001). Parallel simulation of traffi c in Geneva using cellular automata.
In E. Kühn (Ed.), Virtual shared memory for distributed architecture . Commack: Nova Science
Publishers, Inc.

 Foster, I. (1995). Designing and building parallel programs . Reading: Addison-Wesley.
 Gasser, L., Kakugawa, K., Chee, B., & Esteva, M. (2005). Smooth scaling ahead: Progressive

MAS simulation from single PCs to Grids. Multi-agent and multi-agent-based simulation. Joint
Workshop MABS 2004, 19 July 2004. New York: Springer.

 Gilbert, N. (2007). Agent-based models . London, UK: Sage.
 Grimm, V., & Railsback, S. F. (2012). Designing, formulating and communicating agent-based

models. In A. J. Heppenstall, A. T. Crooks, L. M. See, & M. Batty (Eds.), Agent-based models
of geographical systems . Dordrecht: Springer. pp. 361–377.

 Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al. (2006). A standard
protocol for describing individual-based and agent-based models. Ecological Modelling, 198 ,
115–126.

 Haefner, J. W. (1992). Parallel computers and individual-based models: An overview. In
D. L. DeAngelis & L. J. Gross (Eds.), Individual-based models and approaches in ecology:
Populations, communities and ecosystems (pp. 126–164). New York: Routledge, Chapman and Hall.

 Harmel, N., Almohamad, R., Fauconnier, M.-L., Jardin, P. D., Verheggen, F., Marlier, M., et al.
(2007). Role of terpenes from aphid-infested potato on searching and oviposition behaviour of
 Episyrphus balteatus . Insect Science, 14 , 57–63.

 Hellweger, F. L. (2008). Spatially explicit individual-based modeling using a fi xed super-individ-
ual density. Computers and Geosciences, 34 , 144–152.

 Hemptinne, J.-L., Dixon, A. F. G., Doucet, J.-L., & Petersen, J.-E. (1993). Optimal foraging by
hoverfl ies (Diptera, Syrphidae) and ladybirds (Coleoptera: Coccinellidae): Mechanisms.
 European Journal of Entomology, 90 , 451–455.

 Holloway, G. J., & McCaffery, A. R. (1990). Habitat utilisation and dispersion in Eristalis pertinax
(Diptera: Syrphidae). Entomologist, 109 , 116–124.

 Host, G. E., Stech, H. W., Lenz, K. E., Roskoski, K., & Mather, R. (2008). Forest patch modeling:
Using high performance computing to simulate aboveground interactions among individual
trees. Functional Plant Biology, 35 , 976–987.

 Immanuel, A., Berry, M. W., Gross, L. J., Palmer, M., & Wang, D. (2005). A parallel implementa-
tion of ALFISH: Simulating hydrological compartmentalization effects on fi sh dynamics in the
Florida Everglades. Simulation Modelling Practice and Theory, 13 , 55–76.

 Ishida, T., Gasser, L., & Nakashima, H. (2005). Massively multi-agent systems I. First interna-
tional workshop, in MMAS 2004. Heidelberg: Springer-Verlag.

 Jamali, N., Scerri, P., & Suguwara, T. (Eds.) (2008). Massively multi-agent technology: AAMAS
workshops, MMAS 2006, LSMAS 2006, and CCMMS 2007 Hakodate, May 9, 2006 Honolulu,
May 15, 2007, Selected and Revised Papers, LNAI 5043, Heidelberg: Springer-Verlag.

 Kadau, K., Germann, T. C., & Lomdahl, P. S. (2006). Molecular dynamics comes of age: 320 billion
atom simulation on BlueGene/L. International Journal of Modern Physics C, 17 , 1755.

306 H.R. Parry and M. Bithell

 Kareiva, P., & Odell, G. (1987). Swarms of predators exhibit “preytaxis” if individual predators use
area-restricted search. The American Naturalist, 130 , 233–270.

 Khronos (2010). OpenCL implementations, tutorials and sample code. Beaverton. http://www.
khronos.org/developers/resources/opencl

 Kindlmann, P., & Dixon, A. F. G. (1993). Optimal foraging in ladybird beetles (Coleoptera:
Coccinellidae) and its consequences for their use in biological control. European Journal of
Entomology, 90 , 443–450.

 Kirk, D. B., & Hwu, W. W. (2010). Programming massively parallel processors: A hands-on
approach . Burlington: Morgan-Kaufmann.

 Lomdahl, P. S., Beazley, D. M., Tamayo, P., & Gronbechjensen, N. (1993). Multimillion particle
molecular-dynamics on the CM-5. International Journal of Modern Physics C: Physics and
Computers, 4 , 1075–1084.

 Lorek, H., & Sonnenschein, M. (1995). Using parallel computers to simulate individual-oriented
models in ecology: A case study. In Proceedings, ESM ‘95 European Simulation Multiconference ,
Prague, June 1995.

 Lozano, M., Morillo, P., Lewis, D., Reiners, D., & Cruz-Neira, C. (2007). A distributed framework
for scalable large-scale crowd simulation. In R. Shumaker (Ed.), Virtual reality, HCII 2007.
Lecture Notes in Computer Science , 4563 , 111–121.

 Lysenko, M., & D’Souza, R. M. (2008). A framework for megascale agent-based model simula-
tions on graphics processing units. Journal of Artifi cial Societies and Social Simulation , 11 (4),
10. Available at: http://jasss.soc.surrey.ac.uk/11/4/10.html

 Massaioli, F., Castiglione, F., & Bernaschi, M. (2005). OpenMP parallelization of agent-based
models. Parallel Computing, 31 , 1066–1081.

 Mellott, L. E., Berry, M. W., Comiskey, E. J., & Gross, L. J. (1999). The design and implementa-
tion of an individual-based predator-prey model for a distributed computing environment.
 Simulation Practice and Theory, 7 , 47–70.

 Metz, J. A. J., & de Roos, A. M. (1992). The role of physiologically structured population models
within a general individual based model perspective. In D. L. DeAngelis & L. J. Gross (Eds.),
 Individual based models and approaches in ecology: Concepts and models (pp. 88–111). New
York: Routledge, Chapman and Hall.

 Minson, R., & Theodoropoulos, G. K. (2008). Distributing RePast agent-based simulations with
HLA. Concurrency and Computation: Practice and Experience, 20 , 1225–1256.

 Nagel, K., & Rickert, M. (2001). Parallel implementation of the TRANSIMS micro-simulation.
 Parallel Computing, 27 , 1611–1639.

 Nichols, J. A., Hallam, T. G., & Dimitrov, D. T. (2008). Parallel simulation of ecological structured
communities: Computational needs, hardware capabilities, and nonlinear applications.
 Nonlinear Analysis-Theory Methods & Applications, 69 , 832–842.

 Openshaw, S., & Turton, I. (2000). High performance computing and the art of parallel program-
ming: An introduction for geographers, social scientists, and engineers . London: Routledge.

 Pacheco, P. S. (1997). Parallel programming with MPI . San Francisco: Morgan Kauffman
Publishers.

 Parry, H. R. (2006). Effects of land management upon species population dynamics: A spatially
explicit, individual-based model (Unpublished PhD thesis, University of Leeds, Leeds).

 Parry, H. R. (2009). Agent based modeling, large scale simulations. In R. A. Meyers (Ed.),
 Encyclopedia of complexity and systems science (pp. 148–160). New York: Springer.

 Parry, H. R., & Evans, A. J. (2008). A comparative analysis of parallel processing and super-
individual methods for improving the computational performance of a large individual-based
model. Ecological Modelling, 214 , 141–152.

 Parry, H. R., Evans, A. J., & Heppenstall, A. J. (2006a). Millions of agents: Parallel simulations
with the Repast agent-based toolkit. In Trappl, R. (Ed.), Cybernetics and Systems 2006,
 Proceedings of the 18th European Meeting on Cybernetics and Systems Research . Vienna:
Austrian Society for Cybernetic Studies.

30714 Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling

 Parry, H. R., Evans, A. J., & Morgan, D. (2006). Aphid population response to agricultural landscape
change: A spatially explicit, individual-based model. Ecological Modelling, 199 , 451–463.

 Popov, K., Vlassov, V., Rafea, M., Holmgren, F., Brand, P., & Haridi, S. (2003). Parallel agent-based
simulation on a cluster of workstations. EURO-PAR 2003 Parallel Processing , 2790 , 470–480.

 Powell, W., A’Hara, S., Harling, R., Holland, J. M., Northing, P., Thomas, C. F. G., & Walters, K. F. A.
(2004). 3D Farming: Making biodiversity work for the farmer. Report to Defra LK0915.

 Railsback, S. F., Lytinen, S. L., & Grimm, V. (2005). StupidModel and extensions: A template and
teaching tool for agent-based modeling platforms. Available at: http://condor.depaul.
edu/~slytinen/abm/StupidModelFormulation.pdf

 Ramachandramurthi, S., Hallam, T. G., & Nichols, J. A. (1997). Parallel simulation of individual-
based, physiologically structured population models. Mathematical and Computer Modelling,
25 , 55–70.

 Rao, D. M., Chernyakhovsky, A., & Rao, V. (2009). Modelling and analysis of global epidemiology
of avian infl uenza. Environmental Modelling and Software, 24 , 124–134.

 Richmond, P., Coakley, S., & Romano, D. (2009a). A high performance agent-based modelling
framework on graphics card hardware with CUDA. In K. Decker, J. Sichman, C. Sierra, and
C. Castelfranchi (Eds.), Proceeding of 8th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2009) , 10–15 May 2009. Budapest

 Richmond, P., Coakley, S., & Romano, D. (2009b). Cellular level agent-based modelling on the
graphics processing unit. In International Workshop on High Performance Computational
Systems Biology HIBI’09 , 14–16 Oct 2009, Trento.

 Scheffer, M., Baveco, J. M., DeAngelis, D. L., Rose, K. A., & van Nes, E. H. (1995). Super-
Individuals: A simple solution for modelling large populations on an individual basis.
 Ecological Modelling, 80 , 161–170.

 Schuler, A. J. (2005). Diversity matters: Dynamic simulation of distributed bacterial states in suspended
growth biological wastewater treatment systems. Biotechnology and Engineering, 91 , 62–74.

 Springel, V. (2005). The cosmological simulation code GADGET-2. Monthly Notices of the Royal
Astronomical Society, 364 , 1105–1134.

 Stage, A. R., Crookston, N. L., & Monserud, R. A. (1993). An aggregation algorithm for increas-
ing the effi ciency of population models. Ecological Modelling, 68 , 257–271.

 Standish, R. K., & Madina, D. (2008). Classdesc and graphcode: Support for scientifi c program-
ming in C++, arXiv:cs.CE/0610120. Available from http://arxiv.org/abs/cs.CE/0610120

 Stone, J. E., Phillips, J. C., Freddolino, P. L., Hardy, D. J., Trabuco, L. G., & Schulten, K. (2007).
Accelerating molecular modelling applications with graphics processors. Journal of
Computational Chemistry, 28 , 2618–2640.

 Takeuchi, I. (2005). A massively multi-agent simulation system for disaster mitigation. In Massively
Multi-Agent Systems I : First International Workshop MMAS 2004 , Kyoto Dec 2004. Heidelberg:
Springer-Verlag.

 Tenhumberg, B. (1995). Estimating predatory effi ciency of Episyrphus balteatus (Diptera:
Syrphidae) in cereal fi elds. Environmental Entomology, 24 , 687–691.

 Tenhumberg, B. (2004). Predicting predation effi ciency of biocontrol agents: Linking behavior of
individuals and population dynamic. In C. Pahl-Wostl, S. Schmidt, T. Jakeman (Eds.), iEMSs
2004 International Congress: Complexity and Integrated Resources Management . Osnabrueck:
International Environmental Modelling and Software Society.

 Timm, I. J., & Pawlaszczyk, D. (2005). Large scale multiagent simulation on the grid. In Proceedings
of the Workshop on Agent-based Grid Economics (AGE 2005) at the IEEE International
Symposium on Cluster Computing and the Grid (CCGRID) . Cardiff: Cardiff University

 Wang, D., Gross, L., Carr, E., & Berry, M. (2004). Design and implementation of a parallel fi sh
model for South Florida. In Proceedings of the 37th Annual Hawaii International Conference
on System Sciences (HICSS ‘04) , 5–8 Jan 2004, Big Island: IEEE Computer Society

 Wang, D., Carr, E., Gross, L. J., & Berry, M. W. (2005). Toward ecosystem modeling on computing
grids. Computing in Science and Engineering, 7 , 44–52.

308 H.R. Parry and M. Bithell

 Wang, D., Berry, M. W., Carr, E. A., & Gross, L. J. (2006). A parallel fi sh landscape model for
ecosystem modeling. Simulation, 82 , 451–465.

 Wang, D., Berry, M. W., & Gross, L. J. (2006). On parallelization of a spatially-explicit structured
ecological model for integrated ecosystem simulation. International Journal of High
Performance Computing Applications, 20 , 571–581.

 Wendel, S., & Dibble, C. (2007). Dynamic agent compression. Journal of Artifi cial Societies and
Social Simulation , 10 (2), 9. Available at: http://jasss.soc.surrey.ac.uk/10/2/9.html

 Wilkinson, B., & Allen, M. (2004). Parallel programming: Techniques and applications using
networked workstations and parallel computers (2nd ed.). New Jersey: Pearson Prentice Hall.

 Woods, J. D. (2005). The Lagrangian Ensemble metamodel for simulating plankton ecosystems.
 Progress in Oceanography, 67 , 84–159.

 Woods, J., & Barkmann, W. (1994). Simulating plankton ecosystems by the Lagrangian ensemble
method. Philosophical Transactions of the Royal Society of London Series B-Biological
Sciences, 343 , 27–31.

 Wu, Y. G., Sklar, F. H., Gopu, K., & Rutchey, K. (1996). Fire simulations in the Everglades
Landscape using parallel programming. Ecological Modelling, 93 , 113–124.

	Chapter 14: Large Scale Agent-Based Modelling: A Review and Guidelines for Model Scaling
	14.1 Introduction
	14.2 Review of Large-Scale Modelling Techniques
	14.3 Model Software Restructuring: ‘Super-individuals’
	14.4 Parallel Computing
	14.4.1 Multi-core Architectures
	14.4.2 Graphics Processing Units (GPUs)
	14.4.3 Challenges of Parallel Computing
	14.4.4 Approaches to Agent Parallelism
	14.4.4.1 The ‘Agent-Parallel’ Approach
	14.4.4.2 The ‘Environment-Parallel’ Approach

	14.5 Model Software Restructuring Example: Spatial Super-Individuals
	14.5.1 Temporal Results
	14.5.2 Spatial Results

	14.6 Parallel Computing Examples: ‘Agent-Parallel’ and ‘Environment-Parallel’ Approaches
	14.6.1 Example of the Use of an Agent-Parallel Approach
	14.6.2 Example of the Use of an Environment-Parallel Approach

	14.7 Potential Efficiency Gains
	14.7.1 Model Speed and Increasing Numbers of Agents
	14.7.2 Model Memory Use and Increasing Numbers of Agents
	14.7.3 Hoverfly-Aphid Model Environment-Parallel Programming Efficiency

	14.8 Guidelines for Agent-Based Model Scaling
	14.8.1 A Protocol

	 Appendix: Rules for Hoverfly Sub-Model
	 Development
	 Reproduction
	 Mortality
	 Movement and Dispersal
	 Basic Movement
	 Foraging Optimisation
	 Parasitation/Predation

	References

