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  Abstract   The chapter offers an overview of the issues related to the integration and 
representation of space in agent-based models (ABMs), with a focus on those 
models that can be considered spatially explicit. Key aspects of space in ABM are 
highlighted, related to: the role of space as an attribute of agents and the environment; 
as an interaction component; as a determinant of issues of scale; and as a tool for 
communicating and validating model outcomes. The chapter reviews the issues and 
challenges arising from the diffi culties of integrating space in agent-based modeling. 
It outlines the emerging trend towards improving the level of realism in representing 
space, which can lead not only to an enhanced comprehension of model design and 
outcomes, but to an enhanced theoretical and empirical grounding of the entire fi eld 
of agent-based modelling.      

    13.1   Introduction 

 One of the main characteristics of agent-based systems is that the interactions of the 
modeled agents do not take place in a vacuum, but are situated within structures that 
both condition agents’ behavior and are in turn infl uenced by it (Epstein and Axtell 
 1996  ) . These interaction structures can be physical or social environments, or 
networks that encode geographic or other feature-based differences (Riolo et al. 
 2001  ) . Consequently, a key advantage of ABMs is their ability to integrate these two 
components – agents and their environment – through systematic specifi cation of 
interdependencies and feedbacks (Parker et al.  2003  ) . 
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 It should be noted, however, that traditionally the emphasis in agent-based 
modeling has been clearly placed on the development of agents and their behavior 
at the expense of less sophisticated representations of space and spatial relation-
ships (Brown et al.  2005  ) . Many ABMs, in fact, consider spatial relationships as a 
marginal issue, or at least treat space as a feature of the model that becomes relevant 
only at the macro scale. Examples of such models include investigations of social 
and cultural phenomena such as investment management, dynamics of labor mar-
kets, shifts in consumer behavior, or spread of technological innovations. In con-
trast, another string of ABMs, more tightly related to investigations of geographic 
phenomena, considers space as an integral component of their system. These mod-
els, referred in the literature as spatially explicit ABMs, include a diverse group of 
studies ranging from explorations of urban growth and natural resource manage-
ment to agricultural economics and archaeology. Commonly, these models try to 
establish explicit links between environmental characteristics and agent behavior 
(Benenson and Torrens  2004  ) . 

 The discussion offered in this chapter on issues related to space and its rep-
resentation in ABMs is centered on those models that can be considered spa-
tially explicit. The review of the literature on which this paper is based is far 
from balanced as it relies heavily on examples from the fi eld of urban modeling. 
This is due partially to the author’s background, but more importantly to the fact 
that in urban modeling the consideration of space is inevitably explicit (Berger 
et al.  2002  ) . The proliferation of spatially explicit ABMs in the last 10 years is 
particularly impressive in the area of land use analysis where such models have 
become popular tools for understanding land-use systems (Polhill et al.  2001 ; 
Deadman et al.  2004  ) . Here ABMs are considered particularly well suited for 
representing complex spatial interactions under heterogeneous conditions 
(Parker et al.  2003  ) . 

 The discussion of space offered on the following pages is structured into two 
parts. The fi rst one provides an overview of the general concepts of space and 
its integration within agent-based modeling. The key aspects of space in ABM 
are highlighted related to: the role of space as an attribute of agents and the 
environment; as an interaction component; as a determinant of issues of scale; 
and as a tool for communicating and validating model outcomes. A further dis-
cussion in this section addresses the various ways in which space is represented 
in the ABM world. The second part of the chapter reviews the issues and chal-
lenges arising from the diffi culties of integrating space in agent-based modeling. 
The most promising venues towards a better representation of space are out-
lined, reviewing the shift from cell-based to object-based applications. The 
chapter concludes by sketching the contours of an emerging trend aimed to 
move the theory and practice of ABM beyond the grid-vs-vector debate, offering 
some new prospects for the integration of space within agent-based modeling 
frameworks.  



25513 Space in Agent-Based Models

    13.2   The Concept of Space in ABM 

    13.2.1   The Integration of Space in Modeling Frameworks 

 This section outlines several aspects of space critical for its integration within spa-
tially explicit agent-based modeling systems. 

    13.2.1.1   Space as an Attribute 

 An apparent role of space in ABMs that try to incorporate the signifi cance of spatial 
phenomena in the simulation of social processes is the function of space as an attri-
bute of a model’s components – both of the environment and of the agents that oper-
ate within it. 

 The spatial characteristics of the environment could be represented with various 
levels of detail (this topic is discussed in more detail later in this section), but at a 
minimum, the model environment could be described as a non-differentiated plane 
with geographic or relative coordinates on which the actions of the agents take 
place. In such models the environment infl uences the agents’ interactions simply by 
measures of distance and direction (Castle and Crooks  2006  ) . In models that repre-
sent the physical characteristics of the environment with a greater level of sophisti-
cation, the agents respond to attributes of the landscape such as physical barriers, 
soil types, infrastructure, or aesthetic qualities by adopting their behavior to the 
features of the modeled environment. 

 Space as a characteristic of agents in ABMs is a more fl exible concept. The 
agents could be spatially explicit or they could be implicit (meaning that their 
precise spatial location is not essential for the operation of the model). In addition, 
spatially explicit agents could be static (tied to a specifi c location in the environ-
ment) or dynamically situated (free to move within the environment either with or 
without predefi ned constraints).  

    13.2.1.2   Types of Space-Agent Interactions 

 Due to the wide variety of details with which both the environment and the agents 
within an ABM could be specifi ed, the nature of the interactions between them could 
be rather complex. First, it is possible for an agent to be associated with only one 
spatial feature in a one-to-one relationship. A typical example of such a relationship 
is a household and its place of habitation in a simple residential location model or a 
local government and its jurisdiction in an urban growth management simulation. An 
agent, however, could be associated with more than one spatial feature in a one-to-many 
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relationship. Examples of such cases are models in which households are linked with 
their places of residence, work, shopping, entertainment, etc. 

 In addition to the level of connectivity, there are two ways in which environment-
agent interactions could be constructed: as a simple unidirectional relationship in 
which the environment is affected by the behavior of the agents (or vice versa), or 
as a multidirectional cycle of interactions and feedbacks between the two. Examples 
of models integrating space in a simple one-way causal environment-agent relation-
ship are relatively few. In such models the environment is the only factor governing 
agent behavior. The agents adopt strategies that allow them to react to a heteroge-
neous environment given their goals and actions (Parker et al.  2003  ) . Alternatively, 
the causal relationship could be pointed the other way by modeling changes in the 
environment as a result of the agents’ behavior. Examples here include studies of 
deforestation due to agricultural practices, fragmentation of the natural habitat due 
to urban sprawl, etc. 

 In reality, the interactions between humans and their environment are always 
more complex, never confi ned to a single unidirectional link – a fact which is 
recognized by the majority of agent based modelers. A good example of the com-
plexity of environment-agent interaction is urban gentrifi cation, where a chain of 
events dynamically transforms both the actors and the environment. In this pro-
cess, agents are drawn to urban areas due to specifi c locational or environmental 
characteristics; they engage in interactions with other actors in the local property 
market thus changing its dynamics; as a result the environment is changing; this 
in turn draws new actors to the scene affecting further the dynamics of the pro-
cess. Another good example of modeling the complexity of environment-agent 
interactions is the SLUCE model of residential location at the urban fringe (Rand 
et al.  2002 ; Brown et al.  2005  ) . Here residents make decisions about where to 
locate based on a combination of environmental factors including density, dis-
tance to service centers, and the aesthetic quality of the landscape. New service 
centers locate near recent residential development, infl uencing, in turn, the 
behavior of future homebuyers. A main challenge for the models exploring the 
complexity of environment-agent linkages is to separate the effects of endogenous 
interactions from spatially correlated exogenous landscape features (Irwin and 
Bockstael  2002  ) .  

    13.2.1.3   Space and Scale 

 Scale is another important aspect of the task of integrating space in ABM frame-
works. The issues of scale become relevant in the construction of the model in 
two distinct ways linked to the determination of the spatial extent and the spatial 
resolution of the data used (Goodchild  2001  ) . First, in terms of the spatial extent 
of the modeled area, studies have demonstrated that changes in spatial extent 
have a signifi cant impact on the outcomes of spatial analysis (Saura and Millan 
 2001  ) . This fact highlights the need to capture processes at the scale at which 
they operate. This principle of scale-dependency is also particularly important 
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in determining the level of spatial resolution, or the level of detail captured in 
the model (Lam and Quattrochi  1992  ) . A coarse granularity of the data tends to 
iron out both spatial heterogeneity and spatial dynamics (Batty  2005  ) . The 
issues of spatial aggregation are particularly relevant for ABMs that try to cap-
ture emergent behavior (Goodchild  2001  ) . The “modifi able areal unit problem” 
(MAUP) and associated issues of ecological fallacy (Openshaw  1983  )  loom 
large in all models based on assumptions that larger units are representative of 
smaller units. While this does not seem to be an issue with the specifi cation of 
agents, which is commonly done at the level of individuals and households, 
fi nding the proper level of representation of environmental characteristics and 
processes presents signifi cant methodological diffi culties. The use of a very fi ne 
data resolution, on the other hand, has been found to produce patterns that are 
overly fragmented (Menard and Marceau  2005 ; Chen and Mynett  2003  ) . Finally, 
making the integration of space in ABM an even more challenging task, is the 
recognition of the fact that an individual agent is likely infl uenced by, and in 
turn infl uences, processes occurring at multiple spatial scales (Batty  2005 ; 
Parker et al.  2003  ) . 

 The consideration of scale also becomes pertinent in ABM through the defi ni-
tion of neighborhoods of interaction. In the classic cellular automata (CA) concep-
tualizations on which the majority of ABM environments are based, neighborhoods 
are defi ned on the principle of spatial proximity. Here the magnitude of interaction 
is described as a distance decay function following Tobler’s law, which postulates 
that near things are more related than distant things (Tobler  1970  ) . While the 
size of the neighborhoods in many CA and ABMs is predetermined by a fi xed 
(and in many cases somewhat arbitrary) radius, a relatively small number of studies 
have carried out systematic analysis of the impact of this critical neighborhood 
parameter. A recent study of residential segregation, for instance, has emphasized 
the importance of scale over the shape of neighborhoods, which in this case is 
interpreted as the fi eld of the agents’ vision (Fossett and Dietrich  2009  ) . Other 
studies have proposed more refi ned techniques of neighborhood defi nition taking 
into account different spatial scales relevant for the modeled interactions (Batty 
et al.  1999 ; Vancheri et al.  2008  ) . In recognition of the larger spatial scale at which 
neighborhood interactions operate, some scholars have introduced the concept of 
domains – large scale spatial ensembles representing a group of neighborhoods 
populated by agents of homogeneous characteristics – devising algorithms for the 
identifi cation of emerging domains and techniques for following their evolution 
(Benenson et al.  2005  ) . 

 It should be noted, however, that operational ABMs of larger scale systems such 
as metropolitan areas are still quite rare (e.g. Benenson et al.  2002 ; Mathevet et al. 
 2003  ) , pointing to a lack of studies taking on the challenge of modeling processes 
that operate on multiple spatial scales (e.g., from the level of individual parcels and 
neighborhoods to the scale of urban regions). The task of simulating large-scale 
dynamics based on detailed representation of micro-scale processes poses many 
new challenges in terms of computational algorithms, data organization, and model 
architecture (Ettema et al.  2007  ) .  
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    13.2.1.4   Space as a Tool of Validation and Communication 

 Another important aspect of integrating space in ABM is its utility as a powerful 
tool of communication and validation of model outcomes. These two areas – 
communication and validation – have been identifi ed as key challenges for the 
future development of the ABM fi eld (Crooks et al.  2008  )  having received so far 
only scant coverage in the professional literature. This fact is somewhat surprising, 
considering that in many cases a comparison between model outcomes and real data 
along their spatial characteristics is the ultimate form of model validation. Yet one 
needs to be aware that location-specifi c estimates based solely on landscape metrics 
may not be as useful as having model outcomes reproduce realistic patterns, or as 
Mandelbrot simply put it – they must “look right” (Mandelbrot  1983  ) . And while 
ABMs have the potential of being more easily comprehended by the general public 
due to the fact that they simulate “real world” behavior based on simple rules, quite 
often the outcomes of these models are not immediately transparent for a wide 
range of potential users who happen to lack the appropriate technical background 
for interpreting the results. In this sense, the visualization of model outcomes 
through maps and other types of commonly used spatially referenced information 
can serve as a great medium of communicating a model’s results, reaching effec-
tively a wider range of users (Axtell  2000  ) .   

    13.2.2   The Representation of Space 

 The level of detail with which the environment is described in spatially explicit 
ABMs depends primarily on the type and the purpose of the model. Thus while in 
theoretical interaction models environmental characteristics are traditionally 
simplifi ed (Irwin and Bockstael  2002  ) , in models that are based on real-world 
locations the representation of landscape heterogeneity is a critical feature of a 
model’s design. These two approaches have been referred to in the literature as 
 designed  (in the case of the more abstract theoretical models) and  analyzed  (in the 
case of applied inductive studies) (Parker et al.  2003  ) . It should be noted that the 
distinction between the two approaches in not always clear-cut, with a substantial 
number of models straddling the boundary between abstract and more realistic 
representations. At the same time, since the early days of ABM, there has been a 
gradual yet noticeable trend towards more detailed representations of socio-spatial 
systems (Epstein and Axtell  1996  ) . This could be explained by the natural course 
of the evolution of the fi eld striving for higher fi delity of the modeled reality on 
one hand; and the increasing pressure to develop tools that are geared towards 
end-users and other stakeholders on the other (Matthews et al.  2007  ) . 

 In general, the majority of spatially explicit ABMs rely on a regular cell frame-
work used as a basis for representing the environment (Barros  2003 ; Batty et al. 
 2003  ) . This concept of spatial organization is borrowed directly from the fi eld of 
CA due to the kinship between the two modeling techniques in the analysis of 
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related socio-spatial phenomena. With the conceptual linkages between ABM and 
CA being so tight, often CA models are re-interpreted as ABMs by attributing 
anthropomorphic state variables to cells (Torrens and Benenson  2005  ) , using transi-
tion rules as proxies to decision making (Parker et al.  2003  ) . However, regardless of 
these attempts, an important distinction remains. While CA can be described entirely 
through the interaction of spatial phenomena, they do not provide support for typical 
actor-based processes (Ligtenberg et al.  2001  ) . As a result, CA models rely on a 
fi xed interaction topology whereas the interactions in ABMs can be changed 
dynamically since they are defi ned at the level of mobile agents (Brown  2005  ) . 

 The general model formulation, based on CA populated by agents migrating 
between cells, seems to be a natural process of merging ABM and CA by building 
on the strengths of each modeling approach (Portugali et al.  1994 ; Portugali and 
Benenson  1997  ) . The ability of such systems to separate out the infl uence of actors, 
institutions, and the environment have been enthusiastically embraced more specifi -
cally in urban high-resolution modeling (Parker et al.  2003 ; Manson  2006  ) . Here, 
the urban environment is represented in two layers, one for the city’s infrastructure 
(immobile), and the other for migrating human individuals (mobile) (Portugali 
 2000 ; Polhill et al.  2001  ) . Correspondingly, in many land-change models, agents 
choose cells from a gridded landscape for their productive utility, either for agriculture 
or home building (Evans and Manson  2007  ) . 

 A key conceptual dilemma in the construction of model environments in ABMs 
is in the choice of selecting the best way to represent the environment’s critical 
properties. Choosing between raster vs. vector-based representations is not always 
an easy decision to make. While raster-based structures are best fi tted to capture 
continuous fi eld data, vectors are best suited to depict the properties of discrete 
objects. Since the natural and built environments are composed of both, the ques-
tion is which way would be most appropriate for capturing the essence of the mod-
eled spatial phenomena. Traditionally, the prevailing practice in both CA and 
ABMs has been to favor a rigid partitioning of space into regular cells, and there 
are several factors that have solidifi ed this choice. Some of the main reasons include 
the conceptual foundations of CA theory and its grounding in cell space; the pre-
vailing availability of remote sensing data in raster formats; the advantages of 
using the functionality of raster-based GIS data preparation and analysis in model 
development; and the computational effi ciency of working with regular grids 
(Stanilov  2009  ) . 

 Deviations from the practice of using a rectangular tessellation of space in CA 
and ABMs have included experimentation with hexagonal grids (Phipps  1989 ; 
Sanders et al.  1997  ) , yet it has been recognized that in order to make models appli-
cable in the arena of public policy, modelers need to move away from abstract cellular 
representations in order to incorporate the detailed geography of the real places (Xie 
and Batty  2003  ) . While the literature has long suggested the integration of irregular 
structures in microsimulation (Couclelis  1985  ) , only recently have ABMs begun to 
use real-world spatial data (Brown et al.  2005  ) . Early attempts have considered non-
uniform partitions of urban space, accounting exclusively for infrastructure units 
(Erickson and Lloyd-Jones  1997 ; Semboloni  2000  ) . One of the fi rst ABMs to use 
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real-world geographic features was developed in the fi eld of natural resource 
management, in a simulation of the recreational use in a state park in Arizona 
(Gimblett et al.  2002  ) . More recent work based on the integration of parcel-level 
data has included the development of custom-built model environments such as 
MABEL (Alexandridis and Pijanowski  2007  ) , but most common has become the 
use of hybrid raster-vector environments in which vector-based features are used to 
calculate spatial attributes of raster-based cells such as calculating accessibility of 
cells based on the distance to the road network (Brown et al.  2008  ) . 

 The evolution of the grid vs. vector dilemma within the fi eld of agent-based 
modeling is discussed in more detail in the following section which offers a sum-
mary of the main challenges related to the integration of space within ABMs.   

    13.3   Issues and Challenges 

 One of the main challenges for agent-based modeling is to move both practice and 
theory from the arena of experimental and hypothetical applications towards empir-
ically-based research (Berger and Schreinemachers  2006 ; Janssen and Ostrom 
 2007  ) . This process entails a transition from abstract towards more realistic repre-
sentations of the environment (Torrens and O’Sullivan  2001  ) . While CA and agent-
based systems have been introduced in the modeling world with the intent to infuse 
it with a recognition of the fi ner scale on which spatial relationships operate in both 
the natural and the built environments, these models, in their majority, continue to 
be based on highly restrictive assumptions related to the integration and representa-
tion of space. This situation has been primarily a function of the limitations imposed 
by the direct utilization of the generic spatial constructs underlying CA theory, 
rather than the application of empirical or theoretical knowledge on how systems 
function in space (Torrens and Benenson  2005  ) . 

    13.3.1   From Cells to Objects 

 The defi ciencies of employing a rigid tessellation of space as a basis of ABM envi-
ronments stem from the fact that pixel-based cellular dynamics seldom match 
spatial phenomena (Xie and Batty  2003  ) . To begin with, many linear features of 
both the natural and the built environment (rivers, infrastructure, etc.) do not lend 
themselves to be easily represented in a grid format that engenders the proper inte-
gration of network elements in the specifi cation of spatial interactions (Benenson 
et al.  2005  ) . Additional problems arise with the depiction of entities and agents that 
are either larger or smaller than a single grid cell. The representation of entities 
larger than the size of the basic modular unit calls for aggregation of cells based on 
a unique shared attribute describing the identity of the depicted object. The grouping 
of cells on this principle, however, creates conceptual and computational problems 
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challenging the basic premises on which cell-based structures operate. In cases 
when cells are larger than the spatial entities on which they are superimposed, the 
issue of cell heterogeneity presents signifi cant methodological challenges. The 
problems created by such a tessellation could be as diffi cult to address as the MAUP 
in aggregate models where the boundaries are at least drawn with the idea of main-
taining a certain level of area homogeneity. 

 There have been several attempts to increase the fi delity of the model outcomes 
by fi ne-tuning the size of the grid cells of the lattice underlying CA and ABM envi-
ronments. While common sense logic would suggest that smaller cell sizes increase 
data resolution, thus leading to more accurate results, in some cases the fi ndings of 
sensitivity analysis indicate that a coarser resolution can generate more realistic 
spatial patterns (Jenerette and Wu  2001    ). Support for this claim has been provided 
by studies concluding that using the fi nest resolution does not provide the best 
results (Menard and Marceau  2005 ; Chen and Mynett  2003  ) . Overall, there appears 
to be a general agreement shared in the fi eld that the choice of cell size has consider-
able impact on simulation results (Kocabas and Dragicevic  2006  ) , and that one 
needs to perform a systematic sensitivity analysis to determine the optimal cell size 
for a particular model (Jantz and Goetz  2005  ) . This task, however, takes a signifi -
cant amount of resources and ultimately the selection of cell sizes in many projects 
is determined somewhat arbitrary, mostly relying on previous studies. 

 The problems stemming from the application of abstract rectangular grids as a 
spatial framework for modeling are compounded further by the use of rigid raster 
cells for defi ning the spatial extent of neighborhoods of infl uence. While the utiliza-
tion of a universal nondiscriminatory grid might be appropriate in modeling envi-
ronmental processes where infl uence is mainly determined by proximity (e.g., the 
spread of brushfi res) in urban environments spatial relationships tend to be much 
more complex in their dimensions and magnitude of interaction. 

 The fi eld of CA/ABM abounds with experimentation aimed at optimizing the 
defi nition of neighborhoods (much more so than with studies questioning the appli-
cability of raster lattices). In the majority of cases, this has included experiments 
with extending the radius of infl uence beyond the traditional von Neumann and 
Moore neighborhoods (White et al.  1997  ) . Some have used hierarchical neighbor-
hoods defi ned on a neighborhood, regional, or global level. Others have proposed to 
defi ne neighborhood interactions based on empirical analysis derived from neigh-
borhood characteristics by calculating over- or under-representation of particular 
parameters (e.g., land use class) relative to their representation in the entire study 
area (Verburg et al.  2004  ) . 

 The issues associated with the application of rigid grid lattices has spurred a 
strand of research exploring the utility of alternative conceptualizations of spatial 
structures underlying model environments, including the Voronoi model of spatial 
tessellation (Shi and Pang  2000 ; Flache and Hegselmann  2001  )  and the use of 
graph-based CA (O’Sullivan  2001 ; Torrens and Benenson  2005  ) . This path of 
exploration has drawn its own share of critics, pointing to the fact that Voronoi poly-
gons do not correspond to real-world entities, but are generated automatically for 
simplicity of computation. 
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 Recently, attempts to link closer the tessellation of space to real world entities 
have been emphasized in the fi eld of urban modeling with several studies employing 
parcels as the basic unit of spatial organization (Stevens and Dragicevic  2007 ; 
Alexandridis and Pijanowski  2007  ) . The use of parcel-based cells in urban ABMs 
offers several avenues for refi ning the defi nition of neighborhoods and transition 
rules that are not available in the conventional raster-based modeling environment. 
The utilization of a cadastral–based lattice provides an opportunity to incorporate 
important parameters of spatial interaction that cannot be accounted for in the tradi-
tional grid-based models. Such systems of structuring the modeled environment can 
be linked to the following methodological advantages (Stanilov  2009  ) :

   An environment in which cells are based on parcel boundaries allows for the • 
integration of cell size as a factor of spatial interaction, refl ecting the fact that 
smaller parcels exert a smaller impact on neighboring cells and vice versa.  
  Parcel-based cells can account for variations in the magnitude of cell interaction • 
that are due not only to differences in the size of neighboring cells but in their 
mutual orientation as well. Such relationships are captured by the length of their 
shared boundaries.  
  Parcel-based cells also have the advantage of being homogeneous in terms of • 
their land use. This allows for a more precise defi nition of land use interactions, 
thus eliminating the problems associated with cell heterogeneity.  
  Parcel-based cells can take cognizance of variations in the intensity of develop-• 
ment better than nondescript raster cells. The use of parcel boundaries can 
capture, for instance, the fact that a large parcel with a small building footprint 
can have less of an impact on its neighboring cells than an intensely developed 
smaller parcel.    

 The use of cadastral property lines as a basis for creating the underlying lattice 
of a model environment is of fundamental importance for capturing the essence of 
urban form generation. Research in urban morphology has consistently stressed the 
essential role that land ownership patterns play in setting up the spatial confi gura-
tion of urban environment. Parcel boundaries, although not physical entities per se, 
outline the basic spatial framework within which the urban landscape is constituted 
(Conzen  1960  ) . The use of historic cadastral boundaries makes particular sense in 
the context of modeling the growth of the urban periphery where the pre-urban 
cadastre has set the basic framework within which the pieces of urban development 
are distributed. 

 The integration of parcel data in ABM indicates a new direction for the develop-
ment of the fi eld marked by the transition from raster to vector-based data and from 
cells to objects as descriptors of both agents and their environment. Indeed, some 
of the most exciting and promising theoretical advances in ABM in recent years 
have been related to experimentations with the object-oriented data modeling 
approach. Such developments have been driven by the similarity in abstraction 
shared between the agent-based and object-oriented paradigms (Castle and Crooks 
 2006  ) . The fact that most ABMs use object-oriented programming languages, such 
as C++, Java, or Objective-C, points naturally to conceptualizations describing the 
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environment as a collection of spatially discrete objects (Benenson and Torrens 
 2004  ) . The possibilities for the effective implementation of the object-based 
approach seem to be most frequently recognized in the development of high-reso-
lution simulations of urban dynamics. 

 One of the most conceptually advanced systems of this type is the Object-Based 
Environment for Urban Simulation (OBEUS) (Torrens and Benenson  2005 ; 
Benenson et al.  2005  ) . Here discrete objects directly represent real-world urban 
entities and both agents and features are treated as individual automata situated in 
space through a set of geo-referencing rules. The model distinguishes between fi xed 
objects (described with the coordinates of their vertices, edges, centroids, minimal 
bounding rectangles, etc.) and non-fi xed urban objects identifi ed by pointing to one 
or several fi xed ones. Neighborhoods are defi ned by Voronoi coverages constructed 
on the base of centroids, and by interaction rules which allow neighborhoods to be 
varied in space or time in the course of the simulation. Such object-based models 
have the added advantage in their ability to assign temporal and location behavior 
as an attribute of features rather than space itself, allowing objects to be updated 
asynchronously (Castle and Crooks  2006  ) . 

 In spite of the numerous advantages of employing an object-based modeling 
framework, there have been a relatively limited number of cases embracing this 
approach in the fi eld of ABM. The reluctance to venture into this territory is related 
to several factors. First, compared to models based on raster data, vector-based 
structures require signifi cant computational resources and object-based pro-
gramming knowledge. In addition, the departure from traditional cellular-based 
space representations leads to several conceptual problems (Castle and Crooks 
 2006  ) . A major obstacle is that, while the neighborhood relationship between iden-
tical cells in a CA-based model do not vary, in an object-based vector model the 
magnitude of the neighborhood interactions is impacted by the spatial attributes of 
the objects (Benenson et al.  2005  ) , which makes them conceptually and procedurally 
diffi cult to model. 

 Another problem in object-based modeling arises from the challenge of 
dynamically updating connected or adjacent features whose shapes change over 
time (Miller  1999  ) . In such cases the space-time topology of objects’ vectors 
becomes increasingly complex as amendments accumulate during the simulation 
runs (Castle and Crooks  2006  ) . Of particular interest in urban modeling, for 
instance, are the processes of parcel subdivision or amalgamation which under-
line the morphogenetic processes of growth. Yet, due to the issues outlined above, 
these processes have not found adequate representation in ABMs so far. The few 
attempts to incorporate dynamic repartitioning of space rely on rather mechani-
cally construed Voronoi tessellation algorithms (Semboloni  2000 ; Benenson 
et al.  2005  )  that do not bear much resemblance to the complex patterns generated 
by the processes of land subdivision. In spite of the growing number of experi-
ments with the object-based approach, moving forward from agents with fi xed 
vector boundaries remains to this day a seemingly insurmountable challenge in 
ABM (Hamman et al.  2007  ) .  
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    13.3.2   Beyond the “Grid vs. Vector” Debate 

 Another interesting area of development within ABMs, situated outside the territory 
of the grid vs. vector and cells vs. objects debate, is composed of a recent group of 
studies concerned with the integration of urban form characteristics that have been 
previously overlooked. An early example of such an attempt is the ILUTE project 
(Miller et al.  2004  )  in which the built environment is described by the type and 
amount of fl oorspace, while transition rules incorporate the age of development as 
well as local and global vacancy rates. Similar attributes of the built environment 
are used in another detailed land use change model, which adds to the spatial param-
eters the amount of land surface covered by buildings, thus identifying spatial 
resources available in each cell for further development (Vancheri et al.  2008  ) . 

 A further effort to capture key features of the built environment in an ABM struc-
ture is aimed at incorporating representation of physical design elements.   The DEED 
model (Brown et al.  2008  )  locates residential agents using a utility calculation that 
considers the landscape characteristics associated with a range of subdivision types. 
Each of the four types is defi ned on the basis of observed land-cover proportions and 
patterns, street patterns, and lot sizes. The characteristics of subdivision design are 
also incorporated in a high-resolution data model which evaluates how different sub-
division designs might infl uence development under varying population growth rates 
and buyer preferences (Stevens and Dragicevic  2007  ) . 

 A logical step in the progression towards higher levels of sophistication with 
which the environment is represented in ABMs is the incorporation of the third 
dimension of space. The fi eld of ABM has traditionally been dominated by two 
dimensional approaches, with very few experiments venturing into 3D space 
(Dibble and Feldman  2004 ; Thorp et al.  2006  ) . Most of these projects are concep-
tual developments creating hypothetical environments such as CityDev, which 
offers an interactive multi-agent simulation model of city development organized 
spatially in cubic cells (Semboloni et al.  2004  ) . A few studies, however, have tried 
to incorporate 3D features into models simulating the development of real urban 
environments. Of particular interest among these examples is the quality of views 
offered within a given landscape. In such studies, viewshed analysis is used to 
describe the degree of visibility as a determining factor for residential location 
(Yin and Muller  2007  ) . 

 An interesting venue of exploration within the ABM world is the use of 3D envi-
ronments for the purposes of visualization (see Patel and Hudson-Smith  2012  for an 
overview of visualizing ABM outputs). One of the fi rst illustrations of such capabili-
ties utilized a combination of Repast software libraries and GIS layers (Dibble and 
Feldman  2004  ) , allowing the movement and interaction of agents to be followed in 
real-time 3D networks. The system has been used to model a number of socio-spatial 
phenomena including the transmission of infectious diseases, the dynamics of civil 
violence, and the coordination of social networks. Latest attempts to develop further 
conceptually the application of 3D visualization include the idea of moving ABM 
simulation environments from individual workstations to collaborative geographic 
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space using Second Life as a platform for the dissemination of geographic content 
(Crooks and Hudson-Smith  2008  ) . Such experiments underscore the great potential 
for the development of the fi eld charted by the advancement of the concepts of space 
within ABMs.   

    13.4   Conclusions 

 The primary strength of ABMs is as a testing ground for a variety of theoretical 
assumptions and concepts about human behavior. As a result of this concentration 
on behavior-driven social processes, ABMs tend to be traditionally less concerned 
with realistic representation of the physical environment. Therefore, they are rarely 
used as predictive models for real-world sites where the concern is that they can be 
overly fi tted to existing data, thus losing their power of generalization or ability to 
explore alternative systems. 

 As the fi eld of ABMs develops and matures, it has faced the need to refi ne its 
underlying theoretical concepts, including the role played by the environment in 
conditioning the interactions of agents. Research has highlighted the point that 
dynamic behavior-based processes can be signifi cantly impacted by even small 
changes in underlying spatial structures (O’Sullivan  2001  ) . This has directed the 
attention of agent-based modelers towards new paths for better integration and rep-
resentation of the spatial aspects of the modeled environment. 

 The most numerous group of such studies have been constrained within a general 
effort to refi ne CA-based structures, which continue to be utilized as an underlying 
environment for the majority of ABMs. These efforts have included the employ-
ment of higher resolution data, larger areal extents, and experiments with alternative 
methods of grid tessellation. An interesting departure from the dominant tradition is 
based on the work of a relatively small but growing number of researchers who have 
tried to break away from the bind of CA constructs by experimenting with environ-
ments defi ned by vectors and objects. This approach holds the promise of producing 
very interesting results, especially in view of the natural affi nity between the agent-
based and object-oriented paradigms. The third stream of innovations in the integra-
tion of space in ABMs is built on the idea of achieving a richer representation of the 
spatial characteristics of the environment through the inclusion of features that have 
been previously overlooked but which might have a critical importance for the 
dynamics of the modeled phenomena. An important conceptual leap forward here is 
the inclusion of the third dimension of space which opens up exciting opportunities 
for exploration of model parameters and the visualization of simulated 
phenomena. 

 All of these new avenues of exploration present new challenges for the develop-
ment of the fi eld of agent-based modelling. Many of the conceptual and technical 
considerations related to the integration of space are pushing the fi eld forward as 
modellers are charged to apply forward thinking, which should not be confi ned by 
the limitations of the tools and concepts in currency today. This chapter has presented 
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the argument that improving the level of realism in representing space can lead not 
only to an enhanced comprehension of model design and outcomes, but to an enhanced 
theoretical and empirical grounding of the entire fi eld of agent-based modelling. 
It appears that this new decade will be a critical time for meeting these goals.      
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