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  Abstract   This chapter considers two important issues in the development of 
agent-based models, i.e. calibration and validation. These terms are defi ned and 
framed into a step-by-step process. Each step is then explained in further detail 
and illustrated using an agent-based model of shifting cultivation developed by 
Ngo (2009) as part of his PhD research project. Although the process of model 
validation presented here is applicable to agent-based models in general, some of 
the fi ner details are more relevant to agent-based models of land use and land 
cover change.      

    10.1   Introduction 

 Model validation is a process for determining if a model is able to produce valid and 
robust results such that they can serve as the basis for decision makers (Berger et al. 
 2001  ) . The validation process provides the information needed to assess how well 
the model approximates the real world system and meets the original objectives of 
the model development. Before the outputs of a model are validated, there is a cali-
bration process whereby the model parameters are determined using real world 
data. Together both calibration and validation represent one of the seven challenges 
of agent-based modeling (Crooks et al .   2007  ) . One of the main reason for this 
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 challenge is that the concepts related to validation are still being debated, and 
 confl icts remain in the way that validation terminologies are used (Carley  1996 ; 
Crooks et al.  2007 ; Troitzsch  2004  ) . Moreover, the different techniques for  validation 
are quite varied, which has led to a confusing situation for modellers. Therefore, it 
is important to have a systematic approach to the overall validation process, and one 
that is integrated throughout the development phase of an agent-based model 
(ABM). This chapter attempts to provide such an approach to ABM validation. 

 Numerous publications have been devoted to reviewing different validation 
methods for ABMs (Berger et al.  2001 ; Carley  1996 ; Klügl  2008 ; Parker et al.  2002 ; 
Troitzsch  2004 ; Windrum et al.  2007  ) . Among these, several types of validation are 
mentioned, e.g. empirical validation, statistical validation, conceptual validation, 
internal validation, operational validation, external validation, structural validation 
and process validation. However, Zeigler  (  1976  )  provides a good characterization of 
these methods into three main types:

    • Replicative validation:  where model outputs are compared to data acquired 
from the real world;  
   • Predictive validation:  where the model is able to predict behaviour that it has 
not seen before, e.g. that which might come from theories or which might occur 
in the future; and  
   • Structural validation:  where the model not only reproduces the observed sys-
tem behaviour, but truly refl ects the way in which the real system operates to 
produce this behaviour.    

 In this chapter, the focus is on structural validation, which in broad terms con-
sists of the following four processes as defi ned below (Carley  1996 ; Klügl  2008  ) :

    • Face Validation:  is often applied at the early phase of a simulation study under 
the umbrella of conceptual validation. This technique consists of at least three 
methodological elements:

    • Animation assessment:  involves observations of the animation of the overall 
simulated system or individual agents and follows their particular behaviours.  
   • Immersive assessment:  monitors the dynamics of a particular agent during 
the model run.  
   • Output assessment:  establishes that the outputs fall within an acceptable 
range of real values and that the trends are consistent across the different 
simulations.     

   • Sensitivity Analysis:  assesses the effect of the different parameters and their 
values on particular behaviours or overall model outputs.  
   • Calibration:  is the process of identifying the range of values for the parameters 
and tuning the model to fi t real data. This is conducted by treating the overall 
model as a black box and using effi cient optimisation methods for fi nding the 
optimal parameter settings.  
   • Output Validation:  involves graphically and statistically matching the model’s 
predictions against a set of real data.    
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 Face validation and sensitivity analysis are sometimes collectively referred to as 
verifi cation (Parker et al.  2002  ) . The different processes above are often carried out 
iteratively in a step-by-step process as illustrated in Fig.  10.1 .  

 A model is able to generate reliable and valid results within its experimental 
frame only if these validation processes are wholly implemented. However, there 
are very few examples of where comprehensive system validation has been 
applied to ABMs. For land use and land cover change modeling in particular, 
many studies have only concentrated on  output validation  (e.g. Castella and 
Verburg  2007 ; Jepsen et al.  2006 ; Le  2005 ; Wada et al.  2007  )  whereas the other 
steps mentioned above have not been treated explicitly. Therefore, the results 
may not truly refl ect the way the system operates as per the defi nition of struc-
tural validation provided earlier. 
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  Fig. 10.1    General validation process of an ABM       
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 The rest of the chapter discusses each of the stages in the validation process 
(Fig.  10.1 ) in more detail, providing examples from an ABM of shifting cultivation 
(SCM) as described in Ngo  (  2009  )  and Ngo et al.  (  2012  ) .  

    10.2   Verifi cation of ABMs 

 Verifi cation is the process whereby the logic of the model is tested for acceptability 
and validity. Basically the model is checked to see if it behaves as it should. Crooks 
et al.  (  2007 , p. 10) refer to this as testing the “inner validity” of the model. Verifi cation 
often involves examining processes within the model and then comparing the model 
outputs graphically or statistically against the real data. However, the level of detail 
needed for verifi cation is less than that required for calibration (Carley  1996  ) . 

 As defi ned previously in Fig.  10.1 , model verifi cation consists of face validation 
together with the sensitivity analysis. Face validation is conducted to ensure that the 
processes and initial outcomes of the model are reasonable and plausible within the 
basic theoretical framework of the real system. Sensitivity analysis, on the other 
hand, is applied to examine the effect of the model parameters on the outcome of the 
model. Parameters with no signifi cant effect are then removed from the model to 
make it more coherent and easier to operate. The sensitivity analysis is, therefore, 
necessary in the pilot phase of complicated simulation studies as the parameters that 
are identifi ed as being important are those that will require calibration or identifi ca-
tion using optimisation or some other means. 

    10.2.1   Face Validation 

 Face validation should be applied to several aspects of the model in its early devel-
opment phase. The dynamic attributes of the agents can be analysed visually across 
many iterations of the model. All behaviours such as those used for identifying the 
relationships between agents, and the automatic updating of related parameters are 
checked for consistency and accuracy. These processes are essentially the  anima-
tion  and  immersive  assessments referred to in Sect.  10.1 , which can be undertaken 
in a visual and qualitative way. 

 A simple example of visual validation is demonstrated in Fig.  10.2 , which has 
been conducted for the SCM of Ngo  (  2009  ) . Figure  10.2  shows the results of the 
dynamic monitoring of a random household agent with their relatives over time. As 
time increases (on an annual time step), the household characteristics of the agent 
are updated gradually from a state when the household was young to when the fi rst 
partitioning occurs and the fi rst son marries, forming a new household. Replacement 
by the second son then takes place when the head of household agent dies to form a 
new household. Visual analyses like these were used to determine whether the SCM 
(Ngo  2009  )  was able to produce acceptable results when simulating real human 
relationships in a shifting cultivation system.  
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 The second part of the face validation process relates to output assessment in 
order to ensure that the simulated results fall within an acceptable range of real 
values across the simulations. The simulated results might include the important 
parameter values which were used to describe an agent’s characteristics. The analyses 
can be conducted as follows. Firstly, the model is run several times (where all inputs 
are held constant) in order to generate the initial outputs related to the characteristics 
of the agents. The number of runs should be suffi ciently large as to be statistically 
signifi cant (e.g. 30). These data were then analysed visually to ensure that they fell 
within the range that corresponds to the real world (based on a comparison with 
survey data obtained from fi eldwork). 

 A statistical comparison between the data from the simulated runs and the real 
data is shown in Table  10.1 . In terms of the statistical distribution, it is important to 
check for Standard Errors (SE) and compare the mean values of the simulated results 
with real world values to ensure that the model can provide consistent results. Once 

 

Agent 15
Characteristics 

- size: 6 
- labour: 4 
- land: 1.2 ha 
- sibling: n/a 
- children-HH: n/a 
- relative: n/a 

2012 Agent 15
Characteristics 

- size: 4 
- labour: 3 
- land: 0.8 ha 
- sibling: n/a 
- children-HH: 163 
- relative: 163 

Agent 163
Characteristics

- size: 2 
- labour: 2 
- land: 0.6 ha 
- sibling: n/a 
- children-HH: n/a 
- relative: 15 

2019 Agent 163
Characteristics

- size: 5 
- labour: 2 
- land: 0.7 ha 
- sibling: HH257 
- children-HH: n/a 
- relative: 257 

Agent 257
Characteristics 

- size: 5 
- labour: 2 
- land: 0.8 ha 
- sibling: HH163 
- children-HH: n/a 
- relative: 163 

2037 Agent 512 
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- size: 3 
- labour: 2 
- land: 0.5 ha 
- sibling: n/a 
- children-HH: n/a 
- relative: 163, 257 
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- labour: 4 
- land: 1.4 ha 
- sibling: HH163 
- children-HH: n/a 
- relative: 163, 512 

Agent 163
Characteristics

- size: 3 
- labour: 3 
- land: 0.5 ha 
- sibling: HH257 
- children-HH: 512 
- relative: 512, 257 

… … …
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…
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1st 3 noitareneg rd generation 2nd generation Partition Replacement 

  Fig. 10.2    Dynamic monitoring of selected household agents over time in the shifting cultivation 
model (Ngo  2009  )        
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   Table 10.1    Household data from the model simulation and the survey data collected in 2007 
(Ngo  2009  )    

 Model outputs in 2007  Survey data in 2007 

 Mean  SE  SE (%)  Lower bound  Upper bound  Mean 

 Age of household 
heads (year) 

 40  0.149  0.37  39  45  42 

 Household size 
(# of people) 

 6.27  0.054  0.89  6.17  7.54  6.86 

 Household labour 
(# of labourers) 

 3.70  0.047  1.27  3.31  4.34  3.83 

 Land per capita (ha)  0.18  0.000  0.00  0.18  0.21  0.19 

the simulated results appear to be consistent (e.g. SE < 5%), their mean values can 
be then compared with the ranges of the real data, which is often indicated by the 
lower and upper bounds in statistical terms.  

 The simulated data in Table  10.1  shows that the model output results have SEs of less 
than 5% compared to the mean values, indicating that the results are consistent and can 
therefore be compared with the fi ndings from the survey. The mean values of the model 
outputs fall within the upper and lower bounds of the survey data, which confi rms that 
the SCM can produce household characteristics that are similar to the survey data. 

 Another assessment of the output within the face validation framework is to 
check how consistently the model can produce the same or similar outcomes 
between the different model runs. There are several ways to do this but the  Test for 
Homogeneity of Variances  (Winer  1971  )  is one possible approach. In practice, 
we might measure the variances of the simulated results for several time steps 
(i.e. t, t + 1, t + 2, t + 3, t + n) with several replications. If the hypothesis is accepted, i.e. 
the variations between model runs are similar, then the model would pass this test. 

 Regarding ABMs related to land use and land cover change analysis, it is also 
important to compare output values from model runs produced at different scales. 
Since the level of detail is reduced at lower resolutions, there will most likely be 
some difference between the model outputs run at varying scales. However, if this 
difference is not statistically signifi cant, then the model could be run at the coarser 
scale to reduce the running time of the model. This reduction in computational time 
could be very signifi cant if the model is applied to a large area.  

    10.2.2   Sensitivity Analysis 

 In an ABM context, sensitivity analysis is often carried out to examine the effect of 
input parameters and their values on model behaviours and model outputs. This 
analysis is essential for selecting signifi cant parameters for the simulation before 
the model is calibrated or used in scenario analysis. A common approach is to 
modify only one parameter at a time, leaving the other parameter values constant 
(Happe  2005  ) . However, this approach is not as easily applicable to agent-based 
systems (Manson  2002  )  and sensitivity analysis has often been undertaken in an 
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unstructured way (Kleijnen et al.  2003  ) . In order to avoid oversimplifi cation of the 
underlying model due to leaving out possible interactions between input parameters, 
Kleijnen et al.  (  2003  )  and Happe  (  2005  )  have suggested that the sensitivity analysis 
should be conducted systematically by applying the statistical techniques of Design 
of Experiments (DOE) and metamodelling (Box et al.  1978 ; Kleijnen and Van 
Groenendaal  1992  ) . 

 The suitability of DOE techniques in the context of ABMs has been recognised 
previously as it can help to determine the importance of the input parameters and 
also provide information about model behaviour and the logic employed in the pro-
gramme (Happe  2005 ; Kleijnen et al.  2003  ) . In DOE terminology, model input 
parameters are called factors, and model output measures are referred as to responses. 
A full factorial design consists of  i  factors, with an assumption that each factor takes 
 j  levels and therefore involves  n = i    j   factor setting combinations. This means that  n  
simulations are required to determine the effect of  i  factors. However, this procedure 
can only be applied to a small number of factors because the computation time 
increases exponentially with each additional factor and each additional factor level 
(or categories in which each factor is divided). It is obvious that alternative methods 
are therefore necessary to undertake a sensitivity analysis of the model if the num-
ber of factors is large. 

 To deal with the computational problem due to the large number of factors, 
Bettonvil and Kleijnen  (  1997  )  proposed the Sequential Bifurcation (SB) technique 
which is essentially a method to determine the most important factors among those 
that affect the performance of the system. 

 SB operates with three assumptions: ( i ) the importance of factors to the model 
performance can be approximated as a fi rst-order polynomial; ( ii ) the sign of each 
factor effect is known; and ( iii ) errors in the simulation model are assumed to be zero. 
The overall procedure can be described as follows. Firstly, the analysed parameters 
are converted to binary variables with values of 0 or 1, which correspond to low and 
high simulation outputs, respectively. The simplest approximation of the simulation 
model output  y  is a fi rst-order polynomial of the standardised variables ( x  

 1 
  ,…,x  

 j 
  ,…,x  

 K 
 ), 

which has main effects   b   
 j 
  and overall mean   b   

 0 
 , and can be expressed as:

     0 1 1 ··· ···j j K Ky x x xb b b b= + + + + +
   (10.1)   

 The manner of the variable standardisation mentioned above implies that all the 
main effects in ( 10.1 ) are non-negative:   b   

 j 
   ³  0. In terms of DOE, the standardised 

variables also indicate that the combination of experimental factors relates to the 
switch-on (1) and switch-off (0) of the equation’s elements. To deal with the interac-
tion between factors, i.e. the dependence of a specifi c factor on the levels of other 
factors, ( 10.1 ) can be approximated as:

     

1

0 ,
1 1 1

K K K

j j j j j j
j j j j
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−

= = = +

= + +∑ ∑ ∑
   

(10.2)
  

where   b   
 j,j’ 

  is the two factor interaction effect between factor  j  and  j’ . 
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 Secondly, SB is operated in an iterative procedure where the next factor is 
selected based on the outputs of previous factor combinations that have already 
been simulated. The procedure might contain several stages, depending on the lower 
limit of the effect level defi ned by the users. The fi rst stage always estimates the 
simulated results from the two extreme factor combinations, namely  y  

 0 
  (all factors 

low) and  y  
 K 
  (all factors high). If  y  

 0 
   < y  

 K 
 , then the sum of all the individual main 

effects is important and the second stage of SB is entered. SB then splits the factors 
into two subsets of equal size and continues the estimation process for each sub-
group, which is the same as that described in the fi rst stage, and the procedure con-
tinues in an iterative manner. SB terminates when the effect level (i.e.  y  

 j 
   – y  

 0 
 ) reaches 

the lower effect limit defi ned by the user. 
 More detailed instructions on how to apply the SB technique can be found in 

Bettonvil and Kleijnen  (  1997  )  and Ngo  (  2009  ) . In general, the effective level of the 
factor found by the SB indicates its sensitivity. The factors that are identifi ed by the 
SB as having little importance or were less effective should be eliminated from the 
model. The remaining factors or model parameters will then need to be calibrated if 
unknown  a priori . In the SCM of Ngo  (  2009  ) , sensitivity analysis was used to elimi-
nate a number of variables from the model, leaving a subset for calibration.   

    10.3   Model Calibration 

 Once the sensitivity analysis is completed, the next stage in validation (Fig.  10.1 ) is 
calibration of the model. The calibration process is conducted to identify suitable 
values for the model parameters in order to obtain the best fi t with the real world. 
This process, therefore, involves the optimisation of the parameters. There are many 
different optimisation methods available (Fletcher  2000  )  but a genetic algorithm 
(GA) is particularly well suited for implementing this task. A GA has novel proper-
ties such as being able to undertake a parallel search through a large solution space 
(Holland  1992  ) . GAs have also been used to calibrate other ABMs in the past 
(Heppenstall et al.  2007 ; Rogers and Tessin  2004  ) . 

    10.3.1   The Principle of Parameter Optimisation Using GAs 

 A GA applies the principle of “survival of the fi ttest” from the fi eld of genetics to a 
population of competing individuals or solutions within a given environment called 
the search space (Soman et al.  2008  ) . The procedures involved in a GA are similar 
to the process that occurs in genetics where the parameters in the GA play the role 
of chromosomes; the range of data is the genotype; while the results of the model 
runs are the phenotype. The general steps in a GA are illustrated in Fig.  10.3 .  

 The GA starts with a randomly generated number of solution samples which 
is collectively called the population, which is the fi rst generation of the species. 
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A single solution or individual in the population is the combination of parameters 
with particular values. The solution is therefore equivalent to a natural chromosome 
with a specifi c genotype. The next step is the evaluation of fi tness using the objec-
tive function specifi ed by the user. If there is any individual with a fi tness value that 
satisfi es the threshold condition, the programme is terminated and the best individual 
will be the best solution. Otherwise the GA will operate in a loop creating new gen-
erations or populations. Within the loop, individuals (i.e. chromosomes) with higher 
fi tness values are given a higher probability of mating with each other, so as to 
produce offspring that may better fi t the environment. 

 Several selection methods for selecting the best fi t individuals are available such 
as roulette wheel, tournament, rank and elitism (Mitchell  1996  ) . The most popular 
method is tournament selection, which is not only suitable for a medium and small 
population size but also provides marginally better accuracy compared to the rou-
lette wheel selection (Al-Ahmadi et al .   2009  ) . The tournament selection chooses the 
best fi t individuals from several random groups iteratively. For example, if a total of 
35 best fi t individuals must be selected out of a population of 50 members, the tour-
nament will fi rstly select a random group (e.g. a group of three random members); 
within this group, a best fi t individual will be the fi rst selected member. These selec-
tion processes continue with the next random group to choose the second member 
until the 35th member is reached. All selected individuals are then entered into the 
recombination or crossover step which replaces the old chromosomes with the new 
ones. In the crossover phase, two selected individuals from two random tournament 
groups perform crossover with a certain number of gene exchanges. 

 The process of selection and recombination do not inject new genes, so the solution 
can converge to a local optimum (Soman et al .   2008  ) . The process of mutation, which 
prevents GAs from premature convergence to a local optimum, is performed to 
achieve local perturbation by randomly replacing the parameter values with new ones. 
The frequency of the replacement and the level of perturbation (i.e. the number 

Best individual 
(optimal parameters) 

Generate 
initial rule sets 
(population) 

Evaluate 
fitness 

Generate new population 

Satisfied 
STOP 

conditions?

Selection 

Recombination/ 
Crossover 

Mutation 

No 

    Yes 

  Fig. 10.3    The general steps in a genetic algorithm       
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of parameter values that are replaced) is defi ned by the mutation rate. Selection, 
recombination and mutation are then applied to each generation iteratively until an 
optimal solution is reached. The condition to be satisfi ed could be reached after a 
maximum number of generations or if there is observed stability in statistics such as 
the mean and/or variance of the population fi tness values from a generation (Soman 
et al .   2008  ) . The optimisation programme ends when the terminated conditions are 
matched and the optimal solution is reported.  

    10.3.2   Measurement of the Fitness of a GA 

 There are several techniques for measuring fi tness and errors in the simulation 
model such as the Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 
Mean Absolute Percentage Error (MAPE), Median Absolute Percentage Error 
(MdAPE), the Relative Operating Characteristic (ROC), a Confusion Matrix (CM), 
the Kappa Index of Agreement (KIA), Fractal Analysis (Mandelbrot  1983  )  and 
Multiple Resolution Goodness-of-fi t (MRG). These techniques and goodness-of-fi t 
statistics measure different aspects of the model performance, and may therefore be 
suited to different objectives. The selection of which evaluation measures to use 
depends upon the purpose of the validation and the characteristics of the measures, 
i.e. what the different measures are intended to show. 

 With respect to the GA, the RMSE is the most commonly used fi tness or error 
measure (Chatfi eld  1992  )  because it indicates the magnitude of error rather than 
relative error percentages (Armstrong and Collopy  1992  ) . This statistic measures 
the squared differences between the simulated or predicted values and the observed 
or reference values:

     

( )
=

−
=

∑ 2

1, 2,
1

n

i i
i

x x
RMSE

n    

(10.3)

  

where  x  
 1i 
   – x  

 2,i 
  is the difference between variable  i  from data source 1 (i.e. the simu-

lated result) and data source 2 (i.e. the reference or observed data); and  n  is the total 
number of variables. The RMSE provides a global measure of performance that 
aggregates all individual differences into a single measure of predictive power. 

 Other measures of evaluation such as the ROC and the MRG are more suited to 
evaluation of the model outputs once the model is calibrated so are described in 
more detail in Sect.  10.4 .  

    10.3.3   Interpreting Calibration Results from the GA 

 In practice, a GA does not produce a single unique set of parameters but a range of 
solutions that sit on a Pareto front (Madsen et al .   2002 ; Yapo et al .   1998  ) . This means 
that the GA operations will produce a range of different parameter combinations 
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that can give acceptable solutions, rather than generating a single solution. An 
example of the optimised parameter set from the SCM of Ngo  (  2009  )  is shown in 
Fig.  10.4 .  

 Each line in Fig.  10.4  represents a solution that consists of values for eight 
calibrated parameters. For each parameter there is a range of possible solutions, 
indicating the error in the values found by the GAs produced in several runs. 
Therefore, the additional step that needs to be done is to check for the standard 
errors for each parameter from all runs. If the errors are not high and the relation-
ships between the values of the parameters and real conditions are reasonable, the 
solution will be potentially accepted. 

 As explained above, all parameter combination sets provided by the GA are 
potentially acceptable solutions. In addition, each parameter clusters around a cen-
tral value, suggesting that there is a global optimum for the multiple objectives. 
However, later analyses using the ABM such as validation of model outputs and 
scenario analyses will require a consistent set of parameters. The way of selecting 
a set of parameters for further analysis depends strongly on the purpose of the 
modeller. An acceptable way could be to run the model several times with differ-
ent parameter sets provided by the GA and then compare the output(s) that is 
considered as important or signifi cant by the modeller. The parameter set that 
yielded the highest average fi tness value compared to the real data is one method 
for selection. For example, the bold line in Fig.  10.4  is a parameter set that pro-
vided highest fi tness values for land cover and was therefore selected as the best 
solution for the SCM (Ngo  2009  ) .   
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  Fig. 10.4    The calibrated parameters provided by 30 GAs (Ngo  2009  )        
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    10.4   Validation of Model Outputs 

 The fi nal stage in the validation process (Fig.  10.1 ) is validation of the ABM 
outputs. This is the most important process in model development because it ensures 
that the model has the right behaviour for the right reasons (Klügl  2008 ; Qudrat-
Ullah  2005 ; Troitzsch  2004  ) . Validation of the model outputs is concerned with how 
well they represent real world behaviour and they are, therefore, compared with 
actual observations (Parker et al .   2002  ) . 

 The measurement techniques that determine how the model outputs match 
the real data are varied. However, the Relative Operating Characteristic (ROC) 
and the Multiple Resolution Goodness-of-fi t (MRG) are two good measures for 
validating ABM model outputs. These two measures are explained in more 
detail below. 

    10.4.1   Relative Operating Characteristic (ROC) 

 The ROC is used to evaluate the performance of a classifi cation or prediction scheme 
by identifying where instances fall in a certain class or group (Beck and Shultz 
 1986  ) . The classifi cation is based on the value of a particular variable in which the 
boundary between classes must be determined by a threshold or cut-off value. 
An example would be the prediction of illegal cultivation measured by the SCM 
(Ngo  2009  ) , where the threshold value used to predict whether or not a household 
would cultivate illegally in the protected forest is a value between 0 and 1. The 
result is therefore a two-class prediction, labelled either as positive (illegal) ( p ) or 
negative (not illegal) ( n ). There are four possible outcomes from a binary predictor: 
 true positive, false positive, true negative and false negative . A  true positive  occurs 
when both the prediction and the actual value are  p ;  false positive  when the predic-
tion is  p  but the actual value is  n ;  true negative  when the predicted value is  n  and the 
actual value is also  n ; and false negative when the predicted value is  n  while the 
actual value is  p . The four outcomes can be formulated in a two by two confusion 
matrix or contingency table as shown in Fig.  10.5  (Fawcett  2003  ) . Defi nitions of 
precision, accuracy and specifi city are also provided.  

 The ROC evaluation is based on the ROC curve, which is a graphical representation 
of the relationship between the sensitivity or tp-rate and the specifi city or 1 – fp-rate 
of a test over all possible thresholds (Beck and Shultz  1986  ) . A ROC curve involves 
plotting the sensitivity on the y-axis and 1-specifi city on the x-axis as shown in 
Fig.  10.6 .  

 This graphical ROC approach makes it relatively easy to grasp the inter- 
relationships between the sensitivity and the specifi city of a particular  measurement. 
In addition, the area under the ROC curve provides a measure of the ability to 
 correctly classify or predict those households with and without illegal cultivation. The 



19310 Calibration and Validation of Agent-Based Models of Land Cover Change

ROC area under the curve (AUC) would reach a value of 1.0 for a perfect test, while 
the AUC would reduce to 0.5 if a test is no better than random (Fawcett  2003  ) . 

 The ROC has been proposed as a method for land cover change validation 
(Pontius and Schneider  2001  ) . However, it is less useful in terms of capturing the 
spatial arrangement of the model outputs in relation to the real world results (Pontius 
and Schneider  2001  ) . Thus, in the case of the SCM (Ngo  2009  ) , the ROC is more 
useful for validating the number of illegal cultivators than the area of illegal cultiva-
tion predicted by the SCM (Ngo  2009  ) .  

    10.4.2   Multiple Resolution Goodness-of-Fit (MRG) 

 Multiple resolution goodness-of-fi t (MRG) has been proposed for measuring the 
spatial patterns of the model output at several resolutions. This measurement is 
especially relevant when validating the spatial outputs of ABMs that model land 
cover and land use change (Turner et al.  1989  ) . 
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  Fig. 10.6    A basic ROC 
curve (Adapted from Fawcett 
 2003  )        

ssalc eurT tp-rate = TP/N = sensitivity;  
 fp-rate = FP/N;  
 precision = TP/(TP + FP);  
 accuracy = TP+TN/(P+N); 
 specificity = TN/(FP+TN)  
= 1 – fp- rate
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  Fig. 10.5    The confusion matrix to calculate the ROC (Adapted from Fawcett  2003  )        
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 The MRG procedure is expressed in ( 10.4 ), which measures the fi t at a particular 
sampling window size ( F  

 w 
 ), which is then aggregated for all samples (Costanza 

 1989  ) :
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where  F  
 w 
  is the fi t for the sampling window size  w ,  a  

 ki 
  is the number of cells of cat-

egory  i  in the image  k  within the sampling window,  p  is the number of different 
categories in the sampling window,  s  is the sampling window of dimension  w  by  w  
which moves across the image one cell at a time, and  t  

 w 
  is the total number of sam-

pling windows in the image of window size  w . 
 The fi t for each sampling window is calculated as 1 minus the number of cells 

that would need to change in order that each category has the same number of cells 
in the sampling window irrespective of where they appear in the image. 

 The weighted average of all the fi ts,  F  
 t 
 , over all window sizes is then calculated 

to determine the overall degree of fi t between the two maps as follows:
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where  F  
 w 
  is defi ned above in ( 10.4 ) and k is a constant. When  k  = 0, all window 

sizes have the same weight while for  k  = 1, only the smaller windows sizes are 
important. For the purpose of matching the spatial pattern of land use, a value of 
k of 0.1 gives an ‘adequate’ amount of weight to the larger window sizes 
(Costanza  1989  ) . 

 The MRG is a much more suitable way of assessing the fi tness of the spatial 
outputs compared to the more conventional methods used in ABM model output 
validation such as a confusion matrix or kappa statistic calculated at a single resolu-
tion only. The Kappa test, for example, can be used to measure the fi t between two 
land cover maps based on a pixel-by-pixel comparison, but it ignores the relation-
ships between one measured pixel and its neighbours. Hence, it will only tell us 
whether the total number of pixels in each land cover category is signifi cantly dif-
ferent between the two maps, and not say anything about the accuracy of their spa-
tial arrangement (Costanza  1989  ) . The MRG, however, captures the details of the 
spatial and temporal patterns in the data. More details on the application of MRG 
can be found in Costanza  (  1989  ) . The use of the MRG in validating the model out-
puts of the SCM can be found in Ngo  (  2009  ) .   
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    10.5   Summary 

 Calibration and validation are crucial stages in the development of ABMs yet remain 
a key challenge (Crooks et al .   2007  ) . This chapter has defi ned these terms and pre-
sented the process as a series of steps that should be followed when building a 
model. Although the process is generic to ABMs in general, particular attention was 
given to ABMs of land use and land cover change, especially in terms of the mea-
sures for evaluating the output of the model. More specifi cally, examples from the 
calibration and validation of the SCM of Ngo  (  2009  )  were provided to illustrate the 
process. It should be noted that this represents only one view of the calibration and 
validation process based on experience gained through building an ABM of shifting 
cultivation. There are clearly a range of methods available that could be used in or 
adapted to any part of the calibration and validation process, e.g. different methods 
of parameter optimization, different measures of evaluating performance, etc. Until 
more guidance is provided in the literature, calibration and validation will remain a 
key challenge.      
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