
Chapter 9
Lightweight Ontologies

John Davies

9.1 Introduction

Ontology was, in its original sense, a branch of philosophy and in this sense of the
word is the study of what (kinds of) things exist: it seeks to identify (or posit) the
categories of existence and the relationships between those categories; and to define
or describe entities1 within this framework. As such, the ultimate goal of ontology
is to provide a definitive and complete classification of entities and the relations
between those entities in all spheres of reality, both material and abstract. In this
context, the phrase “lightweight ontology” has little meaning: indeed, the purpose
of the enterprise is to be as “heavyweight” as to define a framework which is as
complete and definitive a representation of reality as possible.

The term ontology has also, however, come to prominence over recent years in
computer science and in particular in the areas of knowledge representation (KR)
and reasoning and semantic web technology.

As described in more detail in Smith and Welty (2001), interest in ontology arose
in 3 separate but related areas of computer science. At a high level, this interest
arises from the realisation that the behaviour of a software system is meaningful
only by virtue of the interpretation put on it by users of the system. As such, a
system which employs a more accurate model of the user’s world will in general be
more meaningful to that user and will be better able to accommodate change.

In the area of database management systems, it was found that, as database tech-
nology itself matured and stabilised, the issue of conceptual modelling was a more
important and subtle one: the quality of a requirements specification and ultimately
that of the resulting information system itself turned out to be heavily dependent on
the ability of a developer to extract and represent accurately knowledge about the
modelled domain.

J. Davies (B)
BT Innovate, British Telecommunications plc, London, UK
e-mail: john.nj.davies@bt.com
1We define an entity to be that which has a distinct separate existence.

197R. Poli et al. (eds.), Theory and Applications of Ontology: Computer Applications,
DOI 10.1007/978-90-481-8847-5_9, C© Springer Science+Business Media B.V. 2010

198 J. Davies

Similarly, in software engineering the 1980s saw the emergence of object-
oriented technologies which encouraged an approach to software development
requiring the modelling of the application domain using (classes of) objects which
could have associated with them both data and “methods” – software procedures
which in some sense model an object’s capabilities. Objects can invoke the meth-
ods of other objects via a message-passing protocol. Programs are then seen as the
behaviour of a set of cooperating objects rather than the traditional set of instruc-
tions to the computer. In such a paradigm, the issue of a formal and consistent basis
for “object modelling” quickly arose.

In artificial intelligence (AI), the attempt to explicitly represent and reason about
“knowledge” led to recognition of the relevance of work done in ontology. AI
practitioners created knowledge bases representing ground facts and axioms about
some domain, typically accompanied by a more or less formal mechanism for auto-
mated reasoning, allowing the derivation of new information in a specific instance.
McCarthy (1980) stated that creators of intelligent systems must “list everything
that exists, building an ontology of our world.”

Thus the KR community and, latterly, the semantic technology community began
to use the term “ontology” in a somewhat different sense to its original meaning. An
ontology increasingly came to mean a model of a domain of interest described in a
logical language. Of course, for a software system, that which “exists” is precisely
that which can be represented and processed (reasoned about) and so this focus on
logic-based descriptions is to some extent natural. Logics provide a proof theory
(a set of axioms and inference rules which can be used to make deductions) and a
model theory (a formal analysis of the relationship between statements in the logic
and the world being represented). Indeed, it can be argued that knowledge repre-
sentation languages which do not have semantic models of the type furnished by
logic-based approaches do not actually represent anything: without a clear account
of what statements in the language claim to be true in the world, how are we to
know what is being represented? Non-logical presentations only find their mean-
ing when processed by computer programs: and different programs may process the
same data differently because the lack of an explicit semantic model can lead to
different (implicit) semantics being ascribed by different programs.

In addition to a clear semantic account, the use of logic offers other advantages
including a clear understanding of the consistency and decidability of the logic at
hand. Logics can be shown to be consistent: that is, providing the information rep-
resented in the logic initially is itself consistent, no inconsistency can arise from the
application of the logical inference rules. Decidability is particularly important in
the computational context, concerning as it does the tractability of theorems provers.
A decidable logic is one wherein a theorem prover if given a statement to prove will
be able to determine in a finite time whether or not the statement is true or false.
Other interesting properties of logics are soundness and completeness which inform
us about the relationship between the proof theory and model theory of a logic. If
a logic is sound, all formulae which can be derived from a set of formulae F using
the proof theory are true in all models in which F are true. If a logic is complete,
everything true in a given model is provable by the corresponding proof theory.

9 Lightweight Ontologies 199

The availability of these kinds of mathematical results about logics are invaluable
in telling us the computational properties of systems we may implement based on
them. Although these results are sometimes negative (as when a logic is incomplete
or undecidable), the key point is that the results are known at all: for more ad-
hoc representation schemes no such results are typically known. McDermott (1978)
argues convincingly that these properties are important from more than a purely
theoretical point of view. In essence, his point is that it is crucial that a system not
only “works” but is understood.2

However, if we move away from the requirement that ontologies be machine-
processable the picture is a little different. In the case where an ontology is used in
order to improve the communication between different departments in a company,
for example, a formal approach may not be necessary. Indeed, such an approach may
be actually unhelpful: the majority of users of such an ontology are likely to have
a greater shared understanding of an ontology expressed in a natural language than
one expressed in a description logic, for example. Uschold (Building Ontologies:
Towards a Unified Methodology, 1996) makes the distinction between the goal of
an ontology and the need for formality. He suggests that when it is used to improve
the communication between people, natural language can be sufficient. Our focus
in this chapter, however, will be on machine-processable ontologies and, as argued
above, therefore on logic-based approaches.

Smith (2003) discusses the relationship between ontology in its older philosoph-
ical sense and its later usage in computer science in more detail. For the purposes
of this chapter, we focus on the meaning of the term as used by computer scientists,
noting that, as mentioned above, this is the context in which the term “lightweight
ontology” is meaningful.

The most commonly quoted definition of this sense of the term is that given by
Gruber (1992, 1993):

An ontology is an explicit specification of a conceptualisation

In this sense, the word refers to a software artefact: a computer-processable
model of some domain of interest. Lightweight ontologies in this context are such
providing the simplest formalization of the simplest model, adequate for the task
at hand. The rationale is that simple ontologies are often more appropriate and
economical; they are easier to understand, adapt, management, update, and use.
Lightweight ontologies can “survive” in computationally extreme environments
where scale and performance are critical, e.g. very large databases and search
engines.

In the next section, we consider this notion of ontology in a little more detail,
before proceeding to distinguish lightweight ontologies from other ontologies. We

2Note that while advocating a logic-based approach we are not advocating any specific logic (such
as description logic, for example). Indeed, currently available logics lack some of the properties
which would seem to be required for representing and reasoning at the scale and lack of preci-
sion found on the web. [Fensel and van Harmelen 2007] discuss new, more appropriate inference
mechanisms.

200 J. Davies

then motivate and describe techniques which have been developed to translate other
schemes for information modelling into lightweight ontologies. In Section 9.3, we
then consider the Semantic Web and its ontological languages in more detail before
proceeding over the next 3 sections to discuss the application of ontologies to infor-
mation integration, knowledge management and service-oriented environments.
Section 9.7 contains some brief concluding remarks.

9.2 Lightweight Ontologies

9.2.1 Lightweight Ontologies and the Semantic Spectrum

We mentioned in the Introduction that ontologies were described in some logical
language with an associated underlying semantics and certainly this was the view
of early proponents of the application of philosophical ontology to AI (McCarthy,
1980). However, by 1999 it was apparent that the use of the term ontology in
the AI community was proliferating and being applied more and more widely. A
panel at that year’s AAAI conference3 reported on a wide spectrum of structuring
mechanisms that had been characterised as ontologies. Figure 9.1 shows our own
adaptation of that spectrum in the light of more recent developments.

Figure 9.1 depicts a number of approaches to information modelling in roughly
increasing order of expressiveness which have been adopted in recent years, many
of which have attracted the description “ontology.” Note that Obrst in Chapter 2
offers a similar model.

By term list is meant any set of terms used to denote entities in a particular
domain of interest. A good contemporary example of a term list would be a tag
cloud. In Web 2.04 parlance, a tag is a (relevant) keyword or term associated with
or assigned to a piece of content, thus describing the item and enabling keyword-
based classification of information for the purpose of browsing and retrieval. A tag
cloud is then a set of tags defined on a particular body of content to enable topic
browsing. Each tag in the tag cloud is a link to the collection of items that have that
tag. Tags are usually chosen by the author or consumer of the content and are thus
not part of any shared, more formal classification scheme. Tag clouds are sometimes

Term List Taxonomy FormalClassification

Glossary Thesaurus Lightweight ------------- Heavyweight
Ontologies

Fig. 9.1 Semantic spectrum

3http://www.cs.vassar.edu/faculty/welty/aaai-99/
4http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

9 Lightweight Ontologies 201

also referred to as “folksonomies” (from “folk” + “taxonomy”, though folksonomies
have little in common with taxonomies, being devoid of structure). Glossaries are
closely related to term lists, being term lists with associated definitions for each
term.

Thesaurus is a term which, as seen earlier in the case of the term ontology, has
been adapted in computer science and taken on a related but different meaning from
its original sense. Originally denoting a book listing words in groups of synonyms
(and sometimes also antonyms and related concepts), in computer science thesaurus
typically denotes a collection of terms denoted by three relations: broader-than
(BT), narrower-than (NT) and related-term (RT) sometimes augmented by further
relations. Thesauri in this context are used by electronic information providers
to associate terms with documents, often in digital libraries, to assist information
retrieval and browsing. The semantics of thesauri relations are not always entirely
clear, as we will discuss later.

A taxonomy is semantically more rigorous than a thesaurus in that it is com-
prised of a hierarchy of concepts linked by a transitive subsumption relation (often
called isA or subClassOf) whereby each instance of a class can be inferred to be
an instance of all parent classes. Taxonomies are strict hierarchies: each class has at
most one parent.5

Formal classification schemes have recently been proposed (Giunchiglia et al.,
2005) in an attempt to formalise previous work on classification. Classification has
a long history as the discipline of grouping related concepts or entities. Its task is to
aggregate items for some specific purpose, in contrast to ontology, where the goal
is generate a model of some domain of interest. Giunchiglia (2005) describes the
representation of classifications as lightweight ontologies, as discussed later.

As mentioned earlier, ontologies have been defined, in our sense of the word,
as “specifications of conceptualisations.” Borst (1997) extended this definition
somewhat:

An ontology is a formal, explicit, specification of a shared conceptualisation.

Similarly, in perhaps the best definition we have encountered, Guarino and
Giaretta (1995) offered the following:

a logical theory which gives an explicit, partial account of a conceptualisation.

This definition emphasises the requirement for a logical theory and that any
such account will always be partial rather than being able to completely specify
the intended meaning of any conceptual element.

Our own view is that to qualify as such, an ontology should offer a formal
semantic account of statements in the ontological language: that is, they should be
logic-based.6 Indeed, without formal semantics, it is hard to see how an ontology

5Taxonomy is also sometimes used loosely (and incorrectly) to denote any set of categories against
which electronic content has been classified.
6Though note that we do not necessarily exclude non-logical but formal accounts (e.g. in the case
where the knowledge is probabilistic in nature).

202 J. Davies

can be sharable or re-usable, since there is no clear account of what statements in
the language used to represent the ontology actually mean. In addition, the represen-
tation should be declarative so that ontological concepts and other features (such as
the constraints imposed on their use) are explicitly defined. In addition, in order to
qualify as a conceptualisation an ontology must be more than a set of ground facts7:
rather it is an abstract model of concepts in the world, usually limited to a particular
domain of interest.

Lightweight ontologies would then typically consist of a hierarchy of concepts
and a set of relations holding between those concepts. As discussed earlier, if we
specify only a hierarchy of concepts related using a subsumption relation, then we
have a taxonomy. Conversely, heavyweight ontologies add cardinality constraints,
standalone axioms, reified statements and more.

Depending on the planned use of the ontology, a deeper8 ontology may or may
not be required. The deeper an ontology, the more resources it requires to construct
and maintain and of course justifying the required investment in ontology creation
will depend on the anticipated value of the uses(s) to which the ontology will be put.

We stated above that ontologies should be specified in a logical language and
much research in recent years has focussed on the use of Description Logics for this
purpose. Description Logics (DLs) are logics based on a subset of first order pred-
icate calculus, so called because they focus on descriptions of concepts (classes)
as a principal means for expressing logical propositions. A description logic sys-
tem emphasises the use of classification and subsumption reasoning as its primary
mode of inference. DLs were designed as an extension to frames and semantic net-
works, which were not equipped with formal logic-based semantics. DLs are a very
natural candidate for specifying ontologies, given their focus on concepts and sub-
sumption reasoning and the fact that, being subsets of FOPC, they have attractive
computational properties. Indeed, there has been extensive research into the theoret-
ical underpinnings of DLs and a family of logics set out, each with well-understood
properties in terms of expressive power and computational tractability (Baader et al.,
2003).

In recent years, the role and impact of ontologies in computer science has
increased significantly with the advent of the semantic web (Fensel, 2001). In the
semantic web, ontologies provide the key mechanism whereby web-based metadata
is made machine-interpretable. They provide the formal, shared, explicit domain
model against which web data can be annotated. The World Wide Web Consortium
(W3C) has developed the OWL family of languages as open standards for specify-
ing and using ontologies on the (semantic) web. In Section 9.6 we review the OWL
variants and their relative expressivity and complexity.

In recent years, a number of researchers have constructed lightweight ontologies
for use in a number of different application scenarios, often providing mechanisms

7The OWL web ontology language, for example, allows a set of ground facts to be defined as an
ontology. Strictly speaking, this is inadmissible.
8‘Deeper’ in the sense more elaborate and offering a more precise model of the domain at hand.

9 Lightweight Ontologies 203

to map between other formalisms on the semantic spectrum into a lightweight ontol-
ogy as we have defined it. This work is important since, firstly, it adds to these
previous schemes the benefits of rigour, formal semantics and improved machine
processability and, secondly, because it provides a way of generating domain ontolo-
gies at reasonable cost based on pre-existing work typically with at least some
degree of community consensus.

In the remainder of this section, we will give examples of methods of converting
schemes from a number of points lower on our semantic spectrum, before proceed-
ing in the rest of the chapter for a more detailed discussion of lightweight ontologies
on the semantic web.

9.2.2 Folksonomies and Lightweight Ontologies

Motivated by the wide use of folksonomies on the one hand and the benefits of the
more formal, consistent ontological approach on the other, Van Damme et al. (2007,
2008) describe a method for “turning folksonomies into ontologies.”

As described above, aggregation of raw user-supplied metadata (tags) leads to a
tag cloud or folksonomy, as exemplified in systems such as Flickr9 or deli.cio.us.10

Problems with the use of unstructured, uncontrolled tag clouds include:

(i) different tags referring to the same concept (“Mr Bush” “George Bush” “the
president”);

(ii) the same tag referring to different concepts (“bank” referring to a finan-
cial institution or referring to an area of sloping land, for example along a
riverside);

(iii) different users tagging the same content at different conceptual levels of
abstraction (“Eiffel Tower” or “Paris”).

Building on previous work including Specia and Motta (2007), Van Damme and
her co-authors propose five sets of resources available for deriving ontologies from
folksonomies:

(i) the statistical analysis of both folksonomies and the usage of folksonomy-
based systems (including the underlying social relationships between users)
to identify structural patterns in folksonomies;

(ii) available lexical resources such as dictionaries, Wordnet and Wikipedia;
(iii) existing ontologies
(iv) tools for ontology mapping and matching
(v) methodologies for assisting a community (of ontology-builders in a given

domain) in finding and maintaining consensus.

The contribution of each of the above type of resource to the process is discussed
and analysed.

9http://www.flickr.com/
10http://del.icio.us/

204 J. Davies

9.2.3 Thesauri and Lightweight Ontologies

Thesauri are controlled vocabularies developed in specific domains for the purpose
of annotating electronic content and exploiting such annotations for enhanced infor-
mation retrieval and browsing. Most thesauri are represented in special purpose
data formats and often use relations between categories whose semantics are not
well-defined. Thus converting thesauri to lightweight ontologies, as is in the case
folksonomies, brings a number of benefits:

• adherence to a open standard and the consequent enhanced interoperability
• a formal semantic basis
• an explicit specification
• a machine-processable representation

Assem et al. (2006) present a method for the conversion of thesauri to a
lightweight ontology SKOS (Miles and Brickley, 2005). Essentially, SKOS is used
as a metamodel for representing thesauri in RDF. Three specific cases are analysed,
revealing that two of the cases have non-standard features not (currently) antici-
pated by the method presented. Nevertheless, it is concluded that the metamodel
does seem applicable for representing resources adhering to the ISO2788 standard
for monolingual thesauri.

9.2.4 Formal Classification and Lightweight Ontologies

As mentioned above Giunchigla et al. (2005) introduces the notion of formal classi-
fication. Noting that human-crafted classifications (e.g. DMOZ,11 Dewey Decimal
Classification12) lack a key ontological property, namely representation in a formal
language over which automated reasoning can be performed, formal classification
is developed as a graph structure where labels are written in a formal concept lan-
guage. It is shown that formal classifications are equivalent to a form of lightweight
ontology. The notion of Normalized Formal Classification (NFC) is developed. An
NFC is an FC wherein labels of child nodes are always more specific than the labels
of their parent nodes. A fully automated method is then presented for document
classification into NFCs using propositional reasoning.

9.3 Ontologies and the Semantic Web

The principal application area for lightweight ontologies in Computer Science today
is in the application of semantic technology to a number of application areas.
This smenatic technology has been developed as part of the W3C’s semantic web

11http://www.dmoz.org/
12http://www.oclc.org/dewey/

9 Lightweight Ontologies 205

initiative, which is described in this section. The term semantic technology is a
broader term, used to denote the application of semantic web technology both on
the web and in other areas.

Despite its explosive growth over the last decade, the Web remains essentially
a tool to allow humans to access information. The next generation of the web,
dubbed “the Semantic Web,” will extend the web’s capability through the increased
availability machine-processable information.

Currently, web-based information is based primarily on documents written in
HTML, a language useful for describing the visual presentation of webpages
through a browser. HTML and today’s web, however, offer only very limited ways
of describing the content itself. So, for example, you can specify that a given string
should be displayed in a large bold font but you cannot specify that the string
represents a product code or product price.

Semantic Web technology aims to address this shortcoming, using the descrip-
tive languages RDF and OWL, and the data-centric, customizable markup language
XML. These technologies, which are standards of the W3C13 (WorldWideWeb
Consortium), allow rich descriptions of the content of Web documents. These
machine-processable descriptions in turn allow more intelligent software systems
to be written, automating the analysis and exploitation of web-based information.

In this paper, we begin by describing the key technology building blocks of the
semantic web, namely the languages XML and RDF and the notion of ontologies.
We then proceed to discuss the application of this technology in the key application
area of eBusiness through the use of semantic web services.

Underpinning the Semantic Web is a stack of languages, often drawn in a Fig. 9.2
first presented by Berners-Lee in a presentation to the XML 2000 conference14:

Fig. 9.2 Semantic web
technology layers

13http://www.w3c.org/
14http://www.w3.org/2000/Talks/1206-xml2k-tbl/slide1-0.html

206 J. Davies

We will briefly discuss the XML, RDF and Ontology vocabulary layers in this
language-stack before describing ontologies and their use in the semantic web.

XML is already a widely-used language designed for annotating documents of
arbitrary structure with information concerning the content of those documents, as
opposed to HTML, which was designed principally for information presentation as
described in the introduction. A well-formed XML document creates a balanced
tree of nested sets of open and close tags. There is no fixed tag vocabulary or set
of allowable combinations, so these can be defined for each application. One set
of XML documents might use tags such as <price> and <quantity> and <delivery-
date>, while another might use <author>, <title> and <abstract>.

Perhaps the most important use of XML is as a uniform data-exchange format.
An XML document can essentially be transferred as a data object between two
applications.

As mentioned above, XML is a useful language for attempting to define data
exchange formats, particularly when building new interoperable systems from
scratch. However, new systems will frequently need to interact with pre-existing sys-
tems. Different pre-existing systems will very often use the same term for different
concepts. These types of conflicts typically require more extensive semantics-based
solutions.

Figure 9.3 below shows two examples of semantic conflicts that can found
across data sets. These conflicts are very frequent, occurring as a natural conse-
quence of data modeling – whether due to isolated development, changing needs,
organizational or structural differences, or simply the different approach of 2 human
data modellers.

Fig. 9.3 Types of semantic conflicts (adapted from Pollock and Hodgson, 2004)

9 Lightweight Ontologies 207

It is apparent that XML only partially addresses the data interoperability issue.
We need interoperation between the processes and information sets within and
across organizations without costly point-to-point data and terminology map-
pings. The goal of semantic web technologies is to employ logical languages that
expose the structures and meanings of data more explicitly, thereby allowing soft-
ware to interact whether terms and definitions are equivalent, different, or even
contradictory. This is the goal of the RDF and OWL languages.

XML can be seen as prescriptive, in that it pre-defines the format of a data object,
RDF is descriptive, allowing the description of semantic relationships between web
resources, through the use of <subject, verb, object> triples. Sets of these triples can
also be viewed as creating a graph structure. This graph structure in effect creates
a web of meaning, where links between web resources have a semantic element
(in contrast to today’s web, where pages may be linked but it is for a human user
to interpret why they are linked and the relationship between the information they
contain).

For example, the graph structure in Fig. 9.4 expresses the following three triples:

1. “http://www.famousauthor.org/id21”, hasName, “J Tolkien”>
2. “http://www.famousauthor.org/id21”, authorOf, “http://www.books.org/ISBN00

615861”
3. “http://www.books.org/ISBN00615861”, hasPrice, “£39”>

Notice how the RDF triples allow us to combine references to web resources
with literal values (e.g. character strings or numbers). Triple 1 above, for exam-
ple, roughly speaking states that the famous author described at web location
“http://www.famousauthor.org/id21” has the name “J Tolkien”.

RDF15 allows us to build a concept map (or ontology) of our domain, defining
the key classes or concepts (authors, books, etc) and the relationships between those
concepts (e.g. authors write books). RDF then allows us to represent and reason
about specific instances of those concepts (e.g. “J. Tolkien wrote the book described
at http://www.books.org/ISBN00615861”).

authorOf

hasPrice
hasName

http://www…./id21
http://www…/ISBN006158

 “£39”

Fig. 9.4 RDF triples as a graph

15Strictly, RDF and its sister language RDF Schema

208 J. Davies

Crucially, RDF Schema includes a number of primitives which have precisely
defined semantics. This means that, unlike in XML, the meaning of these primitives
are formally defined and hence known to any application.

The OWL Web Ontology Language16 is a language for the “Ontology vocabu-
lary layer of the semantic web layer cake (Fig. 9.2) and is, like XML and RDF, a
standard of the W3C. Ontologies written in OWL facilitate greater machine inter-
pretability of Web content than that supported by XML, RDF, and RDF Schema
(RDF-S) by providing additional vocabulary along with a formal semantics. OWL
has three increasingly-expressive sublanguages: OWL Lite, OWL DL, and OWL
Full.

In a nutshell, RDF and OWL provide a framework for establishing relationships
between data and for specifying constraints on different data elements and their
relationship to one another. Furthermore, they allow for a description of pre-existing
web-based data rather than prescribing a rigid format for web pages as in XML.
This means that data on the web becomes machine-processable as well as human
readable. In turn, this allows machines to do more of the hard work of interpreting
data which today is left to the user.

In the next sections, we discuss the applications of semantic technology (and
hence lightweight ontologies) to information integration, knowledge management,
and to service-oriented environments.

9.4 Ontologies and Information Integration

Modern organisations are characterised by the availability of massive volumes of
information, made possible by electronic technology. The ability to find and share
information rapidly and effectively is a clear commercial advantage in all sectors.
So, too, is the ability to retain information. Maintaining the corporate memory bank
as employees leave the company is an oft discussed issue.

To these commercial issues have been added regulatory ones. Organisations
which do not disclose all relevant information to regulatory authorities may be seri-
ously penalised. Yet the organisation can only disclose information it knows it has.
Information lost on corporate computers can not be disclosed at the appropriate
time; but will certainly be revealed if the organisation is subject to a detailed forensic
analysis of hard drives prior to a legal hearing.

A typical large organisation in an information-intensive sector (such as finance)
will have a number of data silos (e.g. an HR system, a CRM system, one or more
billing systems, etc). Each such system has its own data model, no two of which
are typically the same, making exchange and integration of information difficult:
indeed, analysts report that the majority of businesses resort to expensive new soft-
ware and/or manual processes when confronted with a need to integrate information
from multiple sources.

16http://www.w3.org/TR/owl-guide/

9 Lightweight Ontologies 209

Fig. 9.5 Information
integration

The value of ontologies in information integration stems from the ability to
create an over-arching ontology which can subsume multiple database schemas.
The current state-of-the-art in information integration is represented in Fig. 9.5.
To achieve integration at the semantic level, mappings are created between each
database. These might be databases internal to one organisation, e.g. order process-
ing and stock control databases; or the mappings might be across organisations, e.g.
between databases held by separate companies working together in a joint venture
or supply chain. In any case, the problem is that the number of mappings increases
quadratically with the number of databases.

Ontologies can help to address this issue by providing a uniform access layer to
heterogeneous data sources: the linkage of multiple structured, semi-structured and
unstructured information sources using a consistent vocabulary makes it easier to
build applications pulling data together from across the enterprise and also facilitates
the introduction of new systems and databases (Fig. 9.6).

Advantages of the semantic integration approach as opposed to others include:

• no need to re-engineer legacy data sources – existing data sources are instead
“wrapped” by a semantic description;

• based on lightweight, open standards from W3C;
• inherently extensible – RDF and OWL have been designed to make it relatively

straightforward to integrate concepts and relations from more than one ontology;

Fig. 9.6 Semantic information integration

210 J. Davies

• reasoning with the information – because OWL (for example) is a logical lan-
guage, formal reasoning is supported, allowing the inference of new facts from
the explicitly stored information and allowing the definition of business rules.

We have reduced the number of mappings needed, but they still do have to be
created. One way to create mappings is to use a mapping language. This is fine for
specialist knowledge engineers but others need a more natural and intuitive approach
which is easy to learn and use. A number of graphical mapping tools have been
created for such users. One such has been developed as part of their OntoStudio
ontology engineering environment.17

Simple drag-and-drop functionality is used to create and amend mappings. At
the same time, the system undertakes consistency checks to ensure that the user’s
actions make sense. Figure 9.7 shows a view of the mapping tool. The left and
right-hand side shows portions of two different ontologies, and the mappings are
represented by lines between them. Mappings can even be conditional. Consider,

Fig. 9.7 Ontology mapping tool

17http://www.ontoprise.de/

9 Lightweight Ontologies 211

for example, a mapping between two national transport ontologies. The defini-
tion of a “truck” differs in different countries, depending in some countries on
the weight of the vehicle. This can be taken into account when creating the
mapping.

Even greater gains can be achieved by automating, at least partially, the process
of creating the mappings. This is an area of current research. A starting approach
is to look for similarities in the text strings used to denote data fields by different
schemas, e.g. phone for telephone. We can even take account of different represen-
tations of similar sounds, e.g. the use of 4 to represent for. This is frequently called
syntactic matching. We can introduce some appreciation of semantics by using a
thesaurus, such as Wordnet,18 to identify synonyms. Semantic matching can go fur-
ther by taking account of the structure inherent in two schemas. For example, a
product classification system can in general be represented as a graph.19 Structural
similarities then enable the software to draw reasonable conclusions about the rela-
tionship between nodes (i.e. categories of products) in two classification systems.
The software may propose equivalences between categories, or that a category in
one system is a subset of a category in the other classification. Readers interested in
the technical detail of one approach, based on the use of a form of logic known as
propositional calculus, are referred to Bouquet et al. (2003).

Once these techniques have been used to create an initial mapping, it can then be
loaded into a graphical editing tool and refined manually.

The end result is that it is possible to integrate heterogeneous databases, and
provide the knowledge worker in an organisation with a unified view across these
databases.

9.5 Ontologies and Knowledge Management

We have seen in the previous section how semantic technology can be applied to
the integration of structured information. At least as pressing an issue, and more
technically challenging, is management of unstructured information, part of the
knowledge management problem.20

18Wordnet is a lexical reference system in which English nouns, verbs, adjectives and adverbs are
organised into synonym sets, with relations linking the sets. Wordnet provides both a web-based
user interface for the casual user and also a programming interface to enable incorporation into
other systems, e.g. software for mapping between different terminologies.
19In general a graph, but frequently a tree where the product classification is organised as a strict
hierarchy.
20It is not our intention to discuss the definition of knowledge management here but a broad defini-
tion could be “the management by an organisation of its intellectual assets to deliver more efficient
and effective ways of working.” Better access to and management of unstructured information is a
key part of this endeavour.

212 J. Davies

9.5.1 Limitations of Current Technology

The traditional approach is to provide tools (in particular search engines) based
on text-string matching. This may be simply through a user initiating a search, or
through text searches embedded in an application. In any case, there are several
problems with this approach, which can be divided into four main areas:

(i) Query Construction
In general, when specifying a search, users enter a small number of terms

in the query. Yet the query describes the information need, and is commonly
based on the words that people expect to occur in the types of document they
seek. This gives rise to a fundamental problem, in that not all documents
will use the same words to refer to the same concept. Therefore, not all the
documents that discuss the concept will be retrieved by a simple keyword-
based search. Furthermore, query terms may of course have multiple meanings
(query term polysemy). As conventional search engines cannot interpret the
sense of the user’s search, the ambiguity of the query leads to the retrieval of
irrelevant information.

Although the problems of query ambiguity can be overcome to some degree,
for example by careful choice of additional query terms, there is evidence to
suggest that many people may not be prepared to do this. For example, an
analysis of the transaction logs of the Excite WWW search engine (Jansen
et al., 2000) showed that web search engine queries contain on average 2.2
terms. Comparable user behaviour can also be observed on corporate Intranets.
An analysis of the queries submitted to BT’s Intranet search engine over a
4-month period between January 2004 and May 2004 showed that 99% of the
submitted queries only contained a single phrase and that, on average, each
phrase contained 1.82 keywords.

(ii) Lack of Semantics
Converse to the problem of polysemy, is the fact that conventional search
engines that match query terms against a keyword-based index will fail to
match relevant information when the keywords used in the query are differ-
ent from those used in the index, despite having the same meaning (index term
synonymy). Although this problem can be overcome to some extent through
thesaurus-based expansion of the query, the resultant increased level of docu-
ment recall may result in the search engine returning too many results for the
user to be able to process realistically.

In addition to an inability to handle synonymy and polysemy, conventional
search engines are unaware of any other semantic links between concepts.
Consider for example, the following query:

“telecom company” Europe “John Smith” director

The user might require, for example, documents concerning a telecom com-
pany in Europe, a person called John Smith, and a board appointment. Note,
however, that a document containing the following sentence would not be
returned using conventional search techniques:

9 Lightweight Ontologies 213

At its meeting on the 10th of May, the board of London-based O2 appointed John
Smith as CTO

In order to be able to return this document, the search engine would need to
be aware of the following semantic relations:

O2 is a mobile operator, which is a kind of telecom company;
London is located in the UK, which is a part of Europe;
A CTO is a kind of director.

(iii) Lack of Context
Many search engines fail to take into consideration aspects of the user’s con-

text to help disambiguate their queries. User context would include information
such as a person’s role, department, experience, interests, project work, etc. A
simple search on BT’s Intranet demonstrates this. A person working in a partic-
ular BT line of business searching for information on their corporate clothing
entitlement is presented with numerous irrelevant results if they simply enter
the query “corporate clothing”. More relevant results are only returned should
the user modify their query to include further search terms to indicate the part
of the business in which they work. As discussed above, users are in general
unwilling to do this.

(iv) Presentation of Results
The results returned from a conventional search engine are usually pre-

sented to the user as a simple ranked list. The sheer number of results returned
from a basic keyword search means that results navigation can be difficult and
time consuming. Generally, the user has to make a decision on whether to view
the target page based upon information contained in a brief result fragment. A
survey of user behaviour on BT’s intranet suggests that most users will not view
beyond the 10th result in a list of retrieved documents. Only 17% of searches
resulted in a user viewing more than the first page of results.21 Essentially, we
would like to move from a document-centric view to a more knowledge-centric
one (for example, by presenting the user with a digest of information gleaned
from the most relevant results found as has been done in the Squirrel semantic
search engine described later in this chapter).

In recent years, considerable effort has been put into the use of ontologies to
deal with the problem of managing and accessing unstructured information and we
summarise some of the key aspects in the remainder of this section.

21Out of a total of 143,726 queries submitted to the search engine, there were 251,192 occasions
where a user clicked to view more than the first page of results. Ten results per page are returned
by default.

214 J. Davies

9.5.2 Applying Ontologies in Knowledge Management

The essential challenge is to create some (meaningful) structure out of unstruc-
tured text. One way to do this is to create semantic metadata: data describing the
unstructured text.

Such metadata can exist at two levels. They can provide information about a
document or a page, e.g. its author, creation or last amendment date, or subject area
(topic); or they can provide information about entities in the document, e.g. the
fact that a particular string in the document represents a company, or a person or
a product code. The metadata themselves should describe the document or entities
within the document in terms of an ontology. At the document level we might have a
property in the ontology has Author to describe authorship. Within the document we
would use classes such as Person, Company or Country to identify specific entities.

Such metadata could be created by the authors of the document. In gen-
eral this will not happen. The authors of Word documents or emails will not
pause to create metadata. We need to generate metadata automatically, or at least
semi-automatically.

There are two broad categories of technology which we can use for this: statisti-
cal or machine learning techniques22; and information extraction techniques based
on natural language processing. The former generally operate at the level of docu-
ments, by treating each document as a “bag of words”. They are, therefore, generally
used to create metadata to describe documents. The latter are used to analyse the
syntax of a text to create metadata for entities within the text, e.g. to identify entities
as Persons, Companies, Countries etc. Nevertheless, this division should not be seen
too starkly. For example, one of the goals of the SEKT project (http://www.sekt-
project.com) was to identify the synergies which arise when these two different
technologies are used closely together. An overview of semantic knowledge man-
agement, including these two approaches to creating metadata, is given in Davies
et al. (2005). For more detail, see Davies, Studer and Warren (2005), which con-
tains a chapter on each of these approaches, besides information on a number of
other topics discussed in this paper.

The metadata can create a link between the textual information in the documents
and concepts in the ontology. Metadata can also be used to create a link between the
information in the document and instances of the concepts. This process is known
as semantic annotation.

To give an example of the linkage between documents and the ontology
and knowledgebase, we can imagine that the ontology will contain the concept
Company. Then the text string “BT” in the document will be identified as being
an instance of the concept Company. This is made possible by natural language

22Statistical techniques employ algorithms with well-defined mathematical properties, usually
derived based on certain assumptions about the datasets being used. Machine learning techniques
are generally heuristic techniques with no formally derived mathematical properties, e.g. itera-
tive techniques for which no proof of convergence exists. The two approaches may suit different
circumstances, or can be used together in a complementary fashion.

9 Lightweight Ontologies 215

processing software which can make intelligent deductions about what kind of enti-
ties particular text strings represent. For example, the software can make inferences
from the way the term “BT” is used, and the words associated with it in the text.
If the company British Telecommunications Plc. (to give it its formal name) exists
as an instance of Company in the knowledgebase, then the software will tag “BT”
as referring to British Telecommunications Plc. This is possible through an under-
standing of how acronyms are formed. In other situations it may even be able to tag
“it” as referring to the same company, on the basis of a relatively shallow analysis
of the text.23

Where the system identifies a text string as an instance of a concept in the ontol-
ogy but which is not represented in the knowledgebase, then that instance can be
added to the knowledgebase. For example, the text string “ABC Holdings” may be
identified as a company, but one not represented in the knowledgebase. The system
can then add “ABC Holdings” to the knowledgebase.

Figure 9.8 illustrates part of an ontology and corresponding knowledgebase, and
shows how entities in the text can be associated with entities in the knowledgebase.

Research is also in progress to use natural language processing techniques to
learn concepts from text, and thereby extend the ontology. However, this is a sig-
nificantly harder problem. For an example of the state of the art, see Cimiano and
Völker (2005).

Fig. 9.8 Semantic annotation

23The use of pronouns and other short words in place of longer words or phrases is called anaphora.
Hence, the matching of such short words with their longer equivalent is called anaphora resolution.

216 J. Davies

9.5.3 Semantic Knowledge Management Tools

The ontological approach offers significant advantages in the capability of tools
for the management of unstructured text. In this section, we exemplify with one
such tool. Bontcheva et al. (2006) is a more comprehensive discussion of semantic
information access discussing a wider range of tools. Similarly Mangrove (2007)
contains a survey and classification of ontology-based search technology.

9.5.3.1 Squirrel Semantic Search Engine

Squirrel (Duke et al., 2007) provides combined keyword based and semantic search-
ing. The intention is to provide a balance between the speed and ease of use of
simple free text search and the power of semantic search. In addition, the ontolog-
ical approach provides the user with a rich browsing experience. Squirrel builds on
and integrates a number of semantic technology components:

(i) PROTON,24 a lightweight ontology and world knowledge base is used against
which to semantically annotate documents.

(ii) Lucene25 is used for full-text indexing;
(iii) The KAON2 (Motik and Studer, 2005) ontology management and inference

engine provides an API for the management of OWL-DL and an inference
engine for answering conjunctive queries expressed using the SPARQL26 syn-
tax. KAON2 also supports the Description Logic-safe subset of the Semantic
Web Rule Language27 (SWRL). This allows knowledge to be presented against
concepts that goes beyond that provided by the structure of the ontology.
For example, one of the attributes displayed in the document presentation is
“Organisation”. This is not an attribute of a document in the PROTON ontol-
ogy; however, affiliation is an attribute of the Author concept and has the range
“Organisation”. As a result, a rule was introduced into the ontology to infer
that the organisation responsible for a document is the affiliation of its lead
author;

(iv) OntoSum (Bontcheva, 2005) a Natural Language Generation (NLG) tool, takes
structured data in a knowledge base (ontology and associated instances) as
input and produces natural language text, tailored to the presentational context
and the target reader. In the context of the semantic web and knowledge man-
agement, NLG is required to provide automated documentation of ontologies
and knowledge bases and to present structured information in a user-friendly
way;

(v) KIM (Popov et al., 2003) is used for massive semantic annotation.

24http://proton.semanticweb.org/
25http://lucene.apache.org/
26http://www.w3.org/TR/rdf-sparql-query/
27http://www.w3.org/Submission/SWRL/

9 Lightweight Ontologies 217

Initial Search

Users are permitted to enter terms into a text box to commence their search. This
initially simple approach was chosen since users are likely to be comfortable with it
due to experience with traditional search engines. Squirrel then calls the Lucene
index and KAON2 to identify relevant textual resources or ontological entities,
respectively. In addition to instance data, the labels of ontological classes are also
indexed. This allows users to discover classes and then discover the corresponding
instances and the documents associated with them without knowing the names of
any instances e.g. a search for “Airline Industry” would match the “Airline” class
in PROTON. Selecting this would then allow the user to browse to instances of
the class where they can then navigate to the documents where those instances are
mentioned.

Meta-Result

The meta-result page is intended to allow the user to quickly focus their search
as required and to disambiguate their query if appropriate. The page presents the
different types of result that have been found and how many of each type.

The meta-result for the “home health care” query is shown in Fig. 9.9 under the
sub-heading “Matches for your query”.

Document View

The user can select a document from the result set, which takes them to a view of the
document itself. This shows the meta-data and text associated with the document
and also a link to the source page if appropriate – as is the case with web-pages.
Semantically annotated text (e.g. recognised entities) are highlighted. A screenshot
of the document view is shown in Fig. 9.10.

“Mousing-over” recognised entities provides the user with further information
about the entity extracted from the ontology. Clicking on the entity itself takes the
user to the entity view.

Fig. 9.9 Meta-result

218 J. Davies

Fig. 9.10 Document view

Entity View

The entity view for “Sun Microsystems” is shown in Fig. 9.11. It includes a
summary generated by OntoSum. The summary displays information related not
only to the entity itself but also information about related entities such as people
who hold job roles with the company. This avoids users having to browse around
the various entities in the ontology that hold relevant information about the entity in
question.

Fig. 9.11 Company entity view

9 Lightweight Ontologies 219

Fig. 9.12 Consolidated results

Consolidated Results

Users can choose to view results as a consolidated summary (digest) of the most
relevant parts of documents rather than a discrete list of results. The view allows
users to read or scan the material without having to navigate to multiple results.
Figure 9.12 shows a screenshot of a summary for a query for “Hurricane Katrina”.
For each subdocument in the summary the user is able to view the title and source of
the parent document, the topics into which the subdocument text has been classified
or navigate to the full text of the document. Evaluation

Squirrel has been subjected to a three-stage user-centred evaluation process with
users of a large Digital Library. Results are promising regarding the perceived infor-
mation quality (PIQ) of search results obtained by the subjects. From 20 subjects,
using a 7 point scale the average (PIQ) using the existing library system was 3.99
vs. an average of 4.47 using Squirrel – an 12% increase. The evaluation also showed
that users rate the application positively and believe that it has attractive properties.
Further details can be found in Thurlow and Warren (2008).

9.6 Ontologies and Service-Oriented Environments

Industry is seeking urgently to reduce IT costs, more than 30% of which are
attributable to integration.28 Furthermore, in the telecommunications sector for
example, costs of OSS29 integration can rise to 70% of the total OSS budget.30

28Gartner Group, 2004.
29Operational Support Systems: systems that support the daily operation of an organisation’s
business including, for example, billing, ordering, delivery, customer support.
30See, for example, http://www.findarticles.com/p/articles/mi_m0TLC/is_5_36/ai_86708476

220 J. Davies

In addition, there is a need to reconfigure system components efficiently in order
to satisfy regulatory requirements for interoperation and to respond quickly to
increasingly sophisticated customer requirements for bundled services.

Thus one of the most pressing current issues design of software architectures
is to satisfy increasing software complexity as well as new IT needs, such as the
need to respond quickly to new requirements of businesses, the need to continually
reduce the cost of IT or the ability to integrate legacy and new emerging business
information systems. In the current IT enterprise settings, introducing a new product
or service and integrating multiple services and systems present unpredicted costs,
delays and difficulty. Existing IT systems consist of a patchwork of legacy products,
monolithic off-shelf applications and proprietary integration. It is even today’s real-
ity that in many cases users on the “spinning chairs” manually re-enter data from
one system to another within the same organization. The past and existing efforts
in Enterprise Application Integration (EAI) don’t represent successful and flexible
solutions. Several studies showed that the EAI projects are lengthy and the majority
of these efforts are late and over budget. It is mainly costs, proprietary solutions and
tightly-coupled interfaces that make EAI expensive and inflexible.

Service Oriented Architecture (SOA) solutions are the next evolutionary step in
software architectures. SOA is an IT architecture in which functions are defined as
independent services with well-defined, invocable interfaces. SOA will enable cost-
effective integration as well as bring flexibility to business processes. In line with
SOA principles, several standards have been developed and are currently emerg-
ing in IT environments. In particular, Web Services technology provides means
to publish services in a UDDI registry, describing their interfaces using the Web
Service Description Language (WSDL) and exchanging requests and messages over
a network using SOAP protocol. The Business Process Execution Language (BPEL)
allows composition of services into complex processes as well as their execution.
Although Web services technologies around UDDI, SOAP and WSDL have added a
new value to the current IT environments in regards to the integration of distributed
software components using web standards, they cover mainly characteristics of syn-
tactic interoperability. With respect to a large number of services that will exist in IT
environments in the inter and intra enterprise integration settings based on SOA, the
problems of service discovery or selection of the best services conforming user’s
needs, as well as resolving heterogeneity in services capabilities and interfaces
will again be a lengthy and costly process. For this reason, machine processable
semantics should be used for describing services in order to allow total or partial
automation of tasks such as discovery, selection, composition, mediation, invoca-
tion and monitoring of services. As discussed, the way to provide such semantics is
through the use of ontologies.

Web services technology effectively added computational objects to the static
information of yesterday’s Web and as such offers a distributed services capability
over a network. Web services provide an easy way to make existing (or indeed new)
software components available to applications via the Internet. As explained above,
however, web services are essentially described using semi-structured natural lan-
guage mechanisms, which means that considerable human intervention is needed to

9 Lightweight Ontologies 221

Fig. 9.13 Web services and
the semantic web

find and combine web services into an end application. As the number of services
available grows, the issue of scalability becomes critical: without richer (machine-
processable, semantic) descriptions of services it becomes impossible to discover
and compose services in an efficient manner.

The Semantic Web enables the accessing of web resources by semantic descrip-
tions rather than just by keywords. Resources (here, web services) are defined
in such a way that they can be automatically processed by machine. This will
enable the realisation of Semantic Web Services, involving the automation of service
discovery, acquisition, composition and monitoring.

The relationship between web service and semantic web technology is encapsu-
lated in Fig. 9.13 below. Combining the two technology creates the next generation
of web services: semantically-enabled web services with the more sophisticated
capabilities described above.

9.6.1 Web Service Modeling Ontology (WSMO)

The Web Service Modeling Ontology (WSMO) is one ontology which has been
developed to provide a conceptual model for the Semantic Web Services. Another
approach is OWL-S: n the interests of brevity we will focus on WSMO and refer the
interested read to W3C (2004) for further information about OWL-S. In WSMO,
four elements are identified as the fundamental pillars of the model: namely, ontolo-
gies as shared vocabularies with clearly defined semantics, web services as means
to abstract the IT functionality provided, goals representing users requests refer-
ring to the problem-solving aspect of our architecture and finally mediators for
interpretability between the various semantic descriptions.

Ontologies are used as the data model throughout WSMO, meaning that all
resource descriptions as well as all data interchanged during service usage are based
on ontologies. Ontologies are a widely accepted state-of-the-art knowledge rep-
resentation, and have thus been identified as the central enabling technology for
the Semantic Web. The extensive usage of ontologies allows semantically enabled
information processing as well as support for interoperability; WSMO also supports
the ontology languages defined for the Semantic Web.

222 J. Davies

Goals provide means to characterize user requests in terms of functional and non-
functional requirements. For the former, a standard notion of pre and post conditions
has been chosen and the later provides a predefined Ontology of generic properties.
For functional aspects a standard notion of pre and post conditions has been chosen.
For non-functional properties (QoS) logical expressions are used to specify the QoS
values provided by the service.

Web Service descriptions specify the functionality, the means of interaction
and non-functional properties (QoS) aspects provided by the Web Service. More
concretely, a Web service presents:

a capability that is a functional description of a Web service. A set of constraints
on the input and output of a service as well as constraints not directly affect-
ing the input (preconditions) and output (postconditions) of the service but
which need to hold before (assumptions) and after (effects) the execution of
the service are part of the capability description.

interfaces that specify how the service behaves in order to achieve its func-
tionality. A service interface consists of a choreography that describes the
interface for the client-service interaction required for service consumption,
and an orchestration that describes how the functionality of a Web service is
achieved by aggregating other Web services.

non-functional properties that specify the QoS values provided by the service.
Non-functional properties of services or goals are modeled in a way similar
to which capabilities are currently modeled in WSMO, more precisely by
means of logical expressions.

Mediators provide additional procedural elements to specify further mappings
that cannot directly be captured through the usage of Ontologies. Using Ontologies
provides real-world semantics to our description elements as well as machine pro-
cessable formal semantics through the formal language used to specify them. The
concept of Mediation in WSMO addresses the handling of heterogeneities occurring
between elements that shall interoperate by resolving mismatches between differ-
ent used terminologies (data level), on communicative behavior between services
(protocol level), and on the business process level. A WSMO Mediator connects
the WSMO elements in a loosely coupled manner, and provides mediation facili-
ties for resolving mismatches that might arise in the process of connecting different
elements defined by WSMO.

9.6.2 Web Service Modeling Language (WSML)

The Web Service Modeling Language (WSML) is a language (or more accurately a
family of languages) for the description of ontologies, goals, web services and medi-
ators, based on the conceptual model of WSMO. A major goal in the development
of WSML is to investigate the applicability of different formalisms, most notably
Description Logics and Logic Programming, in the area of Web services. A fuller
discussion of the various WSML dialects and their advantages and disadvantages
can be found in Vitvar et al. (2007).

9 Lightweight Ontologies 223

9.6.3 Web Service Modeling Execution Environment (WSMX)

The Web Service Modeling Execution Environment (WSMX) is a reference imple-
mentation of semantic service-oriented environment that is compliant with the
semantic specifications of WSMO. WSMX supports semantically enabled change
functions such as dynamic discovery, selection, and mediation. WSMX also imple-
ments semantically enabled control and connection functions such as service
invocation and inter-operation. WSMX is an execution environment for the dynamic
discovery, selection, mediation, invocation and inter-operation of the semantic web
services in a reference implementation for WSMO. The development process for
WSMX includes defining its conceptual model, defining the execution semantics
for the environment, describing a architecture and a software design and building a
working implementation.

Figure 9.14 presents the WSMX architecture and its most important compo-
nents.

In terms of functionality provided, WSMX can be seen as an aggregation of the
components. The central components are the Core Component, Resource Manager,
Discovery, Selection, Data and Process Mediator, Communication Manager,
Choreography Engine, Web Service Modeling Toolkit, and the Reasoner.

The Core Component is the central component of the system connecting all the
other components and managing the business logic of the system. The Resource
Manager manages the set of repositories responsible for the persistency of all the
WSMO and non-WSMO related data flowing through the system. The Discovery
component is responsible for locating services that satisfy a specific user request.
A set of discovery algorithms ranging from syntactical-based to full semantically-
based matching are available in WSMX for service discovery. The Selection
component is responsible for filtering the potential services which provide the
requested functionality by considering non-functional properties values and finally
selecting the best service.

Se
m

an
ti

ca
lly

 E
m

po
w

er
ed

 S
O

A

V
er

ti
ca

l S
er

vi
ce

s
(S

ec
ur

it
y/

R
el

ia
bi

lit
y/

T
ra

ns
ac

ti
on

al
it

y)

Resource Management (Semantic Grid
Ubiquitous Services)

Reasoner Semantic Repository Triple Space

Data Mediation Communication Choreography

Negotiation and
Contracting

Orchestration Planning

Management Discovery Process Mediation

A
pp

lic
at

io
n

Se
rv

ic
es

B
as

e
Se

rv
ic

esPeer

Internet

Message

Message

Management and
Monitoring

Applications Editors

Problem Solving Layer

Fig. 9.14 WSMX reference architecture

224 J. Davies

WSMX provides two kinds of mediator components that deal with heterogeneity
problems: a Data Mediator component, which mediates between different termi-
nologies, ontologies and a Process Mediator component which mediates between
two given patterns of interaction (i.e., WSMO choreographies) and compensates
the possible mismatches that may appear. The Communication Manager is respon-
sible for managing the communication between a service requester and a service
provided. The two way communication is handled by the Receiver, from requester
to the service, and respectively by Invoker, from the service to the requester. The
Choreography engine provides means to store and retrieve choreography interface
definitions, initiates the communication between the requester and the provider in
direct correlation with the results returned by the Process Mediator, and keeps track
of the communication state on both the provider and the requester sides. In addi-
tion it provides grounding information to the communication manager to enable any
ordinary Web Service invocation.

The semantic inference required by each of the WSMX components is pro-
vided by the Reasoner component. On the client/developed side a toolkit, called the
Web Services Modeling Toolkit (WSMT) is provided allowing modeling of WSMO
elements and easy interaction with the WSMX server. WSMT contains a set of
tools including the WSMO Visualizer for viewing and editing WSML documents
using directed graphs, a WSMX. Management tool for managing and monitoring
the WSMX environment, and a WSMX Data Mediation tool for creating mappings
between WSMO ontologies are also available in WSMT.

In short, Semantic Web Services can lead to more flexible, interoperable, less
costly IT systems. Space does not permit a full description of the technical details
of semantic web services and the reader is referred to Chapter 10 of Davies et al.
(2005) for an overview of current work in Semantic Web Services and to Vitvar et al.
(2007) for a discussion of the applications of semantic technology in service-centric
environments.

9.7 Ontologies and Computer Science

In the above sections we have discussed some areas of applications of lightweight
ontologies in IT today. Moving beyond specific application areas and taking a
broader view, the central property of semantic technology is that it offers the abil-
ity to provide machine-processable descriptions. As above, these descriptions can
be of documents, fragments of documents or web services. Similarly, such descrip-
tions could equally be descriptions of grid elements, handheld computing devices,
security policies or business process elements.

In all these cases, the key points are (i) these descriptions have a well-defined
meaning separate from the programs which interpret them which (ii) allows inter-
operability which would otherwise require hardwired solutions handcoded by
humans.

In short, semantic technology offers the only path to web-scale interoperability;
and such scalability and interoperability is surely one of the most pressing research
challenges for computer science today.

9 Lightweight Ontologies 225

9.8 Conclusion

In this chapter, we have discussed the notion of lightweight ontologies. We defined
ontology and related ontology to other related knowledge organisation structures,
formal and less formal. We then considered what might constitute a lightweight
ontology. Our view of lightweight as opposed to “heavyweight” ontologies cen-
tred around the expressivity of the ontology description, rather than other possible
notions such as scope, depth or computational tractability. Of course, tractability
is related to expressivity in that, in general, the more expressive a formal language
the less it is amenable to efficient machine processing (reasoning). Regarding scope
and depth, these seem to us separate and highly context-dependent issues: a medical
ontology could seem very wide and/or deep in terms of its domain coverage from
the point of view of a general medical practitioner and yet much shallower from an
ontological consultant or rather narrow from the point of view of a science journal-
ist interested in medicine and many other disciplines besides, for example. Scope is
orthogonal to expressivity (an ontology covering a wide domain can be more or less
expressive), whereas depth is in general related in the sense that an ontology requir-
ing more expressive language to describe it will typically be deeper (i.e. model the
domain of interest to a more detailed level).

We proceeded to discuss ontologies and the semantic web, the emergence of
which over the past decade has seen increased interest in ontologies and associated
topics. We then looked at 3 key areas where ontologies are being used in IT systems
today and briefly discussed the likely centrality of ontologies and semantic technol-
ogy to computer science in the future. A number of requirements need to be fulfilled
for the further uptake of ontologies:

• provision of ontologies and associated metadata: clearly a barrier to the use of
ontologies is the need to manually construct an ontology for each application (or
at least application domain) and then to populate the ontology with instance data).
The use of knowledge discovery and human language technologies is starting
to address these areas, as are the ever increasing number of domain ontologies
available for re-use. As a specific example of the strides being made in this
aera, Thomson-Reuters, the world’s largest business information provider now
offers the Open Calais31 tool for semantically annotating large volumes of textual
information, as well as providing its own information so annotated;

• production of ontology tools: there is need for mature tools support-
ing the ontology engineering lifecycle, preferably integrated into existing
environments.

Assuming progress is made in these areas (and all are the subject of active
research and development programmes), over the next decade, we can anticipate the
increasing incorporation of ontology-based technology into mainstream IT systems
and methods.

31http://www.opencalais.com/

226 J. Davies

Acknowledgments Céline van Damme is thanked for insightful discussions about folksonomies
and informal ontolgoies in the enterprise. Section 9.4 is based partly on Warren and Davies (2007),
while Section 9.6 is based partly on Davies et al. (2006).

References

Alonso, O. 2006. Building semantic-based applications using Oracle. Developer’s Track at
WWW2006, Edinburgh. http://www2006.org/programme/item.php?id=d16. Accessed May
2006.

Assem, M., V. Malaise, A. Miles, and G. Schreiber. 2006. A method to convert thesauri to
SKOS. In Proceedings of the European Semantic Web Conference 2006 (ESWC 2006), Budva,
Montenegro. Heidelberg: Springer.

Baader, F., D. Calvanese, D. McGuiness, D. Nardi, and P. Patel-Schneider. 2003. The description
logic handbook. Cambridge, UK: Camridge University Press.

Beckett, D. 2004. RDF/XML syntax specification (revised). http://www.w3.org/TR/2004/REC-rdf-
syntax-grammar-20040210/.

Berners-Lee, T. 1999. Weaving the web. London: Orion Books.
Bontcheva, K., J. Davies, A. Duke, T. Glover, N. Kings, and I. Thurlow. 2006. Semantic infor-

mation access. In Semantic web technologies: Trends and research in ontology-based systems,
eds. J. Davies, R. Studer, and P. Warren, Chichester: John Wiley.

Brickley, D., and Guha, R.V, eds. 2000. Resource description framework (RDF) schemas, W3C.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.

Bernstein, A., E. Kaufmann, A. Goehring, and C. Kiefer. 2005. Querying ontologies: A controlled
english interface for end-users, Proceedings of the 4th International Semantic Web Conference,
ISWC2005, Galway, Ireland, November 2005. Heidelberg: Springer.

Borst, P., and H. Akkermans. 1997. Engineering ontologies. International Journal of Human-
Computer Studies, 46:365–406.

Chinchor, N., and P. Robinson. 1998. MUC-7 named entity task definition (version 3.5). In
Proceedings of the 7th Message Understanding Conference (MUC-7), Fairfax, VA.

Cunningham, H. 2000. Software architecture for language engineering. PhD Thesis, University of
Sheffield.

Cunningham, H. 1999. Information extraction: A user guide (revised version). Department of
Computer Science, University of Sheffield, May 1999.

Davies, J., D. Fensel, and F. van Harmelen. 2003. Towards the semantic web. Chicester: Wiley.
Davies, J., R. Weeks, and U. Krohn. 2003. QuizRDF: Search technology for the semantic web. In

Towards the semantic web, eds. J. Davies, D. Fensel, and F. van Harmelen. Chicester: Wiley.
Davies, J., R. Studer, Y. Sure, and P. Warren. 2005. Next generation knowledge management. BT

Technology Journal 23(3):175–190, July 2005.
Davies, J., R. Studer, and P. Warren. 2006. Semantic web technology: Trends & research. Chicester:

Wiley.
Davies, J., et al. 2007. NESSI semantic technologies working group research roadmap 2007–2010

Version 1.2. http://www.nessi-europe.com/Nessi/LinkClick.aspx?fileticket=Ja5zTnzK4%
2fM%3d&tabid=241&mid=694. Accessed 10th June 2007.

DCMI Usage Board. 2005. DCMI metadata terms. http://dublincore.org/documents/2005/06/13/
dcmi-terms/.

Dean, M., and G. Schreiber, eds.; Bechhofer, S., F. van Harmelen, J. Hendler, I. Horrocks,
D.L. McGuinness, P.F. Patel-Schneider, and L.A. Stein, 2004. OWL web ontology language
reference. W3C recommendation. http://www.w3.org/TR/owl-ref/. Accessed 10 February
2004.

Domingue, J., M. Dzbor, and E. Motta. 2004. Collaborative semantic web browsing with magpie.
In The semantic web: Research and applications, Proceedings of ESWS, 2004, LNCS 3053,
eds. J. Davies, C. Bussler, D. Fensel, and R. Studer, 388–401. Heidelberg: Springer.

9 Lightweight Ontologies 227

Dumais, S., E. Cutrell, J. Cadiz, G. Jancke, R. Sarin, and D. Robbins. 2003. Stuff I’ve Seen: A
system for personal information retrieval and re-use. In Proceedings of SIGIR’03, Toronto.
New York, NY: ACM Press.

Dill, S., N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, K.S. McCurley, S.
Rajagopalan, A. Tomkins, J.A. Tomlin, and J.Y. Zienberer. 2003. A case for automated large
scale semantic annotation. Journal of Web Semantics 1(1):115–132.

Ding, L., T. Finin, A. Joshi, R. Pan, R.S. Cost, Y. Peng, P. Reddivari, V. Doshi, and J. Sachs. 2004.
Swoogle: A search and metadata engine for the semantic web, Conference on Information and
Knowledge Management CIKM04, Washington, DC, November 2004.

Ehrig, M., P. Haase, M. Hefke, and N. Stojanovic. 2005. Similarity for ontologies – A compre-
hensive framework. In Proceedings of the 13th European Conference on Information Systems,
Regensburg, May 2005.

Fensel, D., and F. van Harmelen. 2007. Unifying reasoning and search to web scale. IEEE Internet
Computing 11(2):94–96.

Fensel, D., and M. Musen. 2001. The semantic web: A brain for humankind. IEEE Intelligent
Systems 16(2):24–25.

Giunchiglia, F., M. Marchese, and I. Zaihrayeu. 2005. Encoding classification into lightweight
ontologies. In Proceedings of the 2nd European Semantic Web Conference ESWC05,
Heraklion, Crete, May 2005.

Glaser, H., H. Alani, L. Carr, S. Chapman, F. Ciravegna, A. Dingli, N. Gibbins, S. Harris, M.C.
Schraefel, and N. Shadbolt. 2004. CS AKTiveSpace: Building a semantic web application. In
The semantic web: Research and applications, Proceedings of ESWS, 2004, LNCS 3053, eds.
J. Davies, C. Bussler, D. Fensel, and R. Studer, 388–401. Heidelberg: Springer.

Grishman, R. 1997. TIPSTER architecture design document version 2.3. Technical report, DARPA.
http://www.itl.nist.gov/iaui/894.02/related_projects/tipster/.

Gruber, T.R. 1992. A translation approach to portable ontologies. Knowledge Acquisition 5(2):199–
220. http://ksl-web.stanford.edu/KSL_Abstracts/KSL-92-71.html. Accessed 1993.

Gruber, T.R. 1993. Toward principles for the design of ontologies used for knowledge sharing.
In International Workshop on Formal Ontology, Padova, Italy, eds. N. Guarino and R. Poli.
http://ksl-web.stanford.edu/KSL_Abstracts/KSL-93-04.html.

Guarino, N., and P. Giaretta. 1995. Ontologies and knowledge bases: Towards a terminological
clarification. In Towards very large knowledge bases: Knowledge building and knowledge
sharing, ed. N. Mars, 25–32. Amsterdam: IOS Press.

Guarino, N. 1998. Formal ontology in information systems. In Proceedings of FOIS’98, Trento,
Italy, 6–8 June 1998, ed. N. Guarino, 3–15. Amsterdam: IOS Press.

Guha, R., and R. McCool. 2003. Tap: A semantic web platform. Computer Networks 42:557–577.
Guha, R., R. McCool, and E. Miller. 2003. Semantic search. In WWW2003, Budapest, Hungary,

20–24 May 2003.
Iosif, V., P. Mika, R. Larsson, and H. Akkermans. 2003. Field experimenting with semantic web

tools in a virtual organisation. In Towards the semantic web, eds. J. Davies, D. Fensel, and
F. van Harmelen. Chicester: Wiley.

Jansen, B.J., A. Spink, and T. Saracevic. 2000. Real life, real users, and real needs: A study
and analysis of user queries on the web. Information Processing and Management 36(2):
207–227.

Kiryakov, A. 2006. Ontologies for knowledge management. In Semantic web technologies: Trends
and research in ontology-based systems, Chapter 7, eds. J. Davies, R. Studer, and P. Warren.
Chicester: Wiley.

Kiryakov A., and K.Iv. Simov. 1999. Ontologically supported semantic matching. In Proceedings
of the “NODALIDA’99: Nordic Conference on Computational Linguistics”, Trondheim, 9–10
Dec 1999.

Kiryakov, A., B. Popov, D. Ognyanov, D. Manov, A. Kirilov, and M. Goranov. 2004. Semantic
annotation, indexing, and retrieval. Elsevier’s Journal of Web Semantics 1, ISWC2003 special
issue (2). http://www.websemanticsjournal.org/.

228 J. Davies

Kiryakov, A., D. Ognyanov, and D. Manov. 2005. OWLIM – A pragmatic semantic repository for
OWL. In Proceedings of International Workshop on Scalable Semantic Web Knowledge Base
Systems (SSWS 2005), WISE, 20 Nov 2005, New York City.

Klyne, G., and J.J. Carroll. 2004. Resource description framework (RDF): Concepts and abstract
syntax. W3C recommendation. http://www.w3.org/TR/rdf-concepts/. Accessed 10 Feb 2004.

Landauer T., and S. Dumais. 1997. A solution to Plato’s problem: The latent semantic analy-
sis theory of acquisition, induction and representation of knowledge. Psychological Review
104(2):211–240.

McCarthy, J. 1980. Circumscription – A form of non-monotonic reasoning. Artificial Intelligence
13:27–39.

Mahesh, K., J. Kud, and P. Dixon. 1999. Oracle at TREC8: A lexical approach. In Proceedings of
the 8th Text Retrieval Conference (TREC-8) Gaithersburg, Maryland.

Mangold, C. 2007. A survey and classification of semantic search approaches. International
Journal of Metadata, Semantics and Ontologies 2(1):23–34.

McDermott, D. (1978). Tarskian semantics, or no notation without denotation! Cognitive Science
2:277–282.

Miles, A., and D. Brickley, eds. 2005. SKOS core guide. WorldWideWeb consortium. Latest
version. http://www.w3.org/TR/swbp-skos-core-guide.

Pollock, J., and R. Hodgson. 2004. Adaptive information: Improving business through semantic
interoperability, grid computing, and enterprise integration. Wiley-Interscience.

Popov, B., A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff, and M. Goranov. 2003. KIM –
Semantic annotation platform. In Proceedings of 2nd International Semantic Web Conference
(ISWC2003), Florida, 20–23 Oct 2003, LNAI Vol. 2870, 834–849. Berlin/Heidelberg: Springer.

Rocha, C., D. Schwabe, M.P., and de Aragao. 2004. A hybrid approach for searching in the
semantic web. WWW 2004, New York, 17–22 May 2004.

Salton, G., A. Wong, and C.S. Yang. 1997. A vector space model for automatic indexing. In
Readings in information retrieval, eds. K. Sparck-Jones, and P. Willett. San Fransisco, CA:
Morgan-Kaufman.

Smith, B. 2003. Ontology. In Blackwell guide to the philosophy of computing and information, ed.
L. Floridi, 155–166. Oxford: Blackwell.

Smith, B., and C. Welty. 2001. Ontology: Towards a new synthesis. In Proceedings of the FOIS’01,
Ogunquit, ME.

Sparck-Jones, K., and P. Willett. 1997. Readings in information retrieval. San Fransisco, CA:
Morgan-Kaufman.

Spark Jones, K. 2004. What’s new about the semantic web? Some questions. SIGIR Forum 38(2).
http://www.sigir.org/forum/2004D-TOC.html. Accessed Dec 2004.

Specia, L., and E. Motta. 2007. Integrating folksonomies with the semantic web. In Proceedings of
the European Semantic Web Conference 2007 (ESWC 2007), Innsbruck, Austria. Heidelberg:
Springer.

Terziev, I., A. Kiryakov, and D. Manov. 2004. D1.8.1. Base upper-level ontology
(BULO) guidance, report EU-IST integrated project (IP) IST-2003-506826 (SEKT).
http://proton.semanticweb.org/D1_8_1.pdf.

Vallet, D., M. Fernandez, and P. Castells. 2005. An ontology-based information retrieval model.
In Proceedings of the 2nd European Semantic Web Conference, ESWC2005, Heraklion, Crete,
May/June 2005, LNCS 3532/2005, eds. A. Gómez-Pérez, and J. Euzenat. Berlin: Springer.

van Damme, C., M. Hepp, and K. Siorpaes. 2007. FolksOntology: An integrated approach for
turning folksonomies into ontologies. Bridging the Gap Between Semantic Web and Web 2.0
Workshop, 4th European Semantic Web Conference, Innsbruck, Austria, June 2007.

van Damme, C., T. Cornen, and E. Vandijck. 2008. Turning a corporate folksonomy into a
lightweight corporate ontology. 11th International Business Information Systems Conference,
BIS 2008, Innsbruck, Austria, May 2008. Heidelberg: Springer.

van Ossenbruggen, J., L. Hardman, and L. Rutledge. 2002. Hypermedia and the semantic web: A
research agenda. Journal of Digital Information 3(1), May 2002.

9 Lightweight Ontologies 229

Vitvar, T., M. Zaremba, M. Moran, and D. Fensel. 2007. SESA: Emerging technology for service-
centric environments. IEEE Software 24(6):56–67, Nov/Dec 2007.

Voorhees, E. 1998. Using WordNet for text retrieval. In WordNet: An electronic lexical database,
ed. C. Fellbaum. Cambridge, MA: MIT Press.

Warren, P., and J. Davies. 2007. Managing the risks from information through semantic information
management. BT Technology Journal 25(1):178–191, Jan 2007.

W3C Member Submission. 2004. OWL-S: Semantic markup for web services.
http://www.w3.org/Submission/OWL-S/.

	9 Lightweight Ontologies
	9.1 Introduction
	9.2 Lightweight Ontologies
	9.2.1 Lightweight Ontologies and the Semantic Spectrum
	9.2.2 Folksonomies and Lightweight Ontologies
	9.2.3 Thesauri and Lightweight Ontologies
	9.2.4 Formal Classification and Lightweight Ontologies

	9.3 Ontologies and the Semantic Web
	9.4 Ontologies and Information Integration
	9.5 Ontologies and Knowledge Management
	9.5.1 Limitations of Current Technology
	9.5.2 Applying Ontologies in Knowledge Management
	9.5.3 Semantic Knowledge Management Tools
	9.5.3.1 Squirrel Semantic Search Engine

	9.6 Ontologies and Service-Oriented Environments
	9.6.1 Web Service Modeling Ontology (WSMO)
	9.6.2 Web Service Modeling Language (WSML)
	9.6.3 Web Service Modeling Execution Environment (WSMX)

	9.7 Ontologies and Computer Science
	9.8 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

