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A programme of general semantics  

1.1 The programme in outline 

Transparent Intensional Logic is a logical theory developed with a view to logical 
analysis of sizeable fragments of primarily natural language. 

It is an unabashedly Platonist semantics that proceeds top-down from struc-
tured meanings to the entities that these meanings are modes of presentation of. It 
is a theory that, on the one hand, develops syntax and semantics in tandem while, 
on the other hand, keeping pragmatics and semantics strictly separate. It disowns 
possibilia and embraces a fixed domain of discourse. It rejects individual essen-
tialism without quarter, yet subscribes wholeheartedly to intensional essentialism. 
It denies that the actual and present satisfiers of empirical conditions (possible-
world intensions) are ever semantically and logically relevant, and instead re-
places the widespread semantic actualism (that the actual of all the possible worlds 
plays a privileged semantic role) by a thoroughgoing anti-actualism. And most 
importantly, it unifies unrestricted referential transparency, unrestricted composi-
tionality of sense, and all-out hyperintensional individuation of senses and atti-
tudes in one theory. 

The way we understand the enterprise of logical analysis of (natural) language, 
it is neither eliminative nor reductive, but selective. The analysis selects particular 
features of language, leaving all the remaining untouched and unscathed. We ob-
viously acknowledge the pragmatic categories of (act of) assertion, language ac-
quisition, communication, speaker’s intention, etc. And we acknowledge no less 
the full range of pragmatic paraphernalia that keep natural language lubricated and 
running, including non-verbal winks and nods, hints and clues. But while they ex-
ist in their own right, they are immaterial to the project of, ideally, isolating all, 
and only, logically salient features of (natural) language. So we blot out what is in 
effect the vast bulk of natural language in order to zoom in on the remaining 
fragment and blow it large, as it were, with a view to studying it in more detail. 

Yet the very name of our theory, ‘Transparent Intensional Logic’, is likely to 
strike one as being an oxymoron, like ‘roaring silence’. How can there possibly be 
a logic that is intensional and at the same time transparent? Is not any intensional 
logic one which fails to heed various laws of extensional logic, such as referential 
transparency, substitution of identicals, and compositionality? Certainly, if ‘inten-
sional’ is synonymous with ‘non-extensional’, then any logic is indeed intensional 
which fails to comply with one or more of the principles and rules of extensional 
logic. But ‘intensional’ may also mean⎯and this is the notion of intensionality 
germane to Transparent Intensional Logic⎯that the logic in question comes with an 
ontology of intensional entities and the means to logically manipulate these entities. 
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Transparent Intensional Logic flouts none of the principles of extensional logic 
and is, insofar, an extensional logic.   

The underlying project is to operate with only one semantics for all kinds of 
logical-semantic context while adhering to the compositionality principle through-
out. This universal semantics is obtained by developing a semantic theory for the 
hardest case (to wit, hyperintensional attitude contexts) and extending it to all the 
other cases (i.e., ‘generalising from the hardest case’). Less-hard cases demand 
less logical and semantic sophistication, and irrelevant subtleties are weeded out 
by installing cruder principles of individuation and substitution. 

Referential transparency is the phenomenon that any term or expression�when 
used in a communicative act�expresses the same entity as its meaning and de-
notes the same entity as its denotation (or ‘semantic value’) regardless of the em-
bedding context. This means rejecting so-called reference shift across the board. 
Instead the ‘shifts’ that reference-shift is intended to trigger are brought about by 
distinguishing between two different ways in which the meaning of a word may 
occur relative to a logical-semantic context, namely with either supposition de 
dicto or de re. The point is that the a priori relation between word and sense fixes 
a sense, which exhausts the function of the word. The so fixed sense may conse-
quently be subjected to logical manipulation, for instance, by being made to occur 
with supposition de dicto or else de re.  

Transparent Intensional Logic also contains the resources to distinguish in a 
principled manner between functions and their values. This is because the underly-
ing logic is a (typed) lambda calculus (equipped with partial functions). Church’s 
logic of functions has been around for 70-odd years now, and is well-integrated 
into logical lore. Our main departure from how Church understood his calculus is 
that, in Transparent Intensional Logic, the terms for functional abstraction and 
functional application do not denote functions and functional values, respectively. 
Instead they denote multiple-step structures specifying how to form functions and 
functional values, respectively. We conceive of these structures as procedures 
whose products are either functions or functional values. Our theory’s own word 
for such structured procedures is construction.  

Intuitively, constructions are procedures, of one or more steps, for inputting 
and outputting entities. Tichý often likens constructions to calculations.1,2 Just as 

                                                           
1 The idea of linguistic sense as a calculation will be familiar not least from Moschovakis’ work 
on constructive semantics.   
2 Muskens, in (2005, p. 474, n. 2), interprets constructions as ‘procedures that can be used to 
compute [Fregean] references]’ (ibid., p. 474), which is basically on the right track. We agree, 
with one proviso, with Muskens’ characterisation of a computational, or procedural, interpreta-
tion of Fregean sense: ‘If senses are a certain kind of algorithms, then two senses are identical if 
the corresponding algorithms are. While identity of algorithms itself is a non-trivial problem, this 
at least gives something to start with’ (Ibid.). The proviso is that constructions are allowed to be 
non-finitary. With this proviso in mind, we subscribe to the general ‘propositions-as-algorithms 
picture’ that Muskens sketches in (ibid., pp. 487ff).  For an introduction to how reference-fixing 
along Fregean lines works in Martin-Löf’s type theory, see Primiero (2004) and (2008).   

See Section 1.5 for discussion. 
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an arithmetic calculation takes numbers, processes them and yields other numbers, 
so constructions are, semantically speaking, calculations whose results may be, for 
instance, truth-values, truth-conditions, individuals, numbers, sets, properties, as 
well as other calculations. It is important not to confuse procedures (calculations) 
with the agent-, world-, and time-indexed processes of executing the procedures 
(i.e., individual cases of actual calculating) or with their products (results, output) 
or with the symbolic encoding of a computer programme in a programming lan-
guage. Construction is the single most important notion of Transparent Intensional 
Logic, and its defining feature par excellence. It is anchored to an older notion of 
function as being more than a mere mapping from one set into another: 

In the 1920s, when [the lambda calculus and combinatory logic] began, logicians did not 
automatically think of functions as sets of ordered pairs, with domain and range given, as 
they are trained to do today. Throughout mathematical history, right through to modern 
computer science, there has run another concept of functions, less precise but strongly 
influential; that of a function as an operation-process (in some sense) which may be 
applied to certain objects to produce other objects. Such a process can be defined by 
giving a set of rules describing how it acts on arbitrary input-objects (The rules need not 
produce an output for every input.)  (Hindley and Seldin, 1986, p. 44).  

The constructions of Transparent Intensional Logic are intended precisely as 
such ‘operation-processes’ that receive an input and deliver an output (or in well-
defined cases fail to deliver an output). The historical resources that Tichý ac-
knowledges are first and foremost Frege’s notions of sense (Sinn) and unsaturated 
function (ungesättigte Funktion), as opposed to modern-day functions, which are 
extensionally individuated mappings (akin to Frege’s Wertverläufe), but also Rus-
sell’s (not all-too crisp) notion of proposition. Tichý’s objectualist take on ‘opera-
tion-processes’ may be seen in part as linguistic structures transposed into an ob-
jectual key; operations, procedures, structures are not fundamentally and 
inherently syntactic items, but fully-fledged, non-linguistic entities residing in a 
Platonic realm.  

Still, the two most common misconceptions of constructions are that they are 
functions or formulae. True, functions (conceived of as mappings) are construct-
ible by any of the different kinds of construction that their recursive definition 
enumerates (Definition 1.2); but constructions are distinct from what they con-
struct (in particular, those constructions that construct nothing are still something). 
Especially, constructions are not what Tichý would begin to call ‘determiners’, 
which are just possible-world intensions.3 Functions-in-extension (i.e., mappings) 
are set-theoretic entities; constructions not. Church-style functions-in-intension are 
much closer to constructions. But though functions-in-intension are construed, in 
mathematical logic and computer science, as rules, these are not clearly defined, 
whereas constructions are.4 And, to be sure, constructions are encodable in artificial 
                                                           
3 We have avoided the term ‘determiner’ in this book, because it is already in use in linguistics 
where it has a somewhat different meaning; e.g., articles are determiners. 
4 For functions-in-intension as rules or ‘codes’ for rules, see Mitchell (1990, p. 371) or Church 
(1941).  
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symbolic notation, but constructions are distinct from the formulae they are 
cloaked in. Formulae are linguistic entities; constructions not.  

Apart from recasting the lambda-calculus procedurally, another departure from 
Church is that Transparent Intensional Logic includes not only a simple type the-
ory but also a ramified type theory. The ramified type hierarchy serves to organise 
the constructions, together with functions with domain or range in constructions. 
Constructions offer a worked-out, positive answer to the open question of just how 
‘hyper’ hyperintensions are. The leading principle is that any two procedurally 
isomorphic hyperintensions are identical. It turns out, though, that there are cases 
when two procedurally isomorphic constructions are just that—two constructions 
and not one. So a slightly coarser principle of individuation than the constructional 
one is called for to preserve the idea of hyperintensional individuation in terms of 
procedural individuation. Pavel Materna has introduced, in 1998, a rigorous notion 
of concept that identifies as one concept any two procedurally isomorphic con-
structions. This notion of concept has been incorporated into Transparent Inten-
sional Logic, which therefore operates with four measures of individuation; exten-
sional, intensional, conceptual, and constructional. Hyperintensional individuation 
is, in the final analysis, conceptual individuation. But since concepts are them-
selves constructions, we shall often speak in terms of constructions.   

Having adumbrated the very basic ideas underlying Transparent Intensional 
Logic, here is how we locate Transparent Intensional Logic within the current 
landscape of formal semantics. Once the foundations of formal semantics seemed 
to have been firmly established. What remained to do was working out the subtle-
ties of their applications to various problems concerning meaning and reference. 
David Kaplan puts it eloquently in this way:   

During the Golden Age of Pure Semantics we were developing a nice homogenous 
theory, with language, meanings, and entities of the world each properly segregated and 
related one to another in rather smooth and comfortable ways. This development probably 
came to its peak in Carnap’s Meaning and Necessity (from 1947). Each designator has 
both an intension and an extension. Sentences have truth-values as extensions and 
propositions as intensions, predicates have classes as extensions and properties as 
intensions, terms have individuals as extensions and individual concepts as intensions, 
and so on. The intension of a compound is a function of the intensions of the parts and 
similarly the extension (except when intensional operators appear). There is great beauty 
and power in this theory (1990b, pp. 13–14). 

However, Kaplan points out that already then there was trouble in paradise: 
[T]here remained some nagging doubts: proper names, demonstratives, and quantification 
into intensional contexts5  (ibid., p. 14).  

                                                           
5 Saarinen (1982, p. 131) offers the same list of trouble-makers, adding logical omniscience. As 
an aside, it is interesting to note that whereas epistemology has been preoccupied with skepticism 
(the spectre of knowing too little or nothing at all), epistemic logic has been preoccupied with 
omniscience (the spectre of knowing too much).  
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And Carnap himself observed in 1947 the problem of how to logically handle 
what Cresswell was later to dub ‘hyperintensional’ contexts:  

Hyperintensional contexts are simply contexts which do not respect logical equivalence 
(1975, p. 25).  

Carnap asks whether a context might be neither extensional nor intensional, an-
swering in the affirmative: 

Although [the sentences] ‘D’ and ‘D�’ have the same intension, namely, the L-true or 
necessary proposition, and hence the same extension, namely, the truth-value truth, their 
interchange transforms the [belief-reporting sentence ‘John believes that D’] into the 
[belief-reporting sentence ‘John believes that D�’], which does not have the same 
extension, let alone the same intension, as the first (1947, pp. 53–4). 

So attitudes must be added to the list of nagging doubts, as soon as we are not 
content with holding, heroically but irrationally, that any two logically equivalent 
propositions (or whatever else plays the role of attitude relata) may always be val-
idly substituted when figuring as complements of attitudes.  

The over-all goal driving hyperintensional attitude logic is to avail ourselves of 
epistemic operators that are, in Dretske’s wording, at most ‘semi-penetrating’ (see 
Dretske, 1977). For instance, it may be true that you know that if it is raining then 
the street gets wet and that you know that it is raining; but not that you, thereby, 
also know that the street gets wet. Or, since we favour relations over operators, the 
relation of knowing obtaining between knowers and hyperpropositions needs to 
have the effect of being at most ‘semi-penetrating’. Much research in epistemic 
logic since Hintikka (1962) has centred on which restrictions to impose, and how 
to impose them, particularly with a view to solving the problem of logical omnis-
cience. The solution we offer relates agents to constructions and equips each agent 
with one or more rules of inference that they are able to apply flawlessly to any 
appropriate set of premises. This way we are able to calculate the inferable knowl-
edge of agents relative to their intelligence (in casu, their inferential capacities), 
and their individual inferable knowledge will be a proper subset of pieces of 
knowledge of all the constructions that are consequences of those already explic-
itly known by individual agents. 

Nonetheless, despite the nagging doubts, formal semantics continued to blos-
som as a research discipline, really taking off in the late 1950s and early 1960s 
thanks to the advent of possible-world semantics. Kripke offered a semantics (sev-
eral, in fact) for C.I. Lewis’ naked modal syntax from the late 1910s. And Monta-
gue would soon afterwards develop an intensional logic based on Tarski-style se-
mantics enriched with possible worlds by means of which to analyse large 
fragments of natural language. Kripke says that  

The main and the original motivation for the ‘possible worlds analysis’ ⎯ and the way it 
clarified modal logic ⎯ was that it enabled modal logic to be treated by the same set 
theoretic techniques of model theory that proved so successful when applied to 
extensional logic. It is also useful in making certain concepts clear (1980, p. 59, n. 22).  
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Kripke does not mention here which concepts he has in mind, but it seems safe 
to assume that they must be the notoriously elusive intensional entities like propo-
sitions, properties, relations-in-intension, individual concepts, magnitudes, etc. 
Possible-world semantics can tell us what an intension is and when any two inten-
sions are identical. An intension is a function whose domain is made up of possi-
ble worlds, and qua functions intensions are individuated extensionally. If f, g 
range over intensions and w over possible worlds then if f, g return the same val-
ues for the same arguments then f = g. That is, co-intensionality is the principle of 
individuation of intensions: 

 ∀fg (∀w (fw = gw) ⊃ f = g). 

The upside of defining propositions and other intensions extensionally is that 
they become logically manageable and that we help ourselves to a clear notion, 
thanks to the fact that the logic of (total) functions is well understood.  

Properly speaking, though, intensions are not functions, but pre-theoretic enti-
ties that are modelled intra-theoretically as functions. This slight correction is im-
portant to forestall an objection due to George Bealer. He launches in several 
places (variations of) what we would call ‘the argument from aroma’ (e.g., 1982, 
p. 90). The aroma of coffee is a property (an intension), but certainly not a map-
ping (mappings having no aroma); hence, properties are not mappings. We do not 
literally identify intensions with world-defined mappings⎯though for technical 
convenience we do identify the modelling and what is so modelled. The purpose 
of intensions is to capture empirical variability; such-and-such is the case, but 
might not have been the case, and vice versa. We construe intensions as functions 
from possible worlds to chronologies of entities, chronologies being functions 
from times to entities (including other intensions). Mathematics and logic, on the 
other hand, have no need for empirical variability; hence, they have no need for 
intensions.  

Meanwhile, during the ascent of the model theory of possible-world semantics, 
in the non-model-theoretic quarters Heyting had long before formulated a con-
structivist semantics for mathematical language, Dummett would later extend, in a 
usually informal manner, constructivism to natural-language discourse, and Mar-
tin-Löf would put forward a detailed constructive type theory for mathematical 
language. Yet constructivism has so far not succeeded in framing a fully-fledged 
semantics for natural language, no least because it is far from obvious what the 
natural-language counterpart of a mathematical proof (-object) would be.6  

Despite their initial success, the multifarious theories based on model theory 
eventually ground to a halt over the old problem of how to logically analyse atti-
tudes. For the downside of intensions as mappings is that, though propositions and 
other intensions may have been logically murky prior to possible-world semantics, 

                                                           
6 See Ranta (1994) for an application of Martin-Löf’s type theory to natural-language discourse.  
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the corresponding notions were also somewhat richer.7 The clarity of possible-
world intensions comes at the price of impoverishing these notions. Put uncharita-
bly, possible-world intensions are intensionality on the cheap. Though one of its 
champions, Kripke is alert to various shortcomings of possible-world semantics. 
Thus, after a remark on attitudes he vents an afterthought with far-reaching impli-
cations:  

How this relates to the question what ‘propositions’ are expressed by these [attitude-
reporting] sentences [and] whether these ‘propositions’ are objects of knowledge and 
belief…are vexing questions. I have no ‘official doctrine’ concerning them, and in fact I 
am unsure that the apparatus of ‘propositions’ does not break down in this area. … Of 
course there may be more than one notion of ‘proposition’, depending on the demands we 
make of the notion (1980, p. 21; ibid., p. 21, n. 21).  

The impasse over no least attitudes has lead to the re-discovery of so-called 
structured propositions. Kaplan may well have pioneered their revival in a 1970 
talk that appeared as (1990b) when he urged that the analysis of ‘John is tall’ 
should include two components:  

[T]he property expressed by the predicate [‘is tall’], and the individual John. That’s right, 
John himself, trapped in a proposition (1990b, p. 13).  

Along the same lines, Cresswell called for   
[An] analysis of propositions which assumes that they are structured entities…The most 
fully worked out account of structured meanings within a possible-worlds framework is 
that presented by David Lewis [in (1972)] (1975, p. 78). 

Unfortunately, manoeuvring within a set-theoretic paradigm such as model 
theory, the only avenue open to Kaplan and Lewis was to identify structure with 
ordered n-tuples (or at least to model them as such). Tuples are a non-starter, for 
the simple reason that they are simple while structures are complex. Complexes 
have parts arranged in a particular way while sets only have elements.8 The most a 
set can offer is a sequential ordering of its elements. So �Is_Tall, John�, or �John, 
Is_Tall�, is not a structured proposition. An additional objection is that either of 
these two two-tuples merely enumerates a property and an individual without 
specifying that the former is predicated of the latter. This is tantamount to the 
standard ‘laundry list’ objection that the items on the ‘list’ fail to hook up with one 
another so as to integrate into a whole, that is, it is left unexplained how sense at-
oms combine into one molecule. Yet another objection would be that ordered n-
tuples most likely cannot do some of what propositions are intuitively expected to 
do. In particular, it is not clear in what sense a tuple can be said to be a truth-bearer 

                                                           
7 Three cases in point would be Fregean Sinn and Russellian propositions, and also Bolzanian 
Sätze an sich; see Materna (1998, 2004a).  
8 See also Simons (2007, §8): ‘A complex whole is an object with more than one proper part, 
such that the parts are related together in the whole in a determinate way. This way of their being 
together in the whole is the structure of the whole.’ Hence, ‘a musket is not a sum of parts: it is a 
structured whole of parts put together in a certain way’ (ibid., §7). 
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(i.e., something capable of being true/false) or an attitude relatum (i.e., something 
known/believed/hoped, etc., to be true/false).   

Transparent Intensional Logic agrees with Cresswell, Kaplan, Richard and oth-
ers that the meaning of a sentence must match, more or less, the structure of the 
sentence: 

[I]f the structure of propositions is as fine-grained as the structure of sentences, then it is 
hard to give to propositions any content but in terms of something analogous to sentence-
like structured objects (Chierchia, 1989, p. 131). 

For what other structure could arguably be a serious candidate? None that leaps 
readily to mind; especially not if, as in Transparent Intensional Logic, it is re-
quired that a logical analysis must treat of all, and only, those entities denoted in 
the analysandum. This constraint is called the Parmenides Principle, a forerunner 
of which would be Carnap’s principle of subject-matter (1947, §24.2, §26.)    

Apparently, mainstream analytic philosophy of language has bumped up 
against serious shortcomings in its foundations, with no obvious remedy in sight. 
True, when propositions are identified whenever materially equivalent or co-
extensional, we have what we need for extensional logic, which validates the sub-
stitution of any two propositions having the same truth-value. And when proposi-
tions are identified whenever logically equivalent or co-intensional, we have what 
we need for intensional logic, which validates the substitution of any two proposi-
tions having, or being, the same truth-condition. But taking it to the third level of 
hyperintensions has seemed so far an insurmountable obstacle.    

Little wonder, then, that much of what passes for analytic philosophy of lan-
guage nowadays is shot through with semantic minimalism or even nihilism and 
an over-emphasis on pragmatic notions such as assertion, (act of) utterance, un-
derstanding, communication, language acquisition, etc. The glory days of Golden 
Age Semantics seem buried in the dim and distant past, with little hope of resur-
rection.   

However, running alongside the mainstream of theories following in the slip-
stream of Kripke, Kaplan, Montague, etc., and the parallel mainstream of Dum-
mett-style proof-theoretic semantics, we find a small group of lesser-known, 
worked-out theories of hyperintensional logic. These include, inter alia, George 
Bealer’s, Edward Zalta’s⎯and Pavel Tichý’s. Tichý’s is a theory that comes with 
a (very) ‘big’ semantics and a (very) ‘small’ pragmatics. The central concerns are 
only those a priori features of language that lend themselves to description and 
analysis in a purely logical manner. Thus, Tichý’s theory is distinct both from 
those that ‘pragmatize’ their semantics and those that ‘semanticize’ their pragmat-
ics. It observes a strict demarcation between semantics and pragmatics; so since 
even very sophisticated attitudes are to be analysed strictly semantically, it is ob-
vious why a ‘big’ semantics is wanted. But whereas semantic and pragmatics are 
kept apart, semantics and syntax are developed in parallel. This turns the syntax of 
Transparent Intensional Logic into an interpreted one. We do not proceed as in 
model-theoretic semantics, in which first a lexicon and a set of rules of formation 
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are introduced, followed by a syntax, and topped off with a semantics (interpreta-
tion). In particular, in TIL no expression may be introduced without typing the 
construction it expresses as its sense, which entails a typing of the entity that it de-
notes.  

The puzzle-solving mettle of Transparent Intensional Logic comes at a high on-
tological price, due to its infinite hierarchy of higher-order entities; but it excels at 
parsimony in another respect. It contains but four essential constructions. They are 
called Trivialization, Variable, Composition (originally: Application), and Closure 
(originally: Abstraction).9 These four key constructions can be divided into two 
groups of two. Composition and Closure are computation-like constructions; 
namely, the (‘downward’) application of a function to an argument, and the (‘up-
ward’) formation of a function, respectively. The other two, Variable and Triviali-
zation, provide the first two with input in each their way and independently of 
each other. Variables provide their values relative to a valuation function; Triviali-
zations provide the entities they Trivialize by presenting them directly. The fact 
that constructions may themselves be Trivialized holds the key to how we obtain 
hyperintensional attitudes, by being able to distinguish between using and men-
tioning constructions.10 These four constructions correspond to the syntax of a 
lambda calculus whose terms are variables, constants, applications and abstrac-
tions. Trivializations match constants, by picking out definite entities in just one 
step. The unusual ontological status of Variables should be underlined; they are 
objectual and not linguistic entities. The assignment of an entity to a Variable x 
does not relate this entity to a piece of language, unlike ‘x’, but completes an open 
construction that subsequently constructs a definite entity.   

Constructions are arranged in a ramified, higher-order type theory that is based 
on a simple type theory of first-order objects. The simple type theory, when used 
for natural-language analysis, spans four ground types (individuals, truth-values, 
possible worlds, and reals doubling as times) and types of partial functions defined 
over them. The typing does not apply to linguistic entities, as in categorial gram-
mar (cf. Montague, Le�niewski, Ajdukiewicz, Cresswell), but to abstract objects 
such as functions, truth-values, and higher-order entities, as in the constructivist 
type theory of Martin-Löf. Our bi-dimensional type theory fixes the objective rela-
tions among this multi-layered multitude of abstract entities. It thus enables the 
semanticist to control whether the input is type-theoretically internally coherent 
and whether the right type of output follows, so as to prevent categorial mis-
matches.   

Transparent Intensional Logic eschews possibilia (possible worlds arguably the 
only exception). Instead the theory operates with a constant domain for all worlds 

                                                           
9 It turns out, however, that we occasionally also need a fifth and a sixth construction, called 
Execution and Double Execution. Furthermore, the application of Transparent Intensional Logic 
to database theory has prompted two more constructions; one for constructing ordered n-tuples 
and another for constructing projections; see Duží (1992).  
10 See Section 2.6. 
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and times. What varies are the values that (non-constant) intensions have in differ-
ent worlds and at different times, and not the domains that different worlds and 
times have. The theory also rejects individual essentialism; no individual bears 
any purely non-constant property by any sort of necessity (including the enigmatic 
‘metaphysical’ necessity). This is not to say, though, that we reject essentialism 
across the board; far from it. Taking a lead from a 1979 paper by Tichý, we have 
built up an essentialist theory, according to which relations of conceptual necessity 
obtain between various kinds of intension. The result is intensional essentialism, 
which says, roughly, that, necessarily, if x is a/the F then x is also a/the G, because 
being a/the G is in the essence of being a/the F. Intensional essentialism comes in 
handy, for instance, when spelling out the de dicto/re ambiguities besetting, e.g., 
‘Necessarily, the King of Bhutan is a king’. Taken de dicto, it is true, for there is a 
necessary, a priori link between the intensions the King of Bhutan and being a 
king�you cannot have the former without also having the latter. Taken de re, it is 
false, for nothing of a logical or conceptual nature forces whatever individual is 
the King of Bhutan to be a king. It is neither true nor false, if there happens to be 
no King of Bhutan, for then there is nobody of whom it would be either true or 
false that he is a king. 

Tichý began developing Transparent Intensional Logic simultaneously with 
Montague’s, around the mid-1960s, both attempting to get as much logical and 
semantic mileage as possible out of the possible-world paradigm. One tenet in-
forming this project was that a natural language such as English is largely on an 
equal footing with the formal logical language in which it is analysed. This is a 
strong common point to share, and a major departure from the thoroughly suspi-
cious attitude toward natural language that Russell, Frege, and Church, to mention 
but a few, championed. But Tichý and Montague parted company over some of 
the tenets that should inform the logical analysis of natural language. The most 
important difference is probably over whether natural language is permeated by 
shifts of reference (in the Fregean sense) and, if so, whether it should be replicated 
in the formal language in which the logical analysis is couched. Two other note-
worthy differences between Tichý’s TIL and Montague’s IL are these. First, 
thanks to so-called explicit intensionalization and temporalization (see Section 
2.4), TIL makes a fine-grained analysis of the de re/de dicto difference possible. 
For now, explicit intensionalization consists in explicit mention of variables rang-
ing over worlds and times in the logical syntax proper. Moreover, each TIL analy-
sis is fully compositional so that the ‘Church-Rosser diamond’ (the Koh-I-Noor 
of the lambda-calculi) holds, unlike IL.11 Second, due to its hyperintensional pro-
cedural semantics, TIL offers a principle of individuation finer than logical 
equivalence, so that equivalent expressions may have different meanings. This 
feature enables us to analyse hyperintensional attitudes in an adequate manner (see 
Chapter 5).  

 

                                                           
11 For further comparison of TIL and Montague’s IL, see Section 2.4.3. 
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It is vital to appreciate just how deep the issue of reference shift runs. Here is 
how we would rationally reconstruct how referential obliqueness came to be a 
theme pervading contemporary philosophy of language. What has become known 
as ‘Frege’s puzzle’ can be summarised as follows. Historically, the puzzle turns 
essentially on judgements (Urteile). Frege’s question is whether the judgement 
�Fa is identical to the judgement �Fb in case a = b. (‘�’ is Frege’s Urteilsstrich, 
judgement stroke, and not the symbol of validity.) For instance, is the judgement 
the proposition (Gedanke) that the Morning Star is a heavenly body illuminated by 
the sun is true identical to the judgement the proposition that the Evening Star is a 
heavenly body illuminated by the sun is true, in case the Morning Star is the same 
heavenly body as the Evening Star? Frege’s answer is in the negative due to the 
manifest difference in epistemic value (Erkenntniswert) between the two judge-
ments. Yet as an extensionalist logician (Umfangslogiker), Frege would have ex-
pected an answer in the affirmative. Hence his puzzlement. Frege’s puzzle deals 
with the acquisition of knowledge by making judgements and the difference, puz-
zling at first, between knowing that the Morning Star is an F and knowing that the 
Evening Star is an F, even though the Morning Star is identical to the Evening 
Star. There are two things to know, not just one, and one may know the one with-
out knowing the other.  

However, the modern Anglo-Saxon reception of Frege has tended to neglect 
the differences between judgements and propositions in Frege, speaking of propo-
sitions only. Phrased in terms of propositions, the puzzle is why the proposition 
that the F is the G conveys non-trivial information, if true, while the proposition 
that the F is the F fails to. Or in terms of attitudes, an agent may believe the latter 
without believing the former and without being guilty of inconsistency or irratio-
nality. In order to solve the puzzle, Frege attempts first to apply universal transpa-
rency to the puzzle, assuming that ‘the F’ and ‘the G’ refer to the same individual 
a. Call this ‘Millian universal transparency’; ‘Millian’ because a singular term re-
fers to an object, not a connotation, and because its reference is not mediated by a 
connotation.12 Any account of the non-triviality of the former proposition is 
blocked, since it reduces to the triviality that a is self-identical. So, Millian univer-
sal transparency must be abandoned. Still two options apart from Millian universal 
transparency are open; Fregean systematic contextualism and Fregean universal 
transparency. 

Frege, for extensionalist reasons, opted for contextualism. Tichý goes for uni-
versal transparency. The basic ‘trick’ behind the transparency of Transparent In-
tensional Logic is to universalise Frege’s anomaly. Thus, universal transparency is 
obtained by means of universal obliqueness. If every context is oblique, or if every 
context is ‘straight’ (gerade), then it is pointless to uphold the distinction between 
oblique and straight context. Not that it would be a distinction without a differ-
ence, but the object under scrutiny⎯natural language⎯would fail to exemplify 

                                                           
12 We are neglecting Mill’s actual psychologistic semantic theory here. 
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the distinction. So Tichý takes Frege’s semantics reserved for a marginal case and 
elevates it to the semantics for the universal case.  

Interestingly, Transparent Intensional Logic agrees verbally with what Donald 
Davidson says about ‘semantic innocence’, that words maintain their meanings and 
denotations across shifts of context.13 But Davidson’s so-called ‘paratactic’ approach 
maintains that expressions invariably denote extensional entities, whereas our ‘hypo-
tactic’ approach maintains that (empirical) expressions invariably denote intensional 
entities. Tichý was adamant from the outset that natural language does not display 
shifts of reference and that, even if it had, there should be no room for it in a logical 
formalism. The rationale for the latter claim is that, as already Frege himself empha-
sized, logical notation must be unambiguous. Logical notation must disambiguate lan-
guage and not perpetuate ambiguities.14 The rationale for the former claim is, briefly, 
that if the terms and expressions of natural language were to denote extensional enti-
ties (like individuals, truth-values, sets) then successful communication would require 
of speakers and hearers that they knew which possible world was the actual one.  

The gist of the argument is this. Intensions are conditions satisfiable by possi-
ble worlds (and whatever other empirical indices we care to add, such as times). If 
empirical terms denoted the actual-world satisfiers of these conditions, then one 
must know which world is actual to know which entity is being so denoted. Suc-
cessful communication would require not only understanding the meanings of 
terms and expressions, but also knowing their actual values. But then the empiri-
cally omniscient would have no epistemic need for communication, for they 
would already know everything there was to know; whereas the empirically non-
omniscient would never know whom or what was being talked about.15 We mortal 
language-users do possess much empirical knowledge (neglecting for now the 
challenges posed by radical scepticism), but even if mankind were to pool together 
all its current knowledge, what could be identified would at most be an equiva-
lence class of possible worlds, of which the actual world would be a member. 
Hence it should not be a (mostly tacit) requirement that we be able to identify the 
actual world. At the same time, though, we do know that we live in the actual 
world and we do make our empirical assertions about the actual world. We agree 
with this portion of David Lewis’ ‘indexical’ theory of actuality. But this is not to 

                                                           
13 See Davidson (1968).  
14 As Muskens says, ‘Why does [Montague’s] IL show such exotic behaviour; why do Leibniz’s 
Law, Universal Instantiation and Lambda Conversion not hold under the normal conditions? Be-
cause the logic was explicitly designed to reflect certain opacity phenomena in natural language’ 
(1989, p. 10).  
15 In a recent comparison of Tichý and Zalta, Sierszulska says correctly that, ‘[K]nowing all the 
values of the [intensions] … would be the same as knowing all the facts … The proper analysis 
of a proposition cannot assume such [empirical, as opposed to logical] omniscience, and it stops 
at the point where all the possibilities are taken into account, but none is specified’ (2006, 
p. 491).  



say that we know of one particular possible world that it is actual, for this is ex-
actly what we cannot know for want of empirical omniscience. 

An additional point is that the widespread idea that empirical terms denote ex-
tensions fails to keep the factual relation between an intension and its world-
relative satisfier apart from the semantic relation between an empirical expression 
and its denotation. Transparency is underpinned by an anti-actualist semantics 
founded upon a sharp demarcation between denotation and reference. The denota-
tion relation holds a priori between a word and the entity (if any) identified by the 
meaning of the word (or meanings if the word is ambiguous, and meaning if un-
ambiguous, at the level of logical analysis). Of course, it is a historically contin-
gent fact that a configuration of letters of some alphabet and/or sounds constitutes 
a word of a language and expresses one meaning rather than another or none at all. 
Diachronically, such configurations may criss-cross in and out of a language and 
enter into different semantic relations at different points in time. Synchronically, 
however, the semantic relations characterising a certain language are fixed for any 
given point in time. When we use an expression in a communicative act we com-
municate its sense. The same configuration of letters or sounds might have had 
wildly different senses, since the relation between term/expression and sense is 
wholly arbitrary and not inherent. Only this fact is irrelevant to logic and seman-
tics. It falls to linguistics and not logic or formal semantics to associate terms with 
senses. The starting-point of logical analysis of language presupposes both that the 
word/sense relations are in place and that the speakers of the language under scru-
tiny master these relations.16  

As this book shows, this choice of starting-point dictates our analysis of, e.g., 
‘Hesperus is Phosphorus’ and ‘Cicero is Tully’. If the terms are names of indi-
viduals, then the sentences merely express the self-identity of an individual bear-
ing two names. What is to be known concerns not a worldly but a linguistic mat-
ter, then. But if the terms are instead names of individuals-in-intension⎯what 
Church, Carnap, Kaplan and others call ‘individual concepts’ and we call ‘indi-
vidual offices or roles’⎯then what is to be known does concern a worldly matter; 
namely, that two differently named individuals-in-intension contingently coincide 
in the same individual (-in-extension), which or who bears neither name. As logi-
cal semanticists we adjudicate neither way. We enumerate the various possible 
semantic analyses of, e.g., ‘Hesperus is Phosphorus’ and ‘Cicero is Tully’, and 
chart their presuppositions and consequences.  

The denotation of an empirical term is always an intension. The reference relation 
holds a posteriori between an empirical word and the value, if any, of its denotation at 
                                                           
16 Tichý puts the point succinctly in a 1966 paper; ‘We assume, of course, a normal linguistic 
situation, in which communication proceeds between two people, both of whom understand the 
language. Logical semantics does not deal with other linguistic situations’ (2004, p. 55, n. 1). 
Likewise, C.A. Anderson says about Church’s Alternative (0): ‘Sense is what is known when the 
language is understood. In accordance with this, the intensional semantical rules should state es-
sential facts about the semantics, the mastery of which constitutes (ideal) competence with the 
language. These may include the rules of synonymy [.]’ (1998, p. 163). 
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the actual world at the present moment.  So, while an empirical word may lack a 
reference, it never lacks a denotation. For instance, the term ‘The King of France’ 
lacks a reference in the actual world at the present time. Yet the term has a denota-
tion, namely the individual-in-intension (individual office) the King of France. 
The semantics of empirical words is such that no such word can be ‘empty’ in the 
sense of failing to pick out an entity; for it invariably picks out an intension. 
Whether a given intension lacks an extension at the actual world is a factual rather 
than semantic question. In the case of non-empirical words, the extra-semantic re-
lation of reference drops out, since non-empirical terms and expressions do not 
pick out anything relative to empirical indices. They denote what�if anything�is 
constructed by their respective senses. The qualification ‘if anything’ is important, 
since some non-empirical words fail to denote. For instance, whereas there is a 
construction of the largest prime, there is no number for this construction to con-
struct. Still the term ‘the largest prime’ is meaningful and has a meaning to con-
tribute to a compound meaning, like the one of the sentence, ‘The largest prime is 
odd’. But the sentence fails to denote, because ‘the largest prime’ fails to.   

So there is this one difference between empirical and non-empirical expres-
sions. But let us stress the reason why both kinds of expression spring from the 
same source. All expressions, without exception, denote what is constructed by 
their senses. It is just that there are non-empirical cases where the sense fails to 
construct something for the relevant word to denote. The overarching semantic 
idea pertaining equally to mathematical and natural language is that sense is a cal-
culation or procedure, while at the same time observing a thoroughgoing demarca-
tion between these two compartments of language. Natural language descends 
from a calculation to an intension. Mathematical language descends either from a 
calculation to an extension or a lower-order calculation. The semantics of natural 
language demands an intensional intermediary between sense and (possible) ex-
tension due to the inherent anti-actualism informing Transparent Intensional 
Logic. The semantics of a natural-language term or expression terminates in the 
calculation of an intension. The sense is a manner of calculating the given inten-
sion so as to be able to arrive at its value at any world and time of evaluation. The 
semantics does not terminate in a calculation of the actual and present value of an 
intension, let alone in the value itself (if indeed any). There can be no final seman-
tic, a priori step from intension to actual and present value on pain of reinstating 
empirical omniscience as a prerequisite for successful communication among non-
omniscient language-users. The denotation is the same for all worlds and times, so 
words denoting intensions qualify as rigid designators. What varies is the refer-
ence; non-constant intensions do not return the same values at all worlds and 
times. But the reference relation is factual, a posteriori and extra-semantic; unlike 
the denotation relation, which is a priori and intra-semantic.  
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1.1.1 Semantic schemas  

We are placing our procedural semantics within the general Fregean programme 
of explicating sense (Sinn) as the mode of presentation (Art des Gegebenseins) of 
the entity (Bedeutung) that a sense determines.17 Muskens correctly points out 
that, ‘The idea was provided with extensive philosophical justification in Tichý 
(1988)’ and that ‘[Tichý’s] notion of senses as constructions essentially captures 
the same idea’ (2005, p. 474).  

So our starting-point is Frege’s well-known semantic diagram (FSD). This dia-
gram is frequently accepted as one of the foundations of modern semantics. To 
explain why a true sentence of the form ‘a = b’ can be informative, unlike a sen-
tence of the form ‘a = a’, Frege introduced an entity standing between an expres-
sion and the object denoted (bezeichnet) by the expression. He named this entity 
Sinn (sense) and explained the informative character of the true ‘a = b’-shaped sen-
tences by saying that ‘a’ and ‘b’ denote one and the same object but differ in ex-
pressing (ausdrücken) distinct senses. Thus FSD can be visualized as in Fig. 1.1. 

 
    Expression  
 
                                         expresses 

        
       denotes     Sense 

                                                          
                                                        

 
Denotation      

Fig. 1.1 Frege’s semantic diagram (FSD) 

So far, so good. The problem, though, is that Frege never defined sense. All he 
says is that it is a ‘mode of presentation’ (Art des Gegebenseins) of the denotation. 
The frequent interpretation of sense in contemporary semantics has it that sense is 
an intension. Thus, Kirkham says:   

                                                           
17 We know we are cutting corners here by paraphrasing ‘Bedeutung’ as ‘entity’. We are doing 
so in order not to get bogged down in the ongoing discussion of how best to render ‘Bedeutung’. 
The standard translation has been ‘reference’, but this does not do justice to Frege’s idiosyncratic 
distinction between ‘Sinn’ and ‘Bedeutung’, which are more or less synonymous nouns in ordi-
nary German, barring idiomatic usage; e.g., ‘sinnlos’ and ‘bedeutungslos’ are certainly not syn-
onymous adjectives. The best verbatim translation would have been ‘meaning’, to be contrasted 
with ‘sense’. But the idea of Frege being the meaning of ‘Frege’ sits very poorly indeed on the 
ears. Besides, ‘Bedeutung’ comes with a suggestion of pointing at an entity⎯‘deuten auf’⎯that 
‘meaning’ lacks. Fortunately, we can afford to be offhand about ‘Bedeutung’, since we are so 
strongly biased toward Sinn. 
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Since the seminal work of Gottlob Frege (1892a) it has been a commonplace [italics ours] 
that the meaning of an expression has at least two components: the sense and the 
reference. The sense of an expression is often called the connotation or the intension of 
the expression, and the reference is often called the denotation or extension of the 
expression. The extension of an expression is the object or set of objects referred to, 
pointed to, or indicated by, the expression.  ... The extension of ‘the morning star’ is a 
certain planet, Venus. The extension of a predicate is the set of all objects to which the 
predicate truly applies. The extension of ‘red’ is the set of all red things. The extension of 
‘vertebrate with a liver’ is the set of all vertebrates with a liver (1992/1997, p. 4).     

‘Intension’ can be interpreted in various ways. In the quotation above it is used 
as in Montague’s theory, viz. as the intension of an expression. At the same time 
contemporary possible-world semantics takes intensions to be functions whose 
domain is made up of possible worlds. According to this view, an expression pos-
sesses an intension and an extension;18 the former corresponding to Frege’s ‘Sinn’, 
the latter to Frege’s ‘Bedeutung’.19,20  

The intuition behind this interpretation is at first sight attractive. This can be 
shown by the classical Fregean example of ‘The Morning Star’ vs. ‘The Evening 
Star’.21 The senses of these expressions are distinct according to Frege. Now if we 
connect with either of these expressions an intension then the result is this: the 
sense of ‘The Morning Star’ is another possible-world intension than the sense of 
‘The Evening Star’, but the value of both intensions in the actual world at the pre-
sent moment is one and the same object⎯Venus, as it happens.  

Of course, aspersions have been cast upon this view independently of the criti-
cism that TIL had raised much earlier. For instance, van Lambalgen and Hamm 
say:   

In formal semantics for natural language it is not common practice to associate algorithms 
to expressions. …it is usually assumed that all one needs is the intension of an expression, 
defined as a function which maps a possible world into an extension of the expression in 
that possible world. It seems to us that this picture of meaning is too static, and by and 
large cognitively irrelevant (2004, p. 7). 

As we argued above, the interpretation of sense as intension and denotation as 
extension in the case of empirical expressions (like ‘The Morning Star’, ‘The Eve-
ning Star’) is counterintuitive. Already Carnap (1947), knew that a logical analysis 
cannot provide the contingent values of intensions. If intensions are functions 
from possible worlds (and times, as in TIL) then we could logically determine the 
value of an intension in the actual world only if we knew which of the possible 
worlds is the actual one. On any rational explication of the notion of possible 
world, this knowledge cannot be a priori;  therefore, determining the value of an 

                                                           
18 See also Carnap (1947).  
19 Church (1956) has ‘denotation’.  
20 Originally, Tichý also held to the view that Fregean sense may be explicated as a possible-
world intension; cf. (1986a, p. 253, 2004, p. 651).  
21 See Section 3.3.  
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intension in the actual world must always be a matter of factual experience (rather 
than of logic).  

The relation between an intension and its actual/present extension is beyond 
logical semantics. The spirit of TIL requires that the terms ‘denotation’ and ‘refer-
ence’ be semantically kept separate, at least in the case of empirical expressions. 
What is denoted are intensions, whereas the value of such an intension in the ac-
tual world (and at the present time) is called the reference (of the respective ex-
pression). Thus reference is not a matter of logical semantics, being ascertainable 
via experience only. The necessity of this decision is intuitively clear, as soon as 
we agree that logical analysis cannot contain any empirical elements. Consider an 
FSD where the expression is an empirical sentence. For Frege such a sentence de-
notes its truth-value. Take the sentence ‘Mars contains water’. If denoting is (as it 
should be) a logical relation then we could derive its actual truth-value. Then why 
send probes to Mars?  

Accepting the view that empirical expressions denote possible-world inten-
sions, the ‘The Morning/Evening Star’ problem might seem to be heading for a so-
lution. The question, however, arises: do we need the notion of sense as a seman-
tic category at all? Prevailing logical theories are denotational and set-theoretic:  

[T]he meanings, it should be stressed once more, are the semantic objects in the model, 
i.e., the individuals, properties, propositions, second-order properties and so on that we 
associate with the expressions. The logical expressions serve to represent these but are not 
to be confused with them (Gamut, 1991, p. 218).  

We shall show that denotational and other set-theoretic approaches are too 
coarse-grained. Theories based on standard logic run together the meanings of 
terms and expressions that are classically equivalent, even if they are evidently not 
strictly synonymous. For an example, consider the two sentences  

(1) ‘Bill walks’,  
(2) ‘Bill walks and whales are mammals’.  

Intuitively, (1) and (2) do not have the same meaning. Standardly, however, the 
meaning of (1) will be a certain set of possible worlds (the worlds in which Bill 
walks) and the meaning of (2) will be the intersection of this set with the set in 
which all whales are mammals. Since we presuppose full linguistic competence in 
language-users, sentences like ‘No bachelor is married’ and ‘Whales are mam-
mals’ come out analytically true, i.e., true only in virtue of their meaning. Pro-
vided that we understand the meanings of the predicates ‘is a whale’ and ‘is a 
mammal’ as used in current English, when learning that whales are mammals we 
do not acquire factual information bearing on the state of the world. If you know 
that the individual before you is a whale, you need not examine the world in order 
to get to know that the individual is a mammal. Instead, an analytically true sen-
tence is true in all possible worlds. Hence if the meaning of (2) is a certain set of 
possible worlds, then it is the same set as the set of worlds in which Bill walks. 
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Therefore, (1) and (2) are predicted to be synonymous, which obviously they are 
not.22  

This inaccuracy might seem not to be that important, though. After all, the the-
ory gives a correct prediction of the relation of entailment here. The two sentences 
entail each other, and this fact correctly follows from Montague-like set-
theoretical theories. So why not embrace co-entailment, although more coarse-
grained than strict synonymy, as a good approximation to meaning and synonymy 
in natural language? Here is why not. Natural language is rich enough to express 
the differences in the meanings of co-entailing sentences. Attitudes are typical ex-
amples. One can easily believe that Bill walks without believing that Bill walks 
and that whales are mammals. Though ‘All whales are mammals’ denotes a con-
stant intension, the sentence is far from being meaningless.23 Only a more fine-
structured notion of meaning than co-entailment will capture the meaning of ‘All 
whales are mammals’. But, of course, if an empirical expression denotes an inten-
sion then what would its sense be? And, furthermore, what would the sense of a 
mathematical expression be?24  

Consider, e.g., the expression 

‘(2 × 2) – 3’ 

It will probably be agreed that this expression denotes the number 1. But why is 
that? What is its sense? This problem is eloquently formulated by Tichý:  

If the term ‘(2 × 2) – 3’ is not diagrammatic of anything, in other words, if the numbers 
and functions mentioned in this term do not themselves combine into any whole, then the 
term is the only thing which holds them together. The numbers and functions hang from it 
like Christmas decorations from a branch. The term, the linguistic expression, thus 
becomes more than a way of referring to an independently specifiable subject matter: it 
becomes constitutive of it. An arithmetical finding must, on this approach, be construed as 
a finding about a linguistic expression. ... But since an expression is always part of a 
particular notational system, our theorist must construe the arithmetician as being 
concerned specifically with a definite notation (1988, p. 7). 

Now if we wish to retain Frege’s idea that between an expression and its deno-
tation there is some abstract entity (Sinn) serving as intermediary then such an en-
tity cannot be a possible-world intension. In the empirical case an intension is 
what the expression denotes; in the non-empirical case, either no intensions are needed 
or they are always going to be constant functions. Possible-world intensions serve the 
purpose of modelling empirical variability, and are out of place in mathematics. Yet 
there are theories that attempt to account for, e.g., inconsistent beliefs and absurd  
                                                           
22 See Section 2.1.2 for another aspect of this problem, and Section 2.2.1 for the definitions of 
synonymy and equivalence. 
23 This is not to say that it would have empirical information to offer; see Section 5.4. 
24 Note that the first place in Frege (1892a) where he introduces the notion of sense is not the 
famous one involving ‘The Morning Star’ and ‘The Evening Star’, but one involving the medi-
ans of a triangle. Here we chose a still simpler example.  
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objects (like round squares) by introducing a parallel logical space of logically 
impossible worlds (cf. Priest, 1992). But just as little as the number five belongs to 
the domain of possible worlds and just as little as mathematical sentences are 
evaluated at possible worlds, so round squares should not be assigned to the do-
main of any impossible world. The very idiom of worlds, whether possible or im-
possible, is out of place, as soon as non-empirical objects like numbers and figures 
are involved. We will show that terms like ‘round square’ and ‘the greatest prime’ 
are not meaningless expressions and that we can handle them without the category 
of impossible worlds.25 So, which kind of entity can play the role of sense and 
possibly be captured by logical analysis?  

The example of a simple arithmetical expression shows that the sense should be 
an extra-linguistic entity, whose existence would explain the connection between 
an expression and the object denoted. As we have already pointed above, we have 
such an entity at hand. It is the key notion of TIL, the one of construction. Our 
neo-Fregean semantic schema is the adjusted version of FSD as visualized by 
Fig. 1.2.  

 
    Expression  
 
                                         expresses 

        
       denotes Construction 

                                                          
                                                        constructs 

 
Denotation      

Fig. 1.2 TIL semantic schema 

The most important relation in this schema is between an expression and what 
is expressed by it: its meaning, i.e., a construction. Once we exactly define con-
struction, we can logically examine it; we can investigate what (if anything) the 
construction constructs, what is entailed by it, etc. Thus constructions are semanti-
cally primary, denotations secondary. Once a construction is explicitly given, the 
entity (if any) it constructs is already implicitly given, but will have to be teased 
out by means of logical analysis. As a limiting case, the logical analysis may re-
veal that the construction fails to construct anything; we will say that it is im-
proper.  

It might be tempting to say that the references of empirical terms and expres-
sions were tertiary. But they are not. The preceding discussion of denotation ver-
sus reference served to make the point that the relation of denotation is intra-
semantic and the relation of reference extra-semantic. Given a denotation, logical 
                                                           
25 They express empty concepts, the former identifying an empty class of geometrical figures, 
the latter identifying no number at all. See Section 2.2. 
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analysis cannot tease out its reference. So there is no room for reference in our 
semantic schema.  

As for terminology, Tichý himself did not use Fregean expressions; he did not 
refer (at least in his mature works, in particular in his 1988) to constructions as 
‘meanings’. So he did not use the term ‘concept’ in our sense.26 Further, Tichý’s 
final semantic schema, in (1988, p. 224), reduces all semantic relations to denota-
tion; what is denoted is, without exception, a construction. True, as mentioned 
above, from the semantic point of view a construction is primary and the product 
of the construction secondary. Thus the above semantic schema of Fig. 1.2 is impure. 
Our pure semantic schema (Fig. 1.3) comes down to this (see also Section 3.2.1): 

 
   Expression E 
 
                                        expresses 

        
        Construction (the sense of E) 

Fig. 1.3 TIL pure semantic schema 

We have one, methodological, reason for not going along with Tichý’s final 
schema. TIL is a procedural semantics and as such opposed to denotational se-
mantics. So Tichý’s final schema represents a hybrid between the procedural and 
the denotational approaches, by having terms directly denote procedures without a 
procedure being a stepping-stone between term and entity. Moreover, according to 
well-entrenched terminology, ‘denotation’ is reserved for a relation between terms 
and set-theoretic entities, yet procedures are none such. Hence our preference for a 
three-tiered impure semantic schema to make the relation between what is ex-
pressed and what is denoted explicit, and a pure semantic schema to go with our 
procedural semantics. So we say that expressions express their meanings and de-
note (or fail to denote) entities identified (constructed) by the respective construc-
tion. The impure semantic schema must help us achieve the goal of this book, 
which is to assign constructions to expressions as their meanings and the products 
of the constructions as their denotations. This is also to say that being impure does 
not detract from a semantic schema’s standing. 

The viability of the thesis that empirical terms and expressions denote inten-
sions presupposes that we possess of a means to obtain an extension from an in-
tension. For surely we do not want to end up claiming that the sentence, ‘The King 
of Bhutan is a benign ruler’ ascribes the property of being a benign ruler to the in-
tension The King of Bhutan. Two standard options are in circulation in the literature; a 
special extensionalization operation/operator or functional application. We use 
functional application, so we have no need for an operation/operator earmarked 

                                                           
26 The general idea that concepts are procedures was, however, advanced by Tichý already in 
1968 and 1969. We will deal with concepts (i.e. closed constructions in normal form) as proce-
dural meanings in Section 2.2.  
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specially for extensionalization. Nor do we need a special operation/operator of 
predication, as functional application fits the bill. Hence, the logical analysis of 
‘The King of Bhutan is a benign ruler’ will contain multiple instances of func-
tional application; one from The King of Bhutan to an individual and another from 
being a benign ruler to a set. An additional instance of functional application takes 
the set to a truth-value, according as the individual is a benign ruler or not. If no 
individual is forthcoming, nor is a truth-value.27 

The anti-actualism permeating Transparent Intensional Logic is what motivates 
explicit intensionalization and temporalization. The syntactic form of explicit in-
tensionalization and temporalization consists in lambda abstraction over variables 
ranging over possible worlds and instants of time:    

 λwλt […w…t…]. 

Any formula matching this schema is to be read as follows: In any possible 
world (λw), at any time (λt), evaluate […w…t…]. 

A Closure such as the above may be completed in this or that manner. Which-
ever way, though, the Closure will be a construction of a denotation (intension), 
which, if defined at the particular world and time of evaluation, will yield a refer-
ence. In other words, our semantics is top-down, from structured senses to empiri-
cal conditions. From this point there is an extra-semantic transition from empirical 
conditions to satisfiers (if any). As is seen, explicit intensionalization and tempo-
ralization operates with a set of worlds, whereas semantic actualism operates with 
one particular world. Still, the assertion that the sun is shining is obviously not to 
the effect that the sun is shining in some possible world or other. Rather the asser-
tion is targeted at the actual world. And that is just the point⎯the link from possi-
ble-world propositions to the actual world is not mediated semantically, but prag-
matically. It is by asserting a proposition (by assertorically uttering a sentence 
denoting it) that a speaker anchors the proposition to the actual world. Communi-
cation about matters empirical proceeds on the understanding that assertions are 
assertions about the actual world and the present time. Propositions (or any other 
types of intension) are not in and by themselves anchored to the actual world or 
the present time. Consider again the example of the King of Bhutan being a be-
nign ruler. In case a truth-value is forthcoming, it is abstracted over to obtain a 
function from worlds and times to truth-values. Such a function is a proposition, 
and the assertion that the King of Bhutan is a benign ruler is to the effect that the 
proposition thus asserted is true in a set of possible worlds that includes the actual 
world at the present time.   

Having introduced explicit intensionalization and temporalization, here is, briefly, 
how Trivialization helps us to a notion of hyperintensional attitudes. If an agent is re-
lated to λwλt […w…t…], then the agent is related to what this Closure constructs, i.e. 
an intension, typically a proposition (in the case of ‘propositional attitudes’) or 
                                                           
27 See Section 2.4.2. 
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else an individual role or a property (in the case of ‘notional attitudes’). We say 
that the Closure occurs used, because it is used to yield an entity different from 
itself, namely the entity it constructs. But the whole Closure may itself be con-
structed, in this manner:  

 0[λwλt […w…t…]]. 

We say that the entire Closure [λwλt […w…t…]] occurs mentioned, because it 
itself is the object of discourse. Recalling the semantic schema of Fig. 1.2, the 
Closure is now in the position of denotation, whereas the Trivialization 0[λwλt 
[…w…t…]] is in the position of a construction that constructs the Closure. What 
the agent is related to is no longer what the Closure constructs, but the Closure it-
self (i.e., a procedure and not its product). Whereas empirical attitudes come in 
two variants, intensional and hyperintensional, mathematical attitudes are invaria-
bly hyperintensional. For instance, the attitude of calculating relates an individual 
to a Composition (rather than the outcome of the Composition). So the relevant 
construction must again be Trivialized: 0[...]. 

In general, since Closures and Compositions are hyperintensionally individu-
ated, substitution of attitude relata will be much more restrictive than is the case 
with attitude logics based on set-theoretic modal logic. 

The rejection of reference shift by no means implies that Tichý was blind to 
various both subtle and entrenched distinctions in logic. Only he accommodates 
them differently. Tichý claims that empirical terms and expressions exhaust their 
role by expressing a sense and denoting the intension that the sense yields. This 
holds for all contexts, such that empirical terms and expressions denote intensions 
and not extensions, whatever sort of semantic context they are embedded in. Once 
an intension has been picked out by a word, the word has fulfilled its task, and the 
so denoted intension can be logically manipulated. The intension may be either 
extensionalized or not. If extensionalized, it yields its value, if any, at the given 
world and time of evaluation. If un-extensionalized, it yields itself. The distinction 
between extensionalized and un-extensionalized intensions concerns two different 
ways of using (as opposed to mentioning) constructions as constituents of larger 
constructions. Constituent constructions occur with supposition de dicto or de re. 
Briefly, if de dicto, the so constructed intension is not extensionalized. If de re, it 
is. If the constructions do not construct intensions, then the de dicto/de re distinc-
tion is the distinction between the either intensional* or extensional* supposition 
that a constituent construction can occur with. Intensional* and extensional* are 
not the same as intensional and extensional, as the latter pair is used in possible-
world semantics. The former pair applies to all constructions; the latter exclusively 
to constructions of intensions. When a constituent construction occurs with exten-
sional* supposition, then the so constructed function is applied to an argument in 
order to obtain the corresponding value, if any. This way a property becomes at-
tributable to a functional value. When occurring with intensional* supposition, 
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then the so constructed function is not applied. This way a property becomes at-
tributable to the function itself.28  

All in all, the particular use that Transparent Intensional Logic makes of the 
distinction between de dicto and de re substitutes reference shift. It is of vital im-
portance to the project of Transparent Intensional Logic that a very sophisticated 
and detailed conception of supposition de dicto/re be in place. Elaborating this 
conception has been the focus of intense research the last some years, and in this 
book we present the most elaborate conception to this day.29  

In a wider context, the typed universe of Transparent Intensional Logic, with its 
ever-ascending hierarchy of constructions, can be seen in part as a counter-
reaction to the frugal ontologies propagated by Quine and a host of others, not 
least under the banner of nominalism. Quine combines his pragmatism-flavoured 
nominalism with an extensionalist conception of semantics, according to which 
only extensional entities are ever denoted. Quine’s final verdict on denotation is 
unfavourable to modalities and attitudes, not to extensionalism; Tichý draws the 
opposite conclusion.  

One of many ways of summing up this clash is as the clash between bottom-up 
and top-down approaches to semantic analysis. The parallel clash over ontology is 
then the clash between an approach that starts out with concrete particulars and 
stays as close as possible to terra firma and an approach that starts out with ab-
stract modes of presentation and only introduces concrete particulars in their ca-
pacity as whatever is presented in a particular manner. To express the difference 
metaphorically, if the former approach to semantics and ontology is terrestrial, the 
latter approach is celestial. So, tongue-in-cheek, whereas Isaac Newton founded a 
modern celestial mechanics, Tichý founded a modern celestial semantics.   

1.2 The top-down vs. bottom-up approach to logical semantics 

1.2.1 The bottom-up approach 

In its broadest sense, logic is the science of correct reasoning and the art of argu-
mentation. 

Today’s logic is formal logic. This is to say that logic investigates the validity 
of arguments irrespective of what the premise(s) and the conclusion of a given ar-
gument mean. It is quite another issue whether the premise(s) and the conclusion 
form a sound argument; i.e., whether the premises are true. The notion of truth 
presupposes the notion of meaning. And in order to reason we have to understand 
particular sentences. Since we understand a sentence by knowing its meaning, we 
                                                           
28 Moreover, intensional* supposition is dominant with respect to the extensional* one. For de-
tails, see Section 2.6.  
29 This marks an advance over Tichý’s stance as expounded in 1986a and 1988 (§41).  
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need to know what the premises of an argument mean. We agree with Frege that 
drawing inferences must be from sound arguments, since the point of inferring is 
to obtain new knowledge (the conclusion) from old knowledge (the premises). 
Thus analysis of language (i.e., discovering the meanings of particular expres-
sions) is a necessary precondition for reasoning. 

Historically, many logical systems developed from the simplest cases to in-
creasingly more complicated ones. Beginning in ancient times with the logic of 
Aristotle and the Stoics, currently characterised as fragments of first-order predi-
cate logic and propositional logic, respectively, many specialised logical systems 
have since emerged. These include, inter alia, modal logic, epistemic logic, doxa-
stic logic, deontic logic, fuzzy logic, paraconsistent logic, many-valued logic, 
provability logic, temporal logic, and intuitionistic logic. How is that possible, 
though? Isn’t there just one logic? Yes and no. In the broadest sense, there is just 
one logic. In a much more narrow sense, there are many logical theories of this or 
that. Beginning with atomic sentences, propositional logic specialises in how to 
compose atomic sentences into compound ones. Predicate logic investigates the 
structure of atomic sentences with quantifiers. If you add modalities you enter the 
sphere of modal logic. If you add other operators like epistemic or doxastic ones, 
still other logics emerge. Thus it is natural to start with the simple cases first. Let 
us consider some examples. 

(1) ‘Some prime numbers are even.’ 
(2) ‘Some odd numbers are even.’ 
(3) ‘Some clever students are lazy.’ 

If analyzed in first-order predicate logic, one formula analyses all three sentences:  

 ∃x (P(x) ∧ Q(x)). 

As it stands, the formula is neither true nor false. It is only a syntactically well-
formed formula, which cannot be evaluated unless and until meanings have been as-

symbolic inference rules. Thus we can infer, e.g., the formulae ‘∃x P(x)’ and ‘∃x Q(x)’. 
In order to decide whether the formula is true or false, we have to interpret it first. 

On some interpretations it is true, on others it is false. Interpreting P, Q over the uni-
verse of numbers as the set of prime numbers and even numbers, respectively, it come 
out true. Interpreting the same symbols as representing odd numbers and even num-
bers, it comes out false. And interpreting the symbols P, Q, e.g., as a set of clever stu-
dents and lazy students, respectively, over some universe of individuals, it is either true 
or else false according as these sets share a non-empty intersection.  

This sort of analysis is worrisome. First, why do all the above sentences receive one 
and the same analysis? Sentence (1) is analytically and provably (hence, necessarily) 
true, whereas sentence (2) is analytically and provably (hence, necessarily) 
false. Sentence (3) is only contingently true, and so requires empirical inquiry to 

signed to P and Q and a functional range to x, it is just a pattern for applying particular 
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establish its actual truth-value. The formula is true on some interpretations and 
false on others. Second, in what way does such a translation of a perfectly well-
understandable natural-language sentence into a symbolic formula make its mean-
ing clear?   

Consider further the sentences  

(4) ‘No bachelor is married.’ 
(5) ‘No bachelor is rich.’ 

The identical formula analyzing both sentences would be 

 ∀x (P(x) ⊃ ¬Q(x)),  

or equivalently,  

 ¬∃x (P(x) ∧ Q(x)). 

While (4) is analytically true, (5) is contingently true or false. Since neither for-
mula is logically valid, one may again wonder how it is possible that two so se-
mantically different sentences lend themselves to one and the same logical analy-
sis (whether the analysis be ∀x (P(x) ⊃ ¬Q(x)) or ¬∃x (P(x) ∧ Q(x))). 

The standard answer is that it is not the point of first-order predicate logic to 
deal with empirical sentences like (3) and (5). This logic was designed for the 
purpose of mathematical reasoning. First-order predicate logic was designed to 
prove theorems, not to spell out what theorems mean, so as long as (1) and (2) 
have the same consequences, there is no need to assign different formulae to them.  

But first-order predicate logic is standardly used to analyse empirical sentences. 
This practice creates a mismatch between the analytic tool and what is to be ana-
lysed. The analyses above are too coarse-grained, as well as being ambiguous. 
These difficulties would be neglectable if we could always infer the correct conse-
quences from the premises. Unfortunately, we cannot. An up-dated puzzle of old 
shows why:  

Necessarily, 8 is greater than 5 
The number of planets equals 8 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
Necessarily, the number of planets is greater than 5. 

We just used Leibniz’s law of substitution of identicals to infer from true prem-
ises a false conclusion. Paradox! Modal logic sorts out the fallacy, though: 
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� G(8, 5) 
n(p) = 8 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
� G(n(p), 5). 

The conclusion is not derivable, just as we desired. ‘G(8, 5)’ occurs within the 
scope of a modal operator, and we must not substitute co-extensional terms into 
contexts governed by a modal operator. But we are left in the dark as to why not. 
A rule is required that suspends the applicability of Leibniz’s Law in precisely cir-
cumscribed cases. Without such a rule available to us, blocking an argument such 
as this remains ad hoc. As with solutions ad hoc in general, while they may suc-
ceed in alerting us to the fact that there is a problem, they fail to show how to 
solve the problem. Little logical insight is to be garnered from a mere ban on sub-
stituting into modal contexts.   

Another problem concerning this solution is what the meaning of the modal 
operator � is. Obviously, it is not a property of the truth-value T, though ‘(8 > 5)’ 
denotes T. One may grant that the ‘language’ of modal logic is a handy shorthand 
and still suspect that it hardly provides a transparent analysis. Furthermore, the 
following fallacies cannot be blocked by modal logic: 

John McCain wanted to become the President of the USA 
Barack Obama is the President of the USA 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
John McCain wanted to become Barack Obama. 

Oedipus sought the murderer of his father 
Oedipus is the murderer of his farther 

–––––––––––––––––––––––––––––––––⎯⎯⎯⎯⎯⎯⎯ 
Oedipus sought Oedipus. 

We have to switch to a system of some intensional logic in order to render the 
fact that ‘to become’ and ‘to seek’ establish intensional contexts that are not to be 
substituted into. If B is an attitudinal operator, the shared analysis is 

B(a, f(b)) 
a = f(b) 

––––⎯⎯⎯⎯⎯⎯⎯ 
B(a, a). 

Again, the undesirable substitution is said to be blocked, because the substitution 
of ‘a’ for ‘f(b)’ in a context preceded by B is banned. But why and how? What is the 
meaning of the operator B? Obviously, B does not stand for a relation between two 
individuals; an individual cannot become another individual, unless it would 
somehow bizarrely alter its identity. Yet ‘f(b)’ does denote an individual.  
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In general, a ban on substitution will cure the symptom, but not the disease. 
Addressing the underlying problem requires formulating a non-circular, independ-
ently motivated rule to regulate substitution in intensional contexts. 

Another fallacy is this famous example calling for deontic logic:  

The letter ought to be delivered 
If the letter is delivered, then it is delivered or burnt 

––––––––––––––––––––––––––––––––––⎯––––––––––– 
The letter ought to be delivered or burnt. 

O a deontic operator, the argument goes into 

O(d(a)) 
d(a) ⊃ (d(a) ∨ b(a)) 

––––––––––––––––––––––– 
O(d(a) ∨ b(a)). 

O blocks the undesirable application of modus ponendo ponens⎯somehow. How-
ever, consider this variant: 

The letter ought to be written and delivered 
If the letter is written and delivered, then it is delivered 
–––––––––––––––––––––––––––––––––––––––––––– 

The letter ought to be delivered. 

O(w(a) ∧ d(a)) 
w(a) ∧ d(a) ⊃ d(a) 

–––––––––––––––––––––––– 
O(d(a)). 

Why it is that this time around O does not block the application of modus po-
nens? What is the meaning of O? What does the operator operate on? Certainly 
not on a truth-value; the property of being ordered has to be ascribed to a proposi-
tion, not to a truth-value. Thus, though the standard version of deontic logic is an 
extensional first-order logic, it should actually be an intensional logic.   

However, none of the standard logics deal with the problem of existence, since 
existence is simply assumed. Consider Russell’s classical example:  

 The King of France does not exist. 

As the King of France does not exist, it is not true that the King of France is bald. 
And since it is not true that the King of France is bald, the King of France is not 
bald. Since the King of France is not bald, it follows that there is somebody who is 
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the King of France and who is not bald. Finally, from this it follows that the King 
of France exists.  

What went wrong? First-order logic can provide no diagnosis of the fallacy in-
volved. The formula corresponding to both the sentence ‘It is not true that the 
King of France is bald’ and the sentence ‘The King of France is not bald’ is 
‘¬B(k(a))’. The only standard answer would be that ‘k(a)’ is not a well-formed 
term, because it is non-denoting. But what is, in fact, needed to block Russell’s ar-
gument from going through is a logic of partial functions. Only this involves a 
departure from a logic that tolerates only total functions.  

This example mixes existence and modality: 

Necessarily, the King of France is a king 
––––––––––––––––––––––––––––––––––––––––– 

The King of France is necessarily a king. 

The premise is (necessarily) true if read de dicto. The conclusion is (necessar-
ily) false or else undefined if read de re. So the argument is invalid. But the nota-
tion of modal logic analyses both the premise and the conclusion as ‘�P(k(a))’, 
which does not render the difference between necessity de dicto and necessity de 
re. So the invalidity of the argument is obfuscated by the notation.  

This is not to say that modal logic cannot distinguish, in general, between ne-
cessity de dicto and de re; of course, it can. For instance, it easily manages to dis-
tinguish between necessitating a consequence and necessitating a consequent, as 
in  

� ∀x (x is the King of France  ⊃ x is a king) 
––––––––––––––––––––––––––––––––––––––––––––– 

∀x (x is the King of France ⊃ � (x is a king)).  

The argument comes out invalid, because it trades a premise sporting necessity 
de dicto for a conclusion sporting necessity de re. So that is good. What is not 
good is that this argument is an analysis of another pair of sentences than {‘Neces-
sarily, the King of France is a king’, ‘The King of France is necessarily a king’}, 
namely {‘Necessarily, for all x, if x is the King of France then x is a king’, ‘For all 
x, if x is the King of France then, necessarily, x is a king’}. These two pairs are 
nowhere near to being equivalent, not least because the second pair incorporates 
implication and universal quantification, and the first one does not. The second ar-
gument simply does not qualify as a logical analysis of the first pair of sentences 
and is insofar irrelevant.  

Attitudes are another notorious troublemaker. They force us to switch to some 
epistemic, doxastic, etc., logic. Here is a standard example. 
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Charles believes that if it is raining then the street is wet 
(If it is raining then the street is wet) iff  

(if the street is not wet then it is not raining) 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

Charles believes that if the street is not wet then it is not raining. 

A case can be made for the validity of this argument, as well as for its invalid-
ity. If Charles’ attitude concerns an empirical state-of-affairs then his attitude is 
not sensitive to whether its complement (what is believed) is a proposition or its 
contraposition. If, on the other hand, his attitude concerns a particular way of con-
ceptualising or presenting an empirical state-of-affairs, then there are strong rea-
sons for blocking the argument. One thing is to believe one conceptualisation or 
presentation of a state-of-affairs, quite another thing is to believe another such 
conceptualisation. Ex hypothesi, Charles agrees to the first conceptualisation, but 
he may dissent from, or have no opinion about, the one occurring as complement 
in the conclusion.  

However, consider another example: 

Charles knows that Thelma is happy 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
Charles knows that (Thelma is happy and whales are mammals). 

It may be the case that the first sentence is true whereas the second is false. Yet 
the standard possible-world semantics of epistemic logic yields the result that the 
second sentence must be true as well, ‘Thelma is happy’ and ‘Thelma is happy 
and whales are mammals’ being analytically equivalent. This is due to the fact that 
the proposition that whales are mammals is the necessary proposition TRUE, which 
takes the truth-value T for all possible worlds and times. Provided (as we are sup-

predicates are used in current English, if an individual is known to be a whale, we 
need not (empirically) examine the state of the world in order to get to know that 
the individual is a mammal.   

In the standard notation of epistemic logic, the premise and the conclusion 
above become 

Ka H(b) 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

Ka [H(b) ∧ ∀x (W(x) ⊃ M(x))]. 

But in the epistemic systems based on Kripkean possible-world semantics, this 
variant of epistemic closure holds: 

 If (M, w) |= Ka ϕ and (� |= �), then (M, w) |= Ka �. 

posing) we understand the meaning of ‘is a whale’ and ‘is a mammal’ as these 
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If a knows an empirical proposition, then a also knows everything logically 
implied by it. And a immediately knows all analytical truths as well, because they 
follow from the empty set of assumptions; or semantically put, they are true in 
every possible world.  

Hence, when knowing that Thelma is happy, Charles is bound to know that 
Thelma is happy and that whales are mammals. And he is bound to know all ma-
thematical truths as well, because they are analytically true, hence either true 
throughout all logically possible worlds or true independently of worlds altogeth-
er. 

Here is an example demonstrating the difference between beliefs de dicto and 
de re:  

‘Charles believes that the King of France is a king.’ 

‘Charles believes of the King of France that he is a king.’ 

Whereas the first sentence may be true, the second sentence cannot be true, as 
long as there is no King of France. The standard advice is to turn to doxastic logic: 

Bb P[k(a)]  (de dicto) 
λx Bb P[x] k(a)  (de re). 

Again, worrisome questions arise. β-reduction converts the two analyses into one 
and the same formula. Why aren’t we allowed to execute the basic computational 
rule of the λ-calculi in this case? The standard answer would be, ‘Because the term 
‘k(a)’ is non-denoting’. But how can we know that the term is non-denoting and, 
thus, not well-formed? On another interpretation the same term will be a perfectly 
well-formed term. It does not seem right that the vicissitudes of the empirical 
world should make a difference as to whether a term is well-formed.  

Or for a variant analysis:30   

Bb P[k(a)]                           (de dicto) 
(∃x) (x = k(a) ∧ Bb P[k(a)]   (de re).  

Where does the existential quantifier come from in the de re case? There is no 
trace of it in the original sentence. How can the logical forms of two similar sen-
tences differ so radically? Hintikka and Sandu propose in 1996 a remedy by 
means of Independence Friendly first-order logic:  

Independence Friendly (IF) first-order logic deals with a frequent and important feature of 
natural language semantics. Without the notion of independence, we cannot fully 
understand the logic of such concepts as belief, knowledge, questions and answers, or the 
de dicto vs. de re contrast  (1996, p. 173).  

                                                           
30 See Hintikka and Sandu (1989).  
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They solve the de dicto case as above, and propose the de re solution with the 
independence indicator ‘/’:  

Bb P[k(a) / Bb]. 

This is certainly a more plausible analysis, closer as it is to the syntactic form 
of the original sentence. Furthermore, the independence indicator indicates the es-
sence of the matter; there are two independent questions: ‘Who is the King of 
France (if k(a) is interpreted as the King of France)?’ and ‘What does Charles 
think of that person?’. Of course, Charles needs to have a relation of ‘epistemic in-
timacy’ (cf. Chisholm, 1976) to a certain individual, but he need not make the 
connection between this person and the office of King of France (though the as-
criber must).  Still, the semantics of ‘/Bb’ is not pellucid, which tells against it as a 
tool suitable for logical analysis. We will show that informational independence 
can be precisely captured by means of TIL’s explicit intensionalization and tem-
poralization without invoking any new non-standard operators.31 

We consider it a non-negotiable datum to be respected by any viable attitude 
logic that attitudes de dicto and de re do not turn out to be equivalent. But it won’t 
suffice for a given theory of attitude logic to simply point out the non-equivalence 
and ban conversion, again because a ban must be backed up by a logical insight 
into why conversion will fail to preserve equivalence. The following example 
serves to motivate the non-equivalence between attitudes de dicto and de re:  

‘Charles believes that the President of Zimbabwe is an absolute despot.’ 
‘Charles believes of the President of Zimbabwe that he is an absolute despot.’ 

These two sentences do not denote the same proposition, for their truth-
conditions differ. Charles might have read in a reliable newspaper, and so have 
come to believe, that the President of Zimbabwe is an absolute despot, thus mak-
ing the first sentence true. However, Charles may have no idea as to who the 
President of Zimbabwe is, nor whether this particular individual is a despot. In 
such a situation the second sentence is not true. Or, another scenario is imagin-
able: Charles is acquainted with someone who happens to be the President of 
Zimbabwe, and Charles believes that his acquaintance is a despot, without having 
the slightest idea that this person is the President of Zimbabwe. In such a situation the 
second sentence is true and the first false.  

Regrettably, the standard notation of doxastic logic deployed above does not 
reveal the difference in meaning between these two sentences. If ‘k(a)’ is a denot-
ing term, then the two formulae come out equivalent. The only way out of this 
predicament seems to be to heed the advice not to use the β-rule here, because the 
variable x occurs within the scope of the doxastic operator ‘B’. The fact that x oc-
curs within the scope of B is unquestionably the source of the trouble. But why 

                                                           
31 See Section 5.1.2. 



32      1 A programme of general semantics  

does x’s occurrence within the scope of B invalidate β-transformation? This is the 
question that the logical semanticist must answer.  

Qualms about substitution within attitude contexts motivate the need to ascend 
from intensional logic to hyperintensional logic. Here is an example in which it is 
indisputable that hyperintensional attitude complements are called for.   

Charles calculates 2+5 
2+5 = 7 

––––––––––––––––––––––––––––– 
Charles calculates 7. 

It is no option to relate Charles to possible-world intensions. Their granularity 
is far too crude for them to figure as complements in mathematical attitudes. Thus, 
Charles would be related to a constant function from possible worlds and instants 
of time to a number. This grossly misrepresents what the activity of calculating is 
all about, which is to apply arithmetic operations to numbers. Finer granularity 
that would block the undesirable derivation would relate Charles to the expression 
‘2+5’. Yet Charles cannot be related to a piece of mathematical notation. The ar-
gument does not say what syntactic transformation Charles performs in order to 
calculate the sum of 2 and 5. In the case at hand Charles calculates 2+5 by apply-
ing the addition function to the pair of numbers (2, 5). Besides, the conclusion is 
either false or nonsensical, depending on what sense can imaginably be made of 
calculating an individual number. Yet also this argument has the airs of a valid ar-
gument. 

All the arguments above are puzzles. If there is a definition of puzzle, it is that a 
puzzle is an argument that takes premises individually considered true to conclu-
sions that are indisputably false or else nonsensical. Hence, a puzzle threatens to 
trade (seeming) truths for either falsehoods or nonsense. In general, puzzles flow 
from two different sources. Either the logical form of one or more premises is ill-
understood, or an otherwise valid rule of inference is applied outside its domain. 
(Of course, a puzzle may well flow from both sources.) The solution to a puzzle 
consists, thus, in blaming either the analysis of one or more of the premises or the 
rule of inference (or both). If one blames the rule of inference, one thereby claims 
to have discovered that, in the cases at hand, Leibniz’s Law is valid only in some 
contexts. If one blames the analysis of the premises, one thereby claims to have 
discovered that Leibniz’s Law does not apply, because the argument in question 
fails to have the appropriate logical form for it to apply. Our strategy throughout is 
to find fault, not with Leibniz’s Law, but with how one or more premises of a 
given argument are logically analysed. The logical forms of the premises of the 
arguments above (as well as those of many others considered in this book) will 
turn out to be somewhat more complicated than predicted by first-order logic. This 
is in itself hardly a revolutionary claim; but what is innovative about our approach 
is that it offers an exact calibration of the degree of complexity of particular prem-
ises and conclusions.    
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If we start with first-order predicate logic (FOL), then what we have is a system 
that is broadly known, well-researched and profoundly elaborated. There are 
sound and complete calculi for this logic, such that all the logically valid formulas 
of FOL are provable. Though the system is not decidable, it is partially decidable: 
if a formula is logically true then there are algorithms that would answer Yes in a 
finite number of steps when inputting such a formula. The language of FOL has 
become the language of mathematics. Attractive mathematical theories have been 
couched in this language, and their properties are well-known.  

But, there is only so much one can use FOL to. The shortcomings of FOL can 
be briefly summarised as follows. First, it is an extensional system. Though this is 
in itself no shortcoming, this fact does not make it possible to distinguish between 
analytical and empirical expressions. The difference is that the reference of the lat-
ter is dependent on modal and/or temporal parameters. Thus there is a need for an 
intensional system in the vein of possible-world semantics. 

Second, FOL is a first-order system. This fact does not make it possible to sys-
tematically distinguish between ascribing a property to a function as a whole (like 
in ‘Sinus is a periodic function’) and ascribing a property to a particular functional 
value (as in ‘sin(π) = 1’). Another example: ‘Charles is incorruptible’ versus ‘Be-
ing incorruptible is an honourable property’. We need a higher-order system.  

Third, FOL is a system working with total functions only. However, in order to 
work with empty concepts and functions not returning values at some arguments, 
as well as the problems of empirical (non)existence, and value gaps in mathemat-
ics, what is needed is a logic of partial functions.  

Fourth, FOL is a system whose universe is always one-sorted, while allowing 
one sort to be replaced by another. However, one needs to be able to distinguish 
distinct types of entities that the system talks about. There is certainly a categorial 
difference between an individual role such as The King of Bhutan and any of the 
extensions of this intension, which are individuals. Similarly, there is certainly a 
categorial difference between a numerical function and any of its arguments or 
values, which are numbers. Thus, one is better off switching to many-sorted lo-
gics. And if, moreover, one needs to distinguish between modal and temporal pa-
rameters, as in ‘The President of the USA might not have been a president’ and 
‘The President of the USA is often a Republican’, one needs to switch to modal 
logics, temporal logics, etc.  

Thus we need increasingly expressive logical systems⎯only to realize sooner 
or later that there is always something missing. Today, as a result, we have ended 
up with a sprawling tree whose branches are particular logics. Certainly, no single 
logic can render all the features of natural language. Furthermore, these individual 
logics are well elaborated from the formal point of view. Starting with an alpha-
bet, grammatical rules determine a set of well-formed formulae. Having thus de-
fined the syntax of a formal language, we choose a subset of the set of well-
formed formulae as axioms, and specify the rules of inference by choosing a finite 
set of sequences of formulae. Finally, the so defined theory is investigated for its 
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interesting mathematical/logical properties. We ask whether a theory is consistent 
and, thus, has  a  model,  whether  it  is  complete,  whether  the  underlying  calculus  is 
complete, etc. As a result, instead of natural language we find ourselves studying 
the formal language itself.  

This is unquestionably an interesting and legitimate task of logic and mathe-
matics. Indeed, some of the greatest achievements of twentieth-century logic and 
mathematics are meta-mathematical, including meta-logical, insights into the prop-
erties of particular sets of well-formed formulae (wff’s). Yet you may ask: How 
does such a translation of a natural-language sentence into a shorthand formula 
contribute to the analysis of the sentence? In what way does it cultivate our rea-
soning? The answer would be, ‘By following the formal axioms and rules of a 
given theory you obtain the logical consequences of its axioms’. But then one 
has to correctly interpret the theory in order to use it to solve a particular problem. 
Moreover, which particular theory should an agent apply in this or that case, and 
how should the resulting formulae be interpreted?  

Still, if this panoply of logics is indispensable for something beginning to look 
like a full theory of natural language, and if the individual logics are technically 
precise, do we not have, as working logicians, all we need to go about our busi-
ness of logically analysing fragments of natural language? Yes and no. We do 
have some logic or other available for almost all particular kinds of context in-
volving particular problematic expressions. But what we do not have is an over-
arching, unitary logic.  

Imagine one is building up a multi-agent system of autonomous, intelligent 
agents who are to communicate by exchanging messages, and who make decisions 
based on the content of these messages. Each message may concern a particular 
problem; thus the agents would have to keep switching between logical systems. 
They would have to combine modal logics, epistemic logics, temporal logics, 
provability logics, and so on and so forth. But inter-translatability forms a stum-
bling-block, since the same connectives may not preserve meaning when switch-
ing between logics. Agents may end up speaking at cross purposes.  

Thus, in our opinion, in a multi-agent world of the Semantic Web, information 
and communication technologies (ICT), artificial intelligence (AI), and other such 
facilities, there is a pressing need for a universal framework informed by one phi-
losophical logic making all the semantically salient features of natural language 
explicit. Consequently, such a universal logical framework would and should 
make a fine-grained logical analysis of relevant premises possible to create a plat-
form for an ideal inference machine that neither over-infers (yielding  conse-
quences not entailed by the premises) nor under-infers (failing to yield conse-
quences entailed by the premises).  

The ambition of TIL is to provide such a universal framework. The purpose of 
this book is to display the framework in all its might. The TIL ‘language of con-
structions’ is not a formal language of non-interpreted terms. It is formal, if by 
‘formal’ we mean rigorously defined and employing a special notation. But the 
individual terms and the entire language are themselves not the subject of our 



1.2 The top-down vs bottom-up approach to logical semantics      35 

study. Rather the terms of the ‘language of constructions’ unambiguously encode 
logical constructions, and these extra-linguistic procedures are the ultimate subject 
matter of our study.   

1.2.2 The top-down approach 

We mentioned in Section 1.1 that TIL generalises from the hardest case and ob-
tains the less-hard cases by lifting various restrictions that apply only higher up. 
This way of proceeding is opposite to how semantic theories tend to be built up. 
As we illustrated in Section 1.2.1, the standard approach consists in beginning 
with atomic sentences, proceeding to molecular sentences formed by means of 
truth-functional connectives or by quantifiers, and from there to sentences contain-
ing modal operators and, finally, attitudinal operators. 

Thus, to use a simple case for illustration, once a vocabulary and rules of for-
mation have been laid down, a semantics gets off the ground by analysing an 
atomic sentence as follows: 

(1) ‘Charles is happy’ 
  Fa 

And further upwards: 

(2) ‘Charles is happy, and Thelma is grumpy’ 
  Fa ∧ Gb 

(3) ‘Somebody is happy’ 
  ∃x (Fx) 

(4) ‘Possibly, Charles is happy’ 
   � (Fa) 

(5) ‘Thelma believes that Charles is happy’ 
  Bb (Fa). 

In non-hyperintensional (including non-procedural) theories of formal 
semantics, attitudinal operators are swallowed by the modal ones, typically with 
‘�’ standing for knowledge and ‘�’ for belief (as in the so-called modal logic of 
knowledge and belief). But when they are not, we have three levels of granularity: 
the coarse level of truth-values, the fine-grained level of truth-conditions 
(propositions, truth-values-in-intension), and the hyper-fine-grained level of 
hyperpropositions (propositional constructions).  

TIL operates with these three levels of granularity (in fact, adding a fourth level 
of granularity, slightly coarser than that pertaining to constructions, in terms of 
concepts; see Section 2.2). We start out by analysing sentences from the upper-
most end, furnishing them with a hyperintensional semantics, and working our 
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way downwards, furnishing even the lowest-end sentences (as well as non-
sentential expressions) with a hyperintensional semantics. That is, the sense of an 
atomic sentence such as ‘Charles is happy’ is a hyperproposition, i.e., a proposi-
tional construction, due to the trickle-down effect of our top-down approach. 
Likewise, the sense of ‘1+2=4’ is a construction of a truth-value. 

Our motive for working top-down is pivoted on anti-contextualism: any given 
term or expression expresses the same construction as its sense in whatever sort of 
context the term or expression is embedded within. As for denotation, in the case 
of non-denoting expressions (mathematical expressions expressing improper con-
structions) it holds that such an expression does not denote anything in any con-
text. Further, some terms, like indexicals, express only what we call ‘pragmati-
cally incomplete meanings’32 and, therefore, only denote relative to a valuation, 
being insofar sensitive to which context they are embedded in. All remaining 
terms do denote, though, and have context-insensitive denotations.  

Furthermore, the sentence ‘Charles is happy’ is an intensional context, in the 
sense that its logical analysis must involve reference to empirical parameters, in 
this case both possible worlds and instants of time. One reason is because Charles 
is only contingently happy; i.e., he is only happy at some worlds and only some-
times. The other reason is because the analysans must be capable of figuring as an 
argument for functions whose domain is made up of propositions rather than truth-
values. Construing ‘Fa’ as a name of a truth-value works only in the case of ex-
tensional contexts like (1) and (2). It won’t work in modal contexts like (4), since 
truth-values are not the sort of thing that can be possible. Nor will it work in a 
hyperintensional context of knowing or believing, since truth-values are not the 
sort of thing that can be known or believed. The sentence ‘Charles is happy’ is 
a hyperintensional context, as soon as Thelma’s art of believing relates her to a 
hyperproposition.  

A logical syntax cannot tolerate ambiguous terms. The historical culprit for the 
notation found in the analysantes of (3), (4) and (5) must, in our view, be the con-
ception of modalities due to the original syntax of ‘�’, ‘�’, which treats ‘�’, 
‘�’ as being syntactically on a par with ‘¬’; both ‘¬p’ and ‘�p’ are well-formed 
formulae. This makes for handy notation, but it remains implicit that the argument 
of ¬ is a truth-value of p and the argument of �, p itself, i.e., the entire function. 
If ‘K’ (denoting an epistemic operator) is introduced as a notational variant of ‘�’ 
we get formulae like ‘Kp’, and we are allowed to generate strings like, ‘¬p ∧ 
K¬p’, where the extension/intension ambiguity of the notation is manifest. More-
over, if K is a hyperintensional operator, and � an intensional operator, then we 
are in for three-way ambiguity as in, ‘(�p → p) ∧ Kp’. 

Tichý also bemoans the inherent ambiguity of the syntax of modal logic:  

                                                           
32 See Section 3.4. Though incomplete is, strictly speaking, a privative modifier, such that an in-
complete meaning would not be a meaning, by ‘pragmatically incomplete meaning’ we intend, 
stipulatively, a meaning that is an open construction with free variables.   
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[T]he modal logician keeps us in the dark…about [the logical type of �]. His axioms are 
framed in terms of p’s and q’s – as in ‘�(p⊃q)⊃(�p⊃�q)’ – but it is entirely unclear 
what these variable-letters are meant to range over. The fact that they combine with truth-
functional connectives like ‘⊃’ might suggest that they range over the truth-values. This, 
however, is hardly compatible with their combinableness with ‘�’ (Tichý, 1988, p. 279). 

And he notes elsewhere that 
[S]tandard first-order logic is only capable of dealing with propositional constructions de 
re: negation, conjunction, alternation and the like. Propositional construction[s] de dicto, 
especially modal, probabilistic, epistemic, deontic, subjunctive, and causal constructions, 
are far beyond the reach of first[-]order logic. All attempts to force such constructions on 
to the Procrustean bed of first-order idiom are, in my view, doomed to failure  
(Tichý, 1978a, p. 10; 2004, p. 258). 

It is worth dwelling on the topic of typing for a minute. Our perhaps pedantic-
seeming harping on notational tidiness is grounded in a contentual issue of wide-
ranging importance; namely, what we just said, that a logical syntax cannot toler-
ate ambiguous terms.  

On our diagnosis, a bottom-up approach to modalities and attitudes is bound, it 
seems, to acquiesce in ambiguous notation and context-sensitive reference shift. 
This amounts, in effect, to operating with several semantic theories, one for each 
sort of semantic context. A top-down approach holds out the prospect of one se-
mantic theory for all sorts of semantic context. The methodology consists in start-
ing out on the top floor with a hyperintension and then either staying there or, if 
the semantic analysis requires it, taking the lift down and getting off either at the 
floor of intensions or at the floor of extensions.33 Since we start out at the top, we 
start out with constructions, which we define next. 

1.3 Foundations of TIL 

1.3.1 Functional approach 

The fundamental notions in terms of which a system is built up cannot be defined 
in the system itself, but must be understood prior to the theory and are introduced 
into the theory as primitives. So, for example, predicate logics are built up in 
terms of sets and relations. By contrast, the fundamental notion for TIL is the one 
                                                           
33 We are making a simplification here to get the top-down picture clear. As a matter of fact, 
there are several floors of hyperintensions, intensions and extensions to get off at. In particular, 
while you always start out at the top, at a level of hyperintensions, there are going to be floors of 
hyperintensions above the floor you are on. Furthermore, the floor you get off at may itself be 
one of hyperintensions (though a floor one level down from where you started out). On the other 
hand, the vast bulk of empirical cases that we analyse in this book conform to the picture of start-
ing out with a hyperintension, descending to the intension it presents and then descending from 
intension to extension. ‘Charles is happy’ would be a case in point.  
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of function.34 This seemingly banal fact is important. Functions�unlike relations 
or sets�are procedure-friendly in the following sense:   

(i) for any n-ary function qua mapping M1 × … × Mn → N there is an abstract 
procedure (often called abstraction) that produces at every n-tuple of ele-
ments of M1,...,Mn, respectively, at most one member of N;   

(ii) the reverse procedure applies the mapping M1 × … × Mn → N to a particular 
n-tuple of elements of M1,...,Mn, respectively, and produces either nothing (if 
the mapping is undefined at that tuple) or the value of the mapping at that tu-
ple.  

Moreover, contemporary mathematics and logic define functions as mappings; 
i.e., as a special kind of set. The principle of extensionality is what guarantees this 
set-theoretical character of functions. Where f, g are functions the Principle says:  

∀x1...xn (f(x1,...,xn) = g(x1,...,xn)) ⊃ f = g. 

On the other hand, as it is documented, e.g., in Tichý,  
Originally functions were understood as particular ways or methods of proceeding from 
numbers to numbers, i.e., as incomplete numerical constructions (1988, p. 3). 

So  
[I]n order to properly grasp the modern notion of function one must keep it strictly apart 
from the notion of schematic calculation. ... one must always remember that the method is 
extraneous to the function itself (ibid). 

Indeed, any function qua mapping can be constructed in infinitely many ways. 
Not distinguishing functions from methods is a source of many wrong turns in 
semantics, as will be shown when applying TIL to puzzle-solving.  

Another reason for preferring functions to relations is partiality. A partial func-
tion f may return no value at some n-tuples. The corresponding relation Rf is the 
set of (n+1)-tuples, i.e., the subset of the respective Cartesian product. But among 
the (n+1)-tuples that are elements of the complement relation, one is not able to 
distinguish those which do not belong to the relation Rf (due to the fact that the re-
spective entity is not a value of f at the argument) from those at which the function 
is undefined.  

A simple example. Let f be a function that maps M = {a, b, c, d} onto N = {α, 
β, γ} as follows: a → β, b → γ, d → α; at argument c function f is undefined. The 
respective relation Rf contains three of the twelve possible couples: {�a, β�, �b, γ�, 
�d, α�}. Now, although we know that, e.g., ¬Rf(a, γ) and ¬Rf(c, α), the difference 

                                                           
34 Also Montague (1974a), together with other semanticists, has opted for the functional ap-
proach and adopted a typed λ-calculus for his logical analysis of natural language.  
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between f being defined at a and undefined at c is lost. We cannot deduce whether 
the value of f exists at c or not.35   

Finally, the functional approach is connected with the idea that any logical 
analysis of natural language should obey compositionality, which comes down to 
explaining the semantic behaviour of compounds in terms of the semantic behav-
iour of their components.36 Obviously, our concern with partiality is part of a 
wider concern with compositionality. A term that has no reference (as opposed to 
denotation) affects the semantic behaviour of the compound it is part of. The chal-
lenge for a theory like ours which wishes to heed both the partiality constraint and 
the compositionality constraint becomes how to avoid that the semantic analysis 
of a compound comes to a standstill if one or more constituents contribute nothing 
at the level of denotation or reference. The way we tackle the challenge is, not 
surprisingly, by having non-referring terms contribute something at another level. 
All terms contribute a sense to the compounds they are constituents of; but some 
terms contribute only a sense.   

The reasons just outlined explain why we are using a Frege-Church-style func-
tion/argument logic. The philosophical as well as logical advantage of a logic 
based on functions is that it can model interlocking logical structures in terms of 
functional dependencies. Functional dependencies are modelled by how the value 
of one function becomes the argument of another function, or how a function ap-
plicable to some particular argument is handed down by another function. A logic 
of functions is erected on the idea that one operation typically presupposes that 
another operation has already been executed so as to provide something to work 
with. As mentioned ad (i) and (ii) above, the functional operations are two in 
number⎯application and abstraction⎯of which the former ‘descends’ from a 
function to a value, while the latter ‘ascends’ to a function from other entities 
(perhaps including other functions). It is a key characteristic of the logic we are 
advocating that the outcome of the execution of an operation may itself be an op-
eration. Otherwise the machinery would grind to a halt far too soon.  

Our functional approach affects also how we think of language. We adhere to 
the Fregean tenet that every sentence contains at least one functor. For instance, 
we construe predicates as functors.37 Predicates denote functions whose argu-
ment(s) must be picked out by some other expression(s) of the sentence. For in-
stance, in ‘Charles is happy’, ‘is happy’ is the functor and ‘Charles’ the argument 
expression.  

So why not settle for functions as meanings? For several reasons, each of 
which is conclusive. First, functions are too crudely individuated to qualify as hyper-
intensions. Functions are extensionally individuated, so possible-world intensions are 

                                                           
35 We will deal with partiality in detail in Sections 2.6 and 2.7, where the need for partial func-
tions is demonstrated together with a specification of inference rules for working with them. 
36  See Section 2.1.2 and also Tichý (1988, p. 287).  
37 ⎯which is to say that we adhere to ‘the Fregean doctrine that predicates name functions’, as 
Bealer says (1982, p. 89). 
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individuated up to co-intensionality. Second, the operations of abstraction and ap-
plication are exterior to functions and cannot be captured in terms of functions. 
Functions are not themselves procedures; functions can, and do, instead figure as 
input and output of procedures. Third, functions are set-theoretic entities and so 
cannot have parts. So it is not obvious how the account of compositionality, in-
cluding partiality, is supposed to proceed. Fourth, functions cannot figure as 
modes of presentation. For sure, one can attempt to strain the notion of function 
and make it play the role of mode of presentation. But who wants a poor man’s 
modes of presentation? Functions are sets, so it takes some charity to accept that 
the Cartesian product A×B would qualify as a presentation of, say, the mapping of 
a particular argument a∈A onto a particular value b∈B. Any such correspondence 
between a and b records merely the fact that a is mapped onto b, but not how. 
Countless many procedures for mapping a onto b can be reconstructed; but none 
in particular. Yet a key reason for introducing modes of presentation is that there 
may be two or more clearly circumscribed modes of presentation of the same 
thing. 

To anticipate a possible misunderstanding, note that in the semantics of 
mathematics, the terms ‘function-in-intension’ and ‘function-in-extension’ are 
sometimes used. For instance, Church (1941) broaches the question under which 
circumstances two functions are to be considered the same. He says:  

The most immediate and, from some points of view, the best way to settle this question  is 
to specify that two functions f and g are the same if they have the same range of 
arguments and, for every element a that belongs to this range, (fa) is the same as (ga). 
When this is done we shall say that we are dealing with functions in extension. 

It is possible, however, to allow two functions to be different on the ground that the 
rule of correspondence is different in meaning in the two cases although always yielding 
the same result when applied to any particular argument. When this is done we shall say 
that we are dealing with functions in intension. The notion of difference in meaning 
between two rules of correspondence is a vague one, but, in terms of some system of 
notation, it can be made exact in various ways. We shall not attempt to decide what the 
true notion of difference in meaning is but shall speak of functions in intension in any 
case where a more severe criterion of identity is adopted than for functions in extension. 
There is thus not one notion of function in intension, but many notions; involving various 
degrees of intensionality (1941, pp. 2–3; emphasis ours). 

Function-in-extension corresponds to the modern notion of function as a map-
ping, and function-in-intension could arguably correspond to our notion of con-
struction of a function. However, since the notion of function-in-intension is a 
vague one, and obviously dependent on the formal system in which the meaning 
of the correspondence rule is captured, we will not use the term ‘function-in-
intension’. There is no reason for us to trade the crisp notion of construction (of a 
function) for the vague one of function-in-intension. But vague though it may be, 
its vagueness is in part owed to the ‘various degrees of intensionality’ that Church 
wants his overarching notion of function-in-intension to encompass.  

Two degrees are minimally required to get the programme of a general seman-
tics for natural-language discourse off the ground. The first is the degree made 
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available by possible-world semantics, which individuates its intensions up to 
logical equivalence (cf. Church’s functions-in-extension). The second is the hy-
perintensional degree. Only there is no such thing as the hyperintensional degree. 
Both Church and Cresswell define hyperintensionality negatively as any indi-
viduation finer than logical equivalence. The question, then, is how austere or how 
lax a degree of individuation we as semanticists need to impose when analysing a 
piece of language. We neither want the possible need for very fine-grained hyper-
intensionality to outstrip our logical resources to meet the need, nor do we want to 
arbitrarily impose just one degree of hyperintensionality.  

So what we do is take the TIL constructions and have them serve as the most 
fine-grained hyperintensions available to us. If one imagines a hierarchy of hyper-
intensions, with the most fine-grained ones at the top, then one moves down the 
hierarchy by forming equivalence classes of more fine-grained hyperintensions 
and obliterating the differences among their individual members. This is how we 
arrive at our rigorous notion of concept. Concepts have a particular degree of hy-
perintensionality, and this degree seems, by and large, to be what we are looking 
for. What we are looking for are higher-order objects that satisfy the following cri-
terion of hyperintensional individuation: any two hyperintensions are identical ex-
actly when they are procedurally indistinguishable. The idea of procedure that 
guides us is, in general, that a procedure prescribes what to do to what entity or 
entities in what order to obtain what sort of entity. It seems natural to us to hold, 
then, that two expressions are synonymous just in case their respective meanings 
prescribe one and the same procedure. We find it hard to imagine what might be 
the semantic or logical import of a principle of hyperintensional individuation 
finer than procedural individuation.38 Procedural individuation is pretty fine-
grained, anyway. Yet the research project of laying down just how hyper hyperin-
tensionality is must respect the fact, vide Church, that hyperintensionality is an 
open-ended cluster concept. What TIL contributes to this project is an intuitive 
principle of individuation (a procedural one) and higher-order entities that satisfy 
the principle (constructions, especially concepts), together with the possibility of a 
hierarchy of hyperintensions with constructions at the top.              

The verdict is that functions are no good, if we want to assign hyperintension-
ally individuated, structured procedures to terms and expressions as their mean-
ings. Constructions, in contrast, do the trick. 

                                                           
38 In particular, we are not going to draw distinctions that reflect notational differences that are 
not backed up by abstract procedural differences. So Mates’ puzzle is not a puzzle for us; see 
Section 5.1.  
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1.3.2 Constructions and types    

Constructions are procedures, or instructions, specifying how to arrive at less-
structured entities. Qua procedures, constructions are  structured, unlike set-
theoretical objects, which are devoid of structure. Qua abstract, extra-linguistic en-
tities, constructions are reachable only via a verbal definition. The ‘language of 
constructions’ is a modified hyperintensional version of the typed λ-calculus, 
where Montague-like λ-terms denote, not the functions constructed, but the con-
structions themselves. The modification is extensive. Church’s λ-terms form part 
of his simple type theory, whereas our λ-terms belong to a ramified type theory. 
Constructions qua procedures operate on input objects (of any type, even con-
structions of any order) and yield as output (or, in well-defined cases, fail to yield) 
objects of any type. This way constructions construct partial functions.    

When claiming that constructions are algorithmically structured, we mean the 
following. A construction C consists of one or more particular steps, or constitu-
ents, that are to be individually executed in order to execute C. The entities a con-
struction operates on are not constituents of the construction. Similarly as the constitu-
ents of a computer program are its subprograms, so the constituents of a construction 
are again constructions. Thus on the lowest level of non-constructions, the objects 
that constructions work on have to be supplied by other (albeit trivial) construc-
tions. The constructions hosting these trivial constructions may occur not only as 
constituents to be executed, but also as entities that still other constructions oper-
ate on. Therefore, one should not conflate using constructions as constituents of 
Composed constructions (where a Composed construction is what results from ap-
plying the operation of composition/application to a construction) and mentioning 
constructions that enter as input entities into Composed constructions. So we must 
distinguish strictly between using and mentioning constructions. We will deal with 
the use/mention distinction in Section 2.6; for now just briefly this. The constitu-
ents of a construction C, which are to be individually executed in order to execute 
C, are used in C. On the other hand, the entities (constructions or non-
constructional objects) a construction C operates on are mentioned in C. Mention-
ing is, in principle, achieved by using atomic constructions. A construction C is 
atomic if it does not contain any other construction as a used subconstruction (a 
‘constituent of C’) than C. There are two atomic constructions that supply entities 
(of any type) on which complex constructions operate: Variables and Trivializa-
tions.  

Variables are constructions that construct an object dependently on valuation: 
they v-construct, where v is the parameter of valuation. With the important differ-
ence that we construe variables as extra-linguistic objects and not as expressions, 
our theory of variables is otherwise identical to Tarski’s. Thus, in TIL variables 
construct objects of the respective types dependently on valuation in the following 
way. For each type 	 there are countably infinitely many variables x1, x2, …. The 
members of α (unless α is a singleton) can be organised in infinitely many infinite 
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sequences. Let the sequences be given (as one is allowed to assume in a realist 
semantics). The valuation v takes a sequence �s1, s2, … � and assigns s1 to the vari-
able x1, s2 to the variable x2; and so on.39   

When X is an object of any type (including a construction), the Trivialization of 
X, denoted ‘0X’, constructs X without the mediation of any other constructions. 0X 
is the unique atomic construction of X that does not depend on valuation: it is a 
primitive, non-perspectival mode of presentation of X.  

The other constructions are compound, as they consist of other constituents 
apart from themselves. These are Composition, Closure, Execution and Double 
Execution. Composition is the procedure of applying a function f to an argument A 
to obtain the value (if any) of f at A. Closure is the procedure of constructing a 
function by abstracting over variables; i.e., the procedure of abstracting, or ex-
tracting, a function from a context, as when abstracting λx(ϕ x) from ϕ (a). Fi-
nally, higher-order constructions can be used twice over as constituents of Com-
posed constructions. This is achieved by the construction called Double Execution, 
which we are going to need later. (Tichý adds also a simple construction called 
Execution, see Definition 1.2.)  

TIL constructions, as well as the entities they construct, all receive a type. Thus 
TIL has a liberal ontology, accommodating both intensions of whatever degree n 
whose values are intensional entities of degree n–1, as well as constructions of 
whatever order m > 1 that construct entities of order m–1. Intensions may come in 
different orders, due to type rising, and in different degrees. An intension is 
higher-order if its range is made up of higher-order entities. For instance, a rela-
tion-in-intension relating individuals to constructions, as in the case of hyperinten-
sional attitudes, is higher-order. An intension is first-order, but of a higher degree 
than zero, if its range is made up of first-order intensions; i.e., any such intensions 
as do not include constructions. For instance, the tallest mountain is of degree one, 
because its (world- and time-relative) values are themselves extensional entities 
(individuals), while the most characteristic property of a war criminal is of degree 
two, because its values are themselves intensional entities of degree one. Exten-
sional entities also come in different orders. For instance, the set of all n-order 
constructions with some particular property is an extensional n-order entity.40      

The definitions proceed inductively. First, we define simple types of order 1; 
second, constructions operating on types; finally, the whole ontology of entities as 
organised into a ramified hierarchy of types.  

                                                           
39 Tichý (1988) devotes an entire chapter to variables, explaining their objectual role as con-
structions; for details see (1988, pp.  47–62).  
40 The degree of a first-order entity corresponds roughly to an order in predicate logics. For in-
stance, in order to ascribe properties to individual properties in predicate logic, we need to work 
within second-order logic. However, in TIL, properties of individuals are 1st-order objects of de-
gree 1. Properties of properties of individuals are 1st-order objects of degree 2; and so on.  
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Definition 1.1 (types of order 1) Let B be a base, where a base is a collection of 
pair-wise disjoint, non-empty sets. Then: 

(i) Every member of B is an elementary type of order 1 over B. 
(ii) Let α, β1, ..., βm (m > 0) be types of order 1 over B. Then the collection 

(αβ1...βm) of all m-ary partial mappings from β1 × ... × βm into α is a func-
tional type of order 1 over B. 

(iii) Nothing is a type of order 1 over B unless it so follows from (i) and (ii). �  

Remark. For the purposes of natural-language analysis we choose the so-called ob-
jectual base described and motivated in the following Section 1.4. The objectual 
base B consists of the following atomic types:   

ο the set of truth-values {T, F};  
ι the set of individuals (the universe of discourse);  
τ the set of real numbers;  
ω the set of logically possible worlds (the logical space).   

TIL is an open-ended system. The above objectual base {ο, ι, τ, ω} was chosen, 
because it is apt for natural-language analysis, but in the case of mathematics a 
(partially) distinct base would be appropriate; for instance, the base consisting of 
natural numbers, of type ν, and truth-values. The derived functional types would 
then be defined over {ν, ο}.  

Remark. An object O belonging to a type α is an α-object, denoted ‘O/α’.    

Remark. α-sets of elements of type α are modelled by their characteristic func-
tions. Thus they are (οα)-objects. For instance, a set of individuals is an object of 
type (οι), a set of real numbers is an object of type (οτ), a set of couples of real 
numbers (i.e., a binary relation over reals) is an object of type (οττ).  

Example 1.1 Types of extensional mathematical objects (non-constructions) 

• Prime is the set of prime numbers. It is an object of type (ον).  
• The factor set of sets of numbers that have the same remainder when dividing 

by 5 is an object of type (ο(ον)).  
• Binary functions defined on reals, like +, –, ×, :, are objects of type (τττ).  
• Binary relations-in-extensions on reals, like >, <, having the same remainder 

when dividing by 5 with an integer quotient, are objects of type (οττ).   
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Definition 1.2 (construction)  

(i) The variable x is a construction that constructs an object O of the respective 
type dependently on a valuation v; it v-constructs O.  

(ii) Where X is an object whatsoever (an extension, an intension or a construc-
tion), 0X is the construction Trivialization. It constructs X without any 
change.  

(iii) The Composition [X Y1…Ym] is the following construction. If X v-constructs 
a function f of a type (αβ1…βm), and Y1, …, Ym v-construct entities B1, …, Bm 
of types β1, …, βm, respectively, then the Composition [X Y1…Ym] v-
constructs the value (an entity, if any, of type α) of f on the tuple-argument 
�B1, …, Bm�. Otherwise the Composition [X Y1…Ym] does not v-construct 
anything and so is v-improper.  

(iv) The Closure [λx1…xm Y] is the following construction. Let x1, x2, …, xm be 
pairwise distinct variables v-constructing entities of types β1, …, βm and Y a 
construction v-constructing an α-entity. Then [λx1… xm Y] is the construction 
λ-Closure (or Closure). It v-constructs the following function f/(αβ1…βm). 
Let v(B1/x1,…,Bm/xm) be a valuation identical with v at least up to assigning 
objects B1/β1, …, Bm/βm to variables x1, …, xm. If Y is v(B1/x1,…,Bm/xm)-
improper (see iii), then f is undefined on �B1,…,Bm�. Otherwise the value of f 
on �B1,…,Bm� is the α-entity  v(B1/x1,…,Bm/xm)-constructed by Y.  

(v) The Execution 1X is the construction that either v-constructs the entity v-
constructed by X or, if X v-constructs nothing, is v-improper.  

(vi) The Double Execution 2X is the following construction. Let X be any entity; 
the Double Execution 2X is v-improper (yielding nothing relative to v) if X is 
not itself a construction, or if X does not v-construct a construction, or if X v-
constructs a v-improper construction. Otherwise, let X v-construct a construc-
tion X� and X� v-construct an entity Y. Then 2X v-constructs Y.  

(vii) Nothing is a construction, unless it so follows from (i) through (vi). � 

Remark. That a variable x constructs an entity dependently on valuation v will be 
referred to as ‘v-constructing’. That a variable x v-constructs entities of a type α 
will be referred to as ‘ranging over α’, denoted by ‘x →v α’.  

Remark. 1X is the procedure of executing X. Thus if X is a construction then the 
execution of 1X consists in executing X. However, if X is not a construction then 
1X is the abortive construction whose input is X and whose output is nothing. A 
non-construction cannot be executed. Thus if X is a v-improper construction or a 

Remark. In principle, also Triple Execution could be defined, as could any 
other multiple Execution. But, pragmatically speaking, we as practising TIL-
ians have had no need so far for Executions beyond Double Execution. And, 

non-construction, 1X is v-improper. Similarly, 2X is the instruction to execute X 
and go on and execute the result. Thus 2X is a v-improper construction if X is a 
v-improper construction or if the object v- constructed by X is a v-improper construc-
tion or a non-construction. 
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methodologically speaking, we observe the constraint that the different kinds of 
construction should not be multiplied beyond what we know to be necessary. But, 
should Triple (or whatever) Execution turn out to be indispensable, it will be de-
fined and added to the open-ended recursive definition of construction. 

Remark. We use the terms ‘mapping’ and ‘function’ synonymously. By ‘partial 
mapping’ we mean a mapping that associates every argument (of the respective 
type) with at most one value (of the respective type); a total function is then a lim-
iting case of the former; namely, a mapping that associates every argument with 
just one value. By ‘properly partial mapping’ we mean a partial mapping that is 
not total.  

Remark. The names of constructions are written with upper-case first letters, to 
distinguish them from regular English words. The exception is ‘variable’, since it 
is already a well-established technical term in logical and mathematical literature.  

Remark. Outer brackets of Closure will be omitted whenever no confusion can 
arise. We will say that a construction C constructs an entity E if C v-constructs E 
for all valuations v. Similarly, we will say that a construction C is improper if C is 
v-improper for all valuations v.  

Definition 1.3 (subconstruction) Let C be a construction. Then  

(i) C is a subconstruction of C.  
(ii) If C is 0X, 1X or 2X and X is a construction then X is a subconstruction of C. 
(iii) If C is [X X1…Xn] then X, X1, …, Xn are subconstructions of C. 
(iv) If C is [λx1…xn Y] then Y is a subconstruction of C. 
(v) If A is a subconstruction of B and B is a subconstruction of C then A is a sub-

construction of C. 
(vi) A construction is a subconstruction of C only if it so follows from (i) to (v). �   

Above we warned against the confusion that might arise from not distinguishing 
two ways in which a subconstruction D of a construction C may occur. The two 
ways were using D as a constituent of C and mentioning D by means of another con-
stituent of C. Constructions are used in extensional or intensional contexts, and men-
tioned in hyperintensional (i.e., constructional or conceptual) contexts. These three 
kinds of context and the difference between using and mentioning constructions will 
be rigorously defined in Section 2.6, once more notions have been defined. Now we 
only briefly characterise the use/mention distinction. 

Let D be a subconstruction of a construction C. Then an occurrence of D is 
mentioned in C if the execution of C does not include the execution of D. 
Otherwise the occurrence of D is used in C as a constituent.  

The simplest way to mention a construction C is by using the Trivialization of C. 
Thus in the Trivialization 0[0+ 02 x] the Composition [0+ 02 x] is not used; it is men-
tioned by using its Trivialization 0[0+ 02 x], which constructs [0+ 02 x] independently 
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of valuation. The variable x is not free for substitution in 0[0+ 02 x], as it is bound 
by the outer Trivialization. Thus we define: 

Definition 1.4 (free variable, bound variable, open/closed construction) Let C be 
a construction with at least one occurrence of a variable ξ. 

(i) Let C be ξ. Then the occurrence of ξ in C is free. 
(ii) Let C be 0X. Then every occurrence of ξ in C is 0bound (‘Trivialization-

bound’). 
(iii) Let C be [λx1...xn Y]. Any occurrence of ξ in Y that is one of xi, 1 ≤ i ≤ n, is λ-

bound in C unless it is 0bound in Y. Any occurrence of ξ in Y that is neither 
0bound nor λ-bound in Y is free in C. 

(iv) Let C be [X X1...Xn]. Any occurrence of ξ that is free, 0bound, λ-bound in one 
of X, X1,...,Xn is, respectively, free, 0bound, λ-bound in C. 

(v) Let C be 1X. Then any occurrence of ξ that is free, 0bound, λ-bound in X is, 
respectively, free, 0bound, λ-bound in C. 

(vi) Let C be 2X. Then any occurrence of ξ that is free, λ-bound in a constituent 
of C is, respectively, free, λ-bound in C. If an occurrence of ξ is 0bound in a 
constituent 0D of C and this occurrence of D is a constituent of X� v-
constructed by X, then if the occurrence of ξ is free, λ-bound in D it is free, 
λ-bound in C. Otherwise, any other occurrence of ξ in C is 0bound in C.  

(vii) An occurrence of ξ is free, λ-bound, 0bound in C only due to (i)–(vi). 

A construction with at least one occurrence of a free variable is an open construc-
tion. A construction without any free variables is a closed construction.  �  

TIL has two kinds of binding, either by Trivialization or by lambda. In both 
cases variables behave in harmony with the general principle that a bound variable 
is not free for substitution. The distinction between 0-binding and λ-binding can be 
best illuminated as follows. Consider the following Closures (variables x, y v-
constructing elements of type τ):   

(a) λx [0≤ x 00] 

(b) λy [0≤ y 00]. 

The Closures (a), (b) are equivalent in that they construct the same class of num-
bers. The variables x, y are λ-bound in (a), (b). By contrast, consider 

(c)       0[λx [0≤ x 00]] 

(d) 0[λy [0≤ y 00]]. 

The Trivializations (c), (d) are not equivalent, since they construct distinct (albeit 
equivalent) constructions. The variables x, y are 0bound in (c), (d) according to the 
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points (ii) and (iii) in Definition 1.4. Note, however, that x has only one occur-
rence in (a), as well as in (c), the former occurrence being λ-bound, the latter 
0bound. Similarly, there is one occurrence of y in (b) and in (d). ‘λx’, ‘λy’ are not 
improper symbols; they denote instructions to abstract over occurrences of x, y, re-
spectively. And even if there is no occurrence of x, as in λx [0+ 01 01], the instruc-
tion specified by ‘λx’ is a one-step instruction. For instance, the Closure  

 λx [0+ 01 01]  

does not construct the number 2, but the constant function, of type (ττ), that asso-
ciates the value 2 with all arguments. 

Concerning point (vi) of Definition 1.4, consider 2(0x), which is the Double 
Execution of the Trivialization of x. If x →v τ and x v-constructs the number 1, 
then 2(0x) v-constructs what is v-constructed by the result of executing 0x, i.e., by x. 
Thus 2(0x) v-constructs the number 1 and it is equivalent to x. In general, 2(0x) v-
constructs what x v-constructs. Hence x is free in 2(0x). However, the Double Exe-
cution 2(0(0x)) constructs what 0x constructs, namely the variable x; the variable x 
is thus 0bound in 2(0(0x)).   

Definition 1.5 (congruency and equivalence of constructions) Let C, D/∗n → α 
be constructions, and ≈v /(ο∗n∗n), ≈ /(ο∗n∗n) binary relations between constructions 
of order n. Using infix notation 0C ≈v 0D, 0C ≈ 0D, we define:  

C, D are v-congruent, 0C ≈v 0D, iff either C and D v-construct the same 	-entity, 
or both C and D are v-improper;  

C, D are equivalent, 0C ≈ 0D, iff C, D are v-congruent for all valuations v.    � 

Corollaries. 
If C, D are identical, 0C =∗ 0D, then C, D are equivalent, 0C ≈ 0D, but not vice 

versa. 
If C, D are equivalent, 0C ≈ 0D, then C, D are v-congruent, 0C ≈v 0D, but not 

vice versa. 

Remark. Recall that C, D are identical, 0C =∗ 0D, if C and D are exactly the same 
procedure. Thus, for instance, though 0[λx [0+  x 01]] ≈ 0[λy [0+  y 01]], the two 
constructions are not identical. They construct one and the same function Succes-
sor/(ττ), i.e.,  

 λx [0+  x 01] =(ττ) λy [0+  y 01],  

but in two different ways, because x, y → τ are two different procedures. Different 
variables are not even equivalent and may be only v-congruent. On the other hand, 
if ‘is sky-blue’ and ‘is azure’ denote one and the same property of individuals, 
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then not only 0Sky-blue =(((οι)τ)ω) 0Azure, but also 00Sky-blue =* 00Azure, i.e., 0Sky-
blue is identical to 0Azure.  

Types: =(ττ)/(ο(ττ)(ττ)); =(((οι)τ)ω)/(ο(οι)τω(οι)τω); =*/(ο∗1∗1); Sky-blue, Azure/(οι)τω. 

Example 1.2 Equivalent and v-congruent constructions. 

(a) Let v(5/x,1/y) be a valuation identical to v at least up to assigning the number 
5 to the variable x and  the number 1 to the variable y. Then the constructions  
[0+ x 01] →v τ, [λx [0+ x y] 05] →v τ, [0Succ x] →v τ, are v(5/x,1/y)-congruent, 
because they v(5/x,1/y)-construct the number 6.  
Types: +/(τττ); x, y/∗1→vτ; Succ/(ττ), the successor function.   

(b) The constructions [0Divide 05 x] →v τ, [0Square_root [0– [x 05]]] →v τ are 
v(0/x)-congruent, because they are v(0/x)-improper.  
Types: Divide/(τττ), the division function; x/∗1→τ; Square_root/(ττ), the 
positive square root function.  

(c) The constructions [0+ 05 01] → τ, [λx [0+ x 01] 05] → τ, [0Succ 05] → τ, are 
equivalent. They construct the number 6;  

(d) The constructions [0Divide x 00] →v τ, [0Square_root [0– [00 05]] → τ are 
equivalent, because they are v-improper for every valuation v.   

In TIL⎯as also in Montague Grammar⎯quantifiers denote functions of type 
(ο(οα)), α an arbitrary type. Quantifiers are not ‘improper symbols’, ‘syn-
categorematic signs’, and suchlike. Note that TIL quantifiers do not bind vari-
ables. ‘∀x’, ‘∃y’ are shorthand for ‘∀λx’, ‘∃λy’, so the binding is done exclusively 
by λ.  

The phenomenon of λ-binding arises due to λ-abstraction, i.e., Closure. The 
semantics of a formula of the form ‘∀x A’ is in TIL deciphered as [0∀ λxA], x v-
constructing (‘ranging over’) objects of type α and A (v-)constructing a truth-
value.  

Quantifiers are thus defined as follows.  

Definition 1.6 (quantifiers ∀ and ∃, singulariser Sing) The quantifiers ∀α, ∃α are 
type-theoretically polymorphic total functions of type(s) (ο(ο	)) defined as fol-
lows: 

 The universal quantifier ∀α is a function that associates a class C of α-
elements with T if C contains all elements of the type α, otherwise with F. The ex-
istential quantifier ∃α is a function that associates a class C of α-elements with T 
if C is a non-empty class, otherwise with F.  

The singulariser Singα is a partial, type-theoretically polymorphic function of 
type(s) (α(οα)) that associates a class C with the only α-element of C if C is a 
singleton, otherwise the function Singα is undefined.    � 

 
 

] 
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If A → ο and x →v α, we will often use the abbreviated notation  

instead of  

‘[0∀α λx A]’, ‘[0∃α λx A]’, ‘[0Singα λx A]’,  

respectively, when no confusion can arise. 

Remark. Classes of elements of type α are modelled by their characteristic func-
tions, of type (οα). Hence there are several empty classes, of types (οα1), (οα2), 
etc., and not just one empty class simpliciter. Moreover, due to partiality there 
may be different kinds of emptiness; the respective characteristic function can be 
either false at a given argument or undefined. We can even obtain a degenerate 
class by using a function undefined at all arguments. An example would be the 
class of numbers that are equal to the result of dividing the number two by zero, 
constructed by λx [0= x [0: 02 00]].  

Example 1.3 Mathematical constructions  

(a) The function +, defined on the natural numbers (of type ν), is not a construc-
tion. It is a mapping of type (ν νν), i.e., a set of triples, the first two members 
of which are natural numbers, while the third member is their sum. The sim-
plest construction of this mapping is 0+ (See Definition 1.2, (ii)).  

(b) The function + can be constructed by infinitely many equivalent, yet distinct 
constructions; for instance, the following Closures are equivalent by con-
structing the same function +:  
λxy [0+ x y], λyx [0+ x y], λxz [0+ x z], λxy [0+ [0− [0+ x y] y] y] (See Defini-
tion 1.2 (iii) and (iv)). 

(c) The Composition [0+ 02 05] constructs the number 7, i.e., the value of the 
function + (constructed by 0+) at the argument �2, 5� constructed by 02 and 05 
(See Definition 1.2 (iii)).  
Note that the numbers 2, 5 are not constituents of this Composition, nor is the 
function +. Instead, the Trivialisations 0+, 02, 05 are the constituents of the 
Composition [0+ 02 05].   

(d) The Composition [0+ x 01] v-constructs the successor of any number x.  
Note that the number 1 is not a constituent of this Composition. Instead, the 
Trivialisation 01 is a constituent; the other two constituents are 0+, x.  

(e) The Closure λx [0+ x 01] constructs the successor function (See Definition 1.2 
(iv)). The successor function can be constructed by infinitely many construc-
tions, the simplest one of which is the Trivialisation of the function: 0Succ.  
Thus λx [0+ x 01] and 0Succ are equivalent by constructing the same function. 
Yet the Trivialization 0Succ is not a finitary, executable procedure. It is a one-
step procedure producing an infinite mapping as its product. On the other 
hand, the Closure λx [0+ x 01] is an easily executable procedure. The instruc-
tion to execute this procedure can be decomposed into the following steps: 

‘∀x A’, ‘∃x A’ and ‘ιx A’  
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Take any number x and the number 1; apply the function + to the couple of 
numbers obtained at the previous step; abstract from the value of x.  

(f) The Composition of this closure with 05, i.e., [λx [0+ x 01] 05], constructs the 
number 6 (See Definition 1.2 (iii)).  

(g) The Composition [0: x 00] does not v-construct anything for any valuation of 
x; it is v-improper for any valuation v (See Definition 1.2 (iii)). We will say 
‘improper’, for short.  

(h) The closure λx [0: x 00] is not improper, as it constructs something, even 
though it is only a degenerate function, viz. one undefined at all its arguments 
(See Definition 1.2 (iv)). 

(i) If x is a variable v-constructing real numbers of type τ, then the Compositions  
[0∃λx [0> x 05]], [0∀λx [0> x 05]] construct the truth-value T and F, respec-
tively, because the class of real numbers greater than 5 constructed by the 
Closure λx [0> x 05] is not empty, but is not the whole type τ.  

(j) If Singτ/(τ(οτ)) is a singularizer, then the following construction (the meaning 
of ‘the greatest prime’) is v-improper for all valuations v, i.e., improper: 
[0Singτ λx [0∧ [0Prime x] [0∀λy [0⊃ [0Prime y] [0≥ x y]]]]], or for short,  
ιx [[0Prime x] ∧ ∀y [[0Prime y] ⊃ [0≥ x y]]].  

So much for examples for now. As mentioned above, constructions can not 
only be used to construct objects of a lower-order type, they can also be mentioned 
by other constructions. Constructions can in this manner themselves serve as in-
put/output objects, on which higher-order constructions operate. However, within 
the simple hierarchy of types, as defined in Definition 1.1, there is no type to be 
assigned to constructions themselves. For instance, the Composition [0+ 02 05] 
constructs the number 7, an entity of type τ (or ν, depending on the choice of 
objectual base). But when Charles calculates 2+5, he is related to the Composition 
[0+ 02 05] and not to its product 7. What is then the type of the activity of calculat-
ing? It is a relation (-in-intension) of an individual to the respective construction 
itself. And this constructional type has to be of a higher order than the type of its 
product. 

Typical examples of hyperintensional contexts are attitude reports involving 
mathematical knowledge and belief. For instance, in  

‘Charles believes that arithmetic is recursively axiomatizable  
  and that Gödel proved it’ 

the meanings of ‘that arithmetic is recursively axiomatizable’ and ‘that Gödel 
proved it’ are only mentioned, because Charles does not believe the truth-value F. 
Instead, he believes that the meaning of the embedded clause yields T. In other 
words, Charles is related to a construction of F.  

At its most fundamental level, the formal ontology of TIL is bi-dimensional. 
One dimension is made up of constructions, while the other dimension encom-
passes non-constructions. The ontology of entities of TIL organised in a ramified 
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hierarchy of types enables us to logically handle structured meanings as higher-
order, hyperintensional, abstract entities, thus avoiding inconsistency problems 
stemming from the need to mention these entities within the theory itself. Any 
higher-order entity can be safely, not only used, but also mentioned within the 
theory.  

On the ground level of the type-hierarchy, there are entities unstructured from 
the algorithmic point of view belonging to a type of order 1. Given an objectual 
base of atomic types, molecular complexity is increased by the induction rule for 
forming partial functions. Where α, β1,…,βn are types of order 1, the set of partial 
mappings from β1 ×…× βn to α, denoted ‘(α β1…βn)’, is a type of order 1 as well. 
(See Definition 1.1.)   

Constructions that construct entities of order 1 are constructions of order 1. 
They belong to a type of order 2, denoted ‘*1’. The type *1 serves as a base for the 
induction rule: any collection of partial functions, of type (α β1…βn), involving *1 
in their domain or range is a type of order 2. Constructions belonging to a type *2, 
which construct entities of order 1 or 2, and partial functions involving such con-
structions, belong to a type of order 3; and so on ad infinitum.  

Definition 1.7 (ramified hierarchy of types) Let B be a base. Then: 

T1 (types of order 1) defined by Definition 1.1. 

Cn (constructions of order n)  

(i) Let x be a variable ranging over a type of order n. Then x is a construc-
tion of order n over B. 

(ii) Let X be a member of a type of order n. Then 0X, 1X, 2X are construc-
tions of order n over B.  

(iii) Let X, X1, ..., Xm (m > 0) be constructions of order n over B. Then  
[X X1... Xm] is a construction of order n over B. 

(iv) Let x1, ..., xm, X (m > 0) be constructions of order n over B. Then 
[λx1...xm X] is a construction of order n over B. 

(v) Nothing is a construction of order n over B unless it so follows from  
Cn (i) to (iv).   

Tn+1 (types of order n + 1)  
Let ∗n be the collection of all constructions of order n over B.  

(i) ∗n and every type of order n are types of order n + 1.  
(ii) If 0 < m and α, β1,...,βm are types of order n + 1 over B, then (α β1 ... βm)  

(see T1 (ii)) is a type of order n + 1 over B. 
(iii) Nothing is a type of order n + 1 over B unless it so follows from Tn+1 (i) 

and (ii).       � 
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Example 1.4 Entities of higher-order types 

(a) The constructions  
0+, [0+ x 01], λx [0+ x 01], [λx [0+ x 01] 05], [0: x 00], λx [0: x 00], all mentioned 
in Example 1.3, construct objects of types of order 1. They are constructions 
of order 1 (see Definition 1.7, Cn), and belong, thus, to the type *1 (see Defi-
nition 1.7, Tn+1); i.e., to the type of order 2 (See Definition 1.7, Tn+1 (i)).    

(b) Let Improper be the set of constructions of order 1 that are v-improper for all 
valuations v; then Improper is an object belonging to (ο*1), the type of order 
2 (See Definition 1.7, Tn+1 (ii)).  

(c) The Composition [0Improper 0[0: x 00]] is a member of *2, the type of order 3. 
It constructs the truth-value T. The constituent 0[0: x 00] of this Composition 
is a member of *2; it is an atomic proper construction that constructs [0: x 00], 
a member of *1. It is atomic, because the construction [0: x 00] is not used 
here as a constituent but only mentioned as an input object.  

(d) Let Arithmetic be a set of unary arithmetic functions defined on natural num-
bers, making Arithmetic an entity of type (ο(νν)), and let x →v ν. Then the 
Composition [0Arithmetic [λx [0+ x 01]]] belonging to *1, the type of order 2, 
constructs T (an entity of type ο, the type of order 1), because the Closure  
[λx [0+ x 01]] constructs the unary function Successor, and this function is 
arithmetic. It belongs to the set Arithmetic. 

(e) The Composition [0Arithmetic 2c] v-constructs the truth-value T if c v–
constructs, for instance, the Closure [λx [0+ x 01]]. The Double Execution 2c 
then v-constructs what is v-constructed by this Closure; namely, the arithme-
tic successor function. The Composition [0Arithmetic 2c] is an object belong-
ing to *3, the type of order 4; the variable c v-constructing the Closure of type 
*1 is an entity of type *2, the type of order 3. Since Double Execution in-
creases the order of a construction (see Definition 1.7., Cn (ii) and Tn+1 (i)), 2c 
belongs to *3, the type of order 4. Therefore, the Composition [0Arithmetic 2c] 
belongs to *3, the type of order 4. This exemplifies the phenomenon of type 
raising.   

Note that every construction C belongs to *n, so that C is an entity of a type of 
order n > 1, and (v–) constructs an entity belonging to a type α of a lower order. We 
will use the notation ‘C/*n →v α’. For instance, ‘x/*1 →v τ’ reads ‘The variable x 
belongs to the type *1 and v-constructs reals’. For the variable c of the above ex-
ample we write ‘c/∗2 →v ∗1’.  

Typing not only enables us to avoid vicious-circle problems, it also makes it 
possible to avoid another kind of ‘improperness’. If X is not a construction of or-
der n (n ≥ 1), then 1X does not construct anything and so is improper; if X is not a 
construction of order n (n ≥ 2), then 2X is improper; finally, if X, X1, …, Xn are not 
constructions of types according to Definition 1.2 (iii), then [X X1…Xn] does not 
construct anything and so is improper. If a construction C is type-theoretically im-
proper, then it does not v-construct an entity of any type α due to wrong typing. 
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The notion of construction is both the most important and most misunderstood 
of all TIL notions. This is little wonder, considering the fact that the model-
theoretic paradigm of doing semantics continues to be overwhelmingly dominant 
and set theory continues to be the background theory of most analytic ontology. 
Constructivist logicians and computer scientists, in contrast, tend to find it easier 
to tap into TIL. Again, this is little wonder, since constructivists have their own 
notion of construction and computer scientists are trained in reasoning in proce-
dures. Perhaps a Platonic dialogue (sans comparaison!) is as good a means as any 
to lay to rest the most common misconceptions of the Platonist notion of construc-
tion. Imagine the following dialogue taking place between a TILian and a non-
TILian during a coffee break at a conference:  

Question: Are constructions formulae of some type logic?  
Answer: No!  
Q: Are they equivalence classes of such formulae?  
A: No!  
Q: Are they denotations of closed formulae?  
A: No! 
Q: So what are they?  
A: They are what Definition 1.2 says they are.   
Q: Sure, I understand the formalities of your definition, but saying what the par-

ticular constructions construct you’re not saying what they are!  
A: So an informal, pre-theoretical characterisation is what you’re after? Well, the 

fundamental idea is that of abstract procedure. 
Q: Procedures are set in time, so how can they be abstract, as constructions are 

supposed to be?  
A: The execution of a procedure  (or algorithm, if you like) is a time-consuming 

process, all right, whereas the procedure itself is beyond time and space.  
Q: So what about your symbolic language, the ‘language of constructions’⎯why 

do you not simply say that its expressions are constructions?  
A: These expressions serve only to represent, or encode, constructions; as expres-

sions they cannot construct anything. What is important about expressions is 
only what they mean and not their syntactic shapes.  

Q: But constructions outside time and space can construct something? How can 
abstract objects do anything?  

A: They don’t do anything, for sure. But agents can execute them. We do this sort 
of thing every day when executing algorithms or following instructions. When 
agents execute constructions, they follow an intellectual path that is already 
laid out. Agents, or any of their artefacts, do not construct constructions. This 
is why TIL is a realist and not an idealist theory. 

Q: But you could do it like Montague did⎯translating expressions of natural lan-
guage into the language of intensional logic, and then interpreting the result in 
the standard manner. What you achieve by using your constructions you would 
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get using a meta-language. So it seems like your superstructure of higher-order 
objects is not needed at all.41 

A: Okay, this calls for a longer reply. Montague’s and other intensional logics in-
terpret the expressions of their language in terms of functions. However, from 
our perspective these mappings are only the products of the respective proce-
dures. In terms of conceptual priority, there is an instance preceding functions. 
Montague does not make it possible to mention the procedures as objects sui 
generis or to make a shift to hyperintensions. Yet we do need a hyperinten-
sional semantics. Procedures⎯our constructions⎯can be not only executed in 
order to obtain a product but also talked about in their own right, by using 
other higher-order constructions. It is not by chance that mathematicians did 
not always use the term ‘function’ in its contemporary sense, as standing for 
mappings, which are mere set-theoretic objects. Functions were previously 
thought of as calculation procedures. Also, the original interpretation of the 
terms of lambda calculus was procedural. For instance, Barendregt says,  

[I]n this interpretation the notion of a function is taken to be intensional, i.e., as an 
algorithm (1997, p. 184).   

We would say, ‘... is taken to be hyperintensional, i.e., as an algorithm’, be-
cause the term ‘intensional’ is currently reserved for mappings from possible 
worlds (if not among proof-theoretic semanticists, then at least among model-
theoretic semanticists). Besides, our approach to semantic analysis is simpler 
and more direct. We do not pair expressions from, say, English off with sym-
bols stemming from an artificial symbolism, interpret this symbolism and then 
couch our analysis in terms of what these symbols mean. Rather we pair Eng-
lish words and phrases off with their meanings straightaway, using our ‘lan-
guage of constructions’ to encode these meanings. TIL does not need a meta-
language, since we have a ramified type hierarchy instead.42  

Q: You don’t have a meta-language? That’s somewhat unusual in modern logic. 
A: It is. Yet we do have a parallel notion of using and mentioning, only what is 

used and mentioned are constructions and not words (though, of course, we’re 
also able to quote words, by means of quotation marks). But let me quote 
Tichý on why TIL does not need a meta-language. Look:  

The whole linguistic outlook of modern logic and metamathematics, the preoccupation 
with symbols and strings of symbols as objects of study, results from the parsimonious 
decision to dispense with all entities other than first-order ones […]. The mathematician 
averts his eyes from constructions, which constitute his real subject matter, and looks at 
pieces of notation instead. This approach may satisfy his craving for ontological economy, 
but let it not be thought that it simplifies matters. If a range of entities is studied obliquely 
by means of proxies, rather than directly, the cognitive situation is complicated by the 
gratuitous intrusion of the proxy relation.  

                                                           
41 See Montague (1974a).  
42 For a more detailed comparison of Tichý’s TIL with Montague’s IL, see Section 2.4.3.  
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There is no intrinsic relation between a formula and the construction it represents. 
Hence if anything said about the formula is to have a bearing on things mathematical, the 
relation of the formula as a whole, or of its constituents, to mathematical objects must be 
explicitly stipulated. In order to put a stipulation into words, one has to name entities of 
both kinds: the mathematical objects and the linguistic expressions corresponding to them. 
Hence the need for a metalanguage, distinct and separate from the original notation in 
question. But the metalinguistic expressions themselves signify constructions. One thus 
faces a choice: one can either acquiesce in these higher-order constructions, or one can 
ignore them too and look instead at the meta-meta-expressions corresponding to them. If 
the first option is chosen the question arises why the same treatment cannot be applied at 
the bottom level, thus avoiding the original linguistic detour as well. And if the second 
option is taken one is obviously caught in an infinite regress of ever higher metalanguages 
(1988, p. 71). 

Q: But that direct route to meanings comes with a completely objectual vision of 
logic, right? 

A: Right. To get your head around TIL, don’t think in terms of language-meets-
language; think in terms of language-meets-reality. This reality is the Platonic 
realm of realist logic and semantics. In fact, what we’re studying, at the end of 
the day, is not language, whether natural or artificial, but the simple and com-
plex objects populating this realm. Language is a gateway, even if it’s of inde-
pendent interest. TIL is a philosophy of language, it’s just that we think one 
can’t, ultimately, study language by means of language.  

Q: Okay, so that’s why you replace other people’s upper-level languages, or meta-
languages, by a sphere of upper-level abstract objects?  

A: Exactly. That’s what TIL is pretty much all about. Le
niewski and Tarski were 
good Polish nominalists, so they wouldn’t dream of admitting higher-level ob-
jects. Instead they erected higher-level languages. We’re Platonists, on the 
other hand, so we agree with Frege that a third realm must be acknowledged. 
Only we’re actually telling you what’s in that realm. 

Q: Constructions? 
A: Constructions!   

1.4 Possible-world intensions vs. extensions 

1.4.1 Epistemic framework 

TIL operates with a single procedural semantics, as explained above. TIL con-
structions are, without exception, assigned to expressions as their structured mean-
ings. But within this one semantics TIL observes a strict demarcation between two 
kinds of subsidiary semantics: one for logical and mathematical languages and an-
other for empirical languages, whether colloquial or scientific. The demarcation 
hinges not on formal vs. natural, but on empirical vs. non-empirical. The defining 
difference is that empirical languages incorporate an element of contingency that 
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the non-empirical ones lack. Empirical languages must be able to denote empirical 
conditions that may or may not be satisfied. Non-empirical languages have no 
need for an additional category of expressions for empirical conditions. Roughly, 
the semantics for non-empirical languages is simpler, because the intensional level 
has been lopped off; yet also more complicated, because constructions construct-
ing constructions (for instance, variables of type ∗n+1 constructing constructions of 
type ∗n), rather than intensions, are often needed.  

For instance, the predicate ‘is a student’ does not denote each individual that is 
a student, nor a class of students. Rather, it denotes a property of individuals, the 
‘populations’ of which are particular sets of individuals depending on particular 
states-of-affairs. To master ‘is a student’ is not to know a particular set of indi-
viduals; rather, it is to know how, for any state-of-affairs, to determine whether a 
given individual satisfies the condition of being a student. We model these empiri-
cal conditions as possible-world intensions which are functions with domain in 
possible worlds and values in chronologies of elements of a given type α. Thus we 
distinguish between the hyperintension (i.e., a construction of an intension I) as-
signed to an empirical expression E as its meaning, and the possible-world inten-
sion I denoted by E. However, as soon as we introduce what we shall call an epis-
temic framework for a given empirical language, the procedural semantics of the 
language operates in the same way as in the case of mathematical language. This 
is so because the epistemic framework assigned to a language confines what can 
possibly be talked about within that language.  

In order to specify the objectual base of TIL over which an infinite ramified hi-
erarchy of types is defined (see Definition 1.7), we must explicate the category of 
possible worlds. To this end we first need to explain the informal, pre-theoretical 
epistemic framework of a given empirical language.43 First of all, the main meth-
odological principle of TIL-based logical analysis of natural language has been 
formulated in Tichý as follows:  

To explicate a system of intuitive, pre-theoretical, notions is to assign to them, as 
surrogates, members of the functional hierarchy over a definite objectual base. Relations 
between the intuitive notions are then represented by the mathematically rigorous 
relationships between the functional surrogates (1988, pp. 194–95).  

Everybody has a pre-theoretical understanding concerning reality, according to 
which there are things doing things and doing things to other things. A first ap-
proximation of a theoretical explication of this intuition would amount to saying 
that reality consists of individuals exemplifying properties and occurring in rela-
tions. By even just beginning to offer an explication along these lines, the formal 
semanticist has embarked upon the enterprise of providing a logical surrogate of 
reality. This surrogate is not supposed to render reference to reality superfluous; 
instead it must run in parallel to reality. The surrogate is the framework within 
which a semantic theory is stated. The things, in the widest possible sense, which 

                                                           
43 For further background, see Tichý (1988, pp. 177–200).  
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are represented by a surrogate in the framework are the things that can possibly 
be talked about in some given language L. The overall project of TIL is (nothing 
less than) the explication of the framework underlying natural language, so L is 
not a particular national language, but any natural language. 

Any successful linguistic communication between language-users makes use of 
a shared framework.44 Tichý says,  

Communication between speakers and their audiences can only succeed on the basis of a 
shared logical space (1988, p. 201). 
To tell someone that Ali is sick I must somehow draw his attention to the [propositional] 
construction λwλt [0Sickwt 0Ali]. Communication is exchange of linguistic constructions 
over [an objectual base] (1986a, p. 264, 2004, p. 662).  

To account for the expressive power of a given language shared by a commu-
nity of language-users, Tichý introduces the concept of epistemic framework and 
the concepts of intensional and objectual bases affiliated with it. The goings-on of 
extra-theoretical reality make up the pre-theoretic intensional base, and the inten-
sions defined over an objectual base attempt to capture them intra-theoretically. 
They do so by means of assignments to the functions defined over the objectual 
base. Tichý calls the totality of these assignments an ‘explication’ of the inten-
sional base by means of the objectual base. An epistemic framework is then an in-
tensional base garnished with an explication.  

For instance, the string ‘Ali is sick’ presupposes, in order to have the sense it 
has in English, that it belongs to a language interpreted over an epistemic frame-
work that comes with individuals, properties and a vehicle of predication.  

Why is it important to point out that successful communication presupposes a 
shared epistemic framework common to all the parties to a discourse? Because the 
framework reconstructs the range of expressions a speaker or hearer can possibly 
make sense of. An expression which falls outside the purview of the framework is 
without sense (i.e., strictly speaking, not an expression at all, but a string of letters 
or sounds).45,46  

The pre-theoretically understood elements of the objectual base B may in prin-
ciple be pretty much whatever. But for the purposes of natural-language analysis, 
it has turned out that the elements must include, at least, truth-values, individuals, 
times, and possible worlds. Formally, B = {ο, ι, τ, ω}, each element of which is a 
non-empty set and disjoint from any of the three other sets. These four kinds of 
                                                           
44 This holds no less for communication between solitary language-users and themselves in 
the form of inner soliloquies, as ought to be uncontroversial as far as philosophical theses go. We 
also tend to think that unverbalized thinking is impossible without the use of (a non-private) lan-
guage; but we are not broaching this issue here.  
45 Cmorej calls such a string a ‘semi-expression’ in his 2005 discussing the thesis that semantics 
is a priori.  
46 In a wider philosophical context, the notion of epistemic framework might be of use to herme-
neutics; e.g., with respect to Gadamer-like melting-together (Verschmelzung) of two or more dif-
ferent epistemic frameworks. We have not attempted to take the notion into this direction, 
though.  
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object are all non-functions, and cannot be defined (though characterised) within 
TIL. They are, in a word, logically primitive relative to B. However, the functions 
arising from B by combining elements drawn from it can be defined within TIL; 
this is required if we wish to display functional dependencies in accordance with 
our functional approach.  

Explication of pre-theoretical intuitions consists, by and large, in offering an 
analysis of how α-objects are functionally dependent on β-objects. In hyperinten-
sional contexts the analysis becomes more involved, since it must be spelt out how 
the relevant function(s) is (are) constructed. However, not everything can be either 
a function or a construction. Some objects serve as functional arguments or values 
without themselves being functions;47 they are the ‘rock-bottom’ objects of the 
given epistemic framework. The elements of the members of B serve as arguments 
for intensions, and cannot be analysed within TIL without incurring circularity. It 
is particularly important that a state-of-affairs which is said to obtain at some 

A most important part of the explication is the interpretation of possible worlds. 
It goes as follows: 

By an intension/time I shall understand an ordered couple consisting of a member of the 
intensional base and a moment of time. A determination system is then an assignment 
which assigns to (some) intension/times unique objects over {ι, ο, τ, ω} in such a way that  
if the type corresponding to the intension is ξτω

48 then the object assigned to the intension/time 
is ξ. Briefly, a determination system specifies one combinatorial possibility as to what 
objects are determined…by what intensions at what times. Now to interpret the basic 
category ω is to assign to each of its members a unique determination system (Tichý, 
1988, p. 199).  

The notion of epistemic framework is indispensable within TIL�as well as 
within any other theory of philosophical logic directed toward natural-language 
analysis�as it regulates the relationship between artificial and natural language. If 
the intensional base was skipped and the starting-point was the objectual base in-
stead, TIL would be exactly what Tichý takes other intensional systems to task for 
being; namely, nothing but a logical game. In the form of a rhetorical question, 

were not somehow anchored to (fragments of) reality external to the system? In 
brief, intensions are not to be made sense of by means of another language that 
natural-language terms are translated into, but by being paired off with the pre-
theoretical grasp of reality we all have to the effect that things do things to things. 

                                                           
47 To be sure, in mathematics we can model them as zero-arity functions. But this hardly makes 
them functions.  
48 See below; it is the type of a function (ω → (τ → ξ)) for a type ξ. 

world W not be conceived as a function from worlds to (chronologies of) exten-
sions, but as entities being atomic relative to the given epistemic framework. The 
objectual base B, for its part, can be thought of as being among the fundamental 
ontological assumptions�or ‘ontological commitments’, if you like�of TIL. 

what would be the purpose of defining an infinity of functions of type(s) ατω if they 
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Still, any explication will have to cut corners in order to match, at least to some 
tolerable degree, extra-systematic reality and so cannot be expected to cut it 
cleanly by the joints. Fine-tuning an explication will come down to making the 
type-theoretic analysis more sophisticated or, more drastically, adding new types 
to B. In fact, the latter has already happened more than once. Whereas the original 
type-theories included only individuals and truth-values (or only individuals, if 
truth-values were just individuals), every possible-world semantics with a type-
theory will have to add worlds as a type (if only in the half-hearted manner of 
Montague). Later on, when Tichý realised the need for numbers and times as an 
independent type, type τ was added. Kaplan (1975) is another possible-world se-
manticist with the same simple type theory as TIL, since also his intensions are 
defined over times as well.  

In a nutshell, the enterprise of logical analysis of natural language has as its ul-
timate (and extremely ambitious) goal the exhaustive explication of the intensional 
base underlying natural language; i.e., its epistemic framework in tot�. As Frege 
famously said in a not all-too dissimilar connection, dahin gelangen wir nie. So 
the goal is of a regulative nature. In what follows the epistemic framework that 
TIL assigns to natural language is described.49 

Universe of discourse (type ι). The members of the universe are individuals. 
The individuals are bare individuals. This means that all the properties possessed 
by an individual necessarily are, roughly, trivial. In Section 1.4.2 we will explain 
in which sense some properties are trivial. For now, trivial properties are either 
constant functions (i.e., properties that have a constant extension�a set of indi-
viduals�as value in all possible worlds and times) or partially constant functions 
(whose extension varies for some possible worlds/times) with a constant subset of 
their possible extensions. All purely non-constant properties (without a non-empty 
constant subset of all possible extensions) are had by an individual only contin-
gently. A bare individual is, then, what remains if one abstracts from all its non-
trivial properties. From a logico-semantic point of view, a bare individual is sim-
ply a peg on which to hang properties. Another important feature of the universe is 
that it is one in number; there are no other universes/domains in other possible 
worlds, so there are no possibilia (‘possible individuals’). 

Truth-values (type ο). There are just two truth-values, T and F. So TIL is a bi-
valent logic and insofar classical. TIL comes with truth-value gaps, however, and 
is insofar not classical. Any abstract objects can serve as surrogates, but we have 
to interpret them, so we say that T is the truth-value True and F the truth-value 
False.  

Times or real numbers (type τ). The easy interpretation is described in Tichý 
(1988, p. 199); choosing the origin 0 of the time scale and a specific duration of 
time between 0 and the time represented by 1, we get the result that every real 
number will represent a unique instant of time, and vice versa. In TIL time forms a 
continuum. Alternatively, times could have been paired off with natural numbers, 
                                                           
49 As of early 2010. 
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making times discrete instead. And, in fact, discrete times will often suffice for the 
purposes of analysis of natural language. But in order to avoid that the times we 
are analysing should outstrip our capacity to model them (to avoid running out of 
time(s), as it were), we are playing safe and modelling times as continuous 
straightaway.  

Possible worlds (type ω). Consider an intensional base (relative to a given lan-
guage). Every member of the intensional base conjugated with a time singles out 
some object, and every possible world is interpreted as specifying ‘one combinato-
rial possibility as to what objects are [singled out]… by what intensions (i.e., 
members of the intensional base) at what times’ (Tichý, 1988, p. 199).  

This construal of possible worlds is distinct from many other conceptions, not 
least D. Lewis’, according to which all possible worlds are concrete and actual sub 
specie aeternitatis (see his 1986). Nor are our possible worlds sets of formulae or 
Carnap-style state descriptions. Our construal is Tractarian in that it takes possible 
worlds as collections of states-of-affairs rather than of objects. Possible worlds, as 
we understand them, are the maximal consistent sets of chronologies of possible 
states-of-affairs.50  

1.4.2 Intensions and extensions  

The previous section provided the philosophy of intensions. In this section their 
logic follows. 

Definition 1.8 ((α-)intension, (α-)extension) (α-)intensions are members of a 
type (αω): functions from possible worlds to the arbitrary type α; (α-)extensions 
are objects of the type α, where α is not equal to (βω) for any β; i.e., extensions 
are α-objects that are not functions from possible worlds.     � 

 
Remark. Intensions are frequently functions of the type ((ατ)ω), i.e., functions from 
possible worlds to chronologies of type α (in symbols: ατω), where an α-chronology 
is a function of type (ατ).  

Remark. It is a noteworthy upshot of our general top-down approach that exten-
sional entities are defined negatively and in terms of intensional entities; 
namely, as those objects that are not intensions. In case of an ordinary language 
extensional entities are of logical and semantic interest only insofar as they figure 
as values (or in the values) of intensions.  

                                                           
50 Also Hintikka seems to accept this conception, but his possible worlds are epistemic, depen-
dent on particular language-users (See, e.g., Hintikka and Hintikka, 1989). 
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We will use variables w, w1, w2,… as v-constructing elements of type ω (possi-
ble worlds), and t, t1, t2, … as v-constructing elements of type τ (times). If C v-
constructs an α-intension, the frequently used Composition of the form [[C w] t], 
v-constructing the intensional descent, or extensionalization, of an α-intension, 
will be abbreviated as ‘Cwt’. 

Intensions may come in different orders, due to type raising, and in different 
degrees.  

An intension is a higher-order entity if its range is made up of higher-order en-
tities. For instance, a relation-in-intension relating individuals to constructions, as 
in the case of hyperintensional attitudes, is higher-order. E.g., Believe*, Know* are 
entities of type (οι∗n)τω, i.e., entities belonging to a type of order n+1, n≥1.  

An intension is first-order, but of a higher degree than zero, if its range is made 
up of first-order intensions; i.e., any such intensions as do not include construc-
tions. For instance, the tallest_mountain/ιτω is of degree 1, because its (world- and 
time-relative) values are themselves extensional entities (individuals), while the 
most characteristic property of a war criminal is an entity of type ((οι)τω)τω, i.e. an 
intension of order 1 and degree 2, because its values are themselves intensional 
entities of degree 1 (properties of individuals).  

Extensional entities also come in different orders. For instance, the set of all n-
order constructions with some particular property is an extensional n-order entity 
of type (ο∗n).   

Some important kinds of intension are: 

Proposition/οτω. They are denoted by empirical (declarative) sentences. 
Propositions are truth-values-in-intension.  

Property of members of a type α, or simply 	-property/(οα)τω.51 General terms 
(some nouns intransitive verbs, adjectives) usually denote properties, 
mostly of individuals. Properties are sets-in-intension. 

Relation-in-intension/(οβ1…βm)τω. For example, transitive empirical verbs and 
attitudinal verbs denote such relations. If omitting τω, we get the type (οβ1…βm) 
of relation-in-extension (to be found mainly in mathematics and logic). 

α-role/α-office/ατω, α � ο, α � (οβ), α � (οβ1…βm), frequently ιτω; often denoted 
by the concatenation of a superlative and a noun (‘the highest mountain’). An 
individual role corresponds to what Church (1956) calls an ‘individual 
concept’. This word could cause misunderstandings, since concept in TIL is no 
intension, so we shan’t use it.52 Individual offices are individuals-in-intension. 

 

 
                                                           
51 Remember that collections, sets, classes of α-objects are members of type (οα); TIL handles 
classes (subsets of a type) as characteristic functions. Similarly, relations (-in-extension) are of 
type(s) (ο�1…�m). 
52 For the theory of concepts, see Section 2.2. 
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Example 1.5 Types of intensional objects 

• ‘Being happy’, or ‘is happy’, denotes a property of individuals/(οι)τω. Given a 
possible world and a time, we are given the class of individuals that are happy 
at that world/time pair. 

• ‘The President of the Czech Republic’ denotes an individual office, a.k.a. indi-
vidual role/ιτω. Given a possible world and a time, we are given the individual, 
if any, who occupies the office, or plays the role, of President of the Czech Re-
public at that world/time pair. At some world/time pairs, there is no such indi-
vidual (the function being properly partial).   

• ‘The King of France is happy’ denotes a proposition/οτω. If �w, t� is such a pair 
of worlds and times where the role of King of France is occupied by an indi-
vidual X and X is happy at �w, t�  then the proposition is true at �w, t�. If X is not 
happy at �w, t� the proposition is false at �w, t�. If the office of King of France is 
not occupied at �w, t�  (as in the actual world now), the proposition lacks a 
truth-value.53  

• ‘Calculating’ denotes an attitude of an individual to a construction, i.e., a rela-
tion-in-intension that is a higher-order intension of type (οι∗n)τω.  

• ‘Knowing* (explicitly)’ denotes an attitude of an individual to a construction, 
i.e., a relation-in-intension of a higher-order type (οι∗n)τω.  

• ‘Knowing (implicitly)’ denotes an attitude of an individual to a proposition, 
i.e., a relation-in-intension that is a higher-degree intension of the first-order 
type (οιοτω)τω.54 

For an example of the distinction between mathematical and ordinary language, 
consider the sentence 

‘The number of the planets is 8.’ 

This sentence does not denote a truth-value, but a proposition/οτω, and its meaning 
is a construction of the denoted proposition, namely a hyperproposition:  

λwλt [0= [0Number_of  0Planetwt] 08]. 

Types: Number_of/(τ(οι)): the cardinality function that returns the number of ele-
ments of an (οι)-set; Planet/(οι)τω; =/(οττ); 8/τ. 

The denoted proposition is an empirical truth-condition that is satisfied only by 
those worlds and times at which the number of planets is 8.55 Provided these are 
post-Plutonic times then (for all that is commonly known) there are exactly eight 
planets in the Solar system. If so, then it is a contingent truth. If not, then it is a 
                                                           
53 See Section 3.1 dealing with definite descriptions. 
54 See Section 5.1 dealing with propositional attitudes. 
55 We are presupposing⎯naïvely, as it happens⎯the existence of a definition of the property of 
planethood that will decide unequivocally for any celestial body in our solar system whether it is 
a planet. 
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contingent falsehood. The example demonstrates that ‘The number of the planets’ 
cannot be a name of 8, nor that ‘The number of the planets is 8’ can be a name of 
the truth-value T (or F, for that matter). For then the semantic naming relation 
would fluctuate in accordance with either astronomical facts or our presumed 
knowledge of such facts. 

What does denote a truth-value is the sentence 

‘The number of elements in {Mercury, Earth, …, Neptune} is 8.’ 

It denotes the truth-value T/ο, and its meaning is the Composition 

[0= [0Number_of  0S] 08]. 

Type: S = {Mercury, …, Neptune}/(οι). 
Whatever, if any, the planets of a solar system may be, it is a mathematical 

truth that the set {Mercury, Earth, …, Neptune} has 8 elements. Making an inven-
tory of the planets of a solar system does not consist in counting the number of 
elements in sets of planets. It consists in applying the empirical condition of being 
a planet to the celestial bodies of the solar system in question. 

1.4.2.1 Classification of empirical properties   

In Chapter 4 we will explain in detail how two intensions may be conceptually re-
lated in such a way that having one necessitates having the other as well. When 
there is such necessitation, we say that one intension is essential of the other. It is 
intensions, and not extensions such as individuals, that are the bearers of essential 
properties. Instead our individuals are ‘bare’ in the sense that no non-trivial inten-
sion is necessarily true of them.  

However, it remains at this point in time an open issue whether it is possible 
that a ι-object may lack all non-trivial properties at some �w, t�. If this is possible, 
then such an individual will be ‘bare’ in a more dramatic sense than just not pos-
sessing any non-trivial properties necessarily (which is already considered dra-
matic enough in several quarters).56  

Consider three ways of analysing ‘the man without properties’ (example cour-
tesy of Robert Musil).  

First analysis: 

 λwλt [0Sing λx [[0Manwt x] ∧ [∀p ¬[pwt x]]]]. 

Second analysis: 

 λwλt [0Sing λx [∀p ¬[pwt x]]]. 

                                                           
56 Now we are using ‘trivial’ and ‘non-trivial’ intuitively. By ‘trivial’ we do not mean epistemi-
cally trivial. Once we explain what is meant by ‘trivial’, we will use rigorous terms instead.  
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Third analysis: 

 λwλt [0Sing λx [∀p [[pwt x] ⊃ [0Triv  p]]]]. 

Types: Sing/(ι(οι)): the singulariser function that associates a singleton S with its 
only member and is otherwise undefined;57 ∀/(ο(ο(οι)τω)): the general quantifier 
over ι-properties; Man/(οι)τω; p → (οι)τω; x → ι; Triv/(ο(οι)τω): the class of trivial 
ι-properties. 

The first analysis is a construction of a ι-office occupiable by any individual 
who has the property of being a man and at the same time no properties at �w, t�. 
Since Man is in the domain of p, the conjuncts cannot both be true.   

The second analysis is a construction of a ι-office occupiable by any individual 
who has no properties at �w, t�. Since every individual has the property of being 
self-identical, this office is necessarily vacant. Hence both constructions construct 
the ‘impossible’ ι-office, which is necessarily vacant. (Similarly, the property of 
being an x such that x has no p is paradoxical, since it is in the range of p.)  

The third analysis is a construction of an ι-office occupiable by an individual 
that does not have any non-trivial properties. The question is whether this office is 
ever occupied. The answer will depend on how restrictive or how liberal a notion 
of non-trivial ι-property is used; i.e., what the class Triv is taken to be. It certainly 
contains all constant properties, i.e., the properties that have a constant set of indi-
viduals as a value at all �w, t�. One of them is self-identity, which every individual 
necessarily possesses. However, should we take on board Cambridge-like proper-
ties in the vein of being an x such that x is the same height as Kim Jong Il? What-
ever height Comrade Kim may have at this or that �w, t�, it is necessary that he 
have exactly the same height as Kim Jong Il. The trick is to index a property to a 
specific individual a, such that, necessarily, a must have that property, without us-
ing a trivial, constant property such as being self-identical. Being the same height 
as Kim Jong Il is a contingent property, for it is not a constant function. Not all in-
dividuals have the same height as Kim Jong Il at all worlds and times, so the sets 
that are its extensions at various �w, t�-pairs will not always have the same mem-
bers. But, due to the indexing, one individual can always be relied upon to be in 
whatever set is the extension at whatever �w, t�; to wit, Kim himself. So the inten-
sion being the same height as Kim Jong Il is insofar partially constant. The prop-
erty has an essential core: namely, the set {Kim Jong Il}.58 Similarly, the contin-
gent, i.e. non-constant, property being the same age as a or b has the essential 
core {a, b}. All individuals but a, b have this property contingently; only a, b have 
it necessarily. If the intension is non-trivial, its non-triviality is ‘partial’ or ‘im-
pure’; and if trivial, then its triviality is also impure. We will call such a property 
‘partially constant’.  

                                                           
57 See Definition 1.6. 
58 The term ‘essential core’ was coined by Pavel Cmorej (1996). See also Cmorej (1988, 2006).  
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Intensions that have constant values in all worlds and times are certainly trivial. 
However, as explained above, some non-constant, contingent properties can also 
be necessarily applicable or inapplicable to some individuals (though not to just 
any individual), and are in some sense also trivial. Thus the characterisation of the 
class Triv has to be extended. The general direction in which to look for an answer 
is indicated by Tichý’s distinction between primary and parasitic properties.   

A change in a thing clearly consists in the acquisition or loss of a property. But if any 
property is as good as any other, we get the odd result that a thing cannot change without 
every other thing changing as well. Suppose object X becomes red and consider another 
object, Y. Y will be spatially related to X in a definite way; suppose it is 50 miles due 
south from X. Then as X acquires redness, Y acquires the property of being 50 miles due 
south from a red object. This change in Y, however, is obviously a phoney change, 
because the property of being 50 miles due south from a red object is a phoney, parasitic 
property. It is a property which will not figure in the specification of a possible world. To 
specify a possible world, one has to specify, inter alia, where each object is and what 
colour it is. Once all this has been fixed, there is no need to specify which objects have the 
property of being 50 miles due south from red objects; for all this has been implicitly 
specified already. While the extension of redness is part of what makes a world the world 
it is, the extension of the property of being 50 miles due to south from a red object is not. 
It is a parasitic property, a mere logical shadow cast by genuine⎯or, as we will say, 
primary⎯properties like being red and being at a certain place. For a thing to change, it 
must acquire or lose not any arbitrary property, but a primary one. We have seen that the 
possible worlds of a logical space are generated as distributions of the attributes in the 
intensional base through things. It is thus natural to identify primary properties, relations, 
etc. with those which correspond to the members of the intensional base  
(Tichý, 1980b, p. 271, 2004, p. 419).  

As explained in Section 1.4.1, every language is based on a definite universe of 
discourse (i.e., a collection of individuals) and an intensional base, which is the 
collection of primary intensions59 that the given language has predicates for. The 
objectual base (ο, ι, τ, ω), together with a definite interpretation of ο, τ, ω, forms 
an epistemic framework. Possible worlds are then possible chronologies of distri-
butions of members of the intensional base over individuals.  

Hence primary properties are certainly contingent, non-constant and thus non-
trivial. No individual has a primary property of the intensional base necessarily, 
i.e., in all �w, t�. So there is no non-empty constant subset of the possible exten-
sions of a primary property.  

Some of the derivative properties parasitic upon the primary properties are also 
contingent, like the above property being 50 km due south from a red object. It is a 
contingent fact that an object X possesses at some time the property being red. 
This fact implies infinitely many facts where derivative properties play a role; for 
example, an object Y that happens to be 50 km due south from X gets the deriva-
tive property being 50 km due south from a red object. And Y does not have this 

                                                           
59 The distinction between ‘primary’ vs. ‘secondary’ intensions is not to be confused with some 
other distinctions like, e.g. Evans’ ‘deep’ vs. ‘superficial’ intensions or what also goes under the 
name ‘primary and secondary intensions’ in two-dimensional semantics. See Evans (1977).  
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property of logical necessity. However, Y necessarily has the derivative property 
of not being 50 km due south from itself.60  

Note that the ‘derivateveness’ of a property does not concern a construction of 
the property. Any property can be constructed in infinitely many ways. Rather, it 
concerns necessary dependencies between the respective facts and thus properties 
as well. For instance, the fact that an individual a is this or that age is logically 
contingent. But there is a necessary correlation between a being 50 and a not be-
ing younger than 30. It is impossible that a be 50 and at the same time younger 
than 30. As we will explain in Chapter 4, there are so-called requisite relations be-
tween intensions. On the other hand, there are no such dependencies between pri-
mary properties of the intensional base; the respective basic facts are independent, 
parallel to the Tractarian conception of Tatsachen.61  

As explained above, non-constant, contingent properties with an essential core 
are partly constant. They are essential of some individuals, namely of those be-
longing to the relevant essential core. All other individuals contingently have, or 
do not have, these properties. Hence, if P is a partly constant property, then there 
are at least two world/time pairs �w, t�, �w', t'�, such that Pwt is not the same set as 
Pw't'. There is, however, a constant subset of the varying extensions of P, namely 
the essential core of P.62  

Our hypothesis is that partly constant properties with an essential core are 
parasitic on reflexive relations-in-intension, where a reflexive relation-in-intension 
is an entity R/(οιι)τω such that, necessarily, its value in �w, t� is a reflexive rela-
tion-in-extension:  

 ∀w∀t [∀x [0Rwt  x x]]. 

The relations of being the same height as some individuals, of being of the 
same age, of not being 20 years older than, etc., can serve as examples. Of course, 
since being the same age as is necessarily reflexive, an individual a cannot be a 
different age than a, unless a would, bizarrely, lose its identity.  

On the other hand, purely constant properties are functions having the same set 
of individuals as value in all worlds w at all times t.63 Thus if P is a purely con-
stant property, the set Pwt  is the same in all �w, t�, and it is the essential core of P. 

                                                           
60 We do not consider here subatomic particles of quantum physics, of course. After all, Heisen-
berg’s uncertainty principle has a negligible effect on objects of macroscopic scale.    
61 The claim that there are no dependencies between primary properties of the intensional base 
requires qualification, however. Consider being red and being blue. Neither is parasitic upon the 
other, but at the same time they are dependent, by being defined in terms of their respective posi-
tions in a spectrum.  
62 Cmorej (2006) calls these properties partly essential.  
63 Cmorej (2006) calls these properties essential.  

Every individual belonging to Pwt  has P at all �w, t�, and every individual not 
belonging to Pwt lacks P at every �w, t�. The essential core of a purely constant 
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property P is either equal to the whole universe or is a proper subset of the uni-
verse. An example of the former would be the property of being self-identical, 
constructed by λwλt λx [x = x]; examples of the latter would be the properties of 
being identical to a particular individual a, λwλt λx [x = a], being identical to an 
individual a or b, λwλt λx [[x = a] ∨ [x = b]], being identical to neither a nor b, 
λwλt λx [¬[x = a] ∧ ¬[x = b]]; etc.   

To sum up, a property P belongs to the class Triv iff P has a non-empty essen-
tial core EC. Individuals belonging to EC have P necessarily. So the property P is 
essential of the elements of EC. Properties with a non-empty essential core are ei-
ther purely constant or partly constant. The former are constant intensions and the 
latter contingent.  

Now we can classify individual properties according to different criteria into 
the following categories.   

• Purely partial properties. A property P is purely partial iff there is a world w 
and a time t at which P has no extension: [0Pwt]  is v-improper.64  

• Partial properties. A property P is partial iff there is a world w and a time t at 
which the characteristic function v-constructed by 0Pwt is purely partial; equiva-
lently, there is an individual a such that [0Pwt  

0a] is v-improper.  

For instance, the property of having stopped smoking is partial. If StopSmok-
ing/(οι)τω is this property, then [0StopSmokingwt x] v-constructs T if individual x 
used to smoke and stopped smoking, F if x used to smoke and did not stop smok-
ing. Finally, [0StopSmokingwt x] is v-improper if x never smoked.  

Now let P be a property that is not purely partial. Then we can further apply the  

Criterion of contingency or non-contingency: 

• A property P is constant (or non-contingent) iff P has the same extension in all 
worlds and times, where the extension is defined as follows:  

If a property P is constant, then its extension is its essential core. 
The property of being self-identical, constructed by λwλt λx [x = x], x → ι, is 

an example of a constant property; the essential core of this property is the set of 
all individuals. An example of a constant property with an empty essential core is 
the property of not being identical with itself, λwλt λx [x ≠ x].  

The property of being identical to a or b, constructed by  
λwλt λx [[x = a] ∨ [x = b]], is another example of a constant property. Its essential 
core is the set {a, b}. The other individuals necessarily lack this property. 

                                                           
64 We add this category just for completeness. Purely partial properties are bizarre properties like 
the one defined as follows: λwλt ιc [[c =  ∅] ∧ ¬ [c = ∅]], where c/*1 →v (οι).  

Partiality criterion:  

 [ιc ∀w∀t [c = 0Pwt]], where c/∗1 →v (οι). 
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• A property P is non-constant (or contingent) iff there are at least two distinct 
extensions of P. In other words, there are world/time pairs �w1, t1�, �w2, t2� such 
that 0Pw1t1 ≠ 0Pw2t2. 

If P is a non-constant (contingent) property, then we can further distinguish be-
tween a partially constant and a purely contingent property:  

− A non-constant property P is partially constant iff there is a non-empty es-
sential core of P. The essential core of a non-constant property P is defined 
as follows: 

 ιc [∃x [cx] ∧ [c = λx [∀w∀t [0Pwt x]]]], where c/∗1 → (οι). 

Obviously, the essential core of a non-constant property P is the smallest non-
empty subset of all the possible extensions of P. 
  If P is a contingent property with a non-empty essential core, then P is partially 
contingent; or equivalently, partially constant. We have decided in favour of the 
latter characterization in order to stress that P is constant with respect to some in-
dividual(s) and contingent with respect to others.  

For example, the property of being of the same height as a or b is constant with 
respect to a and b. Its essential core is the set {a, b}. The other individuals contin-
gently have this property or contingently lack it. It seems that all partially constant 
properties are based on a reflexive relation. But we are not going to assume, let 
alone attempt to prove that this is so, we treat it only as a hypothesis.  

− A property P is purely contingent (or purely non-constant) iff P is neither 
constant nor partially constant. In other words, there is no non-empty es-
sential core of P.  

As examples of purely contingent properties, think of being happy, weighing 88 kg. 
Our individual anti-essentialism thus qualifies as a ‘modest’ one:65  
If an individual a has a property P necessarily (i.e., at all w, t), then P has a 

non-empty essential core Ess and the individual a is an element of Ess (i.e., P is a 
constant or partly constant function). Formally,  

 ∀p [[∃x ∀w∀t [pwt x]] ⊃ [[0Constant p] ∨ [0Partially_constant p]]] 

                                                           
65 The idea of modest anti-essentialism owes much to Pavel Cmorej.  
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where x → ι; p → (οι)τω; Constant, Partially_Constant/(ο(οι)τω) are the classes of 
constant or partially constant properties, respectively.   

Figure 1.4 illustrates particular kinds of properties (Ess is here the essential 
core of P). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Fig. 1.4 Schema of constant, partially constant/contingent, and purely contingent properties 

Now we are in a position to answer the question raised at the outset of this sec-
tion of whether it is possible that an individual may lack all purely contingent 
(non-constant) properties at some �w, t�. The answer is No. To show why, we use 
an example of a more outlandish property than being the same height as King 
Jong Il, namely, the property being self-identical and the time is T (for instance, 
noon on April 1, 2010).66 One of its constructions is (T/(οτ) being some fixed in-
terval of times)  

λwλt λx [[x = x] ∧ [0T t]]. 

                                                           
66 This example is due to Pavel Cmorej.  
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(The construction [0T t] suffices, because it is immaterial how the proposition 
that the time is 12 o’clock on April 1, 2010 is constructed.) An individual satisfies 
this property if it is self-identical and the time is T when it is tested for self-
identity. The time is not always T, so the property is not constant. But each x is 
self-identical. Hence, each individual has such properties, and there are no strictly 
bare individuals. However, as explained above, such a phoney property is deriva-
tive and not a member of the intensional base. 

Apart from dividing properties into constant and non-constant, partly constant 
and purely contingent, there is another criterion, according to which properties di-
vide into empirical and analytical. An empirical property is a property P such that 
for no individual a is it decidable a priori whether P applies to a. It must always be 
established a posteriori. On the other hand, an analytic property P� is decidable a 
priori for all individuals. Obviously, purely constant properties are analytic, and 
purely contingent properties are empirical. Partly constant/contingent properties 
should be decidable analytically a priori with respect to the individuals belonging 
to the essential core. Of course, we do not need experience in order to decide 
whether an individual a is the same age as a or b.67  

A note on self-predication. Muskens cites ‘Having fun is fun’ as an example of 
self-predication (2005, p. 485). We do not think it qualifies as one, though. The 
first occurrence of ‘fun’ is as a noun and the second as an adjective (like ‘funny’). 
Better examples of apparent self-predication would be, ‘Being nice is nice’ and ‘It 
is fine to be fine’. A type-theoretic analysis shows that the two respective occur-
rences of ‘nice’ and ‘fine’ denote entities of different types. One occurrence de-
notes entities of type (ο(οι)τω)τω, which are empirical properties of ι-properties. 
The other occurrence denotes ι-properties/(οι)τω. If F/(οι)τω and F*/(ο(οι)τω)τω, the 
analysis is λwλt [0F*wt 0F]. 

Self-predication is never an option in TIL, unlike what type-free logics like 
Bealer’s allow for.  

 

 

                                                           
67 However, as Cmorej points out in 1988, it is an open question whether there are properties that 
are partly constant in a less obvious way, for which the respective essential core would be decid-
able only a posteriori. The thoughts on how to categorize properties arose from a discussion with 
Cmorej in 2005.  
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1.4.2.2 The part-whole relation  

In Section 1.4.2.1 above, we broached the thesis of modest individual anti-
essentialism:  

If an individual I has a property P necessarily (i.e., at all worlds and times), 
then P has a non-empty essential core Ess and I is an element of Ess (i.e., P 
is a constant or partly constant function).  

There is, however, a frequently voiced objection to individual anti-essentialism. 
If, for instance, Tom’s only car is disassembled into its elementary physical parts, 
then Tom’s car no longer exists; hence, the property of being a car is essential of 
the individual referred to by ‘Tom’s only car’. Our response to the objection is 
this. First, what is denoted (as opposed to referred to) by ‘Tom’s only car’ is not 
an individual, but an individual office, which is an intension having occasionally 
different individuals, and occasionally none, as values in different possible worlds 
at different times. Whenever Tom does buy a car, it is not logically necessary that 
Tom buy some one particular car rather than any other. Second, the individual re-
ferred to as ‘Tom’s only car’ does not cease to exist even after having been taken 
apart into its most elementary parts. It has simply lost some properties, among 
which the property of being a car, the property of being composed of its current 
parts, etc, while acquiring some other properties. Suppose somebody by chance 
happened to reassemble the parts so that the individual would regain the property 
of being a car. Then Tom would have no right to claim that this individual was his 
car, in case it was allowed that the individual had ceased to exist. Yet Tom should 
be entitled to claim the reassembled car as his.68 Therefore, when disassembled, 
Tom’s individual did not cease to exist; it had simply (unfortunately) obtained the 
property of completely disintegrating into its elementary physical parts. So much 
for modest individual anti-essentialism.   

The second thesis we are going to argue for is this. A material entity that is a 
mereological sum of a number of parts, such as a particular car, is⎯from a logical 
point of view⎯a simple, hence unstructured individual. Only its design, or con-
struction, is a complex entity, namely a structured procedure. This is to say that a 
car is not a structured whole that organizes its parts in a particular manner. Tichý 
says:  

[A] car is a simple entity. But is this not a reductio ad absurdum? Are cars not complex, 
as anyone who has tried to fix one will readily testify? 

No, they are not. If a car were a complex then it would be legitimate to ask: Exactly 
how complex is it? Now how many parts does a car consist of? One plausible answer 
which may suggest itself is that it has three parts: an engine, a chassis, and a body. But an 
equally plausible answer can be given in terms of a much longer list: several spark plugs, 
several pistons, a starter, a carburettor, four tyres, two axles, six windows, etc. Despite 

                                                           
68 As Tichý argues in 1987, where he uses the example of a watch being ‘repaired’ by a watch-
maker in such a way as to become a key.  
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being longer the latter list does not overlap with the former: neither the engine, nor the 
chassis nor the body appears on it. How can that be? How can an engine, for example, 
both be and not be a part of one and the very same car? 

There is no mystery, however. It is a commonplace that a car can be decomposed in 
several alternative ways. … Put in other words, a car can be constructed in a very simple 
way as a mereological sum of three things, or in a more elaborate way as a mereological 
sum of a much larger set of things (1995, pp. 179–80).  

It is a contingent fact that this or that individual consists of other individuals 
and thereby creates a mereological sum. Importantly, being a part of is a relation 
between individuals, not between intensions. There can be no inheritance or im-
plicative relation between the respective properties ascribed to a whole and its in-
dividual parts. It is vital not to confuse the requisite relation, which obtains be-
tween intensions, with the part-whole relation, which obtains between individuals. 
The former relation obtains of necessity (e.g., necessarily, any individual that is an 
elephant is a mammal), while the latter relation obtains contingently.69 Logically 
speaking, any two individuals can enter into the part-whole relation. One possible 
combination has Saturn a part of Socrates (or vice versa). There will be restric-
tions on possible combinations, but these restrictions are anchored to nomic neces-
sity (provided a given possible world at which a combination of individuals is at-
tempted has laws of nature at all).70 One impossible combination would have the 
largest mountain on Saturn be a part of π (or vice versa). Why impossible? Be-
cause of wrong typing: the arguments of the part-whole relation must be individu-
als (i.e., entities of type ι), but the largest mountain on Saturn is an individual of-
fice while π is a real number.  

Still, which parts are essential for an individual in order to have a property P? 
The property of having an engine is essential for the property of being a car, be-
cause something designed without an engine does not qualify as a car, but at most 
as a toy car, which is not a car. The answer to the question which parts are essen-
tial in order to have a property P is, in the car/engine example, that the property of 
having an engine is a requisite of the property of being a car. What is necessary is 
that a car, any car, should have an engine. It is even necessary that it should have a 
particular kind of engine, where being a kind of engine is a property of a property 
of individuals. What is not necessary is that any car should have some one particu-
lar engine belonging to a particular kind of engine: mutatis mutandi, any two 
members of a particular kind of engine will be mutually replaceable.71 Thus the re-
lation Part_of is of type (οιι)τω. 

The sort of unrestricted mereological combinations that we are adumbrating 
and advocating gives rise to a more fundamental problem that Cmorej takes on in 

                                                           
69 The full logic of requisites is set out in Chapter 4. 
70 See Duží (2007) for a discussion of wharrots. A wharrot is an individual consisting of a carrot 
and a whale. Unless further restrictions are laid down, wharrots exist as soon as whales and car-
rots do. (We are indebted to Maarten Franssen for the example of wharrots.)  
71 This problem is connected with the analysis of property modification, including being a mal-
functioning P, dealt with in Section 4.4.  
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1988.72 The problem is this. If a composition of a physical individual is contingent 
and allows parts to be replaced or lost, then which unique part of such an individ-
ual is essential for the individual’s identity? Cmorej argues that the assumption of 
variable composition of a mereological sum leads to absurd consequences. Let us 
briefly summarise his arguments.   

Cmorej presents two puzzling thought experiments. The first puzzle can be 
called, ‘Did, or did not, an individual have the property P?’; the second, ‘Where is 
the individual?’ 

Here is the first puzzle. Imagine an individual X that has the property P. The 
property P is stipulated to be penetrating, which means that, necessarily, if X has 
P then all its parts have P.  

Formally, P is penetrating iff 

 ∀w∀t ∀x [[0Pwt x] ⊃ ∀y [[0Part_ofwt y x] ⊃ [0Pwt y]]]. 

Types: P/(οι)τω; Part_of/(οιι)τω; x, y → ι.  
For instance, the property of weighing less than 50 kg is penetrating. An indi-

vidual cannot weigh less than 50 kg if some of its parts weigh more than 50 kg.  
Let X have a penetrating property P at time t1. During the time interval �t1, t2�, 

t1 < t2, X loses all its proper parts, as well as the property P, so that at t2 X does not 
have P anymore, and X also does not contain any proper parts that used to have 
P.73 Now the question is whether at t2 we can truly ascribe to X the property of 
having had P. Cmorej uses a past-tense operator Pt that is applied to the proposi-
tion that X has P, forming the proposition that X had P in the past. Thus the opera-
tor denotes a property Pt of propositions, Pt of type (οοτω)τω, which is defined as 
follows: Let p → οτω be a variable v-constructing a proposition. Then  

 0Pt  = λwλt λp ∃t� [[t� < t] ∧ pwt�]. 

Intuitively, the answer should be in the affirmative. It is true at t2 that X used to 
have P, because what is done cannot be undone (as Macbeth learnt the hard way). 
But how are we to evaluate the truth-conditions of the proposition constructed by 
λwλt [0Ptwt λwλt [0Pwt X]] at t2? When evaluating the proposition constructed by 
λwλt [0Pwt X], we must consider all the parts of X, because P is penetrating. Cmorej ar-
gues that, similarly, when evaluating the truth-conditions of λwλt [0Ptwt λwλt [0Pwt X]] 
at t2, we must take into account the parts that X consists of at time t2. But, there is no 
trace of P in X at t2; no proper part of X used to have P. This is peculiar, indeed. Could 
X have been, for instance, inside a room, or in a magnetic field, or submerged into a 
liquid, if there is not even a tiny proper part of X to which the respective property 
could have been ascribed? Hardly. Thus Cmorej comes to the conclusion that λwλt 
[0Ptwt λwλt [0Pwt X]] is, at t2, both true (according to the principle that what is 
                                                           
72 See also Geach (1972, pp. 215–16) for the related problem of ‘the cat on the mat’.  
73 A proper part of X is an individual Y such that Y is a part of X and Y ≠  X. 
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done cannot be undone) and false, because none of its parts used to have the prop-
erty P. Contradiction!  

First, however, we disagree with Cmorej’s argument on grounds of analogy. He 
argues that when evaluating whether ‘The world champion of 100 m race used to 
be a smoker’ we examine the current world champion, not any of the previous 
ones. Of course, we have to examine the individual that currently and actually 
plays the role of world champion of 100 m sprint race⎯but we should examine 
his/her history. Though the current champion may have stopped smoking, we 
should ask whether he/she previously smoked. Similarly, when asking whether X 
used to have P we have to examine the history of X, which includes the proper 
parts that X used to consist of. We have to ask which parts X consisted of in the 
past, and whether any of these parts previously used to have P in the interval �t1, 
t2�.  

Thus we must use the Past function, which we will define in Section 2.5.2. 
Simplifying a bit, the result of applying Past to the proposition constructed by 
λwλt [0Pwt X] and to the interval �t1, t2� referring to the past is this:  

λwλt ∃t� [[t�< t] ∧ [t1≤ t�≤ t2] ∧ [0Pwt’ X]]. 

Evaluating the truth-conditions in a world w at a time t comes down to empiri-
cally searching for the truth-value v-constructed by ∃t� [[t�< t] ∧ [t1≤ t�≤ t2] ∧ [0Pwt� 

X]]. In other words, we have to examine the history of X in the interval �t1, t2� pre-
ceding time t.   

But, secondly, there is another, more alarming question. If no current proper 
part of X can help us examine the history of X, how are we to examine its history 
at all? We need to abstract from all the current proper parts of X, as well as all 
their properties, and consider only the properties that the bare individual X used to 
have. What, then, determines the numerical identity of the bare individual X?  

This problem ties in with the second puzzle. The second puzzle is this. Imagine 
that a person a owns a golden fountain pen (i.e., a pen, all of whose parts are 
golden) and a person b owns a pen that looks exactly like a’s, except that it is not 
made of gold but of fool’s gold (i.e., all its parts being made of fool’s gold). 
Moreover, b’s pen and all its parts function in exactly the same way as a’s pen and 
its parts and, so, are functionally equivalent. At time t1 a’s pen is located at the 
place La and b’s pen at the place Lb. During the time interval �t1, t2� b gradually re-
places, part by part, the proper parts of a’s pen by the proper parts of b’s pen, so 
that at t2 all the proper parts of a’s pen are located at Lb and all the proper parts of 
b’s pen are located at La. As a result, a’s pen and b’s pen look and function in the 
same way at t2 as they did at t1, except that a’s pen is made of fool’s gold and b’s 
pen is made of gold.  

The conclusion of the thought experiment has an air of plausibility. Yet we are 
not convinced that a’s pen is made of fool’s gold and b’s pen is made of gold. To 
see why, imagine that the interval �t1, t2� is very short and that all the parts have 
been interchanged at once. Wouldn’t most people be inclined to say that b simply 
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stole a’s pen and replaced it by his junk pen? We would, at least. Furthermore, 
even if the swap was performed part by part, how could all the proper parts of a’s 
pen be transferred from La to Lb without the whole individual being ipso facto 
transferred?    

Hence the questions arise: Where is a’s pen and where is b’s pen at t2? Which 
of the pens is golden at t2? There are two mutually incompatible answers:  

(i) a’s pen is located at La and is made of fool’s gold, whereas b’s pen is located 
at Lb and is made of gold; b did not steal a’s pen, b only drastically lowered 
the value of a’s pen.  

(ii) a’s pen is located at Lb and is made of gold, whereas b’s pen is located at La 
and is made of fool’s gold; b stole a’s pen, and replaced it by his pyrites pen. 

Now let someone unaware of the swap examine the two pens at t2. In both 
cases the result of the examination would be as follows. The pen located at La is 
made of fool’s gold, because all its parts are made of fool’s gold, whereas the pen 
located at Lb is golden, because all its parts are made of gold. Since the examiner 
is unaware of the swap, he naturally assumes that the golden pen at Lb is a’s pen. 
Consequently, the variant ad (i) will seem impossible to the examiner.   

Cmorej thus arrives at the conclusion that the assumption of unrestricted varia-
tion of an individual’s composition is unacceptable. In other words, given an indi-
vidual X, the property of being a part of X must be essential of X. Hence, for any 
individual X it must hold that the property constructed by  

λwλt λy [0Part_ofwt y X] 

is an essential property of X, i.e., a constant function. But at the same time this 
property is, intuitively, empirical, for we cannot know a priori which parts X con-
sists of.  

What are we to make of Cmorej’s conclusion that some properties of X are both 
essential and empirical? We wish to reject it. Here is why. A consequence of 
Cmorej’s conclusion is that X would consist of the very same parts in each world 
w at each time t. This would mean that the material composition of X must be constant, 
such that each time X loses some part and obtains a new one, a new individual X� 
comes into being. As a result, the universe of discourse would have to vary ac-
cordingly. Moreover, we could not a priori distinguish between individuals X, X�, 
X, X�, etc. For instance, your cells are continuously being renewed, yet your nu-
merical identity should certainly not hinge on one particular pool of cells. You 
would not be the same individual in the morning as the one who went to bed the 
night before. This is certainly untenable as a criterion of numerical individuation 
of individuals.  

As the above thought experiments show, if we embrace variable composition of 
a mereological sum, then we face the problem of the identity of individuals. To 
dramatize the problem, imagine that somebody is gradually stealing proper parts 
of your car (rather than stealing the whole car in one go). If the thief steals one 
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molecule he has not stolen your car. If he steals the steering wheel, he has not stolen 
your car. If he steals all four wheels, he has not stolen your car. But if the thief 
steals all proper parts of your car, wouldn’t you say that he had stolen your car? 
Of course, you would, and so would your insurance company (hopefully). The car 
thief has committed diachronic theft, as it were, the same way an embezzler may 
gradually drain an account. If one goes along with our view, the question which 
part is essential of your car’s identity turns out to be ill-posed. 

This example suggests that the only way out is to say that no proper physical 
part is essential of your car (or of any other concrete individual). But this is to say 
that an individual may lose all its proper physical parts without losing its identity, 
making the identity of an individual a purely abstract object. A bare individual is 
an abstract object of a transcendental nature, and Cmorej’s proposed proof that 
bare individuals do not exist is correct, because existence is a property of inten-
sions, namely the property of being instantiated or being occupied. As we showed 
in Section 1.4.2.1, we cannot specify the property of not having any properties. 
We can only abstract away the properties an individual has. We must presuppose 
pre-theoretically that there is a fixed domain of individuals whose identity is given 
to us a priori, regardless of whether we are able to determine which particular in-
dividual we are examining on some occasion. Within our theory, individuals are 
logically primitive relative to a base B (see Section 1.4.1).   

1.4.2.3 The top-down approach to semantics revisited 

In Section 1.2 we critically examined the standard bottom-up way of analysing 
terms and expressions. We adduced the following five examples and explained 
why their standard analyses are too coarse-grained:  

(1) ‘Charles is happy’ 
Fa 

And further upwards: 

(2) ‘Charles is happy, and Thelma is grumpy’   
Fa ∧ Gb 

(3) ‘Somebody is happy’  
∃x (Fx) 

(4) ‘Possibly, Charles is happy’  
� (Fa) 

(5) ‘Thelma believes that Charles is happy’  
Bb (Fa). 

Now we have the tools to analyze these sentences in a fine-grained way. As we 
explained above, we aim at assigning propositional constructions to the analysed 
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sentences. We are going to illustrate the method of analysis by analysing first the 
sentences (1) and (2). Our method consists in three steps.  

First, we assign types to the objects mentioned by the sentences: Charles, 
Thelma/ι; Happy, Grumpy/(οι)τω; ∧/(οοο). 

Second, by Composing constructions of these objects (here, Trivializations) we 
aim at constructing the propositions denoted by (1) and (2), respectively:  

(1�) λwλt [0Happywt 0Charles]. 

(2�)   λwλt [0∧ [λwλt [0Happywt 0Charles]]wt [λwλt [0Grumpywt 0Thelma]]wt]. 

Note that our uniform semantics works smoothly top-down and back up again, 
involving all three kinds of context, to wit, hyperintensional, intensional and ex-
tensional. The Closures [λwλt [0Happywt 0Charles]] and [λwλt [0Grumpywt 
0Thelma]] construct the propositions that Charles is happy and that Thelma is 
grumpy, respectively. However, propositions are not arguments of the right type 
for truth-value functions. They are intensional objects and have to be extensional-
ized first in order to yield an extension. That is, the proposition that Charles is 
happy has to be subjected to intensional descent: λwλt [0Happywt 0Charles]wt. 

The Composition [λwλt [0Happywt 0Charles]]wt  is a construction v-constructing a 
truth-value; i.e., the type of the value of the proposition constructed by λwλt 
[0Happywt 0Charles] at �w, t�. Similarly, λwλt [0Grumpywt 0Thelma] constructs the 
proposition that Thelma is grumpy, and its Composition with �w, t�, as in [λwλt 
[0Grumpywt 0Thelma]]wt, v-constructs the value (of type ο) of this proposition at 
�w, t�. So a conjunction receives two truth-values as input, yielding a third as output. 
Finally, we need to abstract from the values of w, t in order to construct the proposi-
tion that Charles is happy and Thelma is grumpy.    

Third, via type-theoretical checking we verify that the individual constructions 
have been combined in a type-theoretically coherent way:  

  λw λt [[[ 0Happy        w]   t]   0Charles] 

   (((οι)τ)ω)     ω 

          ((οι)τ)          τ 

      (οι)             ι 

                 ο 

           (οτ) (abstracting over t) 

   ((οτ)ω) (abstracting over w). 
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The Composition [0Happywt 0Charles] v-constructs T, according as the individ-
ual constructed by 0Charles (i.e., Charles) belongs to the extension of the property 
Happy (v-constructed by 0Happywt) at a given �w, t�. Abstraction over the values of 
w, t constructs a proposition/οτω. In other words, the sense of ‘Charles is happy’ is 
a procedure the evaluation of which in any world w (λw) at any time t (λt) consists 
in checking whether Charles has the property of being happy at that �w, t�-pair.  

The type-theoretical checking of [λwλt [0Grumpywt 0Thelma]] proceeds in the 
same way. Finally, we check the whole (2�).  

 λwλt  [0∧   [λwλt [0Happywt 0Charles]]wt  [λwλt [0Grumpywt 0Thelma]]wt] 

           (οοο)          ο     ο 

 
        ο 

     οτω 

We have just verified that what this Closure constructs is a proposition, which is 
the right type of object to be denoted by a sentence. 

Now we are going to analyse (3), (4) and (5) along the same lines. Quantifiers 
were defined in Definition 1.6. Thus the analysis of sentence (3) is this: 

  (3�) λwλt [0∃ι λx [λwλt [0Happywt x]]wt]. 

The Closure [λx [λwλt [0Happywt x]]wt] v-constructs the set of individuals in-
stantiating the property Happy at �w, t�. ∃ι is here a function of type (ο(οι)) input-
ting the set just constructed and outputting a truth-value, according as the set is 
empty or not. Finally, by abstracting over the values of w, t we construct the 
proposition that somebody is happy. 

The analysis of sentence (4) depends on the type of possibility ascribed to 
the proposition that Charles is happy. If possibility is understood as logical possi-
bility then �L is a function of type (οοτω): the class of logically possible proposi-
tions. In such a case we have: 

  (4�) λwλt [0�L [λwλt [0Happywt 0Charles]]]. 

This construction constructs the trivial proposition TRUE. It is certainly logi-
cally possible that Charles be happy; in the possible-world idiom, there is a world 
w and a time t at which Charles has the property of being happy. Thus logical pos-
sibility can be defined by the following construction:  

λp [0∃ω λw [0∃τ λt pwt]] 

or for short,  
λp [∃w∃t pwt]. 
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Types: p →v οτω; ∃ω/(ο(οω)); ∃τ/(ο(οτ)).  
This definition yields (by performing equivalent β-reductions): 

  (4��) λwλt [∃w�∃t� [0Happyw�t� 0Charles]].  

Obviously, (4��) constructs TRUE. A more natural analysis can be obtained by 
construing empirical possibility �em

 as a property of propositions, an (οοτω)τω-
object. This yields 

  (4���) λwλt [0�em
 wt [λwλt [0Happywt 0Charles]]]. 

This Closure constructs the contingent proposition that Charles’ being happy is 
possible at the given �w, t� of evaluation.  

In Section 1.2.2 we claimed that logical syntax cannot tolerate ambiguous 
terms. We explained that the handy notation of modal logics found in the analy-
santes of (3), (4) and (5) treats ‘�’, ‘�’ as being syntactically on a par with truth-
functional connectives like ‘¬’, both ‘¬p’ and ‘�p’ being well-formed formulae. 
Also we are allowed to generate strings like ‘(�p → p) ∧ Kp’, ‘K’ standing for 
knowing. However, since what is necessary is not a truth-value but a proposition, 
and what is known is not a truth-value but a hyperproposition (in the case of ex-
plicit knowledge, see Section 5.1.2), we face here three-way ambiguity mixing to-
gether an extensional, an intensional and a hyperintensional context.  

Now our context-invariant semantics begins to pay off. We need not analyse 
‘Charles is happy’ any differently, nor are we forced to hold that ‘Fa’, hitherto de-
noting a truth-value, now denotes a truth-condition (proposition) instead.  

Similarly, when analysing (5), the meaning of ‘Charles is happy’ is the same as 
above, namely the Closure λwλt [0Happywt 0Charles], and we get 

  (5�) λwλt [0Believewt 0Thelma λwλt [0Happywt 0Charles]]. 

This is the analysis of attitudes germane to classical possible-world semantics, 
according to which the object of an attitude is a proposition. Thus, Believe is a 
function of type (οιοτω)τω. Again it is now paying off that ‘Charles is happy’ was 
paired off with a proposition straightaway, despite the fact that in (2) we need two 
truth-values as functional arguments. 

If we analyse ‘to believe’ in (5) as a case of explicit belief, then Believe* is a 
function of type (οι∗n)τω. An agent, Thelma in our case, is now related to a hyper-
proposition. Again, it is paying off that ‘Charles is happy’ was analysed as ex-
pressing a hyperproposition, viz. the above Closure λwλt [0Happywt 

0Charles]. 
Thelma is related to this very Closure, which can be constructed most directly by 
its Trivialization. We obtain 

  (5��)  λwλt [0Believe*wt 0Thelma 0[λwλt [0Happywt 0Charles]]].  



1.4 Possible-world intensions vs. extensions      81 

Sometimes it is said that the value of an intension in a possible world and at a time 
is an extension. As a general claim this is not true, however, because, as was 
pointed out above, there are intensions of a higher degree and of a higher order. 
Examples of the latter would be hyperintensional attitudes like Believe*, Know*, 
Calculate, all of type (οι∗n)τω. As an example of a higher-degree intension, con-
sider, for instance, the expression ‘Einstein’s favourite proposition’. This definite 
description obviously does not refer rigidly: in some equivalence classes of 
worlds/times Einstein will favour one proposition, in another equivalence class he 
will favour another proposition, and in yet another equivalence class he will fa-
vour none at all. So the type of the denotation of ‘Einstein’s most favourite propo-
sition’ is (οτω)τω: a 2nd-degree proposition, the type of whose values is οτω.  

Type-theoretical analysis, which is the first part of our logical analysis of natu-
ral language (see Section 2.1), consists in associating types with meaningful ex-
pressions.74 As competent users of our native language we know which expres-
sions are empirical and we should be able to find the adequate type. (Montague’s 
associating categories and then types with particular classes of expressions corre-
sponds to this stage of logical analysis of natural language.) Sometimes the situa-
tion is not immediately clear, though. For instance, compare ‘colour’ and ‘colour 
of’. The empirical character of the latter is obvious. What may be less obvious is 
what sort of intension it denotes. Now, it denotes an intension whose type is 
((οι)τω ι)τω: in any world/time the outcome of applying this function to an individ-
ual is at most one colour (black, red, blue, etc.; i.e., a property of individuals). But 
from the fact that particular colours are properties, and so intensions, it does not 
follow that ‘colour’ denotes an intension. Actually, whereas asserting that an ob-
ject is blue involves uttering an empirical sentence that denotes a contingent 
proposition, asserting that blue is a colour involves uttering an analytically true 
sentence denoting the proposition TRUE. This is because ‘colour’ denotes a set 
(rather than a property) of properties (colours). Black, red, blue, etc., are colours at 
all worlds and times, or rather independently of worlds and times. What varies are 
their extensions at various world/time pairs. Thus the type of the entity Colour is 
(ο(οι)τω): the word ‘colour’ denotes an extension. Whether a property belongs to 
this set of properties is true or false independently of empirical facts. 

Another example of a 2nd-degree intension would be the highest US executive 
office. This role is occupied by individual offices, currently by the office of US 

                                                           
74 As this point about typing also shows, TIL requires that the objects that are to be logically ma-
nipulated be typed and defined before any (possible) axiomatization. Of course, proposing some 
axioms involves running a risk, for it could be objected that the chosen axioms do not truly de-
scribe the nature of the objects. But this risk is only what characterises scientific work when 
carried out in a realist manner, according to which axioms do not prescribe what the objects of a 
domain are, but instead try to describe some properties that are ontologically and conceptually 
prior to the axioms. Analogously, ‘Poincaré, like Kronecker, thought one does not have to define 
the whole numbers or construct their properties on an axiomatic foundation. Our intuition pre-
cedes such a structure’ (Kline, 1980, p. 233).  
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President. So the type of the intension denoted by ‘The highest US executive of-
fice’ is (ιτω)τω. 

If the type of the values of an intension is, say, (οτω)τω, then the type of that in-
tension has got to be ((οτω)τω)τω to form a 3rd-degree intension. The rule for form-
ing higher-degree intensions is straightforward: whenever a world index w is 
added as an argument to an intension of degree n, the degree of the resulting inten-
sion is n+1. Adding only a temporal index t won’t suffice, since intensions are, 
strictly speaking, defined as functions from possible worlds. But adding t next to 
adding w may be called for to capture the temporal variability of the value distri-
bution of a particular higher-degree intension. 

To illustrate, the analysis of ‘Einstein’s most favourite proposition’ is as fol-
lows. Einstein may have favoured many propositions, so the type of Fa-
vour_prop_of (somebody) needs to be ((οοτω)ι)τω: A function that associates, 
dependently on �w, t�, an individual with the set of propositions the individual fa-
vours at �w, t�. The Composition [0Favour_prop_ofwt 0Einstein] v-constructs the 

the most favourite one depends again on the circumstances at �w, t�. Thus the type 
of The_Most turns out to be (οτω(οοτω))τω. A function of this type associates, 
dependently on �w, t�, a set of propositions with a proposition, to wit, the most fa-
voured one of them all. Thus the Composition  

[0The_Mostwt [0Favour_prop_ofwt 0Einstein]] 

v-constructs the proposition that is Einstein’s most favourite one at a given �w, t�. 
Finally, by abstracting over the values of w, t, we construct the propositional role 
of Einstein’s most favourite proposition: 

λwλt [0The_Mostwt [0Favour_prop_ofwt 0Einstein]]. 

To illustrate the distinction between ‘colour’ and ‘colour of’, we analyse the 
sentences  

(6) ‘The colour of Charles’ most favourite shirt is green’ 

and   

(7)  ‘Charles’ most favourite colour is green’.  

To trim the notation, let π be the type of an individual property, i.e. (οι)τω. Then 
the types of entities that receive mention in (6) and (7) are: 

Charles/ι; Favour_of1/((οι)ι)τω; Favour_of2/((οπ)ι)τω; Colour_of/(πι)τω;  
Colour/(οπ); Shirt_of/((οι)ι)τω; Green/π; Most1/(ι(οι))τω; Most2/(π(οπ))τω.  

set of propositions that Einstein favours at �w, t�. Which of these propositions is 
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The definite description ‘Charles’ most favourite shirt’ denotes the individual 
office ChFS/ιτω occupiable by the shirt, if any, that Charles happens to favour the 
most at some world/time of evaluation. Thus a coarse-grained analysis of (6) is 

(6�) λwλt [[0Colour_ofwt 0ChFSwt] = 0Green]. 

On the other hand, the definite description ‘Charles’ most favourite colour’ de-
notes the property office ChFC/πτω occupiable by the property, if any, that hap-
pens to be Charles’ most favourite. A coarse-grained analysis of (7) is 

(7�) λwλt [0ChFCwt = 0Green]. 

Now, in order to refine the above analyses, we define the entities ChFS and ChFC 
in terms of the simpler entities the sentences talk about, i.e., Shirt_of, Favour_of1, 
Favour_of2. The individual office ChFS is defined as follows (x → ι): 

λwλt [0Most1
wt λx [[[0Shirt_ofwt 

0Charles] x] ∧ [[0Favour_ of1
wt 

0Charles] x]]]. 

The Closure λx [[[0Shirt_ofwt 
0Charles] x] ∧ [[0Favour_ of1

wt 
0Charles] x]] v-

constructs the set of individuals that are Charles’ favourite shirts at �w, t�; Most1
wt 

selects from this set the individual, if any, that is the most favourite one at �w, t�.  
The individual office ChFC is defined as follows (p → π): 

λwλt [0Most2
wt λp [[0Colour  p] ∧ [[0Favour_of2

wt 
0Charles] p]]]. 

The Closure λp [[0Colour  p] ∧ [[0Favour_of2
wt 

0Charles] p]] v-constructs the set 
of properties which belong to the set of colours (the first conjunct) and are 
Charles’ favourite properties (the second conjunct). The application of Most2 to 
this set yields the property selected from this set, if any, namely the one that is 
the most favourite one at �w, t�.   

By substituting these definitions into (6�) and (7�), we get these fine-grained 
analyses of (6) and (7): 

(6��)  λwλt [[0Colour_ofwt [0Most1
wt λx [[[0Shirt_ofwt 

0Charles] x] ∧   
           [[0Favour_of1

wt 
0Charles] x]]]] = 0Green]. 

(7��) λwλt [[0Most2
wt λp [[0Colour  p] ∧  

   [[0Favour_of2
wt 

0Charles] p]]] = 0Green]. 
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1.4.3 Logical objects 

In this section we specify those important extensions that are classified as logical 
objects in TIL. We are aware of the problem of determining which objects are 
logical and which are extra-logical. For our purposes, we consider as logical ob-
jects only the extensions defined in this Section 1.4.3, i.e., truth-functions, quanti-
fiers, singularizers, identities, and the functions Sub and Tr.  

(a) Truth-functions. Unary (negation, ¬), type (οο); binary (∧, ∨, ⊃, etc.), type 
(οοο). TIL is a classical logic in that it works with just two truth-values, T, F. 
This does not mean that every sentence of natural language must be true or 
false, though. Since some truth-bearers are neither true nor false, TIL has 
adopted partial functions, which associate with each argument at most one 
value. Thus the sentence  

‘The King of France is bald’ 

denotes a properly partial proposition (of type οτω) that lacks a truth-value in, 
among others, the actual world at the present time. And the sentence  

‘The greatest prime is even or not even’ 

does not denote a truth-value, because ‘the greatest prime’ expresses an im-
proper construction  (see Example 1.3 (j)).  

Remark. The third and further values in so-called many-valued logics cannot be 
construed as truth-values. They can be interpreted in various other ways (uncer-
tainty and fuzziness being the most famous cases). The way TIL handles partiality 
bears similarities to Bochvar’s three-valued logic (see Bochvar, 1939), where the 
‘third value’ associated with one variable is the reason why it must be associated 
with the entire complex formula. Thus, if phrased in TIL jargon, if p v-constructs 
T and a construction Q constructs the third value, then the disjunction (p ∨ Q) gets 
T in �ukasiewicz, the ‘third value’ in Bochvar, and no value in TIL. The matrices 
of Bochvar’s three-valued logic will coincide with the matrices of a theory like 
TIL, which operates with three options: T, F, neither (‘gap’). 

The following Table 1.1 is a TIL matrix of truth-functions and their Composi-
tion with truth-values and truth-value gaps. By the sign ‘⊥’ we do not mark a third 
value, but a truth-value gap. P, Q are constructions v-constructing truth-values, 
and P, Q may be v-improper. The sign ‘*’ marks rather peculiar rows, to be ex-
plained below.  

According to Definition 1.2 (iii), the Composition [X X1…Xm] is v-improper 
whenever one or more of the constructions X, X1, …, Xm are v-improper. This is in 
accordance with the compositionality constraint: once a construction Xi does not 
supply an object on which the construction X is to operate, the whole Composition 
fails to v-construct anything, making it v-improper. In this way partiality is being 
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propagated upwards. This holds also for the Compositions of the constructions of 
truth-functions. Thus, e.g., [0∨ P Q] is v-improper if P or Q is v-improper.   

Table 1.1 TIL matrix of truth-values  

P Q [0∧ P Q] [0∨ P Q] [0⊃ P Q] [0≡ P Q]  

1 1 1 1 1 1  

1 0 0 1 0 0  

0 1 0 1 1 0  

0 0 0 0 1 1  

1 ⊥ ⊥ ⊥ ⊥ ⊥ * 

0 ⊥ ⊥ ⊥ ⊥ ⊥ * 

⊥ 1 ⊥ ⊥ ⊥ ⊥ * 

⊥ 0 ⊥ ⊥ ⊥ ⊥ * 

⊥ ⊥ ⊥ ⊥ ⊥ ⊥  

Rows marked by ‘*’ might seem peculiar. Aren’t we used to a disjunction be-
ing true iff at least one disjunct is true? Aren’t we used to an implication being 
true iff the antecedent is false or the consequent true? Imagine a situation in which 
Charles does not smoke. Ostensibly, in such a situation we may truly claim the 
following: 

 ‘Charles stopped smoking or he never smoked.’ 

Alas, analysing the sentence in this careless way yields a construction of a propo-
sition that goes undefined at such �w, t� pairs at which Charles never smoked: 

λwλt [0∨ [λwλt [0StopSmokingwt 0Ch]wt [λwλt [0NeverSmokedwt 0Ch]wt]. 

Types: StopSmoking, NeverSmoked/(οι)τω; Ch(arles)/ι.  

The problem is created by the proposition constructed by [λwλt 
[0StopSmokingwt 0Ch] that does not have a truth-value at those �w, t� at which 
Charles never smoked. Hence the Composition [λwλt [0StopSmokingwt 0Ch]wt is v-
improper for any such �w, t� pairs. This is due to the fact that the proposition that 
Charles stopped smoking comes with the presupposition that he used to smoke.75 
Thus the first argument of the function ∨ is missing and so the application fails. 
For this reason the Closure constructs a proposition that has truth-value gaps at 
those �w, t� pairs at which Charles never smoked.   

A remedy is within reach, fortunately. In those cases where an extensionalized 
proposition enters as argument of a truth-function, we should use the totalizing 

                                                           
75 Presupposition will be defined in Definition 1.14  
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propositional property True/(οοτω)τω, which returns T for those �w, t� pairs at 
which the argument proposition is true, and F in all the remaining cases. The re-
sulting analysis is:  

λwλt [0∨ [0Truewt λwλt [0StopSmokingwt 0Ch]] [λwλt [0NeverSmokewt 0Ch]wt]. 

Gloss: ‘It is true that Charles stopped smoking, or he never smoked’. 
We will discuss the problem of partial functions and truth-value gaps in more 

details in Sections 2.6 and 2.7.76  

(b) Quantifiers. The standard universal (∀α) and existential (∃α) quantifiers were 
defined in Definition 1.6. They are not ‘improper symbols’ for TIL; rather, 
they are type-theoretically polymorphous total functions of a type (ο(οα)) for 
the given type α, so they are classes of classes.77  

• The universal quantifier ∀α is the class of those classes that are not proper 
subclasses of 	, so ∀ is a singleton.  

• The existential quantifier ∃α is the class of all non-empty subclasses of the 
class α.  

Some sentences cannot be literally analysed using these standard quantifi-
ers, unless we reformulate them. For instance,  

(8)  ‘Some students are clever’  

and  

(9)  ‘All students are lazy’  

can be analysed in the standard way as follows: 

λwλt [0∃λx [0∧ [0Studentwt x] [0Cleverwt x]]] 

and  

λwλt [0∀λx [0⊃ [0Studentwt x] [0Lazywt x]]]. 

Types: ∀, ∃/(ο(οι)); ∧, ⊃/(οοο); Student, Clever, Lazy/(οι)τω; x/∗1 → ι. 

However, the above sentences (8) and (9) do not mention conjunction and im-
plication. Thus these analyses are not in accordance with the principle of subject 
matter, which says, roughly, that each subconstruction of a given meaning of an 

                                                           
76 See also Duží (2003a).  
77 By ‘type-theoretically polymorphous functions’ we mean a set of functions that are defined 
and thus behave in the same way, independently of their type. For instance, any member of the set 
of functions Cardinality associates a finite class with the number of its elements. Hence this defini-
tion is polymorphous; there are actually infinitely many cardinality functions, one for each type: 
Card1/(τ(οι))⎯the number of a set of individuals, Card2/(τ(οτ))⎯the number of a set of num-
bers, etc., which we indicate by using a type variable α in the type of Cardinality/(τ(οα)). 
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expression E has to be assigned to a meaningful subexpression of E as its mean-
ing. In other words, each subconstruction of the meaning assigned to E must con-
struct an object denoted by a subexpression of E.78 Therefore, these constructions 
are the meanings of different, albeit equivalent, sentences, namely ‘There are indi-
viduals who are students and who are lazy’ and ‘It holds for all individuals x that 
if x is a student then x is lazy’.  

In order to analyse sentences like (8) and (9) literally, in accordance with the 
principle of subject matter, we must use another type of quantifier, for example 
All, Some, and No, which are known as restricted quantifiers. These are type-
theoretically polymorphous functions of type ((ο(οα))(οα)), defined as follows:  

•  Allα is the function which associates a class A of α-objects with the class 
of all those classes that contain A as a subset.  

• Someα is the function which associates a class A of α-objects with the 
class of all those classes that have a non-empty intersection with A.  

• Noα is the function which associates a class A of α-objects with the class 
of all those classes that have an empty intersection with A.  

Allι and Someι of type ((ο(οι))(οι)) enable us to analyse (8) and (9) as ex-
pressing the Closures 

(8�) λwλt [[0Someι 0Studentwt] 0Cleverwt] 

and 

(9�) λwλt [[0Allι 0Studentwt] 0Lazywt]. 

The Composition [0Allι 0Studentwt] v-constructs the set M of those sets of 
individuals which contain the population of students at a given �w, t� as a 
subset. The Composition [[0Allι 0Studentwt] 0Lazywt] v-constructs T for those 
�w, t� at which the set of individuals who are lazy at �w, t� belongs to M. 
In other words, it v-constructs T for a given �w, t� if the population of 
students is a subset of the population of lazy individuals at that �w, t�. Ab-
straction over the values of w, t constructs the proposition that all students are 
lazy. It takes T at those �w, t� pairs at which all students are lazy.    

For a mathematical example, consider the sentence  

‘It holds for all numbers that if the number is a prime then it is odd’. 

The construction expressed by this sentence constructs F: 

[0∀ λx [0⊃ [0Prime x][0Odd x]]]. 

The class constructed by  
                                                           
78 This principle, and its relevance to semantic analysis, is discussed in Section 2.1. 
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λx [0⊃ [0Prime x][0Odd x]] 

is not the class of all real numbers, of course, because the Composition  

[0⊃ [0Prime x][0Odd x]] 

v(2/x)-constructs the truth-value F.   

Types: ∀/(ο(οτ)); ⊃/(οοο); Prime, Odd/(οτ). 

Similarly, the construction expressed by ‘No prime number is even’ con-
structs F: 

[[0No 0Prime] 0Even]. 

The type of No is here ((ο(οτ))(οτ)). 

The class of even numbers does not belong to the class of all those classes 
that have an empty intersection with the class of prime numbers. On the other 
hand, the construction expressed by ‘All primes greater than 2 are odd’ con-
structs T:  

[[0All λx [0∧ [0Prime x] [0> x 2]]] 0Odd]. 

The type of All is here ((ο(οτ))(οτ)). 

The set of numbers constructed by λx [0∧ [0Prime x] [0> x 2]] is a subset of 
the set of odd numbers. Note that, for instance, the last sentence (and its cor-
responding meaning) is equivalent to, ‘It holds for all numbers that if the 
number is a prime greater than 2, then it is odd’, the analysis of which is: 

[0∀ λx [0⊃ [0∧ [0Prime x] [0> x 2]] [0Odd x]]]. 

The class of numbers constructed by λx [0⊃ [0∧ [0Prime x] [0> x 2]] [0Odd x]] 
is the whole type τ.  

(c) Singulariser. The function Sing was defined in Definition 1.6. If a con-
struction C v-constructs a singleton whose only member is a then [0Sing 
C] v-constructs a. Otherwise (i.e., if C v-constructs an empty class or a 
class containing more than one element) [0Sing C] is v-improper (See Defi-
nition 1.2 (iii)).   

Remark. Often the abbreviated notation ‘ιx A’ will be preferred to ‘[0Sing 
[λx A]]’.  

Examples: The analysis of ‘The only even prime number’ is the Composition 
(x → τ) 

[ιx [0∧ [0Even x] [0Prime x]]]. 
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It constructs the number 2, because the class of numbers constructed by  

λx [0∧ [0Even x] [0Prime x]] 

is the singleton {2}.  
The analyses of ‘The only man to ever run 100 m in less than 9 s’, ‘The 

only man to ever run 100 m in less than 10 s’ are the respective constructions 
of ι-offices: 

λwλt ιx [0∧ [0Manwt x][0< [0Run_inwt x 0100] 09]], 

λwλt ιx [0∧ [0Manwt x][0< [0Run_inwt x 0100] 010]].79  

Types: x → ι; Man/(οι)τω; </(οττ); Run_in/(τ ιτ)τω: an empirical function that 
assigns to an individual and a number (the distance in metres) the number (of 

   
Both offices are currently vacant, because the ι-class v-constructed by 

λx [0∧ [0Manwt x][0< [0Runwt x 0100] 09]] 

is empty in the actual world now, and the class v-constructed by  

λx [0∧ [0Manwt x][0< [0Runwt x 0100] 010]] 

is a multi-element class. Its elements are, in 2009, Jim Hines, Ronnie Ray 
Smith, Charles Greene, Steve Williams, Eddie Hart, Reynaud Robinson, 
Silvio Leonard, Carl Lewis, Maurice Greene, Asafa Powell, Usain Bolt, and 
others.  

(d) Identity. The type-theoretically polymorphic function = of type (οαα), occa-
sionally with an index pointing to the type α, is identity. We have, e.g., 

[0=τ [0+ 07 05] 012], 

[0¬ [0=∗1 
0[0+ 07 05] 0012], 

[0=(οτ) λx [0≥ x 00] λx [0¬[0< x 00]]] 

 (all constructing T). 

(e) Sub and Tr functions. In Definition 1.4 we specified two ways of binding 
variables in TIL, λ-binding and 0binding. In both cases, a bound variable is 
not free for substitution, which brings technical trouble with it. To appreciate 
what sort of trouble, here are two examples of reckless deriving.  

                                                           
79 We are disregarding here the problem of physical units. 

seconds) that it takes the given individual to run the respective distance.   
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Types: B*/(οι*1)τω; B/(οιοτω)τω; F/(οι)τω; a/ι; x/*1 →v ι; C/*1 →v ι. 

λwλt [0B*wt 0a 0[λwλt [0Fwt C]]] 
(A1)     ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

λwλt [0∃λx [0B*wt 0a 0[λwλt [0Fwt x]]]].  

λwλt [0Bwt 0a [λwλt [0Fwt C]]] 
(A2)     ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

λwλt [0∃λx [0Bwt 0a [λwλt [0Fwt x]]]]. 

Why are the conclusions no good? The occurrence of x in  

0[λwλt [0Fwt x]] 

of the conclusion of (A1) is 0bound, so the variable x is mentioned and not 
used, hence not available for manipulation. It is, as it were, shielded from ∃ 
by the first Trivialization in 0[λwλt [0Fwt x]]. In other words, x and C occur in 
(A1) in a hyperintensional context.80 A linguistic parallel would be to attempt 
to quantify into a quotational context, where the quotation marks would have 
an analogous shielding effect.  

The argument (A2) is also invalid, for similar though slightly different 
reasons. Although the occurrence of x in  

[λwλt [0Fwt x]] 

of the (A2)-conclusion is free, the conclusion is not entailed by the premise. 
There are �w, t�-pairs at which the proposition constructed by the premise is 
true, while the proposition constructed by the conclusion is false. The con-
struction C v-constructing individuals occurs in the intensional context of 
[λwλt [0Fwt C]]; thus C may be v-improper while the Closure [λwλt [0Fwt C]] 
is always proper (see Definition 1.2 (iv)) and the Composition [0Bwt 0a [λwλt 
[0Fwt C]]] may v-construct T even if there is no C.  

A parallel would be to attempt to quantify into an intensional or a hyperin-
tensional context. For instance, from the truth of 

Charles believes that Santa Claus is generous 

                                                           
80 Intensional and hyperintensional context were characterized in Section 1.3, and will be formal-
ly defined in Section 2.6 together with valid rules for inferring existence. Here just briefly: a 
hyperintensional context is one in which constructions are mentioned, whereas an intensional 
context is one in which constituents are used with intensional (or de dicto) supposition.    
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we cannot validly infer that Santa Claus exists.81 What we can infer is that 
there is an individual office (a.k.a. individual role) such that Charles believes 
that its occupant is generous.  

However, sometimes we do need to quantify and/or substitute into a hy-
perintensional or intensional context; for instance, when analysing de re atti-
tudes or sentences with anaphoric reference.82 The solution is to substitute for 
the variable x the Trivialization of the entity v-constructed by the respective 
construction C instead of substituting the construction C itself. To this end, 
we need the functions Subn and Trα, which make variables amenable to ma-
nipulation by, first, untying them from the context they occur in and, second, 
substituting Trivialization of an appropriate entity for them.  

Let X, Y, Z be constructions of order n, Y a variable. Then the function 
Subn/(*n *n *n *n) is a mapping which, when applied to �X, Y, Z�, returns the 
construction that is the result of correctly substituting X for Y in Z. Correct 
substitution will be defined in Definition 2.22. For now it suffices to say that 
a substitution is correct if no free variable occurring in X becomes bound in 
the resulting construction. Thus, for instance, the Composition  

[0Sub1 002 0x 0[0+ x 01]]  

constructs the result of substituting 02 for x into [0+ x 01], so the result is the 
Composition [0+ 02 01]. Therefore, the Composition [0Sub1 002 0x 0[0+ x 01]] is 
equivalent to 0[0+ 02 01], both constructing as they do the Composition  
[0+ 02 01]:  

[0Sub1 002 0x 0[0+ x 01]] =*1 0[0+ 02 01]]. 

Next, let 	 be a type of order n, a an object of type 	. Then Trα/(*n ) is a 
function which, when applied to a,  returns the Trivialization of a.83 

Note that there is an essential difference between using Trivialization and 
applying the Trα function. For instance, whereas 03 constructs the number 3, 
the Composition [0Trτ 03] constructs the construction 03. Whereas the Trivi-
alization 0x binds the variable x and constructs just x, the variable x is free in 
the Composition [0Trτ x], which v-constructs the Trivialization of the number 
that v assigns to x. For instance, [0Trτ x] v(2/x)-constructs the construction 02.  

To illustrate the application of the Sub function, consider the schematic 
Composition  

[0Sub1 [0Trι 0Awt] 0y 0[…y…]]. 

Types: A/ιτω; y →v ι; a/ι. 

                                                           
81 For the propositional attitudes of knowing and believing, see Sections 5.1 and 5.3. 
82 For attitudes and anaphoric sentences, see Chapter 5 and Section 3.5, respectively. 
83 See Tichý (1988, pp. 74–5).  
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This Composition either v-constructs the construction […0a…], in case 
0Awt  v-constructs a, or is v-improper, in case 0Awt  is v-improper. 

We will often omit the lower-index when using the polymorphic func-
tions Subn and Trα, writing simply ‘Sub’ and ‘Tr’, when the typing is obvi-
ous.   

We will deal with quantifying into intensional and hyperintensional con-
texts in Section 5.3. To get a first feel for how TIL approaches quantifying in, 
consider again the above example  

Charles believes that Santa Claus is generous 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

There is an office such that Charles believes that its occupant is generous.  

We will analyse Charles’ attitude as one of explicit belief, which is a relation-
in-intension of an individual to a hyperproposition (a propositional construc-
tion). First, type-theoretical analysis: 

Charles/ι; Believe/(οι∗1)τω; Santa_Claus/ιτω: an individual office; Gener-
ous/(οι)τω; ∃/(ο(οιτω)). 

The premise says that Charles explicitly believes that Santa Claus is gener-
ous. To construct the proposition, we have to ascribe the property of being 
generous to the occupant of the office of Santa Claus. To this end we use the 
Trivialization of the office and its intensional descent, 0Santa_Clauswt, which 
v-constructs the individual (if any) that plays the role of Santa Claus at the 
�w, t�-pair of evaluation. The proposition is now constructed by the Closure 
λwλt [0Generouswt 

0Santa_Clauswt]. Since Charles bears the relation of ex-
plicit belief to this construction, we must mention it by means of Trivializa-
tion. The analysis of the premise is  

(P)  λwλt [0Believewt 
0Charles 0[λwλt [0Generouswt 

0Santa_Clauswt]]]. 

Now, we cannot frivolously derive that Santa Claus exists, of course, for the 
office of Santa Claus is not occupied. But we can derive that there is such an 
office. Here is how. Let variable r/∗1 v-construct individual offices, of type 
ιτω. Then for any �w, t� such that the Composition  

[0Believewt 
0Charles 0[λwλt [0Generouswt 

0Santa_Clauswt]]] 

v-constructs T, the Composition  

[0∃λr [0Believewt 
0Charles [0Sub [0Tr r] 0r 0[λwλt [0Generouswt  rwt]]]]] 
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v-constructs T as well. To show this, let v(Santa_Claus/r) be a valuation 
identical to v up to assigning the office Santa_Claus to the variable r. Then 
[0Tr r] v(Santa_Claus/r)-constructs 0Santa_Claus, and  

[0Sub [0Tr r] 0r 0[λwλt [0Generouswt  rwt]]]  

v(Santa_Claus/r)-constructs the Closure   

[λwλt [0Generouswt  
0Santa_Clauswt]].  

So the Composition  

[0=∗1 [0Sub [0Tr r] 0r 0[λwλt [0Generouswt  rwt]]]  
0[λwλt [0Generouswt  

0Santa_Clauswt]]] 

v(Santa_Claus/r)-constructs T. Hence the class of individual offices v-
constructed by the Closure  

λr [0Believewt 
0Charles [0Sub [0Tr r] 0r 0[λwλt [0Generouswt  rwt]]]] 

is not empty. The analysis of the conclusion entailed by the premise (P) is 
then:   

(C)      λwλt [0∃λr [0Believewt 
0Charles [0Sub [0Tr r] 0r  

    0[λwλt [0Generouswt  rwt]]]]]. 

For a mathematical example, consider the sentence  

(10) 
    ‘There is a number x such that dividing any number y by x is improper’.  

If objects of higher-order types were not admitted, we would have no means 
to analyse this true sentence. The procedure of dividing y by x is improper for 
some number x, because it does not yield a product for some x, namely 0.   

Let Div/(τττ) be the function of dividing and Improper/(ο∗1) the class of 
constructions of order 1 that are v-improper for any valuation v. Finally, let 
the variables x, y range over the type τ. Then to express that dividing y by x is 
improper amounts to expressing the Composition  

[0Improper 0[0Div y x]]. 

Now, we cannot recklessly quantify over x and y, because x, y are 0bound 
here. There is a way out, however. We use Sub and Tr to pre-process, as it 
were, the Composition  
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[0Improper 0[0Div y x]] 

to make it construct T. First, by means of Tr, we untie x and y, and then sub-
stitute the resulting Trivialization of the numbers v-constructed by x and y 
into the Composition [0Div y x]. Here is how:  

[0Sub [0Tr x] 0x [0Sub [0Tr y] 0y 0[0Div y x]]]. 

Note that in this Composition x and y are free for manipulation; the result is a 
construction, in casu the procedure of applying the division function to the num-
bers v-constructed by x and y. Now we want to express that this construction is 
improper for some number v-constructed by x and for all numbers v-constructed 
by y. The resulting analysis is thus   

 (10�)   [0∃λx [0∀λy [0Improper [0Sub [0Tr x] 0x [0Sub [0Tr y] 0y 0[0Div y x]]]]]]. 

To see that this Composition constructs T, it suffices to realise that the Com-
position  

[0Sub [0Tr x] 0x [0Sub [0Tr y] 0y 0[0Div y x]]] 

behaves as follows. It v(0/x)-constructs the construction v(0/x)-constructed by 
[0Sub [0Tr y] 0y 0[0Div y x]], i.e. by [0Sub [0Tr y] 0y 0[0Div y 00]]. The latter v� 
(0/x)-constructs a v�(0/x)-improper construction for any valuation v�(0/x) iden-
tical to v(0/x) up to assigning any number to y. For instance, for v(0/x,1/y) we 
obtain the construction [0Div 01 00]. For v(0/x, 2/y) we obtain the construction 
[0Div 02 00]; and so on. Thus, the class v(0/x)-constructed by  

λy [0Improper [0Sub [0Tr x] 0x [0Sub [0Tr y] 0y 0[0Div y x]]]]] 

is the whole type τ, and the Composition  

[0∀λy [0Improper [0Sub [0Tr x] 0x [0Sub [0Tr y] 0y 0[0Div y x]]]]]] 

v(0/x)-constructs T. Therefore, the class of numbers constructed by  

λx [0∀λy [0Improper [0Sub [0Tr x] 0x [0Sub [0Tr y] 0y 0[0Div y x]]]]] 

is non-empty (because its element is the number 0), and the Composition 
(10�) constructs the truth-value T.   
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1.5 Constructions as structured meanings 

1.5.1 Structured meanings 

The contemporary mainstream method of logically analyzing expressions of a 
natural language consists in building up an artificial language and defining some 
rules of translation that make it possible to find for every expression of the given 
language its translated counterpart in the artificial language. The latter is unambi-
guous (unlike the former) and is interpreted in a model in the usual way.84  

Tichý calls this method formalization. Formalization itself, if thought of as a 
means to make ideas precise, is indispensable. The method deployed by TIL to 
make ideas precise is a method of direct analysis. The notion of construction en-
ables us to justify this direct transition from expressions to their meanings.  

In a wider perspective, an important difference between Tichý and Montague is 
preceded by a famous difference Schopenhauer saw between himself and Kant. 
Schopenhauer said that,  

[Kant] is comparable to a person who measures the height of a tower from its shadow; but 
I am like one who applies the measuring rod directly to the tower itself.85 (1819, p. 555.)   

Montague, like other model-theoretic (‘Tarskian’) semanticists, translates natu-
ral-language phrases into shapes belonging to a pure syntax which are subse-
quently valuated. Tichý translates natural-language phrases into a likewise artifi-
cial symbolism. But TIL’s symbolism is importantly different from IL’s. TIL’s 
‘language of constructions’ is an interpreted formalism, so syntax and semantics 
work in tandem. The syntax of the λ-terms of TIL is provided by the existing λ-
calculus, while the formalism is inherently interpreted, because its λ-terms are in-
troduced as terms denoting constructions. The TIL analysis of a natural-language 
expression does not tell us which expression belonging to some other language it is 
synonymous with. Instead it tells us which its sense is. Montague’s approach to 
analysis is indirect, Tichý’s direct. The TIL λ-terms are in themselves of no inter-
est and serve only as gateways or stepping-stones to non-linguistic entities, 
namely senses (constructions).86 The only way to talk about senses is to avail one-
self of terms denoting them. But the only task that the symbolic ‘language of construc-
tions’ has to fulfil is to denote (atomic and compound) constructions. Metaphorically, 

                                                           
84 See, e.g., Gamut (1991) or Montague (1974d).  
85 The original German text can be found in the Anhang: Kritik der Kantischen Philosophie in 
the 2nd Book of (1819), and goes,‘[Kant] ist demjenigen zu vergleichen, der die Höhe des 
Thurmes aus dessen Schatten mißt, ich aber dem, welcher den Maaßstab unmittelbar anlegt.’  
86 Cf. Russell, who famously talked about thinking about logical objects for 2 s every 6 months, 
the rest of the time thinking about notation (1953, p. 185).  
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the symbols are transparent in the sense that we look through them to look at the 
constructions they denote.87  

By way of illustration, the TIL analysis of  

 ‘1 + 2 = 3’ 

is the Composition 

 [0= [0+ 01 02] 03].  

The term ‘[0= [0+ 01 02] 03]’ denotes the sense of ‘1 + 2 = 3’, i.e. the procedure 
of applying the identity function to two arguments, the first being the result of ap-
plying the plus function to 1 and 2, the second argument being the number 3. In 
general terms, a logical analysis of a given language consists in establishing such 
pairs of expressions and constructions. The code function underlying a given natu-
ral language, at a given phase of its historical development, will have been 
cracked, once all the expressions of the language have been paired off with con-
structions. That meanings are conceptually prior to their encoding in a language is 
summed up thus:   

The notion of a code [our emphasis] presupposes that prior to, and independently of, the 
code itself there is a range of items to be encoded in it. Hence…meanings cannot be 
conceived of as products of the language itself. They must be seen as logical rather than 
linguistic structures, amenable to investigation quite apart from their verbal embodiments 
in any particular language. To investigate logical constructions in this way is the task of 
logic. The linguist’s brief is to investigate how logical constructions are encoded in 
various vernaculars (Tichý, 1994b, pp. 804–05).  

Coupling all the expressions of an actual natural language with constructions 
would be no mean achievement for field linguistics. Logical analysis does not as-
pire to crack the code for all the expressions of a language, but it must aspire to be 
able to crack the code of any expression. When the idealization is made that lan-
guage-users are perfectly competent, the idealization amounts to the language-
users mastering every �expression, construction� pair of a given language.  

TIL, and so its adjacent conception of logical analysis of natural language, is 
strictly opposed to any theories that maintain that meanings are produced by language. 

                                                           
87 Tichý suggested construing his λ-formalism as an iconography or pictorial script (see especial-
ly 1988, p. 224). This construal is buttressed by a strict enforcement of the principle of subject 
matter, which in turn might suggest something like a homomorphism between the set of λ-
terms and the set of constructions of a given order (though an isomorphism is excluded, since 
there are more constructions of a given order than there are λ-terms). However, we have not at-
tempted to develop this sketchy idea of iconography into a theory of λ-terms as something like 
logical pictures of constructions, mainly because the project of logical analysis of language does 
not need it and because any such theory would have to be embedded within the vast discussion 
on perfect languages, the expressive power of pictures, etc. For a discussion of the notion of pic-
torial script (without reference to TIL), see Jespersen and Reintges (2008).  
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Language, instead, is a code, and a code is a mapping of linguistic entities into 
non-linguistic entities. The latter are not inherently meanings, but become mean-
ings in virtue of the code. That is, entities existing conceptually prior to pieces of 
language are made to serve in the office of linguistic meaning.88 The idea of code 
is squarely incompatible with all theories that share with Quine the view that tak-
ing language as a code for certain objective operations means being a naïve advo-
cate of ‘the myth of the museum’.89  

Constructions, then, are the primary subject-matter of our logical study. Their 
encoding in particular languages is of secondary importance. How constructions 
are encoded is fixed by sets of linguistic conventions, and field linguistics studies 
a posteriori the conventions germane to different languages at particular stages in 
their historical development. But the properties of and relations between particular 
constructions are a priori. For instance, the argument  

There is no x such that x is a prime greater than 2 and x is even 
5 is a prime greater than 2 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
5 is not even 

is logically valid independently of in which natural language these constructions 
are encoded. If we choose Czech instead of English, the encoding of the above 
valid argument would trivially be different: 

Neexistuje x takové, že x je prvo�íslo v�tší než 2 a x je sudé 
5 je prvo�íslo v�tší než 2 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
5 není sudé �íslo. 

Yet the underlying constructions are identical. For instance, 00Prime =∗1 
00Prvo�íslo, 00Even =∗1 

00Sudé. What is Trivialized is not a symbol, but an object 
(here, the set of prime numbers and the set of even numbers). In fact, an identical 
construction is what two synonymous expressions (whether of the same language 
or different languages) owe their synonymy to.90     

The very term ‘construction’ is not entirely felicitous, connected as it is with 
many potentially misleading connotations, chief among which are the ones of 
mental procedure and constructivist proof (–object).91 However, TIL constructions 
and those of intuitionism/constructivism share some noteworthy common ground. 

                                                           
88 �where ‘office’ is used as in normal English and not as in TIL.  
89  See Materna (2004b).  
90 More precisely, synonymous expressions express a common concept; see Section 2.2.  
91 In choosing the term ‘construction’, Tichý was inspired by geometry ‘where we speak of vari-
ous constructions of, say, the center of a circle, using rule and compass’ (1986b, p. 514, 2004, 
p. 601).  
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For instance, verbally, at least, we agree with the intuitionist Fletcher when he 
says,  

If one had to define constructions in general, one would surely say that a type of 
construction is specified by some atoms and some combination rules of the form “Given 
constructions x1, …, xk one may form the construction C(x1,…,xk), subject to certain 
conditions on x1, …, xk” (1998, p. 51). 

TIL constructions are in themselves abstract, objective procedures. When made 
to serve as meanings, they are procedures detailing how to arrive at denoted enti-
ties.  

What in part characterizes semantic realism is exactly that ‘thoughts [in casu 
constructions. Our insertion] are independent of their expression in any language’ 
(Tichý, 1988, p. vii). Yet, although TIL is semantic realism with a vengeance, TIL 
fails to qualify as such according to Dummett’s entrenched definition of semantic 
realism. According to Dummett, realism construes sentential meanings as truth-
conditions, while Dummett’s own proof-theoretic anti-realism is cast in terms of 
assertability conditions. To qualify as realism in Dummett’s sense, since empirical 
truth-conditions are possible-world propositions, TIL would have to construe 
propositions as the senses of empirical sentences; but we have argued at length 
why we are not pursuing this tack. One tenet, though, that TIL shares with realism 
as Dummett understands it is that truth-conditions obtain or fail independently of 
human cognitive means to establish which way they go. It is evident, however, 
that Dummett’s conception of realism is too narrow to capture TIL, or indeed any 
other realist theory based on a procedural rather than truth-conditional semantics.92   

Thus one of the advocates of procedural semantics, W.A. Woods, sums up 
two extreme interpretations of procedural semantics – a black-box approach in which the 
internal structure of a meaning function is inaccessible (only the input-output relations are 
available), and a low-level detail approach in which every detail of the operation of the 
meaning function procedure is considered a ‘part of the meaning’. The former gives rise 
to a sense of equivalence between meaning functions that is too weak ..., in that it counts 
as equivalent meaning functions whose input-output relations are the same (in all possible 
situations) regardless of the means by which those extensions are determined [thus 
identifying, e.g., tautologies]. The low-level detail interpretation is at the opposite extreme 
of this spectrum. Its sense of equivalence is so strong that it counts two meaning functions 
as different if they differ in any detail of their operation regardless of the extent to which 
they effectively do the same thing. The notion of abstract procedure that is required for 
the characterization of meaning functions appears to lie somewhere between these 
extremes – providing a degree of internal structure that is considered significant, while 
leaving certain low-level details unspecified (or specified with suitable don’-care 
conditions) (1981, p. 329). 

When assigning a construction to an expression as its meaning, we specify pro-
cedural know-how, which must not be confused with the respective performatory 
know-how. Distinguishing performatory know-how from procedural know-how, 

                                                           
92 For the notion of procedural semantics, see Johnson-Laird (1977) and Woods (1981). For a de-
fence of denotational semantics against procedural semantics, see Fodor (1975).  
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Rescher says of the latter that a knower x ‘knows how A is done in the sense that x 
can spell out instructions for doing A’ (2005, p. 6). Thus,  

x knows that people swim by moving their arms and legs in a certain cycle of rhythmic 
motions. But, of course, x can know how A is done without being able to do A⎯that is, 
without x having the performatory skills that enable x to do A. (For instance, x may know 
that a certain result is produced when a text is translated from one language to another 
without actually knowing how to make such a translation.) (ibid., p. 7).  

If linguistic meaning is procedural, then to know what a given expression of a 
given language means is to possess procedural know-how. Linguistic competence 
is to know what particular procedure is encoded by an expression and how to ex-
ecute the procedure. It is not required of the linguistically competent either that 
they should execute the procedure or even have the performatory know-how to do 
so.  

For instance, to know what ‘1 + 2’ means is to understand the instruction to add 
1 and 2. It does not include either actually adding 1 and 2 (whether by following a 
procedure or by luck) or possessing the skill to do so. Similarly, we do understand 
the formulation of the Goldbach Conjecture (i.e., we do know the meaning of ‘All 
positive even integers � 4 can be expressed as the sum of two primes’) without be-
ing able to execute the instruction in order to obtain the respective truth-value. In 
other words, we know the following construction without knowing what this con-
struction constructs:93 

 ∀x [[[0Even x] ∧ [0> x 02]] ⊃ ∃yz [[0Prime y] ∧ [0Prime z] ∧ [x = [0+ y z]]]].   

Types: ν (the type of natural numbers); ∀/(ο(ον)); Even/(ον); Prime/(ον); x, y, 
z/∗1 → ν. 

Constructions are structured from the algorithmic point of view. We will now 
illustrate the way in which they are so structured. 

Let us again consider a simple arithmetical expression, say, 

 ‘7 + 5’. 

Bearing in mind that language is a code, we see that the above expression can 
be construed as encoding the meanings of particular simple subexpressions, but—
and this is most important�also the way these particular meanings combine to 
form the meaning of the whole expression. In other words, the meaning M of the 
whole expression 

M(‘7 + 5’) 

is not the same as the set of meanings of particular subexpressions of E, here 
                                                           
93 The respective hypothesis expresses an ineffective procedure.  
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{M(‘7’), M(‘5’), M(‘+’)}. 

(Remember Tichý’s metaphor of ‘Christmas decorations hanging from the 
branch’.) In general, constructions are abstract procedures that integrate particular 
subprocedures (‘steps’) into one whole. A mere set of meanings could not inte-
grate individual meanings into the meaning of a molecule. Constructions consist 
of parts that are themselves constructions. So since constructions are procedures, 
one could equally well say that procedures consist of parts that are themselves 
procedures. The meaning of ‘7 + 5’ is the procedure [0+ 07 05] decomposable into 
constituents as follows: 

(1) 07: identify the number 7 
(2) 05: identify the number 5 
(3) 0+: identify the function + 
(4) [0+ 07 05]: apply the product of step (3) to the products obtained at steps 

(1) and (2), respectively, in order to obtain the value of the function at 
this pair of arguments. 

At least since Frege’s days there have been logicians who strove to avail them-
selves of fine-grained and structured meanings.94 Analytic philosophy of language 
has pretty much since its inception been characterised in part by this quest. For in-
stance, Russell’s structured propositions were not unlike our constructions. Unlike 
sets, they consisted of parts, but some of these parts were (due to Russell’s theory 
of acquaintance) concrete particulars. This leads to consequences that do not tally 
with our intuitive use of the term ‘proposition’; for instance, that propositions 
must be mind-friendly. Thus, we would definitely side any day with Frege against 
Russell over whether Mont Blanc can be in any sensible way part of anything de-
serving the name ‘proposition’. Moreover, language-users understand many sen-
tences without being acquainted with the concrete particulars that the sentences 
talk about by means of abstract objects. The parts of a procedure have to be other 
procedures and cannot be the objects themselves, though the procedure may lead 
up to a non-procedure as its final output. A procedure (including any procedure 
figuring as a constituent subprocedure) is a presentation of an object rather than a 
presented object. But when knowing a procedure we need not know its output be-
fore actually executing it. We need to be acquainted with the procedure first be-
fore being able to execute it so as to arrive at the result. And some procedures may 
even fail to provide an output. A procedure is a different object than its product (if 
any), which is why exhaustive knowledge of the procedure does not include 
knowledge of its product. One thing is to know what to do (to know the proce-
dure), quite another thing is to actually execute the procedure, and yet another 
thing is to know and understand what sort of object, if any, is the output.  

                                                           
94 For example, see Sundholm (1994) on Frege’s epistemological motivations for a fine-grained 
individuation of Gedanken.  
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As pointed out in Section 1.1, Carnap (1947) rightly recognised that his inten-
sions cannot handle all cases of synonymy and attempted to define the concept of 
intensional isomorphism. Church (1954) launched a counterexample involving 
two intensionally isomorphic sentences, one of which can be easily believed and 
the other not. A criticism of Carnap’s attempt can be also found in Tichý (1988, 
pp. 8–9), where it is pointed out that the notion of intensional isomorphism is too 
dependent on a particular choice of notation. The structured character of meaning 
was later urged by David Lewis (1972), where non-structured intensions are gen-
erated by finite, ordered trees. This idea of ‘tree-like’ meanings obviously influ-
enced George Bealer’s idea of ‘intensions of the second kind’ in his (1982).95 

The idea of structured meaning was propagated also by M.J. Cresswell (1975) 
and (1985), in which meaning is defined as an ordered n-tuple. Cresswell would 
construe the meaning of the above expression as a triple, viz., 

�M(‘+’), M(‘7’), M(‘5’)�. 

That this is far from being a satisfactory solution is shown in Tichý (1994a) and 
Jespersen (2003). In brief, these tuples are again set-theoretic entities structured at 
most from a mereological point of view, by having elements or parts (though one 
balks at calling elements ‘parts’, since sets, including tuples, are not complexes). 
Besides, tuples are of the wrong making to serve as truth-bearers and objects of at-
titudes, since a tuple cannot be true or be known, hoped, etc., to be true. The above 
tuple is ‘flat’ from the procedural or algorithmic point of view. The way of com-
bining particular parts together is missing here. For instance, the instruction to ap-
ply the function plus to a particular argument could have been one such way. It is 
to no avail to add the operation of application to a tuple to somehow create pro-
positional unity, since the operation would merely be an element alongside other 
elements.96 Moreover, the procedure specifying a function remains the same when 
other arguments are supplied as input for the function to be applied to. It is uncon-
troversial that tuples are set-theoretic objects; and all sets, unlike procedures, are 
algorithmically simple, have no ‘input/output gaps’, and are flat mappings. 

                                                           
95 Van Heijenoort attempts to interpret Fregean Sinn in terms of trees. He suggests (1977, 
pp. 99–100) that the Fregean Sinn of a formula T is to be identified with a tree T', whose seman-
tic structure will be isomorphic to the syntactic structure of T. The suggestion is prima facie ap-
pealing, not least because the diagrammatic structure of trees is in the vicinity of the syntactic 
structure of Frege’s Begriffsschrift notation. However, as Van Heijenoort himself points out, ‘a 
tree is a mapping… Thus, in Fregean terms, a tree would be the object that is the Werthverlauf of 
a certain function. This conclusion may seem quite odd.’ Indeed it does. But, worse, if Fregean 
Sinn is to be sliced in terms of cognitive significance rather than merely logical equivalence, then 
a mapping won’t do as analysans due to the crude individuation of mappings.  
96 See Cocchiarella (2003, p. 51) for a recent statement of this objection. For a philosophical and 
historical discussion of propositional unity, see Gaskin (2008).  
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We agree with Moschovakis’ idea of meaning as algorithm (see Moschovakis 
(1994, 2006), van Lambalgen and Hamm (2004)). In Moschovakis (2006) the 
meaning of a term A is ‘an (abstract, idealized, not necessarily implementable) al-
gorithm which computes the denotation of A.’ (2006, p. 27; see also 1994).97 The 
later version (2006) works with a formal language that extends the typed λ-
calculus and so can accommodate, per Montague, reasonably large fragments of 
natural language. Moschovakis outlines his conception thus:  

The starting point … [is] the insight that a correct understanding of programming 
languages should explain the relation between a program and the algorithm it expresses, 
so that the basic interpretation scheme for a programming language is of the form 
  
(50) program P �  algorithm(P) � den(P). 

 
It is not hard to work out the mathematical theory of a suitably abstract notion of 
algorithm which makes this work; and once this is done, then it is hard to miss the 
similarity of (50) with the basic Fregean scheme for the interpretation of a natural 
language, 
 
(51)   term A � meaning(A) � den(A). 
 
This suggested at least a formal analogy between algorithms and meanings which seemed 
worth investigating, and proved after some work to be more than formal: when we view 
natural language with a programmer’s eye, it seems almost obvious that we can represent 
the meaning of a term A by the algorithm which is expressed by A and which computes its 
denotation (ibid., p. 42). 

In modern jargon, TIL belongs to the paradigm of structured meaning. How-
ever, Tichý does not reduce structure to set-theoretic sequences, as do Kaplan and 
Cresswell. Nor does Tichý fail to explain how the sense of a molecular term is de-
termined by the senses of its atoms and their syntactic arrangement, as Moschova-
kis objects to ‘structural’ approaches in (2006, p. 27).  

The notion of TIL construction is bound to elude the followers of holistic theo-
ries (Quine, the later Wittgenstein, etc.). In fact, the idea of construction is an anti-
holistic idea, supposing as it does that the meaning of an expression can be in 
principle composed from the meanings of its subexpressions.  

TIL is opposed to various nominalist trends in contemporary philosophy, not 
least their misuse of Occam’s razor. Tichý’ succinctly sums up the lie of the land:  

                                                           
97 Moschovakis’ notion of algorithm borders on being too permissive, since algorithms are nor-
mally understood to be effective. (See Cleland (2002)  for discussion.) Tichý separates algo-
rithms sharply from constructions: ‘The notion of construction is…correlative not with the no-
tion of algorithm itself but with what is known as a particular algorithmic computation, the 
sequence of steps prescribed by the algorithm when it is applied to a particular input. But not 
every construction is an algorithmic computation. An algorithmic computation is a sequence of 
effective steps, steps which consist in subjecting a manageable object…to a feasible operation. A 
construction, on the other hand, may involve steps which are not of this sort’ (1986b, p. 526 
2004, p. 613).  
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[T]he vision informing 20th century philosophy has been aptly described as one of a 
desert landscape. Philosophers behave as if in expectation of an ontological tax collector 
to whom they will owe the less the fewer entities they declare. The metaphysical purge is 
perpetrated under a banner emblazoned with Occam’s Razor. But Occam never 
counselled ontological genocide at all cost. He only cautioned against multiplying entities 
beyond necessity. His Razor is thus in full harmony with the complementary principle, 
known as Menger’s Comb, which cautions against trying to do with less what requires 
more. The two methodological precepts are just two sides of the same coin  
(1995, p. 175, 2004, p. 875). 

Thus one should bear in mind that there is a complementary warning in the 
shape of Menger’s comb. Another pointed criticism of the abuse of Occam’s razor 
is this: 

To satisfy the constraints of ontological parsimony, one should add as few objects as 
possible in a nonarbitrary way. But with abstract objects, the only way to add as few 
objects as possible in a nonarbitrary way is to add them all! … Platonized naturalism 
acknowledges that a maximal ontology of abstracta is the simplest because a plenum is 
not an arbitrary selection from some larger class (Linsky and Zalta, 1995, p. 552).  

Morale: logical analysis of natural language must take the form of a procedural 
semantics in order to succeed. So, in keeping with Menger’s comb, nothing less 
than a ‘maximal ontology of abstracta’ is going to be plentiful enough to contain 
procedures as fully-fledged entities.   

1.5.1.1 Analytic vs. logical 

There has been a long philosophical dispute concerning the definition of analytic 
truth and the relation between analytic and synthetic truths. The distinction goes as 
far back as Leibniz, at least. For now it is sufficient to adopt the explication that an 
analytically true sentence is true solely in virtue of its meaning. Since we presup-
pose full linguistic competence in language-users, sentences like ‘No bachelor is 
married’, ‘Whales are mammals’, and also mathematical sentences like ‘The prob-
lem of logical validity is not decidable in first-order predicate logic’ come out ana-
lytically true. Provided that we understand the meanings of the predicates ‘is a 
whale’ and ‘is a mammal’ as used in current English, when learning that whales 
are mammals we do not acquire information bearing on the state of the world. If 
you know that the individual before you is a whale, you need not examine the 
world in order to get to know that the individual is a mammal.   

Our procedural semantics enables us to easily define the difference between 
analytically and logically true sentence, as well as the difference between analyti-
cally and logically valid argument. Recall that TRUE is the proposition that takes 
value T in all worlds at all times. 
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Definition 1.9 (analytically true sentence) A mathematical sentence is analyti-
cally true iff it expresses a construction constructing the truth-value T. A sentence 
involving empirical expressions is analytically true iff it expresses a construction 
constructing the proposition TRUE.  

Yet the literal analysis of the sentence ‘No bachelor is married’ does not reveal 
the fact that it is analytically true.  

The types are: Bachelor, Married/(οι)τω; No/((ο(οι))(οι)): the quantifier that as-
signs to a given set M the set of those sets of individuals which have an empty in-
tersection with M. 

Thus the synthesis is:   

(*) λwλt [[0No 0Bachelorwt] 
0Marriedwt]. 

Type-checking: 

λwλt  [[0No   0Bachelorwt]     0Marriedwt]  
        ((ο(οι))(οι))    (οι) 

      (ο(οι))       (οι) 

             οτω   ο 

This Closure constructs a proposition, as it should, but it is not obvious that the 
so constructed proposition is identical to TRUE.98 

On the other hand, the sentence ‘It is not true that there is an individual x such 
that x is not married and x is a man and x is married’ is also analytically true; but 
not only that: it is also logically true, as its analysis shows: 

(**) λwλt [∀w∀t [¬∃x [¬[0Marriedwt x] ∧ [0Manwt x] ∧ [0Marriedwt x]]]]. 

Since the Composition [¬∃x [¬[0Marriedwt x] ∧ [0Manwt x] ∧ [0Marriedwt x]]] 
obviously and provably v-constructs T for any valuation v, the generalisation  

[∀w∀t [¬∃x [¬[0Marriedwt x] ∧ [0Manwt x] ∧ [0Marriedwt x]]]] 

constructs T. Therefore, the proposition constructed by the above Closure is the 
proposition TRUE.  

But, which of the two equivalent constructions (*), (**) should be assigned to 
‘No bachelor is married’ as its meaning? Provided the predicate ‘is a bachelor’ is a 

                                                           
98 This three-step analysis anticipates Section 2.1.1. 
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semantically simple expression, the literal meaning of this sentence is (*).99 Thus 
we define: 

Definition 1.10 (literal meaning of an expression) Let E be an expression whose 
semantically simple subexpressions are S1, …, Sn, and let S1, …, Sn denote the ob-
jects X1, …, Xm. Let CE be a construction that is assigned to E as its meaning such 
that there is no closed subconstruction of CE constructing an object that is not de-
noted by a subexpression of E. Then CE is the literal meaning of E iff 0X1, …, 0Xm 
are all closed subconstructions of CE constructing the objects X1, …, Xm, respec-
tively.    

Definition 1.10 imposes the constraint that the objects that receive mention by 
simple meaningful subexpressions should be constructed by their Trivialisations. 
If the expression E is semantically simple, then the Trivialisation of the denoted 
object is assigned to E as its literal meaning. On the other hand, if E is semanti-
cally complex, then the Trivialisations of objects denoted by simple subexpres-
sions of E are combined into a complex construction assigned to E as its literal 
meaning in the manner complying with the set-theoretical conditions imposed by 
E.100  

In order to define the notion of logical truth, we must first define the notion of 
literal logical form: 

Definition 1.11 (literal logical form of an expression)  Let CE be the literal logi-
cal analysis of E, whose subconstructions construct (by Trivialisation) the extra-
logical objects X1, …, Xn, Xi/αi. Let V1 → α1, …, Vn → αn be variables not occur-
ring in CE. Then the literal logical form (LLF) of E is the construction LCE that 
differs from CE only in replacing all occurrences of 0Xi by Vi.    

It is important to note that according to Definition 1.11 only Trivialisations of 
extra-logical objects are replaced by type-theoretically appropriate variables in 
order to obtain the literal logical form of the relevant expression. Construction of 
logical objects like truth-functions and quantifiers are left unchanged.101 Thus the 
literal logical form of a sentence corresponds to a formula of a formal language. 
The formulae of a formal language are associated with their models by means of 
an interpretation of special non-logical symbols. A formula is then logically true if 
it is true on every interpretation.  

As we explained at the outset of this section, we do not translate sentences of a 
natural language into a formal language with a view to interpreting this language. 
Instead, by means of ‘the language of constructions’ we directly examine con-
structions expressed by natural-language sentences. Yet there is a similarity with 

                                                           
99 The other option amounts to conceiving ‘is a bachelor’ as a semantically complex expression. 
See also Section 2.2.1. 
100 See Section 2.1 for the method of semantic analysis.  
101 See Section 1.4.3 for the list of logical objects.  
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the formal approach. If a sentence is logically true, it is true in virtue of its logical 
form, regardless of any particular extra-logical objects receiving mention in the 
sentence.102 For instance, the sentence ‘No number is even and not even’ is logi-
cally true, unlike the sentence ‘No number is even and odd’, which is only analyti-
cally true. The literal logical form assigned to the former is  

¬∃x [[E x] ∧ ¬[E x]], 

whereas the literal logical form assigned to the latter is 

¬∃x [[E x] ∧ [O x]]. 

Types: x → τ; E, O → (οτ). 
The construction ¬∃x [[E x] ∧ ¬[E x]] v-constructs T for all valuations of the 

variable E, whereas the construction ¬∃x [[E x] ∧ [O x]] v-constructs F for some 
valuations of variables E and O. These are those valuations for which E and O v-
construct sets with a non-empty intersection.103  

Thus Definition 1.11 enables us to easily define logically true sentence. 

Definition 1.12 (logically true sentence) A mathematical sentence S is logically 
true iff the LLF of S v-constructs the truth-value T for every valuation v. A sen-
tence S involving empirical expressions is logically true iff the LLF of S v-
constructs the proposition TRUE for every valuation v.  

Obviously, any logically true sentence is analytically true. It is a well-known 
fact that the converse does not hold, as indeed the ‘bachelor’ example showed. 
The same holds also for mathematical sentences, as showed by the above mathe-
matical example. For another mathematical example, the sentence T1  

T1 ‘If 2 < 5 and 5 < 11 then 2 < 11’ 

is analytically, but not logically, true. The LLF of T1 is (L → (οττ), k, m, n → τ): 

                                                           
102 This problem was tackled as early as in 1837 by Bolzano, who introduced a modern method 
of variation of (objective) representations (‘Vorstellungen an sich’) and defined generally valid 
sentences with respect to representations r1,…,rm such that the sentence remains true if these rep-
resentations are changed or varied (See 1837, §§147–48).  
103 Similarly, the formula ‘¬∃x [E(x) ∧ ¬E (x)]’ of first-order predicate logic is true on every in-
terpretation assigning a subset of the universe to the symbol ‘E’, whereas there are interpretations 
of ‘E’ and ‘O’ on which the formula ‘¬∃x [E(x) ∧ O(x)]’ is false, viz. those interpretations that 
assign non-disjoint sets to the symbols ‘E’ and ‘O’.  
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T1� [[[L k m] ∧ [L m n]] ⊃ [L k n]].104 

There is a valuation v such that the antecedent v-constructs T and the consequent 
F. (For instance, the valuation v that assigns the relation ≠ to the variable L, and 
the numbers 2, 5, 2 to variables k, m, n, respectively.) For the same reason, even 
the sentence T2 is not logically true:  

T2 ‘If 2 < 5 and 5 < 11 and if < is transitive then 2 < 11’.  

Though T2 specifies a more detailed procedure than T1, it leaves it open what is 
the definition of the transitive relation. LLF of T2 is (the variable T → (ο (οττ)) 
v-constructing a class of binary relations)   

T2� [[[L k m] ∧ [L m n] ∧ [T L]] ⊃ [L k n]], 

which is not the form of a logically true sentence. Only when we explicitly define 
the class of transitive binary relations by   

λr ∀x∀y∀z [[r x y] ⊃ [[r y z] ⊃ [r x z]]] 

is the logically true sentence T3 obtained:  

T3 ‘If 2 < 5 and 5 < 11 and if ∀x∀y∀z (x< y ⊃ (y< z ⊃ x< z)) then 2 < 11’. 

Additional types: r → (οττ); x, y, z → τ. 
The LLF of T3 is the form of a logically true sentence: 

T3�     [[[L k m] ∧ [L m n] ∧ ∀x∀y∀z [[L x y] ⊃ [[L y z] ⊃ [L x z]]]] ⊃ [L k n]]. 

These definitions make it possible to easily define the difference between analyti-
cally and logically valid arguments. For instance, the following argument is ana-
lytically, but not logically, valid: 

No bachelor has ever been married 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

Whales are mammals. 

Since both the premise and the conclusion are analytically true sentences, the ar-
gument is analytically valid; there is no possible world w and time t at which the 
premise would be true and the conclusion false. Similarly, the following mathe-
matical argument is analytically, but not logically, valid: 
                                                           
104 For the sake of simplicity we are now omitting the symbol of Trivialization of logical objects 
and using the standard notation of quantifiers and infix notation for the truth-functions.  
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No prime number greater than 2 is even; 
9 is not a prime number greater than 2 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
9 is not even. 

Since every true mathematical sentence is true only in virtue of its meaning, there 
is no world/time pair at which the premises were true and the conclusion false. 
Any argument with premises S1,…,Sn and conclusion S corresponds to a condi-
tional sentence of the form ‘If S1 and … and Sn then S’. If the argument is analyti-
cally valid, then there is no possible world w and time t such that the premises 
would be true and the conclusion false. Hence, the conditional sentence is analyti-
cally true. And vice versa, if the conditional sentence is analytically true, the cor-
responding argument is analytically valid. Thus we define: 

Definition 1.13 (analytically/logically valid argument) Let S1, …, Sn be premises 
and S the conclusion of an argument A, and let SA be the respective implicative 
statement of the form ‘If S1 and … and Sn then S’. Then 

(i) A is analytically valid iff SA is analytically true.  
(ii) A is logically valid iff SA is logically true.   

For instance, the following argument is not only analytically, but also logically 
valid: 

There is no x such that x is a prime number greater than 2 and x is even; 
5 is a prime number greater than 2 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
5 is not even. 

The literal analysis of the premises and the conclusion is as follows: 

[0¬ [0∃λx [0∧ [0∧ [0Prime x] [0> x 02]] [0Even x]]]] 
[[0∧ [0Prime 05] [0> 05 02]] 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
[0¬ [0Even 05]]. 

Types: ∃/(ο(οτ)); Prime, Even/(οτ), >/(οττ); 5, 2/τ; x/∗1→τ. 

And the corresponding literal logical form is: 

[0¬ [0∃λx [0∧ [0∧ [P x] [R x a]] [E x]]]]; 
[[0∧ [P b] [R b a]] 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
[0¬ [E b]]. 
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Now it is easy to prove that the corresponding implicative sentence is logically 
true (to make this fact easier to see, we are again using standard infix notation 
without Trivialisation for logical connectives): 

[¬∃x [[P x] ∧ [R x a] ∧ [E x]] ∧ [[P b] ∧ [R b a]]] ⊃ ¬[E b] = 

[∀x[[[P x] ∧ [R x a]] ⊃ ¬[E x]] ∧ [[P b] ∧ [R b a]]] ⊃ ¬[E b] 

Variables: P, E/∗1→(οτ); R/∗1→(οττ); a, b/∗1→τ. 
As we have argued in Section 1.2, an argument is valid or invalid in virtue of 

the meanings of its premises and conclusion. Therefore, the type of the entailment 
relation obtaining between the set of premises and the conclusion of an argument 
is (ο(o∗ n)∗n). It is a relation-in-extension between a set of constructions (the 
meanings of the premises) and a construction (the meaning of the conclusion).105 
Thus the entailment relation can be defined as follows: 

Let S1, …, Sn be the premises and S the conclusion of an argument involving 
the empirical expressions S1, ..., Sn, S thus expressing the propositional construc-

∀w∀t [[[0Truewt C1] ∧ …∧ [0Truewt Cn]] ⊃ [0Truewt C]]. 

True/(οοτω)τω is the propositional property of being true at �w, t�.  
Let S1, …, Sn be the premises and S the conclusion of a mathematical argument, 

S1, ..., Sn, S thus expressing the truth-value constructions C1, …, Cn, C → ο. Then 
S1, …, Sn entail S if the set of constructions C1, …, Cn entails the construction C. 
As a corollary of definition 1.13, this is so iff  

[[[0True* 0C1] ∧ …∧ [0True* 0Cn]] ⊃ [0True* 0C]]. 

True*/(ο∗n) is the function that, when applied to a truth-value construction C, re-
turns the value T if C v-constructs T, otherwise F.  

Remarks.  

(a) Empirical case.  
Since the propositions denoted by the premises and the conclusion of a valid ar-
gument may lack a truth-value in some world w at a time t, we have to use the 
propositional property True.  
 
 
 

                                                           
105 See Tichý (1988, p. 235).  

lary of definition 1.13, this is so iff   
tions C1, …, Cn, C → οτω. Then S1,…, Sn entail S if {C1, …, Cn}|= C. As a corol-
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(b) Mathematical case.  
Since the premises or conclusion of a mathematical argument may express v-
improper constructions, we need to use the function True*.106  
If partiality were not involved, then the Composition [0True* 0C] would be 
equivalent to [20C] or simply to C.  

1.5.2 Supposition de dicto and de re vs. reference shift 

The term ‘transparent’ in ‘transparent intensional logic’ is to be interpreted in an 
anti-contextualistic manner. The point is that various alternative approaches lead 
to a seemingly necessary limitation of the compositionality principle. ‘Oblique 
contexts’ are standardly cited as a motive for restraining the principle. Intentional 
contexts are typical instances of ‘oblique contexts’. Example: Since it was Sir 
Walter Scott who wrote the novels Waverley and Ivanhoe, Frege would have held 
that the definite descriptions 

‘The author of Waverley’ 

and  

‘The author of Ivanhoe’, 

denoted Sir Walter Scott. Evidently, the sentence 

‘Charles believes that the author of Waverley is a poet’  

can be true whereas the sentence 

‘Charles believes that the author of Ivanhoe is a poet’ 

can be false at the same time. Frege wanted to observe compositionality, which 
would be obviously violated if ‘The author of Waverley’ denoted the same indi-
vidual as ‘The author of Ivanhoe’; the truth-value of both sentences would neces-
sarily be the same. Wishing to save compositionality, Frege made the semantics of 
an expression depend on the linguistic context in which it is embedded. In atomic 
and molecular contexts ‘The author of Waverley’ and ‘The author of Ivanhoe’ 
both denote Sir Walter Scott, but in ‘oblique contexts’ like the one above both de-
scriptions denote what in atomic and molecular contexts (e.g., ‘The author of 
Waverley is happy and the Sun is shining’) is their sense. Compositionality is 
                                                           
106 Note also that due to the ramified hierarchy of types, no inconsistency problems arise when 
introducing truth predicates like True and True*. In our higher-order typed approach there is no 
need to use disquotation like True(‘walks(Bill)’) ⇔ walks(Bill) and a hierarchy of meta-
languages with their established grounded truths. The sentence ‘Bill walks’ is true in world w at 
time t if the proposition constructed by λwλt [0Walkwt 

0Bill] takes value T in w at t.  



1.5 Constructions as structured meanings      111 

saved (the expressions possessing distinct senses); the price exacted is contextual-
ism. 

The price is very high indeed. No expression can denote an object, unless a par-
ticular kind of context is provided. Yet such a solution is far from being natural. 
There are cases of real ambiguity, witness homonymous expressions. Which of the 
denotations is relevant in such cases (e.g., ‘is a bank’) can be detected by a par-
ticular context (cf. ‘A bank was robbed’ vs. ‘A woman walks along the banks of 
the Dnepr’), but would anybody say that ‘The author of Waverley’ were another 
such case of homonymy? Hardly; unless, of course, their intuitions had been 
warped by Fregean contextualism. Furthermore, expressions can be embedded 
within other expressions to various degrees; consider the sentence 

‘Charles knows that Tom believes that the author of Waverley is a poet.’ 

The expression ‘The author of Waverley’ should now denote the ‘normal’ sense 
of the ‘normal sense’ of itself. Adding still further layers of embedding sets off an 
infinite hierarchy of senses, which is to say that ‘The author of Waverley’ has the 
potential of being infinitely ambiguous. This seems plain wrong, and is first and 
foremost an awkward artefact of Frege-Churchian semantics.    

One well-known form of contextualism consists in distinguishing two kinds of 
context. In one kind (‘referential context’) a definite description refers to the ob-
ject that satisfies the uniqueness condition, in the other context a definite descrip-
tion denotes something else. The problem with the distinction between two kinds 
of semantic context is that their definition is circular. Someone who propounds it 
wants to say that the descriptive term refers to the object that occupies the respec-
tive individual office in the respective kind of context. But this kind of context is 
defined just via the way the term is supposed to function in such a context: 

Q: When is a context extensional? 
A: A context is extensional if it validates the rules of (i) substitution of co-

referential singular terms and (ii) existential generalisation. 
Q: And when are (i), (ii) valid? 
A: These rules are valid if all the contexts they are applied to are extension-

al.  

Hence, the notions of extensional context and the validity of (i), (ii) are interde-
fined, the respective definiendum and definiens presupposing one another. This ar-
gument, which Tichý merely drops in passing,107 is a potent one. In general the 
obvious move is to either define the semantic notion of extensional context 
(partly) in terms of the logical notion of the validity of one or more rules or else 
define the logical notion (partly) in terms of the semantic one. But to do either, it 
is required that the respective definiens be already determinate.  

                                                           
107 See Tichý (1986a, p. 256, 2004, p. 654).  
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In this book we proceed in the following manner:108 We first define the occur-
rence of a meaning-endowed constituent with extensional and intensional supposi-
tion, respectively. Thus we speak of extensional contexts in which constructions 
occur with extensional supposition, and of intensional contexts in which construc-
tions occur with intensional supposition. Then we go on to prove that the rules (i) 
and (ii) are valid in extensional contexts.  

Besides, even if reference shift is embraced, it is insufficient to let ‘the F’ de-
note a Sinn in an oblique context. If a believes that the F is a G then ‘the F’ de-
notes a Sinn⎯but a does not believe that some Sinn is a G. For instance, if Charles 
believes that the author of Ivanhoe is a Dutchman then Charles does not believe 
that the Sinn of ‘The author of Ivanhoe’ is a Dutchman. The advocates of refer-
ence shift need to explain how, in an oblique context, the Sinn of a term is to de-
scend to an entity capable of being a Dutchman. In other words, what is needed is 
an account of extensionalization, or intensional descent.   

The way out of the circle consists in (disambiguated) expressions denoting ob-
jects independently of context. In our example we say that ‘The author of Waver-
ley’ never denotes the individual Sir Walter Scott; it always denotes the individual 
office that an individual must occupy to be the author of Waverley.  

In TIL we construe this office as an ι-intension of type ιτω; a function from pos-
sible worlds and times to the universe (the set of individuals) . In a so-called ‘di-
rect’ context (oratio recta) like 

‘The author of Waverley is a poet’ 

we predicate the respective property of whomever individual (if any) occupies this 
office in the given world/time of evaluation. Thus the truth-value of the proposi-
tion denoted by the sentence at the given �w, t� depends only on the particular in-
dividual who occupies the office at that �w, t�; it is irrelevant who occupies it at 
worlds/times other than �w, t�. In an ‘oblique’ context (oratio obliqua) we do not 
use the office in this manner, we just mention it, and the truth-value of the propo-
sition is dependent on the occupancy of the office in all worlds at all times. The 
former case is known as using the definite description ‘The author of Waverley’ 
with de re supposition, the latter as using it with de dicto supposition. Its meaning 
and denotation are, however, the same in both cases.  

Thus the meaning of ‘The author of Waverley’ is a construction of an individ-
ual office: 

λwλt [0Author_ofwt 
0Waverley] → ιτω. 

                                                           
108 See Section 2.6. 
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Types: Author_of/(ιι)τω; Waverley/ι.109 
The meaning of ‘The author of Waverley is a poet’ is the propositional con-

struction 

λwλt [0Poetwt λwλt [0Author_ofwt 
0Waverley]wt]  → οτω. 

Additional type: Poet/(οι)τω.  
The meaning of ‘Tom believes that the author of Waverley is a poet’ is a con-

struction of another proposition: 

λwλt [0Believewt 
0Tom [λwλt [0Poetwt λwλt [0Author_ofwt 

0Waverley]wt]]] → οτω, 

(if the sentence is construed as expressing an implicit belief), or alternatively  

λwλt [0Believe*wt 
0Tom 0[λwλt [0Poetwt λwλt [0Author_ofwt 

0Waverley]wt]]] → οτω, 

(if the sentence is construed as expressing an explicit belief).110 
Additional types: Believe/(οιοτω)τω: a relation(-in-intension) of an individual to a 
proposition; Believe*/(οι∗n)τω: a relation(-in-intension) of an individual to a hy-
perproposition, i.e. a propositional construction; Tom/ι.   

Finally, the meaning of ‘Charles knows that Tom believes that the author of 
Waverley is a poet’ is again a construction of a proposition. Implicit knowledge 
first: 

λwλt [0Knowwt 
0Charles [λwλt [0Believewt 

0Tom  
[λwλt [0Poetwt λwλt [0Author_ofwt 

0Waverley]wt]]]]]. 

Explicit knowledge:  

λwλt [0Know*wt 
0Charles 0[λwλt [0Believewt 

0Tom  
[λwλt [0Poetwt λwλt [0Author_ofwt 

0Waverley]wt]]]]]. 

Additional types: Know/(οιοτω)τω: a relation(-in-intension) of an individual to a 
proposition; Know*/(οι∗n)τω: a relation(-in-intension) of an individual to a pro-
positional construction; Charles/ι. 

Our top-down approach furnishing all the expressions with a hyperintensional 
semantics⎯i.e., assigning constructions (of intensions) to (empirical) expressions 
as their meanings in all kinds of context⎯makes it possible to adhere to the 

                                                           
109 To assign the type ι to a novel is a crass philosophical simplification, of course; here it is log-
ically innocuous, since we are not going to draw inferences. 
110 ‘Propositional’ attitudes divide into relations (-in-intension) to propositions/οτω and proposi-
tional constructions/∗n → οτω. The former are often called implicit attitudes, the latter explicit at-
titudes. We will deal with propositional attitudes in detail in Section 5.1.   
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compositionality principle. In a word, compositionality is saved without resorting 
to contextualism.  

In TIL, there is no such contextual thing as the intension/extension of an ex-
pression. Instead every expression either denotes an extension or an intension, in-
dependently of contextual embedding. What is dependent on context is the suppo-
sition, which comes in a de dicto and a de re variant. In general, empirical 
expressions denote non-constant intensions. We will rigorously define the de 
dicto/de re distinction in Section 2.7. Now we explicate the difference only infor-
mally. 

Compare the following sentences: 

(S1) ‘The President of the Czech Republic is an economist.’ 

(S2) ‘The President of the Czech Republic is eligible.’ 

First, neither sentence talks about Václav Klaus, though the office of President 
of the Czech Republic is currently (2010) occupied by Klaus. The individual 
named ‘Václav Klaus’ does not receive mention here. Instead, both sentences talk 
about the individual office denoted by ‘The President of the Czech Republic’. The 
definite description ‘The President of the Czech Republic’ never denotes the indi-
vidual (if any) that occupies the office; it only contingently refers to a particular 
individual. We language-users understand the expression in exactly the same way 
regardless of the embedding context. Moreover, we understand it even if we do 
not know which individual occupies the office in the actual world at time t, and we 
do understand it even with respect to such a state of affairs �w, t� at which no indi-
vidual is occupying the office. Hence the definite description ‘The President of the 
Czech Republic’ denotes the office PresCR/ιτω itself, and its meaning is a con-
struction of that office: 

λwλt [0Pres_ofwt 0CR] → ιτω. 

Types: Pres_of/(ιι)τω; CR/ι. 
Yet there is a substantial difference between how the meaning of ‘The Presi-

dent of the Czech Republic’ occurs in (S1) and (S2). The property of being an 
economist cannot be ascribed to an office but only to an individual. On the other 
hand, the property of being eligible can only be ascribed to the office itself. That 
the President is eligible means that the presidency acquires a holder by election. It 
would appear as though (S1) were about, inter alia, the individual occupying the 
office PresCR, anyway. But ‘The President of the Czech Republic’ is used here as 
a pointer to an individual, so the office must be extensionalized via application to 
the values of w, t to provide an individual: 

[λwλt [0Pres_ofwt 0CR]]wt →v ι 



1.5 Constructions as structured meanings      115 

This Composition v-constructs relative to a world/time parameter the individual (if 
any) occupying the office at the given �w, t�. (Remember that denotation is a se-
mantic relation a priori between expressions and entities, and reference an extra-
semantic, factual relation between expressions and world-time relative entities.)  

Thus the analysis of (S1) comes down to this construction: 

(S1�) λwλt [0Economistwt [λwλt [0Pres_ofwt 0CR]]wt] 

Additional type: Economist/(οι)τω. 
Individuals can be economists, but they cannot be eligible; individual offices 

can. Though a particular individual, say Klaus, can be elected for a presidential of-
fice, the individual itself is not eligible. (If individuals were eligible, it would 
mean that one could become a particular individual by election: a fascinating 
thought, perhaps.) Instead, the office is currently eligible by the Czech Parliament; 
but the office could be hereditary, or eligible by referendum. Eligible is of type 
(οιτω)τω, and the analysis of (S2) is this: 

(S2�) λwλt [0Eligiblewt [λwλt [0Pres_ofwt 0CR]]].  

We say that the meaning of ‘The President of the Czech Republic’ is used with 
supposition de re in (S1�) and supposition de dicto in (S2�). However, the meaning 
of ‘The President of the Czech Republic’, namely the Closure λwλt [0Pres_ofwt 
0CR], remains the same. Again, the shift concerns neither the meaning nor the de-
notation, but only the supposition with which the (same) meaning is used.  

The proposition constructed by (S1�) takes the value T at those �w, t� at which 
the individual that occupies PresCR belongs to the class of individuals that instan-
tiate the property of being an economist, and F if the individual does not belong to 
the class. It might seem that in such a state-of-affairs where there is no President 
of the Czech Republic the proposition should be false. (This would be the Russel-
lian tack.) However, if it was so, the proposition that the President of the Czech 
Republic is not an economist would have to be true, which would in turn entail 
that there were indeed a President of the Czech republic.111 In other words, that the 
President of the CR is an economist not only entails but also presupposes that the 
President of the CR exists. Remember that our logic is one of partial functions. 
Once a constituent⎯λwλt [0Pres_ofwt 0CR]wt in our case⎯of a Composed con-
struction is v-improper, the whole Composition is v-improper, and the function 
(here, a proposition) constructed by the respective Closure is undefined at its ar-
gument (See Definition 1.2). Therefore in those states of affairs where PresCR is 
vacant, the proposition has no truth-value.  

On the other hand, the proposition denoted by (S2) may be false even in the 
states-of-affairs lacking a President of the Czech Republic. Its truth-value does not 
depend on the occupancy of PresCR in those states-of-affairs. In particular, we 
                                                           
111 See Strawson (1950).  
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cannot substitute a construction of the current occupant of the office. For if we 
could do this, we could deduce, absurdly, that Klaus is eligible. 

In Section 1.1 we argued that empirical expressions rigidly denote intensions. 
Later we added that empirical expressions non-rigidly refer to particular values of 
the intensions denoted by them. However, there are expressions that never refer to 
an extension. For instance, when we claim that the President of the USA is eligi-
ble, we should, properly speaking, say that the office of President of the USA is 
eligible. Eligibility is a property of the office (of type (οιτω)τω). The expression 
‘The office of the President of the USA’ (or ‘The American presidency’ for short) 
never refers to an individual. It rigidly denotes the office itself and can be used 
only with de dicto supposition.112 Similarly, the predicate ‘is happy’ denotes a 
property of individuals (Happiness/(οι)τω) and when used (in the de re way) in or-
der to be predicated of an individual it refers at �w, t� to a particular class of indi-
viduals. However, ‘happiness’ rigidly denotes the property Happiness but cannot 
be predicated of individuals. It can be used only in the de dicto way, like in the 
sentence ‘Happiness is Charles’ ultimate goal in life’. In general, the intensional 
semantics of TIL enables us to say that some empirical expressions like ‘happi-
ness’, ‘the American presidency’, ‘the proposition that G.W. Bush is the President 
of the USA’, etc., which rigidly denote intensions, are names given to those enti-
ties by a linguistic convention. They are rigid designators de jure and they never 
non-rigidly refer to particular extensions.113  

The de dicto/de re distinction can be summarized as follows:  

De dicto supposition:  
A construction CE  → ατω (and derivatively the subexpression E whose meaning 
CE is) occurring in the analysis CS of a sentence S is used with de dicto supposition 
in CS iff the truth-value of the proposition v-constructed by CS in a world w at a 
time t does not depend only on the particular value of the 	-intension IE v-
constructed by CE at this particular �w, t�. Rather, it depends on the whole IE. In 
other words, the intension IE is a dictum and is not used to point to a value.  

De re supposition: 
There is de re supposition when the reference of E (namely, the α-value, the res, 
v-constructed by CEwt) of the denoted 	-intension IE comes into play. The truth-
value of the proposition denoted by S in a world w at a time t depends on the value 
of the 	-intension IE denoted by E at this particular �w, t�, while the values of IE at 
other �w�, t�� are irrelevant. 

This preliminary characterization could serve almost as a definition, though not 
quite. According to it, the sentence S alone would be in de re supposition in it-
self, which is not so. The sentence talks about (denotes) the whole dictum⎯a 

                                                           
112 More precisely, its meaning occurs always intensionally, see Section 2.6.2, in particular Defi-
nition 2.20.  
113 See Zouhar (2009), where he deals with the Kripkean distinction between rigid designators de 
jure and de facto.  
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proposition⎯and never its reference (res)⎯its truth-value in the actual world-
time. The sentences (S1), (S2), and the constructions (S1�), (S2�), respectively, occur 
with de dicto supposition in themselves.  

Note that in a compound sentence particular clauses may occur with de re as 
well as with de dicto supposition. Consider the following example: 

(S3) ‘If the President of the Czech Republic is a playwright then the President 
of the Czech Republic is Václav Havel.’ 

An analysis of the antecedent and consequent sentences yields the following 
propositional constructions, respectively: 

(Ca) λwλt [0Playwrightwt λwλt [0Pres_ofwt 0CR]wt] 

(Cb) λwλt [λwλt [0Pres_ofwt 0CR]wt = 0Havel]. 

Additional types: Playwright/(οι)τω; Havel/ι. 
However, the propositional connective ‘⊃’ (implication) denotes a truth-

function of type (οοο); it must be applied to truth-values and cannot be applied to 
propositions. Thus the propositions constructed by (Ca), (Cb) have to undergo in-
tensional descent, and the truth-value (in w at t) of the proposition denoted by (S3) 
does depend on the truth-values of these propositions at the same particular �w, t�:  

(S3�) λwλt [0⊃ [λwλt [0Playwrightwt λwλt [0Pres_ofwt 0CR]wt]]wt    
  [λwλt [λwλt [0Pres_ofwt 0CR]wt = 0Havel]]wt].    

Both sentences and their meanings (Ca), (Cb) occur with supposition de re in 
(S3), (S3�), respectively. Again, at those �w, t� at which PresCR is vacant, the sen-
tence (S3) does not have a truth-value. The fact is even more evident if we con-
sider the �-reduced construction (S3�) equivalent to (S3�):  

(S3�) λwλt [[0Playwrightwt [0Pres_ofwt 
0CR]] ⊃ [[0Pres_ofwt 

0CR] = 0Havel]]. 

At those worlds and times where the Presidency is vacant, the construction 
[0Pres_ofwt 0CR] fails to construct an occupant of PresCR. Due to the definition of 
Composition, both Composed subconstructions of (S3�), namely [0Playwrightwt 
[0Pres_ofwt 0CR]] and [[0Pres_ofwt 0CR] = 0Havel], are also v-improper. Thus the con-
struction of the implication function ⊃ does not receive an argument to work on, and it 
also fails to v-construct a truth-value. The proposition constructed by (S3�) is undefined 
for those worlds and times at which the Presidency goes vacant. This is so because (S3) 
comes with an existential presupposition: for (S3) to take a truth-value at a given �w, t�, 
the President of the Czech Republic has to exist at that �w, t�. Again, (S3) not only 
entails but also presupposes the existence of the President of the Czech Republic. 
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Remark. This kind of a �-reduction has been called in Duží (2003a, b, 2004) 
�i-reduction (‘i’ meaning ‘innocuous’). It consists simply in substituting variables 
for variables (of the same type), in our case w, t for w, t. Since a variable can never 
be v-improper, such a reduction is always an equivalent transformation. In this 
sense it is ‘innocuous’. However, in a logic of partial functions like TIL it must be 
taken into account that a simple ‘syntactic version’ of the �-reduction rule is gen-
erally not valid. We will deal with the problem in Section 2.7.  

1.5.2.1 Two principles de re 

Existential presupposition is a special case of presupposition. For instance, the 
sentence ‘Charles stopped smoking’ not only entails that Charles previously 
smoked, but also presupposes it. One cannot stop doing something that one has 
not previously done. Strawson’s test makes this clear. Being asked whether you 
stopped smoking, you are not entitled to give a Yes/No answer unless you previ-
ously smoked.  

To define the notion of presupposition, we make use of the three propositional 
properties True, False, and Undef, all of type (οοτω)τω. They are defined as fol-
lows.114 Let P be a propositional construction (P/∗n → οτω). Then  

[0Truewt P] v-constructs the truth-value T iff Pwt  v-constructs T, otherwise F. 

[0Falsewt P] v-constructs the truth-value T iff [¬Pwt] v-constructs T, otherwise F. 

[0Undefwt P] v-constructs the truth-value T iff [[¬[0Truewt P]] ∧ [[¬0Falsewt P]]]  
v-constructs T, otherwise F.  

Hence [0Undefwt P] = [[¬0Truewt P] ∧ [¬0Falsewt P]]. 

 Note that, e.g., [¬[0Truewt P]] is not equivalent to [0Falsewt P], though our logic 
is bivalent. We do not work with a third truth-value. If [0Undefwt P] v-constructs T, 
then Pwt is v-improper, and the proposition P constructed by P does not have any 
truth-value at �w, t�.115  

Now we define:  

Definition 1.14 (presupposition) Let P, Q → οτω be constructions constructing 
propositions P, Q. Then Q is a presupposition of P iff the truth of Q at �w, t� is a 
necessary condition for P having a truth-value at �w, t�:  

∀w∀t [[0Truewt P] ∨ [0Falsewt P]] ⊃ [0Truewt Q]].  

                                                           
114 Now we use this convention: ‘P’ for a construction of a proposition, ‘P’ for the proposition 
v-constructed by P.  
115 Cf. Table 1.1: truth-value matrix, Section 1.4.3. 
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Corollary. Q is a presupposition of P iff Q is entailed both by P and non-P. If Q is 
not true at �w, t�, then P is undefined at �w, t�: 

∀w∀t [¬[0Truewt Q] ⊃ [0Undefwt P]]. 

One should not confuse the notion of presupposition with the notion of com-
mitment, for the latter is weaker than the former. In order to exactly determine the 
difference, we recall the definition of the entailment relation. Let P, Q be proposi-
tional constructions as above. Then the P entails Q (P |=Q) iff 

∀w∀t [[0Truewt P] ⊃ [0Truewt Q]]. 

We will often use the notation ‘(P |= Q)’ instead of ‘[0|= 0P 0Q]’. Note that P, Q 
must be Trivialized, since these very constructions, rather than the propositions 
they construct, are the arguments of |=.  

Schematically, the difference between presupposition and commitment is this. 
Let non-P be a propositional construction of the form λwλt [¬Pwt]. Then   

(i) Q is a presupposition of P iff (P |= Q) and (non-P |= Q)  
(ii) Q is a commitment of P iff (P |= Q) and neither (non-P |= Q)  

       nor (non-P |= non-Q) 

An example of commitment would be, for instance: 

‘Ground zero was visited by the Pope in April of 2008.’ 

The sentence is multiply ambiguous. The ambiguity concerns the supposition 
with which the definite descriptions ‘ground zero’ and ‘the Pope’ occur, where 
‘ground zero’ goes short for ‘the ground zero in New York City’.116 On one read-
ing both occur with de re supposition. In such a case the sentence presupposes that 
both ground zero and the Pope exist now. Yet there are other readings. Among 
them is the reading on which ‘ground zero’ occurs de re and ‘the Pope’ occurs de 
dicto with respect to the temporal parameter.117 In such a case the sentence pre-
supposes the existence of ground zero, but not of the Pope now. It only entails that 
the Pope existed in April 2008. Hence, if it were true that  

‘Ground zero was not visited by the Pope in April 2008’, 

one could not deduce that the Pope exists now or existed in April, 2008. That 
ground zero was not visited by the Pope in April of 2008 might have been either 
because the office of Pope was vacant at the time or that the Pope did exist but its 

                                                           
116 It is interesting to note that ‘[the] ground zero [of New York City]’ has now been elevated to 
the status of proper name, which requires capitalizing both words, as in ‘Ground Zero’. Many 
sites are ground zero, but only one is Ground Zero, relative to the status that current American 
English has bestowed upon ‘Ground Zero’. In journalese ‘Ground Zero’ refers to one particular 
ground zero. So if the Pope visits the NYC ground zero then the New York Times et al. are like-
ly to write ‘The Pope to visit Ground Zero’.  
117 We will deal with temporal de dicto vs. de re cases in Section 2.5.2.3. 
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occupant was not among the visitors of ground zero. This goes to show why 
commitment is weaker than presupposition.   

We are now able to formulate the first principle de re:  

Principle of existential presupposition. If a construction C of an α-office 
C/	τω occurs with de re supposition in the propositional construction P, then 

The office of President of the Czech Republic is certainly a properly partial 
function: there are worlds/times at which the President of the Czech Republic does 
not exist; for instance, in the actual world and at all times before 1993. However, 

λwλt [0Economistwt λwλt [0Pres_ofwt 
0CR]wt] 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
λwλt [0Existwt  λwλt [0Pres_ofwt 

0CR]]. 

Similarly, the President of the Czech Republic not being an economist entails 
the existence of the President of the Czech Republic.  

Since the property of existence (in the sense of occupancy of an office) can be 
defined by means of the existential quantifier (x → ι; r → ιτω; =ι/(οιι)),  

λwλt λr [0∃ λx [0=ι x rwt]], 

the conclusion can be equivalently expressed by the construction 

λwλt [0∃ λx [0=ι x λwλt [0Pres_ofwt 
0CR]wt]]. 

Valid logical forms of the arguments are thus easily obtained by existential 
generalisation:  

 λwλt [Pwt rwt]   λwλt ¬[Pwt rwt] 
⎯⎯⎯⎯⎯⎯⎯⎯⎯—  ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
λwλt [0∃ λx [0=ι x rwt]]   λwλt [0∃ λx [0=ι x rwt]]. 

Additional type: (P → (οι)τω):118  

                                                           
118 See Section 1.5.1 for details on the notion of logical form. 

the proposition constructed by P has the presupposition that C exist (that 
the α-office C be occupied): λwλt [0Existwt C], Exist/(οιτω)τω.  

if [0 = is true, then so is the proposition that the President of the Czech Republic 
exists. In Section 2.3 we show that existence can be analysed as a property of in-
tensions, in this case of individual offices, Exist/(οιτω)τω. Hence the following ar-
gument is valid: 

Of course, if the proposition constructed by the premise takes value T at �w, t� 
then the individual occupying at �w, t� the office constructed by λwλt [0Pres_ofwt 

0CR] 
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However, due to partiality, a valid argument may fail to be falsity-preserving 
from conclusion to premises.119 If at �w, t� the conclusion is false, then it does not 
mean that at least one of the premises is false at �w, t�. For, if the office is not oc-
cupied at a particular world W and a particular time T, then the construction λwλt 
[0Pres_ofwt 

0CR]wt is v-improper for the valuation assigning W to w and T to t. 
Therefore, the Composition in which the construction of the office occurs de re, 
namely   

[0Economistwt λwλt [0Pres_ofwt 
0CR]wt] 

is also v(W/w, T/t)-improper, and the proposition P constructed by the premise has 
no truth-value at this �W, T�. It is neither true nor false, because in the absence of a 
President at �W, T� there is no fact of the matter as to whether the President is an 
economist at �W, T�. The proposition P is a properly partial function, because it 
has truth-value gaps. In order that P have a truth-value, the President of the Czech 
Republic has to exist; P comes with an existential presupposition.  

Remember that we do not introduce a third truth-value in order to handle partiality. 
Thus we do not follow Muskens’ theory of partial possible worlds or Barwise and 
Perry’s situation semantics, nor do we introduce partiality whenever it might seem 
to be technically convenient.120 TIL is a Platonist semantics, ideally aiming at cut-
ting reality at its joints, as the saying goes. Propositions simply are true, false or 
neither, independently of our ‘allowing’ them to be so, and they are never both 
true and false. (There is no room for paraconsistent truth-value gluts in TIL.)  

For example, Muskens (1995, pp. 42–50) introduces four combinations of 
truth-values: T = ‘true and not false’, F = ‘false and not true’, N = ‘neither true nor 
false’ and B = ‘both true and false’, in order to handle synonymy in terms of co-
entailment. In Muskens’ partial logic, the sentences 

(1)  ‘John walks’  

and  

(2)  ‘John walks and Bill talks or does not talk’  

are not equivalent, though ‘Bill talks or does not talk’ is a classical tautology and 
as such denotes the necessary proposition true in all possible worlds. According to 
Muskens, the reason is because in a situation where Mary sees John but not Bill, 
the sentence ‘Mary sees John walk’ can be true or false, unlike the sentence ‘Mary 

                                                           

belongs to the class v-constructed by 0Economistwt. Hence the office of President 
must be occupied at �w, t�, and the conclusion is true at �w, t�. In other words, the 
argument is truth-preserving from premises to conclusion.   

119 A valid argument need not be truth-preserving from conclusion back up to its premises, 
either; namely, if the argument is unsound. 
120 See Muskens (1995), Barwise and Perry (1983).  
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sees John walk and Bill talk or not talk’ which is undefined in a situation where 
Mary does not see Bill. Thus (2) does not follow from (1).121  

We disagree on this point. If Mary does not see Bill at all, then, of course, she 
cannot see him talk or doing anything else, which does not mean (contra 
Muskens) that ‘[T]he sentence “Bill talks” will be undefined, that is, neither true 
nor false, in the part of the world that is seen by her’. Nor does it mean that as a 
consequence the sentence ‘Bill talks or doesn’t talk’ and ‘John walks and Bill 
talks or doesn’t talk’ are both undefined in that situation as well. Sentences (1) and 
(2) are equivalent (as they denote the same proposition), and the sentence ‘Bill 
talks or does not talk’ is a tautology, independently of whether Mary knows it.122 
Note that Muskens uses classical entailment to argue that (2) does not follow from 
(1). But (2) does follow from (1), independently of Mary’s cognitive abilities and 
independently of situations. And (1) and (2) are true or false, dependently on 
states-of-affairs, but independently of Mary’s seeing that they are. There is no rea-
son to introduce partiality here.   

According to Muskens, co-entailment in a partial theory will be a better ap-
proximation to synonymy than classical co-entailment is. In our opinion, Muskens 
is in effect modelling our cognitive abilities, and his theory can be treated as a 
cognitive theory. The new ‘truth-values’ he introduces, namely N and B, are actu-
ally not (objective) truth-values of propositions, but, say, subjective degrees of 
knowledge in a particular situation. We can even introduce infinitely many such 
‘truth-values’, for instance, an interval between 0 and 1, to map ‘degrees of pre-
ciseness of measurement’, or ‘degrees of our conviction in the truth’, or any other 
(subjective) degrees, and build up fuzzy logics, etc. We can even introduce new 
(objectively correct) inference rules within our logic that would better map the re-
lation of logical consequence. Still, the relation of co-entailment, or co-denotation, 
will always be just an approximation to synonymy, and a counter-example could 
always be found. Notoriously well-known ones are attitudinal sentences (see 
Chapter 5). No intensional semantics can properly handle synonymy, because its 
finest individuation is equivalence. We need a hyperintensional semantics to prop-
erly handle synonymy123 and to construe meaning as an algorithmically structured 
procedure.  

Now we are going to explain the second principle de re, namely the principle of 
substitution of co-referential expressions. First, what does it mean that the truth-
value at �w, t� of a proposition depends on the value of another intension? Con-
sider again the sentence  

(S1) ‘The President of the Czech Republic is an economist’  

                                                           
121 See Muskens (1995, pp. 1–3).  
122 The semantics of proper names is simplified here, allowing ‘Bill’ to be simply a label of an 
individual. See, however, Section 3.2. Moreover, on the TIL conception, there are no non-
existing individuals: we work with a constant domain of individuals.  
123 For the definition of synonymy, see Section 2.2, Definition 2.10. 
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and its analysis:  

(S1�) λwλt [0Economistwt λwλt [0Pres_ofwt 
0CR]wt]. 

‘The President of the Czech Republic’ occurs de re in (S1), as does the occurrence 
of the construction λwλt [0Pres_ofwt 

0CR] in (S1�). If the President is Václav Klaus, 
then (S1) and this additional premise entail that Václav Klaus is an economist; 
hence the following argument is valid:  

λwλt [0Economistwt λwλt [0Pres_ofwt 
0CR]wt] 

λwλt [0= λwλt [0Pres_ofwt 
0CR]wt 0Klaus] 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
λwλt [0Economistwt 0Klaus]. 

Similarly, if the President is the husband of Livie Klausová then (S1) and this 
additional premise entail that the husband of Livie Klausová is an economist 
(Husband_of/(ιι)τω):   

λwλt [0Economistwt λwλt [0Pres_ofwt 
0CR]wt] 

λwλt [0= λwλt [0Pres_ofwt 
0CR]wt λwλt [0Husband_ofwt 

0Livie]wt] 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

λwλt [0Economistwt λwλt [0Husband-ofwt 
0Livie]wt]. 

This is no surprise, of course, because Leibniz’s law of substitution law is uncon-
troversially valid in these cases, and the following is the schema of a valid argument: 

λwλt [… C …] 
λwλt [0=  C D] 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
λwλt […. D…]. 

The principle of substitution of co-referential expressions is an instance of 
Leibniz’s Law.  

Tichý formulates the principle as follows.  
Let ‘X’, ‘Y’ denote individual offices. Let ‘…Y…’ be a sentence arising from sentence 
‘…X…’ by putting the term ‘Y’ for some de re occurrences of ‘X’ in ‘…X…’. Then the 
argument    X at �W, T� is Y at �W, T� 

…X at �W, T�… 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
…Y at �W, T�… 

is valid.       (1978a, p. 9, 2004, p. 257).  

The rationale behind the substitution is that what is predicated of the occupant 
of X at �w, t� is what is predicated of the occupant of Y at �w, t� on condition of co-
occupation of X and Y at �w, t�. That is, even though ‘…X at �w, t�…’ and ‘…Y at 
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�w, t�…’ may have different truth-conditions, their truth-values coincide at every 
�w, t� at which ‘X at �w, t� is Y at �w, t�’ expresses a truth.  

Hence the second principle de re is the following: 

Principle of substitution of co-referential expressions. If an expression E 
occurs in a sentence S with de re supposition, then the substitution (salva 
veritate) of a co-referential expression E� for the occurrence of E in S is 
valid.  

The corresponding rule of substitution de re is then:  

Rule of substitution of v-congruent constructions. Let C → ατω, D → ατω 
and let Cwt, Dwt be v-congruent constructions (i.e., Cwt = Dwt) and let S(D/C) 
be a construction that arises from S by substituting D for one or more de re 
occurrences of C in S. Then Swt and S(D/C)wt are v-congruent as well  (i.e., 
Swt = S(D/C)wt). 

For another example, the denoted office can be a second-degree office (an of-
fice of an individual office), like, for instance the highest executive office of the 
USA. The following argument is valid: 

The highest executive office of the USA is the President, not the King 
The highest executive office of the USA is the most respectable office in the USA 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

The most respectable office of the USA is the President, not the King.  

Type-theoretical analysis: HEO/(ιτω)τω: the highest executive office of the USA; 
MRO/(ιτω)τω: the most respectable office of the USA; PresUSA, KingUSA/ιτω; 
=ιτω/(οιτωιτω).  

Synthesis: 

λwλt [[0=ιτω 0HEOwt 
0PresUSA] ∧ [¬[0=ιτω 0HEOwt 

0KingUSA]]] 
λwλt [0=ιτω 0HEOwt 

0MROwt] 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 

λwλt [[0=ιτω 0MROwt 
0PresUSA] ∧ [¬[0=ιτω 0MROwt 

0KingUSA]]]. 

Since 0HEO and 0MRO occur with de re supposition in the premises (unlike the 
constituents 0PresUSA, 0KingUSA), the substitution salva veritate is valid.  

A classical puzzle from around 1970 due to Barbara Partee can also be resolved 
by sorting out the interplay between de dicto and de re supposition.124 Partee’s 
puzzle is this:  

                                                           
124 For discussion, see Yagisawa (2001), Moschovakis (2006, p. 43), and Partee (2005, p. 43).  



1.5 Constructions as structured meanings      125 

The temperature is 90°F 
The temperature is rising 

⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
90°F is rising.  

‘the temperature’ in the context ‘…is rising…’ by Leibniz’s Law.  Yet the conclu-
sion is indisputably either false or nonsensical. Partee did intend, however, to 
come up with a flawed argument to make a particular point within a particular dis-
cussion at the time to do with so-called intensional positions for singular terms to 
occur in, such that these positions would be distinct from (overtly) modal contexts. 
And her argument obviously is flawed. The challenge that her argument presents 
is to construct a logical analysis that will block the inference. Here is how we go 
about this. 

As always, we begin with a type-theoretical analysis of the objects mentioned 
by the premises: Temperature/ττω: a magnitude;125 Rising/(οττω)τω: a property of a 
magnitude; =τ/(οττ); 90/τ.  

(P1)  λwλt [0=τ 0Temperaturewt 090] 
(P2)  λwλt [0Risingwt 

0Temperature] 

The diagnosis of the invalidity of the argument is now straightforward. The 
Trivialization 0Temperature occurs de re in (P1), but de dicto in (P2). In other 
words, the object of predication in (P2) is the entire function Temperature rather 
than its particular value. So the substitution of the construction 090 for 
0Temperature into (P2) would be invalid.  

1.5.2.2 Interplay between de dicto and de re  

Consider now another sentence: 

(S4) ‘If the President of the Czech Republic is a playwright then Charles be-
lieves that the President of the Czech Republic is Václav Havel.’   

An adequate analysis of the consequent has to respect the fact that Charles can 
believe that the President is Václav Havel even if the President is instead Václav 
Klaus, or even if the President does not exist. Charles may simply not be up on 

                                                           
125 It is understood that the temperature is not just any temperature (of something), but a particu-
lar temperature, and most likely the temperature at the location of whoever says the temperature 
is rising.  

The argument seems at first blush to invite a smooth substitution of ‘90°F’ for 
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Czech public affairs. Thus the meaning of the clause expressed by the consequent 
is (Believe/(οιοτω)τω):126 

(S4emb)  
 λwλt [0Believewt 

0Charles λw1λt1 [λw2λt2 [0Pres_ofw2t2 0CR]w1t1 = 0Havel]]. 

The Closure λw1λt1 [λw2λt2 [0Pres_ofw2t2 0CR]w1t1 = 0Havel] occurs de dicto in 
(S4emb). Also the Closure λw2λt2 [0Pres_ofw2t2 0CR] occurs de dicto in (S4emb), even 
though it is Composed with w1, t1, which triggers intensional descent of the office 
PresCR. The truth-value of the proposition constructed by (S4emb) at a particular 
�w, t� may well depend on PresCR being occupied at worlds other than w or at 
times other than t.  

The sentence (S4) expresses the construction:  

(S4�) λwλt [0⊃ [λwλt [0Playwrightwt λwλt [0Pres_ofwt 0CR]wt]]wt  
  [λwλt [0Believewt 

0Charles [λwλt [λwλt [0Pres_ofwt 0CR]wt = 0Havel]]]]wt].  

The construction λwλt [0Playwrightwt λwλt [0Pres_ofwt 0CR]wt] is used with de 
re supposition in (S4�), and so is the first occurrence of λwλt [0Pres_ofwt 0CR]. The 
construction λwλt [λwλt [0Pres_ofwt 0CR]wt = 0Havel] is used with de dicto suppo-
sition in (S4�), and so is the second occurrence of λwλt [0Pres_ofwt 0CR].  

This goes to show that the de dicto context is dominant over the de re context. 
In the Closure λwλt [λwλt [0Pres_ofwt 0CR]wt = 0Havel] the construction of the 
presidency, viz. λwλt [0Pres_ofwt 0CR], occurs with de re supposition, such that 
the individual value of the office at a given �w, t�-pair of evaluation is the object of 
predication, whereby the values of the office at �w�, t��-pairs other than the �w, t�-
pair of evaluation become irrelevant. By contrast, the occurrence of the Closure 
λw2λt2 [0Pres_ofw2t2 0CR] in (S4emb), as well as the second occurrence of the Clo-
sure λwλt [0Pres_ofwt 0CR] in (S4�), is intensional, i.e. with de dicto supposition. 
This is so, because in (S4emb) the whole proposition that the President of the Czech 
Republic is Havel is the object of predication. Thus it is not so that the individual 
values of the presidency at �w�, t��-pairs other than the �w, t�-pair of evaluation are 
irrelevant.  

Tichý sums it up thus:   
In general, a de re constituent of D is a de re constituent of any application in which D 
appears as a de re constituent; a de re constituent of D is a de dicto constituent of any 
application in which D appears as a de dicto constituent. A de dicto constituent is a de 
dicto constituent of any application in which D appears as a (de re or de dicto) 
constituent. Briefly, de dicto is the dominant one of the two suppositions (1988, p. 217).  

Examples of sentences with ‘the F’ occurring with de re supposition:  
                                                           
126 We conceive of believing as a relation-in-intension between an individual and a proposition 
here, making believing an implicit attitude. See, however, Chapter 5. In order to mark the scope 
of particular λ-bindings of variables w and t we use numerical subscripts here.   
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• simple sentences: ‘The F is a G’. 
• modalities: ‘The F is necessarily a G’. 
• attitudes: ‘The F is believed by Charles to be a G’. 

Modalities will be resumed in Chapter 4 and attitudes in Chapter 5. 
Simple sentences of the form ‘The F is a G’ as dealt with above are, however, 

ambiguous between de re and de dicto readings. Consider, for instance, the sen-
tence  

‘Kurt Gödel’s most favourite argument is analytically valid.’ 

On its de re reading the sentence has the existential presupposition that there be 
exactly one argument that is Gödel’s favourite. If Gödel favoured more arguments 
to the same degree or if he had no one favourite argument, the sentence would 
have no truth-value. The reading de dicto mentions a necessary condition to be 
satisfied by an argument in order to qualify as Gödel’s favourite argument. The de 
dicto reading can be loosely paraphrased as 

‘Being analytically valid is indispensable for an argument to be  
Gödel’s most favourite one.’ 

The truth-condition of this sentence does not require that Gödel have a favour-
ite argument.  

Types of the objects mentioned by the sentence: 
Argument/∗n: a hyperproposition (a construction of a proposition);127 
Gödel’s favourite argument/∗nτω: a constructional office (an office occupiable by 
constructions of order n); 
Favour_arg_of/((ο∗n)ι)τω: an empirical function assigning a set of arguments to an 
individual; 
Most/(∗n (ο∗n))τω: an empirical function associating a set of arguments with an ar-
gument, the most favourite one; 
Analytical/(ο∗n): the class of analytically valid arguments; 
Indispensable/(ο(ο∗n)∗nτω)τω: a relation (-in-intension) between a class of argu-
ments and a constructional office. 

Now the Closure λwλt [0Mostwt [0Favour_arg_ofwt 0Gödel]] → ∗nτω constructs 
the constructional office, and we have: 

(a) de re reading: 

λwλt [0Analytical λwλt [0Mostwt [0Favour_ofwt 0Gödel]]wt] 

(b) de dicto reading (rephrased):  

λwλt [0Indispensablewt 0Analytical λwλt [0Mostwt [0Favour_ofwt 0Gödel]]]. 

                                                           
127 For details on arguments, see Sections 1.5.1 and 5.4.  
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Let Occ*/(ο∗nτω)τω be the property of a constructional office of being occupied. 
The relation of being indispensable can be defined as follows:  

[0Indispensablewt C H] = [[0Occ*wt H] ⊃ [0Truewt λwλt [C Hwt]]]. 

Types: C → (ο∗n), H → ∗nτω.  
Finally, using this refinement, the de dicto reading of the sentence expresses 

the construction: 

(c) de dicto reading: 

λwλt [[0Occ*wt λwλt [0Mostwt [0Favour_ofwt 0Gödel]]] ⊃  
 [0Truewt λwλt [0Analytical λwλt [0Mostwt [0Favour_ofwt 0Gödel]]wt]]]. 

Another example of the ambivalence of simple sentences of the form ‘The F is 
a G’ is the sentence 

‘The King of France is a king.’ 

On its de re reading it expresses the construction (King/(οι)τω; King_of/(ιι)τω; 
France/ι) 

λwλt [0Kingwt  λwλt [0King_ofwt 0France]wt], 

�-reducible to 

λwλt [0Kingwt [0King_ofwt 0France]], 

both of which construct a proposition that has no truth-value in the actual world 
now (as well as in any of the world/time at which the King of France does not ex-
ist). The de re reading of the sentence comes with the existential presupposition 
that the King of France exist. In those worlds/times at which the King of France 
exists, the proposition is true. Hence, on its de re reading the sentence does not 
express an analytically true proposition, though one that almost is. It does not de-
note the proposition TRUE, but a properly partial proposition that is true at some 
�w, t�, and undefined at all the rest (hence nowhere and never false).  

On its de dicto reading the sentence rather expresses a necessary relation be-
tween the property of being a king and the office of King of France. Necessarily, 
whenever somebody or other occupies the office of King of France, that individual 
is a king. (Or in plain English, if you are the king of something, then you are a 
king.) We call such a relation between intensions a requisite. Here the property of 
being a king is a requisite of the office of King of France, such that every occu-
pant must have the relevant property. Thus the analysis of the de dicto reading of 
the above sentence is  

[0Requisite 0King λwλt [0King_ofwt 0France]]. 

Additional type: Requisite/(ο(οι)τωιτω). 
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Each office may have indefinitely many such requisites. For instance, the office 
of President of the USA has the properties of being born in the United States, be-
ing above 35 years of age, etc., as its requisites. The set of all the requisites of an 
office is called its essence, and the office is fully characterised by its essence.128 

A broader problem arises when we consider the context in which a particular 
construction occurs. We tackled the problem above, when we analysed the sen-
tence (S4) and concluded that the de dicto context is the dominant one of the two 
suppositions.  

Now we are going to show that there are three contexts: hyperintensional (con-
structional), intensional (de dicto) and extensional (de re). Of these three the hy-
perintensional context is dominant over both the intensional and the extensional 
context, and the intensional context is dominant over the extensional context.  

Consider again the sentence 

(S4) ‘If the President of the Czech Republic is a playwright then Charles be-
lieves that the President of the Czech Republic is Václav Havel.’   

Above we analysed Charles’s belief as a relation-in-intension of an individual 
to a proposition. However, an alternative belief relation is an option. When belief 
is explicit belief, the believer enters into a relation-in-intension to a hyperproposi-
tion. Where Believe*/(οι∗n)τω, we have:129  

(S4emb*) λwλt [0Believe*wt 
0Charles 0[λwλt [λwλt [0Pres_ofwt 0CR]wt = 0Havel]]]. 

Now it no longer holds that the Closure λwλt [λwλt [0Pres_ofwt 0CR]wt = 
0Havel] is used with de dicto supposition in (S4emb*), because it is not used as a 
constituent of (S4emb*). It is mentioned here. Moreover, its constituents are men-
tioned in (S4emb*) as well.  

For this reason we must distinguish between using a construction as a constitu-
ent of another construction and mentioning a construction. If a construction is used 
as a constituent, it can be used in two different ways: intensionally or extension-
ally. The three kinds of context are as follows:130 

• Hyperintensional context: the sort of context in which a construction is not 
used to v-construct an object. Instead, the construction itself is an argument of 
another function; the construction is just mentioned.  

Example: ‘Charles calculates 2+5’ expresses as its meaning the Closure  
                                                           
128 For more on requisites and essence, see Chapter 4.  
129 See Chapter 5 for details on propositional attitudes. 
130 Here we only briefly characterize the three contexts. Precise definitions will be provided in 
Section 2.6. Note that the notions ‘intensional’ and ‘extensional’ are used here in a broader sense 
than in possible-world semantics. To distinguish these notions from possible-world intension and 
extension, we will often add the asterisk ‘*’ when talking about (hyper-) intensional/extensional 
occurrence of a construction. 
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λwλt [0Calculatewt 
0Charles 0[0+ 02 05]]. 

The Composition [0+ 02 05]/∗1 is not used to construct the number 7 here. Instead, 
it is an argument of the function Calculate/(οι∗1)τω. Thus [0+ 02 05] occurs in the 
hyperintensional context of λwλt [0Calculatewt 

0Charles 0[0+ 02 05]].   

• Intensional context: the sort of context in which a construction is used to v-
construct a function and not a particular value of the function. Moreover, the 
construction does not occur within another hyperintensional context.  

Example: ‘Sinus is a periodical function’ expresses the Composition 

[0Periodical 0Sinus], 

where Periodical/(ο(ττ)) is the class of periodical functions of type (ττ); Sinus/(ττ).  
0Sinus occurs in the intensional context of the Composition [0Periodical 0Sinus]. It 
is not Composed with a τ-argument in order to construct a value of the sinus func-
tion. Instead the function is just mentioned, as it must be if a property is to be 
predicated of it.  

On the other hand, ‘Charles knows that sinus is periodical’ expresses the con-
struction λwλt [0Know*wt 

0Charles 0[0Periodical 0Sinus]], Know*/(οι∗1)τω. Here 
the Composition [0Periodical 0Sinus] occurs hyperintensionally; therefore also all 
its subconstructions, including 0Sinus, occur in a hyperintensional context. 

In the empirical case, intensional constructions usually occur in intensional 
contexts. Consider ‘Charles wants to become the President of the USA’. Charles is 
related here to the presidential office; he wants to occupy it. Thus the analysis 
comes down to this:  

λwλt [0Want_to_becomewt 
0Charles λwλt [0President_ofwt 

0USA]]. 

Types. Want_to_become/(οιιτω)τω; President_of/(ιι)τω; Charles, USA/ι;  
The whole Closure occurs intensionally; it is not used to v-construct the truth-

value of the so constructed proposition. Moreover, the construction of the presi-
dency, namely λwλt [0President_ofwt 

0USA], occurs intensionally (i.e., with de 
dicto supposition) in the intensional context of the whole Closure.   

• Extensional context: the sort of context in which a construction of a function 
is used to construct a particular value of the function at a given argument, and 
the construction does not occur within another intensional or hyperintensional 
context.  

Example: ‘sin(π) = 0’ expresses the Composition [[0Sinus 0π] = 00], where 0Sinus 
occurs extensionally; the Composition is used to construct the value of the sinus 
function at the argument π. 

As mentioned above, constructions of intensions usually occur intensionally; 
if occurring extensionally, then they usually v-construct a particular value of an 
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intension. For instance, [λwλt [0President_ofwt 
0USA]]wt v-constructs an individual; 

the Closure λwλt [0President_ofwt 
0USA] occurs extensionally, since the so con-

structed office is extensionalized.  
However, in the Closure  

λwλt [0Republicanwt [λwλt [0President_ofwt 
0USA]]wt] 

(which is the meaning of ‘The President of the USA is a Republican’) the con-
struction of the presidency occurs extensionally (i.e., with de re supposition), but 
in the intensional context of the whole Closure.  

The topics of de dicto/de re supposition and hyperintensional,  intensional and 
extensional contexts are resumed in Section 2.6.  

1.5.3 Important entities and notational conventions: summary  

Below follows a summary of the main features of our semantic schemas which we 
introduced in Section 1.1, as well as the main notational conventions. In this chap-
ter we defined, among others, construction, ramified hierarchy of types, important 
extensions like quantifiers and the notion of literal meaning of an expression. We 
also illustrated how constructions are assigned to semantically self-contained ex-
pressions, whereby an expression invariably expresses a construction as its mean-
ing. Whenever an expression does have a denotation, the denotation can be any 
entity of the ontology of TIL: 

• an α-intension (an object of type αω, typically ατω) when the expression is em-
pirical; 

• an α-extension, i.e., an α-object, where α ≠ (βω) for any β;  
• a construction of type ∗n, when the expression is mathematical or logical.   

Empirical expressions invariably denote α-intensions. The sense of the sen-
tence ‘Charles is a bachelor’ is a procedure for evaluating, in any possible world at 
any time, the truth-conditions of this sentence. The sense is the Closure λwλt 
[0Bachelorwt 

0Charles]. The denotation of this sentence is the proposition P/οτω 
constructed by this construction. P is true in a subset of logical space; namely, at 
those worlds and times at which Charles has the property of being a bachelor. If 
the sentence is true simpliciter, then the pair made up of the actual world and the 
current time is a member of this subset. The reference of this sentence (its truth-
value) is beyond the purview of the a priori discipline of logical semantics. (See 
Sections 1.1 and 2.4.1 for the details of the argument from omniscience in favour 
of anti-actualism.)  

Mathematical expressions denote α-extensions. But even in this case the re-
spective extension is only of secondary semantic interest. What is of primary se-
mantic interest is the respective construction. This is especially clear in the case of 
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expressions lacking denotation, like ‘the greatest prime’. Mathematicians had to 
first understand the expression, i.e., to know the respective instruction detailing 
how to seek the product; only then were they able to prove that there is no product 
of the procedure expressed by the expression:  

ιx [0∧ [0Prime x] ∀y [0⊃ [0Prime y] [0≥ x y]]]. 

We now recapitulate the most important entities and notational conventions oc-
curring throughout the book.  

• An arbitrary object X of the arbitrary type α is an α-object, denoted ‘X/α’.  

• The notation for the type ((ατ)ω) of α-intensions is abbreviated ‘ατω’. 

• The constant proposition that takes value T in all possible worlds at all times 
will be referred to as ‘TRUE’.  

• The propositional properties of being true, false, undefined are the functions 
True/(οοτω)τω, False/(οοτω)τω, Undef/(οοτω)τω, respectively. 

• Every construction C belongs to *n: C is an entity of a type of order n > 1, 
and (v-) constructs an entity (if any) belonging to a type α of a lower order. 
That a construction C v-constructs an α-object will be denoted ‘C/*n →v α’, 
or sometimes ‘C →v α’. For instance, ‘x/*1 →v τ’ reads, ‘The variable x be-
longs to the type *1 and constructs reals relative to a valuation.’ 

• If a construction C v-constructs an α-object a independently of valuation, we 
simply say that C constructs a and write ‘C → α’.  

• We often write ‘∀x A’, ‘∃x A’, ‘ιx A’, instead of ‘[0∀α λx A]’, ‘[0∃α λx A]’,  
‘[0Singα λx A]’, respectively, when it is not urgent to highlight typing and 
lambda-binding.  

• We also often use infix notation without Trivialization when using construc-
tions of the truth-functions ∧ (conjunction), ∨ (disjunction), ⊃ (implication), 
≡ (equivalence) and negation (¬), and when using a construction of an iden-
tity relation. 

• Variables w, w1, w2, … v-construct elements of type ω (possible worlds), and 
t, t1, t2, … v-construct elements of type τ (times ordered in a continuum).  

• If C v-constructs an α-intension, the frequently used Composition of the form 
[[C w] t], v-constructing the intensional descent (a.k.a. extensionalization) of 
an α-intension, is abbreviated ‘Cwt’. 
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