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The Role of Statistics for Long-Term Ecological Research
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Abstract Sustainable management of natural
resources requires a good understanding of ecosystems
components and their interrelationships. Statistics is
essential for understanding the structure and behaviour
of ecological processes and provides the basis of
predictive modelling. Mostly, physical, chemical,
and biological variables are recorded across time and
space. They serve as indicators, giving information
concerning the state and changes of ecosystems. Most
of monitored ecological indicators are non-stationary
in time structure. The classical static statistical meth-
ods revealed the presence of trends and long memories
in these data sets. On the other hand, modern dynamic
statistical methods indicate the presence of long-term
cycling processes. The Fourier polynomial is a tech-
nique for approximating periodic functions by sums of
cosine and sine periodic functions, shifted and scaled.
Therefore, it may be suitable for approximating
cycling processes with a fixed frequency as portrayed
by some ecological indicators. Wavelet analysis can
be used to investigate the timescale behaviour of
ecological processes. This analysis reveals the long-
term evolution of an ecological indicator at different
resolutions, the dominant scale of variability in the
data set, and its correlation and cross-correlation with
other ecological indicators on a scale by scale basis.
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8.1 Introduction

In the past, ecology has been changed from a descrip-
tive to a more quantitative science using statistical
methods. This development was supported by a lot of
famous books where univariate and multivariate sta-
tistical methods were presented (Bliss, 1970; Patil,
Pielou, & Waters, 1971; Pielou, 1977; Eason, Coles, &
Gettinby, 1980, Legendre & Legendre, 1983; Ludwig
& Reynolds, 1988). Due consideration is given to
temporal and spatial changes to the input and state
variables as well as to the ecosystem parameters and
their initial uncertainties. The use of statistical meth-
ods is necessary to understand the basic temporal–
spatial changes of physical, chemical, and biological
components of an ecosystem, their functions with
another, and their interrelationships with the ecosys-
tem environment. From this, the following questions
should be answered: Are there relationships between
ecosystems and their environments? Are there inter-
relationships between different ecological processes
under consideration? Are there dependencies of one
or several ecological variables (or indicators) on one
or several others, and how can they be modelled? Are
there dependencies between groups of ecosystems or
ecological objects? Necessary are those approaches
to solve ecosystem management problems which are
compatible with the stochastic nature of ecosystem
variables or indicators and ecological processes under
consideration. Statistical procedures will be the
adequate mathematical methods as long as the pro-
cesses within an ecosystem and/or the ecosystem
describing differential equations are unknown.

In order to assess the quality of ecosystem services
as well as ecosystem management and environmental
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policies, ecological variables and indicators are
observed or recorded over time and space by short-
term or long-term monitoring programs (Mateu &
Montes, 2001; Haining, 2003). These variables give
information on the current states, the changes, and
trends of ecological processes. The patterns displayed
by these variables can be captured and used for fore-
casting by means of appropriate statistical modelling
techniques. Modelling of ecological time series gives
more insight to the time varying behaviour and the
internal time-dependent correlation structure of an
ecosystem compared with classical univariate and mul-
tivariate statistics which is helpful in comparing of
samples, sites of investigation, intrinsic characteristics
of ecosystems and environmental factors, environmen-
tal standards, and comparisons of habitats and land-
scapes. The extraction of process information from
ecological signals usually requires statistical mod-
elling by removal of the non-stationary events and then
fitting a stationary stochastic model. For this reason
advanced time series techniques are useful as trend
analysis, ARMA or ARIMA modelling or Fourier
analysis, or for long-term data sets by wavelet analysis.
The information extracted may also be helpful in esti-
mating the weight of input and disturbance relating to
the output variables of the model concerned as well as
serve as a practical tool when appropriate initial values
for estimation procedures are to be chosen.

8.2 Statistical Approaches for Analysing
Ecological Data

Statistical methods are based on theory of probability.
From the point of view of systems theory a distinction
is made between two groups, depending on whether
the variable time is included into ecosystem analysis or
not. Static statistical methods (without consideration of
time as a variable) cover simple and multiple linear and
nonlinear regression and correlation, analysis of vari-
ance, cluster, discriminant, principal component, and
factor analyses and estimation procedures (techniques
of direct estimation such as least squares estimation,
Markovian estimation, maximum likelihood estima-
tion, Bayes’ estimation). A special position among the
estimation techniques is held by the indirect techniques
with which the time as a variable is included in eval-
uation by the sort of estimation procedure used (e.g.
cusum technique, trend analysis). Another distinction

can be made by recursive and non-recursive tech-
niques (Aström, 1970). Dynamic statistical methods
(with consideration of the variable time, also known as
time series analysis) covers advanced procedures such
as trend analysis, Fourier analysis, time correlation and
spectral analysis, weighting and transfer functions, and
wavelet analysis. These approaches have also become
known under the notion of dynamic statistics. These
techniques have usually become known in the litera-
ture by the name of time series analysis (Box, Jenkins,
& Reinsel, 1994; Brockwell & Davis, 1998). They are
standard techniques for statistical evaluation of results
obtained also from sufficiently careful linearization of
nonlinear systems.

8.2.1 Static Statistics

The question is asked if there is interdependence
between two or more variables of an ecosystem. This
question can be answered by a regression or correla-
tion analysis depending on the purpose of the problem.
The type of relationship between ecological variables
or indicators is given by a regression equation, but
the intensity of such a relationship is expressed by
correlation measure.

8.2.1.1 Descriptive Statistics

Data series of ecosystem components collected by
monitoring programs are extremely important for
assessing the ecosystem state and developing an under-
standing of the interrelationships between the ecosys-
tem components for ecosystem management. Data
from monitoring programs contain errors that affect the
results of statistical analysis and the quality of models
developed (Pearson, 2005; Han & Kamber, 2006). This
problem is more serious in high resolution data which
usually contain missing data, outliers, and other impos-
sible data as a result of sensor failure and external
disturbances (Little & Rubin, 1987; Latini & Passerini,
2004). The errors cause not only difficulties in pro-
cess identification and parameter estimation but also
misinterpretations of spatial and temporal variations
of ecological processes. Some classical techniques are
aid in doing some preliminary checks and adjust-
ments on ecological data series. Figure 8.1 shows the
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Fig. 8.1 Record (left) and probability density distribution (right) of water temperature data

basic statistical approach for ecological data analysis
(Young & Young, 1992). The left-hand part contains
the record of raw data (measurements of water temper-
ature from a shallow lake) based on a regular time grid.
Outliers cannot be detected from such a record. In the
right-hand part, the probability density distribution of
these measurements is presented. It shows a two-modal
density probability distribution.

For classical statistical procedures such as calcula-
tions of averages, variances, and correlations as well
as computation of regression functions or other multi-
variate statistics all outliers have to be removed from
the data record. The data set has to be homogenous.

8.2.1.2 Regression and Correlation

A regression analysis is required for problems in which
stochastic dependencies (stochastic cause–effect rela-
tions) are to be described by functions, with one
or several variables being specified as independent
(Ludwig & Reynolds, 1988). Simple regression with
one independent variable x and one dependent variable
y may be linear or nonlinear. Nonlinear regressions
are usually obtained by linearization (transformation
of variables) and short-cut methods of computation.
This approach can have negative effects on the quality

of approximation. Estimation techniques give unbiased
estimates. When none of the variables can be consid-
ered as dependent, methods as Bartlett’s best fit line or
geometric mean are useful for statistical description.
The method of geometric means is based on averaging
the slopes of linear regressions y = f (x) and x = f (y),
whereas Bartlett’s best fit line is founded on subsample
estimates.

Multiple regression is characterised by one depen-
dent, but several independent variables. It is usu-
ally linear because the possibilities of linearization
are limited (Chatfield & Collins, 1989; Krzanowski,
1990). There are many situations in which polynomials
of nth order are used to describe ecological processes
or ecosystems (polynomial regression) by the equation
y = a0 +�aixi for i = 1, . . . , n. The highest occurring
power n depicts the order of the polynomial. Whenever
polynomials of higher order are used, there is a ques-
tion of interpretability of variables in the ith power
(see Table 8.1). There are meaningful physical inter-
pretations of certain variables with powers up to the
second-order maximum. In most cases, however, poly-
nomials merely describe a relationship. For example,
dissolved oxygen saturation = f (TW ) can be depicted
as polynomial of the third order (Thomann & Mueller,
1987).

Substitution of the variables xi by sinus and cosi-
nus functions will result in an equation of the form

Table 8.1 Interpretation of polynomials and exponential regression

Type of polynomial/
regression Equation Interpretation

Linear y(t) = a0(t) + a1(t)x(t) (a0) – mean initial value, (a1) – mean rate of
change)

Squared y(t) = a0(t) + a1(t)x(t) + a2(t)x2(t) (a0) – mean initial value, (a1) – mean rate of
change, (a2) – mean process acceleration)

nth order y(t) = a0(t) + a1(t)x(t) + a2(t)x2(t) + ..... + an(t)xn(t) Interpretation of parameters is mostly
impossible

Exponential y(t) = y(0)e−kt + E y(0) – initial concentration value, k – rate of
change, E – random quota (according to
first-order kinetics)
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y = a + b1 sin x + b2 cos x. This equation represents
the simplest form of periodic regression or so-called
Fourier polynomial. In an extended form this method is
called Fourier analysis. This kind of regression is often
used to determine a periodic trend, when time series of
ecological indicators are analysed.

A correlation analysis is used to examine the tight-
ness of correlations between two or more stochas-
tic variable and to define the degree of stochas-
tic interdependencies. This degree may be described
by correlation coefficients. Bilateral and multilat-
eral interdependencies are characterised by simple
as well as partial and multiple correlation coeffi-
cients. A partial correlation coefficient is used also
in the selection of those variables which influence an
ecosystem. If multidimensional normal distribution is
assumed, it is a measure of the linear dependence
of two random variables, xj and xk, with elimina-
tion of the influence of all other random variables,
x1, . . . , xj−1, xj+1, . . . , xk−1, xk+1, . . . , xn. The square
of correlation coefficient is called performance index
B = r2. Its value is a measure for the variance explica-
ble by means of regression.

8.2.1.3 Variance and Covariance Analyses

The variance analysis is a statistical method for qual-
itative and quantitative studies into the effects of one
or several variables on results or measurements. The
basic idea is that the total sum of squares of devia-
tions of all single measurements from the total mean
can be split into two parts: A within-data series sum of
squares and a between-data series sum of squares. In
models with fixed effects merely mean values of sev-
eral random samples are usually compared with one
another. However, in models with random effects the
factor of influence themselves are treated as random
samples from the set of possible occurrences of these
factors. This may be the case with data continuously
monitored.

A covariance analysis may be used in a quanti-
tative investigation of various degrees of effects of
one or several variables on experimental results, with
the action of additional random variables (covariables)
being compulsorily taken into due consideration. This
method actually unifies variance and regression analy-
sis (each related to models with fixed effects).

8.2.1.4 Cluster Analysis and Discriminant
Analysis

Cluster analysis is used in ecology for many purposes
such as determination of interrelations between trophic
state variables (Brezonik & Shannon, 1971), detec-
tion of pollution sources in streams (Einax, Zwanziger,
& Geiß, 1997), in population ecology (Schulze &
Mooney, 1994), or in landscape ecology (Webster &
Oliver, 1990). Cluster analysis can be considered as
a pattern recognition method (Massart & Kaufman,
1983). This set of methods is also known by the
notions numerical taxonomy or automatic classifica-
tion. It encompasses a family of methods which are
useful for finding structures within a set of ecologi-
cal data monitored. Cluster algorithms are divided into
hierarchical and non-hierarchical (partitioning) tech-
niques. Hierarchical clustering can be carried out in
an agglomerative or a divisive way. The agglomera-
tive techniques join similar objects into clusters and
new objects will be added to clusters already found
or to join similar clusters. Divisive techniques start
with one cluster comprising all objects. Then, the
most inhomogeneous objects will be stripped step
by step. They form one or more new clusters with
more homogeneous objects on a lower level of link-
age. Outputs of hierarchical cluster algorithms are
represented by dendrograms. Non-hierarchical meth-
ods allow rearrangements of objects. They need ini-
tial information on the number of clusters to be
obtained. The centroids of each cluster form ini-
tial gravity centres where the objects are attached
to these centres by Euclidean distance. Then, after
computation of the new centroids the objects can be
rearranged.

Discriminant analysis may be applied to the sepa-
ration or classification of ecological objects and their
association with two or more collectives (groups,
populations) (Green, 1978; Legendre & Legendre,
1983; McLachlan, 1992). Separation is undertaken
through analysis of quantitative characteristics and
reference to a separating function by means of
which a decision is made on classification. Illustrative
examples of how useful discriminant analysis is
for ecological data are given by Ciecka, Fabian,
and Merilatt (1980) for trophic state classifica-
tions of lakes and by Reckhow and Chapra (1983)
for construction of phosphorus loading criteria and
others.
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8.2.1.5 Factor Analysis and Principal Component
Analysis

Factor analysis is used to examine correlations
between random variables for common causes, that are
factors, and to reduce these correlations. Emphasis is
laid, in this context, on point estimations of parameters.
Methods of factor analysis and principal component
analysis have been worked out in general ecology and
phytocoenology of higher plants for typifying space
and time relations of different species and environ-
mental variables. Detailed descriptions and examples
are given by Legendre and Legendre (1983), Joliffe
(1986), Einax et al. (1997), Lepš and Šmilauer (2003).

8.2.1.6 Estimation Techniques

Generally, it is quite difficult to derive ecological
process parameters from a real ecosystem. Therefore,
they have to be estimated from observations of various
variables and from their sample functions. These may
be point or interval estimates depending on whether
the parameter proper is searched for or the interval
in which the parameter is contained. Such estimates
are conveniently obtained by statistical computer
packages (cf. BMDP, SPSS, STATGRAPHICS,
STATISTICA, and others (Einax et al., 1997)). For
the nonlinear estimation of (simple) functions

several procedures are known (for example,
Gauss–Seidel algorithm, Newton–Raphson algo-
rithm, Marquart procedure, and other techniques).
Table 8.2 contains some estimation procedures used
for ecosystem parameter estimations.

To obtain an unknown parameter a on the basis
of measured data and to estimate it, it is necessary
to calculate value g of a defined estimate function G
with the latter’s distribution depending on a. Value g is
used for estimation of a and denoted â. Function G is
defined as estimate function of the unknown parameter
a. Estimation techniques based on least squares meth-
ods have worked particularly well in ecological con-
texts since a long time (e.g. Shastry, Fan, & Erickson,
1973; Beck, 1979). The direct techniques (regression,
Markovian estimate, Bayes’ estimate, maximum like-
lihood estimate) estimate the parameters ‘in one step’
from a block of measured data at the input and output
signals of a system. When these techniques are used,
problems of application may rise up because of a pri-
ori information required on the system as a starting
model. The indirect techniques are additionally sub-
divided into recursive and non-recursive procedures.
Recursively organised procedures adjust a model of
a given structure to the system in a stepwise manner,
with any new set of measured data entailing another
step of model adjustment. All parameters must be re-
estimated throughout the procedure. The criterion by
which to measure the quality of adjustment consists

Table 8.2 Parameter estimation procedures (after Straškraba & Gnauck, 1985)

Estimation procedure Model structure Numerical solution technique

Direct least squares t Ay − Bx = e Explicit matrix inversion, Gauss–Jordan technique,
explicit pseudo-inversion

Recursive least squares Ay − Bx = e Orthogonal transformation, Cholesky technique,
matrix expansion

Direct generalised least squares Ay − Bx = e/D Explicit matrix inversion, Gauss–Jordan technique,
explicit pseudo-inversion

Recursive generalised least squares Ay − Bx = e/D Cholesky technique, matrix expansion, orthogonal
transformation

Instrumental variable method Ay − Bx = e Explicit matrix inversion, Gauss–Jordan technique,
Cholesky technique, explicit pseudo-inversion,
matrix expansion

Maximum likelihood Ay − Bx = e/D or Ay − Bx = eC Newton–Raphson technique
Stochastic approximation Ay − Bx = e or Ay − Bx = eC Cholesky technique, matrix expansion, Newton

method
Bayes estimation No special model structure Bayesian method
Prior-knowledge-fitting (PKF) Ay − Bx = Rx + V − ER Orthogonal transformation

A, B – z-transform polynomials of nth order (describing the deterministic part of an ecological process), C, D – z-transform poly-
nomials of mth order (describing the stochastic part of an ecological process), ER – regression error matrix, R – z-transform of the
discrete transfer function in the PKF-model, V – z-transform of drift polynomial, e- error vector
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as non-parametrical procedures (e.g. Fourier analysis,
correlation and spectral analyses), namely minimisa-
tion of a quality function Q by parameter vector â.
The mean quadratic error, Q = ‖e‖2, and the simple
quadratic error, Q = 1/

2�e2
i with e = (yi − ỹi) have

been most commonly used as evaluation functions in
statistical modelling.

The following two approaches to minimisation of Q
have been proposed:

1. ∂Q/∂ â = 0. The estimation rule of normal regres-

sion âk = (
xT

k · xk
)−1 xT

k yk is obtained for k obser-
vations.

2. ∂Q/∂ â → 0. The estimation rule of recursive
regression âk = âk−1 + Kk−1

(
yk − xT

k âk−1
)

is
obtained for k observations.

Good approximation and updating of the model to
the system are achieved by adequate choice of weight-
ing factor K (gain factor). Exponential weighting has
proved to be particularly suitable in this context. The
intensity of weighting will substantially depend on
the rates of parameter variation and on the extent of
disturbances. These two influences must be given dif-
ferent weightings. Hence, optimum weighting will be
achievable only as a compromise.

8.2.2 Dynamic Statistics

Two classical approaches namely the time and fre-
quency domain methods are essential for understand-
ing ecological processes and in most cases, they
provide the basis for predictive modelling (Koopmans,
1985). In the time domain approach, values of sig-
nals recorded as a function of time are analysed by
means of techniques such as autocorrelation func-
tion, partial autocorrelation function. But, these time
domain methods give no information concerning the
frequency at which the changes in the signal occur.
Given that many natural systems have a frequency-
dependent variability, an understanding of this fre-
quency dependence gives more information concern-
ing the underlying physical mechanism that produced
the signal. The Fourier transformation can be used to
project a signal from the time domain into the fre-
quency domain so as to reveal periodic components
present in the signal, the active frequency bands in

the signal, and their intensity or relative importance
(Bloomfield, 1976; Percival, 1995). Fourier approxi-
mation of ecological processes is based on a certain but
fixed frequency (Hipel & McLeod, 1994). However,
the recorded observations of many ecological indi-
cators are an amalgam of components or processes
operating at different timescales (corresponding to dif-
ferent ranges of frequencies active at specific time
intervals in the Fourier domain) but cannot be revealed
by classical signal analysis methods. In opposite of that
wavelet analysis considers variations in time and scale
(Chui, 1992).

8.2.2.1 Statistics of Time Domain

A sequence of observations collected overtime on a
particular ecological indicator is called a time series.
This can be composed of a quantity observed at dis-
crete times, averaged over a time interval, or recorded
continuously with time. From the point of view of
information theory, these data series represent full pro-
cess information. Within this context they are also
called signals. Most of the signals are non-stationary,
where the statistical properties like the variance and
mean are functions of time. A signal is strictly sta-
tionary if it is free of trends, shifts, or periodicity.
This implies that the statistical parameters of the sig-
nal such as the mean and variance remain constant
through time. Otherwise, the signal is non-stationary.
Ecological signals are usually non-stationary as a
result of internal and external processes operating in
parallel manner not only at different timescales but
as well with different frequencies (Powell & Steele,
1995).

Extracting process information from the signals by
classical methods usually requires modelling by the
removal of the non-stationary and then fitting a sta-
tionary stochastic model. Information can be extracted
by means of distinguished time series techniques. To
detect nonstationarities in the data set the cumula-
tive sum and trend analysis methods can be used. The
cumulative sum method enables the analyst to recog-
nize changes in the general tendency of a signal. It
specifically enables one to detect changes occurring in
the mean value of the signal, the time at which the
change appears and the mean value at homogenous
intervals (Pollock, 1999). Given a signal x(t) sampled
at regular time intervals t, varying between 1 to N and
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a reference value r (for example the mean). This ref-
erence value is subtracted from all the estimations of
the series, and then a cumulative sum of the successive
values is calculated:

Sq =
q∑

i=1

Xi − qr

This cumulative sum is very sensitive to changes in
the mean value of a signal. The advantage of the graph-
ical plot of the values obtained is that all local mean
is immediately deducted from the slope. Given two

points Xi and Xj being the respective lower and upper
limits of a relatively monotonous series, the slope p
between these two values separated by K interval of
time (j − i = K) will give P = (

Xj − Xi
)
/K where

p = Xj − Xi

k
, p =

j∑
i=i+1

Xi

k
− r, and Xij = P + r.

The local mean between the two distant points of K
is equal to the slope of the graphic of the cumulative
sum plus the chosen reference value r.

Figure 8.2 shows the time courses of a chemical
water quality indicator of a freshwater ecosystem and
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its cusum line. It can be seen that the mean is an incor-
rect statistical measure to describe time-dependent
changes of the indicator.

The presence of trends in ecological data series can
be analysed by linear or nonlinear regression functions
(Rosenblatt, 2000). In their simplest way ecological
data series of indicator values are related to time by an
equation of the form y = b0 + b1(t) where y is the eco-
logical indicator, t is the time, b0 and b1 are the least
square estimates of the intercept and slope coefficients.
The slope b1 indicates the average rate of change in the
indicator during each time instant of the time period. If
the slope is significantly different from zero, the trend
in the water quality indicator is equal to the magnitude
of the slope and the direction of the trend is defined by
the sign of the slope. The trend is increasing if the sign
is positive and decreasing if the sign is negative. If the
slope is not significantly different from zero, there is
no trend in the water quality indicator. An advantage
of this technique of trend analysis is that it is easy to
apply to a long-term data set (Fig. 8.3).

The trend lines presented in Fig. 4.3 are computed
as follows:

– Water temperature y(t) = 11.8 + 0.00167 · t,
– Dissolved oxygen y(t) = 8.935 + 0.00129 · t,
– Chlorophyll-a y(t) = 50.37 − 0.00033 · t.

The method may fail to detect trends that are non-
linear but still monotonic (in one direction). Other
approaches such as the Mann–Kendall test can equally
be used for detecting monotonic and nonlinear trends,
but it only indicates the direction and not the signifi-
cance of the trends.

Another advanced statistical data modelling tech-
nique for stationary ecological processes is the so-
called ARMA (autoregressive moving average) or
ARIMA (autoregressive integrated moving average)
modelling which is based on the theory of linear
stochastic processes. Figure 8.4 shows examples of this
procedure for a physical, a chemical, and a biological
variable of a shallow lake ecosystem.

The stochastic signal x(t) will be extracted from
white noise e(t). For equidistant data the following
stochastic difference equation is valid: a0x(t) + a1

x(t − 1) + . . .+ arx(t − r)= b0e(t) + . . .+ b1e(t − l).
Using the shift operator q–1 and the relation
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x(t − n) ∼= x(t)q−n one gets A(q−1)x(t) = B(q−1)e(t).
From this equation the AR-model of order r and
the MA-model of order l can be derived. Then, the
ARMA-model of order (r, l) can be computed for
a0 = b0 = 1, while the ARIMA-model is described
by the equation A(q−1)�dx(t) = B(q−1)e(t). The
expression �dx(t) means the difference of two neigh-
boured data. These types of data models are valid for
short-term and for long-term data sets. As can be seen

at the right-hand site of the figure, the predicted values
of indicators are sometimes far from reality.

8.2.3 Statistics of Frequency Domain

Any periodic signal of frequency f can be represented
as the sum of properly chosen sinusoidal waves (Box



116 A. Gnauck et al.

et al., 1994; Brémaud, 2002). This resulted in the
development of a family of mathematical techniques
among which is the Fourier polynomial.

8.2.3.1 Fourier Analysis

Ecological processes which tend to undergo varia-
tion over time can be treated by means of orthogonal
trigonometric (time-) function series which are called
Fourier series. The elements of these series are con-
ceived as scattered harmonic oscillations with the
frequencies ωk = kω0 = k2π/T0, their amplitudes and
phases being exposed to random variation. A basic
oscillation with frequency ω0 is obtained for k = 1
and corresponding distortions will be recordable if k =
2, 3, . . .. With the coefficients being determined in the
way described, the finite approximating trigonometric
sum will have y(t) = F(t) for any value of n:

F(t) = a0+
[

n∑
k=1

(ak cos(kω0t))

]
+

[
n∑

k=1

bk sin(kω0t)

]

and a minimum mean quadratic deviation regard-
ing y(t). Relations Ak = √

a2
k + b2

k and ϕk = arc
tan(bk/ak) apply to the amplitude and phases of the

approximated oscillations, with phases φk in the
interval [0, 2π ] being uniformly distributed with
constant probability density w(ϕk) = 1/2π , while the
amplitudes satisfy the conditions of a Rayleigh distri-
bution (Box et al., 1994).

In a system which consists of several dynamic
sub-systems the output variable will be of an almost
harmonic shape even with the presence of nonlinear
intermediate elements, which enables the application
of Fourier analysis to nonlinear systems. By using
Fourier analysis for identification of linear or linearised
systems, the periodic pattern of influence variable is
given with sufficient accuracy by a function of the
following form y(t) = a0�Ak sin(kω0t + ϕk). An esti-
mation of the part of overall variance of the observed
process explained by the harmonic function is pos-
sible by means of the following equation var(%) =
100 · A2

k/2 · cov with cov = 1/(n − 1)�(yi − ỹ)2. The
percentual variance may be statistically secured
by application of the F test to the ratio: vari-
ance of natural oscillation/variance of predicted
oscillation.

The number of cosine and sine terms can be pro-
gressively increased in order to obtain an accept-
able approximation of cycling behaviour. The advan-
tage of Fourier approximation is the more or less

Fig. 8.5 Fourier
approximation of water
temperature, R2 = 0.95
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Fig. 8.6 Fourier approximation of dissolved oxygen, R2 = 0.30 (top) and chlorophyll-a, R2 = 0.75 (down)

very good description of physical cycling processes
(cf. Fig. 8.5).

The model equation is given by y(t) = 13.02 + 0.41
cos(0.008t) + 0.029 sin(0.008t) − 9.673 cos(0.017t) −
0.47 sin(0.017t).

For ecological processes with high levels of distur-
bances caused by internal and external driving forces
this method can be used by restrictions only. Fourier
polynomials are appropriate for processes with fixed
frequencies, while natural processes especially those
represented by chemical and biological indicators have
varying frequencies. Figure 8.6 shows Fourier approx-
imations which are not acceptable for predictions. This
is because a physical indicator like water temperature
is mainly influenced by external driving forces such
as solar radiation, while high fluctuations observed
in biological indicators like chlorophyll-a are depen-
dent on external driving forces and internal ecological
state variables such as light and nutrients availability.

Chemical indicators such as dissolved oxygen are sig-
nificantly influenced by natural and artificial external
driving forces as well as by natural internal states. They
fluctuate as these factors fluctuate.

8.2.3.2 Autocorrelation and Cross-Correlation

Steady-state ecological processes are characterised by
their time-related linear and quadratic mean values.
These, however, do not yet provide any information
on mutual influences between the values of x(t) due
to the existence of energy storages and feedbacks in
the ecosystem under review. Deeper insights into these
correlations may be obtained with the aid of correlation
functions (generalisation of quadratic mean values).

The autocorrelation function ACF gives the degree
of relationship between the values of x(t). It is defined
by 
xx(τ ) = lim 1/2T0 ∫ x(t) · x(t ± τ )dt where the



118 A. Gnauck et al.

limit process runs from T to ∞, and integration is
done from −T to +T. The cross-correlation function
CCF describes the correlation between two differ-
ent variables x(t) and y(t) : 
xx(τ ) = lim 1/2T0 ∫ x(t) ·
x(t ± τ )dt. The correlation time τ
 of a stochastic pro-
cess x(t) is defined as the time which has to pass before
the amount of difference 
xx(τ ) and x2(t) drops below
a specified ε bound (e.g. ε ≤ 10−5). If a periodic part
is contained in process x(t), a periodic part will be
assigned also to ACF, all in the same period, whereas
ACF of an accidental process, superimposed by noise,
will decay.

The autocorrelation refers to the correlation of the
signal with its past and future values. It is a method
for characterizing the correlation within a signal over
time. The autocorrelation function measures the cor-
relation between two values of the same variable xi

and xi+k and is used to detect non-randomness in the
data (Rebecca, 1999). Correlograms are very practical

for the determination of the dependence between suc-
cessive observations of a time series (Fig. 8.7). If
the correlogram indicates the existence of correlation
between successive terms x(t) and x(t + k), the signal
is assumed dependent or said to exhibit long memory
(Beran, 1998).

The correlogram of the water temperature signal
clearly shows the presence of a strong dependence
of the future values on the present ones. The signal
exhibits long memory with the absence of any form of
randomness. The signal of the chemical indicator dis-
solved oxygen equally portrays persistence as shown in
the correlogram, though not as strong as in the case of
water temperature. This as well means that the future
values of the signal are strongly influenced by the
present values. The signal of the biological indicator
chlorophyll-a also reveals the presence of dependence
of the future values on the present ones. As is shown
in Fig. 8.7, all the three signals have a long memory
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with the signal of the physical indicator having the
strongest autocorrelation compared to the other two.
This has implications on monitoring in the sense that
it will be more cost effective not to sample the signal
at a high resolution so as to avoid a lot of redundant
information.

8.2.3.3 Spectral Analysis

From time correlation functions the frequency correla-
tion functions are derived by Fourier transformation.
In a given frequency domain time functions can be
depicted by their Fourier transformations, the spectral
function, or power spectra. Such a transformation is
not feasible unless x(t) is absolutely integrable. This
demand cannot be met, in the first place, by ran-
dom signals, since convergent Fourier transforms do
not exist in a stochastic process. The same condition,
however, is satisfied by correlation functions.

The auto-power spectrum Sxx(ω) of x(t) is the
Fourier transform of ACF:

Sxx(ω) = Sxx(−ω) = 1/2π · ∫
xx(τ )e−jωτdτ .

The variability of ecological processes are
expressed by variations in signals (due to annual
cycles, seasonal variations, diurnal rhythm, etc.) are
clearly reflected in the auto-power spectrum by one or
several peaks, though in processes with highly oscil-
lation components, the associated spectral function
tends to be more smoothed. It will be visualised as a
function of frequency by means of the periodogram
and cross-spectral analysis. Figure 8.8 shows such a
periodogram for chlorophyll-a where two frequencies
can be considered as dominant for algal development.

The cross-power spectrum Sxx(ω) of two stochastic
processes x(t) and y(t) is the Fourier transform of CCF:

Sxy(ω) = 1/2π · ∫
xy(τ )e−jωτdτ .

Sxy(ω) is a complex function. The limitation of
CCF is considered by what is called a window
function h(τ ) : Sxy(ω) = 1/2π · ∫
xy(τ )h(τ ) · e−jωτ

dτ = Sxy(α) · H(ω − α) where H(ω) is the Fourier
transform of h(τ ) which distorts Sxy(ω) to S−

xy(ω).
The coherency functions COxy(ω) is a measure

of synchronicity of the ecological processes x(t)
and y(t) and can be derived from spectral functions
Sxx(ω), Syy(ω) and Sxy(ω):

COxy(ω) =
∣∣Sxy(ω)

∣∣2
/Sxx(ω) · Sxy(ω) with Sxy(ω)

=
√

Re(Sxy(ω))2 + Im(Sxy(ω))2.
The following relation applies to phase shifting

between both signals:

ϕ(ω) = arc tan (Im(Sxy(ω))/Re(Sxy(ω))).

Frequency resolution depends on both the length
of the period of measurement and the time spacing
between measured data. The highest recordable fre-
quency νmax can be calculated from the scanning step
width, according to Shannon’s theorem: vmax = 1/2 ·
�τ resp. ωmax = π/�τ . If, due to scanning, the spec-
trum of a variable can be calculated only up to an
upper frequency, vh, no higher frequencies must be
contained in the signal itself. These will be undistin-
guishably ‘folded into’ the lower frequencies range,
which will entail distortion of the spectrum (aliasing
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effect) (Jørgensen, 1994). Should such highly oscilla-
tion components be contained in the process, there are
only two ways by which to cope with the problem:

1. Increase of the frequency of scanning (either by
reduction of spacing between measured data or by
lengthening of the data set by long-term observa-
tions).

2. To suppress these high oscillations by band-pass
or low-pass filtering prior to computation of the
spectrum.

8.3 Wavelet Analysis

Wavelets analysis is a mathematical tool that has been
proven useful for timescale-based analysis of ecologi-
cal processes. It is a solution to the timescale analysis
problem because it offers an effective approach of
extracting both the information on the time local-
ization and the frequency content of the time series
(Daubechies, 1990, 1992; Mallat, 1998). The main
idea behind wavelet analysis is to imitate the win-
dowed Fourier analysis, but using basis functions
(mother wavelets) that are better suited to capture
local behaviour of non-stationary ecological signals.
They dilate and translate features which are local in
time and frequency (Debnath, 2002; Shumway, 2005).
Wavelet analysis makes use of the different wavelet
basis functions in the wavelet transform to project a
signal from the time domain into the timescale domain.
It decomposes a signal into its constituents at different
timescales (Shumway & Stoffer, 2000).

A wavelet is a small wave and a wave is a real
valued function that is defined over the entire real
axis and oscillates back and forth about zero with the
amplitude of the oscillations remaining relatively con-
stant everywhere (Percival & Walden, 2000) like the
sine wave. Wavelets come in families generated by the
father wavelet 
 and a mother wavelet ψ . A wavelet
is a function of time that obeys the following wavelet
admissibility conditions ∫Ψ (t)dt = 0 and ∫
(t)dt = 1
(Gençay, Selcuk, & Whitcher, 2002). Father wavelets
used to represent the long-scale smooth or low-
frequency component of a signal integrates to one,
while the mother wavelet used to capture the detailed
and high-frequency components or deviations from
the smooth components, integrates to zero. The father

S

A D

Filters
low-pass high-pass

Fig. 8.9 Principle of wavelet decomposition of an ecological
signal

wavelet gives rise to the scaling coefficients, while the
mother wavelet gives rise to the differencing coeffi-
cients. Hence, the father wavelet acts as a low-pass
filter, while the mother wavelet acts as a high-pass filter
(Fig. 8.9).

The wavelet transformation is a function W of two
variables u and s obtained by projecting a signal x(t)
on to a particular mother wavelet � which gives a
translated and dilated version of the original wavelet
function.

There are two essential wavelet transforms, namely
the continuous (CWT) and the discrete wavelet trans-
forms (DWT).

8.3.1 The Continuous Wavelet Transform

This is a function of two variables W(u, s) obtained by
projecting a signal x(t) on to a particular wavelet Ψ and
is given by

W(u, s) =
∫ ∞

−∞
x(t)�u,s(t)dt,

and

�u,s(t) = 1√
s
�

(
t − u

s

)

where s is the scale parameter and u is the loca-
tion parameter. Changing s produces dilating effects
(s > 1) or contracting effects (s < 1) of the function
ψ(t). Changing u analyses the signal x(t) around dif-
ferent points of u. The continuous wavelet transform is
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applied to functions x(t) defined over the entire real
axis. But, in ecological applications, there are only
a finite number n of sampled values, rendering the
CWT inadequate. Hence, there is a need for a discrete
version.

8.3.2 Discrete Wavelet Transform

Implementing the wavelet transform on sampled data
requires the discretisation of the scale and loca-
tion parameters. Kumar and Foufoula-Georgiou (1997)
demonstrated that in discretising the two parameters
(s,u), one can choose S = mS0, where m is an inte-
ger and S0 is a fixed dilation step greater than one.
Given σs = Sσ1, one can choose t = nt0 mS0, where
t0 > 0 is dependent on ψ(t) with n being an integer. By
defining,

ψm,n(t) = 1√
sm

0

ψ

(
t − nt0λm

0

sm
0

)
= s

−m
2

0 ψ(s−m
0 t − nt0)

then the discrete wavelet transform is given by

wf (m, n) = s
− m

2
o

∫
f (t)ψ(s−m

o t − nto)dt.

When the DWT is applied to a time series or vector
of observations x, it gives n wavelet coefficients

w = Wx

the coefficients can be organized into (J + 1) vec-
tors w = [

w1, . . . , wj, vJ
]

T , with wj being the length
and n/2J vector of scaling coefficients associated
with averages on a scale of length 2J (Whitcher,
1998).

Applying shifted and scaled versions of a wavelet
function ψ(t) decomposes a signal x(t) into sim-
pler components. Wavelet analysis acts as a lens for
inspecting the time varying structure of signals and
relationships between signals. In multiresolution sig-
nal decomposition the time and frequency-dependent
ecological process x(t) will result in the wavelet trans-
form results in a low-pass scaling filter (father wavelet)
and in high-pass wavelet filter (mother wavelet) acting

S

A1 D1

A2 D2

A3 D3

S = A1 + D1

= A2 + D2 + D1

= A3 + D3 + D2 + D1

Fig. 8.10 Principle of signal approximation (A) and decompo-
sition (D)

Table 8.3 Frequencies associated with level of decomposition

Frequency (d) MRA scale MRA scale

1 a1 d1

2 a2 d2

4 a3 d3

8 (appr. 1 week) a4 d4

16 (appr. 2 weeks) a5 d5

32 (appr. 1 month) a6 d6

64 (appr. 2 months) a7 d7

128 (appr. 4 months) a8 d8

as a high-pass filter. The procedure can be seen from
Fig. 8.10.

Given a signal of length n = 2j, a maximum of j
filtering procedures can be performed creating j differ-
ent resolution scales. The wavelet filter represents the
details (d) or wavelet coefficients. It reveals the varia-
tions at different scales (multiresolution decomposition
(MRD)). The scaling filter gives the smoothed version
(a) of the original signal (cf. Fig. 8.11). This multireso-
lution approximation (MRA) filters information in the
signal at different scales. If time records of daily data
are available, Table 8.3 shows the frequencies asso-
ciated with the different levels of decomposition or
details.

Wavelet analysis was applied to dissolved oxygen
time series of the River Havel, sampled at daily inter-
val at the Potsdam monitoring station in the State
of Brandenburg, Germany. The approximations shown
in Fig. 8.11 reveal time-dependent variations and the
long-term evolution of the dissolved oxygen record.
The variations are not homogenous across time. The
highest resolution a7 indicates an upward movement
with stable cycles from the third year. The decreas-
ing effect of long-term DO changes after the fifth



122 A. Gnauck et al.

500 1000

14

8

12

8

12
5

15

15

8

5
15

5
15

5
15

5

s

a7

a6

a5

a1

a2

a3

a4

2
–2

2
–1

1

5

15

2
–2

–4
2

–2

1

–1
1

–1

s

d7

d6

d5

d1

d2

d3

d4

1500 500 1000 1500
time (d) time (d)

Signal and Approximations Signal and DetailsFig. 8.11 Multiresolution
decomposition of a dissolved
oxygen time series using the
Daubechies 8 mother wavelet

year indicates the changes of the underlying basic
cycling behaviour. The details reveal that the daily
variations (d1) are less prominent than the weekly
(d4) and bi-weekly (d5) variations. The variations
become smaller at the bimonthly scale (d7). This
gives rise to the opportunity of checking the sampling
strategy.

The variance of a signal can equally be decomposed
using this technique. Gençay et al. (2002) showed
that the time-varying variance for a signal x(t) is the
variance of the scale sj wavelet coefficient wj,t using
σ 2

x,t(sj) = (1/2sj) · var(wj,t).
The wavelet variance shown in Fig. 8.12 reveals the

intensity of variation from one scale to the other of the
dissolved oxygen time series.

The wavelet variance presented in Fig. 8.12 quanti-
fies and indicates how much each scale contributes to
the overall variability of the dissolved oxygen signal.
It reveals that the variation in the time series increases
progressively till scale 8 where a local maximum can
be observed. Scales 8, 16, and 32 are more or less the
same and contribute the most to the overall variability
with the daily variations contributing the least. There is
no significant increase in the variations that occur after
scale 8. The dissolved oxygen curve is dominated by
long-term changes or low frequencies. Rapid changes
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Fig. 8.12 Wavelet variance of dissolved oxygen using db8. U –
upper 95% significance level, L – lower 95% significance level

in algal productivity and respiration cannot be cap-
tured by dissolved oxygen measurements. Monitoring
at scales lower than scale 8 gives redundant infor-
mation. Hence, the optimal wavelet scale of monitor-
ing is 8 for this indicator and the ecosystem under
consideration.

Similar to the wavelet variance of a univariate
signal, the wavelet covariance decomposes the covari-
ance between two signals on a scale-by-scale basis
(Whitcher, 1998). The wavelet covariance is the
covariance between the scale sj wavelet coefficients
from a bivariate signal. After Gençay et al. (2002) the
wavelet covariance for a bivariate stochastic signal of
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Fig. 8.13 Wavelet cross-covariance between dissolved oxygen
and water temperature using db8

the scale sj is given by

γx(sj) = 1

2sj
cov(w1,j,t, w2,j,t),

and a scale-by-scale decomposition of the covariance
is given by

∞∑
j=1

γx(sj) = cov(x1,t, x2,t).

Then, the wavelet cross-covariance is given by intro-
ducing a time lag τ between the signals:

γx,τ (sj) = 1

2sj
cov(w1,j,t, w2,j,t+τ ).

It is known that the correlation between dissolved
oxygen and water temperature is a negative one. The
wavelet covariance between dissolved oxygen and
water temperature in Fig. 8.13 shows a linear increase
in the cross-covariance up to scale 8 (approximately 1
week) after which the co-variation starts dropping and
increases negatively at scale 32. The changes of DO are
determined mainly by the low-frequency behaviour of
water temperature.

From the wavelet cross-covariance, the wavelet cor-
relation (or normalised cross-covariance) is obtained:

ρx(sj) = γx(sj)

σ1(sj)σ2(sj)
.

It must be noted that the wavelet correlation is not
a test of cause–effect relationship. But comparisons
of wavelet correlations enable a deeper insight in the
long-term interrelationships of ecological variables.
Results of wavelet correlations between dissolved oxy-
gen and chlorophyll-a, and between dissolved oxygen
and water temperature are presented in Fig. 8.14. The
wavelet correlation of DO and chlorophyll-a (phyto-
plankton biomass) is quite different from those of DO
and water temperature. At wavelet scale 8 (approxi-
mately 1 week) the highest influence of phytoplankton
biomass on DO can be seen. In opposite of that the
overall wavelet correlation of DO and water temper-
ature indicates a more or less constant and positive
relationship at scales 2, 4, and 8. There is a decrease
in the strength of the positive relationship from scale
8 and becomes significantly negative at scale 32. It
shows that the fluctuations of the DO time series
are caused by the lower high-frequency scales (1–8)
and the variations of the DO signal by the higher
low-frequency scales (16 and 32).

Introducing a time lag τ to the wavelet correlation
the wavelet cross-correlation is obtained:

ρx,τ (sj) = γx,τ (sj)

σ1(sj)σ2(sj)
.

Figure 8.15 shows the lead–lag relationship
between the indicators dissolved oxygen and water
temperature. The behaviour has been decomposed
into different timescales by means of wavelet cross-
correlation. The correlation effects between the two

*
* *

*

*

*

-0
.6

-0
.2

0.
2

0.
4

Wavelet Scale

L L L
L

L

L

U
U U U

U

U

1 2 4 8 16 32

*
*

*
* *

*

0.
1

0.
3

0.
5

0.
7

Wavelet Scale

W
av

el
et

 C
or

re
la

tio
n

L
L

L
L

L

L

U
U

U

U
U U

1 2 4 8 16 32

Fig. 8.14 Wavelet correlation of dissolved oxygen with chlorophyll-a (left) and water temperature (right)
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Fig. 8.15 Cross-correlation between dissolved oxygen and water temperature using db4

variables investigated is shown on each level. It can
be seen that the high-frequency level (level 1) does
not contribute to the expected shift between both indi-
cators. This level characterises the noise contained in
the original time series. Significant shifts are observed
from level 2 to level 6 with increasing time lag. From
level 2 to level 5 the values of wavelet cross-correlation
at lag 0 are positive, while for level 6 this value will be
negative. This confirms that water temperature effects
on dissolved oxygen are stronger at low-frequency
levels than at high-frequency levels.

8.4 Statistics and Long-Term Ecological
Research

Ecosystems are complex dynamic nonlinear systems.
Grant, Pedersen, and Marín (1997) compared methods
of problem solving in ecology in terms of the rela-
tive level of understanding and the relative amount of
data available on the ecosystem under consideration.
From this point of view statistics plays an impor-
tant role for long-term ecological research. While for
short-term measurements (or observations) of ecolog-
ical variables only classical static statistical methods

should be applied to extract environmental information
from the data, for the analysis of long-term ecologi-
cal data records dynamic statistical procedures should
be applied only. But, Fourier polynomials are based
on fixed frequencies. From Fig. 8.16 can be seen that
the Fourier polynomial is not able to follow a natural
process like global radiation.

Therefore such polynomials are not well suited
to analyse long-term records environmental time
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Fig. 8.16 Fourier polynomial of global radiation
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Fig. 8.17 Long-term approximations of water temperature

series. A wavelet analysis was applied to long-term
ecological data series to study the underlying nature
of ecological processes under consideration. The fol-
lowing Figs. 8.17, 8.18, and 8.19 present examples of

ecological variables taken from a freshwater ecosys-
tem for a physical, a chemical, and a biological
variable. They were recorded from 1998 to 2003.
Figure 8.17 gives an example for a physical variable.
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Fig. 8.18 Long-term
approximations of dissolved
oxygen

In each case, the upper panel shows the original time
record.

When the wavelet approach was used to decom-
pose the water temperature record till level 8, it was

observed that a longer cycle was hidden within the
yearly cycles. Extending it to level 10 a longer cycle
can be seen. This shows the need for analyzing longer
ecological records so as to unravel long cycles hidden
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Fig. 8.19 Long-term approximations of chlorophyll-a
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in signals. Investigating the reason for these cycles may
be greatly relevant for a sustainable management of
ecosystems.

The dissolved oxygen record (Fig. 8.18) contains a
slow upward trend. By decomposing this record up to
level 10 it was found that longer cycles which were not
visible in the basic record are revealed.

The time record of chlorophyll-a (Fig. 8.19) shows
a behaviour with two interesting areas of high algal
biomass. They are caused by growth of diatoms in
spring and of cyanobacteria in summer and fall. Taking
of all environmental induced variations from the record
a simple tendency underlying this record can be seen.

8.5 Conclusions

Statistical analysis of ecological data series by modern
methods makes possible the investigation and quantifi-
cation of the variation across different timescales as
well as the dominant scale of variation and the iden-
tification of the relationships existing between com-
plex ecological processes on a scale-by-scale basis.
It allows the decomposition of signals according to
their different frequency levels which characterise the
intensity of natural and man-made disturbances. The
analysis of long-term records of ecosystem signals is
necessary for extracting information required for their
sustainable management. This can be done using clas-
sical time series analysis methods with different levels
of success. The structural characteristics of the sig-
nals such as the presence of trends, dependence, and
long memory can be detected by techniques such as the
cumulative sum, trend analysis, and the autocorrelation
function. These techniques reveal that the ecological
signals are non-stationary and have to be rendered sta-
tionary before applying time series models like the
Box–Jenkins and the Fourier approximation modelling
approaches. The non-stationary structure due to inter-
nal and external driving forces in ecosystems poses no
problems to wavelet analysis which reveals the basic
variation present in the signals. In so doing, it unravels
any hidden long-term cycles which seem to be present
in the ecological signals. It is of great importance to
analyze the signals over longer periods of time so as to
extract the underlying general tendency.

The following questions can be effectively
answered by the help of wavelet analysis. What is the

dominant scale of variation influencing the observed
general tendency of the indicator? Are the variations
from 1 day to the next more prominent than the
variations from 1 week to the next? Are the statistical
variations in the ecological indicator homogenous
across time? What are the time-dependent variations
such as the presence of trends? How are two indicators
related on a scale-by-scale basis? How do they covary
at different scales? These questions can be answered
by modern statistical methods which consider not only
the probability distribution of ecological data but also
the inherent time structure of ecological processes.
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