Chapter 58
On the Numerical Prediction of Stability
in Thin Wall Machining

Oluwamayokun B. Adetoro, Ranjan Vepa, Wei-Ming Sim, and P.H. Wen

Abstract In this chapter, the numerical prediction of stability margin in thin wall
machining is introduced. The Nyquist criterion is applied to the stability model
presented by Adetoro, while a newly discovered damping prediction approach is
presented, which when applied to the FEM and Fourier approach presented by
Adetoro, would allow the prediction of stability margins without the need for ex-
perimentally extracted damping parameters.
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58.1 Introduction

In aerospace, the manufacturing process is progressively limiting the use of joints
through the manufacturing of structures as one monolithic piece. Machining is a
very common operation in manufacturing, due to its versatility and its high mate-
rial removal rate in producing parts of desired dimensions. Aircraft wing sections,
fuselage sections, turbine blades and jet engine compressors, are all typical parts
with sections produced from machined aluminium or titanium blocks. With environ-
mental concerns and the general demand for higher efficiency, weight requirements
compel the design of much thinner sections. In order to maintain the quality of the
machined parts there is usually a dimensional tolerance, which the machined parts
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Fig. 58.1 Dynamic milling model

have to satisfy. To enforce this, it is a general practice for machined parts to undergo
inspection before they are certified for use. While parts that fail this inspection are
either scrapped or subjected to many hours of manual labour to remove the bad
surface finish.

In milling the workpiece is fed past a rotating tool with one or more teeth
(Fig. 58.1), which makes it possible to attain very high ‘Material Removal Rate’
(MRR). The tooth/teeth remove the material from the workpiece in the form of
small individual ‘chips’. The study into the numerical simulations of the machining
of thin-walled sections [1] is the focus of this chapter. In thin wall machining, the
cutting conditions used are very important and must be chosen with care as they
directly influence the cutting forces. The cutting forces cause structural vibrations
in the workpiece, tool and spindle. These vibrations can be classified as free vibra-
tions (occur after an external energy source is removed), forced vibrations (occur
during the presence of an external energy source) and self-excited vibrations [2].
The self-excited vibration has its source from the inherent structural dynamics of
the machine tool-workpiece and feedback responses through the undulations left
on the machined surface. The optimum cutting case is when the undulations left on
the machined surface are in phase with the undulations from previous tooth pass.
The worst case however is when the phase angle between the two undulations is out
of phase by 90°. This leads to the phenomena known as “regenerative chatter” or
simply “chatter”. Chatter is usually characterised by a very bad surface finish and a
drastic increase in both cutting forces and vibrations.

The prediction of stable conditions in the form of charts started when, Tobias [3]
and Tlusty [4] simultaneously made the remarkable discovery that the main source
of self-excited regenerative vibration/chatter was not related to the presence of neg-
ative process damping as was previously assumed. However, it is related to the
structural dynamics of the machine tool-workpiece system and the feedback re-
sponse between subsequent cuts. Their model is only applicable to orthogonal metal
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cutting where the directional dynamic milling coefficients are constant and not
periodic. Other studies on the stability of orthogonal metal cutting were reported
by Merritt [5].

Altintas and Budak [6-8] later proposed an analytic approach to predict stability
margin. Perhaps, the first analytical approach in which the zeroth order term in the
Fourier series expansion of the time varying coefficients was adopted. The analytical
model was later extended to include three directions by Altintas [9], where the axial
immersion angle was assumed to be constant. Except for flat end mills however, the
axial immersion angle, is a function of the axial depth of cut. Campa et al. [10] later
proposed an averaging approach to calculating the axial immersion angle in order to
solve the stability model analytically. However, the axial immersion angle was still
assumed to be a constant. This is the main analytical approach generally used in
predicting stable cutting conditions in machining [11, 12]. The model has recently
been improved by Adetoro et al. [13, 14] to include the nonlinearity of the cutting
force coefficients, axial immersion angle and system dynamics.

The accuracy of the predicted stable region relies on the dynamic parameters
identified at the cutter-workpiece contact zone. The cutter and workpiece dynamics
consist of its damping, stiffness and mass parameters. Damping is the dissipa-
tive factor present in every real-life system/structure. Unlike the well developed
mass/inertia and stiffness forces, the damping forces are at present extracted through
experiments known as modal testing/analysis. This is because the physics behind
the damping forces are not fully understood especially for a wide range of systems.
It is however always desirable for an analyst to be able to predict the damping ratio
(either analytically or numerically) for any given geometry without having to rely
solely on experimental results.

A significant contribution at the early development of modal analysis was pro-
portional damping model. It was first proposed by Lord Rayleigh in 1878, where
he indicated that if the viscous damping matrix is proportional to mass and stiffness
matrices (the damping forces are proportional to the kinetic and potential energies
of the system) then it can be expressed [15] as,

C = oM + oK, (58.1)

where g and o are real positive constants. The model is termed ‘Rayleigh damp-
ing’ or ‘classical damping’. The significance of this model is that the damped system
would have the same mode shapes compared to its undamped counterpart, thus the
system is said to possess ‘classical normal modes’.

The equation of motion for a multi degree of freedom (MDoF) system can be
expressed as,

Mx + Cx+Kx=F, (58.2)
where M is the mass matrix, C is the viscous damping matrix, K is the stiffness

matrix, X, X, X and F are the acceleration, velocity, displacement and excitation force
vectors respectively.
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In 1960, Caughey and O’Kelly [16] provided a generalization of Rayleigh’s
condition for discrete systems in form of the series,

L—-1
C=M) o, (M'K)", (58.3)
u=0

where L is the number of identified modes used in the curve fitting, «, are
real positive constants obtained through using experimentally identified damping
parameters. The Rayleigh damping model is the first two series of the expansion.

Thus this chapter is structured as follows; the Nyquist Criterion is applied to the
dynamic milling model; a newly discovered approach to predicting the structural
damping parameters is presented.

58.2 Application of the Nyquist Criterion

The dynamic milling model is explained in the paper by Budak and Altintas [6] and
summarised by Adetoro et al. [1, 17]; while a new 3-D mode was developed in the
paper by Altintas [9], with improvements in the paper by Adetoro et al. [13]. For
purposes of applying the Nyquist stability criterion the dynamic milling model may
be re-stated in terms of the dynamic forces acting the machine tool in the form,

F(t) = (1/2)aK:AG(D) (F(t) —F(t — T)) + F.(t). (58.4)
or as,
F(1) = (1/2) aK,AG(D) (I — exp (~DT)) F(¢) + Fe(t). (58.5)

where F(¢) is the dynamic force vector acting on the cutting tool, a is the axial
depth of cut, K; is the tangential cutting force coefficient, A(z), is the immersion
dependent directional cutting force coefficient matrix, which could in general be a
periodic function of time satisfying the condition, A(t + T) = A(z), G(D) is the
direction dependent and frequency dependent transfer function relating the static
and dynamic cutting force vector, 7 is the inter-tooth time of passage, F.(¢) is the
control force vector acting on the cutting tool. Equation (58.5) is expressed in terms
of the force vector. Further information on the formulation of the force equations for
a generic case, including the application of Floquet theory to machine tool chatter
may be found in the paper by Minis and Yanushevsky [18].

In many applications to machine tool chatter the immersion dependent di-
rectional cutting force coefficient matrix A may be approximated by a constant
coefficient matrix. The problem can be reformulated as a closed loop control prob-
lem and the control law defining the control force vector acting on the cutting tool,
F. () may be synthesized using standard techniques of control law synthesis. Thus
if the control law takes the form,
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Fe(t) = =K (D)F(7), (58.6)
and it follows that,
F(t) = (1/2)aK, (1 + K. (D)) 'AG(D) (1 —exp(—DT)) F(2) (58.7)
Equation (58.7) may be expressed as,

(I —(1/2)aK; X1+ K (D)) 'AG(D) (1 — exp(—DT))) F(¢)
= (I1+ ®(D)F(t) = 0 (58.8)

The conditions for stability may now be stated in terms of the Nyquist stability
criterion. The return difference equation is given by,

[+ GA] = I+ ®(D)) (58.9)

Thus the multi-input multi-output Nyquist plot may be obtained by computing the
eigenvalues, A, defined by,

[®(D) + Al]x =0 (58.10)

As @ (D) is acomplex matrix, the above is a complex eigenvalue problem. To obtain
the Nyquist plot corresponding to an eigenvalue it is plotted on the complex plane
as o traverses the Nyquist contour. In the classical Nyquist plot the gain crossover
point (i.e. when the gain exceeds unity in magnitude) and phase crossover point (i.e.
when phase increases from less than 180° to greater than 180°) are critical in the
assessment of relative stability. The gain margin of stability is measured at the phase
crossover point and the phase margin at the gain crossover point. The gain margin
is the additional gain factor in dB that force the plot to pass through crossover point
while the phase margin is the additional phase which when added to the phase would
force the phase plot to pass through the phase crossover point. Moreover when the
gain crossover and the phase crossover points are relatively close to each other,
it signifies that a point of neutral stability is in the vicinity of the gain crossover
point.

58.3 System’s Transfer Function

The system’s transfer function matrix, G(D) in Eq. (58.4) is required in order to
predict the system’s stability margin. It is therefore defined for the cutter and the
workpiece as,

G(D) = G¢(D) + G, (D). (58.11)
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Where for a 2-D system,

Gﬁxx (D) Gﬁxy (D)

Gﬂ (D)= [Gﬁyx(D) Gﬂyy(D)

i| , B=c,w), (D=iw) (58.12)

When considering only the tool’s dynamics, the cutter’s transfer function G, (D)
can be assumed to be constant and generally extracted experimentally, while the
workpiece’s transfer function matrix G,,(i w.) is simply ignored. In the case of thin
wall machining however, the workpiece dynamics cannot be ignored and the current
adopted experimental methods would be inefficient as the dynamics are not constant
along the thin wall as shown by Adetoro et al. [14]. An FEM and Fourier approach
to extracting the system’s transfer function was presented by Adetoro et al. [1, 17].
The main drawback of this approach is that it requires the damping parameters of
the structure, therefore a new approach to predicting the damping parameters is
presented in the next section.

58.3.1 Damping Ratio Prediction

An approach to predicting the damping ratio was discovered by Adetoro et al.
[19, 20], which can be used to predict the damping parameters used in the FEM
simulations. In many practical situations the use of the Nyquist stability criterion
is unnecessary if one can extract the damping ratio of all the vibration modes rela-
tively quickly. The approach proposed by Adetoro et al. [19] is a quick, simple and
yet significantly accurate approach to predicting the damping ratio in terms of the
frequency for a given wall; based on the use of the known damping ratios of a wall
with same height (provided only the wall thickness is changed). From a range of ex-
tracted structural dynamics, it was discovered that there was a certain trend between
the different damping ratios for different wall thicknesses. It was found that a new
set of parameters, Ep and @ p, can be defined as follows,

a
{,= i—” (58.13)
a
for damping ratio and
a)a
0, = t’”’, (58.14)

for natural frequency, where 7, is the reference current wall thickness, ¢ % is the
modal damping ratio and w7 is the natural frequency for the reference wall respec-

tively. These parameters (Ep and @) are then used to predict the damping ratio, { f,
in terms of frequency, a)g for any new geometry (provided only the wall thickness is

changed) by simply multiplying Ep and @, by the new wall thickness 7, as follows,
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th=¢, 1. (58.15)
wh =wp -t (58.16)

It should be noted that ¢ 2 and a)g are not necessarily the precise modal damping
and natural frequencies of the new wall. Studying the series in Eq. (58.3) propose
by Caughey [16], the zeroth order approximation gives,

Co = aoM, (58.17)

which is not realistic as there the stiffness term has to always exist in whatever level
of approximation, hence in an attempt to preserve the stiffness and mass terms a
new series is proposed, which is defined as,

1L/2
{p = > Z(azu—l cop "+ gy 0l), (58.18)

u=1
where the first term expands out to,

¢ = ! (— + azwn) (58.19)

2 \wy,
Therefore, Eq. (58.19) can be written for the first series as,
Cp=a1Mp+arKp, (58.20)

which, shows that both mass and stiffness retained in the first series. Expanding the
proposed series gives,

Cp=a1Mp+ Ky +o3sM)® +asKy® +asM] + agK, +-- (58.21)

Therefore by dividing Eq. (58.19) through by the wall thickness 7,, as done in
Eqgs. (58.13) and (58.14) we obtain the following series expansion,

~

/2
= 1
é‘ = E (a2u—l o+ 0oy 514)9 (5822)

Il
—

where constants «,—; and oy, are real constants obtained using least squares
method. This series expands out in the form,

- l [« o o
§=—(:1+a25+_—i+a452+_—53+a653+---) (58.23)
2\ w w w
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Therefore, by dividing the different numerically extracted natural frequencies (refer
to the FEM approach in the paper by Adetoro et al. [1, 17]) for each identified mode
for the new wall thickness by 7, to obtain @ in Eq. (58.22) and then multiplying
the calculated ¢ by ¢, the corresponding damping for that mode is obtained. This
significance of this new damping modelling approach is its application in thin wall
machining, as the workpiece thickness reduces and its damping parameters change.
Several case studies are presented in the paper by Adetoro et al. [19,20].

58.3.2 Damping Matrix

The damping ratio, ¢ 2 in terms of frequency can be readily used directly by
most commercial Finite Element (FE) packages, however the damping matrix C
in Eq. (58.2) is sometimes required. To obtain the damping matrix, the numerically
extracted natural frequency of the new structure for each mode is divided by the
wall’s thickness #p, to obtain w and used in Eq. (58.22), to calculate ¢, which is then
multiplied back by the wall’s thickness 75, to obtain the new modal damping ratio
for the corresponding mode.

The modal damping C), is simply calculated in a similar fashion as in SDoF. The
damping matrix C is finally obtained by pre-multiplying by the modal matrix and
then post-multiplying by the transpose of the modal matrix or eigenvectors obtained
in FEM simulations. This orthogonal property only applies to systems that possess
classical normal modes or proportional damping.

58.3.3 Examples

To demonstrate the new damping prediction approach, the FEM approach pre-
sented by Adetoro [1] was used. The workpiece material used in the FEM model
is “Aluminium Alloy 7010 T7651” and the properties are: Density, p = 2.823 x
103 (kg m_3), Young’s Modulus, £ = 69.809 (GPa) and Poisson Ratio, v = 0.337.
Two different examples taken from the paper by Adetoro [20] are shown here. The
dimensions are given in the paper by Adetoro [20] and the corresponding exper-
imentally identified damping parameters. The experimentally extracted damping
parameters for the reference wall are used to predict the damping parameters, é‘f,
for other structures using the approach presented in previous section. The damping
parameters predicted, ¢ 2 and the force data, f(¢) measured by the instrumented
hammer (in time domain) during experimental impact tests were used in each cor-
responding FE analysis.

During the experimental impact test, the workpiece was bolted at the back surface
to a milling machine, hence in the FEM simulations it was assumed to be perfectly
clamped (characterised by stiffness values of 1 x 103® for the corresponding degrees
of freedom) and that the resonant frequency of the machine is much higher than the
excited frequencies during impact tests.
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Two FEM simulations were carried out for each structure; one using the experi-
mentally extracted damping parameters and the second using the predicted damping
parameters. The comparison between the two (Figs. 58.2 and 58.3) shows the accu-
racy of the new approach to predicting damping parameters. The FEM simulations
are also compared with experimentally measured accelerations to depict the accu-
racy of the FEM simulations.
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