
Chapter 46
Transparent Integration of a Low-Latency
Linux Driver for Dolphin SCI and DX

Rainer Finocchiaro, Lukas Razik, Stefan Lankes, and Thomas Bemmerl

Abstract High-speed interconnects like Dolphin’s SCI and DX fulfil even high
communication performance requirements. One of the prerequisites, though, is that
the communication software must be either based on IP sockets or specifically
adapted to the interconnect. Software written directly for Ethernet, arguably the
most widespread interconnect today, cannot profit from this fast hardware. In this
article, we present a Linux driver that fills this gap by allowing transparent usage
of Dolphin hardware. ETHOM provides an Ethernet interface and makes use of the
lowest message passing layer of Dolphin’s driver stack in order to exchange Ether-
net frames. It enhances the functionality of SCI and DX by offering an Ethernet and
with that an IP interface.

Keywords Ethernet � SCI � Dolphin DX � Linux � TIPC

46.1 Introduction

Computational power has always been a scarce resource and prognoses predict that
this situation will not change any time soon. While computer performance increases,
the demand for more computational power increases at least at the same pace.

Until very recently, CPUs as the main component of a computing system grew
more powerful by raising the clock frequency. Today parallelism in the form of addi-
tional cores per die adds to the performance increase. From a hardware point of view,
the next level of parallelism is the gathering of single computers to form a cluster.
Traditionally, the single computers – called nodes – in these clusters were connected
by Ethernet in one of its incarnations. Concerning the software, the predominant
protocol used on top of Ethernet is the TCP/IP stack. With software running on

R. Finocchiaro (�), L. Razik, S. Lankes, and T. Bemmerl
Chair for Operating Systems, RWTH Aachen University, Kopernikusstr. 16,
52056 Aachen, Germany
e-mail: finocchiaro@lfbs.rwth-aachen.de; razik@lfbs.rwth-aachen.de;
lankes@lfbs.rwth-aachen.de; bemmerl@lfbs.rwth-aachen.de

S.-I. Ao and L. Gelman (eds.), Electronic Engineering and Computing Technology,
Lecture Notes in Electrical Engineering 60, DOI 10.1007/978-90-481-8776-8 46,
c� Springer Science+Business Media B.V. 2010

539

finocchiaro@lfbs.rwth-aachen.de
razik@lfbs.rwth-aachen.de
lankes@lfbs.rwth-aachen.de
bemmerl@lfbs.rwth-aachen.de

540 R. Finocchiaro et al.

the cluster that communicates intensively, the network more and more becomes the
limiting factor of overall cluster performance.

So, there are two problems to cope with: (1) Networking hardware in the form of
Gigabit Ethernet is too slow for several purposes; 10 Gigabit Ethernet is still in the
beginnings and rather expensive. (2) Then, TCP/IP is a protocol suite designed for
communication in wide area networks, offering elaborate mechanisms for routing,
to deal with even extensive packet loss, etc. It is not so well suited for clusters.

To overcome these problems, there are mainly two approaches in order to allow
faster communication (latency and bandwidth wise):

1. Usage of high-speed networks, each having their own low-level programming
interface (API), most providing an implementation of the POSIX socket API, and
some offering an IP interface. Examples of these networks include InfiniBand
[10], Myrinet [15], QsNet [16], SCI [3], and Dolphin DX [4]. An IP interface for
Dolphin DX has been presented in [12].

2. Replacing the software layer TCP, UDP – and sometimes IP as well – while
keeping the Ethernet hardware. Examples of these replacement protocols include
SCTP (Stream Control Transmission Protocol [7]), DCCP (Datagram Congestion
Control Protocol [11]), UDP-Lite [13], AoE (ATA over Ethernet [9]), and TIPC
(Transparent Interprocess Communication Protocol [14, 17]).

Being developed originally at Ericsson, the abovementioned TIPC has its origin
in the telecommunication sector, but provides some characteristics making it suit-
able for high performance computing (HPC) with clusters, such as an addressing
scheme supporting failover mechanisms and the prospect of less overhead for ex-
changing data within a cluster. TIPC is the transport layer of choice of the Kerrighed
project [18], where it is used for kernel to kernel communication. Currently it can-
not make use of high-speed networks like InfiniBand, SCI, or DX, as neither do they
provide an Ethernet interface, nor does TIPC provide a specialised “bearer”, which
is the adaptation layer between TIPC and a native network interface.

A first approach to enable TIPC to make use of high-speed networks is described
in [5], where we elaborate on ETHOS, an Ethernet driver built using Linux kernel-
space UDP sockets to send and receive data. ETHOS therefore directly supports
almost all high-speed interconnects. Measurements with ETHOS on top of SCI
and InfiniBand show significantly higher bandwidth and lower latency than Gigabit
Ethernet.

In order to further reduce communication latency, we decided to sacrifice com-
patibility with other high-speed interconnects and use the next lower software
layer available in the Dolphin Express stack, the Message Queue Interface. Using
this interface, ETHOM (ETHernet Over Message-Queue driver) provides an Eth-
ernet interface for SCI and Dolphin DX hardware. Therefore, in addition to the
TCP/UDP-Sockets already provided by the Dolphin software stack, ETHOM offers
an Ethernet interface, enabling interface bonding, bridging and other layer 2 kernel
features, as well as (IP-)Routing for the SCI and Dolphin DX interconnects. Further-
more, TIPC is enabled to make use of these two network technologies leveraging its
Ethernet bearer.

46 Transparent Integration of a Low-Latency Linux Driver for Dolphin SCI and DX 541

In the next section, we give a short overview about the hardware that we enable
to be used as Ethernet replacement. Section 46.3 elaborates on the design and the
architecture of our driver and in Section 46.4, we provide some basic experimental
results. We conclude with the current status in Section 46.5.

46.2 Dolphin’s High-Speed Interconnects

46.2.1 Scalable Coherent Interface (SCI)

The Scalable Coherent Interface [1, 8] is an established interconnect technology for
transparent communication on the memory access level and/or the I/O read/write
level. It maps (parts of) the physical address spaces of the connected nodes into
one global address space, which allows to export and import memory and access it
transparently via programmed input/output (PIO), or explicitly using direct mem-
ory access (DMA) transfers. Cache coherency between the nodes is supported by
the standard, but not via I/O interfaces like PCI. The nodes are connected in mul-
tidimensional torus topologies without a central switch, as each host adapter also
switches packets between its multiple links.

The current SCI hardware generation (D352) achieves remote store latencies
starting at 220 ns and a maximum bandwidth of 334 MiB/s per channel.

46.2.2 Dolphin DX

The Dolphin DX interconnect [4] is based on the protocols for the Advanced Switch-
ing Interface (ASI). As such, it also couples buses and memory regions of distributed
machines, but is designed for PCI Express and not for coherent memory coupling.
Also, it does not use distributed switching like SCI; instead, all nodes connect to a
central switch. Current switches offer 10 ports, and can be scaled flexibly.

Nevertheless, DX offers many of the same features as SCI from a programmers
perspective, namely transparent PIO and DMA access to remote memory and re-
mote interrupts. This makes it possible to integrate it into the existing software stack
for SCI, offering the same APIs as for SCI.

The performance of DX has significantly improved compared to SCI for both,
PIO and DMA transfers. The latency to store 4 bytes to remote memory is 40 ns,
while the bandwidth reaches about 1.397 GiB/s already at 64 bytes transfer size.

46.2.3 Dolphin Software Stack

The SISCI API [2] is the basic and most efficient possibility to use SCI or DX
as high-speed interconnect. SISCI is a shared-memory programming interface that

542 R. Finocchiaro et al.

makes the features of the SCI and DX interconnects accessible from user space.
It consists of a user-space shared library (libsisci), which communicates with
the SISCI kernel driver via ioctl() operations to create and export shared mem-
ory segments, map remote memory segments to the address space of the calling
process, send and wait for remote interrupts, and perform DMA transfers from and
to remote memory segments.

These means allow processes running on different machines to create common,
globally distributed shared memory regions and read and write data from and to
there either via PIO or DMA operations. Synchronisation can be performed via
shared memory or via remote interrupts.

To obtain optimal communication performance, data transfers need to be aligned
to suitable SCI packet and buffer sizes (16, 64 and 128 bytes), and remote read
operations should be avoided except for very small data sizes.

SISCI does not provide means to pass messages between processes except for
writing to some shared memory location and synchronising via either shared mem-
ory or remote interrupts. Therefore, based on this shared memory interface, Dolphin
supplies a thin software layer for communication via message queues (MBox/Msq).
It allows to establish uni-directional communication channels between machines
which can be operated via simple send() and recv() operations. This software
layer takes care of alignment, data gathering, error checking and so forth, and offers
different optimised protocols for small, medium, and large data sizes.

It is also the basis for Dolphin’s SuperSockets, which in user space offer a
Berkeley API compliant sockets interface via libksupersockets.

46.3 Architecture of ETHOM

In order to bring together the two worlds of Ethernet-based software and Dolphin’s
high-speed networks, we inserted a thin layer of indirection below the Ethernet in-
terface (see Fig. 46.1). This layer passes the Ethernet frames to the SCI Message
Queues, which represent the lowest message passing layer of the Dolphin software
stack (compare Section 46.2). Compared with ETHOS, we sacrifice compatibility
with other high-speed interconnects for better performance at the additional cost of
higher system load. At the lowest level, SCI or DX cards physically deliver the data
to the peer nodes.

46.3.1 Configuration

ETHOM is configured in three phases: at compile time, at loading, and at run time
of the driver. For simplicity reasons, basic configuration is rather static; number of
peers in the network and their ETHOM host id to SCI node IDs mapping have to be
specified at compile time. At load time, most importantly the ETHOM host_id

46 Transparent Integration of a Low-Latency Linux Driver for Dolphin SCI and DX 543

user

kernel

HW

ETH interface

Application

Standard
Sockets

Ethernet NIC

Other

OtherStandard
Sockets

TIPC
Sockets

TIPC
native/

Sockets

user

kernel

HW

ETH interface (ETHOM)

Application

Other

Other

SCI Message Queues

SCI−NIC

Standard
IP−Sockets

Standard
Sockets

TIPC
Sockets

TIPC
native/
Sockets

DX−NIC

Fig. 46.1 Network architecture of ETHOM (right) in Comparison to Standard Architecture (left)

has to be passed as a parameter allowing to use one binary for all hosts in the
network. Optionally, direct flushing after each call to send_msg() can be enabled
for the sender side, dynamic polling for the receive thread. A transmit timeout can
be specified that tells the kernel after which period of time to drop packets. With the
above mentioned parameters, the Ethernet interface is set up and ready to go. The
IP address, MTU, etc. can be assigned at run time with ifconfig. All module
parameters specified at load time can be changed at run time.

46.3.2 Connection Establishment

As shown in Fig. 46.2, after loading the driver, on each node two unidirectional
message queues are created for every peer node in the network (e.g. 14 message
queues on each node in case of 7 peer nodes). Message queue IDs are calculated
from the local and the peer node number as

IDReceiveQueue D #hosts � peerC local
IDSendQueue D #hosts � localC peer

This way they are guaranteed to be unique throughout the cluster.
For each peer node, two threads are started (e. g. 14 threads on each node in

case of 7 peers), one trying to connect the local send to the distant receive queue
and one waiting for a connection on the local receive queue. As soon as the first of
the threads waiting on the local receive queues has accomplished its connection, this
thread becomes the master thread that polls on all connected receive queues. All the
other send and receive threads terminate as soon as their connection is established,

544 R. Finocchiaro et al.

Fig. 46.2 Implementation
of ETHOM

node ...n

kernel

HW

ETH interface
(ETHOM)

Application

NIC

eth2: 192.168.0.1

Application

NIC

eth2: 192.168.0.5

user

node 1 node 2

Send
MSQ

Receive
MSQ
MSQ−2MSQ−1

Send
MSQ

Receive
MSQ
MSQ−2MSQ−1

Send
MSQ

Receive
MSQ
MSQ−2MSQ−1

Send
MSQ

Receive
MSQ
MSQ−2MSQ−1

Send
MSQ

Receive
MSQ
MSQ−2MSQ−1

Send
MSQ

Receive
MSQ
MSQ−1MSQ−2

ETH interface
(ETHOM)

effectively reducing the number of remaining threads to one. On the occasion that a
peer node does not connect directly, a new connection attempt is made periodically.

In case that IP communication is performed on top of ETHOM, IP addresses
can be specified arbitrarily, they do not have to correspond to node numbers. Just
like with hardware Ethernet devices, the Address Resolution Protocol (ARP) is used
at first contact to find the node that provides the sought-after IP address. For this
purpose, the kernel sends so called ARP requests, Ethernet frames with the hard-
ware address ff:ff:ff:ff:ff:ff, that ETHOM forwards to all hosts in the
network. The interface providing the missing IP address, which is encapsulated in
the request, answers with its hardware address and after that the correct mapping
between destination’s IP address and Ethernet hardware address is known at the
sending kernel.

46.3.3 Communication Phase

Exchanging data between two nodes in a network is described on the basis of
Fig. 46.3: An application on ETHOM host 1 on the left sends data through a TCP
socket to an application on ETHOM host 4 on the right.

Sending. When an application on host 1 writes data to a TCP socket connected
to a receiver on host 4, this data is passed to the kernel networking stack. The
kernel then splits it into packets fitting into the previously specified MTU (Frag-
mentation) – if necessary – and equips each packet with an Ethernet header. This
newly constructed Ethernet frame is passed to ETHOM by calling its ethom_tx()
function. There, the minimum length of the packet is checked and if needed padding
bytes are added, before the Ethernet frame is given to ethom_tx_action().
In ethom_tx_action(), the last byte of the destination hardware address (indi-
cating dest_host, here “04”) encapsulated in the Ethernet header is used to find
the send (TX) message queue which is connected to the receive (RX) message queue

46 Transparent Integration of a Low-Latency Linux Driver for Dolphin SCI and DX 545

TCP−Socket
connected to
192.168.10.14

IP: 192.168.10.11
NET: 192.168.10.0/24
HW: 00:45:54:48:00:01

host_id

ethom_tx()

eth2 (dev_id = 0)

Dolphin driver stack

NETIF

SCI/DX Network adapter

write (payload)

TCP−Socket
connected to
192.168.10.11

IP: 192.168.10.14
NET: 192.168.10.0/24
HW: 00:45:54:48:00:04

host_id
eth3 (dev_id = 0)

Dolphin driver stack

NETIF

SCI/DX Network adapter

ETHOM Host = 01 ETHOM Host = 04

kernel activity physical transfer

K
er

ne
l S

pa
ce

U
se

r
S

pa
ce

H
W

read (payload)

zoom

ETH IP TCP payload
ETH−Frame

skb

ethom_tx_action()

ETH IP TCP payload
Message

dst: 00:45:54:48:00:04
src: 00:45:54:48:00:01

dst_host=4

4 Message Queue to Host 4

tx_dates[dst_host]
...

...

...

...

Dolphin Message Queue, TX

send_flush_msg()

ethom_rx()

ETH IP TCP payload

Setting attributes
like protocol, device,
CHECKSUM_NONE
(checksumming
is done by upper
levels)

netif_rx()

dev_alloc_skb()

ethom_rx_thread_action()

ETH IP TCP payload
Message

Dolphin Message Queue, TX

polling of
recv_msg()

Fig. 46.3 Data transfer through ETHOM from sender to receiver

on the destination host. Depending on the flush parameter either send_msg()
or send_flush_msg() is called to forward the message to the Dolphin driver
stack and finally the hardware. send_msg() should be beneficial for data through-
put, while send_flush_msg() – which we chose for our measurement and
general operation – should reduce latency.

Receiving. Arriving on host 4 (compare Fig. 46.3), the data is directly written to
the message queue’s data space in main memory by the Dolphin hardware; no inter-
rupt is called to signal the arrival of data. As mentioned before, a thread is started
executing the function ethom_rx_thread_action() that either dynamically
or not polls on the receive message queue. This thread, repeatedly calling Dol-
phin’s recv_msg() function fetches the data shortly after arrival and passes it
upwards to ethom_rx(). In ethom_rx(), an skb structure is allocated with
dev_alloc_skb(), attributes like dev, protocol, ip_summed are set, so
that the kernel level above ETHOM accepts the skb, and the Ethernet frame is
passed upwards with netif_rx(). Here, the IP packets are reassembled from
several Ethernet frames (if they were fragmented before), IP and TCP headers are
stripped off again, and the user data reaches its final destination, the application on
host 4.

546 R. Finocchiaro et al.

In case of a node failure or shutdown, all other nodes continue working as before.
Reconnection of message queues as soon as a node comes up again is not yet
implemented, though.

46.4 Performance Evaluation

In this section, we briefly present basic experimental results. For a more detailed
analysis, please refer to [6].

The measurements were performed on two different clusters: (1) PD consisting
of nodes equipped with Pentium D 820 processors from Intel, on-board Gigabit
Ethernet Controllers (BCM5721), a D352 SCI card from Dolphin, and an MHGS-
18 DDR InfiniBand adapter from Mellanox (20 Gb/s). (2) Xeon consisting of nodes
equipped with Xeon 5355 processors from Intel, on-board Gigabit Ethernet Con-
trollers (Intel 82563EB), a DX510H adapter from Dolphin, and the same InfiniBand
adapter as PD.

We chose NPtcp from the widely used NetPIPE benchmark suite in version 3.7.1
in order to generate easily comparable and reproducible low-level latency and band-
width data.

46.4.0.1 Latency

Figure 46.4 shows the round-trip latency (RTT/2) for messages of varying sizes on
the vertical axis and the message size on the horizontal axis.

The upper curve starting at 50	s represents Gigabit Ethernet, the reference that
ETHOS and ETHOM compete with. The lowest latencies are delivered by ETHOM
on SCI, followed by ETHOM on DX; the highest times are the Ethernet times.
A dramatic decrease in latency can be seen for Ethernet with message sizes between
16 and 48 B, which indicates polling for new messages on the receiving side. For
larger messages, the high raw bandwidths of InfiniBand and DX lead to lower la-
tency as for SCI. Comparing ETHOM on SCI with ETHOS on SCI, an improvement
in latency of around 10	s for small messages and around 15	s for larger ones can
be observed.

All in all, ETHOM on SCI provides an improvement in latency by a factor of
two and above on our measurement platform over Gigabit Ethernet and about a
30% improvement over its companion ETHOS.

46.4.0.2 Bandwidth

Figure 46.5 shows the bandwidth for varying message sizes measured with NPtcp.
Gigabit Ethernet delivers for all message sizes the lowest bandwidth (excluding

the aforementioned interval between 16 and 48 B). For small messages, ETHOM on

46 Transparent Integration of a Low-Latency Linux Driver for Dolphin SCI and DX 547

100

90

80

70

60

50

40

30

20
19

16
1 4 16 64 256 1024

R
ou

nd
-T

rip
/2

 [u
s]

Message size [Byte]

Xeon: ETHOS on IPoIB connected mode (ETHOS MTU=65493, MTU=65520)
Xeon: Gigabit Ethernet (MTU= 1500)

PD: ETHOS on SCI (ETHOS MTU=34790)
PD: ETHOM on SCI (ETHOM MTU= 8000)

Xeon: ETHOM on DX (ETHOM MTU= 8000)

Fig. 46.4 Latency measured with NPtcp

 0.0625

 0.25

1

4

 16

 64

 256

 1024

 4096

1 32 1024 32768 1048576

T
hr

ou
gh

pu
t [

M
bi

t/
s]

Message size [Byte]

Xeon: ETHOS on IPoIB connected mode (ETHOS MTU=65493, MTU=65520)
Xeon: Gigabit Ethernet (MTU= 1500)

PD: ETHOS on SCI (ETHOS MTU=34790)
PD: ETHOM on SCI (ETHOM MTU= 8000)

Xeon: ETHOM on DX (ETHOM MTU= 8000)

Fig. 46.5 Throughput measured with NPtcp

548 R. Finocchiaro et al.

SCI performs best with ETHOM on DX and ETHOS on IPoIB close by. At about
1 KB, the three curves split again each gradually approaching its maximum, which
is at 1.5 Gb/s for SCI and 3 Gb/s for DX (with their current limitation to an MTU
of 8 KB) and about 5 Gb/s for ETHOS on InfiniBand. Comparing ETHOM with
ETHOS on SCI, it can be noticed that for small messages (up to 8 KB) ETHOM
provides a 50% increase in bandwidth. For large messages (256 KB and above)
ETHOS benefits from the support for larger low-level packets and maybe additional
buffering in the sockets layer.

To sum up, ETHOM on SCI exhibits a twofold increase in bandwidth for mes-
sages up to 1 KB over Gigabit Ethernet and about a 50% increase over ETHOS.

46.5 Conclusions

The performance evaluation presented in Section 46.4 and more detailed in [6]
shows that ETHOM – making use of a high-speed interconnect like either SCI or
Dolphin DX – is a solution that offers better performance than Gigabit Ethernet,
latency wise and bandwidth wise. Regarding the different price range of Gigabit
Ethernet and these high-speed interconnects, this comparison is only reasonable,
when low-latency (and maybe high-bandwidth) Ethernet interfaces are required,
which cannot be provided by Gigabit Ethernet.

Comparing the results with ETHOS [5], which implemented an Ethernet inter-
face using kernel-level UDP sockets as its lower interface, we observe a 30–70%
improvement in bandwidth for small to medium-sized messages and about a 30%
decrease in latency, when SCI is used.

The advent of many cores should have a twofold positive effect: (1) The network
should become an even bigger bottleneck for communicating applications, as the
connection is shared by a bigger number of cores, so better communication per-
formance is highly appreciated. (2) Having a smaller ratio between the one core
sacrificed for communication and the number of cores still available for computa-
tion reduces the relative communication overhead.

Currently, ETHOM fulfils our main aim to enable TIPC – and any other soft-
ware communicating via Ethernet frames – to use SCI and DX. Besides ETHOS, it
provides the only Ethernet interface for SCI and DX; as a side effect, support for
IP-routing is now offered using the standard kernel IP stack on top of ETHOM.

On the other hand side, porting software to the native interfaces of high-speed
interconnects almost always provides better performance and efficiency at runtime –
obviously at the cost of porting effort. As usual, it remains to the user to balance the
pros and cons.

46 Transparent Integration of a Low-Latency Linux Driver for Dolphin SCI and DX 549

References

1. ANSI/IEEE Std. 1596-1992, Scalable Coherent Interface (SCI): IEEE (2007)
2. SISCI Interface Specification 2.1.1 (1999). Dolphin Interconnect Solutions.
3. Dolphin Interconnect Solutions: The Dolphin SCI Interconnect (1996) http://www.dolphinics.

com
4. Dolphin Interconnect Solutions The Dolphin DX Interconnect (2007). http://www.dolphinics.

com/products/pent-dxseries-dxh510.html
5. Finocchiaro, R., Razik, L., Lankes, S., Bemmerl, T.: ETHOS, a generic Ethernet over Sockets

Driver for Linux. In: Proceedings of the 20th International Conference on Parallel and Dis-
tributed Computing and Systems (PDCS) (2008)

6. Finocchiaro, R., Razik, L., Lankes, S., Bemmerl, T.: ETHOM, an Ethernet over SCI and DX
Driver for Linux. In: Proceedings of 2009 International Conference of Parallel and Distributed
Computing (ICPDC 2009), London, UK (2009)

7. Fu, Shaojian and Atiquzzaman, M.: SCTP: state of the art in research, products, and technical
challenges. In: Proceedings of the IEEE 18th Annual Workshop on Computer Communica-
tions, CCW 2003, pp. 85–91 (2003)

8. Hellwagner, H., Reinefeld, A. (eds.): SCI: Architecture and Software for High Peformance
Compute Clusters, Lecture Notes in Computer Science, vol. 1734. Springer-Verlag, Berlin,
Germany (1999)

9. Hopkins, S., Coile, B.: AoE (ATA over Ethernet) (2006) http://www.coraid.com/site/co-pdfs/
AoEr10.pdf

10. InfiniBand Trade Association: Infiniband Architecture Overview (2002). http://www.
infinibandta.org/events/past/it roadshow/overview.pdf

11. Kohler, E., Handley, M., Floyd, S.: Datagram Congestion Control Protocol (DCCP) (2006)
http://ietfreport.isoc.org/rfc/PDF/rfc4340.pdf

12. Krishnan, V.: Towards an Integrated IO and Clustering Solution for PCI Express. In: Proceed-
ings of IEEE International Conference on Cluster Computing (CLUSTER’07), Austin, TX
(2007)

13. Larzon, L.-A., Degermark, M., Pink, S., Jonsson, L.-E., Fairhurst, G.: The Lightweight User
Datagram Protocol (UDP-Lite) (2004). http://ietfreport.isoc.org/rfc/PDF/rfc3828.pdf.

14. Maloy, Jon (2004). TIPC: Providing Communication for Linux Clusters. In Proceedings of
the Ottawa Linux Symposium, pages 347–356. http://www.linuxsymposium.org/proceedings/
LinuxSymposium2004 V2.pdf

15. Myricom Inc.: Myrinet 2000 Product List (2008). http://www.myri.com/myrinet/product list.
html

16. Quadrics Ltd.: Quadrics QsNetII (2003). http://www.quadrics.com
17. Stephens, A., Maloy, J., Horvath, E.: TIPC Programmer’s Guide (2008). http://tipc.sourceforge.

net/doc/tipc 1.7 prog guide.pdf
18. The Kerrighed Team Kerrighed: a Single System Image operating system for clusters (2008).

http://www.kerrighed.org

http://www.dolphinics.com
http://www.dolphinics.com
http://www.dolphinics.com/products/pent-dxseries-dxh510.html
http://www.dolphinics.com/products/pent-dxseries-dxh510.html
http://www.coraid.com/site/co-pdfs/AoEr10.pdf
http://www.coraid.com/site/co-pdfs/AoEr10.pdf
http://www.infinibandta.org/events/past/it_roadshow/overview.pdf
http://www.infinibandta.org/events/past/it_roadshow/overview.pdf
http://ietfreport.isoc.org/rfc/PDF/rfc4340.pdf
http://ietfreport.isoc.org/rfc/PDF/rfc3828.pdf.
http://www.linuxsymposium.org/proceedings/LinuxSymposium2004_V2.pdf
http://www.linuxsymposium.org/proceedings/LinuxSymposium2004_V2.pdf
http://www.myri.com/myrinet/product_list.html
http://www.myri.com/myrinet/product_list.html
http://www.quadrics.com
http://tipc.sourceforge.net/doc/tipc_1.7_prog_guide.pdf
http://tipc.sourceforge.net/doc/tipc_1.7_prog_guide.pdf
http://www.kerrighed.org

	46 Transparent Integration of a Low-Latency Linux Driver for Dolphin SCI and DX
	46.1 Introduction
	46.2 Dolphin's High-Speed Interconnects
	46.2.1 Scalable Coherent Interface (SCI)
	46.2.2 Dolphin DX
	46.2.3 Dolphin Software Stack

	46.3 Architecture of ETHOM
	46.3.1 Configuration
	46.3.2 Connection Establishment
	46.3.3 Communication Phase

	46.4 Performance Evaluation
	46.4.0.1 Latency
	46.4.0.2 Bandwidth

	46.5 Conclusions
	References

