Chapter 19
A Quotient-Graph for the Analysis
of Reflective Petri Nets

Lorenzo Capra

Abstract The design of dynamic, adaptable discrete-event systems calls for
adequate modeling formalisms and tools in order to manage possible changes
occurring during system’s lifecycle. A common approach is to pollute the design
with details not concerning the current system behavior, rather its evolution. That
hampers analysis, reuse and maintenance in general. A Petri net-based reflective
model (based on classical Petri nets) was recently proposed to support dynamic
discrete-event system’s design, and was applied to dynamic workflow’s management.
Behind there is the idea that keeping functional aspects separated from evolutionary
ones, and applying evolution to the (current) system only when necessary, results
in a clean formal model for dynamic systems. This model preserves the ability of
verifying properties typical of classical Petri nets. As a first step toward the imple-
mentation (in the short time) of a discrete-event simulator, Reflective Petri nets are
provided in this paper with a semantics defined in terms of labeled state-transitions.

Keywords Petri nets - dynamic systems - evolution - quotient-graph

19.1 Introduction

Most existing discrete-event systems are subject to evolution during their lifecycle.
Think e.g. of mobile ad-hoc networks, adaptable software, business processes, and so
on. Designing dynamic/adaptable discrete-event systems calls for adequate modeling
formalisms and tools. Unfortunately, the known well-established formalisms for
discrete-event systems, such as classical Petri nets [13], lack features for naturally
expressing possible run-time changes to system’s structure. An approach commonly
followed consists of polluting system’s functional aspects with details concerning
evolution. That practice hampers system analysis, reuse and maintenance.

L. Capra (=)

Department of Informatics and Communication (D.1.Co),
Universita degli Studi di Milano, MI Italy 20139

e-mail: capra@dico.unimi.it

S.-I. Ao and L. Gelman (eds.), Electronic Engineering and Computing Technology, 215
Lecture Notes in Electrical Engineering 60, DOI 10.1007/978-90-481-8776-8_19,
© Springer Science+Business Media B.V. 2010

capra@dico.unimi.it

216 L. Capra

Reflective Petri nets [5] have been recently proposed as design framework for
dynamic discrete-event systems, and successfully applied to dynamic workflows [4].
They rely on a reflective layout formed by two logical levels. The achieved clean
separation between functional and evolutionary concerns results in a simple formal
model for systems exhibiting a high dynamism, which should preserve the analysis
capabilities of classical Petri nets. With respect to other dynamic extensions of Petri
nets appeared in last decade, which set up new (hybrid) paradigms [2, 3,9, 12], the
Reflective Petri nets approach tries to achieve a satisfactory compromise between
expressive power and analysis capability, through a rigorous application of reflection
concepts in a consolidated Petri net framework.

On the perspective of implementing in the short time an automatic solver and
a discrete-event simulation engine, Reflective Petri nets are provided in this pa-
per with a (labeled) state-transition semantics. Any analysis/simulation techniques
based on state-space inspection has to face a crucial question, that is how to rec-
ognize possible equivalent states during base-level’s evolution. That major topic is
managed by exploiting the symbolic state definition the particular Colored Petri net
flavor [11] used for the meta-level is provided with, and represents the paper’s orig-
inal contribution.

The balance is as follows: background information on Reflective Petri nets and
the employed Petri net formalisms are given in Sections 19.2 and 19.3. The focus
is put there on those elements directly connected to the paper’s main contribution,
the definition of a state-transition semantics for Reflective Petri nets (Section 19.4).
An application of the semantics to a dynamic system taken from literature is summa-
rized in Section 19.5. Related works are mentioned and discussed in Section 19.6.
Finally Section 19.7 is about work-in-progress.

19.2 WN’s Basic Notions

The formalisms employed for the two levels (meta- and base-) of the reflective
layout are Well-formed Nets (WN) [6], a flavor of Colored Petri nets (CPN) [11],
and their unfolded counterpart, an extension of ordinary Place/Transition nets [13],
respectively. This choice has revealed convenient for two main reasons: first, the
behavior of Reflective Petri nets can be formally stated in terms of classical Petri
nets state-transition; secondly, the symbolic state notion peculiar of WN makes it
possible to efficiently recognize equivalent base-level’s evolutions.

While retaining CPN’s expressive power, WNs are characterized by a structured
syntax, exploited by efficient analysis algorithms.This section does not present all
the features of WNs, for which the reader can refer to [6], just introduces them
informally, focusing on the symbolic marking definition. Unlike CPNs, WNs in-
clude priority levels for transition and inhibitor arcs. These features enhance the
formalism expressiveness and are helpful to represent the transactional execution of
evolutionary strategies.

19 A Quotient-Graph for the Analysis of Reflective Petri Nets 217

As in CPN, places as well as transitions are associated to color domains, i.e.,
tokens in places have an identifier (color), similarly transitions are parameterized,
so that there exist different color instances of a given transition. A marking M maps
every place p to a multiset on the respective color domain C(p). The projection of
M to a subset P’ is denoted M[P’]. Any arc connecting p to a transition ¢ is labeled
by a function mapping every element of C(¢) to a multiset on C(p).

SWN color domains are Cartesian products of basic color classes C;. A class C;
may be in turn partitioned into static subclasses Ciy. The idea is that objects in a
subclass are indistinguishable from one another.

19.2.1 The Symbolic Marking

The Symbolic Marking [7] provides syntactical equivalence relation on ordinary
WN markings: two markings belong to the same SM if and only if they can be ob-
tained from one another by means of a permutation of colors that preserve static
subclasses. A SM (denoted IVI) is formally expressed in terms of dynamic sub-
classes, and specifies the distribution of symbolic colors (tuples built of dynamic
subclasses) over the WN places.

Dynamic subclasses define a parametric partition of color classes preserving the
static partition: let Z; and s; denote the set of dynamic subclass of Cj (in M), and
the number of static subclasses of Cj (s; > 1). The j-th dynamic subclass of C;,
zj@ € Z;, refers to a static subclass, denoted d (z}), 1 <d (z]@) < sj, and has a car-
dinality |z}|, i.e., it represents a parametric set of colors. It must hold, Vk : 1...s;

jd=k ‘Zj‘ = | Cix |l

The SM canonical form [7], based on a lexicographic ordering and a minimiza-
tion of dynamic subclass distribution over the places, provides a way to uniquely
represent an SM.

19.3 Reflective Petri Nets Layout

The Reflective Petri nets [5] approach relies on a logical layout divided in two levels.
The first one, called base-level, is an ordinary Petri net (a P/T net with priorities and
inhibitor arcs) representing the system prone to evolve (base-level PN); while the
second level, called meta-level, consists of a high-level Petri net (a colored Petri net)
representing the evolutionary strategies (the meta-program, following the reflec-
tion parlance) that drive the evolution of the base-level upon occurrence of certain
conditions/events.

The meta-level acts on a representative of the base-level, called reification, which
is formalized by a colored marking. The reification is used by the meta-program to

218 L. Capra

observe (introspection) and manipulate (intercession) the base-level PN. Changes to
the reification are reflected down to the base-level at the end of a meta-computation
(shift-down).

The meta-level is implicitly activated (shift-up) at any base-level change of state.
Then a strategy is selected depending on whether (a) the base-level has entered
a given condition, (b) and/or any external events (simulated at meta-level) have
occurred. The ability of specifying arbitrary selection conditions enhances the flex-
ibility of the reflective layout.

The reflective framework is another high-level Petri net component, somehow
similar to a transparent meta-layer, which is in charge of implementing base-level’s
introspection and intercession. The framework has a fixed layout, formed by higher-
priority transitions. Intercession is performed in terms of a minimal, complete set
of low-level operations (the evolutionary interface): addition/removal of nodes and
arcs, change of transition priorities (structural changes), free moving of tokens over-
all the base-level PN places (state changes). If one such operation fails, the meta-
program as a whole is restarted and any changes caused in the meanwhile to the reifi-
cation are discarded. Trying to delete a yet not existing node is an example of failure
In other words, the evolutionary strategies have a transactional semantics. After a
strategy’s succeeding run, changes are reflected down to the base-level Petri net.

A designer is provided with a tiny ad-hoc language, originally inspired to Hoare’s
CSP, to specify his/her own strategy in a simple way, without any skills in high-level
Petri net being required. An automatic translation to a corresponding high-level Petri
net is done.

Several strategies could be candidate for execution at a given instant: different
policies might be adopted to select one, varying from a non deterministic choice, to
a static assignment of priorities. According to the reflective paradigm, the base-level
is unaware of the meta-program. The system designer may freely decide, using pri-
ority, to block the base-level while the meta-program is active, or to leave it running.
It may also define local influence areas for some strategies, by (temporarily) locking
corresponding portions of the base-level.

Let us only outline here some essential points about the interaction between base-
and meta-levels:

1. The reflective framework and the meta-program share two sets of boundary col-
ored places, denoted reification set and evolutionary interface in the sequel. Their
composition, through a simple superposition of shared places, gives rise to the
meta-model, called meta-level PN.

2. The reification is a well-defined marking of the reification set Reif formed
by {reifP,reifT,reifA, reifll, reifM}. Such places encode structure
(nodes, connections, and priorities) and current state of the base-level PN, re-
spectively. Their color domains are built of basic classes Place, Tran, which are
(logically) unbounded repositories holding all potential base-level nodes (they
must contain the nodes of the initial base-level Petri net). We have: C(reifP),
C(reifM): Place; C(reifT), C(reifll): Tran; C(reifd): Place x Tran X
{i,o, h}.

19 A Quotient-Graph for the Analysis of Reflective Petri Nets 219

3. The isomorphism between base-level nets and reification is formalized by a bijec-
tion ¢. For example a net formed by places {p1, p2, ...}, transitions {t1,2, ...}
having priority levels 0, 1, ... respectively, by an input arc (pi1,?;) of weight
2, an output arc (¢1, p2) of weight 1.., whose current marking is m(p;) = 2,
m(py) =1, isreified as: M(reifP) = p1+p2+...,M(reifT) =t + 6 +
o, M(xeifll) =t + ..., M(reifd) =2 (p1.11,i) + (p1,t2,0) + ...,
M(reifM) =2- p; + pa.

4. A back-up copy Reify,. of set Reif is kept. Evolutionary strategies work on
Reif: if an operation fails, then the contents of Reify,.; are copied back to
Reif, and the control passes to the base-level.

5. The shift-up is implemented in transparent way at net-level, by connecting every
base-level transition to the place(s) reifM (reifMp,.x) by means of colored
arcs. The resulting model is denoted base-meta PN. Consider transition #; of the
above example: its firing makes two colors p; and one color p, be withdrawn/
added from/to reifM (reifMp,qk), respectively. Base-level changes of state
are thus instantaneously mirrored on the reification, maintaining base-level’s un-
awareness of the meta-level.

6. The shift-down is emulated by a homonym highest-priority meta-transition of the
meta-level PN.

19.4 State-Transition Semantics for Reflective Nets

The causal connection between base- and meta-level makes it possible to formalize
the behavior of Reflective Petri nets in terms of WN state-transitions:

Definition 19.1 (Reflective Petri net state). A state of a Reflective Petri net is a
marking M; of the base-meta PN.

Let PNy be the (marked) base-level Petri net which models the initial system.
Assume it has been connected to the meta-level. The initial state of the correspond-
ing Reflective Petri net is obtained setting: Mo[Reif] = Mg[Reifpucr] = ¢ (P No).

Let f. be any transition (color instance) of the base-meta PN, other than
shiftdown. If # is enabled in M;j, according to the ordinary enabling rule,
and M; is the marking reached upon the firing, we have the state-transition:

M; —5> M

Only one case must be treated apart. Let shift-down be enabled in M;, according
to the ordinary firing rule. Then:

shift—down ,
i —>

0

220 L. Capra

M, being the marking of the base-meta PN obtained by firing shift-down in the ordi-
nary way, making the contents of Re i £, be updated to Reif, finally (side-effect),
replacing the current base-level PN with PN’= ¢~!(M;[Reif]) and connecting
PN’ to the meta-level.

19.4.1 Handling Equivalent Evolutions

The just introduced state-transition semantics defines precisely the untimed be-
havior of a reflective Petri net, but suffers from two evident drawbacks affecting
efficiency and effectiveness. First, the notion of state is exceedingly redundant, com-
prising a part, the meta-level, which outs the functional specification of a system.
Secondly, there is no way of recognizing whether the system dynamics/evolution
leads to equivalent conditions. The latter question is critical: the ability of deciding
about finiteness and strongly-connectedness (strictly related to the ability of recog-
nizing equivalences) is in fact mandatory for any techniques based on state-space
inspection.

Recognizing equivalences in an evolving system is tricky. It may happen that
after a series of transformations the base-level comes back to the original condition
(state). Even more likely, the internal dynamics of the evolving system might lead to
equivalent conditions. The problem is tackled by resorting to the symbolic marking
notion, peculiar of WN, and the base-level reification at the meta-level.

The modeler, on his/her needs may define a logical partition of classes Place,
Tran, possibly different from the completely split partition (implicitly) adopted
when setting up the base-meta PN:

Place =PiUP,U...Px Tran=TiUT,U... T,

The idea is simple: elements belonging to a subclasses P; (7;) denote indistinguish-
able base-level nodes, which might be freely permuted, without altering the model’s
semantics. Those nodes that, for any reasons, must preserve their identity during
evolution, will correspond to cardinality one subclasses. The default logical partition
is that in which all places/transitions can be permuted. Of course the evolutionary
strategies refer to the logical partition of base-level nodes.

The causal connection between base- and meta- levels establishes an exact cor-
respondence (at any instant) between the current base-level PN and the contents of
Reifp.q. On the light of that, we state the following state-equivalence notion, in
which we refer to the logical partition of Place and Tran.

Definition 19.2 (state equivalence). Let M; be the symbolic marking obtained
from M;j[Reifp,.k] replacing every pi € Px (€ T) with a corresponding dy-
namic subclass z; (ij), d(z') =k (d(zjz) =1), |7 (Izj2|) = 1. Then M; = M if
and only if ﬁi = IVIJ-.

19 A Quotient-Graph for the Analysis of Reflective Petri Nets 221

IVIi represents an equivalence class of states (Def.19.1), so we shall use the notation
M < M;. The state-transition notion is redefined accordingly.
Definition 19.3 (visible state-transition). Let o be a finite sequence of meta-level

.. . \ . t
transition color instances other than shiftdown (o possibly empty). Then M; —
M;, if and only if 7 is either shiftdown or a base-level transition, and there exist

(o) t . s
o, M s.t. M; — M — M (according to the above definition).

M, as well as any intermediate marking crossed by o, are equivalent to M;. Visible
state-transitions are caused by the occurrence of either shiftdown, or any base-level
transition. Meta-level transition sequences (o) are not visible to an external observer.

We call reachable a state M; §ych that M l) M; i) ... M. We say ﬁi
reachable if and only if any M € M is.

Lemma 19.4. Let 1 € Ty, M; —> M;. Then:

VM eM; 3 € o M e My M —> W/

VM e M3 € Ti. Me oM -5 M/

Thanks to the above lemma we can build a quotient-graph in which nodes are the
reachable {Ml} and there is a labeled arc IVIi i) IVIJ- if and only if there exist
t €T, MeM;, M €M, st.M—> M.

If the meta-level PN never enters a deadlock or a livelock, then the liveness and
reachability properties of the original state-transition graph are preserved.

19.5 The Dynamic Philosophers Example

The (symbolic) state-transition semantics of Reflective Petri nets has been tested on
a variant of the well known dining philosophers problem which introduces a high
dynamism [14]. The version here considered meets the following requirements:

e Two philosophers initially sit on the table.

e A philosopher can eat only when he/she simultaneously picks up the pair of ad-
jacent forks, one of which is owned by the philosopher.

¢ A philosopher sitting on the table has two additional faculties, both requiring that
the owned fork is currently available.

— He/she can invite a colleague which is outside to join the table, sharing with
him/her the owned fork.
— He/she can leave the table, if there are at least three philosophers sited on it.

e Each philosopher is going around with his/her own fork.

The base-level Petri net representing the starting condition is depicted in
Fig. 19.1. We observe that the functional aspects are described in detail, while

222 L. Capra

Pf g <~ p;)

AN AN

invite thinky leave invite think- leave,

v v l v
Ou| =mO|XN[On

muv 1

L3 tho
’__ ’
take / take, €— fk

et 1 mrz ?

\ rely J N——— el

Fig. 19.1 Dynamic philosopher’s base-level Petri net

.

the dynamic features are only sketched (transitions invite;, leave;), thus keeping
the model as simple as possible. Any invitation/leaving intents activate the meta-
program, which consequently implements two different strategies.

The logical partition of base-level nodes groups places/transition playing a simi-
lar role:

Place = PhU Fork U LyU InvU ... Tran = Invite U Think U Leave U . . .

where Ph = {phi}, Fork = { fki}, Lv = {lvi},..Think = {th;}, etc.

According to Def.19.2 the depicted base-level net, and that having the same struc-
ture, but places eat;, ph, marked instead of eat,, ph,, are equivalent (reachable)
states of the corresponding Reflective Petri net. They can be obtained from one
another by the permutation:

{phy < phy,eat) < eaty}
The leaving strategy is informally described in Table 19.1. The strategy is divided

into an introspection step, which consists of checking a logical condition on the
base-level reification, followed, if the check is positive, by an intercession phase.

19 A Quotient-Graph for the Analysis of Reflective Petri Nets 223

Table 19.1 Leaving strategy description

introspection
There exist a marked place /1 : Lv and at least 3 places of type Ph

intercession

The philosopher phl : Ph who issued the request is identified:

Let f'1 be the owned fork, f2 be the other fork used by phl (f1, f2: Fork);

The philosopher ph3 sharing fork f1 with phl is identified as well:

Let tk3 : Take, rel3 : Rel be the transitions modeling the pick-up and the release

of forks by ph3, respectively;

ph3 is connected to f2 through a new input arc (/2, tk3), and a new output arc (rel3, f2);
The philosopher phl (meant as a the whole subnet) is removed, together with f1;

Place /1 is emptied;

Tal?le 19.2 Symb"“? VS. #Philosophers Symbolic states Ordinary states
ordinary state-space size 3) 256

4 284 37,489

5 2,356 176,583

6 14,712 5,905,034

7 96, 035 not av.

8 476,785 not av.

9 1,207,086 not av.

10 2,978,896 not av.

Symbols used in the description correspond to typed variables of the strategy speci-
fication language, which are bound from time to time to color instances.

An evidence of the effectiveness of the quotient graph based on the equivalent
states notion (Def. 19.2), which comes to be live, versus the ordinary state-transition
graph, is given in Table 19.2. Only visible changes of state involving the base-level
are numbered. The experiment was conducted using the GreatSPN tool, with a
script emulating the shift-down effect. The first column reports the problem size, i.e.,
the table capacity. We can appreciate a sensible reduction of the number of reached
states also for small sizes, due to the high symmetry exhibited by the system during
evolution. Some data about time/memory saving, not reported for the lack of space,
confirm the effectiveness of the approach.

19.6 Related Works

Many efforts have been devoted in trying to extend Petri nets with dynamical fea-
tures. In [15], the author is proposing his pioneering work, self-modifying nets, in
which the flow relation between a place and a transition is a linear function of the
place marking. Another major contribution of Valk is the so-called nets-within-nets
paradigm [16], where tokens flowing through a net are in turn nets. In his work,

224 L. Capra

Valk takes an object as a token in a unary elementary Petri net system, whereas the
object itself is an elementary net system. Even if in the original Valk’s proposal no
dynamic changes are possible, and mobility is weakly supported, most extensions
introduced afterward rely upon his idea.

Badouel and Oliver [2] defined a class of high level Petri nets, called recon-
figurable nets, which can dynamically modify their own structure by rewriting
some of their components. Reconfigurable nets can be unfolded to a subclass of
self-modifying Petri nets for which boundedness can be decided. Mobile and dy-
namic Petri nets [1] integrate Petri nets with RCHAM (Reflective Chemical Abstract
Machine) based process algebra.

Tokens in self-modifying, mobile/dynamic and reconfigurable nets, are passive.
To bridge the gap between tokens and active objects (agents) some variations on the
theme of nets-within-nets have been proposed. In [9] objects are studied as high-
level net tokens having an individual dynamical behavior. Object nets behave like
tokens, i.e., they are lying in places and are moved by transitions. However, they
may also change their state. Reference nets [12] are a flavor of high level Petri nets
which provides dynamic creation of net instances, references to other nets/tokens,
and communication via synchronous channels (net-inscriptions are in Java).

More recent proposals have some similarity with the work we are presenting.
In [3], a dynamic architecture modeling is presented which allows active elements to
be nested in arbitrary and dynamically changeable hierarchies, enabling the design
of systems at different levels of abstractions, by using refinements of net models.
In [10], the paradigm of nets and rules as tokens is introduced, which permit the
structure and behavior of P/T systems to be changed. The new concept is imple-
mented using algebraic nets and graph transformations.

Most dynamic extensions of Petri nets set up new (hybrid) paradigms. While the
expressive power has increased, the cognitive simplicity of Petri nets has decreased
as well. As argued in [2], the intricacy of these proposals leaves little hope to ob-
tain significant mathematical results and/or automated verification tools in a close
future. The Reflective Petri nets approach is different, because it tries to achieve a
satisfactory compromise between expressive power and analysis capability, through
a rigorous application of reflection concepts in a consolidated high-level Petri Net
framework.

19.7 Conclusions and Future Work

We have semi-formally introduced a state-transition semantics for reflective Petri
nets, a formal layout based on classical Petri nets (Well formed Nets, and their
unfolded counterpart) well suited to model adaptable/reconfigurable discrete-event
systems. In particular, we have addressed a major topic related to recognizing
equivalent system’s evolutions, through the WN’s symbolic state notion. We are
planning to integrate the GreatSPN tool [8], that natively supports WN and their
stochastic extension, SWN, with new modules for the graphical editing and the

19

A Quotient-Graph for the Analysis of Reflective Petri Nets 225

analysis/simulation of reflective Petri net models. For that purpose we are defin-
ing a stochastic process for Reflective Petri nets, in large part inspired to the SWN
(GSPN) timed semantics.

References

10.

11.

12.

13.

14.

15.

16.

. Asperti, A., Busi, N.: Mobile Petri Nets. Technical Report UBLCS-96-10, Universita degli

Studi di Bologna, Bologna, Italy (1996)

. Badouel, E., Oliver, J.: Reconfigurable Nets, a Class of High Level Petri Nets Supporting

Dynamic Changes within Workflow Systems. IRISA Research Report PI-1163 IRISA (1998)

. Cabac, L., Duvignau, M., Moldt, D., Rolke, H.: Modeling dynamic architectures using nets

within nets. In: Ciardo, G., Darondeau, P. (eds.) Proceedings of the 26th International Con-
ference on Applications and Theory of Petri Nets (ICATPN 2005), LNCS 3536, pp. 148-167.
Miami, FL, Springer (2005)

. Capra, L., Cazzola, W.: A reflective PN-based approach to dynamic workflow change. In:

Proceedings of the 9th International Symposium in Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC’07), pp. 533-540. Timisoara, Romania, IEEE (2007a)

. Capra, L., Cazzola, W.: Self-evolving Petri nets. J. Univ. Comp. Scie. 13(13), 2002-2034

(2007b)

. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: On well-formed coloured nets and

their symbolic reachability graph. In: Proceedings of the 11th International Conference on
Application and Theory of Petri Nets, pp. 387-410. Paris, France (1990)

. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: A symbolic reachability graph for

coloured Petri nets. Theor. Comput. Sci. B (Logic, Semantics and Theory of Programming)
176(1& 2), 39-65 (1997)

. Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M.: GreatSPN 1.7: graphical editor and

analyzer for timed and stochastic Petri nets. Perform. Evaluation 24(1-2), 47-68 (1995)

. Farwer, B. and Moldt, D. (eds.) Object Petri nets, process, and object calculi. Hamburg, Ger-

many, Universitdt Hamburg, Fachbereich Informatik (2005)

Hoffmann, K., Ehrig, H., Mossakowski, T.: High-Level Nets with Nets and Rules as Tokens.
In: Ciardo, G., Darondeau, P. (eds.) Proceedings of the 26th International Conference on Appli-
cations and Theory of Petri Nets (ICATPN 2005), LNCS 3536, pp. 268-288. Springer, Miami,
FL (2005)

Jensen, K., Rozenberg, G. (eds.): High-Level Petri Nets: Theory and Applications. Springer,
Berlin (1991)

Kummer, O.: Simulating synchronous channels and net instances. In: Desel, J., Kemper, P.,
Kindler, E., Oberweis, A. (eds.) Proceedings of the Workshop Algorithmen und Werkzeuge
fiir Petrinetze, vol. 694 of Forschungsberichte, pp. 73-78. Universitit Dortmund, Fachbereich
Informatik (1998)

Reisig, W.: Petri Nets: An Introduction, vol. 4 of EATCS Monographs on Theoretical Computer
Science. Springer, Berlin (1985)

Sibertin Blanc, C.: The hurried philosophers. In: Agha, G., De Cindio, F., Rozenberg, G. (eds.)
Concurrent Object-Oriented Programming and Petri Nets, Advances in Petri Nets, LNCS 2001,
pp. 536-538. Springer, Berlin (2001)

Valk, R.: Self-modifying nets, a natural extension of Petri nets. In: Ausiello, G., B6hm,
C. (eds.) Proceedings of the Fifth Colloquium on Automata, Languages and Programming
(ICALP’78), LNCS 62, pp. 464-476. Springer, Udine, Italy (1978)

Valk, R.: Petri nets as token objects: an introduction to elementary object nets. In: Desel, J.,
Silva, M. (eds.) Proceedings of the 19th International Conference on Applications and Theory
of Petri Nets ICATPN 1998), LNCS 1420, pp. 1-25. Springer, Lisbon, Portugal (1998)

	19 A Quotient-Graph for the Analysis of Reflective Petri Nets
	19.1 Introduction
	19.2 WN's Basic Notions
	19.2.1 The Symbolic Marking

	19.3 Reflective Petri Nets Layout
	19.4 State-Transition Semantics for Reflective Nets
	19.4.1 Handling Equivalent Evolutions

	19.5 The Dynamic Philosophers Example
	19.6 Related Works
	19.7 Conclusions and Future Work
	References

